3/24/2015 metaanalysis on obesity and bladder cancer, over 14 million persons studied, 15 cohorts reviewed.

Background: Our aim was to identify gaps and limitations in the current literature and to make recommendations for future research required to address these. Materials and Methods: We reviewed occupational exposures and related factors associated with the risk of prostate cancer between 2000 and 2012. These included chemical, ergonomic, physical or environmental, and psychosocial factors which have been reported by epidemiological studies across a range of industries. Results: The results are inconsistent from study to study and generally this is due to the reliance upon the retrospectivity of case-control studies and prevalence (ecological) studies. Exposure assessment bias is a recurring limitation of many of the studies in this review. Conclusions: We consider there is insufficient evidence to implicate prostate cancer risk for ergonomic, physical, environmental or psychosocial factors, but there is sufficient evidence to implicate toxic metals, polychlorinated biphenyls (PCBs) and polycyclic aromatic hydrocarbons (PAHs). More research is required to identify specific pesticides that may be associated with risk of prostate cancer.

Keywords: Occupational exposure - risk - risk factors - maximum allowable concentrations - threshold - prostate cancer
The Report on Carcinogens (RoC) is a congressionally mandated, science-based, public health report that identifies agents, substances, mixtures, or exposures (collectively called "substances") in our environment that pose a hazard to people residing in the United States.

The National Toxicology Program (NTP) prepares the RoC on behalf of the Secretary, Health and Human Services. Substances are listed in the RoC following a multi-step process with several opportunities for scientific and public inputs and using established listing criteria.

Other substances are under review for future editions of the RoC.

For each listed substance, the RoC contains a substance profile that contains the listing recommendation and a summary of the scientific evidence considered key to reaching that recommendation. In addition, the profile contains information on potential sources of exposure to humans and current federal regulations to limit exposures. http://ntp.niehs.nih.gov/pubhealth/roc/roc13/index.html
Good Morning,

Please see the abstract below submitted by [b] (6). The abstract is also available on the site in the 'Other Cancers' folder.

Int J Epidemiol. 2015 Feb 3. pii: dyv001. [Epub ahead of print]

Metabolic risk score and cancer risk: pooled analysis of seven cohorts.

Abstract

BACKGROUND:

There are few data on the joint influence of metabolic factors on risk of separate cancers.

METHODS:

We analysed data on body mass index, blood pressure and plasma levels of glucose, total cholesterol and triglycerides from seven European cohorts comprising 564,596 men and women with a mean age of 44 years. We weighted those factors equally into a standardized metabolic risk score [MRS, mean = 0, standard deviation (SD) = 1], with an individual's level indicated as SDs from the sex- and cohort-specific means. Cancer hazard ratios were calculated by Cox regression with age as timescale and with relevant adjustments including smoking status. All statistical tests were two-sided.

RESULTS:

During a mean follow-up of 12 years, 21,593 men and 14,348 women were diagnosed with cancer. MRS was linearly and positively associated with incident cancer in total and at sites (P < 0.05). In men, risk per SD MRS was increased by 43% (95% confidence interval: 27-61) for renal cell cancer, 43% (16-76) for liver cancer, 29% (20-38) for colon cancer, 27% (5-54) for oesophageal cancer, 20% (9-31) for rectal cancer, 19% (4-37) for leukaemias, 15% (1-30) for oral cancer and 10% (2-19) for bladder cancer. In women, risk increases per SD MRS were 56% (42-70) for endometrial cancer, 53% (29-81) for pancreatic cancer, 40% (16-67) for renal cell cancer, 27% (9-47) for cervical cancer and 17% (3-32) for rectal cancer.

CONCLUSION:
This largest study to date on the joint influence of metabolic factors on risk of separate cancers showed increased risks for several cancers, in particular renal cell and liver cancer in men and endometrial and pancreatic cancer in women.

© The Author 2015. Published by Oxford University Press on behalf of the International Epidemiological Association.

KEYWORDS:

cohort studies; metabolic syndrome x; neoplasms
Hi,

I don't know if everyone already has this article, but I searched for something regarding this topic and finally found exactly what I was looking for. The case I was working on was at CL for < 2 years and smoked for 17 years after leaving the service. He was then diagnosed with AML 57 years after leaving CL. I was determined to find something that talked about latency, but really had to search. I thought I would offer it to the others.
Temporal Variation in the Association between Benzene and Leukemia Mortality

David B. Richardson

Department of Epidemiology, School of Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina USA

BACKGROUND: Benzene is a human carcinogen. Exposure to benzene occurs in occupational and environmental settings.

OBJECTIVE: To evaluate variation in benzene-related leukemia with age at exposure and time since exposure.

METHODS: Data were obtained from a cohort of 8,045 rubber hydrochloride workers. Benzene exposure–leukemia mortality rates were estimated by applying proportional hazards regression methods. Temporal variation in the impact of benzene on leukemia rates was assessed via exposure time windows and fitting of a multistage cancer model.

RESULTS: The association between benzene mortality and benzene exposure was of greatest magnitude in the 10 years immediately after exposure (relative risk [RR] at 10 ppm-years = 1.19, 95% confidence interval [CI], 1.10–1.29); the association was of smaller magnitude in the period 10 to < 20 years after exposure (RR at 10 ppm-years = 1.05, 95% CI, 0.97–1.13); and there was no evidence of association 20 years after exposure. Leukemia was more strongly associated with benzene exposure accrued at ≥ 45 years of age (RR at 10 ppm-years = 1.11, 95% CI, 1.04–1.17) than with exposure accrued at younger ages (RR at 10 ppm-years = 1.01, 95% CI, 0.92–1.09). Jointly, these temporal effects can be efficiently modeled as a multistage process in which benzene exposure affects the preleukemic stage in disease induction.

CONCLUSIONS: Further attention should be given to evaluating the susceptibility of older workers to benzene-induced leukemia.

In 1982 the International Agency for Research on Cancer (IARC) concluded there was sufficient evidence that benzene is carcinogenic to humans, with evidence predominantly related to associations between benzene and development of acute non-lymphocytic leukemia (IARC 1982). Subsequent epidemiologic studies have supported that conclusion (Hayes et al. 1997; Rinsky et al. 1997; Wong 1997; Yin et al. 1996). In addition, molecular and cytogenetic studies provide evidence of induction of chromosomal alterations by benzene that is likely to play a role in leukemogenesis (Smith and Zhang 1998; Zhang et al. 2007).

Despite its status as a recognized leuke- mogen, benzene exposure is common (IARC 1987). Benzene is an important raw material for the chemical industry and an occasional industrial solvent, as well as a constituent of gasoline (Hirdko 1994). Smokers commonly experience protracted inhalation exposures to benzene as a component of cigarette smoke (Wallace et al. 1987). In addition, environmental exposures to benzene arise from sources such as gasoline vapor emissions and auto exhaust (Wallace 1996). Consequently, the identification of a factor that influences a person's susceptibility to benzene-induced leukemia has important public health implications, as does understanding the evolution over time of leukemia rates after benzene exposure.

Multistage theories of carcinogenesis predict that a person's susceptibility to benzene-induced leukemia will depend upon the age at which exposure occurs, as the probability of transition through the stage (or stages) of the disease process unaffected by benzene exposure are assumed to be age dependent (Thomas 1988). Moreover, age-related physiologic changes might lead to changes in susceptibility to benzene's carcinogenic effects via changes in benzene uptake and its metabolism (Kim et al. 2006). Despite its plausibility as an effect measure modifier, the epidemiologic literature to date provides minimal information about whether susceptibility to benzene-induced leukemia varies with age at exposure.

Multistage cancer models also predict that effect of an increment of exposure on cancer risk may vary with time since exposure. Whereas some investigators have found that a simple metric of cumulative exposure adequately characterizes the exposure–time–response relationship (Crump 1994, 1996), others have reported evidence of substantial variation in the impact of benzene exposure on leukemia risk with time since exposure (Finkelstein 2000; Hayes et al. 1997; Silver et al. 2002).

The analyses reported in the present article examine age at exposure and time since exposure as modifiers of the association between the leukemia mortality and occupational benzene exposure in a cohort of rubber hydrochloride workers. Previous analyses of these data have been used by the U.S. Occupational Safety and Health Administration (OSHA) to support the current permissible exposure limit for benzene in the workplace and by the U.S. Environmental Protection Agency (EPA) as the basis for risk estimates for inhaling benzene (OSHA 1987; U.S. EPA 1985). The objective of these analyses was to use exposure time windows and a multistage model to evaluate temporal modifiers of the impact of benzene on leukemia rates.

Materials and Methods

This study is based upon the experience of workers employed in the manufacture of a natural rubber film (rubber hydrochloride) at two locations in Ohio. Natural rubber was distilled in benzene and spread over a conveyor; the benzene was evaporated and recovered while the rubber film was stripped from the conveyor (Rinsky et al. 1987). Production at the first location commenced in 1939 and ceased in 1976; production at the second location began around 1937 and continued until 1965. All nonsalvaged workers employed in a rubber hydrochloride department between 1 January 1940 and 31 December 1955 were included in these analyses.

Vital status was ascertained through 31 December 1996 via records of the Social Security Administration, Ohio Bureau of Motor Vehicles, and the National Death Index. If there was no death indication for a worker then they were assumed to be alive as of 31 December 1996. Information was obtained on underlying cause of death for deceased workers, coded according to the revision of the International Classification of Diseases (ICD) in effect at the time of death. These analyses focus on leukemia (ICD-6 and ICD-7 code 204) [World Health Organization...]

Address correspondence to D. Richardson, Department of Epidemiology, School of Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 USA. Telephone: (919) 966-2675. Fax: (919) 966-2689. E-mail: david.richardson@unc.edu

Supplemental Material is available online at http://www.epihjoe.org/docs/2008/I084/suppl.pdf

I thank R. Rinsky, Cincinnati Children's Hospital Medical Center and S. Silver, National Institute for Occupational Safety and Health, for their support of these analyses, which made use of data derived from their previously published research. This project was supported by grants K01 OH008635 from the National Institute for Occupational Safety and Health of the Centers for Disease Control and Prevention. The author declares he has no competing financial interests.
Benzene and leukemia mortality

(WHO) 1948, 1957. ICD-8 codes 204.207
(U.S. Public Health Service 1968). ICD-9
codes 204-208 (WHO 1978).

The exposure of interest was defined as cumulative benzene exposure, expressed in parts per million-year (ppm-year). Annual exposure rate estimates by plant, department, and job were developed by Krotos et al. (2002, 1987), based on available air sampling data. Utellsh and Rinsky (1995) have reviewed the methods employed in this assessment of benzene exposure among rubber hydrochloride workers. The U.S. National Institute for Occupational Safety and Health provided a file that contained a plant, department, and job code, and start and finish dates, for each job held by each worker. Using this information, benzene exposure histories were computed for each worker as the product of the length of employment in each job by the estimated benzene exposure rate for that job.

Statistical methods: Cox proportional hazards regression models were fitted to these data via the statistical program PCAN, with attained age as the primary time scale (Preston et al. 1993). Model covariates included a categorical indicator of birth cohort (classified as before born 1905, 1905 to <1910, 1910 to < 1915, 1915 to < 1920, or after 1920), a binary indicator of sex, and a binary indicator of employment status (active employment status status began when a person started employment and ended 1 week after the end of employment in order to allow for inaccuracies in personnel records regarding the exact day employed) (Arrighi and Herzl-Pecudean 1994; Steenland and Stayner 1991; Steenland et al. 1998). The majority (99%) of workers of known race in this cohort was white, and no deaths due to leukemia were observed among nonwhite workers; therefore, race was not included as a covariate in these analyses. In analyses of cumulative exposure (expressed in 10 ppm-year increments) log-linear regression models were fitted, providing an estimate of the log relative rate per 10 ppm-years; we report the anti-log of this estimate and discuss it as an estimate of the relative rate at 10 ppm-years. Ninety-five percent confidence intervals (CIs) were estimated using the likelihood method.

Cumulative exposure was treated as a time-varying explanatory variable that described the benzene exposures accrued prior to a person's entry into a risk set in the Cox regression analysis. The model with a single parameter for cumulative benzene exposure implies that the magnitude of the hazard ratio does not depend on when exposures occurred. Exposure time window analyses were conducted to assess whether the relationship between disease risk and benzene exposure depends on when exposures occurred (Checkoway et al. 1990; Richardson and Ascher 2005; Thomas 1988). A model with three exposure time windows, defined as prior, described the association between leukemia rates and exposures accrued in the periods < 10 years, 10 to <20 years, and >20 years prior to a person's entry into a risk set in the regression analysis (Rothman 1981). To assess variation in exposure effects with age at exposure, metrics of cumulative exposure were categorized as < 45 and >45 years of age were examined (Richardson and Wing 1998). Each model was compared with a standard model of lifetime cumulative exposure by means of a likelihood ratio test (LR); the difference between model deviations, described as an LRT statistic, can be interpreted using a chi-square distribution with degrees of freedom (df) equal to the difference in the numbers of model parameters.

Multistage models of carcinogenesis, of which the best known is the Armitage-Doll model, involve the mathematical expression of hypotheses about the process of carcinogenesis (Armitage and Doll 1954). Central to the Armitage-Doll model is the concept that cancer arises as the result of a single cell undergoing a series of transformations. The model predicts that cancer incidence, \(i \), will increase as an integer power of attained age, \(a \), with the integer, depending on the number of stages, \(k \), required for cancer induction. Specifically, the model predicts the relationship \(i = c a^{k-1} \), where \(c \) is a constant that is proportional to the product of the transition rates. When considering the effect of an environmental carcinogen, the transition rate from one state-limiting step to the next is often assumed to be affected in a linear fashion by exposure. If exposure influences the transition rate for a single step, \(j < k \), this implies a linear relative rate model of the form \(RR(\text{relative rate}) = 1 + \delta_j Z \), where \(Z \) is a weighted cumulative exposure metric calculated for each person (Thomas 1988; Whittemore 1977). Specifically, if \(Z \) denotes the attained age of members of a risk set enumerated for a Cox regression analysis, then the weighted age at exposure occurs, then the weight assigned to that exposure increment is given by the expression, \(w(Z) = (1 + \delta_j Z) \), and the weighted cumulative exposure metric \(Z \) represents the sum of weighted exposure increments accrued through age \(a \).

Leukemia incidence rates increase approximately as a function of age to the fourth power, suggesting a process of carcinogenesis that involves five stages (Liddle et al. 1992; Ries et al. 2003). Therefore, a disease process that involves five stages was posited (i.e., \(k = 5 \)) and weighted cumulative exposure metrics for each integer value of \(j < k \) were calculated. Relationships between leukemia mortality and these weighted cumulative exposure metrics were evaluated, and fitted regression models were compared with reference to residual model deviance (2 log likelihood). Alternative models with fewer than five stages and those with more than five stages were also evaluated. Regression analyses were conducted in the logistic-linear rate model as well as the linear relative rate model.

Results

Table 1 shows the distribution of major characteristics among cases and noncases in the study cohort. A single leukemia death was observed among the females in the study cohort. Over one-third of the leukemia cases were ascertained among workers born before 1905, whereas nearly 60% of the noncases were born in the period 1920 to 1930. Leukemia cases were employed for a longer average duration than noncases, tended to start employment at older ages than noncases, and accrued higher average cumulative exposure metrics (144 ppm-years) than noncases (34 ppm-years). Two percent of the workers were hired before 1940, 19% were hired in the period 1940-1944, and the remainder were hired in 1945-1975.

Table 2 reports estimated RRs for categories of benzene exposure. The rate ratio for
the contrast drawn between the categories 1 to < 50 ppm-years and < 1 ppm-year was below unity (Table 2). When considering contrasts drawn between 50 to < 250, 250 to < 500, and ≥ 500 ppm-years and < 1 ppm-year, the rate ratios were greater than unity and increased in magnitude with increasing cumulative exposure level, although the associated 95% CIs were relatively wide for each exposure category, reflecting the small numbers of leukemia cases observed within each category.

There was a positive trend in the leukemia mortality rate with cumulative benzene exposure (Table 3). Table 3 also describes the association between leukemia and cumulative benzene exposure accrued in the period in 10 years, 10 to < 20 years, and ≥ 20 years prior. The largest magnitude of association was observed for benzene exposures accrued 10 to < 20 years previously (Table 3). Benzene exposure at that level for 10 years previously exhibited a smaller, positive association with leukemia, and benzene exposures received ≥ 20 years prior showed no association with leukemia. A model with three exposure time windows provided a substantially better fit to these data than a lifetime cumulative exposure model (LR = 13.2, 2 df, p-value = 0.001). Table 4 reports the association between cumulative benzene exposures accrued at younger (≤ 45 years) and older (≥ 45 years) ages and leukemia in the periods in < 10 years, 10 to < 20 years, and ≥ 20 years prior. When considering benzene exposures accrued at a 45 years of age, there was a positive association with leukemia mortality in the period shortly after exposure (< 10 years after exposure); there was minimal evidence of association within the period ≥ 10 years after exposure. Benzene exposures accrued at younger ages exhibited little evidence of association with leukemia. The fit of this model with exposure time windows defined, jointly by age at exposure and time since exposure was substantially better than the fit of a model for lifetime cumulative exposure (LR = 16.9, 5 df, p-value = 0.005). Table 4 also reports estimates of the association between cumulative benzene exposure accrued at younger (< 45 years) and older (≥ 45 years) ages and leukemia, summarized over all periods of time since exposure. A model that included separate terms for two age-of-exposure time windows provided a slightly better fit to these data than the simpler, nested model that included a single parameter for cumulative benzene exposure accrued at all ages (LR = 3.8, 1 df, p-value = 0.051).

The results reported in Tables 3 and 4 are minimally impacted by inclusion of birth cohort, sex, or employment status as covariates; some of the parameter estimates on which the reported effect measures were based changed by > 10% on exclusion of these covariates. The linear relative rate model provided an equivalent fit to these data for analyses of lifetime cumulative exposure; however, the log-linear model fit these data better for the exposure time window analyses. The cut point defining younger versus older age at exposure was chosen to broadly partition the ages at which exposures occur; there was minimal impact on relative rate estimates of selecting alternative cut points of 40 years or 50 years (results not shown).

In contrast to the exposure time window analyses presented above, which impose a piecewise constant model to describe temporal variation in exposure effects, the Averaging-Doll model implies a smooth time-varying exposure weighting function that jointly describes age at exposure and latency effects. Residual model deviances were compared for models in which benzene exposure acted upon the first, second, third, or fourth stage of a five-stage disease process (Table 5). A model under which the transition rate for the fourth stage was affected by benzene exposure resulted in the lowest residual deviance and therefore provided the best fit to these data. Figure 1A illustrates how the estimated effect of benzene exposure varies with time since exposure; the figure illustrates the natural log of the estimated relative rate of leukemia per 10 ppm-years for those 65 years of age (i.e., typical of the ages at which leukemia deaths occurred in this population). Consistent with observations from our exposure time window analyses, the modeled effect was largest for exposures that occurred in the prior decade and diminished rapidly with time since exposure. Figure 1B illustrates how the estimated effect of benzene exposure varies with age at exposure. As observed via time window analyses, the exposure effect was much smaller for exposures accrued prior to 45 years of age; the estimated effect of benzene exposure increased with age at exposure > 45 years of age. Multistage models were also fitted using a linear relative rate model; a model in which the transition rate for the penultimate stage was affected by benzene exposure provided the best fit to these data (Table 9). Evaluation of alternative models with as few as three stages, or as many as 15 stages, led to similar conclusions (see Supplemental Material online at http://www.epaonline.gov/docs/2008/108411/wpp.pdf). In all such models the best-fitting model is one in which benzene exposure acts at the penultimate stage.

Discussion

In the United States, the OSHA standard for benzene exposure is 1 ppm. The analyses in the present article suggest that accrual of benzene exposure at that level for a decade implies a modest increase in the relative rate of leukemia mortality, with the magnitude of the excess relative rate diminishing with time since exposure (Table 3). Because leukemia is a rare disease, this means that if a person is exposed to 1 ppm of benzene for a decade, it is still unlikely that they will develop leukemia. To understand the impact of benzene exposure on leukemia risk at a population level, however, the magnitude of the dose-response association and its variation over time must be accurately characterized. In this study population, the effect of benzene exposure on leukemia did not appear to persist indefinitely, but rather diminished with time since exposure. Of course, caution is warranted in drawing conclusions from an historical cohort study of a population in which working conditions differed substantially from those typical of contemporary work settings in the United States. Nonetheless, the findings of this historical cohort of U.S. workers may have substantial relevance for contemporary workers, both in the United States and abroad.

In prior analyses of this cohort, Crump (1994, 1996) investigated the hypothesis that the effect of benzene on leukemia risk diminishes with time since exposure by applying a set of time-dependent exposure weights with values informed by latency patterns for leukemia after radiotherapy for ankylosing spondylitis. Crump reported that analyses using a simple metric of cumulative exposure fitted these data better than analytes using those exposure weights (Crump 1996). In the present paper, rather than assigning a set of

Table 3. Estimated relative rates (and associated 95% CIs) for leukemia mortality expressed as a trend with benzene exposure (10 ppm-years) and within time windows defined by time since exposure.

<table>
<thead>
<tr>
<th>HR at 10 ppm-year (95% CI)</th>
<th>Cumulative exposure</th>
<th>Time since exposure</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>95% CI (10-year)</td>
<td>10 (10-23)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>≥ 20 (≥ 20)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>95% CI (10-year)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>≥ 20 (≥ 20)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>95% CI</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.19 (1.16-1.22)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.05 (0.97-1.13)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.30 (1.26-1.35)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>13.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.001</td>
</tr>
</tbody>
</table>

*RT comparing a model with terms for three exposure time windows to a model with one term for lifetime cumulative exposure.

Table 4. Estimated association between cumulative exposure to benzene and leukemia mortality among rubber hydrocarbon workers, Ohio, 1950-1998.

<table>
<thead>
<tr>
<th>HR (95% CI)</th>
<th>Cumulative exposure to benzene (ppm-years)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1 to < 50</td>
</tr>
<tr>
<td></td>
<td>50 to < 250</td>
</tr>
<tr>
<td></td>
<td>250 to < 500</td>
</tr>
<tr>
<td></td>
<td>≥ 500</td>
</tr>
<tr>
<td></td>
<td>95% CI (10-year)</td>
</tr>
<tr>
<td></td>
<td>1.06 (1.02-1.10)</td>
</tr>
<tr>
<td></td>
<td>1.19 (1.16-1.22)</td>
</tr>
<tr>
<td></td>
<td>1.05 (0.97-1.13)</td>
</tr>
<tr>
<td></td>
<td>1.30 (1.26-1.35)</td>
</tr>
<tr>
<td></td>
<td>13.1</td>
</tr>
<tr>
<td></td>
<td>0.001</td>
</tr>
</tbody>
</table>
Benzene and leukemia mortality

exposure weights based on patterns observed in a study of radiation exposure effects, the method of exposure time–window analysis was used. The overall association between cumulative exposure and leukemia mortality (RR at 10 ppm-years = 1.05) is nearly identical to the estimate derived by Rinsky et al. (2002) via a log-linear Cox regression model; the evidence of heterogeneity of benzene exposure effects with time since exposure is consistent with previous observations reported by Silver et al. (2002) and Finkelstein (2000).

These findings suggest that the effect of benzene on leukemia mortality is jointly characterized as an effect of age at exposure and time since exposure. The temporal pattern is consistent with a multistage cancer model with benzene affecting a late stage in the induction of leukemia; the relative rate of leukemia per unit exposure decreases with age at exposure and decreases with time since exposure (Thomas 1988). This conclusion is supported by analyses that involve fitting weighting expressions implied by the Armitage–Doll model. These weighted exposure metrics were evaluated via fittings of standard log-linear models as well as via fittings of linear relative rate models (the latter being the model form implied by the work of Whittow (1977), whereas the former approach was consistent with the model form used in the exposure time–window analysis). In these analyses, a model with five stages was posited. Armitage and Doll intentionally used the word “stage” rather than mutation to allow for the possibility of nonmutational events leading to cancer induction (Doll 2004). They correctly maintained that the application of multistage models for cancer risk estimation offers a heuristic tool that allows an investigator to explore potentially complex dose–time–response patterns by imposing some relatively minor constraints based on biological expectations about the disease process. Although mutational events are clearly central to carcinogenesis, useful insights from these models may be obtained even if carcinogenesis is viewed more generally as resulting from a series of rate-limiting pathogenic events, with exposure influencing one or more transition rates (Hanahan and Weinberg 2000; Morrow 1975).

The validity of these findings depends, in part, on the validity of the benzene exposure estimates derived for this cohort. To the extent that the exposure measurement error conforms to a classical model, attenuation of the dose response would be expected. However, nonrandom measurement errors could lead to bias away from the null. Estimates of these historical benzene exposures used air monitoring results, which were relatively sparse for the early years of operation (Utterback and Rinsky 1995; Williams and Paustenbach 2009). In theory, temporal variation in the magnitude of a benzene–leukemia association (e.g., diminished evidence of association with increasing time since exposure) could reflect increasing exposure misclassification for benzene exposure estimates for periods of employment further in the past. While it is difficult to assess such concerns, the observation in this cohort that the benzene–leukemia association diminished with time since exposure is consistent with patterns observed in other populations of benzene-exposed workers (Glass et al. 2004; Hayes et al. 1996), suggesting that the temporal patterns in this cohort are not simply an artifact of errors in exposure estimates.

Although the fitted models include a relatively small number of covariates, concerns about bias because of residual confounding are tempered by the fact that there are few leukemia risk agents that are plausible strong confounders of the association under study. Cigarette smoking is a nonoccupational source of benzene exposure and could, in theory, confound our estimates of association between occupational benzene exposure and leukemia. However, given the relatively small magnitude of association between smoking and leukemia mortality, high levels of correlation between occupational benzene exposure and smoking would be necessary to account for even modest dose–response trends for leukemia (Axelson and Greenland 1988; Siemiatycki et al. 1998).

The analyses in this article examined the broad category of all leukemia deaths. It is reasonable to posit that associations may vary in magnitude and temporal pattern by disease subtype. Although evaluation of heterogeneity in exposure–response analyses for different subtypes of leukemia is of interest because of small numbers of leukemia cases and the sparse information available from the death certificates, subtype-specific exposure–response analyses were not conducted. In addition, the use of mortality data in these analyses does not allow assessment of whether benzene exposure influences disease prognosis or incidence directly; it is possible that benzene exposure accrued proximate to death could influence mortality rates by reducing survival time rather than by increasing incidence rates. The relatively small number of

<table>
<thead>
<tr>
<th>RR at 10 ppm-years (95% CI)</th>
<th>Absorbed at <45 yrs of age</th>
<th>Absorbed at ≥45 yrs of age</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cumulative exposure</td>
<td></td>
<td></td>
</tr>
<tr>
<td><10 yrs prior</td>
<td>1.01 (1.08–1.09)</td>
<td>1.11 (1.04–1.17)</td>
</tr>
<tr>
<td>10 to 20 yrs prior</td>
<td>3.80 (1.00–1.22)</td>
<td>2.22 (1.11–1.32)</td>
</tr>
<tr>
<td>≥20 yrs prior</td>
<td>1.05 (0.89–1.21)</td>
<td>1.03 (0.82–1.31)</td>
</tr>
<tr>
<td>NO, not determined (the 95% confidence bound was not determined via the likelihood method).</td>
<td>NO, not determined (the 95% confidence bound was not determined via the likelihood method).</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Stage affected by benzene (j)</th>
<th>Log-linear rate model</th>
<th>Linear RR model</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>211.23</td>
<td>205.5</td>
</tr>
<tr>
<td>2</td>
<td>200.76</td>
<td>206.9</td>
</tr>
<tr>
<td>3</td>
<td>204.74</td>
<td>205.4</td>
</tr>
<tr>
<td>4</td>
<td>193.80</td>
<td>200.1</td>
</tr>
</tbody>
</table>

Comparison of models in which a cumulative weighted benzene exposure matrix was derived via a multistage model with five stages (i.e., k = 5), assuming a single stage, j, affected by benzene exposure.

Figure 1. (A) Fitted time-varying exposure weighting function, log relative rate (RR) of leukemia per 10 ppm-year benzene exposure by time since exposure for a person 63 years of age, rubber- and nylon-died workers, Ohio, 1940–1959. (B) Fitted time-varying exposure weighting function, log relative rate (RR) of leukemia per 10 ppm-year benzene exposure by age at exposure for a person 63 years of age, rubber- and nylon-died workers, Ohio, 1940–1959.

Environmental Health Perspectives • Volume 116 | Number 3 | March 2008 373
leukemia deaths also suggests that model results are relatively sensitive to small changes in distribution of events, adding or subtracting a single case in the highest exposure category could lead to a substantial change in the estimates of the association between cumulative exposure and leukemia mortality. Last, the Airmighty model, while often illustrated using mortality data (Airmighty and Doll 1954), is posed as a model of disease incidence; it is likely that the conclusions obtained in these analyses would differ from those obtained via analyses of incidence data.

Since 1987, the Chinese Academy of Preventive Medicine has collaborated with the U.S. National Cancer Institute on a large-scale study of cancer among Chinese workers exposed to benzene (NCI-CAPM study) (Hayes et al. 1999). Although the NCI-CAPM study encompasses more leukemia cases than in this rubber hydrochloride cohort study, several concerns have been raised about the validity of the exposure estimates used in the previously reported analyses of the NCI-CAPM study (Hayes et al. 2001).

The findings illustrate the importance of attention to dynamic changes in exposure-response patterns with temporal factors such as time since exposure and age at exposure.

Failure to account for variation with time since exposure in the effect of an increment of benzene exposure on the relative rate of leukemia may lead to underestimation of the excess rate of leukemia in some risk periods (and overestimation of the excess rate of leukemia in other risk periods). In these analyses, the effect of an increment of benzene exposure on leukemia mortality appears promptly, diminishes with time since exposure, and is of greater magnitude for workers exposed at older ages than for those exposed at younger ages. These temporal patterns of association are consistent with a late-stage carcinogen and suggest that occupational protection efforts give particular consideration to the risks of benzene-induced leukemia faced by older workers. Further attention should be given to assessment of age at exposure in other benzene-exposed populations, specifically to the potentially greater susceptibility of older workers to benzene-induced leukemia.

Good Afternoon SMEs,

Please remember to use the citations for both ATSDR articles in your reports. Please read them, there is a wealth of knowledge on the SharePoint site that you need to know. Read the attached documents, the MS word document provides analysis by the Office of Public Health.
Please consider your environmental responsibility before printing this e-mail & any documents.
Good Afternoon,

Per the monthly call, I have included the abstracts for the two controversial Bove et al articles on Camp Lejeune. We will discuss these at the monthly call next week.

Mortality study of civilian employees exposed to contaminated drinking water at USMC Base Camp Lejeune: a retrospective cohort study.

Bove FJ, Ruckart PZ, Maslia M, Larson TC.

Author information

Abstract

BACKGROUND:

Two drinking water systems at U.S. Marine Corps Base Camp Lejeune, North Carolina were contaminated with solvents during 1950s-1985.

METHODS:

We conducted a retrospective cohort mortality study of 4,647 civilian, full-time workers employed at Camp Lejeune during 1973-1985 and potentially exposed to contaminated drinking water. We selected a comparison cohort of 4,690 Camp Pendleton workers employed during 1973-1985 and unexposed to contaminated drinking water. Mortality follow-up period was 1979-2008. Cause-specific standardized mortality ratios utilized U.S. age-, sex-, race-, and calendar period-specific mortality rates as reference. We used survival analysis to compare mortality rates between Camp Lejeune and Camp Pendleton workers and assess the effects of estimated cumulative contaminant exposures within the Camp Lejeune cohort. Ground water contaminant fate/transport and distribution system models provided monthly estimated contaminant levels in drinking water serving workplaces at Camp Lejeune. The confidence interval (CI) indicated precision of effect estimates.

RESULTS:

Compared to Camp Pendleton, Camp Lejeune workers had mortality hazard ratios (HRs) >1.50 for kidney cancer (HR = 1.92, 95% CI: 0.58, 6.34), leukemias (HR = 1.59, 95% CI: 0.66, 3.84), multiple myeloma (HR =
1.84, 95% CI: 0.45, 7.58), rectal cancer (HR = 1.65, 95% CI: 0.36, 7.44), oral cavity cancers (HR = 1.93, 95% CI: 0.34, 10.81), and Parkinson's disease (HR = 3.13, 95% CI: 0.76, 12.81). Within the Camp Lejeune cohort, monotonic exposure-response relationships were observed for leukemia and vinyl chloride and PCE, with mortality HRs at the high exposure category of 1.72 (95% CI: 0.33, 8.83) and 1.82 (95% CI: 0.36, 9.32), respectively. Cumulative exposures were above the median for most deaths from cancers of the kidney, esophagus, rectum, prostate, and Parkinson's disease, but small numbers precluded evaluation of exposure-response relationships.

CONCLUSION:

The study found elevated HRs in the Camp Lejeune cohort for several causes of death including cancers of the kidney, rectum, oral cavity, leukemias, multiple myeloma, and Parkinson's disease. Only 14% of the Camp Lejeune cohort died by end of follow-up, producing small numbers of ca

Evaluation of mortality among marines and navy personnel exposed to contaminated drinking water at USMC base Camp Lejeune: a retrospective cohort study.

Bove FJ, Ruckart PZ, Maslia M, Larson TC.

Author information

Abstract

BACKGROUND:

Two drinking water systems at U.S. Marine Corps Base Camp Lejeune, North Carolina were contaminated with solvents during 1950s-1985.

METHODS:

We conducted a retrospective cohort mortality study of Marine and Naval personnel who began service during 1975-1985 and were stationed at Camp Lejeune or Camp Pendleton, California during this period. Camp Pendleton's drinking water was uncontaminated. Mortality follow-up was 1979-2008. Standardized Mortality Ratios were calculated using U.S. mortality rates as reference. We used survival analysis to compare mortality rates between Camp Lejeune (N = 154,932) and Camp Pendleton (N = 154,969) cohorts and assess effects of cumulative exposures to contaminants within the Camp Lejeune cohort. Models estimated monthly contaminant levels at residences. Confidence intervals (CIs) indicated precision of effect estimates.

RESULTS:

There were 8,964 and 9,365 deaths respectively, in the Camp Lejeune and Camp Pendleton cohorts. Compared to Camp Pendleton, Camp Lejeune had elevated mortality hazard ratios (HRs) for all cancers (HR = 1.10, 95% CI: 1.00, 1.20), kidney cancer (HR = 1.35, 95% CI: 0.84, 2.16), liver cancer (HR = 1.42, 95% CI: 0.92, 2.20), esophageal cancer (HR = 1.43 95% CI: 0.85, 2.38), cervical cancer (HR = 1.33, 95% CI: 0.24, 7.32), Hodgkin lymphoma (HR = 1.47, 95% CI: 0.71, 3.06), and multiple myeloma (HR = 1.68, 95% CI: 0.76, 3.72). Within the Camp Lejeune cohort, monotonic categorical cumulative exposure trends were observed for kidney cancer and
total contaminants (HR, high cumulative exposure = 1.54, 95% CI: 0.63, 3.75; log10 β = 0.06, 95% CI: -0.05, 0.17), Hodgkin lymphoma and trichloroethylene (HR, high cumulative exposure = 1.97, 95% CI: 0.55, 7.03; β = 0.00005, 95% CI: -0.00003, 0.00013) and benzene (HR, high cumulative exposure = 1.94, 95% CI: 0.54, 6.95; β = 0.00203, 95% CI: -0.00339, 0.00745). Amyotrophic Lateral Sclerosis (ALS) had HR = 2.21 (95% CI: 0.71, 6.86) at high cumulative vinyl chloride exposure but a non-monotonic exposure-response relationship (β = 0.0011, 95% CI: 0.0002, 0.0020).

CONCLUSION:

The study found elevated HRs at Camp Lejune for several causes of death including cancers of the kidney, liver, esophagus, cervix, multiple myeloma, Hodgkin lymphoma and ALS. CIs were wide for most HRs. Because <6% of the cohort had died, long-term follow-up would be necessary to comprehensively assess effects of drinking water exposures at the base.
This article was brought to my attention from (b) (6). Should we send to the SMEs?

Per (b) (6): Please see the newly released report from IOM entitled Review of VA Clinical Guidance for Health Conditions Identified by the Camp Lejeune Legislation.

http://books.nap.edu/openbook.php?record_id=18991
Good Afternoon All,

Attached is a good summary for interpreting confidence intervals and p-values submitted by [b]{(b) (6)}[/]. This file is also available on the SharePoint site under 'Shared Documents'.
All,

Please see the attached Fact Sheet from ATSDR reviewing the Bove et al article.

Thanks,
Evaluation of mortality among Marines and Navy personnel exposed to contaminated drinking water at USMC Base Camp Lejeune: A retrospective cohort study

Study Purpose
The purpose of this study was to determine whether residential exposures of Marines and Navy personnel to contaminated drinking water at Camp Lejeune increased risk of mortality from cancers and other chronic diseases.

What Was Studied
The study evaluated specific causes of death in 154,932 Marines and Navy personnel who began service during 1975-1985 and were stationed at Camp Lejeune anytime during this period. We also evaluated a comparison group of 154,969 Marines and Navy personnel from Camp Pendleton. The Camp Pendleton group was not exposed to contaminated drinking water, but was otherwise similar to the Camp Lejeune group.

Cause of death data from 1979-2008 was used to study the Camp Lejeune and Camp Pendleton cohorts. Information on causes of death was obtained from the National Center for Health Statistics National Death Index (NDI). The study included all underlying causes of death that other studies have shown associations with one or more of the chemicals found in the drinking water at Camp Lejeune. Causes of death were selected based on literature reviews conducted by the U.S. Environmental Protection Agency (EPA), the National Toxicology Program (NTP), the International Agency for Research on Cancer (IARC), and ATSDR.

The causes of death studied include:

- Amyotrophic lateral sclerosis (ALS)
- Cancers of the bladder, brain, cervix, colon, esophagus, female breast, kidney, larynx, liver, lung, oral cavity, pancreas, prostate, rectum, and soft tissue
- Hematopoietic cancers
 - Hodgkin's Lymphoma
 - Leukemias
 - Multiple myeloma
 - Non-Hodgkin's lymphoma
- Non-cancerous kidney diseases
- Non-cancerous liver diseases
- Multiple sclerosis

Unit information with location for marines and navy personnel was not available in the Defense Manpower Data Center personnel database prior to 1975. The most heavily contaminated wells were shut down in 1985.

Continued on next page
Also included in the study were three causes of death that are known to be caused by cigarette smoking but are not known to be associated with the drinking water contaminants: cardiovascular disease, chronic obstructive pulmonary disease (COPD), and stomach cancer. These causes of death were included to assess the possible impact of smoking on the findings because we did not have information on smoking status for study subjects.

Features of this Study
The study included a comparison population from Camp Pendleton that was similar to the Camp Lejeune cohort on risk factors such as military training, occupations, and smoking. Camp Pendleton did not have a contaminated drinking water supply.

Residential cumulative exposure to each contaminant was based on results from the water modeling and the location and duration of residence.

Key Results
Compared to Camp Pendleton, the Camp Lejeune group had higher mortality rates for the following causes of death:

- Cancers of the cervix, esophagus, kidney, liver, lung, pancreas, prostate, rectum, and soft tissue
- Hodgkin’s lymphoma
- Leukemias
- Multiple myeloma
- Multiple sclerosis

The higher rates for kidney cancer, cervical cancer, Hodgkin’s lymphoma, leukemias, multiple myeloma, and lung cancer were mainly among those with higher cumulative exposures to the contaminants. However, the precision of the estimated rates of many of these conditions was low.

The findings for the smoking-related causes of death such as stomach cancer, cardiovascular disease, and COPD suggested that smoking would have only a slight impact on the associations between causes of death and exposure to the drinking water contaminants at Camp Lejeune.

Conclusion
The study found increased risk of death in the Camp Lejeune cohort for several causes including cancers of the cervix, esophagus, kidney, and liver, Hodgkin’s lymphoma, and multiple myeloma. This study makes an important contribution to the body of evidence about harm caused by these chemicals. However, due to its limitations it does not provide definitive evidence for causality nor can it answer the question whether an individual has been affected by these exposures at Camp Lejeune.
Bove noted on slide-11:

- Strength: No. of Individuals in study and minimal loss of individuals to follow-up.
- Weaknesses: 97% under age of 55; 6% mortality; disease misclassification, lack of info. on other risk factors; poor historical records

Biography

Frank Bove is a senior epidemiologist in the Division of Health Studies, Agency for Toxic Substances and Disease Registry (ATSDR)/CDC since 1991. His research has focused on the health effects of drinking water contamination and exposures to toxic waste sites. Currently, he is working on health studies evaluating drinking water exposures to high concentrations of TCE, PCE, and vinyl chloride at U.S. Marine Corps Base Camp Lejeune, for which he recently won the 2014 David Ozonoff Unsung Hero Award.

From 1986 to 1991, Dr. Bove was a research scientist at the NJ Department of Health, Environmental Health Service. He has a masters in Environmental Health Science (1984), and a Sc.D jointly in Occupational Health Science and in Epidemiology (1987), from the Harvard University School of Public Health. Bove has a BA in Political Science and in Philosophy from the University of Pennsylvania (1973). From 1973 to 1975, he attended graduate school in philosophy at Boston University (no degree). During 1975-1982, he worked as an organizer in the Boston Metro area on various issues including energy, environment, health, housing, and welfare rights. He is currently on the board of ECO-Action, a grassroots environmental organization in Atlanta, GA.
Good Morning,

(b) (6) wanted to share the article below.

(b) (6)

See comment in PubMed Commons below

Mortality study of civilian employees exposed to contaminated drinking water at USMC Base Camp Lejeune: a retrospective cohort study.

Bove FJ, Ruckart PZ, Maslia M, Larson TC.

Abstract

BACKGROUND:

Two drinking water systems at U.S. Marine Corps Base Camp Lejeune, North Carolina were contaminated with solvents during 1950s-1985.

METHODS:

We conducted a retrospective cohort mortality study of 4,647 civilian, full-time workers employed at Camp Lejeune during 1973-1985 and potentially exposed to contaminated drinking water. We selected a comparison cohort of 4,690 Camp Pendleton workers employed during 1973-1985 and unexposed to contaminated drinking water. Mortality follow-up period was 1978-2008. Cause-specific standardized mortality ratios utilized U.S. age-, sex-, race-, and calendar period-specific mortality rates as reference. We used survival analysis to compare mortality rates between Camp Lejeune and Camp Pendleton workers and assess the effects of estimated cumulative contaminant exposures within the Camp Lejeune cohort. Ground water contaminant fate/transport and distribution system models provided monthly estimated contaminant levels in drinking water serving workplaces at Camp Lejeune. The confidence interval (CI) indicated precision of effect estimates.

RESULTS:

Compared to Camp Pendleton, Camp Lejeune workers had mortality hazard ratios (HRs) >1.50 for kidney cancer (HR = 1.92, 95% CI: 0.58, 6.34), leukemias (HR = 1.59, 95% CI: 0.66, 3.84), multiple myeloma (HR = 1.84, 95% CI: 0.45, 7.58), rectal cancer (HR = 1.65, 95% CI: 0.36, 7.44), oral cavity cancers (HR = 1.93, 95% CI: 0.34, 10.81), and Parkinson’s disease (HR = 3.13, 95% CI: 0.76, 12.81). Within the Camp Lejeune cohort, monotonic exposure-response relationships were observed for leukemia and vinyl chloride and PCE, with mortality HRs at the high exposure category of 1.72 (95% CI: 0.33, 8.83) and 1.82 (95% CI: 0.36, 9.32), respectively. Cumulative exposures were above the median for most deaths from cancers of the kidney, esophagus, rectum, prostate, and Parkinson’s disease, but small numbers precluded evaluation of exposure-response relationships.

CONCLUSION:
The study found elevated HRs in the Camp Lejeune cohort for several causes of death including cancers of the kidney, rectum, oral cavity, leukemias, multiple myeloma, and Parkinson’s disease. Only 14% of the Camp Lejeune cohort died by end of follow-up, producing small numbers of cause-specific deaths and wide CIs. Additional follow-up would be necessary to comprehensively assess drinking water exposure effects at the base.
All,

We will discuss the ATSDR Mortality study on today's call using the attached document.
Increased risk of acute myelogenous leukemia and multiple myeloma in a historical cohort of upstream petroleum workers exposed to crude oil.

Kirkeleit J¹, Riise T, Bråtveit M, Moen BE.

Author information:
¹Section for Occupational Medicine, Department of Public Health and Primary Health Care, University of Bergen, Bergen, Norway. Jorunn.Kirkeleit@isf.uib.no

Abstract

Benzene exposure has been shown to be related to acute myelogenous leukemia, while the association with multiple myeloma and non-Hodgkin lymphoma has been a much-debated issue. We performed a historical cohort study to investigate whether workers employed in Norway's upstream petroleum industry exposed to crude oil and other products containing benzene have an increased risk of developing various subtypes of hematologic neoplasms. Using the Norwegian Registry of Employers and Employees we included all 27,919 offshore workers registered from 1981 to 2003 and 366,114 referents from the general working population matched by gender, age, and community of residence. The cohort was linked to the Cancer Registry of Norway. Workers in the job category "upstream operator offshore", having the most extensive contact with crude oil, had an excess risk of hematologic neoplasms (blood and bone marrow) (rate ratio (RR) 1.90, 95% confidence interval (95% CI): 1.19-3.02). This was ascribed to an increased risk of acute myelogenous
leukemia (RR 2.89, 95% CI: 1.25-6.67) and multiple myeloma (RR 2.49, 95% CI: 1.21-5.13). There were no statistical differences between the groups in respect to non-Hodgkin lymphoma. The results suggest that benzene exposure, which most probably caused the increased risk of acute myelogenous leukemia, also resulted in an increased risk of multiple myeloma.

PMID: 17906934 [PubMed - indexed for MEDLINE]
(b) (6) has sent this article to you from Occupational and Environmental Medicine.

0139â€¦Occupational exposure to chlorinated solvents and lung cancer: results from the ICARE study
http://oem.bmj.com/content/71/Suppl_1/A17.1.abstract?cafr

I thought you might be interested in the article I found in the publication: Occupational and Environmental Medicine.

This is sent to you as an email-a-colleague feature from Occupational and Environmental Medicine at http://oem.bmj.com
On Tuesday, June 16, 2015 8:10 AM, AAPA Medical Watch <aapa@multibriefs.com> wrote:

This message contains images. If you don't see images, click here to view. Advertise in this news brief.
LEADING THE NEWS

Smoking blamed for half of deaths from major cancers in people over 35

HealthDay News

About half of U.S. deaths caused by certain cancers — including lung, colon and pancreatic tumors — can be attributed to smoking, a new American Cancer Society study estimates.

In 2011, nearly half of the almost 346,000 deaths from 12 cancers in people 35 and older were linked to smoking, the study found.

"Despite large declines in smoking in the United States over the last 50 years, smoking still accounts for the majority of lung cancer deaths," said study co-author Rebecca Siegel, the American Cancer Society's director of surveillance information.

NEWS FROM AAPA

Looking for similar articles? Search here. keyword AAPA.

The best just got better

Hippo Education

PAs trust AAPA for the best tools and resources and Hippo Education for the most effective PANCE/PANRE reviews. AAPA and Hippo Education have partnered to bring you the new AAPA PANCE/PANRE Review. Follow the NCCPA blueprint, practice with 1,700-plus questions, earn up to 50 hours of AAPA Category 1 CME credits and more.

Get started.

SPONSORED CONTENT

* What to do if you failed the PANCE or PANRE?
How long does it take to study for the PANCE or PANRE?
Free PANCE/PANRE study cards --> ACS, CHF and EKG cards.
Get 15% off any of our online review subscriptions!
Looking for a great Live PANCE or PANRE review course? Check out our dates here.

PA FEATURED JOB OPPORTUNITIES

PA in Emergency Care
HCA — The Healthcare Company
Dublin, Georgia

PA in Hematology
Univ. of Utah Division of Human Resources
Salt Lake City

PA in Cardiac Surgery
VA Careers
Portland, Oregon

PA in Rheumatology
Park Nicollet Health Services
Minneapolis, Minnesota

PA in Primary Care
Cambridge Health Alliance
Cambridge, Massachusetts

Complete listing of all PA Opportunities

PRODUCT SHOWCASE

AASPA Proudly Presents
The Annual AASPA CME/FCCS Meeting

Learn and discuss the latest cutting edge topics of interest to the profession. Clinical issues relevant in the day-to-day practice of the surgical PA will be presented. Come spend time with your colleagues and share in this education experience.

CLINICAL PRACTICE

Looking for similar articles? Search here, keyword Primary Care.

Low serum 25(OH)D₃ in patients newly diagnosed with type 2 diabetes
HealthDay News
Serum 25-hydroxyvitamin D₃ (25(OH)D₃) is associated with glucose-stimulated insulin secretion and β-cell function in individuals with newly diagnosed type 2 diabetes, according to a study published online in the Journal of Diabetes Investigation. The researchers found that patients with newly diagnosed type 2 diabetes had much lower serum 25(OH)D₃ (P < 0.01); the prevalence of hypovitaminosis 25(OH)D₃ in patients with diabetes was 62.9 percent.
Patent awarded to Kansas State preclinical cancer detection test platform

Medical Xpress

A U.S. patent has been awarded to a Kansas State University technology that quickly detects the early stages of cancer before physical symptoms ever appear. The technology consists of iron/ironoxide core/shell nanoparticles coated with amino acids and a fluorescent dye. The amino acids and dye interact with enzymes in a blood sample and make it possible to diagnose a cancer type even if a patient is not showing physical symptoms associated with cancer.

FDA approve brain implant for treating symptoms of Parkinson’s

Medical News Today

The U.S. Food and Drug Administration have given approval to an implantable brain stimulation device for reducing the symptoms of Parkinson’s disease and essential tremor when medication alone is unable to provide adequate relief. The Brio Neurostimulation System is the second device to be approved by the FDA for treating these disorders and can reduce symptoms such as balance problems, tremors and walking difficulties.

Fiber Sampling Program

Konsyl Psyllium Fiber is the #1 physician recommended all natural psyllium fiber. Konsyl helps:

- Lower Cholesterol to Promote Heart Health*
- Support Digestive Health*
- Support Healthy Weight*

Click for free patient samples

*These statements have not been evaluated by the Food and Drug Administration. This product is not intended to diagnose, treat, cure or prevent any disease
TRENDING ARTICLES

Missed our previous issues? See which articles your colleagues read most.

- CDC releases updated STD treatment guidelines (Infectious News Today)
- Distinguished Fellow program (AAPA)
- 'Viagra for women' wins FDA panel approval with strings attached (USA Today)
- Study can help spur beneficial lifestyle changes in patients to reduce Alzheimer's risk (The Medical News)
- Most ER patients with low-risk PE eligible for outpatient treatment (HealthDay News)

Don't be left behind. Click here to see what else you missed.

PHARMACEUTICAL NEWS

Looking for similar articles? Search here, keyword FDA.

Novartis announces FDA approval of Promacta for treatment of children with chronic ITP

The Medical News

Novartis announced today that the U.S. Food and Drug Administration has approved Promacta (eltrombopag) for the treatment of children 6 years and older with chronic immune thrombocytopenia who have had an insufficient response to corticosteroids, immunoglobulins or splenectomy. Promacta was approved by the FDA in 2008 for use in adult patients with the same condition. Promacta is a once-daily oral thrombopoietin receptor agonist that works by inducing stimulation and differentiation of megakaryocytes (large cells, found especially in bone marrow) from bone marrow stem cells to increase platelet production.

PRODUCT SHOWCASES

New Clinical Study Information

An Important Public Health Initiative

Get-One Cross-linked Hyaluronate
The active ingredients found in the knee health supplement Cosamin® DS (FCHG4®), Glucosamine HCI and TRH122® Chondroitin Sulfate) were recently used in a NIH funded study showing reduced levels of C-reactive protein (CRP), a key systemic biomarker. Study conducted at the Fred Hutchinson Cancer Research Center.

Alliance for Rational Use of NSAIDs - a public health coalition dedicated to safe and appropriate use of nonsteroidal anti-inflammatory drugs (NSAIDs). Our mission is to inform and educate healthcare professionals and the public on safe and appropriate use of NSAIDs and to balance benefits and risks when taking NSAIDs.

Gel-One® Cross-linked Hyaluronate is an innovative cushioning gel that requires just one injection. It provides a lower volume treatment option that has demonstrated effectiveness in helping patients with osteoarthritis of the knee regain their active lifestyles. Unlike other viscosupplement treatments, Gel-One requires only 3mL for safe, effective and complete treatment.

Gel-One is a registered trademark of Seikagaku Corporation.

Study: Drug for psoriasis shows results after 4 weeks
International Business Times
A recent study claims that a new drug may soon offer some relief to patients suffering from the skin disease called psoriasis. The recently conducted clinical trial of the drug helped 40 percent of patients get rid of skin problems linked to the disease. The drug, called ixekizumab, was clinically tested at Britain’s University of Manchester. The researchers found that the patients who receive ixekizumab showed extensive improvement in their condition. Nearly half of the patients started to show improvement by the end of the fourth week.

Product Showcase
Trezix™
Click above to learn more about a Schedule II alternative Treatment for Moderately to Moderately Severe Pain.

Trezix™ Capsules are indicated for the relief of moderate to moderately severe pain.

Please view all warnings prior to prescribing.

Carfilzomib tops bortezomib in relapsed myeloma
MedPage Today
Patients with relapsed myeloma lived twice as long without progression when treated with carfilzomib (Kyprolis) versus bortezomib (Velcade), a large randomized trial showed. Carfilzomib plus dexamethasone resulted in a median progression-free survival (PFS) of 18.7 months versus 9.4 months with the bortezomib-dexamethasone combination. Overall response, complete response, and very good partial response all favored the carfilzomib arm in the trial, which enrolled more than 900 patients.
Endometriosis may increase health risk during pregnancy

UPI

Women with endometriosis are significantly more at risk to have a miscarriage, according to a study of nearly 15,000 women in Scotland. Although women with the condition can have children and most pregnancies are fine, the odds for a wide range of complications during pregnancy increase greatly with endometriosis. Researchers found that endometriosis increases the odds of a miscarriage by 76 percent, increases the risk of premature birth by 26 percent and chances of needing a cesarean section by 40 percent.

ATS: New sleep quality, duration recommendations

Monthly Prescribing Reference

The American Thoracic Society has issued a statement with recommendations for clinicians and the general public on obtaining good quality sleep and an adequate quantity of sleep. The statement has been published in the American Journal of Respiratory and Critical Care Medicine. The recommendations focus on sleep health in adults and children, the effects of work schedule, the impact of driving, and the diagnosis and treatment of obstructive sleep apnea and insomnia.