04.09- 10/23/96-02132

FINAL

PROPOSED REMEDIAL ACTION PLAN OPERABLE UNIT NO. 12 (SITE 3)

MARINE CORPS BASE CAMP LEJEUNE, NORTH CAROLINA

CONTRACT TASK ORDER 0274

OCTOBER 23, 1996

Prepared For:

DEPARTMENT OF THE NAVY ATLANTIC DIVISION NAVAL FACILITIES ENGINEERING COMMAND Norfolk, Virginia

Under:

LANTDIV CLEAN Program Contract N62470-89-D-4814

Prepared by:

BAKER ENVIRONMENTAL, INC. Coraopolis, Pennsylvania

TABLE OF CONTENTS

1 < A

LIST OF ACRONYMS AND ABBREVIATIONS iv
INTRODUCTION 1
BACKGROUND INFORMATION 1
Description of MCB Camp Leieune
Site Description and History
Previous Investigations
Site Inspection, 1991
Remedial Investigation, 1994-95 4
SUMMARY OF SITE RISKS 5
Human Health Risk Assessment 5
Ecological Risk Assessment 5
SCOPE AND ROLE OF ACTION 6
SUMMARY OF ALTERNATIVES 6
Summary of Soil Alternatives 7
Soil RAA No. 1: No Action
Soil RAA No. 2: Land Use Restrictions
Soil RAA No. 3: Source Removal and Off Site Landfill Disposal
Soil RAA No. 4: Source Removal and Off Site Incineration
Soil RAA No. 5: Source Removal and Biological Treatment
Summary of Groundwater Alternatives
Groundwater RAA No. 1: No Action
Groundwater RAA No. 2: Land Use Restrictions, Aquifer Use Restrictions,
and Monitoring9
Groundwater RAA No. 3: Extraction and On Site Carbon Adsorption
Treatment
EVALUATION OF ALTERNATIVES 10
Evaluation of Soil Alternatives 10
Overall Protection of Human Health and the Environment
Compliance with ARARs/TBCs
Long-Term Effectiveness and Permanence
Reduction of Toxicity, Mobility, or Volume Through Treatment
Short-Term Effectiveness 12
Implementability 12
Cost
Evaluation of Groundwater Alternatives 13
Overall Protection of Human Health and the Environment
Compliance with ARARs/TBCs 13
Long-Term Effectiveness and Permanence

3

TABLE OF CONTENTS (Continued)

Page

Reduction of Toxicity, Mobility, or Volume Through Treatment		. 14
Short-Term Effectiveness		. 14
Implementability	• • • • •	. 15
Cost	• • • • •	. 15
THE PREFERRED ALTERNATIVES		. 15
Soil RAA No. 5 - Source Removal and Biological Treatment		. 16
Groundwater RAA No. 2 - Land Use Restrictions, Aquifer Use Restrictions,		
and Monitoring		. 16
COMMUNITY PARTICIPATION		. 18
Public Comment Period		. 18
Information Repositories	• • • • •	. 19
IF YOU HAVE ANY QUESTIONS ABOUT OU NO. 12 (SITE 3)		. 20
MAILING LIST		. 21

LIST OF TABLES

1	Summary of	the Analytical	Results for Soil,	, Site Ins	pection, 1991

2 Summary of the Analytical Results for Groundwater, Site Inspection, 1991

3 Soil Sampling Summary, Remedial Investigation, 1994-95

4 Groundwater Sampling Summary, Remedial Investigation, 1994-95

- 5 Summary of the Analytical Results for Surface Soil, Remedial Investigation, 1994-95
- 6 Summary of the Analytical Results for Subsurface Soil, Remedial Investigation, 1994-95
- 7 Summary of the Analytical Results for Groundwater, Remedial Investigation, 1994-95
- 8 Contaminants of Potential Concern (COPCs) Evaluated During the Human Health Risk Assessment
- 9 Summary of Human Health Risks
- 10 Contaminants of Potential Concern (COPCs) Evaluated During the Ecological Risk Assessment
- 11 Glossary of Evaluation Criteria

LIST OF FIGURES

- 1 Operable Unit No. 12 (Site 3), Marine Corps Base, Camp Lejeune
- 2 Site Map, Site 3 Old Creosote Plant
- 3 Sampling Locations, Site Inspection, 1991
- 4 Soil Sampling Locations, Remedial Investigation, 1994-95 (Northern Area)
- 5 Soil Sampling Locations, Remedial Investigation, 1994-95 (Treatment and Concrete Pad Areas)
- 6 Soil Sampling Locations, Remedial Investigation, 1994-95 (Rail Spur Area)
- 7 Groundwater Sampling Locations, Remedial Investigation, 1994-95
- 8 Areas of Concern

LIST OF ACRONYMS AND ABBREVIATIONS

ARAR	applicable or relevant and appropriate requirement
Baker	Baker Environmental, Inc.
bgs	below ground surface
CERCLA COPC CP	Comprehensive Environmental Response, Compensation and Liability Act contaminant of potential concern Concrete Pad Area
DoN	Department of the Navy
DW	deep well
ELISA	enzyme linked immunosorbent assay
FFA	Federal Facilities Agreement
FS	Feasibility Study
н	hazard index
ICR	incremental lifetime cancer risk
IW	intermediate well
μg/L	microgram per liter
μg/kg	microgram per kilogram
MCB	Marine Corps Base
MCL	Maximum Contaminant Level
MW	monitoring well
NA	Northern Area
NC DEHNR	North Carolina Department of Environment, Health, and Natural Resources
NCP	National Oil and Hazardous Substances Pollution Contingency Plan
NCWQS	North Carolina Water Quality Standards
ND	non detect
NPW	net present worth
O&M	operation and maintenance
OU	Operable Unit
PAH	polynuclear aromatic hydrocarbon
POL	petroleum, oil, and lubricant
ppb	parts per billion
ppm	parts per million
PRAP	Proposed Remedial Action Plan
psi	pounds per square inch
QI	quotient index

LIST OF ACRONYMS AND ABBREVIATIONS (Continued)

v

RA	risk assessment
RAA	remedial action alternative
RCRA	Resource Conservation and Recovery Act
RI	Remedial Investigation
ROD	Record of Decision
RS	Rail Spur Area
SB	soil boring
SD	sediment
SSSV	surface soil screening value
SVOC	semivolatile organic compound
ТА	Treatment Area
TAL	target analyte list
TBC	to be considered criteria
TCL	target compound list
USEPA	United States Environmental Protection Agency
VOC	volatile organic compound

()) 40

INTRODUCTION

This Proposed Remedial Action Plan (PRAP) is issued to describe the Marine Corps Base (MCB), Camp Lejeune's and the Department of the Navy's (DoN's) preferred remedial action plan for Operable Unit (OU) No. 12 (Site 3) at MCB, Camp Lejeune.

MCB, Camp Lejeune and the DoN are issuing this PRAP as part of the public participation responsibility under Section 117(a) of the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA), and the Federal Facilities Agreement (FFA) between MCB, Camp Lejeune, the DoN, the United States Environmental Protection Agency (USEPA) Region IV, and the North Carolina Department of Environment, Health, and Natural Resources (NC DEHNR). The purpose of this PRAP is to: identify the preferred remedial action alternatives for OU No. 12 (Site 3) and explain the rationale for the preferences; solicit public review of the alternatives; and provide information on how the public can be involved in the remedial action selection process.

This document summarizes information that can be found in greater detail in the Remedial Investigation (RI) and Feasibility Study (FS) Reports prepared for OU No. 12 (Site 3), and other documents referenced in the RI and FS Reports. These documents, which will be the basis for the selection of a remedial action plan at OU No. 12, are contained within an administrative record file. The administrative record file is available for public review at the MCB, Camp Lejeune Installation Restoration Division Office (Building 67, Room 238) and at the Onslow County Library in Jacksonville, North Carolina. The DoN encourages the public to review the administrative record file in order to gain a more comprehensive understanding of OU No. 12.

The public is also encouraged to comment on information contained within the administrative record file and this PRAP. Public comments will be accepted by the DoN, USEPA Region IV, and NC DEHNR representatives listed at the end of this document. The public is encouraged to submit comments on this PRAP since the comments can influence the DoN's, USEPA's and State's preference. The 30-day public comment period will begin on November 6, 1996 and end on December 6, 1996. The DoN, with the assistance of the USEPA and the NC DEHNR, may modify the preferred alternative or select another remedial action based on new information or comments received from the public.

MCB, Camp Lejeune and the DoN, with the assistance of USEPA Region IV and the NC DEHNR, will select a final remedy for OU No. 12 only after the public comment period has ended and the information submitted during this time has been reviewed and considered. A Record of Decision (ROD) stating the selected remedial action plan for OU No. 12 will be prepared based upon the results of the RI, the PRAP, and the public comment period. The Final ROD may recommend a different remedial action than is presented in this PRAP depending upon public comments and any new information that may become available.

BACKGROUND INFORMATION

This section presents the following background information: a description of MCB, Camp Lejeune, a description of Site 3 and its history, and a summary of previous investigations conducted at Site 3.

Description of MCB, Camp Lejeune

Located in Onslow County, North Carolina, MCB, Camp Lejeune is a training base for the United States Marine Corps. The Base covers approximately 236 square miles and includes 14 miles of coastline. MCB, Camp Lejeune is bounded to the southeast by the Atlantic Ocean, to the northeast by State Route 24, and to the west by U.S. Route 17. The town of Jacksonville, North Carolina is located north of the Base.

OU No. 12 is one of 17 operable units located within MCB, Camp Lejeune. Operable units were developed at the Base to combine one or more individual sites that share a common element. OU No. 12 contains only one site, Site 3, which is otherwise known as the Old Creosote Plant. Figure 1 depicts the location of OU No. 12 (Site 3) within MCB, Camp Lejeune.

Site Description and History

Figure 2 presents a map of OU No. 12 (Site 3). Located within the Mainside Supply and Storage areas at MCB, Camp Lejeune, Site 3 encompasses an area of approximately five acres and is generally flat and unpaved. Open Storage Lots 201 and 203 (i.e., Site 6) are located nearby along Holcomb Boulevard approximately 1-1/2 miles from Site 3. However, Site 3 itself is not currently used for open storage.

As shown in Figure 2, the site is intersected by two roadways: a dirt path that runs north-south and forms a loop in the southern portion of the site, and a gravel road that runs east-west and leads directly to Holcomb Boulevard. Access to the site via these roadways is currently unrestricted. In addition, the Camp Lejeune Railroad line runs parallel to the site's western edge and intersects an old railroad spur line at the site's southern extreme. The intersection of these two lines creates a spike formation that points south. Wooded areas lie north and east of the site.

The old creosote plant reportedly operated from 1951 to 1952 to supply treated lumber during construction of the Base railroad. Reportedly, an on site sawmill, located in the northern portion of the site, was used to trim logs into railroad ties. The ties were then treated with hot creosote in pressure cylinder chambers. Although the exact treatment procedures that were used are not known, records show that preservatives (i.e., creosote) were stored for reuse in a railroad tank car.

In typical pressure treatment processes, wood ties are placed inside cylindrical chambers which are filled with wood-treating preservatives. Then, hydrostatic or pneumatic pressures, ranging from 50 to 200 pounds per square inch (psi), are applied within the treatment chamber until the wood absorbs the desired amount of preservative. When the treatment process is complete, a pump removes the excess preservative from the chamber and sends it to a storage vessel for reuse. Excess preservative is then removed from the wood by applying a vacuum, or by allowing the wood to drip dry. In the past, treated wood lay in open areas for several days, allowing preservative to drip. Today, treated wood is typically placed on lined and covered drip pads to collect excess preservative.

The main treatment area at Site 3 was most likely located within and immediately surrounding the dirt path loop in the southern portion of the site. This area contains an abandoned chimney that was probably associated with creosote heating/thinning activities. (Creosote is heated and mixed with fuel oil to create a less viscous consistency.) The 240 foot long concrete pad encircled by the dirt path loop was probably used as a drip track for pressure cylinder chambers or treated wood ties. However, the concrete pad does not contain visual evidence of contamination. South of the pad,

evidence of rail lines was observed indicating that a railroad connection may have been located in this area. The railroad connection may have transported creosote or ties to and from the treatment area. The portable steel bridge identified in Figure 2 is not associated with the former creosote plant. It was more recently stationed in the area by Base personnel.

Several concrete pads, which may also be remnants of the former creosote plant, are scattered throughout the northern and southern portions of Site 3. However, these pads do not contain visual evidence of contamination. In addition, a small trash pile containing palettes and metal debris is located in the northern portion of Site 3. However, this trash pile does not appear to have been associated with the former creosote plant.

Previous Investigations

Previous investigations conducted at Site 3 include an Initial Assessment Study (1983), a Site Inspection (1991), and a Remedial Investigation (1994-95). The Initial Assessment Study identified the presence of the site (Water and Air Research, Inc., 1983). The following paragraphs briefly describe the Site Inspection and the RI; more detailed information is located in the Site Inspection Report (Halliburton/NUS, 1991) and the Remedial Investigation Report (Baker, 1996).

Site Inspection, 1991

In June 1991, Halliburton/NUS conducted a Site Inspection that included soil, groundwater, and sediment investigations. Figure 3 identifies the sampling locations associated with these investigations.

During the soil investigation, 7 surface soil samples were collected from 0 to 2 feet below ground surface (bgs), and 7 subsurface soil samples were collected from 3 to 17 feet bgs. All soil samples were analyzed for target compound list (TCL) semivolatile organic compounds (SVOCs). Table 1 presents the results of soil sample analyses. The results indicated that surficial soil samples from locations 03-SB04 and 03-MW02 (zero to two feet bgs) contained polynuclear aromatic hydrocarbons (PAHs). These PAHs were detected at concentrations ranging from 260 microgram per kilogram (μ g/kg) for benzo(g,h,i)perylene to 2,200 μ g/kg for benzo(b)fluoranthene. Several PAHs, including chrysene, benzo(k)fluoranthene, benzo(a)pyrene, and indeno(1,2,3-cd)pyrene, were detected in the surficial soil at concentrations exceeding 1,000 μ g/kg. PAHs were not detected in the shallow subsurface soil samples collected from three to five feet bgs. However, a deep subsurface soil sample, several PAHs, including acenaphthene, fluoranthene, fluorene, naphthalene, and phenanthrene, were detected at concentrations exceeding 35,000 μ g/kg; dibenzofuran was detected at 35,000 μ g/kg. Based on the sample depth and sampling logs, this deep subsurface soil sample may have been collected from the saturated zone.

During the groundwater investigation, three shallow monitoring wells were installed, and three samples were collected from these wells. All of the groundwater samples were analyzed for full TCL SVOCs. Table 2 presents the results of groundwater sample analyses. Of the three groundwater samples collected, only the sample from well 03-MW02 contained SVOCs. Several PAHs, including acenaphthene, 2-methylnaphthalene, naphthalene, and phenanthrene, were detected at concentrations exceeding 1,000 microgram per liter (μ g/L). Other detected PAHs included anthracene (260 μ g/L), chrysene (96 μ g/L), fluoranthene (640 μ g/L), fluorene (890 μ g/L), and pyrene (460 μ g/L). In addition, dibenzofuran was detected at a concentration of 1,100 μ g/L.

During the sediment investigation, two sediment samples were collected and analyzed for TCL SVOCs. The only SVOC detected was bis(2-ethylhexyl)phthalate. It was detected at a concentration of 750 μ g/kg in sample 03-SD01. However, this constituent is a common laboratory contaminant so its presence is most likely not site-related.

Remedial Investigation, 1994-95

From 1994 through 1995, Baker Environmental, Inc. (Baker) conducted field activities for an RI at Site 3. These field activities, which included soil and groundwater investigations, were conducted in three phases. Phase 1, conducted in September 1994, consisted of a surface soil investigation using enzyme linked immunosorbent assay (ELISA) field screening (i.e., surface soil samples were collected and immediately analyzed for PAHs in the field using an ELISA field test kit). A total of 84 surface soil samples were collected and analyzed in the field. Thirty-seven of the 84 samples were sent to a laboratory for confirmatory analyses. The results of the Phase 1 surface soil investigation assisted in locating soil borings and monitoring wells at Site 3 during Phases 2 and 3 of the RI. Phase 2, conducted from October through December 1994, included surface soil, subsurface soil, and groundwater investigations. During this second phase, five shallow monitoring wells and one intermediate monitoring well (i.e., a well screened at the top of the Castle Hayne aquifer) were installed. Phase 3, conducted in June 1995, included surface soil, subsurface soil, and groundwater investigations. During this third phase, five additional shallow monitoring wells, one additional intermediate monitoring, and one deep monitoring well (i.e., a well screened in the middle of the Castle Hayne aquifer) were installed. In addition to these three RI phases, monitoring well 03-MW02DW was resampled a third time in January 1996.

Figures 4, 5, and 6 identify the soil sampling locations associated with the RI. Figure 4 identifies the sampling locations in the site's northern area (NA), Figure 5 identifies the sampling locations in the treatment area (TA)/concrete pad area (CP), and Figure 6 identifies the sampling locations in the railroad spur area (RS). Figure 7 identifies the groundwater sampling locations associated with the RI. In addition, Tables 3 and 4 present soil and groundwater sampling summaries, respectively.

Tables 5, 6, and 7 summarize the analytical results from the surface soil, subsurface soil, and groundwater investigations associated with the RI. Table 5 summarizes the surface soil results, Table 6 summarizes the subsurface soil results, and Table 7 summarizes the groundwater results. These tables present concentration ranges for positively detected chemical constituents, and a comparison of constituent concentrations to relevant comparison criteria (i.e., federal, state, and/or local standards; background concentrations; or risk-based concentrations).

As the analytical results indicate, the most frequently detected organic contaminants were PAHs, which exhibited the highest concentrations in both soil and groundwater. Because creosote is made up of PAH compounds, the PAHs detected at Site 3 are believed to be associated with operations at the former creosote plant. The highest PAH concentrations in soil occurred in the treatment area of the site (i.e., the area encircled by the dirt path loop). Fuel constituents, such as ethylbenzene and xylene, were also detected in surface and subsurface soil at the former treatment area.

In the shallow aquifer, benzene was detected above federal and/or state standards in the central portion of the treatment area during the first and third groundwater sampling rounds, but not during the second round. Several PAHs, including naphthalene, phenanthrene, benzo(a)anthracene, chrysene, and benzo(a)pyrene, were detected above federal and/or state standards during the first sampling round. However, naphthalene was the only PAH that was detected above standards during

the subsequent sampling rounds. Naphthalene was detected in the treatment area and in the rail spur area, but the locations and concentrations of detections were not consistent between the three groundwater sampling rounds.

In the Castle Hayne aquifer, volatile organic compounds (VOCs) (in particular, fuel constituents) and SVOCs (in particular, PAHs and phenols) were detected during all three sampling rounds. Benzene, chloroform, naphthalene, and phenol were the only organic contaminants detected above federal and/or state standards. Benzene was detected above standards in intermediate well 03-MW02IW during the first sampling round. During the second sampling round, benzene, phenol, and naphthalene were detected above standards in deep well 03-MW02DW (located in the treatment area). During the third sampling round, no contaminants were detected above federal and state standards in the Castle Hayne aquifer. When 03-MW02DW was resampled a third time (in January 1996) no contaminants were detected above federal and state standards.

SUMMARY OF SITE RISKS

As part of the RI, a human health risk assessment (RA) and an ecological RA were conducted to determine the potential risks associated with the chemical constituents detected at Site 3. The following subsections briefly summarize the findings of the human health and ecological RAs.

Human Health Risk Assessment

During the human health RA, contaminants of potential concern (COPCs) were selected for surface soil, subsurface soil, and groundwater, as shown in Table 8. The selection of COPCs was based on criteria provided in the USEPA Risk Assessment Guidance for Superfund.

For each COPC, incremental lifetime cancer risk (ICR) values and hazard index (HI) values were calculated to quantify potential carcinogenic and noncarcinogenic risks, respectively. Table 9 presents the ICR and HI values for each environmental medium and receptor evaluated. (Receptors included current military personnel, future child and adult residents, and future construction workers.) Table 9 also presents total ICR and HI values which represent risks to all environmental media combined, for each receptor. A shaded block in Table 9 indicates an ICR value that exceeds the USEPA acceptable limit of 1E-04 for carcinogens, or an HI value that exceeds the USEPA acceptable limit of 1.0 for noncarcinogens. As shown in Table 9, unacceptable risk values were generated for future child and adult residents upon exposure to groundwater.

As shown in Tables 8 and 9, the COPCs and risk values for groundwater were generated under two approaches: 1) the evaluation of Round 2 groundwater data, and 2) the evaluation of Rounds 1, 2, and 3 groundwater data combined (referred to as the "Worst Case" approach). The latter approach is more conservative.

Ecological Risk Assessment

During the ecological RA, COPCs were selected for surface soil as shown in Table 10. Then, the potential ecological impacts to terrestrial receptors were evaluated for each COPC. Several COPCs, including some SVOCs and the inorganic chromium, exceeded surface soil screening values (SSSVs) in open grass areas or along tree lines. However, most of the studies used to develop SSSVs do not take into account the soil type, which may have a large influence on the toxicity of contaminants. In addition, most of the SSSVs are based on one or two studies which limits their

reliability for a wide range of site-specific circumstances. Overall, the SSSVs have a high degree of uncertainty associated with them and are not well-established. Consequently, potential ecological risks based on these SSSVs may not be completely accurate and most likely err on the conservative side. In addition, none of the quotient indices (QIs) generated for terrestrial receptors exceeded the acceptable limit of 1.0, so potential impacts to terrestrial mammals or birds are not expected. No threatened or endangered species are known to inhabit Site 3, and no wetlands were identified.

SCOPE AND ROLE OF ACTION

The scope of the response action for Site 3 includes two environmental media of concern: 1) subsurface soil, and 2) groundwater in the shallow aquifer. Based on the results of the human health and ecological RAs, groundwater was the only environmental medium that generated unacceptable risk values (unacceptable human health risk values were generated under the future residential land use scenario - see Table 9). To address these unacceptable risk values, it was necessary to develop a response action for groundwater. Although subsurface soil did not generate unacceptable risk values, the subsurface soil was suspected to be contributing to the groundwater contamination by leaching PAHs. To address the potential for leaching contaminants, it was necessary to develop a response action for subsurface soil. Thus, two sets of remedial action alternatives were developed - one for subsurface soil and one for groundwater. The complete response action for Site 3 will combine one subsurface soil alternative and one groundwater alternative.

The response action for Site 3 focuses on specific areas of concern located within the subsurface soil and groundwater. Figure 8 depicts these areas of concern. The subsurface soil area of concern was defined based on SVOC concentrations that exceeded federal soil screening levels established to protect groundwater, and the depth of the water table. This area of concern extends from approximately three feet bgs to nine feet bgs (just above the water table). The total volume of soil within this area of concern is approximately 1,340 cubic yards. [Note: The soil area of concern does not include PAH contamination detected below the water table. This is because it is impractical to remediate this saturated soil. Long-term monitoring of groundwater, however, may be proposed to address this contamination.] The groundwater areas of concern were defined based on SVOC concentrations in the shallow aquifer that exceeded federal and/or state standards, or risk-based criteria. As shown in Figure 8, one groundwater area of concern is centered around well 03-MW02, and one groundwater area of concern is centered around well 03-MW06.

In the vicinity of 03-MW02, the subsurface soil area of concern is suspected to be the main source of groundwater contamination. Leaching PAHs from the subsurface soil most likely contaminated the groundwater in this area. Thus, the subsurface soil area of concern is considered a "source area" of contamination. The groundwater area of concern centered around 03-MW06 contains PAH concentrations, but at lower levels than the groundwater area of concern centered around 03-MW02. In the vicinity of 03-MW06, there does not appear to be a source area of contaminated soil.

SUMMARY OF ALTERNATIVES

Based on the response action developed for Site 3, remedial action alternatives (RAAs) were developed and evaluated. Five alternatives were developed for subsurface soil:

- Soil RAA No. 1: No Action
- Soil RAA No. 2: Land Use Restrictions
- Soil RAA No. 3: Source Removal and Off Site Landfill Disposal

- Soil RAA No. 4: Source Removal and Off Site Incineration
- Soil RAA No. 5: Source Removal and Biological Treatment

Three alternatives were developed for groundwater:

- Groundwater RAA No. 1: No Action
- Groundwater RAA No. 2: Land Use Restrictions, Aquifer Use Restrictions, and Monitoring
- Groundwater RAA No. 3: Extraction and On Site Carbon Adsorption Treatment

The following paragraphs describe these soil and groundwater alternatives.

Summary of Soil Alternatives

Soil RAA No. 1: No Action

Capital Cost:	\$0
Annual Operation and Maintenance (O&M) Cost:	\$0
Net Present Worth (NPW):	\$0
Years to Implement:	None

Under Soil RAA No. 1, no remedial actions will be implemented to address the subsurface soil area of concern. The no action alternative is required by the National Oil and Hazardous Substances Pollution Contingency Plan (NCP) as a baseline for comparison with other remedial action alternatives that provide a greater level of response. Under this alternative, contaminants will remain untreated in the subsurface soil. As a result, the lead agency will be required to review the effects of this alternative at least once every five years.

Soil RAA No. 2: Land Use Restrictions

Capital Cost:	\$0
Annual O&M Cost:	\$0
NPW:	\$0
Years to Implement:	Less Than One Month

Under Soil RAA No. 2, land use restrictions will be implemented to limit future development and use of the site, and to avoid future exposure to the subsurface soil contaminants. Because the subsurface soil area of concern will not receive active treatment, the lead agency will be required to review the effects of the alternative at least once every five years.

Soil RAA No. 3: Source Removal and Off Site Landfill Disposal

Capital Cost:	\$920,000
Annual O&M Cost:	\$0
NPW:	\$920,000
Years to Implement:	Less Than One Month

Under Soil RAA No. 3, the subsurface soil area of concern, which is considered a source of groundwater contamination at Site 3, will be excavated to a depth of nine feet bgs. Confirmatory soil samples will be collected from the excavation area to ensure that contaminated soil above the

water table has been removed to acceptable limits. The excavated soil will be sent off site to a Resource Conservation and Recovery Act (RCRA) permitted Subtitle C facility for disposal. Finally, the excavation area will be backfilled with clean fill from an on Base borrow pit. In addition to source removal and landfill disposal, Soil RAA No. 3 includes land use restrictions. Although the subsurface soil area of concern will be removed, a 5-year review by the lead agency may still be required for contaminated groundwater remaining at the site.

Soil RAA No. 4: Source Removal and Off Site Incineration

Capital Cost:	\$3,150,000
Annual O&M Cost:	\$0
NPW:	\$3,150,000
Years to Implement:	Less Than One Month

Under Soil RAA No. 4, the subsurface soil area of concern will be excavated to a depth of nine feet bgs. Confirmatory soil samples will be collected from the excavation area to ensure that contaminated soil above the water table has been removed to acceptable limits. The excavated soil will be sent off site for thermal treatment at a permitted incineration facility. Finally, the excavation area will be backfilled with clean fill from an on Base borrow pit. In addition to source removal and incineration, Soil RAA No. 4 includes land use restrictions. Although the subsurface soil area of concern will be removed, a 5-year review by the lead agency may still be required for contaminated groundwater remaining at the site.

Soil RAA No. 5: Source Removal and Biological Treatment

Capital Cost:	\$362,000
Annual O&M Cost:	\$35,000
NPW:	\$514,000
Years to Implement:	Assumed to be 5 years

Under Soil RAA No. 5, the subsurface soil area of concern will be excavated to a depth of nine feet bgs. Confirmatory soil samples will be collected from the excavation area to ensure that contaminated soil above the water table has been removed to acceptable limits. The excavated soil will undergo aerobic, solid-phase biological treatment at one of two locations: 1) the existing Lot 203 biocell at MCB, Camp Lejeune, or 2) a biocell constructed at Site 3. The treatment location will depend on the availability of the Lot 203 biocell which is currently being used to treat petroleum, oil, and lubricant (POL)-contaminated soil from other sites at MCB, Camp Lejeune. In addition, the treatment location will depend on the ability to modify the permit for the Lot 203 biocell so that it can accept PAH-contaminated soil. Prior to implementation, a pilot-scale treatability study will be conducted at Site 3 to further determine the effectiveness of this alternative. The treatability study is currently scheduled for the winter of 1996-97.

The biological treatment will be conducted using landfarming technology within a controlled unit (the "biocell"). The contaminated soil will be placed in a 12 inch lift underlain by a 24 inch lift of coarse sand, a high density polyethylene geomembrane liner, and a non-woven geotextile fabric. Leachate will be collected by a leachate collection line and sump, and periodically resprayed back onto the contaminated soil. Maintenance of the biocell will consist of periodic leachate collection and respraying, soil tilling, nutrient and fertilizer addition, and soil sampling.

Soil RAA No. 5 also includes land use restrictions. Although the subsurface soil area of concern will be removed and treated, a 5-year review by the lead agency will be required until the remediation levels for soil are achieved.

Summary of Groundwater Alternatives

Groundwater RAA No. 1: No Action

Capital Cost:	\$0
Annual O&M Cost:	\$0
NPW:	\$0
Years to Implement:	None

Under Groundwater RAA No. 1, no remedial actions will be implemented to address the groundwater areas of concern. The no action alternative is required by the NCP as a baseline for comparison with other remedial action alternatives that provide a greater level of response. Under this alternative, contaminants will remain untreated in the groundwater. As a result, the NCP requires the lead agency to review the effects of this alternative at least once every five years.

Groundwater RAA No. 2: Land Use Restrictions, Aquifer Use Restrictions, and Monitoring

Capital Cost:	\$0
Annual O&M Cost (Years 1-5):	\$64,000
Annual O&M Cost (Years 6-30):	\$33,000
NPW:	\$643,000
Years to Implement:	30 Years of Groundwater Monitoring

Under Groundwater RAA No. 2, land use restrictions, aquifer use restrictions, and a long-term groundwater monitoring program will be implemented. The land use restrictions will prohibit future use of the shallow and Castle Hayne aquifers, in the immediate vicinity of Site 3, as potable water sources by prohibiting the installation of potable water supply wells. The long-term monitoring program will include periodic groundwater sampling and analysis at six shallow monitoring wells (03-MW02, 03-MW06, 03-MW07, and 03-MW08), two intermediate monitoring wells (03-MW02IW and 03-MW11IW), and one deep monitoring well (03-MW02DW). The samples will be analyzed for TCL VOCs and SVOCs to monitor contaminant concentrations in the shallow and Castle Hayne aquifers over time. For cost estimating purposes, quarterly sampling was assumed for years 1-5, and semiannual sampling was assumed for years 6-30. Additional wells may be added to the monitoring program if necessary. Under Groundwater RAA No. 2, the groundwater areas of concern will not receive active treatment so the lead agency will be required to review the effects of this alternative at least once every five years.

Groundwater RAA No. 3: Extraction and On Site Carbon Adsorption Treatment

Capital Cost:	\$422,000
Annual O&M Cost (Years 1-5):	\$64,000
Annual O&M Cost (Years 6-30):	\$33,000
Annual O&M Cost (Treatment System Years 1-3):	\$85,000
NPW:	\$2,370,000
Years to Implement:	30 Years of Treatment Plant O&M 30 Years of Groundwater Monitoring

Under Groundwater RAA No. 3, a groundwater extraction and treatment system (i.e., a pump and treat system) will be installed at Site 3. Two extraction wells will be installed within the shallow aquifer at depths of approximately 20 feet bgs. One extraction well will be located near existing well 03-MW02, and one extraction well will be located near existing well 03-MW06. The wells' pumping rates will allow their cones of influence to intercept the groundwater areas of concern. (For cost estimating purposes, it is assumed that each well will pump at 5 gallons per minute and generate a 220 foot radius of influence.) Once extracted, the contaminated groundwater will be transported via pipeline to an on site treatment plant located between existing wells 03-MW02 and 03-MW06. At the treatment plant, the groundwater will undergo pretreatment via oil/water separation, neutralization, precipitation, filtration, flocculation, and sedimentation. Then the groundwater will undergo liquid-phase carbon adsorption treatment. The treated groundwater will be discharged by pipeline to the nearest sanitary sewer line for subsequent discharge to a Base sewage treatment plant.

In addition to groundwater extraction and treatment, Groundwater RAA No. 3 includes land use and aquifer use restrictions, and a long-term groundwater monitoring program. (See Groundwater RAA No. 2 for a description of the restrictions and monitoring program included under Groundwater RAA No. 3.) Because the contaminated groundwater will remain on site indefinitely, 5-year reviews by the lead agency will be required.

EVALUATION OF ALTERNATIVES

This section summarizes the detailed evaluation of alternatives that was conducted for the soil and groundwater RAAs. During the detailed evaluation, the RAAs were comparatively analyzed using seven USEPA evaluation criteria: overall protection of human health and the environment; compliance with applicable and relevant or appropriate requirements (ARARs)/ to-be-considered criteria (TBCs); long-term effectiveness and permanence; reduction of toxicity, mobility, or volume through treatment; short-term effectiveness; implementability; and cost. Table 11 presents definitions of these evaluation criteria.

Evaluation of Soil Alternatives

Overall Protection of Human Health and the Environment

Under Soil RAA No. 1 (No Action) and Soil RAA No. 2 (Land Use Restrictions), no remediation actions will be implemented to remove or treat the area of concern containing contaminated subsurface soil. Because the contaminated soil will be left as is, it will continue to be a potential

source of groundwater contamination (via contaminant leaching). As such, the contaminated soil will be contributing to the unacceptable human health risks associated with groundwater. (These risks were generated under the future residential land use scenario.) Soil RAA No. 1 provides no means for reducing these potential risks. Soil RAA No. 2, on the other hand, includes land use restrictions that will reduce some of the potential risks. Regardless, under both Soil RAA Nos. 1 and 2, contaminants may continue to leach from the subsurface soil to the groundwater.

Compared to Soil RAA Nos. 1 and 2, Soil RAA No. 3 (Source Removal and Off Site Landfill Disposal), Soil RAA No. 4 (Source Removal and Off Site Incineration), and Soil RAA No. 5 (Source Removal and Biological Treatment) will significantly reduce the human health risks associated with groundwater by completely removing a major source of the groundwater contamination - the subsurface soil area of concern above the water table. Because Soil RAA Nos. 3, 4, and 5 are source removal alternatives, they will prevent the further leaching of PAH contaminants from the subsurface soil (at 3 to 9 feet bgs) to the groundwater. Thus, Soil RAA No. 1 provides no additional protection of human health, Soil RAA No. 2 provides some additional protection, and Soil RAA Nos. 3, 4, and 5 provide significant protection.

Because ecological risks were determined to be insignificant, conditions at Site 3 are already considered to be protective of the environment. As a result, all five soil RAAs will provide overall protection of the environment. The biocell included under Soil RAA No. 5 could potentially present risks to terrestrial receptors. However, if the biocell is properly controlled (with a cover and a surrounding earthen berm), these ecological risks will be insignificant.

Compliance with ARARs/TBCs

Under Soil RAA Nos. 1 and 2, contaminants will remain in the subsurface soil at concentrations that exceed chemical-specific TBCs (i.e., the federal soil screening levels developed for USEPA Region III; no chemical-specific ARARs were identified for soil). Thus, soil conditions at the site will not meet chemical-specific TBCs. Under Soil RAA Nos. 3, 4, and 5, soil contaminants that exceed the federal soil screening levels will be removed from the subsurface. Thus, soil conditions at the site will meet chemical-specific TBCs.

Soil RAA Nos. 3, 4, and 5 can be designed to meet all of the location- and action-specific ARARs/TBCs that apply to them. No location- or action-specific ARARs/TBCs apply to Soil RAA Nos. 1 and 2.

Long-Term Effectiveness and Permanence

Soil RAA No. 1 does not provide long-term effectiveness and permanence. This is because Soil RAA No. 1 allows a source of groundwater contamination, the subsurface soil area of concern, to remain in place and untreated. In addition, Soil RAA No. 1 does not provide controls to manage the remaining soil contaminants. Like Soil RAA No. 1, Soil RAA No. 2 allows the subsurface soil area of concern to remain in place and untreated. However, Soil RAA No. 2 includes land use restrictions to manage the remaining soil contaminants. Therefore, Soil RAA No. 2 provides a greater level of long-term effectiveness and permanence than Soil RAA No. 1. The restrictions will effectively prevent human exposure to the PAH contaminants. However, under Soil RAA No. 2, the contaminants will continue to leach from the subsurface soil to the groundwater.

Compared to Soil RAA Nos. 1 and 2, Soil RAA Nos. 3, 4, and 5, provide high levels of long-term effectiveness and permanence. Under Soil RAA Nos. 3, 4, and 5, the subsurface soil area of concern will be completely removed above the water table, preventing contaminants from leaching into the groundwater. Soil RAA Nos. 3, 4, and 5 also include land use restrictions which provide additional long-term effectiveness and permanence.

Reduction of Toxicity, Mobility, or Volume Through Treatment

Soil RAA Nos. 1 and 2 do not involve source removal or treatment processes, so these alternatives will not reduce toxicity, mobility, or volume of the soil contaminants. Soil RAA Nos. 3, 4, and 5, however, involve soil removal and treatment and/or disposal so these alternatives will result in toxicity, mobility, and volume reduction. Most importantly, Soil RAA Nos. 3, 4, and 5 will eliminate the mobility of PAH contaminants by preventing them from leaching into the groundwater.

Soil RAA Nos. 1, 2, and 3 do not satisfy the statutory preference for treatment. Soil RAA Nos. 4 and 5 do satisfy the statutory preference.

Short-Term Effectiveness

Implementation of Soil RAA Nos. 1 and 2 does not increase risks to the community or to workers because these alternatives include no actions other than administrative efforts. Soil RAA Nos. 3, 4, and 5, however, will present risks during soil excavation and backfilling activities. In addition, Soil RAA Nos. 3 and 4 will present risks during transportation of the contaminated soil to the treatment/disposal facility associated with each alternative. Soil RAA No. 4 will present additional risks by creating incinerator off-gas that may escape to the atmosphere. Soil RAA No. 5 will present risks during the initial placement of the contaminated soil, and during the treatment O&M.

Under RAAs Nos. 3 through 5, the following measures will be taken to provide adequate community and worker protection: proper materials handling procedures, personal protective equipment, and construction safety fencing. Air pollution control equipment at the incineration facility will also reduce the risks associated with off-gases under Soil RAA No. 4. In addition, a cover/liner system and periodic maintenance checks will provided additional protection for the treatment cell associated with Soil RAA No. 5. None of the RAAs will present significant environmental impacts.

Implementability

Soil RAA No. 1 is the most implementable, if not the most effective, alternative. Soil RAA No. 2 is the next most implementable alternative because the only activity it involves is ordinance procurement. The remaining RAAs (Soil RAA Nos. 3, 4, and 5) are similar in that they include the excavation of subsurface soil. Soil RAA Nos. 3 and 4 include transportation of contaminated soil to a treatment/disposal facility. This transportation will require appropriate materials handling procedures. Compared to Soil RAA Nos. 3 and 4, however, Soil RAA No. 5 will be less easy to implement because it involves mixing of the excavated soil with bulking agents and additives, and long-term O&M of the biocell. In addition, Soil RAA No. 5 requires a treatability study.

Cost

In terms of NPW, the no action alternative (Soil RAA No. 1) and the land use restrictions alternative (Soil RAA No. 2) will be the least expensive to implement, followed by Soil RAA No. 5, Soil RAA No. 3, and Soil RAA No. 4. The estimated NPW values, in increasing order, are

- \$0 (Soil RAA No. 1 No Action)
- \$0 (Soil RAA No. 2 Land Use Restrictions)
- \$514,000 (Soil RAA No. 5 Source Removal and Biological Treatment)
- \$917,000 (Soil RAA No. 3 Source Removal and Off Site Landfill Disposal)
- \$3,150,000 (Soil RAA No. 4 Source Removal and Off Site Incineration)

Evaluation of Groundwater Alternatives

Overall Protection of Human Health and the Environment

Groundwater RAA No. 1 (No Action) will not reduce the human health risks associated with groundwater. On the other hand, Groundwater RAA No. 2 (Land Use Restrictions, Aquifer Use Restrictions, and Monitoring) and Groundwater RAA No. 3 (Extraction and On Site Carbon Adsorption Treatment) will reduce human health risks because both alternatives include restrictions and long-term monitoring. The restrictions will prevent human receptors from ingesting, dermally contacting, or inhaling groundwater contaminants. Long-term monitoring will provide a warning system against contaminants that have migrated to unsafe locations, and contaminant concentrations that have increased to unsafe levels, so that human exposure can be avoided. Thus, Groundwater RAA Nos. 2 and 3 will prevent the potential for direct exposure to contaminated groundwater, but Groundwater RAA No. 1 will not. In addition, Groundwater RAA Nos. 2 and 3 will provide overall protection of human health and the environment, but Groundwater RAA No. 1 will not.

Compared to Groundwater RAA Nos. 1 and 2, Groundwater RAA No. 3 provides some additional protection of human health and the environment by collecting the groundwater contaminants and actively treating them at an on site treatment plant. However, this additional protection is not necessary to prevent future human exposure to the groundwater contaminants. PAHs exhibit low volatility and low aqueous solubility. Due to their hydrophobic nature, PAHs tend to adsorb onto soils and sediment. As a result, the PAH contaminants at Site 3 will have a low migration potential so it is unlikely that they will horizontally or vertically migrate to the nearest current receptors.

Compliance with ARARs/TBCs

Groundwater RAA Nos. 1 and 2 will allow contaminant levels exceeding chemical-specific ARARs (i.e., federal and state standards, and risk-based criteria) to remain in groundwater at the site. Because of this, Groundwater RAA Nos. 1 and 2 may require a waiver of the chemical-specific ARARs before these alternatives can be implemented. Groundwater RAA No. 3 could potentially remediate the groundwater to chemical-specific ARARs, but most likely the pump and treat system will not be capable of achieving such stringent cleanup standards. Groundwater contaminants, especially PAHs, may sorb to solid particles or escape into subsurface pore spaces or fissures where they become difficult to extract. Most likely, extraction wells will only collect a portion of the PAH contamination; the remaining PAH contamination will remain in the aquifer. Therefore, a pump and treat system may not be able to achieve the chemical-specific ARARs.

No location- or action-specific ARARs/TBCs apply to Groundwater RAA Nos. 1 and 2. Groundwater RAA No. 3 can be designed to meet all of the location- and action- specific ARARs/TBCs that apply to it.

Long-Term Effectiveness and Permanence

Groundwater RAA No. 3 will provide long-term effectiveness and permanence because it involves collection and treatment of the contaminated groundwater. Although Groundwater RAA No. 2 will allow contaminants to remain untreated at the site, this alternative will also provide long-term effectiveness and permanence. Based on the hydrophobic nature of PAH contaminants, and the results of a two-dimensional flow model conducted for the FS, leaving PAH contaminants untreated at the site will not affect the nearest, current receptor (a potable water supply well located approximately 700 feet west of Site 3). It may affect future receptors occurring in the vicinity of Site 3, but Groundwater RAA No. 2 includes land use and aquifer use restrictions, and long-term monitoring that will effectively prevent future human exposure. Groundwater RAA No. 1, on the other hand, provides no means for preventing future human exposure so this alternative will not provide long-term effectiveness and permanence.

The pump and treat system included under Groundwater RAA No. 3 will only be adequate and reliable to a certain extent. Technologies for completely extracting contaminants from groundwater are not proven. Contaminants, especially PAHs, may adsorb to solid particles or escape into subsurface pore spaces or fissures where they become difficult to extract. Also, contaminants may continue to leach from solid particles into the groundwater. As a result, extraction wells may not be completely reliable for removing PAH contaminants from the shallow aquifer.

All three groundwater alternatives will require 5-year reviews by the lead agency to ensure that adequate protection of human health and the environment is maintained.

Reduction of Toxicity, Mobility, or Volume Through Treatment

Groundwater RAA No. 3 will reduce the toxicity, mobility, and volume of contaminated groundwater that is collected by the extraction wells. However, some of the contaminated groundwater will not be collected so it will not receive treatment. This is because PAH contaminants may adsorb to soils and sediments and escape in pore spaces and fissures. Unlike Groundwater RAA No. 3, Groundwater RAA Nos. 1 and 2 do not involve groundwater extraction or active treatment processes. Therefore, Groundwater RAA Nos. 1 and 2 will not reduce the toxicity, mobility, or volume of groundwater contamination.

Unlike Groundwater RAA Nos. 1 and 2, Groundwater RAA No. 3 will create treatment residuals. The residuals associated with Groundwater RAA No. 3 (sludge, separated oil, exhausted carbon, and treated groundwater) will be voluminous and will require proper treatment and/or disposal.

Groundwater RAA No. 3 satisfies the statutory preference for treatment; Groundwater RAA Nos. 1 and 2 do not.

Short-Term Effectiveness

Implementation of Groundwater RAA Nos. 1 and 2 does not pose substantial risks to the community or to workers. Implementation of Groundwater RAA No. 3 does pose risks because it involves

construction of extraction wells, underground pipelines, and a treatment facility. During pipeline construction, special care must be taken to avoid underground utilities. In addition, construction safety fencing and dust minimization procedures should provide adequate protection to the community and to workers. Groundwater RAA No. 3 also involves long-term operation and maintenance of an extraction well system and an on site treatment facility. The treatment facility will generate residual waste streams that must be properly treated and/or disposed. The use of personal protective equipment and proper materials handling procedures should provide adequate protection during operation and maintenance. Because it may create aquifer drawdown, Groundwater RAA No. 3 is the only alternative that could potentially create environmental impacts.

Under all three groundwater alternatives, the time for the action to be complete is unknown. Thirty years of groundwater monitoring was assumed for Groundwater RAA No. 2, and 30 years of groundwater monitoring and treatment system O&M was assumed for Groundwater RAA No. 3.

Implementability

Groundwater RAA No. 1 is the easiest alternative to implement, if not the most effective. Groundwater RAA No. 2 is the next most implementable alternative followed by Groundwater RAA No. 3. Groundwater RAA No. 1 requires no operation or maintenance. Groundwater RAA No. 2 requires minimal operation and maintenance (groundwater samples will be collected and wells will be replaced periodically). Groundwater RAA No. 3, however, requires extensive operation and maintenance. Under all three alternatives, additional remedial actions could easily be implemented.

Groundwater RAA Nos. 2 and 3 involve conventional equipment and services that should be readily available. Compared to Groundwater RAA No. 2, Groundwater RAA No. 3 will require more extensive coordination with the Base Public Works/Planning department. Unlike Groundwater RAA No. 1, Groundwater RAA Nos. 2 and 3 will require semiannual submission of reports that document sampling results. Unlike Groundwater RAA No. 3, Groundwater RAA Nos. 1 and 2 may require a waiver of ARARs since groundwater contaminants will be left untreated at the site.

Cost

In terms of NPW, the no action alternative (Groundwater RAA No. 1) will be the least expensive alternative to implement, followed by Groundwater RAA No. 2, then Groundwater RAA No. 3. The estimated NPW values in increasing order are

- \$0 (Groundwater RAA No. 1 No Action)
- \$643,000 (Groundwater RAA No. 2 Land Use Restrictions, Aquifer Use Restrictions, and Monitoring)
- \$2,369,000 (Groundwater RAA No. 3 Extraction and On Site Carbon Adsorption Treatment)

THE PREFERRED ALTERNATIVES

Based on the detailed evaluation of remedial action alternatives, Soil RAA No. 5 (Source Removal and Biological Treatment) and Groundwater RAA No. 2 (Land Use Restrictions, Aquifer Use Restrictions, and Monitoring) were selected as the preferred alternatives for Site 3. Thus, the proposed remedial action plan for Site 3 includes removal of the subsurface soil area of concern, treatment of this soil at either the Lot 203 biocell or a biocell constructed at Site 3, land use and aquifer use restrictions, and long-term groundwater monitoring. The following paragraphs explain the rationale behind the selection of the preferred alternatives for soil and groundwater.

Soil RAA No. 5 - Source Removal and Biological Treatment

The preferred alternative for soil is Soil RAA No. 5 - Source Removal and Biological Treatment. This alternative includes excavation of the subsurface soil area of concern, biological treatment of the soil at either the Lot 203 biocell or a biocell constructed at Site 3, and backfilling of the excavation area with clean soil. This alternative also includes land use restrictions.

At Site 3, the subsurface soil area of concern appears to be the main source of groundwater contamination (via contaminant leaching). As a result, source removal alternatives (i.e., Soil RAA Nos. 3, 4, and 5) were considered to be more appropriate than alternatives that leave the soil in situ and untreated (i.e., Soil RAA Nos. 1 and 2). This is because source removal alternatives eliminate the potential for soil contaminants to leach into the groundwater. Under the source removal alternatives, contaminants that could potentially leach will be removed from the subsurface and treated and/or disposed. Because Soil RAA Nos. 1 and 2 allow a source area of contamination to remain in situ and untreated, these alternatives do not provide adequate protection of human health.

Compared to Soil RAA Nos. 3 and 4, Soil RAA No. 5 is the most cost effective source removal alternative. Although the NPW of Soil RAA No. 5 (\$514,000) is similar to the NPW of Soil RAA No. 3 (\$917,000), Soil RAA No. 5 includes an extra advantage. Under Soil RAA No. 5, the treated soil may be reused as backfill for some other purpose on the Base. Under Soil RAA No. 3, the contaminated soil will be landfilled. Thus, Soil RAA No. 5 may allow for the beneficial reuse of the contaminated soil.

Groundwater RAA No. 2 - Land Use Restrictions, Aquifer Use Restrictions, and Monitoring

The preferred alternative for groundwater is Groundwater RAA No. 2 - Land Use Restrictions, Aquifer Use Restrictions, and Monitoring. This alternative includes land use and aquifer use restrictions, and a long-term groundwater monitoring program. The monitoring program includes periodic sampling of wells 03-MW02, 03-MW02IW, 03-MW02DW, 03-MW06, 03-MW07, 03-MW08, 03-MW11, and 03-MW11IW; all groundwater samples will be analyzed for TCL VOCs and SVOCs.

The groundwater contamination at Site 3 mainly consisted of PAH compounds. Because PAHs exhibit low water solubility, they tend to adsorb to soil and sediment making them relatively immobile contaminants. As a result, the PAH-contaminated groundwater, if left untreated, is not likely to migrate beyond the limits identified in Figure 8. To reinforce this theory, a two-dimensional horizontal flow model was conducted during the FS. The results of the model indicated that untreated PAH-contaminated groundwater will not pose unacceptable risks to the nearest receptor (a potable water supply well) that is currently located on Base. However, future potential receptors located in the vicinity of Site 3 could be affected by the PAH-contaminated groundwater. Thus, a no action plan (i.e., Groundwater RAA No. 1) will not maintain adequate protection of human health. Groundwater RAA No. 2, on the other hand, will maintain adequate protection. Groundwater RAA No. 2 provides land use and aquifer use restrictions that will prohibit the future use of the aquifer, thus protecting any future receptors. In addition, Groundwater RAA No. 2 includes a long-term monitoring program that will provide a warning system in case contaminant

concentrations increase to unsafe levels. This monitoring program provides additional protection of human health.

Compared to Groundwater RAA No. 2, Groundwater RAA No. 3 is not a cost effective alternative. The NPW of Groundwater RAA No. 2 is \$643,000 and the NPW of Groundwater RAA No. 3 is \$2,369,000. Although Groundwater RAA No. 3 includes extraction and treatment of the contaminated groundwater, the ability of a pump and treat system to effectively extract groundwater contamination is not proven. Contaminants, especially PAHs, will sorb to soil particles and become trapped in subsurface fissures and pores where they are difficult, if not impossible, to extract. Thus, Groundwater RAA No. 3 may only have limited effectiveness. Groundwater RAA No. 2, on the other hand, will have proven effectiveness (land use and aquifer use restrictions and groundwater monitoring are conventional and well-demonstrated). As long as the source of the contamination is removed (i.e., the subsurface soil area of concern), the PAHs in groundwater are expected to remain in the same general vicinity and naturally attenuate over time.

COMMUNITY PARTICIPATION

A critical part of the selection of a remedial action alternative is community involvement. The following information is provided to solicit the community's input into the selection of a remedy for OU No. 12 (Site 3).

Public Comment Period

The 30-day public comment period for the proposed remedial action plan at OU No. 12 (Site 3) will begin on November 6, 1996 and end on December 6, 1996. Written comments should be sent to the following address:

Commander Atlantic Division Naval Facilities Engineering Command 1510 Gilbert Street (Bldg. N-26) Norfolk, Virginia 23511-2699 Attn: Ms. Katherine Landman, Code 18232

or Commanding General ACIS EMD (IRD) Marine Corps Base PSC Box 20004 Camp Lejeune, North Carolina 28542-0004

A public meeting will be held at the Onslow County Library in Jacksonville, North Carolina on November 6, 1996. Representatives of the Navy, and their consultant, will be available at the meeting to answer questions and accept public comments on the proposed plan for OU No. 12 (Site 3). In addition, an overview of the site characterization will be presented.

Meeting minutes will be made available to the public through the information repositories at the libraries listed below. A responsiveness summary will be prepared at the conclusion of the comment period to summarize significant comments, criticisms, and new relevant information submitted to MCB, Camp Lejeune and the DoN during the comment period. The summary will include the responses to each issue/question raised at the public meeting. After the ROD is signed, MCB, Camp Lejeune and the DoN will publish a notice of availability of the ROD (including the responsiveness summary) in the Jacksonville and MCB, Camp Lejeune newspapers, and place a copy of the ROD in each information repository.

Information Repositories

A collection of general information, including the administrative record file, is available to the community in the information repositories at the following locations:

MCB, Camp Lejeune Building 67, Room 238 Marine Corps Base Camp Lejeune, NC 28542 (910) 451-5068

Hours: M-F: 7:00 a.m.- 4:00p.m. Closed Saturday and Sunday Onslow County Library 58 Doris Avenue East Jacksonville, NC 28540 (910) 455-7358

Hours: M-Thu: 9:00 a.m.- 9:00 p.m. F-Sat: 9:00 a.m.- 6:00 p.m. Closed Sunday

IF YOU HAVE ANY QUESTIONS ABOUT OU NO. 12 (SITE 3), PLEASE CONTACT ONE OF THE FOLLOWING:

o - 11

Commanding General AC/S EMD, (IRD) Marine Corps Base PSC Box 20004 Camp Lejeune, North Carolina 28542-0004 Attention: Mr. Neal Paul (910) 451-5068

Commander Atlantic Division Naval Facilities Engineering Command 1510 Gilbert Street (Bldg. N-26) Norfolk, Virginia 23511-2699 Attention: Ms. Katherine Landman, Code 18232 (804) 322-4818

Remedial Project Manager U.S. EPA, Region IV 345 Courtland Street, NE Atlanta, Georgia 30365 Attention: Ms. Gena Townsend (404) 347-3016

N.C. Department of Environment, Health, and Natural Resources Division of Solid Waste Management
Superfund Section
P.O. Box 27687
Raleigh, North Carolina 27611-7687
Attention: Mr. Patrick Watters
(919) 733-2801

Community Information Line Public Affairs Office Marine Corps Base, PSC Box 2004 Camp Lejeune, North Carolina 28542-0004 Attention: Major Stephen Little (910) 451-5782

MAILING LIST

If you are not on the mailing list and would like to receive future publications pertaining to OU No. 12 (Site 3) as it becomes available, please call or complete and mail a copy of this form to the point of contact listed below:

Commanding General AC/S EMD (IRD) Marine Corps Base PSC Box 20004 Camp Lejeune, North Carolina 28542-0004 Attn: Mr. Neal Paul (910) 451-5068

ì

Name

Address

Affiliation

Phone

SUMMARY OF THE ANALYTICAL RESULTS FOR SOIL SITE INSPECTION, 1991 OPERABLE UNIT NO. 12 (SITE 3) MCB CAMP LEJEUNE, NORTH CAROLINA

	Surface Soil	(0-2 feet bgs)	Subsurface Soil	(3-12 feet bgs)	Subsurface So	il (> 12 feet bgs)
Constituent	No. of Detections/ Total No. of Samples	Range of Detected Concentrations	No. of Detections/ Total No. of Samples	Range of Detected Concentrations	No. of Detections/ Total No. of Samples	Range of Detected Concentrations
Acenaphthene	0/7	ND	0/5	ND	1/2	37,000
Antracene	1/7	1,900	0/5	ND	1/2	8,600
Benzo(a)anthracene	2/7	460-660	0/5	ND	1/2	5,600
Benzo(b)fluoranthene	2/7	520-2,200	0/5	ND	1/2	2,300
Benzo(k)fluoranthene	2/7	420-1,200	0/5	ND	1/2	2,100
Benzo(g,h,i)perylene	2/7	260-720	0/5	ND	0/2	ND
Benzo(a)pyrene	2/7	320-1,300	0/5	ND	0/2	ND
Chrysene	2/7	750-1,400	0/5	ND	1/2	5,900
Flouranthene	2/7	1,000-1,600	0/5	ND	1/2	35,000
Fluorene	0/7	ND	0/5	ND	1/2	35,000
Indeno(1,2,3-cd)pyrene	2/7	340-1,000	0/5	ND	0/2	ND
2-Methylnaphthalene	0/7	ND	0/5	ND	1/2	26,000
Naphthalene	1/7	550	0/5	ND	1/2	52,000
Phenanthrene	1/7	310	0/5	ND	1/2	81,000
Pyrene	2/7	920-1,400	0/5	ND	1/2	27,000
Dibenzofuran	0/7	ND	0/5	ND	1/2	35,000

Notes:

Concentrations expressed in $\mu g/kg$ (microgram per kilogram)

bgs = Below ground surface

ND = Not detected

Reference: Halliburton/NUS, 1991. Site Inspection Report for Site 3 Old Creosote Plant. Marine Corps Base, Camp Lejeune, North Carolina.

SUMMARY OF THE ANALYTICAL RESULTS FOR GROUNDWATER SITE INSPECTION, 1991 OPERABLE UNIT NO. 12 (SITE 3) MCB CAMP LEJEUNE, NORTH CAROLINA

Constituent	North Carolina Standard	USEPA MCL	No. of Detections/ Total No. of Samples	Range of Detected Concentrations ⁽¹⁾	Location of Maximum Concentration
Acenaphthene	80		1/3	1,500	3MW02
Anthracene	2,100		1/3	260	3MW02
Chrysene	5	2	1/3	96	3MW02
Fluoranthene	280		1/3	640	3MW02
Fluorene			1/3	890	3MW02
2-Methylnaphthalene			1/3	1,500	3MW02
Naphthalene			2/3	9-4,400	3MW02
Phenanthrene			1/3	1,600	3MW02
Pyrene	210		1/3	460	3MW02
Dibenzofuran			1/3	1,100	3MW02

Notes:

⁽¹⁾ Shaded blocks indicate detections above the North Carolina Standard of Federal MCL.

Concentrations expressed in $\mu g/L$ (microgram per liter) USEPA = U.S. Environmental Protection Agency MCL = Federal Maximum Contaminant Level -- = No criteria established

Reference: Halliburton/NUS, 1991. <u>Site Inspection Report for Site 3 Old Creosote Plant</u>. Marine Corps Base, Camp Lejeune, North Carolina.

				Sample Analyses							
Sample Location	Depth Interval Identification	Depth of Borehole (feet, bgs)	Sampling Interval (feet, bgs)	EnSys Sample (PAH RISC ®)	TCL Volatiles	TCL Semivolatiles	TCL Pesticides/ PCBs	TAL Metals	Engineering Parameters ⁽³⁾	Duplicate Samples	Matrix Spike/Matrix Spike Duplicate
Rail Spur Area											
3-RS-SB01	00	1.0	0.0 - 1.0	X		X ⁽²⁾					
	03	7.0	5.0 - 7.0			X ⁽⁴⁾					
3-RS-SB02	00	1.0	0.0 - 1.0	x		X ⁽²⁾				X	
	04	9.0	0.0 - 9.0			X ⁽⁴⁾					
3-RS-SB03	00	1.0	0.0 - 1.0	x		X ⁽²⁾					
3-RS-SB04	00	1.0	0.0 - 1.0	х							
3-RS-SB05	00	1.0	0.0 - 1.0	х		X ⁽²⁾					
	03	7.0	5.0 - 7.0			X ⁽⁴⁾					
	04	9.0	7.0 - 9.0			X ⁽⁴⁾					
3-RS-SB06	00	1.0	0.0 - 1.0	х		X ⁽²⁾					
	04	9.0	7.0 - 9.0			× X ⁽⁴⁾					
3-RS-SB07	00	1.0	0.0 - 1.0	x		X ⁽²⁾					
	04	9.0	7.0 - 9.0			X ⁽⁴⁾					
3-RS-SB08	00	1.0	0.0 - 1.0	X							
3-RS-SB09	00	1.0	0.0 - 1.0	Х		·					
3-RS-SB10	00	1.0	0.0 - 1.0	x						X	

				Sample Analyses								
Sample Location	Depth Interval Identification	Depth of Borehole (feet, bgs)	Sampling Interval (feet, bgs)	EnSys Sample (PAH RISC ®)	TCL Volatiles	TCL Semivolatiles	TCL Pesticides/ PCBs	TAL Metals	Engineering Parameters ⁽³⁾	Duplicate Samples	Matrix Spike/Matrix Spike Duplicate	
Concrete Pad Area												
3-CP-SB01	00	1.0	0.0 - 1.0	x								
3-CP-SB02	00	1.0	0.0 - 1.0	x		X ⁽²⁾				X ⁽⁶⁾		
3-CP-SB03	00	1.0	0.0 - 1.0	X								
3-CP-SB04	00	1.0	0.0 - 1.0	X		X ⁽²⁾						
3-CP-SB05	00	1.0	0.0 - 1.0	x		X ⁽²⁾						
3-CP-SB06	00	1.0	0.0 - 1.0	Х								
3-CP-SB07	00	1.0	0.0 - 1.0	x								
3-CP-SB08	00	1.0	0.0 - 1.0	X								
3-CP-SB09	00	1.0	0.0 - 1.0	x		X ⁽²⁾						
3-CP-SB10	00	1.0	0.0 - 1.0	x								
Treatment Area												
3-TA-SB01	00	1.0	0.0 - 1.0	X						X		
3-TA-SB02	00	1.0	0.0 - 1.0	X								
3-TA-SB03	00	1.0	0.0 - 1.0	Х						X		
3-TA-SB04	00	1.0	0.0 - 1.0	X								
3-TA-SB05	00	1.0	0.0 - 1.0	x								
3-TA-SB06	00	1.0	0.0 - 1.0	X						,		

 $\tau \in S^{-1}(X)_{X}$

				Sample Analyses								
Sample Location	Depth Interval Identification	Depth of Borehole (feet, bgs)	Sampling Interval (feet, bgs)	EnSys Sample (PAH RISC ®)	TCL Volatiles	TCL Semivolatiles	TCL Pesticides/ PCBs	TAL Metals	Engineering Parameters ⁽³⁾	Duplicate Samples	Matrix Spike/Matrix Spike Duplicate	
3-TA-SB07	00	1.0	0.0 - 1.0	X								
3-TA-SB08	00	1.0	0.0 - 1.0	x		X ⁽²⁾				X		
	04	9.0	7.0 - 9.0			X ⁽⁴⁾						
3-TA-SB09	00	1.0	0.0 - 1.0	x		X ⁽²⁾						
3-TA-SB10	00	1.0	0.0 - 1.0	x		X ⁽²⁾						
	04	9.0	7.0 - 9.0			X ⁽⁴⁾						
3-TA-SB11	00	1.0	0.0 - 1.0	x								
3-TA-SB12	00	1.0	0.0 - 1.0	x		X ⁽²⁾						
3-TA-SB13	00	1.0	0.0 - 1.0	x		X ⁽²⁾						
	03	7.0	5.0 - 7.0			X ⁽⁴⁾						
3-TA-SB14	00	1.0	0.0 - 1.0	X		X ⁽²⁾						
	02	5.0	3.0 - 5.0			X ⁽⁴⁾						
3-TA-SB15	00	1.0	0.0 - 1.0	x								
3-TA-SB16	00	1.0	0.0 - 1.0	Х								
3-TA-SB17	00	1.0	0.0 - 1.0	x		X ⁽²⁾						
	04	9.0	7.0 - 9.0			X ⁽⁴⁾						

							Sample	Analyses			
Sample Location	Depth Interval Identification	Depth of Borehole (feet, bgs)	Sampling Interval (feet, bgs)	EnSys Sample (PAH RISC ®)	TCL Volatiles	TCL Semivolatiles	TCL Pesticides/ PCBs	TAL Metals	Engineering Parameters ⁽³⁾	Duplicate Samples	Matrix Spike/Matrix Spike Duplicate
3-TA-SB18	00	1.0	0.0 - 1.0	X		X ⁽²⁾					
	03	7.0	5.0 - 7.0			X ⁽⁴⁾					
3-TA-SB19	00	1.0	0.0 - 1.0	X							
3-TA-SB20	00	1.0	0.0 - 1.0	x							
3-TA-SB21	00	1.0	0.0 - 1.0	X		X ⁽²⁾				X ⁽⁶⁾	
	03	7.0	5.0 - 7.0			X ⁽⁴⁾				Х	
3-TA-SB22	00	1.0	0.0 - 1.0	X							
3-TA-SB23	00	1.0	0.0 - 1.0	X							
3-TA-SB24	00	1.0	0.0 - 1.0	x							
3-TA-SB25	00	1.0	0.0 - 1.0	X		X ⁽²⁾					
	02	5.0	3.0 - 5.0			X ⁽⁴⁾					
3-TA-SB26	00	1.0	0.0 - 1.0	Х							
3-TA-SB27	00	1.0	0.0 - 1.0	х							
3-TA-SB28	00	1.0	0.0 - 1.0	X							
3-TA-SB29	00	1.0	0.0 - 1.0	X		X ⁽²⁾				X	
	02	5.0	3.0 - 5.0			X ⁽⁴⁾					

				Sample Analyses								
Sample Location	Depth Interval Identification	Depth of Borehole (feet, bgs)	Sampling Interval (feet, bgs)	EnSys Sample (PAH RISC ®)	TCL Volatiles	TCL Semivolatiles	TCL Pesticides/ PCBs	TAL Metals	Engineering Parameters ⁽³⁾	Duplicate Samples	Matrix Spike/Matrix Spike Duplicate	
3-TA-SB30	00	1.0	0.0 - 1.0	X								
3-TA-SB31	00	1.0	0.0 - 1.0	X								
3-TA-SB32	00	1.0	0.0 - 1.0	X								
3-TA-SB33	00	1.0	0.0 - 1.0	X								
3-TA-SB34	00	1.0	0.0 - 1.0	X		X ⁽²⁾						
	03	7.0	5.0 - 7.0			X ⁽⁴⁾						
3-TA-SB35	00	1.0	0.0 - 1.0	X								
3-TA-SB36	00	1.0	0.0 - 1.0	x		X ⁽²⁾						
	03	7.0	5.0 - 7.0			X ⁽⁴⁾						
3-TA-SB37	00	1.0	0.0 - 1.0	X		X ⁽²⁾						
	02	5.0	3.0 - 5.0			X ⁽⁴⁾						
3-TA-SB38	00	1.0	0.0 - 1.0	X								
3-TA-SB39	00	1.0	0.0 - 1.0	X		X ⁽²⁾						
	04	9.0	7.0 - 9.0			X ⁽⁴⁾						
3-TA-SB40	00	1.0	0.0 - 1.0	X		X ⁽²⁾						
3-TA-SB41	00	1.0	0.0 - 1.0	X		X ⁽²⁾						
	02	5.0	3.0 - 5.0			X ⁽⁴⁾						

				Sample Analyses								
Sample Location	Depth Interval Identification	Depth of Borehole (feet, bgs)	Sampling Interval (feet, bgs)	EnSys Sample (PAH RISC ®)	TCL Volatiles	TCL Semivolatiles	TCL Pesticides/ PCBs	TAL Metals	Engineering Parameters ⁽³⁾	Duplicate Samples	Matrix Spike/Matrix Spike Duplicate	
3-TA-SB42	00	1.0	0.0 - 1.0	Х								
3-TA-SB43	00	1.0	0.0 - 1.0	x		X ⁽²⁾						
	03	7.0	5.0 - 7.0			X ⁽⁴⁾						
3-TA-SB44	00	1.0	0.0 - 1.0	x		X ⁽²⁾						
3-TA-SB45 (5)	00	1.0	0.0 - 1.0		X	Х						
	02	5.0	3.0 - 5.0		X	Х						
3-TA-SB46 ⁽⁵⁾	00	1.0	0.0 - 1.0		Х	X						
	02	5.0	3.0 - 5.0		X	X,						
3-TA-SB47 (5)	00	1.0	0.0 - 1.0		X	Х						
	02	5.0	3.0 - 5.0		X	X						
3-TA-SB48 (5)	00	1.0	0.0 - 1.0		X	X						
	04	9.0	7.0 - 9.0		x	Х						
3-TA-SB49 ⁽⁵⁾	00	1.0	0.0 - 1.0		х	X						
	04	9.0	7.0 - 9.0		x	X						
3-TA-SB50 (5)	00	1.0	0.0 - 1.0		X	X						
	04	9.0	7.0 - 9.0		X	Х						

							Sample	Analyses			
Sample Location	Depth Interval Identification	Depth of Borehole (feet, bgs)	Sampling Interval (feet, bgs)	EnSys Sample (PAH RISC ®)	TCL Volatiles	TCL Semivolatiles	TCL Pesticides/ PCBs	TAL Metals	Engineering Parameters ⁽³⁾	Duplicate Samples	Matrix Spike/Matrix Spike Duplicate
North Area											
3-NA-SB01	00	1.0	0.0 - 1.0	X		X ⁽²⁾				X ⁽⁶⁾	
3-NA-SB02	00	1.0	0.0 - 1.0	x							
3-NA-SB03	00	1.0	0.0 - 1.0	x		X ⁽²⁾					
	03	7.0	5.0 - 7.0			X ⁽⁴⁾					
3-NA-SB04	00	1.0	0.0 - 1.0	x						X	
3-NA-SB05	00	1.0	0.0 - 1.0	X		X ⁽²⁾					
	03	7.0	5.0 - 7.0			X ⁽⁴⁾		· ·			
3-NA-SB06	00	1.0	0.0 - 1.0	x				,,,, <u>,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,</u>			
3-NA-SB07	00	1.0	0.0 - 1.0	х		X ⁽²⁾					
3-NA-SB08	00	1.0	0.0 - 1.0	Х		X ⁽²⁾					
	03	7.0	5.0 - 7.0			X ⁽⁴⁾					
3-NA-SB09	00	1.0	0.0 - 1.0	x							
3-NA-SB10	00	1.0	0.0 - 1.0	x		X ⁽²⁾					
3-NA-SB11	00	1.0	0.0 - 1.0	x							
3-NA-SB12	00	1.0	0.0 - 1.0	Х							

							Sample	Analyses			
Sample Location	Depth Interval Identification	Depth of Borehole (feet, bgs)	Sampling Interval (feet, bgs)	EnSys Sample (PAH RISC ®)	TCL Volatiles	TCL Semivolatiles	TCL Pesticides/ PCBs	TAL Metals	Engineering Parameters ⁽³⁾	Duplicate Samples	Matrix Spike/Matrix Spike Duplicate
3-NA-SB13	00	1.0	0.0 - 1.0	Х						X	
3-NA-SB14	00	1.0	0.0 - 1.0	Х							
3-NA-SB15	00	1.0	0.0 - 1.0	x							
3-NA-SB16	00	1.0	0.0 - 1.0	x							
3-NA-SB17	00	1.0	0.0 - 1.0	x		X ⁽²⁾					
3-NA-SB17A (5)	00	1.0	0.0 - 1.0		Х	Х					
	02	5.0	3.0 - 5.0		x	X					
3-NA-SB18 (5)	00	1.0	0.0 - 1.0		X	• X					
	02	5.0	3.0 - 5.0		Х	X					
3-NA-SB19 (5)	00	1.0	0.0 - 1.0		x	X					
	02	5.0	3.0 - 5.0		X	X					
EnSys Background											
3-BB-SB01	00	1.0	0.0 - 1.0	Х							
3-BB-SB02	00	1.0	0.0 - 1.0	Х							
3-BB-SB03	00	1.0	0.0 - 1.0	x		X ⁽²⁾				X	

							Sample	Analyses			
Sample Location	Depth Interval Identification	Depth of Borehole (feet, bgs)	Sampling Interval (feet, bgs)	EnSys Sample (PAH RISC ®)	TCL Volatiles	TCL Semivolatiles	TCL Pesticides/ PCBs	TAL Metals	Engineering Parameters ⁽³⁾	Duplicate Samples	Matrix Spike/Matrix Spike Duplicate
Soil Investigation Background											
3-BB-SB01 (4)	00	1.0	0.0 - 1.0			Х					
	03	7.0	5.0 - 7.0			X					
3-BB-SB02 (4)	00	1.0	0.0 - 1.0			X					
	02	5.0	3.0 - 5.0			X					
3-BB-SB03 (4)	00	1.0	0.0 - 1.0			X					
	03	7.0	5.0 - 7.0			X					
Monitoring Wells											
3-MW02IW (4)	00	1.0	0.0 - 1.0		X	Х	X	Х		X	Х
	03	7.0	5.0 - 7.0		Х	X	x	Х		· X	Х
	09	19.0	17.0 - 19.0			Х					
3-MW02DW (5)	00	1.0	0.0 - 1.0		Х	X					
	02	5.0	3.0 - 5.0		X	X					
3-MW04 ⁽⁴⁾	00	1.0	0.0 - 1.0			X					
	04	9.0	7.0 - 9.0			X					

						ана на таки на	Sample	Analyses			
Sample Location	Depth Interval Identification	Depth of Borehole (feet, bgs)	Sampling Interval (feet, bgs)	EnSys Sample (PAH RISC ®)	TCL Volatiles	TCL Semivolatiles	TCL Pesticides/ PCBs	TAL Metals	Engineering Parameters ⁽³⁾	Duplicate Samples	Matrix Spike/Matrix Spike Duplicate
3-MW05 (4)	00	1.0	0.0 - 1.0		X	X	Х	Х	X		
	10	21.0	19.0 - 21.0		x	Х	Х	X	X		
3-MW06 ⁽⁴⁾	00	1.0	0.0 - 1.0			Х					
	04	9.0	7.0 - 9.0			Х					
3-MW07 ⁽⁴⁾	00	1.0	0.0 - 1.0			X					
	02	5.0	3.0 - 5.0			X					
3-MW08 ⁽⁴⁾	00	1.0	0.0 - 1.0			X					
	02	5.0	3.0 - 5.0			X					
3-MW09 ⁽⁵⁾	00	1.0	0.0 - 1.0		X	X					
	02	5.0	3.0 - 5.0		x	Х					
3-MW10 ⁽⁵⁾	00	1.0	0.0 - 1.0		x	X					
	02	5.0	3.0 - 5.0		x	Х					
3-MW11 ⁽⁵⁾	00	1.0	0.0 - 1.0		x	X					
	08	19.0	17.0 - 19.0		X	Х					
3-MW111W ⁽⁵⁾	00	1.0	0.0 - 1.0		X	Х					
	08	19.0	17.0 - 19.0		X	X					

SOIL SAMPLING SUMMARY REMEDIAL INVESTIGATION, 1994-95 OPERABLE UNIT NO. 12 (SITE 3) MCB CAMP LEJEUNE, NORTH CAROLINA

							Sample	Analyses			
Sample Location	Depth Interval Identification	Depth of Borehole (feet, bgs)	Sampling Interval (feet, bgs)	EnSys Sample (PAH RISC ®)	TCL Volatiles	TCL Semivolatiles	TCL Pesticides/ PCBs	TAL Metals	Engineering Parameters ⁽³⁾	Duplicate Samples	Matrix Spike/Matrix Spike Duplicate
3-MW12 ⁽⁵⁾	00	1.0	0.0 - 1.0		X	Х					
	02	5.0	3.0 - 5.0		X	X					
3-MW13 ⁽⁵⁾	00	1.0	0.0 - 1.0		X	X					e e
	04	9.0	7.0 - 9.0		X	X					

Notes:

⁽¹⁾ Sample was collected during the first phase of the soil investigation (September 19 through September 22, 1994)

⁽²⁾ EnSys confirmation sample

⁽³⁾ Engineering Parameters includes Particle Size, Atterberg limits, and TOC

⁽⁴⁾ Sample was collected during the second phase of the soil investigation (November 15 through November 22, 1994)

⁽⁵⁾ Sample was collected during the third phase of the soil investigation (June 13 through June 20, 1995)

⁽⁶⁾ Duplicate samples were collected for both PAH RISC ® and TCL Semivolatiles

Reference: Baker Environmental, Inc., 1996. <u>Remedial Investigation Report Operable Unit No. 12 (Site 3)</u>. Marine Corps Base, Camp Lejeune, North Carolina.

					Sample	Analyses			
Sample Location	Date of Sampling	TCL Volatiles	TCL Semivolatiles	TCL Pest.icides/ PCBs	TAL Inorganics	TAL Dissolved Metals	Engineering Parameters ⁽¹⁾	Duplicate Samples	Matrix Spike/Matrix Spike Duplicate
Shallow Monitoring Wells, Round 1		1 <u></u>			•	<u>.</u>	1		•
3-MW02-01	12/1/94		X						
3-MW03-01	12/1/94		X					· ·	
3-MW04-01	12/1/94		X						
3-MW05-01	12/2/94		X						
3-MW06-01	12/1/94		X						
3-MW07-01	12/1/94	Х	X	X	X	X			
3-MW08-01	12/1/94	X	X	X	x	X			
Intermediate Monitoring Well, Round 1				A <u></u> ,		<u></u>	A		<u> </u>
3-MW02IW-01	12/3/94	X	X	X	X	X		X	X
Shallow Monitoring Wells, Round 2		A		<u>Antonio (1997), and anno (1997)</u>	A			<u></u>	
3-MW01-01	7/13/95	X	X						
3-MW02-02	7/11/95	X	Х				Х		
3-MW03-02	7/13/95	Х	X						
3-MW04-02	7/11/95	X	X						

- 143

					Sample	Analyses			
Sample Location	Date of Sampling	TCL Volatiles	TCL Semivolatiles	TCL Pest.icides/ PCBs	TAL Inorganics	TAL Dissolved Metals	Engineering Parameters ⁽¹⁾	Duplicate Samples	Matrix Spike/Matrix Spike Duplicate
3-MW05-02	7/11/95	х	X						
3-MW06-02	7/12/95	Х	Х	· ·					
3-MW07-02	7/12/95	X	X						
3-MW08-02	7/11/95	X	Х				Х		
3-MW09-01	7/13/95	X	Х						
3-MW10-01	7/12/95	X	Х						
3-MW11-01	7/12/95	X	X						
3-MW12-01	7/12/95	x	Х						
3-MW13-01	7/13/95	Х	Х						
Intermediate and Deep Monitoring Wells, Round 2									
3-MW02IW-02	6/12/95	X	Х						
3-MW02DW-01	7/13/95	X	X	· · · · · · · · · · · · · · · · · · ·			X		
3-MW111W-01	7/12/95	Х	Х						

					Sample	Analyses	<u> </u>		
Sample Location	Date of Sampling	TCL Volatiles	TCL Semivolatiles	TCL Pest.icides/ PCBs	TAL Inorganics	TAL Dissolved Metals	Engineering Parameters ⁽¹⁾	Duplicate Samples	Matrix Spike/Matrix Spike Duplicate
Shallow Monitoring Wells, Round 3	• • • • • • • • • • • • • • • • • • •	1	· · · · · ·	<u> </u>	<u></u>	<u></u>			
3-MW01-02	9/28/95	X	X						
3-MW02-03	9/28/95	Х	Х						
3-MW03-03	9/28/95	X	Х						
3-MW04-03	9/28/95	X	Х						
3-MW05-03	9/28/95	X	Х						
3-MW06-03	9/28/95	Х	Х						
3-MW07-03	9/29/95	X	Х						
3-MW08-03	9/29/95	х	Х						
3-MW09-02	9/29/95	х	Х						
3-MW10-02	9/29/95	Х	Х						
3-MW11-02	9/29/95	х	Х						
3-MW12-02	9/29/95	X	Х						
3-MW13-02	9/29/95	X	Х						

GROUNDWATER SAMPLING SUMMARY REMEDIAL INVESTIGATION, 1994-95 OPERABLE UNIT NO. 12 (SITE 3) MCB CAMP LEJEUNE, NORTH CAROLINA

			Sample Analyses Matrix										
Sample Location	Date of Sampling	TCL Volatiles	TCL Semivolatiles	TCL Pest.icides/ PCBs	TAL Inorganics	TAL Dissolved Metals	Engineering Parameters ⁽¹⁾	Duplicate Samples	Matrix Spike/Matrix Spike Duplicate				
Intermediate and Deep Monitoring Wells, Round 3	<u></u>	<u></u>			<u></u>	, .		<u> </u>					
3-MW02IW-03	9/29/95	x	X										
3-MW02DW-02	9/28/95	X	Х										
3-MW11IW-02	9/29/95	x	Х										
Deep Monitoring Well, Round 4													
3-MW02DW-03	1/29/96	x	Х										

Note:

⁽¹⁾ Engineering Parameters include (BOD, COD, TDS, TSS, and TOC)

Reference: Baker Environmental, Inc., 1996. <u>Remedial Investigation Report Operable Unit No. 12 (Site 3)</u>. Marine Corps Base, Camp Lejeune, North Carolina.

,								Detection Summa	ary		
Environmental Medium	Fraction	Constituent	Comparison Criteria	Comparison Criteria	Min. Concentration	Max. Concentration	Max. Concentration Location	No. of Detections/ Total No. of Samples	Number of Detections Above Comparison Criteria ⁽¹⁾	Number of Detections Above Comparison Criteria ⁽¹⁾	Distribution
			RBC Residential Soils (µg/kg)		(µg/kg)	(µg/kg)			RBC Residential Soils		
Surface Soils	Volatile Organic	Toluene	1,600,000	NE	2J	2J	3-MW13-00	2/17	0	NA	Treatment Area
	Compounds	Ethylbenzene	780,000	NE	2J	2J	3-TA-SB50-00	1/17	0	NA	Treatment Area
		Xylenes (total)	16,000,000	NE	6]	, 6J	3-TA-SB50-00	1/17	0	NA	Treatment Area
	Semivolatile	Phenol	4,700,000	NE	38J	38J	3-RS-SB03-00	1/58	0	NA	Rail Spur
	Compounds	Naphthalene	310,000	NE	38J	200J	3-NA-SB05-00	2/58	0	NA	North Area, Rail Spur
		2-Methyl-naphthalene	310,000	NE	41J	41J	3-RS-SB02-00	1/58	0	NA	Rail Spur
		Acenaphthylene	230,000	NE	40J	2,700	3-NA-SB03-00	16/58	0	NA	North Area, Rail Spur, Treatment Area
		Acenaphthene	470,000	NE	44J	460J	3-NA-SB05-00	2/58	0	NA	North Area, Rail Spur
		Dibenzofuran	31,000	NE	370J	370J	3-NA-SB05-00	1/58	0	NA	North Area
		Fluorene	310,000	NE	39J	620J	3-NA-SB05-00	5/58	0	NA	North Area, Rail Spur, Treatment Area
		Penanthrene	230,000	NE	37J	2,900	3-NA-SB05-00	9/58	0	NA	North Area, Rail Spur, Treatment Area
		Anthracene	2,300,000	NE	40J	7,700	3-NA-SB03-00	26/58	0	NA	Scattered .
		Carbazole	32,000	NE	40J	830J	3-NA-SB03-00	14/58	0	NA	Scattered
		di-n-Butyl-phthalate	780,000	NE	37J	340J	3-TA-SB13-00	37/58	0	NA	Scattered
		Fluoranthene	310,000	NE	42J	11,000	3-NA-SB03-00	32/58	0	NA	Scattered
		Pyrene	230,000	NE	39J	14,000	3-NA-SB03-00	34/58	0	NA	Scattered
		Benzo(a)anthracene	880	NE	32J	8,300	3-NA-SB03-00	24/58	5	NA	Scattered
		Chrysene	88,000	NE	40J	12,000	3-NA-SB03-00	32/58	0	NA	Scattered
		bis(2-Ethylhexyl)phthalate	46,000	NE	36J	91J	3-NA-SB01-00	30/58	0	NA	Scattered
		Benzo(b)fluoranthene	880	NE	39J	13,000	3-NA-SB03-00	37/58	6	NA	Scattered
		Benzo(k)fluoranthene	8,800	NE	37J	9,000	3-NA-SB03-00	34/58	1	NA	Scattered
		Benzo(a)pyrene	88	NE	38J	8,700	3-NA-SB03-00	30/58	20	NA	Scattered
		Indeno(1,2,3-cd)pyrene	880	NE	40J	6,800	3-NA-SB03-00	26/58	5	NA	Scattered
		Dibenzo(a,h)anthracene	88	NE	40J	2,900	3-NA-SB03-00	16/58	6	NA	North Area, Rail Spur, Treatment Area
		Benzo(g,h,i)perylene	230,000	NE	39J	4700	3-NA-SB03-00	22/58	0	NA	North Area, Rail Spur, Treatment Area

SUMMARY OF THE ANALYTICAL RESULTS FOR SURFACE SOIL REMEDIAL INVESTIGATION, 1994-95 OPERABLE UNIT NO. 12 (SITE 3) MCB CAMP LEJEUNE, NORTH CAROLINA

								Detection Summa	ary		
Environmental Medium	Fraction	Constituent	Comparison Criteria	Comparison Criteria	Min. Concentration	Max. Concentration	Max. Concentration Location	No. of Detections/ Total No. of Samples	Number of Detections Above Comparison Criteria ⁽¹⁾	Number of Detections Above Comparison Criteria ⁽¹⁾	Distribution
	<u>.</u>	······································	RBC Residential Soils (mg/kg)	Base Background (mg/kg)	, (mg/kg)	(mg/kg)			RBC Residential Soils	Base Background	
Surface Soils	Inorganics	Aluminum	7,800	9,570	1,740	4,240	3-MW05-00	2/2	0	0	
(Cont.)		Barium	550	20.8	6.4J	7.8J	3-MW05-00	2/2	0	0	
		Calcium	NE	10,700	4,020	67,700	3-MW02IW-00	2/2	NA	1	Treatment Area
		Chromium	39	12.5	2.7	7.1	3-MW02IW-00	2/2	0	0	
		Iron	23,000	9,640	1,390	1,970	3-MW05-00	2/2	0	0	••
		Lead	400	142	4.4J	4.4J	3-MW02IW-00	1/2	0	0	••
1		Magnesium	NE	610	150	1,020	3-MW021W-00	2/2	NA	1	Treatment Area
		Manganese	1,100	66	11.7	13.1	3-MW05-00	2/2	0	0	
		Sodium	NE	126	112	112	3-MW021W-00	1/2	NA	0	••
·	1	Vanadium	55	28.3	3.3	5.2	3-MW05-00	2/2	0	0	
		Zinc	2,300	2.4	16.6	16.6	3-MW02IW-00	1/2	0	0	

Notes:

⁽¹⁾ Shaded blocks indicate detections above comparison criteria.

NE = No criteria established NA = Not applicable J = Estimated value RBC = Risk-Based Concentration μg/kg = microgram per kilogram (ppb) mg/kg = milligram per kilogram (ppm)

Reference: Baker Environmental, Inc. 1996. <u>Remedial Investigation Report Operable Unit No. 12 (Site 3)</u>. Marine Corps Base, Camp Lejeune, North Carolina.

				Detection Summary Number of Number of							
Environmental Medium	Fraction	Constituent	Comparison Criteria	Comparison Criteria	Min. Concentration	Max. Concentration	Max. Concentration Location	No. of Detections/ Total No. of Samples	Number of Detections Above Comparison Criteria ⁽¹⁾	Number of Detections Above Comparison Criteria ⁽¹⁾	Distribution
	A	<u></u>	RBC Residential Soils (µg/kg)		(µg/kg)	(µg/kg)			RBC Residential Soils		
Subsurface	Volatile Organic	Acetone	780,000	NE	120	120	3-NA-SB17A-02	1/18	0	NA	North Area
Soils	Compounds	Carbon Disulfide	780,000	NE	1J	1J	3-MW12-02	1/18	0	NA	West of North Area
		Chloroform	100,000	NE	3J	3J	3-MW111W-08	1/18	0	NA	West of Treatment Area
		2-Butanone	4,700,000	NE	3J	3J	3-NA-SB19-02	1/18	0	NA	North Area
		Benzene	22,000	NE	2J	2J	3-MW02IW-03	2/18	0	NA	Treatment Area
		Toluene	1,600,000	NE	3J	13	3-TA-SB49-04	4/18	0	NA	Treatment Area
		Ethylbenzene	780,000	NE	3J	110	3-TA-SB49-04	4/18	0	NA	Treatment Area
		Styrene	1,600,000	NE	4J	5J	3-MW09-02	2/18	0	NA	Treatment Area
		Xylenes (total)	16,000,000	NE	7J	300	3-TA-SB49-04	4/18	0	NA	Treatment Area
	Semivolatile	Phenol	4,700,000	NE	7,200J	7,200J	3-TA-SB48-08	1/47	0	NA	Treatment Area
	Organic	2-Methylphenol	390,000	NE	2,000J	2,000J	3-TA-SB48-08	1/47	0	NA	Treatment Area
	Compounds	4-Methylphenol	39,000	NE	5,900J	5,900J	3-TA-SB48-08	1/47	0	NA	Treatment Area
		Naphthalene	310,000	NE	55J	95,000	3-TA-SB48-08	9/47	0	NA	Treatment Area
		2-Methylnaphthalene	310,000	NE	100J	31,000	3-TA-SB48-08	6/47	0	NA	Treatment Area
<i>i</i>		Acenaphthylene	230,000	NE	190J	190J	3-MW02IW-09	1/47	0	NA	Treatment Area
		Acenaphthene	470,000	NE	560	47,000	3-TA-SB48-08	6/47	0	NA	Treatment Area
ļ		4-Nitrophenol	480,000	NE	570J	570J	3-TA-SB50-04	1/47	0	NA	Treatment Area
		Dibenzofuran	31,000	NE	440	36,000J	3-TA-SB48-08	6/47	0	NA	Treatment Area
		Fluorene	310,000	NE	710	35,000J	3-TA-SB48-08	6/47	0	NA	Treatment Area
		N-nitrosodiphenylamine	13,000	NE	400J	1,100J	3-TA-SB48-08	2/47	0	NA NA	Treatment Area
		Phenanthrene	230,000	NE	61J	110,000J	3-TA-SB50-04	8/47	0	NA	Treatment Area
	1	Anthracene	2,300,000	NE	42J	12,000J	3-TA-SB48-08	7/47	0	NA	I reatment Area
		Carbazole	32,000	NE	200J	4,900	3-TA-SB50-04	6/47	0	NA	Treatment Area
		di-n-Butyl-phthalate	780,000	NE	39J	170J	3-TA-SB43-03	18/47	0	NA	Scattered
		Fluoranthene	310,000	NE	51J	66,000	3-TA-SB50-04	7/47	0	NA	Treatment Area

256

				Detection Summary Number of Number of Detections Detections							
Environmental Medium	Fraction	Constituent	Comparison Criteria	Comparison Criteria	Min. Concentration	Max. Concentration	Max. Concentration Location	No. of Detections/ Total No. of Samples	Number of Detections Above Comparison Criteria ⁽¹⁾	Number of Detections Above Comparison Criteria ⁽¹⁾	Distribution
	<u> </u>		RBC Residential Soils (µg/kg)		(µg/kg)	(µg/kg)			RBC Residential Soils		
Subsurface Soils (Cont.)		Pyrene	230,000	NE	43J	38,000J	3-TA-SB48-08	10/47	0	NA	Treatment Area, North Area, Rail Spur
-		Benzo(a)anthracene	880	NE	773	8,000	3-TA-SB50-04	7/47	5	NA	Treatment Area
		Chrysene	88,000	NE	86J	8,400J	3-TA-SB48-08	7/47	0	NA	Treatment Area
		Bis(2-ethylhexyl)phthalate	46,000	NE	533	240J	3-MW111W-08	2/47	0	NA	West of Treatment Area
		Benzo(b)fluoranthene	880	NE	96J	3,500J	3-TA-SB48-08	7/47	4	NA	Treatment Area
		Benzo(k)fluoranthene	8,800	NE	79J	3,300J	3-TA-SB50-04	6/47	0	NA	Treatment Area
		Benzo(a)pyrene	88	NE	55J	3,300J	3-TA-SB48-08	7/47	6	NA	Treatment Area
		Indeno(1,2,3-cd)pyrene	880	NE	46J	3,100J	3-TA-SB48-08	5/47	1	NA	Treatment Area
		Benzo(g,h,i)perylene	230,000	NE	71J	1,200J	3-TA-SB48-08	4/47	0	NA	Treatment Area
		· ·	RBC Residential Soils (mg/kg)	Base Background (mg/kg)	(mg/kg)	(mg/kg)			RBC Residential Soils	Base Background	
	Inorganics	Aluminum	7,800	11,000	3,950	6,570	3-MW021W-03	2/2	0	0(2)	
		Barium	550	22.6	4.6J	6.6J	3-MW02IW-03	2/2	0	0	
		Calcium	NE	4,410	77.4	638	3-MW02IW-03	2/2	NA	0	
		Chromium	39	66.4	3.7	7.5	3-MW02IW-03	2/2	0	0	**
· · · ·		Iron	23,000	90,500	734	1,030	3-MW02IW-03	2/2	0	0	
		Lead	400	21.4	5.7J	5.7J	3-MW02IW-03	1/2	0	0	
		Magnesium	NE	852	104	112	3-MW02IW-03	2/2	NA	0	
		Manganese	1,100	19.9	2.8J	2.8J	3-MW02IW-03	1/2	0	0	
		Vanadium	55	69.4	3.7	5	3-MW02IW-03	2/2	0	0	

SUMMARY OF THE ANALYTICAL RESULTS FOR SUBSURFACE SOIL REMEDIAL INVESTIGATION, 1994-95 OPERABLE UNIT NO. 12 (SITE 3) MCB CAMP LEJEUNE, NORTH CAROLINA

Notes:

(i) Shaded blocks indicate detections above comparison criteria.

⁽²⁾ Detections compared to maximum base background concentrations.

NE = No criteria established

NA = Not applicable J = Estimated value RBC = Risk-Based Concentration µg/kg = microgram per kilogram (ppb)

mg/kg = milligram per kilogram (ppm)

الجاري المتحدي

Reference: Baker Environmental, Inc., 1996. Remedial Investigation Report Operable Unit No. 12 (Site 3). Marine Corps Base, Camp Lejeune, North Carolina.

							Detec	tion Summar	у		
									Number of	Number of	
								No. of	Detections	Detections	
							Max.	Detections/	Above	Above	
Environmental	Providence	Constituent	Comparison	Comparison	Min.	Max.	Concentration	1 otal No.	Criteric(I)	Comparison	Distribution
Medium	Fraction	Constituent	Criteria	NCWOS	Concentration	Concentration	Location	of Samples	MCI	NCWOS	Distribution
			MCL (μg/L)	$(\mu g/L)$	(µg/L)	(µg/r)			MCL	newqs	
Groundwater -	Volatile	Carbon Disulfide	NE	700	1 J	1 J	3-MW07-01	1/2	NA	0	Treatment Area
Surficial	Organic .	Benzene	5	1	13J	40J	3-MW08-01	2/2	2(1)	2	Treatment Area
Aquifer	Compounds	Toluene	1,000	1,000	5 J	10 J	3-MW08-01	2/2	0	0	Treatment Area
(Round One)		Xylenes (total)	10,000	530	6 J	9 J	3-MW08-01	2/2	0	0	Treatment Area
	Semivolatile	Phenol	NE	300	3 J	3 J	3-MW02-01	1/7	NA	0	Treatment Area
	Organic	2-Methylphenol	NE	NE	1 J	1 J	3-MW02-01	1/7	NA	NA	Treatment Area
	Compounds	4-Methylphenol	NE	NE	31	3 J	3-MW02-01	1/7	NA	NA	Treatment Area
		2-Nitrophenol	NE	NE	2 J	2 J	3-MW02-01	1/7	NA	NA	Treatment Area
		2,4-Dimethylphenol	NĒ	NE	2 J	2 J	3-MW02-01	1/7	NA	NA	Treatment Area
		Naphthalene	NE	21	5 J	64	3-MW02-01	4/7	NA	1	Treatment Area
		2-Methylnaphthalene	NE	NE	65	65	3-MW02-01	1/7	NA	NA	Treatment Area
		Acenaphthylene	NE	210	3 J	3 J	3-MW02-01	1/7	NA	0	Treatment Area
		Acenaphthene	NĒ	800	2 J	280	3-MW02-01	2/7	NA	0	Treatment Area
		Dibenzofuran	NE	NE	2 J	230	3-MW02-01	2/7	NA	NA	Treatment Area
		Fluorene	NE	280	1 J	210	3-MW02-01	2/7	NA	0	Treatment Area
		Phenanthrene	NĒ	210	410	410	3-MW02-01	1/7	NA	1	Treatment Area
ļ]	Anthracene	NE	2,100	33	33	3-MW02-01	1/7	NA	0	Treatment Area
		Carbazole	NE	NE	39 J	39 J	3-MW02-01	1/7	NA	NA	Treatment Area
		di-n-Butylphthalate	NE	700	1 J	1 J	3-MW02-01	1/7	NA	0	Treatment Area
		Fluoranthene	NE	280	100	100	3-MW02-01	1/7	NA	0.	Treatment Area
		Pyrene	NE	210	58	58	3-MW02-01	1/7	NA	0	Treatment Area
1		Benzo(a)anthracene	NE	0.05	8 J	8 J	3-MW02-01	1/7	NA	1	Treatment Area
		Chrysene	NE	5	8 J	8 J	3-MW02-01	1/7	NA	1	Treatment Area
ļ]	Benzo(b)fluroanthene	NE	NE	3 J	3 J	3-MW02-01	1/7	NA	NA	Treatment Area
		Benzo(k)fluoranthene	NE	NE	3 J	3 J	3-MW02-01	1/7	NA	NA	Treatment Area
		Benzo(a)pyrene	2	NE	3 J	3 J	3-MW02-01	1/7		NA	Treatment Area

							Detec	tion Summar	у		
		1							Number of	Number of	
								No. of	Detections	Detections	
1	1		1				Max.	Detections/	Above	Above	
Environmental			Comparison	Comparison	Min.	Max.	Concentration	Total No.	Comparison	Comparison	
Medium	Fraction	Constituent	Criteria	Criteria	Concentration	Concentration	Location	of Samples	Criteria	Criteria	Distribution
			MCL	NCWQS	(µg/L)	(µg/L)	[MCL	NCWQS	
			(µg/L)	(µg/L)							
Groundwater -	Inorganics	Aluminum	50	NE	447	4,030	3-MW08-01	2/2	2	NA.	
Surficial		Barium	2,000	2,000	88.1	120	3-MW07-01	2/2	0	0	
Aquifer	1	Calcium	NE	NE	2,870	3,870	3-MW08-01	2/2	0	0	••
(Round One)		Chromium	100	50	31.6	31.6	3-MW08-01	1/2	0	0	
		Iron	300	300	840	2,190	3-MW08-01	2/2	2	2	
		Lead	15	15	3.2J	3,2J	3-MW08-01	1/2	0	0	
		Magnesium	NE	NE	2,080	4,200	3-MW07-01	2/2	NA	NA	
		Manganese	50	50	17.1J	21.7J	3-MW08-01	2/2	0	0	
		Nickel	100	100	34.1	34.1	3-MW08-01	1/2	0	0	
		Potassium	NE	NE	1,490	1,900	3-MW08-01	2/2	NA	NA	
		Sodium	NE	NE	4,750	8,890	3-MW08-01	2/2	NA	NA	
		Zinc	500	2,100	114	114	3-MW08-01	1/2	0	0	
Groundwater -	Volatile	Benzene	5	1	11 J	11 J	3-MW02IW-01	1/1	1	1	
Castle Hayne	Organic	Toluene	1,000	1,000	4 J	4 J	3-MW02IW-01	- 1/1	0	0	
(Round One)	Compounds	Xylenes (total)	100,000	530	7 J	7 J	3-MW02IW-01	1/1	0	0	
	Semivolatile	Naphthalene	NE	21	3 J	3 J	3-MW021W-01	1/1	NA	0	**
	Organic	Acenaphthylene	NE	210	3 J	3 J	3-MW02IW-01	1/1	NA	0	
	Compounds	Acenaphthene	NE	800	95	95	3-MW021W-01	1/1	NA	0	
		Dibenzofuran	NE	NE	57	57	3-MW02IW-01	1/1	NA	NA	
		Fluorene	NE	280	59	59	3-MW02IW-01	1/1	NA	0	
	1	Phenanthrene	NE	210	75	75	3-MW02IW-01	1/1	NA	0	
		Anthracene	NE	2,100	5 J	5 J	3-MW02IW-01	1/1	NA	0	
		Fluoranthene	NE	280	10	10	3-MW02IW-01	1/1	NA	0	
		Pyrene	NE	210	7 J	7 J	3-MW02IW-01	1/1	NA	0	••

	· · · · · · · · · · · · · · · · · · ·				Detection Summary						
								[Number of	Number of	
			ł				5	No. of	Detections	Detections	
							Max.	Detections/	Above	Above	
Environmental			Comparison	Comparison	Min.	Max.	Concentration	Total No.	Comparison	Comparison	
Medium	Fraction	Constituent	Criteria	Criteria	Concentration	Concentration	Location	of Samples	Criteria ⁽¹⁾	Criteria ⁽¹⁾	Distribution
			MCL	NCWQS	(µg/L)	(µg/L)			MCL	NCWQS	
			(µg/L)	(µg/kg)							
Groundwater -	Volatile	Chloroform	100	0.19	1 J	1 J	3-MW02-02	1/13	0	1	Treatment Area
Surficial	Organic										
Aquifer	Compounds	Trichloroethene	5	NE	1 J	1 J	3-MW12-01	2/13	0	NA	Treatment Area
(Round Two)	Semivolatile	Naphthalene	NE	21	4 J	110	3-MW06-02	2/13	NA	1	Rail Spur
]	Organic	2-Methylnaphthalene	NE	NE	10	10	3-MW06-02	1/13	NA	NA	Rail Spur
	Compounds	Acenaphthene	NE	800	24	24	3-MW06-02	1/13	NA	0	Rail Spur
		Dibenzofuran	NE	NE	25	25	3-MW06-02	1/13	NA	NA	Rail Spur
		Fluorene	NE	280	28	28	3-MW06-02	1/13	NA	0	Rail Spur
		Phenanthrene	NE	210	21	21	3-MW06-02	1/13	NA	0	Rail Spur
		Anthracene	NE	2,100	1 J	1 J	3-MW06-02	1/13	NA	0	Rail Spur
ļ		Carbazole	NE	NE	10	10	3-MW06-02	1/13	NA	NA	Rail Spur
	1	Fluoranthenene	NE	280	2 J	2 J	3-MW06-02	1/13	NA	0	Rail Spur
		bis(2-Ethylhexyl)phthalate	6	3	2 J	11	3-MW09-01	4/13	1	2	Scattered

2.16

					Detection Summary							
									Number of	Number of		
								No. of	Detections	Detections		
							Max.	Detections/	Above	Above		
Environmental			Comparison	Comparison	Min.	Max.	Concentration	Total No.	Comparison	Comparison		
Medium	Fraction	Constituent	Criteria	Criteria	Concentration	Concentration	Location	of Samples	Criteria ⁽¹⁾	Criteria	Distribution	
			MCL	NCWQS	(µg/L)	(µg/L)			MCL	NCWQS		
			(µg/L)	(µg/L)								
Groundwater -	Volatile	1,1-Dichloroethene	7	7	1 J	1 J	3-MW02IW-02	1/3	0	0	Treatment Area	
Castle Hayne	Organic	Chloroform	100	0.19	1 J	1 J	3MW111W-01	1/3	0	1	West of	
(Round Two)	Compounds						·				Treatment Area	
		Trichloroethene	5	NE	1 J	1 J	3-MW02IW-02	1/3	0	NA	Treatment Area	
		Benzene	5	1	3 J	3 J	3-MW02DW-01	2/3	0	1	Treatment Area	
		Toluene	1,000	1000	2 J	15 J	3-MW02DW-01	1/3	0	0	Treatment Area	
		Ethylbenzene	700	29	14 J	14 J	3-MW02DW-01	1/3	0	0	Treatment Area	
		Xylenes (total)	10,000	530	32 J	32 J	3-MW02DW-01	1/3	0	0	Treatment Area	
	Semivolatile	Phenol	NE	300	430 J	430 J	3-MW02DW-01	1/3	NA	1	Treatment Area	
	Organic	2-Methylphenol	NE	NE	300 J	300 J	3-MW02DW-01	1/3	NA	NA	Treatment Area	
	Compounds	4-Methylphenol	NE	NE	690 J	690 J	3-MW02DW-01	1/3	NA	NA	Treatment Area	
		2,4-Dimethylphenol	NE	NE	170 J	170 J	3-MW02DW-01	1/3	NA	NA	Treatment Area	
		Naphthalene	NE	21	2,400 J	2,400 J	3-MW02DW-01	1/3	NA	1	Treatment Area	
		2-Methylnaphthalene	NE	NE	250 J	250 J	3-MW02DW-01	1/3	NA	0	Treatment Area	
		Acenaphthylene	NE	210	1 J	1 J	3-MW02DW-01	1/3	NA	NA	Treatment Area	
		Acenaphthene	NE	800	34	320 J	3-MW02IW-02	2/3	NA	0	Treatment Area	
		Dibenzofuran	NE	NE	17	140 J	3-MW02DW-01	2/3	NA	0	Treatment Area	
		Fluorene	NE	280	23	160 J	3-MW02DW-01	2/3	NA	NA	Treatment Area	
		Phenanthrene	NE	210	130 J	130 J	3-MW02DW-01	1/3	NA	0	Treatment Area	
		Anthracene	NE	2,100	3 J	13 J	3-MW02DW-01	2/3	NA	0	Treatment Area	
		Carbazole	NE	NE	3 J .	87 J	3-MW02DW-01	2/3	NA	0	Treatment Area	
		Fluoranthene	NE	280	17	21 J	3-MW02DW-01	2/3	NA	0	Treatment Area	
		Pyrene	NE	210	11	14 J	3-MW02DW-01	2/3	NA	0	Treatment Area	

		·	T		Detection Summary						
1									Number of	Number of	
				-				No. of	Detections	Detections	
							Max.	Detections/	Above	Above	
Environmental			Comparison	Comparison	Min.	Max.	Concentration	Total No.	Comparison	Comparison	Distribution
Medium	Fraction	Constituent	Criteria	Criteria	Concentration	Concentration	Location	of Samples	Criteria	Criteria	Distribution
-			MCL (ug/L)	NCWQS	(μg/L)	(µg/L)			MCL	NCWQS	
Groundwater -	Volatile	Benzene	5	1	3 J	3 J	3-MW02-03	1/13	0	1	Treatment Area
Surficial	Organic	Toluene	1,000	1,000	8 J	11	3-MW02-03	2/13	0	0	Treatment Area
Aquifer	Compounds	Ethylbenzene	700	29	1 J	10	3-MW02-03	2/13	0	0	Treatment Area
(Round Three)		Xylenes (total)	10,000	530	20	20	3-MW02-03	1/13	0	0	Treatment Area
1	Semivolatile	Phenol	NE	300	68	68	3-MW02-03	1/13	NA	0	Treatment Area
	Organic	2-Methylphenol	NE	NE	160 J	160 J	3-MW02-03	1/13	NA	NA	Treatment Area
	Compounds	4-Methylphenol	NE	NE	200 J	200 J	3-MW02-03	1/13	NA	NA	Treatment Area
		2,4-Dimethylphenol	NE	NE	64 J	64 J	3-MW02-03	1/13	NA	NA	Treatment Area
		Naphthalene	NE	21	360	1,500	3-MW02-03	2/13	NA	2	Treatment Area
		2-Methylnaphthalene	NE	NE	23	94	3-MW02-03	2/13	NA	NA	Treatment Area
		Acenaphthylene	NE	210	2 J	2 J	3-MW02-03	1/13	NA	0	Treatment Area
	*	Acenaphthene	NE	800	45 J	55	3-MW02-03	2/13	NA	0	Treatment Area
		Dibenzofuran	NE	NE	24	120 J	3-MW02-03	2/13	NA	NA	Treatment Area
		Fluorene	NE	280	20	80	3-MW02-03	2/13	NA	0	Treatment Area
		Phenanthrene	NE	210	23	97 J	3-MW02-03	2/13	NA	0	Treatment Area
		Anthracene	NE	2,100	5 NJ	5 NJ	3-MW02-03	1/13	NA	0	Treatment Area
		Carbazole	NE	NE	11 J	82	3-MW02-03	2/13	NA	NA	Treatment Area
]]	Fluoranthene	NE	280	3 J	10 J	3-MW02-03	2/13	NA	0	Treatment Area
		Pyrene	NE	210	2 J	8 J	3-MW02-03	2/13	NA	0	Treatment Area
		bis(2-Ethylhexyl)phthalate	6	3	1 J	1 J	3-MW02-03	2/13	0	0	Treatment Area

20

SUMMARY OF THE ANALYTICAL RESULTS FOR GROUNDWATER REMEDIAL INVESTIGATION, 1994-95 OPERABLE UNIT NO. 12 (SITE 3) MCB CAMP LEJEUNE, NORTH CAROLINA

					Detection Summary						
									Number of	Number of	
								No. of	Detections	Detections	
							Max.	Detections/	Above	Above	
Environmental			Comparison	Comparison	Min.	Max.	Concentration	Total No.	Comparison	Comparison	
Medium	Fraction	Constituent	Criteria	Criteria	Concentration	Concentration	Location	of Samples	Criteria ⁽¹⁾	Criteria ⁽¹⁾	Distribution
Groundwater -	Semivolatile	Phenol	NE	300	1 J	1 J	3-MW111W-02	1/3	NA	0	Treatment Area
Castle Hayne	Organic	Naphthalene	NE	21	4 J	4 J	3-MW02IW-03	1/3	NA	0	Treatment Area
(Round Three)	Compounds	2-Methylnaphthalene	NE	NE	1 J	1 J	3-MW02IW-03	1/3	NA	NA	Treatment Area
		Acenaphthene	NE	800	25	25	3-MW02IW-03	1/3	NA	0	Treatment Area
		Dibenzofuran	NE	NE	29	29	3-MW02IW-03	1/3	NA	NA	Treatment Area
		Fluorene	NE	280	35	35	3-MW02IW-03	1/3	NA	0	Treatment Area
		Phenanthrene	NE	210	120	120	3-MW021W-03	1/3	NA	0	Treatment Area
		Anthracene	NE	2,100	11 NJ	11 NJ	3-MW02IW-03	1/3	NA	0	Treatment Area
		Carbazole	NE	NE	J	4 J	3-MW021W-03	1/3	NA	NA	Treatment Area
		Fluoranthene	NE	280	28	28	3-MW02IW-03	1/3	NA	0	Treatment Area
		Pyrene	NE	210	16	16	3-MW02IW-03	1/3	NA	0	Treatment Area

Notes:

(1) Shaded blocks indicate detections above comparison criteria.

NE = No criteria established

12

NA = Not applicable

J =Estimated value

MCL = Federal Maximum Contaminant Level

NCWQS = North Carolina Water Quality Standard

NJ = Estimated value/tentative identification

 $\mu g/L = microgram per liter (ppb)$

Reference: Baker Environmental, Inc., 1996. Remedial Investigation Report Operable Unit No. 12 (Site 3). Marine Corps Base, Camp Lejeune, North Carolina.

CONTAMINANTS OF POTENTIAL CONCERN (COPCs) EVALUATED DURING THE HUMAN HEALTH RISK ASSESSMENT OPERABLE UNIT NO. 12 (SITE 3) MCB CAMP LEJEUNE, NORTH CAROLINA

	Surface	Subsurface	Round 2	Combined Rounds
Contaminant	Soil	Soil	Groundwater	Groundwater
Volatiles:				
1,1-Dichloroethene	1		x	X
Chloroform			X	X
Trichloroethene				
Benzene			X	X
Toluene			1	
Ethylbenzene				
Xylenes (total)				
Semivolatiles:				
Phenol				
2-Methylphenol			X	X
4-Methylphenol			x	X
2,4-Dimethylphenol			X	X
Naphthalene			X	X
2-Methylnaphthalene			X	X
Acenaphthene			x	X
Acenaphthylene				
Dibenzofuran	1	X	x	X
Fluorene			X	X
Phenanthrene			X	X
Anthracene			1	
Carbazole			x	x
Fluoranthene				
Pyrene		1		T
Bis(2-ethylhexyl)phthalate		-		
Benzo(a)anthracene	X	X		X
Benzo(b)fluoranthene	X	X		x
Chrysene	X	X		x
Benzo(k)fluoranthene	X .	x		x
Benzo(a)pyrene	X	x		X
Indeno(1,2,3-cd)pyrene	x	x		
Dibenz(a,h)anthracene	X			1
2-Nitrophenol			1	x
Inorganics:				1
Aluminum				x
Chromium		-		x

X = Selected as a COPC for human health risk assessment.

ć

SUMMARY OF HUMAN HEALTH RISKS OPERABLE UNIT NO. 12 (SITE 3) MCB CAMP LEJEUNE, NORTH CAROLINA

	Soil		Soil		Roun Ground	ıd 2 İwater	Worst Ground	Case Iwater	Tot with Ro Ground Contam	al ound 2 lwater ination	Tot with Wo Ground Contam	al rst Case Iwater ination
Receptors	ICR	HI	ICR	HI	ICR	HI	ICR	HI	ICR	HI		
Military Personnel	1.7E-06 (100)	NA	NE	NE	NE	NE	1.7E-06	NA	1.7E-06	NA		
Future Child Resident	1.4E-05 (70)/(<1)	NA	5.3E-06 (30)	1.7 (100)	7.5E-04 (100)	2.3 (100)	1.9E-05	1.7	7.6E-04	2.3		
Future Adult Resident	5.4E-06 (39)/(<1)	NA	1.1E-05 (61)	0.7 (100)	1.8E-03 (100)	3.7 (100)	1.7E-05	0.7	1.8E-03	3.7		
Future Construction Worker	1.0E-07 (100)	<0.01 (100)	NE	NE	NE	NE	1.7E-07	<0.01	1.0E-07	<0.01		

Notes:

ICR = Incremental Lifetime Cancer Risk

HI = Hazard Index

Total = Soil + Groundwater

NE = Not evaluated for potential receptor

NA = Not applicable (no noncarcinogenic COPCs)

() = Percent contribution to total risk

()/() = First is percent contribution to total risk with round 2 groundwater results; Second is percent contribution to total risk with worst case groundwater results (combined Rounds 1, 2, 3)

Shaded blocks indicate an ICR value that exceeds the acceptable limit of 1E-04, or an HI value that exceeds the acceptable limit of 1.0.

CONTAMINANTS OF POTENTIAL CONCERN (COPCs) EVALUATED DURING THE ECOLOGICAL RISK ASSESSMENT OPERABLE UNIT NO. 12 (SITE 3) MCB CAMP LEJEUNE, NORTH CAROLINA

Contaminant of Potential Concern in Surface Soil
Inorganics
Chromium
Zinc
Semivolatiles
Acenaphthylene
Anthracene
Benzo(a)anthracene
Benzo(b)fluoranthene
Benzo(k)fluoranthene
Benzo(g,h,i)perylene
Benzo(a)pyrene
Bis(2-ethylhexyl)phthalate
Carbazole
Chrysene
Dibenz(a,h)anthracene
Di-n-butylphthalate
Fluoranthene
Fluorene
Indeno(1,2,3-cd)pyrene
Phenanthrene
Pyrene
Volatiles
Ethylbenzene
Toluene
Xylenes

GLOSSARY OF EVALUATION CRITERIA OPERABLE UNIT NO. 12 (SITE 3) MCB CAMP LEJEUNE, NORTH CAROLINA

- Overall Protection of Human Health and the Environment addresses whether or not an alternative provides adequate protection and describes how risks posed through each pathway are eliminated, reduced, or controlled through treatment engineering or institutional controls
- **Compliance with ARARs/TBCs -** addresses whether or not an alternative will meet the applicable or relevant and appropriate requirements (ARARs), criteria to-be-considered (TBCs), and other federal and state environmental statutes, and/or provide grounds for invoking a waiver.
- Long-Term Effectiveness and Permanence refers to the magnitude of residual risk and the ability of an alternative to maintain reliable protection of human health and the environment over time once cleanup goals have been met.
- Reduction of Toxicity, Mobility, or Volume Through Treatment refers to the anticipated performance of the treatment options that may be employed within an alternative.
- Short-Term Effectiveness refers to the speed with which the alternative achieves protection, as well as the remedy's potential to create adverse impacts on human health and the environment that may occur during the construction and implementation period.
- Implementability refers to the technical and administrative feasibility of an alternative, including the availability of materials and services required to implement the chosen solution.
- Cost includes capital and operation and maintenance costs. For comparative purposes, present worth values are provided.

FIGURES

: 1

Ú

274005FS

02132DD012

JS-MWU1	SHALLOW	MONITORING	WELL	LOCATION	(INSTALLED	PRIOR	то	THE
Ψ	REMEDIAL	INVESTIGATIO	ON CO	NDUCTED	IN OCTOBER	OF 19	94).	

