03.15-04/12/99-0232

FINAL

AQUATIC ASSESSMENT FOR STONE BAY

MARINE CORPS BASE CAMP LEJEUNE, NORTH CAROLINA

CONTRACT TASK ORDER 0100

APRIL 12, 1999

Prepared For:

DEPARTMENT OF THE NAVY ATLANTIC DIVISION NAVAL FACILITIES ENGINEERING COMMAND Norfolk, Virginia

Under the:

LANTDIV CLEAN Program Contract N62470-95-D-6007

Prepared By:

BAKER ENVIRONMENTAL, INC. Coraopolis, Pennsylvania

TABLE OF CONTENTS

	Page
LIST	OF ACRONYMS iv
EXEC	CUTIVE SUMMARY ES-1
1.0	INTRODUCTION 1-1 1.1 General Description 1-1 1.2 Purpose 1-1
2.0	SPECIES PROFILES2-12.1Hard Clam (Mercenaria mercenaria)2-12.2Little Black Mussel (Musculus niger)2-22.3American Oyster (Crassostrea virginica)2-3
3.0	INVESTIGATION ACTIVITIES3-13.1Previous Investigation3-13.2Aquatic Assessment Field Investigation3-23.2.1Reference Stations3-23.2.2Study Area Reconnaissance3-23.2.3Water Quality Measurements3-33.3Sediment Sampling3-33.4Biota Sampling3-43.5Sample Station Surveying3-53.6Sample Preparation3-53.7Quality Assurance3-63.7.1Data Quality Objectives3-6
4.0	AQUATIC ASSESSMENT4-14.1Methods4-14.1.1Comparison to Sediment Screening Values4-24.1.2Comparison to Benthic Literature Values4-24.1.3Comparison of Study Area Results to Reference Area Results4-34.1.4Ecological Receptor Models4-34.1.5Uncertainties4-54.2Sediment Evaluation4-74.3Benthic Tissue Evaluation4-84.3.1Clam Tissue4-84.3.2Mussel Tissue4-94.4Qualitative Benthic Evaluation of Copper and Lead Concentrations4-94.5Ecological Receptor Models4-9
5.0	SUMMARY OF FINDINGS5-15.1Sediment Evaluation5-15.2Biota Tissue Evaluation5-15.3Ecological Receptor Models5-25.4Conclusion5-2
6.0	REFERENCES

.

TABLE OF CONTENTS (Continued)

- CH2M Hill Analytical Data Surface Water Metal Results Table 3-1
- Table 3-2 CH2M Hill Analytical Data - Sediment Metal Results
- CH2M Hill Water Quality Measurements Table 3-3
- Water Quality Measurements Table 3-4
- Positive Detections in Sediment Table 3-5
- Table 3-6 Positive Detections in Clam Tissue
- Positive Detections in Mussel Tissue Table 3-7
- Positive Detections in Oyster Tissue Table 3-8
- Lowest Observed Adverse Effect Levels/No Observed Adverse Effect Levels Table 4-1
- Frequency and Range of Sediment Data Compared to Sediment Screening Levels Table 4-2
- Frequency and Range of Clam Tissue Data Compared to Reference Areas Table 4-3
- Frequency and Range of Mussel Tissue Data Compared to Reference Areas Table 4-4
- Table 4-5 Frequency and Range of Oyster Tissue Data Compared to Reference Areas
- **Qualitative Comparison of Copper Concentrations Detected in Benthic Samples** Table 4-6
- Table 4-7 Qualitative Comparison of Lead Concentrations Detected in Benthic Samples
- Table 4-8 Summary of Ecological Contaminants of Concern Per Media
- Table 4-9 Aquatic Species - Conservative Models - Study Area
- Aquatic Species Less Conservative Models Study Area Table 4-10
- Aquatic Species Less Conservative Models Reference Areas Table 4-11

LIST OF FIGURES

Figure 1-1	Site Location Map

Figure 3-1	Sample Location Map
Figure 3-2	Study Area Location Map

LIST OF ATTACHMENTS

Site Photographs
Analytical Results
Form I's
Analytical Quality Assurance
Ecological Information

LIST OF ACRONYMS AND ABBREVIATIONS

1 13 1

μg/kg	microgram per kilogram
μg/L	microgram per liter
AET	apparent effects threshold
Baker	Baker Environmental, Inc.
BSAF	biota to soil/water/sediment accumulation factor
cm	centimeter
CLP	contract laboratory program
DO	dissolved oxygen
DQO	data quality objective
ECOC	ecological contaminant of concern
EMD	Environmental Management Division
ER-L	effects range - low
ER-M	effects range - median
GPS	global positioning system
HQ	hazard quotient
LANTDIV	Naval Facilities Engineering Command, Atlantic Division
LCS	laboratory control sample
LD ₅₀	mean lethal dose
LOAEL	lowest-observed-adverse -effect level
MCB	Marine Corps Base, Camp Lejeune, North Carolina
mg/kg	milligram per kilogram
mg/L	milligram per liter
mm	millimeter
NOAA NOAEL	National Oceanographic and Atmospheric Administration no-observed-adverse-effect level
ppm	parts per million
ppt	parts per thousand
QA	quality assurance
SSV	sediment screening value
SU	standard unit
TAL	target analyte list
TOC	total organic carbon
USEPA	United States Environmental Protection Agency

EXECUTIVE SUMMARY

The New River system is an important resource to Marine Corps Base (MCB), Camp Lejeune and the general public. The estuary is used for many purposes including recreational activities and commercial fishing. MCB, Camp Lejeune takes a pro-active stance to ensure that none of the activities related to base operations cause an adverse impact to the surrounding environment.

In the interest of maintaining a healthy ecosystem, the base has completed an ecological assessment in a section of the river known as Stone Bay. The investigation was completed to address potential impact to the bay from ongoing operations at the Stone Bay Rifle Range. In particular, concerns were expressed as to the effect of spent ammunition on the aquatic environment. This study has evaluated the potential impact of copper and lead from spent ammunition at the rifle range.

Prior to initiating this detailed study, a previous investigation was completed by CH2M Hill during the summer of 1998. The CH2M Hill study entailed the collection of surface water and sediment samples which were analyzed for metals. The results of this study indicated that metal concentrations were below screening criteria established for the protection of aquatic species, suggesting that operations at the rifle range have not had an adverse impact upon ecological receptors in Stone Bay. Although the 1998 CH2M Hill study suggested that range operations had not negatively impacted the bay, it was felt that a more rigorous study be undertaken in Stone Bay to ensure that the range is not posing a risk to the aquatic environment.

Therefore, as a follow-up to the investigation completed by CH2M Hill, Baker Environmental completed the aquatic assessment presented herein. This assessment was performed using guidance established by the United States Environmental Protection Agency (USEPA) and included the collection of sediment and shellfish species. The shellfish for this study included: clams, mussels, and oysters. Sediment and shellfish were collected from locations within the safety fan portion of Stone Bay (referred to as the study area). The sediment and shellfish tissue were analyzed in the laboratory for copper and lead concentrations.

In addition to the sediment and shellfish samples collected within the study area, sediment and shellfish were collected from two areas within the bay outside the rifle range safety fan. These reference areas were selected to represent background conditions within the New River. The reference area information was used for comparative purposes to distinguish between baseline conditions within the New River system and the study area.

Sediment collected in the study area was evaluated in three ways: 1) detected copper and lead concentrations were compared with USEPA Region IV sediment screening values for the protection of benthic species, 2) detected copper and lead concentrations were compared to reference area sediment concentrations, and 3) detected copper and lead concentrations were evaluated in aquatic receptor models.

Shellfish tissue collected from the study area also was evaluated in three ways: 1) detected copper and lead concentrations were compared with concentrations detected in nationwide National Oceanic and Atmospheric Administration (NOAA) Status and Trend studies, 2) detected copper and lead concentrations were compared to reference area benthic tissue concentrations, and 3) detected copper and lead concentrations were evaluated in aquatic receptor models.

Aquatic receptor models were used in this study as another tool to assess the detected concentrations of copper and lead in the sediment and shellfish samples. These aquatic receptor models are USEPA-accepted, mathematically-generated models that represent different species of animals potentially inhabiting the area that may ingest sediment and shellfish within the bay. The great blue heron and the mink were the receptor models selected for this assessment. The models use species-specific ingestion rates in conjunction with site-specific sediment and shellfish copper and lead concentrations to determine potential risks to the specified animal.

ES-2

Results from the Stone Bay aquatic assessment are summarized below. These conclusions are based upon previous data collected, site-specific data obtained in January 1999, USEPA-accepted methods, and relevant scientific literature.

- The contaminants of concern from the rifle range, copper and lead, were detected below conservative sediment screening values, indicating that the shellfish communities within the study area are not adversely impacted by rifle range activities.
- Both copper and lead were detected below reference concentrations among oyster tissue samples and only slightly greater than reference concentrations in the clam and mussel tissue samples.
- A qualitative comparison of copper and lead concentrations to literature values suggests that there is no difference in copper and lead concentrations between the study area and literature values.
 - The results of the heron and mink models indicate that there are no risks present to these animals greater than the risks present in reference areas.

Results from this aquatic assessment indicate no significant differences between study area and reference area ecological conditions. An evaluation of sediment samples, biota tissue samples, and results of the ecological receptor models indicate no harmful effects from copper and lead concentrations to shellfish inhabiting Stone Bay. Models of animals eating the shellfish demonstrated a slight risk to the great blue heron in the study area as well as in the reference areas. Based upon an evaluation of all information, we cannot identify any differences between areas assumed to be unaffected by range operations and the study area. The results of this aquatic assessment indicate that no further actions are required to address the potential effects of spent ammunition on the aquatic environment of Stone Bay.

1.0 INTRODUCTION

This document presents the analytical results and findings from an aquatic assessment of Stone Bay at Marine Corps Base (MCB) Camp Lejeune, North Carolina. The report has been prepared by Baker Environmental, Inc. (Baker) for the Atlantic Division, Naval Facilities Engineering Command (LANTDIV) and MCB, Camp Lejeune.

1.1 General Description

Located in Onslow County, North Carolina, MCB Camp Lejeune is the host to six Marine Corps commands and two Navy commands. The entire facility includes approximately 236 square miles and is located within the generally flat, Atlantic Coastal Plain. As shown in Figure 1-1, MCB, Camp Lejeune is bisected by the New River which flows in a southeasterly direction and forms a large estuary before entering the Atlantic Ocean. Stone Bay is part of the large estuary formed by the New River.

1.2 Purpose

This aquatic assessment of Stone Bay has been performed to address concerns regarding the possible impact of ongoing operations at the Stone Bay Rifle Range. Specifically, that copper and lead present in spent ammunition from the rifle range, may be impacting the aquatic environment of Stone Bay. Two factors have brought about the concerns: (1) the rifle range fan, which delineates the area of projectile impact, extends into a portion of Stone Bay, and (2) the rifle range does not employ target backstops or projectile recycling; therefore, a portion of the total number of projectiles enter the bay during range operations.

The purpose of this investigation is to determine the potential impact of copper and lead in spent ammunition, on the aquatic environment. Analytical results from the sampling effort have been used to conduct a semi-quantitative ecological risk assessment on the aquatic habitat of Stone Bay. The portion of Stone Bay located within the rifle range fan, which is referred to as the "study area" throughout this report, was of primary concern during the project planning phase and during preparation of this report.

This aquatic assessment focuses upon the potential of copper and lead, to impact benthic organisms (i.e., organisms living in or on the bottom of a water body) within the study area. The target benthic organisms for this study are oysters, clams, and mussels. The target organisms were selected because of the following characteristics:

- The organisms are sedentary; therefore, they are constantly exposed to the surface water and sediment within the study area.
- The organisms represent an important intermediate trophic level in the aquatic food chain.
- Each of the target organisms are known to inhabit Stone Bay. Several planting sites managed by the state of North Carolina are located adjacent to the study area. The areas are used by commercial fisherman to harvest oysters and clams.
 - Oyster, clams, and mussels are known to be sensitive to contamination. Note: Further details of the selected species are presented in Section 2.0.

The aquatic assessment contained in this report consists of sediment and biota tissue analyses of target organisms obtained from five sampling locations within the study area and from two reference sampling locations. The reference locations are not expected to be impacted by rifle range activities. Copper and lead concentrations detected in the sediment have been compared to sediment screening values developed for the protection of benthic species. The concentration of copper and lead in sediment samples collected from the study area have also been compared with concentrations in sediment obtained from the reference stations. The biota tissue samples collected from the study area have been compared to the biota tissue samples collected from the reference stations. In addition, copper and lead tissue samples have been compared to literature residue values for concentrations that are typical nationwide.

2.0 SPECIES PROFILES

The following sections present a brief description and profile of each target organism used in the aquatic assessment of Stone Bay.

2.1 Hard Clam (Mercenaria mercenaria)

The hard clam, or Quohog is found from the Gulf of St. Lawrence in Canada throughout the Gulf of Mexico to Texas. Hard clams are abundant from Virginia to Massachusetts and support isolated breeding communities above Cape Cod. They occur throughout the South Atlantic in estuaries from the intertidal zone to a water depth of 15 meters or more (NCDENR, 1997).

Hard clams support an important commercial fishery along the Atlantic coast. Among the species of clams harvested in the United States, hard clams yield the highest dollar value, and are exceeded only by surf clams and ocean quohogs, in kilograms of meats harvested. The harvest value of hard clams in North Carolina increased significantly from 1971 to 1995. The sustained increase may be attributed to a rise in both price and landings over that time frame. Annual dockside value reached an all time peak in 1987, with a nominal value of approximately \$8.4 million. Expressed in constant dollars (i.e., removing the effects of inflation by using consumer price index values from 1982 - 1984), the value of hard clams rose 1,789% from 1971 to the peak in 1987, then declined 44% between 1987 and 1995. Most of the decline can be attributed to a decrease in the number of mechanical harvest fisheries and closure of many harvest areas due to red tide in 1988. With respect to gear used by clammers for harvesting, during the period 1979 - 1993, hand harvesting accounted for 69% of the total production. Prices received by fisherman vary by different sizes, or grades, of hard clams. In general, the average price for hard clams has increased from 1 cent per clam in 1971 to 13 cents per clam in 1995 (NCDENR, 1997).

Hard clams live in the substrate with the long shell axis 25°-45° from vertical. The average depth at which clams live is 2 centimeter (cm) in sand and 1 cm in mud; smaller clams burrow deeper than large clams. Horizontal movement of adult clams is limited and the distance traveled is generally correlated with clam size, smaller clams being more active (Eversole, 1987).

Suspension feeding bivalves, such as the hard clam, obtain food by filtering suspended particulate matter and absorbing dissolved organics from the water. Water enters through the ventral inhalant siphon, passes through the gills to an exhalent cavity and out the forsal exhalent siphon. Food particles suspended on the inhalant surface of the gills are sorted and passed to the gill edges and moved to the anterior of the labial palps (Eversole, 1987).

Crabs appear to be the major predators of the hard clam in the South Atlantic region. The blue crab is probably the most destructive predator among crabs; mud crabs and stone crabs prey less on hard clams (Eversole, 1987).

Temperature has been considered the most important environmental requirement in determining the time of spawning, because a certain degree of gonad ripeness or maturation must be attained before hard clams can respond to specific spawning stimuli. The hard clam has been found growing in waters of 4 parts per thousand (ppt) to over 35 ppt salinity, but growth is optimal at 24 - 28 ppt. Native clam beds are known to occur at salinities of 10 - 28 ppt in North Carolina. Dissolved oxygen concentrations of 6.8 - 7.4 milligrams per liter (mg/L) are recommended for successful culture of the hard clam and are critical to the larval life stages. Adult hard clams encounter a wide range of dissolved oxygen (DO) concentrations and have evolved several metabolic mechanisms to handle such conditions. The hard clam usually lives in well-buffered areas; however, pH may decrease below 7.0 Standard Units (S.U.) in tide pools and estuaries with poor circulation, heavy siltation, pollution, and hydrogen sulfide production. Substrate type and the degree of sorting appears to be an important factor influencing the setting of hard clam larvae. It has been observed in the laboratory that hard clams prefer to set in sand rather than in mud. Adult hard clams occur most frequently in sandy bottoms with shells (Eversole, 1987).

2.2 Little Black Mussel (Musculus niger)

Mussels have a wide range of habitat and are found from the Arctic Ocean to North Carolina. They are most diverse in eastern North America. They spend their entire life partially or wholly buried in mud, sand, or gravel in permanent bodies of water. Mussels prefer salinity ranging from 0 ppt to 35 ppt. The vast majority of species are found in streams, but a few are present in ponds or lakes. Although they can be found in almost any type of stream bottom, mussels are usually absent from, or rare in, areas of shifting sand or deep silt (FMM, 1999). The shells of mussels are thin and oval

shaped. The beak of the mussel is located close to the front end. They have rather prominent radiating lines at both ends with a relatively smooth area at the center of each valve. Mussels typically are a deep brownish black color with a rusty brown peristracum and a pearly white interior. The mussel moves from place to place using its foot as a prehensile organ and spinning a new byssus (mass of filament used for attachment) when a satisfactory situation has been found (Morris, 1973). Mussels attach to plant stems, rhizomes, stones, or shells by means of their byssus (White C.P., 1997).

Mussels continuously pump water through their bodies filtering food from the incoming tide. The food consists of detritus, which is organic matter found on the stream or lake bottom, and plankton, composed of microscopic plants and animals suspended in the water. Water enters via the incurrent or branchial siphon and exits via the excurrent or anal siphon (FMM, 1999).

Mussels are long-lived, with many species living more than 10 years and some reported to live more than 100 years. In many species, the surface of the shell has distinct black lines or ridges, which are believed to represent winter rest periods. The rest periods, or growth rings, are often used to estimate the age of a mussel. Mussels are an important food source for many animals, including muskrats, minks, otters, fishes, and some birds (FMM, 1999).

Mussels are one of the most endangered groups of animals in North America. Surveys conducted over the past few decades have documented significant declines in mussel populations across North America. Among the factors thought to be responsible for the declines are over harvest; siltation of habitat from agriculture, poor land management, channelization, and impoundments; competition from exotic species such as the zebra mussel; and pollution by herbicides, pesticides, and other chemicals (FMM, 1999).

2.3 American Oyster (Crassostrea virginica)

The American oyster, also referred to as the eastern oyster or the common oyster, plays a valuable role in the estuaries of North Carolina because its colonization of bottom lands creates a productive habitat, and the animal itself is harvested as a food item. The commercial oyster fishery is one of the most valuable seafood industries in the nation. Oyster production in 1991 was valued at \$98 million, which represents about 3% of the \$3.3 billion dockside value of the U.S. commercial

seafood industry. Oyster production in North Carolina during 1991 (\$1.2 million) comprised 1.8% of the total state commercial edible seafood production of \$66.8 million. The average price per pound of dockside oyster meat harvested in North Carolina during 1991 was \$3.35; above the national average of \$3.08. Nationally, oysters are among the top ten species in annual harvest value, as well as in price per pound (NCDENR, 1995).

The American oyster may be found in coastal areas from the Gulf of St. Lawrence in Canada throughout along the eastern seaboard. The American oyster may also be found in the Gulf of Mexico, the Bay of Campeche, Mexico and throughout the West Indies. Optimum salinity range for the species falls between 10 and 28 ppt, although oysters may be found in salinities as low as 5 ppt and as high as 32 ppt. Salinities of less than 10 to 12 ppt can prevent larval setting even though adult oysters may continue to exist. Low levels of DO may also cause mortality of set oysters. Adult oysters can survive for several days when DO concentrations are less than 1.0 mg/L, but survival times vary inversely with temperature. Although water temperature may affect larval development and is important in the annual growth and development of parasites, it only directly affects oyster stocks in extreme cases. Oysters can tolerate ambient water temperatures from 1° to 36° C (NCDENR, 1997).

Oysters are dioecious, (having male reproductive organs in one individual and female in another) but have the ability to change sexes once each year. Formation of eggs and sperm is stimulated by increasing water temperatures during spring. Fertilized eggs develop through trochophore and veliger larval stages over a period of two to three weeks. Larvae can migrate vertically in the water column and may be able to maintain their position in the estuary by avoiding certain temperature or salinity changes. Oyster larvae have been known to travel at least 30 miles. Dispersion of the larvae is largely dependent upon prevailing currents and flushing rates of estuaries. As the larval stage ends, oysters must locate a suitable attachment point or perish. Oyster growth is highest during the first six months after setting and gradually declines throughout the life of the oyster (NCDENR, 1997).

Gastropods, primarily oyster drills, are among the most destructive oyster predators. Another predator, blue crabs can readily consume up to 19 oysters per day. Of the fish that are known to feed on oysters, perhaps the most impressive is the black drum. Oysters up to 112 millimeters (mm) in length have been consumed by large drum (i.e., drum over 90+ cm in length). Other fish that

consume oysters, include Atlantic croaker, spot, toad fish, and sheepshead. In addition the cownose ray has been found to prey on oysters as well (NCDENR, 1997).

Petroleum products, heavy metals, pesticides, chlorine, and detergents can negatively impact oyster populations. The increased use of these organic compounds and metals in and around suitable estuaries has been shown to adversely impact oysters (NCDENR, 1997).

The most critical habitat areas for oyster populations are the oyster beds or rocks which form by the accumulation of oyster shells over the course of many years. Significant concentrations of oysters can also be found on outcropping of fossil shell beds, hard clam and bay scallop shells also on exposed roots. Rock jetties, sea walls, and pilings also contribute to oyster habitat (NCDENR, 1995).

3.0 INVESTIGATION ACTIVITIES

This section presents analytical results and findings from investigations conducted at Stone Bay by CH2M Hill during 1998 and Baker 1999. Findings from this aquatic assessment are based upon the field investigation conducted by Baker in January 1999. The section that follows defines reference stations used for comparison in the study and identifies the individual tasks completed as part of the January 1999 field investigation at Stone Bay. In general, the study utilizes biota (i.e., benthic species) and sediment samples collected from within the rifle range fan area of Stone Bay. Biota samples were collected, identified, measured, weighed, and recorded during the field investigation. Field photographs are included in Attachment A as additional site information. Each samples were collected from approximately the same depths and locations as the benthic samples. Sediment analytical results were used to correlate the concentrations of metals in the sediment to corresponding tissue analytical results.

The subsections that follow provide details regarding the sampling strategy, established criteria, and quality control procedures.

3.1 <u>Previous Investigation</u>

During the summer of 1998, surface water and sediment samples were collected in the Stone Bay area of the New River at MCB, Camp Lejeune (CH2M Hill, 1998). This investigation was conducted as part of a baseline evaluation of the New River in support of the construction of the new advanced wastewater treatment facilities at the base. Surface water and sediment samples from five locations in Stone Bay were collected and analyzed for metals. Surface water samples were analyzed for total and dissolved metals and sediment samples were analyzed for total metals, total organic carbon (TOC), percent solids, acid volatile sulfide, and grain size. The analytical results of copper and lead detected in the surface water are presented in Table 3-1 and sediment is presented in Table 3-2. A complete report of the analytical results are presented in the CH2M Hill letter report contained within in Attachment B. Water quality parameters, which are provided in Table 3-3, were also collected at the time of this study. The locations of the sampling points are depicted in Figure 3-1.

The results of the initial study were compared to sediment screening values developed for the protection of aquatic species. As shown on Table 3-2, in each case, concentrations observed in the sediment were below the established screening criteria, suggesting that the operations at the rifle range have not had a significant impact upon ecological receptors in Stone Bay. As a follow-up to the preliminary sediment and surface water investigation, this investigation includes a tissue study of benthic species to provide a more thorough evaluation of the potential impact of copper and lead from the rifle range on aquatic receptors and the habitat of Stone Bay.

3.2 Aquatic Assessment Field Investigation

The subsections that follow describe the field investigation activities conducted during January 1999 as part of the Aquatic Assessment of Stone Bay.

3.2.1 Reference Stations

As a part of the January 1999 investigation, two areas were used as reference stations. The reference stations are areas that are ecologically similar to the study area (i.e., habitat, species potentially present, salinity, substrate type), but that are most likely not impacted by rifle range activities. The reference stations provide information regarding naturally occurring metals and the existence of any regional metal contamination, independent of the rifle range. The locations of the reference samples are shown in Figure 3-1.

Samples obtained from the reference stations were used for a qualitative comparison of the analytical data obtained from the study area to determine significant differences in the sediment and biota tissue between the study area and the ecologically similar reference area.

3.2.2 Study Area Reconnaissance

Prior to commencement of sampling activities in January 1999, the study area was reviewed with range personnel and Environmental Management Division (EMD) personnel to discuss general operations and proposed sampling methods and locations. Additional topics of discussion included, time of work on-site, site access points, verification that the reference stations selected were appropriate for this study, and formulation of a general overview of the surrounding habitat. During

the preliminary activities, the exact benthic species to be collected were determined. The target species were oysters, clams, and mussels. Several organisms were collected and examined to determine the size range available.

3.2.3 Water Quality Measurements

Prior to the collection of biota and sediment samples, depth of water and water quality parameters were measured. At each sampling station, surface water was measured for pH, specific conductance, temperature, salinity, turbidity and dissolved oxygen. All readings were measured in-situ by submerging a probe to the appropriate depth. The measurements were recorded on field data sheets during site operations and later tabulated. The results of these measurements are provided in Table 3-4.

3.3 <u>Sediment Sampling</u>

Sediment samples were collected from approximately the same depths and locations as biota samples. In general, the sediment samples were collected from a depth of approximately zero to six inches below the surface of the sediment.

A total of seven sediment samples was collected during the investigation. Five of the samples were collected within the study area of Stone Bay and two samples were collected from the reference locations. Figure 3-1 depicts the locations of each of the sediment samples. Figure 3-2 provides a detailed illustration of the study area and sampling locations. Each sediment sample was visually classified in the field to determine general soil type. Each of the sediment samples was analyzed for Target Analyte List (TAL) metals. Sediment characteristic analyses (i.e., grain size and TOC) were not performed on the samples obtained within the study area because similar information was obtained during the 1998 sampling event (CH2M Hill, 1998). Sediment obtained from the two reference stations were analyzed for grain size, Atterberg limits, and TOC to ensure that similar substrate conditions had been utilized. Substrate conditions at the reference stations are similar to what was observed in the study area, however the sediment sample collected from reference station RF-SD02 exhibited some clay. Results of the copper and lead sediment analyses are provided on Table 3-5. In general, the substrate material within the study area is comprised of varying amounts of silt and sand. The bottom material is comprised of mostly sand in the central portion of the study

area and in the area near sediment sample SB-SD01. More fine material was observed near station SB-SD02 near the entrance of Stone Creek.

Each sediment sample was collected using a stainless steel sediment corer with a dedicated acetate sleeve. The samples were collected by manually pushing the sediment corer into the river bed and extracting an appropriate volume of sediment. The sample was transferred directly from the acetate sleeve of the sediment corer to a laboratory-prepared glass container.

3.4 Biota Sampling

The locations of the biota sampling stations were based upon the availability of benthic species in the area. Because the benthic species collected were shellfish (oysters, clams, and mussels), the sampling stations coincided with locations of shellfish beds to ensure an adequate sample volume was obtained.

A total of 14 biota composite samples was collected during this investigation, comprised of different biota species from seven sample locations. Five of the samples were collected from within the study area of Stone Bay and two samples were obtained at the reference locations. Each biota composite sample consisted of several individual organisms to meet the weight requirements of the laboratory analytical procedures. Figures 3-1 and 3-2 depict the locations of each biota sample. As shown in Figure 3-2, shellfish were not present in the central portion of the study area. The substrate material observed in this portion of the study area was entirely comprised of a thick layer of small sticks, branches, and roots. It is assumed that this layer of organic debris may inhibit the species from populating this area. It was noted by the commercial fisherman hired to assist during the biota collection, that the debris observed in the central portion of Stone Bay may be due to the fact that fishermen typically do not harvest shellfish in this area due to range operations. During normal shellfish harvesting, the methods used to collect species frequently remove debris from the bottom.

The collection of biota samples was conducted with the assistance of a commercial shell fisherman who is familiar with the New River. Biota samples were obtained using boat-mounted rakes, tongs, and grab samplers. The biota samples were collected in accordance with <u>Guidance for Assessing</u> <u>Chemical Contaminant Data for Use in Fish Advisories Volume I Fish and Sampling Analyses</u> (USEPA, 1993).

Each of the biota samples was analyzed for TAL metals and percent lipids. Table 3-6 presents the results of clam tissue copper and lead analyses and Tables 3-7 and 3-8 provide a summary of copper and lead analytical results for mussel and oyster tissue samples, respectively. Results are presented for both the study area and the designated reference stations. A complete listing of the analytical results is provided in Attachment B. Form I's associated with the analytical results are contained in Attachment C.

3.5 Sample Station Surveying

Each sampling station was surveyed using a global positioning system. Spatial data were collected using code signals from satellites and then were differentially corrected with exact time interval data from a known base station. The resulting data yields point accuracies within the submeter (i.e., less than 40 to 75 centimeters) range. Upon differential correction, spatial data were exported into existing data files to produce the appropriate figures.

3.6 Sample Preparation

Sediment samples were taken directly from the sediment corer device and placed into laboratory prepared sample jars. Each jar was properly labeled and sealed and the samples were kept on wet ice prior to and during shipment to the analytical laboratory.

Biota samples were analyzed via a tissue composite method. Individual organisms were composited to acquire 20 to 30 grams of tissue sample for metal analyses. Each benthic organism collected was measured and weighed individually. The exterior shells of each benthic organism were scrubbed and rinsed with deionized water to remove the sediment and prevent possible cross contamination. The organisms intended for each composite sample were placed in a labeled, reclosable, freezer bags with the shells left intact. The samples were shipped on ice to the analytical laboratory. Upon receipt, the benthic samples were shucked and composite samples were formulated prior to chemical analysis of the tissue samples.

3.7 **Quality Assurance**

The purpose of Quality Assurance (QA) is to establish internal means for data generation and review to ensure that the work performed is completed at the highest professional standard. The objectives of the QA program include the following items:

- To generate data in accordance with procedures appropriate for the intended data use.
- To obtain data of sufficient quality to meet reasonable scientific scrutiny.
- To obtain data of acceptable precision, accuracy, completeness, representativeness, and comparability as required by the project.

The fundamental mechanisms that were employed to achieve the quality goals can be categorized as prevention, assessment, and correction where:

- Prevention of errors occurs through planning, following documented instructions and procedures, and careful selection of trained personnel.
- Assessment of all QA sampling reports furnished by the laboratory.
- Correction of noted conditions adverse to data quality.

3.7.1 Data Quality Objectives

Data quality objectives (DQOs) are qualitative or quantitative statements developed by the data users to specify the quality of data needed from a particular data collection activity. The DQOs are expressed in terms of precision, accuracy, representativeness, completeness, comparability and uncertainty; which are defined as follows:

• <u>Precision</u> - A measure of mutual agreement among individual measurements of the same property, usually prescribed similar conditions. Precision is usually expressed in terms of

the standard deviation, however, various measures of precision exist depending upon the prescribed conditions.

- <u>Accuracy</u> The degree of agreement of a measurement or an average of measurements, X, with an accepted reference or true value, T, expressed as the difference between the two values, X-T. Accuracy is a measure of the bias in a system.
- <u>Representativeness</u> Expresses the degree to which data accurately and precisely represent a characteristic of a population, parameter variations at a sampling point, a process condition, or an environmental concern.
- <u>Completeness</u> A measure of the amount of the valid data obtained from the measurement system compared to the amount that was expected under normal conditions.
- <u>Comparability</u> Expresses the confidence with which one data set can be compared with another.
- <u>Uncertainty</u> The likelihood of all types of errors associated with a particular decision.

DQOs are intended to help develop sampling and analytical strategies designed to support the objectives of this assessment. DQOs define the level of certainty in the data that is acceptable for this assessment. The variables associated with sampling and analysis contribute to some level of uncertainty in any data generated. The objectives of this study included keeping the total uncertainty within an acceptable range. To achieve this objective, specific data quality requirements such as detections limits have to be specified. The expected detection limits of media were provided to the laboratory to ensure this requirement was met.

The data collected during this assessment was used to assess the following items:

- Identify the presence or absence of metals based upon the samples collected.
 - Assess potential bioaccumulation of metals in aquatic receptors.

Determine the potential impacts, if any, to the aquatic environment from metals that may be the result of ongoing range operations.

The DQOs for the aquatic assessment of Stone Bay have been met through several methods. Sediment samples collected within the study area and reference stations were analyzed using standard Contract Laboratory Procedures (CLP) typically used for environmental samples collected at MCB, Camp Lejeune. The quality control standards for trace metals undergoing CLP analyses are provided in Attachment D. Biota sample analyses employed the use of a Standard Reference Material (SRM), a method commonly used by marine scientists in the analysis of tissue samples. This is a proven method prepared by the National Institute of Standards and Technology (NIST) and is described in the Certificate of Analysis (SRM 1566a for Oyster Tissue) provided in Attachment D. The SRM is used for calibrating instrumentation and validating methods for the chemical analysis of marine bivalve tissue. The SRM gives acceptance ranges of elemental concentrations. In some cases, these acceptance ranges may not be met using the standard CLP type digestion and analysis. In such cases, the analysis includes a Laboratory Control Sample (LCS) to establish the remaining acceptance ranges and percent recoveries. The SRM and LCS will be used to ensure proper digestion procedures, analyses, and reporting of the tissue sample results.

4.0 AQUATIC ASSESSMENT

The section that follows provides a qualitative and quantitative evaluation of aquatic samples collected from within the study area. This assessment provides risk-based conclusions that address whether ecological risks to the aquatic environment are the result of copper and lead detected in the sample media. The methodology used in the assessment is provided first (Section 4.1), followed by the actual results of the applied methods (Sections 4.2 through 4.5).

4.1 <u>Methods</u>

The methodologies used in this evaluation mirror the procedures outlined in the <u>Ecological Risk</u> <u>Assessment Guidance for Superfund</u> (USEPA, 1997) and the <u>Guidelines for Ecological Risk</u> <u>Assessment</u> (USEPA, 1998). This aquatic assessment was conducted using a qualitative and quantitative analysis of sediment, clam tissue, mussel tissue, and oyster tissue collected from Stone Bay within the study area. The aquatic environment was evaluated using the following methods:

- Comparison of the study area sediment concentrations to Region IV sediment screening values (SSVs).
- Comparison of study area sediment concentrations to reference area sediment concentrations.
- Comparison of study area tissue concentrations to literature values for nationwide concentrations detected in shellfish tissue.
- Comparison of study area tissue concentrations to reference area tissue concentrations.
- Calculation of aquatic species receptor models for species potentially inhabiting Stone Bay that may ingest surface water, sediment and shellfish from the study area.

The following information provides a detailed description of the methods used to assess the aquatic environment.

4.1.1 Comparison to Sediment Screening Values

Sediment values were used to select ecological contaminants of concern (ECOC) in samples collected from the study area. Concentrations detected above an SSV were retained as ECOCs in this assessment. The SSVs used in this assessment were obtained from the Supplemental Guidance to RAGS: Region 4 Bulletins - Ecological Risk Assessment (USEPA, 1995). The sediment values presented in this document were derived from statistical interpretation of effects reported in literature for direct toxicity. The values were derived from marine environment studies; however, freshwater environment studies may also have been used. In addition to Region IV sediment values, effects-range low (ER-L) and Effects-range median (ER-M) values (Long et al., 1995) were used to assess the sediment collected from Stone Bay.

Concentrations detected below the ER-L/SSV represent a minimal effects range (i.e., effects that would rarely be observed). Concentrations above the ER-L/SSV, but below the ER-M represent a possible effects range (i.e., effects that would occasionally be observed). Concentrations detected above the ER-M present a probable-effects range (i.e., effects that would frequently be observed). Hazard quotients (HQs) were calculated for each detected inorganic. The HQs represent the magnitude by which a contaminant exceeds an SSV. The HQs for this assessment were calculated by dividing the maximum detected sediment concentration by the lowest SSV available for that metal. An HQ calculated above one represents a potential risk to the aquatic environment from concentrations of that contaminant.

4.1.2 Comparison to Benthic Literature Values

Literature values established for copper and lead concentrations in benthic tissue were used to qualitatively assess the concentrations detected in the benthic tissue obtained from the study area. The literature values represent body burden residues detected in benthic species that have been demonstrated to impact the health of the organism itself (Irwin, 1997a/1997b). Maximum and mean concentrations found in biota tissue collected as a part of the National Oceanic and Atmospheric Administration (NOAA) Status and Trends Studies (1990) were used for comparative purposes.

4.1.3 Comparison of Study Area Results to Reference Area Results

The ranges of detected concentrations in the sediment, clam, mussel, and oyster samples collected from the study area were directly compared to the range of detected concentrations in corresponding samples collected from the reference areas. Two reference locations were sampled during this investigation; however, not every shellfish specie was found at each proposed location (See Section 3.4).

A comparison of copper and lead concentrations found within the study area to reference concentrations was used to select the ECOCs for the benthic organisms. Reference concentrations were used as selection criteria because there are no specific screening values established for the protection of the target organisms.

4.1.4 Ecological Receptor Models

Ecological receptor models were used to evaluate potential risks to higher trophic levels in the aquatic food chain. Potential risks posed to prey species from ingestion of surface water, sediment, and benthic species from within the study area were evaluated in the models. Sediment and benthic analytical results obtained during the field investigation and surface water analytical results from the previous CH2M Hill study (see Section 3.1) were used as input values for the receptor models. Two species were selected for modeling: the great blue heron and the mink. A summary of life history information for the modeled species is presented in Attachment E.

Several different versions of the receptor models were calculated. The differences in the versions reflect the conservatism incorporated within the models. The most conservative models used the maximum detected concentrations compared with toxicity dose concentrations found to have no adverse effects. The comparative toxicity dose concentrations are referred to as no-observed adverse-effects levels (NOAELs). The least conservative models used arithmetic means of the detected concentrations compared to toxicity dose concentrations found to have the least observed effects to the species or a similar species. The comparative least effects toxicity doses are referred to as lowest-observed-adverse effects levels (LOAELs). The comparative NOAEL and LOAEL for copper and lead concentrations used in the receptor models calculated for this assessment are

presented on Table 4-1. A summary of the studies from which these numbers are based on is presented in Attachment E.

The ecological receptor models and the assumptions made within the models are presented in the sections that follow.

4.1.4.1 Receptor Model Hazard Quotients

The HQ method was used to estimate potential risks to ecological receptors within the study area. This method compares exposure concentrations with ecological endpoints such as reproductive failure or reduced growth. The following equation was used to calculate HQs:

Hazard Quotient = <u>Maximum Exposure / Mean Exposure Concentration</u> NOAEL / LOAEL

Where:

Mean Exposure Concentration	Reported in	Arithmetic Mean Concentration Calculated
Maximum Exposure Concentration		Maximum Concentration Detected
NOAEL	=	No Observed Adverse Effect Level
LOAEL	=	Lowest Observed Adverse Effect Level

An HQ equal to or greater than one indicates that exposure to the particular metal has the potential to cause adverse effects to the species. An HQ less than one indicates that the metal is not expected to cause adverse effects to the species. The greater the HQ, the greater the magnitude of potential risk to the species; however, for this assessment, any HQ greater than one was evaluated as a potential risk.

4.1.4.2 Receptor Model Assumptions

This aquatic assessment evaluates exposure to contaminants through food, water, and incidental ingestion of sediment. The following assumptions were made during preparation of the aquatic models calculated for this study:

- Maximum concentrations and arithmetic mean concentrations were used to represent sitewide concentrations in the receptor model calculations.
 - A biota to soil/water/sediment accumulation factor (BSAF) of 1 was assumed for the vegetation, invertebrates, fish, and small mammals.
 - Copper and lead were assumed to be 100 percent bioavailable.
 - Because toxicity values could not be found for the specific receptor species, values reported for closely related species were used.
 - If chronic NOAEL values were not available for copper and lead, LOAEL values were used. A factor of 10 was used to convert reported LOAEL values to NOAEL values. If several toxicity values were reported for a receptor species, the most conservative value was used in the risk calculations regardless of the toxic mechanism. Toxicity values obtained from long-term feeding studies were preferable to those obtained from single dose oral studies.
 - Some doses were originally reported as part per million contaminants in a diet. These were converted to daily intakes (in units of mg/kg-day) by using the following formula:

Daily Intake (mg/kg-day) = ECOC Dose (mg/kg diet) x Ingestion Rate (kg/day) x 1/Body Weight (kg)

Dietary toxicity levels for species were converted to a daily dose based on body weight. For the ecological assessment, incidental sediment ingestion was also included in the calculation to determine the total daily intake for the receptor species. This daily dose was then used to evaluate the risk to other species if no specific toxicity data were available for a target receptor.

4.1.5 Uncertainties

As with any such ecological assessment, this investigation of Stone Bay is subject to uncertainties. Uncertainty exists in several steps of the process including: correlation of tissue concentrations to

adverse effects to species, study of lead in shellfish, use of screening levels, and the use of ecological receptor models.

4.1.5.1 Correlation of Tissue Concentrations to Adverse Effects in Species

There is uncertainty associated with correlating tissue concentrations to adverse effects on benthic species. Tissue concentrations do not infer adverse effects; however, tissue data has been used for qualitative evaluation of copper and lead.

4.1.5.2 Study of Lead in Shellfish

Uncertainty is associated with the study of rifle range contaminants of concern, specifically lead. Lead, when taken into living organisms, reacts similar to calcium and will most likely mineralize in bones, or in this case, the shells of the organism. However, it is recognized that organisms from polluted areas can build up substantial concentrations of lead in muscle tissue.

4.1.5.3 Screening Levels

Potential adverse impacts to aquatic receptors from contaminants in the sediments were evaluated by comparing sediment concentrations to SSVs. These SSVs have uncertainty associated with them because the procedures for developing them are not as established as those used in developing water screening values. In addition, sediment type (pH, acid volatile sulfide, total organic carbon) also has a significant impact on the bioavailability and toxicity of contaminants. The SSVs were developed using data obtained from freshwater, tidal freshwater, and marine environments. Therefore, their applicability in evaluating potential effects to aquatic organisms from contaminants in marine habitats introduces uncertainty due to differences in the toxicity of individual contaminants to freshwater and saltwater organisms and the bioavailability of contaminants in the two aquatic systems.

4.1.5.4 Ecological Receptor Models

There are some differences of opinion found in the literature as to the effectiveness of using ecological receptor models to predict concentrations of contaminants found in ecological species.

The food chain models currently used incorporate simplistic assumptions that may not represent conditions at the site, bioavailability of contaminants, or site-specific behavior of the receptors.

In some instances, NOAEL values were not found in the literature. If NOAEL values were not reported, then LOAEL values were used to calculate a NOAEL. A LOAEL was divided by a factor of ten to obtain NOAEL values. There is uncertainty in this calculation of NOAELs; however, the uncertainty most likely errs on the conservative side.

Doses in toxicological studies are typically reported in units of mg of contaminant/kg diet, or in units of mg contaminant/kg body weight/day. All doses reported as mg/kg in diet were converted to units of mg/kg-body weight/day. If body weights were reported for the test animals in a given study, these values were used for making this conversion. Otherwise, the body weight and ingestion rate for the species reported in other literature sources were used.

There is uncertainty associated with some of the toxicity values derived from a single species. Prediction of ecosystem effects from laboratory studies is difficult. Laboratory studies cannot take into account the effects of environmental factors which may add to the effects of contaminant stress. NOAELs were generally selected from studies using single contaminant exposure scenarios.

There is uncertainty in the total daily intake models used to evaluate a reduction of receptor populations or sub-populations. Many input parameters are based on default values (i.e., ingestion rates) that may or may not adequately represent the actual values of the parameters. In addition, there is uncertainty in the level to which the indicator species will represent other species potentially exposed to copper and lead concentrations at the site.

4.2 <u>Sediment Evaluation</u>

As presented in Table 4-2, sediment ECOCs within the study area were identified by a comparison of detected concentrations to SSVs. If a concentration exceeded an SSV, the inorganic was retained as a sediment ECOC. Reference area sediment concentrations are also presented in Table 4-2 for comparative purposes.

Study area sediment concentrations of copper and lead were detected below SSVs, indicating no potential risks to aquatic receptors from sediment concentrations. Therefore, no ECOCs were identified in the sediment collected from the study area. Sediment concentrations of copper and lead detected in the CH2M Hill study (see Section 3.1) were similar to concentrations detected during this investigation.

4.3 Benthic Tissue Evaluation

Three species were evaluated for this aquatic assessment: the hard clam, little black mussel, and the American oyster. Life history information for these species is provided in the profiles presented in Section 2.0. As discussed in Section 3.4, two species per sampling station were proposed for analysis. However, due to conditions in the field, two of the same species were not available from every location within the study and reference areas. Two species were collected from every sampling station; however, the two species are not the same at every station. Benthic tissue from the study area was analyzed by comparison to reference area tissue concentrations.

Tissue concentrations detected among clam, mussel, and oyster samples were compared to reference concentrations. The following sections present the ECOCs identified in each of the species based upon the reference comparison.

4.3.1 Clam Tissue

Table 4-3 presents copper and lead detected in the clam tissue collected from the study area and the ECOCs selected. Copper and lead were detected slightly above reference area tissue concentrations and retained as clam ECOCs. It is noted that the clam tissue evaluation is based on one composite sample collected from the study area. A clam sample was only collected from one station in the study area, most likely due to the low salinity in this portion of Stone Bay (see Section 3.2.3).

4.3.2 Mussel Tissue

Table 4-4 presents copper and lead detected in the mussel tissue collected from the study area and the ECOCs selected. Copper and lead concentrations in mussel tissue were above reference station

concentrations and retained as mussel ECOCs. The mussel comparison of study area tissue to reference area tissue is based on one composite sample collected in the reference areas.

4.3.3 Oyster Tissue

Table 4-5 presents the concentrations of copper and lead detected in oyster tissue collected from the study area compared to concentrations detected in the reference areas. The concentrations from the study area were below reference concentrations; therefore, no ECOCs were identified for the oyster species in this assessment.

4.4 **Qualitative Benthic Evaluation of Copper and Lead Concentrations**

Tables 4-6 and 4-7 present qualitative comparisons of the copper and lead concentrations (respectively) detected in the oyster and mussel tissue versus literature values. No literature values for the clam were available. The literature values are NOAA Status and Trends Studies (1990) (Irwin, 1997a and Irwin, 1997b). Study area oyster concentrations were below literature copper values. Study area mussel concentrations only slightly exceed literature copper values.

The study area oyster and mussel tissue lead concentrations only slightly exceed the maximum literature values. Reference oyster tissue concentrations also exceed the literature value for lead. This qualitative comparison does not show a significant difference between study area copper and lead concentrations and nationwide NOAA Status and Trends concentrations.

4.5 Ecological Receptor Models

Ecological receptor models for the heron and mink were calculated with site-specific concentrations from the study area. As discussed in Section 4.1.4, receptor models were calculated for ECOCs identified in sediment, oyster, clams, and mussels. Table 4-8 presents a summary of the ECOCs identified per sample media. Data input into the receptor models included surface water, sediment, and biota tissue. It is noted that although no ECOCs were identified in the sediment and oyster samples collected from the study area, copper and lead concentrations from these media were evaluated in the receptor models. Only the concentrations detected in one of the biota species could be used in the model. Therefore, to remain conservative, the highest ECOC concentration for the

three different benthic species was used to represent biota. The input values and receptor models are presented in Attachment E. The following paragraphs present the results of both the conservative and less conservative versions of the receptor models.

The most conservative receptor models, maximum concentrations and NOAEL values are presented in the NOAEL columns in Table 4-9. Sediment and biota concentrations of copper and lead resulted in HQs greater than one in the two receptor species. Surface water concentrations were also incorporated into the models; however, due to the low ingestion rates, surface water does not provide a significant effect to receptor risk. The highest risks (HQs greater than 10) to the receptor species were identified in the heron due to copper concentrations (HQ = 44) and in the mink due to copper (HQ = 13) and lead concentrations (HQ = 20).

The least conservative receptor models, mean concentrations and LOAEL values, are presented in the LOAEL columns in Table 4-10. The only HQ over one was calculated for copper in the heron model (HQ = 3), indicating only a slight potential for risk to the heron.

Table 4-11 presents results from the least conservative receptor models calculated using reference area sediment and tissue concentrations. Risks due to copper concentrations were higher in the reference area receptor models than the risks identified in the study area. The reference receptor models were calculated to demonstrate that areas considered to be unimpacted by the rifle range produced greater risks to the receptor species from sediment and tissue concentrations of copper and lead, indicating that the rifle range is not posing any adverse risk to the existing aquatic habitat within the bay.

5.0 SUMMARY OF FINDINGS

The purpose of this assessment was to determine the potential impact of copper and lead from the spent ammunition, upon the aquatic environment of Stone Bay. A summary of the results from the aquatic assessment presented in Section 4.0 is provided below.

5.1 Sediment Evaluation

The contaminants of concern from the rifle range, copper and lead, were detected below conservative sediment screening values, indicating that the benthic macroinvertebrate communities within the study area are not adversely impacted by rifle range activities. The detections and comparison to screening values are presented in Table 4-2 and discussed in detail in Section 4.2. These data indicate no adverse impact due to exposure to copper and lead in the study area.

5.2 Biota Tissue Evaluation

As presented on Tables 4-3 through 4-5 and discussed in Section 4.3, study area tissue concentrations versus reference area tissue concentrations suggest the following inorganics were elevated for each of the identified species:

- Hard Clam: copper and lead
- Little Black Mussel: copper and lead
- American Oyster: none

The contaminants of concern from rifle range activities were identified as copper and lead. Both copper and lead were detected below reference concentrations among oyster tissue samples and not significantly greater than reference concentrations in the clam and mussel tissue samples. In addition, the qualitative comparison of copper and lead concentrations to literature values suggests that there is no significant difference in copper and lead concentrations between the study area and literature values. A majority of the highest inorganic concentrations among mussel and clam tissue samples were detected in the sample obtained from the edge of the rifle range fan, SB-MU04-99A.

5.3 Ecological Receptor Models

Mean inorganic concentrations and LOAEL values were used to calculate the following HQs used to assess potential risks to receptor species from consuming sediment and biota within the study area. An HQ greater than one indicates a potential risk to the receptor species.

- Great Blue Heron copper resulted in an HQ slightly above one. Reference concentrations demonstrated similar risks to the heron from concentrations of copper. The results of the heron model indicate that there are no significant risks above the risks present in reference areas.
- Mink No risk to the mink model was demonstrated in the least conservative receptor models. It is noted that a slight risk from copper was calculated in the reference mink model.

5.4 <u>Conclusion</u>

This assessment was conducted to determine whether rifle range contaminants of concern (copper and lead) are adversely impacting the aquatic habitat within the identified study area within Stone Bay. This assessment was conducted in accordance with the methodologies presented in <u>Ecological</u> <u>Risk Assessment Guidance for Superfund</u> (USEPA, 1997) and the <u>Guidelines for Ecological Risk</u> <u>Assessment</u> (USEPA, 1998). Data used to assess the study area included sediment, clarn tissue, mussel tissue, and oyster tissue analyzed for copper and lead concentrations. The assessment used data collected from reference areas within Stone Bay identified to be unimpacted by rifle range activities. The reference area data were used for comparative purposes to determine whether potential contamination is site-related or the result of regional conditions within the bay.

Results from this assessment indicate no significant differences between study area and reference area ecological conditions. An evaluation of sediment samples, biota tissue samples, and results of the ecological receptor models indicate no deleterious effects from the potential contaminants of concern, copper and lead, to benthic organisms inhabiting Stone Bay.

6.0 **REFERENCES**

CH2M Hill, October 28, 1998. Stones Bay Sediment and Water Quality Sampling Results.

CMEE. Canadian Ministry of Environment and Energy. 1993. <u>Guidelines for the Protection and</u> <u>Management of Aquatic Sediment Quality in Ontario</u>. August 1993.

Eversole, A.G., 1987. Species Profiles: Life Histories and Environmental Requirements of Coastal
Fishes and Invertebrates (South Atlantic)--Hard Clam. U.S. Fish Wildl. Serv. Biol. Rep. 82(11.75).
U.S. Army Corps of Engineers, TR EL-82-4.

Fitchko, J. 1989. <u>Criteria for Contaminated Soil/Sediment Cleanup</u>. Pudvan Publishing Company, orthbrook, Illinois.

FMM. 1999. Freshwater Mussels of the Midwest. Accessed from Worldwide Web 2/22/99.

Irwin, Roy J. 1997a. <u>Environmental Contaminants Encyclopedia Copper Entry</u>. National Park Service Water Resources Divisions, Water Operations Branch. July 1, 1997.

Irwin, Roy J. 1997b. <u>Environmental Contaminants Encyclopedia Lead Entry</u>. National Park Service Water Resources Divisions, Water Operations Branch. July 1, 1997.

Long, Edward R., Donald D. Mac Donald, Sherri L. Smith, and Fred Calder. 1995. "Incidence of Adverse Biological Effects Within Ranges of Chemical Concentrations in Marine and Estuarine Sediment." <u>Environmental Management</u>. Volume 19.

Morris, P.A., <u>A Field Guide to Shells of the Atlantic and Gulf Coasts and the West Indies.</u> <u>Houghton</u> Mifflin Company Boston, 1973.

NCDENR. 1997. North Carolina Department of Environment, and Natural Resources Division of Marine Fisheries. North Carolina Fishery Management Plan Hard Clam. February, 1997.

NCDENR. 1995. North Carolina Department of Environment and Natural Resources. <u>North</u> <u>Carolina Oyster Restoration and Fishery Management Plan</u>. Compiled by Michael D. Marshall, Division of Marine Fisheries and North Carolina Blue Ribbon Advisory Council on Oysters. October, 1995.

Sullivan, J.J. Ball, E. Brick, S. Hausman, G. Pilarski, and D. Sopcich. 1985. Report for the Technical Subcommittee on Determination of Dredge Material Suitability for In-Water Disposal. Wisconsin Department of Natural Resources. Cited in: Fitchko. 1989.

Tetra Tech, Inc. 1986. <u>Development of Sediment Quality Values for Puget Sound, Volume I. Puget</u> <u>Sound Dredged Disposal Analysis Report</u>. Cited in: Fitchko. 1989.

USEPA. 1998. United States Environmental Protection Agency. <u>Guidelines for Ecological Risk</u> <u>Assessment</u>. Risk Assessment Forum, EPA/630/R-95/002B. August 1998.

USEPA. 1997. United States Environmental Protection Agency. <u>Ecological Risk Assessment</u> <u>Guidance for Superfund: Process for Designing and Conducting Ecological Risk Assessments</u> (Interim Final). Environmental Response Team, EPA/540/R-97-006. June 5, 1997.

USEPA. 1995. United States Environmental Protection Agency. <u>Supplemental Guidance to RAGS</u>: <u>Region 4 Bulletins - Ecological Risk Assessment</u>. Waste Management Division. November 1995.

USEPA. 1993. United States Environmental Protection Agency. <u>Guidance for Assessing Chemical</u> <u>Contaminant Data for Use in Fish Advisories Volume I: Fish and Sampling Analyses</u>. Office of Water.

White, C.P., <u>Chesapeake Bay, Nature of the Estuary, A Field Guide</u>. Tidewater Publishers. Centerville, Maryland, 1997.

62

CH2M HILL ANALYTICAL DATA - SURFACE WATER METAL RESULTS STONE BAY AQUATIC ASSESSMENT, CTO-0100 MCB, CAMP LEJEUNE, NORTH CAROLINA

			- 1		Sampling Stations									
		Trip 1	Blank [CLMSV	VSB101	CLMSV	VSB201	CLMSV	VSB301	CLMSV	VSB401	CLMS	WSB501	W.Q. Stds
Analyte	Units	Total	Diss.	Total	Diss.	Total	Diss.	Total	Diss.	Total	Diss.	Total	Diss.	Aquatic Life
Copper	μg/L	0.08	0.03	0.71	0.62	0.88	0.61	0.91	0.61	1.53	0.86	0.95	0.58	3 (AL)
Lead	μg/L	ND	ND	0.22	ND	0.415	ND	0.437	ND	0.926	ND	0.641	ND	25 (N)

Notes:

ND = Not Detected

AL = Values represent action levels as specified in 15A NCAC 2B.0220

N = See 15A NCAC 2B.0220 for narrative description of limits.

 $\mu g/L = microgram per liter$

W.Q. Stds = Water Quality Standards

CH2M HILL ANALYTICAL DATA - SEDIMENT METAL RESULTS STONE BAY AQUATIC ASSESSMENT, CTO-0100 MCB, CAMP LEJEUNE, NORTH CAROLINA

			NOAA Guidelines					
Analyte	Units	CLMSDSB101	CLMSDSB201	CLMSDSB301	CLMSDSB401	CLMSDSB501	ER-L	ER-M
Copper	mg/kg	ND	18	5.7	15	ND	70	390
Lead	mg/kg	1.5	35	110				

Notes:

mg/kg = milligram per kilogram

NOAA = National Oceanic and Atmospheric Administration

ER-L = Effects range - low

ER-M = Effects Range - median

ND = Not Detected

CH2M HILL WATER QUALITY MEASUREMENTS STONE BAY AQUATIC ASSESSMENT, CTO-0100 MCB, CAMP LEJEUNE, NORTH CAROLINA

Sample	Depth		Latitude	Longitude	Sample	Temperature	SPC	Cond	Salinity	DO	DO	Depth	pH	ORP
ID	(feet)	Position	(N)	(W)	Depth	(C [°])	(ms/cm)	(ms/cm)	(ppm)	(%)	(mg/L)	(feet)	(S.U.)	(mV)
				·····	Bottom:	31.57	16.98	19.02	9.86	123.1	8.58	3.78	8.42	183.9
SB-101	Total: 4'9"	Initial:	34° 36' 49.576"	77° 26' 18.704"	Middle:	31.64	16.79	18.87	9.77	127.1	8.86	2.30	8.48	186.5
	Secchi: 1'8"	Final:	34° 36' 49.705"	77° 26' 19.168"	Surface:	31.67	16.45	18.52	9.55	127.9	8.93	1.22	8.50	188.6
					Bottom:	31.47	17.24	19.41	10.08	121.0	8.45	3.46	8.44	232.1
SB-201	Total: 4'4"	Initial:	34° 36' 42.566"	77° 26' 44.151"	Middle:	31.54	17.05	19.20	9.96	122.5	8.54	2.10	8.48	233.5
	Secchi: 1'6"	Final:	34° 36' 42.539"	77° 26' 44.164"	Surface:	31.55	17.21	19.37	10.00	122.6	8.54	0.93	8.49	234.7
SB-301	Total: 3'6"	Initial:	34° 36' 39.766"	77° 26' 42.329"	Bottom:	31.35	17.07	19.14	9.96	120.4	8.40	2.53	8.43	208.6
	Secchi: 1'2"	Final:	34° 36' 39.050"	77° 26' 43.261"	Surface:	31.49	17.00	19.06	9.91	123.4	8.62	0.98	8.47	210.1
SB-401	Total: 2'	Initial:	34° 36' 33.365"	77° 26' 37.203"	Surface:	31.95	16.26	18.42	116.10	8.07	9.45	1.017	8.47	234.3
	Secchi: 1'	Final:	34° 36' 33.336"	77° 26' 36.763"										
SB-501	Total: 2'4"	Initial:	34° 36' 19.066"	77° 26' 20.169"	Surface:	32.35	16.08	18.32	9.31	110.6	7.62	0.99	8.41	234.7
L	Secchi: 1'	Final:	34° 36' 19.240"	77° 26' 20.141"										

Notes:

ID = Sample Identification

N = North

W = West

Secchi = Sechhi disk measurement

SPC = Specific Conductance

ms/cm = milliohms per centimeter

Cond = Conductivity

ppm = parts per million

mg/L = milligram per liter

S.U. = Standard Units

DO = Dissolved Oxygen

ORP = Oxidation-Reduction Potential

mV = millivolts

WATER QUALITY MEASUREMENTS STONE BAY AQUATIC ASSESSMENT, CTO-0100 MCB, CAMP LEJEUNE, NORTH CAROLINA

Sample	Depth	Temperature	Cond	Salinity	DO	pН
ID	(feet)	(C°)	(ms/cm)	(ppt)	(mg/L)	(S.U.)
SB-SD01	1.5	9.5	35.9	22.6	11.32	8.36
SB-SD02	5.0	12.2	32.4	19.9	9.85	8.30
SB-SD03	2.0	12.9	33.2	20.7	10.33	8.27
SB-SD04	6.0	11.70	34.8	22.0	10.80	8.38
SB-SD05	3.0	9.3	33.5	20.6	11.30	8.54
RF-SD01	4.0	9.8	39.3	24.5	10.43	8.45
RF-SD02	4.0	9.7	36.0	22.6	11.26	8.53

Notes:

ID = Sample Identification ms/cm = milliohms per centimeter Cond = Conductivity ppt = parts per thousand mg/L = milligram per liter S.U. = Standard Units DO = Dissolved Oxygen

POSITIVE DETECTIONS IN SEDIMENT STUDY AREA STONE BAY AQUATIC ASSESSMENT, CTO-0100 MCB, CAMP LEJEUNE, NORTH CAROLINA

SAMPLE ID	SB-SD01-99A	SB-SD02-99A	SB-SD03-99A	SB-SD04-99A	SB-SD05-99A
SAMPLE DATE	1/14/99	1/15/99	1/15/99	1/15/99	1/16/99
INORGANICS (mg/kg)					
Copper	2.67 U	16.6	2.4 J	8.7 J	2.35 U
Lead	6	5.7	2.5	20.7	3.4

POSITIVE DETECTIONS IN SEDIMENT STUDY AREA STONE BAY AQUATIC ASSESSMENT, CTO-0100 MCB, CAMP LEJEUNE, NORTH CAROLINA

SAMPLE ID SAMPLE DATE	Minimum Non-Detect	Maximum Non-Detect	Minimum Detected	Maximum Detected	Location of Maximum Detect	Frequency of Detection	Arithmatic Mean Positive Detects	Median Positive Detects
INORGANICS (mg/kg)								
Copper	2.35 U	2.67 U	2.4 J	16.6	SB-SD02-99A	3/5	9.23	8.7
Lead	ND	ND	2.5	20.7	SB-SD04-99A	5/5	7.66	5.7

POSITIVE DETECTIONS IN SEDIMENT REFERENCE AREAS STONE BAY AQUATIC ASSESSMENT, CTO-0100 MCB, CAMP LEJEUNE, NORTH CAROLINA

SAMPLE ID	RF-SD01-99A	RF-SD02-99A
SAMPLE DATE	1/16/99	1/16/99
INORGANICS (mg/kg) Copper Lead	2.4 U 4.6	4.6 J 10.5

POSITIVE DETECTIONS IN SEDIMENT REFERENCE AREAS STONE BAY AQUATIC ASSESSMENT, CTO-0100 MCB, CAMP LEJEUNE, NORTH CAROLINA

SAMPLE ID SAMPLE DATE	Minimum Non-Detect	Maximum Non-Detect	Minimum Detected	Maximum Detected	Location of Maximum Detect	Frequency of Detection	Arithmatic Mean Positive Detects	Median Positive Detects
INORGANICS (mg/kg)								
Copper	2.4 U	2.4 U	4.6 J	4.6 J	RF-SD02-99A	1/2	4.6	4.6
Lead	ND	ND	4.6	10.5	RF-SD02-99A	2/2	7.55	7.55

POSITIVE DETECTIONS IN SEDIMENT REFERENCE AREAS STONE BAY AQUATIC ASSESSMENT, CTO-0100 MCB, CAMP LEJEUNE, NORTH CAROLINA

SAMPLE ID	RF-SD01-99A	RF-SD02-99A
SAMPLE DATE	1/16/99	1/16/99
TOC (mg/kg) Total Organic Carbon	4930	12400

POSITIVE DETECTIONS IN SEDIMENT REFERENCE AREAS STONE BAY AQUATIC ASSESSMENT, CTO-0100 MCB, CAMP LEJEUNE, NORTH CAROLINA

SAMPLE ID	Minimum	Maximum	Minimum	Maximum	Location of	Frequency	Arithmatic Mean	Median
SAMPLE DATE	Non-Detect	Non-Detect	Detected	Detected	Maximum Detect	of Detection	Positive Detects	Positive Detects
TOC (mg/kg) Total Organic Carbon	ND	ND	4930	12400	RF-SD02-99A	2/2	8665	8665

1

POSITIVE DETECTIONS IN CLAM TISSUE STUDY AREA STONE BAY AQUATIC ASSESSMENT, CTO-0100 MCB, CAMP LEJEUNE, NORTH CAROLINA

1

SAMPLE ID	SB-CL04-99A
SAMPLE DATE	1/15/99
INORGANICS (mg/kg)	
Copper	12.6
Lead	1.8
WET WEIGHT BASIS	
Percent Lipids (%)	0.2
Moisture (%)	89

POSITIVE DETECTIONS IN CLAM TISSUE STUDY AREA STONE BAY AQUATIC ASSESSMENT, CTO-0100 MCB, CAMP LEJEUNE, NORTH CAROLINA

SAMPLE ID SAMPLE DATE	Minimum Non-Detect	Maximum Non-Detect	Minimum Detected	Maximum Detected	Location of Maximum Detect	Frequency of Detection	Arithmatic Mean Positive Detects	Median Positive Detects
INORGANICS (mg/kg) Copper Lead	ND ND	ND ND	12.6 1.8	12.6 1.8	SB-CL04-99A SB-CL04-99A	1/1 1/1	12.6 1.8	12.6 1.8
WET WEIGHT BASIS Percent Lipids (%) Moisture (%)	ND ND	ND ND	0.2 89	0.2 89	SB-CL04-99A SB-CL04-99A	1/1 1/1	0.2 89	0.2 89

POSITIVE DETECTIONS IN CLAM TISSUE REFERENCE AREAS STONE BAY AQUATIC ASSESSMENT, CTO-0100 MCB, CAMP LEJEUNE, NORTH CAROLINA

SAMPLE ID SAMPLE DATE	RF-CL01-99A 1/16/99	RF-CL02-99A 1/16/99
INORGANICS (mg/kg)		
Copper	9.5	10.1
Lead	1	0.7
WET WEIGHT BASIS		
Percent Lipids (%)	0.2	0.1
Moisture (%)	85	88

POSITIVE DETECTIONS IN CLAM TISSUE REFERENCE AREAS STONE BAY AQUATIC ASSESSMENT, CTO-0100 MCB, CAMP LEJEUNE, NORTH CAROLINA

Minimum Non-Detect	Maximum Non-Detect	Minimum Detected	Maximum Detected	Location of Maximum Detect	Frequency of Detection	Arithmatic Mean Positive Detects	Median Positive Detects
ND	ND	9.5	10.1	RF-CL02-99A	2/2	9.8	9.8
ND	ND	0.7	1	RF-CL01-99A	2/2	0.85	0.85
ND	ND	0.1	0.2	RF-CL01-99A	2/2	0.15	0.15
ND	ND	85	88	RF-CL02-99A	2/2	86.5	86.5
	Non-Detect ND ND	Non-Detect ND ND ND ND ND ND	Non-DetectNon-DetectDetectedNDND9.5NDND0.7	Non-DetectNon-DetectDetectedDetectedNDND9.510.1NDND0.71NDND0.10.2	Non-DetectNon-DetectDetectedMaximum DetectNDND9.510.1RF-CL02-99ANDND0.71RF-CL01-99ANDND0.10.2RF-CL01-99A	Non-DetectNon-DetectDetectedDetectedMaximum Detectof DetectionNDND9.510.1RF-CL02-99A2/2NDND0.71RF-CL01-99A2/2NDND0.10.2RF-CL01-99A2/2	Non-DetectNon-DetectDetectedDetectedMaximum Detectof DetectionPositive DetectsNDND9.510.1RF-CL02-99A2/29.8NDND0.71RF-CL01-99A2/20.85NDND0.10.2RF-CL01-99A2/20.15

POSITIVE DETECTIONS IN MUSSEL TISSUE STUDY AREA STONE BAY AQUATIC ASSESSMENT, CTO-0100 MCB, CAMP LEJEUNE, NORTH CAROLINA

SAMPLE ID SAMPLE DATE	SB-MU01/02-99A 1/16/99	SB-MU04-99A 1/16/99	SB-MU05-99A 1/15/99
INORGANICS (mg/kg)			
Copper	12.5	12.9	4.1
Lead	4.8	1.6	1.3
WET WEIGHT BASIS			
Percent Lipids (%)	1.6	1	2.1
Moisture (%)	85	93	81

POSITIVE DETECTIONS IN MUSSEL TISSUE STUDY AREA STONE BAY AQUATIC ASSESSMENT, CTO-0100 MCB, CAMP LEJEUNE, NORTH CAROLINA

SAMPLE ID SAMPLE DATE	Minimum Non-Detect	Maximum Non-Detect	Minimum Detected	Maximum Detected	Location of Maximum Detect	Frequency of Detection	Arithmatic Mean Positive Detects	Median Positive Detects
INORGANICS (mg/kg)								
Copper	ND	ND	4.1	12.9	SB-MU04-99A	3/3	9.83	12.5
Lead	ND	ND	1.3	4.8	SB-MU01/02-99A	3/3	2.57	1.6
WET WEIGHT BASIS	ND	ND	I	2.1	SB-MU05-99A	3/3	1.56667	1.6
Percent Lipids (%) Moisture (%)	ND	ND	81	93	SB-MU04-99A	3/3	86,33333	85

POSITIVE DETECTIONS IN MUSSEL TISSUE REFERENCE AREAS STONE BAY AQUATIC ASSESSMENT, CTO-0100 MCB, CAMP LEJEUNE, NORTH CAROLINA

SAMPLE ID	RF-MU02-99A
SAMPLE DATE	1/16/99
NORCHWER (A)	
INORGANICS (mg/kg)	
Copper	4.1
Lead	_ 1
WET WEIGHT BASIS	
Percent Lipids (%)	1.1
Moisture (%)	82

POSITIVE DETECTIONS IN MUSSEL TISSUE REFERENCE AREAS STONE BAY AQUATIC ASSESSMENT, CTO-0100 MCB, CAMP LEJEUNE, NORTH CAROLINA

SAMPLE ID SAMPLE DATE	Minimum Non-Detect	Maximum Non-Detect	Minimum Detected	Maximum Detected	Location of Maximum Detect	Frequency of Detection	Arithmatic Mean Positive Detects	Median Positive Detects
INORGANICS (mg/kg) Copper Lead	ND ND	ND ND	4.1 1	4.1 1	RF-MU02-99A RF-MU02-99A	1/1 1/1	4.1 1	4.1 1
WET WEIGHT BASIS Percent Lipids (%) Moisture (%)	ND ND	ND ND	1.1 82	1.1 82	RF-MU02-99A RF-MU02-99A	1/1 1/1	1.1 82	1.1 82

POSITIVE DETECTIONS IN OYSTER TISSUE STUDY AREA STONE BAY AQUATIC ASSESSMENT, CTO-0100 MCB, CAMP LEJEUNE, NORTH CAROLINA

SAMPLE ID	SB-OY01-99A	SB-OY02-99A	SB-OY03-99A	SB-OY04-99A	SB-OY05-99A
SAMPLE DATE	01/14/99	01/15/99	01/15/99	01/15/99	01/15/99
INORGANICS (mg/kg)					
Copper	50.3	45.1	46	21.4	17.1
Lead	1.6	0.69	1	0.82	0.4
WET WEIGHT BASIS					
Percent Lipids (%)	0.2	0.3	0.6	0.6	0.4
Moisture (%)	85	84	88	89	80

POSITIVE DETECTIONS IN OYSTER TISSUE STUDY AREA STONE BAY AQUATIC ASSESSMENT, CTO-0100 MCB, CAMP LEJEUNE, NORTH CAROLINA

SAMPLE ID SAMPLE DATE	Minimum Non-Detect	Maximum Non-Detect	Minimum Detected	Maximum Detected	Location of Maximum Detect	Frequency of Detection	Arithmatic Mean Positive Detects	Median Positive Detects
INORGANICS (mg/kg)								
Copper	ND	ND	17.1	50.3	SB-OY01-99A	5/5	35.98	45.1
Lead	ND	ND	0.4	1.6	SB-OY01-99A	5/5	0.9	0.82
WET WEIGHT BASIS								
Percent Lipids (%)	ND	ND	0.2	0.6	SB-OY03-99A,SB-OY04-99A	5/5	0.42	0.4
Moisture (%)	ND	ND	80	89	SB-OY04-99A	5/5	85.2	85

POSITIVE DETECTIONS IN OYSTER TISSUE REFERENCE AREAS STONE BAY AQUATIC ASSESSMENT, CTO-0100 MCB, CAMP LEJEUNE, NORTH CAROLINA

SAMPLE ID	RF-OY01-99A	RF-OY02-99A
SAMPLE DATE	1/16/99	1/16/99
INORGANICS (mg/kg)		
Copper	8.2	88.2
Lead	2	1.2
WET WEIGHT BASIS		
Percent Lipids (%)	0.1	0.6
Moisture (%)		

POSITIVE DETECTIONS IN OYSTER TISSUE REFERENCE AREAS STONE BAY AQUATIC ASSESSMENT, CTO-0100 MCB, CAMP LEJEUNE, NORTH CAROLINA

SAMPLE ID SAMPLE DATE	Minimum Non-Detect	Maximum Non-Detect	Minimum Detected	Maximum Detected	Location of Maximum Detect	Frequency of Detection	Arithmatic Mean Positive Detects	Median Positive Detects
INORGANICS (mg/kg)								
Copper	ND	ND	8.2	88.2	RF-OY02-99A	2/2	48.2	48.2
Lead	ND	ND	1.2	2	RF-OY01-99A	2/2	1.6	1.6
WET WEIGHT BASIS								
Percent Lipids (%)	ND	ND	0.1	0.6	RF-OY02-99A	2/2	0.35	0.35
Moisture (%)	ND	ND	ND	ND		0/0	ND	ND

a da

LOWEST OBSERVED ADVERSE EFFECT LEVELS / NO OBSERVED ADVERSE EFFECT LEVELS STONE BAY AQUATIC ASSESSMENT, CTO-0100 MCB, CAMP LEJEUNE, NORTH CAROLINA

Ecological Contaminant	H	eron	Mink		
of Concern	LOAEL	NOAEL	LOAEL	NOAEL	
Copper	2.35	0.235	10	1	
Lead	3	0.3	1.5	0.15	

Notes:

The studies from which these toxicity numbers are based can be found in Appendix F.

LOAELs and NOAELS are reported in mg/kg/day LOAEL - Lowest Observed Adverse Effects Level NOAEL - No Observed Adverse Effects Level

FREQUENCY AND RANGE OF SEDIMENT DATA COMPARED TO SEDIMENT SCREENING LEVELS STUDY AREA STONE BAY AQUATIC ASSESSMENT, CTO-0100 MCB, CAMP LEJEUNE, NORTH CAROLINA

	Sediment	Screening	Contamina No. of	nt Frequency/Range	No. of Positive Detects Above			Reference Areas				
		(SSVs)	Positive Detects/No.	Range of Positive	SS	sv	Max.			No. of Positive Detects Above	Ecological Contaminant	
Analyte	ER-L ⁽¹⁾	ER-M ⁽²⁾	of Samples	Detections	ER-L	ER-M	НQ	Range	Mean	Reference	of Concern?	Comments
Copper	18.7	270	3/5	2.4J - 16.6	0	0	0.89	4.6J	4.6J	2	No	Below SSV
Lead	30.2	218	5/5	2.5 - 20.7	0	0	0.69	4.6 - 10.5	7.55	1	No	Below SSV

Notes:

J - value reported is estimated

mg/kg - milligram per kilogram

SSV - Sediment Screening Value

HQ - Hazard Quotient (maximum detected value divided by the lowest screening value)

(1) Region IV Sediment Screening Value (USEPA, 1995), unless otherwise noted

(2) Long et al. (1995) value, unless otherwise noted

TABL_4-3

FREQUENCY AND RANGE OF CLAM TISSUE DATA COMPARED TO REFERENCE AREAS STUDY AREA STONE BAY AQUATIC ASSESSMENT, CTO-0100 MCB, CAMP LEJEUNE, NORTH CAROLINA

		nt Frequency/Range					
	No. of		Re	ference A	reas		
	Positive	Range of			No. of Positive	Ecological	
	Detects/No.	Positive			Detects Above	Contaminant	
Analyte (mg/kg)	of Samples	Detections	Range	Mean	Reference	of Concern?	Comments
							· · · · · · · · · · · · · · · · · · ·
Copper	- 171	12.6	9.5 - 10.1	- 9.8	1	Yes	
Lead	= 1/1	1.8	• 0.7 - 1	0.85	in the second	Yes	A CONTRACTOR OF A CONTRACTOR

Notes:

Shaded area represents selected ecological contaminants of concern

Clams were only found at one station in the study area

mg/kg - milligram per kilogram

FREQUENCY AND RANGE OF MUSSEL TISSUE DATA COMPARED TO REFERENCE AREAS STUDY AREA STONE BAY AQUATIC ASSESSMENT, CTO-0100 MCB, CAMP LEJEUNE, NORTH CAROLINA

	Contaminar	nt Frequency/Range				
	No. of		Reference Areas			
	Positive Detects/No.	Range of Positive	Ditation	No. of Positive Detects Above	Ecological Contaminant	Commonto
Analyte (mg/kg)	of Samples	Detections	Detection	Reference	of Concern?	Comments
Copper	3/3	4.1 - 12.9	4.1	2	Yes	A Contract of the second s
Lead	3/3	1.3 - 4.8	a harring and the state of the	3	Yes	

Notes:

Shaded area represents selected ecological contaminants of concern

Reference is based on one sample: therefore, the mean value is not calculated.

mg/kg - milligram per kilogram

FREQUENCY AND RANGE OF OYSTER TISSUE DATA COMPARED TO REFERENCE AREAS STUDY AREA STONE BAY AQUATIC ASSESSMENT, CTO-0100 MCB, CAMP LEJEUNE, NORTH CAROLINA

	Contaminant Frequer			Reference A			
Analyte (mg/kg)	Positive Detects/No. of Samples	Range of Positive Detections	Range	Mean	No. of Positive Detects Above Reference	Ecological Contaminant of Concern?	Comments
Copper	5/5	17.1 - 50.3	8.2 - 88.2	48.2	0	No	Below Reference
Lead	5/5	0.4 - 1.6	1.2 - 2	1.6	0	No	Below Reference

Notes:

mg/kg - milligram per kilogram

QUALITATIVE COMPARISON OF COPPER CONCENTRATIONS DETECTED IN BENTHIC SAMPLES STUDY AREA STONE BAY AQUATIC ASSESSMENT, CTO-0100 MCB, CAMP LEJEUNE, NORTH CAROLINA

<u></u>	Range of	Mean	Literature Values		No. of Detects	Referen	ce Areas
Species	Detections (mg/kg)	Concentration (mg/kg)	Maximum (mg/kg)	Mean (mg/kg)	Above Literature Values	Range (mg/kg)	Mean (mg/kg)
Oyster	17.1 - 50.3	35.98	360	150	0	8.2 - 88.2	48.2
Clam	12.6	12.6	NF	NF	NA	9.5 - 10.1	9.8
Mussel	4.1 - 12.9	9.83	11	8.9	2	4.1	4.1

Notes:

mg/kg - milligram per kilogram NF - Not Found NA - Not applicable

Source: Irwin, 1997a

QUALITATIVE COMPARISON OF LEAD CONCENTRATIONS DETECTED IN BENTHIC SAMPLES STUDY AREA STONE BAY AQUATIC ASSESSMENT, CTO-0100 MCB, CAMP LEJEUNE, NORTH CAROLINA

	Range of	Mean	Literature Values N		No. of Detects	Reference Areas	
	Detections	Concentration	Maximum	Mean	Above Literature	Range	Mean
Species	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	Values	(mg/kg)	(mg/kg)
Oyster	0.44 - 1.6	0.9	0.94	0.52	2	1.2 - 2	1.6
Clam	1.8	1.8	NF	NF	NA	0.7 - 1	0.85
Mussel	1.3 - 4.8	2.57	4.3	1.8	1	1	1

Notes:

mg/kg - milligram per kilogram NF - Not Found NA - Not applicable

Source: Irwin, 1997b

SUMMARY OF ECOLOGICAL CONTAMINANTS OF CONCERN PER MEDIA STUDY AREA STONE BAY AQUATIC ASSESSMENT, CTO-0100 MCB, CAMP LEJEUNE, NORTH CAROLINA

Analyte	Sediment	Clam	Mussel	Oyster
Copper		Х	х	
Lead		X	X	

AQUATIC SPECIES - CONSERVATIVE MODELS MAXIMUM CONCENTRATION HAZARD QUOTIENT VALUES STUDY AREA STONE BAY AQUATIC ASSESSMENT, CTO-0100 MCB, CAMP LEJEUNE, NORTH CAROLINA

	He	ron	Mink		
Ecological Contaminants	NOAEL	LOAEL	NOAEL	LOAEL	
of Concern	HQ _n	HQ	HQ _n	HQ	
Copper	44.0	4,0	13:0	1.0	
Lead	4.0	0.4	20.0	2.0	

Highlighted values represent Hazard Quotients (HQs) greater than 1.0

 HQ_{n-} Hazard Quotient based on the NOAEL

HQ1. Hazard Quotient based on the LOAEL

 $\lambda_{\rm eff} = 10.55$

AQUATIC SPECIES - LESS CONSERVATIVE MODELS MEAN CONCENTRATION HAZARD QUOTIENT VALUES STUDY AREA STONE BAY AQUATIC ASSESSMENT, CTO-0100 MCB, CAMP LEJEUNE, NORTH CAROLINA

	He	Heron		ink
Ecological Contaminants of Concern	NOAEL HQ _n	LOAEL HQ ₁	NOAEL HQ _n	LOAEL HQ ₁
Copper	31.0	3.0	9.0	0.9
Lead	2.0	0.2	9.0	0.9

Highlighted values represent Hazard Quotients (HQs) greater than 1.0

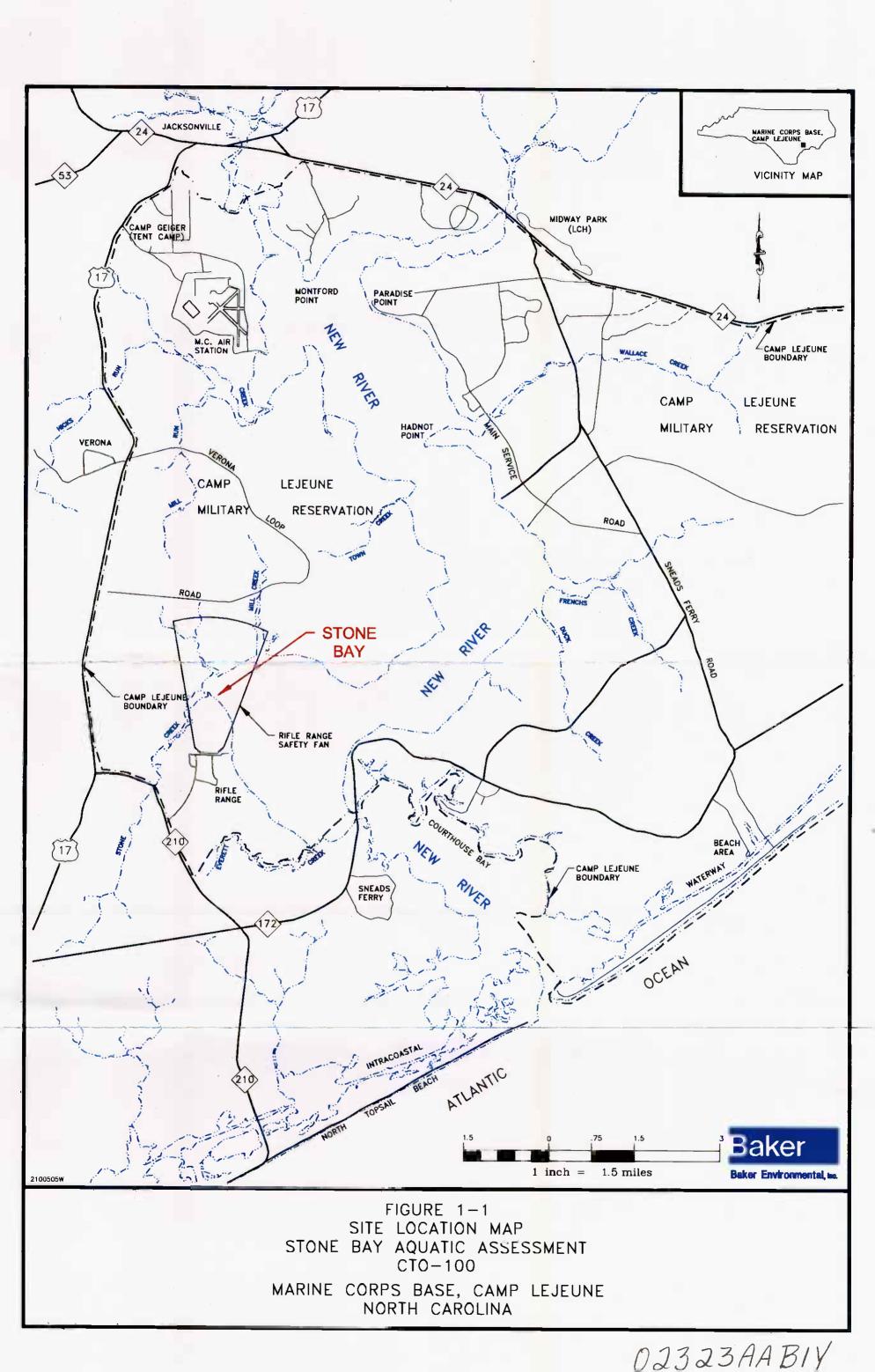
HQ_n- Hazard Quotient based on the NOAEL

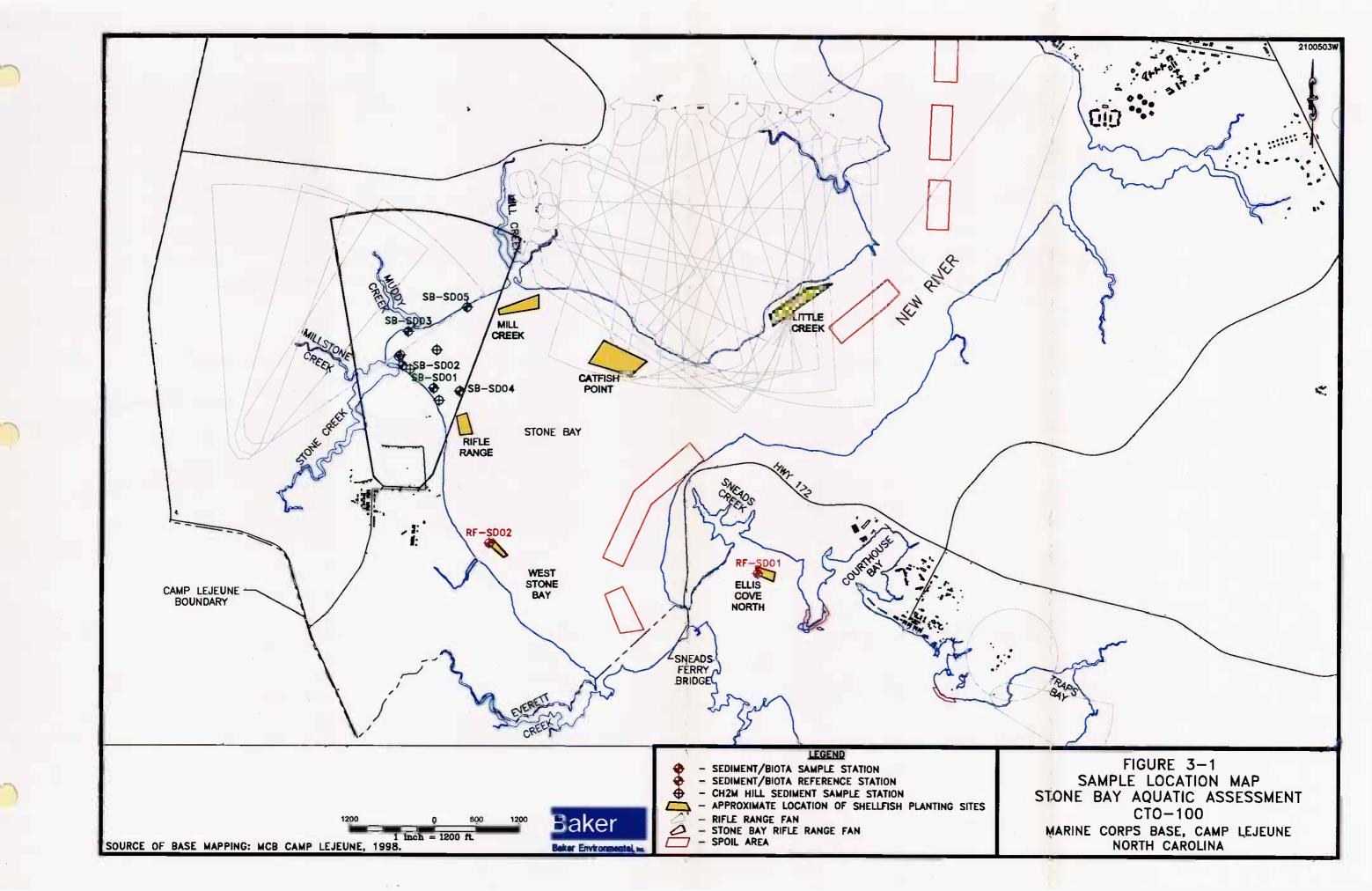
 HQ_{I-} Hazard Quotient based on the LOAEL

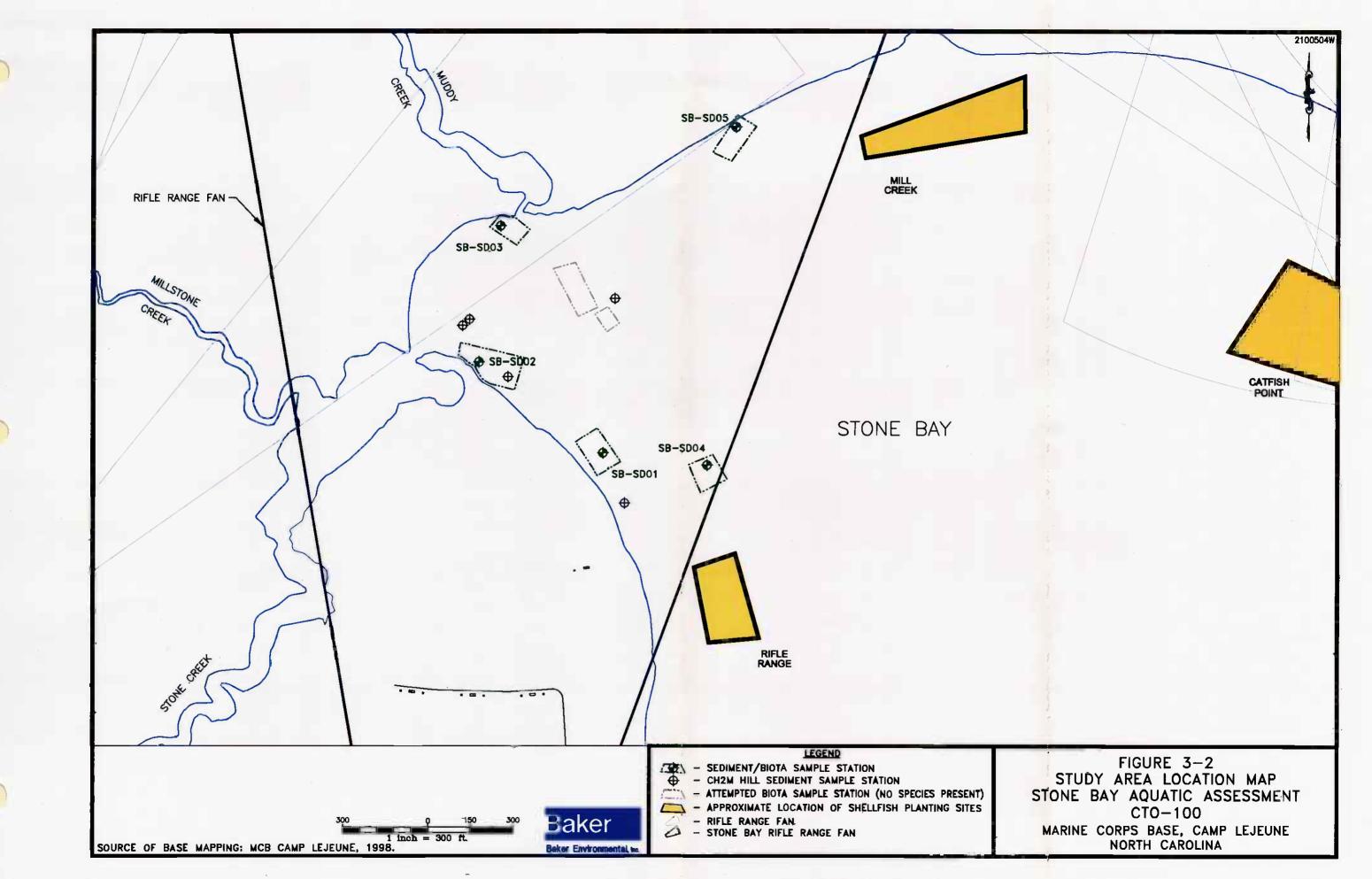
AQUATIC SPECIES - LESS CONSERVATIVE MODELS MEAN CONCENTRATION HAZARD QUOTIENT VALUES REFERENCE AREAS STONE BAY AQUATIC ASSESSMENT, CTO-0100 MCB, CAMP LEJEUNE, NORTH CAROLINA

	Here	on	Mink	
Ecological Contaminants of Concern	NOAEL HQ _n	LOAEL HQ _l	NOAEL HQ _n	LOAEL HQ _l
Copper	41.0	4.0	12.0	1.0
Lead	2.0	0.2	7.0	0.7

Highlighted values represent Hazard Quotients (HQs) greater than 1.0


 HQ_{n} . Hazard Quotient based on the NOAEL


HQ1- Hazard Quotient based on the LOAEL



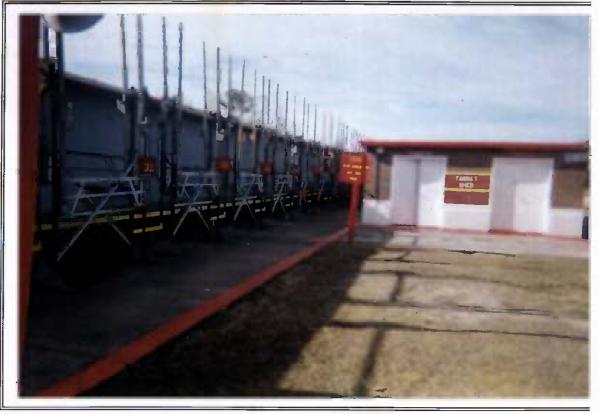
Baker Environmental, Inc. FIGURES

Baker Environmental, Inc, ATTACHMENT A Site Photographs

Rifle Range

This photograph of Bravo Range was taken facing down range (north). The targe backstop seen in the background is approximately 500 meters away.

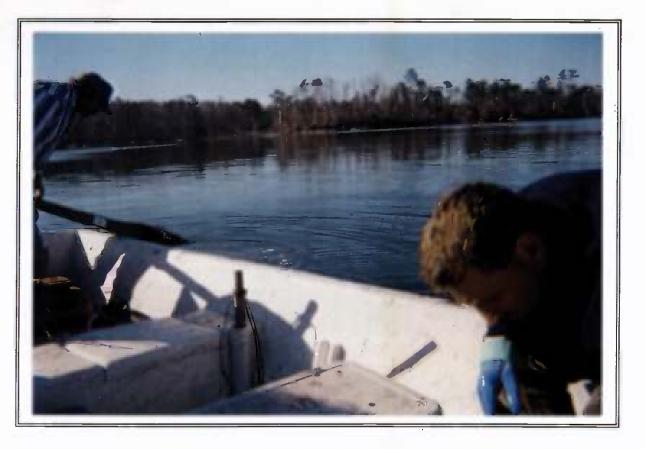
02323AABZY


Bravo Range. The asphalt road leads to the target area, which is commonly referrec to as the "Butts".

Rifle Range

1999.03

This photograph was taken behind the target backstop area or "Butts". Personnel protected by the backstop raise and lower targets for the shooters.



1999.04

This photograph was taken from the top of the range backstop, looking north in the direction of Stone Bay. Note that the tree line height is diminished, due to the number of rounds traveling over the area.

Stone Bay

1999.05

Sampling in deep water was accomplished usin "shellfish tongs" to retrieve clams, oysters, and musse from the bottom of the bay.

1999.06

Some shellfish samples were collected by hand, as samplers waded in shallow water. This photograph was taken at the end of the rifle range near Stone Creek.

Stone Bay

1999.07

This photograph was taken from Stone Bay facing toward the edge of the rifle range. The flag pole seen in the center of the photograph is used to warn civilian personnel when the rifle range is in operation.

1999.08

This photograph was taken from reference station number one. Sneads Ferry Bridge can be seen in the background.

(SGR)

Baker Environmental, Inc. ATTACHMENT B Analytical Results

11/25/98 WED 11:49 FAX 757 322 4805

TECHNICAL MEMORANDUM

CH2MHILL

Stones Bay Sediment and Water Quality Sampling Results

PREPARED FOR:

Mr. D.J. Cotnoir/Commander Atlantic Division

PREPARED BY:

Bill Kreutzberger/CH2M HILL-CLT

COPIES:

Mr. Dave Marasco/Camp Lejeune Mike Mischuk/CH2M HILL-MKE Tom Dupuis/CH2M HILL-MKE Stewart Barnes/CH2M HILL-HRO Steven Lehmann/CH2M HILL-CLT

DATE:

October 28, 1998

Introduction and Background

Marine Corp Base (MCB), Camp Lejeune provides specialized training to prepare troops for amphibious and land combat operations. The buildings and facilities onsite support 144,000 marines, sailors and their families. A new 15-million gallon per day (mgd) advanced wastewater treatment facility is being constructed; and due to strong public reaction, the North Carolina Department of Environment and Natural Resources (NCDENR), Division of Coastal Management, has required Camp Lejeune to conduct in-stream sediment and water quality monitoring.

A monitoring program was initiated in June 1998 to quantify the discharge's impact, if any, on the estuarine environment. Ten transects were sampled at locations between Wilson Bay and Courthouse Bay. A modification to the monitoring program was requested by LANTDIV and required additional sediment and water quality sampling at five stations in an area of the New River Estuary known as Stones Bay.

Field Sampling

On September 16, 1998, CH2M HILL collected sediment and water quality samples from five stations in Stones Bay. Bob Deppen navigated the boat provided by Camp Lejeune. Dave Marasco, Camp Lejeune contact, was also in attendance. The sampling plan, Attachment 1, identifies the sampling locations, the sample matrix, chemical analysis that was performed, and the sampling methods used. The plan was followed as described with the exception of the following deviations.

- SB-3 could not be reached due to a water depth of less than two feet. SB-3 was sampled at an alternate location that was at the mouth of the stream. The final locations of all sites are noted on the attached map.
- As noted in Exhibit 3 of the attached sampling plan, a new polyethylene pail and spoon, each of which had been decontaminated previously, were supplied and used at each site instead of completing the decontamination process on a single pail and spoon between sites.
- The metals samples were filtered between 26 and 29 hours after the samples were first taken.
- Sampling was completed two weeks after Hurricane Bonnie, and the river was still turbid.

Post-It™ brand fax transmitta	I memo 7671 # of pages > 4
TO JEFFTERSIL	From KATELHNDNAN
Co.	Co.
Dept.	Phone #
Fax# 4122692002	Fax #

146833

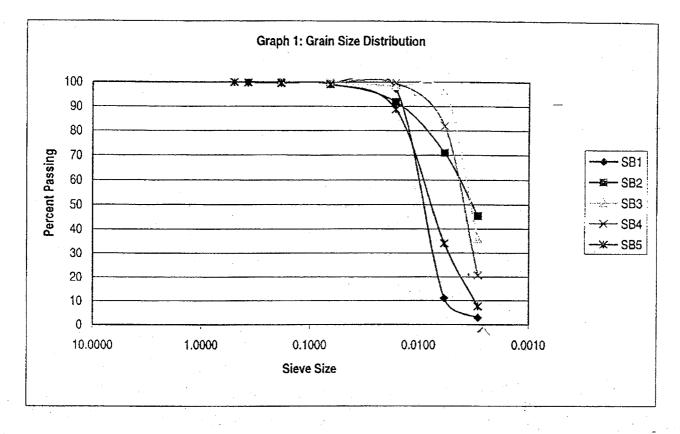
002

STONES BAY SEDIMENT AND WATER QUALITY SAMPLING RESULTS

Results

The tables below summarize the sediment and water quality results from the attached lab reports from En Chem and Frontier Geosciences. Table 1, Sediment Inorganic Results, includes the metals, solids percent, acid volatile sulfide (AVS) and total organic carbon (TOC) results from the sediment samples, as well as the ER-L and ER-M levels established by the National Oceanic and Atmospheric Administration (NOAA). Graph 1, Grain Size Distribution, represents the grain size distribution from the same sediment samples, and the graph reveals that more fines are present at stations SB-3 and SB-4, while more sand is present at stations SB-1 and SB-5. Table 2, Water Quality Metals Results, summarizes the water quality results, as well as includes the NCDENR Water Quality Standards for tidal saltwaters with a classification of SA. There are no sediment standards to report in Table 1.

			TABLE 1: SEDI	MENT INORGA	NIC RESULTS				
	Sampling Staions							NOAA Guidlines	
Analyte	Units	CLMSDSB101	CLMSDSB201	CLMSDSB301	CLMSDSB401	CLMSDSB501	ER-L	ER-M	
As	mg/kg	< 1.3	3.6	2.2	< 1.4	< 1.4	33	85	
Cd	mg/kg	< 0.13	< 0.21	< 0.15	< 0.14	< 0.14	5	9	
Cr	mg/kg	2.4	15	4.6	3.6	4.7	80	145	
Cu	mg/kg	< 1.3	18	5.7	15	< 1.4	70	390	
Pb	mg/kg	1.5	12	4	3.5	3.5	35	110	
Hg	mg/kg	< 0.13	< 0.21	< 0.15	< 0.14	< 0.14	0.15	1.30	
Ni	mg/kg	< 0.67	3.10	< 0.77	< 0.70	0.98	30	50	
Se	mg/kg	< 1.3	< 2.1	< 1.5	< 1.4	< 1.4	NA	NA	
Ag	mg/kg	< 0.67	< 1.1	< 0.77	< 0.70	< 0.70	1	2.2	
Zn	mg/kg	3.7	19	5.5	4.2	4.0	120	270	
Solids	%	74.4	47	65.3	71.8	71.9	NA	NA	
TOC as NPOC	mg/kg	2000	11000	3300	2600	2000	NA	NA	
AVS	mg/kg	130	270	< 61	51	< 56	NA	NA	

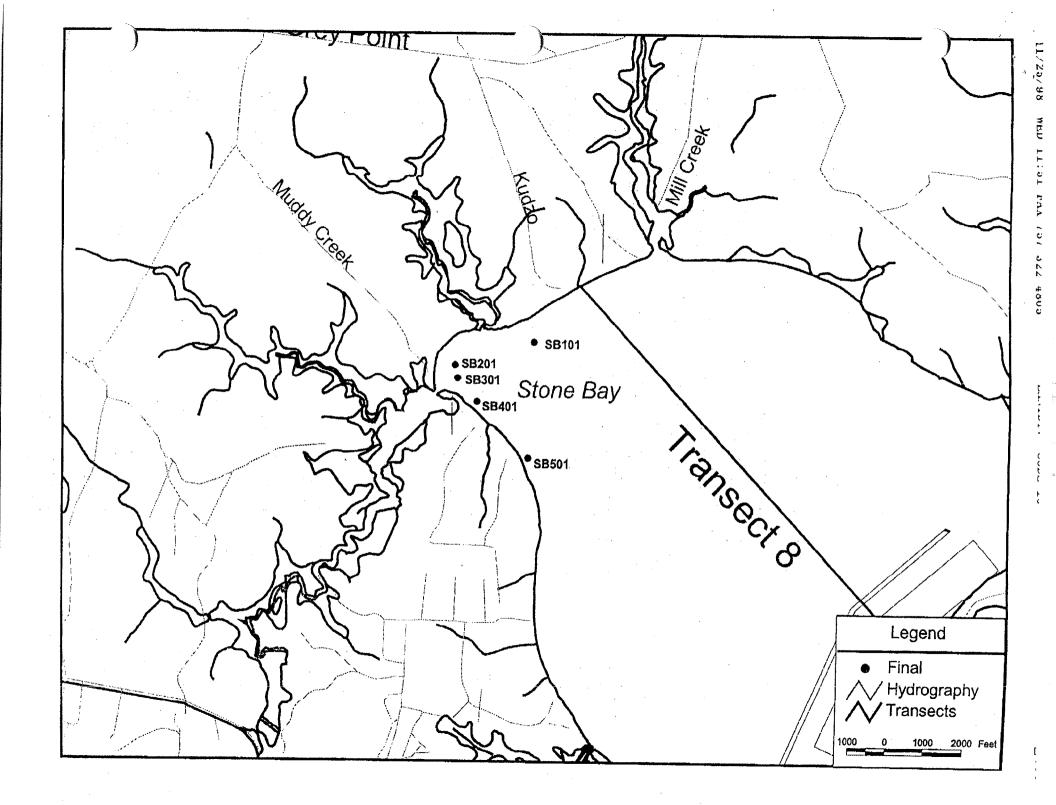

2

TOC = Total Organic Carbon

NPOC = Non-purgeable Organic Carbon

AVS = Acid Volatile Sulfide

STONES BAY SEDIMENT AND WATER QUALITY SAMPLING RESULTS


	TABLE 3: WATER QUALITY METALS RESULTS													
Metal	Units	Trip l	Blank	CLMS	WSB101	CLMS	LMSWSB201 CLMSWSB301		CLMSWSB401		CLMSWSB501		W. Q. Stds.	
		Total	Diss.	Total	Diss.	Total	Diss.	Total	Diss.	Total	Diss.	Total	Diss.	Aquatic Life
As	μg/L	ND	ND	1.06	0.943	1.16	1.03	1.27	1.02	1.44	1.04	1.37	1.05	50
Cd	μg/L	0.001	0	0.011	0.004	0.011	0.004	0.012	0.003	0.017	0.004	0.014	0.003	5.0
Cr	μg/L	ND	ND	0.29	0.13	0.56	0.10	0.72	0.06	1.37	0.06	1.30	0.07	20
Cu	µg/L	0.08	0.03	0.71	0.62	0.88	0.61	0.91	0.61	1.53	0.86	0.95	0.58	3 (AL)
РЬ	µg/L	ND ·	ND	0.220	ND	0.415	ND	0.437	ND	0.926	ND	0.641	ND	25 (N)
Hg	ng/L	0.04	0.39	1.81	0.90	2.28	0.89	2.21	0.85	2.29	1.02	2.59	1.00	25
Ni	μg/L	0.02	0.02	0.24	0.24	0.30	0.25	0.31	0.26	0.48	0.25	0.44	0.29	8.3
Se	μg/L	ND	ND	0.120	0.095	0.126	0.099	0.122	0.103	0.157	0.102	0.153	0.102	71
Ag	µg/L	ND	ND	0.001	ND	0.004	ND	0.004	ND	0.005	ND	0.004	ND	0.1 (AL)
Zn	µg/L	ND	ND	0.84	ND	1.33	ND	1.28	ND	2.29 .	0.24	1.75	0.15	86 (AL)

ND = Analyte not detected above the estimated method detection limit (MDL)

AL = Values represent action levels as specified in 15A NCAC 2B .0220

N = See 15A NCAC 2B.0220 for narrative description of limits

3

B.2 Aquatic Assessment Data

SAMPLE ID	SB-SD01-99A	SB-SD02-99A	SB-SD03-99A	SB-SD04-99A	SB-SD05-99A
SAMPLE DATE	1/14/99	1/15/99	1/15/99	1/15/99	1/16/99
INORGANICS (mg/kg)					
Aluminum	1750	1780	1580	14800	1580
Antimony	0.66 U	0.61 U	0.57 U	1.36 U	0.58 U
Arsenic	1.1 J	0.85 J	0.68 U	6.8	0.84 J
Barium	2.9 J	2.1 J	2.2 J	14.4 J	2.7 J
Beryllium	0.25 U	0.23 U	0.22 U	0.52 U	0.22 U
Cadmium	0.1 U	0.09 U	0.09 U	0.21 U	0.09 U
Calcium	484 J	161 J	323 J	4930	1320
Chromium	5.6	4.2	3.2	29.8	3.9
Cobalt	1.37 U	1.26 U	1.18 U	2.82 U	1.21 U
Copper	2.67 U	16.6	2.4 J	8.7 J	2.35 U
Iron	2380	2120	1480	17400	1660
Lead	6	5.7	2.5	20.7	3.4
Magnesium	843 J	592 J	511 J	5280	475 J
Manganese	8.9	6.3	4.2	88	8.7
Mercury	0.05 U	0.06 U	0.06 U	0.13 U	0.06 U
Nickel	2.54 U	2.33 U	2.19 U	5.8 J	2.24 U
Potassium	430 J	341 J	285 J	2510 J	273 J
Selenium	0.81 U	0.75 U	0.7 U	1.67 U	0. 72 U
Silver	0.75 J	0.9 J	0.46 J	4.6 J	0.6 J
Sodium	3980	2530	2080	15000	1860
Thallium	0.51 U	0.47 U	0.44 U	1.3 J	0.45 U
Vanadium	5.3 J	4.5 J	3.7 J	25.7 J	3.6 J
Zinc	5.8	5.6	2.9 J	38.8	3.3 J

SAMPLE ID	Minimum	Maximum	Minimum	Maximum	Location of	Frequency	Arithmatic Mean	Median
SAMPLE DATE	Non-Detect	Non-Detect	Detected	Detected	Maximum Detect	of Detection	Positive Detects	Positive Detects
INODO ANICE (martine)								
INORGANICS (mg/kg)								
Aluminum	ND	ND	1580	14800	SB-SD04-99A	5/5	4298	1750
Antimony	0.57 U	1.36 U	ND	ND		0/5	ND	ND
Arsenic	0.68 U	0.68 U	0.84 J	6.8	SB-SD04-99A	4/5	2.4	0.98
Barium	ND	ND	2.1 J	14.4 J	SB-SD04-99A	5/5	4.86	2.7
Beryllium	0.22 U	0. 52 U	ND	ND		0/5	ND	ND
Cadmium	0.09 U	0.21 U	ND	ND		0/5	ND	ND
Calcium	ND	ND	161 J	4930	SB-SD04-99A	5/5	1443.6	484
Chromium	ND	ND	3.2	29.8	SB-SD04-99A	5/5	9.34	4.2
Cobalt	1.18 U	2.82 U	ND	ND		0/5	ND	ND
Copper	2.35 U	2.67 U	2.4 J	16.6	SB-SD02-99A	3/5	9.23	8.7
Iron	ND	ND	1480	17400	SB-SD04-99A	5/5	5008	2120
Lead	ND	ND	2.5	20.7	SB-SD04-99A	5/5	7.66	5.7
Magnesium	ND	ND	475 J	5280	SB-SD04-99A	5/5	1540.2	592
Manganese	ND	ND	4.2	88	SB-SD04-99A	5/5	23.22	8.7
Mercury	0.05 U	0.13 U	ND	ND		0/5	ND	ND
Nickel	2.19 U	2.54 U	5.8 J	5.8 J	SB-SD04-99A	1/5	5.8	5.8
Potassium	ND	ND	273 J	2510 J	SB-SD04-99A	5/5	767.8	341
Selenium	0.7 U	1.67 U	ND	ND		0/5	ND	ND
Silver	ND	ND	0.46 J	4.6 J	SB-SD04-99A	5/5	1.46	0.75
Sodium	ND	ND	1860	15000	SB-SD04-99A	5/5		
Thallium	0.44 U	0.51 U	1.3 J	1.3 J	SB-SD04-99A		5090	2530
Vanadium	ND					1/5	1.3	1.3
Zinc	ND ND	ND	3.6 J	25.7 J	SB-SD04-99A	5/5	8.56	4.5
Zille	ND	ND	2.9 J	38.8	SB-SD04-99A	5/5	11.28	5.6

Page 2 of 2

FREQUENCY OF DETECTIONS IN CLAM TISSUE STONE BAY STONE BAY AQUATIC ASSESSMENT, CTO-0100 MCB, CAMP LEJEUNE, NORTH CAROLINA

.

SAMPLE ID	SB-CL04-99A
SAMPLE DATE	1/15/99
INORGANICS (mg/kg)	
Aluminum	275
Antimony	1.85 U
Arsenic	12.4
Barium	1.7 J
Beryllium	0.71 U
Cadmium	0.47
Calcium	12400
Chromium	1.2
Cobalt	2.3 J
Copper	12.6
Iron	442
Lead	1.8
Magnesium	8370
Manganese	33.5
Mercury	0.048
Nickel	4.1
Potassium	11600
Selenium	2.8
Silver	0.57 U
Sodium	71900
Thallium	1.42 U
Vanadium	1.9 J
Zinc	117

FREQUENCY OF DETECTIONS IN CLAM TISSUE STONE BAY STONE BAY AQUATIC ASSESSMENT, CTO-0100 MCB, CAMP LEJEUNE, NORTH CAROLINA

SAMPLE ID	Minimum	Maximum	Minimum	Maximum	Location of	Frequency	Arithmatic Mean	Median
SAMPLE DATE	Non-Detect	Non-Detect	Detected	Detected	Maximum Detect	of Detection	Positive Detects	Positive Detects
	•							
INORGANICS (mg/kg)	ND	MD	075	275		. /.	075	075
Aluminum	ND	ND	275	275	SB-CL04-99A	1/1	275	275
Antimony	1.85 U	1.85 U	ND	ND		0/1	ND	ND
Arsenic	ND	ND	12.4	12.4	SB-CL04-99A	1/1	12.4	12.4
Barium	ND	ND	1.7 J	1.7 J	SB-CL04-99A	1/1	1.7	1.7
Beryllium	0.71 U	0.71 U	ND	ND		0/1	ND	ND
Cadmium	ND	ND	0.47	0.47	SB-CL04-99A	1/1	0.47	0.47
Calcium	ND	ND	12400	12400	SB-CL04-99A	1/1	12400	12400
Chromium	ND	ND	1.2	1.2	SB-CL04-99A	1/1	1.2	1.2
Cobalt	ND	ND	2.3 J	2.3 J	SB-CL04-99A	1/1	2.3	2.3
Copper	ND	ND	12.6	12.6	SB-CL04-99A	1/1	12.6	12.6
Iron	ND	ND	442	442	SB-CL04-99A	1/1	442	442
Lead	ND	ND	1.8	1.8	SB-CL04-99A	1/1	1.8	1.8
Magnesium	ND	ND	8370	8370	SB-CL04-99A	1/1	8370	8370
Manganese	ND	ND	33.5	33.5	SB-CL04-99A	1/1	33.5	33.5
Mercury	ND	ND	0.048	0.048	SB-CL04-99A	1/1	0.05	0.05
Nickel	ND	ND	4.1	4.1	SB-CL04-99A	1/1	4.1	4.1
Potassium	ND	ND	11600	11600	SB-CL04-99A	1/1	11600	11600
Selenium	ND	ND	2.8	2.8	SB-CL04-99A	1/1	2.8	2.8
Silver	0.57 U	0.57 U	ND	ND		0/1	ND	ND
Sodium	ND	ND	71900	71900	SB-CL04-99A	1/1	71900	71900
Thallium	1.42 U	1.42 U	ND	ND		0/1	ND	ND
Vanadium	ND	ND	1.9 J	1.9 J	SB-CL04-99A	1/1	1.9	1.9
Zinc	ND	ND	117	117	SB-CL04-99A	1/1	117	117

FREQUENCY OF DETECTIONS IN CLAM TISSUE STONE BAY STONE BAY AQUATIC ASSESSMENT, CTO-0100 MCB, CAMP LEJEUNE, NORTH CAROLINA

SAMPLE ID	SB-CL04-99A
SAMPLE DATE	1/15/99
WET WEIGHT BASIS	
Percent Lipids (%)	0.2
Moisture (%)	89

.

FREQUENCY OF DETECTIONS IN MUSSEL TISSUE STONE BAY STONE BAY AQUATIC ASSESSMENT, CTO-0100 MCB, CAMP LEJEUNE, NORTH CAROLINA

SAMPLE ID	SB-MU01/02-99A	SB-MU04-99A	SB-MU05-99A
SAMPLE DATE	1/16/99	1/16/99	1/15/99
INORGANICS (mg/kg)			
Aluminum	1010	455	317
Antimony	1.11 U	38.81 U	0.09 U
Arsenic	11	37.4	11.3
Barium	1.5 J	2.3 J	0.83 J
Beryllium	0.05 J	14.93 U	0.03 U
Cadmium	0.24	0.52	0.19
Calcium	19500	24100	8470
Chromium	1.9	2	0.82
Cobalt	0.55 J	0.64 J	0.35 J
Copper	12.5	12.9	4.1
Iron	1100	643	366
Lead	4.8	1.6	1.3
Magnesium	3080	7950	3010
Manganese	26.3	91.9	18.1
Mercury	0.088	0.157	0.086
Nickel	3	3 J	0.73 J
Potassium	7130	18900	6080
Selenium	3.4	9.4	3.3
Silver	0.34 U	11.94 U	0.03 U
Sodium	24100	69800	27600
Thallium	0.86 U	29.85 U	0.07 U
Vanadium	3.3	4.9	1.9
Zinc	45	101	34.1

FREQUENCY OF DETECTIONS IN MUSSEL TISSUE STONE BAY STONE BAY AQUATIC ASSESSMENT, CTO-0100 MCB, CAMP LEJEUNE, NORTH CAROLINA

SAMPLE ID	Minimum	Maximum	Minimum	Maximum	Location of	Frequency	Arithmatic Mean	Median
SAMPLE DATE	Non-Detect	Non-Detect	Detected	Detected	Maximum Detect	of Detection	Positive Detects	Positive Detects
INORGANICS (mg/kg)								
Aluminum	ND	ND	317	1010	SB-MU01/02-99A	3/3	594	455
Antimony	0.09 U	38.81 U	ND	ND		0/3	ND	ND
Arsenic	ND	ND	11	37.4	SB-MU04-99A	3/3	19.9	11.3
Barium	ND	ND	0.83 J	2.3 J	SB-MU04-99A	3/3	1.54	1.5
Beryllium	0.03 U	14.93 U	0.05 J	0.05 J	SB-MU01/02-99A	1/3	0.05	0.05
Cadmium	ND	ND	0.19	0.52	SB-MU04-99A	3/3	0.32	0.24
Calcium	ND	ND	8470	24100	SB-MU04-99A	3/3	17356.67	19500
Chromium	ND	ND	0.82	2	SB-MU04-99A	3/3	1.57	1.9
Cobalt	ND	ND	0.35 J	0.64 J	SB-MU04-99A	3/3	0.51	0.55
Copper	ND	ND	4.1	12.9	SB-MU04-99A	3/3	9.83	12.5
Iron	ND	ND	366	1100	SB-MU01/02-99A	3/3	703	643
Lead	ND	ND	1.3	4.8	SB-MU01/02-99A	3/3	2.57	1.6
Magnesium	ND	ND	3010	7950	SB-MU04-99A	3/3	4680	3080
Manganese	ND	ND	18.1	91.9	SB-MU04-99A	3/3	45.43	26.3
Mercury	ND	ND	0.086	0.157	SB-MU04-99A	3/3	0.11	0.09
Nickel	ND	ND	0.73 J	3 J	SB-MU01/02-99A,SB-MU04-99A	3/3	2.24	3
Potassium	ND	ND	6080	18900	SB-MU04-99A	3/3	10703.33	7130
Selenium	ND	ND	3.3	9.4	SB-MU04-99A	3/3	5.37	3.4
Silver	0.03 U	11.94 U	ND	ND	•	0/3	ND	ND
Sodium	ND	ND	24100	69800	SB-MU04-99A	3/3	40500	27600
Thallium	0.07 U	29.85 U	ND	ND		0/3	ND	ND
Vanadium	ND	ND	1.9	4.9	SB-MU04-99A	3/3	3.37	3.3
Zinc	ND	ND	34.1	101	SB-MU04-99A	3/3	60.03	45

FREQUENCY OF DETECTIONS IN MUSSEL TISSUE STONE BAY STONE BAY AQUATIC ASSESSMENT, CTO-0100 MCB, CAMP LEJEUNE, NORTH CAROLINA

SAMPLE ID	SB-MU01/02-99A	SB-MU04-99A	SB-MU05-99A	
SAMPLE DATE	1/16/99	1/16/99	1/15/99	
WET WEIGHT BASIS				
Percent Lipids (%)	1.6	1	2.1	
Moisture (%)	85	93	81	

FREQUENCY OF DETECTIONS IN OYSTER TISSUE STONE BAY STONE BAY AQUATIC ASSESSMENT, CTO-0100 MCB, CAMP LEJEUNE, NORTH CAROLINA

SAMPLE ID	SB-OY01-99A	SB-OY02-99A	SB-OY03-99A	SB-OY04-99A	SB-OY05-99A
SAMPLE DATE	01/14/99	01/15/99	01/15/99	01/15/99	01/15/99
INORGANICS (mg/kg)					
Aluminum	111	49.3	90.6	69.5	78.9
Antimony	9.39 U	12.42 U	1.69 U	2.65 U	3.9 U
Arsenic	12.5	7.4	10	11.9	4.1
Barium	0.83 J	0.35 J	0.62 J	0.68 J	0.3 J
Beryllium	3.61 U	4.78 U	0.65 U	1.02 U	1.5 U
Cadmium	1.6	1.1	1.7	1.3	0.6
Calcium	2330	2830	4040	7840	5960
Chromium	0.65	0.46	0.66	0.72	0.43
Cobalt	0.37 J	0.34 J	3.51 U	5.51 U	0.21 J
Copper	50.3	45.1	46	21.4	17.1
Iron	225	123	199	228	137
Lead	1.6	0.69	1	0.82	0.4
Magnesium	2740	2450	3960	5110	2620
Manganese	9.8	6.4	11.8	7	5.7
Mercury	0.063	0.069	0.252	0.07	0.053
Nickel	2.4	1.1 J	2.3	1.8 J	1.3
Potassium	8940	8780	9090	11200	5000
Selenium	3.2	2.8	3.1	2.8	1
Silver -	0.34 J	3.82 U	0.52 U	0.82 U	1.2 U
Sodium	19700	18600	31700	43800	22400
Thallium	7.22 U	9.55 U	1.3 U	2.04 U	3 U
Vanadium	1.4 J	0.68 J	0.56 J	1.7 J	0.35 J
Zinc	1280	793	722	728	894

FREQUENCY OF DETECTIONS IN OYSTER TISSUE STONE BAY STONE BAY AQUATIC ASSESSMENT, CTO-0100 MCB, CAMP LEJEUNE, NORTH CAROLINA

SAMPLE ID	Minimum	Maximum	Minimum	Maximum	Location of	Frequency	Arithmatic Mean	Median
SAMPLE DATE	Non-Detect	Non-Detect	Detected	Detected	Maximum Detect	of Detection	Positive Detects	Positive Detects
INORGANICS (mg/kg)								
Aluminum	ND	ND	49.3	111	SB-OY01-99A	5/5	79.86	78.9
Antimony	1.69 U	12.42 U	ND	ND		0/5	ND	ND
Arsenic	ND	ND	4.1	12.5	SB-OY01-99A	5/5	9.18	10
Barium	ND	ND	0.3 J	0.83 J	SB-OY01-99A	5/5	0.56	0.62
Beryllium	0.65 U	4.78 U	ND	ND		0/5	ND	ND
Cadmium	ND	ND	0.6	1.7	SB-OY03-99A	5/5	1.26	1.3
Calcium	ND	ND	2330	7840	SB-OY04-99A	5/5	4600	4040
Chromium	ND	ND	0.43	0.72	SB-OY04-99A	5/5	0.58	0.65
Cobalt	3.51 U	5.51 U	0.21 J	0.37 J	SB-OY01-99A	3/5	0.31	0.34
Copper	ND	ND	17.1	50.3	SB-OY01-99A	5/5	35.98	45.1
Iron	ND	ND	123	228	SB-OY04-99A	5/5	182.4	199
Lead	ND	ND	0.4	1.6	SB-OY01-99A	5/5	0.9	0.82
Magnesium	ND	ND	2450	5110	SB-OY04-99A	5/5	3376	2740
Manganese	ND	ND	5.7	11.8	SB-OY03-99A	5/5	8.14	7
Mercury	ND	ND	0.053	0.252	SB-OY03-99A	5/5	0.1	0.07
Nickel	ND	ND	1.1 J	2.4	SB-OY01-99A	5/5	1.78	1.8
Potassium	ND	ND	5000	11200	SB-OY04-99A	5/5	8602	8940
Selenium	ND	ND	1	3.2	SB-OY01-99A	5/5	2.58	2.8
Silver	0.52 U	3.82 U	0.34 J	0.34 J	SB-OY01-99A	1/5	0.34	0.34
Sodium	ND	ND	18600	43800	SB-OY04-99A	5/5	27240	22400
Thallium	1.3 U	9.55 U	ND	ND		0/5	ND	ND
Vanadium	ND	ND	0.35 J	1.7 J	SB-OY04-99A	5/5	0.94	0.68
Zinc	ND	ND	722	1280	SB-OY01-99A	5/5	883.4	793
			•==			2.2	00011	120

FREQUENCY OF DETECTIONS IN OYSTER TISSUE STONE BAY STONE BAY AQUATIC ASSESSMENT, CTO-0100 MCB, CAMP LEJEUNE, NORTH CAROLINA

SAMPLE ID	SB-OY01-99A	SB-OY02-99A	SB-OY03-99A	SB-OY04-99A	SB-OY05-99A
SAMPLE DATE	01/14/99	01/15/99	01/15/99	01/15/99	01/15/99
WET WEIGHT BASIS					
Percent Lipids (%)	0.2	0.3	0.6	0.6	0.4
Moisture (%)	85	84	88	89	80

SAMPLE ID	RF-SD01-99A	RF-SD02-99A
SAMPLE DATE	1/16/99	1/16/99
INORGANICS (mg/kg)		
Aluminum	3000	8160
Antimony	0.59 U	1.01 U
Arsenic	2.4	6
Barium	3.5 J	8.9 J
Beryllium	0.23 U	0.39 U
Cadmium	0.09 U	0.15 U
Calcium	5320	26900
Chromium	7.8	19.2
Cobalt	1.23 U	2.1 J
Copper	2.4 U	4.6 J
Iron	3620	10100
Lead	4.6	10.5
Magnesium	1420	4200
Manganese	17.7	58.7
Mercury	0.05 U	0.09 U
Nickel	2.28 U	4.7 J
Potassium	605 J	1500 J
Selenium	0.73 U	1.6 J
Silver	1.5 J	3.2 J
Sodium	3470	9470
Thallium	0.46 U	0.77 U
Vanadium	7.7 J	19.2 J
Zinc	7.9	23.8

SAMPLE ID	Minimum	Maximum	Minimum	Maximum	Location of	Frequency	Arithmatic Mean	Median
SAMPLE DATE	Non-Detect	Non-Detect	Detected	Detected	Maximum Detect	of Detection	Positive Detects	Positive Detects
INORGANICS (mg/kg)		VD	2000	01/0		2/2	****	6600
Aluminum	ND	ND	3000	8160	RF-SD02-99A	2/2	5580	5580
Antimony	0.59 U	1.01 U	ND	ND		0/2	ND	ND
Arsenic	ND	ND	2.4	. 6	RF-SD02-99A	2/2	4.2	4.2
Barium	ND	ND	3.5 J	8.9 J	RF-SD02-99A	2/2	6.2	6.2
Beryllium	0.23 U	0.39 U	ND	ND		0/2	ND	ND
Cadmium	0.09 U	0.15 U	ND	ND		0/2	ND	ND
Calcium	ND	ND	5320	26900	RF-SD02-99A	2/2	16110	16110
Chromium	ND	ND	7.8	19.2	RF-SD02-99A	2/2	13.5	13.5
Cobalt	1.23 U	1. 23 U	2.1 J	2.1 J	RF-SD02-99A	1/2	2.1	2.1
Copper	2.4 U	2.4 U	4.6 J	4.6 J	RF-SD02-99A	1/2	4.6	4.6
Iron	ND	ND	3620	10100	RF-SD02-99A	2/2	6860	6860
Lead	ND	ND	4.6	10.5	RF-SD02-99A	2/2	7.55	7.55
Magnesium	ND	ND	1420	4200	RF-SD02-99A	2/2	2810	2810
Manganese	ND	ND	17.7	58.7	RF-SD02-99A	2/2	38.2	38.2
Mercury	0.05 U	0.09 U	ND	ND		0/2	ND	ND
Nickel	2.28 U	2.28 U	4.7 J	4.7 J	RF-SD02-99A	1/2	4.7	4.7
Potassium	ND	ND	605 J	1500 J	RF-SD02-99A	2/2	1052.5	1052.5
Selenium	0.73 U	0.73 U	1.6 J	1.6 J	RF-SD02-99A	1/2	1.6	1.6
Silver	ND	ND	1.5 J	3.2 J	RF-SD02-99A	2/2	2.35	2.35
Sodium	ND	ND	3470	9470	RF-SD02-99A	2/2	6470	6470
Thallium	0.46 U	0.77 U	ND	ND		0/2	ND	ND
Vanadium	ND	ND	7.7 J	19.2 J	RF-SD02-99A	2/2	13.45	13.45
Zinc	ND	ND	7.9	23.8	RF-SD02-99A	2/2	15.85	15.85
	1.2			1010			20100	15.05

SAMPLE ID	RF-SD01-99A	RF-SD02-99A
SAMPLE DATE	1/16/99	1/16/99
TOC (mg/kg)		
Total Organic Carbon	4930	12400

SAMPLE ID	Minimum	Maximum	Minimum	Maximum	Location of	Frequency	Arithmatic Mean	Median
SAMPLE DATE	Non-Detect	Non-Detect	Detected	Detected	Maximum Detect	of Detection	Positive Detects	Positive Detects
TOC (mg/kg) Total Organic Carbon	ND	ND	4930	12400	RF-SD02-99A	2/2	8665	8665

SAMPLE ID	RF-CL01-99A	RF-CL02-99A
SAMPLE DATE	1/16/99	1/16/99
INORGANICS (mg/kg)		
Aluminum	64.2	249
Antimony	5.63 U	0.14 U
Arsenic	11.1	16.2
Barium	0.99 J	1.7 J
Beryllium	2.16 U	0.05 U
Cadmium	0.21	0.23 J
Calcium	3840	5720
Chromium	0.62	1.2
Cobalt	1.4 J	2.1 J
Copper	9.5	10.1
Iron	158	370
Lead	1	0.7
Magnesium	4950	6020
Manganese	9	9
Mercury	0.05	0.054
Nickel	3.6	4
Potassium	6240	9740
Selenium	2	3.1
Silver	1.73 U	0.04 U
Sodium	39900	48900
Thallium	4.33 U	0.11 U
Vanadium	2.5	3.1
Zinc	86.1	125

RF-CLAMS.xls FOD 2/15/99

SAMPLE ID	Minimum	Maximum	Minimum	Maximum	Location of	Frequency	Arithmatic Mean	Median
SAMPLE DATE	Non-Detect	Non-Detect	Detected	Detected	Maximum Detect	of Detection	Positive Detects	Positive Detects
INORGANICS (mg/kg)								
Aluminum	ND	ND	64.2	249	RF-CL02-99A	2/2	156.6	156.6
Antimony	0.14 U	5.63 U	ND	ND		0/2	ND	ND
Arsenic	ND	ND	11.1	16.2	RF-CL02-99A	2/2	13.65	13.65
Barium	ND	ND	0.99 J	1.7 J	RF-CL02-99A	2/2	1.35	1.35
Beryllium	0.05 U	2.16 U	ND	ND		0/2	ND	ND
Cadmium	ND	ND	0.21	0.23 J	RF-CL02-99A	2/2	0.22	0.22
Calcium	ND	ND	3840	5720	RF-CL02-99A	2/2	4780	4780
Chromium	ND	ND	0.62	1.2	RF-CL02-99A	2/2	0.91	0.91
Cobalt	ND	ND	1.4 J	2.1 J	RF-CL02-99A	2/2	1.75	1.75
Copper	ND	ND	9.5	10.1	RF-CL02-99A	2/2	9.8	9.8
Iron	ND	ND	158	370	RF-CL02-99A	2/2	264	264
Lead	ND	ND	0.7	1	RF-CL01-99A	2/2	0.85	0.85
Magnesium	ND	ND	4950	6020	RF-CL02-99A	2/2	5485	5485
Manganese	ND	ND	9 ·	9	RF-CL01-99A,RF-CL02-99A	2/2	9	9
Mercury	ND	ND	0.05	0.054	RF-CL02-99A	2/2	0.05	0.05
Nickel	ND	ND	3.6	4	RF-CL02-99A	2/2	3.8	3.8
Potassium	ND	ND	6 2 40	9740	RF-CL02-99A	2/2	7990	7990
Selenium	ND	ND	2	3.1	RF-CL02-99A	2/2	2.55	2.55
Silver	0.04 U	1.73 U	ND	ND		0/2	ND	ND
Sodium	ND	ND	39900	48900	RF-CL02-99A	2/2	44400	44400
Thallium	0.11 U	4.33 U	ND	ND		0/2	ND	ND
Vanadium	ND	ND	2.5	3.1	RF-CL02-99A	2/2	2.8	2.8
Zinc	ND	ND	86.1	125	RF-CL02-99A	2/2	105.55	105.55

Page 2 of 2

SAMPLE ID	RF-CL01-99A	RF-CL02-99A
SAMPLE DATE	1/16/99	1/16/99
WET WEIGHT BASIS		
Percent Lipids (%)	0.2	0.1
Moisture (%)	85	88

SAMPLE ID	RF-MU02-99A
SAMPLE DATE	1/16/99
INORGANICS (mg/kg)	
Aluminum	319
Antimony	17.43 U
Arsenic	15.2
Barium	1.2 J
Beryllium	6.7 U
Cadmium	0.21
Calcium	19800
Chromium	1.1
Cobalt	0.34 J
Copper	4.1
Iron	473
Lead	1
Magnesium	3410
Manganese	22.8
Mercury	0.082
Nickel	1.1 J
Potassium	6390
Selenium	3.5
Silver	5.36 U
Sodium	27200
Thallium	13.41 U
Vanadium	3.1
Zinc	38.3

SAMPLE ID	RF-MU02-99A
SAMPLE DATE	1/16/99
WET WEIGHT BASIS	
Percent Lipids (%)	1.1
Moisture (%)	82

SAMPLE ID	RF-OY01-99A	RF-0Y02-99A
SAMPLE DATE	1/16/99	1/16/99
INORGANICS (mg/kg)		
Aluminum	104	320
Antimony	0.13 U	3.88 U
Arsenic	18.8	32.2
Barium	1.2 J	1.2 J
Beryllium	0.05 U	1.49 U
Cadmium	0.2 J	1.8
Calcium	4390	18200
Chromium	0.85	1.5
Cobalt	2.6	0.84 J
Copper	8.2	88.2
Iron	243	581
Lead	2	1.2
Magnesium	5900	6150
Manganese	10.3	19.2
Mercury	0.094	0.156
Nickel	4.5	2.1 J
Potassium	7500	15200
Selenium	2.3	5.6
Silver	0.04 U	1.4
Sodium	46800	51000
Thallium	0.1 U	2.99 U
Vanadium	3.3	4.6
Zinc	88.9	2230

SAMPLE ID	Minimum	Maximum	Minimum	Maximum	Location of	Frequency	Arithmatic Mean	Median
SAMPLE DATE	Non-Detect	Non-Detect	Detected	Detected	Maximum Detect	of Detection	Positive Detects	Positive Detects
INORGANICS (mg/kg)								
Aluminum	ND	ND	104	320	RF-OY02-99A	2/2	212	212
Antimony	0.13 U	3.88 U	ND	ND		0/2	ND	ND
Arsenic	ND	ND	18.8	32.2	RF-OY02-99A	2/2	25.5	25.5
Barium	ND	ND	1.2 J	1.2 J	RF-OY01-99A,RF-OY02-99A	2/2	1.2	1.2
Beryllium	0.05 U	1.49 U	ND	ND		0/2	ND	ND
Cadmium	ND	ND	0.2 J	1.8	RF-OY02-99A	2/2	1	1
Calcium	ND	ND	4390	18200	RF-OY02-99A	2/2	11295	11295
Chromium	ND	ND	0.85	1.5	RF-0Y02-99A	2/2	1.18	1.18
Cobalt	ND	ND	0.84 J	2.6	RF-0Y01-99A	2/2	1.72	1.72
Copper	ND	ND	8.2	88.2	RF-OY02-99A	2/2	48.2	48.2
Iron	ND	ND	243	581	RF-OY02-99A	2/2	412	412
Lead	ND	ND	1.2	2	RF-OY01-99A	2/2	1.6	1.6
Magnesium	ND	ND	5900	6150	RF-0Y02-99A	2/2	6025	6025
Manganese	ND	ND	10.3	19.2	RF-0Y02-99A	2/2	14.75	14.75
Mercury	ND	ND	0.094	0.156	RF-OY02-99A	2/2	0.13	0.13
Nickel	ND	ND	2.1 J	4.5	RF-0Y01-99A	2/2	3.3	3.3
Potassium	ND	ND	7500	15200	RF-0Y02-99A	2/2	11350	11350
Selenium	ND	ND	2.3	5.6	RF-0Y02-99A	2/2	3.95	3.95
Silver	0.04 U	0.04 U	1.4	1.4	RF-0Y02-99A	1/2	1.4	1.4
Sodium	ND	ND	46800	51000	RF-0Y02-99A	2/2	48900	48900
Thallium	0.1 U	2.99 U	ND	ND		0/2	ND	ND
Vanadium	ND	ND	3.3	4.6	RF-OY02-99A	2/2	3.95	3.95
Zinc	ND	ND	88.9	2230	RF-OY02-99A	2/2	1159.45	1159.45

FREQUENCY OF DETECTIONS IN OYSTER TISSUE **REFERENCE AREAS** STONE BAY AQUATIC ASSESSMENT, CTO-0100 MCB, CAMP LEJEUNE, NORTH CAROLINA

RF-OY02-99A SAMPLE ID RF-OY01-99A 1/16/99 SAMPLE DATE 1/16/99 WET WEIGHT BASIS 0.1 0.6

Percent Lipids (%) Moisture (%)

RF-OYSTER.xls lipids 2/15/99

Page 1 of 1

FREQUENCY AND RANGE OF SEDIMENT DATA COMPARED TO SEDIMENT SCREENING LEVELS AND REFERENCE AREAS

STUDY AREA STONE BAY AQUATIC ASSESSMENT, CTO-0100 MCB, CAMP LEJEUNE, NORTH CAROLINA

			Contaminan	t Frequency/Range	No. of	Positive		
		Screening	No. of			s Above	Reference	e Areas
	Values	(SSVs)	Positive Range of		S	SV		
	SSV/		Detects/No.	Positive				
Analyte	ER-L ⁽¹⁾	ER-M ⁽²⁾	of Samples	Detections	ER-L	ER-M	Range	Mean
Inorganics (mg/kg)								
Aluminum	NE	NE	5/5	1,580 - 14,800	NA	NA	3,000 - 8,160	5,580
Arsenic	7.24	70	4/5	0.84J - 6.8	0	0	2.4 - 6	4.2
Barium	500 (3)	NE	5/5	2.1J - 14.4J	0	NΛ	3.5J - 8.9J	6.2
Calcium	NE	NE	5/5	161J - 4,930	NA	NA	5,320 - 26,900	16,110
Chromium	52.3	370	5/5	3.2 - 29.8	0	0	7.8 - 19.2	13.5
Copper	18.7	270	3/5	2.4J - 16.6	0	0	4.6J	4.6J
Iron	NE	27000 (4)	5/5	1,480 - 17,400	NA	0	3,620 - 10,100	6,860
Lead	30.2	218	5/5	2.5 - 20.7	0	0	4.6 - 10.5	7.55
Magnesium	NE	NE	5/5	475J - 5,280	NA	NA	1,420 - 4,200	2,810
Manganese	460 (5)	1100 (5)	5/5	4.2 - 88	0	0	17.7 - 58.7	38.2
Nickel	15.9	51.6	1/5	5.8J	0	0	4.7J	4.7
Potassium	NE	NE	5/5	273J - 2,510J	NA	NA	605J - 1,500J	1,053
Silver	1	3.7	5/5	0.46J - 4.6J	1	1	1.5J - 3.2J	2.35
Sodium	NE	NE	5/5	1,860 - 15,000	NA	NA	3,470 - 9,470	6,470
Thallium	NE	NE	1/5	1.3J	NA	NA	ND	NA
Vanadium	NE	NE	5/5	3.6J - 25.7J	NA	NA	7.7J - 19.2J	13.45
Zinc	124	410	5/5	2.9J - 38.8	0	0	7.9 - 23.8	15.85

Notes:

J - value reported is estimated

mg/kg - milligrams per kilogram

SSV - Sediment Screening Value

NE - Not Established

ND - Not Detected

NA - Not Applicable

(1) Region IV Sediment Screening Value (USEPA, 1995), unless otherwise noted

(2) Long et al. (1995) value, unless otherwise noted

(3) Sullivan, et al., 1985

(4) Tetra Tech, 1986 (apparent effects threshold)

(5) Canadian Screening Value (CMEE, 1993)

FREQUENCY AND RANGE OF MUSSEL TISSUE DATA COMPARED TO REFERENCE AREAS STUDY AREA STONE BAY AQUATIC ASSESSMENT, CTO-0100 MCB, CAMP LEJEUNE, NORTH CAROLINA

	Contaminant I	Contaminant Frequency/Range				
Analyte	No. of Positive Detects/No. of Samples	Range of Positive Detections	Reference Area Detection			
Inorganics (mg/kg)						
Aluminum	3/3	317 - 1,010	319			
Arsenic	3/3	11 - 37.4	15.2			
Barium	3/3	0.83J - 2.3J	1.2J			
Beryllium	1/3	0.05J	ND			
Cadmium	3/3	0.19 - 0.52	0.21			
Calcium	3/3	8,470 - 24,100	19,800			
Chromium	3/3	0.82 - 2	1.1			
Cobalt	3/3	0.35J - 0.64J	0.34J			
Copper	3/3	4.1 - 12.9	4.1			
Iron	3/3	366 - 1100	473			
Lead	3/3	1.3 - 4.8	· 1			
Magnesium	3/3	3,010 - 7,950	3,410			
Manganese	3/3	18.1 - 91.9	22.8			
Mercury	3/3	0.086 - 0.157	0.082			
Nickel	3/3	0.73J - 3J	1.1J			
Potassium	3/3	6,080 - 18,900	6,390			
Selenium	3/3	3.3 - 9.4	3.5			
Sodium	3/3	24,100 - 69,800	27,200			
Vanadium	3/3	1.9 - 4.9	3.1			
Zinc	3/3	34.1 - 101	38.3			

Notes:

J - value reported is estimated

mg/kg - milligrams per kilogram

Reference is based on one sample: therefore, the mean value is not calculated.

FREQUENCY AND RANGE OF OYSTER TISSUE DATA COMPARED TO REFERENCE AREAS STUDY AREA STONE BAY AQUATIC ASSESSMENT, CTO-0100 MCB, CAMP LEJEUNE, NORTH CAROLINA

	Contaminant	Frequency/Range		
	No. of		Reference	Areas
	Positive	Range of		
	Detects/No.	Positive		
Analyte	of Samples	Detections	Range	Mean
Inorganics (mg/kg)				
Aluminum	5/5	49.3 - 111	104 - 320	212
Arsenic	5/5	4.1 - 12.5	18.8 - 32.2	25.5
Barium	5/5	0.3J - 0.83J	1.2J	1.2
Cadmium	5/5	0.6 - 1.7	0.2J - 1.8	1
Calcium	5/5	2,330 - 7,840	4,390 - 18,200	11,295
Chromium	5/5	0.43 - 0.72	0.85 - 1.5	1.18
Cobalt	3/5	0.21J - 0.37J	0.84J - 2.6	1.72
Copper	5/5	17.1 - 50.3	8.2 - 88.2	48.2
Iron	5/5	123 - 228	243 - 581	412
Lead	5/5	0.4 - 1.6	1.2 - 2	1.6
Magnesium	5/5	2,450 - 5,110	5,900 - 6,150	6,025
Manganese	5/5	5.7 - 11.8	10.3 - 19.2	14.75
Mercury	5/5	0.053 - 0.252	0.094 - 0.156	0.13
Nickel	5/5	1.1J - 2.4	2.1 - 4.5	3.3
Potassium	5/5	5,000 - 11,200	7,500 - 15,200	11,350
Selenium	5/5	1 - 3.2	2.3 - 5.6	4
Silver	1/5	0.34J	1.4	1.4
Sodium	5/5	18,600 - 43,800	46,800 - 51,000	48,900
Vanadium	5/5	0.35J - 1.7J	3.3 - 4.6	3.95
Zinc	5/5	722 - 1,280	88.9 - 2,230	1,159.50

Notes:

J - value reported is estimated mg/kg - milligrams per kilogram

FREQUENCY AND RANGE OF CLAM TISSUE DATA COMPARED TO REFERENCE AREAS STUDY AREA STONE BAY AQUATIC ASSESSMENT, CTO-0100 MCB, CAMP LEJEUNE, NORTH CAROLINA

	Contaminan	t Frequency/Range		
	No. of		Reference	Areas
Analyte	Positive Detects/No. of Samples	Range of Positive Detections	Range	Mean
Inorganics (mg/kg)				
Aluminum	1/1	275	64.2 - 249	157
Arsenic	1/1	12.4	11.1 - 16.2	13.65
Barium	1/1	1.7J	0.99J - 1.7J	1.35
Cadmium	1/1	0.47	0.21 - 0.23J	0.22
Calcium	1/1	12,400	3,840 - 5,720	4,780
Chromium	1/1	1.2	0.62 - 1.2	0.91
Cobalt	1/1	2.3J	1.4J - 2.1J	1.75
Copper	1/1	12.6	9.5 - 10.1	9.8
Iron	1/1	442	158 - 370	264
Lead	1/1	1.8	0.7 - 1	0.85
Magnesium	1/1	8,370	4,950 - 6,020	5,485
Manganese	1/1	33.5	9	9
Mercury	1/1	0.05	0.05 - 0.054	0.05
Nickel	1/1	4.1	3.6 - 4	3.8
Potassium	1/1	11,600	6,240 - 9,740	7,990
Selenium	1/1	2.8	2 - 3.1	3
Sodium	1/1	71,900	39,990 - 48,900	44,400
Vanadium	1/1	1.9J	2.5 - 3.1	2.8
Zinc	1/1	117	86.1 - 125	105.55

Notes:

Clams were only obtained from one study area sampling station.

J - value reported is estimated

mg/kg - milligrams per kilogram

Baker Environmental, Inc. ATTACHMENT C

Form I's

*

SEDIMENT - INORGANICS

1.44

EPA SAMPLE NO.

RF-SD01-99A

ł

1

1

1

INORGANIC ANALYSIS DATA SHEET

Lab Name: CEIMIC CORPORATION

73.0

Contract: BAKER ENV.

Lab Code: CEIMIC Case No.: CTO 100 SAS No.: SDG No.: Y0199A Lab Sample ID: 990034-19 S Matrix (soil/water): SOIL Date Received: 01/19/99 Level (low/med): LOW

🛪 Solids:

Concentration Units (ug/L or mg/Kg dry weight): MG/KG

		ICAS No.	1	Concentration 			I	I	
		17429-90-5	Aluminum	3000	1	¥	IP	I	
		17440-36-0	lAntimony	0.59	IUI	Ν	IP	1	
		17440-38-2	lArsenic	1 2.4			1 P	1	
		17440-39-3	lBarium	1 3.5	BI		IP	1	
		17440-41-7	 Beryllium	0.23	IUI		1P	1	
		17440-43-9	ICadmium	0.09	101		IP	1	
		17440-70-2	lCalcium	1 5320	1 1		IP	1	
		17440-47-3	IChromium	1 7.8			IP	1	
		17440-48-4	lCobalt	1 1.2	IUI		1P	1	
		17440-50-8	lCopper	1 2.4	101		IP	1	
		17439-89-6	IIron	1 3620		×	IP	1	
		17439-92-1	lLead	4.6		¥	1 P	1	
		17439-95-4	IMagnesium	1 1420			19	1	
		17439-96-5					IP	1	
		17439-97-6			101		IAV	I	
		17440-02-0	•	1 2.3	101		IP	1	
		17440-09-7	IPotassium	1 605	BI		10	ł	
		17782-49-2			IUI	N	1P	I	
		17440-22-4		1.5	181		IP	ļ	
		17440-23-5		1 3470			IP	I	
		17440-28-0	lThallium	0.46	101		10	1	
		17440-62-2			B		IP	1	
		17440-66-6	IZinc	1 7.9			IP	1	
		۱	<u> </u>	I	1_1		1	1	
lor Be	fore:	BROWN	Clari	ty Before:			Te	xture:	MEDIUN
olor Af	ter:	COLORLESS	Clari	ty After:			Ar	tifacts	:
omments	. #								
20101-011-02									

129

EPA SAMPLE NO.

INORGANIC ANALYSIS DATA SHEET

Lab Name: CEIMIC CORPORATION

49.2

Contract: BAKER ENV.

 Lab Code: CEIMIC
 Case No.: CTO 100
 SAS No.:
 SDG No.: Y0199A

 Matrix (soil/water):
 SOIL
 Lab Sample ID: 990034-20
 S

 Level (low/med):
 LOW
 Date Received: 01/19/99

≭ Solids:

Concentration Units (ug/L or mg/Kg dry weight): MG/KG

olor ommen		COLORLESS	LTAT1	ty After:			MEC.	.180652	
	Before:			ty Before:				ure: ifacts:	MEDIU
		1		1	1_1				
		17440-66-6		1 23.8					
		17440-62-2					IP I		
		17440-28-0					IP I		
		17440-23-5					IP I		
		17440-22-4		1 3.2			IP I		
		17782-49-2				М	IP I		
		17440-09-7			BI		IP I		
		17440-02-0		4.7			1 P I		
		17439-97-6	IMercury	0.09	UI		IAVI		
		17439-96-5	IManganese	58.7			IP I		
		17439-95-4	IMagnesium	I 4200 I			IP I		
		17439-92-1	ILead	1 10.5		×	IP I		
		17439-89-6	lIron	10100		¥	IP I		
		17440-50-8	lCopper	4.6	BI		1 P 1		
		17440-48-4	lCobalt	1 2.1	BI		101		
		17440-47-3	Chromium	1 19.2			191		
		17440-70-2	Calcium	1 26900 1	1		IP I		
		17440-43-9	-	0.15			IP I		
		17440-41-7					IP I		
		17440-39-3		8.9			IP I		
		17440-38-2		6.0		11	IP I		
		17429-90-5 17440-36-0					1P 1		
			101	•	 		_ _ P		
		ICAS No.	Analyte	Concentration	CI	Q	1M 1		

130

ILM04.0

EPA SAMPLE NO.

INORGANIC ANALYSIS DATA SHEET

1		
ł	SB-SD01-99A	
1		

ł 1

1

Lab Name: CEIMIC CORPORATION

76.4

Contract: BAKER ENV.

Lab Code: CEIMIC Case No.: CTO 100 SAS No.: SDG No.: Y0199A Lab Sample ID: 990034-14 S Matrix (soil/water): SOIL Date Received: 01/19/99 Level (low/med): LOW

🛪 Solids:

Concentration Units (ug/L or mg/Kg dry weight): MG/KG

-					1 1
I ICAS No.		Concentration		Q	
1	 Aluminum	······································	-	 *	_ P
17440-36-0					112 1
17440-38-2					1P 1
17440-39-3					1 P 1
17440-41-7					1P 1
17440-43-9	•				1P 1
17440-70-2			B		IP I
17440-47-3				1	1 P 1
17440-48-4			U	1	1P 1
17440-50-8	Copper	2.7	U	1	1P 1
17439-89-6			i 1	×	101
17439-92-1			1	+	IP I
17439-95-4	IMagnesium	843	B	I	1P 1
17439-96-5			I	· ·	1 P
17439-97-6			U	I	IAVI
17440-02-0	INickel	2.5	U	I	IP I
17440-09-7	IPotassium	430	B	I	IP I
17782-49-2	lSelenium	0.81	IU I	I N	19-1
17440-22-4	ISilver	0.75	B	1	IP I
17440-23-5	lSodium	3980	1	1	IP I
17440-28-0	lThallium	0.51	U	ł	IP I
17440-62-2	lVanadium	1 5.3	B	ł	IP I
17440-66-6	lZinc	5.8	1	1	IP I
	1				1 1

Color After: COLORLESS Clarity After:

Artifacts:

Comments:

131

INORGANIC ANALYSIS DATA SHEET

EPA SAMPLE NO.

Lab Name: CEIMIC CORPORATION

74.6

SB-SD02-99A ł I

ł

I

Contract: BAKER ENV.

Lab Code: CEIMIC Case No.: CTO 100 SAS No.: SDG No.: Y0199A Lab Sample ID: 990034-15 S Matrix (soil/water): SOIL Date Received: 01/19/99 LOW Level (low/med):

≭ Solids:

Concentration Units (ug/L or mg/Kg dry weight): MG/KG

	1	1 1			1 1
	ICAS No.	•	ConcentrationICI	Q	IMI
	1	 Aluminum	1780		_!!
		Antimony	0.61101	N	IP I
	17440-38-2	•	0.851BI		IP I
	17440-39-3		2.1 IBI		IP I
		Beryllium	0.24101		101
	17440-43-9	•	0.09101		IP 1
	17440-70-2		161 IBI		19-1
	17440-47-3	Chromium	4.2		IP I
	17440-48-4		1.3 101		IP I
	17440-50-8		16.6		1P 1
	17439-89-6	••	2120	¥	1P 1
	17439-92-1		5.7	¥	IP I
	17439-95-4	lMagnesiuml	592 IBI		1P 1
		IManganesel	6.3		1P 1
	17439-97-6	* *	0.06IUI		IAVI
	17440-02-0	•	2.3 101		1P 1
	17440-09-7	[Potassium]	341 IBI		IP I
		Selenium	0.75101	н	1P 1
	17440-22-4		0.901B1		1P 1
	17440-23-5		2530		1P 1
	17440-28-0	Thallium	0.47101		IP I
	17440-62-2	Vanadium	4.5 IBI		IP I
	17440-66-6	Zinc	5.6		10 1
	1		II		_II
olor Before:	BROWN	Clarit	y Before:		Texture:
olor After:	COLORLESS	Clarit	y After:		Artifact
comments:					

132

3 32

EPA SAMPLE NO.

1

ŧ

INORGANIC ANALYSIS DATA SHEET

SB-SD03-99A

1

Į

Lab Name: CEIMIC CORPORATION

Contract: BAKER ENV.

Lab Code: CEIMIC Case No.: CTO 100 SAS No.: SDG No.: Y0199A Lab Sample ID: 990034-16 S Matrix (soil/water): SOIL Date Received: 01/19/99

Level (low/med): LOW

82.9

🛪 Solids:

Concentration Units (ug/L or mg/Kg dry weight): MG/KG

	I ICAS No.		Concentration		Q	1 I IM I		
			ooneen or a or on			1 1		
	17429-90-5	Aluminum	1580		¥	191		
		Antimony		101	М	IP I		
	17440-38-2		0.68	101		IP I		
	17440-39-3		2.2	BI		IP I		
		Beryllium	0.22	101		1 P I		
X .	17440-43-9	•	0.09	101		1 P 1		
	17440-70-2	Calcium	323	BI		191		
	17440-47-3	IChromium	3.2			19-1		
	17440-48-4		1.2	IUI		IP I		
	17440-50-8	Copper	2.4	BI		1P 1		
	17439-89-6	IIron	1480		¥	1P 1		
	17439-92-1	ILead	2.5		¥	1 P 1		
	17439-95-4	IMagnesium	511	BI		1 P 1		
	17439-96-5	IManganese	4.2			1P 1		
	17439-97-6		0.06	101		IAVI		
	17440-02-0	Nickel	1 2.2	IUI		IP I		
	17440-09-7	Potassium	1 285	BI		1P 1		
	17782-49-2	Selenium	0.70	101	Ν	191		
	17440-22-4	ISilver	0.46	BI		1 P 1		
	17440-23-5	ISodium	1 2080			1P 1		
	17440-28-0	Thallium	0.44	101		1P		
	17440-62-2	lVanadium	3.7	BI		IP I		
	17440-66-6		1 2.9	IBI		IP I		
	1	1	l	اا		II		
Color Before:	BROWN	Clari	ty Before:			Text	ure:	MEDIUM
Color After:	COLORLESS	Clarit	ty After:			Arti	facts:	
Comments:								*****

133

EPA SAMPLE NO.

L

INORGANIC ANALYSIS DATA SHEET

SB-SD04-99A

1

1

Lab Name: CEIMIC CORPORATION

Contract: BAKER ENV.

Lab Code: CEIMIC Case No.: CTO 100 SAS No.: SDG No.: Y0199A Lab Sample ID: 990034-17 S Matrix (soil/water): SOIL Date Received: 01/19/99

Level (low/med): LOW

35.8

🛪 Solids:

Concentration Units (ug/L or mg/Kg dry weight): MG/KG

	t	1 1		1 1		1 1
	ICAS No.		Concentration	ICI	Q	IM I
	17429-90-5	 Aluminum	******		¥	
		Antimony	1.4	101	N	IP I
		lArsenic		1 1	l	1 1 1
		Barium	14.4	IB		1 P 1
	17440-41-7	Beryllium	0.53	101	l	101
		ICadmium		101		112
		Calcium		1	!	IP I
		IChromium			ł	IP I
	17449-48-4					1P 1
	17440-50-8	Copper	8.7	IB	ł	IP I
	17439-89-6		17400	1	i x	IP I
	17439-92-1	ILead		1	i ×	IP I
	17439-95-4	lMagnesiuml	5280	1	ł	1P
		IManganesel		i	1	IP I
		IMercury I		10	1	IAVI
		INickel		IB	I	IP I
	17440-09-7	Potassium	2510	IB	i	101
		Selenium				1 P 1
		Silver		IB	1	IP I
	17440-23-5	Sodium	15000	1	1	101
		Thallium		IB	1	IP I
	17440-62-2	IVanadium I	25.7	IB	ł	10 1
	17440-66-6	IZinc I	38.8	1	I	IP I
	1	11	<u></u>	Ι	I	II
color Before:	BROWN	Clarit	y Before:			Texture
olor After:	COLORLESS	Clarit	y After:			Artifac

Comments:

134

4 3 5

EPA SAMPLE NO.

1

INORGANIC ANALYSIS DATA SHEET

er omruu nor

SB-SD05-99A

1

ł

Lab Name: CEIMIC CORPORATION

79.1

Contract: BAKER ENV.

i:

Lab Code: CEIMIC Case No.: CTO 100 SAS No.: SDG No.: Y0199A Matrix (soil/water): SOIL Lab Sample ID: 990034-18 S Level (low/med): LOW Date Received: 01/19/99

≭ Solids:

Concentration Units (ug/L or mg/Kg dry weight): MG/KG

	ICAS No.	Analyte	Concentration		Q	
	1	II		I_I,		
		Aluminum				
		Antimony			Ν	IP I
	17440-38-2					IP I
	17440-39-3	Barium				1P 1
	17440-41-7	Beryllium				IP I
	17440-43-9	Cadmium	0.09	101		IP I
	17440-70-2	Calcium	1320			IP I
	17440-47-3	IChromium	3.9			IP I
	17440-48-4	Cobalt	1.2	101		IP I
	17440-50-8	Copper	2.3	101		IP I
	17439-89-6	Iron	1660		¥	1P
	17439-92-1	ILead I	3.4		¥	IP I
	17439-95-4	IMagnesiuml	475	BI		IP I
		IManganesel				IP I
		Mercury		101		IAVI
	17440-02-0	,				IP I
		Potassium	273	181		IP I
		Selenium		IUI	N	IP I
	17440-22-4			BI		10 1
	17440-23-5			1 1		IP I
		Thallium		111		IP I
		Vanadium				IP I
	17440-66-6	•••••••				IP I
	I	_ I I		1_1		II
olor Before:	BROWN	Clarit	ty Before:			Texture:
olor After:	COLORLESS	Clarit	ty After:			Artifacts

135

SEDIMENT - TOTAL ORGANIC CARBON

STONE BAY

CEIMIC Corporation "Analytical Chemistry for Environmental Management"

TOTAL ORGANIC CARBON

EPA 415.1/9060

Client: Baker Environmental

Client Sample ID: RF-SD01-99A

Date Sampled: 01/16/99

Date Sample Received: 01/19/99

Matrix: Sediment

Laboratory ID: 990034-19

Percent Solids: 73.0

Target Analyte	Result	Units	Method Reporting Limit	Date Prep'd	Date Analyzed
Total Organic Carbon	4930	mg/Kg+	68.5	01/25/99	01/25/99

+ Dry weight basis.

Reported by: ______ . Maynon

Approved by: Donald Totstelli

Inorganic Analytes Page 2

CEIMIC Corporation "Analytical Chemistry for Environmental Management"

TOTAL ORGANIC CARBON

EPA 415.1/9060

Client Sample ID: RF-SD02-99A

Client: Baker Environmental

Date Sampled: 01/16/99

Date Sample Received: 01/19/99

Matrix: Sediment

Laboratory ID: 990034-20

Percent Solids: 49.2

Target Analyte	Result	Units	Method Reporting Limit	Date Prep'd	Date Analyzed
Total Organic Carbon	12400	mg/Kg+	102	01/25/99	01/25/99

+ Dry weight basis.

Reported by: _ D. Maymon

Approved by: Roubel Tatouth

Inorganic Analytes Page 3

p.

SEDIMENT - GEOTECHNICAL LABORATORY TEST DATA

GeoTesting Express

1145 MASSACHUSETTS AVE. BOXBOROUGH, MA 01719 978-635-0424 (FAX) 978-635-0266

January 26, 1999

Ms. Peg Marple Ceimic Corporation 10 Dean Knauss Drive South Ferry Industrial Park Narragansett, RI 02882

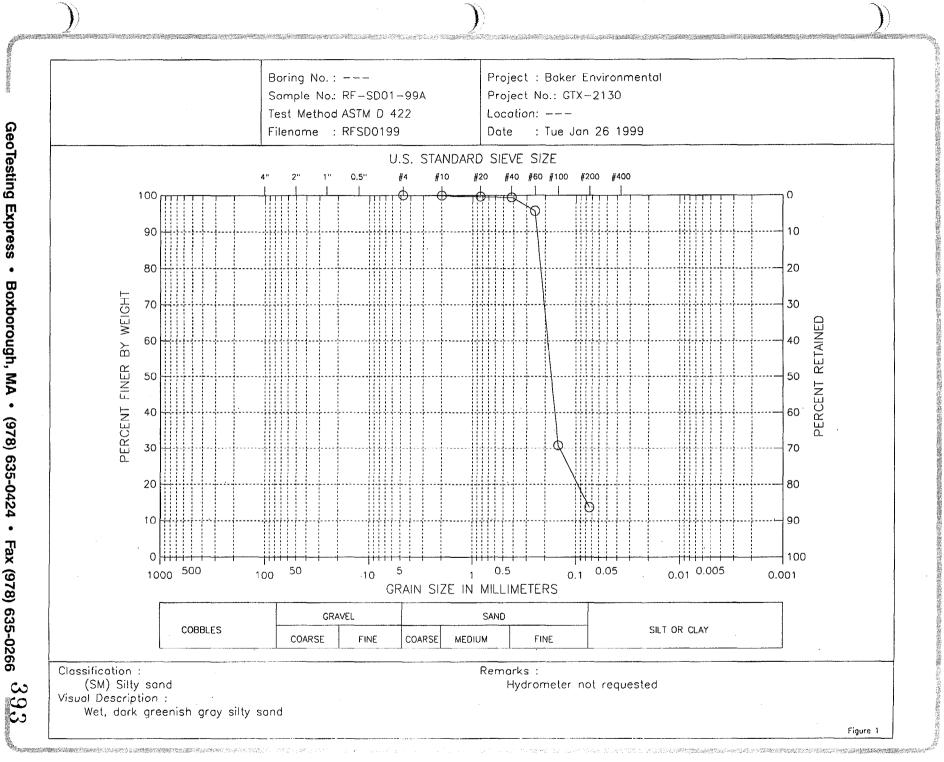
RE: Baker Environmental (GTX-2130)

Dear Ms. Marple:

Enclosed are the test results you requested for the above referenced project. We received the following three soil samples from you on January 22, 1999:

RF-SD01-99A RF-SD02-99A SB-SD01-99A

A copy of the chain of custody form for these samples is located at the back of this report. GeoTesting Express performed one sieve analysis (ASTM D 422) and one Atterberg limits (ASTM D 4318) on each of these samples. Two of the samples were determined to be non-plastic.


The results presented in this report apply only to the items tested. This report shall not be reproduced except in full, without written approval from GeoTesting Express. The remainder of these samples will be retained for a period of sixty days and will then be discarded unless otherwise notified by you. Please call me directly if you have any questions or require additional information. Thank you for allowing us this opportunity to once again provide your firm with physical properties testing of soils. We look forward to working with you again in the future.

392

Respectfully yours;

Gary T. Torosian Laboratory Manager

Totally Automated Geotechnical Testing

Tue Jan 26 13:59:12 1999

GEOTECHNICAL LABORATORY TEST DATA

Project : Baker EnvironmentalFilename : RFSD0199Project No. : GTX-2130Depth : ---Elevation : ---Boring No. : ---Test Date : 01/25/99Tested by : tjeSample No. : RF-SD01-99ATest Method : ASTM D 422Checked by : gttLocation : ---Soil Description : Wet, dark greenish gray silty sandRemarks : Hydrometer not requested

			FINE SIEVE SET			
Sieve	Sieve O	penings	Weight	Cumulative	Percent	
Mesh	Inches	Millimeters	Retained (gm)	Weight Retained (gm)	Finer (%)	
#4	0.187	4.75	0.00	0.00	100	
#10	0.079	2.00	0.17	0.17	100	
#20	0.033	0.84	0.31	0.48	100	
#40	0.017	0.42	0.25	0.73	99	
#60	0.010	0.25	4.59	5.32	96	
#100	0.006	0.15	80.33	85.65	31	
#200	0.003	0.07	21.24	106.89	14	
Pan			16.89	123.78	0	

Total Dry Weight of Sample = 133.01

 D85
 :
 0.2295
 mm

 D60
 :
 0.1881
 mm

 D50
 :
 0.1736
 mm

 D30
 :
 0.1442
 mm

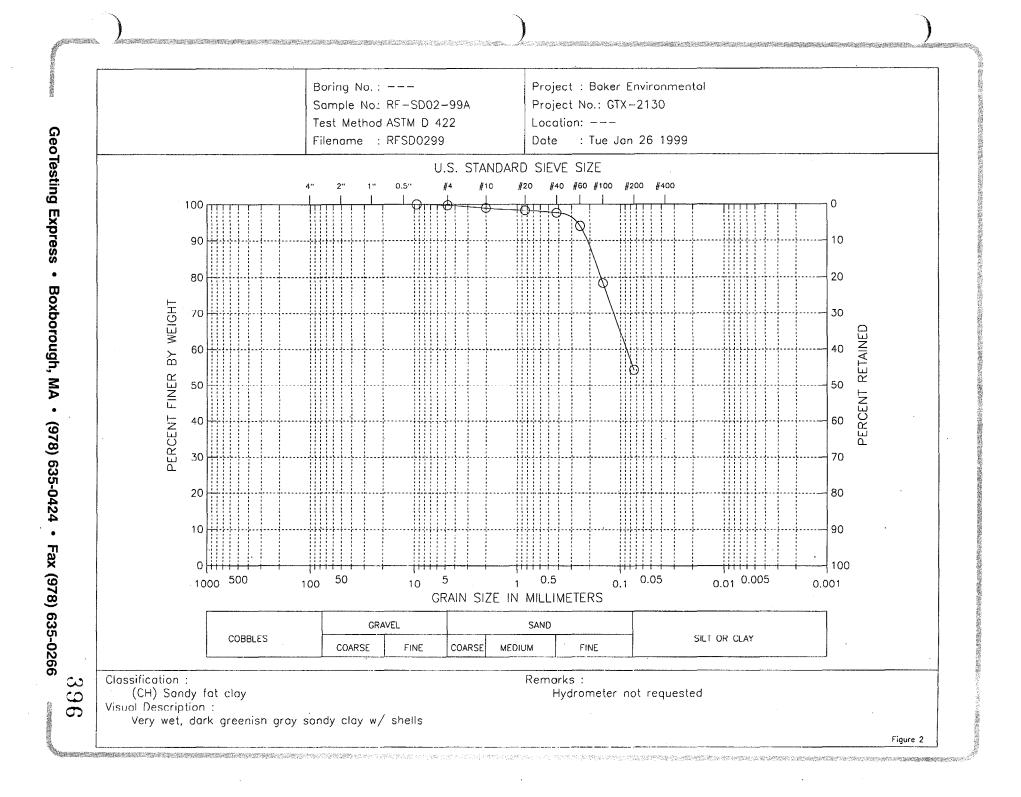
 D15
 :
 0.0782
 mm

 D10
 :
 0.0638
 mm

Soil Classification

, organitation

ASTM Group Symbol	: SM
ASTM Group Name	: Silty sand
AASHTO Group Symbol	: A-2-4 (0)
AASHTO Group Name	: Silty Gravel and Sand


Page : 1

32.820888(0.4.1.)

ATTERBERG LIMITS

PROJECT Baker Environmental	PROJECT NU	JMBER	TESTED BY tie	BORING NUMBER
LOCATION			CHECKED BY	SAMPLE NUMBER RF-SD01-99A
SAMPLE DESCRIPTION Wet, dark greenish gray silty sand			DATE Tue Jan 26 1999	FILENAME RFSD0199
		DETERMINATIO	NS	
CONTAINER NUMBER				
WT. WET SOIL + TARE				
WT. DRY SOIL + TARE	<u></u>			
WT. WATER				
TARE WT.				
WT. DRY SOIL				· · · · · · · · · · · · · · · · · · ·
WATER CONTENT, W_N (%)				
NUMBER OF BLOWS, N				
ONE-POINT LIQUID LIMIT, LL		 Determinatio		
CONTAINER NUMBER	ELASHU LIMII			
WT. WET SOIL + TARE				
WT. DRY SOIL + TARE				
WT. WATER				
TARE WT.	<u></u>			·····
WT. DRY SOIL				
WATER CONTENT (%)				
		l		
		NIATI I	SUMMARY OF	
			RAL WATER CONTENT, W ((%) 34.2
			D LIMIT, LL	· · · · · · · · · · · · · · · · · · ·
			ric limit, pl ficity index, pi	
			DITY INDEX, LI*	
			JITT INDEX, LI	
		*LI =	(W - PL)/PI	
			PLASTICIT	Y CHART
		80		
		70 -		.Uruft CH or DH
		- 60 -		
		PLASTICITY INDEX, PI		
			/ .	
		JIS 30		
		· ਰੋ 20	. si'or OL	·]
		10		MH or OH -
			CI-HAL MIL OF OL	
		081	10 20 30 40 50	60 70 80 90 100 110
			LIQUID L	IMIT, LL Fig. 1.0
				<u> </u>
		x		395

a series and a series of the ser

Tue Jan 26 13:59:12 1999

GEOTECHNICAL LABORATORY TEST DATA

Project : Baker Environmental Project No. : GTX-2130 Depth : ---Boring No. : --- Test Date : 01/25/99 Sample No. : RF-SD02-99A Test Method : ASTM D 422 Location : ---Soil Description : Very wet, dark greenish gray sandy clay w/ shells Remarks : Hydrometer not requested

FINE SIEVE SET Cumulative Sieve Sieve Openings Weight Percent Inches Millimeters Retained Weight Retained Finer Mesh (gm) (gm) (웅) -----------------0.375" 0.374 9.51 0.00 0.00 100 0.187 4.75 0.11 0.11 100 #4 0.079 0.50 #10 2.00 0.39 99 #20 0.033 0.84 0.34 0.84 98 #40 0.017 0.42 0.34 1,18 98 #60 0.010 0.25 1.82 3.00 94 #100 0.006 0.15 7.87 10.87 78 #200 0.003 0.07 12.10 . 22.97 54 27.25 50.22 Pan 0

Total Dry Weight of Sample = 59.62

D85 : 0.1856 mm

D60 : 0.0874 mm

D50 : N/A

D30 : N/A

D15 : N/A

D10 : N/A

Soil Classification

ASTM Group Symbol	:	CH
ASTM Group Name	:	Sandy fat clay
AASHTO Group Symbol	:	A-7-6 (24)
AASHTO Group Name	:	Clayey Soils

GeoTesting Express • Boxborough, MA • (978) 635-0424 • Fax (978) 635-0266

Page : 1

Filename : RFSD0299

Elevation : ---

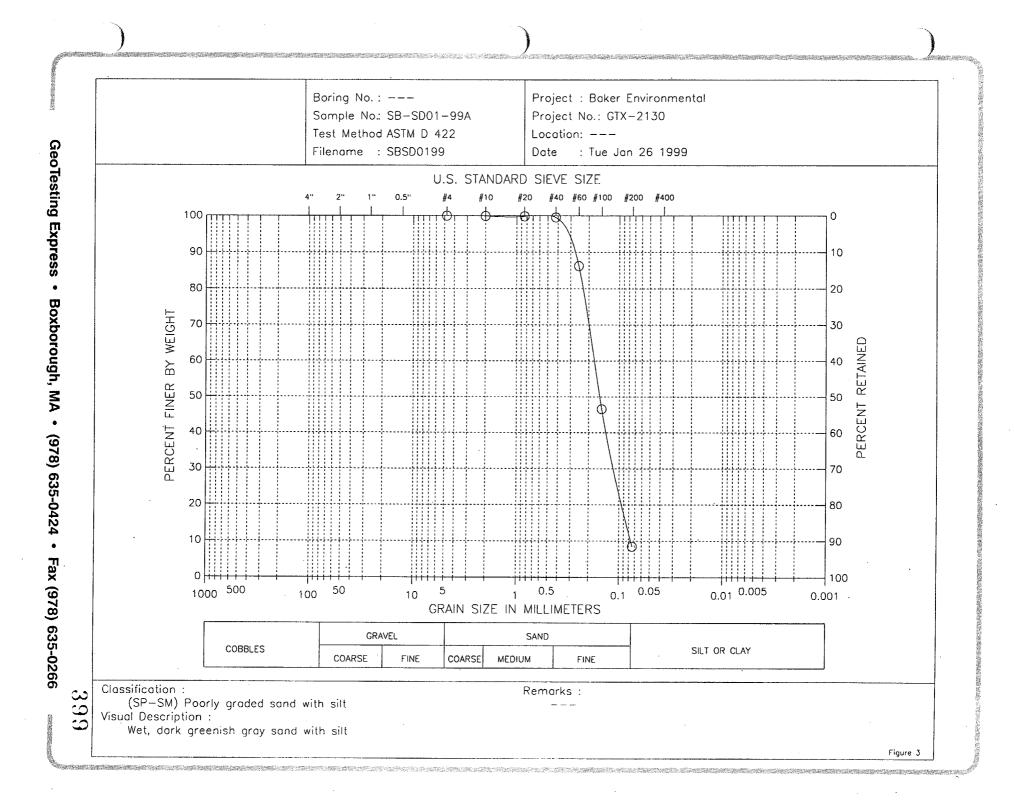
Tested by : tje

Checked by : gtt

397

ATTERBERG LIMITS

1.1.111


tiostation and

ROJECT Boker Environmental	PROJECT NUMBER GTX-2130		TESTED BY tje	BORING I	BORING NUMBER	
OCATION			CHECKED BY	SAMPLE	NUMBER	
			gtt	RF-SD02	2-99A	
AMPLE DESCRIPTION ery wet, dark greenish gray sandy clay w/ shells			DATE Tue Jan 26 1999	FILENAME		
ery wet, durk greenist groy sundy city wy shells		DETERMINATION		RFSD029	9	
CONTAINER NUMBER	bk17	bk33	bk137		1	
WT. WET SOIL + TARE	37.14	39.16	37.22			
WT. DRY SOIL + TARE	33.94	35.63	34.27			
WT. WATER	3.2	3.53				
TARE WT.	29.37	30.13	2.95			
WT. DRY SOIL	4.57	5.5	4.88			
WATER CONTENT, W _N (%)	70.02	64.18				
NUMBER OF BLOWS, N	13	23	60.45			
ONE-POINT LIQUID LIMIT, LL	64.69	63.54	62.74			
		T DETERMINATION		•	<u> </u>	
CONTAINER NUMBER	bk76	bk144			<u> </u>	
WT. WET SOIL + TARE	34.24	37.63				
WT. DRY SOIL + TARE	33.37	36.19			1	
WT. WATER	0.87	, 1.44				
TARE WT.	29.19	29.61				
WT. DRY SOIL	4.18	6.58				
WATER CONTENT (%)	20.81	21.88				
	20101	21.00	· · · ·	· · · · · · · · · · · · · · · · · · ·		
		1	SUMMARY	OF RESULTS		
76.0 FLOW CURVE		NATUR.	AL WATER CONTENT, V		69.1	
-			LIMIT, LL		63.5	
74.0		PLASTI	C LIMIT, PL		21.3	
_		PLASTI	CITY INDEX, PI		42.1	
72.0		LIQUIDI	ITY INDEX, LI*		1.13	
[№] 70.0 - Q			W - PL)/PI PLASTIC	CITY CHART		
0.67 - 0.07 - 0.88 CONFWI		80				
S 68.0 - \		- 70			UT UT CH OF OH	
				;	. K LINE	
66.0						
			1			
64.0		PLASTICITY INDEX,		/	-	
04.0					-	
					· -	
62.0			EL or OL		-	
\vdash \downarrow \backslash			QL-ML ML or QL		MH or OH -	
K)						
60.0 60.0 60.0 60.0 60.0 60.0 60.0 60.0				60 70 8	0 90 100 1	

398

TENE TRANSPORT

GeoTesting Express • Boxborough, MA • (978) 635-0424 • Fax (978) 635-0266

Tue Jan 26 13:59:13 1999

GEOTECHNICAL LABORATORY TEST DATA

Project : Baker EnvironmentalFilename : SBSD0199Project No. : GTX-2130Depth : ---Elevation : ---Boring No. : ---Test Date : 01/25/99Tested by : tjeSample No. : SB-SD01-99ATest Method : ASTM D 422Checked by : gttLocation : ---Soil Description : Wet, dark greenish gray sand with siltRemarks : ---

		, E	FINE SIEVE SET			
Sieve	Sieve O	penings	Weight	Cumulative	Percent	
Mesh	Inches	Millimeters	Retained (gm)	Weight Retained (gm)	Finer (%)	
#4	0.187	4.75	0.00	0.00	· 100	
#10	0.079	2.00	0.08	0.08	100	
#20	0.033	0.84	0.08	0.16	100	
#40	0.017	0.42	0.29	0.45	100	
#60	0.010	0.25	12.89	13.34	86	
#100	0.006	0.15	38.42	51.76	47	
#200	0.003	0.07	36.88	88.64	8	
Pan			8 22	96.86	0	

Total Dry Weight of Sample = 106.28

 D85
 :
 0.2460
 mm

 D60
 :
 0.1776
 mm

 D50
 :
 0.1558
 mm

 D30
 :
 0.1099
 mm

 D15
 :
 0.0834
 mm

 D10
 :
 0.0761
 mm

Soil Classification

 CINCOXII CONCION		
ASTM Group Symbol	:	SP-SM
ASTM Group Name	:	Poorly graded sand with silt
AASHTO Group Symbol	:	A-3(0)
AASHTO Group Name	:	Fine Sand

.

Page : 1

NINA MARANA

400

ATTERBERG LIMITS

PROJECT Boker Environmental	PROJECT NUMBER GTX-2130		TESTED BY tje		BORING NUMBER	
LOCATION			CHECKED BY . gtt		SAMPLE NUM SB-SD01-99	
SAMPLE DESCRIPTION Wet, dark greenish gray sand with silt			DATE Tue Jan 26 1999)	FILENAME SBSD0199	
	LIQUID LIMIT D	ETERMINATIO	l NS		1	
CONTAINER NUMBER						
WT. WET SOIL + TARE						
WT. DRY SOIL + TARE						
WT. WATER						
TARE WT.						
WT. DRY SOIL						
WATER CONTENT, W _N (%)						·····
NUMBER OF BLOWS, N					· .	
ONE-POINT LIQUID LIMIT, LL		,,				
	PLASTIC LIMIT	DETERMINATIO)NS	1	I	
CONTAINER NUMBER						
WT. WET SOIL + TARE						· · · · ·
WT. DRY SOIL + TARE						
WT. WATER				-		
TARE WT.						
WT. DRY SOIL						
WATER CONTENT (%)						
					RESULTS .	
			AL WATER CONTE	NT, W (%)		27.9
			Límit, ll			
			C LIMIT, PL			<u>.</u>
			CITY INDEX, PI			
		LIQUID	ITY INDEX, LI*			
			W - PL)/PI PL	ASTICITY (CHART	
		80	- 1 1 1 1 1 1			MAL I
		70 -			, ut	CH or OH
		<u>a</u> 60		/		······································
		PLASTICITY INDEX, PI			1	
				11		,
		∠L]		.1		-
		ASTI 30		· / /		-
		리 20	EL OF OL	\square		-
		10-	/ :/			MH or OH
			CL-ML ML or	1 1 1		
		0 1		D 50 60 LIQUID LIMI) 70 80 T I I	90 100 110
					·, LL	Fig. 3.0
						401

GeoTesting Express • Boxborough, MA • (978) 635-0424 • Fax (978) 635-0266

CLAM, MUSSEL, AND OYSTER TISSUE - INORGANICS

1

INORGANIC ANALYSIS DATA SHEET

EPA SAMPLE NO.

I		l
ł	RF-CL01-99A	1
ļ		I

Lab Name: CEIMIC CORPORATION

Contract: BAKER ENV.

Lab Code: CEIMIC Case No.: CTO 100 SAS No.: SDG No.: TY0199A

Matrix (soil/water): SOIL

Lab Sample ID: T990034-08 S

Level (low/med): LOW

Date Received: 01/19/99

≭ Solids:)

15.4

Concentration Units (ug/L or mg/Kg dry weight): MG/KG

Color	After:	YELLOW	Clari	ty After:		Artifacts	41 71
Color	Before:	GREY	Clarit	ty Before:		Texture:	
		I		III		_11	
				86.1			
			Vanadium		L.F.F."		
				0.08101			
			lSodium				
			Silver				
			Selenium				
				6240 1 1			
		17440-02-0				IP I	
				9.0			
				4950			
			ILead I				
					Ε		
				9.5			
			Cobalt			IP I	
		17440-47-3	Chromium				
				3840 1			
1				0.211 1			
				0.04101		16 1	
				0.991BI			
				11.1		1P	
		17440-36-0	Antimony	0.10101		IP I	
			lAluminum			1P	
						1_1	
		ICAS No.	Analyte	ConcentrationICI	Q	IM I	
		1	1 1	11			

Comments:

217

4 (\$1.0)

EPA SAMPLE NO.

INORGANIC	ANALYSIS	DATA	SHEET
-----------	----------	------	-------

	. A sure i de verba que a esta esta de ser la parte de ser la parte de ser la parte de ser la parte de ser la p	
ł		1
ł	RF-CL02-99A	ļ
1		ł

Lab Name: CEIMIC CORPORATION

Contract: BAKER ENV.

Lab Code: CEIMICCase No.: CTO 100SAS No.:SDG No.: TY0199AMatrix (soil/water): SOILLab Sample ID: T990034-21S

Level (low/med): LOW

Date Received: 01/19/99

≭ Solids:

s: 11.5

Concentration Units (ug/L or mg/Kg dry weight): MG/KG

	GREY YELLOW	Clarit Clarit	ty Before:				xture: tifacts:	MEDIU
	I		}	11			_1	
	17440-66-6	Zinc						
		Vanadium			115	IP		
		IThallium				15		
	17440-23-5					IP		
	17440-22-4				н	IP ID		
		ISelenium			N	IP		
						IP		
	17440-02-0					1 F		
		IManganese			N*E			
	17439-95-4				E			
	17439-92-1				N			
	17439-89-6					1 P		
	17440-50-8	• •	10.1			1P		
	17440-48-4	lCobalt	1 2.1			1 P	Į	
	17440-47-3	Chromium	1.2			łb	1	
	17440-70-2	Calcium	1 5720		¥Ε	1 P	1	
Ì	17440-43-9	lCadmium	0.23	BI		1 P	1	
~	17440-41-7	Beryllium	0.05	IUI		1 P	1	
	17440-39-3	Barium	1.7	BI		1P	1	
	17440-38-2				¥E	1 12	1	
	17440-36-0	Antimony	0.14	101		IP	1	
	17429-90-5	Aluminum	8			ip	• •	
	1000 00.	I miaiyte						
	1 17429-90-5	 Aluminum	Concentration	_ 		 P	.1 	

INORGANIC ANALYSIS DATA SHEET

EPA SAMPLE NO.

1		1
1	SB-CL04-99A	ļ
1		ļ

Lab Name: CEIMIC CORPORATION

Contract: BAKER ENV.

Lab Code: CEIMIC Case No.: CTO 100 SAS No.: SDG No.: TY0199A

Matrix (soil/water): SOIL

Level (low/med): LOW

10.7

Date Received: 01/19/99

Lab Sample ID: T990034-11 S

≯ Solids:

Concentration Units (ug/L or mg/Kg dry weight): MG/KG

Color Comme		YELLOW	Clarit	y After:		Artifact
	Before:			y Before:		Texture:
			_ll	1	l	1_1
		17440-66-6	IZinc I		I NE	119-1
	,	17440-62-2			I	161
			Thallium		ł	1P 1
		17440-23-5			ł	IP I
		17440-22-4	Silver	0.0410	I N	IP
		17782-49-2	Selenium	2.8	IN	1P 1
		17440-09-7	Potassium	11600 I	ΙE	19-1
		17440-02-0			1	1P
			IManganesel		I N*E	
		17439-95-4	[Magnesium]	8370 1	ΙE	1P 1
		17439-92-1	ILead I		IN	
		17439-89-6			ΙE	1P
		17440-50-8	ICopper	12.6		IP I
			Cobalt			IP I
			Chromium			
		17440-70-2		12400 1		
			ICadmium			
			Beryllium			
		17440-39-3				
			lArsenic			1P 1
			IAntimony		1	1P 1 1P 1
		17400-00-5	 Aluminum	275	l	
		ICAS No.		ConcentrationIC	1 Q	

INORGANIC ANALYSIS DATA SHEET

EPA SAMPLE NO.

I		ł
ł	RF-MU02-99A	I
۱		ł

Lab Name: CEIMIC CORPORATION

Contract: BAKER ENV.

Lab Code: CEIMIC Case No.: CTO 100 SAS No.: SDG No.: TY0199A Matrix (soil/water): SOIL Lab Sample ID: T990034-09 S Level (low/med): LOW Date Received: 01/19/99

X Solids:

17.9

Concentration Units (ug/L or mg/Kg dry weight): MG/KG

Color	After:	YELLOW	Clarit	ty After:			A۲	tifacts:	
Color	Before:	GREY	Clarit	ty Before:			Τe	exture:	MEDIUM
]]				1	_1	
		17440-66-6		38.3					
			Vanadium						
			Thallium						
				27200			IP	1	
		17440-22-4	lSilver	0.03	IUI	Ν	IP	1	
				3.5					
		17440-09-7	Potassium	6390					
			INickel						
				1 22.8					
		17439-95-4	Magnesium	3410		E	IP	1	
		17439-92-1	Lead	1.0		N	IP	1	
		17439-89-6	lIron	473		E	IP	1	
		17440-50-8	Conner	4.1 473			10	1	
		17440-48-4	(Cobalt	0.34	BI		10	1	
		17440-47-3				· · • •			
		17440-70-2	1Calcium	19800		¥F	10	1	
				0.21					
				l 0.03			19		
				15.2 I 1.2					
			Arsenic	I 0.09					
			Aluminum				1P	•	
		1		210				-	
		ICAS No.	•	Concentration					

Comments:

ILM04.0

INORGANIC ANALYSIS DATA SHEET

EPA SAMPLE NO.

I		1
I	SB-MU01/02-99A	1
1		

Lab Name: CEIMIC CORPORATION

Contract: BAKER ENV.

- 11

Lab Code: CEIMIC Case No.: CTO 100 SAS No.: SDG No.: TY0199A Matrix (soil/water): SOIL Lab Sample ID: T990034-02 S

Level (low/med): LOW

15.4

Date Received: 01/19/99

🛪 Solids:

Concentration Units (ug/L or mg/Kg dry weight): MG/KG

*	· ·····		' '			.'	
1/440-00-0	121110						
			• •			•	
					1 P	1	
	**						
17439-92-1	lLeao	4.8		н	1 P	1	
17439-89-6	lIron	1100		E.	1P	1	
17440-50-8	lCopper	12.5			1P	I	
17440-48-4	lCobalt	0.55	181		10	1	
17440-47-3	Chromium	1.9			1 P	1	
17440-70-2	Calcium	19500		¥Ε	IP	1	
	•					-	
			•••		••	•	
17429-90-5	ι Dluminum	1 1010	1 1 5 1		' ! [1	 1	
ICHO NU.	I HNALYCE	luncentration.	161	Cł.	119	- I T	
	I 17429-90-5 17440-36-0 17440-38-2 17440-39-3 17440-41-7 17440-43-9 17440-43-9 17440-43-9 17440-43-9 17440-43-9 17440-43-9 17440-43-9 17440-43-8 17440-43-8 17439-95-4 17439-95-4 17439-95-4 17439-95-5 17440-02-0 17440-02-7 17440-23-5 17440-23-5 17440-28-0 17440-62-2	I I I7429-90-5 IAluminum I7440-36-0 IAntimony I7440-38-2 IArsenic I7440-39-3 IBarium I7440-41-7 IBeryllium I7440-43-9 ICadmium I7440-43-9 ICalcium I7440-47-3 IChromium I7440-50-8 ICopper I7439-89-6 IIron I7439-95-4 IMagnesium I7439-95-4 IMagnesium I7439-96-5 IMagnesium I7439-96-5 IMagnesium I7440-09-7 IPotassium I7440-22-4 ISilver I7440-23-5 ISodium I7440-23-5 ISodium I7440-22-2 IVanadium	ICAS No. I Analyte Concentration I I I7429-90-5 IAluminum I7429-90-5 IAluminum I7440-36-0 IAntimony 0.09 I7440-36-0 I7440-36-0 IAntimony 0.09 I7440-36-0 I7440-38-2 IArsenic 11.0 I7440-39-3 I7440-41-7 Beryllium 0.05 I7440-41-7 I7440-43-9 ICadmium 0.24 I7440-43-9 I7440-43-9 ICadmium 0.24 I7440-43-9 I7440-43-9 ICadmium 0.24 I7440-44-3 I7440-47-3 IChromium 19500 I7440-48-4 I7440-48-4 ICobalt 0.55 I7440-50-8 I7439-89-6 IIron 1100 I7439-92-1 I7439-92-1 ILead 17439-92-1 ILead 17439-92-5 IMagnesium 3080 I7439-92-6 I7440-02-0 INickel 30 I7440-02-6 </td <td>ICAS No. I Analyte IConcentration[C] I I I III 17429-90-5 IAluminum 1010 I 17440-36-0 IAntimony 0.09101 17440-36-0 IAntimony 0.09101 17440-36-0 IAntimony 0.09101 17440-38-2 IArsenic 11.0 I 17440-39-3 IBarium 1.5 IB1 17440-43-9 ICadmium 0.051B1 17440-43-9 ICadmium 0.241 17440-43-9 ICadmium 0.241 1 1.916 1 17440-43-9 ICalcium 1.9500 1 1.916 1 17440-47-3 IChromium 1.910 1 1.916 1 17439-89-6 Iron 1100 1 1.7439-92-1 1Lead 4.811 1.7439-92-5 1 <!--</td--><td>Image: Image: Image:</td><td>Image: Image: Image:</td><td>1 1</td></td>	ICAS No. I Analyte IConcentration[C] I I I III 17429-90-5 IAluminum 1010 I 17440-36-0 IAntimony 0.09101 17440-36-0 IAntimony 0.09101 17440-36-0 IAntimony 0.09101 17440-38-2 IArsenic 11.0 I 17440-39-3 IBarium 1.5 IB1 17440-43-9 ICadmium 0.051B1 17440-43-9 ICadmium 0.241 17440-43-9 ICadmium 0.241 1 1.916 1 17440-43-9 ICalcium 1.9500 1 1.916 1 17440-47-3 IChromium 1.910 1 1.916 1 17439-89-6 Iron 1100 1 1.7439-92-1 1Lead 4.811 1.7439-92-5 1 </td <td>Image: Image: Image:</td> <td>Image: Image: Image:</td> <td>1 1</td>	Image:	Image:	1 1

INORGANIC ANALYSIS DATA SHEET

EPA SAMPLE NO.

I		ł
ł	SB-MU04-99A	ł
1		ł

Lab Name: CEIMIC CORPORATION

6.7

Contract: BAKER ENV.

Lab Code: CEIMIC Case No.: CTO 100 SAS No.: SDG No.: TY0199A Matrix (soil/water): SOIL Lab Sample ID: T990034-12 S Level (low/med): LOW Date Received: 01/19/99

≭ Solids:

Concentration Units (ug/L or mg/Kg dry weight): MG/KG

		17440-43-9		l 0.09 l 0.52			1 P 1 P	1	
			Calcium						
			IChromium				IP		
				0.64			1P		
		17448-58-8	IConner	12.9	1 1		IP		
		17439-89-6				E			
			ILead			N			
				7950		F	10	1	
			IManganese						
			INickel				IP		
			Potassium				IP	-	
			Selenium			N			
		17440-22-4				N			
			Sodium				IP		
			Thallium				IP		
			Vanadium				IP		
			Zinc				IP		
]	1	101	_1		_1		
Color	Before:	GREY	Clarit	y Before:			Te	xture:	MEDIUM
	After:	YELLOW	Clarit	y After:			Ar	tifacts	

INORGANIC ANALYSIS DATA SHEET

EPA SAMPLE NO.

1		1
1	SB-MU05-99A	1
ļ		ļ

Lab Name: CEIMIC CORPORATION

Contract: BAKER ENV.

Lab Code: CEIMIC Case No.: CTO 100 SAS No.: SDG No.: TY0199A Matrix (soil/water): SOIL

Level (low/med): LOW

18.6

Date Received: 01/19/99

Lab Sample ID: T990034-05 S

≯ Solids:

Concentration Units (ug/L or mg/Kg dry weight): MG/KG

	1	t	1			
	ICAS No.		IConcentration			MI
	17429-90-5	Aluminum		 		
			0.091	U I		PI
			11.3			PI
			0.831			P I
		[Beryllium]				P I
$\langle \cdot \rangle$			0.191			P I
			1 8470 1			P }
		IChromium				P I
		lCobalt				P I
	17440-50-8	Copper	4.1			P I
	17439-89-6	liron		ΙE		P
		Lead				PI
		Magnesium		1 E	1	P I
		IManganese				PI
		INickel		BI		PI
			I 6080 I			PI
		ISelenium				PI
	17440-22-4		0.031			PI
			1 27600 1			PI
		lThallium				PI
			I 1.9 I			PI
			I 34.1 I			PI
]					I
25. 1. 1 . 1						
Color Before:	GREY	Clarit	ty Before:			Texture:
Color After:	YELLOW	Clarit	ty After:			Artifacts:
Comments:						

INORGANIC ANALYSIS DATA SHEET

EPA SAMPLE NO.

I		ļ
1	RF-0Y01-99A	l
!	4/4/ - 14/4/ - 1-14/4/ - 14/4/ - 14/4/ - 14/4/ - 14/4/ - 14/4/ - 14/4/ - 14/4/ - 14/4/ - 14/4/ - 14/4/ - 14/4	I

Lab Name: CEIMIC CORPORATION

Contract: BAKER ENV.

Lab Code: CEIMIC Case No.: CTO 100 SAS No.: SDG No.: TY0199A Matrix (soil/water): SOIL Lab Sample ID: T990034-07 S Level (low/med): LOW Date Received: 01/19/99

11.8 ≭ Solids:

Concentration Units (ug/L or mg/Kg dry weight): MG/KG

	ļ			ł	1 1
			Concentration (
		Aluminum		-	IP I
			0.131		
			18.8		
	17440-39-3	Barium	1.2 1	BI	IP I
			0.0510		
	17440-43-9	Cadmium	0.2011	BI	15, 1
	17440-70-2	Calcium	4390 I) *E	191
	17440-47-3	IChromium	0.851	i	1 P 1
	17440-48-4	Cobalt	2.6 1	ł	1 F'
	17440-50-8	Copper	8.2	1	1P
	17439-89-6	Iron	2.6 8.2 243	ΙE	181
	17439-92-1	ILead I	2.0 1	I N	1P 1
	17439-95-4	Inagnesium	2366 1	1 E.	11-1
	17439-96-5	IManganesel	10.3	1 N*E	112
	17440-02-0	INickel I	10.3 4.5	ł	10
	17440-09-7	Potassium	7500 1	ΙE	IP I
	17792-49-2	IColonium I	231	I N	10 1
	17440-22-4	Silver	0.0411 46800 I	JIN	IP I
	17440-23-5	ISodium	46800 I	1	1P
	17440-28-0	Thallium	0.1011	JI	19 1
			3.3 1		
	17440-66-6	IZinc I	88.9 1	I NE	
	1	_II		1	
Color Before:	GREY	Clarit	y Before:		Texture
Color After:	YELLOW	Clarit	y After:		Artifac
Commonte *					

Comments:

FORM I - IN

**** MEDIUM

INORGANIC ANALYSIS DATA SHEET

EPA SAMPLE NO.

1		1
1	RF-0Y02-99A	1
1		j

Lab Name: CEIMIC CORPORATION

9.8

Contract: BAKER ENV.

Lab Code: CEIMIC Case No.: CTO 100 SAS No.: SDG No.: TY0199A Matrix (soil/water): SOIL Lab Sample ID: T990034-13 S Level (low/med): LOW Date Received: 01/19/99

≭ Solids:

Concentration Units (ug/L or mg/Kg dry weight): MG/KG

	1	1				1 1
	ICAS No.	•	IConcentration			
		•				
	17429-90-5	IAluminum	1 320			IP I
	17440-36-0	lAntimony	0.15	101		119
			32.2			
	17440-39-3	Barium	1.2	IBI		1 P 1
	17440-41-7	IBeryllium	0.06	101		1P 1
	17440-43-9	ICadmium	1.8			IP I
			18200			
			1.5			
			0.84			
	17448-58-9	Conner	1 AA 2	1		10 (
	17439-89-6	lIron	1 581		E	IP I
	17439-92-1	ILead	1.2		Ы	IP I
			6150			
			19.2			
	17440-02-0	INickel	1 2.1	IBI		101
			15200			
			5.6			
		lSilver				
			51000			
	17440-28-0	lThallium	0.12	101		1 P
	17440-62-2	lVanadium	4.6			191
			1 2230			
			I			
				, , , , , ,		
Color Before:	GREY	Clarit	ty Before:			Textu
Color After:	YELLOW	Clarit	ty After:			Artif
Comments:						

FORM I - IN

ILM04.0

MEDIUM

INORGANIC ANALYSIS DATA SHEET

1

EPA SAMPLE NO.

I		ł
1	SB-0Y01-99A	1
I		1

Lab Name: CEIMIC CORPORATION

Contract: BAKER ENV.

Lab Code: CEIMIC Case No.: CTO 100 SAS No.: SDG No.: TY0199A

Matrix (soil/water): SOIL

Level (low/med): LOW

Date Received: 01/19/99

Lab Sample ID: T990034-01 S

% Solids: 15.1

Concentration Units (ug/L or mg/Kg dry weight): MG/KG

			Concentration		Q	
		Aluminum	111	'		'' IP I
	17440-36-0	Antimony	0.101	UI		IP I
	17440-38-2	lArsenic	12.5	}	ŧE	1 P 1
	17440-39-3	Barium	0.831	BI		IP I
-	17440-41-7	Beryllium	0.041	UI		1P 1
			1.6			
	17440-70-2	Calcium	2330 1	IE	2	IP I
	17440-47-3	lChromium	0.651	1		IP I
	17440-48-4	lCobalt	0.371	BI		16-1
	17440-50-8	Copper	50.3 1	I		1 1 1
	17439-89-6	lIron	225 1	16	-	IP I
	17439-92-1	ILead	1.6	1 1	4	IP I
	17439-95-4	Mannesium	1 2740 1	1 6		101
	17439-96-5	IManganese	9.8 1	11	Ι¥Ε	101
	17440-02-0	INickel	2.4 1	1		16 1
	17440-09-7	lPotassium	I 8940 I	IE	-	150 1
	17782-49-2	ISelenium	I 3.2 I		4	101
			0.341			
			I 19700 I			
	17440-28-0	lThallium	0.081	UI		1 P 1
	17440-62-2	lVanadium	1.4	BI		101
			1280			
olor Before:	GREY	Clari	ty Before:			Texture:
olor After:	YELLOW	Clari	ty After:			Artifact
Comments:						

226

MEDIUM

INORGANIC ANALYSIS DATA SHEET

EPA SAMPLE NO.

1		
1	SB-0Y02-99A	1
1		1

Lab Name: CEIMIC CORPORATION

Contract: BAKER ENV.

Lab Code: CEIMIC Case No.: CTO 100 SAS No.: SDG No.: TY0199A

Matrix (scil/water): SOIL

Level (low/med): LOW

Date Received: 01/19/99

Lab Sample ID: T990034-06 S

% Solids:

15.7

Concentration Units (ug/L or mg/Kg dry weight): MG/KG

Comments:	ICLUW	CIALI	CY HICEP:			mituriatios:	
Color Ofters	YELLOW	flari	ty After:			Artifacts	n
Color Before:	GREY	Clari	ty Before:			Texture:	MEDIU
	I	_1]	_ .		II	
	17440-66-6		1 793			1P 1	
		IVanadium				10 1	
	17440-28-0	IThallium				IP I	
	17440-23-5	lSodium	1 18600	11		IP I	
	17440-22-4	ISilver	0.03	101		1P 1	
		ISelenium			Ν	101	
			8780	1 1	Ε	19-1	
		INickel				19-1	
	17439-96-5	IManganese	6.4		N*E	1P 1	
	17439-95-4	Magnesium	1 2450	1 1	E	19-1	
	17439-92-1	lLead	0.69			1P 1	
	17439-89-6	lIron			E		
			1 45.1				
			. 0.34			101	
	17440-47-3					IP I	
						1P 1	
	17440-41-7		1 0.04 1 1.1				
	17440-39-3		0.35				
	17440-38-2				*1.		
	17440-36-0						
	17429-90-5						
]			<u> </u>	. Ana Palana (. Ana	_!!	
	ICAS No.		IConcentration			IMI	

INORGANIC ANALYSIS DATA SHEET

EPA SAMPLE NO.

1 SB-0Y03-99A 1 1

Lab Name: CEIMIC CORPORATION

Contract: BAKER ENV.

Lab Code: CEIMIC Case No.: CTO 100 SAS No.: SDG No.: TY0199A

Matrix (soil/water): SOIL

Level (low/med): LOW

12.0

Date Received: 01/19/99

Lab Sample ID: T990034-03 S

🛪 Solids:

Concentration Units (ug/L or mg/Kg dry weight): MG/KG

17440-41-7 1Beryllium] 0.05101 IP 17440-43-9 ICadmium 1.7 I IP 17440-43-9 ICadmium 1.7 I IP 17440-70-2 ICalcium 4040 I *E IP 17440-47-3 IChromium 0.661 IP IP 17440-48-4 ICobalt 0.25101 IP 17440-50-8 ICopper 46.0 IP IP 17439-89-6 Iron 199 IE IP 17439-92-1 ILead 1.0 IN IP 17439-92-1 ILead 1.0 IN IP 17439-95-4 Magnesium 3960 IE IP 17439-96-5 IMaganesel 11.8 IN*E IP 17440-02-0 INickel 2.3 I IP 17440-02-0 INickel 2.3 I IP 17440-22-4 ISIVer 0.04101 IP 17440-22-5 ISodium 31700 I IP 17440-28-0 IThallium 0.09101 <th></th> <th>F</th> <th></th> <th></th> <th></th> <th></th> <th></th>		F					
1 1 1 90.6 1 1P 17429-90-5 1Aluminum 90.6 1 1P 17440-36-0 1Antimony 0.12101 1P 17440-38-2 1Arsenic 10.0 1 *E 1P 17440-38-2 1Arsenic 10.0 1 *E 1P 17440-39-3 1Barium 0.621B1 1P 17440-41-7 1Beryllium 0.05101 1P 17440-43-9 1Cadmium 1.7 1 1P 17440-43-9 1Cadmium 0.661 1P 1P 17440-47-3 1Chromium 0.661 1P 1P 17440-48-4 1Cobalt 0.25101 1P 17440-50-8 1Copper 46.0 1 1P 17439-89-6 1ron 199 1 1P 17439-92-1 1Lead 1.0 1 N 17439-92-5 IMagnesium 3960 1 E IP 17439-92-5 IManganese1 11.8 1 N*E IP 17440-02-0 INicke1	ICAC N-	1	l I Managaraha ahi mal	1 1	n	i ti n i	1
17440-36-0 [Antimony] 0.12101 IP 17440-38-2 [Arsenic] 10.01 *E IP 17440-39-3 [Barium] 0.621B1 IP 17440-41-7 [Beryllium] 0.05101 IP 17440-43-9 [Cadmium] 1.71 IP 17440-43-9 [Cadmium] 1.71 IP 17440-43-9 [Calcium] 4040 I*E IP 17440-44-41 [Cobalt] 0.661 IP IP 17440-50-8 [Copper] 46.0 I IP 17439-89-6 Iron 199 I E IP 17439-92-1 [Lead] 1.01 I IP IP 17439-95-4 [Magnesium] 3960 I E IP 17440-02-0 [Nicke] 2.3 I IP 17440-02-0 [Nicke] <td>ICHS NO.</td> <td>I HNALYCE</td> <td>, sconcentration</td> <td></td> <td>G</td> <td>111</td> <td>1</td>	ICHS NO.	I HNALYCE	, sconcentration		G	111	1
17440-36-0 [Antimony] 0.12101 IP 17440-38-2 [Arsenic] 10.011 *E IP 17440-39-3 [Barium] 0.621B1 IP 17440-41-7 [Beryllium] 0.65101 IP 17440-41-7 [Beryllium] 0.65101 IP 17440-43-9 [Cadmium] 1.711 IP 17440-43-9 [Calcium] 4040 I *E 17440-43-9 [Calcium] 4040 I *E IP 17440-43-9 [Calcium] 4040 I *E IP 17440-43-9 [Calcium] 4040 I *E IP 17440-47-3 [Chromium] 0.661 IP IP 17440-48-4 [Cobalt] 0.25101 IP 17440-50-8 [Copper] 46.0 I IP 17439-92-1 [Lead] 1.0 I IP 17439-92-1 [Lead] 1.0 I IP 17439-92-5 [Magnesium] 3960 I E IP 17440-02-0 [N	12420.00 5	1.07	1 00 C	1 <u></u> 1. 1 1			1
17440-38-2 IArsenic I 10.0 *E IP 17440-39-3 IBarium I 0.621BI IP 17440-41-7 IBerylliumI 0.051UI IP 17440-43-9 ICadmium I 1.7 I IP 17440-70-2 ICalcium I 4040 I *E IP 17440-47-3 IChromium I 0.661 IP 17440-47-3 IChromium I 0.661 IP 17440-48-4 ICobalt 0.251UI IP 17440-48-4 ICobalt 0.251UI IP 17440-48-4 ICobalt 0.251UI IP 17440-50-8 ICopper 46.0 I IP 17439-92-1 ILead 1.0 I IP 17439-92-1 ILead 1.0 I IP 17439-92-1 ILead 1.8 I N*E IP 17439-92-1 ILead 1.8 I N*E IP 17439-92-7 INckel 2.3 I IP 17440-02-0 Nickel 2.3 I IP 17							
17440-39-3 1Barium 0.621B1 1P 17440-41-7 1Beryllium1 0.051U1 1P 17440-43-9 1Cadmium 1.71 1P 17440-43-9 1Cadmium 1.71 1P 17440-43-9 1Cadmium 1.71 1P 17440-43-9 1Calcium 4040 1*E 1P 17440-47-3 1Chromium 0.661 1P 17440-48-4 1Cobalt 0.251U1 1P 17440-48-4 1Cobalt 0.251U1 1P 17440-50-8 1Copper 46.01 1P 17439-89-6 1Iron 199 1E 1P 17439-92-1 1Lead 1.01 N 1P 17439-92-1 1Lead 1.01 N 1P 17439-96-5 1Magnesium1 3960 1E 1P 17440-02-0 Nickel 2.31 1P 1P 17440-02-0 Nickel 2.31 1P 1P 17440-22-4 1Silver 0.041U1 N 1P 17440-23-5 ISodium		,					
17440-41-7 1Beryllium1 0.05101 1P 17440-43-9 1Cadmium 1.7 1 1P 17440-70-2 ICalcium 4040 1 *E 1P 17440-47-3 IChromium 0.661 1 1P 17440-48-4 ICobalt 0.661 1 1P 17440-48-4 ICobalt 0.661 1 1P 17440-50-8 ICopper 46.0 1 1P 17439-89-6 Iron 199 1 1P 17439-92-1 ILead 1.0 1 N 1P 17440-02-0 Nickel 2.3 1 1 1P 17440-22-4 ISelenium 3.1					×Ε		
17440-43-9 1Cadmium 1.7 1 IP 17440-43-9 1Calcium 4040 1 *E IP 17440-70-2 ICalcium 4040 1 *E IP 17440-47-3 IChromium 0.661 IP 17440-48-4 ICobalt 0.25101 IP 17440-50-8 ICopper 46.0 1 IP 17439-89-6 Iron 199 IE IP 17439-92-1 ILead 1.0 IN IP 17439-96-5 IMagnesium 3960 IE IP 17440-02-0 INickel 2.3 I IP 17440-02-0 INickel 2.3 IE IP 17440-22-4 ISIlver 0.04101 IP 17440-23-5 ISodium 31700						IP	
17440-70-2 ICalcium 4040 1 *E IP 17440-47-3 IChromium 0.661 IP 17440-48-4 ICobalt 0.25101 IP 17440-50-8 ICopper 46.0 I IP 17439-89-6 Iron 199 IE IP 17439-92-1 ILead 1.0 IN IP 17439-92-1 ILead 1.0 IN IP 17439-95-4 IMagnesium 3960 IE IP 17439-96-5 IManganesel 11.8 IN*E IP 17440-02-0 INickel 2.3 I IP 17440-02-0 INickel 2.3 I IP 17440-02-0 INickel 2.3 I IP 17440-22-4 ISilver 0.04101 IP IP 17440-22-5 ISodium 31700 I IP 17440-23-5 ISodium 31700 I IP 17440-28-0 IThallium 0.09101 IP 17440-62-2 IVanadium 0.56181 IP	 17440-41-7	IBeryllium	0.05	IUI		15	
17440-47-3 1Chromium 1 0.661 1 IP 17440-48-4 ICobalt 1 0.251U1 IP 17440-50-8 ICopper 1 46.0 1 IP 17439-89-6 Iron 1 199 1 E IP 17439-92-1 ILead 1 1.0 1 N IP 17439-96-5 IMagnesium1 3960 I E IP 17440-02-0 INicke1 2.3 1 I IP 17440-02-0 INicke1 2.3 1 I IP 17440-22-4 ISelenium 1 3.1 1 N IP 17440-23-5 ISodium 1 31700 I IP 17440-28-0 IThallium 1 0.091U1 IP 17440-28-0 IThallium 1 0.	17440-43-9	lCadmium	1.7			IP	
17440-48-4 ICobalt 0.251U1 IP 17440-50-8 ICopper 46.01 IP 17439-89-6 Iron 199 IE IP 17439-92-1 ILead 1.01 N IP 17439-92-1 ILead 1.01 N IP 17439-92-1 ILead 1.01 N IP 17439-95-4 IMagnesium 3960 IE IP 17439-96-5 IManganesel 11.8 N*E IP 17440-02-0 INickel 2.3 I IP 17440-02-0 INickel 2.3 I IP 17440-02-0 INickel 0.041U1 N IP 17440-02-0 ISelenium 3.1 IN IP 17440-22-4 ISilver 0.041U1 IP 17440-23-5 ISodium 31700 I IP 17440-28-0 IThallium 0.091U1 IP 17440-62-2 IVanadium 0.561B1 IP 17440-66-6 IZinc 722 INE IP <td>17440-70-2</td> <td>lCalcium</td> <td>4040</td> <td> </td> <td>жЕ</td> <td>16</td> <td></td>	17440-70-2	lCalcium	4040		жЕ	16	
17440-50-8 1Copper 46.0 1 1P 17439-89-6 1ron 199 1 E 1P 17439-92-1 1Lead 1.0 1 N 1P 17439-92-1 1Lead 1.0 1 N 1P 17439-92-1 1Lead 1.0 1 N 1P 17439-92-1 1Lead 3960 1 E 1P 17439-95-4 1Magnesium! 3960 1 E 1P 17439-96-5 1Nanganesel 11.8 1 N*E 1P 17440-02-0 1Nickel 2.3 1 1P 17440-02-0 1Nickel 2.3 1 1P 17440-02-0 1Potassium! 9090 1 E 1P 17440-22-4 1Silver 0.041U1 N 1P 17440-23-5 ISodium 31700 1 1P 17440-28-0 1Thallium 0.091U1 1P 17440-62-2 IVanadium 0.561B1 1P 17440-66-6 1Zinc 722	17440-47-3	lChromium	0.66			IP	
17439-89-6 1ron 199 1 E IP 17439-92-1 1Lead 1.0 1 N IP 17439-92-1 ILead 1.0 1 N IP 17439-92-1 ILead 1.0 1 N IP 17439-95-4 IMagnesium 3960 1 E IP 17439-96-5 IManganesel 11.8 1 N*E IP 17440-02-0 INickel 2.3 1 IP 17440-02-0 INickel 2.3 1 IP 17440-09-7 IPotassium 9090 1 E IP 17440-22-4 ISelenium 3.1 I N IP 17440-22-4 ISilver 0.04101 N IP 17440-23-5 ISodium 31700 1 IP 17440-23-5 ISodium 31700 1 IP 17440-28-0 IThallium 0.09101 IP 17440-62-2 IVanadium 0.561B1 IP 17440-66-6 IZinc 722 INE IP	17440-48-4	lCobalt	0.25	101		10	
17439-92-1 ILead 1.0 I N IP 17439-95-4 IMagnesiumI 3960 I E IP 17439-96-5 IMagnesiumI 3960 I E IP 17439-96-5 IMagnesel 11.8 I N*E IP 17440-02-0 INickel 2.3 I IP 17440-09-7 IPotassiumI 9090 I E IP 17440-29-7 IPotassiumI 9090 I E IP 17440-29-7 IPotassiumI 9090 I E IP 17440-29-7 ISeleniumI 3.1 I N IP 17440-22-4 ISilver 0.04IUI N IP 17440-23-5 ISodium 31700 I IP 17440-28-0 IThallium 0.09IUI IP 17440-62-2 IVanadium 0.56IBI IP 17440-66-6 IZinc 722 I NE	17440-50-8	lCopper	46.0	1 1		11	
7439-95-4 Magnesium 3960 E F 7439-96-5 Magnese 11.8 N*E F 7440-02-0 Nickel 2.3 I F 7440-09-7 Potassium 9090 E F 7440-29-2 Selenium 3.1 N F 7440-22-4 Silver 0.04 U N F 7440-23-5 Sodium 31700 F 7440-28-0 Thallium 0.09 U F 7440-62-2 Vanadium 0.56 B F 7440-66-6 Zinc 1 722	17439-89-6	lIron	1 199		Ε	IP	
17439-96-5 IManganesel 11.8 I N*E IP 17440-02-0 INickel 2.3 I IP 17440-09-7 IPotassium 9090 I E IP 17782-49-2 ISelenium 3.1 I N IP 17440-22-4 ISilver 0.041UI N IP 17440-23-5 ISodium 31700 I IP 17440-28-0 IThallium 0.091UI IP 17440-62-2 IVanadium 0.561BI IP 17440-66-6 IZinc 722 I NE	17439-92-1	ILead	i.0		М	IP	
17439-96-5 IManganesel 11.8 I N*E IP 17440-02-0 INickel 2.3 I IP 17440-09-7 IPotassium 9090 I E IP 17782-49-2 ISelenium 3.1 I N IP 17440-22-4 ISilver 0.04IUI N IP 17440-23-5 ISodium 31700 I IP 17440-28-0 IThallium 0.09IUI IP 17440-62-2 IVanadium 0.56IBI IP 17440-66-6 IZinc 722 I NE	17439-95-4	Mapnesium	3960		Ε	1 F	
7440-02-0 Nickel 2.3 P 7440-09-7 Potassium 9090 E P 7782-49-2 Selenium 3.1 N P 7440-22-4 Silver 0.04 U N P 7440-23-5 Sodium 31700 P 7440-28-0 Thallium 0.09 U P 7440-62-2 Vanadium 0.56 B P 7440-66-6 Zinc 722 NE P		+				1 P	
17440-09-7 IPotassium! 9090 IE IP 17782-49-2 ISelenium ! 3.1 IN IP 17782-49-2 ISelenium ! 3.1 IN IP 17440-22-4 ISilver 0.04101 IP 17440-23-5 ISodium 31700 I IP 17440-28-0 IThallium 0.09101 IP 17440-62-2 IVanadium ! 0.561B1 IP 17440-66-6 IZinc 1 722 INE						IP	
7782-49-2 Selenium 3.1 N P 7440-22-4 Silver 0.04 U N P 7440-23-5 Sodium 31700 P 7440-28-0 Thallium 0.09 U P 7440-62-2 Vanadium 0.56 B P 7440-66-6 Zinc 722 NE P			1 9090	1 1	F	IP	
7440-22-4 Silver 0.04 U N P 7440-23-5 Sodium 31700 P 7440-28-0 Thallium 0.09 U P 7440-62-2 Vanadium 0.56 B P 7440-66-6 Zinc 722 NE P						1P	
7440-23-5 Sodium 31700 P 7440-28-0 Thallium 0.09 U P 7440-62-2 Vanadium 0.56 B P 7440-66-6 Zinc 722 NE P						IP	
7440-28-0 Thallium 0.09 U P 7440-62-2 Vanadium 0.56 B P 7440-66-6 Zinc 722 NE P					••	1 P	
17440-62-2 Vanadium 0.56 B P 17440-66-6 Zinc 722 NE P						IP	
17440-66-6 IZinc 722 NE P						1P	
					NE		
	17440-00-0	1 2 3 110					
	1		i	1 1			•

Color After: YELLOW Clarity After: Artifacts:

Comments:

FORM I - IN

228

INORGANIC ANALYSIS DATA SHEET

EPA SAMPLE NO.

1		l
۱	SB-0Y04-99A	I
ļ		ļ

Lab Name: CEIMIC CORPORATION

Contract: BAKER ENV.

Lab Code: CEIMIC Case No.: CTO 100 SAS No.: SDG No.: TY0199A Lab Sample ID: T990034-10 S Matrix (soil/water): SOIL Level (low/med): LOW Date Received: 01/19/99

≯ Solids:

11.3

Concentration Units (ug/L or mg/Kg dry weight): MG/KG

		1					1	1	
		ICAS No.	Analyte	Concentration	101	Q	IM	1	
		1	1		1_1		1	ţ	
		17429-90-5	Aluminum	69.5			I P	I	
		17440-36-0	Antimony	0.13	IUI		I P	I	
		17440-38-2	Arsenic	11.9		жE	IP	1	
		17440-39-3	Barium	0.68	BI		I P	I	
		17440-41-7	Beryllium	0.05	IUI		1 P	1	
()) (1.3					
		17440-70-2	Calcium	7840		¥Ε	11	1	
		17440-47-3					I P	1	
		17440-48-4	ICobalt	0.27	IUI		19		
		17440-50-8	lCopper	21.4			I P	1	
		17439-89-6	lIron	228		E	16	ł	
		17439-92-1	Lead	0.82		М	1P	1	
						E			
		17439-96-5	Manganese	1 7.0	1	N∗E	1P	1	
		17440-02-0	INickel	1.8	BI		I P	1	
		17440-09-7	Potassium	11200		E	i P	ł	
		17782-49-2	ISelenium	1 2.8	1 1	Ν	IP	1	
		17440-22-4	Silver	0.04	IUI	М	IP	I	
		17440-23-5	lSodium	43800			1 P	1	
		17440-28-0	lThallium	0.10	101		IP	I	
		17440-62-2	lVanadium	1.7	BI		IP	1	
		17440-66-6	Zinc	1 728		NE	IP	1	
		I			1_1			.1	
Color	Before:	GREY	Clari	ty Before:			Te	xture:	MEDIUM
Color	After:	YELLOW	Clari	ty After:			Αr	tifacts:	

Comments:

229

INORGANIC ANALYSIS DATA SHEET

1.181

EPA SAMPLE NO.

******	farre 1 fe distana 1 fe stati minimula na lejano i arrer ana kan panaka aky a pana ana pana inarre - eg va	****
I		1
ļ	SB-0Y05-99A	1
1		1

Lab Name: CEIMIC CORPORATION

Contract: BAKER ENV.

Lab Code: CEIMIC	Case No.:	CTO 100	SAS No.:	SDG No.: TY0199A
Matrix (soil/water):	SOIL		Lab Sample	ID: T990034-04 S
Level (low/med):	LOW		Date Rec	eived: 01/19/99

≭ Solids: 20.0

Concentration Units (ug/L or mg/Kg dry weight): MG/KG

	I	1	•			I	1	
	ICAS No.	Analyte	Concentration		Q	IM	1	
	17429-90-5	1 1 0 3 umi yum	78.9			! 1P	1 1	
	17440-36-0					1P	-	
	17440-38-2	•	4.1			19		
	17440-39-3		0.30			IP		
	17440-41-7					1P		
	17440-43-9	•	0.60			IP		
	17440-70-2		5960			IP I		
	17440-47-3					10		
	17440-48-4		0.21			IP		
	17440-50-8		17.1			IP		
	17439-89-6					15		
	17439-92-1		0.40			IP		
	17439-95-4		•			IP		
	17439-95-4					IP		
	17440-02-0		1.3		11 ~ 5	I P		
	17440-02-0				E	IP IP		
	17782-49-2					IP		
	17440-22-4		1 0.02			11		
	17440-22-4					ir IP		
	17440-23-3			• •		IP IP		
	17440-68-0					1		
						IP		
	17440-66-6	Zinc		5 I 		1		
	•	· · · · · · · · · · · · · · · · · · ·			*****	4,164.000 Latino	···	
olor Before:	GREY	Clari	ty Before:			Τe	exture:	MEDIU
Color After:	YELLOW	Clari	ty After:			A٦	tifacts	R.
Comments:								
·								

230

CLAM, MUSSEL, AND
STONE BAY
OYSTER TISSUE - MERCURY

TOTAL METALS CLP METHOD ILM04.0

Mercury	0201	ND	0.003
Target Analyte	Preparation Batch	Sample Concentration	Reporting Limit
Matrix: Soil			Concentration in: mg/Kg (ppm)+
Date Sample Received: ()1/19/99	Date Analysis Completed: 02/01/99	
Date Sampled:		Laboratory ID: PBO	
Client Sample ID: PBO			
Client: Baker Environme	ental		

ND = Not Detected

Reported by:

David Tatoulli

Approved by:

Metals Page 20 10 Dean Knauss Drive, Narragansett, RI 02882 · Tel: (401) 782-8900 · Fax: (401) 782-8905

LABORATORY CONTROL SAMPLE SUMMARY TOTAL METALS CLP METHOD ILM04.0

Client: Baker Environmental

Laboratory Control Spike ID: SRM-2

Matrix: Soil

Ceimic Project: 990034

Date Analysis Completed: 02/01/99

Concentration in: mg/Kg (ppm)

Target Analyte	Preparation Batch	True Value	Lab Control Spike Result	Lab Control Spike Recovery(%)	QC Limits(%)
Mercury	0201	0.064	0.0570	89.1	80 - 120

Reported by:

Donald Tatoulli

Approved by:

Metals Page 21 10 Dean Knauss Drive, Narragansett, RI 02882 · Tel: (401) 782-8900 · Fax: (401) 782-8905

TOTAL METALS CLP METHOD ILM04.0

Mercury	0201	0.050	0.003
Target Analyte	Preparation Batch	Sample Concentration	Reporting Limit
Percent Solids: 15			· · · · · · · · · · · · · · · · · · ·
Matrix: Soil			Concentration in: mg/Kg (ppm)+
Date Sample Received: 01/19/99			Date Analysis Completed: 02/01/99
Date Sampled: 01/16/99		Laboratory ID: 990034-08	
Client Sample ID: RF-C	L01-99A		
Client: Baker Environme	ental		

+ Dry weight basis.

Reported by: _

Dorold Tatouthi

Approved by:

Metals Page 11 10 Dean Knauss Drive, Narragansett, RI 02882 · Tel: (401) 782-8900 · Fax: (401) 782-8905

DUPLICATE SAMPLE SUMMARY TOTAL METALS CLP METHOD ILM04.0

Mercury	0.0500	0.0620	21	20	
Target Analyte	Sample Result	Duplicate Result	RPD(%)	QC Limit(%)	
Duplicate Percent Solids	: 15		*******		
Matrix: Tissue			Concentratio	on in: mg/Kg (ppm)+	
Date Sample Received: 01/19/99			Date Analysis Completed: 02/01/99		
Date Sampled: 01/16/99		Laboratory ID: 990034-08Dup			
Client Sample ID: RF-C	L01-99A				
Client: Baker Environme	ental				

+ Dry weight basis. RPD = Relative Percent Difference

Reported by:

Daveld Tatoelli

Approved by:

Metals Page 12 10 Dean Knauss Drive, Narragansett, RI 02882 · Tel: (401) 782-8900 · Fax: (401) 782-8905

SPIKE SAMPLE SUMMARY TOTAL METALS CLP METHOD ILM04.0

Client: Baker Environmental

Client Sample ID: RF-CL01-99A

Date Sampled: 01/16/99

Date Sample Received: 01/19/99

Matrix: Tissue

Percent Solids: 15

Laboratory ID: 990034-08Spk

Date Analysis Completed: 02/01/99

Concentration in: mg/Kg (ppm)+

		Predigest	Spiked		Recovery(%)
Target Analyte	Sample Result	Spike Added	Sample Result	Predigest Spike	QC Limits	Post Digest Spike
Mercury	0.0500	0.150	0.167	78	75 - 125	NR

NR = Not Required

+ Dry weight basis.

Donald Tatoalli Reported by:

Approved by: ____

Metals Page 13 10 Dean Knauss Drive, Narragansett, RI 02882 · Tel: (401) 782-8900 · Fax: (401) 782-8905

TOTAL METALS CLP METHOD ILM04.0

Mercury	0201	0.054	0.003
Target Analyte	Preparation Batch	Sample Concentration	Reporting Limit
Percent Solids: 12			
Matrix: Soil			Concentration in: mg/Kg (ppm)+
Date Sample Received: 01/19/99			Date Analysis Completed: 02/01/99
Date Sampled: 01/16/99		Laboratory ID: 990034-21	
Client Sample ID: RF-C	L02-99A		
Client: Baker Environme	ental		

+ Dry weight basis.

Reported by:

Donald Vortorelli

Approved by:

Metals Page 19 10 Dean Knauss Drive, Narragansett, RI 02882 · Tel: (401) 782-8900 · Fax: (401) 782-8905

TOTAL METALS CLP METHOD ILM04.0

Mercury	0201	0.048	0.003
Target Analyte	Preparation Batch	Sample Concentration	Reporting Limit
Percent Solids: 11			
Matrix: Soil			Concentration in: mg/Kg (ppm)+
Date Sample Received: 01/19/99			Date Analysis Completed: 02/01/99
Date Sampled: 01/15/99		Laboratory ID: 990034-11	
Client Sample ID: SB-C	L04-99A		
Client: Baker Environme	ental		

+ Dry weight basis.

Reported by: _

Double Tortoalli

Approved by:

Metals Page 16 10 Dean Knauss Drive, Narragansett, RI 02882 · Tel: (401) 782-8900 · Fax: (401) 782-8905

TOTAL METALS CLP METHOD ILM04.0

.

Mercury	0201	0.088	0.003
Target Analyte	Preparation Batch	Sample Concentration	Reporting Limit
Percent Solids: 15			
Matrix: Soil		Concentration in: mg/Kg (ppm)+	
Date Sample Received:	01/19/99	Date Analysis Completed: 02/01/99	
Date Sampled: 01/16/99		Laboratory ID: 990034-02	
Client Sample ID: SB-M	IU01/02-99A		
Client: Baker Environme	ental		

+ Dry weight basis.

Reported by:

Doold Tatoalli

Approved by:

Metals Page 5 10 Dean Knauss Drive, Narragansett, RI 02882 · Tel: (401) 782-8900 · Fax: (401) 782-8905

3 da

TOTAL METALS CLP METHOD ILM04.0

Mercury	0201	0.082	0.003	
Target Analyte	Preparation Batch	Sample Concentration	Reporting Limit	
Percent Solids: 18		<u>.</u>		
Matrix: Soil		Concentration in: mg/Kg (ppm)+		
Date Sample Received:)1/19/99	Date Analysis Completed: 02/01/99		
Date Sampled: 01/16/99		Laboratory ID: 990034-09		
Client Sample ID: RF-M	IU02-99A			
Client: Baker Environme	ental			

+ Dry weight basis.

Reported by:

Dala Tatoulli

Approved by: _____

Metals Page 14 10 Dean Knauss Drive, Narragansett, RI 02882 · Tel: (401) 782-8900 · Fax: (401) 782-8905

TOTAL METALS CLP METHOD ILM04.0

Mercury	0201	0.157	0.003
Target Analyte	Preparation Batch	Sample Concentration	Reporting Limit
Percent Solids: 7			
Matrix: Soil		Concentration in: mg/Kg (ppm)+	
Date Sample Received:	01/19/99	Date Analysis Completed: 02/01/99	
Date Sampled: 01/16/99	•	Laboratory ID: 990034-12	
Client Sample ID: SB-M	IU04-99A		
Client: Baker Environm	ental		

+ Dry weight basis.

Reported by: _____

Kould Tortoulli

Approved by:

Metals Page 17 10 Dean Knauss Drive, Narragansett, RI 02882 · Tel: (401) 782-8900 · Fax: (401) 782-8905

TOTAL METALS CLP METHOD ILM04.0

Mercury	0201	0.086	0.003
Target Analyte	Preparation Batch	Sample Concentration	Reporting Limit
Percent Solids: 19			
Matrix: Soil			Concentration in: mg/Kg (ppm)+
Date Sample Received: 01/19/99			Date Analysis Completed: 02/01/99
Date Sampled: 01/15/99			Laboratory ID: 990034-05
Client Sample ID: SB-M	U05-99A		
Client: Baker Environme	ental		

+ Dry weight basis.

Reported by: _

David Tortoulli

Approved by:

Metals Page 8 10 Dean Knauss Drive, Narragansett, RI 02882 · Tel: (401) 782-8900 · Fax: (401) 782-8905

TOTAL METALS CLP METHOD ILM04.0

Mercury	0201	0.094	0.003	
Target Analyte	Preparation Batch	Sample Concentration	Reporting Limit	
Percent Solids: 12			· · · · · · · · · · · · · · · · · · ·	
Matrix: Soil			Concentration in: mg/Kg (ppm)+	
Date Sample Received: 01/19/99			Date Analysis Completed: 02/01/99	
Date Sampled: 01/16/99			Laboratory ID: 990034-07	
Client Sample ID: RF-O	Y01-99A			
Client: Baker Environme	ental			

+ Dry weight basis.

Reported by:

Dorold Fortralk

Approved by: _

Metals Page 10 10 Dean Knauss Drive, Narragansett, RI 02882 · Tel: (401) 782-8900 · Fax: (401) 782-8905

TOTAL METALS CLP METHOD ILM04.0

Mercury	0201	0.063	0.003
Target Analyte	Preparation Batch	Sample Concentration	Reporting Limit
Percent Solids: 15			
Matrix: Soil			Concentration in: mg/Kg (ppm)+
Date Sample Received: 01/19/99			Date Analysis Completed: 02/01/99
Date Sampled: 01/14/99			Laboratory ID: 990034-01
Client Sample ID: SB-O	Y01-99A		
Client: Baker Environme	ental		

+ Dry weight basis.

Reported by:

Donald Tatoulli

Approved by:

Metals Page 4 10 Dean Knauss Drive, Narragansett, RI 02882 · Tel: (401) 782-8900 · Fax: (401) 782-8905

TOTAL METALS CLP METHOD ILM04.0

Mercury	0201	0.069	0.003
Target Analyte	Preparation Batch	Sample Concentration	Reporting Limit
Percent Solids: 16			
Matrix: Soil			Concentration in: mg/Kg (ppm)+
Date Sample Received: 01/19/99			Date Analysis Completed: 02/01/99
Date Sampled: 01/15/99			Laboratory ID: 990034-06
Client Sample ID: SB-O	Y02-99A		
Client: Baker Environme	ental		

+ Dry weight basis.

Reported by:

d Jatoelli Nono

Approved by: _____

Metals Page 9 10 Dean Knauss Drive, Narragansett, RI 02882 · Tel: (401) 782-8900 · Fax: (401) 782-8905

TOTAL METALS CLP METHOD ILM04.0

Mercury	0201	0.156	0.003
Target Analyte	Preparation Batch	Sample Concentration	Reporting Limit
Percent Solids: 10			
Matrix: Soil			Concentration in: mg/Kg (ppm)+
Date Sample Received: 0)1/19/99		Date Analysis Completed: 02/01/99
Date Sampled: 01/16/99			Laboratory ID: 990034-13
Client Sample ID: RF-O	Y02-99A		
Client: Baker Environme	ental		

+ Dry weight basis.

Reported by:

Dould Tatoelli

Approved by: _

Metals Page 18 10 Dean Knauss Drive, Narragansett, RI 02882 · Tel: (401) 782-8900 · Fax: (401) 782-8905

TOTAL METALS CLP METHOD ILM04.0

Mercury	0201	0.252	0.003
Target Analyte	Preparation Batch	Sample Concentration	Reporting Limit
Percent Solids: 12	·		
Matrix: Soil			Concentration in: mg/Kg (ppm)+
Date Sample Received: ()1/19/99		Date Analysis Completed: 02/01/99
Date Sampled: 01/15/99			Laboratory ID: 990034-03
Client Sample ID: SB-O	Y03-99A		
Client: Baker Environme	ntal		

+ Dry weight basis.

Reported by: ____

Double Totoelli

Approved by:

Metals Page 6 10 Dean Knauss Drive, Narragansett, RI 02882 · Tel: (401) 782-8900 · Fax: (401) 782-8905

TOTAL METALS CLP METHOD ILM04.0

Mercury	0201	0.070	0.003	
Target Analyte	Preparation Batch	Sample Concentration	Reporting Limit	
Percent Solids: 11				
Matrix: Soil			Concentration in: mg/Kg (ppm)+	
Date Sample Received: 01/19/99			Date Analysis Completed: 02/01/99	
Date Sampled: 01/15/99			Laboratory ID: 990034-10	
Client Sample ID: SB-O	Y04-99A			
Client: Baker Environme	ental			

+ Dry weight basis.

Davald Tortoalli Reported by:

Approved by: ____

Metals Page 15 10 Dean Knauss Drive, Narragansett, RI 02882 · Tel: (401) 782-8900 · Fax: (401) 782-8905

TOTAL METALS **CLP METHOD ILM04.0**

Mercury	0201	0.053	0.003
Target Analyte	Preparation Batch	Sample Concentration	Reporting Limit
Percent Solids: 20			
Matrix: Soil			Concentration in: mg/Kg (ppm)+
Date Sample Received: 01/19/99			Date Analysis Completed: 02/01/99
Date Sampled: 01/15/99			Laboratory ID: 990034-04
Client Sample ID: SB-OY	705-99A		
Client: Baker Environmen	ntal		

+ Dry weight basis.

Reported by:

Donald Tatorelli

Approved by:

Metals Page 7 10 Dean Knauss Drive, Narragansett, RI 02882 · Tel: (401) 782-8900 · Fax: (401) 782-8905

Baker Environmental, Inc. ATTACHMENT D Analytical Quality Assurance 4017828905 CEIMIC CORPORATION

ENVIRONMENTAL RESOURCE ASSOCIATES Arvada, Colorado 80002 1-800-ERA-0122

930621C- 930621C

FX1 -7 F24

Certification

PriorityPollutnTTH/CLP Quality Control Standards

	Inorganics in Soll		ويستبد المحمد والمحمو ألفتها فيربو والمحمول	
	Parameter	Lot Number 216 Certified Value	Advisory Range	C
		mg/ig	mg/kg	the second s
TR	CE METALS			60-14090
	aluminum	6000	3800 - 8400	60-140.0
	antimony	27.8	14 - 117	50-150
•	arsenic	67.7	41 - 105	41 - 150
·	barium	187	131 - 243	70 - 130
sa a	beryillum	57.5	35 - 81	11 - 141
÷.	cadmium	110	55 - 166	60 - 150
,	calcium	2040	1220 - 2880	60-140
•	chromlum	189	95 - 265	50 140
	•			-
	cobalt	87.0	43 - 130	320 49 - 149
	19000	141	84 - 200	00 - 142
	Iron	10800	7020 - 15100	45740
	lead	100	55 - 140	55 - 140
			and the second second	· · · ·
	magnesium	2050	1200 - 3080	59-150
	manganese	294	206 - 383	70 - 130
	mercury	2.36	1.3 - 3.8	55 - 161
	molybdenum	124	93 - 167	
				75 - 135
	nickel	79.6	40 - 112	50 - 140
	polassium	2130	1280 - 2770	60 - 130
	scienium	99.1	54 • 149	54 - 160
	siver	124	62 - 186	
÷ 1.	WITE	111		-
	sodium	527	316 - 738	60 - 140
	thatium	67.9	34 - 102	50 - 150
	vanadium	84.8	59 - 115	70 - 135
• * . [*]		197	98 - 280	50 - 142
	zinc	1 0 7	00 - 100	00 100
			•	

1. The Trace Metals Certified Values are equal to the mean recoveries for each parameter as determined in an interlaboratory round robin study (3 laboratories, 10 to 24 data points per parameter). The standard was digested using Method 3050, SW-846 and the digest analyzed by ICP and stomic absorption spectroscopy.

2. The Advisory Ranges are listed as guidelines for acceptable recoveries given the limitations of the EPA methodologies commonly used to determine these parameters. The range closely approximates the 85% confidence interval for these parameters based upon experimental data from this for, previous ERA tots and published USEPA data.

National Institute of Standards & Technology

Certificate of Analysis

Standard Reference Material 1566a

Oyster Tissue

This Standard Reference Material (SRM) is intended primarily for use in calibrating instrumentation and validating methodology for the chemical analysis of marine bivalve tissue. A unit of SRM 1566a contains approximately 25 grams of oyster tissue.

Certified Concentrations of Constituent Elements: The certified elemental concentrations are shown in Table 1. Certified values are based on results obtained by reference methods of known accuracy; or alternatively, from results obtained by two or more independent and reliable analytical methods. Noncertified values are given, for information only, in Table 2. All values are based on minimum sample size of 250 mg of the dried material.

NOTICE AND WARNINGS TO USERS

Expiration of Certification: This certification is invalid after 5 years from the date of shipping. Please return the attached registration card to register your SRM.

Storage: The material should be kept in its tightly closed, original bottle and stored in a desiccator over Mg(ClO4)2 at temperatures between 10-30 °C. It should not be exposed to intense sources of radiation, including ultraviolet lamps or sunlight.

Use: A minimum sample weight of 250 mg of the dried material (see Instructions for Drying) is necessary for any certified value in Table 1 to be valid within the stated uncertainty. The bottle should be shaken well before each use, closed tightly <u>immediately</u> after use, and stored as described above.

The statistical analysis of the data was performed by S.B. Schiller and K.R. Eberhardt of the Statistical Engineering Division.

The overall direction and coordination of the analytical chemistry measurements leading to this certificate were performed in the NIST Center for Analytical Chemistry by R. Zeisler.

The technical and support aspects involved in the preparation, certification, and issuance of this Standard Reference Materials by R. Alvarez.

Gaithersburg, MD 20899 October 2, 1989 Stanley D. Rasberry, Chief Office of Standard Reference Materials

(over)

Instructions for Drying: Before weighing, samples of SRM 1566a should be dried to constant weight by one of the following procedures:

1. Reduced-pressure drying at room temperature for 48 hours over $Mg(ClO_4)_2$ in a vacuum desiccator at approximately 1.3 x 10⁴ Pa (100 mm Hg).

2. Vacuum drying at room temperature for 24 hours at a pressure of approximately 30 Pa (0.2 mm Hg) using a cold trap.

3. Freeze drying for 20 hours at a pressure of approximately 3 Pa (0.02 mm Hg).

Source and Preparation of Material: The oysters for this reference material were obtained from a commercial source. They had been shucked, frozen, and packaged in scaled plastic bags. The oyster material was ground, freeze-dried, and powdered at Leon Laboratories, Fort Lauderdale, FL. At NIST, the oyster tissue was jet-milled to pass a 355-µm screen, radiation-sterilized, and bottled.

Homogeneity Assessment: Samples from randomly selected bottles of SRM 1566a were analyzed for homogeneity by x-ray fluorescence and neutron activation methods. In addition, results by other analytical methods were examined for evidence of inhomogeneity. The uncertainties in Table 1 include estimates of inhomogeneity.

Table 1. Certified Concentrations of Constituent Elements

Element ¹	Concentration, ² Wt. Percent	Element ¹	Concentration, ² WL Percent
Calcium ^{d.e,o} Chlorinc ^{g.k.o} Magnesium ^{d.e,k} Phosphorus ^{d.a}	0.196 ± 0.019 0.829 ± 0.014 0.118 ± 0.017 0.623 ± 0.018	Potassium ^{f,k} Sodium ^{d,k} Sulfur ^{f,i}	0.790 ± 0.047 0.417 ± 0.013 0.862 ± 0.019
Element ¹	Concentration, ² µg/g	Element ¹	Concentration, ² #g/g
Aluminum ^{f,k} Arsenic ^{c,k,l} Cadmium ^{b,b,k,l,m} Chromium ^{b,k,l} Cobalt ^{k,l} Cobalt ^{k,l} Copper ^{b,e,b,k,l,m,o} Iodine ^{i,k,l} Iron ^{d,k,o} *Lcad ^b	202.5 ± 12.5 14.0 ± 1.2 4.15 ± 0.38 1.43 ± 0.46 0.57 ± 0.11 66.3 ± 4.3 4.46 ± 0.42 539 ± 15 0.371 ± 0.014	Manganese ^{d,e,k,o} Mercury ^{AJ} Nickel ^{o,h,j,o} Selenium ^{k,j,o} Silver ^{h,k,j} Strontium ^{e,h,o} Uranium ^{i,j,j} Vanadium ^{j,k,j} Zinc ^{d,e,k,lm,o}	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$

* Load was determined by isotope dilution mans spectromenry, inductively coupled plasma, at NIST and at another laboratory.

.2

1. Analytical Methods:

Atomic absorption spectrometry, cold vapor

Atomic absorption spectrometry, electrothermal

Atomic absorption spectrometry, hydride generation

Atomic emission spectrometry, direct current plasma

Atomic emission spectrometry, inductively coupled plasma

Atomic emission spectroscopy, flame

floa chromatography

"Isotope dilution mass spectrometry, inductively coupled plasma Isotope dilution mass spectrometry, resonance ionization "Isotope dilution mass spectrometry, thermal ionization "Neutron activation, instrumental "Neutron activation, radiochemical "Polarography "Spectrophonometry

*X-ray fluorescence spectrometry

2. Based on dry weight. (For drying instructions, please refer to the section of this certificate on Instructions for Drying.)

The certified concentrations are weighted means of results from two or more analytical techniques. The weights for the weighted means were computed according to the iterative procedure of Paule and Mandel [1]. Each uncertainty is obtained from a 95% prediction interval plus an allowance for systematic error among the methods used. The allowance for systematic error is equal to the greatest difference between the weighted mean (certified value) and the component means for the analytical methods used. In the absence of systematic error, the resulting uncertainty limits will cover the concentration of approximately 95% of samples of this SRM having a minimum sample size of 250 mg.

Table 2. Noncertified Concentrations of Constituent Elements

	Concentration,
Element	Percent by Weight
Nimoren (Kieldahl)	(6.81)

Method Reference. Official Methods of Analysis of the Association of Official Analytical Chemists, Arlington, VA, 14th Ed., 1984, p. 16, Nitrogen (Total) in Fertilizers, Kjeldahl Method (Final Action): Method 2.057, Improved Method for Nitrate Free Samples. Mercuric Oxide was used as a catalyst. Samples were dried as described in procedure 2 under "Instructions for Drying".

.2

Element	Concentration, µg/g	Element	Concentration, µg/g
Antimony	(0.01)	Rubidium	(3)
Cerium	(0.4)	Samarium	(0.06)
Cesium	(0.02)	Scandium	(0.06)
Europium	(0.01)	Tantalum	(0.003)
Fluorine	(240)	Terbium	(0.007)
Gold	(0.01)	Thorium	(0.04)
Hafnium	(0.04)	Tin	(3)
Lanthanum	(0.3)		

Note: There is evidence that tip is inhomogeneously distributed in the SRM.

Analysts:

Inorganic Analytical Research Division, National Institute of Standards & Technology.

1. E.S. Beary	17. P.J. Paulsen
2. R.W. Burke	18. P.A. Pella*
3. T.A. Butler	19. K.W. Pratt
4. Z. Chun**	20, T.C. Rains
5. M.S. Epstein	21. T.A. Rush
6. J.D. Fassett	22. D.S. Simons*
7. K. Gilliland-Garrity	23. G.A. Sleater*
8. R. R. Greenberg	24. M.V. Smith
9. K.E. Hehn	25. S.F. Stone
10. L.A. Holland	26. T.M. Sullivan
11. W.F. Koch	27. R.L. Watters, Ju
12. W.R. Kelly	28. L.J. Wood
13. H.M. Kingston	29. W.Z. Yao**
14. A.Marlow*	30. X. Yingkai**
15. J.R. Moody	31. R. Zeisler
16. T.J. Murphy	47.8m 27.4 4.4410448

Gas and Particulate Science Division Guest Scientists

}

Cooperating Analysts & Organizations

Analytical Chemistry Division, National Research Council of Canada, Ottawa, Canada K1A OR6 - S. Berman (Coordinator), V. Boyko, J. McLaren, M. Miedema, S. Willie

Batelle, Pacific Northwest Laboratories, Richland, WA 99352 - R.W. Sanders

Instute "Josef Stefan," Ljubljana, 61111 Yugoslavia, - A.R. Byrne, M. Dermelj, A. Vakselj and J. Smrke

Reference

[1] R.C. Paule and J. Mandel, Consensus Values and Weighting Factors, NBS J. Research 87, 377-385 (1982).

Baker

Baker Environmental, Inc. ATTACHMENT E Ecological Information

E.1 Life History Information

LIFE HISTORY OF THE GREAT BLUE HERON (Ardea herodias)

The great blue heron is the largest and most widely distributed American heron, inhabiting lakes, ponds, rivers, and marshes but is occasionally found in newly-plowed fields and meadows (Bull and Farrand 1977; Eckert 1987). With the exception of the breeding season, this species is mostly solitary in its habits. This heron feeds either by standing motionless in the water waiting for prey, or searching in a stealthy manner with a very slow and careful walk. The primary food item is fish, although frogs, small turtles, crustaceans, mice, voles, shrews, snakes, and ground-nesting birds are also taken. Almost without exception, the great blue heron will shake its bill in the water immediately after swallowing prey, perhaps to wash debris off. Although the digestive fluids of the heron are acidic enough to dissolve bone rapidly, occasionally an undigested pellet of feathers and fur is regurgitated (Eckert 1987).

Courtship occurs soon after the spring migration, with copulation usually occurring on the ground. Colonial nests are placed on the uppermost branches of trees or shrubs. Occasionally a ground nest will be built if it can be placed in a secluded area. Successful nesting areas are usually returned to year after year. Three to four eggs are incubated equally by both sexes for about twenty-eight days (Eckert 1987).

The great blue heron is migratory in the northernmost portion of its range. Lingering birds usually fall prey to severe weather (Bull and Farrand 1977). Southward migration in autumn begins in early October; northward migration in spring begins in March or early April (Eckert 1987).

EXPOSURE PROFILE OF THE GREAT BLUE HERON (Ardea herodias)

Adult great blue heron (*Ardea herodias*) range in weight from 2,204 to 2,576 g (U.S. EPA 1993). A food ingestion rate of 0.18 g/g BW/day and a water ingestion rate of 0.045 g/g BW/day are reported for this species (U.S. EPA 1993). Based on these values a 2,204 g heron will consume 396.7 g food/day and 99.2 g water/day. Fall feeding territory size is reported as 1.5 acres, with summer foraging distances from nesting colonies ranging from 2 to 5 miles (U.S. EPA 1993).

An incidental sediment ingestion rate could not be identified for the great blue heron. Therefore, in order to evaluate this exposure pathway, a model was developed which predicted the amount of sediment which may be entrained in the digestive system of a fish, the bluegill (*Lepomis machrochirus*) and crayfish (*Orconectes* sp.). Fish and crayfish are assumed to be the only food source for the great blue heron in order to complete this derivation.

Bluegills commonly reach a size of 12 ounces (Pflieger 1975). From this, the amount of sediment entrained in fish 12 ounces (340 g) in weight was predicted. A study evaluating the stomach contents of 153 bluegills reported an average content of detritus and sediment to be 9.6 percent of the total diet (Kolehmainen 1974). A daily food ingestion rate of 1.75 percent of the body weight per day has been reported for the bluegill (Kolehmainen 1974). This provides a predicted intake rate of 5.95 g of food per day for a 340 g fish. If a conservative assumption is made that 9.6 percent of the food ingested is entirely sediment, it can be predicted that a fish of this size may contain 0.5712 g of sediment in its digestive system.

For the purpose of this model, it was assumed that the level of sediment contained in the digestive system of a fish remains constant over time. This value (0.5712 g) was divided by the predicted fish body weight (340 g) in order to express sediment entrained in fish digestive systems in units of grams of sediment per gram of fish body weight. This provided a value of 0.00168 g sediment/g body weight. When this value is multiplied by the food ingestion rate of the great blue heron (396.7 g/day), the predicted sediment ingestion rate for the heron via consumption of fish is approximately 0.7 g/day.

As with the bluegill, life history information for the crayfish *Orconectes* sp. was used in predicting the incidental sediment ingestion rate for the great blue heron via consumption of freshwater invertebrates. Adult *O. virilis* weigh from 5 to over 20 g and consume 0.3 to 1 percent of its total body weight per day (Kim 1994; Tack 1941; Vannote 1963). In order to express the food ingestion rate in units of g/day, the highest reported food ingestion rate of 1 percent of the total body weight per day was multiplied by the lowest reported body weight of 5 g to

yield a food ingestion rate of 0.05 g/day. Orconectes spp. detritus ingestion rates range from 10 percent of the total diet per day in young-of-the-year Orconectes immunis (Vannote 1963) to 11 percent of the total diet per day in O. virilis (Tack 1941). For this risk assessment, it will be assumed that these values represent the percentage of sediment in the diet of a crayfish. The food ingestion rate of 0.05 g/day was multiplied by the incidental sediment ingestion rate of 11 percent of the total diet per day to yield an incidental sediment ingestion rate of 0.0055 g/day. For the purpose of this model, it was assumed that the level of sediment contained in the digestive system of crayfish remains constant over time. Therefore, in order to express the amount of sediment entrained in a crayfish's digestive system in units of gram of sediment per gram of crayfish body weight, the sediment ingestion rate of 0.0055 g/day was divided by the lowest adult crayfish body weight of 5 g to yield a sediment ingestion rate of 0.0011 g sediment/g BW of crayfish/day. When this value is multiplied by the food ingestion rate of the great blue heron (396.7 g/day), the predicted incidental sediment ingestion rate for the great blue heron via consumption of crayfish is 0.44 g/day.

[The user of this file should then decide what the percent composition of fish versus crayfish the diet is assumed to be for the particular risk assessment, then apply the percentages to these calculated sediment ingestion rates]

REFERENCES

Bull, J. And J. Farrand, Jr. 1977. The Audubon Society Field Guide to North American Birds, Eastern Region. Alfred A. Knopf, New York.

Kim, P. 1994. Ecological Risk Assessment, Cannelton Industries Site. Roy F. Weston, Inc. Final Report to the U.S. EPA/ERT. Contract No. 68-C4-0022.

Pflieger, W.L. 1975. The Fishes of Missouri. Missouri Dept. Conserv., MO.

Tack, P.I. 1941. "The Life History and Ecology of the Crayfish, Cambarus immunis Hagen." Am. Midl. Nat. 25:420-466.

U.S. EPA. 1993. Wildlife Exposure Factors Handbook, Volume I of II. United States Environmental Protection Agency, Office of Research and Development, Washington, D.C. EPA/600/R-93/187a.

Vannote, R.L. 1963. "Community Productivity and Energy Flow in an Enriched Warm Water Stream." Ph.D. Thesis, Michigan State Univer., E. Lansing. 156pp. In: Momot, W.T., H. Gowing, and P.D. Jones. 1978. "The Dynamics of Crayfish and Their Role in Ecosystems." Am. Midl. Nat. 99:10-35.

LIFE HISTORY INFORMATION FOR GREAT BLUE HERON (Ardea herodias)

Body Weight:	3.0 kg (Newell et al. 1987)
Ingestion Rate:	0.6 kg/day (Newell et al. 1987)
Home Range:	Based on a 10 km radius feeding range, the home range of great blue heron is 30,000 ha (Erwin and Spendelow 1991). This equates to 74,130 acres.
Water Ingestion Rate:	0.12 L/day estimated based on the allometric equation (Water Ingestion Rate = $0.059 \text{ Wt}^{0.67}$, where Wt is the average body weight of the species in kg)
Diet:	Almost all aquatic (Erwin and Spendelow 1991)
Sediment Ingestion Rate	54 g/day (based on 9% of the dietary ingestion rate) calculated based on soil ingestion rates reported for shore birds and Canada gees (Beyer et al. 1991)

LIFE HISTORY OF THE MINK (Mustela vison)

Adult mink (*Mustela vison*) weigh from 520 to 1,730 g (Merritt 1987; U.S. EPA 1993). Home ranges vary from 19 to 1,900 acres (U.S. EPA 1993). The lowest reported body weight of 520 g and the smallest reported home range of 19 acres was assumed for this risk assessment.

Mink are opportunistic carnviores that hunt principally along shorelines and emergent vegetation (U.S. EPA 1993). Seasonal availability and regional preferences govern the primary constituent of the mink's diet. Mammals and crayfish usually result as the most most abundant prey items, but fish, amphibians, and young birds are also taken (Merritt 1987; Linscombe *et al.* 1982; U.S. EPA 1993). A year-round food ingestion rate of 0.22 g/g BW/day has been estimated for both male and female mink (U.S. EPA 1993). In order to express this value in units of g/day, the food ingestion rate was multiplied by the lowest reported body weight (550 g) to yield a food ingestion rate of 121 g/day. The highest reported estimated water ingestion rate of 0.11 g/g BW/day for farm-raised females was used in this risk assessment (U.S. EPA 1993). In order to express this value in units of g/day, this water ingestion rate was multiplied by the lowest reports to express this value in units of g/day, this water ingestion rate was multiplied by the lowest reports to express this value in units of g/day, this water ingestion rate was multiplied by the lowest reports to express this value in units of g/day, this water ingestion rate was multiplied by the lowest reported body weight of 550 g to yield a water ingestion rate of 60.5 g/day (60.5 ml/day).

An incidental soil or sediment ingestion rate was not available from the literature, therefore, a predicted incidental ingestion rate for soil and sediment rate that may be entrained in the digestive system of prey items (fish, aquatic invertebrates, and small mammals) was used for this risk assessment. Consumption of these prey items was assumed to be the primary mechanism by which a carnivorous mammal such as the mink may incidentally ingest soil or sediment. The derivation of these predicted levels of incidental soil and sediment ingestion via consumption of fish, aquatic invertebrates, and small mammals is described below.

Life history information for the bluegill (*Lepomis machrochirus*) was used to predict the amount of sediment that may be ingested by mink via consumption of fish. Adult bluegills range in size from 100 to 230 mm (Pflieger 1975; Smith 1985). In keeping with the conservative approach of this risk assessment, the amount of sediment entrained in the lowest body size of 100 mm in length was predicted. The weight of a 100 mm bluegill was calculated to be 18.11 g based on the following algorithm relating length to weight (Hillman 1982):

 $\log \text{Weight}(g) = -5.374 + 3.316 \log \text{Length}(\text{mm})$

A daily food ingestion rate of 1.75 percent of the body weight per day has been reported for the bluegill (Kolehmainen 1974). This provides a predicted intake rate of 0.32 g of food per day for a 18.11 g fish. A study evaluating the stomach contents of 153 bluegills reported an average content of detritus and sediment to be 9.6 percent of the total diet (Kolehmainen 1974). If a conservative assumption is made that 9.6 percent of the food ingested is entirely sediment, it can be predicted that a fish of this size may contain 0.03 g of sediment in its digestive system.

For the purpose of this model, it was assumed that the level of sediment contained in the digestive system of a fish remains constant over time. This value (0.03 g) was divided by the predicted fish body weight (18.11 g) in order to express sediment entrained in fish digestive systems in units of grams of sediment per gram of fish body weight. This provided a value of 0.0017 g sediment/g body weight. When this value is multiplied by the food ingestion rate of the mink (121 g/day), the predicted sediment ingestion rate for the mink via consumption of fish is 0.2 g/day.

Life history information for the crayfish *Orconectes* sp. was used in predicting the incidental sediment ingestion rate for the mink via consumption of freshwater invertebrates. Adult *O. virilis* weigh from 5 to 20+ g and consume 0.3 to 1 percent of its total body weight per day (Kim 1994; Tack 1941; Vannote 1963). In order to express the food ingestion rate in units of g/day, the highest reported food ingestion rate of 1 percent of the total body weight per day was multiplied by the lowest reported body weight of 5 g to yield a food ingestion rate of 0.05 g/day.

Orconectes spp. detritus ingestion rates range from 10 percent of the total diet per day in young-of-the-year Orconectes immunis (Vannote 1963) to 11 percent of the total diet per day in O. virilis (Tack 1941). For this risk assessment, it will be assumed that these values represent the percentage of sediment in the diet of a crayfish. The food ingestion rate of 0.05 g/day was multiplied by the incidental sediment ingestion rate of 11 percent of the total diet per day to yield an incidental sediment ingestion rate of 0.0055 g/day.

For the purpose of this model, it was assumed that the level of sediment contained in the digestive system of crayfish remains constant over time. Therefore, in order to express the amount of sediment entrained in a crayfish's digestive system in units of gram of sediment per gram of crayfish body weight, the sediment ingestion rate of 0.0055 g/day was divided by the lowest adult crayfish body weight of 5 g to yield a sediment ingestion rate of 0.0011 g sediment/g BW of crayfish. When this value is multiplied by the food ingestion rate of the mink (121 g/day), the predicted incidental sediment ingestion rate for the mink via consumption of crayfish is 0.133 g/day.

Life history information for the white-footed mouse was used in predicting the incidental soil ingestion rate for the mink via consumption of small mammals. A soil ingestion rate of less than 2 percent of the total diet has been reported for the white-footed mouse (Beyer *et al.* 1994). A conservative soil ingestion rate of 1.9 percent of the total diet was assumed for this risk assessment. In order to express this value in units of g/day, this soil ingestion rate was multiplied by the food ingestion rate of the white footed mouse (4.50 g/day; U.S. EPA 1993) to yield a soil ingestion rate of 0.0855 g/day.

For this risk assessment, it was assumed that the level of soil contained in the digestive system of a white-footed mouse remains constant over time. In order to express this value in units of g soil/g mouse BW, this value of 0.0855 g was divided by the lowest reported body weight of the white-footed mouse (13 g; Merritt 1987) to yield a value of 0.0065 g soil/g BW. When this value is multiplied by the food ingestion rate for the mink (121 g/day; U.S. EPA 1993), the predicted incidental soil ingestion rate for the mink via consumption of white-footed mice is 0.795 g/day.

Assuming that fish, crayfish, and mice comprise equal proportions of the mink's diet, the incidental soil and sediment ingestion rate via consumption of these prey items is approximately 0.4 g/day.

REFERENCES

Beyer, W.N., E.E. Conner, and S. Gerould. 1994. "Estimates of Soil Ingestion by Wildlife." J. Wildl. Manage., 58(2):375-382.

Hillman, W.P. 1982. "Structure and Dynamics of Unique Bluegill Populations." Masters thesis. University of Missouri, Columbia, MO.

Kim, P. 1994. Ecological Risk Assessment, Cannelton Industries Site. Roy F. Weston, Inc. Final Report to the U.S. EPA/ERT. Contract No. 68-C4-0022.

Kolehmainen, S.E. 1974. Daily Feeding Rates of Bluegill (Lepomis machrochirus) Determined by a Refined Radioisotope Method. J. Fish. Res. Bd. Can., 31:67-74.

Linscombe, G., N. Kinler, and R.J. Aulerich. 1982. Mink. In: Chapman, J.A., G.A. Feldhamer, eds. Wild Mammals of North America. Baltimore, MD: John Hopkins University Press; pp.329-643.

Merritt, J.F. 1987. "Guide to the Mammals of Pennsylvania." Univ. Pittsburgh Press, PA. 408p.

Pflieger, W.L. 1975. "The Fishes of Missouri." Missouri Dept. Conserv.

Smith, C.L. 1985. "The Inland Fishes of New York State." New York State Dept. Environ. Conserv.

Tack, P.I. 1941. "The Life History and Ecology of the Crayfish, *Cambarus immunis* Hagen. Am. Midl. Nat. 25:420-466.

U.S. EPA. 1993. "Wildlife Exposure Factors Handbook, Volume I of II." United States Environmental Protection Agency, Office of Research and Development, Washington, D.C. EPA/600/R-93/187a.

Vannote, R.L. 1963. "Community Productivity and Energy Flow in an Enriched Warm Water Stream." Ph.D. Thesis, Michigan State Univer., E. Lansing. 156pp. In: Momot, W.T., H. Gowing, and P.D. Jones. 1978. "The Dynamics of

E.2 Toxicity Benchmarks

TOXICITY BENCHMARK VALUES

<u>Copper</u>

One study (OHMD, 1987) conducted showed that an oral dose of 100 mg/kg/day fed to a dog caused death. For this report, a NOAEL value of 1 mg/kg/day (100mg/kg/day divided by 10) was used in the mink model.

A dose of 350 mg/kg (61.3 mg/kg/day) caused a significant decrease in the growth and consumption by chickens (Smith, 1969). Another study on chickens, found a dose of 326 mg/kg (23.5 mg/kg/day) caused respiratory problems (Hatch, 1978). Assuming that respiratory problems are acute effects, a NOAEL (23.5 mg/kg/day divided by 100) of 0.235 mg/kg/day was developed for the heron model (Hatch, 1978).

<u>Lead</u>

A study conducted on mice determined that 1.5 mg/kg/day of lead caused a reduction in success of implanted ova (Clark, 1979). Another study (Clark, 1979) found that 2.2 mg/kg/day of lead produced a reduction in the frequency of pregnancy when the dose was administered for 3 to 5 days. For this report, a value of 0.15 mg/kg/day was used as a NOAEL (1.5 mg/kg/day divided by 10) was used in the mink model.

In a single dose study (Lawler et al., 1991), the gastric motility of adult male and female red-tailed hawks (*Buteo jamaicensis*) fed 0.82 and 1.64 mg/kg BW/day of lead was evaluated through the use of surgically implanted tranducers for a period of 3 weeks. Neither concentration had any effect on the gastric contractions of egestion of undigested material pellets.

Another study conducted on red-tailed hawks (Reiser and Temple, 1981) found that 3 mg/kg/day of lead caused the clinical symptoms of lead poisoning. A similar study (Osborne et al., 1983) found that 3 mg/kg/day fed to starlings caused a reduction in muscle condition and altered their feeding activity. For this assessment, a value of 0.3 mg/kg/day NOAEL developed from red-tailed hawk and sterling studies was used in the heron model.

<u>Reference</u>

Clark, D.R., Jr. 1979. "Lead Concentrations: Bats vs. Terrestrial Mammals Collected near a Major Highway." Environ. Sci. Tech. 13:338-341.

Hatch, R.C. 1978. "Poisons Causing Respiratory Insufficiency." In: Veterinary Pharmacology and <u>Therapeutics.</u> L.M. Jones, N.H. Booth, and L.E. McDonald (eds.) Ames Press, Iowa State University. Ames, Iowa.

Lawler, E.M., G.E. Duke, and P.T. Redig. 1991. "Effect of sublethal lead exposure on gastric motility of redtailed hawks." <u>Arch. Environ. Contam. Toxicol</u>. 21:78-83.

OHMD. Oil and Hazard Materials Technical Assistance Data Systems Database. OHMTAD. 1987. Developed by the Office of Water and Waste Management of the USEPA.

Osborne, D., W.J. Every, and K.R. Bull. 1983. "The Toxicity of Trialkyl Lead Compounds to Birds." Environmental Pollution (Series A). 31:261-275.

Reiser, and Temple, 1981

Smith, M.S. 1969. "Responses of chicks to dietary supplements of copper sulphate." <u>British Poultry Science</u> 10:97-108.

E.3 Receptor Models

Stone Bay - Study Area
Aquatic Receptor Models
MCB, Camp Lejeune

.

	Sediment	Sediment	Surface Water	Surface Water	Tissue	Tissue	Species
Ecological Contaminant	Mean	Maximum	Mean	Maximum	Mean	Maximum	with the
of Concern	(mg/kg)	(mg/kg)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	Maxi. Concentration
Copper	9.23	16.6	0.000996	0.00153	35.98	50.3	oyster
Lead	7.66	20.7	0.0005278	0.000926	2,57	4.8	mussel

Stone Bay Aquatic Assessment MCB, Camp Lejeune

Great Blue Heron

Body Weight	3.0000000 kg
Food Ingestion Rate	0.6000000 kg/day
Water Ingestion Rate	0.1200000 L/day
Sediment Ingestion Rate	0.0540000 kg/day

Maximum Concentrations - Conservative Model

	Sediment	Water	Fish					
	Concentration	Concentration	Concentration	Dose	NOAEL	LOAEL	NOAEL	LOAEL
ECOC	(mg/kg)	(mg/L)	(mg/kg)	(mg/kg/day)	(mg/kg/day)	(mg/kg/day)	HQ _n	HQ
Copper	16.6	0.00153	50.3	10.3588612	0.235	2.35	4.41E+01	4.41E+00
Lead	20.7	0.000926	4.8	1.33263704	0.3	3	4.44E+00	4.44E-01

NA - Not Available

 HQ_n - Hazard Quotient based on the NOAEL

 $\mathrm{HQ}_{\mathrm{l}}\text{-}\mathrm{Hazard}$ Quotient based on the LOAEL

NOAEL - No Observed Adverse Effects Level LOAEL - Lowest Observed Adverse Effects Level Stone Bay Aquatic Assessment MCB, Camp Lejeune

Great Blue Heron

Body Weight	3.0000000 kg
Food Ingestion Rate	0.6000000 kg/day
Water Ingestion Rate	0.1200000 L/day
Sediment Ingestion Rate	0.0540000 kg/day

Mean Concentrations - Less Conservative Model

	Sediment	Water	Fish					
	Concentration	Concentration	Concentration	Dose	NOAEL	LOAEL	NOAEL	LOAEL
ECOC	(mg/kg)	(mg/L)	(mg/kg)	(mg/kg/day)	(mg/kg/day)	(mg/kg/day)	HQ _n	HQ
Copper	9.23	0.000996	35.98	7.36217984	0.235	2.35	3.13E+01	3.13E+00
Lead	7.66	0.0005278	2.57	0.651901112	0.3	3	2.17E+00	2.17E-01

NA - Not Available

HQ_n - Hazard Quotient based on the NOAEL

NOAEL - No Observed Adverse Effects Level

LOAEL - Lowest Observed Adverse Effects Level

HQ1- Hazard Quotient based on the LOAEL

Stone Bay Aquatic Assessment MCB, Camp Lejeune

Mink

Body Weight	0.5200000 kg
Food Ingestion Rate	0.1210000 kg/day
Water Ingestion Rate	0.0605000 L/day
Soil Ingestion Rate	0.0003330 kg/day

Maximum Concentrations - Conservative Model

[Soil	Water	Vegetation	Invetebrate					
	Concentration	Concentration	Concentration	Concentration	Dose	NOAEL	LOAEL	NOAEL	LOAEL
ECOC	(mg/kg)	(mg/L)	(mg/kg)	(mg/kg)	(mg/kg/day)	(mg/kg/day)	(mg/kg/day)	HQn	HQ
Copper	16.6	0.00153	6.64	50.3	13.2603084	1	10	1.33E+01	1.33E+00
Lead	20.7	0.000926	8.28	4.8	3.05697908	0.15	1.5	2.04E+01	2.04E+00

NA - Not Available

 HQ_n - Hazard Quotient based on the NOAEL HQ_1 - Hazard Quotient based on the LOAEL NOAEL - No Observed Adverse Effects Level

-

LOAEL - Lowest Observed Adverse Effects Level

Stone Bay Aquatic Assessment MCB, Camp Lejeune

Mink

Body Weight	0.5200000 kg
Food Ingestion Rate	0.1210000 kg/day
Water Ingestion Rate	0.0605000 L/day
Soil Ingestion Rate	0.0003330 kg/day

Mean Concentrations - Less Conservative Model

	Soil	Water	Vegetation	Invertebrate					
~ 	Concentration	Concentration	Concentration	Concentration	Dose	NOAEL	LOAEL	NOAEL	LOAEL
ECOC	(mg/kg)	(mg/L)	(mg/kg)	(mg/kg)	(mg/kg/day)	(mg/kg/day)	(mg/kg/day)	HQn	HQ
Copper	9.23	0.000996	3.692	35.98	9.23739586	1	10		9.24E-01
Lead	7.66	0.0005278	3.064	2.57	1.31595522	0.15	1.5	8.77E+00	

NA - Not Available

HQ_n-Hazard Quotient based on the NOAEL HQ₁-Hazard Quotient based on the LOAEL NOAEL - No Observed Adverse Effects Level LOAEL - Lowest Observed Adverse Effects Level

Stone Bay - Reference Areas
Aquatic Receptor Models
MCB, Camp Lejeune

	Sediment	Sediment	Surface Water	Surface Water	Tissue	Tissue	Species	
Ecological Contaminant	Mean	Maximum	Mean	Maximum	Mean	Maximum	with the	
of Concern	(mg/kg)	(mg/kg)	(mg/L)	(mg/L)	(mg/kg)	(mg/kg)	Maxi. Concentration	
Copper	4.6	4.6			48.2	88.2	oyster	
Lead	7.55	10.5			1.6	2	oyster	

· · •

Stone Bay Aquatic Assessment - Reference Areas MCB, Camp Lejeune

Mink

Body Weight	0.5200000 kg
Food Ingestion Rate	0.1210000 kg/day
Water Ingestion Rate	0.0605000 L/day
Soil Ingestion Rate	0.0003330 kg/day

Maximum Concentrations - Conservative Model

	Soil	Water	Vegetation	Invetebrate					
	Concentration	Concentration	Concentration	Concentration	Dose	NOAEL	LOAEL	NOAEL	LOAEL
ECOC	(mg/kg)	(mg/L)	(mg/kg)	(mg/kg)	(mg/kg/day)	(mg/kg/day)	(mg/kg/day)	HQ _n	HQ
Copper	4.6	0	1.84	88.2	20.9545612	1	10	2.10E+01	2.10E+00
Lead	10.5	0	4.2	2	1.44941635	0.15	1.5	9.66E+00	9.66E-01

NA - Not Available

HQ_n - Hazard Quotient based on the NOAEL

HQ₁-Hazard Quotient based on the LOAEL

NOAEL - No Observed Adverse Effects Level LOAEL - Lowest Observed Adverse Effects Level Stone Bay Aquatic Assessment - Reference Areas MCB, Camp Lejeune

Mink

Body Weight	0.5200000 kg
Food Ingestion Rate	0.1210000 kg/day
Water Ingestion Rate	0.0605000 L/day
Soil Ingestion Rate	0.0003330 kg/day

Mean Concentrations - Less Conservative Model

	Soil	Water	Vegetation	Invertebrate					
	Concentration	Concentration	Concentration	Concentration	Dose	NOAEL	LOAEL	NOAEL	LOAEL
ECOC	(mg/kg)	(mg/L)	(mg/kg)	(mg/kg)	(mg/kg/day)	(mg/kg/day)	(mg/kg/day)	HQ _n	HQ ₁
Copper	4.6	0	1.84	48.2	11.6468688	1	10		1.16E+00
Lead	7.55	0	3.02	1.6	1.07987337	0.15	1.5	7.20E+00	7.20E-01

NA - Not Available

HQ_n - Hazard Quotient based on the NOAEL

HQ1- Hazard Quotient based on the LOAEL

NOAEL - No Observed Adverse Effects Level

LOAEL - Lowest Observed Adverse Effects Level