

γ το τρ. το βεται and δατο βλλο Που

 \checkmark

01.06 - 5/1/92-00269

REPORT

SITE ASSESSMENT TANK S781 MIDWAY PARK MARINE CORPS BASE CAMP LEJEUNE, NORTH CAROLINA CONTRACT # N62470-90-R-7626

MAY 1992

PREPARED BY:

O'BRIEN & GERE ENGINEERS, INC. 440 VIKING DRIVE, SUITE 250 VIRGINIA BEACH, VIRGINIA 23452

TABLE OF CONTENTS

ok i

فط فاف ا

444.0

The second se

		<u>Page</u>
Section 1	- Introduction	
	Purpose and Scope Site Description	1 1
Section 2	- Site Assessment	
	Hydrogeology 2.01.1 Subsurface Field Investigation 2.01.2 Site Geologic Conditions 2.01.3 Aquifer Testing 2.01.4 Groundwater Flow Environmental Assessment	3 5 6 7
	2.02.1 Free Product Characterization2.02.2 Air Characterization2.02.3 Soil Characterization2.02.4 Groundwater Characterization	7 7 8 9
2.03	Quality Assurance/Quality Control	9
Section 3	- Risk Assessment	
3.02 3.03 3.04 3.05	Introduction Site Specific Descriptive Information Current Site Data Identification of Chemicals and Media of Concern Risk Assessment Approach Conclusion	11 12 14 18 18 27
Section 4	- Remediation Assessment	
4.02	Recommendations/Corrective Action Preliminary Evaluation of Remedial Alternatives Conclusions	29 29 33
REFERENCE	S	
TABLES		
2 In-S	ndwater Elevations itu Permeability Summary ific Conductivity and pH Measurements	
FIGURES		
 Subs Grout Geol Geol 	tion Map urface Investigation Location Map Indwater Contour Map ogic Cross Section Location ogic Cross Section .ity Line Locations	

- 2 3
- 4
- 5
- 6

TABLE OF CONTENTS (continued)

APPENDICES

- Α Bore Logs and Well Construction Diagrams
- Laboratory Results Liquid Laboratory Results Soil В
- С
- In-Situ Permeability Test D
- Drilling Procedures Ε
- F Sampling Procedures

EXHIBITS

- А Site Survey Data
- Technical Memorandum No.2 Excerpts В

SECTION 1 - INTRODUCTION

1.01 Purpose and Scope

The objective of this report is to present information that has been gathered regarding any subsurface contamination in the vicinity of Tank S781, located near Building 45 at Midway Park, Marine Corps Base, Camp Lejeune, North Carolina. O'Brien & Gere Engineers, Inc. (OBG) has completed a site investigation which included monitoring well installation, penetrometer probes (hydropunch), soil borings, ground water elevation and free product monitoring, soil and ground water sampling and analysis and in-situ permeability testing. This report presents a Site Assessment, a Risk Assessment and a Remediation Assessment for the study area.

1.02 Site Description

Building 45 at Midway Park is in an enclosed compound which services large machinery for the Marine Corps Base, Camp Lejeune. The compound accommodates several garage-type buildings and storage sheds, a pump house, a small vehicle re-fueling area, and an above ground storage tank with a capacity of approximately 176,000 gallons (Tank S781). Prior to the Marine Base acquisition, pre-1942, the land was owned by Carolina Power and Lighting (CP&L) (formerly known as Tidewater Electric) and used to house a power plant. CP&L still maintains and operates two power plant substations just outside of the compound's fence to the south.

Preliminary site investigations were conducted in November 1990 by Dewberry and Davis. During these investigations five hand augers, five soil borings and two monitoring wells were completed

proximal to Tank S781. While the ground water samples did not indicate contaminant levels above method detection limits, three soil samples demonstrated Total Petroleum Hydrocarbon (TPH) concentrations above the action level of 10 ppm. TPH concentrations ranged from below method detection limits to 2200 ppm. The highest concentration (2200 ppm) was found along the suspected vicinity of underground piping from the pump house toward the main building.

SECTION 2 - SITE ASSESSMENT

2.01 Hydrogeology

2.01.1 Subsurface Field Investigation

A subsurface investigation designed to define the site's geologic conditions and delineate the extent of a possible contaminant plume was completed in December 1991. To delineate the vertical and horizontal extent of a possible contaminant plume, fourteen monitoring wells (seven nested pairs), four soil borings and ten penetrometer probes (hydropunches) were completed in the study area.

Site field activities were completed between December 4 and 12, 1991. In accordance with drilling procedures outlined in Appendix E, and under the supervision of an OBG geologist, drilling operations were performed by ATEC Associates, Inc. (ATEC) of Raleigh, N.C. An illustration of the various drill locations is provided as Figure 2.

Initially, two shallow monitoring wells (MW1 and MW3) were installed. These two monitoring wells, in addition to the two wells previously installed, aided in establishing a ground water flow direction. Secondly, ten hydropunches (H1 - H10) were completed in order to provide a preliminary delineation of the horizontal extent of contamination. Finally, the remaining monitoring wells (MW2, 4, 5 - 14), and four soil borings (B1 - B4) were completed in an effort to define the vertical extent of contamination.

To delineate the boundary of a possible dissolved plume, ten hydropunches were installed. Hydropunch installation involved pushing the hydropunch apparatus to approximately four feet below the water table and then retrieving a ground water sample from each sample chamber for field screening and laboratory analysis. Ground water collected from the hydropunch was screened in the field for volatile organics using a photoionization detector (PID).

Monitoring wells were installed in nested pairs, comprised of one shallow well and one deep well. Each monitoring well was constructed of 2" I.D., schedule 40 PVC with various lengths of 0.01 slot PVC screen. Shallow wells (odd numbered) were installed to a depth of between 12 and 20 feet below grade depending on the depth of the first encountered ground water. Within three feet of each shallow well a deep monitoring well (even numbered) was emplaced to a depth of between 27 and 30 feet below grade. Appendix A contains well construction diagrams for each well. Soil borings were terminated at the water table. Cuttings generated from drilling activities were contained in 55-gallon drums, labelled, placed on wooden pallets and left at the site for appropriate management by Activity personnel.

Split spoon samples were collected during the drilling of the seven deep wells and the four soil borings. Split spoon sampling occurred continuously from grade to six feet below grade and in five foot intervals thereafter. All soil sampling was conducted under the guidelines of ASTM D-1586. Appendix A contains lithologic descriptions of each soil sample, recorded in the field

at the time of collection. The head space of each soil sample was screened for volatile organics with a PID. Two soil samples from each deep well and soil boring were selected for laboratory analysis as discussed in Section 2.02.2.

During installation it is possible that fine grained materials may have inadvertently entered the well. It is necessary to remove these particles; this is accomplished by continuous low yield pumping development. Water generated by each well's development was containerized in 55-gallon drums and transported to an area designated for discharge to an oil/water separator.

Upon the completion of field activities, Robert H. Davis, RLS conducted a survey in order to establish each well's horizontal location and top of casing elevation. All measurements were taken to 0.01 foot accuracy (Exhibit A).

2.01.2 Site Geologic Conditions

Camp Lejeune is situated in the Atlantic Coastal Plain Physiographic Province which, in North Carolina, is characterized by low elevations and limited topographic relief (USGS, 1988). The Camp Lejeune area overlies cretaceous sediments of sands, silts and clays that thicken towards the east and reach a thickness of approximately 2500 feet. The subsurface investigation at Tank S781 involved the upper 30 feet of sediments. Split spoon samples (Appendix A) revealed a subsurface geology characterized by unconsolidated sands, silts and clays. Below the topsoil and the brown, medium to fine grained sand of the uppermost four feet lie at least twenty feet of sands with small amounts of silt and clay

which vary in colors from buff to orange, brown and white. At approximately 11 to 19 feet below grade lies a thin lamina of coarse to very coarse sand, which is underlain by gray to greenishgray medium sands. Figures 4 and 5 present an approximate geologic cross section of the study area.

2.01.3 Aquifer Testing

In-situ permeability tests were conducted on thirteen of the fourteen wells (MW2 - MW14) in order to estimate the hydraulic permeability (or conductivity). The test was unable to be completed at MW1 due to limited ground water available and the presence of fine sands within the well. The performance of the test requires that several gallons of water be removed from each well, creating a potential for flow into the well from the surrounding aquifer. As ground water re-enters the well, liquid levels are measured until the well's static water level is approached. Ground water levels during the tests were measured with an electronic oil/water interface probe. Values of hydraulic conductivity were calculated based on the change in water level versus the change in time using Horselov's formula. Appendix D contains the test data and procedures. Summarization of the calculations appear on Table 2. Using this method the geometric mean for hydraulic conductivity was calculated to be 39.2 gpd/ft². 2.01.4 Ground Water Flow

On two separate occasions ground water elevations were gauged in all of the monitoring wells at the site. Using an electronic oil/water interface probe, ground water was measured to be between

6 and 19 feet below the top of casing, or between 3 and 5 feet above mean sea level (AMSL). Using the elevational data summarized on Table 1, a ground water contour map was derived. Figure 3 illustrates the ground water flow for December 1991. The measurements obtained on the second monitoring event (January 1992) support this flow direction. The ground water measurements at MW7 were dubious on both monitoring occasions and this measurement was not used when formulating the ground water contour map. Applying an estimated effective porosity of 0.40, and an average hydraulic gradient of 0.002 ft/ft, the ground water appears to be flowing in a north to northwesterly direction at approximately 0.03 ft/day or Ground water elevations, flow direction and local 10 ft/yr. topography all suggest that ground water from the site discharges to Northeast Creek.

2.02 Environmental Assessment

2.02.1 Free Product Characterization

Using an electronic oil/water interface probe, ground water and possible free product were measured in each monitoring well. On two separate occasions all fourteen monitoring wells were gauged and free product was not detected in any of the wells. Ground water samples obtained from the penetrometer probes were also scrutinized for the possible presence of free phased hydrocarbons. None of the ten samples contained free product.

2.02.2 Air Characterization

During all field activities ambient air and sample head space were monitored for volatile organics using a calibrated

photoionization detector (PID). At no time did the worker's breathing zone or the ambient air quality exceed 1 ppm.

As each sample, both soil and liquid, was collected the PID was used to monitor the head space. All liquid samples registered below 1 ppm on the PID. All soil samples except those collected from soil boring B4 were also less than 1 ppm. Soil obtained from B4 expressed volatile emissions ranging from 0.2 ppm to 146 ppm. 2.02.3 Soil Characterization

Two soil samples from each soil boring and deep monitoring well were selected for laboratory analysis. At each location a sample from the water table and five feet above the water table were sent to Environmental Testing Services, Inc., in Norfolk, Virginia for analysis of Total Petroleum Hydrocarbons (TPH) (California TPH method). Five water table samples (MW2, MW4, MW6, MW8 and MW12) were also analyzed for flash point (Pensky-Martin closed cup technique) and pH (EPA Method 1.50.1). Two water table samples (MW2 and MW4) were selected for Toxicity Characteristic Leacheate Procedure (TCLP) analysis. Laboratory results are presented in Appendix C.

Concentrations of TPH ranged from 4.32 mg/kg to 12,000 mg/kg. The highest concentrations were found in soils obtained from MW4 (255 mg/kg) and B4 (12,000 mg/kg). Both locations are proximal to and directly downgradient of Tank S781.

Flash point testing on five soil samples was negative at the maximum temperature tested (110°C). TCLP testing demonstrated nondetectable values for all of the forty substances analyzed.

2.02.4 Ground Water Characterization

Between December 6 and 12, 1991 ground water samples were collected from each monitoring well and hydropunch location. Hydropunch sampling was accomplished by the methods previously described in Section 2.01.1. Ground water samples from each monitoring well were obtained by using a stainless steel bailer and following the procedures dictated in Appendix F. Ground water samples were sent to OBG Laboratories in Syracuse, N.Y. for analysis by EPA methods 8010, 8020, 8100 and TCLP. EPA 8000 methods (8010, 8020, 8100) are derived from the EPA 600 methods (601, 602, 610, respectively). The two methods apply the same technique and number of parameters. Laboratory results are available for review in Appendix B.

All parameters for analytical methods EPA 8100 and TCLP demonstrated values below method detection limits. Constituents of the EPA 8010 and 8020 methodologies that were found to be above method detection limits were below Ambient Water Quality Criteria. 2.03 Quality Assurance/Quality Control

Throughout field operations steps were taken to maintain quality assurance and quality control (QA/QC). Field instruments such as the PID, pH meter and specific conductivity meter were calibrated on site and daily. The PID was calibrated to 100 ppm isobutylene. Specific conductivity and pH meters were calibrated to standardized solutions.

Sampling equipment was decontaminated by using a series of rinses involving distilled water, non-phosphate detergent, methanol

and dilute nitric acid. A rinse blank (field blank) was included in the analysis to confirm the decontamination process effectiveness.

Standard laboratory QA/QC procedures were applied in accordance with the referenced EPA Methods. In addition, trip blanks and duplicate samples were used.

SECTION 3 - RISK ASSESSMENT

3.01 Introduction

This section presents an evaluation of the risk to human health associated with the former operation of an aboveground waste oil storage tank, #S-781, located within the Building 45 compound at the Marine Corps Base (MCB), Camp Lejeune, North Carolina. This risk assessment specifically addresses the risk to human health related to identified environmental contamination in the immediate area of the tank, resulting from the past operation of the tank. The results of this risk assessment are used in developing a corrective action/remedial action strategy, as presented in Section 4 of this report.

The associated field investigation for this project is previously described in Sections 1 and 2 of this report.

This risk assessment has been prepared for the Atlantic Division Naval Facilities Engineering Command. Marine Corps Base, Camp Lejeune will submit this document to the North Carolina Department of Environment, Health and Natural Resources (DEHNR). The DEHNR will then make a determination regarding potential corrective action requirements, as discussed in Section 4 of this report. Criteria discussed and/or used in this risk assessment are drawn from DEHNR and parallel U.S. Environmental Protection Agency (EPA) regulations and/or guidelines, where applicable. This document is consistent with typical goals of performing risk assessments related to environmental contamination. The primary guidance document applied is the EPA's "Risk Assessment Guidance

for Superfund, Volume I: Human Health Evaluation Manual". As such, it analyzes potential site-related acute and chronic health risks presented to on-site and off-site receptors, under both current and future use scenarios.

3.02 Site-Specific Descriptive Information

3.02.1 History

The 176,000 gallon capacity storage tank was originally owned and operated by Tidewater Electric, prior to 1942, and was used to store fuel oil. Following the Marine Corp acquisition of the property in 1942, the tank was used to store waste oils, primarily related to diesel engine maintenance and repair. The tank is surrounded by a brick retaining wall, approximately five feet high. Ground level inside the retaining wall slopes downward toward the tank.

The tank was emptied in 1988, according to Tom Morris, Environmental Management Department, MCB Camp Lejeune, N.C. for this project. According to Mr. Morris, approximately eight inches of thick sludge still remains in the bottom of the tank. There is no history of leaks from the tanks. However, Mr. Morris reported that a pump leak occurred, possibly when the tank was emptied. According to Mr. Morris, this leak resulted in excavation of the impacted soils within the surrounding brick wall.

Preliminary site investigations were conducted in November 1990 by Dewberry and Davis. Five hand auger, five soil borings and two monitoring wells were completed in the area of tank S-781. While the ground water samples did not indicate contaminant levels

above method detection limits, three soil samples yielded total petroleum hydrocarbon (TPH) concentrations exceeding 10 ppm. TPH concentrations ranged from below method detection limits to 2200 ppm.

3.02.2 Site & Surrounding Area Description

The tank is located adjacent to Building 45, the Base's heavy equipment maintenance and storage building. The tank and Building 45 are located approximately 130 feet southwest of the Camp Lejeune railroad, which parallels a four-lane road (Hwy 24). Residential housing is located on the other side of this road, northeast of the tank. There are no water supply wells within 1500 feet of the site. The area south and west of the tank/Building 45 is undeveloped and wooded. The Building 45 area, including tank S-781 is enclosed by a locked fence. Access is gained only during regular work hours. The fencing to the east runs between the site and the railroad tracks. Surface drainage ditches parallel the railroad, between the fence and the railroad.

The ground cover in the immediate area of the tank is grassy, with some pavement and gravel immediately adjacent to Building 45. The nearest surface water is Northeast Creek, approximately 800 feet to the northwest. There are no water supply wells within 1500 feet of the site. The only utilities servicing the site are above ground electric lines as illustrated on Figure 6. A map of the site is presented as Figure 2.

3.02.3 Demographics

The population at Camp Lejeune includes military personnel and their families, as well as civilian employees. Based on observations made during a site visit, approximately 10 - 20 people are employed at the Building 45 compound, a typical 8-hour/day, 5day/week job.

3.03 Current Site Data

The site investigation involved the installation, development and sampling of seven shallow monitoring wells and seven deep monitoring wells (as nested pairs; MW1 - MW14), four soil borings (B1 - B4), and ten hydropunches (H1 - H10). These are described in detail in Section 2.01 of this report.

3.03.1 Soil Data

Two soil samples from each of the four soil borings, and two soil samples from each of the seven deep monitoring wells were selected for laboratory analyses for TPH using а gas chromatograph/flame ionization detector (GC-FID). Soil samples were collected at the water table and five feet above the water table. Five soil samples collected from the water table (MW2, MW4, MW6, MW8, and MW12) were analyzed for flash point and pH. Two other soil samples (MW2 and MW4) were selected for full-scan toxicity characteristic leaching procedure (TCLP) analyses.

The pH results ranged from 4.8 to 7.4; flash point tests were negative; the TCLP results were below EPA regulatory criteria for this procedure.

Soil TPH results ranged from 4.3 mg/kg in MW14 (0' - 2' depth) to 12,000 mg/kg in B4 (4' - 6' depth). Twelve soil samples exceeded 10 mg/kg TPH, as follows:

<u>Sample #</u>	Sample Depth	<u>TPH (mg/kg)</u>
MW2	14′-16′	19
MW2	9′ - 11′	15
MW4	9' - 11'	15
MW4	14′ - 16′	255
MW6	9' - 11'	14
MW6	14' - 16'	13
MW8	11' - 6'	23
MW10	4′ - 6′	17
MW14	2′ - 4′	11
B1	4′ - 6′	11
B4	4′ - 6′	12,000
B4	9′ - 11′	11,000

3.03.01.1 Soil Data Evaluation

Two sampling locations stand out as having TPH-contaminated soils significantly exceeding 10 mg/kg. These are monitoring well MW4 and soil boring B4. Referencing Figure 2, B4 is located west of the tank, while MW4 is southwest of the tank. Located in the immediate area of B4, MW4 and tank S-781 is a small uncovered, subgrade structure that appears to be a pit or catch basin, and a small building that appears to be the pump house for the tank system. As such, it is reasonable to assume that subsurface piping related to the tank system exists in the area of B4, running between the tank, the pump house, and perhaps the catch basin. MW4 is located perpendicular to the downgradient direction of tank S-781 and B4, approximately 25 feet west of the pump house and catch basin.

In summary, it appears that TPH-soil contamination is present in close proximity to the tank and associated pump house and catch

basin, and is likely related to the former operation of tank S-781. Raleigh, N.C. and Jacksonville, N.C. offices of Carolina Power and Light (CP&L) were contacted regarding the operation of tank S781 under the ownership of CP&L (previously named Tidewater Electric), prior to 1942. No historical information on the past operation of the tank was available from CP&L. According to Environmental Management Department, MCB Camp Lejeune, the operation of the tank involved the tank itself, the pump house, lines between the tank and pump house, and lines running from the tank to the building and there are no other sources or avenues for petroleum hydrocarbons at the site. According to Major McLain, Facilities Utilization Officer, in charge of the operations at building 45, there are no other sources or avenues for petroleum hydrocarbons at the site related to tank S781 other than the pump house and building 45. The presence of the TPH materials in soil samples from MW4 and B4 are considered in the exposure pathways, as discussed in subsections 3.05.2, 3.05.4 and 3.05.5.

3.03.2 Ground Water Data

No free product was detected in the fourteen ground water monitoring wells, nor was free product detected in the ten hydropunches.

Ground water samples from each monitoring well and hydropunch were analyzed for volatile organic compounds by SW-846 methods 8010 and 8020 (equivalent to EPA Methods 601 and 602). In addition, samples from MW1, MW7 and MW11 were analyzed by EPA SW-846 method 8100 equivalent to Method 610), (polynuclear aromatic hydrocarbons;

PAHs). Ground water samples from MW3 were analyzed for full scan TCLP compounds. Section 2 of this report provides additional details on the analytical scheme.

TCLP results were below regulatory limits; PAHs results were less than the detection limits.

The 8010/8020 results were below method detection limits, with the exception of the following compounds:

Detected	Sample	Results	NC Standard	MCL
<u>Compound</u>	<u>Number</u>	<u>(mg/l)</u>	(mg/l)	(mg/l)
chlorobenzene	H5	0.005	0.3	0.1 *
1,2-dichlorobenzene	H8	0.031	0.62	0.6 *
1,3-dichlorobenzene	H5	0.006	0.62	0.6 *
1,4-dichlorobenzene	H5	0.084	0.0018	0.075
1,1-dichloroethane	MW3 H1	0.016 40 pier	n/a mgl n/a	n/a n/a
1,1-dichloroethylen		0.002	0.007	0.007
1,2-dichloroethylen		0.002	n/a	0.07 *
ethylbenzene		0.016	0.029	0.7 *
toluene		0.002	1.0	2.0 *
"		0.002	1.0	2.0 *
vinyl chloride		0.002	0.000015	0.002

The NC standards are the water quality standards applicable to the ground waters of North Carolina, as dictated in Title 15, Subchapter 2L, Section 0.0200, of the North Carolina Administrative Code, dated 12/1/89. The standard applies to Class GA waters, which are considered to be drinkable in their natural state (i.e., potable water supplies).

MCL's are the Maximum Contaminant Level allowable for drinking water, under the National Primary Drinking Water Regulations. Those marked with the * indicate proposed limits; all others are final and current limits.

"n/a" indicates that North Carolina has not established a criterion for this chemical.

3.03.02.2 Ground Water Data Evaluation

The following compounds were detected in excess of the North Carolina criteria:

- 1,4-dichlorobenzene (p-dichlorobenzene) in H5 - vinyl chloride, in duplicate sample for MW4.

1,4-dichlorobenzene, detected in H5 at 0.084 mg/l, exceeds the regulatory criteria. This is an isolated occurrence of a compound not typically related to waste diesel oils. Therefore, the 1,4-dichlorobenzene detected in H5 is not likely related to the past operation of tank S-781. However, it is considered in the exposure scenarios, as discussed in subsections 3.05.02, 3.05.03 and 3.05.04.

The vinyl chloride was below detection limits in the other portion of the duplicate sample for MW4. Vinyl chloride detected at 0.002 mg/l is within the federal MCL criterion.

The other organic compounds detected in the ground water samples are within regulatory limits, as presented on the above table. The only exception is 1,1-dichloroethane, for which no $\leq P_{eq} = 0$ is $P_{eq} = 0$ for which no regulatory limit has been established to date. $o \in Slower$

Ground water flow, based on data collected from the seven nested wells, is in a west-northwesterly direction; ground water flow velocity is calculated to be approximately 10 feet/year. It is possible that ground water samples collected during the summer season, rather than the winter season, may reflect different analytical results.

3.03.03 Ambient Air Data

Ambient air quality was monitored during field activities with a photoionizing organic vapor detector (PID) with a 10.2 eV lamp. PID readings were recorded from the breathing zone of the on-site workers and at the ground surface every 15 to 30 minutes. The PID

readings did not exceed the detection limit of the PID (1 ppm) at any time during the ambient air monitoring.

3.04 Identification of Chemicals and Media of Concern

Based on the results of the site investigation, as described in the previous section, the environmental contaminants to be considered in the following exposure scenarios are 1,4dichlorobenzene in the ground water, and TPH in the subsurface soils.

3.05 Risk Assessment Approach

3.05.1 Introduction

This risk assessment addresses the potential for exposure to the ground water and TPH-contaminated subsurface soils in the area of tank #S-781, under current and reasonably anticipated future conditions and site uses. Four potential exposure pathways are considered in assessing potential risk related to the identified contamination: 1) air, 2) surface water, 3) ground water, and 4) soil.

In the analysis of each exposure pathway, three key components are considered:

- 1. known source;
- mechanisms for release and medium/vehicle for transport of contaminant(s);
- 3. potential receptor populations.

If an exposure pathway has these three components, it is considered as a complete exposure pathway. If an exposure pathway lacks one of these necessary components it is concluded that there is no potential for exposure via that incomplete pathway, and

therefore no risk. Each pathway is analyzed separately in the following sections. Each analysis includes the following:

- 1. a description of the waste source;
- mechanisms for release and transport of contamination in the environment;
- 3. the time frame of potential releases (i.e., continuous or episodic);
- 4. the existence of potential receptor populations;
- 5. potential exposure scenarios;
- 6. potential uptake routes (ingestion, inhalation, dermal absorption);

Should all of the above be present, it is determined that the exposure pathway is complete, and further quantitative analysis is then made. Exposure point concentrations are estimated, followed by exposure intakes.

Exposure scenarios may include current and future use conditions, children and adult exposures, and both carcinogenic and non-carcinogenic effects of chemicals involved in the exposure, as applicable. The calculated exposure intake is then compared to human-health based reference data, and an assessment of the potential for adverse health effects is then made. Details of this quantitative analysis process are presented for the exposure pathway(s) to which it is applied.

3.05.2 Air Exposure Pathway

Three potential mechanisms for release of identified contamination to the air are considered in assessing risks related to the air exposure pathway:

- episodic fugitive dust emissions of contaminated soil particulates;
- continuous emissions of volatile components of soil contamination, through the soil, to the ambient air at the site; and

3) continuous emissions of volatile components of soil contamination, through soils, into subsurface structures at the site.

3.05.2.1 Potential Exposure to Fugitive Dust Emissions

Episodic releases of contaminated fugitive dusts to the general atmosphere would result if contaminated surface and/or subsurface soils were exposed to surface scouring action (e.g., wind, vehicle traffic, foot traffic, heavy equipment operation). The MW4 area surrounding B4 and (the locations of high TPH concentrations) are primarily covered by vegetation (grass and weeds). No surface contamination was visually observed. While contamination was detected between 4 - 16 feet below grade, no analyses on samples from 0 - 4 feet were conducted. Therefore, the potential for surface contamination has been neither confirmed nor negated. Based on the available analytical information, fugitive emissions would require scouring actions on subsurface contaminated soils at least four feet below grade. However, there is at least four feet of cover (vegetative cover preventing erosion) over the detected soil contamination, thus minimizing the potential for regular site activities (foot traffic) to result in scouring actions on subsurface contaminated soils. Based on this information, the potential for fugitive dust emissions in the area is eliminated under current use conditions. It is acknowledged, however, that data limitations exist pertaining to the area of boring B4, with the high TPH concentrations. Data regarding the soils from 0 - 4 feet are not available.

Based on information provided by Tom Morris, there are no plans to alter the study area; uses and operations of the area will not undergo substantial change with respect to land use, operations, or materials in the foreseeable future. Based on this, there is no potential for scouring actions to impact existing contaminated subsurface soils under future anticipated conditions. <u>3.05.02.2</u> Potential Exposure to Volatile Emissions in the General Atmosphere

Volatilization involves evaporation of volatile components from contaminated media. Vapors can then migrate up through the soils to release at the soil surface under certain conditions.

The identified ground contaminant water is 1,4dichlorobenzene. This compound is relatively nonvolatile (vapor pressure of 0.4 mm Hq) and relatively insoluble in water (solubility of 0.008 g/100 g water). Thus, it is expected that 1,4-dichlorobenzene would not volatilize from the ground water, through several feet of soil, to any significant extent.

Based on the available information on the nature of the waste diesel engine oils, such oils may contain trace amounts of volatile organic compounds. Such waste oils were formerly contained in tank #S-781. It can be assumed that the TPH concentrations detected in the soils near the tank indicate the presence of waste oils, and therefore may indicate the potential presence of trace amounts of volatile organic compounds. However, the four feet or more of soil inhibit cover would both and dilute such volatilization, to the extent that the release of such vapors into

the general atmosphere would be insignificant. Soil interactions such as adsorption and degradation, as indicated by environmental degradation half-lives, as well as dilution and dispersion actions of ambient air movement, would result in minimal concentrations of such vapors with respect to concern for human exposure. Field monitoring supports this. The ambient air monitoring conducted throughout the field activities, which temporarily disturbed and exposed subsurface soils, indicated that no volatile organic compounds were detected, with a detection limit of 1 ppm in the breathing zone of the workers.

Based on the above discussions, no significant vapor emissions related to subsurface soil contamination are reasonably expected in the area of the tank. Thus, the risk potentially associated with volatile emissions from subsurface soils is negligible.

3.05.02.3 Potential Exposure to Volatile Emissions Released into Subsurface Structures

Building 45 is most likely built on a concrete slab, although Mr. Morris could not confirm this. The catch basin, located just southwest of tank S-781, is a sub-grade structure. The pump house, also located southwest of the tank, is an open, above ground structure. These areas are neither enclosed nor occupied. Based on observations, the pump house area was not used by personnel, nor frequently entered.

In general, there are few subsurface structures at Camp Lejeune, due to the high water table. Therefore, most buildings are constructed on slab. The only likely subsurface items are

utility conduits, including piping to/from the tank. Any subsurface piping related to this tank system likely runs between the tank, the pump house, and perhaps the catch basin. Thus, no identified receptor areas exist to complete the end of the transport route. Based on this, the exposure pathway for volatile constituents of site contaminants that might migrate through soils into on-site subsurface structures is incomplete. As such, there is no risk of exposure via this mechanism.

3.05.02.4 Conclusion on Air Exposure Pathway

There is no significant risk of exposure via the air exposure pathway.

3.05.03 Surface Water Exposure Pathway

2)

Two mechanisms for release of identified contamination to surface waters are considered in assessing risks related to the surface water exposure pathway:

contamination of surface water by contact with surface 1) contamination; and contamination of surface water by ground water discharge.

There are no identified surface water streams within the study area. The nearest surface water is Northeast Creek, approximately 800 feet to the west (generally downgradient).

3.05.03.1 Potential Exposure to Contaminated Surface Water in Contact with Surface Contamination

There was no observed surface contamination in the immediate area of the tank. As stated above, there are no permanent surface water bodies, including streams, within the study area. As there is no observable surface contamination, nor is there surface water at the study area to serve as either a source or a transport vehicle, this potential exposure pathway is incomplete, and therefore there is no risk associated with this pathway.

3.05.03.2 Potential Exposure to Contaminated Surface Water via Ground Water Discharge

Based on information obtained from this investigation, the following ground water discharge-to-surface water scenario is possible. The ground water flows west-northwesterly; the nearest downgradient surface water body (Northeast Creek) is 800 feet to the west. As such, ground water from the study area would likely flow west-northwesterly via natural migration pathways and

discharge to Northeast Creek, over an extended period of time. While ground water might flow with the subsurface conduits or pipes in the area of the tank system, it is unlikely that these pipes lead away from the tank area. The potential for exposures occurring in surface water contaminated by ground water flowing from the Site to Northeast Creek far in the future is beyond both the current and reasonably anticipated future use/conditions scenarios. In addition, 1,4-dichlorobenzene is not readily soluble in water, therefore such transport would be inhibited. Finally, prolonged migration of such a low concentration of 1,4dichlorobenzene would lead to negligible concentrations over such a distance, due to soil interactions, degradation, etc.

Therefore, the potential impact of site-related ground water on surface water is negligible.

3.05.03.3 Conclusion on Surface Water Exposure Pathway

There is no significant human health risk, based on current and reasonably anticipated future use scenarios, via the surface water pathway.

3.05.04 Ground Water Exposure Pathway

Two mechanisms for release of identified contamination to or through ground waters are considered in assessing risks related to the ground water exposure pathway:

- 1) Direct withdrawal and use/consumption of contaminated ground water (contamination, as detected, or contamination via leaching from subsurface soils); and
- 2) Exposure to ground water during subsurface disturbance.

3.05.04.1 Potential Exposure via Contaminated Ground Water Use/ Consumption

There are no identified ground water users. According to Tom Morris, the ground water of the shallow aquifer at Camp Lejeune is not used for human consumption or other operations/purposes which might lead to potential human exposure. Potable ground water use in the area is limited to a deeper aquifer (known as the Castle Hayne aquifer) approximately 150' below the ground surface. There are no known users/uses of the shallow aquifer (15' below grade). Thus there is no receptor population.

Based on the lack of a receptor population, this exposure pathway is incomplete, and therefore there is no risk to human health related to use/consumption of the ground water at the tank area.

3.05.04.2 Potential Exposure via Disturbance/Contact with Ground Water

Based on information provided by Tom Morris, there are no current nor anticipated plans to change the use of the study area; i.e., there are no known nor anticipated subsurface disturbance activities to take place in the study area. Therefore, there is no potential for exposure via contact with ground waters.

3.05.04.3 Conclusion on Ground Water Pathway

There is no potential for exposure, and therefore no significant risk related to the ground water exposure pathway.

3.05.05 Soil Exposure (Direct Contact) Pathway

One mechanism for exposure related to identified contamination is considered in assessing risks related to the soil exposure pathway:

1. Direct contact.

Subsurface soil contamination was detected at the site, as listed in Section 3.03.01, at concentrations up to 12,000 mg/kg. Depth of contamination ranged from 4 to 16 feet.

3.05.05.1 Potential Exposure via Direct Contact with Contaminated Subsurface Soils

There is no current nor anticipated disturbance of contaminated subsurface soils (see also discussion in Sections 3.05.02.1 and 3.05.04.3). Thus there is no potential for direct contact with contaminated subsurface soils under current or anticipated future conditions.

In summary, under current and anticipated future conditions, there is no potential for exposure related to direct contact with the contaminated subsurface soils. However, if excavation of soils in the area of B4 were to occur, there is potential for exposure which may involve significant health risk, related to exposure to the contaminated subsurface soils.

3.06 Conclusion

Based on the above assessment, there is no significant risk associated with the TPH-contaminated subsurface soils and ground water contamination (1,4-dichlorobenzene) in the area of tank #S-781, Camp Lejeune, North Carolina.

However, further consideration of the 11,000 - 12,000 mg/kg TPH detected at B4 is reasonable. Such results indicate an area of significant contamination, possibly related to a pipe leak. The subsurface (>4 feet below grade) nature of these soils makes exposure unlikely, and thus a subsequent risk to human health is unlikely. The TPH residues in proximity of this boring to the tank and the catch basin/pump-house area may pose a future health risk if changes in the use of the tank facilities are made (although not currently planned, as stated in previous text). Based on the evolving nature of the regulations involving storage tanks, this is a reasonable consideration. Should plans to grade, remove piping, decommission the tank, etc. be instituted, the issue of TPH contamination in the soils at the immediate area of boring B4 should be re-visited prior to ground-breaking activities. Such subsurface disturbance may pose a health risk, which should be evaluated at that time.

SECTION 4 - REMEDIATION ASSESSMENT

The results of the risk assessment indicate that for the contaminants present in concentrations above North Carolina regulations, there is no significant risk of exposure. The human health exposure risk was evaluated and determined to be insignificant via air, surface water, groundwater, or soil pathways based on both current and future use scenarios.

4.01 Recommendations

While recent laboratory results indicate that the groundwater and soils surrounding the tank pose no risk, the Risk Assessment stated that any excavation or ground-breaking activities in this area may pose a health threat. Should the tank and/or piping be removed, remediation will be necessary. Therefore remediation of the soil in this area will have to be performed at some point. <u>4.02</u> Preliminary Evaluation of Remedial Alternatives

Laboratory results indicate that a possible need for soil remediation exists in the vicinity of Tank S781. The following assessment of remedial alternatives focuses on the mitigation of residual petroleum hydrocarbons. Based on the hydrogeologic study, laboratory results and remedial technologies available, the methods discussed below are deemed to be appropriate technologies for consideration by the Navy.

<u>Volatilization</u>

This process removes volatile compounds from the soil by forced or drawn air currents. A system of air injection and extraction pipes are placed over the area of the contaminant plume.

Air is withdrawn from the extraction pipes, treated and allowed to return to the ambient air. Compounds with higher vapor pressure and lower water solubilities are more efficiently removed or stripped. Waste Oil would not be expected to be removed by this method due to its low volatility; therefore this technology is not appropriate for this site.

Soil Leaching

This process is generally used to remove petroleum products that are immobilized in the unsaturated zone. Water is introduced to the soil by either gravity or injection pipes. The water introduced into the soil remobilizes the product and is subsequently recovered and treated. Surfactants are occasionally introduced along with the water to increase the leaching of the Choosing a surfactant requires laboratory testing and soils. evaluation of the surfactant's chemical and environmental properties. Once the surfactant of choice has been introduced to the subsurface and soil abatement has occurred it is then necessary to remove the surfactant from the water. This approach can be costly and has limited potential for remediation at the site. Containment

Containment is a process by which an area of concern is separated from the surrounding environment thereby minimizing the migration of hydrocarbon compounds. This separation may be accomplished by the installation of cut-off walls. The wall should extend into a stratum of low permeability. Containment prevents further migration of petroleum hydrocarbons but the destruction of

compounds is not accomplished. The absence of a confining layer at the site reduces the effectiveness of this technology and thus is not recommended for this site.

Bioremediation

Bioremediation is a process by which the growth and activity of naturally occurring microorganisms are stimulated to degrade the compounds of interest. Stimulation of microbial growth and activity for hydrocarbon removal is accomplished through the addition of oxygen and nutrients. There are several factors that dictate the appropriateness of biodegradation. These include, but are not limited to the following: availability of oxygen and nutrients; type of hydrocarbon present and characteristics of the contaminated soils.

Bioremediation can be implemented in-situ or ex-situ. To implement in-situ biodegradation, wells and infiltration galleries are used to transport oxygen and nutrients to contaminated soils. To implement ex-situ bioremediation, contaminated soil is excavated and placed on treatment pads. The soil is tilled to oxygenate it and nutrients are added periodically to effect the remediation.

Bioremediation can be effective for heavier petroleum products such as waste oil. In-situ bioremediation is most feasible for sites where excavation is inappropriate due to facility operation requirements or excessive volumes. Ex-situ biodegradation generally offers better process control. Both versions of the technology will therefore be retained for further evaluation. Excavation/Disposal

Excavation is the process by which affected soils are removed from the site for disposal. This technique allows an immediate site clean-up of contaminated soils. Once the soils have been excavated they can be disposed of in an appropriate landfill.

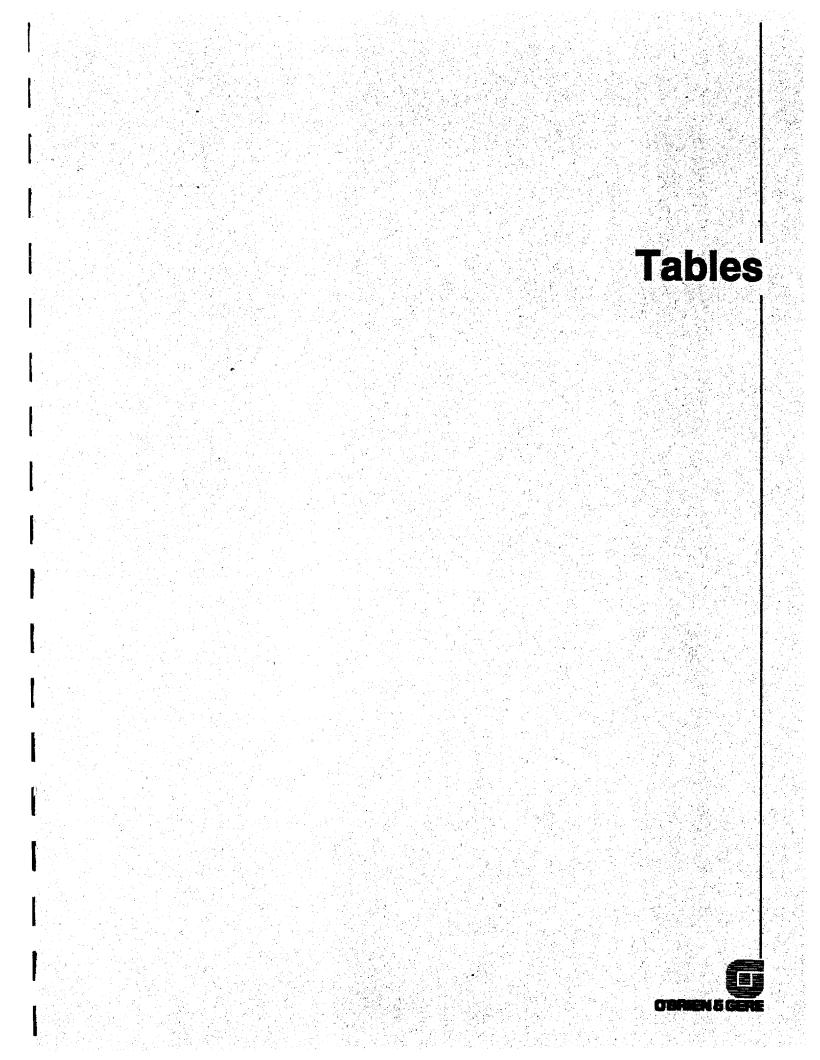
However, North Carolina requires treatment to 100 ppm of TPH prior to landfill disposal which could prove costly. While this process could be potentially successful at this site, high costs could be encountered for soil transportation, treatment and replacement. Prior to selecting this approach, borings in the vicinity of the pipeline between Tank S781 and the pump house, would be required to better define the horizontal and vertical boundaries of TPH contamination.

Excavation/Recycle

Excavation of soils for recycling involves the removal of the contaminated materials for use in the manufacturing of items such This process operates as follows: as bricks. Contaminated material is fed into a brick kiln at temperatures exceeding 600°F for two days reaching a peak temperature of 2000°F. Petroleum hydrocarbons are treated through volatilization and incineration. One such company involved in this form of recycling is Cherokee Environmental Group, in Sanford, North Carolina. Before acceptance for processing, a representative soil sample and the results of submitted. Cherokee Sanford laboratory analysis must be Environmental Group will not accept materials classified as hazardous materials under RCRA, CERCLA, or any Federal or North Carolina regulation. Also, wastes containing PCBs above non-

detectable (1 ppm) will not be accepted (Miller, 1991). The absence of PCBs in tank sludge (Dewberry Davis, 1991) suggests that this will not be a limitation for management of petroleumcontaminated soils located near B4 and MW4. Therefore, this technology would be considered applicable at this location. <u>Conclusions</u> but we have known de potential in USETH CHARMENTE POTENTIAL.

The lack of significant ground water contamination suggests that remediation focus on the soil containing residual petroleum product. Although no current, significant risks are identified for the Tank S781 area, subsurface concentrations of TPH in soil are considered unacceptable to the State of North Carolina. Available data suggests that the contamination is localized around the transfer pipeline between the tank and the pump house. However, precise definition of the TPH affected area is not available from the borings and wells installed during this and previous studies. The technical and economic feasibility of excavation and either treatment or off-site disposal cannot be determined without additional definition of the TPH containing soil.


REFERENCES

di k

Dewberry & Davis, January 1991. Technical Memorandum No.2 Results of Field Investigation, Marine Corps Base, Camp Lejeune, North Carolina.

O'Brien & Gere Engineers Inc., July 1988. Contaminated Groundwater Study, Camp Lejeune, North Carolina.

Lloyd, O.Jr. and Daniel, C.III; U.S.Geological Survey, 1988. Water Resources Investigations Report 88-4034.

TABLE 1 GROUNDWATER ELEVATIONS

, III in a

Tank S781, Midway Park Marine Corps Base, Camp Lejeune, North Carolina

Well #	Top of Casing Elevation	Depth to Water 12/91	Groundwater Elevation (AMSL) 12/91	Depth to Water 1/92	Groundwater Elevation (AMSL) 1/92
MW1	22.26	19.01	3.25	17.96	4.30
MW2	22.10	18.85	3.25	17.80	4.30
MW3	18.63	15.42	3.21	14.45	4.18
MW4	18.39	15.29	3.10	14.25	4.14
MW5	19.06	16.00	3.06	14.78	4.28
MW6	18.13	15.10	3.03	13.92	4.21
MW7	8.72	6.50	2.22	5.05	3.67
MW8	8.90	6.74	2.16	5.25	3.65
MW9	12.90	10.74	2.16	9.50	3.40
MW10	12.90	10.76	2.14	9.50	3.40
MW11	19.13	11.75	7.38	9.96	9.17
MW12	19.24	16.02	3.22	14.34	4.90
MW13	8.91	6.84	2.07	5.45	3.46
MW14	8.94	6.90	2.04	5.64	3.30
MW A	14.50	11.26	3.24	10.01	4.49
MW B	13.96	10.67	3.29	9.32	4.64

TABLE 2 IN-SITU PERMEABILITY RESULTS

				Midway		
Marine	Corps	Base	, Camp	Lejeun	e, North	Carolina

WELL #	IN-SITU P	PERMEABILITY
	FT/SEC	GPD/FT ²
MW1	*	*
MW2	1.3 X 10 ⁻⁴	84.0
MW3	7.4 X 10 ⁻⁵	47.7
MW4	4.2 X 10 ⁻⁵	27.3
MW5	2.8 X 10 ⁻⁴	180.0
MW6	6.6 X 10 ⁻⁵	42.4
MW7	1.0 X 10 ⁻⁴	67.4
MW8	6.8 X 10 ⁻⁵	44.1
MW9	8.3 X 10 ⁻⁵	53.7
MW10	1.1 X 10 ⁴	69.4
MW11	5.7 X 10 ⁻⁶	3.7
MW12	1.5 X 10 ⁻⁵	9.5
MW13	5.7 X 10 ⁻⁵	36.9
MW14	6.7 X 10 ⁻⁵	43.2

GEOMETRIC MEAN = 6.1 X 10^{-5} FT/SEC; 39 GPD/FT²

* Unable to complete test due to difficult field conditions

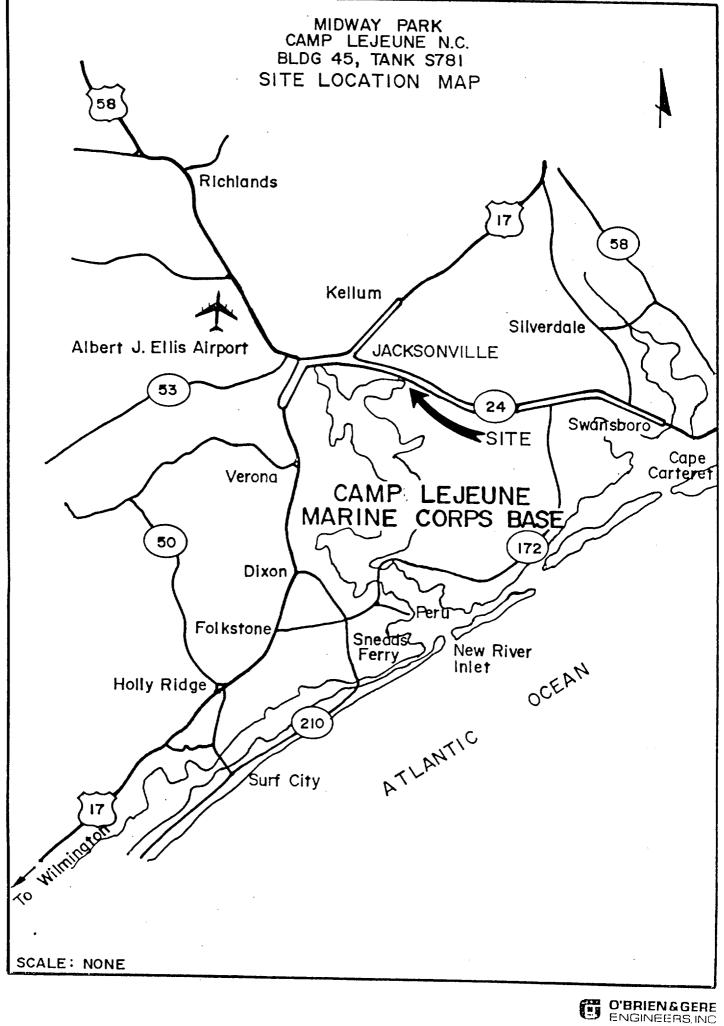
TABLE 3 pH AND SPECIFIC CONDUCTIVITY MEASUREMENTS

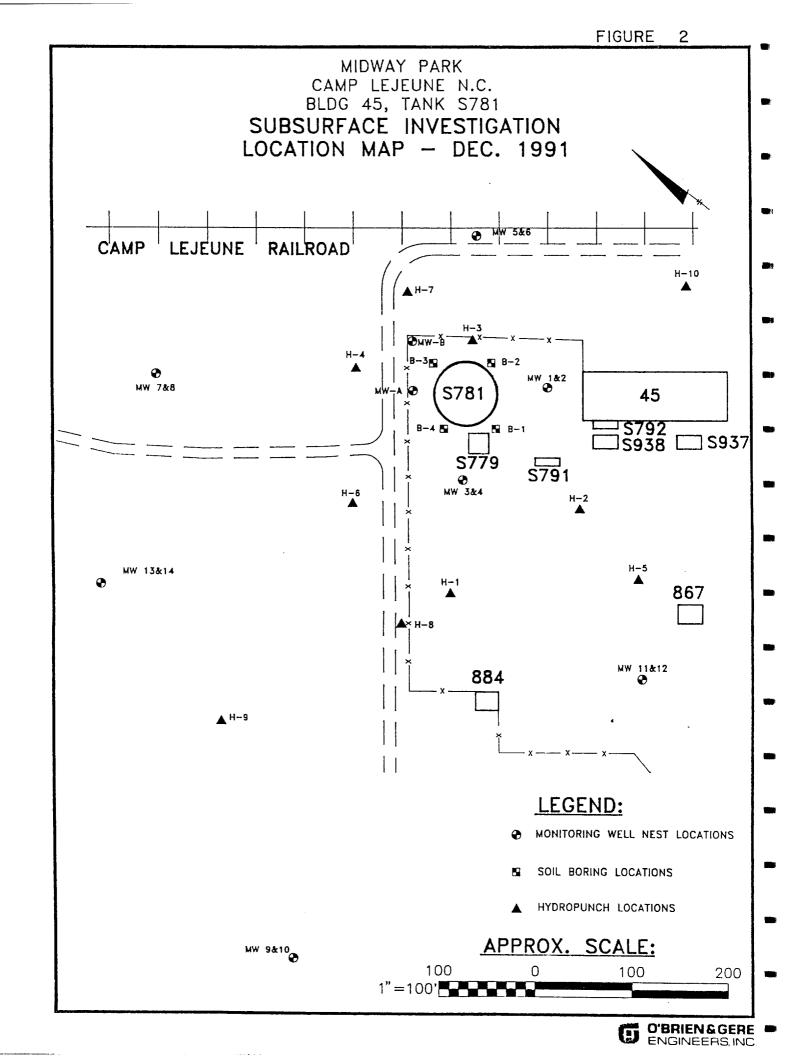
, iii ol

I service data a service a

Albert I H

Tank S781, Midway Park Marine Corps Base, Camp Lejeune, North Carolina


Well #	pH (Standard Units)	Specific Conductivity (uMHOS/Cn)
MW1	7.5	100
MW2	7.5	100
MW3	6.5	700
MW4	6.5	500
MW5	7.5	200
MW6	7.5	100
MW7	6.5	300
MW8	7.0	600
MW9	7.0	300
MW10	7.5	300
MW11	7.0	500
MW12	7.0	200
MW13	6.5	500
MW14	6.5	300



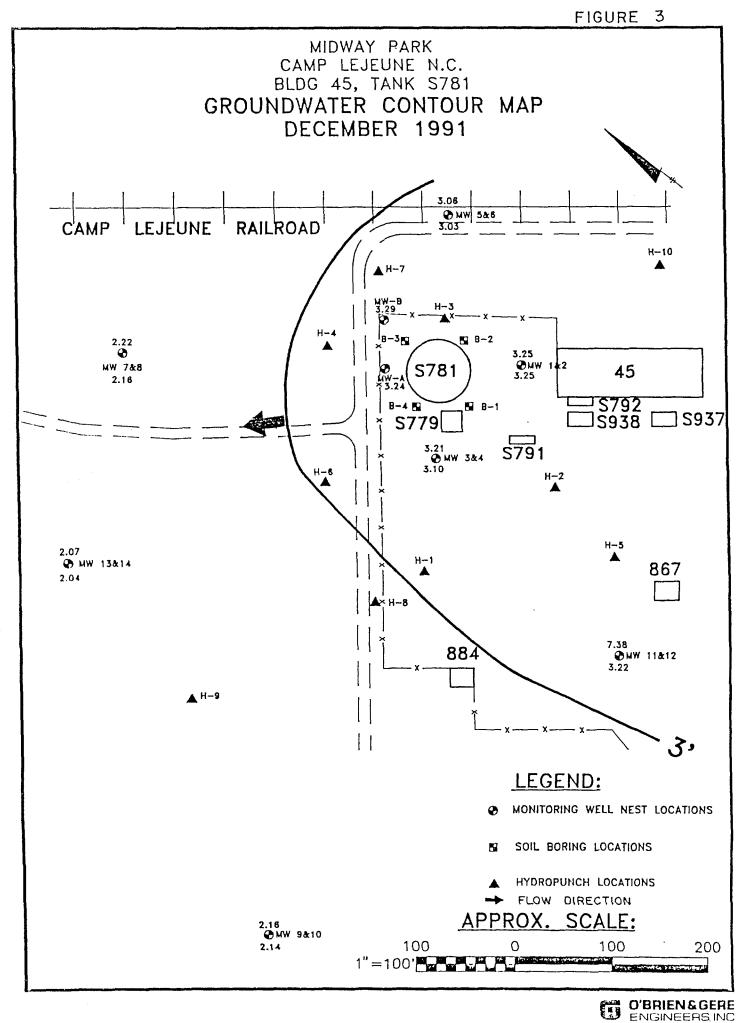
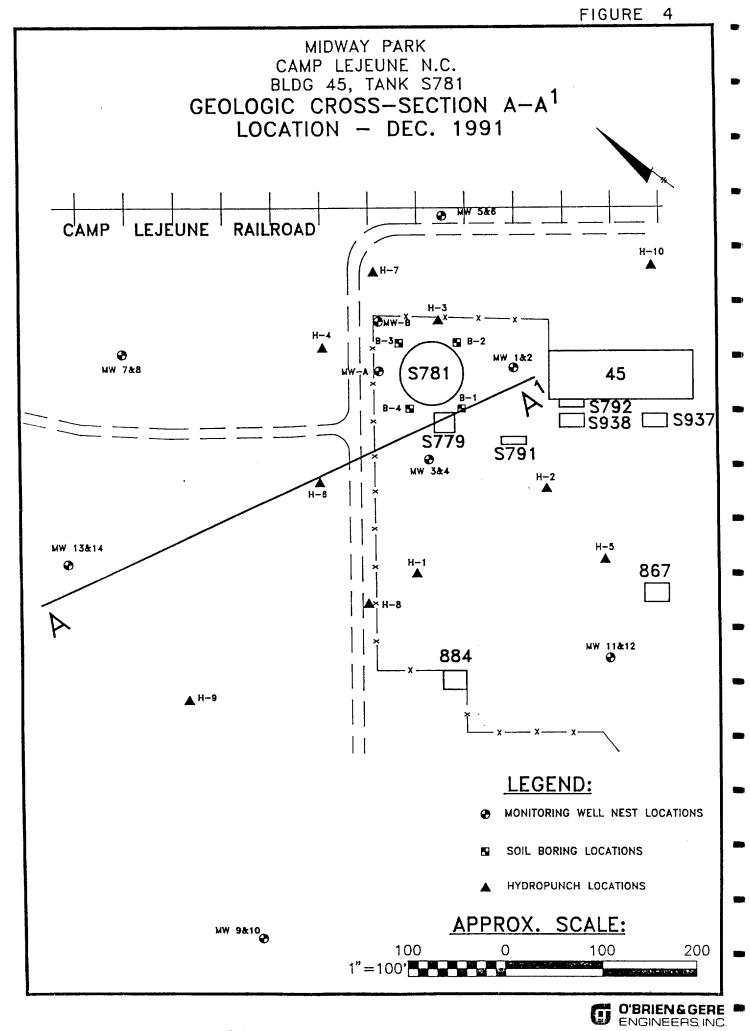


FIGURE I

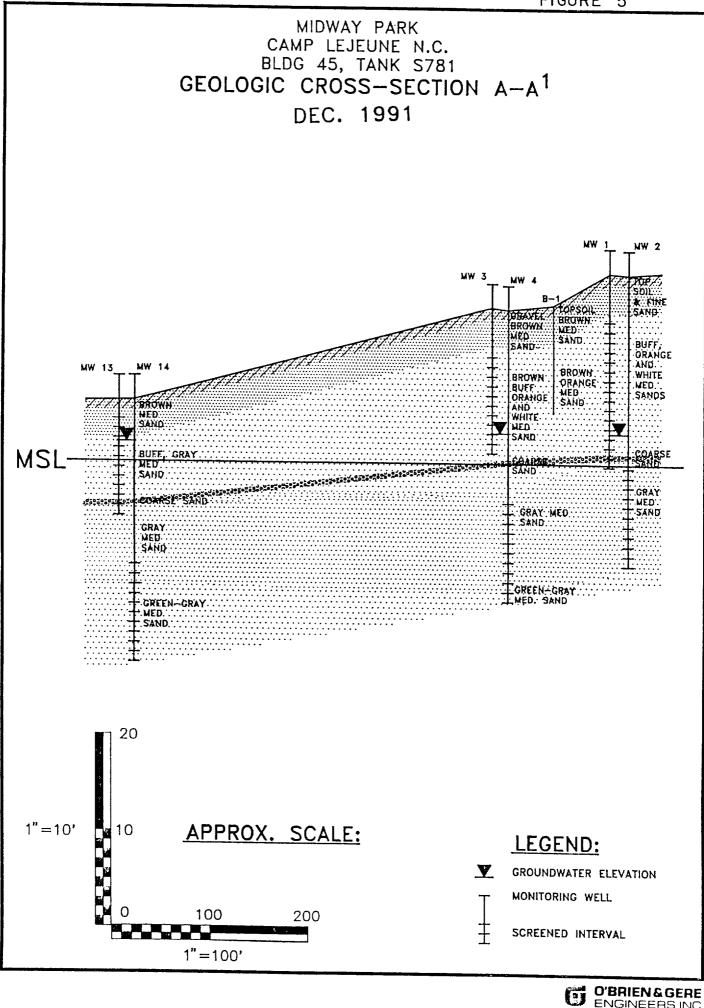
the set of the

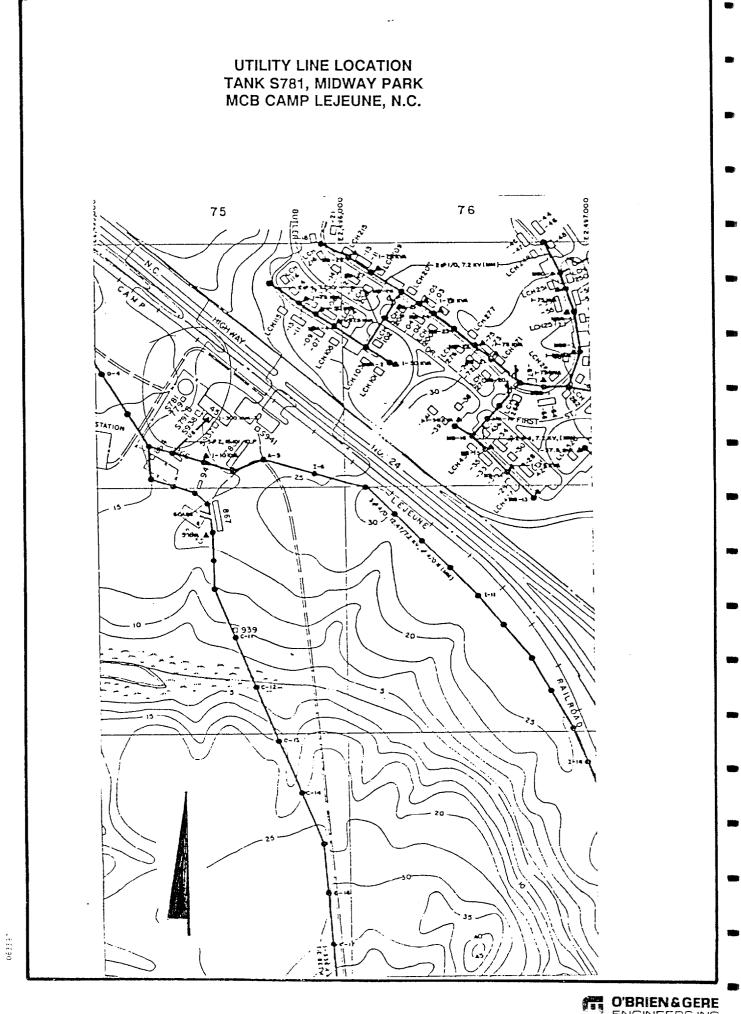

ies of

31864 m 1

......

ENGINEERS





ENGINEERS, INC.

Appendices

APPENDIX A

n na na at a la in an II≣ha I

• *

BORE LOGS AND WELL CONSTRUCTION DATA

	ers, Inc.		Boring	J Log/Prot	ective Casing Well		Report of Boring No. MW-2 Sheet 1 of 1				
Client:			Type: 2*	SAN O.D. Split S	MPLER poon	Ground Water Depth					
Drilling	ј Туре: но	low Stem	Hammer	: 140#	Fall: 30"	File No.					
Boring Forem	an: T	TEC om Sweeting T. Bickerstaf	e .			Dates: Started	: 12/5/9	91 Ende	d: 12/5/91		
			·· · · · · · · · · · · · · · · · · · ·		Sample						
		Sam	ple		Description		Monitoring Well Specifications				
Depth	Depth	Blows /6*	Penetr/ Recovery	PID Value							
0	0-2	4/3/3/4	24/24	.3	Topsoil. Fine sand, some coarse	е.					
2	2-4	2/3/3/2	24/24	1.1	Very fine, buff sand,						
4	4-6	2/3/3/3	24/24	.6	Buff sand (top 1/2), sharp conta bettern 1/2 of spoon brown, find with sit and clay.						
9	9-11	6/12/16/22	24/24	•.1	Interpedded b uff, whiरिy and ora medium sands.	range			- RISER CASING MATERIAL:		
14	14-16	8/11/10/13	24/24	2	Buff to white and orange, mediu sand. Tip is wet.	um			schedule <u>: 40</u> Inside dia <u>2</u>		
19	19-21	3/4/4/5	24/20	.7	Gray and orange, mediumm sar Some coarse.	lop	DEPTH: ol Seal <u>167</u> FT. ol Sand <u>12</u> FT.		GROUT		
24	24-26	2/3/4/5	24/24	.1	Gray medium sand.		Top of 20 FT. Screen —	=	SAND PACK		
29	29-31	4/6/13/16	24/20	•.1	Gray medium sand.				SLOTTED SCRI MATERIAL: <u>PVC</u> SCHEDULE: 43		
30					Bottom of well,		Bottom of 90 Screen		INSIDE DIA2 SLOT NO.::01		
							Bottom of 30 Boreho le				
							,				

i o sai ser o **ese**tti t

•-

	& Gere ers, Inc.		Boring	Log/Prot	ective Casing Well	Report of Boring No. MW-4 Sheet 1 of 1
	n: Midway Navy	PK.	Type: 2"	SAN O.D. Split S	//PLER poon	Ground Water Depth
Drilling	Туре: но	low Stem	Hammer:	140#	Fall: 30"	File No.
Boring Forem		TEC om Sweeti				Dates: Started: 12/5/91 Ended: 12/5/91
			ample		Sample Description	Monitoring Well Specifications
Depth		Blows	Penetr/	PID	Description	
	Depth	/6"	Recovery	Value	.	
0	0-2	6/12/21/2	3 24/12	0	Topsoil. Fossiliferous peobles and medium sand.	
2	2-4	20/16/16	/15 24/12	0	Brown, medium sand.	
4	4-6	4/5/6/	8 24/20	0	Medium orange sand. Moist	
9	9-11	9/16/17/2	20 24/15	0	Medium buff to white sand.	
14	14-16	5/6/5/	5 24/19	0	Saturated, coarse, brown sand gray clay stringers and some	
19	19-21	1/1/2	/2 24/24	.1	Medium, gray and brown sand odor, but no PID r	
24	24-26	3/5/79/3	38 24/24	7.5	Fine, gray sand. Odor.	Top of 20 FT.
29	29-31	3/19/28	/52 24/24	3.5	Fine, gray to green sand. Odd	Dr. SLOTTED SCREI
30					Bottom of well.	Bottom of 30
						Screen Bottom of Borehole

齓

	n & Gere ers, Inc.		Boring	3 Log/Prot	tective Casing Well	Report of Boring No. MW-6 Sheet 1 of 1				
Client:			••	O.D. Split S		Ground Water Depth				
Drilling	д Туре: но	low Stem	Hammer	: 140#	Fall: 30"	File No.				
Boring Forem	nan: T	TEC				Dates: Started: 12/6/91 Ended: 12/6/9				
OBG (Geologist	I. Bickersta	.m 		Comple					
		San	nple		Sample Description	Monitoring Well Specifications				
Depth				PID Value						
0	0-2	6/6/6/10	24/24	0	Topsoil. Medium gray sand.					
				: 						
2	2-4	7/7/7/6	24/24	0	Mecium gray sand.					
4	4-6	4/3/6/8	24/24	-•1	Medium gray sand.					
9	9-11	7/5/4/5	24/24	0	Very fine, gray sand on top. Sitt with clay and sand on botto	orn.				
14	14-16	7/3/7/11	24/24	0	Saturated, orange, coarse sanc Gray, medium sand on top.	1. CEMENTER				
19	19-21	4/5/8/11	24/24	-,2	Grayisn-green, medium sand.	DEPTH: Top of Seal IS FT.				
24	24-26	1/1/1/1	24/24	-2	Grayisn-green, medium sand.	Top of Sand 18 FT.				
					-	SLOTTED SCA MATERIAL. PVC				
<u></u>						SCHEDULE: 42 NISIDE DA. 2 SLOT NO.: Battornet				
					-	Bottom of 30 Bottom of 30 Bottom of 30				
- <u>-</u>										
						Bottom of 20 Screen				

երաներում։ Հերջիներանը է **ֆիննել է**

**

	& Gere ers, Inc.		Boring	g Log/Prot	ective Casing Well		eport of Bo neet 1 of		MW-	8	
Locatic Client:	n: Midway Navy	/ PK	Type: 2	SAN O.D. Split S	MPLER poon	Groun	around Water Depth				
Drilling	Туре: но	low Stem	Hamme	r: 140#	Fall: ^{30*} File No.						
Boring Forem	an: T	TEC om Sweeti	-			Dates: Started	j: 12/6/9	n End	ed:	12/6/91	
	Beologist				Sample						
-		Sa	mple		Description		Monitori	ng Well Sj	pecific	ations	
Depth	Depth	Blows /6*	Penetr/ Recovery	PID Value	<u> </u>						
0	0-2	2/4/5/5	24/12	* .2	Topsoil. Medium sand, brown.						
2	2-4	4/5/8/1	0 24/24	0	Gray, medium to fine sand. Sor	me silt.					
4	4-6	8/6/4/3	3 24/18	.2	Bottom 1/2 wet, fine, gray sand	l. -					
9	9-11	1/1/1/2	24/24	0	Green, gray, medium sand. Streaks of greener sand.						
14	14-16	1/2/4/5	24/24	.1	Green, gray, medium sand. Streaks of greener sand.				INSIDE	ule <u>: 40</u> Dia <u>2</u>	
19	19-21	8/16/26/3	1 24/24	.3	Green, gray, medium sand. Streaks of greener sand.		DEPTH: pp of Seal ¹⁶ FT. pp of Sand ¹⁸ FT.				
24	24-26	10/25/29,	/35 24/	.4	Green, gray, medium sand. Streaks of greener sand.	Ŧc	Top of 20 FT.			— SAND PACK	
30					Bottom of well.				- MA	ILOTTED SCRE TERIAL: <u>PVC</u> HEDULE: 40	
					* AMBIEL T AIR REGISTECED C.3 PRM CN PID		Bottom of 30 Screen Bottom of 30 Bottshole			DE DIA. 2	

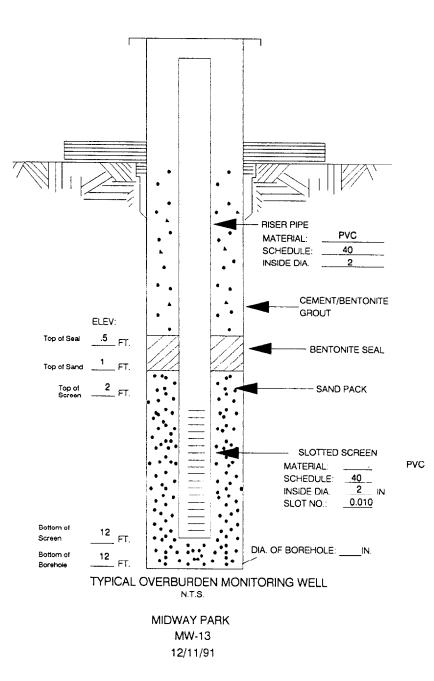
	& Gere ers, Inc.		Borin	g Log/Pro	tective Casing Well	Report of Boring No. MW-10 Sheet 1 of 1
Client:	n: Midwa Navy Type: Ho		Type: 2 Hamme	" O.D. Split S	MPLER Spoon Fall: 30*	Ground Water Depth File No.
Boring Forem OBG (an: 1	ATEC fim Williams T. Bickerstaft				Dates; Started: 12/9/91 Ended: 12/9/9
		Sam			Sample Description	Monitoring Well Specifications
Depth	Depth	Blows /6*	Penetr/ Recovery	PID Value		
0	0-2	2/3/5/6	24/20	* 1.3	Light brown, medium sand.	
2	2-4	4/4/3/4	24/24	1.3	Buff, medium sand.	
4	4-6	4/3/2/3	24/16	1.4	White and buff, medium sand.	
9	9-11	4/3/3/4	24/24	1.3	Medium, white sand on top of and green-gray sand. Wet.	orange
14	14-16	4/5/6/6	24/24	1.3	Green-gray, fine sand.	SCHEDULE: 43 INSIDE DIA_ 2
19	19-21	1/2/5/8	24/24	1.4	Gray, medium sand.	
24	24-26	10/17/27/31	24/24	1.3	Medium. gray sand.	Top of Sand 17 FT.
			· · · · · · · · · · · · · · · · · · ·			SLOTTED SCR MATERIAL: PVC SCHEDULE: 40
29	29/31	9/13/22/27	24/24	1.3	Medium, gray sand.	Bottom of 30
					* AMBIENT AIR RECORDE 1.3 PP.M ON PID	FD Bottom of 30 Botehole

e a la construcción de compositions

T T

--

ուս **– – –** շարջանի հերկերին, հերկերին, հերկերին, հերկերին, հերկերին, հերկերին, հերկերին, հերկերին, հերկերին, հ

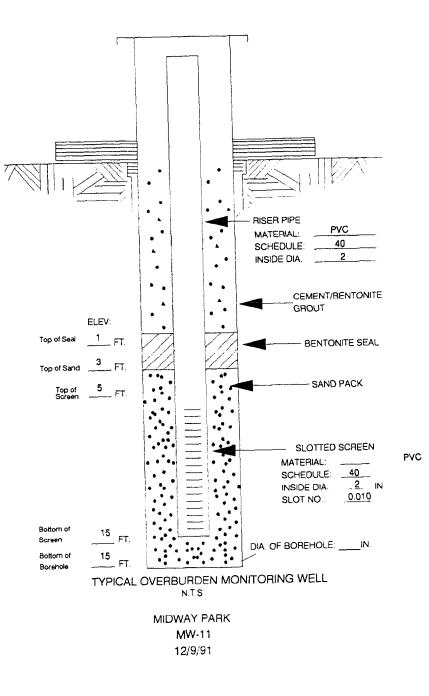

D'Brien Enginee	& Gere ers, Inc.		Boring	g Log/Prot	ective Casing Well	Report of Boring No. MW-12 Sheet 1 of 1
_ocatio Client:	n: Midway Navy		• •	O.D. Split S		Ground Water Depth
Drilling	Туре: нов	ow Stem	Hammer	: 140#	Fall: 30"	File No.
Boring Forem	an: To	EC m Sweeting				Dates: Started: 12/9/91 Ended: 12/10/91
OBG G	Beologist	I. Bickerstaf	T		Sample	
		Sam	ple		Description	Monitoring Well Specifications
Depth	Depth	Blows /6"	Penetr/ Recovery	PID Value		
0	0-2	1/2/3/5	24/24	* 1.3	Brown, medium sand.	
2	2-4	5/5/5/5	24/24	1.3	Gray, medium sand on top of brown, medium sand with silt	
4	4-6	1/3/5/8	24/24	1.4	Gray sit, clay with some sand of medium, buff sand.	d on top
9	9-11	1/1/1/3	24/24	1.3	Sut on too of gray silt and cla interpeoded with laminae of r medium sand. Wet.	red,
14	14-16	6/8/10/7	24/24	1.3	- Gray-rec clay grading to gray medium sand with silt.	SCHEDULE <u>: 40</u> INSIDE DIA <u>2</u> CEMENT/DENTON
19	19-21	1/1/1/4	24/24	1.4	- Medium gray sand with silt.	DEPTH: Top of Seal 18 FT. Top of Sand 18 FT. Top of Sand 18 FT.
24	24-26	1/3/2/1	24/24	1.3	- Orange, medium sand, 	Top of 20 FT.
30					Bottom of well.	SLOTTED SCR MATERIAL: PVC
					*PID REVEDED 1.3 FOR A	MBIENTAIR SLOTING. 01
					-	Bottom of 30 Screen Bottom of 30
						Borenote (doi)
. <u> </u>						

--

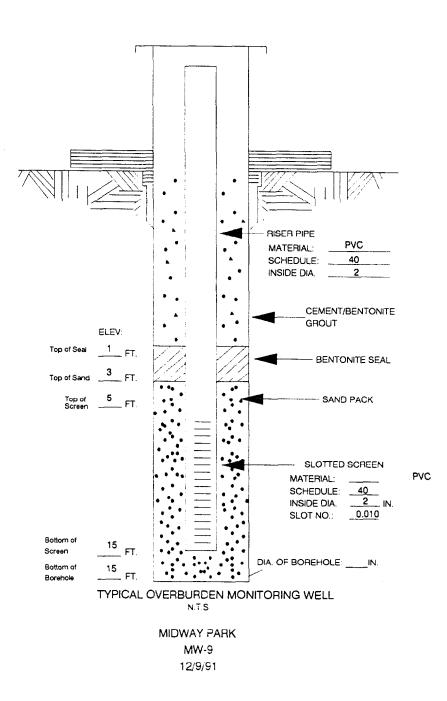
	& Gere ers, Inc.		Boring	g Log/Pro	tective Casing Well	Report of Boring No. MW-14 Sheet 1 of 1			
Client:	n: Midway Navy Type: Hol		Type: 2 Hammer	O.D. Split S	MPLER Spoon Fall: 30*		nd Water Dept	h	
Boring	Co.: A	TEC orn Sweeting				File No. Dates:			
1		T. Bickerstaf	f			Start	ed: 12/9/91	Ended:	12/10/9
		Sam			Sample Description		Monitoring	Well Specif	ications
Depth	Depth	Blows /6"	Penetr/ Recovery	PID Value	· ·		<u>`</u>		
0	0-2	1/1/1/2	24/24	З	Light brown, medium sand, so	ome fines.			
									— 1
2	2-4	2/2/2/3	24/24	:2	Light prown, medium to very f Some silt. Bottom 1/2 of spoor	ine sand. n wet.			
4	4-6	3/3/3/4	24/18	0	Gray, fine to very fine sand.				
9	9-11	1/2/4/6	24/24	0	Gray-green to brown, medium coarse sand.	a to			R CASING ERIAL:PVG
14	14-16	1/1/3/4	24/24	0	Gray, medium sand. Tip is ora brown. coarse sand.	angey-		INSIE	edule <u>: 40</u> De dia <u>2</u>
19	19-21	11/6/20/24	24/24	0	Green-gray, medium sand.		DEPTH: Top of Seal 13_FI		EMENT/BENTO GROUT
					- 		Top of Sand 15 FT		- BENTONIT
26					-		Tap ol 17 FT. Screen		SAND PAC
27					Bottom of well.				_ SLOTTED SC
									SCHEDULE: <u>4</u> NSIDE DIA <u>2</u> SLOT NO.: <u>01</u>
							Bottom of 27 Screen Bottom of 27 Borehole		
					-			<u> </u>	
					 :				
	<u> </u>			<u>.</u>			1		

na na an seann an de da sa **446**da I.

--



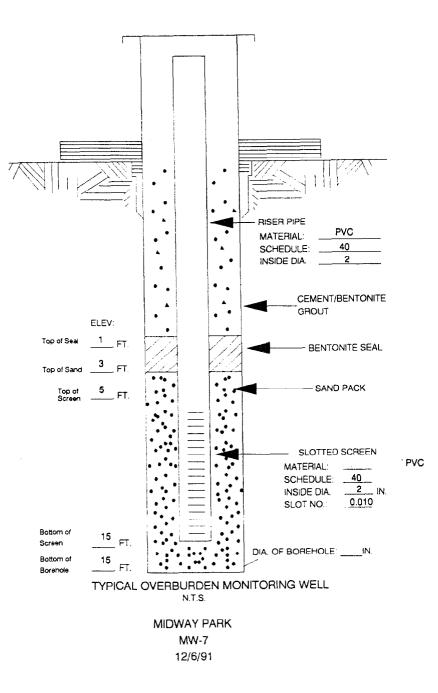
Mc - 14


201 201 -

...

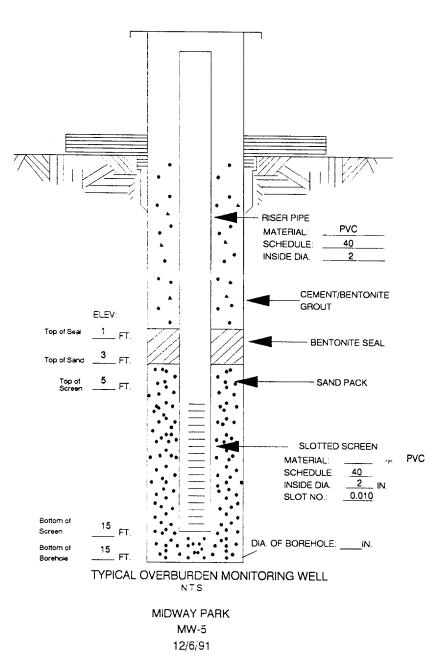
499894-1

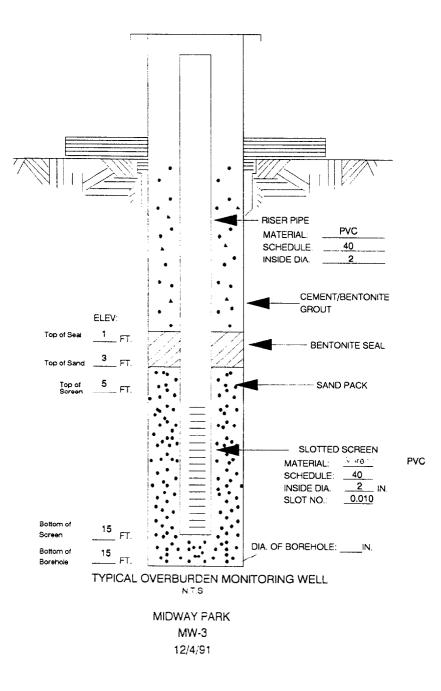
....



-

. ..


tis an de a **≴illi**ée (



--

÷

RISER PIPE PVC MATERIAL: SCHEDULE: 40 . INSIDE DIA. 2 CEMENT/BENTONITE GROUT ELEV: ____ FT. Top of Seal ---- BENTONITE SEAL 3 FT. Top of Sand _____ FT. Top of Screen - SAND PACK : . • SLOTTED SCREEN 10: PVC MATERIAL.
 SCHEDULE:
 40

 INSIDE DIA.
 2

 SLOT NO.:
 0.010
 Bottom of 20 Screen FT DIA. OF BOREHOLE: ____IN. Bottom of FT. Borehole TYPICAL OVERBURDEN MONITORING WELL N.T.S. MIDWAY PARK MW-1 12/4/91

nteres i k

e ne st

i carlo des 🖓 ฐ 40866 1

	n & Gere eers, Inc.			TE	EST BORING LOG		Report of Boring No. B4 Sheet 1 of 1				
Client:	Navy	1: Midway Pa	Тур		SAMPLER 2D.SPLITSPOON	Ground W	ater Deptl	1			
Drill Ty	ype: Houd	Sh STEM	AUGORHai	mmer: 1	40# Fall: 30"	10# Fall: 30" File No.					
Boring Foren		ATEC Chip Lefever				Dates: Started: 12/5/91					
OBG	Geologist	T. Bickerstat	f			12/5/91	Ended:	12/5/91			
		Sam	ple		•	Sample Description			atum e Genera cription		
Depth	Depth	Biows /6"	Penetr/ Recovery	PiD Value							
0	0-2	5/5/5/8	24/20	.2	Brown, medium sand.						
2	2-4	7/8/9/5	24/10	.2	Medium, brown sand with me brown sand at tip.	edium, dark					
4	4-6	2/3/3/4	24/24	78.6	Black, tar-like, medium to fine Free product.						
6	6-8	10/16/16/18	24/24	116	Black, tar-like, medium to fine Free product.	e sand.					
9	9-11	9/16/14/19	24/24	146	Black, tar-like, medium to fine Free product.	e sand.					
·······											
		_									

as el y éscularia a AAMAdarí

--

A REPORT OF A

Engineers, Inc.					EST BORING LOG	Ig No. B1			
-					SAMPLER CD SPLIT SPOON 1401bs. Fall: 30"	Ground Water Depth			
			H	ammer:		File No.			
Forer	nan: (Chip Lefever	f			Dates: Started: 12/5/91	Ended: 12/5/91		
OBG Geologist T. Bickerstaff Sample					Sample Descriptio	Stratum Change General Description			
Depth Blows Penetr/ PtD Depth /6* Recovery Value							Description		
0	0-2	4/6/8/9	24/20	0	Topsoil. Medium brown sand. coal at bottom of spoon.	dium brown sand. Piece of broken Im of spoon.			
2	2-4	6/6/5/5	24/20	1	Medium loose, brown sand.				
4	4-6	3/2/3/5	24/18	0	Medium. orange sand.				
9	9-11	6/8/10/11	24/24	.1	Brown, medium sand. Saturat	ed.			
					-				
					-				
					-				
					-				
					-				

•-

O'Brien & Gere Engineers, Inc.			TEST	BORING LOG	Report of Boring No. B2 Sheet 1 of 1					
Project Location: Midway Park Client: Navy Type: 2" מ Drill Type: אסערפא אטניפא					MPLER PLITコドロントン Fall: 30*	Ground Water Depth File No.				
Boring Co.: ATEC Foreman: Chip Lefever					Dates:					
OBG	Geologist	T. Bickerstaf	ť			Started:	12/5/91	Ended:	12/5/91	
Sample					Sample Description			Stratum Change Gener Description		
Depth	Depth	Blows /6*	Penetr/ Recovery	PID Value						
0	0-2	3/3/3/4	24/24	.2	Topsoil on top of brown, medium sand.					
2	2-4	3/1/2/1	24/20	.3	Medium brown sand.					
4	4-6	WOH	24/18	0	Very fine. brown sand.					
9	9-11	6/16/24/23	24/24	.2	White, fine sand.					
11	11-13	5/13/17/20	24/	.2	Fine, white sand. Tip is oran medium sand. Wet.	ge.				
<u> </u>										

 $(i,k) \in \{1,\dots,k\}$

H

n- d

u-

O'Brien & Gere Engineers, Inc.				TE	ST BORING LOG	Report of Boring No. ^{B3} Sheet 1 of 1				
Project Location: Midway Park					SAMPLER SPLIT SPCCN D# Fall: 30"	Ground Water Depth				
Boring	g Co.: /	ATEC	ick Ha	mmer: 140	0# Fall: 30" File No. Dates:					
Forem OBG		Chip Lefever T. Bickersta	ſſ		Started: 12/5/91		12/5/91	Ended: 12/5/91		
		San	nple		Sample Description			Stratum Change General Description		
Depth	Depth	Blows /6*	Penetr/ Recovery	PID Value						
0	0-2	2/2/4/4	24/24	.1	Fine to medium, brown sand.					
2	2-4	1/1/2/1	24/20	.3	Medium, brown sand.					
4	4-6	7/4/6/8	24/20	.4	Medium, buff sand.					
9	9-11	6/9/13/12	24/24	.5	Medium, brown sand. Tip is s	saturated.				
					Some coarse sand.					
			-							

--

-

APPENDIX B

ndek en 🖡 🕷

и d

--

l e entre data a dabatada al

LABORATORY RESULTS - LIQUIDS

1 4 4 4 4

DESCRIPTION __ Midway Park, Camp Lejeune, NC

LABORATORIES, INC.

Volatile Organics Method 8010/8020

CLIENT U.S. NAVY

JOB NO. 3543.001.517

 $-d\mathbf{h} + d\mathbf{h} +$

ANN A

			· · · - ·· ····························	MATRIX: W	later	
DATE COLLECTED 12-6-91	DATE RE	CEIVED]	2-9-91	DATE ANALY	ZED <u>12-1</u>	4,16-91
DESCRIPTION:	H1	H2	Н3	H4	Н5	H6
SAMPLE NO.:	N9213	N9214	N9215	N9216	N9217	N9218
Benzene	<1.	<1.	<1.	<1.	<1.	<1.
Benzyl chloride	<10.	<10.	<10.	<10.	<10.	<10.
Bis (2-chloroethoxy) methane	<5000.	<5000.	<5000.	<5000.	<500,000.*	*<5000.
Bromobenzene	<5.	<5.	<5.	<5.	<5.	<5.
Bromodichloromethane	<1.	<1.	<1.	<1.	<1.	<1.
Bromoform	<10.	<10.	<10.	<10.	<10.	<10.
Bromomethane	<10.	<10.	<10.	<10.	<10.	<10.
Carbon tetrachloride	<1.	<1.	<1.	<1.	<1.	<1.
Chlorobenzene	$ \begin{array}{c} 1 & 1 & \dots & 1 & 1 & \dots & 1 \\ 1 & 1 & \dots & 1 & 1 & \dots & 1 \\ 1 & 1 & \dots & 1 & \dots & 1 & \dots & 1 \\ 1 & 1 & \dots & 1 & 1 & \dots & 1 \\ 1 & 1 & \dots & 1 & 1 & \dots & 1 \\ 1 & 1 & \dots & 1 & 1 & \dots & 1 \\ 1 & 1 & \dots & 1 & 1 & \dots & 1 \\ 1 & 1 & \dots & 1 & \dots & 1 \\ 1 & 1 & \dots & 1 & \dots & 1 \\ 1 & 1 & \dots & 1 & \dots & 1 \\ 1 & 1 & \dots & 1 & \dots & 1 \\ 1 & \dots & 1 & \dots & 1 & \dots & 1 \\ 1 & \dots & 1 & \dots & 1 & \dots & 1 \\ 1 & \dots & 1 & \dots & 1 & \dots & 1 \\ 1 & \dots & 1 & \dots & 1 & \dots & 1 \\ 1 & \dots & \dots & \dots & \dots & 1 \\ 1 & \dots & \dots & \dots & \dots & \dots & 1 \\ 1 & \dots & \dots & \dots & \dots & \dots & \dots \\ 1 & \dots & \dots & \dots & \dots & \dots & \dots \\ 1 & \dots & \dots & \dots & \dots & \dots & \dots \\ 1 & \dots & \dots & \dots & \dots & \dots & \dots \\ 1 & \dots & \dots & \dots & \dots & \dots & \dots \\ 1 & \dots & \dots & \dots & \dots & \dots & \dots \\ 1 & \dots \\ 1 & \dots &$				5.	
Chloroethane					<1.	
2-Chloroethylvinyl ether	<i0.< td=""><td><10.</td><td><10.</td><td><10.</td><td><10.</td><td><10.</td></i0.<>	<10.	<10.	<10.	<10.	<10.
Chloroform	<1.	<1.	<1.	<1.	<1.	<1.
1-Chlorohexane	<10.	<10.	<10.	<10.	<10.	<10.
Chloromethane	<10.	<10.	<10.	<10.	<10.	<10.
Chloromethylmethyl ether	<100.	<100.	<100.	<100.	<100.	<100.
2-Chlorotoluene	<5.	<5.	<5.	<5.	<5.	<5.
4-Chlorotoluene	<5.	<5.	<5.	<5.	<50.*	<5.
Dibromochloromethane	<1.	<1.	<1.	<1.	<1.	<1.
Dibromomethane	<10.	<10.	<10.	<10.	<10.	<10.
1,2-Dichlorobenzene	<5.	<pre></pre>	<5.	<5.	<100.**	<5.
1,3-Dichlorobenzene				Ar an Article and	6.*	
1,4-Dichlorobenzene			en reessa, tada, ayayan hatar ta		84.**	
Dichlorodifluoromethane	<10.	<10.	<10.	<10.	<10.	<10.

OBG Laboratories, Inc., an O'Brien & Gere Limited Company 5000 Brittonfield Parkway / Suite 300, Box 4942 / Syracuse, NY 13221 / (315) 437-0200 Page 1 of 2 Authorized: Mulue Norvetter

Date: <u>January 7, 1992</u>

Volatile Organics Method 8010/8020

U.S. NAVY CLIENT_

JOB NO. _____3543.001.517

Midway Park, Camp Lejeune, NC DESCRIPTION ____ MATRIX: Water 12-6-91 DATE COLLECTED _____ DATE RECEIVED _ 12-9-91 12-14,16-91 DATE ANALYZED ____ H1 H2 **DESCRIPTION:** H3 H4 H5 H6 SAMPLE NO .: N9213 N9214 N9215 N9216 N9217 N9218 1,1-Dichloroethane 2. <1. <1. <1. <1. <1. 1.2-Dichloroethane <1. 1,1-Dichloroethylene 1,2-Dichloroethylene (total) Dichloromethane 1,2-Dichloropropane cis-1,3-Dichloropropylene trans-1,3-Dichloropropylene Ethylbenzene 1,1,2,2-Tetrachloroethane 1,1,1,2-Tetrachloroethane Tetrachloroethylene Toluene 1,1,1-Trichloroethane 1,1,2-Trichloroethane Trichloroethylene Trichlorofluoromethane 1,2,3-Trichloropropane

Vinyl chloride Xylene (total)

<3.

*1,3-Dichlorobenzene and 4-Chlorotoluene coelute using Method 8010/8020. The value at this retention time was quantitated using a 1,3-Dichloro- Methodology: USEPA,SW-846, November 1986, 3rd Edition benzene standard. Comments:

<3.

<3.

1,2-Dichlorobenzene, 1,4-Dichlorobenzene and Bis Certific (2-chloroethoxy)methane coelute using Method 8010/8020. The value at this retention time was quantitated Units: using 1 1,4-Dichlorobenzene standard. Certification No.: 315 μg/1

Page 2 of 2 Authorized:

<3.

<3.

OBG Laboratories, Inc., an O'Brien & Gere Limited Company 5000 Brittonfield Parkway / Suite 300, Box 4942 / Syracuse, NY 13221 / (315) 437-0200

January 7, Date:_ 1992

<3.

CLIENT____U.S. NAVY

DESCRIPTION_

Midway Park, Camp Lejeune, NC

Volatile Organics Method 8010/8020

_ JOB NO. 3543.001.517

ete sole -

1460 1

				MATRIX: Water							
DATE COLLECTED 12-6-9	DATE RECEIVED		12-9-91			DATE	ANALYZED _	12-	12-16-91		
DESCRIPTION:	H7										
SAMPLE NO.:	N9219										
Benzene	<1.										
Benzyl chloride	<10.	n de la Nu	· · · · · · · ·	sectification to a			an an an Araba an Araba. An Araba		landi da d		
Bis (2-chloroethoxy) methane	<5000.										
Bromobenzene	<5.		¹ 1	er de la composición de la composicinde la composición de la composición de la composición de la compo	a dia t		and a second				
Bromodichloromethane	<1.			가지 않다. 승규는 동							
Bromoform	<10.						1 a		e filmente en la companya de la comp		
Bromomethane	<10.										
Carbon tetrachloride	<1.		- 40.	er de la chairte	410.191		1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -				
Chlorobenzene		10 - 1 									
Chloroethane	BAA BABARANA DEFENSION	and the		ha dhan da ba		· • ·	ta stational de la companya de la co				
2-Chloroethylvinyl ether	<10.			ana dia kaominina Ny INSEE dia mampiasa Ny Faritr'o Dia mampiasa							
Chloroform	<pre>// 1.</pre>		e del Sur	n da ser en la compañía de la compañía La compañía de la comp	i se da t		n (1944) - Sules Alfred				
1-Chlorohexane	<10.										
Chloromethane	<10.		·	3.99 a.J	si iteri		· 이제 (144)		natur in service		
Chloromethylmethyl ether	<100.								a gha an		
2-Chlorotoluene	<5.										
4-Chlorotoluene	<5.	n an an seo Na		an ta Tagata A							
Dibromochloromethane	<1.			n da	1.12						
Dibromomethane	<10.								and the second sec		
1,2-Dichlorobenzene	(5.)		14	1 (H H)	n de Autoria		an seise stationale Line				
1,3-Dichlorobenzene									n an star an star Deby for a star an star		
1,4-Dichlorobenzene							n y skiletiet. Nation				
Dichlorodifluoromethane	<10.										

Page 1 of 2 Authorized: us January 7, 1992 Date: ____

OBG Laboratories, Inc., an O'Brien & Gere Limited Company 5000 Brittonfield Parkway / Suite 300, Box 4942 / Syracuse, NY 13221 / (315) 437-0200

Volatile Organics Method 8010/8020

-

DESCRIPTION Midway Park,	Camp Lejeune, NC					
	MATRIX: Water					
DATE COLLECTED 12-6-91	DATE RECEIVED	12-9-91	DATE ANALYZED	12-16-91		
DESCRIPTION:	H7					
SAMPLE NO.:	N9219					
1,1-Dichloroethane	<1.					
1,2-Dichloroethane	1. AV 4.	ag en an avera a				
1,1-Dichloroethylene						
1,2-Dichloroethylene (total)	2000	and the second second				
Dichloromethane						
1,2-Dichloropropane	1.081.041		the second states			
cis-1,3-Dichloropropylene						
trans-1,3-Dichloropropylene		1				
Ethylbenzene						
1,1,2,2-Tetrachloroethane	a second a second second second second	and the second second				
1,1,1,2-Tetrachloroethane						
Tetrachloroethylene	· · · · · · · · · · · · · · · · · · ·		an Maria Indonesia (Angele pressione			
Toluene						
1,1,1-Trichloroethane		and the second second				
1,1,2-Trichloroethane						
Trichloroethylene	Sec. A sec.					
Trichlorofluoromethane						
1,2,3-Trichloropropane	an a	and the second second				
Vinyl chloride						
Xylene (total)	<3.	i dougang to i a t	(a) (j = 1, − − − − − − − − − − − − − − − − − −			

Comments:

Methodology: US	SEPA,SW-846, November 1986, 3rd Edition
Certification No.:	315
Units:	μg/1

Page 2 of 2 Authorized: January 7, 1992 Date:__

_	-	_	-		
	-		(inclusion)		
Contraction of the local division of the loc					
			-		
-			-		
_				_	

Volatile Organics Method 8010/8020

_____ JOB NO. <u>3543.001.517</u>

U.S. NAVY CLIENT___

 $\mathbf{r}(\mathbf{k}) < \mathbf{r}(\mathbf{r})$

					MATRIX: W	Water			
DATE COLLECTED	12-12-91	DATE RE		2-13-91	DATE ANALY	ZED <u>12-2</u>			
DESCRIPTION:	TION: M		MW-3	MW-5	MW-7	MW-11	MW-4		
SAMPLE NO.:		N9617	N9618	N9619	N9620	N9621	N962		
Benzene		<1.	<10.	<1.		<1.	<1.		
Benzyl chloride		<10.	<100.	<10.	<10.	<10.	<10.		
Bis (2-chloroetho	xy) methane	<500.	<5000.	<500.	<500.	<500.	<500.		
Bromobenzene		<5.	<50.	<5.	<5.	<5.	<5.		
Bromodichlorome	thane	<1.	<10.	<1.	<1.	<1.	<1.		
Bromoform		<10.	<100.	<10.	<10.	<10.	<10.		
Bromomethane		<1.	<10.	<1.	<1.	<1.	<1.		
Carbon tetrachlor	ide								
Chlorobenzene									
Chloroethane									
2-Chloroethylviny	d ether	<10.	<100.	<10.	<10.	<10.	<10.		
Chloroform	THE THE REAL POINT OF THE T	<1.	<10.	<1.	<1.	<1.	<1.		
1-Chlorohexane		<10.	<100.	<10.	<10.	<10.	<10.		
Chloromethane	 Series of the series of the ser	<1.	<10.	<1.	<1.	<1.	<1.		
Chloromethylmet	hyl ether	<100.	<1000.	<100.	<100.	<100.	<100.		
2-Chlorotoluene	0 i i 316 i '	<5.	<50.	<5.	<5.	<5.	<5.		
4-Chlorotoluene		<5.	<50.	<5.	<5.	<5.	<5.		
Dibromochlorom	ethane	<1.	<10.	<1.	<1.	<1.	<1.		
Dibromomethane		<10.	<100.	<10.	<10.	<10.	<10.		
1,2-Dichlorobenz	:ene	<5.	<50.	<5.	<5.	<5.	<5.		
1,3-Dichlorobenz	ene						$\label{eq:constraint} \begin{split} & \mathcal{L} = \left\{ \begin{array}{c} -1 & \mathcal{D} \left\{ \mathbf{x} + \mathbf{y} \right\} \\ -1 & \mathcal{D} \left\{ \mathbf{x} + \mathbf{y} \right\} \\ -1 & \mathcal{D} \left\{ \mathbf{x} + \mathbf{y} \right\} \\ -1 & \mathcal{D} \left\{ \mathbf{x} + \mathbf{y} \right\} \\ -1 & \mathcal{D} \left\{ \mathbf{x} + \mathbf{y} \right\} \end{split} \end{split}$		
1,4-Dichlorobenz	ene								
Dichlorodifluoron	nethane	<10.	<100.	<10.	<10.	<10.	<10.		

de ser

ી આ તેન

43845-1

Page 1 of 2

Authorized: Morika La tucci Date: _____ January 8, 1992_____

Volatile Organics Method 8010/8020

	Camp Lejeune			MATRIX: W	Vater	
ATE COLLECTED 12-12-	91 DATE RE		12-13-91	DATE ANAL	/ZED 12-3	20,22-91
DESCRIPTION:	MW-1	MW - 3	MW-5	MW-7	MW-11	MW-4
SAMPLE NO.:	N9617	N9618	N9619	N9620	N9621	N9622
1,1 - Dichloroethane	<1.	16.	<1.	<1.	<1.	<1.
1,2-Dichloroethane		<10.				
1,1-Dichloroethylene						
1,2-Dichloroethylene (total)		× .				¥ 2.
Dichloromethane	and the second sec					<1.
1,2-Dichloropropane			the first state of the second state	na se en		
cis-1,3-Dichloropropylene						
trans-1,3-Dichloropropylene			an an air an			
Ethylbenzene		16.				
1,1,2,2-Tetrachloroethane	e Antonio	<10.	n að Mithauti í Sinn Life		1. 19 1. 1 1. 19	
1,1,1,2-Tetrachloroethane						
Tetrachloroethylene			n an an Anna a Anna an Anna an			
Toluene					2012 1917 - 1917 1917 - 1917	
1,1,1 - Trichloroethane			n mar ann an Araigh			
1,1,2-Trichloroethane			$ \begin{array}{c} & (1,2) \\ (1,2$			
Trichloroethylene			Markara (Kata)	Alter Alter		
Trichlorofluoromethane						
1,2,3-Trichloropropane		-				
Vinyl chloride			$ \begin{array}{c} \sum_{i=1}^{n-1} \left(\sum_{i=1}^{n-1} \sum_{i=1}^{n-1} \left(\sum_{i=1}^{n-1} \sum_$			
Xylene (total)	<3.	<30.	<pre>kdtaii0.04 ↓ 18 1 16 1 <3.</pre>	(ad. ka. ∳ ien uni <3.	<3.	√ <3.
						10.

Comments:

Methodology: USE	PA,SW-846, November 1986, 3rd Edition
Certification No.:	315
Units:	μg/l

Page 2 of 2

Authorized:	outo San	tucei
Date:	January 8,	1992

OBG Laboratories, Inc., an O'Brien & Gere Limited Company 5000 Brittonfield Parkway / Suite 300, Box 4942 / Syracuse, NY 13221 / (315) 437-0200

Volatile Organics Method 8010/8020

U.S. NAVY CLIENT_

_____ JOB NO. <u>3543.001.517</u>

dillio 1

wine en da

Midway Park, Camp Lejeune, NC DESCRIPTION _

	······	A - 101 - 101 - 101	-	MATRIX: N	Vater	
DATE COLLECTED 12-12-91	DATE RE		2-13-91	DATE ANALY	ZED 12-	22,23-91
DESCRIPTION:	MW-4 Field Dup.	MW-2	MW-6	MW-8	MW-9	MW-10
SAMPLE NO.:	N9623	N9624	N9625	N9626	N9627	N9628
Benzene	<1.	<1.	<1.	<10.	<1.	<1.
Benzyl chloride	<10.	<10.	<10.	<100.	<10.	<10.
Bis (2-chloroethoxy) methane	<500.	<500.	<500.	<5000.	<500.	<500.
Bromobenzene	<pre></pre>	<pre></pre>	<5.	<50.	<5.	<5.
Bromodichloromethane	<1.	<1.	<1.	<10.	<1.	<1.
Bromoform	<10.	<10.	<10.	<100.	<10.	<10.
Bromomethane	<1.	<1.	<1.	<10.	<1.	<1.
Carbon tetrachloride	ne i ser saku dine sana aya sa					
Chlorobenzene						
Chloroethane	e a l'a chiera e la construcción de la definidade de			48 1000		
2-Chloroethylvinyl ether	<10.	<10.	<10.	<100.	<10.	<10.
Chloroform	<1.	<1.	<1.	<10.	<1.	<1.
1-Chlorohexane	<10.	<10.	<10.	<100.	<10.	<10.
Chloromethane	<1.	<1.	<1.	<10.	<1.	<1.
Chloromethylmethyl ether	<100.	<100.	<100.	<1000.	<100.	<100.
2-Chlorotoluene	<5.	<5.	<5.	<50.	<5.	<5.
4-Chlorotoluene	<5.	<5.	<5.	<50.	<5.	<5.
Dibromochloromethane	<1.	<1.	<1.	<10.	<1.	<1.
Dibromomethane	<10.	<10.	<10.	<100.	<10.	<10.
1,2-Dichlorobenzene	<5.	<5.	<5.	<50.	<5.	<5.
1,3-Dichlorobenzene						
1,4-Dichlorobenzene						
Dichlorodifluoromethane	<10.	<10.	<10.	<100.	<10.	<10.

Page 1 of 2

Authorized: Morika Sentucci Date: _____January 8, 1992

Volatile Organics ' Method 8010/8020

CLIENT U.S. NAVY

DESCRIPTION Midway Park, Camp Lejeune, NC

DATE COLLECTED 12-12-91			12	2-13	-91					ater ZED_		12-	22,23	-91
														-
DESCRIPTION:	MW-4 Field Dup.	MW - 2		М	W-6	5		MW	-8		M₩	9	MW-	10
SAMPLE NO.:	N9623	N9624		N	962	25		N9	626	NS	627		N96	28
1,1-Dichloroethane	<1.	ⁿ , ¹			<1	•		<1	0.		<1.		<1	•
1,2-Dichloroethane	<1.				[1		1	
1,1-Dichloroethylene	2.													
1,2-Dichloroethylene (total)	<1.													
Dichloromethane		an an Arta Raise									1.			
1,2-Dichloropropane														
cis-1,3-Dichloropropylene		an ta Santa an			3 									
trans-1,3-Dichloropropylene														
Ethylbenzene	an a													
1,1,2,2-Tetrachloroethane														
1,1,1,2-Tetrachloroethane														
Tetrachloroethylene														
Toluene							en i 11 - J							
1,1,1-Trichloroethane														
1,1,2-Trichloroethane						•								
Trichloroethylene														
Trichlorofluoromethane														
1,2,3-Trichloropropane														
Vinyl chloride	2.	and and Bound and and And and and and and and And and and and and and and and and and a			J				Ţ				'↓	
Xylene (total)	<3.	<3.			<3	•		<3	50.		< 3 .		<3	•

Comments:

Methodology: USEPA,SW-846, November 1986, 3rd Edition

Certification No.: 315

Units: $\mu g/1$

Page 2 of 2

Authorized: Morika Tice January 8, 1992 Date:_

		international designation	
-			
	the second s		
-	-	The second s	
and the second se			
Citizen and Citizen	_		
-			

Volatile Organics Method 8010/8020

CLIENT____U.S. NAVY

JOB NO. 3543.001.517

sin sin

1464-1

DESCRIPTION Midway Park, Camp Lejeune, NC

					MATRIX: N	Nater	
DATE COLLECTED	12-9,12-91	DATE RE	CEIVED	12-13-91	DATE ANALY	zed12-2	3-91
DESCRIPTION:		MW-12	MW-13	MW-14	H8	Н9	H10
SAMPLE NO.:		N9629	N9630	N9631	N9632	N9633	N9634
Benzene		<1.	<1.	<1.	<1.	<1.	<1.
Benzyl chloride		<10.	<10.	<10.	<10.	<10.	<10.
Bis (2-chloroethoxy)	methane	<500.	<500.	<500.	<500.	<500.	<500.
Bromobenzene		<5.	<5.	<5.	<5.	<5.	<5.
Bromodichlorometha	ine	<1.	<1.	<1.	<1.	<1.	<1.
Bromoform		<10.	<10.	<10.	<10.	<10.	<10.
Bromomethane		<1.	<1.	<1.	<1.	<1.	<1.
Carbon tetrachloride	,						
Chlorobenzene						Manager Constants	
Chloroethane							
2-Chloroethylvinyl e	ther	<10.	<10.	<10.	<10.	<10.	<10.
Chloroform	alan ni 1920 - L'Italya - Latin e	<1.	<1.	<1.	<1.	<1.	<1.
1-Chlorohexane		<10.	<10.	<10.	<10.	<10.	<10.
Chloromethane		<1.	<1.	<1.	<1.	<1.	<1.
Chloromethylmethyl	ether	<100.	<100.	<100.	<100.	<100.	<100.
2-Chlorotoluene		<5.	<5.	<5.	<5.	<5.	<5.
4-Chlorotoluene		<5.	<5.	<5.	<5.	<5.	<5.
Dibromochlorometha	ane	<1.	<1.	<1.	<1.	<1.	<1.
Dibromomethane		<10.	<10.	<10.	<10.	<10.	<10.
1,2-Dichlorobenzene)	<5.	<5.	<5.	31.*	<5.	<5.
1,3-Dichlorobenzene					<5.		
1,4-Dichlorobenzene	, (που ανά το β ² το πραγού το το βαγιού) το το βαγού το βαγ				*		
Dichlorodifluorometi	nane	<10.	<10.	<10.	<10.	<10.	<10.

Page 1 of 2

He da Authorized: More tuca January 8, 1992 Date:

Volatile Organics Method 8010/8020

CLIENT U.S. NAVY DESCRIPTION Midway Par	k,	Camp	Le jeur	ne, M	١C							<u> </u>		
									MA	TRIX:	Wate	r		
DATE COLLECTED 12-9,1	2-9	1	DATE RE	CEIVE	D	12	-13-9	1	DAT	E ANAL	YZED	12-	23-91	
DESCRIPTION:		M	W-12	MI	W-13		MW-1	.4	H	3		Н9	H10	
SAMPLE NO.:		N	9629	N	9630		N96	531	N9	532	N	9633	N9634	
1,1-Dichloroethane			<1.		<1.		<1			1.	<	(1.	<1.	
1,2-Dichloroethane														
1,1-Dichloroethylene	•													
1,2-Dichloroethylene (total)														
Dichloromethane		in in suit an th	$ \begin{array}{c} A^{(1)}_{12} = & \\ A^{(1$											
1,2-Dichloropropane														
cis-1,3-Dichloropropylene												N N		
trans-1,3-Dichloropropylene									10.04					
Ethylbenzene														
1,1,2,2-Tetrachloroethane					•									
1,1,1,2-Tetrachloroethane														
Tetrachloroethylene												J		
Toluene			* 2.									2.		
1,1,1 - Trichloroethane			<1.				s a 1942 m 19 <u>1</u> 87	(* 144 - 7)	n permetri segle de di se i di			<1.		
1,1,2-Trichloroethane			$\sum_{i=1}^{n+1} \frac{\frac{1}{2} \sum_{i=1}^{n+1} \frac{1}{2} \sum_{i=1}^{n+1} \frac{1}$		1	58 1916 -						1		
Trichloroethylene					1		<u>8</u> ***					1		
Trichlorofluoromethane														
1,2,3-Trichloropropane					1	- 25								
Vinyl chloride				1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1										
Xylene (total)			<3.		<3.		* ** \	3.	· · · · · · · · · · · · · · · · · · ·	<3.	di si	<3.	<3.	
													м.	

*1,2-Dichlorobenzene and 1,4-Dichlorobenzene coelute using EPA Method 8010/8020. The value Comments: at this retention time was quantitated using Methodology: USEPA,SW-846, November 1986, 3rd Edition a 1,2-Dichlorobenzene standard.

Certification No.:

Units:

Page 2 of 2

Authorized: January 8, 1992 Date:

μg/1

		_	
	1		
_		<u> </u>	

Volatile Organics Method 8010/8020

CLIENT U.S. NAVY

+N -N

		MATRIX: Water							
DATE COLLECTED 12-12-91	DATE RE		12-13-91	DATE ANALYZED _	12-	24-91			
DESCRIPTION:	Field Blank	QC Trip Blank							
SAMPLE NO.:	N9635	N9636							
Benzene	<1.	<1.			с. С.				
Benzyl chloride	<10.	<10.							
Bis (2-chloroethoxy) methane	<500.	<500.							
Bromobenzene	<5.	<5.		i Maria da Anglia					
Bromodichloromethane	<1.	<1.							
Bromoform	10.	<10.	e e la composition de						
Bromomethane	<1.	<1.				•			
Carbon tetrachloride	1988 - Carl Balance 	de State - 171	ale fosfilla e engels for fille a star	en din belan serie ingeneration i distributione. Nationalista					
Chlorobenzene		The IPA	Ala ana ang ang ang ang ang ang ang ang an						
Chloroethane		A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR A CONTRACTOR A CONTRACTOR A CONTRACTOR A CONTRACTOR A CONTRACTOR A	14 de la decisión	anne dyl e transmusie					
2-Chloroethylvinyl ether	√ <10.	< [*] <10.							
Chloroform	<1.	<pre><1.</pre>		- 2, Still Webber					
1-Chlorohexane	<10.	<10.							
Chloromethane	<1.	<1.	et d'hi de production. L'hi de la companya d	, del se creative de la de					
Chloromethylmethyl ether	<100.	<100.							
2-Chlorotoluene	<pre><5.</pre>	<5.		al air mar an an an a' a					
4-Chlorotoluene	<5.	<5.		 Respectively. Respectively. Respectively. Respectively. 					
Dibromochloromethane	-1281 - 2088 - 648 Ale- <1.	<1.		an tha an tha bar an an tha					
Dibromomethane	<10.	<10.							
1,2-Dichlorobenzene	<pre><5.</pre>	<5.	ang di panganan kalar Ma	· · · · · · · · · · · · · · · · · · ·					
1,3-Dichlorobenzene									
1,4-Dichlorobenzene				ng harden en son ander en son ander en son ander Name Britanis en son ander en son ander en son ander Name Britanis en son ander en son ander en son ander en son					
Dichlorodifluoromethane	↓ <10.	<10 .	a 1997 - 1997			ja en			

Page 1 of 2

Mor Authorized: _ January 8, 1992 Date: ___

Volatile Organics Method 8010/8020

CLIENT U.S. NAVY

JOB NO. 3543.001.517

DESCRIPTION Midway Park, Camp Lejeune, NC

			N	MATR	[X: Water		
DATE COLLECTED 12-12-91	DATE RE	ECEIVED 12	-13-91	DATE	ANALYZED	12-24-91	
DESCRIPTION:	Field Blank	QC Trip Blank					
AMPLE NO.:	N9635	N9636					
1,1-Dichloroethane	<1.						
1,2-Dichloroethane							
1,1-Dichloroethylene							
1,2-Dichloroethylene (total)							
Dichloromethane		1.*			n na hairtean an hairtean a Bhairtean an hairtean an hai		
1,2-Dichloropropane		<1.		-			
cis-1,3-Dichloropropylene							
trans-1,3-Dichloropropylene							
Ethylbenzene							
1,1,2,2-Tetrachloroethane							
1,1,1,2-Tetrachloroethane							
Tetrachloroethylene							
Toluene							
1,1,1-Trichloroethane							
1,1,2-Trichloroethane							
Trichloroethylene							
Trichlorofluoromethane							
1,2,3-Trichloropropane							
Vinyl chloride							
Xylene (total)	<3.	<3.					

Comments:*Laboratory contaminant

Methodology: US	EPA,SW-846, November 1986, 3rd Edition
Certification No.:	315
Units:	μg/l

Page 2 of 2

Authorized:_	Morika Sartucci	
Date:_	January 8, 1992	

OBG Laboratories, Inc., an O'Brien & Gere Limited Company 5000 Brittonfield Parkway / Suite 300, Box 4942 / Syracuse, NY 13221 / (315) 437-0200

Laboratory Report

CLIENTU.S. NAVY			JOB NO 3543.0	001.517
ESCRIPTION Midway Park, Camp Lejeu	ne, NC			
Toxicity Characteristic	Leaching Pr	ocedure	MATRIX: Wate:	r
DATE CO	LLECTED	12-12-91	DATE RECEIVED	12-13-91
	1	1	1 1	
-				
Description	MW-3			
Sample #	20616			
Sampie "	N9616			
TCLP Volatile Organics: BENZENE	<0.05			
CARBON TETRACHLORIDE	<0.05			
CHLOROBENZENE	<10.0			
CHLOROFORM	<0.60			
1,2-DICHLOROETHANE	<0.05			
1,1-DICHLOROETHYLENE	<0.07			
METHYL ETHYL KETONE	<20.0	-		
TETRACHLOROETHYLENE	<0.07	,		
TRICHLOROETHYLENE	<0.05			
VINYL CHLORIDE	<0.02			
Analytical Record:				
Date Leachate Created -				
Date Analyzed 12-26-	-91	-		

- 4

 $\nu = k$

144.5

Comments:

Certification No.: 315 mg/l

Units:

Morika ture Authorized: January 8, 1992 Date:_

ab	ora	tory
	Re	port

		and the second	
	الانتصفي وعدال	and the second value of th	
			and so its statements
_			
-			

RIPTION Midway Park, Toxicity Char	acteristic Leaching	Procedure	MATRIX: Water	
	DATE COLLECTED	12-12-91	DATE RECEIVED	12-13-91
			, ,	1
Description	MW-3			
Sample #	N961	.6		
TCLP Metals: ARSENIC	<0.5			
BARIUM	<10.			
CADMIUM	<0.1			
CHROMIUM	<0.5			
LEAD	<0.5			
MERCURY	<0.0	005		
SELENIUM	<0.1			
SILVER	<0.5			
			la anti-la anti- la anti-la anti-	
		C	tification No.: 315	
ments:		Unit	/1	

January 8, 1992

. . .

LABORATORIES, INC.

Laboratory Report

Toxicity Characteristic	Leaching I	rocedure	MATRIX: Water	
DATE COL	LECTED	12-12-91	DATE RECEIVED	12-13-91
				ł
Description	MW - 3			
Sample #	N9616			
TCLP Pesticides/Herbicides:				
CHLORDANE	<0.01			
ENDRIN	<0.00	5		
HEPTACHLOR	<0.00	5		
HEPTACHLOR EPOXIDE	<0.00	5		
LINDANE	<0.00	5		
METHOXYCHLOR	<0.01			
TOXAPHENE	<0.05			
2,4-D	<0.01	*		
2,4,5-TP (SILVEX)	<0.01	*		
Analytical Record:				
Date Leachate Created 12-1	7-91			
Date Herbicide ExtractedSub				
Date Pesticide Extracted12-1	9-91			
Date Herbicide Analyzed Sub				
Date Pesticide Analyzed 1-6-	92			

di di

1001-1

Comments: *Laboratory analysis subcontracted to Hudson Environmental Services, Inc., NYS DOH Lab ID# 11140

Certification No.: 10155 Units: mg/1

Morika Santuce Authorized:__ January 14, 1992 Date:_

Laboratory Report

RIPTION Midway Park, Camp Lejeur			JOB NO3543.		
Toxicity Characteristic	Toxicity Characteristic Leaching Procedure				
DATE CO	LLECTED 12-	12-91	DATE RECEIVED	12-13-91	
Description	MW - 3				
Sample #	N9616				
TCLP Semivolatile Organics:					
o-CRESOL	<0.1				
m-CRESOL					
p-CRESOL					
CRESOL, TOTAL					
1,4-DICHLOROBENZENE					
2,4-DINITROTOLUENE					
HEXACHLOROBENZENE			1. (1997) 1. (1997)		
HEXACHLOROBUTAD I ENE					
HEXACHLOROETHANE					
NITROBENZENE	V				
PENTACHLOROPHENOL	<0.5				
PYRIDINE	<1.0				
2,4,5-TRICHLOROPHENOL	<0.5				
2,4,6-TRICHLOROPHENOL	<0.1				
Applytical Become					
Analytical Record: Date Leachate Created 12	17 01				
Date Extracted 12	-17-91				
	-18-91 -31-91				

Comments:

Certification No.: 315

Units: mg

mg/l

Authorized: Morika Santucci Date: January 14, 1992

	_		_
	(With the second se		
	a subscript of the subs	the second s	_
			-
_			

METHOD 2:00 Laboratory Report

CLIENTU.S. NAVY			_ JOB NO. <u>3543</u>	5.001.517
DESCRIPTION Midway Park, Camp Lej				
POLI NUCLERK FROMFTIC MULTO				
Date Analyzed 1-1-92 DATE C	OLLECTED1	2-12-91	DATE RECEIVED	12-13-91
	1	1	1	I
Description	MW-1	MW-7	MW-11	
Sample #	20617			
Sampre #	N9617	N9620	N9621	
ACENAPHTHENE	<50.	<10.	<45.	
ACENAPHTHYLENE				
ANTHRACENE				
BENZ(a)ANTHRACENE				
BENZO(a)PYRENE				
BENZO(b)FLUORANTHENE				3
BENZO(k)FLUORANTHENE				
BENZO(g,h,i)PERYLENE				
CHRYSENE				
DIBENZ(a,h)ANTHRACENE				
FLUORANTHENE				
FLUORENE				
INDENO(1,2,3-cd)PYRENE				
NAPHTHALENE				
PHENANTHRENE				
PYRENE				

. .

计计算机分词

A Salation of the

Comments: Elevated detection limits due to limited sample.

Certification No.: 315 Units: µg/1

OBG Laboratories, Inc., an O'Brien & Gere Limited Company 5000 Brittonfield Parkway / Suite 300, Box 4942 / Syracuse, NY 13221 / (315) 437-0200

Authorized: Norka Santucci

Date: January 14, 1992

APPENDIX C

այուն է հետանութ **ՀՀՅ**ՅՅՅՅՅՅ

,

.

. .

LABORATORY RESULTS - SOIL

January 8, 1992

ANALYTICAL SERVICES REPORT SHEET

Customer: Mr. John Conway O'Brien & Gere Engineers, Inc. 440 Viking Drive Virginia Beach, Virginia 23452 Sample Description: 2 soil samples delivered on December 19, 1991 designated as Midway Park.

RESULTS

I. Total Petroleum Hydrocarbons: California Method GC/FID.

Sample ID B 4 (4-6) B 4 (9-11)

TPH in mg/kg 12.000 11,000

Anne S. Burnett Quality Control Officer

The information presented in the report represents the laboratory analyses performed on the samples provided to Environmental Testing Services. Inc. in accordance with the test methods requested and described above. Environmental Testing Services, Inc. is not responsible for any use of this information by its clients and shall not reveal these results to any person or entity without written authorization from its client. Any liability on the part of Environmental Testing Services, Inc. shall not exceed the sum paid by the client to Environmental Testing Services, Inc for the work performed.

January 8, 1992 Page 1 of 2

ANALYTICAL SERVICES REPORT SHEET

Customer: Mr. John Conway O'Brien & Gere Engineers, Inc. 440 Viking Drive Virginia Beach, Virginia 23452 <u>Sample Description</u>: 9 soil samples delivered on December 19, 1991 designated as Midway Park.

RESULTS

I. Total Petroleum Hydrocarbons: California Method, GC/FID.

<u>Sample ID</u>	<u>TPH in mg/kg</u>
MW 12 (4-6)	7.32
MW 12 (9-11)	9.11
MW 14 (0-2)	4.32
MW 14 (2-4)	11.4
B 1 (4-6)	11.1
B 1 (9-11)	6.84
B 2 (4-6)	8.12
B 2 (11-13)	9.57
B 3 (4-6)	7.89

Anne S. Burnett Quality Control Officer

The information presented in the report represents the laboratory analyses performed on the samples provided to Environmental Testing Services. Inc. in accordance with the test methods requested and described above. Environmental Testing Services, Inc. is not responsible for any use of this information by its clients and shall not reveal these results to any person or entity without written authorization from its client. Any liability on the part of Environmental Testing Services, Inc. shall not exceed the sum paid by the client to Environmental Testing Services, Inc for the work performed.

interes in the

8

P.O. Box 12715 • 888 Norfolk Square • Norfolk, Virginia 23502 • (804) 461-ETSI (3874) • Fax (804) 461-0379

the administration of a statistical

Page 2 of 2

II. <u>pH Analysis</u>: Orion ion-analyzer with a two point calibration.

an Norrâl c

<u>Sample ID</u>	<u>Analyst</u>	_ <u>pH</u> _
MW 12 (9-11)	JK	5.06

III. Flashpoint: EPA SW-846 Method 1010.

<u>Sample ID</u>	<u>Analyst</u>	<u>Flashpoint</u>
MW 12 (9-11)	JK	Negative to 110°C

Anne S. Burnett Quality Control Officer

The information presented in the report represents the laboratory analyses performed on the samples provided to Environmental Testing Services. Inc. in accordance with the test methods requested and described above. Environmental Testing Services, Inc. is not responsible for any use of this information by its clients and shall not reveal these results to any person or entity without written authorization from its client. Any liability on the part of Environmental Testing Services, Inc. shall not exceed the sum paid by the client to Environmental Testing Services, Inc for the work performed.

January 17, 1992 Page 1 of 6

ANALYTICAL SERVICES REPORT SHEET

<u>Customer</u>: Ms. Tina Bickerstaff O'Brien & Gere Engineers, Inc. 440 Viking Drive Virginia Beach, Virginia 23452 Sample Description: 10 soil samples delivered on December 19, 1991 designated as Midway Park.

RESULTS

I. Total Petroleum Hydrocarbons: California Method, GC/FID.

Sample ID	TPH in mg/kg
MW2 14-16	18.6
MW2 9-11	14.6
MW4 9-11	15.4
MW4 14-16	255.0
MW6 9-11	14.0
MW6 14-16	12.6
MW8 0-2	6.72
MW8 11-6	22.8
MW10 4-6	16.7
MW10 9-11	8.38

Anne S. Burnett Quality Control Officer

The information presented in the report represents the laboratory analyses performed on the samples provided to Environmental Testing Services, Inc. in accordance with the test methods requested and described above. Environmental Testing Services, Inc. is not responsible for any use of this information by its clients and shall not reveal these results to any person or entity without written authorization from its client. Any liability on the part of Environmental Testing Services, Inc. shall not exceed the sum paid by the client to Environmental Testing Services. Inc for the work performed.

Page 2 of 6

II. pH Analysis: EPA Method 150.1.

1.4.2.2.2.1

<u>Sample ID</u>	Hq_
MW2 14-16	5.03
MW4 14-16	6.23
MW6 14-16	4.81
MW8 4-6	7.36

III. Flashpoint: EPA SW-846 Method 1010.

<u>Sample ID</u>	<u>Results</u>
MW2 14-16	Negative to 110°C
MW4 14-16	Negative to 110°C
MW6 14-16	Negative to 110°C
MW8 4-6	Negative to 110°C

IV. Toxicity Characteristic Leaching Process (TCLP): EPA SW-846 Method 1311.

Sam	<u>ole ID</u>
MW2	14-16
MW4	14-16

<u>Results</u> See attached compound list See attached compound list

Anne S. Burnett Quality Control Officer

The information presented in the report represents the laboratory analyses performed on the samples provided to Environmental Testing Services, Inc. in accordance with the test methods requested and described above. Environmental Testing Services, Inc. is not responsible for any use of this information by its clients and shall not reveal these results to any person or entity without written authorization from its client. Any liability on the part of Environmental Testing Services, Inc. shall not exceed the sum paid by the client to Environmental Testing Services, Inc for the work performed.

Page 3 of 6

TOXICITY CHARACTERISTICS LEACHING PROCESS (TCLP) CONSTITUENT AND REGULATORY LEVELS

Toxicity Characteristic Leaching Process (TCLP): EPA Manual SW-846 Method 1311.

Sample ID: <u>MW2 14-16</u>

Compound	<u>Concentration (mg/l)</u>	<u>Regulatory Level (mg/l)</u>
Arsenic	<0.050	5.0
Barium	0.62	100.0
Benzene	<0.009	0.5
Cadium	<0.010	1.0
Carbon tetrachloride	<0.005	0.5
Chlordane	<0.008	0.03
Chlorobenzene	<0.005	100.0
Chloroform	<0.005	6.0
Chromium	<0.050	5.0
o-Cresol	<0.020	200.0
m-Cresol	<0.040	200.0
p-Cresol	<0.040	200.0
Cresol	<0.005	200.0
2,4-D	<0.010	10.0
1,4-Dichlorobenzene	<0.005	7.5
1,2-Dichloroethane	<0.005	0.5
1,1-Dichloroethylene	<0.005	0.7
2,4-Dinitrotoluene	<0.008	0.13

Anne S. Burnett Quality Control Officer

The information presented in the report represents the laboratory analyses performed on the samples provided to Environmental Testing Services, Inc. in accordance with the test methods requested and described above. Environmental Testing Services, Inc. is not responsible for any use of this information by its clients and shall not reveal these results to any person or entity without written authorization from its client. Any liability on the part of Environmental Testing Services, Inc. shall not exceed the sum paid by the client to Environmental Testing Services, Inc.

P.O. Box 12715 • 888 Norfolk Square • Norfolk, Virginia 23502 • (804) 461-ETSI (3874) • Fax (804) 461-0379

. **18**6-1

La Aire de

Page 4 of 6

TOXICITY CHARACTERISTICS LEACHING PROCESS (TCLP) CONSTITUENT AND REGULATORY LEVELS CONTINUED

de col

Sample ID: <u>MW2 14-16</u>

Compound	Concentration (mg/1)	<u>Regulatory Level (mg/l)</u>
Endrin	<0,005	0.02
Heptachlor (and its hydrox	ide) <0.004	0.008
Hexachlorobenzene	<0.010	0.13
Hexachloro-1,3-butadiene	<0.010	0.5
Hexachloroethane	<0.010	3.0
Lead	<0.010	5.0
Lindane	<0.002	0.4
Mercury	<0.002	0.2
Methoxychlor	<0.010	10.0
Methyl ethyl ketone	<0.005	200.0
Nitrobenzene	<0.010	2.0
Pentachlorophenol	<0.020	100.0
Pyridine	<0.010	5.0
Selenium	<0.050	1.0
Silver	<0.010	5.0
Tetrachloroethylene	<0.005	0.7
Toxaphene	<0.010	0.5
Trichloroethylene	<0.005	0.5
2,4,5-Trichlorophenol	<0.010	400.0
2,4,6-Trichlorophenol	<0.010	2.0
2,4,5-TP (Silvex)	<0.005	1.0
Vinyl chloride	<0.010	0.2

Anne S. Burnett Quality Control Officer

The information presented in the report represents the laboratory analyses performed on the samples provided to Environmental Testing Services, Inc. in accordance with the test methods requested and described above. Environmental Testing Services, Inc. is not responsible for any use of this information by its clients and shall not reveal these results to any person or entity without written authorization from its client. Any liability on the part of Environmental Testing Services, Inc. shall not exceed the sum paid by the client to Environmental Testing Services, Inc.

Page 5 of 6

TOXICITY CHARACTERISTICS LEACHING PROCESS (TCLP) CONSTITUENT AND REGULATORY LEVELS

Toxicity Characteristic Leaching Process (TCLP): EPA Manual SW-846 Method 1311.

Sample ID: <u>MW4_14-16</u>

Compound	<u>Concentration (mg/l)</u>	<u>Regulatory Level (mg/l)</u>
Arsenic	<0.050	5.0
Barium	1.24	100.0
Benzene	<0.009	0.5
Cadium	<0.010	1.0
Carbon tetrachloride	<0.005	0.5
Chlordane	<0.008	0.03
Chlorobenzene	<0.005	100.0
Chloroform	<0.005	6.0
Chromium	<0.050	5.0
o-Cresol	<0.020	200.0
m-Cresol	<0.040	200.0
p-Cresol	<0.040	200.0
Cresol	<0.005	200.0
2,4-D	<0.010	10.0
1,4-Dichlorobenzene	<0.005	7.5
1,2-Dichloroethane	<0.005	0.5
1,1-Dichloroethylene	<0.005	0.7
2.4-Dinitrotoluene	<0.008	0.13

Anne S. Burnett Quality Control Officer

The information presented in the report represents the laboratory analyses performed on the samples provided to Environmental Testing Services, Inc. in accordance with the test methods requested and described above. Environmental Testing Services, Inc. is not responsible for any use of this information by its clients and shall not reveal these results to any person or entity without written authorization from its client. Any liability on the part of Environmental Testing Services, Inc. shall not exceed the sum paid by the client to Environmental Testing Services, Inc.

a + a + a = b

1 ¥

P.O. Box 12715 • 888 Norfolk Square • Norfolk, Virginia 23502 • (804) 461-ETSI (3874) • Fax (804) 461-0379

Le ali da

446a I

Page 6 of 6

TOXICITY CHARACTERISTICS LEACHING PROCESS (TCLP) CONSTITUENT AND REGULATORY LEVELS CONTINUED

 $\mathbf{a} \in \mathbf{d}_{\mathcal{T}}$

Sample ID: <u>MW4 14-16</u>

Compound	<u>Concentration (mg/l)</u>	<u>Regulatory Level (mg/l)</u>
Endrin	<0.005	0.02
Heptachlor (and its hydrox	ide) <0.004	0.008
Hexachlorobenzene	<0.010	0.13
Hexachloro-1,3-butadiene	<0.010	0.5
Hexachloroethane	<0.010	3.0
Lead	<0.010	5.0
Lindane	<0.002	0.4
Mercury	<0.002	0.2
Methoxychlor	<0.010	10.0
Methyl ethyl ketone	<0.005	200.0
Nitrobenzene	<0.010	2.0
Pentachlorophenol	0.179	100.0
Pyridine	<0.010	5.0
Selenium	<0.050	1.0
Silver	<0.010	5.0
Tetrachloroethylene	<0.005	0.7
Toxaphene	<0.010	0.5
Trichloroethylene	<0.005	0.5
2,4,5-Trichlorophenol	<0.010	400.0
2,4,6-Trichlorophenol	<0.010	2.0
2,4,5-TP (Silvex)	<0.005	1.0
Vinyl chloride	<0.010	0.2

Anne S. Burnett Quality Control Officer

The information presented in the report represents the laboratory analyses performed on the samples provided to Environmental Testing Services, Inc. in accordance with the test methods requested and described above. Environmental Testing Services, Inc. is not responsible for any use of this information by its clients and shall not reveal these results to any person or entity without written authorization from its client. Any liability on the part of Environmental Testing Services, Inc. shall not exceed the sum paid by the client to Environmental Testing Services. Inc. APPENDIX D

1.4.4.5.1

. .

2 C III C 10

te native

dillion 1

IN-SITU PERMEABILITY TEST

.

IN-SITU HYDRAULIC CONDUCTIVITY TEST PROTOCOL

1. **6**. 51

Introduction

The following presents the methods and procedures to be employed in completing in-situ hydraulic conductivity (K) tests. The purpose of the test is to obtain estimates of aquifer permeability which in turn will be used to estimate ground water flow velocity. A Quality Control/Quality Assurance (QA/QC) program for the K-tests has also been formulated and is presented herein. <u>Testing Methods and Procedures</u>

Potential Hydraulic Difference Creation:

To complete an in-situ hydraulic conductivity (K) test, a potential hydraulic difference must be created between the well being monitored and the surrounding aquifer. This will be accomplished by rapidly inserting a solid piece of one-inch (1") diameter PVC into the well's water column, thereby displacing the water column upward and creating a potential for flow from the well to the surrounding aquifer. The rate of decline of the water level in the well will be monitored as it comes into equilibrium with the Subsequent to the well water level approaching the aquifer. hydraulic head static level, the displacing rod will be removed. This will result in a water level in the well that is lower than the surrounding aquifer and therefore will create a potential for flow from the aquifer into the well. This recovery will also be monitored until the static level is approached.

Ground Water Level Monitoring Equipment and Time Sequence:

Ground water levels during the tests will be monitored using an Enviro-Labs Data Logging System which employs a conventional analog signal generating pressure reducing that directly measures feet of hydraulic head to the one-hundredth (0.01) of a foot. During the tests, ground water level (hydraulic head) data will be collected for both the head decline and recovery periods according to the following time schedule:

Time After	Time Between
<u>Potential Difference Induced</u>	<u>Water Level Readings</u>
0 - 1 minutes	2 seconds
1 - 3 minutes	5 seconds
3 - 5 minutes	15 seconds
5 - 10 minutes	30 seconds
10 - 30 minutes	60 seconds

Note: It is anticipated that the well's water level will be near the pre-test measured static level after thirty (30) minutes.

Step by Step Testing Procedure:

- 1. Install pressure transducer and couple to data logging unit, noting depth installed.
- 2. Measure and record static ground water level in well to be tested.
- 3. Insert displacing rod.
- 4. Monitor water level declines to static level.
- 5. Remove displacing rod.
- 6. Monitor water level recovery.

Manual Methods

Under some field conditions, it may be appropriate to conduct in-situ conductivity testing manually without the aid of an

> Revised 6/26/91

electronic data logger. In these instances, the following procedures will be utilized:

- 1. The depth to ground water will be measured.
- 2. A potential hydraulic difference will be created by bailing or pumping ground water from the well to be measured.
- 3. Subsequent ground water recovery will be measured at appropriate intervals as determined by the field geologist.
- 4. Depth to ground water will be measured to the nearest 0.01 foot.
- 5. Measurements will be obtained until ground water has recovered to its static level or, if site conditions warrant, a minimum of 90% of the static level.

Equipment Decontamination

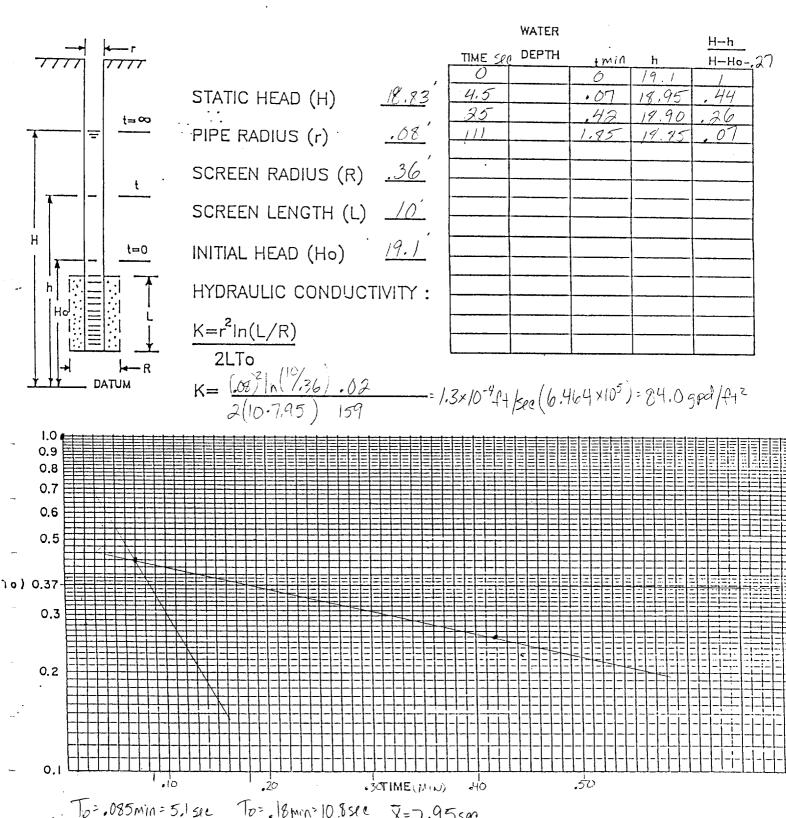
Following each respective test, equipment coming in contact with ground water will be decontaminated. This will be accomplished using a mild soap solution wash followed by a control source water rinse.

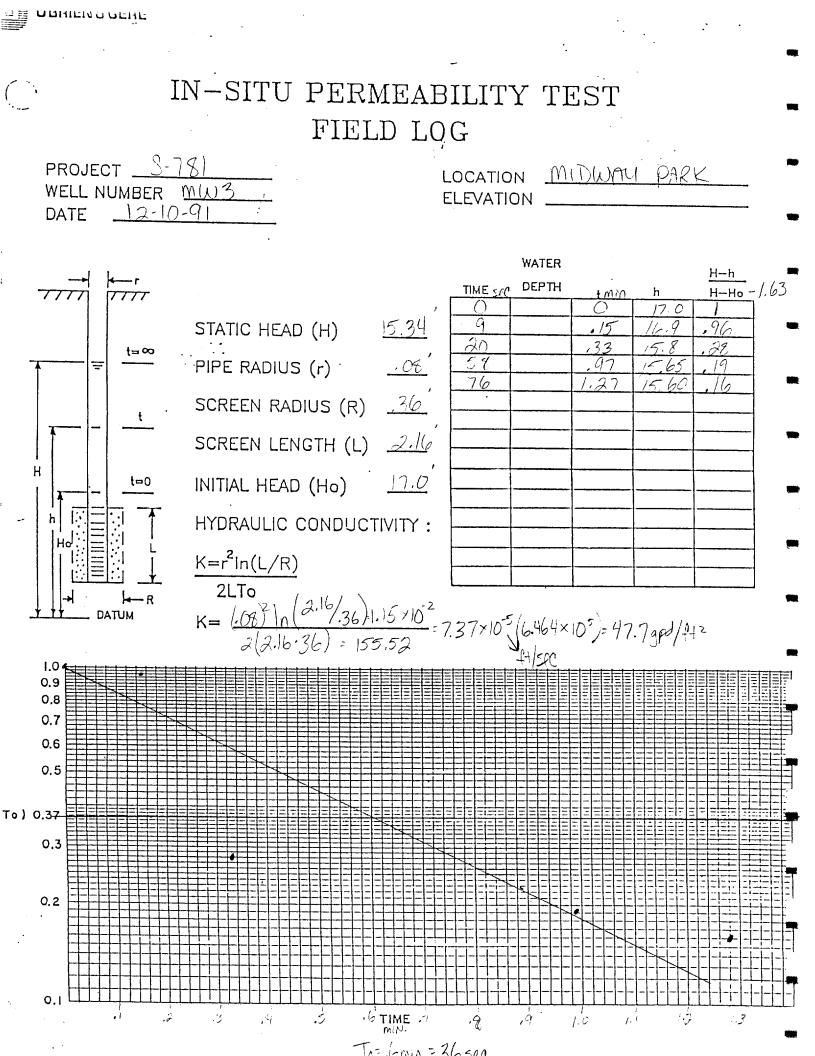
Quality Assurance/Quality Control Program

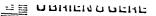
The objective of the Quality Assurance/Quality Control program is to ensure that the in-situ hydraulic conductivity (k) test data is of a known and acceptable quality. This will be accomplished by completing the following:

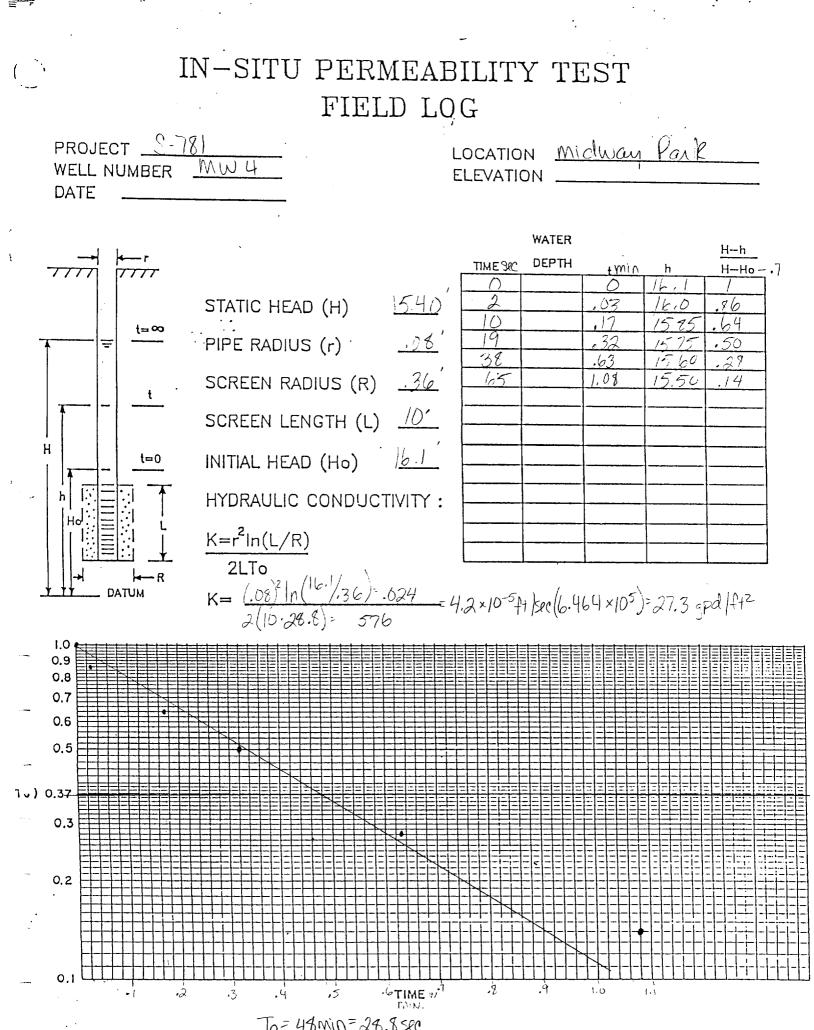
- 1. Daily manufacturer-specified pressure transducer and data logging instrument calibration,
- 2. Periodic physical ground water level measurements collected at five (5) minute intervals during the test to cross check pressure transducer readings.

<u>Data Analysis</u>

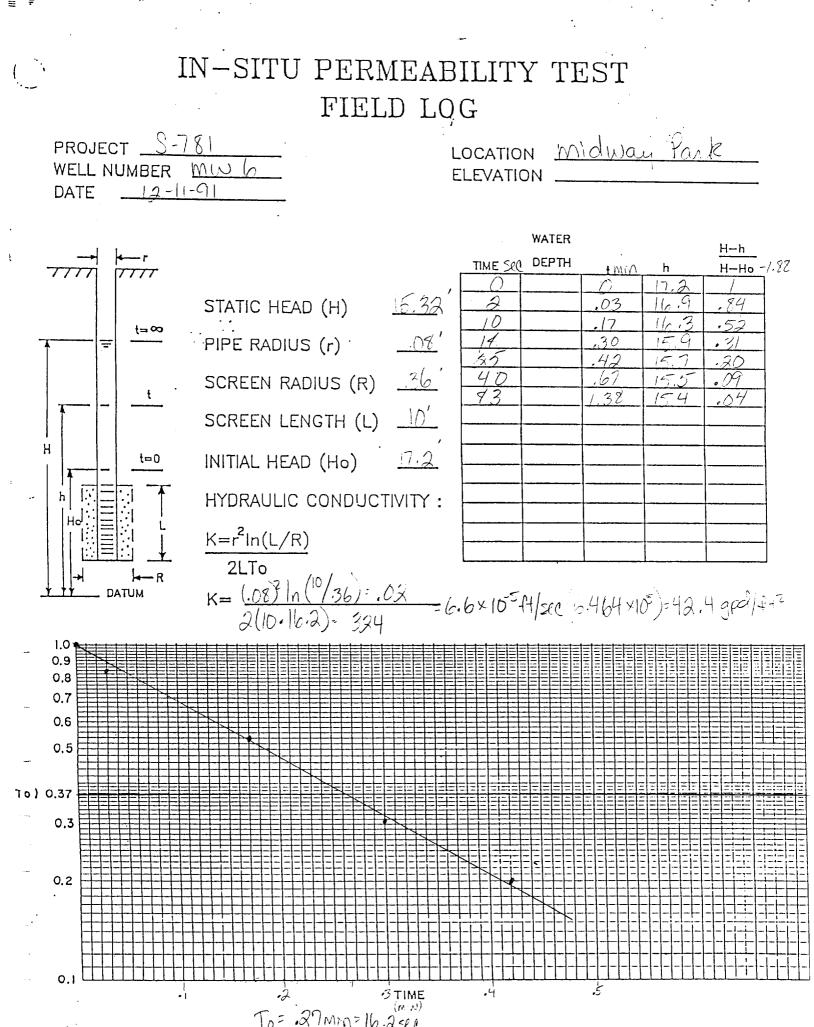

Values of hydraulic conductivity will be calculated from the change in head versus the change in time data using Hvorselv's formula.

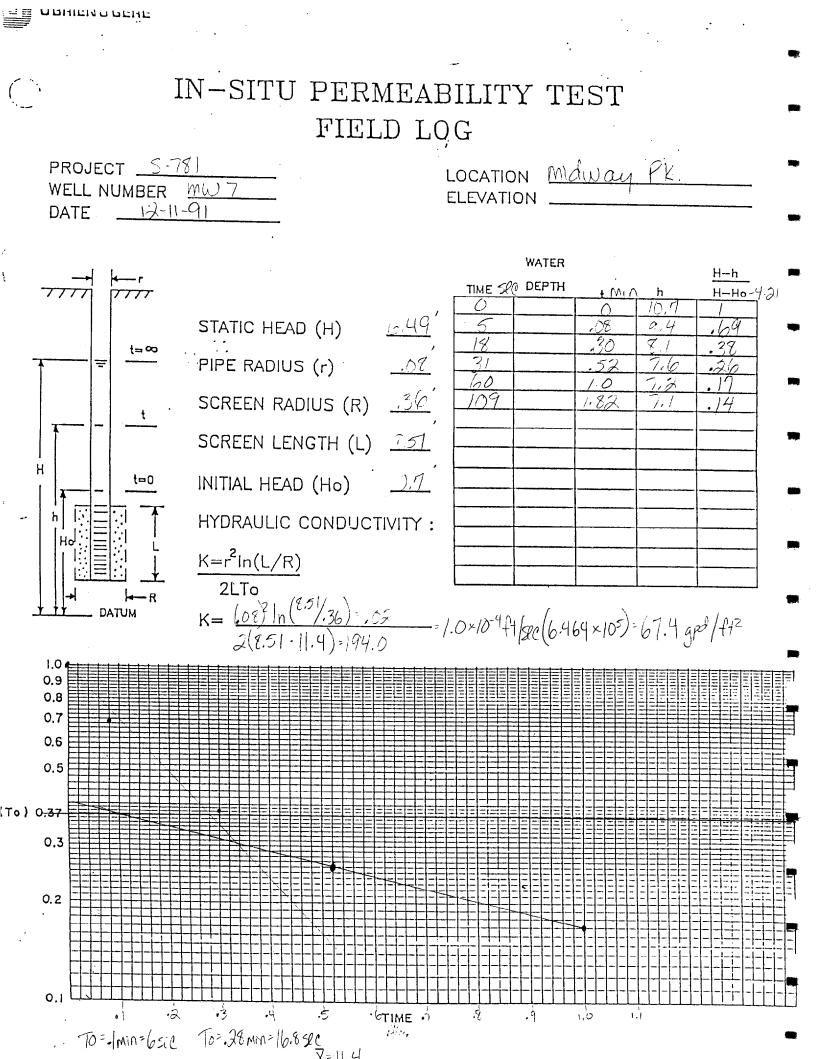

> Revised 6/26/91

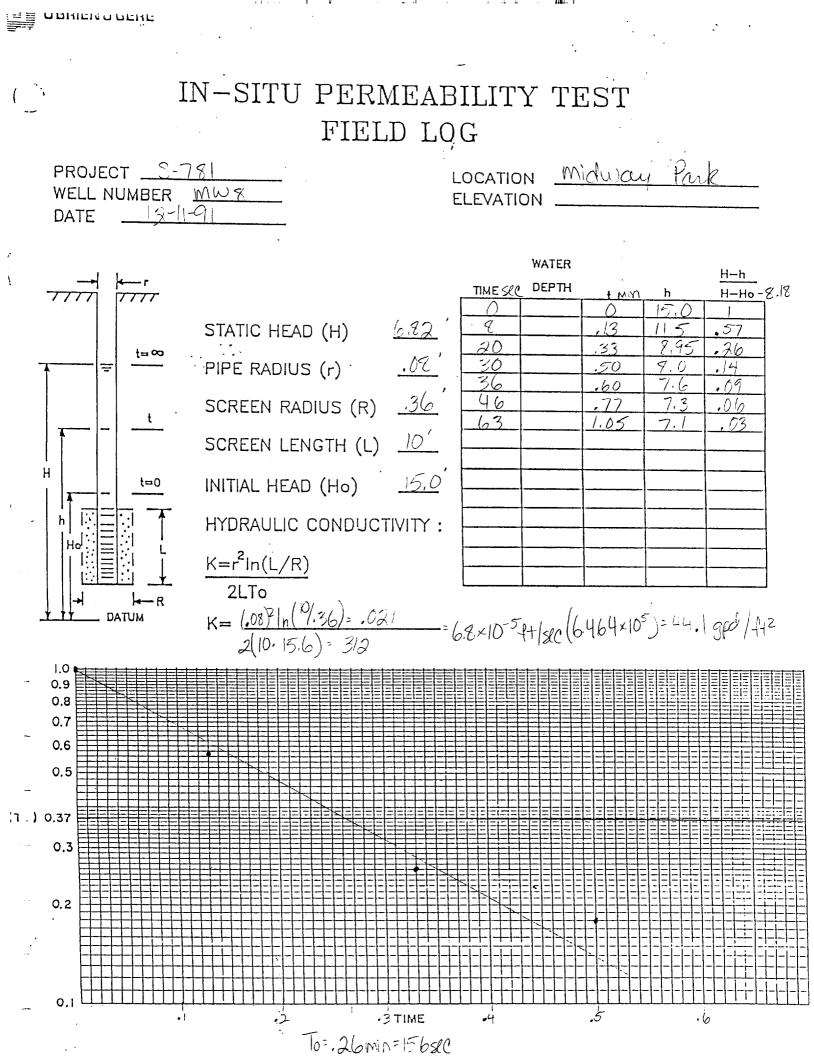

IN-SITU PERMEABILITY TEST FIELD LOG

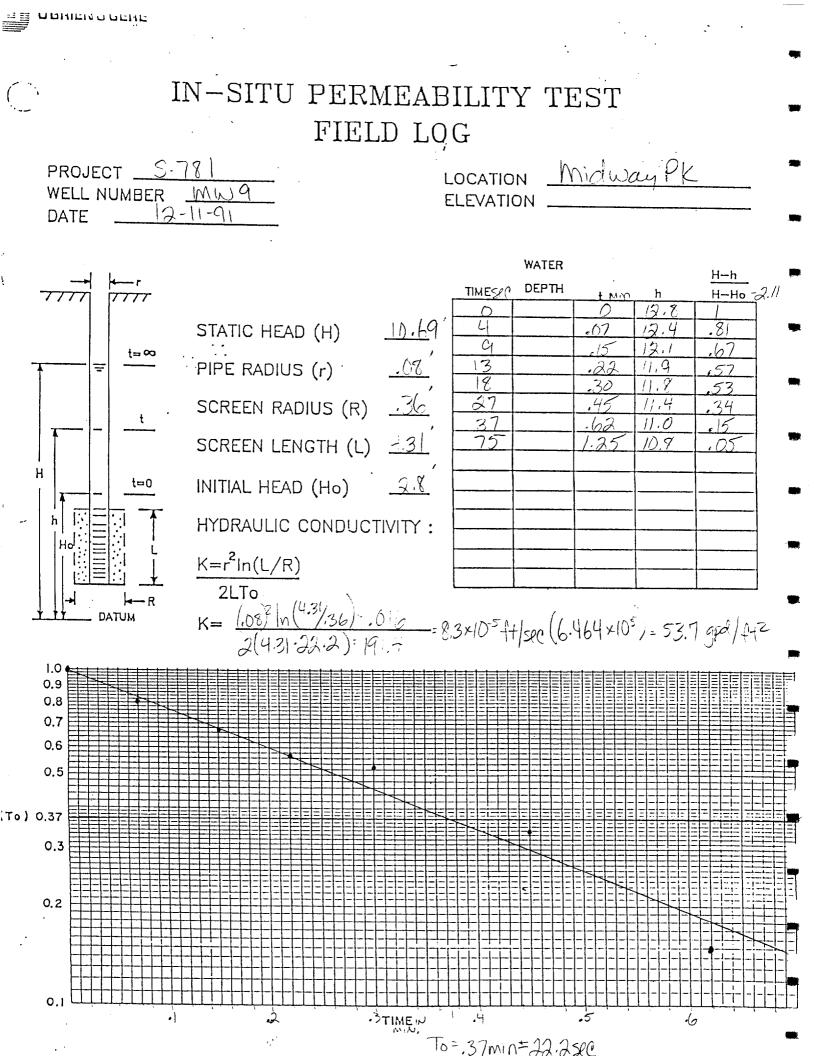

PROJECT	781
WELL NUMBER	MW2
DATE	2-10-91

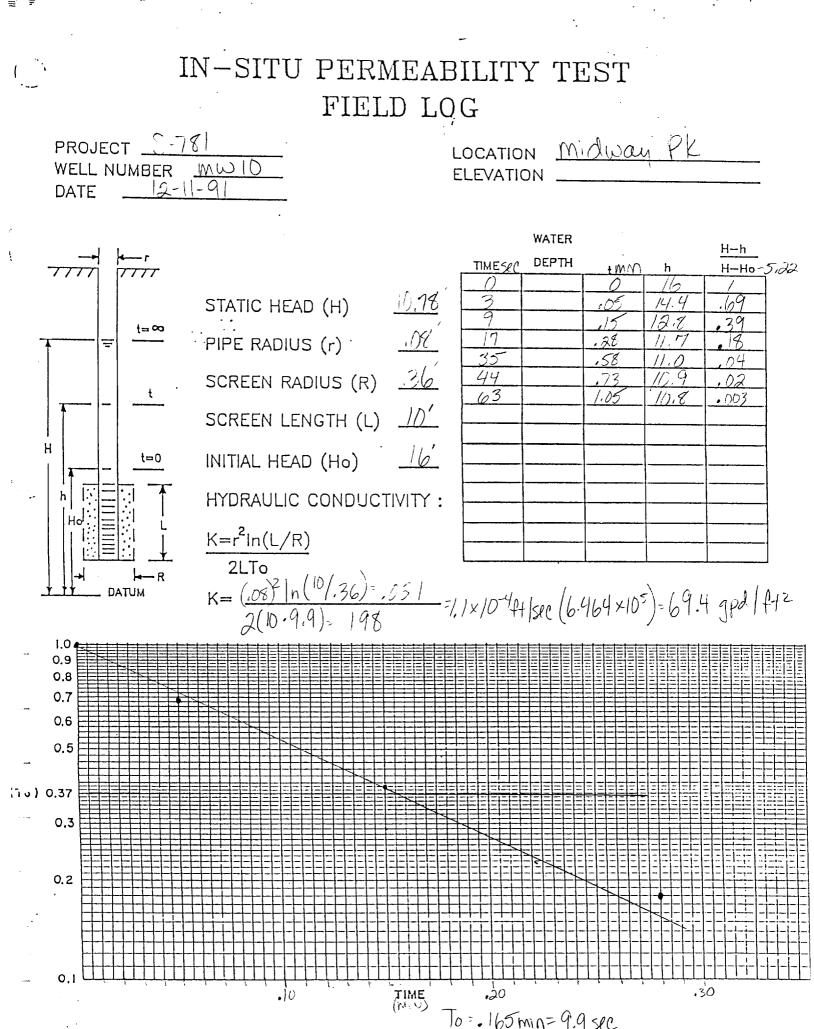
LOCATION MIDWAY PK

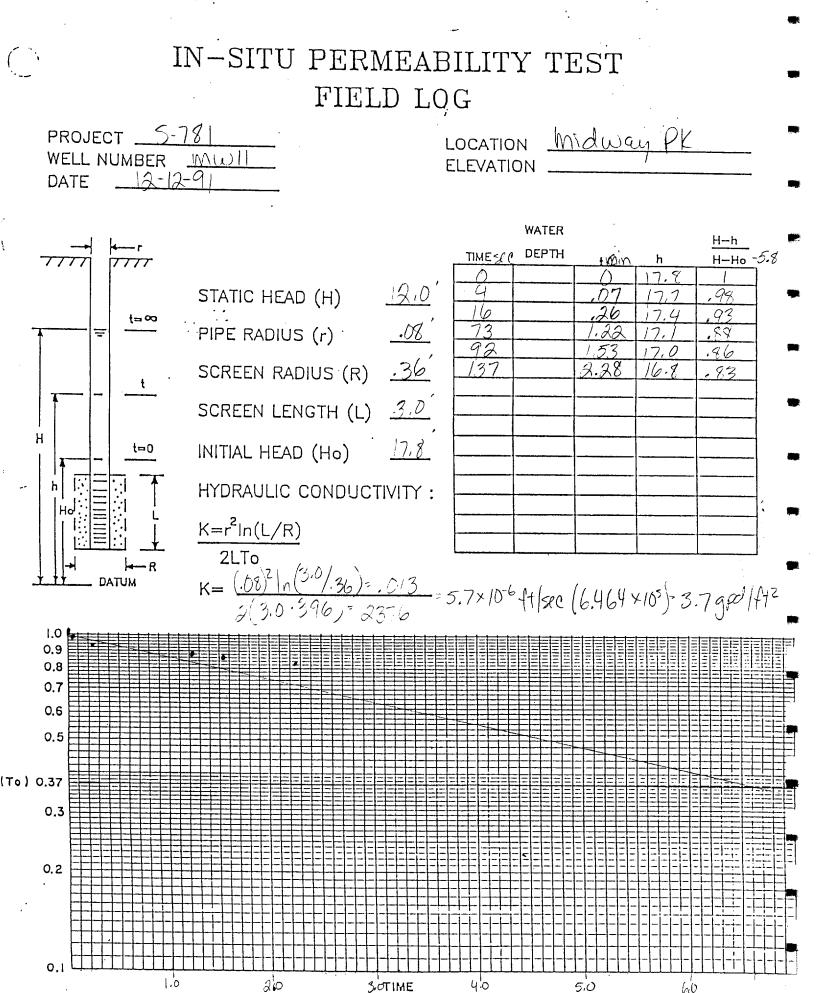


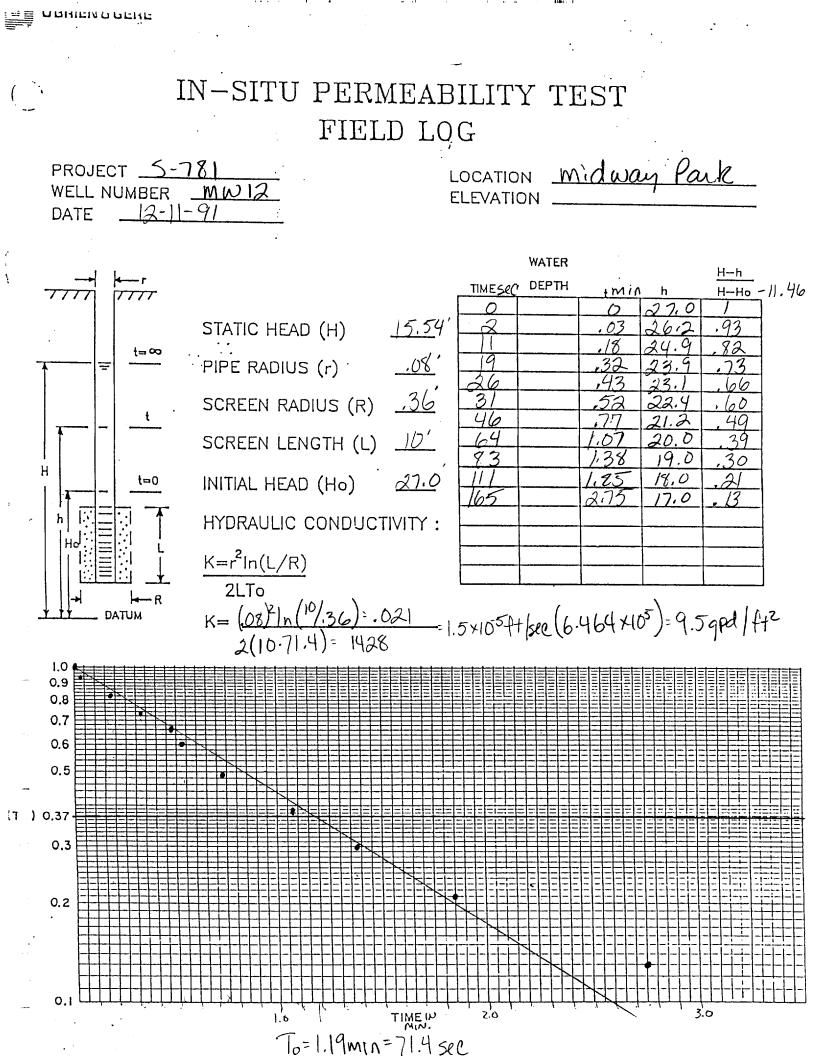


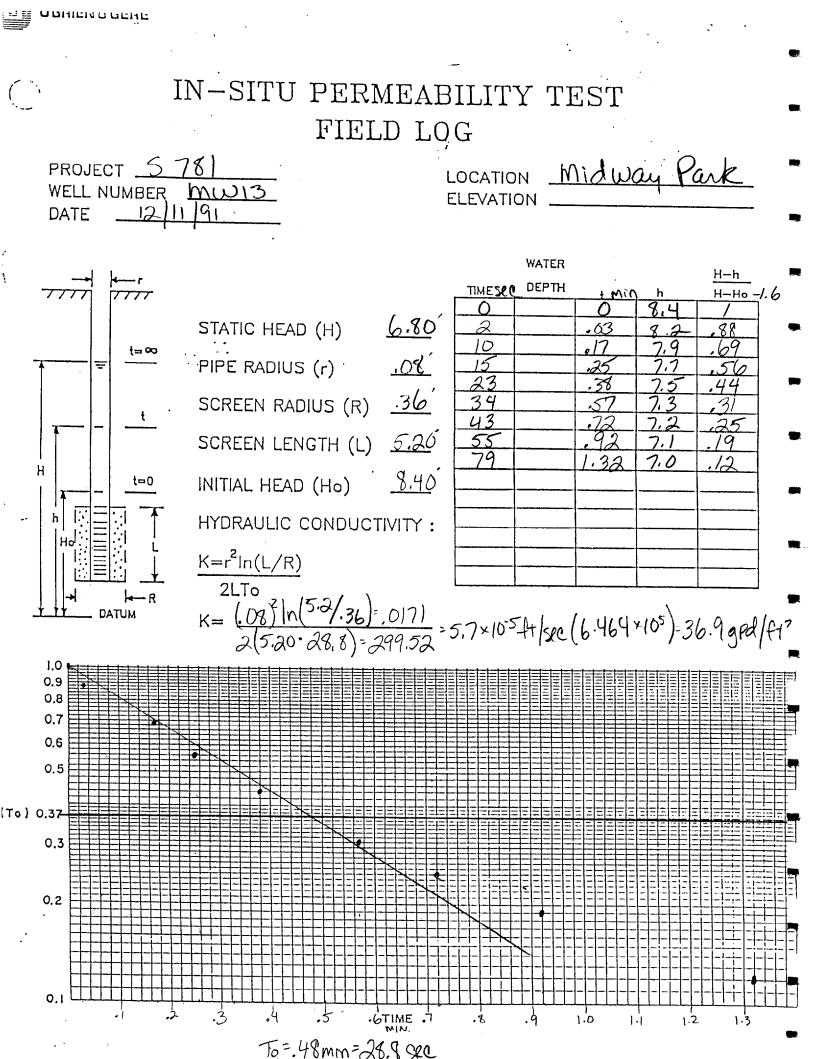

IN-SITU PERMEABILITY TEST FIELD LOG PROJECT __________ LOCATION Midway Park MW 5 WELL NUMBER ELEVATION 12-10-91 DATE WATER H-h DEPTH TIMESC H-Ho -1.0 +MMM h STATIC HEAD (H) 15.94 5 04 16.6 62 19 34 32 16.3 PIPE RADIUS (r) 37 16.2 25 1,22 16.1 15 SCREEN RADIUS (R) .36 SCREEN LENGTH (L) 156 Н t=0 INITIAL HEAD (Ho) 17.0 HYDRAULIC CONDUCTIVITY : $\frac{K=r^{2}ln(L/R)}{2LTo}$ $\mathbf{K} = \frac{(.08)^2 \ln (1.56/.36)^2 .009}{2(1.56 \cdot 10.8)^2} = \frac{2.8 \times 10^{-4} \, \text{PH}}{2.8 \times 10^{-4} \, \text{PH}} \left[\sec \left(6.464 \times 10^2 \right) = 180 \, \text{gpc} \right) \, \text{Ft}^2$ DATUM 1.0 0.9 0.8 0.7 0.6 0.5 To) 0.37 0.3 0.2 0.1 6 TIME 1.Ò 1.1 1.2 1.3

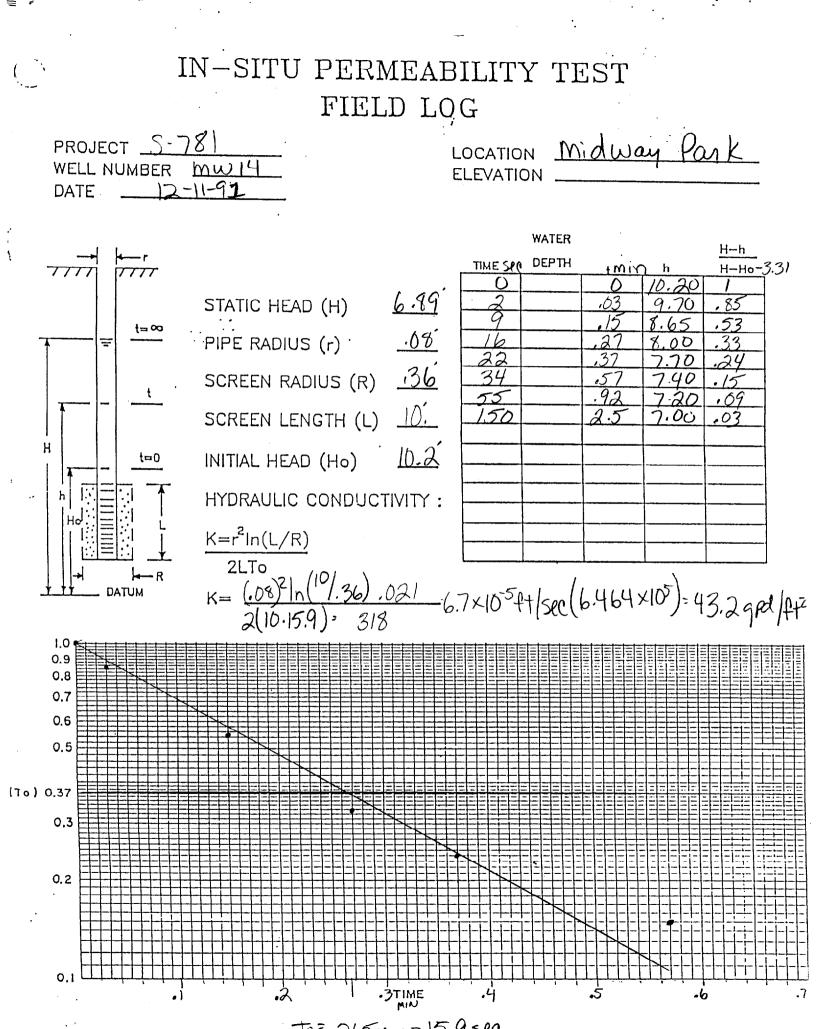

To= 18min= 10.8<00


し わけにけん ひ しにけに









בוובט ט אבוווט ר

TO=6.6mm=396<00

APPENDIX E

10 I.I.

i sterte

4164.1

The second s

DRILLING PROCEDURES

UST MONITORING WELL CONSTRUCTION

14.5.51

1 (B) . . . 1

AND

FIELD OPERATIONS

REQUIREMENTS

Well permits required by state agencies are the responsibility of the contractor. All monitoring wells will be installed in accordance with the following Navy UST monitoring well specifications.

DRILLING

During the drilling program, boreholes will be advanced using conventional hollow stem auger drilling methods. If it is the opinion of the contractor that air or mud rotary drill methods are necessary, approval must be obtained from the EIC. Presentation of justification for a boring method change shall be presented prior to drilling.

The wells will be constructed of flush joint threaded PVC well screen and riser casing depending on conditions encountered during borehole completion.

Well construction details are shown in Figures A-1 and A-2. A drill mounted on an All-Terrain-Vehicle (ATV) may be required for access to remote areas. Each rig will use necessary tools, supplies and equipment supplied by the contractor to drill each site. Drill crews should consist of an experienced driller and a driller assistant for work on each rig. A geologist, experienced in hazardous waste site investigations, shall be on site to monitor the drillers efforts and for air monitoring/safety control. Additional contractor personnel may be needed to transport water to the rigs, clean tools, assist in the installation of the security and marker pipes, construct the concrete aprons/collars and develop the wells. A potable water source on base will be designated by the Government.

Standard penetration tests will be performed in accordance with ASTM D-1586. Standard penetration tests will be performed at the following depths: 0.0-foot to 1.5-foot; 1.5-foot to 3.0-foot; 3.0-foot to 4.5-foot; and 5-foot centers thereafter. A boring log of the soil type, stratification, consistency and groundwater level will be prepared.

Groundwater sampling using a Hydropunch penetrometer (or similar penetrometer probe) and the corresponding laboratory analysis will be used to help define the lateral and horizontal extent of the contamination. The Hydropunch sample shall be obtained from either the upper or lower portion of the aquifer as needed. The use of augering to provide a pilot hole shall not be used. The Hydropunch operation shall not produce soil debris or excess groundwater. The proposed location of Hydropunch penetrometer sampling shall be detailed in the preliminary well location plan.

Attachment (b)

SAMPLING

Two soil samples will be obtained from each boring/well in accordance with ASTM Method D-1586 for split barrel sampling. The first sample will be obtained from 2 to 5 feet below ground surface. The second soil sample will be from the water table to 5 feet above the water table. Each soil sample will be screened in the field using an HNu photoionizer, organic vapor detector or similar type direct readout instrument to identify the presence of petroleum product within the soils. This field screening will provide a preliminary indication of the vertical and horizontal extent of petroleum contamination in order to select the optimum locations of other monitoring wells during the drilling program. Based on the field screening, monitoring wells will be installed at the locations where the most significant accumulation of fuel is encountered. Groundwater sample shall be obtained from each well and penetrometer probe after development is completed per the instructions below.

DEVELOPMENT

After completion of the soil sampling and drilling to the specified depth, 2-inch or 4-inch (as required by the EIC) I.D. flush-threaded Schedule 40 PVC (Schedule 80 in traffic areas) monitoring wells with slotted screens and well casings will be installed in the borehole. A 5 to 15-foot section of 0.01 inch slotted PVC well screen should be used in each well. Deep/shallow well pairs are to be used to obtain samples from both the upper and lower portions of the surficial aquifer. A sand pack will be placed around each slotted well screen extending to 2 feet above the top of the screen. A bentonite seal (minimum thickness - 1 ft.) will be placed on top of the sand pack. Finally, a ground mixture of two parts sand and one part cement, thoroughly mixed with the specified amount of potable water, will be placed in the borehole and rodded to insure a proper seal.

All wells will be developed following their installation to remove fine ground materials that may have entered the well during construction. This will be accomplished by either bailing or continuous low yield pumping. Equipment used for well installation, that may have come in contact with potentially contaminated material will be decontaminated with a high pressure steam clean wash followed by a potable supply water rinse. For the purpose of this scope of work, it is assumed that all fluid generated from well development and equipment decontamination can be disposed of on the ground at each respective well site.

After development, a standard slug permeability test will be done at each 2" monitoring well that does not contain product.

Soil removed from the borehole will containerized in DOT approved barrels and properly identified. It is expected that sampling required for this effort will suffice for determining if the material is hazardous. The drill equipment and tools will be cleaned prior to drilling each well using a portable decontamination system/operation supplied by the contractor. Wash water at the sites will not be contained, unless otherwise directed by the Government, and may seep into the ground locally.

Supplies and equipment will be transported to the lay-down area designated on the station by the Government. Any office space, trailers, etc., required for drilling, subsequent sampling and shipping shall be arranged and provided by the contractor.

.

WELL HEAD COMPLETION

A 4-inch diameter security pipe with a hinged locking cap will be installed on the well casing top having an embedment depth of 2.5 feet into the grout.

There are two acceptable methods of completing the wellheads.

In non-traffic areas the acceptable method of finishing a wellhead is shown in figure A-1. Each well will be marked with three Schedule 40 steel pipes, 3-inch I.D., imbedded in a minimum of 2.5-foot of 3,000 psi concrete. (The concrete used to secure the three pipes will be poured at the same time and be an integral part of the 5-foot by 5-foot by 0.5-foot concrete apron described above.). The security pipes will extend a minimum 2.5 feet and maximum 4.0 feet above the ground surface. The steel marker pipes will be filled with concrete and painted day-glo yellow or an equivalent.

In traffic areas (and non-traffic areas where required), a "flush" manhole type cover shall be built into a concrete pad as shown in figure A-2. If the well as installed through a paved or concrete surface, the annular space between the casing and the bore hole shall be grouted to a depth of at least 2.5 feet and finished with a concrete collar. If the well was not installed through a concrete or paved medium and still finished as a high traffic area well, a concrete apron measuring 5-foot by 5-foot by 0.5 foot will be constructed around each well. This apron/collar will be constructed of 3,000 psi ready-mixed concrete. The concrete will be crowned to provide and to meet the finished grade of surrounding pavement as required. The concrete pads can be constructed within five days after all of the wells have been installed.

In all finishing methods, the well covers will be properly labeled by metal stamping on the exterior of the security pipe locking cap and by labeling vertically on the exterior of the security pipe or manhole cover as appropriate. The labeling shall consist of the letters UGW (UST Groundwater) (to describe the medium and the reason for the well) and a number specific to each well.

A sign reading "NOT FOR POTABLE USE OR DISPOSAL" SHALL BE FIRMLY ATTACHED TO EACH WELL.

* The contractor or project team may supplement these requirements, but may not modify or delete them, in total or in part, without prior approval of the Contracting Officer.

. . .

APPENDIX F

· e - +1

t alco de la dimensión di

SAMPLING PROCEDURES

T

المتحاف المحافظ والمتعاوم والمناصر والمحافظ والمحافظ والمراجع والمحافظ والمراجع والمحافظ والمحاف

THE T

GROUNDWATER SAMPLING PROTOCOL

Use of the following procedures for sampling cf ground water observation wells is dependent upon the size and depth of the well to be sampled and the presence of immiscible petroleum product in the well. To obtain representative ground water samples from wells containing only a few gallons of ground water and no product present, the bailing procedures is preferred. To obtain representative ground water samples from wells containing more than a few gallons if an immiscible product layer is apparent, the pumping procedure generally facilitates more representative sampling. Each of these procedures is explained in detail below.

- 1. Identify the well and record the location on the Ground Water Sampling Field Log, Attachment A.
- 2. Put on a new pair of disposable gloves.
- 3. Cut a slit in the center of the plastic sheet, and slip it over the well creating clean surface onto which the sampling equipment can be positioned.
- 4. Clean all meters, tools, equipment, etc., before placing on the plastic sheet.
- 5. Using an electric well probe, measure the depth of the water tube and the bottom of the well. Record this information in the Ground Water Sampling Field Log.
- 6. Clean the well depth probe with an acetone soaked towel and rinse it with distilled water after use.
- 7. Compute the volume of water in the well, and record this volume on the Ground Water Sampling Field Log.

8. Attach enough polypropylene rope to a bailer to reach the bottom of the well, and lower the bailer slowly into the well making certain to submerge it only far enough to fill one-half full. The purpose of this is to recover any oil film, if one is present on the water table.

- 9. Pull the bailer out of the well keeping the polypropylene rope on the plastic sheet. Empty the ground water from the bailer into a glass quart container and observe its appearance. NOTE: This sample will not undergo laboratory analysis, and is collected to observe the physical appearance of the ground water only.
- 10. Record the physical appearance of the ground water on the Ground Water Sampling Field Log.
- 11. Lower the bailer to the bottom of the well and agitate the bailer up and down to resuspend any material settled in the well.
- 12. Initiate bailing the well from the well bottom. All groundwater should be dumped from the bailer into a graduated pail to measure the quantity of water removed from the well.
- 13. Continue bailing the well throughout the water column and from the bottom until three times the volume of groundwater in the well has been removed, or until the well is bailed dry. If the well is bailed dry, allow sufficient time (several hours to overnight) for the well to recover before proceeding with Step 13. Record this information on the Groundwater Sampling Field Log.
- 14. Remove the sampling bottles from their transport containers and prepare the bottles for receiving samples. Inspect all labels to insure proper sample identification. Sample bottles should be kept cool with their caps on until they are ready to receive samples. Arrange the sampling containers to allow for convenient filling.
- 15. To minimize agitation of the water in the well, initiate sampling by lowering the bailer slowly into the well making certain to submerged it only far enough to fill it completely. Fill each sample container following the instructions listed in the Sample Containerization Procedures, Attachment B. Return each sample bottle to its proper transport container.
- 16. If the sample bottle cannot be filled quickly, keep them cool with the caps on until they are filled. The vials (3) labeled purgeable priority pollutant analysis should be filled from one bailer than securely capped. NOTE: Samples must not be allowed to freeze
- 17. Record the physical appearance of the groundwater observed during sampling on the Groundwater Sampling Field Log.

- 18. After the last sample has been coliected, record the data and time, and, and if required, empty one bailer of water from the surface of the water in the well into the 200 ml beaker and measure and record the pH, conductivity and temperature of the ground water following the procedures outlined in the equipment operation manuals. Record this information on the Ground Water Sampling Field Log. The 200 ml beaker must then be rinsed with distilled water prior to reuse.
- 19. Begin the Chain of Custody Record.
- 20. Replace the well cap, and lock the well protection assembly before leaving the well location.
- 21. Place the polypropylene rope, gloves, rags and plastic sheeting into a plastic bag for disposal.
- 22. Clean the bailer by rinsing with control water and then distilled water. Store the clean bailer in a fresh plastic bag.

Sampling Procedures (PUMP)

- 1. Identify the well and record the location on the Ground Water Sampling Field Log.
- 2. Put on a new pair of disposable gloves.
- 3. Cut a slit in the center of the plastic sheet, and slip it over the well creating a clean surface onto which the sampling equipment can be positioned.
- 4. Clean all meters, tools, equipment, etc., before placing on the plastic sheet.
- 5. Using an electric well probe, measure the depth of the water tube and the bottom of the well. Record this information in the Ground Water Sampling Field Log.
- 6. Clean the well depth probe with an acetone soaked towel and rinse it with distilled water after use.
- 7. Compute the volume of water in the well, and record this volume on the Ground Water Sampling Field Log.
- 8. Attach enough polypropylene rope to a bailer to reach the bottom of the well, and lower the bailer slowly into the well making certain to submerge it only far enough to fiil one-half full. The purpose of this is to recover any oil film, if one is present on the water table.

- 9. Pull the bailer out of the well keeping the polypropylene rope on the plastic sheet. Empty the ground water from the bailer into a glass quart container and observe its appearance. NOTE: This sample will not undergo laboratory analysis, and is collected to observe the physical appearance of the ground water only.
- 10. Record the physical appearance of the ground water on the Ground Water Sampling Field Log.
- 11. Prepare the submersible pump for operation. A pump with a packer inflated above the screened interval is preferred.
- 12. Lower the bailer to just below the top of the water column and pump the ground water into a graduated pail. Pumping should continue until sufficient well volumes have been removed or the well is pumped dry. If the well is pumped dry, allow sufficient time for the well to recover before proceeding with Step 16. Record this information on the Ground Water Sampling Field Log.
- 13. Remove the sampling bottles from their transport containers and prepare the bottles for receiving camples. Inspect all labels to insuro proper cample. identification. Sample bottles should be kept cool with their caps on until they are ready to receive samples. Arrange the sampling containers to allow for convenient filling.
- 14. With submersible pump raised to a level just below the surface of the water in the well, fill each sample container following the instructions listed in the Sample Containerization Procedures. Return each sampling bottle to its proper transport container. NOTE: A clean bottom loading stainless steel or Teflon bailer should be used to collect the sample used to fill the sample vials labeled purgeable priority pollutant analysis. Gently lower the bailer into the water to minimize agitation of the water. The vials (2) should be filled from one bailer.
- 15. If the sample bottle cannot be filled quickly, keep them cool with the caps on until they are filled. The vials (3) labeled purgeable priority pollutant analysis should be filled from one bailer than securely capped. NOTE: Samples must not be allowed to freeze.
- 16. Record the physical appearance of the groundwater observed during sampling on the Groundwater Sampling Field Log.

- 17. After the last sample has been collected, record the data and time, and, and if required, empty one bailer of water from the surface of the water in the well into the 200 ml beaker and measure and record the pH, conductivity and temperature of the ground water following the procedures outlined in the equipment operation manuals. Record this information on the Ground Water Sampling Field Log. The 200 ml beaker must then be rinsed with distilled water prior to reuse.
- 18. Begin the Chain of Custody Record. A separate form is required for each well with the required analysis listed individually.
- 19. Remove the submersible pump from the well and clean the pump and necessary tubing both internally and externally. Cleaning is comprised of rinses with a source water and acetone or methanol mixture, and distilled water using disposable towers and separate wash basins. The pump should then be returned to its covered storage box.
- 20. Replace the well cap, and lock the well protection assembly before leaving the well location.
- 21. Place the gloves, towels, disposable shoe covers and plastic sheet into a plastic bag for disposal.

EXHIBIT A

ն, III այսք նշեն, հետև հետևու

-

SITE SURVEY DATA

TINA BICKERSTAFF JOB 91130 05 O'BRIEN & GERE ROBERT H. DAVIS, RLS 2 OF Z SURVEYORS AND PLANNERS SHEET NO DATE 03 bn 92 CALCULATED BY R. Davis 7175 HIGHWAY 70 EAST NEW BERN, NORTH CAROLINA 28562 CHECKED BY R. Davis DATE D3 Jan 92 919-636-2109 None SCALE ____ Elevation Northing Easting Point 42.2 E 15,73 244.65 HP OI 19,93 176.0E 180.3 5 HP OZ 14 31 46.4 E 7,4 5 HP 03 9.98 53.1 W 35.6 5 HP 04 NOT FOUND HP 05 10.54 174.75 57.3 W HP 04 13 25 0.9E 45.4 N HP 07 11.67 8.1 W 298.1 5 HP08 9.13 193,9 W 398.75 HPO9 48.8 N 287.0 E HPIO 14.50 5,5 E 56.7 5 GWA 13 94 5.1 E * GWB 1.0 5 22.24 143,7E 53.2 5 GWOI 143.7 E 22,10 53.2 5 GWOZ 18.43 148.7 5 56.0 E GW 03 18.39 56.0 E 148.7 5 GW04 19,06 71,1 E 102.8 N C-WOS 18.13 71.1 E 102.8 N GW Q6 8.72 257.8 W 39.65 GW07 8,90 257,8 W 39.6 5 GW 08 12.90 119.7 W GW 09 1,42.7 5 12,90 119.7 W 642 7 5 EW 10 19 13 239,9 E 351,45 GW 11 19.24 239.9 E 351.45 JW 12 8.91 GW 13 25635 315,0 W 8.94 VGW14 315.0 W 256.3 5 16.44 * * Unknown 01 90.9 E 95,15 14.84 85.7 E Unknown OZ 28.1 5 SEAE Unknown 03 27.7 5 12.93 24.3 E L-2432 14.78 36.5 E VUnknown04 94.9 5 * + UNKNOWN LOCATIONS = SOIL BORING LOCATIONS *GW=MW 02 Jun 92 Note: Water level Northeast Creek 0.8 02 4092 Elevations based on NC DOT Bridge Elevation

TINA BICKERSTAFF ROBERT H. DAVIS, RLS JOB 91130 05 O'BRIEN & GERE SURVEYORS AND PLANNERS / _____ OF___Z SHEET NO. 7175 HIGHWAY 70 EAST CALCULATED BY R. Davis DATE 02 br 93 NEW BERN, NORTH CAROLINA 28562 CHECKED BY R. Davis DATE 02 Jan 92 919-636-2109 . • 1" = 90' SCALE_ 6W 05 6 06 + HP 10 HP 07 Basa Line 0+00 N GH B HP 03 UNKNOWN 03 UNKNOWN 02 + GW 07 6 08 X+ 6H A 6W 01 6 02 TANK UNKNOWN 04 UNKNOWN 01 -+-6W 03 6 04 + HP 02 HP 06 +GW 13 8 14 + ⊮P_01 HP 08 6W 11 6 12 -+ HP 09 ų 0 9 4174 CA O''' 24 S.STEAL) 80 SEAL -----L-2432 SULIVE fabrit stand GH 09 6 10 DE Jan 92

EXHIBIT B

ŧ.

TECHNICAL MEMORANDUM NO. 2 RESULTS OF FIELD INVESTIGATION

Prepared for:

Public Works Division Marine Corps Base, Camp Lejeune

Contract N62470-C090-6796

D&D Project No: LZ682-000001-93160-D086

Prepared by:

Dewberry & Davis 5238 Valleypointe Parkway Suite One-B Roanoke, Virginia 24019

(703) 362-7725

January 1991

la se la seconda de la seconda d

a ann

I

A STATE

32

The TCLP constituents detected in the sample leachate above their detection limits include Trichloroethylene, Arsenic, Barium, Cadmium, Chromium and Lead. Only Trichloroethylene exceeded its regulatory level; 6.13 ppm vs. 0.5 ppm.

The sample did not contain PCBs above the detection limit of 5.0 ppm and was not hazardous by reactivity, ignitability or corrosivity.

<u>6.2 Site Geology.</u> The site was investigated by five hand augers advanced to a depth of 1 to 4.5 feet, five soil borings advanced to a depth of 5 feet and two monitor wells advanced to a depth of 20 feet. The test locations are shown on the Midway Park Site sheet in the sleeve at the back of this report. The general locations are as follows:

- Hand augers MPHA-1, 2, 3 and 4 were around the perimeter of the tank, inside the brick containment wall.
- Hand auger MPHA 5 was near the pump house where piping was suspected to enter.
- Soil boring MPSB-1 was located near the suspected vicinity of the underground piping halfway between the tank and pump house.
- Soil borings MPSB 2, 3, 4 and 5 were located along the suspected vicinity of underground piping from the pump house southeast toward the main building.

A surface sample was obtained of a black tar/asphalt substance on the surface within the brick containment wall (sample MPHA-4A). The monitor wells, MPMW-1 and 2 were installed to the northwest and north-northwest of the tank near the perimeter fence, in attempt to intercept the suspected downgradient flow of groundwater at the site.

The soils encountered at each of the hand auger and soil boring location are described in Table 5. The soils encountered in the monitor wells are presented in boring logs (Plates 1 and 2). The soils encountered at all test locations were almost exclusively very fine to fine sands with trace to no silt. These sands were grey to brown to orange in the upper few feet, then graded to light tan to orangish tan and near white with depth. MPHA-5 encountered approximately 1 foot of fine sand with little silt then refused on the concrete associated with the pump house (four attempts were made). Some wood debris was encountered at an approximate depth of 3 feet in soil boring MPSB-3 and some wood and concrete debris was

Technical Memorandum No. 2 Camp Lejeune Waste Oil Tank Sites

January 8, 1991 Page 21

Dewberry & Davis

	TADIC	Λ		<u> </u>					
(CONTINUED)									
CAMP LEJEUNE HAZARDOUS WASTE OIL TANKS									
LABORATORY RESULTS OF TANK CONTENTS									
TANK DESIGNATION	11/27/90 891	<u>11/26/90</u> S-781	11/27/90	11/26/90					
OTHER	091		AS421	STT-66					
PCB	<5.0	<0.200	<5.0	<5.0					
REACTIVITY				<3.0					
TOTAL HYDROGEN CYANIDE	<5	<5	<5	<5					
TOTAL HYDROGEN SULFIDE	<10	<10	~~ <10	<10					
IGNITABILITY			·						
FLASHPOINT	>212 F	>212 F	>212.2 F	208.4 F					
CORROSIVITY		alana ang ang ang							
pH	9.0 S.U.	5.88 S.U.	5.31 S.U.	7.25 S.U.					
PH9.0.S.U.5.88 S.U.5.31 S.U.7.25 S.U.NOTES:1) ALL RESULTS ARE PRESENTED IN PARTS PER MILLION (PPM), WHICH IS ANALOGOUS TO MILLIGRAMS PER KILOGRAM FOR THE VOC'S, PCB'S, REACTIVITY AND THE TCLP FOR HOLCOMB, NEW RIVER AND TARAWA. PPM IS ANALOGOUS TO MILLIGRAMS PER LITER FOR THE TCLP FOR MIDWAY. FLASHPOINT IS IN DEGREES FAHRENHEIT (F) AND pH IS IN STANDARD UNITS.2) VOLATILE ORGANIC COMPOUNDS (VOC) IS A PARTIAL LIST CONSISTING OF 34 CHEMICALS. THOSE NOT INCLUDED IN THE TABLE WERE BELOW THEIR DETECTION LIMITS. THE DETECTION LIMIT FOR VOC'S WERE 0.125 PPM AT MIDWAY AND 0.500 PPM AT THE OTHER SITES.3) TOXICITY CHARACTERISTIC LEACHING PROCEDURE (TCLP) WAS 									

Albert I. I.

٩...

٠

ς, Γ

.

e di set

All the states

49449

.

TABLE 4

. 1

CAMP LEJEUNE HAZARDOUS WASTE OIL TANKS LABORATORY RESULTS OF TANK CONTENTS

SITE	HOLCOMB	MIDWAY	NEW RIVER	TARAWA	
DATE SAMPLED	11/27/90	11/26/90	11/27/90	11/26/90	
TANK DESIGNATION	891	S-781	AS421	STT-66	
ESTIMATED VOLUME	24600 GAL	5100 GAL	330 GAL	450 GAL	
VOC'S			l		MCL
CHLOROBENZENE	0.607	0.597	ND	ND	0.06
CHLOROFORM	ND	0.914	5.27	ND	0.1
CHLOROMETHANE	ND	0.547	ND	ND	
1,1-DICHLOROETHANE	ND	0.294/1.9	ND	1.45	
1,1-DICHLOROETHENE	3.69	ND	ND	ND	
METHYLENE CHLORIDE	ND	0.562	0.542	ND	
TETRACHLOROETHENE	ND	0.709	ND	5.12	
1,1,1-TRICHLOROETHANE	11.1	2.00/13.0	ND	4.43	0.2
TRICHLOROETHENE	2.23	314.0	1.08	ND	
TRICHLOROFLUOROMETHANE	2.06	1.18	1.39	2.94	
1,1,2-TRICHLOROTRI-					
FLUOROETHANE	ND	10.5	0.513	ND	_
BENZENE	7.31	2.78/11.0	ND	3.15	0.005
1,2-DICHLOROBENZENE	ND	0.213	ND	ND	0.62
ETHLYBENZENE	19.7	6.97/39.0	0.571	22.6	0.68
TOLUENE	6.20	20.5/96.0	2.80	7.12	2.0
TOTAL XYLENES	73.7	23.2/260.0	3.97	87.9	0.44
TCLP					REG. LEVEL
ARSENIC	0.100	0.002	0.151	0,100	5.0
BARIUM	15	1.8	ND	40	100.0
BENZENE	7.31	ND	ND	3.15	0.50
CADMIUM	2.24	0.138	1.01	1.74	1.0
CHLOROFORM	ND	ND	5.27	ND	6.0
CHROMIUM	80	0.14	55	95	5.0
1,1-DICHLOROETHYLENE	3.69	ND	ND	ND	0.70
LEAD	20	0.4	15	25	5.0
MERCURY	ND	ND	2.40	0.200	0.2
METHYL ETHYL KETONE	11.2	ND	7.19	20.4	200.0
TRICHLOROETHYLENE	2.23	6.13	1.08	ND	0.5
TETRACHLOROETHYLENE	ND	ND	ND	5.12	0.7

TABLE 5

end of the second se

1 1 94 1

;

ė

SOIL DESCRIPTIONS MIDWAY PARK WASTE OIL TANK

	DEPTH		DEPTH	BLOW
		DESCRIPTIONS	TPH	COUNT
	0'-1'	BROWN AND DARK GREY FINE SAND, NO ODOR, MOIST.	0'-1'	
	1'-2'	GRADING BROWN TO TAN.	<10 PPM	N/A
	2'-3'	GRADING TAN TO LIGHT TAN.	2'-4'	
	3'-4'	GRADING LIGHT TAN TO WHITE.	<10 PPM	
MPHA-2	0'-1'	BROWN AND GREY FINE SAND, OCCASIONAL PIECES OF	0'-1'	N1/A
	0.1	TAR OR ASPHALT, NO ODOR, MOIST.		Ņ/A
	1'-2'	GRADING DARK ORANGISH TAN, NO TAR/ASPHALT.	<10 PPM	
	2'-3'	GRADING DARK ORANGISH TAN, NO TAR/ASPHALT. GRADING LIGHT ORANGISH TAN.	1'-4'	
	2 -3 3'-4'	GRADING LIGHT TAN TO NEAR WHITE.	<10 PPM	
MPHA-3	0'-1'	TAN FINE SAND, TRACE SILT, NO ODOR, MOIST.	0' 4 5'	A LZ A
METIA-5	1'-1.5'	GRADING LIGHT BROWN, LITTLE SILT.	0'-4.5'	N/A
	1.5'-3'	GRADING LIGHT BROWN, LITTLE SILT. GRADING YELLOWISH TAN.	<10 PPM	
MPHA-4	3'-4.5' 0'	GRADING LIGHT BROWN.	0,	
мглж-4		SOME TAR/ASPHALT ON SURFACE.	-	N/A
	0'-1'	ORANGISH TAN FINE SAND, LITTLE SILT, NO ODOR, MOIST.	<10 PPM 0'-4'	
	1'-2'	GRADING LIGHT TAN, TRACE SILT.	<10 PPM	
	2'-4'	GRADING LIGHT TAN TO WHITE.		
MPHA-5	0'-1'	BROWN FINE SAND, LITTLE SILT, NO ODOR, MOIST.	0'-1'	N/A
	1'	REFUSAL ON CONCRETE.	<10 PPM	
MPSB-1	0'-1'	2" TOP SOIL. BROWN FINE SAND, LITTLE SILT, NO	0'-5'	0'-2'
		ODOR, MOIST.	1200 PPM	2-5-9-9
	1'-4.5'	GRADING TAN AND BROWN, TRACE SILT.		3'-5'
	4.5'-5'	GRADING ORANGE.		3-3-4-2
MPSB-2	0'-0.5'	CRUSHED GRAVEL.	0'-5'	0'-2'
	0.5'-1'	GREY FINE SAND, TRACE SILT, NO ODOR, MOIST.	2200 PPM	9-11-16-16
	1'-1.5'	GRADING BROWN, TRACE GRAVEL.		3'-5'
	1.5'-2'	GRADING LAYERED BROWN AND BLACK, MODERATE		3-3-4-2
		PETROLEUM ODOR.		
	3'-4.5'	TAN FINE SAND, TRACE SILT, NO ODOR, MOIST.		
	4.5'-5'	GRADING ORANGE.		
MPSB-3	0'-0.5'	CRUSHED GRAVEL.	2'-5'	
	0.5'-1'	DARK BROWN FINE SAND, NO ODOR, MOIST.	<10 PPM	1'-3'
	1'-2'	GRADING MOTTLED BROWN AND ORANGE, LITTLE		11-9-7-7
	• -	GRAVEL.		
	2'-2.7'	GRADING MOTTLED TAN AND BLACK.		
	2.7'-3'	GRADING DARK ORANGE BROWN AND TAN, PIECE		3'-5'
	v	OF WOOD IN SPOON.		4-4-8-4
	3'-4'	GRADING TAN, 2" WOOD.		
	3 -4 4'-5'	GRADING ORANGE.		
MPSB-4	0'-0.5'	CRUSHED GRAVEL.		
	0 =0.3 0.5'-5'	MOTTLED ORANGE AND TAN FINE SAND, TRACE SILT,	1'-5'	1'-3'
	0.0 -0	NO ODOR, MOIST.	<10 PPM	11-12-9-6
				3'-5'
P				2-2-1-2

TABLE 5 (CONTINUED) SOIL DESCRIPTIONS MIDWAY PARK WASTE OIL TANK

3

LOCATION	DEPTH	DESCRIPTIONS	DEPTH/ TPH	BLOW COUNT
MPSB-5	0'-0.5'	CRUSHED GRAVEL.	3'-5'	
	0.5'-1.8'	ORANGISH BROWN FINE SAND, NO ODOR, MOIST.	<10 PPM	1'-3'
	1.8'-2.5'	5" WOOD AND CONCRETE IN SPOON. CONCRETE		5-8-4-3
		OBSTRUCTION IN SIDE OF BORING AT 2'.		
	2.5'-5'	DARK ORANGE BROWN FINE SAND, TRACE SILT, NO		3'-5'
		ODOR, MOIST. PIECE OF WOOD AT 4.5'.		2-1-1-2
NOTES:	1) DEPTHS	ARE APPROXIMATE.	······································	*·····
	2) TPH – T(OTAL PETROLEUM HYDROCARBONS.		
2	3) PPM- C	ONCENTRATION IN PARTS PER MILLION, WHICH IS		
	ANALOG	OUS TO MILLIGRAMS PER KILOGRAM.		
	4) BLOW C	OUNTS ARE THE NUMBER OF BLOWS REQUIRED TO DRIVE		
	A STANE	DARD SPLIT SPOON 2 FEET IN 6 INCH INCRIMENTS.		
	5) SEE IND	IVIDUAL LOGS FOR MONITOR WELLS MPMW-1 AND MPMW-2.		

	BORING: MPMW-1										
	LOCATION: MIDWAY PARK, CAMP LEJEUNE										
	DEDTIN				D: NOVEMBER 27, 1990						
		TEST SAMPLE		SOIL CLASS	DESCRIPTION						
	0	~		OL100	DESCRIPTION MOTTLED BROWN FINE SAND, SOME SILT, NO						
	-	#1	4-4-5-5	SM	ODOR, MOIST, MEDIUM DENSE.						
	-	0'-2'		ML	3" BLACK SILT (OLD TOP SOIL?).						
h.	-			SP	BROWN TO ORANGISH TAN FINE SAND, LITTLE						
	_			SM	SILT, MOIST.						
	-	#2	2-2-2-3		ORANGISH TAN FINE SAND, TRACE SILT,						
	-	3'-5'			NO ODOR, MEDIUM DENSE, MOIST.						
	-				GRADING LIGHT ORANGISH TAN.						
	5				GRADING LIGHT TAN.						
	-				GRADING LIGHT TAN.						
	-										
	-										
	-										
	-	2									
4 ^{- 1}	-]								
	10		CUTTINGS	SP							
	-			55	GRADING FINE TO MEDIUM GRAINED, VERY MOIST TO WET.						
	-										
	-										
	-										
	-										
	-										
	-										
	15		CUTTINGS		GRADING WITH TRACE COARSE SAND AND						
					FINE GRAVEL, SATURATED.						
	-	ł									
	-	1									
	-										
	-										
	20										
	-										
	BORING	COMPL	ETED AT A	DEPTH C	DF 20 FEET.						
	WELL C				PVC PIPE WITH 15 FEET OF SCREEN SET AT 23						
	WATER	LEVELS			11-30-90						
			DEPTH		11.59 FT. FROM TOP OF CASING.						
	WELL C	ONSTRL FEET SANI GRO	ICTION: 2 IN COEEPER D PACK UP UT TO SURI DATE	NCH I.D. I DUE TO L TO 5 FEE	PVC PIPE WITH 15 FEET OF SCREEN SET AT 23 OSE SAND BELOW WELL TIP), FILTER T, BENTONITE UP TO 3 FEET, OCKING CASE, STICKUP = 3.21 FT. 11-30-90						

1 3- 64

44**0**4 - 1

1.6.5.1.5

ື່**ງ**

۰.

.

TABLE 6

MIDWAY PARK WASTE OIL TANK LABORATORY RESULTS OF SOIL AND WATER SAMPLES

					ETHYL	TOTAL							
SAMPLE	DEPTH	TPH	BENZENE	TOLUENE	BENZENE	XYLENES	V7	V17	V20	V25	V27	тох	PCB
MPHA-1A	0'-1'	ND											
MPHA-1B	2'-4'	ND											
MPHA-2A	0'-1'	ND											
MPHA-2B	1'-4'	ND											
MPHA-3	0'-4.5'	ND	ND	0.046	ND	ND	ND	ND	ND	ND	ND		
MPHA-4A	SURFACE	ND											
MPHA-4B	0'-4'	ND											
MPHA-5	0'-1'	ND											
MPSB-1	0'-5'	1200 IR											
MPSB-2	0'-5'	2200 IR	ND	0.014	ND	0.026	0.006	0.029	0.044	0.240	0.020		
	01.51	1480 IR*			·								
MPSB-3	2'-5'	ND											
MPSB-4	1'-5'	ND									~-		
MPSB-5	3'-5'	ND											(
MPMW-1A	0'-2'	20 D											
		2400 IR											
MPMW-1B	3'-5'	ND D											
		70 IR											
MPMW-1W	WATER	ND										0.008	ND
MPMW-2	0'-5'	ND											2.03**
MPMW-2W	WATER	ND										0.034	ND
NOTES:	1) ALL RESU	ILTS ARE PE	ESENTED IN	PARTS PER	R MILLION (F	PM) WHICH	US ANAL	OGOUS	TOMILL	GRAMS	PEB KILC	OGRAMS	

1) ALL RESULTS ARE PRESENTED IN PARTS PER MILLION (PPM), WHICH IS ANALOGOUS TO MILLIGRAMS PER KILOGRAMS. NULES

2) TPH- TOTAL PETROLEUM HYDROCARBONS. TEST METHOD IS BY GAS CHROMATOGRAPH (GC); "D" INDICATES DIESEL,

"IR" - INDICATES INFRARED SPECTROPHOTOMETRY METHOD IN LIEU OF OR IN ADDITION TO GC METHOD.

"*" - INDICATES TEST RESULTS FROM SECOND LABORATORY.

5) PCB - POLYCHLORINATED BIPHENOLS. **** - QUANTIFICATION BASED UPON AROCLOR 1242

ALL OTHER COMPOUNDS WERE BELOW THEIR DETECTION LIMITS.

SOIL = 0.005 PPM. PCB IN SOIL = 0.050 PPM, PCP IN W

4) TOX - TOTAL ORGANIC HALIDES.

3) VOLATILE ORGANIC COMPOUNDS (VOC) ARE 34 COMMON PRIORITY POLLUTANTS. V7 - CHLOROFORM, V17 MEHYLENE CHLORIDE, V20 - 1,1,1 TRICHLOROETHANE, V25 - 1,1,2 TRICHLOROTRIFLUOROETHANE (FREON),

V27 - CHLOROBENZENE. INCLUDES BENZENE, TOLUENE, ETHYLBENZENE AND TOTAL XYLENES (BTEX).

6) "ND" - NOT DETECTED. DETECTION LIMITS: TPH IN SOIL = 10 PPM, TPH IN WATER = 1.0 PPM, VOC AND BTEX IN