FINAL

REMEDIAL INVESTIGATION REPORT OPERABLE UNIT NO. 9 (SITE 65)

MARINE CORPS BASE CAMP LEJEUNE, NORTH CAROLINA

VOLUME I

CONTRACT TASK ORDER 0312

NOVEMBER 7, 1997

Prepared For:

DEPARTMENT OF THE NAVY
ATLANTIC DIVISION
NAVAL FACILITIES
ENGINEERING COMMAND
Norfolk, Virginia

Under:

LANTDIV CLEAN Program Contract N62470-89-D-4814

Prepared by:

BAKER ENVIRONMENTAL, INC. Coraopolis, Pennsylvania

Baker Environmental, Inc. 420 Rouser Road Airport Office Park Bldg. 3 Coraopolis, PA 15108 Telephone: (412) 269-6000

Fax: (412) 269-2002

	Letter of Tran	ารmitta
--	----------------	---------

To:	Commander.	 Atlantic Division 	m
IU.	· Commandor ·		"

S.O. No.

62470-312-SRN

Naval Facilities Engineering Command

Project:

RI/FS Operable Unit No. 9

1510 Gilbert Street (Building N-26)

Date:

November 13, 1997

Norfolk, Virginia 23511-2699

Attn:

Ms. Katherine Landman, Code 18232

We are forwarding the following:

Attached

Under Separate Cover

DW	/G. NO.	NO. COPIES	TITLE OR DESCRIPTION	COMMENTS
		3	Complete copies of the Final Remedial Investigation Report for Operable Unit No. 9 (Site 65) Contract Task Order (CTO) 0312	03,12-11/07/97-
			FOR CLEST	

THESE ARE	TRANSN	MITTED	as chec	ked bel	ow:
-----------	--------	--------	---------	---------	-----

	As requested		No exceptions taken		Revise and resubmit
٥	For review and comment	ū	Rejected - See remarks	ū	Submit specified items
	For your information	0	Proceed subject to corrections noted		

GENERAL COMMENTS:

BAKER ENVIRONMENTAL, INC.

By: Daniel L. Bonk

Title: Project Manager

Page 1 of

TABLE OF CONTENTS

			<u>Page</u>
EXEC	CUTIVE	SUMMARY	ES-1
1.0	INTR	ODUCTION	. 1-1
	1.1	Report Organization	
	1.2	Operable Unit Description	
	1.3	Site Description and History	
	1.4	Summary of Previous Investigations	
	1.5	Data Limitations	
	1.6	Remedial Investigation Objectives	
	1.7	References	
2.0	STUD	Y AREA INVESTIGATION	. 2-1
2.0	2.1	Soil Investigation	
		2.1.1 Surface and Subsurface Soils	
		2.1.2 Exploratory Test Pit Investigation	
		2.1.3 Analytical Program for Soils	
	2.2	Groundwater Investigation	
		2.2.1 Shallow and Deep Well Construction	
		2.2.2 Groundwater Sampling	
		2.2.3 Analytical Program for Groundwater Samples	
	2.3	Surface Water/Sediment Investigation	
		2.3.1 Surface Water Sample Collection	
		2.3.2 Sediment Sample Collection	
		2.3.3 Surface Water/Sediment Sample Analysis	
	2.4	Ecological Investigation	
	2	2.4.1 Fish Sample Collection	
		2.4.2 Fish Tissue Sample Analysis	
		2.4.3 Benthic Macroinvertebrate Sample Collection	
	2.5	Investigation Derived Waste	
	2.6	References	
	2.0	References	. 27
3.0	PHYS 3.1	Topography and Surface Features	
	3.1	Surface Water Hydrology	
	3.3	Geology and Soil	
	3.3	3.3.1 Regional	
		3.3.2 Site-Specific	
	2.4		
	3.4	Hydrogeology	
		3.4.1 Regional	
	2.6	3.4.2 Site-Specific	
	3.6	Land Use and Demographics	
	3.7	Climatology and Meteorology	
	3.8	Water Supply	
	3.9	Ecological Characteristics	
		3.9.1 Regional Ecology	. J-Y

TABLE OF CONTENTS (Continued)

				Page
		3.9.2	Site-Specific Ecology	. 3-10
	3.10		Body Description	
	3.11		ive Environments	
			Wetlands	
			Other Sensitive Environments	
		3.11.3	Threatened and Endangered Species	. 3-15
	3.12	Refere	ences	. 3-16
4.0	NAT	URE AN	D EXTENT OF CONTAMINATION	4-1
	4.1	Data N	Management and Tracking	4-1
	4.2		ite Related Analytical Results	
		4.2.1	Laboratory Contaminants	
		4.2.2	Naturally-Occurring Inorganic Elements	
	4.3	State a	nd Federal Criteria and Standards	4-5
	4.4		ical Results	
		4.4.1	Surface Soil	
		4.4.2	Subsurface Soil	
		4.4.3	Test Pits	
		4.4.4	Groundwater	
		4.4.5	Surface Water	
		4.4.6	Sediment	
		4.4.7	Ecological	
	4.5	Engine	ering Results	
	4.6	_	Assurance/Quality Control	
	4.7		of Contamination	
		4.7.1	Surface Soils	
		4.7.2	Subsurface Soil	
		4.7.3	Groundwater	
		4.7.4	Surface Water	
		4.7.5	Sediments	
	4.8		ary	
	4.9		nces	
5.0	CON	ramin <i>a</i>	ANT FATE AND TRANSPORT	5_1
2.0	5.1		cal and Physical Properties Impacting Fate and Transport	
	5.2		ninant Transport Pathways	
	J.2	5.2.1	Erosion of Contaminated Soils and Transportation to Surface Water	
		5.2.1	and Sediment	
		5.2.2	Off-Site Deposition of Windblown Dust	
		5.2.3	Contaminant Transfer Between Sediments and Surface Water	
		5.2.4	Leaching of Soil Contaminants to Groundwater	
		5.2.5	Migration of Groundwater Contaminants	
		5.2.6	Groundwater Discharge to Surface Water	
		5.2.7	Groundwater Infiltration from the Shallow to the Deep Aquifer	

TABLE OF CONTENTS (Continued)

			Page
	5.3	Fate and Transport Summary	5-6
		5.3.1 Volatile Organic Compounds	5-6
		5.3.2 Polynuclear Aromatic Hydrocarbons	5-6
		5.3.3 Pesticides/PCBs	5-7
		5.3.4 Inorganics	5-7
	5.4	References	5-8
6.0	BASI	ELINE RISK ASSESSMENT	6-1
	6.1	Introduction	6-1
	6.2	Contaminants of Potential Concern	6-1
		6.2.1 Criteria for Selecting Contaminants of Potential Concern	6-2
		6.2.2 Selection of Contaminants of Potential Concern	6-6
	6.3	Exposure Assessment	6-11
		6.3.1 Conceptual Site Model of Potential Exposure	6-11
		6.3.2 Current and Future Scenarios	6-11
		6.3.3 Exposure Pathways	6-12
		6.3.4 Quantification of Exposure	6-13
		6.3.5 Calculation of Chronic Daily Intakes (CDI)	6-15
	6.4	Toxicity Assessment	6-25
		6.4.1 Toxicological Evaluation	6-26
		6.4.2 Dose-Response Evaluation	6-26
	6.5	Risk Characterization	6-28
		6.5.1 Human Health Risks	6-29
	6.6	Sources of Uncertainty	6-30
		6.6.1 Analytical Data	6-30
		6.6.2 Exposure Assessment	6-31
		6.6.3 Sampling Strategy	6-31
		6.6.4 Toxicity Assessment	6-32
		6.6.5 Compounds Not Quantitatively Evaluated	6-32
		6.6.6 Results of CT Calculations	6-32
	6.7	BRA Conclusions	6-33
		6.7.1 Total Site Risk	6-34
	6.8	References	6-35
7.0	ECO	LOGICAL RISK ASSESSMENT	7-1
	7.1	Objectives, Scope, and Organization of the Ecological Risk Assessment	7-1
	7.2	Problem Formulation	7-2
	7.3	Contaminants of Potential Concern	7-2
		7.3.1 Criteria for Selecting Contaminants of Potential Concern	7-2
		7.3.2 Selection of Contaminants of Potential Concern	7-6
		7.3.3 Physical/Chemical Characteristics of COPCs	7-8
	7.4	Ecosystems Potentially at Risk	7-9
	7.5	Ecological Endpoints	
		7.5.1 Aquatic Endpoints	
		7.5.2 Terrestrial Endpoints	7-13

TABLE OF CONTENTS (Continued)

	Į.	<u>Page</u>
7.6	Conceptional Model	7-13
	7.6.1 Soil Exposure Pathway	7-14
	7.6.2 Groundwater Exposure Pathway	7-14
	7.6.3 Surface Water and Sediment Exposure Pathway	7-14
	7.6.4 Air Exposure Pathway	7-15
7.7	Exposure Assessment	7-15
	7.7.1 Surface Water, Sediment, and Biological Sampling	7-15
7.8	Ecological Effects Characterization	7-17
	7.8.1 Surface Water	7-17
	7.8.2 Sediment	7-18
	7.8.3 Fish Tissue	7-19
	7.8.4 Surface Soil	
	7.8.5 Terrestrial Chronic Daily Intake Model	7-21
7.9	Risk Characterization	7-23
	7.9.1 Surface Water	7-24
	7.9.2 Sediment	
	7.9.3 Terrestrial Chronic Daily Intake Model	7-25
7.10	Ecological Significance	7-25
	7.10.1 Aquatic Endpoints	7-25
	7.10.2 Terrestrial Endpoints	7-27
	7.10.3 Threatened and Endangered Species	7-27
	7.10.4 Wetlands	7-27
7.11	Uncertainty Analysis	7-28
7.12	Conclusions	7-29
	7.12.1 Aquatic Ecosystem	7-29
	7.12.2 Terrestrial Ecosystem	7-31
7.13	References	7-31
CON	CLUSIONS AND RECOMMENDATIONS	8-1
	7.7 7.8 7.9 7.10 7.11 7.12	7.6 Conceptional Model 7.6.1 Soil Exposure Pathway 7.6.2 Groundwater Exposure Pathway 7.6.3 Surface Water and Sediment Exposure Pathway 7.6.4 Air Exposure Pathway 7.7 Exposure Assessment 7.7.1 Surface Water, Sediment, and Biological Sampling 7.8 Ecological Effects Characterization 7.8.1 Surface Water 7.8.2 Sediment 7.8.3 Fish Tissue 7.8.4 Surface Soil 7.8.5 Terrestrial Chronic Daily Intake Model 7.9 Risk Characterization 7.9.1 Surface Water 7.9.2 Sediment 7.9.3 Terrestrial Chronic Daily Intake Model 7.10 Ecological Significance 7.10.1 Aquatic Endpoints 7.10.2 Terrestrial Endpoints 7.10.3 Threatened and Endangered Species 7.10.4 Wetlands 7.11 Uncertainty Analysis 7.12 Conclusions 7.12.1 Aquatic Ecosystem 7.12.2 Terrestrial Ecosystem

LIST OF TABLES

Number

1-1	RI/FS Objectives for Operable Unit No. 9
2-1 2-2	Summary of Groundwater Monitoring Well Construction Details Summary of Groundwater Level Measurements
2-3	Summary of Groundwater Sampling Field Parameters
3-1	Geologic and Hydrogeologic Units in the Coastal Plain of North Carolina
3-2	Climatic Data Summary Marine Corps Air Station, New River
3-3	Summary of Hydraulic Conductivity Tests
3-4	Land Utilization: Developed Areas Land Use
3-5	Summary of Water Supply Wells in the Vicinity of Site 65
3-6	Protected Species within MCB, Camp Lejeune
4-1	Comparison of Site Background Concentrations to Base Background Levels in Surface Soi
4-2	Comparison of Site Background Concentrations to Base Background Levels in Subsurface Soil
4-3	Summary of Site Contamination
4-4	Detected Organics in Surface Soils
4-5	Detected Metals in Surface Soils
4-6	Detected Organics in Subsurface Soils
4-7	Detected Metals in Subsurface Soils
4-8	Detected Organics in Subsurface Soils (Test Pites)
4-9	Detected Metals in Subsurface Soils (Test Pits)
4-10	Detected Organics in Groundwater
4-11	Detected Metals in Groundwater
4-12	Detected Organics in Surface Water
4-13	Detected Metals in Surface Water
4-14	Detected Organics Sediments
4-15	Detected Metals in Sediments
4-16	Detected Organics in Fish (Fillet)
4-17	Detected Metals in Fish (Fillet)
4-18	Detected Organics in Fish (Whole Body)
4-19	Detected Metals in Fish (Whole Body)
5-1	Physical and Chemical Properties of Organic Compounds
5-2	Relative Mobilities of Metals as a Function of Environmental Conditions (Eh, pH)
6-1	Summary of Blank Contaminant Results
6-2	Organic Data Summary - Surface Soil
6-3	Inorganic Data Summary - Surface Soil
6-4	Organic Data Summary - Subsurface Soil
6-5	Inorganic Data Summary - Subsurface Soil
6-6	Groundwater Data Summary
6-7	Surface Water Data Summary
6-8	Sediment Data Summary

LIST OF TABLES (Continued)

Number

7-16

6-9	Fish Tissue Data Summary
6-10	Summary of COPCs in the Environmental Media of Concern
6-11	Matrix of Potential Human Exposure
6-12	Exposure Assessment, Summary Incidental Ingestion of Soil Contaminants
6-13	Exposure Assessment Summary, Dermal Contact with Soil Contaminants
6-14	Exposure Assessment Summary, Inhalation of Fugitive Particulates
6-15	Exposure Assessment Summary, Ingestion of Groundwater Contaminants
6-16	Exposure Assessment Summary, Dermal Contact with Groundwater Contaminants
6-17	Exposure Assessment Summary, Inhalation of Groundwater Volatile Contaminants
6-18	Exposure Assessment Summary, Ingestion of Surface Water
6-19	Exposure Assessment Summary, Dermal Contact with Surface Water
6-20	Exposure Assessment Summary, Ingestion of Sediment
6-21	Exposure Assessment Summary, Dermal Contact with Sediment
6-22	Exposure Assessment Summary, Fish Ingestion
6-23	Toxicity Factors
6-24	Total Incremental Lifetime Cancer Risks (ICRs) and Hazard Indices (HIs) Associated with Soil
6-25	Total Incremental Lifetime Cancer Risks (ICRs) and Hazard Indices (HIs) Associated with Groundwater
6-26	Total Incremental Lifetime Cancer Risks (ICRs) and Hazard Indices (HIs) Associated with Surface Water/Sediment
6-27	Total Site Risk
7-1	Frequency and Range of Total Contaminant Detections Compared to Freshwater Surface Water Reference Values
7-2	Frequency and Range of Contaminant Detections Compared to Freshwater Sediment Reference Values
7-3	Contaminants of Potential Concern in Each Media
7-4	Physical/Chemical Characteristics of the COPCs
7-5	Sampling Station Characterization Summary
7-6	Field Chemistry Data
7-7	Total Number of Fish Collected Per Station
7-8	Fish Distribution and Characterization Summary
7-9	Number and Percentage of Benthic Macroinvertebrate Species per Station
7-10	Tolerance Values of Benthic Macroinvertebrate Species
7-11	Summary Statistics of Benthic Macroinvertebrate Species per Station
7-12	Results of the Jaccard Coefficient of Community Similarity and SPrenson Coefficient of
	Community Similarity Between the Benthic Macroinvertebrate Stations
7-13	Summary of Samples Sent to Laboratory for Chemical Analysis
7-14	Comparison of Contaminant Levels in Site 65 Tissue Samples to Contaminant Levels in
	Tissue Samples Collected in Other Studies
7-15	Comparison of Whole Body Fish Tissue Concentrations to Proposed Piscivorous Wildlife

Frequency and Range of Contaminant Detections Compared to Soil Flora and Fauna Screening Values

LIST OF TABLES (Continued)

Number

Exposure Factors for Terrestrial Chronic Daily Intake Model
Surface Water Quotient Index
Sediment Quotient Index
Terrestrial Quotient Index

LIST OF FIGURES

Number

1-1	Location Map
1-2	Site Map
1-3	Aerial Photograph, February 1, 1956
1-4	Aerial Photograph, October 4, 1970
1-5	Aerial Photograph, February 15, 1983
1-6	Aerial Photograph, March 6, 1993
1-7	Site Investigation Sample Locations Distribution of Organia Conteminants in Soil (Police, 1994)
1-8 1-9	Distribution of Organic Contaminants in Soil (Baker, 1994) Approximate Waste Disposal Location, 1970
2-1	Sample Locations
2-2	Typical Type II Well Construction Diagram
2-3	Typical Type III Well Construction Diagram
3-1	Location of Hydrogeologic Cross-Sections, MCB, Camp Lejeune
3-2	Hydrogeologic Cross-Sections of the MCB, Camp Lejeune Area
3-3	Location of Site Hydrogeologic Cross-Sections
3-4	Hydrogeologic Cross-Section A-A'
3-5	Hydrogeologic Cross-Section B-B'
3-6	Groundwater Contour Map Depicting Flow in the Surficial Aquifer
3-7	Groundwater Contour Map Depicting Flow in the Upper-Most Portion of the Castle Hayne Aquifer
3-8	Supply Well Location Map
3-9	Biohabitat Map
4-1	Detected Organics in Surface Soil
4-2	Detected Metals in Surface Soil
4-3	Detected Organics in Subsurface Soil
4-4	Detected Metals in Subsurface Soil
4-5	Detected Organics in Subsurface Soil (Test Pits)
4-6	Detected Metals in Subsurface Soil (Test Pits)
4-7	Detected Organics in Groundwater
4-8	Detected Metals in Groundwater
4-9	Detected Organics in Surface Water and Sediment
4-10	Detected Metals in Surface Water and Sediment
6-1	Conceptual Exposure Model for Current and Future Human Receptors
7-1	Conceptual Exposure Model for Ecological Receptors
7-2	Ouotient Indices that Exceeded "1" in Surface Water and Sediment

LIST OF APPENDICES

Volume I

- A TEST BORING AND WELL CONSTRUCTION RECORDS
- B SAMPLING SUMMARY
- C TEST PIT RECORDS
- D CHAIN OF CUSTODY RECORDS
- E WELL DEVELOPMENT RECORDS
- F IDW MANAGEMENT AND DISPOSAL INFORMATION
- G SUMMARY OF GROUNDWATER DATA AND AQUIFER CHARACTERISTICS
- H RAINFALL DATA FROM MCAS NEW RIVER
- I HYDRAULIC CONDUCTIVITY DATA
- J INVENTORY OF THE RARE SPECIES, NATURAL COMMUNITIES, AND CRITICAL AREAS OF THE CAMP LEJEUNE MARINE CORPS BASE, NORTH CAROLINA

Volume II

- K DATA VALIDATION REPORTS
- L BACKGROUND METALS CONCENTRATIONS
 - L.1 BASE BACKGROUND METALS CONCENTRATIONS IN SURFACE SOIL
 - L.2 BASE BACKGROUND METALS CONCENTRATIONS IN SUBSURFACE SOIL
- M EVALUATION OF METALS IN GROUNDWATER
- N WHITE OAK RIVER BASIN REFERENCE DATA
- O FREQUENCY OF DETECTION SUMMARIES
 - O.1 SURFACE SOIL ORGANICS
 - O.2 SURFACE SOIL METALS
 - O.3 SUBSURFACE SOIL ORGANICS
 - O.4 SUBSURFACE SOIL METALS
 - O.5 GROUNDWATER ORGANICS
 - O.6 GROUNDWATER METALS
 - 0.7 SURFACE WATER ORGANICS
 - O.8 SURFACE WATER METALS
 - O.9 SEDIMENT ORGANICS
 - O.10 SEDIMENT METALS
 - O.11 FISH FILLET
 - O.12 FISH WHOLE BODY
 - O.13 RESULT OF ENGINEERING PARAMETERS
- P FIELD DUPLICATE SUMMARIES
- Q FREQUENCY OF DETECTION SUMMARY, QA/QC SAMPLES
- R STATISTICAL SUMMARIES
 - R.1 SURFACE SOIL ORGANICS
 - R.2 SURFACE SOIL METALS
 - R.3 SUBSURFACE SOIL ORGANICS
 - R.4 SUBSURFACE SOIL METALS
 - R.5 GROUNDWATER ORGANICS
 - R.6 GROUNDWATER METALS
 - **R.7 SEDIMENT ORGANICS**
 - **R.8 SEDIMENT METALS**

R.9 FISH FILLET

R.10 FISH WHOLE BODY

- S COPC SELECTION WORKSHEETS
- T CDI HUMAN HEALTH RISK SPREADSHEETS
- U TERRESTRIAL REFERENCE VALUES AND CDI ECOLOGICAL RISK SPREADSHEETS
- V SAMPLING STATION CHARACTERIZATION DATA SHEETS
- W FISH SAMPLING RESULTS
- X BENTHIC MACROINVERTEBRATE LABORATORY BENCH SHEETS

LIST OF ACRONYMS AND ABBREVIATIONS

 $\begin{array}{ll} \mu g/kg & \text{microgram per kilogram} \\ \mu g/m^3 & \text{microgram per cubic meter} \\ \mu g/g & \text{micrograms per gram} \\ \mu g/L & \text{microgram per Liter} \end{array}$

ABS adsorption factor

AF soil to skin adherence factor

AMTRAC amphibious tractor

AQTESOLV Aquifer Test Solver Program

AQUIRE Aquatic Information Retrieval Database

ARARs applicable or relevant and appropriate requirements

ARL Aquatic Reference Level

ASTM American Society for Testing Materials

AT averaging time

ATc averaging time carcinogen
ATnc averaging time noncarcinogen
AWQC Ambient Water Quality Criteria

Baker Environmental, Inc.
BCF biological concentration factor

bgs below ground surface

BI biotoxic index

BOD biological oxygen demand BRA baseline risk assessment

BW body weight

CADD computer aided design drafting
CAMA Coastal Area Management Act

CDI chronic daily intake

CERCLA Comprehensive Environmental Response, Compensation, and Liability

Act

CF conversion factor

CFR Code of Federal Regulations

CLEAN Comprehensive Long-Term Environmental Action Navy

CLP Contract Laboratory Program
COC contaminants of concern
COD chemical oxygen demand

COPC contaminant of potential concern

CRAVE Carcinogen Risk Assessment Verification Endeavor

CRDL Contract Required Detection Limit
CRQL Contract Required Quantitation Limit

CSF carcinogenic slope factor

4,4'-DDDdichloro-diphenyl-dichloroethane4,4'-DDEdichloro-diphenyl-dichloroethylene4,4'-DDTdichloro-diphenyl-trichloroethane

DEM Division of Environmental Management

DoN Department of the Navy

ED exposure duration
EF exposure frequency

Eh oxidation reduction potential

EL exposure level

EMD Environmental Management Division

ER-L Effects Range - Low
ER-M Effects Range - Median
ERA ecological risk assessment

ET exposure time

FFA Federal Facilities Agreement F_i fraction ingested from source f_{oc} sediment particle grain size

FS Feasibility Study

FSAP Field Sampling and Analysis Plan

gpm gallons per minute

H mean species diversity

HA health advisory

HEAST Health Effects Assessment Summary Tables

HI hazard index
HQ hazard quotient
HQW high quality water

IAS Initial Assessment Study ICR incremental cancer risk

ID inside diameter

IDW investigative derived wastes

IR ingestion rate

IRIS Integrated Risk Information System IRP Installation Restoration Program

K_d soil sorption coefficient

 K_{oc} organic carbon partition coefficient K_{ow} octanol-water partition coefficient

LANTDIV Naval Facilities Engineering Command, Atlantic Division

LOAEL lowest-observed-adverse -effect level

MBI Macroinvertebrate Biotic Index

MCB Marine Corps Base

MCL Maximum Contaminant Level

MF Modifying Factor
MI Mobility Index
msl mean sea level

NC DEHNR North Carolina Department of Environment, Health and Natural

Resources

NCMFC North Carolina Marine Fisheries Commission NCSPCS North Carolina State Plane Coordinate System

NCWQC North Carolina Water Quality Criteria NCWQS North Carolina Water Quality Standards

NCWRC North Carolina Wildlife Resources Commission

NEHC Navy Environmental Health Center

NOAA National Oceanographic and Atmospheric Administration

NOAEL No-Observed-Adverse-Effect-Level

NOEL No-Observed-Effect-Level
NPL National Priorities List
NPS National Park Service
NSW nutrient sensitive waters
NTU Nephelometric turbidity unit

NUS NUS Corporation

NWI National Wetlands Inventory

OU Operable Unit

ORNL Oak Ridge National Laboratory

PAH polynuclear aromatic hydrocarbon

PC permeability constant
PCBs polychlorinated biphenyls
PEF particulate emissions factor
PID photoionization detector
POL petroleum, oil, lubricants

ppb parts per billion
ppm parts per million
PVC polyvinyl chloride

QA/QC quality assurance/quality control

QI quotient index

RA risk assessment

RBC risk-based concentration

RCRA Resource Conservation and Recovery Act

RfD reference dose

RI Remedial Investigation
ROD Record of Decision

S water solubility

SA exposed skin surface area

SARA Superfund Amendments and Reauthorization Act

SCS Soil Conservation Service

SI Site Inspection

SMCL Secondary Drinking Water Regulations

SOP Standard Operating Procedures SQC Sediment Quality Criteria

SSV Sediment Screening Value
SSSV Surface Soil Screening Value
SVOC semivolatile organic compound
SWSV surface water screening value

TAL Target Analyte List
TCL Target Compound List

TCLP Toxicity Characteristic Leaching Procedure

TDS total dissolved solids

TEF toxicity equivalency factor

TICs tentatively identified compounds

TKN total Kjeldahl nitrogen TOC total organic carbon

TPH total petroleum hydrocarbons
TRVs terrestrial reference values
TSS total suspended solids

UCL Upper Confidence Limit

UF uncertainty factor

USCS Unified Soil Classification System

USDA Untied States Department of Agriculture
USDI United States Department of Interior

USEPA United States Environmental Protection Agency

USGS United States Geological Survey
USMC United States Marine Corps

VOC volatile organic compound

WAR Water and Air Research, Inc.
WQSV water quality screening values

WS Wilderness Society

EXECUTIVE SUMMARY

This document was prepared by Baker Environmental, Inc. (Baker) to report on the activities and findings of the Remedial Investigation (RI) conducted at Operable Unit No. 9, Site 65 - Engineer Area Dump, in the spring of 1995.

The purpose of the RI is to evaluate the nature and extent of the threat to public health and the environment caused by the release or threatened release of hazardous substances, pollutants, or contaminants (USEPA, 1988). The RI at Site 65 was conducted through the sampling of several media (surface and subsurface soil, groundwater, surface water, sediment, and benthic and aquatic species), evaluating the resultant analytical data, and performing human health and ecological risk assessments (RAs). This RI has been conducted in accordance with the requirements delineated in the National Oil Hazardous Substance Pollution Contingency Plan (NCP) for remedial actions [40 Code of Federal Regulations (CFR) 00.430]. The USEPA's document Guidance for Conducting Remedial Investigations and Feasibility Studies Under CERCLA (USEPA, 1988a) has been used as guidance for preparing this document.

Site Description and History

Marine Corps Base (MCB), Camp Lejeune is located within the Coastal Plain Physiographic Province in Onslow County, North Carolina, approximately 45 miles south of New Bern and 47 miles north of Wilmington. The facility covers approximately 236 square miles. The military reservation is bisected by the New River, which flows in a southeasterly direction and forms a large estuary before entering the Atlantic Ocean. The eastern border of MCB, Camp Lejeune is the Atlantic shoreline. The western and northwestern boundaries are US Route 17 and State Route 24, respectively. The City of Jacksonville, North Carolina, borders MCB, Camp Lejeune to the north.

Operable Unit No. 9 is located in the Courthouse Bay area of MCB, Camp Lejeune, south of Hadnot Point, on the eastern shore of the New River. Site 65, the Engineer Area Dump, is a primarily wooded area located immediately west and north of the Marine Corps Engineer School which occupies property between Site 65 and Courthouse Bay north of the site is NC Route 72. The eastern edge of Site 65 is bordered by a several acre parcel used by the Engineer School to conduct heavy equipment training activities. To the east of the heavy equipment training area are two small ponds. Portions of the area surrounding the ponds are marshy.

Site 65 reportedly operated from 1952 to 1972. Two separate disposal areas have been reported including: (1) a battery acid disposal area; and, (2) a liquids disposal area. There are no historical maps or figures which depict the location of the disposal areas, and neither area is currently discernible due to heavy overgrowth. Aerial photographs, dating from 1956 through 1993, are available at the base Forestry Division and through the United States Department of Agriculture Aerial Photography Field Office. The photos through 1983 depict disturbed areas east of the Engineer School which represent perhaps the best available means for approximately locating the site. In addition, Camp Lejeune base maps, available via Computer-Aided Design Drafting, indicate the location of a burn area which was identified as part of Site 65 under the Initial Assessment Study (IAS) by Water and Air Research (WAR, 1983). Like the disposal area, the location of the burn area is not currently discernible from the surrounding landscape.

Previous Investigations

The following is a summary of the previous investigations performed at Site 65.

Initial Assessment Study

MCB, Camp Lejeune was placed in the National Priority List (NPL) on October 4, 1989 after the IAS in 1983 identified 76 potentially contaminated sites at the base (Water and Air Resources, 1983). Site 65 was mentioned in the report as a site which did not warrant further investigation. Sampling and analysis of environmental media was not conducted during the IAS. The IAS did not indicate that hazardous wastes were disposed of at Site 65.

Site Inspection

NUS Corporation prepared Site Inspection (SI) Project Plans in the spring of 1991 (NUS, May 1991). This report identified both petroleum, oil, and lubricant wastes and batteries as having been disposed of at Site 65. The basis upon which it was concluded that battery disposal occurred at Site 65 is unknown. Baker conducted an SI at Site 65 in July and August, 1991, and published the Final Site Inspection Report on January 31, 1994. The objectives of the SI were to: (1) determine whether there was a release or potential release of hazardous substances and the nature of the associated threats; (2) preliminarily assess the extent of contamination and the volume/type of wastes at the site; and, (3) determine if further action or investigations are required.

Groundwater samples collected from the three shallow monitoring wells all exhibited elevated metal concentrations (e.g., arsenic, beryllium, chromium, copper, lead and manganese) above either North Carolina groundwater regulatory levels and/or federal primary/secondary drinking water standards. Organic contaminants in groundwater were limited to one detection of a pesticide below regulatory levels. Low levels of polynuclear aromatic hydrocarbons (PAHs) were detected in two of the eight surface soil samples. Various pesticides were also detected in three of the eight surface soil samples and one subsurface soil sample. Aroclor-1254, a polychlorinated biphenyl (PCB), was detected in one subsurface soil sample (65SB0212) at 230 µg/kg.

Federal surface water standards were exceeded for lead, copper, and iron, while barium and chromium exceeded state surface water standards. Sediment samples collected from the ponds exhibited low levels of phenolic constituents (76 μ g/kg of phenol and 930 μ g/kg of 4-methylphenol). Sediment screening values for the protection of biota were exceeded in the marsh sample for copper, lead, zinc, and pesticides dichlorodiphenyl-dichloroethane (4,4'-DDD) and dichloro-diphenyl-dichloroethylene (4,4'-DDE).

The SI recommended that: (1) a Remedial Investigation/Feasibility Study be conducted to provide data for the evaluation of the nature and extent of soil and groundwater contamination, and a baseline human health and ecological risk assessment; (2) historical aerial photographs be obtained to determine the locations where disposal activities occurred; (3) background and upgradient shallow groundwater quality be assessed to better determine whether inorganic contamination of the shallow aquifer is due to disposal operations; and (4) groundwater quality in the deeper portions of the shallow aquifer as well as the Castle Hayne be assessed including the possible influence of the supply wells on groundwater flow.

Study Area Investigation

The RI field program at Site 65 consisted of: a soil investigation; a groundwater investigation; surface water and sediment investigations; an ecological investigation; a site survey; and investigation derived waste (IDW) handling. The RI field activities conducted were initiated April 3 and concluded May 25, 1995. Additional work (IDW management, surveying, and groundwater elevation measurements) was conducted between May 26 and August 21, 1995. All field activities were performed in accordance with the Field Sampling and Analysis Plan (FSAP) (Baker, 1995), and USEPA Region IV Standard Operating Procedures.

Soil Investigation

A soil investigation was conducted at Site 65 to assess the nature and extent of previously detected contamination and to assess human health, ecological, and environmental risk associated with contact, inhalation and possible ingestion of surface and subsurface soil particles. The soil investigation included soil borings and test pit excavation.

Baker supervised the advancement of 14 soil borings for the purpose of sample collection, geologic identification and description, and monitoring well installation. One surface soil sample was collected from each boring/well cluster location, a total of 13, from zero to 12 inches below the ground surface. A total of 13 subsurface soil samples were also taken, each from immediately above the soil/groundwater interface. Drilling and soil boring sampling activities at the site were initiated on April 4, 1995, and were completed on April 20, 1995. All drilling was performed using a truck-mounted drill rig supplied and operated by Parrott Wolff, Inc.

As part of the soil investigation, Baker conducted an exploratory test pit investigation at Site 65 to determine the presence and nature of buried material in the debris piles at the southwestern portion of the site. Observations of waste disposal such as fill material, debris or depressions were used in locating the test pit excavations. Six test pits were excavated, and one subsurface soil sample was taken from each pit.

The analytical program initiated for the soil investigation at Site 65 focused on the suspected contaminants of concern which were based on previous disposal practices, site activities and findings of previous investigations. In general, soils at the site, including quality assurance/quality control (QA/QC) samples, were analyzed for Target Compound List (TCL) organic compounds and Target Analyte List (TAL) metals. In addition, a single soil sample was submitted for engineering parameters analyses. For a complete summary of soil samples taken during the RI, refer to Appendix B.

Groundwater Investigation

The groundwater investigation at the Site 65 consisted of several activities including construction of shallow and deep monitoring wells, well development, groundwater sampling, static water measurement and aquifer testing. The investigation was designed to confirm the presence or absence of shallow and deep groundwater contamination, evaluate the horizontal and vertical extent of potentially impacted groundwater, and evaluate the shallow and deep groundwater flow patterns in the area.

Seven of the soil borings advanced as part of the soil investigation were drilled to be converted into groundwater monitoring wells. Four Type II shallow monitoring wells were installed and three Type III deep monitoring wells. Two well clusters, one shallow and one deep groundwater monitoring well, were

established, two by setting deep wells next to existing shallow wells (65-DW01 and 65-DW02) and one as an upgradient, background well cluster (65-MW04 and 65-DW04).

The remaining three shallow monitoring wells (65-MW05, 65-MW06, and 65-MW07) were spaced across the study area. After being properly developed, a single round of groundwater samples was collected from each of the seven newly installed wells and the three existing wells to confirm the presence or absence of contamination in the surficial and Castle Hayne aquifers.

Three rounds of water levels were collected at Site 65 on April 20, 23, and August 21, 1995 to establish shallow groundwater flow in the Engineer Area Dump region. Measurements were collected within a four-hour time period during each event. Hydraulic conductivity testing was conducted on three shallow wells at Site 65 to evaluate shallow groundwater flow characteristics. Monitoring wells 65-MW04, 65-MW05 and 65-MW07 were tested on May 22 and 23, 1995.

Ten groundwater samples, plus QA/QC samples, were analyzed for TCL organics, and TAL metals. In addition, one sample was collected for the analysis of engineering parameters. For a complete summary of groundwater samples taken during the RI, refer to Appendix B.

Surface Water/Sediment Investigation

A surface water and sediment investigation was performed in Courthouse Bay Pond and Powerline Pond to assess possible impacts from Site 65 and to assist in human health and ecological RAs. A single sample location was established in each pond. Sample 65SW/SD-04 was collected from the middle of Courthouse Bay Pond and Sample 65SW/SD-05 was collected from the eastern portion of Powerline Pond. Two additional sample locations in the marshy area near the ponds were not sampled due to the particularly dry season and lack of surface water.

Surface water/sediment samples were analyzed for TCL organics, TAL metals and total organic carbon (TOC). In addition, the zero- to six-inch sample for each location was analyzed for TOC and particle-size distribution. A complete summary of the sample numbers and analytical parameters is provided in Appendix B.

Ecological Investigation

Baker conducted an ecological investigation at Site 65 to provide data to support the ecological RA. Biological samples collected as part of this investigation included fish and benthic macroinvertebrates from Courthouse Bay Pond and Powerline Pond. The samples were collected to obtain population statistics for fish and benthic macroinvertebrates and to obtain fish tissue samples for chemical analysis. A total of nine fish samples were collected; four fillet samples and five whole-body samples. One benthic macroinvertebrate sample was taken from each pond.

Whole-body and fillet samples were collected from the fish and analyzed for TCL organics and TAL metals. The samples were prepared in accordance with USEPA Region IV protocols by the laboratory. Refer to Appendix B for a complete summary of the sample numbers and analytical parameters. The benthic macroinvertebrate samples were analyzed for species density in individuals per square meter.

Physical Characteristics of the Study Area

The physical characteristics of Site 65 were evaluated during all phases of the RI. These characteristics include: surface features, climatology and meteorology, hydrology, geology, soils, hydrogeology, land usage, ecology, and the water supply for the area. The site specific information was obtained from the RI field activities. Information regarding regional characteristics was taken from available literature pertaining to MCB, Camp Lejeune.

Topography and Surface Features

The topography of Site 65 is gently pitched to the southeast. The site has numerous areas where the natural topography has been modified by the removal and redistribution of earth materials (i.e., training exercises) or by past dumping practices. A 4.5-percent grade exists between monitoring wells 65DW-04 (located near the ponds east of the site) and 65DW-02 (located on the southeastern edge of the site). Infiltration is high at the site due to the lack of man-made drainage ditches and impervious surfaces such as paved roads, parking lots or buildings.

Surface Water Hydrology

Due to the sandy surface soils at Site 65, there is relatively little stormwater runoff. The limited surface water runoff tends to drain radially to the east, south, and west, away from the site or collect in local surface depressions.

The ponds located east of Site 65 have not been classified by NC DEHNR. The ponds are freshwater ponds not used for consumptive purposes, and are not used for primary recreation. They were, therefore, assigned a Class C classification. This classification is reserved for freshwater bodies in which aquatic life propagation and survival, fishing, wildlife, secondary recreation and agricultural uses may occur. During the wet seasons, a marshy area exists near these two ponds.

Geology

Soil conditions are generally uniform throughout the study area. In general, the shallow soils consist of unconsolidated deposits of sand and silty sand. These soils represent the Quaternary age "undifferentiated" deposits which overlay the River Bend Formation. Sands are primarily very fine to fine grained and contain varied amounts of silt and clay. Underlying these soils is a loose to medium dense, greenish gray, fine sand containing little clay (approximately 10-35%) and trace silt. This soil unit constitutes the Belgrade Formation in the semi-confining unit separating the Quaternary sediments from the Castle Hayne aquifer. The semi-confining unit appears to be approximately 7.5 to 15 feet thick, generally thickening toward the north. Beneath this unit resides the River Bend Formation. Borings were only advanced 10 to 15 feet into this formation during the RI, therefore providing limited knowledge of specific details regarding the condition of the River Bend beneath the study area. The upper portion of the River Bend was described as a partially cemented, gray, fine sand with some shell fragment and limestone fragments encountered periodically.

Hydrogeology

Hydrogeologic characteristics in the vicinity of the site were evaluated by reviewing existing information and installing a network of shallow and deep monitoring wells. Groundwater was encountered at varying depths during the drilling program. This variation is primarily attributed to topographical changes. In general, the groundwater was encountered between 7.5 and 11 bgs feet during field activities performed at the site.

Three rounds of groundwater level measurements were obtained on April 20, 23 and August 21, 1995, from the shallow and deep monitoring wells within the study area. Using the data from August 21, 1995, shallow groundwater flow patterns were evaluated. The data indicates that the groundwater flow is toward the south-southwest, with an average gradient of 9.7×10^{-3} ft/ft. The southwestern portion of the site has a steeper gradient (an average of 1.2×10^{-2} ft/ft) than the rest of the site (an average of 8.2×10^{-3} ft/ft). Hydraulic conductivity tests were performed at the site on May 22, 1995. The average conductivity for the surficial aquifer is 0.722 ft/day (2.55×10^{-4} cm/sec).

Groundwater elevations and flow patterns for the upper portion of the Castle Hayne aquifer were also evaluated. Given the limited number of points, groundwater flow direction and gradient is estimated to flow in a southern to southwestern direction with a gradient of 2.3×10^{-03} to 2.7×10^{-03} ft/ft.

Water Supply

Potable water for MCB, Camp Lejeune is supplied entirely by groundwater. All of the water supply wells utilize the Castle Hayne aquifer. Five active wells are located within a one-mile radius of Site 65. Production well BB44 is located approximately 1,200 feet west of the site. The total depth of this well is 62 feet bgs and is screened from 32 to 62 feet bgs. This well is suspected to have been impacted by surficial groundwater infiltration due to its relatively shallow screen.

Ecological Characteristics

During May 15 to 24, 1995, Baker conducted a qualitative habitat evaluation of the terrestrial environment at Site 65. The site and surrounding areas are dominated by a mixed forest composed of pine and deciduous trees. Cleared, sandy areas are located to the south and southeast of the site. Buildings, mowed grass, and paved surfaces are located to the west, and an earth moving training area is located east of Site 65. Mixed forest extends across Site 65, and is interspersed around the aforementioned zones. The following four habitat types are present at Site 65: forested areas, two separate wetland areas, and a low-lying drainage area.

Nature and Extent of Contamination

The nature and extent of contamination at Site 65 was determined based on the analytical results of the surface soil, subsurface soil, test pits, groundwater, surface water, sediment, and fish sampling performed. A summary of site contamination, by media, is provided in Table 4-3. The Data Frequency Summaries for all media at Site 65 are presented in Appendix O.

Soils

A total of 13 surface soil samples were collected from various locations across Site 65. Six of the samples were collected near the waste piles and burn area. The remaining samples were collected from other locations potentially impacted by historical activities at the site.

Six volatile organic compounds (VOCs) were detected in the surface soil samples, although four of the compounds were determined to be laboratory contaminants. The two remaining VOCs detected at low levels in surface soils were ethylbenzene and total xylenes. The concentrations of these compounds do not indicate a specific source, but may have originated from vehicles and heavy equipment passing through the site.

A total of 19 semivolatile organic compounds (SVOCs) were detected in surface soils. SOVCs were detected in 12 of 13 surface soil samples. The most widespread compound was bis(2-ethylhexyl) phthalate which was detected at nine locations, with a maximum concentration of 87J µg/kg. This phthalate is a common plasticizer in rubber and plastic products, such as tires. All of the sample locations with estimated concentrations of these phthalates are near roads or equipment training areas. Polynuclear aromatic hydrocarbon (PAH) constituents were detected in three samples, all near existing or previously existing debris piles. The suspected source of the PAH contamination is the debris and historic burning at the site. The highest PAH concentrations were found in Sample 65-DW01-00, the sample location closest to the former burn area. Di-n-butyl phthalate was detected at two locations near the waste piles, with a maximum concentration of 390J µg/kg. A specific source for this contaminant cannot be identified.

Pesticides were detected in all areas of the site. The levels detected in the samples are similar to base-wide concentrations from the historical use of pesticides at Camp Lejeune. PCB compound Aroclor 1260 was detected in one location near the burn area and the southernmost debris piles. The compound was detected in sample 65-DW01-00 at a concentration of 52J μg/kg. Historical records do not indicate the disposal of PCBs; however, PCBs were detected in a subsurface soil sample collected from soil boring 65SB-02 during the SI conducted in 1991 (Baker, 1994). The detection of PCBs within the vicinity of the debris piles indicates that some product containing PCBs may have been spilled or disposed at the site.

Surface soil sample analytical results for TAL metals were compared to a screening level of two times average background concentrations as listed in Appendix L. Seven of 13 sample locations exceeded two times average base background for one or more elements. The contamination was observed in the heavy equipment training area and the southernmost debris pile. The distribution of the metals indicate that the contamination may be the result of rusting metal debris disposed at the site and the heavy equipment used for training.

Subsurface Soil

A total of 13 subsurface soil samples were collected from the same locations within Site 65 as the surface soil samples.

Five VOCs were detected in the subsurface soil samples, although four of the contaminants were determined to be laboratory contaminants. Xylene was the only remaining VOC detected in subsurface soils and it was detected at five locations with a maximum concentration of $3J \mu g/kg$. Xylenes are a constituent of petroleum products which may have been deposited by heavy equipment.

Sixteen SVOCs were detected in the subsurface soils at 11 locations. The most widespread compound was bis(2-ethylhexyl) phthalate which was detected at all 11 locations, with a maximum concentration of 370 μ g/kg. The source of this contaminant is assumed to be the same as for detections in surface soil although this compound is also commonly a laboratory and field contaminant. Di-n-butyl phthalate was detected at the same two locations as it was detected in the surface soils with the maximum concentration at 340J μ g/kg. The remaining 14 SVOCs, all PAH constituents, were detected at 65SB-06 at a depth of three to five feet. The total PAH concentration was 1,635 μ g/kg. Twelve of the 16 SVOCs detected in subsurface sample 65SB-06 were also present in the surface soil sample for this location.

Pesticide results for subsurface soil samples included detections at four of 13 locations. Detections mainly occurred in areas where the soils have been either disturbed by excavation or disposal. The occurrence of pesticide contamination may be attributed to the historical use of pesticides at MCB, Camp Lejeune. PCBs were not detected in the subsurface soil samples collected during the field investigation.

Nine of 13 subsurface soil sample locations exceeded two times the average base background for one or more metals. The majority of the metal contamination occurred in either the heavy equipment training area or the debris piles. The suspected source of contamination is rusting metal.

Test Pits

A total of six subsurface soil samples were collected from test pits near the waste piles and burn area.

Three VOCs were detected in the soil samples from the test pits, although all of the compounds were detected in the QA/QC blanks and determined to be laboratory contaminants. Fifteen SVOCs were detected in the subsurface soil samples from six test pit locations. The most widespread compound was di-n-butyl phthalate which was detected at all six test pit locations at a maximum concentration of 280 μ g/kg. Bis(2-ethylhexyl) phthalate was detected at four test-pit locations. The remaining 13 SVOCs were all detected at 65TP-07 at a depth of 10 feet. All of these compounds are PAHs with a total concentration of 1,873 μ g/kg.

Pesticide results for subsurface test-pit soil samples included detections at four of six locations. All six test pit sample locations exceeded two times the average base background for two or more elements. The suspected source of the metal contamination is the rusting debris disposed of in these piles.

Groundwater

One round of groundwater samples was collected from the three existing and seven newly installed monitoring wells at Site 65.

Carbon disulfide was the only VOC detected in the groundwater samples that was not detected in any of the blank samples collected during the RI. It was detected in one upgradient sample location at a concentration of $5J \mu g/L$. The SVOC naphthalene was detected in one sample collected at the site at an estimated concentration of $3J \mu g/L$. As with the detection of carbon disulfide, naphthalene was detected in an upgradient location and is suspected to have originated from an off-site source. Groundwater samples collected from the monitoring wells contained no detectable concentrations of pesticides or PCBs.

Metal concentrations were, on average, one or two orders of magnitude below the base background levels for groundwater (Baker, 1994). Only two of the elements were detected at concentrations that exceed the state and/or federal standards. Iron concentrations in five samples exceeded the North Carolina Water Quality Standards (NCWQS) of 0.3 mg/L (300 μ g/L) with the highest detected level being 6,580 μ g/L. Manganese values exceeded the NCWQS of 0.05 mg/L (50 μ g/L) in six samples. The highest detected concentration was 186 μ g/L. Neither iron nor manganese concentrations exceeded the federal Maximum Contaminant Level value in any of the samples collected at the site.

Surface Water

A total of two surface water samples were collected from Powerline Pond and Courthouse Bay Pond during the RI at Site 65. There were no organic compounds detected in surface water which were not attributable to laboratory contaminants. A total of 13 of the 23 TAL metals were detected in the surface water samples collected at the site. Aluminum, barium, copper, iron, lead, manganese, vanadium and zinc exceeded the lowest Surface Water Screening Value (SWSV). All of the detected element concentrations except iron exceeded the average reference station concentration established at Camp Lejeune. The only sources of recharge for the ponds are groundwater and stormwater runoff. Water evaporation and soil erosion are suspected causes of elevated metals in the ponds.

Sediment

A total of four sediment samples were collected from Courthouse Bay Pond and Powerline Pond during the field investigation at Site 65. Two VOCs not attributable to laboratory contaminants were detected in sediment samples. Carbon tetrachloride and tetrachloroethene were detected in two of four samples with maximum concentrations of $18~\mu g/L$ and $15J~\mu g/L$, respectively. The sources of these contaminants have not been determined. The detected levels do not exceed sediment screening values. Only a single SVOC, di-n-butylphthalate, was detected in the sediment samples in all four samples with a maximum concentration of $1,600J~\mu g/L$. This phthalate ester was detected in blank samples collected during the RI. However, the concentrations within the blanks were substantially lower than the results obtained from the sediment samples. Only one sample contained concentrations of di-n-butylphthalate that exceeded the Lower Effects Range criteria.

Pesticides were detected in all four sediment samples. Beta-BHC was detected in only one sample at a concentration of 8.3NJ μ g/L and 4,4'-DDD and 4,4'-DDE were detected in two samples with maximum concentrations 84J μ g/L and 19NJ μ g/L, respectively. All of these compounds exceeded the lowest SSV and the average reference concentration. These concentrations are similar to the concentrations detected in the surface soils across the site.

Thirteen of 23 TAL metals were detected in the sediment samples collected during the field investigation. Copper, lead and zinc were detected at a concentration exceeding the lowest SSV only one time; however, all of the elements exceeded the average reference concentration at least one time. The elemental contamination detected in the sediments of the two ponds is suspected to be the result of precipitation of the metals contained within the surface water as evaporation occurs. In addition, the surrounding soils may contribute to the sediments via erosion, especially considering the turbidity of Courthouse Bay Pond, thus increasing the contamination within the sediments.

Fish

A total of nine fish samples were collected from the two ponds located east of the site. Four samples were collected for fillet analysis and five for whole-body analysis.

The only organics detected in the fillet samples were acetone and 4,4'-DDD. Acetone was detected in two samples with a maximum concentration of 7,900 μ g/kg. 4,4'-DDD was detected in one sample at a concentration of 5.7J μ g/kg. Twelve of the 23 TAL metals were detected in the fish fillet samples collected during the RI. Aluminum, barium, calcium, copper, magnesium, manganese, mercury, potassium, sodium, thallium, and zinc were the detected inorganic elements.

Four VOCs were detected in the whole-body samples collected during the field investigation, which are probably attributed to laboratory conditions. There were no SVOCs detected in the samples; but there were two pesticides detected. 4,4'-DDE was detected in a single sample at a concentration of 15J µg/kg; 4,4'-DDD was detected twice with a maximum concentration of 40J µg/kg. No PCBs were detected in any of the whole-body samples. Seventeen of the 23 TAL metals were detected in the whole-body samples. The elements detected were aluminum, antimony, arsenic, barium, beryllium, calcium, copper, iron, lead, magnesium, manganese, mercury, potassium, selenium, sodium, thallium, and zinc. Mercury contamination is not related to Site 65 or the local environment. Other potential sources for mercury in fish could be that these fish may be transported to these ponds or that bioaccumulation is occurring through a food chain.

Baseline Risk Assessment

The baseline risk assessment (BRA) evaluates environmental media at Site 65, in terms of human health risks, current and future, due to contaminants of potential concern (COPCs). The BRA process examines the data generated during the sampling and analytical phase of the RI and identifies COPCs with respect to the geographic, demographic, physical, and biologic characteristics of the study area for each media. COPCs for Site 65 were selected according to the USEPA's <u>Risk Assessment Guidance for Superfund</u> (USEPA, 1989a). A list of these COPCs is presented in Table 6-10.

Potential receptors at Site 65 include future residential children and adults, current military personnel (trainees and recreational users), fisherman (adult and child), and future construction workers. Total site Incremental Cancer Risk (ICR) and Hazard Index (HI) per receptor group is estimated by summing the ICRs and HIs for each specific exposure pathway likely to affect the given receptor.

The total site ICR and HI values associated with current and future receptors at Site 65 are presented in Table ES-1. All incremental lifetime cancer risk estimates for the five receptor groups were between 8.2E-09 and 2.8E-06, thus all cancer risks are either insignificant or within the acceptable USEPA range of 1.0E-06 to 1.0E-04. The HI value for a young child consuming fish exceeded the reference value of 1.0 primarily due to mercury in fish tissue. The remaining estimated HIs for noncarcinogens were all less than 0.47.

TABLE ES-1

TOTAL SITE RISK SITE 65 - ENGINEER AREA DUMP REMEDIAL INVESTIGATION, CTO-0312 MCB, CAMP LEJEUNE, NORTH CAROLINA

	Soil		Groundwater		Surface Water/Sediment		Fish Tissue		Total	
Receptors	ICR	HI	ICR	HI	ICR	HI	ICR	НІ	ICR	HI
Current Military Personnel - Trainee	7.3E-07 (100)	0.06 (100)	NA	NA	NA	NA	NA	NA	7.3E-07	0.06
Current Military Personnel - Recreational User	3.5E-07 (100)	<0.01 (100)	NA	NA	NA	NA	NA	NA	3.5E-07	<0.01
Future Child Resident	3.7E-06 (99.8)	0.01 (2)		0.1 (20)	8.2E-09 (<1)	0.36 (78)	NA	NA	3.7E-06	0.47
Future Adult Resident	2.8E-06 (99.7)	<0.01 (<1)		0.04 (40)	9.5E-09 (<1)	0.06 (60)	NA	NA	2.8E-06	0.1
Future Construction Worker	1.3E-07 (100)	0.08 (100)	NA	NA	NA	NA	NA	NA	1.3E-07	0.08
Fisherman - Child Receptor	NA	NA	NA	NA	8.2E-09 (100)	0.36 (22)		1.3 (78)	8.2E-09	1.7
Fisherman - Adult Receptor	NA	NA	NA	NA	9.5E-09 (100)	0.06 (18)		0.27 (82)	9.5E-09	0.33

Notes:

ICR = Incremental Lifetime Cancer Risk

HI = Hazard Index

() = Approximate percent contribution to the total ICR or HI values Total = Soil + Groundwater + Surface Water/Sediment + Fish Tissue

NA = Not Applicable

-- = No carcinogenic COPCs selected

Ecological Risk Assessment

The objective of the environmental risk assessment (ERA) was to evaluate if past reported disposal practices at Site 65 are potentially adversely impacting the aquatic and terrestrial communities on, or adjacent to, the site.

Aquatic Ecosystem

Based on the results of the field investigation and the ERA evaluation, a change in the structure of the benthic macroinvertebrate communities and/or a potential reduction of an aquatic receptor population or subpopulation may be attributable to contaminants detected in the surface water and/or sediment, although none of these contaminants are thought to be site-related. The low number of species and benthic macroinvertebrates in Courthouse Bay Pond most likely is due to the low dissolved oxygen concentration (2.0 ppm) and suspended solids in the pond. Since one benthic macroinvertebrate species collected in Powerline Pond is indicative of excellent water quality, and another is indicative of good to fair water quality, the benthic macroinvertebrate population in this pond does not appear to be adversely impacted. The decreased fish population in Courthouse Bay Pond also is most likely due to the high suspended solids concentration in this pond.

Overall, there is a moderate potential risk to aquatic life in Courthouse Bay Pond, with most of the risk associated with the non-site-related suspended solids in the surface water. There is only a slight risk to aquatic life in Powerline Pond due to pesticide contamination. Based on the ERA, no further investigations are deemed necessary. However, it is recommended that controls be established to prevent runoff from the heavy equipment training area to Courthouse Bay Pond.

Terrestrial Ecosystem

The ERA concluded that some potential impacts to soil invertebrates and plants may occur as a result of site-related contaminants in surface soil. It should be noted that there is much uncertainty in the surface soil screening values. A potential decrease in the terrestrial vertebrate population from site-related contaminants is not expected based on the terrestrial intake model.

Conclusions

Overall, the conclusion of the Site 65 RI is that there are no releases of hazardous substances from the waste disposal areas that result in a risk to human health or the environment. Based upon the conclusions of the RI, Baker recommends no further studies at this site, including no Feasibility Study. Although a "no action" Feasibility Study could be performed, there is no benefit to the environment or the administrative process.

The next step in the administrative process appears to be a proposed plan describing the no action alternative for review and concurrence by the Department of the Navy, United States Environmental Protection Agency, and North Carolina Department of Environment, Health and Natural Resources.

1.0 INTRODUCTION

Marine Corps Base (MCB), Camp Lejeune was placed on the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) National Priorities List (NPL) on October 4, 1989 (54 Federal Register 41015, October 4, 1989). Subsequent to this listing, the United States Environmental Protection Agency (USEPA) Region IV, the North Carolina Department of the Environment, Health and Natural Resources (NC DEHNR), and the United States Department of the Navy (DoN) entered into a Federal Facilities Agreement (FFA) for MCB, Camp Lejeune. The primary purpose of the FFA is to ensure that environmental impacts associated with past and present activities at MCB, Camp Lejeune are thoroughly investigated and appropriate CERCLA response/Resource Conservation and Recovery Act (RCRA) corrective action alternatives are developed and implemented as necessary to protect the public health, welfare, and the environment (FFA, 1989).

The Fiscal Year 1995 Site Management Plan for MCB, Camp Lejeune, a primary document referenced in the FFA, identifies 27 sites that require Remedial Investigation/Feasibility Study (RI/FS) activities. Six additional sites have been identified since the distribution of the Site Management Plan, bringing the total number of sites to 33. These 33 sites have been divided into 17 operable units to simplify proceeding with RI/FS activities. Operable Unit (OU) No. 9, comprised of Sites 65 and 73, is the general focus of this report. This report specifically addresses Site 65 and a separate RI report addresses Site 73. Figures 1-1 and 1-2 depict MCB, Camp Lejeune and the location of Site 65. (Note that tables and figures are provided at the back of each section.)

The purpose of the RI is to evaluate the nature and extent of the threat to public health and the environment caused by the release or threatened release of hazardous substances, pollutants, or contaminants (USEPA, 1988). The RI at Site 65 was conducted through the sampling of several media (surficial and subsurface soil, groundwater, sediment, surface water, and benthic and aquatic species), evaluating the resultant analytical data, and performing a human health risk assessment (RA) and ecological RA. Furthermore, the RI report provides information to support a Feasibility Study (FS) and Record of Decision (ROD) for a final remedial action.

This RI Report was prepared by Baker Environmental, Inc. (Baker) for submittal to the Naval Facilities Engineering Command, Atlantic Division (LANTDIV); MCB, Camp Lejeune Environmental Management Division (EMD); USEPA Region IV; NC DEHNR; and the Navy Environmental Health Center (NEHC), for their review.

The following subsections describe the characteristics and history of Site 65. In addition, Section 1.1 provides an overview of the RI Report Organization.

1.1 Report Organization

Volume I of this RI report for Site 65 is comprised of text, tables, and figures separated into the following sections:

- 1.0 Introduction (includes OU and site descriptions, and site histories)
- 2.0 Study Area Investigation
- 3.0 Physical Characteristics of the Study Area
- 4.0 Nature and Extent of Contamination
- 5.0 Contaminant Fate and Transport

- 6.0 Baseline Risk Assessment
- 7.0 Ecological Risk Assessment
- 8.0 Conclusions and Recommendations

The appendices that complete this RI report for Site 65 are contained in Volume I and Volume II. The appendices provide field investigation data, sampling data, statistical data, reference data, and risk assessment models, calculations and data.

1.2 Operable Unit Description

Operable units are formed as an incremental step toward addressing individual site concerns and to simplify the specific problems associated with a site or a group of sites. The total number of sites under the Installation Restoration Program (IRP) at MCB, Camp Lejeune is 33, which have been grouped into 17 operable units. Site 65 is one of two sites within OU No. 9, both located in close proximity to each other. OU No. 9 includes the Amphibious Vehicle Maintenance Area (formerly known as Courthouse Bay Liquids Disposal Area) - Site 73, between Courthouse Bay and Sneads Ferry Road, and the Engineer Area Dump (Site 65) which is approximately one mile east/southeast of Site 73. Courthouse Bay is located south of Hadnot Point, on the eastern shore of the New River. The area is accessible via Marine's Road and North Carolina Route 172. Courthouse Bay was selected for the Engineers' School and the 2nd Amphibious Tractor (AMTRAC) Battalion because of its protected natural harbor with direct water access.

The 255 acres of development at Courthouse Bay are distributed on the northwest and southeast sides of the bay itself, with major land uses in three clusters on the southeastern side. Training facilities, which account for the largest single land use, cover about 73 acres of land. Classroom training facilities and supply and storage buildings for heavy equipment are located in two irregular areas on the southeastern side of the bay, while personnel support, administration, medical facilities, and some supply buildings overlook the New River. Two clusters of troop housing facilities exist at Courthouse Bay. One overlooks the New River, while the other is on the western edge of the bay. Nine family housing quarters are sited along the New River on a peninsula of land which forms the entrance to the bay. Large land areas for heavy equipment training are located further to the southeast and are used by the Engineers' School (Site 65). An area of maintenance and supply buildings located on the northwestern side of the bay are solely used by the 2nd AMTRAC Battalion for maintenance and storage of large vehicles (Site 73). The area includes a wharf along the bay and a boat ramp.

1.3 <u>Site Description and History</u>

Site 65 is a primarily wooded area located immediately west and north of the Marine Corps Engineer School which occupies property between Site 65 and Courthouse Bay. The school is used for maintenance, storage, and operator training of amphibious vehicles and heavy construction equipment. The school also utilizes a several acre parcel located just east of Site 65 to conduct heavy equipment training activities.

Site 65 is situated in a topographically high area that is gently pitched to the south-southeast with an average elevation of about 40 feet above mean sea level (msl). Due to the sandy surface soils, there is relatively little storm water runoff. The limited surface water runoff tends to drain radially to the east, south, and west, away from the site or collect in local surface depressions. Immediately

east of Site 65 is the equipment training area which occupies the area between Site 65 and two small ponds located to the southeast. Portions of the area surrounding the ponds are marshy.

Site 65 reportedly operated from 1952 to 1972. Two separate disposal areas have been reported including: (1) a battery acid disposal area; and, (2) a liquids disposal area. There are no historical maps or figures which depict the location of the disposal areas, and neither area is currently discernible due to heavy overgrowth. Aerial photographs, dating from 1956 through 1993, are available at the base Forestry Division and through the United States Department of Agriculture (USDA) Aerial Photography Field Office. Enlargements of four of these photographs have been included as Figures 1-3 through 1-6, for the years 1956, 1970, 1983, and 1993. The photos up through 1983 depict disturbed areas east of the Engineer School which represent perhaps the best available means for approximately locating the site. In addition, Camp Lejeune base maps, available via Computer-Aided Design Drafting (CADD), indicate the location of a burn area which was identified as part of Site 65 under the Initial Assessment Study (IAS) by Water and Air Research (WAR, 1983). Like the disposal area, the location of the burn area is not currently discernible from the surrounding landscape. Beginning in 1970, nearly the full extent of the current heavy equipment training area appears disturbed.

The types of liquids which were reportedly disposed at Site 65 include petroleum, oil, and lubricant products (POL). The IAS did not indicate that hazardous wastes were disposed at Site 65. Site Inspection (SI) Project Plans prepared by NUS Corporation (NUS, May 1991) identify both POL wastes and batteries as having been disposed at Site 65; however, the basis for the inclusion of batteries is not known since no other background report or document references the disposal of batteries at this site.

1.4 Summary of Previous Investigations

As indicted previously, Site 65 is mentioned in the IAS Report (WAR, 1983) as a site not requiring further confirmation. However, a decision to perform an SI was subsequently made by the DoN in 1991.

On January 31, 1994, Baker published the results of the Final Site Inspection that was conducted for Site 65 in July and August, 1991. The objectives of the SI were to: (1) determine whether there was a release or potential release of hazardous substances and the nature of the associated threats; (2) preliminarily assess the extent of contamination and the volume/type of wastes at the site; and, (3) determine if further action or investigations are required.

Figure 1-7 identifies the sample locations for activities conducted during the SI at Site 65. The activities included the installation of three shallow monitoring wells to approximately 20 feet bgs and the advancement of five, 15-foot deep soil borings. Soil samples were collected from each of the monitoring well borings and the soil borings. The wells were developed and subsequently sampled. Three surface water/sediment samples were also collected from the two on-site ponds and the adjacent marsh area.

Each of the groundwater, soil, surface water and sediment samples were analyzed for Target Compound List (TCL) organics and the Target Analyte List (TAL) inorganics (Level IV data quality). Validation of all samples was in accordance with USEPA protocols.

Groundwater samples collected from the three monitoring wells all exhibited metal contaminants (e.g., arsenic, beryllium, chromium, copper, lead and manganese) above either North Carolina groundwater regulatory levels and/or federal primary/secondary drinking water standards. No organic contaminants were detected in the groundwater samples with the exception of dichloro-diphenyl-dichloroethane (4,4'-DDD at 0.53 μg/L) in well MW02. Low levels of polynuclear aromatic hydrocarbons (PAHs) were detected in two of the eight surface soil samples. The pesticides 4,4'-DDD, dichloro-diphenyl-dichloroethylene (4,4'-DDE) and dichloro-diphenyl-trichloroethane (4,4'-DDT) were detected in three of the eight surface soil samples at levels ranging from 18 to 72 μg/kg. One subsurface soil sample exhibited low levels of 4,4'-DDD (58 μg/kg). Aroclor-1254, a polychlorinated biphenyl (PCB), was also detected in one subsurface soil sample (65SB0212) at 230 μg/kg. The distribution of organic contaminants found during the SI is presented in Figure 1-8.

Federal surface water standards were exceeded for lead, copper, and iron. Barium and chromium exceeded state surface water standards. One sediment sampled collected from the marsh was contaminated with low levels of 4,4'-DDD and 4,4'-DDE and elevated levels of metals. Sediment samples collected from the ponds exhibited low levels of phenolic constituents (76 μ g/kg of phenol and 930 μ g/kg of 4-methylphenol). Elevated metals, which were observed in the marsh sediment, were not observed in either pond. Sediment screening values for the protection of biota were also exceeded in the marsh sample for copper, lead, zinc, 4,4'-DDD and 4,4'-DDE. The SI Report (Baker, 1994) identifies the sediment sample locations and results.

The SI recommended that: (1) a remedial investigation/feasibility study be conducted to provide data for the evaluation of the nature and extent of soil and groundwater contamination, and a baseline human health and ecological risk assessment; (2) historical aerial photographs be obtained to determine the locations where disposal activities occurred; (3) background and upgradient shallow groundwater quality be assessed to better determine whether inorganic contamination of the shallow aquifer is due to disposal operations; and (4) groundwater quality in the deeper portions of the shallow aquifer as well as the Castle Hayne be assessed including the possible influence of the supply wells on groundwater flow.

Aerial photographs of the site from 1962 through 1989 were reviewed by Baker staff at the base Forestry Department. Five aerial photographs from 1956 through 1993 were also ordered from the USDA Aerial Photography Field Office. Particular observations were as follows:

- Aerial photographs from 1956 (see Figure 1-3) and 1964 appear mostly unchanged. A large kidney-shaped disturbed training area and a smaller rounded disturbed training area to the east are visible in the general area where Site 65 was reportedly located. In the 1956 photograph, it appears as though there were four small ponds to the east of the site, but by 1962 backfilling of one pond seems to have begun.
- The aerial photograph from 1970 (see Figure 1-4) depicts for the first time a disturbed area which nearly matches the limits of today's equipment training area. Roadways to the area are not as obvious as in earlier views. The number of small ponds to the east of the site is down to two by 1970. The two southern and westernmost ponds appear to have been backfilled. The waste disposal area in 1970 is located along the southern perimeter of the western heavy equipment area (see Figure 1-9).

- The aerial photograph from 1973 depicts a very distinctive "heavy equipment training area" (track marks are evident) that is slightly larger than the same area noted in the 1970 photograph. The kidney-shaped disturbed area to the west of the training area is beginning to recede in size. The kidney-shaped disturbed area continues to be visible up through 1983, but becomes more overgrown (see Figure 1-5).
- In the most recent aerial photographs available, dated 1989 and 1993 (Figure 1-6), the heavy equipment training area is clearly visible; however, the kidney-shaped disturbed area is indistinguishable. A mound of soil (containing debris based on visual reconnaissance) appears at the western corner of the training area.

1.5 Data Limitations

Upon review of available information, data limitations at Site 65 were identified. One of the most significant data limitations, although contamination was detected in some soils and groundwater samples, was that the extent of the contamination has not been adequately defined. In addition, data from other media (i.e., surface water, sediments, biota, etc.) was also required to support the Risk Assessment. Listed below are the various media from which additional data was needed:

- Surficial soil
- Subsurface soil
- Waste Piles
- Surficial groundwater
- Deeper Groundwater
- Surface Water
- Sediments
- Biota

Specific data needs are listed below:

- Determine the physical and chemical characteristics of surface and subsurface soil within the boundaries of Site 65, in the area downgradient of Site 65, in the adjacent heavy equipment training area, and in an upgradient location. This data is needed to determine the nature and extent of contamination (if any) in soil and to support a human health and ecological risk assessment and evaluation of remedial alternatives.
- Determine the extent of PCB contamination in the vicinity of existing soil boring 65SB02 where, during the SI, PCBs (230 μg/kg of Aroclor-1254) were detected at 12 to 14 feet bgs.
- Determine the physical composition and chemical characteristics of the various piles of earth and debris located within the Site 65 boundary. This data is needed to afford an evaluation of the debris piles as a potential source of contamination, to support a human health and ecological risk assessment, and evaluation of remedial alternatives.

- Obtain surface water, sediment, fish and benthic samples from the surface water bodies (i.e., ponds, marsh, and intermittent stream) located east of the site. This data is needed primarily to support a human health and ecological risk assessment as well as to afford an evaluation of the presence or absence of contamination in these media.
- Obtain additional data regarding the presence or absence of contamination in shallow (i.e., at the water table surface) groundwater downgradient (south) of Site 65 and west of existing shallow monitoring well 65MW02. A shallow monitoring well in this area is needed to add confidence that the downgradient perimeter of Site 65 has been sufficiently investigated.
- Obtain shallow groundwater data from the area east of Site 65 and west of the surface ponds. This data is needed to evaluate the environmental impact of ongoing activities at the heavy equipment training area. If contamination is identified in the surface water bodies west of Site 65, this data will be used to evaluate whether the source is Site 65 or the heavy equipment training area.
- Obtain shallow groundwater data from an upgradient location to provide for a comparison to data obtained from other locations potentially impacted by Site 65.
- Determine the chemical characteristics of the groundwater zone situated below shallow (water table surface) groundwater at three locations across the site including near the center of the suspected Site 65 disposal area, and downgradient and upgradient of Site 65. This data is needed to confirm the presence or absence of the vertical migration of contaminants from the shallow zone to a deeper zone. Ideally the deeper zone to be investigated should correspond to the upper-most screened intervals of the nearest water supply wells. Data from this zone will also be used to support a human health risk assessment since supply water is drawn from this zone from nearby wells for human consumption.

From these site-specific data needs, RI objectives were established to meet the data deficiencies for Site 65. RI objectives are presented in the following section.

1.6 Remedial Investigation Objectives

The purpose of this section is to define the RI objectives aimed at characterizing releases of hazardous substances from past waste disposal activities at Site 65, assessing potential impacts to public health and environment, and providing feasible alternatives for consideration during preparation of the ROD. The RI objectives presented in this section have been identified through review and evaluation of existing background information and the previous investigation, assessment of potential risks to public health and environment, and consideration of feasible remediation technologies and alternatives. Table 1-1 presents both the RI objectives identified for Site 65 and the criteria necessary to meet those objectives. In addition, the table provides a general description of the study or investigation efforts required to obtain the necessary information.

1.7 References

Baker Environmental, Inc. 1995. Remedial Investigation/Feasibility Study Work Plan, Operable Unit No. 9 (Sites 65 and 73), Marine Corps Base, Camp Lejeune, North Carolina. Prepared for the Department of the Navy, Atlantic Division, Naval Facilities Engineering Command, Norfolk, Virginia. Final. March 7, 1995.

Baker Environmental, Inc. 1994. <u>Site Inspection Report, Site 65 Engineer Dump Area, Marine Corps Base, Camp Lejeune, North Carolina</u>. Final. January 31, 1994.

Federal Facilities Agreement (FFA) between USEPA, Region IV; NC DEHNR; and DoN for MCB, Camp Lejeune and Marine Corps Air Station, New River, North Carolina. December 6, 1989.

DoN, 1988. Master Plan, Camp Lejeune Complex, North Carolina. COMNAVFACENGCOM, April 8, 1988.

NUS, 1991. Site Inspection Project Plans. May, 1991.

U.S. Environmental Protection Agency (USEPA), 1988. <u>Guidance for Conducting Remedial Investigations and Feasibility Studies Under CERCLA</u>. Office of Emergency and Remedial Response, OSWER Directive 9355.3-01, October 1988.

Water and Air Research, Inc. (WAR). 1983. <u>Initial Assessment Study of Marine Corps Base, Camp Lejeune, North Carolina</u>. Prepared for Naval Energy and Environmental Support Activity.

SECTION 1.0 TABLES

TABLE 1-1

RI OBJECTIVES FOR OPERABLE UNIT NO. 9 REMEDIAL INVESTIGATION STUDY, CTO-0312 SITE 65 - ENGINEERING AREA DUMP MCB, CAMP LEJEUNE, NORTH CAROLINA

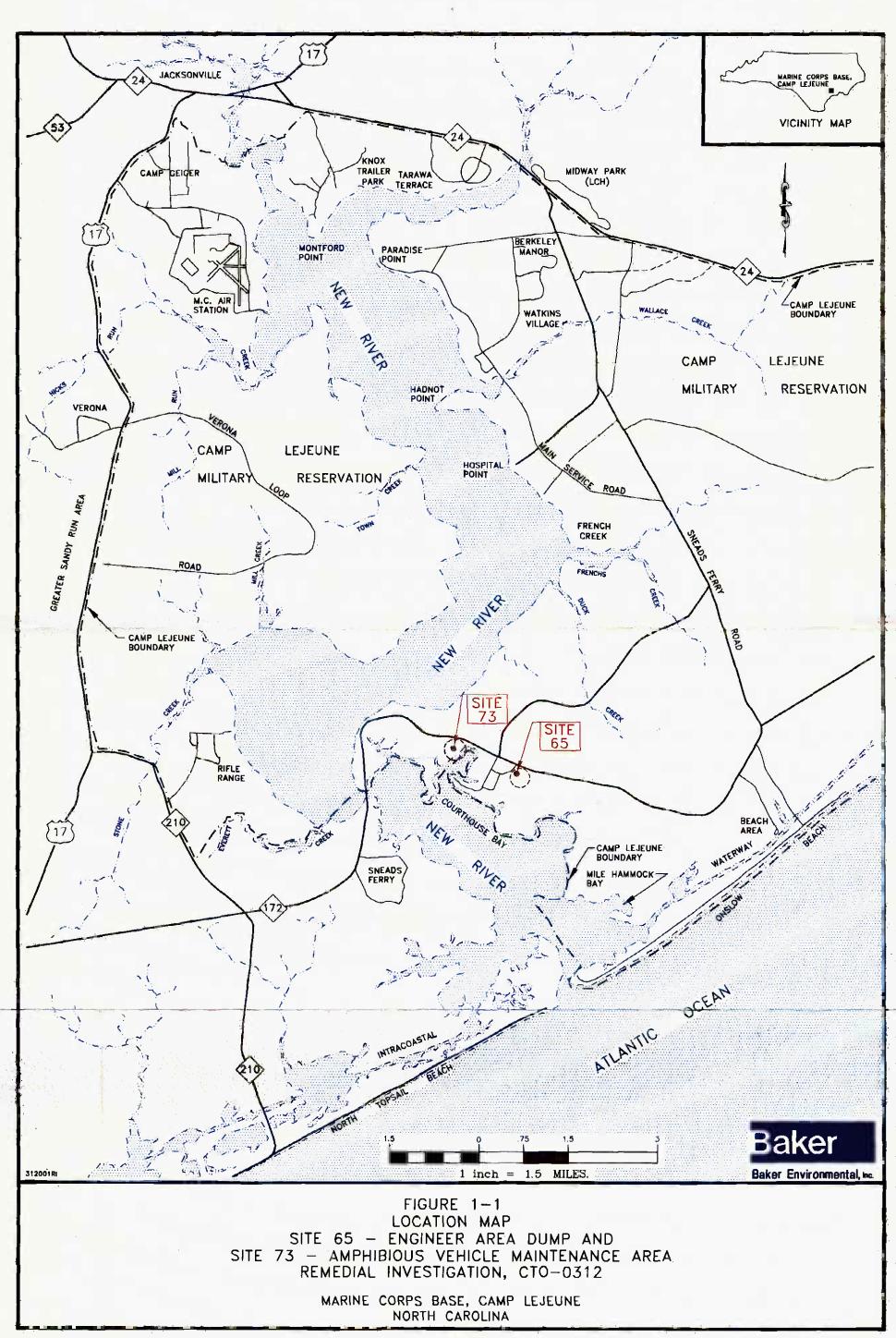
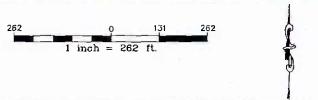

Medium or Area of Concern		RI/FS Objective	Criteria for Meeting Objective	Proposed Investigation/Study
1. Site 65 - Soil	la.	Assess the extent of soil contamination in the former dump area, the area near the ponds and the area presently used for heavy equipment training.	Characterize contaminant levels in surface and subsurface soils at the former dump area, the area near the ponds, and the heavy equipment training area.	Drill soil borings and obtain surface and subsurface soil samples
	1b.	Assess human health and ecological risks associated with exposure to surface soils at the site.	Characterize contaminant levels in surface and subsurface soils at the site.	Conduct human health and ecological risk assessment
	1c.	Determine the composition and chemical nature of debris piles located throughout the site.	Observe the internal materials comprising the debris piles and obtain soil samples.	Excavate test pits and obtain soil samples
Site 65 - Groundwater	2a.	Determine whether soil contamination is migrating to groundwater.	Characterize shallow groundwater quality across the site.	Install shallow groundwater wells.
	2b.	Assess the extent of shallow and deep groundwater contamination across the site.	Determine the horizontal and vertical extent of shallow groundwater contamination; determine if shallow contamination has migrated vertically to a lower zone.	Install shallow and deep groundwater wells.
	2c.	Define hydrogeologic characteristics for fate and transport evaluation and remedial technology evaluation, if required.	Estimate hydrogeologic characteristics of the shallow aquifer (flow direction, hydraulic conductivity, permeability, etc.).	Perform field aquifer tests.
	2d.	Assess health risks posed by potential future usage of the shallow and intermediate zone groundwater.	Evaluate groundwater quality and compare to ARARs and health-based action levels.	Conduct human health risk assessment.

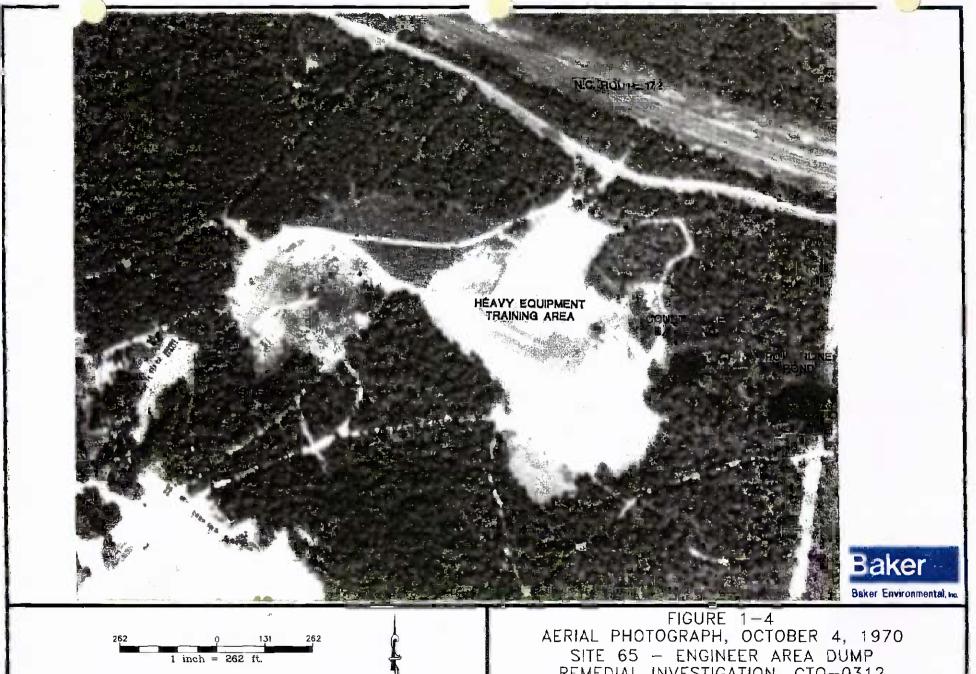

TABLE 1-1 (Continued)

RI OBJECTIVES FOR OPERABLE UNIT NO. 9 REMEDIAL INVESTIGATION STUDY, CTO-0312 SITE 65 - ENGINEERING AREA DUMP MCB, CAMP LEJEUNE, NORTH CAROLINA

	Medium or Area of Concern		RI/FS Objective	Criteria for Meeting Objective	Proposed Investigation/Study
3.	Site 65 - Surface Water	3a. •	Assess the presence or absence of surface water contamination in the unnamed creek and ponds.	Characterize surface water quality.	Obtain surface water samples from the unnamed creek and ponds.
4.	Site 65 - Sediment	4a.	Assess human health and ecological risks associated with exposure to sediments in the unnamed creek and ponds.	Characterize nature and extent of contamination in sediment.	Obtain sediment samples from the unnamed creek and ponds. Conduct a risk assessment.
5.	Site 65 - Biota	5a	Assess potential ecological impacts posed by contaminated surface water or sediments in the unnamed creek and ponds.	Qualitatively evaluate stress to benthic and fish communities.	Obtain fish and benthic samples from the unnamed creek and ponds. Conduct an ecological risk assessment.


SECTION 1.0 FIGURES

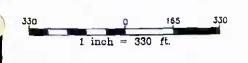
01765VO2Y



312030RI

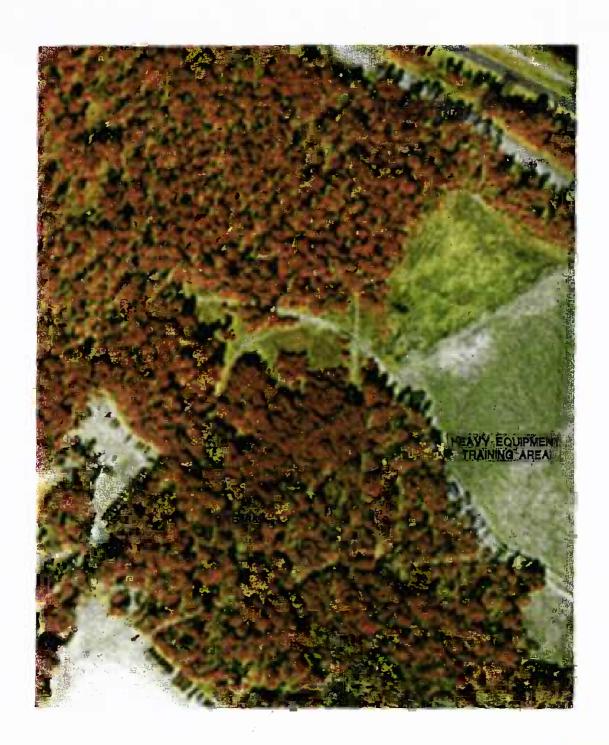
FIGURE 1-3
AERIAL PHOTOGRAPH, FEBRUARY 1, 1956
SITE 65 - ENGINEER AREA DUMP
REMEDIAL INVESTIGATION, CTO-0312
MARINE CORPS BASE, CAMP LEJEUNE
NORTH CAROLINA

01765 V BIY



312031R

REMEDIAL INVESTIGATION, CTO-0312 MARINE CORPS BASE, CAMP LEJEUNE NORTH CAROLINA



312032RI

FIGURE 1-5
AERIAL PHOTOGRAPH, FEBRUARY 15, 1983
SITE 65 - ENGINEER AREA DUMP
REMEDIAL INVESTIGATION, CTO-0312
MARINE CORPS BASE, CAMP LEJEUNE
NORTH CAROLINA

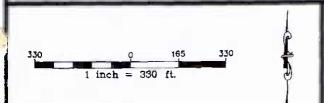
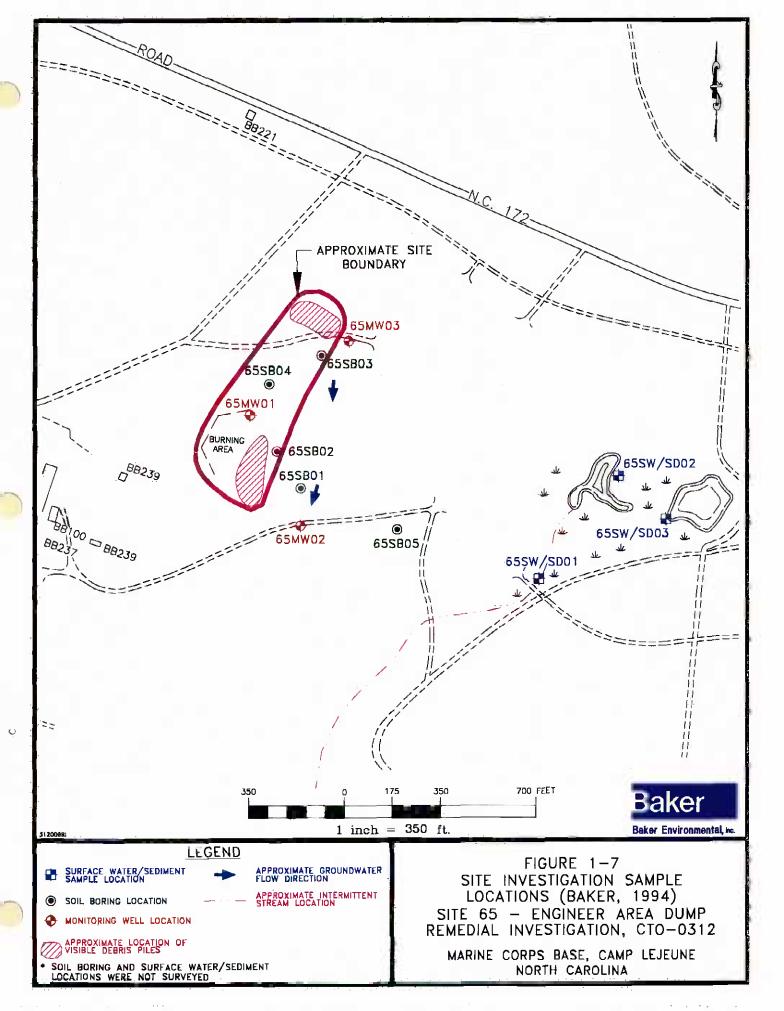
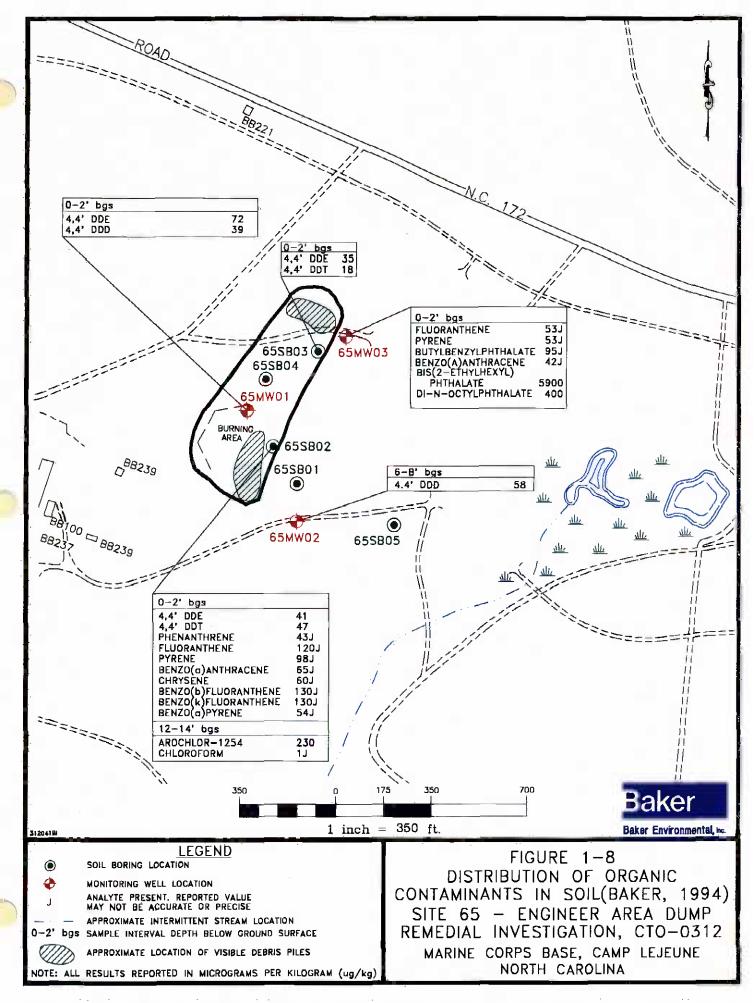
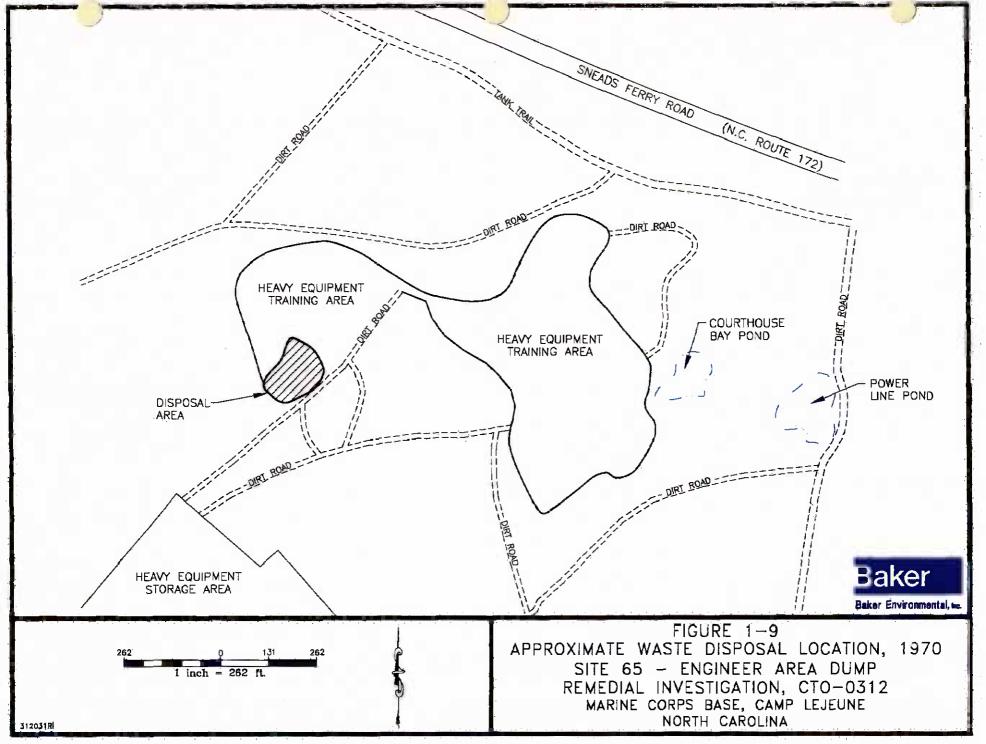





FIGURE 1-6
AERIAL PHOTOGRAPH, MARCH 6, 1993
SITE 65 - ENGINEER AREA DUMP
REMEDIAL INVESTIGATION, CTO-0312
MARINE CORPS BASE, CAMP LEJEUNE
NORTH CAROLINA

2.0 STUDY AREA INVESTIGATION

The field program at Site 65 was initiated to characterize potential environmental impacts and threats to human health, ecology and the environment resulting from previous activities. The investigation conducted at the site was generally designed to define potential impacts to surface and subsurface soil, groundwater, sediments and surface waters. Specifically, this study was intended to provide:

- Data regarding the nature and extent of environmental impact on aquatic and benthic species in two surface ponds located east of the site adjacent to the heavy equipment training area.
- Additional soil and groundwater data to support a quantitative, site-wide environmental risk assessment.
- Soil and groundwater data sufficient to afford an evaluation of the source, nature, and extent of potentially impacted groundwater and the shallow and deep groundwater flow patterns in the area.

The RI field activities conducted at Site 65 were initiated April 3 and concluded May 25, 1995. Additional work (primarily waste management, surveying, and groundwater elevation measurements) was conducted between May 26 and August 21, 1995. The field program consisted of: a soil investigation; a groundwater investigation; surface water and sediment, and ecological investigations; a site survey; and investigation derived waste (IDW) handling. All field activities were performed in accordance with the Project Plans (submitted by Baker, March 1995). A summary of these activities and details of any modifications to the plans, are discussed in the following sections.

2.1 <u>Soil Investigation</u>

A soil investigation was conducted at Site 65 to assess the nature and extent of previously detected contamination and to assess human health, ecological, and environmental risk associated with contact, inhalation and possible ingestion of surface and subsurface soil particles. The following subsections describe the drilling procedures, sample locations, sample methods and analytical program for the site.

Baker supervised the advancement of 14 soil borings (65-SB06, -SB07, -SB08, -SB09, -SB10, -SB11, -SB12, 65-DW01, -DW02, -DW04, -MW04, -MW05, -MW06 and -MW07) for the purpose of sample collection, geologic identification and description, and monitoring well installation. Drilling and soil sampling activities at the site were initiated on April 4, 1995, and were completed on April 20, 1995, using a truck-mounted drill rig supplied and operated by Parrott Wolff, Inc. Soil cuttings obtained during the drilling program were contained and handled in accordance with procedures outlined in Section 2.5. Drilling and sampling activities were performed using Level D personal protection and operations were continuously monitored with a photoionization detector (PID) and lower explosive limit/oxygen meter. All soil boring/monitoring well locations are shown on Figure 2-1.

The soil borings were advanced to three ranges of depth. Procedures varied depending upon the type of soil boring needed at each location. Seven borings were advanced for soil classification and

sample collection purposes only and were terminated at the water table. These borings were designed for collection of information pertaining to soil contamination in areas where groundwater monitoring wells were not practical due to training activities conducted at the site or in areas where information was needed concerning soils only.

Baker supervised the completion of four soil borings as shallow Type II groundwater monitoring wells extending approximately 10 to 15 feet below the water table. These borings were terminated at approximately 21 to 23 feet bgs using 6.25-inch inside diameter (ID), hollow-stem augers. In some cases, these wells were not logged by the site geologist due to the close horizontal proximity of an adjacent deep boring. The borings were designed to allow construction of monitoring wells with screens that intersect the water table.

Additionally, Baker supervised the advancement of three deep soil borings for the purpose of installing Type III monitoring wells. The deep monitoring wells were extended 10 to 15 feet into the Castle Hayne aquifer terminating at approximately 56 to 70 feet bgs. The deep borings were advanced using fluid (bentonite slurry) rotary drilling methods.

Each boring was advanced using 4-1/4-inch ID, hollow-stem augers to the appropriate completion depth (shallow borings/monitoring wells) or to the top of a stratigraphic segregating layer (deep wells). Those borings designated for monitoring well completion were reamed with 6-1/4-inch ID, augers. Shallow well construction was performed through the larger augers. In the deeper borings, six-inch ID, steel casing was installed through bentonite-cement grout to seal off the surficial aquifer from the underlying Castle Hayne aquifer. The steel casing was set approximately two feet into the a semiconfining unit above the Castle Hayne aquifer.

All borings were continuously sampled to the water table (approximately 7.5 to 11 feet bgs) and then every five feet until termination of the boring with a split-spoon sampling device following methods outlined in ASTM 1586-84 and the Field Sampling and Analysis Plan (FSAP) (Baker, 1995). The sampling protocols were modified in some cases where the site geologist needed more information about a particular soil type or if the formation appeared to be unstable at a particular interval. Soils were considered unstable if problems occurred during drilling that were indicative of borehole collapse. When unstable soils were encountered, samples were not collected until the borehole was advanced beyond the problem interval.

Each split-spoon soil sample was classified by the site geologist. Soils were classified and field screened with a PID. The results were recorded in the field logbook and later transposed onto boring log records. Classification included characterization of soil type, grain size, color, moisture content, relative density (from Standard Penetration Test "blow counts"), plasticity and other pertinent information such as indications of contamination. Lithologic descriptions of site soils are provided on the Test Boring and Well Construction Records in Appendix A.

2.1.1 Surface and Subsurface Soils

Surface and subsurface soil samples were collected from soil boring locations across the site in order to delineate the vertical and horizontal extent of contamination and provide data for human health and ecological risk assessments. As described in the Work Plan (Baker, 1995), selection of soil boring/monitoring well locations was based on Camp Lejeune historical records, previous site investigations and existing boring data. A summary of the sample numbers, sample depths and analytical parameters is provided in Appendix B.

Surface soil samples were collected from 14 borings (see Figure 2-1) using a decontaminated stainless steel spoon to extract each soil sample and place it in an aluminum pan. Samples were collected from zero to 12 inches after the first few inches of top soil and matted roots were scrapped away with a stainless steel trowel. The volatile organic compound (VOC) samples were placed directly into the appropriate laboratory supplied containers immediately after collection. The remaining portion of the sample was composited in an aluminum pan and mixed to homogenize the sample; then the sample was placed into the appropriate sample containers. All samples were temporarily stored in ice-filled coolers until shipment to Quanterra Environmental Services for analyses. The stainless steel spoons were decontaminated prior to sample collection according to the procedures outlined in the FSAP (Baker, 1995).

Soil sampling protocols specified in the FSAP called for two soil samples to be collected from each boring/well cluster location where less than six feet of unsaturated conditions were encountered. These samples were to be collected at the ground surface and directly above the soil/groundwater interface. If greater than six feet of saturated soil conditions were encountered, three samples were to be collected, with the third sample interval to be based on visual observations, field screening using a PID or midway between the surface and the water table. However, the protocols were modified in the field. It was determined that 10 feet of unsaturated soil conditions would better warrant additional samples to be collected. This modification was incorporated into the plans in order to reduce the possibility of collecting an overabundance of unnecessary samples from shallow soil borings.

A vadose zone, subsurface soil sample was collected from directly above the water table in each boring. An additional sample was collected between the surface soil sample depth and the water table from borings in which the depth to water was greater than 10 feet. The intermediate soil samples were collected based on positive PID readings and/or visual contamination. However, if no reading or visible contamination was found, samples were taken from the middle of the (surface to water table) soil column. All subsurface samples were collected via a two- or three-inch diameter, stainless steel, split-spoon sampler. Analytical samples were composited and prepared in the same manner as surface soil samples.

2.1.2 Exploratory Test Pit Investigation

Baker conducted an exploratory test pit investigation at Site 65 to determine the presence and nature of buried material in the debris piles at the southwestern portion of the site (Figure 2-1). Potential test pit locations were identified through visual site inspection. The site inspection sought to identify the extent of the debris piles and the area historically used as the burn area. Observations of waste disposal such as fill material, debris or depressions were used in locating the six test pit excavations.

The investigation employed the use of a backhoe and Level B personal protective equipment (e.g., supplied air). Generally, the soil and debris were removed in lifts of six to 12 inches. The overall dimensions of the test pits were approximately 10 to 15 feet in length and two to three feet in width. The depth of the pits varied depending on the depth of the water table at each location.

Information regarding the type of materials, drums, or possible contamination was recorded in the Test Pit Logs (included in Appendix C) by the site geologist. Additionally, a sketch of each test pit was made to illustrate the location of miscellaneous debris encountered during the excavation. The operations were continuously monitored using a PID and lower explosive limit/oxygen meter during

excavation activities. All excavation and sampling equipment was decontaminated prior to and after each test pit excavation following the procedures outlined in the FSAP (Baker, 1995).

A single sample was collected from each of the excavations and submitted for analysis. Each sample was collected from the backhoe bucket following sampling procedures located in Section 5.1.3 of the FSAP (Baker, 1995). Samples were collected from the bottom of each excavation because no visually contaminated soils and/or positive PID readings were observed. Upon completion of sample collection, the excavations were backfilled with materials and soils removed from each pit as per the FSAP (Baker, 1995).

2.1.3 Analytical Program for Soils

The analytical program initiated for the soil investigation at Site 65 focused on the suspected contaminants of concern which were based on previous disposal practices, site activities and findings of previous investigations. In general, soils at the site were analyzed for Target Compound List (TCL) organic compounds and Target Analyte List (TAL) metals. In addition, a single soil sample was submitted for engineering parameters analyses including total phosphorous, total organic carbon (TOC), alkalinity, chemical oxygen demand (COD), microbial count, Total Kjeldahl Nitrogen (TKN), Atterberg Limits, and particle size distribution. The engineering parameters were obtained to assist in selecting potentially applicable remedial technologies during an FS.

All soil samples retained for analysis were prepared and handled according to USEPA Region IV Standard Operating Procedures (SOPs) as outlined in the FSAP (Baker, 1995). Chain-of-Custody documentation, which includes information such as sample numbers, date, time of sampling, and sampling party accompanied the samples to the laboratory and is provided in Appendix D. Samples were shipped via overnight courier to Quanterra Environmental Services in Knoxville, Tennessee.

2.2 Groundwater Investigation

The groundwater investigation at the Site 65 consisted of several activities including construction of shallow and deep monitoring wells, well development, groundwater sampling, static water measurement and aquifer testing. The investigation was designed to confirm the presence or absence of shallow and deep groundwater contamination, evaluate the horizontal and vertical extent of potentially impacted groundwater, and evaluate the shallow and deep groundwater flow patterns in the area.

The field procedures and sampling methods were implemented in accordance with USEPA Region IV SOPs. Specific sampling procedures are detailed in the FSAP (Baker 1995). The following sections summarize the procedures for monitoring well construction, well development, static water level, measurements, aquifer testing, groundwater sampling, and analytical program.

2.2.1 Shallow and Deep Well Construction

Both deep and shallow wells were constructed of two-inch nominal diameter, Schedule 40, flush-jointed and threaded, polyvinyl chloride (PVC) casing with 10-slot screen. The shallow wells were constructed with a 15-foot section of screen and the deep wells were constructed with a 10-foot section of screen. The deep wells required casing to seal off the upper aquifer from the aquifer below. A six-inch ID, 3/16-inch thick, steel casing was installed from the surface and was seated into the first confining unit. A fine-grained sand pack (No. 1 sand) was placed in the annulus

between the screen and the borehole wall extending above the screen interval about two feet. The shallow wells were installed with a sodium bentonite seal approximately two feet thick placed on top of the sand pack to prohibit intrusion of grout or surface runoff into the sand pack. The deep wells were installed with a sodium bentonite seal placed on top of the sand pack continuing two to three feet inside the protective casing to prohibit intrusion of grout into the sand pack or the aquifer. The bentonite seal provides additional protection against surficial ground water penetrating the Castle Hayne aquifer.

The remaining annular space between the bentonite seal and the surface was filled with cement/bentonite grout. Each well was protected from the damage and tampering by a locking protective cover, well pad and cement-filled ballards. Well tags containing information regarding the construction of each well and the notation "Caution Not Potable Water" were affixed to the wells. Well construction details are summarized in Table 2-1 for shallow and deep wells.

Baker installed four Type II, groundwater monitoring wells (wells without casing sealing off a confining layer) into the water table aquifer to determine the horizontal extent of contamination (if any) existing within the aquifer, and evaluate the shallow groundwater flow patterns. The shallow wells were installed with a portion of the screen above the water table so that floating organics (if any) may enter the well. The screen intervals were designed to compensate for seasonal fluctuation in the water table. The shallow wells were constructed in accordance with the FSAP (Baker 1995) and USEPA Region IV SOPs. A well construction diagram for a typical Type II well is included as Figure 2-2.

Baker supervised the installation of three Type III, groundwater monitoring wells (wells installed with an outer casing to seal out the shallow aquifer), one in each of the deep soil borings. These wells were designed to:

- Evaluate the vertical and horizontal extent of contamination (if any) residing in the Castle Hayne aquifer;
- Determine if the marker bed between the surficial sediments and the River Bend Formation is confining, semi-confining, or not confining and;
- Evaluate the groundwater flow patterns of the deep aquifer.

A typical Type III well construction diagram is presented in Figure 2-3. Type III well screens were placed in a position to intercept the upper portion of the Castle Hayne aquifer.

Upon completion and curing of the grout, each newly installed well was developed to remove fine-grained sediment from the screen and to establish hydraulic communication between the well and the formation. A minimum of three to five well volumes were removed from each well until the groundwater was essentially sediment-free. Groundwater recovered during development was contained and handled in accordance with procedures outlined in Section 2.5. The wells were developed by a combination of surging and pumping techniques. Hoses used for development were dedicated to each well to minimize the potential for cross contamination and discarded upon completion of development. Measurements of pH, turbidity, conductivity and temperature were recorded frequently to assist in evaluating well stabilization. The wells were considered stable when three consecutive measurements of pH, conductivity and temperature were within 10 percent of the previous measurements. Turbidity stabilization was established when a sample was measured and

a value under 10 Nephelometric Turbidity Units (NTUs) was obtained. If turbidity did not stabilize within three hours of purging, the well was considered developed. Well development forms listing all the development parameter measurements are provided in Appendix E.

Three rounds of water levels were collected at Site 65 on April 20, 23, and August 21, 1995 to establish shallow groundwater flow in the Engineer Area Dump region. In addition, two staff gauge readings were collected from Powerline Pond and Courthouse Bay Pond. The groundwater measurements were recorded from the top of the PVC casing using an electronic measuring tape to the nearest 0.01 foot. Measurements were collected within a four-hour time period during each event and can be found on Table 2-2.

Hydraulic conductivity testing was conducted on three shallow wells at Site 65 to evaluate shallow groundwater flow characteristics. Monitoring wells 65-MW04, 65-MW05 and 65-MW07 were tested on May 22 and 23, 1995. Details regarding the results of these tests are discussed in Section 3.0 of this report.

2.2.2 Groundwater Sampling

A single round of groundwater samples was collected from each of the seven newly installed wells and three existing wells to confirm the presence or absence of contamination in the surficial and Castle Hayne aquifers. Prior to collecting the samples, the wells were purged of three to five well volumes of water using a low flow, low turbulence pump. Water recovered during the groundwater sampling program was contained and handled as described in Section 2.5. Temperature, conductivity, turbidity and pH measurements were collected after each well volume was removed to determine when the groundwater had stabilized prior to sampling. The definition of stabilization is the same for development and purging. Table 2-3 summarizes the groundwater sampling field parameter measurements.

Samples were collected using a peristaltic pump and teflon tubing. Flow rates were set at about 0.25-gallons per minute (gpm) to establish low flow purging. This method of purging creates less disturbance within the water column, thus capturing fewer sediments during sampling. High sediment content water creates a false impression of elevated metals in groundwater. In addition, the potential for organic compound volatilization is decreased. The teflon tubing was decontaminated prior to sampling and was discarded after sampling any well suspected of being contaminated and at the end of each day's sampling events.

Groundwater samples were introduced directly from the tubing into the appropriate laboratory supplied sample container and stored on ice in a cooler. Preparation of the samples for shipment to the laboratory incorporated similar procedures as to those described for soil samples and are outlined in the FSAP (Baker, 1995). Chain-of-Custody documentation (provided in Appendix D) accompanied the samples to the analytical laboratory.

2.2.3 Analytical Program for Groundwater Samples

Ten groundwater samples, plus quality assurance/quality control (QA/QC) samples, were analyzed for TCL organics, and TAL metals. In addition, one sample was collected for the analysis of engineering parameters including COD, TOC, TKN, alkalinity, microbial count, and total phosphorus. As with the soils, the engineering parameters were intended to assist in selecting

potentially applicable remedial technologies. A summary of the sample numbers and analytical parameters is provided in Appendix B.

2.3 Surface Water/Sediment Investigation

Baker collected surface water and sediment samples from Courthouse Bay Pond and Powerline Pond to assess possible impacts from the site and assist in human health and ecological RAs. The surface water/sediment investigation was conducted between May 5 and 22, 1995. Four sampling locations were proposed in the FSAP (Baker, 1995). A single sample location was established in each pond (Figure 2-1). Sample 65SW/SD-04 was collected from the middle of Courthouse Bay Pond and Sample 65SW/SD-05 was collected from the eastern portion of Powerline Pond. Sampling locations were determined in the field and corresponded roughly with the aquatic/ecological sampling locations. One surface water and two sediment samples (0 to 6 inches and 6 to 12 inches below the sediment surface) were collected from each location.

The additional samples 65SW/SD-06 and 65SW/SD-07 were to be collected from the marshy area adjacent to Courthouse Bay Pond and the drainage way leading from Courthouse Bay Pond in the southwestern direction, respectively. Sample 65SW/SD-06 was not collected because only a small amount of puddled water existed at the sample location and, therefore, it could not be classified as surface water. Sample 65SW/SD-07 was not collected because the drainage way was dry in the location that the sample was to be collected at the time of the sampling activities. Other surface water sample locations were investigated. Water was present in the drainage way several hundred feet downstream of the proposed location, after receiving runoff from other locations not associated with the site. However, it was determined that if samples were collected from the drainage way at this new location that they would not be representative of Site 65.

2.3.1 Surface Water Sample Collection

Baker collected the surface water samples consistent with the procedure described in the FSAP (Baker, 1995). Samples were collected from the approximate mid-vertical point in the pond using a sub-surface grab sampler. A clean laboratory-supplied 1-liter amber sample bottle was attached to the sampler via a clamp. Baker sampling personnel lowered the bottle to the mid-vertical point, twisted off the lid with a suction cup attachment, and allowed the bottle to fill with water. After the bottle was filled, the lid was secured and the bottle was removed from the water. The contents of the bottle were transferred into the remaining sample bottles in accordance with the FSAP (Baker, 1995).

Care was taken when transferring surface water samples for analysis of VOCs to avoid excessive agitation that could result in loss of VOCs. VOC samples were collected prior to obtaining samples for analysis of other parameters. The sample bottles were filled by pouring down the side of the container until it was completely filled leaving no headspace. Each filled bottle was checked for bubbles and rejected if encountered.

Each sampling location was marked by placing a wooden stake and bright colored flagging at the nearest bank. The sampling location was marked with indelible ink on the stake. In addition, the distance from the bank and the approximate location of the sample was estimated and recorded in the field log book of one of the Baker personnel. Photographs were taken to document the physical and biological characteristics of the sampling location.

2.3.2 Sediment Sample Collection

At each sediment sampling station samples were collected at a depth of zero to six inches and six to 12 inches. The samples were collected using a decontaminated, stainless-steel, sediment corer fitted with a new, disposable, plastic liner and a decontaminated plastic nosecone. If necessary, an eggshell catcher was used to minimize loss of the sample. Sampling personnel pushed the sediment corer, using the necessary extension poles, between 15 and 20 inches into the sediment. The sediment corer was then withdrawn and the plastic liner was removed from the corer. Sediment deeper than 12 inches was extruded from the liner and the zero- to six- and six- to 12-inch sediment intervals were placed into separate clean aluminum pans.

Baker collected the samples for the VOC analysis with a clean, stainless-steel spoon. The remaining sediment was homogenized and transferred into their respective sample jars. This process was repeated until enough sediment was obtained to fill all the sample jars.

2.3.3 Surface Water/Sediment Sample Analysis

Surface water/sediment samples were analyzed for TCL organics, TAL metals and TOC. In addition, the zero- to six-inch sample for each location was analyzed for TOC and particle-size distribution. A summary of the sample numbers and analytical parameters is provided in Appendix B. The samples were prepared and handled in accordance with the FSAP (Baker 1995) and USEPA Region IV SOPs.

2.4 Ecological Investigation

Baker conducted an ecological investigation at Site 65 to provide data to support the ecological RA. Biological samples collected as part of this investigation included fish and benthic macroinvertebrates. These were collected to obtain population statistics for fish and benthic macroinvertebrates and to obtain fish tissue samples for chemical analysis.

2.4.1 Fish Sample Collection

Baker personnel collected fish in Powerline Pond (sample number 65FS-05) using a Smith-Root Inc., backpack electrofisher powered by a 5,000-watt, portable generator. A DC current was applied utilizing the boat as the cathode and a hand-held electrode as the anode. The length of shocking time per subsection was recorded as seconds of applied current. Stunned fish were collected with one-inch mesh or smaller dip nets handled by members of the field sampling team.

Baker was not very successful collecting fish via electrofishing for several reasons. Most of the pond was overgrown with a thick algae preventing the fish from surfacing after they were "shocked". The areas of the pond not overgrown with algae were covered with water lily preventing the fish from being visually observed after being "shocked". Baker did not attempt to electrofish Courthouse Bay Pond because the visibility in the pond was approximately one-inch due to the high concentration of suspended sediment.

In addition to the electrofisher, fish samples were collected in Powerline Pond and Courthouse Bay Pond (sample number 65FS-04) using hoop nets. The nets ranged from two to four feet in diameter and 14 to 16 feet in length. Either 10-, 25- or 40-foot wings were attached to the nets at 45-degree angles to direct the fish into the nets. The nets were deployed with the tail end at the shore and the

openings facing the middle of the pond. Minnow traps baited with cat food were also deployed; however, no minnows were collected in the traps.

The samples were wrapped in foil and placed in a clean plastic bag for temporary storage in an on site freezer. The samples were subsequently shipped to the laboratory in a cooler packed with dry ice.

2.4.2 Fish Tissue Sample Analysis

Whole body and fillet samples were collected from the fish and analyzed for TCL organics and TAL metals. The samples were prepared in accordance with USEPA Region IV protocols by the laboratory.

2.4.3 Benthic Macroinvertebrate Sample Collection

Baker collected benthic macroinvertebrates proximate to the respective adjacent sediment and surface water sampling locations. Samples 65BN-04 and 65BN-05 were collected from Courthouse Bay Pond and Powerline Pond, respectively. The samples were collected from a boat using a standard ponar grab samples in accordance with the FSAP (Baker, 1995). The dimensions of the standard ponar are 0.229 x 0.229 meters (9 x 9 inches) for a sampling area of 0.0523 square meters (81 inches). The sampling area of the ponar is used to calculate the species density in individuals per square meter.

2.5 Investigation Derived Waste

Investigation derived waste (IDW) was generated during the field program at OU No. 9. The IDW generated includes soil and mud cuttings, purge and development groundwater, used personal protective equipment, and spent decontamination fluids. The following paragraphs describe the procedures for IDW management for Site 65.

Soil cuttings (and drilling mud) generated during soil boring and monitoring well installation, and spoil generated from test pit excavation were placed back into the boring or test pit in the same order in which it was taken out, or spread out on the ground surface where wells were constructed in the borehole. The philosophy of this methodology is that if the soil cuttings were contaminated, they would be remediated with the soils at the remediation stage of the remedial action process.

Spent decontamination fluids and groundwater generated during well development and purging was managed in one of two ways. Groundwater collected from monitoring wells 65MW-01, -03, -04, -06, -07, 65DW-01 and -04 was discharged onto the ground surface. The groundwater collected from these wells did not exhibit visual contamination (e.g., nonaqueous-phase liquid or oily sheen) or unusual odors (e.g., fuel or sulfur odors) and were located in an upgradient direction from the southernmost debris piles (the suspected source of possible contamination at the site). Groundwater collected from downgradient monitoring wells 65MW-02, -05 and 65DW-02, and spent decontamination fluids were combined with groundwater from Site 73 and temporarily contained in two, 5,000-gallon, stainless-steel tankers and a 1,000-gallon polytank. A sample was collected from each of the storage containers and analyzed for TCL organics, TAL metals, and RCRA hazardous waste characteristics. A correspondence letter is included in Appendix F which discusses the results of the analyses and the fate of groundwater contained in each one of the storage tankers.

Used personal protective equipment (e.g., nitrile gloves, tyvek, etc.) were double bagged, labeled and disposed as solid waste in an on-site refuse container which subsequently was emptied at a sanitary landfill. If the equipment would have been exposed to potentially hazardous substances or excessively contaminated soil or groundwater, the equipment would have been placed in a drum and disposed at a hazardous waste landfill.

2.6 References

Baker, 1995. Baker Environmental, Inc. <u>Remedial Investigation/Feasibility Study Project Plans:</u> Operable Unit No. 9 (Sites 65 and 73), Camp Lejeune, North Carolina. Final. Prepared for the Department of the Navy, Naval Facilities Engineering Command, Atlantic Division, Norfolk, Virginia, March 1995.

Faizelle, Mac. Personal Communication. General Foreman, Water Treatment, MCB, Camp Lejeune, September and October, 1995.

SECTION 2.0 TABLES

TABLE 2-1

SUMMARY OF GROUNDWATER MONITORING WELL CONSTRUCTION DETAILS SITE 65 - ENGINEER AREA DUMP REMEDIAL INVESTIGATION, CTO-0312 MCB, CAMP LEJEUNE, NORTH CAROLINA

Well No.	Date Installed	Consultant Supervising Well Installation	Top of PVC Casing Elevation (feet, above msl)	Ground Surface Elevation (feet, above msl)	Stick-Up (feet, above ground surface)	Boring Depth (feet, bgs)	Well Depth (feet, bgs)	Steel Casing Depth (feet, bgs)	Screen Interval Depth (feet, bgs)	Depth to Sand Pack (feet, bgs)	Depth to Bentonite (feet, bgs)
65-MW04	04-07-95	Baker	44.84	42.90	1.94	23	23	NA	6.0-23.0	6.0	4.0
65-MW05	04-05-95	Baker	30.26	28.00	2.28	23	22	NA	7.0-22.0	5.0	, 3.0
65-MW06	04-05-95	Baker	34.71	32.55	2.16	21	20	NA	5.0-20.0	3.0	2.0
65-MW07	04-04-95	Baker	36.74	34.47	2.27	23	23	NA	8.0-23.0	6.0	4.0
65-DW01	04-10-95	Baker	32.07	30.00	2.07	66.0	66.0	42.0	56.0-66.0	54.0	39.0
65-DW02	04-11-95	Baker	25.40	23.50	1.90	56.0	54.0	39.0	44.0-54.0	42.0	37.5
65-DW04	04-07-95	Baker	44.49	42.43	2.06	70.0	68.0	50.0	58.0-68.0	56.0	44.0

Notes:

msl = Mean Sea Level

bgs = Below Ground Surface

NA = Not Applicable

TABLE 2-2

SUMMARY OF GROUNDWATER LEVEL MEASUREMENTS SITE 65 - ENGINEER AREA DUMP REMEDIAL INVESTIGATION, CTO-0312 MCB, CAMP LEJEUNE, NORTH CAROLINA

Well No.	Top of PVC Casing Elevation (feet, above msl)	Depth to Groundwater (feet, below top of casing) April 20, 1995	Depth to Groundwater (feet, below top of casing) April 23, 1995	Depth to Groundwater (feet, below top of casing) August 21, 1995	Groundwater Elevation (feet, above msl) April 20, 1995	Groundwater Elevation (feet, above msl) April 23, 1995	Groundwater Elevation (feet, above msl) August 21, 1995
65-MW01	34.64	12.95	11.58	13.07	21.69	23.06	21.57
65-MW02	25.21	7.43	6.53	8.09	17.78	18.68	17.12
65-MW03	39.61	13.05	12.19	14.01	26.56	27.42	25.60
65-MW04	44.84	15.44	14.54	16.75	29.40	30.30	28.09
65-MW05	30.28	11.70	10.82	12.29	18.58	19.46	17.99
65-MW06	34.71	9.33	8.42	10.34	25.38	26.29	24.37
65-MW07	36.74	13.29	12.38	13.85	23.45	24.36	22.89
65-DW01	32.07	24.11	22.83	24.01	7.96	9.24	8.06
65-DW02	25.40	17.65	16.97	18.33	7.75	8.43	7.07
65-DW04	44.49	34.10	33.28	34.82	10.39	11.21	9.67

Notes:

msl = Mean Sea Level

TABLE 2-3

SUMMARY OF GROUNDWATER SAMPLING FIELD PARAMETERS SITE 65 - ENGINEER AREA DUMP

REMEDIAL INVESTIGATION, CTO-0312

MCB, CAMP LEJEUNE, NORTH CAROLINA

				Field Parameters						
Well Number	Sampling Date	Well Depth (ft) ⁽¹⁾	Purge Volume (gal)	Well Volume	Specific Cond. (2) (umhos/cm)	pH (SU) ⁽³⁾	Cond. Temp. ⁽⁴⁾ (deg. C)	pH Temp. ⁽⁵⁾ (deg. C)	Turbidity (NTU) ⁽⁶⁾	
65-MW01	5/8/95	21.48	1.5	0	820	6.87	22.0	20.0	NA	
			1	1	820	6.94	19.0	21.0	NA	
				2	820	6.90	21.0	20.0	11.09	
				3	820	6.83	21.0	20.0	1.52	
65-MW02	5/9/95	15.87	1.4	0	385	6.35	20.0	19.0	5.80	
				1.5	330	6.15	19.0	19.0	6.73	
				3	310	6.09	19.0	19.0	4.73	
				4.5	300	6.10	19.0	19.0	2.63	
65-MW03	5/9/95	22.11	1.6	0	170	5.67	18.0	17.0	6.33	
			•	1	270	6.09	18.5	18.0	2.05	
				2	265	6.06	19.5	18.0	1.67	
				3	260	6.08	19.5	18.0	1.10	
65-MW04	5/17/95	24.57	1.6	0	73.8	5.55	18.1	19.0	6.7	
				1	76.7	5.76	18.1	17.6	1.9	
		•		2	76.5	5.65	17.9	17.9	1.2	
				3	75.3	5.60	17.8	17.4	0.3	
				4	73.6	5.45	17.7	17.1	0.2	
				5	73.8	5.48	17.7	17.0	0.2	
				6	73.8	5.47	17.8	17.1	0.2	

Notes:

^{(1) -} Measured from top of PVC Casing (2) - Specific Conductance at 25 deg. C

^{(3) -} SU = Standard Units

^{(4) -} Temperature Measured with Cond. Meter

^{(5) -} Temperature Measured with pH Meter

er (6) - NTU = Nephelometric Turbidity Units

The bold and italicized parameters where taken immediately prior to sampling the well.

TABLE 2-3 (Continued)

SUMMARY OF GROUNDWATER SAMPLING FIELD PARAMETERS SITE 65 - ENGINEER AREA DUMP

REMEDIAL INVESTIGATION, CTO-0312

MCB, CAMP LEJEUNE, NORTH CAROLINA

						Field Pa	rameters		
Well Number	Sampling Date	Well Depth (ft) ⁽¹⁾	Purge Volume (gal)	Well Volume	Specific Cond. (2) (umhos/cm)	pH (SU) ⁽³⁾	Cond. Temp. ⁽⁴⁾ (deg. C)	pH Temp. ⁽⁵⁾ (deg. C)	Turbidity (NTU) ⁽⁶⁾
65-MW05	5/9/95	24.82	2.2	0	227	5.75	20.0	18.0	4.82
				1	220	5,73	19.0	18.0	13.38
				2	237	5.75	19.0	18.0	10.12
				3	240	5.78	19.0	18.0	6.04
65-MW06	5/9/95	21.36	1.8	0	190	5.01	18.5	17.0	32.90
	1			1	135	4.99	19.0	16.5	38.60
				2	130	4.93	18.5	17.0	18.30
				3	130	4.94	18.5	17.0	(NTU)(6) 4.82 13.38 10.12 6.04 32.90 38.60
				4	135	4.96	18.0	17.0	8.18
65-MW07	5/9/95	24.72	1.9	0	245	5.67	19.0	19.0	6.39
				1.25	262	5.85	19.0	18.0	3.99
				2	260	5.74	19.0	18.0 13.38 18.0 10.12 18.0 6.04 17.0 32.90 16.5 38.60 17.0 18.30 17.0 10.12 17.0 8.18 19.0 6.39 18.0 3.99 20.0 3.07 19.0 2.49 19.0 10.59 18.0 3.81 18.0 2.93 18.0 11.28 17.5 3.28	
				3	260	5.72	19.0	19.0	2.49
65-DW01	5/8/95	67.88	7.3	0	700	8.53	22.5	19.0	10.59
				1	270	8.45	20.0	18.0	5.52
				2	275	8.37	19.5	(deg. C) (NTU)(6) 18.0 4.82 18.0 13.38 18.0 10.12 18.0 6.04 17.0 32.90 16.5 38.60 17.0 18.30 17.0 10.12 17.0 8.18 19.0 6.39 18.0 3.99 20.0 3.07 19.0 10.59 18.0 5.52 18.0 3.81 18.0 11.28 17.5 3.28 17.5 1.19	
				3	275	8.42	19.0	18.0	2.93
65-DW02	5/9/95	55.49	6.2	0	440	6.61	19.5	18.0	11.28
				1	550	6.38	19.5	17.5	3.28
				2	550	6.48	19.5	17.5	1.19
				3	500	6.44	19.5	17.5	1.22

Notes:

The bold and italicized parameters where taken immediately prior to sampling the well.

^{(1) -} Measured from top of PVC Casing (2) - Specific Conductance at 25 deg. C

^{(3) -} SU = Standard Units

^{(4) -} Temperature Measured with Cond. Meter

^{(5) -} Temperature Measured with pH Meter

^{(6) -} NTU = Nephelometric Turbidity Units

TABLE 2-3 (Continued)

SUMMARY OF GROUNDWATER SAMPLING FIELD PARAMETERS

SITE 65 - ENGINEER AREA DUMP

REMEDIAL INVESTIGATION, CTO-0312

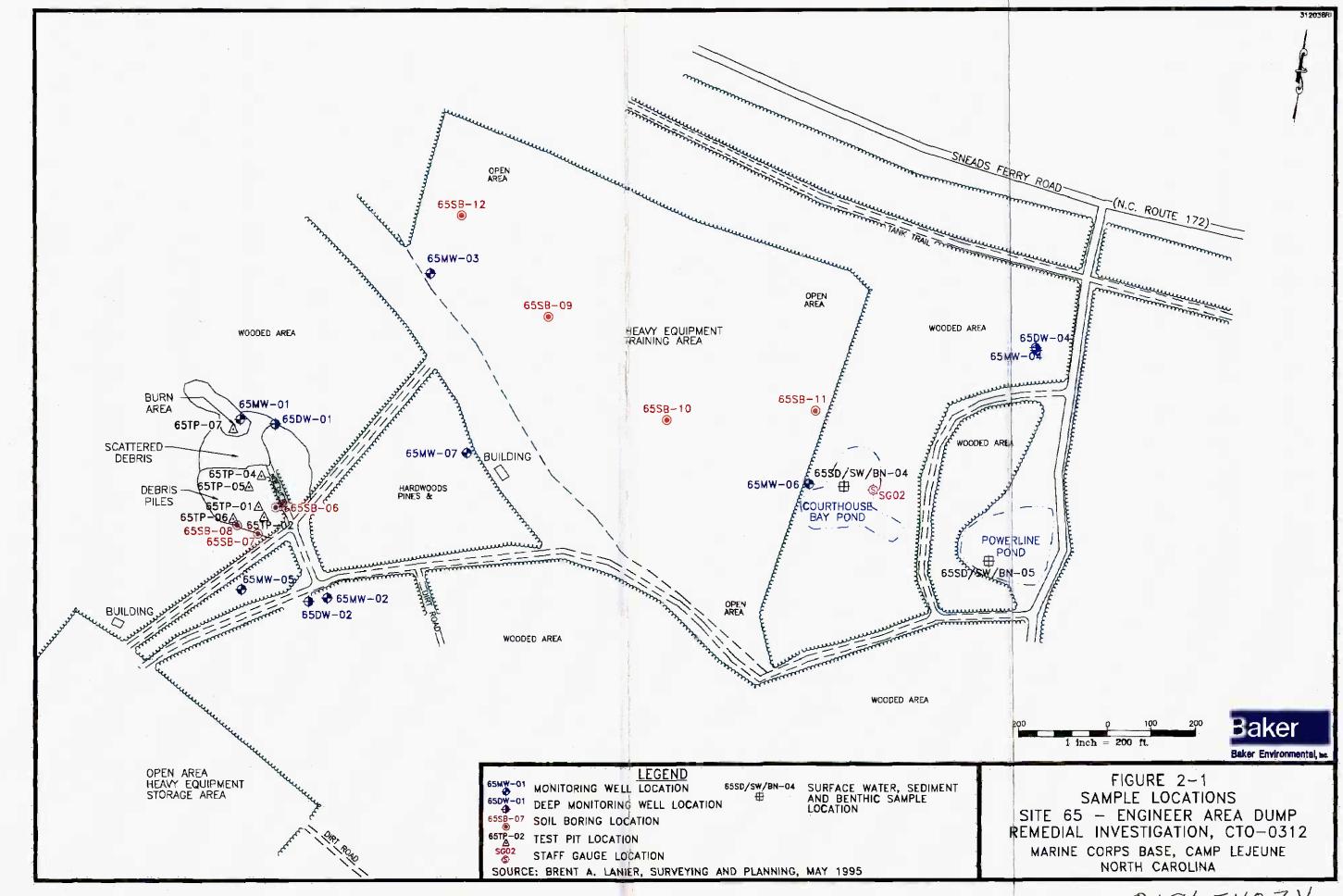
MCB, CAMP LEJEUNE, NORTH CAROLINA

				Field Parameters						
Well Number	Sampling Date	Well Depth (ft) ⁽¹⁾	Purge Volume (gal)	Well Volume	Specific Cond. ⁽²⁾ (umhos/cm)	pH (SU) ⁽³⁾	Cond. Temp. ⁽⁴⁾ (deg. C)	pH Temp. ⁽⁵⁾ (deg. C)	Turbidity (NTU) ⁽⁶⁾ 1.98 2.08 1.21 6.9 3.5 2.8 3.0 1.5 1.9	
65-DW02	5/18/95	55.60	6.3	1	620	6.95	19.1	21.3	1.98	
			Ì	2	605	7.10	18.9	20.2	2.08	
·				3	600	7.12	19.0	20.2	1.21	
65-DW04	5/16/95	69.71	6	0	226.3	8.76	20.4	21.6	<u> </u>	
				1	223.2	8.87	19.9	20.2	3.5	
				2	221.4	8.89	20.2	20.4	2.8	
				3	221.6	8.94	19.5	20.0	3.0	
				4	219.5	8.99	19.2	19.2	1.5	
				5	219.5	8.98	19.3	19.2	1.9	
				6	219.4	8.98	19.4	19.4	2.1	

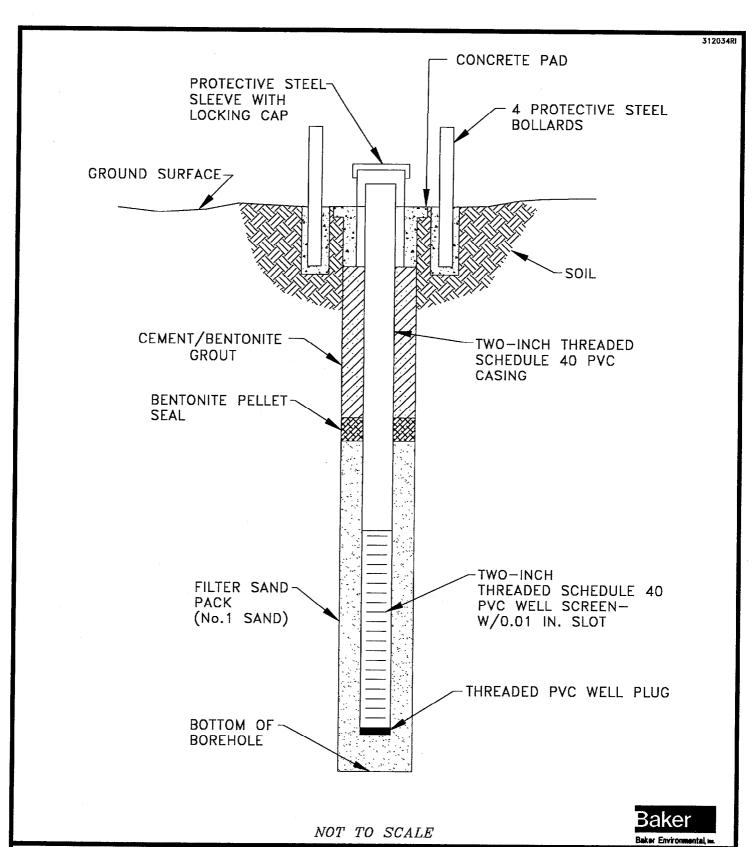
Notes:

The bold and italicized parameters where taken immediately prior to sampling the well.

^{(1) -} Measured from top of PVC Casing (2) - Specific Conductance at 25 deg. C

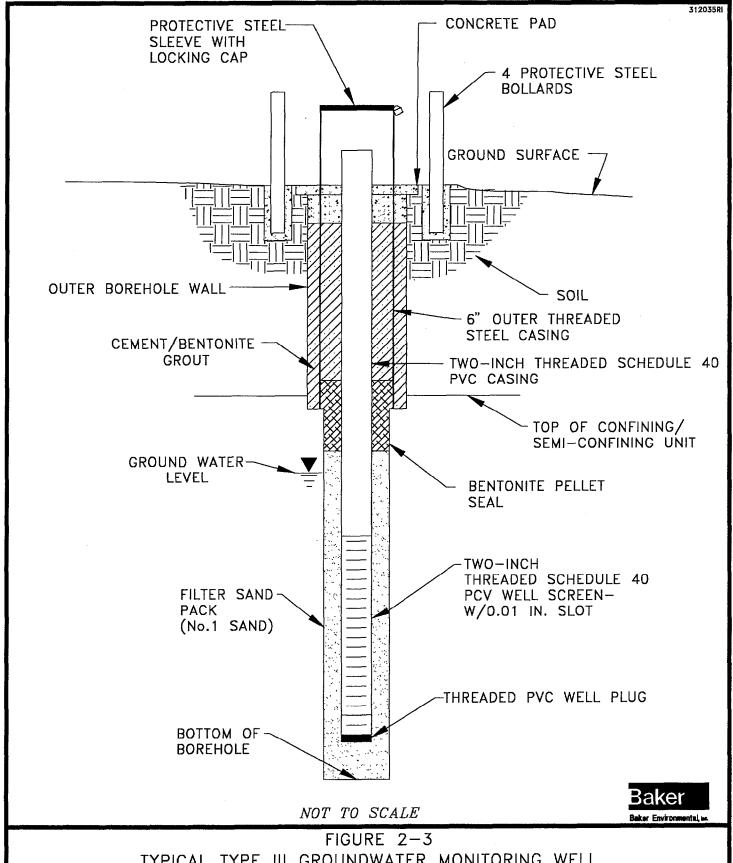

^{(3) -} SU = Standard Units

^{(4) -} Temperature Measured with Cond. Meter


^{(5) -} Temperature Measured with pH Meter

^{(6) -} NTU = Nephelometric Turbidity Units

SECTION 2.0 FIGURES



017/25N03Y

FIGURE 2-2

TYPICAL TYPE II GROUNDWATER MONITORING WELL
CONSTRUCTION DIAGRAM
SITE 65 — ENGINEER AREA DUMP
REMEDIAL INVESTIGATION, CTO-0312
MARINE CORPS BASE, CAMP LEJEUNE
NORTH CAROLINA

TYPICAL TYPE III GROUNDWATER MONITORING WELL CONSTRUCTION DIAGRAM
SITE 65 — ENGINEER AREA DUMP
REMEDIAL INVESTIGATION, CTO-0312
MARINE CORPS BASE, CAMP LEJEUNE
NORTH CAROLINA

3.0 PHYSICAL CHARACTERISTICS OF THE STUDY AREA

This section presents a discussion of the physical characteristics of Site 65, Engineer Area Dump including: surface features, climatology and meteorology, hydrology, geology (regional and site), soils, hydrogeology (regional and site), land usage, ecology (regional and site), and a water supply well inventory of the area. This information was obtained from available literature pertaining to MCB, Camp Lejeune and from the RI field activities.

3.1 Topography and Surface Features

The generally flat topography of MCB, Camp Lejeune is typical of the North Carolina Coastal Plain. Elevations on the base vary from sea level to 72 feet above mean sea level (msl); however, the elevation of most of Camp Lejeune is between 20 and 40 feet msl.

Drainage at Camp Lejeune is generally toward the New River, except in areas near the coast which drain through the Intracoastal Waterway. In developed areas, natural drainage has been altered by asphalt cover, storm sewers, and drainage ditches. Approximately 70 percent of Camp Lejeune is in broad, flat interstream areas. Drainage is poor in these areas and the soils are often wet (WAR, 1983).

The U.S. Army, Corps of Engineers has mapped the limits of 100-year floodplain at Camp Lejeune at 7.0 feet above msl in the upper reaches of the New River; this increases downstream to 11 feet above msl near the coastal area (WAR, 1983). Since Site 65 elevations range between 20 and 40 feet msl, it does not lie within the 100-year floodplain of the New River.

The surface of the study area is primarily covered with vegetation except for the heavy equipment training area and vehicular trails that bisect the site. Two ponds (Courthouse Bay and Powerline Ponds) are located east of the Heavy Equipment Training Area.

The topography of Site 65 is gently pitched to the southeast. The site has numerous areas where the natural topography has been modified by the removal and redistribution of earth materials (i.e., training exercises) or by past dumping practices. A 4.5-percent grade exists between monitoring wells 65DW-04 (located near the ponds east of the site) and 65DW-02 (located on the southeastern edge of the site). Infiltration is high at the site due to the lack of man-made drainage ditches and impervious surfaces such as paved roads, parking lots or buildings.

3.2 Surface Water Hydrology

The following summary of surface water hydrology was originally presented in the IAS report (WAR, 1983). The dominant surface water at MCB, Camp Lejeune is the New River. It receives drainage from most of the base. The river is short, with a course of approximately 50 miles on the central Coastal Plain of North Carolina. Over most of its course, the New River is confined to a relatively narrow channel entrenched in Eocene and Oligocene limestones. South of Jacksonville, the river widens as it flows across less resistant sands, clays, and marls. At MCB, Camp Lejeune, the New River flows in a southerly direction into the Atlantic Ocean through the New River Inlet. Several small coastal creeks drain into the area of MCB, Camp Lejeune not associated with the New River and its tributaries. The New River, the Intracoastal Waterway and the Atlantic Ocean converge at the New River Inlet.

Water quality criteria for surface waters in North Carolina have been published under Title 15 of the North Carolina Administration Code. The following classifications were assigned to the New River, Courthouse Bay and the two ponds located east of Site 65.

At MCB, Camp Lejeune, the New River falls into two classifications: estuarine waters not suited for body-contact sports or commercial shell fishing (SC) and estuarine water suited for commercial shellfishing primary recreation, aquatic life propagation and survival, fishing, wildlife, and secondary recreation (SA). The portion of the river that is nearest to the site, as well as Courthouse Bay are classified as Class SA.

The ponds located east of the site have not been classified by NC DEHNR. Therefore, the ponds were assigned a classification by a process of elimination. The ponds are freshwater ponds not used for consumptive purposes, and are not used for primary recreation. Therefore, they were assigned a Class C classification. This classification is reserved for freshwater bodies in which aquatic life propagation and survival, fishing, wildlife, secondary recreation and agricultural uses may occur.

3.3 Geology and Soil

3.3.1 Regional

MCB, Camp Lejeune is situated within the Tidewater region of the Atlantic Coastal Plain physiographic province. The sediments of the Atlantic Coastal Plain consist mostly of interbedded sands, silts, clays, calcareous clays, shell beds, sandstone and limestone. These sediments are layered in interfingering beds and lenses that gently dip and thicken to the southeast to a combined thickness of approximately 1,500 feet. These sediments were deposited in marine or near-shore environments and range in age from early Cretaceous to Quaternary time. Regionally, they comprise 10 aquifers and 9 confining units which overlie igneous and metamorphic basement rocks of the pre-Cretaceous age. Seven of these aquifers and their associated confining units are present in the MCB, Camp Lejeune area. Table 3-1 presents a generalized stratigraphic column for Jones and Onslow Counties, North Carolina, and geologic cross sections of the MCB, Camp Lejeune area are presented on Figures 3-1 and 3-2.

3.3.2 Site-Specific

Information regarding surface soil classifications was obtained from a study entitled Soil Survey, Camp Lejeune, North Carolina (Barnhill, 1984). The soils at the site fall into three different classifications: Baymeade fine sand (BmB), Pits (Pt) and Leon fine sand (Ln).

The soils located north of the site (i.e., north of the Heavy Equipment Training Area) and west of the site are classified as Baymeade fine sand. This soil is well drained and occurs in large areas with moderately convex slopes near major drainageways. Typically ranging from 25 to 300 acres in size, most of the acreage is woodland. Infiltration is rapid and surface runoff slow while permeability is moderately rapid with low water capacity. In the absence of ground cover, the soil is susceptible to accelerated erosion.

The portions of the site used for Heavy Equipment Training and past dumping (i.e., the area where the debris piles are located) are classified as Pits (Pt). These soils are defined as units consisting of areas where the soils have been excavated, commonly to a depth of five to 15 feet bgs.

The remaining soils located to the south of the site are classified as Leon fine sands. These nearly level, poorly drained soils are primarily located in upland areas, occurring on broad interstream divides. These soils range from 20 to 800 acres in size and are nearly all in woodland areas. Infiltration is rapid and surface run-off slow. Permeability of the surface soils is typically rapid but only moderate in the subsurface soils. The humus-coated sand particles are weakly cemented when wet and become hard and brittle upon drying.

Subsurface soils encountered during drilling at Site 65 are representative of undifferentiated and River Bend Formations. Geologic cross sections for Site 65 are presented on Figures 3-3, 3-4, and 3-5.

Numerous borings were advanced within the study area during the field investigations conducted by Baker. Subsurface soil descriptions are provided in the Test Boring and Well Construction Records in Appendix A. Additional information regarding the soils were obtained from the previous investigations. The following provides a detailed description of the stratigraphy underlying the study area.

Soil conditions are generally uniform throughout the study area. In general, the shallow soils consist of unconsolidated deposits of sand and silty sand. These soils represent the Quaternary age "undifferentiated" deposits which overlay the River Bend Formation. Sands are primarily very fine to fine grained and contain varied amounts of silt and clay. Results of the standard penetrations tests indicate that the sands have a relative density of loose to dense. Based on field observations, the sands classify as silty sand (SM) and/or poorly graded sand (SP) according to the Unified Soil Classification System (USCS).

Geologic cross-sections were constructed to illustrate subsurface soil beneath the study area. As shown on Figure 3-3, the site was traversed to provide a cross-sectional view of the study area. Two cross-sections were constructed: A-A' crosses the site north to south; B-B' crosses west to east.

Cross-section A-A' depicts subsurface soils to an elevation of -42.5 feet msl from the northern portion of the site to the southern. As illustrated on Figure 3-4, the soil underlying this portion of the area consists of very fine to fine sands with trace amounts of silt and clay.

Underlying the previously described soils is a loose to medium dense, greenish gray, fine sand containing little clay (approximately 10-35%) and trace silt. This soil unit constitutes the Belgrade Formation in the semi-confining unit separating the Quaternary sediments from the Castle Hayne aquifer. The semi-confining unit appears to be approximately 7.5 to 15 feet thick, generally thickening toward the north. Beneath this unit resides the River Bend Formation. Borings were only advanced 10 to 15 feet into this formation during the RI, therefore providing limited knowledge of specific details regarding the condition of the River Bend beneath the study area. The upper portion of the River Bend was described as a partially cemented, gray, fine sand with some shell fragment and limestone fragments encountered periodically.

Cross-section B-B' depicts the subsurface soil conditions to an elevation of -35.1 feet msl (Figure 3-5). Overall the soils did not differ substantially from those encountered in the A-A' cross section. In general, a very fine to fine sand with little clay and trace silt to an elevation of 3 to - 11 feet msl. The semi-confining unit underlies this unit followed by the River Bend Formation.

Overall, the soils encountered during investigations within the study area are fairly consistent throughout. Note that within the study area, a laterally continuous semi-confining unit was present and between 3 and -11 feet msl. The location of the semi-confining unit separating the surficial from the Castle Hayne aquifer was encountered approximately 40 feet bgs. This is consistent with the range reported by the USGS, but exceeds the reported average of 25 feet bgs (Cardinell et al., 1993).

3.4 Hydrogeology

3.4.1 Regional

The following sections discuss the regional and site-specific hydrogeologic conditions. The information presented on the regional hydrogeology is from literature (Harned, et al., 1989 and Cardinell, et al., 1993). Site-specific, hydrogeologic information presented is from data collected during field investigations. Additional information was collected from a technical memorandum prepared by Baker which summarizes groundwater data and aquifer characteristics for MCB, Camp Lejeune (see Appendix G).

United States Geological Survey (USGS) studies at MCB, Camp Lejeune indicate that the area is underlain by sand and limestone aquifers separated by confining units of silt and clay. These aquifers include the surficial (water table), Castle Hayne, Beaufort, Peedee, Black Creek, and upper and lower Cape Fear. Less permeable clay and silt beds function as confining units or semi-confining units which separate the aquifers and impede the flow of groundwater between aquifers.

The surficial aquifer consist of interfingering beds of sand, clay, sandy clay and silt that contain some peat and shells of Quaternary and Miocene age. These sediments commonly extend to depths of 50 to 100 feet bgs. Thickness of the surficial aquifer in MCB, Camp Lejeune area range from 0 to 73 feet, and typically average 25 feet. The aquifer is generally thickest in the interstream divide areas and may be absent where it is cut by the New River and its tributaries. The clay, sandy clay, and silt beds that occur in the surficial aquifer are thin and discontinuous throughout. A semiconfining unit is found in the surficial aquifer within some portions of MCB, Camp Lejeune.

Recharge to the surficial aquifer is by rainfall. The aquifer receives more recharge in the winter than in the summer when much of the water evaporates or is transpired by plants before it can reach the water table. Most of the surficial groundwater is discharged to local streams, but some water passes through the underlying semi-confining unit. Recharge for the surficial aquifer is based on an average rainfall of 52 inches per year and an average recharge of 30 percent, or an annual recharge of approximately 16 inches per year. The remaining 70 percent of the rainfall is lost as surface runoff or evapotranspiration. Sixteen inches of recharge equates to 7,600,000 gallons per day (gpd) per square mile or approximately 114,000,000 gpd for all of MCB, Camp Lejeune (based on 150 square miles of recharge area). Water levels in the wells tapping the surficial aquifer vary seasonally. The water table is generally highest in the winter and spring, and lowest in the summer and early fall. The estimated lateral hydraulic conductivity for the surficial aquifer is 50 feet per day (ft/d) and is based on a general composition of fine sand mixed with some silt and clay (Cardinal, et al., 1993).

Although the aquifer is classified as GA (i.e., existing or potential source of drinking water supply for humans), it is not used as a potable water source at MCB, Camp Lejeune because of its low yielding production rates (typically less than 3 gpm).

The Castle Hayne semi-confining unit in the MCB, Camp Lejeune area is characterized as less permeability beds overlying the Castle Hayne aquifer that have been partly eroded or incised in places. This unit is composed of clay, silt, and sandy clay, with vertical hydraulic conductivity estimates of 1.4 x 10⁻³ to 0.41 feet/day. The range in vertical hydraulic conductivity of the semi-confining layers determines the degree to which the semi-confining unit transmits flow. The thickness of the semi-confining unit ranges from zero to 26 feet and averages about nine feet where present.

The principal water supply aquifer for MCB, Camp Lejeune is the Castle Hayne aquifer. This aquifer primarily resides within the River Bend Formation which consists of sand, cemented shells and limestone. The upper portion of the aquifer is primarily comprised of calcareous sands with some thin clay and silt beds. The sand becomes increasingly more limy with depth. The lower portion of the aquifer is comprised of partially unconsolidated limestone and sandy limestone interbedded with clay and sand. Also, buried paleostream channels containing various deposits exist within the aquifer. The top of the aquifer ranges from 10 feet above sea level to 70 feet below sea level and is irregular over most of the northern portion of MCB, Camp Lejeune. The aquifer is more regular in areas southeast of the New River, where it slopes southeastward. The Castle Hayne thickens to the east, from 160 feet in the Camp Geiger area to over 400 feet at the eastern boundary of MCB, Camp Lejeune.

Estimated transmissivity, hydraulic conductivity and storage coefficient values for the Castle Hayne aquifer range from 6,100 to 183,300 gpd/ft, 14 to 91 feet/day and 2x10⁻⁴ to 1x10⁻³, respectively. An aquifer pump test conducted by ESE (1988) in the Hadnot Point Industrial Area, using an existing water supply well (HP-642), indicates an average transmissivity and storage coefficient of 9,600 gpd/ft and 8.8x10⁻⁴, respectively (ESE, 1988).

Recharge of the Castle Hayne aquifer at MCB, Camp Lejeune is primarily received from the surficial aquifer. Natural discharge is to the New River and its major tributaries. The Castle Hayne aquifer provides roughly seven million gallons of water to MCB, Camp Lejeune. Groundwater pumping has not significantly affected natural head gradients in the aquifer.

MCB, Camp Lejeune lies in an area where the upper part of the Castle Hayne aquifer contains freshwater. Saltwater is found in the bottom of the aquifer in the region and in the New River estuary; both are of concern in managing water withdrawals from the aquifer. Overpumping of the deeper parts of the aquifer or in areas hydraulically connected to estuarine streams could cause saltwater intrusions. The aquifer underlying most of the area contains water having less than 120 milligrams per liter (mg/L) of chloride.

3.4.2 Site-Specific

The following sections describe the site hydrogeologic conditions for the surficial (water table) aquifer and the Castle Hayne aquifer at Site 65. Hydrogeologic characteristics in the vicinity of the site were evaluated by reviewing existing information and installing a network of shallow and deep monitoring wells.

Groundwater was encountered at varying depths during the drilling program. This variation is primarily attributed to topographical changes. In general, the groundwater was encountered between 7.5 and 11 bgs feet during field activities performed at the site.

Three rounds of groundwater level measurements were obtained on April 20, 23 and August 21, 1995, from the shallow and deep monitoring wells within the study area. The measurements are recorded on Table 2-2 and groundwater contours for the surficial aquifer are depicted on Figure 3-6.

Shallow groundwater elevations exhibited some fluctuation over the four-month period. The water table increased an average of 0.97 feet in elevation between April 20 and 23, 1995. Conversely, between April 23 and August 21, 1995, the water table decreased an average of 1.71 feet in elevation. Typically at MCB, Camp Lejeune, a higher water table is observed in the winter and spring and a lower water table is noted in the summer and fall. According to historical rainfall data provided by the Naval Oceanography Command Detachment, rainfall increases throughout the summer with July recording the largest quantity per year on average. A decrease in amount of rain is usually observed in August; however, the month of August historically records the second highest quantity of rain for the entire year with the month of June recording the third highest amount (see Table 3-2). However, according to Headquarters and Headquarters Squadron Station Weather located at the Marine Corps Air Station, New River, considerably less rain was received during the summer months (Appendix H). During 1995, the following quantities of rain were received by month:

April - 0.14 inches
 May - 3.66 inches
 June - 9.54 inches
 July - 2.37 inches
 August - 7.49 inches

These actual quantities are well below the historical average.

Shallow groundwater elevations and flow patterns observed on August 21, 1995 are depicted on Figure 3-6. Calculations for hydraulic gradient were completed using the three point method described in USGS Water Supply Paper No. 2220, entitled "Basic Groundwater Hydrology". The data indicates that the groundwater flow is toward the south-southwest, with an average gradient of 9.7×10^{-3} ft/ft. The southwestern portion of the site has a steeper gradient (an average of 1.2×10^{-2} ft/ft) than the rest of the site (an average of 8.2×10^{-3} ft/ft).

Hydraulic conductivity tests were performed at the site on May 22, 1995. The average conductivity for the surficial aquifer is 0.722 ft/day (2.55 x 10⁻⁴ cm/sec). These values were calculated using the Geraghty and Miller, Aquifer Test Solver (AQTESOLV) program which uses the Bouwer and Rice (1976) method for unconfined aquifers. The average values are consistent with expected values of hydraulic conductivity for the fine sands observed at the site (Fetter, 1980). The copies of the AQTESOLV printouts are located in Appendix I and the results are summarized on Table 3-3.

A study of data from other aquifer tests (pump tests) performed at MCB, Camp Lejeune was conducted by Baker to further evaluate aquifer characteristics and production capacities. The technical memorandum is provided in Appendix G. The information contained in this memorandum pertains primarily to the surficial aquifer. Average pumping rates range from 0.5 to 3 gpm.

Transmissivity ranges from 7.17 to 7,100 ft²/day; storativity ranges from 1.51 x 10^{-3} to 7.48 x 10^{-2} ; and hydraulic conductivity ranged from 0.48 to 1.42 ft/day.

Fluctuation of the groundwater elevations within the deep wells was observed over the three months; however, the change was not as significant as in the shallow wells. An average increase of 0.93 feet was observed between April 20 and 23, and a decrease of 1.36 feet in the groundwater elevation was observed between April 23 and August 21, 1995. It is not uncommon for a semi-confined aquifer to not respond to precipitation or seasonal fluctuation with the same magnitude as an unconfined aquifer. The presence of the semi-confining unit serves to impede the vertical migration of precipitation causing a delayed and minimized effect on the head of the semi-confined aquifer.

Groundwater elevations and flow patterns for the upper portion of the Castle Hayne aquifer are depicted on Figure 3-7. Given the limited number of points, groundwater flow direction and gradient is estimated to flow in a southern to southwestern direction with a gradient of 2.3×10^{-03} to 2.7×10^{-03} ft/ft.

3.6 Land Use and Demographics

MCB, Camp Lejeune presently covers an area of approximately 236 square miles. Currently, the military population of MCB, Camp Lejeune is approximately 41,000 active duty personnel. The military dependent community is in excess of 32,000 civilian employees perform facilities management and support functions. The population of Onslow County has grown from 17,738 in 1940, prior to the formation of the base, to its present population of 121,350.

During World War II, MCB, Camp Lejeune was used as a training area to prepare Marines for combat. This has been a continuing function of the facility during the Korean and Vietnam Conflicts and the recent Gulf War (i.e., Desert Storm). Toward the end of World War II, the base was designated as home for the Second Marine Division. Since that time, Fleet Marine Forces units also have been stationed here as tenant commands.

The existing land use patterns in the various geographic areas within the MCB are described in this section and listed, per geographic area, on Table 3-4. In addition, the number of acres comprising each land use category has been estimated and provided on the table. The areas described below are depicted on Figure 1-2.

The Engineer Area Dump (Site 65) refers to a four- to five-acre former land disposal site situated in the Courthouse Bay section of MCB, Camp Lejeune. Courthouse Bay is located on the south side of state road 172 along the eastern shore of the New River. It is one of a series of small bays which are formed by the New River.

Site 65 is a primarily wooded area located immediately east of the Marine Corps Engineer School which occupies property between Site 65 and the bay. The school is used for maintenance, storage, and operator training of amphibious vehicles and heavy construction equipment. The school also utilizes a several acre parcel located just east of Site 65 to conduct heavy equipment training activities. Two surface ponds are located immediately east of the training facilities that have recreational fishing available, and is stocked by the base fishery commission. Also, there are some physical fitness trails and exercise stops that run throughout the site and surrounding areas. Several wide, cleared trails for tanks and heavy equipment cross the site.

3.7 Climatology and Meteorology

Although coastal North Carolina lacks distinct wet and dry seasons, there is some seasonal variation in average precipitation (See Table 3-2). July tends to receive the most precipitation and rainfall amounts during summer are generally the greatest. Daily showers during the summer are not uncommon, nor are periods of one or two weeks without rain. Convective showers and thunderstorms contribute to the variability of precipitation during the summer months. October tends to receive the least amount of precipitation, on average. Throughout the winter and spring months precipitation occurs primarily in the form of migratory low pressure storms. MCB, Camp Lejeune's average yearly rainfall is approximately 52 inches. Table 3-2 presents a climatic summary of data collected during 35 years (January 1955 to December 1990) of observations at Marine Corps Air Station New River.

Coastal plain temperatures are moderated by the proximity of the Atlantic Ocean. The ocean effectively reduces the average daily fluctuation of temperature. Lying 50 miles offshore at its nearest point, the Gulf Stream tends to have little direct effect on coastal temperatures. The southern reaches of the cold Labrador Current offsets any warming effect the Gulf Stream might otherwise provide.

MCB, Camp Lejeune experiences hot and humid summers; however, ocean breezes frequently produce a cooling effect. The winter months tend to be mild, with occasional brief cold spells. Average daily temperatures range from 38°F to 58°F in January and 72°F to 86°F in July. The average relative humidity, between 75 and 85 percent, does not vary greatly from season to season.

Observations of sky conditions indicate yearly averages of approximately 112 days clear, 105 partly cloudy, and 148 cloudy. Measurable amounts of rainfall occur 120 days per year, on the average. Prevailing winds are generally from the south-southwest 10 months of the year, and from the north-northwest during September and October at an average speed of 6.9 miles per hour.

3.8 Water Supply

Potable water for MCB, Camp Lejeune is supplied entirely by groundwater. The base has no formally established groundwater preservation areas; however, because the base controls more than 110,000 acres of land, and because much of this land has remained undeveloped, the undeveloped areas serve the function of groundwater preserves. Groundwater usage is roughly seven million gallons per day (Cardinell, et al., 1993). Groundwater is pumped from approximately 77 of 90 water supply wells located within the boundaries of MCB, Camp Lejeune. Water is treated at eight plants which have a total capacity of 15.8 million gallons per day.

All of the water supply wells utilize the Castle Hayne aquifer. The Castle Hayne aquifer is highly permeable, semi-confined aquifer that is capable of yielding several hundred to 1,000 gpm in municipal and industrial wells in the MCB, Camp Lejeune area. The water supply wells at the base average 162 feet in depth; eight inches in diameter (casing); and yield 174 gpm (Harned, et al., 1989). The water is typically a hard, calcium bicarbonate type. Table 3-5 provides a summary of the supply wells within a one-mile radius of Site 65. The locations of these supply wells are depicted in Figure 3-8. Information pertaining to the supply wells was gathered from the Wellhead Management Program Engineering Study 91-36 (Geoplex, 1991), the Preliminary Draft Report Wellhead Monitoring Study 92-34 (Greenhorne and O'Mara, Inc., 1992), and interviews with base personnel.

Five active wells are located within a one-mile radius of Site 65 (BB44, BB47, BB218, BB220, and BB221). Production well BB44 is located approximately 1,200 feet from the site. The total depth of this well is 62 feet bgs and is screened from 32 to 62 feet bgs. This well is suspected to have been impacted by surficial groundwater infiltration due to its relatively shallow screen.

Production wells BB47, BB218, BB220, and BB221 have total depths of 150, 185, 150, and 200 feet, respectively. The screen intervals for the wells (measured in feet bgs) are as follows:

- BB 47 <40-53 feet and 102-125 feet
 BB 218 <64-94 feet and 148-168 feet
- BB 220 55-70 feet; 85-95 feet; and 130-145 feet
- BB 221 60-80 feet; and 135-155 feet

3.9 <u>Ecological Characteristics</u>

3.9.1 Regional Ecology

Camp Lejeune covers approximately 108,800 acres, 84 percent of which is forested (USMC, 1987). Approximately 45 percent of this is pine forest, 22 percent is mixed pine/hardwood forest, and 17 percent is hardwood forest. Nine percent of the base, a total of 3,587 acres, is wetland and includes pure pond pine stands, mixed pond pine/hardwood stands, marshes, pocosins, and wooded swamps. The base also contains 80 miles of tidal streams, 21 miles of marine shoreline, and 12 freshwater ponds.

The base drains primarily to the New River or its tributaries. These tributaries include Northeast Creek, Southwest Creek, Wallace Creek, French's Creek, Bear Head Creek, and Duck Creek.

Because of the natural resources on the base, forested areas are actively managed for timber. Game species are also managed for hunting, and ponds are maintained for fishing. Game species managed include wild turkey, white-tailed deer, black bear, grey and fox squirrels, bobwhite quail, eastern cottontail and marsh rabbits, racoons, and wood ducks.

A number of natural communities are present in the coastal plain. Subcommunities and variations of these major community types are also present and alterations of natural communities have occurred in response to disturbance and intervention (i.e., forest cleared to become pasture). The natural communities found in the Camp Lejeune area are summarized as follows:

- Mixed Hardwood Forest Found generally on slopes of ravines. Beech is an indicator species with white oak, tulip, sweetgum, and holly.
- Southern Evergreen Forest Dominated by pines, especially longleaf pine.
- Loblolly Pine/Hardwoods Community Second growth forest that includes loblolly pine with a mix of hardwoods - oak, hickory, sweetgum, sour gum, red maple, and holly.
- Southern Floodplain Forest Occurs on the floodplains of rivers. Hardwoods dominate with a variety of species present. Composition of species varies with the amount of moisture present.

- Maritime Forest Develop on the lee side of stables and dunes protected from the
 ocean. Live oak is an indicator species with pine, cedar, yaupon, holly, and laurel
 oak. Deciduous hardwoods may be present where forest is mature.
- Pocosin Lowland forest community that develop on highly organic soils that are seasonally flooded. Characterized by plants adapted to drought and acidic soils low in nutrients. Pond pine is dominant tree with dense layer of evergreen shrubs. Strongly influenced by fire.
- Cypress Tupelo Swamp Forest Occurs in the lowest and wettest areas of floodplains. Dominated by bald cypress and tupelo.
- Freshwater Marsh Occurs upstream from tidal marshes and downstream from nontidal freshwater wetlands. Cattails, sedges, and rushes are present. On the coast of North Carolina swamps are more common than marshes.
- Salt Marsh Regularly flooded, tidally influenced areas dominated by salt-tolerant grasses. Saltwater cordgrass is a characteristic species. Tidal mud flats may be present during low tide.
- Salt Shrub Thicket High areas of salt marshes and beach areas behind dunes.
 Subjected to salt spray and periodic saltwater flooding. Dominated by salt resistant shrubs.
- Dunes/Beaches Zones from the ocean shore to the maritime forest. Subjected to sand, salt, wind, and water.
- Ponds and Lakes Low depressional areas where water table reaches the surface or where ground is impermeable. In ponds rooted plants can grow across the bottom, Fish populations managed in these ponds include redear, bluegill, largemouth bass, and channel catfish (USMC, 1987).
- Open Water Marine and estuarine waters as well as all underlying bottoms below the intertidal zone.

3.9.2 Site-Specific Ecology

During May 15 to 24, 1995, Baker conducted a qualitative habitat evaluation of the terrestrial environment at Site 65. The site and surrounding areas are dominated by a mixed forest composed of pine and deciduous trees. Cleared, sandy areas are located to the south and southeast of the site. Buildings, mowed grass, and paved surfaces are located to the west, and an earth moving training area is located east of Site 65. Mixed forest extends across Site 65, and is interspersed around the aforementioned zones. Topography is primarily broad and flat with scattered depressions.

Four habitat types are present at Site 65. These include forested areas, two separate wetland areas, and a low-lying drainage area. These areas are depicted on Figure 3-9, and are demarcated by an abbreviation (i.e., the forested areas are identified as F1). In addition to the aforementioned habitat types, two heavy equipment areas with close proximity to Site 65 are also identified on Figure 1-2.

Areas identified by F1, encompass the majority of land at Site 65. These areas are found within the site boundary, and are located in all directions away from Site 65. The following is a listing of the tree and shrub species identified within the F1 area:

- Loblolly Pine-Pinus taeda
- Red Maple-Acer rubrum
- Sweetgum-Liquidambar styraciflua
- Southern Red Oak-<u>Ouercus falcata</u>
- Water Oak-Ouercus nigra
- Sumac-Rhus spp.
- Tulip Poplar-Liriodendron tulipifera
- Green Ash-<u>Fraxinus pennsylvanica</u>
- Redbay-Persea borbonia
- Sweetbay-Magnolia virginiana
- American Holly-<u>Ilex opaca</u>
- Yaupon Holly-<u>Ilex vomitoria</u>
- Inkberry-<u>Ilex glabra</u>
- Privet-Ligustrum sinense
- Wild Grape-Vitis sp.
- Fetterbush-Lyonia lucida
- Blueberry-<u>Vaccinium</u> sp.
- Briar (various)-Smilax spp.

Because of the large wooded area surrounding Site 65, the following birds were observed or expected to occur at Site 65:

- Robin-<u>Turdus migratorious</u>
- Carolina Wren-Thryrothorus ludovicianus
- Red-bellied Woodpecker-<u>Melanerpes carolinus</u>
- Blue-gray Gnatcatcher-Polioptila caerulea
- Morning Dove-Zenaida macroura
- Summer Tanager-Piranga rubra
- Northern Mockingbird-<u>Mimus polyglottas</u>
- Saw Grey Heron or King Fisher (observed)

Five mammal species were identified at Site 65 based upon field signs, and are listed below:

- Raccoon-Procyon lotor
- Whitetail Deer-Odocoileus virginianus
- Gray Squirrel-Sciurus carolinensis
- Opossum-<u>Didelphis marsupialis</u>
- Striped Skunk-Mephitis mephitis

Six reptile and one amphibian species were identified at Site 65 based on observations, and are listed below:

- Snapping Turtle-<u>Chelydra serpentina</u>
- Eastern Painted Turtle-<u>Chrysemys picta picta</u>
- Eastern Box Turtle-Terrapene carolina carolina

- Five-lined Skink-Eumeces fasciatus
- Green Anole-Anolis carolinensis carolinensis
- Water Snake-specie unidentified
- Copperhead Snake <u>Agkistrodon contortrix</u>
- Frogs-species unidentified

Two wetland areas (i.e., freshwater ponds), located several hundred feet to the east of Site 65 are shown on Figure 3-9. These areas are identified as W1 and W2. Wetland area W1, is known as Courthouse Bay Pond and wetland area W2, as Powerline Pond.

Area W1 is surrounded by a forest mixture similar to that described above. On the western side of area W1, vegetation forms a narrow (approximately 25 feet) forested buffer between the heavy equipment training area, used for earthmoving exercises and the water. The water within area W1 is very silty, and visibility is less than one inch. The source of the silt is believed to be from the earth moving exercises that take place on the western edge of area W1. In addition, area W1 is located within a depression area with slopes to the south, east, west, and north. Furthermore, an F1 area surrounds area W1 on the northern, eastern, and southern sides. The following is a listing of the tree and shrub species identified within the W1 area:

- Loblolly Pine-Pinus taeda
- Sweetgum-Liquidambar styraciflua
- Black Willow-Salix nigra
- Southern (Wax) Myrtle-Myrica cerifera
- Watershield-Brasenia schreberi

During the time of the ecological and habitat investigations, a fish investigation was conducted in Courthouse Bay Pond. Hoop nets were deployed in four different areas of the pond to assist in capturing fish. These nets were checked at least once daily. Blue gill (6 ponius macrochirus) and Redear Sunfish (6 ponius microlophus) were the only types of fish captured during the investigation.

Area W2 is located approximately 200 feet to the east of area W1. Similar to area W1, area W2 is also located within a depressional area. Large amounts of fragrant water lilly (Nymphaea odorata) and miscellaneous algae and grasses were present in Powerline Pond during sampling activities. Furthermore, an F1 area surrounds area W2 in all directions. The following is a listing of the tree and shrub species identified within the W2 area:

- Sweetgum-Liguidambar styraciflua
- Water Oak-Quercus nigra
- Black Willow-Salix nigra
- Cordgrass-Spartina sp.
- Briars (various)-Smilax spp.
- Fragrant Water Lilly-Nymphaea odorata
- Water Pennywort-<u>Hydrocotyle umbellata</u>
- Misc. algae and grasses

As with area W1, a fish investigation was also conducted. Hoop nets were deployed in three different areas of Powerline pond to assist in capturing fish. These nets were checked at least once daily. The following is a list of the fish species that were captured during the investigation:

- Bluegill-<u>Lepomis macrochirus</u>
- Redear sunfish-Lepomis microlophus
- Largemouth bass-<u>Micropterus salmoides</u>

The last area, is the low lying drainage area (D1). This area is adjacent to and is located to the southwest of area W1 (Courthouse Bay Pond). Area D1 appears to accept run-off from the pond during periods of heavy rainfall. Although D1 was dry during surface water and sediment sampling activities, an earlier site visit did confirm the presence of pond-overflow water within this area. Also, water marks left on trees within D1 was another contributing fact that this area becomes flooded during rain events throughout the year. The western side of D1 is bordered by the engineer training area, and the eastern and southern sides are bordered by F1 forest. The following is a listing of the tree and shrub species identified within the D1 area:

- Loblolly Pine-Pinus taeda
- Sweetgum-Liguidambar styraciflua
- Red Maple-Acer rubrum
- Southern Red Oak-Quercus falcata
- Black Willow-Salix nigra

3.10 Water Body Description

Both Courthouse Bay Pond and Powerline Pond are designated by the NC DEHNR as "C" (NC DEHNR, 1993). The C classifies the water bodies as fresh water, which allows for aquatic life propagation and survival, fishing, wildlife, secondary recreation, and agriculture (NC DEHNR, 1993).

3.11 Sensitive Environments

This section describes the sensitive environments that were evaluated at Site 65. These include wetlands, threatened and endangered species, and other potentially sensitive environments.

3.11.1 Wetlands

The NC DEHNR's Division of Environmental Management (DEM) has developed guidance pertaining to activities that may impact wetlands (NC DEHNR, 1992). In addition, certain activities affecting wetlands also are regulated by the U.S. Corps of Engineers. The U.S. Fish and Wildlife Service has prepared National Wetlands Inventory (NWI) maps for the Camp Lejeune, North Carolina area by stereoscopic analysis of high altitude aerial photographs (USDI, 1982).

Wetland areas W1 and W2 are included on the NWI maps. According to the NWI maps, both wetland areas have been identified as a Palustrine system, with an unconsolidated bottom class, and a permanently flooded water regime. Information from the NWI maps was transferred to site-specific biohabitat map (Figure 3-9).

3.11.2 Other Sensitive Environments

In addition to wetlands and protected species, other sensitive environments, including those listed in 40 CFR Part 300, were evaluated during Hazard Ranking System evaluations. These sensitive environments and their presence or absence at Site 65 are discussed below.

- Marine Sanctuary Site 65 is not located within a Marine Sanctuary (NCMFC, 1994).
- National Park Site 65 is not located within a National Park (NPS, 1993a).
- Designated Federal Wilderness Area Site 65 is not located within a Designated Federal Wilderness Area (WS, 1989, 1993).
- Areas Identified under the Coastal Zone Management Act The North Carolina Coastal Area Management Act (CAMA) regulates various types of Areas of Environmental Concern including estuarine waters, coastal wetlands, public trust areas, and estuarine shoreline through the establishment of unified policies, criteria, standards, methods, and processes (CAMA, 1974).
- Sensitive Areas Identified under the National Estuary Program or Near Coastal Waters Program - Site 65 is not located within a Sensitive Area identified under the NEP or NCWP (NCMFC, 1994).
- Critical Areas Identified under the Clean Lakes Program Site 65 is not located within a Critical Area identified under the Clean Lakes Program (NPS, 1993).
- National Monument Site 65 is are not located near a National Monument (NPS, 1993).
- National Seashore Recreational Area Site 65 is not located within a National Seashore Recreational Area (NPS, 1993).
- National Lakeshore Recreational Area Site 65 is not located within a National Lakeshore Recreational Area (NPS, 1993).
- National Preserve Site 65 is not located within a National Preserve (NPS, 1991).
- National or State Wildlife Refuge Site 65 is not located within a National or State Wildlife Refuge (NCWRC, 1992).
- Unit of the Coastal Barrier Resource Program Site 65 is not located within a unit of the Coastal Barrier Resource Program (USDI, 1993).
- Administratively Proposed Federal Wilderness Area Site 65 is not located within an Administratively Proposed Federal Wilderness Area (WS, 1989, 1993).
- Spawning Areas Critical for the maintenance of fish/shellfish species within river, lake, or coastal tidal waters (USMC, 1993).
- State land designated for wildlife or game management Site 65 is are not located within a State game land (NCWRC, 1992).
- State designated Natural Area Site 65 is not located within a State designated Natural Area or Area of Significant Value (LeBlond, 1991).

- State designated areas for protection or maintenance of aquatic life No areas
 within the boundaries of Site 65 are designated as primary nursery areas or are
 unique or special waters of exceptional state or national recreational or ecological
 significance which require special protection to maintain existing uses (NC
 DEHNR, 1994).
- Areas of Significant Value Site 65 is not located within a State Area of Significant Value (LeBlond, 1991).
- State Registered Natural Resource Area Site 65 is not located within a State Registered Natural Resource Area (LeBlond, 1991).

3.11.3 Threatened and Endangered Species

Certain species have been granted protection by the U.S. Fish and Wildlife Service under the Federal Endangered Species Act (16 U.S.C. 1531-1543), and/or by the North Carolina Wildlife Resources Commission, under the North Carolina Endangered Species Act (G.S. 113-331 to 113-337). The protected species fall into one of the following status classifications: Federal or State endangered, threatened, or candidate species; State special concern; State significantly rare; or State watch list. While only the Federal or State threatened or endangered and State special concern species are protected from certain actions, the other classified species have the potential for protection in the future.

Surveys have been conducted to identify threatened or endangered species at Camp Lejeune and several programs are underway to manage and protect them. Table 3-6 lists protected species present at the base and their protected classifications. Of these species, the red-cockaded woodpecker, American alligator, and sea turtles are covered by specific protection programs.

The red-cockaded woodpecker is classified as being state endangered. This species requires a specific habitat in mature, living longleaf or loblolly pine trees. The birds live in family groups and young are raised cooperatively. At Camp Lejeune, 2,512 acres of habitat have been identified and marked for protection. Research on the bird at Camp Lejeune began in 1985 and information has been collected to determine home ranges, population size and composition, reproductive success, and habitat use. An annual roost survey is conducted and 36 colonies of birds have been located.

The American alligator is considered threatened in the northern-most part of its range, which includes North Carolina. The alligator is found in freshwater, estuarine, and saltwater wetlands in Camp Lejeune. Base wetlands are maintained and protected for the alligator. Signs have been erected where alligators are known to live. Annual surveys of Wallace, Southwest, French, Duck, Mill, and Stone Creeks have been conducted since 1977 to identify alligators and their habitats on base.

Two protected sea turtles species, the Atlantic loggerhead and Atlantic green turtle, nest on Onslow Beach at Camp Lejeune and are both classified as threatened species. The green turtle was found nesting in 1980; the sighting was the first time the species was observed nesting north of Georgia. The turtle returned to nest in 1985. Turtle nests on the beach are surveyed and protected, turtles are tagged, and annual turtle status reports are issued.

Three bird species, piping plover, Bachmans sparrow, and peregrine falcon have also been identified during surveys at Camp Lejeune. The piping plover and peregrine falcon are classified as threatened species. The Bachmans sparrow is classified as special concern (state). The piping plover is a shore bird. Piping plovers prefer beaches with broad open sandy flats above the high tide line. Piping plovers feed along the edge of incoming waves. Bachmans sparrows are very specific in their habitat requirements. They live in open stretches of pines with grasses and scattered shrubs for ground cover. Bachmans sparrows were observed at numerous locations throughout the southern portion of Camp Lejeune.

In addition to the protected species that breed or forage at Camp Lejeune, several protected whales migrate through the coastal waters off the base during the spring and fall. These include the Atlantic right whale, finback whale, sei whale, and sperm whale. Before artillery or bombing practice is conducted in the area, aerial surveys are made to assure that whales are not present in the impact areas.

A natural heritage resources survey was conducted at Camp Lejeune (LeBlond, 1991) to identify threatened or endangered plants and areas of significant natural interest, the results of this survey are included in Appendix J. From this list, the rough-leaf loosestrife was the only plant that is both a Federal and State endangered specie. In addition, one state candidate plant specie was identified at Site 65, from this survey. This specie is the Blackfruit Spikerush (Eleocharis melanocarpa) and is located within the wetland areas of Site 65. However its exact location could not be determined based on the scale of the survey map.

3.12 References

Bower and Rice, 1976. <u>A Slug Test for Determining Hydraulic Conductivity of Unconfined Aquifers with Completely or Partially Penetrating Wells</u>. Water Resources Research, 12: 423-28. 1976.

CAMA. North Carolina Coastal Management Act of 1974. (1973, c. 1284, s; 1975, c. 452, s; c. 932, s. 2.1). 1974.

Cardinell, Alex P. et al, 1993. <u>Hydrogeologic Framework of U.S. Marine Corps Base at Camp Lejeune, Carolina</u>. U.S. Geological Survey, Water-Resources Investigations Report 93-4049.

ESE, 1990. Final Site Summary Report, MCB, Camp Lejeune. ESE Project No. 49-02036, September 1990.

Fetter, C.W., Jr. 1986. Applied Hydrogeology. Charles E. Merrill Publishing Co., Columbus, Ohio.

Geophlex, 1991. Wellhead Management Program Engineering Study 91-36. Prepared for Officer in Charge of Construction, MCB, Camp Lejeune, North Carolina. January, 1991.

Greenhorne and O'Mara, Inc., 1992. <u>Preliminary Draft Report Wellhead Monitoring Study.</u> Engineering Study 92-34. Prepared for Department of the Navy, Civil Branch. December 1992.

Harned, Douglas A., et al, 1989. <u>Assessment of Hydrologic and Hydrogeologic Data at Camp Lejeune Marine Corps Base, North Carolina</u>. U.S. Geological Survey, Water-Resources Investigations Report 89-4096.

Heath, R.C., 1983. <u>Basic Groundwater Hydrology</u>. United States Geological Survey Water - Supply Paper 2220.

LeBlond, Richard. 1991. "Critical Species List-Camp Lejeune Endangered Species and Special-Interest Communities Survey." Principal Investigator.

NC DEHNR. 1993. North Carolina Department of Environment, Health, and Natural Resources. Classifications and Water Quality Standards Applicable to Surface Waters of North Carolina. Administrative Code 15A NCAC 2 B. .0200. Division of Environmental Management. February 1993.

NC DEHNR. 1992. North Carolina Department of Environment, Health, and Natural Resources. <u>Interim Guidance for Wetlands Protection</u>. Division of Environment, Water Quality. May 1992.

NCWRC. 1992. North Carolina Wildlife Resources Commission. <u>1992-1993 Hunting and Fishing Maps for North Carolina Game Lands</u>. June 1992.

NPS. 1993. Telephone Conversation with the National Park Service. The Wild and Scenic Rivers Division. U.S. Department of the Interior, National Park Service, Park Planning and Protection Division, Washington, D.C.

NPS. 1992. National Park System Map and Guide. U.S. Department of the Interior, National Park Service, Washington, D.C.

USDA. 1984. Soil Conservation Service. Soil Survey for MCB, Camp Lejeune, North Carolina.

USDI. 1982. United States Department of the Interior. National Wetland Inventory Map, Camp Lejeune, N.C. Fish and Wildlife Service. March 1982.

USDI. 1993. United States Department of the Interior. Correspondence and maps showing units within the Coastal Barriers Resource System. Fish and Wildlife Service.

USMC, MCB Camp Lejeune. 1987. <u>Multiple-Use Natural Resources Management Plan</u>. Fish and Wildlife division, Environmental Management Department, Marine Corps Base, Camp Lejeune, North Carolina.

Water and Air Research, Inc. 1983. <u>Initial Assessment Study of marine Corps Base Camp Lejeune</u>. <u>North Carolina</u>. Prepared for Naval Energy and Environmental Support Activity.

WS. 1993. Telephone Conservation with the Wilderness Society, Washington D.C.

WS. 1989. The Wilderness Society. <u>The National Wilderness Preservation System</u>, 1964-1989. The Wilderness Society, Washington D.C.

SECTION 3.0 TABLES

TABLE 3-1

GEOLOGIC AND HYDROGEOLOGIC UNITS IN THE COASTAL PLAIN OF NORTH CAROLINA SITE 65 - ENGINEER AREA DUMP REMEDIAL INVESTIGATION, CTO-0312 MCB, CAMP LEJEUNE, NORTH CAROLINA

,	GEOLOGIC UNITS							
System	Series	Formation	Aquifer and Confining Unit					
Quaternary	Holocene/Pleistocene	Undifferentiated	Surficial Aquifer					
	Pliocene	Yorktown Formation ⁽¹⁾	Yorktown Confining Unit					
			Yorktown Aquifer					
		Eastover Formation ⁽¹⁾						
	Miocene	Pungo River	Pungo River Confining Unit					
	Miocene	Formation ⁽¹⁾	Pungo River Aquifer					
Tertiary		Belgrade Formation ⁽²⁾	Castle Hayne Confining Unit					
	Oligocene	River Bend Formation	Castle Hayne Aquifer					
	Eocene	Castle Hayne Formation	Beaufort Confining Unit ⁽³⁾					
	Palocene	Beaufort Formation	Beaufort Aquifer					
	Palocelle		Peedee Confining Unit					
	·	Peedee Formation	Peedee Aquifer					
			Black Creek Confining Unit					
		Black Creek and Middendorf Formations	Black Creek Aquifer					
Cretaceous	Upper Cretaceous		Upper Cape Fear Confining Unit					
Cretaceous			Upper Cape Fear Aquifer					
		Cape Fear Formation	Lower Cape Fear Confining Unit					
			Lower Cape Fear Aquifer					
		TI	Lower Cretaceous Confining Unit					
	Lower Cretaceous ⁽¹⁾	Unnamed Deposits ⁽¹⁾	Lower Cretaceous Aquifer(1)					
Pre-Cretaceou	s Basement Rocks							

⁽¹⁾ Geologic and hydrologic units not present beneath Camp Lejeune.

Source: Cardinell, et al., 1993

⁽²⁾ Constitutes part of the surficial aquifer and Castle Hayne confining unit in the study area.

⁽³⁾ Estimated to be confined to deposits of Paleocene age in the study area.

TABLE 3-2

CLIMATIC DATA SUMMARY MARINE CORPS AIR STATION, NEW RIVER SITE 65 - ENGINEER AREA DUMP **REMEDIAL INVESTIGATION, CTO-0312** MCB, CAMP LEJEUNE, NORTH CAROLINA

	Precipitation (Inches)			Mean Number of Days With								
			Relative Humidity	(Fahrenheit)			Precipitation		Temperature			
	Maximum	Minimum	Average	(Percent)	Maximum	Minimum	Average	>=0.01"	>=0.5"	>=90F	>=75F	<=32F
January	7.5	1.4	4.0	79	54	34	44	11	2	0	1	16
February	9.1	.9	3.9	78	57.	36	47	10	3	0	2	11
March	8	.8	3.9	80	64	43	54	10	3	*	5	5
April	8.8	.5	3.1	79	73	51	62	8	2	1	13	*
May	8.4	.6	4.0	83	80	60	70	10	3	2	25	0
June	11.8	2.2	5.2	84	86	67	77	10	4	7	29	0
July	14.3	4.0	7.7	86	89	72	80	14	5	13	31	0
August	12.6	1.7	6.2	89	88	71	80	12	4	11	31	0
September	12.8	.8	4.6	89	83	66	75	9	3	4	27	0
October	8.9	.6	2.9	86	75	54	65	7	2	*	17	*
November	6.7	.6	3.2	83	67	45	56	8	2	0	7	3
December	6.6	.4	3.7	81	58	37	48	9	2	0	2	12
Annual	65.9	38.2	52.4	83	73	53	63	118	35	39	189	48

Note:

* = Mean no. of days less than 0.5 days Source: Naval Oceanography Command Detachment, Asheville, North Carolina. Measurements obtained from January 1955 to December 1990.

TABLE 3-3

SUMMARY OF HYDRAULIC CONDUCTIVITY TESTS SITE 65 - ENGINEER AREA DUMP REMEDIAL INVESTIGATION, CTO-0312 MCB, CAMP LEJEUNE, NORTH CAROLINA

		Conductivity Head Test	Hydraulic Conductivity Rising Head Test				
Well No.	ft/day	cm/sec	ft/day	cm/sec			
65-MW04	0.532	1.88 x 10 ⁻⁴	0.436	1.54 x 10 ⁻⁴			
65-MW05	0.293	1.03 x 10 ⁻⁴	0.819	2.89 x 10 ⁻⁴			
65-MW07	0.293	1.03 x 10 ⁻⁴	0.911	3.22 x 10 ⁻⁴			

Average Hydraulic Conductivity for shallow wells:

Entire Site:

0.722 ft/day

ft/day $(2.55 \times 10^{-4} \text{ cm/sec})$

Notes:

Hydraulic conductivity test results were analyzed using Bouwer and Rice method as presented in the Geraghty and Miller "AQTESOLV" program, version 1.10.

Hydraulic conductivity tests were conducted on May 22 and 23, 1995, using an In-Situ Environmental Data Logger (Model SE-2000C) and pressure transducer.

Falling Head Test data was not used in the calculation of the average hydraulic conductivity for shallow wells. Falling Head Test data are inappropriate for partially penetrating wells. The data is presented for comparison purposes only.

The following formulas were used for calculations and conversions:

- To change ft/min to ft/day, the results were multiplied by 1440 min/day.
- To convert ft/day to cm/sec, the results were multiplied by 3.53×10^{-4} .

TABLE 3-4

LAND UTILIZATION: DEVELOPED AREAS LAND USE⁽¹⁾ SITE 65 - ENGINEER AREA DUMP REMEDIAL INVESTIGATION, CTO-0312 MCB, CAMP LEJEUNE, NORTH CAROLINA

Geographic Area	Oper.	Training (Instruc.)	Maint.	Supply/ Storage	Medical	Admin.	Family Housing	Troop Housing	СМ	СО	Recreat.	Utility	Total
Hadnot Point	31 (2.9)	15 (1.4)	154 (14.3)	157 (14.4)	10 (0.9)	122 (11.3)	22 (2.0)	196 (18.1)	115 (10.7)	36 (3.3)	182 (16.9)	40 (3.7)	1,080 (100)
Paradise Point	1 (0)		3 (0.4)	1 (0)		•	343 (34)	19 (1.9)	31 (3.1)		610 (60.4)	2 (0.2)	1,010 (100)
Berkeley Manor/ Watkins Village							406 (80)		41 (8.1)	1 (0.2)	57 (11.2)	2 (0.5)	507 (100)
Midway Park		1 (0.4)		2 (0.7)		2 (0.7)	248 (92.2)		8 (3.0)	3 (1.1)	4 (1.5)	1 (0.4)	269 (100)
Tarawa Terrace I and II			3 (0.5)			1 (0.3)	428 (77.4)		55 (9.9)	11 (2.0)	47 (8.5)	8 (1.4)	553 (100)
Knox Trailer							57 (100)						57 (100)
French Creek	8 (1.4)	1 (0.2)	74 (12.7)	266 (45.6)	3 (0.5)	7 (1.2)		122 (20.9)	22 (3.8)	6 (1.0)	74 (12.7)		583 (100)
Courthouse Bay		73 (28.6)	28 (10.9)	14 (5.5)		12 (4,7)	12 (4.7)	43 (16.9)	15 (5.9)	4 (1.6)	43 (16.9)	11 (4.3)	255 (100)
Onslow Beach	6 (9.8)	1 (1.6)	3 (4.8)	2 (3.2)	1 (1.6)	2 (3.2)		2 (3.2)	12 (19.3)		25 (40.3)	8 (13.0)	62 (100)
Rifle Range		1 (1.3)	1 (1.3)	7 (8.8)	1 (1.3)	5 (6.3)	7 (8.8)	30 (37.5)	5 (6.3)	1 (1.3)	9 (11.3)	13 (16.3)	80 (100)
Camp Geiger	4 (1.9)	15 (6.9)	19 (8.8)	50 (23.1)		23 (10.6)		54 (25.0)	27 (12.5)	2 (1.0)	16 (7.4)	6 (2.8)	216 (100)
Montford Point	6 (2.6)	48 (20.5)	2 (0.9)	4 (1.7)	2 (0.9)	9 (3.9)		82 (35.2)	20 (8.6)	1 (0.4)	49 (21.0)	10 (4.3)	233 (100)
Base-Wide Misc.	1 (0.8)			87 (68.0)		3 (2.3)			19 (14.8)			18 (14.1)	128 (100)
TOTAL	57 (1.1)	155 (3.1)	287 (5.7)	590 (11.7)	17 (0.38)	186 (3.7)	1,523 (30.2)	548 (10.8)	370 (7.4)	65 (1.3)	1,116 (22.2)	119 (2.4)	5,033 (100)

⁽¹⁾ Upper number is acres, lower number is overall percent.

TABLE 3-5

SUMMARY OF SUPPLY WELLS IN THE VICINITY OF SITE 65 SITE 65 - ENGINEER AREA DUMP REMEDIAL INVESTIGATION, CTO-0312 MCB, CAMP LEJEUNE, NORTH CAROLINA

Well No.	USGS I.D. No.	Approximate Distance/Direction Site to Well	Year Drilled	Depth (feet)	Driller	Screen Interval (feet below surface)	Well Diameter (inches)	Static Water Level (feet below land surface)	Status
BB-43	3434550772148.1	1,630 feet southwest	1942	60	Layne Atlantic Company	30 - 69	8	10.4	deactivated (1991)
BB-44	3435040772143.1	1,200 feet west	1942	62	Layne Atlantic Company	32 - 62	8	13.4	active
BB-47	3434560772148.1	1,630 feet southwest	1982 ⁽¹⁾	150	East Coast Construction Company	40 - 55 102 - 125	8(1)	10.1	active
BB-220	3435140772136.1	1,800 feet north	1975	150	Carolina Well and Pump Company	55 - 70 85 - 95 130 - 145	8(1)	10.2	active
BB-221	3435220772122.1	1,500 feet northeast	1974 ⁽¹⁾	200	Carolina Well and Pump Company	60 - 80 135 - 155	8(1)	33.5	active
BB-218	3500010772049.1	3,000 feet east	1985	185	Carolina Well and Pump Company	64 - 94 148 - 168	10	approx. 55	active

⁽¹⁾ As per conversations with Mac Farzelle, General Forman, Water Treatment, MCB, Camp Lejeune.

TABLE 3-6

PROTECTED SPECIES WITHIN MCB, CAMP LEJEUNE SITE 65 - ENGINEER AREA DUMP REMEDIAL INVESTIGATION, CTO-0312 MCB, CAMP LEJEUNE, NORTH CAROLINA

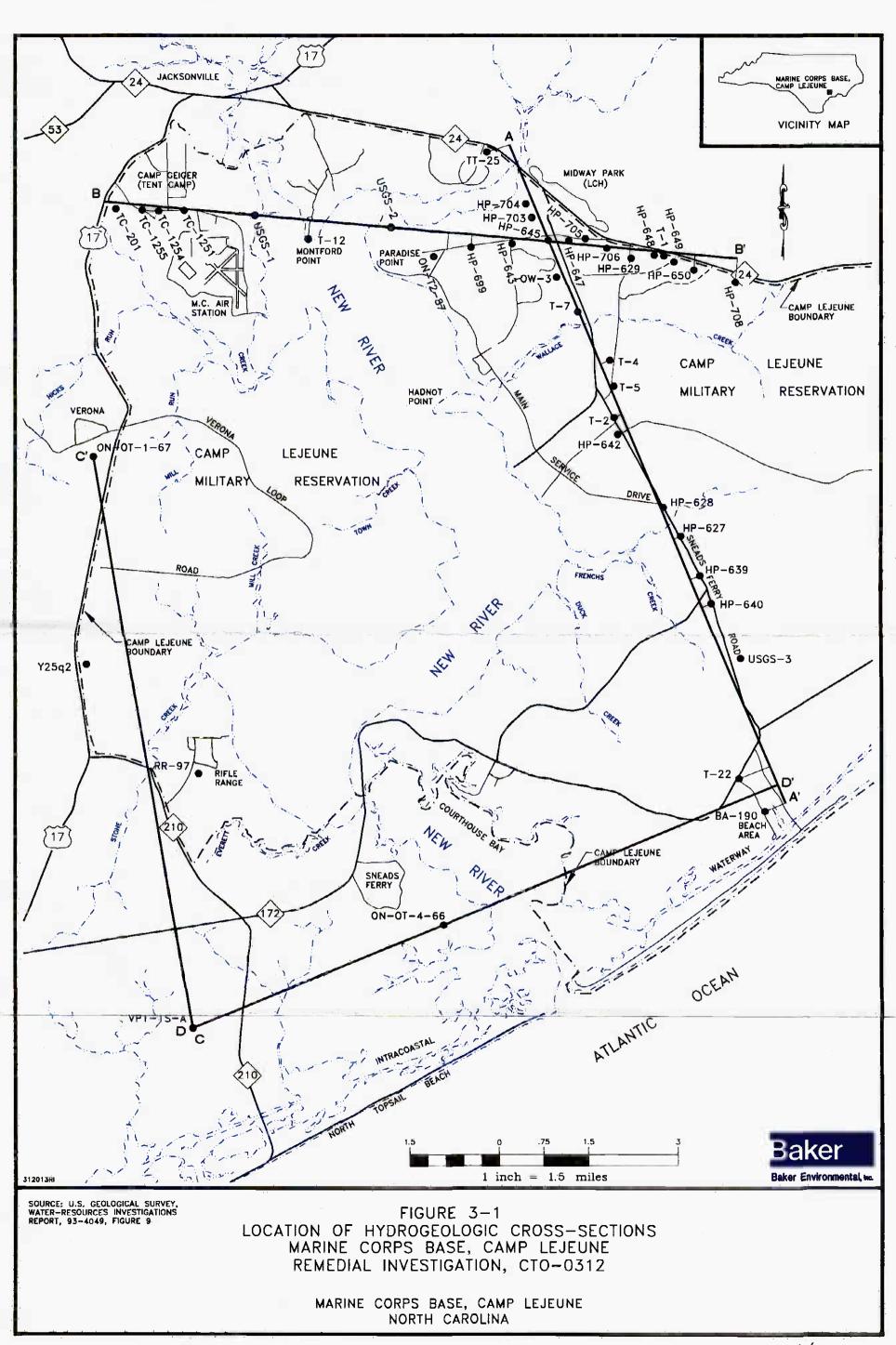
Species	Protected Classification
Animals:	
American alligator (Alligator mississippienis)	SC
Bachmans sparrow (Aimophilia aestivalis)	FCan, SC
Green (Atlantic) turtle (Chelonia m. mydas)	T(f), T(s)
Loggerhead turtle (Caretta caretta)	T(f), T(s)
Peregrine falcon (Falco peregrinus)	E(f), E(s)
Piping plover (Charadrius melodus)	T(f), T(s)
Red-cockaded woodpecker (Picoides borealis)	E(f), E(s)
Southern Hognose Snake (<u>Heterodon simus</u>)	FCan, SR
Diamondback Terrapin (Malaclemys terrapin)	FCan, SC
Carolina Gopher Frog (Rana capito capito)	FCan, SC
Cooper's Hawk (Accipiter cooperii)	SC
Eastern Diamondback Rattlesnake (Crotalus adamanteus)	SR
Eastern Coral Snake (Micrurus fulvius)	SR
Pigmy Rattlesnake (Sistrurus miliarius)	SR
Black Bear (Ursus americanus)	SR
Plants:	
Rough-leaf loosestrife (Lysimachia asperulifolia)	E(f), E(s)
Seabeach Amaranth (Amaranthus pumilus)	T(f), T(s)
Chapman's Sedge (Carex chapmanii)	FCan
Hirst's Witchgrass (Dichanthelium sp.)	FCan
Pondspice (Litsea aestivalis)	FCan
Boykin's Lobelia (Lobelia boykinii)	FCan
Loose Watermilfoil (Myriophyllum laxum)	FCan,T(s)
Awned Meadowbeauty (Rhexia aristosa)	FCan,T(s)
Carolina Goldenrod (Solidago pulchra)	FCan, E(s)
Carolina Asphodel (Tofieldia glabra)	FCan
Venus Flytrap (Dionaea muscipula)	FCan
Flaxleaf Gerardia (Agalinis linifolia)	SR
Pinebarrens Goober Grass (Amphicarpum purshii)	SR
Longleaf Three-awn (Aristida palustris)	SR
Pinebarrens Sandreed (Calamovilfa brevipilis)	E(s)
Warty Sedge (Carex verrucosa)	SR
Smooth Sawgrass (Cladium mariscoides)	SR
Leconte's Flatsedge (Cyperus lecontei)	SR

TABLE 3-6 (Continued)

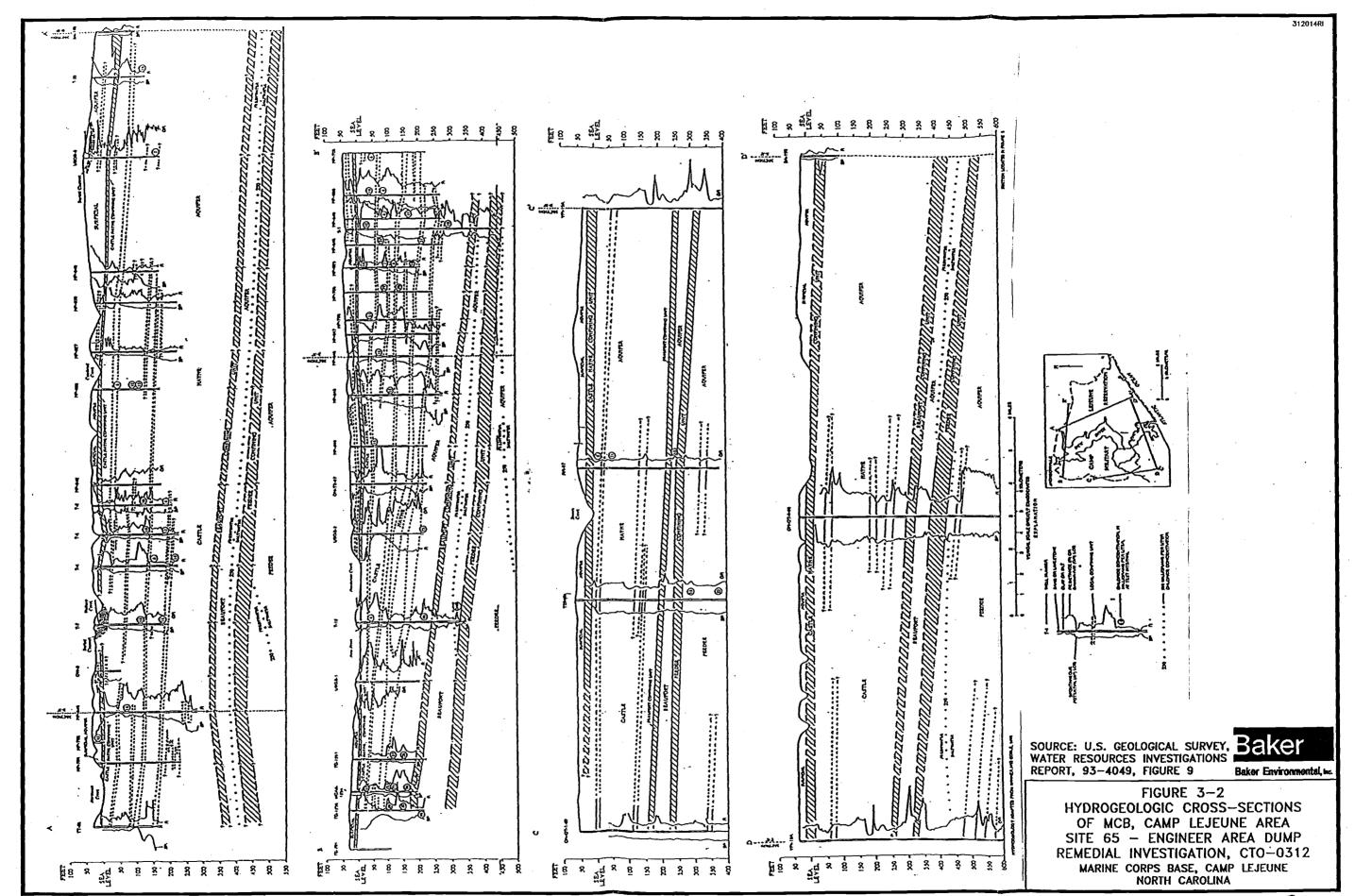
PROTECTED SPECIES WITHIN MCB, CAMP LEJEUNE SITE 65 - ENGINEER AREA DUMP REMEDIAL INVESTIGATION, CTO-0312 MCB, CAMP LEJEUNE, NORTH CAROLINA

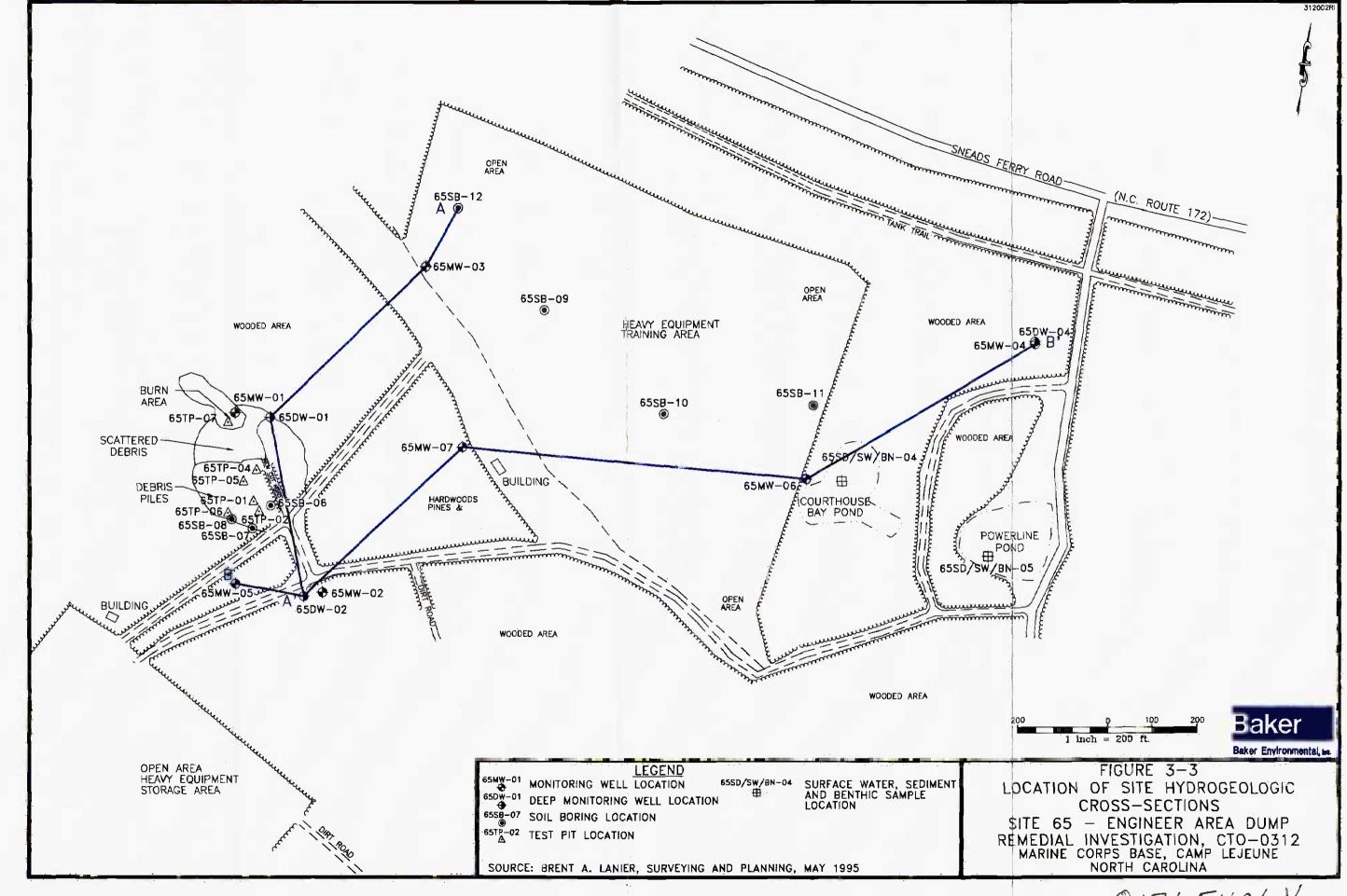
Species	Protected Classification
Erectleaf Witchgrass (Dichanthelium erectifolium)	SR
Horsetail Spikerush (Eleocharis equisetoides)	SR
Sand Spikerush (Eleocharis montevidensis)	SR
Flaxleaf Seedbox (<u>Ludwigia</u> <u>linifolia</u>)	SR
Torrey's Muhley (Muhlenbergia torreyana)	E(s)
Southeastern Panic Grass (Panicum tenerum)	SR
Spoonflower (Peltandra sagittifolia)	SR
Shadow-witch (Ponthieva racemosa)	SR
West Indies Meadowbeauty (Rhexia cubensis)	SR
Pale Beakrush (Rhynchospora pallida)	SR
Longbeak Baldsedge (Rhynchospora scirpoides)	SR
Tracy's Beakrush (Rhynchospora tracyi)	SR
Canby's Bulrush (Scirpus etuberculatus)	SR
Slender Nutrush (Scleria minor)	SR
Lejeune Goldenrod (Solidago sp.)	SR
Dwarf Bladderwort (<u>Utricularia olivacea</u>)	T(s)
Elliott's Yellow-eyed Grass (Xyris elliottii)	SR
Carolina Dropseed (Sporobolus sp.)	T(s)

Legend:

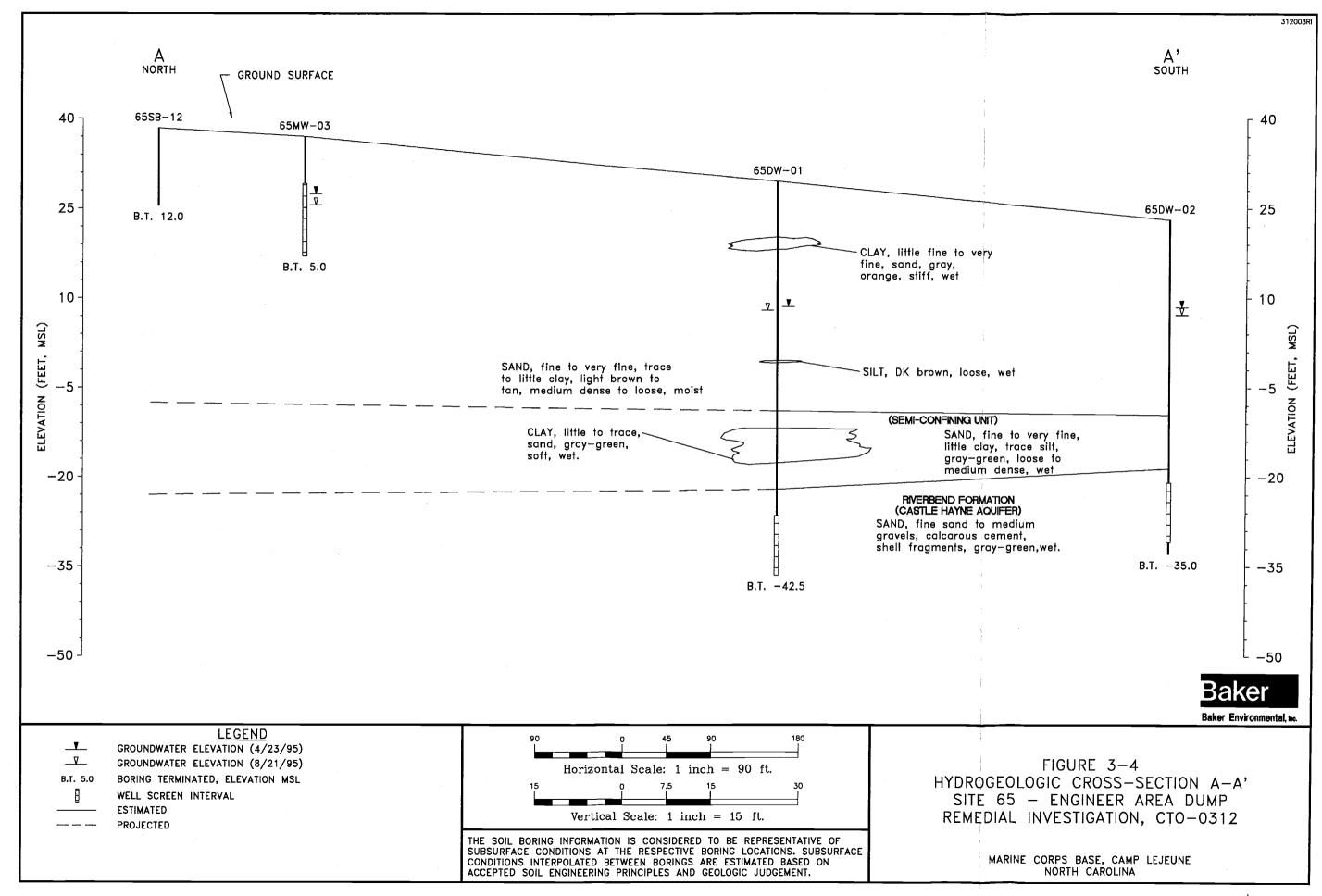

E(f) = Federal Endangered T(f) = Federal Threatened

Fcan = Candidate for Federal Listing

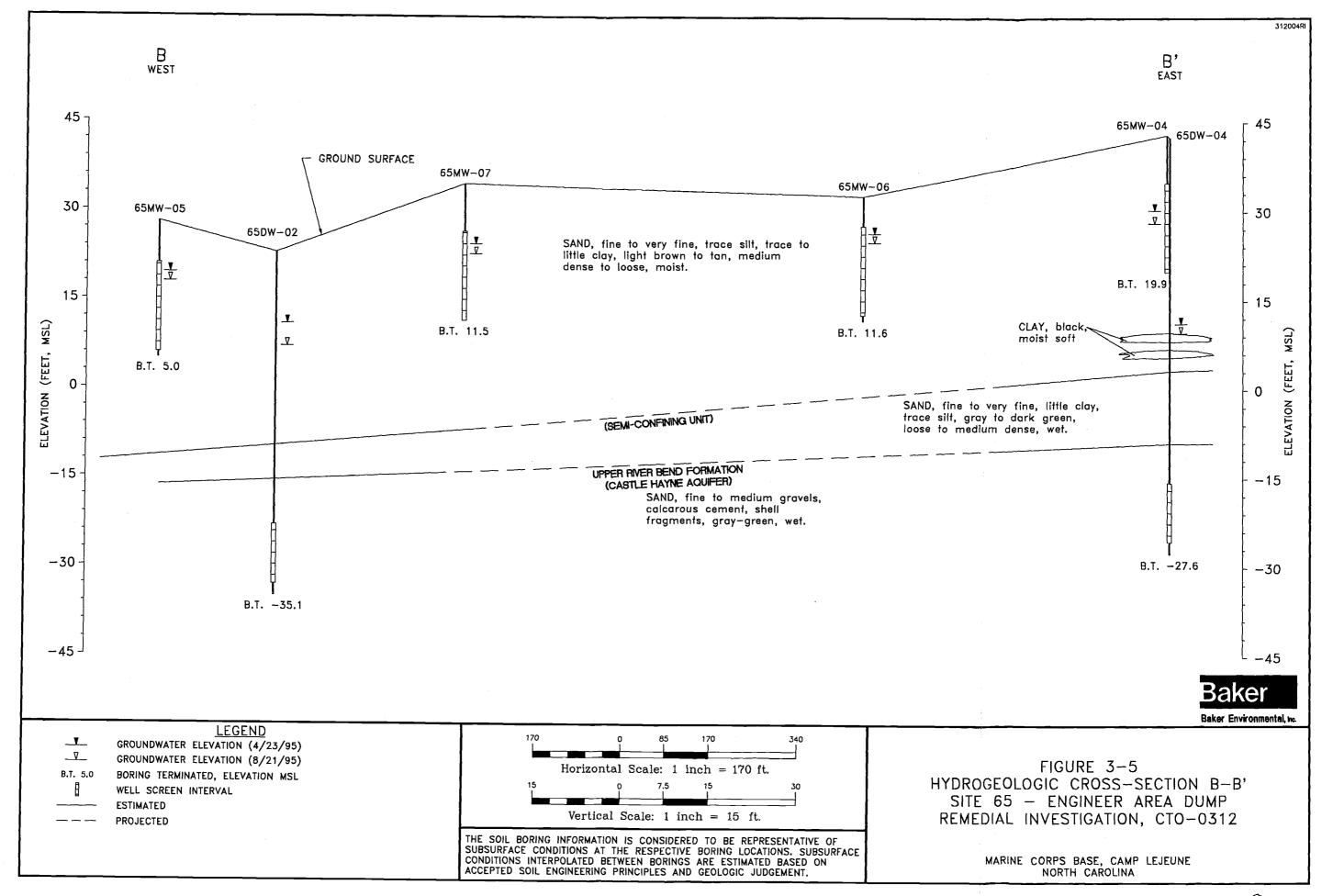

E(s) = State Endangered T(s) = State Threatened SC = State Special Concern

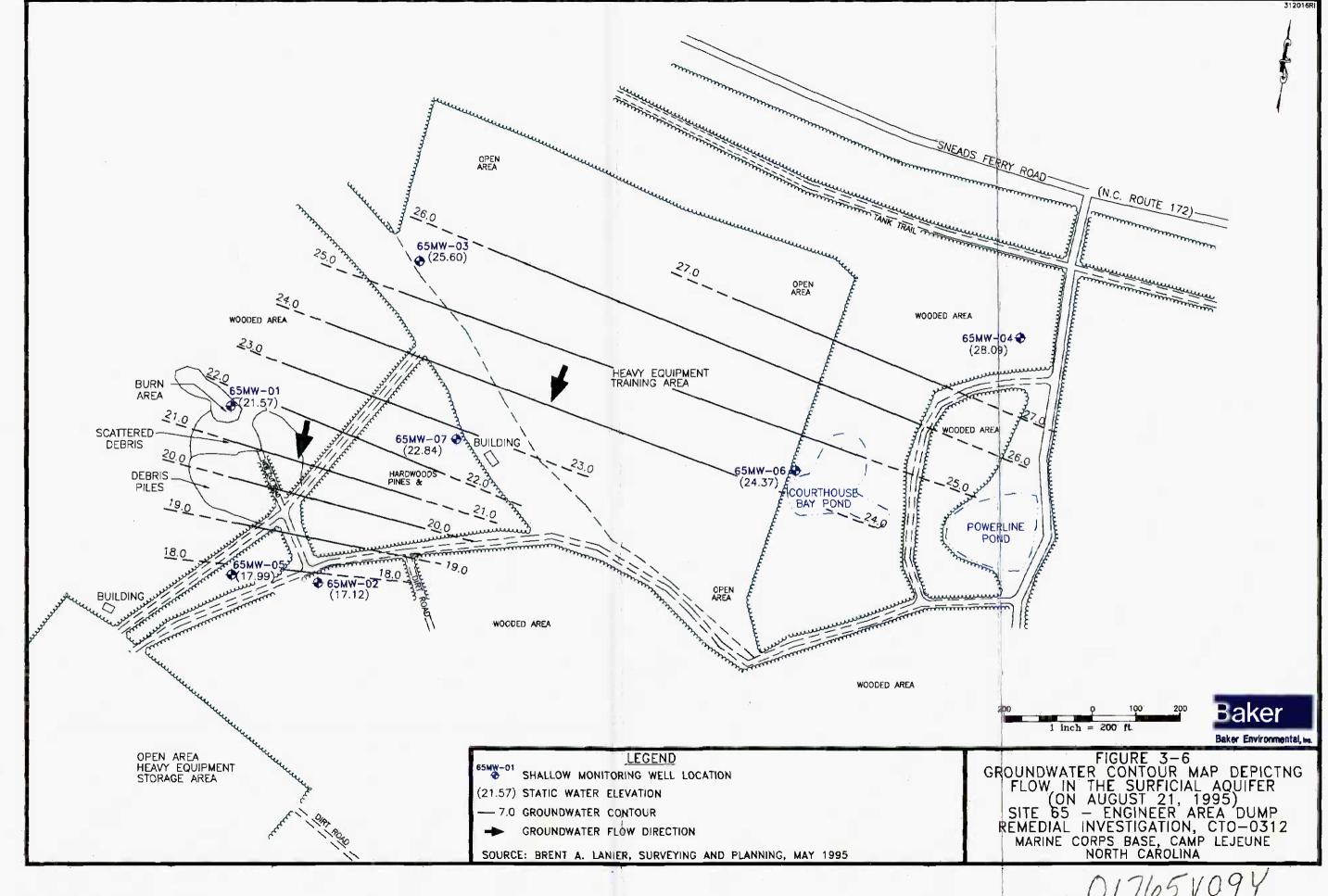

Source: LeBlond, 1994

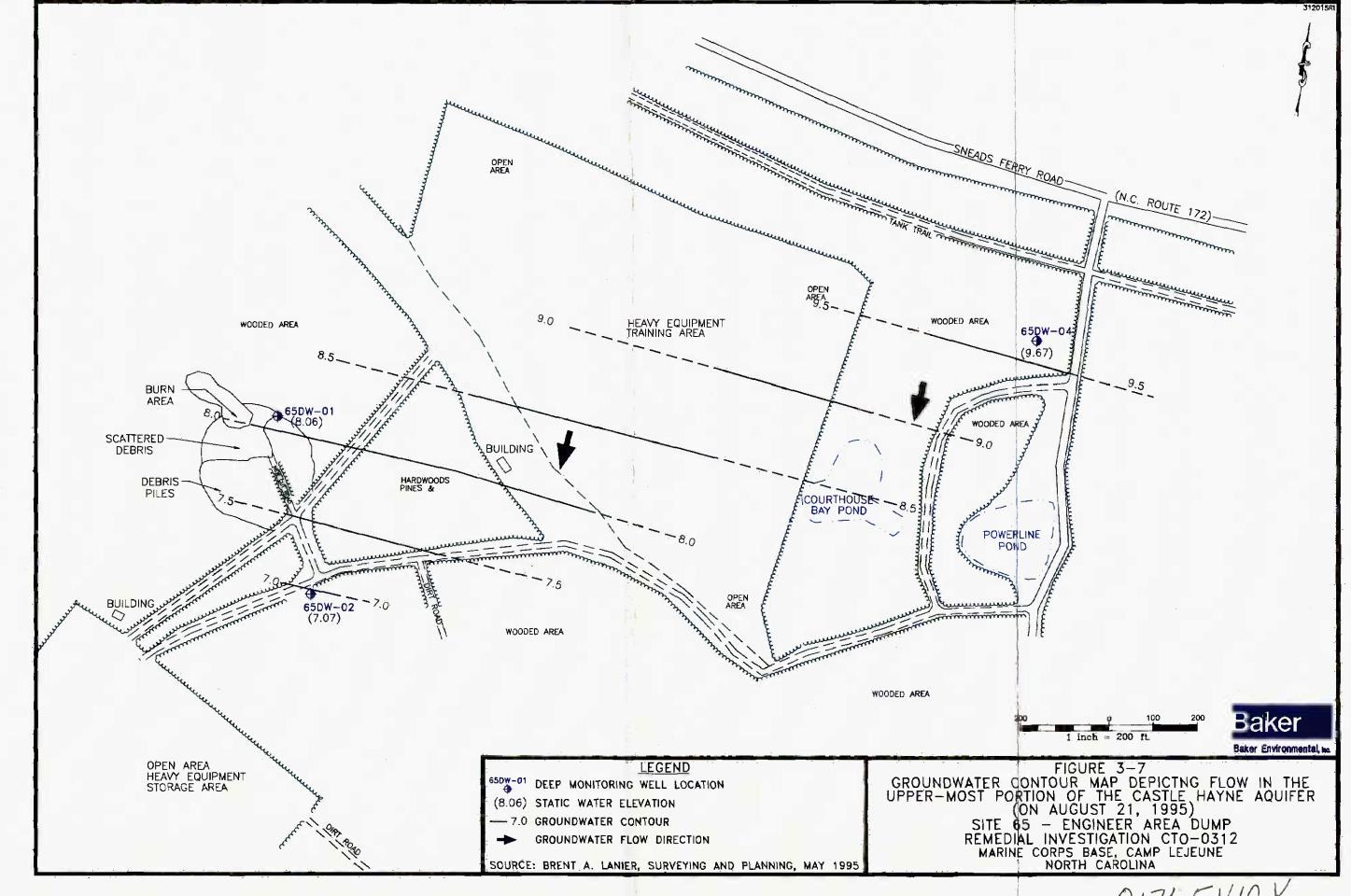
SECTION 3.0 FIGURES



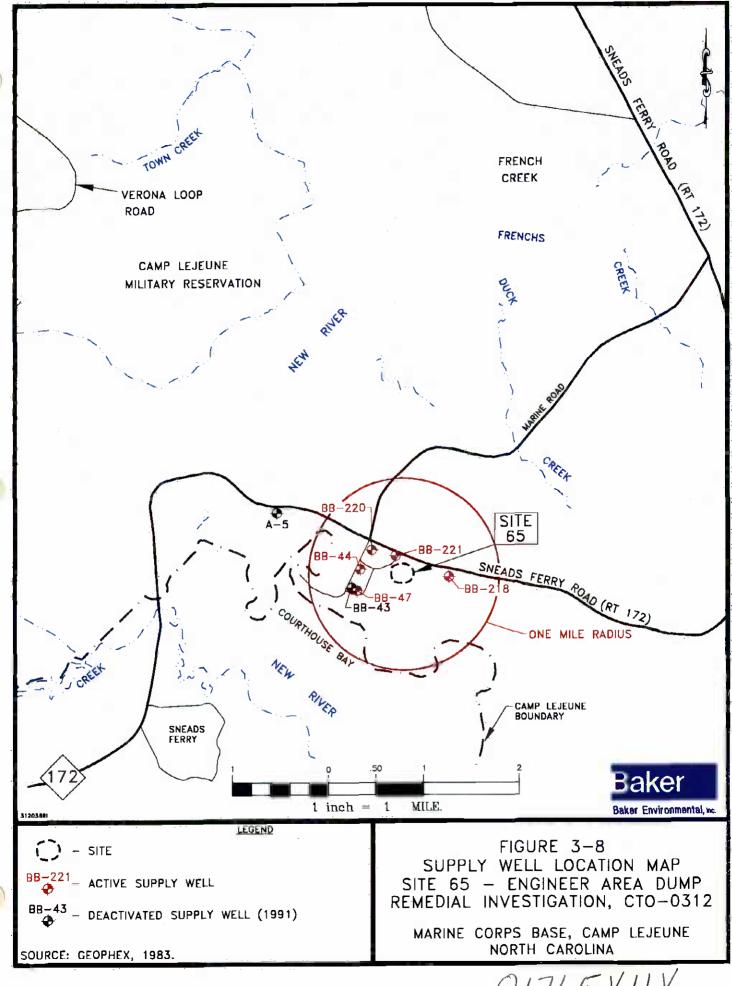
01765V04Y

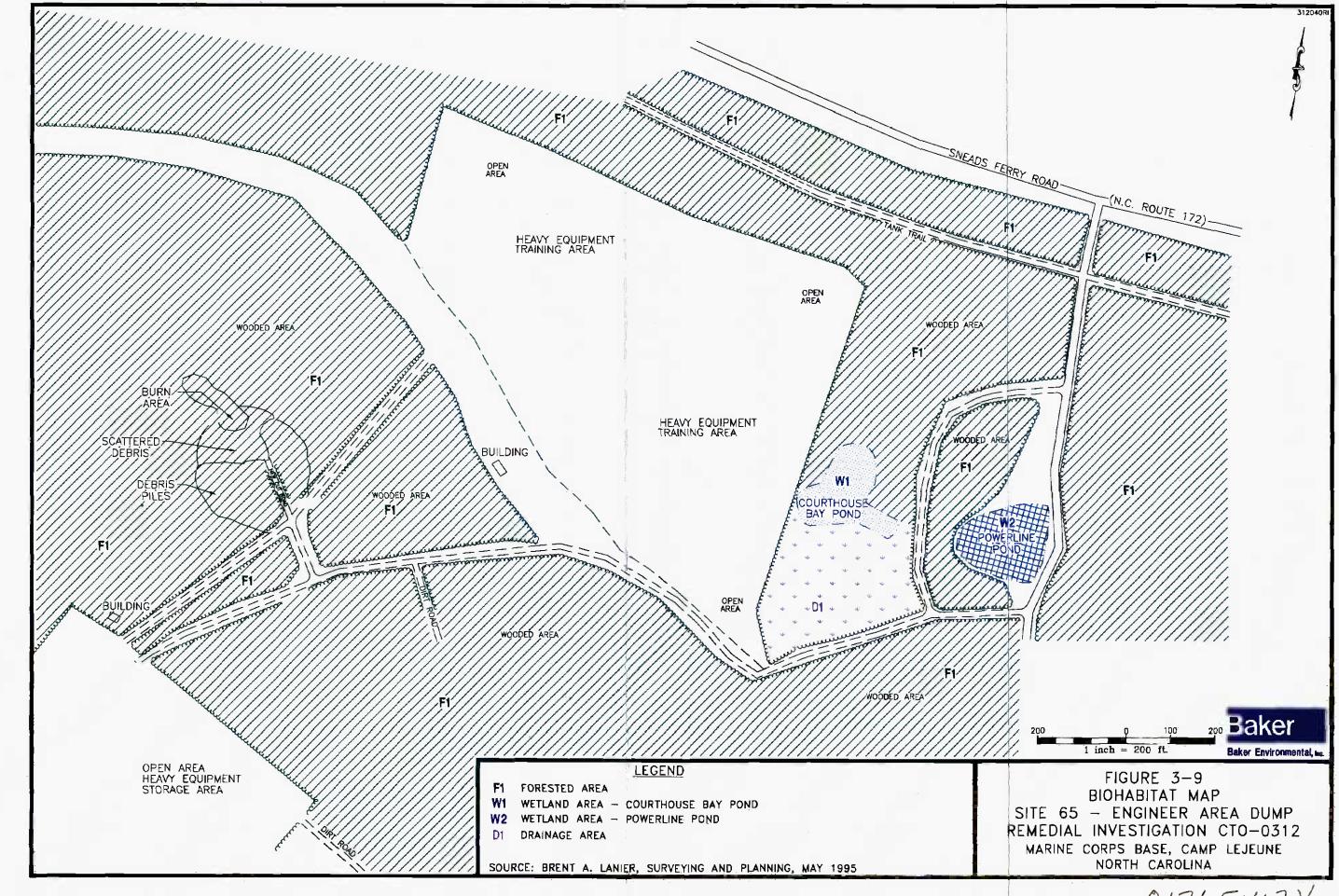



01765 VO6Y



01765V07Z




01765 V 08Z

01765V10Y

01765V12V

4.0 NATURE AND EXTENT OF CONTAMINATION

This section presents and evaluates the results of the RI conducted at Site 65. The objectives of the section are to characterize the nature and extent of contamination at the site. The characterization was accomplished through environmental sample collection and laboratory analysis of soil, groundwater, surface water and sediments. The detection summary tables and figures referenced in the text are located at the end of Section 4.

Analytical parameters can be segregated into two broad categories: organic compounds and inorganic elements. Most of the organic parameters included in the analytical program do not occur naturally. Therefore, any organic compounds detected in the samples collected from the site may be attributed to either site or sampling/laboratory contamination. However, many of the inorganic elements included in the analytical program occur naturally. In order to accurately present the nature and extent of contamination, the detected parameters that are either common laboratory contaminants or are naturally occurring on site must be segregated from those that may be attributed to site or off-site activities.

4.1 <u>Data Management and Tracking</u>

Analytical data generated during the RI was submitted for third-party validation to Heartland Environmental Services, Inc. Procedures established by the National Functional Guidelines for Organic (USEPA, 1991) and Inorganic (USEPA, 1988) Analyses were followed during the validation process. Validation of the analytical data, through established procedures, served to reduce the inherent uncertainties associated with its usability. Data qualified as "J" were retained as estimated. Estimated analytical results within a data set are common and considered usable by the USEPA. Data may be qualified as estimated for several reasons including: an exceedence of holding times; high or low surrogate recovery; intra-sample variability; or the reported value is below the Contract Required Detection Limit (CRDL) or the Contract Required Quantitation Limit (CRQL).

Additional data qualifiers were employed during the data validation (see Appendix K). The "NJ" qualifier denotes that a compound was tentatively identified, but the reported value may not be accurate or precise. Compounds which were not detected and had inaccurate or imprecise quantitation limits were assigned the "UJ" qualifier. The "B" qualifier identifies a compound that was detected in the method blank associated with the sample. If the sample result has serious deficiencies with regard to the ability to analyze the sample and meet quality control criteria, the compound is assigned the "R" qualifier and the data is rejected. No data acquired during this RI was rejected.

The management and tracking of data from the time of field collection to receipt of the validated electronic analytical results is of primary importance and reflects the overall quality of the analytical results. Field samples and their corresponding analytical tests were recorded on the chain-of-custody sheets, included as Appendix D. The chain-of-custody forms were checked against the FSAP (Baker, 1995) to determine if all designated samples were collected for the appropriate parameters. Similarly, the validated information was compared to laboratory information as a final check. In summary, the tracking information was used to identify the following items:

- Identify sample discrepancies between the analysis plan and the field investigation.
- Verify that the laboratory received all samples and analyzed for the correct parameters.

- Verify that the data validator received a complete data set.
- Ensure that a complete data set was available for each media of concern prior to entering results into the database.

4.2 Non-Site Related Analytical Results

Many of the organic and inorganic constituents detected in soil, groundwater, surface water and sediments at Site 65 are attributable to non-site related conditions or activities. Two primary sources of non-site related results include laboratory contaminants and naturally-occurring inorganic elements. In addition, non-site related operational activities and conditions may contribute to "on-site" contamination. A discussion of non-site related analytical results for the site is provided in the following subsections.

4.2.1 Laboratory Contaminants

Blank samples (i.e., rinsate, field, trip) provide a measure of contamination that has been introduced into a sample set during the collection, transportation, preparation and/or analysis of samples. To remove non-site related contaminants from further consideration, the concentrations of the same chemicals detected in environmental samples.

Common laboratory contaminants (i.e., acetone, 2-butanone, chloroform, methylene chloride, toluene, and phthalate esters) were considered as positive results only when observed concentrations exceeded ten times the maximum concentration detected in any blank. If the concentration of a common laboratory contaminant was less than ten times the maximum blank concentration, then it was concluded that the chemical was not detected in that particular sample (USEPA, 1989a). The maximum concentrations of detected common laboratory contaminants in trip, field and rinsate blanks were as follows:

•	acetone	93J μg/L
•	methylene chloride	1J μg/L
•	2-butanone	7J μg/L
•	toluene	4J μg/L
•	bis(2-ethylhexyl)phthalate	2J μg/L
•	di-n-butyl phthalate	1J μg/L

Chloroform was detected at 30 µg/L in a potable water field blank (73-FB-03), but is probably not due to laboratory contamination.

Organic constituents contained in blanks that were not considered common laboratory contaminants were considered as positive results only when observed concentrations exceeded five times the maximum concentration detected in any blank (USEPA, 1989b). All TCL compounds less than five times the maximum level of contamination noted in any blank were considered to be not detected in that sample. The maximum concentrations of all other detected blank contaminants were as follows:

•	1,1-dichloroethene	2J μg/L
•	1,2-dichloroethane	2J μg/L
•	trichloroethene	2J μg/L
•	4,4-DDT	0.3 μg/L

bromodichloromethane
 dibromochlorormethane
 18 μg/L
 6J μg/L

A limited number of solid environmental samples that exhibited high concentrations of tentatively identified compounds (TICs) underwent additional sample preparation. Medium level sample preparation provides a corrected CRQL based on the volume of sample used for analysis. The corrected CRQL produces higher detection limits than the low level sample preparation. A comparison to laboratory blanks used in the medium level preparation was used to evaluate the relative amount of contamination within these samples.

4.2.2 Naturally-Occurring Inorganic Elements

In order to differentiate inorganic contamination due to site operations from naturally-occurring inorganic elements in site media, the results of the sample analyses were compared to information regarding background conditions at MCB, Camp Lejeune. The following guidelines were used for each media:

Soil: MCB, Camp Lejeune Background Soil Samples - Appendix L

Groundwater: Evaluation of Metals in Groundwater - Appendix M

Surface Water: Off-Base Reference Stations (White Oak River Basin) - Appendix N Sediment: Off-Base Reference Stations (White Oak River Basin) - Appendix N

The following subsections address the various comparison criteria used to evaluate the analytical results from soil, groundwater, surface water and sediment samples collected at Site 65.

4.2.2.1 Soil

In general, chemical-specific standards and criteria are not available for soil. As a result, base-specific background concentrations have been compiled from a number of locations throughout MCB, Camp Lejeune to evaluate background levels of inorganic elements in the surface and subsurface soil. Organic contaminants, unlike inorganic elements, do not occur naturally. Therefore, it is probable that all organic contaminants detected in the surface and subsurface soil are attributable to activities which have previously occurred or are currently taking place within or surrounding the study area.

Site background and base background concentration values for inorganic elements in surface and subsurface soil at MCB, Camp Lejeune (which includes results from background samples collected at Site 65) are presented in Tables 4-1 and 4-2, respectively. The tables provide a comparison illustrating whether the results from background samples collected at Site 65 are within the range of concentrations collected throughout the base. The base background ranges are based on analytical results of background samples collected in areas not known to have been impacted by site operations or disposal activities at MCB, Camp Lejeune. In subsequent sections, which discuss the analytical results of samples collected during the soil investigation, only those inorganic parameters with concentrations exceeding base background ranges will be considered. Appendix L contains the base soil background database for metals.

4.2.2.2 Groundwater

A shallow and deep monitoring well cluster was installed upgradient of the site to assess background groundwater conditions. Background wells are often installed to assess the natural state and quality

of groundwater. Natural, in this sense, implies that the groundwater has not been altered due to human activity. In some cases, these monitoring wells provide data that is representative of naturally occurring conditions. In other cases, these wells may not be representative of naturally occurring conditions, if other base-related activities have altered the natural state of groundwater. In the latter case, the well samples would be classified as "control" samples. Control samples are samples which may not represent background conditions, but represent the current state of groundwater quality upgradient of the site. During the past few years, a number of background wells have been installed throughout the base as part of individual site investigations. Most of the background wells installed throughout the base provide control samples. The samples collected from these wells have generated data that is representative of base-wide groundwater quality.

Chemical-specific standards and criteria are available for evaluation of groundwater analytical results. In the subsequent sections, which address the analytical results of samples collected during the groundwater investigation, only those inorganic parameters with concentrations exceeding applicable federal and/or state regulations will be discussed. In order to supplement comparison criteria, a number of base-specific background (i.e., upgradient) samples were compiled as part of a study to evaluate levels of inorganic elements in groundwater at MCB, Camp Lejeune. Appendix M presents Baker's Draft Report Evaluation of Metals in Groundwater, June 1994, prepared for the DoN, Atlantic Division Naval Facilities Engineering Command.

Groundwater samples were analyzed for total and dissolved metals parameters. One sample (10%) was analyzed for dissolved metals. The concentrations for the dissolved metals were generally found to be higher than total metals, particularly for metals such as calcium, magnesium and sodium. The only metals which exhibited lower results in the dissolved metals than the total metals were cadmium and iron. A 0.45-micron filter was used in the field to remove small particles of silt and clay that would otherwise be dissolved during sample preservation and generate an unrealistically high apparent value of metals in groundwater. The total metals, or unfiltered samples, thus reflect the concentrations of inorganic in the natural lithology and inorganic elements dissolved in the groundwater.

USEPA Region IV requires that unfiltered inorganic concentrations be used in evaluating ARARs and risk to human health and the environment. In the subsequent sections, which discuss the groundwater sample analytical results, both total and dissolved inorganics (which exceed applicable federal and/or state standards) will be presented and discussed.

Groundwater in the MCB, Camp Lejeune area is naturally rich in iron and manganese often exceeding the federal Maximum Contaminant Levels (MCLs) and North Carolina Water Quality Standards (NCWQS) of 300 and 50 µg/L, respectively. Elevated levels of iron and manganese, at concentrations above the MCL and NCWQS, were reported in samples collected from a number of the potable water supply wells at the base, which were installed at depths greater than 162 feet bgs (Greenhorne and O'Mara, 1992). Iron and manganese concentrations in several monitoring wells at Site 65 exceeded the MCL and NCWQS, but fell within the range of concentrations for samples collected elsewhere at the base. Based upon the widespread occurrence of iron and manganese at similar levels, it is assumed that these two metals are naturally-occurring in groundwater, and their presence is not attributable to site operations.

4.2.2.3 Surface Water and Sediment

Offsite surface water and sediment samples were collected from three tributaries of the White Oak River as a part of a background investigation, White Oak River Basin Reference Study. These tributaries were generally located between Swansboro and the Croatan National Forest and were believed not to be impacted by previous activities that were conducted at current Base IR sites. As a part of this study a total of ten surface water and 20 sediment samples were collected from nine reference stations and analyzed for TAL metals. A summary of metals results for surface water and sediment are included in Appendix N. Reference stations were located in the following areas of the White Oak River Basin:

- Webb Creek two reference stations
- Hadnot Creek four reference stations
- Holland Mill Creek three reference stations

4.3 State and Federal Criteria and Standards

Contaminant concentrations can be compared to contaminant-specific established federal and state criteria and standards such as federal MCLs or NCWQS.

The only enforceable federal regulatory standards for water are the federal MCLs. In addition to the federal standards, North Carolina developed the NCWQS for groundwater and surface water. Regulatory guidelines were used for comparative purposes to infer the potential health risks and environmental impacts when necessary. Relevant regulatory guidelines include federal Ambient Water Quality Criteria (AWQC) and Health Advisories.

In general, chemical-specific criteria and standards are not available for soil. Therefore, base-specific background concentrations were compiled to evaluate background levels of inorganic constituents in the surface and subsurface soil. Organic contaminants were not detected in the base-specific background samples. Therefore, it is likely that all organic contaminants detected in the surface and subsurface soil, within OU No. 9, Site 65, are attributable to the practices which have or are currently taking place within the areas of concern.

A brief explanation of the criteria and standards used for the comparison of site analytical results is presented below.

North Carolina Water Quality Standards (Groundwater) - NCWQSs are the maximum allowable concentrations resulting from any discharge of contaminants to the land or waters of the state, which may be tolerated without creating a threat to human health or which otherwise render the groundwater unsuitable for its intended purpose.

Maximum Contaminant Levels - MCLs are enforceable standards for public water supplies promulgated under the Safe Drinking Water Act and are designed for the protection of human health. MCLs are based on laboratory or epidemiological studies and apply to drinking water supplies consumed by a minimum of 25 persons. They are designed for prevention of human health effects associated with a lifetime exposure (70-year lifetime) of an average adult (70 kg) consuming 2 liters of water per day. MCLs also consider the technical feasibility of removing the contaminant from the public water supply.

North Carolina Water Quality Standards (Surface Water) - The NCWQSs for surface water are the standard concentrations, that either alone or in combination with other wastes, in surface waters that will not render waters injurious to aquatic life or wildlife, recreational activities, public health, or impair waters for any designated use.

USEPA Water Quality Screening Values (WQSV) - WQSVs are non-enforceable regulatory guidelines and are of primary utility in assessing acute and chronic toxic effects in aquatic systems. WQSVs are provided for both freshwater and saltwater aquatic systems, and are reported as acute and/or chronic values (USEPA, 1995a, b). Most of the WQSVs are the same as the USEPA Ambient Water Quality Criteria (AWQC); however, some of the WQSVs are based on more current studies.

Oak Ridge National Laboratory (ORNL) Aquatic Benchmarks - ORNL Aquatic Benchmarks are developed for many contaminants, including those that do not have NCWQS or WQSVs (Suter and Mabrey, 1994). The ORNL aquatic benchmarks include secondary acute values and secondary chronic values that are calculated using the Tier II method describe din the EPA's <u>Proposed Water Quality Guidance for the Great Lakes System</u> (USEPA, 1993b). Tier II values are developed so that aquatic benchmarks could be established with fewer data than are required for the USEPA AWQC. The benchmarks are limited to contaminants in freshwater.

Sediment Screening Levels - Sediment Screening Levels (SSLs) have been compiled to evaluate the potential for contaminants in sediments to cause adverse biological effects (Long, et al., 1995; Long and Morgan 1991; and USEPA, 1995). The lower ten percentile (Effects Range-Low [ER-L]) and the median percentile (Effects Range-Median [ER-M]) of biological effects have been developed for several contaminants. The concentration below the ER-L represents a minimal-effects range (adverse effects would be rarely observed). The concentration above the ER-L but below the ER-M represents a possible-effects range (adverse effects would occasionally occur). Finally, the concentration above the ER-M represents a probable-effects range (adverse effects would probably occur).

In addition to the SSLs, Apparent Effects Threshold Sediment Quality Values have been developed by Tetra Tech Inc., (1986) for the Puget Sound. These values are the concentrations of contaminants above which statistically significant biological effects would always be expected. Finally, the Wisconsin Department of Natural Resources has developed interim criteria for in-water disposal of dredged sediments (Sullivan, et al., 1985). However, these criteria are established using background data and are not based on aquatic toxicity.

Sediment Quality Criteria - Currently, promulgated sediment quality criteria (SQC) only exist for a few contaminants. However, SQC for nonionic organic compounds can be calculated using the procedures in the <u>Technical Basis for Deriving Sediment Quality Criteria for Nonionic Organic Contaminants for the Protection of Benthic Organisms by using Equilibrium Partitioning</u> (USEPA, 1993) as follows:

SQC = (Foc)(Koc)(FCV)/1,000,000

Where:

 $SQC = sediment quality criteria (\mu g/kg)$

Foc = sediment organic carbon content (mg/kg)

Koc = chemical organic carbon partition coefficient (mL/g)

FCV = final chronic water quality value (μ g/L)

4.4 Analytical Results

The analytical results of the surface soil, subsurface soil, test pits, groundwater, surface water, sediment, and fish sampling performed at Site 65 are presented in the following sections. A summary

of site contamination, by media, is provided in Table 4-3. The Data Frequency Summaries for all media at Site 65 are presented in Appendix O.

All samples submitted for analysis were analyzed for full TCL organic compounds, including volatiles, semivolatiles and pesticides/PCBs, and TAL inorganics (excluding cyanide), using CLP protocols and Level III data quality.

4.4.1 Surface Soil

A total of 13 surface soil samples were collected from various locations across Site 65. Six of the samples were collected near the waste piles and burn area shown on Figure 4-1. The remaining samples were collected from other locations potentially impacted by historical activities at the site. Surface soil sample detection summaries for organic compounds and inorganic elements are presented in Tables 4-4 and 4-5, respectively. The locations of these samples are shown on Figures 4-1 and 4-2 along with the estimated and positive analytical results.

Six volatile organic compounds (VOCs) were detected in the surface soil samples. Methylene chloride was detected twice at $2J \mu g/kg$; acetone was detected once at $10J \mu g/kg$, trichloroethene was detected once at $1J \mu g/kg$; and toluene was detected three times at concentrations of 1J or $2J \mu g/kg$. All of these compounds were detected at concentrations which are below the levels detected in the QA/QC blanks. These compounds are considered to be sampling or laboratory contaminants, since they are less than 10 times the maximum concentration detected in the QA/QC blanks.

The two remaining VOCs detected in surface soils are ethylbenzene and total xylenes. Ethylbenzene was detected at location 65SB-07 (1J μ g/kg) and xylenes were detected at locations 65SB-07 and 65DW-01 (5J and 3J μ g/kg, respectively). Both locations are near roads traveled by heavy equipment and both compounds are constituents of petroleum products.

A total of 19 semivolatile organic compounds (SVOCs) were detected in surface soils. The most widespread compound was bis(2-ethylhexyl) phthalate which was detected at nine locations. Bis(2-ethylhexyl)phthalate concentrations ranged from 48J μ g/kg (65SB-10) to 87J μ g/kg (65MW-06). This phthalate is a common plasticizer in rubber and plastic products, such as tires. All of the sample locations with estimated concentrations of these phthalates are near roads or equipment training areas.

Eleven SVOCs were detected at two or three of the following locations: 65DW-01, 65SB-06 and 65SB-12. These compounds and their respective concentrations are shown on Figure 4-1. These sample locations are near the waste piles and burn area. The compounds are all polyaromatic hydrocarbons (PAHs) which may be generated as products of incomplete combustion.

Di-n-butyl phthalate was detected at two locations (65SB-06 and 65SB-08) at 390J and 260J µg/kg, respectively. Di-n-butyl phthalate is a specialty plasticizer and polymer additive, especially for polyvinyl chloride (PVC) plastics. However, the sample locations are also near the waste piles at Site 65.

The remaining six SVOCs were detected at one location each. Five of the six compounds were detected at only 65DW-01. These PAHs are probably related to the other PAHs detected at 65DW-01. 2,4-dinitrophenol (150J μ g/kg) was detected at 65DW-04 near an entrance road to the Engineer Training Area. This compound is probably unrelated to Site 65.

Pesticide results for surface soil samples included detections at 11 of 13 locations. DDT and its by-products were measured at nine locations with a maximum concentration of 83J µg/kg at 65MW-07. Endosulfan II was measured at two locations with a maximum concentration of 3.9NJ µg/kg. Heptachlor epoxide was detected at one location at a concentration of 2.3 µg/kg. PCB Aroclor 1260 was detected at one location at a concentration of 52J µg/kg.

Surface soil sample analytical results for TAL metals were compared to a screening level of two times average background concentrations as listed in Appendix L. Seven of 13 sample locations exceeded two times average base background for one or more elements. Six of the seven samples are near the heavy equipment training area where the soil has been disturbed numerous times by bulldozers, front-end loaders, scrapers and similar equipment. The remaining sample location is 65SB-06, which is near the waste piles. Metals which exceed the screening level at more than one location are barium, chromium, copper, lead, manganese, and zinc. Metals which exceeded the screening level at only one location are iron, nickel, potassium, and thallium.

4.4.2 Subsurface Soil

A total of 13 subsurface soil samples were collected from the same locations within Site 65 as the surface soil samples. Six of the samples were collected near the waste piles and burn area shown on Figure 4-3. The remaining samples were collected from other locations potentially impacted by historical activities at the site. Subsurface soil sample detection summaries for organic compounds and inorganic elements are presented in Tables 4-6 and 4-7, respectively. The locations of these samples are shown on Figures 4-3 and 4-4 along with the estimated and positive analytical results.

Five VOCs were detected in the subsurface soil samples. Acetone was detected seven times with a maximum concentration of 380 μ g/kg, 2-butanone was detected twice with a maximum concentration of 4J μ g/kg; trichloroethene was detected once at 2J μ g/kg; and toluene was detected once at 1J μ g/kg. All of these compounds were detected at concentrations which are less than or equal to the levels detected in the QA/QC blanks. These compounds are considered to be sampling or laboratory contaminants, since they are less than 10 times the maximum concentration detected in the QA/QC blanks.

Xylene is the only remaining VOC detected in subsurface soils and it was detected at five locations with a maximum concentration of $3J \mu g/kg$ (65SB-10). Three of the locations are within the heavy equipment training area and the other two locations are near roads. Xylenes are a constituent of petroleum products which may have been deposited by heavy equipment.

Sixteen SVOCs were detected in the subsurface soils at 11 locations. The most widespread compound was bis(2-ethylhexyl) phthalate which was detected at all 11 locations. Bis(2-ethylhexyl)phthalate concentrations ranged from 49J µg/kg (65MW-06) to 370 µg/kg (65DW-01). This phthalate is a common plasticizer in rubber and plastic products, such as tires and hoses. Additionally, this compound is commonly a laboratory and field contaminant.

Di-n-butyl phthalate was detected at the same two locations (65SB-06 and 65SB-08) as it was detected in the surface soils at 340J and 240J μ g/kg, respectively. Di-n-butyl phthalate is a specialty plasticizer and polymer additive, especially for polyvinyl chloride (PVC) plastics. However, the sample locations are also near the waste piles at Site 65.

The remaining 14 SVOCs were all detected at 65SB-06 at a depth of three to five feet. All of these compounds are PAHs with a total concentration of 1,635 μ g/kg. Individual concentrations are shown on Figure 4-3. Twelve of the 16 SVOCs detected in subsurface sample 65SB-06 were also present in the surface soil sample for this location.

Pesticide results for subsurface soil samples included detections at four of 13 locations. DDT and its by-products were measured at the four locations with a maximum concentration of 76J μ g/kg of DDD at 65SB-10. Endrin aldehyde (9.4J μ g/kg), alpha chlordane (8.3J μ g/kg), and gamma chlordane (7.5 μ g/kg) were each measured at one location. PCBs were not detected in the subsurface soil samples collected during the field investigation.

Subsurface soil sample analytical results for TAL metals were compared to a screening level of two times average background concentrations as listed in Appendix L. Nine of 13 sample locations exceeded two times average base background for one or more elements. Four of the nine samples are near the heavy equipment training area where the soil has been disturbed numerous times by bulldozers, front-end loaders, scrapers and similar equipment. Another four sample locations are near the waste piles. The final location is near the entrance to the training area. Metals which exceed the screening level at more than one location are arsenic, barium, calcium, copper, iron, lead, manganese, nickel, sodium, and zinc. Metals which exceeded the screening level at only one location are aluminum, chromium, magnesium, potassium, and thallium (see Figure 4-4).

4.4.3 Test Pits

A total of six subsurface soil samples were collected from test pits near the waste piles and burn area as shown on Figure 4-5. Subsurface soil sample detection summaries for organic compounds and inorganic elements are presented in Tables 4-8 and 4-9, respectively. The locations of these samples are shown on Figures 4-5 and 4-6 along with the estimated and positive analytical results.

Three VOCs were detected in the soil samples from the test pits. Acetone was detected four times with a maximum concentration of 210 μ g/kg; 2-butanone was detected once with a concentration of 29 μ g/kg; and carbon disulfide was detected once at 2J μ g/kg. All of these compounds were detected in the QA/QC blanks. These compounds are considered to be sampling or laboratory contaminants, since they are at levels less than 10 times the maximum concentration detected in the QA/QC blanks.

Fifteen SVOCs were detected in the subsurface soil samples from six test pit locations. The most widespread compound was di-n-butyl phthalate which was detected at all six test pit locations. Di-n-butyl phthalate concentrations ranged from $160J \mu g/kg$ to $280J \mu g/kg$ (65TP-05 and 65TP-07, respectively). Di-n-butyl phthalate is a specialty plasticizer and polymer additive, especially for polyvinyl chloride (PVC) plastics.

Bis(2-ethylhexyl) phthalate was detected at four test pit locations. Bis(2-ethylhexyl) phthalate concentrations ranged from 37J μ g/kg (65TP-02) to 230 μ g/kg (65TP-07). As discussed previously, this phthalate is a common plasticizer in rubber and plastic products, such as tires.

The remaining 13 SVOCs were all detected at 65TP-07 at a depth of 10 feet. All of these compounds are PAHs with a total concentration of 1,873 μ g/kg. Individual concentrations are shown on Figure 4-6. Thirteen of the 15 SVOCs detected in subsurface sample 65TP-07 are also present in the subsurface soil sample 65SB-06. Eleven of these compounds were also detected in surface soil samples 65DW-01 and 65SB-06.

Pesticide results for subsurface test pit soil samples included detections at four of six locations. DDT and its by-products were measured at the four locations with a maximum concentration of 340J μ g/kg of DDD at 65TP-05. Gamma chlordane was measured at two locations with a maximum concentration of 3.1J μ g/kg. Endosulfan I (3.1J μ g/kg) was measured at one location. PCBs were not detected in the subsurface soil test pit samples.

Subsurface, test-pit, soil-sample, analytical results for TAL metals were compared to a screening level of two times average background concentrations as listed in Appendix L. All six sample locations exceeded two times average base background for two or more elements. Metals which exceeded the screening level at more than one location are barium, calcium, copper, lead, manganese, and zinc. Metals which exceeded the screening level at only one location are antimony, arsenic, cadmium, chromium, cobalt, iron, magnesium, nickel, selenium, silver, and sodium.

4.4.4 Groundwater

One round of groundwater samples was collected from the three existing and seven newly installed monitoring wells at the site. The wells were sampled between May 8 through 18, 1995. Detection summary tables for organics and metals are presented in Tables 4-10 and 4-11 and the locations of these samples are shown on Figures 4-7 and 4-8 along with the results.

Five VOCs were detected in the groundwater samples collected at the site. Methylene chloride was detected once at an estimated concentration of $2J \mu g/L$ and five times at $1J \mu g/L$; acetone was detected twice at $7J \mu g/L$ and four times at $5J \mu g/L$; 2-butanone was detected three times at $1J \mu g/L$. These compounds are common laboratory contaminants and were detected at concentrations less than 10 times the maximum concentration detected in blank samples. Therefore, methylene chloride, acetone and 2-butanone are not considered to be site related contaminants, but rather contamination resulting from laboratory procedures.

1,2-dichloroethane was detected in eight of the ten samples at an estimated concentration of 2J μ g/L. Trip blank samples 65-TB-02 and 65-TB-03 contained 1,2-dichloroethane at a concentration of 2J and 1J μ g/L, respectively. Contamination in trip blank samples that are prepared by the laboratory typically indicate that either the source of the water used for the trip blanks or the analytical equipment used for analysis, is contaminated with the compound in question. Given the fact that 1,2-dichloroethane was consistently detected at the same concentration, it is prudent to assume that the contamination did not originate from the site, but rather from the laboratory.

Carbon disulfide was the only VOC detected in the groundwater samples that was not detected in any of the blank samples collected during the RI. It was detected in one upgradient sample location (65MW-04) at a concentration of $5J \mu g/L$. Carbon disulfide is not regulated in groundwater by either NCWQS or by federal MCLs. Some of the common uses for carbon disulfide are the manufacture of carbon tetrachloride, flotation agents, soil disinfectants, dyes, electronic vacuum tubes, paints, enamels, paint removers, varnishes, varnish removers, textiles, explosives, and rocket fuels. It is also used as a solvent for waxes, lacquers and cold vulcanized rubber.

Three SVOCs were detected in the samples at very low concentrations. Di-n-butyl phthalate and bis(2-ethylhexyl)phthalate were detected at a maximum concentration of $6J \mu g/L$ in sample 65MW-07. These compounds are not considered to be site-related contamination, but rather contamination resulting from the processes involved with sample collection and analysis. However, due to the detection of these compounds in the field blanks, but not in the trip blanks, it is assumed that the

contamination was introduced during the collection of the samples or may have originated from the polyethylene storage tank used for transport and temporary storage of potable water. An additional potential source of the contamination is the nitrile gloves used for personal protection during collection and handling of the samples.

The third SVOCs detected in the samples collected at the site was naphthalene. It was detected in a single sample (65DW-04) at an estimated concentration of 3J μ g/L. This relatively low concentration is considerably less than the NCWQS of 21μ g/L. As with the detection of carbon disulfide, naphthalene was detected in an upgradient location and is suspected to have originated from an off-site source.

Groundwater samples collected from the monitoring wells contained no detectable concentrations of pesticides or PCBs. These results demonstrate that the PCBs, specifically Aroclor - 1254, detected in the subsurface soil sample collected from 65MW-02 as part of a previous investigation (Baker, 1994), have not impacted the groundwater at the site. PCBs have a low solubility and commonly bind to soil matrices. Therefore, PCBs are rarely encountered in groundwater. In addition, the pesticides detected in the soils at the site do not appear to have contaminated the groundwater.

Thirteen metals were detected in groundwater samples including aluminum, barium, calcium, chromium, cobalt, iron, lead, magnesium, manganese, nickel, potassium, sodium and zinc. Metal results were, on average, one or two orders of magnitude below the base background levels (Baker, 1994). Only two of the elements were detected at concentrations that exceed the state and/or federal standards. Iron concentrations in five samples exceeded the NCWQS of 0.3 mg/L with the highest detected level in sample 65-MW02-01 (6,580 μ g/L). Manganese values exceeded the NCWQS of 0.05 mg/L in six samples. The highest concentration (186 μ g/L) was detected in deep well sample 65-DW02-02, but the adjacent shallow well sample did not exceed the NCWQS. Neither iron nor manganese concentrations exceeded the federal MCL value in any of the samples collected at the site.

A single filtered sample was collected during the RI in order to compare the total metal results with filtered metal results from the same well. Both samples were collected with low-flow sampling techniques and their comparison was used to illustrate the relationship between the total metal and dissolved metal results. The analytical results were within ten percent which is acceptable and can be partially due to laboratory variation.

Groundwater field parameter results for pH, temperature, specific conductance and turbidity are presented in Table 2-3. These values represent all field measurements obtained during groundwater sampling activities. Reviewing the last readings obtained from each well, which are representative of groundwater conditions prior to sampling, pH values ranged from 4.96 to 8.98 standard units, specific conductance values ranged from 73.8 to 820 micromhos/cm, temperature values ranged from 17.1 to 21 °C, and turbidity ranged from 0.2 to 8.18 NTUs.

4.4.5 Surface Water

A total of two surface water samples were collected from Powerline Pond and Courthouse Bay Pond during the RI at Site 65. Positive organic and metals results are presented in Tables 4-12 and 4-13, and illustrated on Figures 4-9 and 4-10.

Only two organics (1,2-dichloroethane and acetone) were detected in the samples. 1,2-dichloroethane was detected in both of the samples at a concentration of 1J μ g/L and acetone was detected at a concentration of 5J μ g/L. Both of these compounds were detected at concentrations less than 10 times the concentration of the compound in the blank samples and therefore not considered to be related to site conditions (see Section 4.2.1).

A total of 13 of the 23 TAL metals were detected in the surface water samples collected at the site. Aluminum, barium, copper, iron, lead, manganese, vanadium and zinc exceeded the lowest Surface Water Screening Value (SWSV) as depicted on Table 4-13. The highest concentrations of aluminum, barium, chromium, copper, iron, manganese, potassium, vanadium and zinc were reported in sample 65-SW04-01 collected from Courthouse Bay Pond (located nearest the heavy equipment training area). All of the detected element concentrations except iron exceeded the average reference station concentration established at Camp Lejeune. Iron exceeded the average reference station concentration only in sample 65-SW04-01.

4.4.6 Sediment

A total of four sediment samples were collected from Courthouse Bay Pond and Powerline Pond during the field investigation at Site 65. One sample was collected from a depth of zero to six inches and another from a depth of six to 12 inches at each of the two sampling stations (65SD-04 and -05). Positive organic and metal results are depicted on Tables 4-14 and 4-15 and illustrated on Figures 4-9 and 4-10.

The VOCs detected were acetone, chloroform, 2-butanone, carbon tetrachloride, tetrachloroethene and toluene. Acetone was detected in each of the four samples at concentrations ranging from 190J to 450J μ g/L; chloroform was detected once at a concentration of 79J μ g/L; 2-butanone was detected four times at concentrations ranging form 72J to 94J μ g/L; carbon tetrachloride was detected twice at 13J and 18J μ g/L; tetrachloroethene was detected at concentrations of 6J and 15J μ g/L; and toluene was detected three times with concentrations ranging from 3J to 7J μ g/L. The concentrations of acetone, chloroform and toluene detected in the samples are below 10 times the maximum concentrations detected in the blanks. Additionally, the concentrations of 2-butanone detected in the samples are slightly higher than 10 times the maximum concentration detected in the blank samples. None of the compounds were detected at concentrations which exceeded the sediment screening values (SSV); however, all of the concentrations exceeded the average reference concentration for each compound.

Only a single SVOC was detected in the sediment samples collected at Site 65. Di-n-butylphthalate was detected in all four samples with concentrations ranging from 940J to 1,600J μ g/L. This phthalate ester was detected in blank samples collected during the RI. However, the concentrations within the blanks were substantially lower than the results obtained from the sediment samples. Only one sample contained concentrations of di-n-butylphthalate that exceeded the Lower Effects Range (ER-L) criteria.

Three pesticides were detected during the sediment investigation at the site. The compounds detected were beta-BHC, 4,4'-DDD and 4,4'-DDE. Beta-BHC was detected in only one sample at a concentration of 8.3NJ μ g/L; 4,4'-DDD was detected in two samples at concentrations of 76J and 84J μ g/L; and 4,4'-DDE was detected twice at concentrations of 18J and 19NJ μ g/L. All of these compounds exceeded the lowest SSV and the average reference concentration. These concentrations are similar to the concentrations detected in the surface soils across the site.

Thirteen of 23 TAL metals were detected in the sediment samples collected during the field investigation (see Table 4-15). Copper, lead and zinc were detected at a concentration exceeding the lowest SSV only one time; however, all of the elements exceeded the average reference concentration at least one time.

4.4.7 Ecological

A total of nine fish samples were collected from the two ponds located east of the site. Four samples were collected for fillet analysis and five for whole body analysis. Positive organic and metal results are presented in Tables 4-16, 4-17, 4-18, and 4-19.

The only organics detected in the fillet samples were acetone and 4,4'-DDD. Samples 65-FS05-BG01F and 65-FS05-LB01F contained acetone at concentrations of 5,600J μ g/kg and 7,900 μ g/kg, respectively. In addition, 4,4'-DDD was detected in sample 65-FS04-BG01F at a concentration of 5.7J μ g/kg.

Twelve of the 23 TAL metals were detected in the fish fillet samples collected during the RI. Aluminum, barium, calcium, copper, magnesium, manganese, mercury, potassium, selenium, sodium, thallium, and zinc were the detected inorganic elements.

Four VOCs were detected in the whole body samples collected during the field investigation. Methylene chloride was detected at a concentration of 1,000J μ g/kg (65-FS04-RS01W); acetone was detected in three samples with concentrations ranging from 27,000 μ g/kg to 1,400,000J μ g/kg (65-FS05-BG01W); 2-butanone was detected only in sample 65-FS05-RS01W at a concentration of 560J μ g/kg; and toluene was only detected in one sample (65-FS05-BL01W) at a concentration of 5,000J μ g/kg.

These contaminants are probably not site-related. The concentrations of VOCs observed in sediment and surface water samples were low and detected infrequently (see Sections 4.4 and 4.5 and Tables 4-10 and 4-12). Typically, VOCs do not bioconcentrate in fish and crab tissues as noted by their relatively low bioconcentration factors (acetone = .69; methylene chloride = 3.75; and toluene = 10.7). Furthermore, all four of the VOCs detected are common laboratory contaminants. Considering these facts, it is highly probable that these VOCs were introduced in the laboratory, although the exact method of introduction cannot be determined.

There were no SVOCs detected in the samples; but there were two pesticides (4,4'-DDE) and (4,4'-DDE) detected. (4,4'-DDE) was detected in a single sample (65-FS04-BG01W) at a concentration of (401) (4,4'-DDE) was detected twice with a maximum concentration of (401)

Seventeen of the 23 TAL metals were detected in the whole body samples. The elements detected were aluminum, antimony, arsenic, barium, beryllium, calcium, copper, iron, lead, magnesium, manganese, mercury, potassium, selenium, sodium, thallium, and zinc.

4.5 Engineering Results

A total of six samples were collected for engineering parameters during the RI. A subsurface soil sample (65-SB06), groundwater sample (65-MW07A-01), and four sediment samples (65-SD04-06,

65-SD04-06, 65-SD04-612, 65-SD05 and 6505-612) were analyzed. The results are included in Appendix O.

4.6 Quality Assurance/Quality Control

Quality Assurance/Quality Control (QA/QC) samples were collected during the soil, groundwater, surface water and sediment investigations. These samples include trip blanks, field blanks, equipment rinsate blanks and duplicate samples. Analytical results of the field duplicates are provided in Appendix P and the other field QA/QC results are provided in Appendix Q.

Organic compounds detected within the blank samples include methylene chloride, acetone, 1,2-dichloroethane, 2-butanone, chloroform, bromodichloromethane, di-n-butylphthalate, bis(2-ethylhexyl) phthalate, dibromochloromethane, 4,4'-DDT, toluene, trichloroethene and 1,1-dichloroethene. The trip blanks used for the Site 65 RI were prepared by the laboratory, shipped to the field and then returned to the laboratory with the samples. Methylene chloride, acetone, 1,1-dichloroethene, 1-2, dichloroethane, trichloroethene and toluene were detected in the trip blanks at low concentrations. This would tend to indicate that these contaminants originated from the laboratory.

The equipment rinsate blanks were collected in the field from sampling equipment that had recently been cleaned. Methylene chloride, acetone, 1,2-dichloroethane and 2-butanone were detected in the rinseate blanks. With the exception of acetone, the other contaminants were detected at relatively low concentrations. The origin of methylene chloride, 1,2-dichloroethane, and 2-butanone contamination may be related to the laboratory, the deionized water used for the blanks or from the field decontamination process. The methylene chloride and 1,2-dichloroethane was detected in the trip blanks at similar concentrations and, therefore are suspected to be laboratory-related contamination. 2-butanone was not detected in the trip blanks but is a common laboratory contaminant and, therefore is suspected of originating in the laboratory. Acetone was detected at its highest concentration in sample number 65-RB-03. Possible sources for the acetone contamination detected in the blanks include field decontamination and laboratory cleaning/extraction procedures. Acetone is commonly used in laboratories for cleaning glassware and contaminant extractions. However, due to the sharp increase in the concentration of acetone in the equipment rinseate blanks, the suspected source of the contamination is not allowing the isopropanol (which has acetone as a component) to completely air dry after decontamination.

In addition to the organic contamination observed in the blank equipment rinseate blanks, six metals were detected. These analytes include aluminum, barium, calcium, magnesium, sodium and zinc. The origin of these elements is most likely site related.

Field blanks were collected from the three sources of water used at the site. Sample 73-FB-01 was collected from the distilled water used for equipment decontamination (i.e., stainless steel spoons, split spoons, bowls, etc.); sample 73-FB-02 was collected from the deionized water supplied by the laboratory for use in collection of equipment rinseate blanks; and sample 73-FB-03 was collected from the potable water used for decontamination of heavy equipment (i.e., steam cleaning). Sample 73-FB-01 contained acetone, di-n-butylphthalate and bis(2-ethylhexyl) phthalate as contaminants. The water was packaged in plastic bags contained within cardboard boxes and the plastic bags may be the source of the phthalate contamination. The acetone contamination is again suspected to be laboratory related contamination.

Sample 73-FB-02 contained methylene chloride and acetone contamination. The methylene chloride contamination is suspected to have originated in the laboratory; however the acetone is suspected to have had two sources of contamination. Since acetone was detected in the trip blanks, the equipment blanks and the deionized water, it is suspected that the contamination originated from the laboratory (i.e., contaminated deionized water) and the field decontamination procedures (i.e., not allowing the equipment to completely dry prior to use). This would explain the sharp increase in concentration in the rinseate blanks and the high concentration observed in field blank sample 73-FB-02.

Sample 73-FB-03 contained contaminants acetone, chloroform, bromodichloromethane and dibromochloromethane. With the exception of acetone and chloroform, these contaminants are suspected to exist within the potable water supply. The suspected origin of acetone contamination has been discussed in previous paragraphs. Chloroform contamination can come from the use of chlorinated water in the laboratory or if the potable water is chlorinated during its treatment, if any.

Ten of the 23 TAL metals were detected in the field blanks. The analytes include aluminum, barium, calcium, copper, iron, lead, magnesium, potassium, sodium and zinc.

4.7 Extent of Contamination

4.7.1 Surface Soils

Figure 4-1 presents the positive detections of the organic compounds in surface soil samples collected at the site.

As stated previously, a total of six VOCs were detected at Site 65. Acetone, methylene chloride and toluene were detected at concentrations less than 10 times the maximum concentration detected in the blank samples. In addition, the concentration of trichloroethene was less than five times the maximum concentration detected in the blanks, designating them as probable laboratory contaminants and not site-related. The remaining volatiles are considered to be site-related contamination.

Ethylbenzene was detected in surface soil sample 65-SB07-00 and xylene was detected in samples 65-SB07-00 and 65-DW01-00. The occurrence of ethylbenzene and xylene within the surface soils at the site is not a surprise given the vehicular traffic through the site. The relatively low concentrations of these compounds do not indicate a specific source, but may have originated from vehicles and heavy equipment passing through the site.

SVOCs were detected in nearly every surface soil sample collected at the site. The only sample which did not contain any detectable semivolatiles was 65-DW02-00. PAH constituents were detected in only three samples (65-SB06-00, 65-SB12-00 and 65-DW01-00). Samples 65-SB06-00 and 65-DW01-00 were collected near the southern-most debris piles located at the site. In addition, sample 65-SB12-00 was collected in the middle of the area where the northern-most debris pile had existed. The material comprising the northern pile was removed during the field investigation by the engineers that operate the heavy equipment within the training area. All of the locations where PAH compounds were detected are located near an area where construction type materials have been disposed. Sample 65-DW01-00 was near the reported burn area in addition to the debris piles. Due to the types of materials discovered during the test pit excavation and a site reconnaissance, and the reported location of the burn area, the suspected source for the PAH contamination is the debris and the historical burning at the site. The origin of the PAH contamination with regard to burning

materials at the site is further corroborated by the substantial increase in PAHs in sample 65-DW01-00 (the sample located closest to the burn area).

PAH constituents were detected during the SI conducted by Baker in 1991. Two samples collected from borings 65-MW03 and 65-SB02 contained the PAHs. Both of these locations were near the debris sites located at the site.

Bis(2-ethylhexyl)phthalate and di-n-butyl phthalate were detected in most of the samples collected across the site. Neither of these compounds was detected at concentrations below 10 times the maximum concentration detected within the blank samples. No specific source can be identified for the phthalate esters.

Pesticides were detected in all areas of the site. The levels detected in the samples are similar to base-wide concentrations from the historical use of pesticides at Camp Lejeune.

PCB compound Aroclor 1260 was detected in one location near the burn area and the southern-most debris piles. The compound was detected in sample 65-DW01-00 at a concentration of 52J μ g/kg. Historical records do not indicate the disposal of PCBs, however PCBs were detected in a subsurface soil sample collected from soil boring 65SB-02 during the SI conducted in 1991 (Baker, 1994). The detection of PCBs within the vicinity of the debris piles indicates that some product containing PCBs may have been spilled or disposed at the site.

Figure 4-2 presents the metals that were detected in the surface soil samples collected at the site. The contamination was observed in the heavy equipment training area and the southern-most debris pile. The distribution of the metals indicate that the contamination may be the result of rusting metal debris disposed at the site and the heavy equipment used for training.

4.7.2 Subsurface Soil

Detected VOCs, SVOCs, pesticides and PCBs in the subsurface soils at Site 65 are depicted on Figures 4-3 and 4-5.

Acetone, 2-butanone, carbon disulfide, and toluene were detected at levels less than 10 times the maximum concentration of these compounds in QA/QC blanks, designating them as probable laboratory contaminants. The relatively low xylene concentrations detected at sample locations 65DW-02, -01, 65SB-09, -10 and 65MW-06 are considered to be site-related contamination. All of the locations appear to be in areas of vehicular traffic and training. Given the low concentrations of the compound, the suspected source of the contamination is the petroleum products commonly used in fueling, lubricating and cleaning the vehicles which commonly trespass the site.

Semivolatile compounds bis(2-ethylhexyl)phthalate and di-n-butyl phthalate were detected in nearly every sample collected at the site. The concentrations observed within the samples were greater than 10 times the maximum concentration detected in the QA/QC blanks. A specific source for the phthalate esters has not been determined. PAH contamination was detected in subsurface soil samples collected from 65SB-06 and 65TP-07 located at the edge of the southern-most debris piles and the edge of the Burn Area, respectively. The disposal of construction debris and the combustion of organic compounds is the likely source of the contamination. The concentrations of PAH contamination is much higher in the subsurface than the surface soils at location 65SB-06. Location

65DW-01, which exhibited the highest concentrations of PAHs in the surface soil, exhibited no PAHs in the subsurface soil.

Pesticides were detected mainly in areas where the soils have been either disturbed by excavation (heavy equipment training) or disposal. The occurrence of pesticide contamination may be attributed to the historical use of pesticides at Camp Lejeune (Water and Air Research, 1983). Although the contamination would be expected to be greater in the surface soils than in the subsurface, the grading and distribution of the soil across the site would mix any contamination found at the surface with soils residing below the surface. Hence, allowing contaminated surface soil to be redistributed as subsurface soil. PCBs were not detected in any subsurface soil samples collected during the RI; indicating that the concentration of Aroclor 1254 detected in 65SB-02 during the SI was not a site-wide concern.

Metals were detected in the subsurface soils. Figure 4-4 and 4-6 presents the metals detected at the site during the RI. The majority of the elemental contamination appears to be concentrated in the area of the debris piles. The suspected source of this contamination is the rusting debris that has been deposited within these piles.

4.7.3 Groundwater

The only organic compound which exceeded state and/or federal groundwater standards was 1,2-dichloroethane. As discussed in Section 4.4, 1,2-dichloroethane was detected at concentrations less than 10 times the concentration of the compound in QA\QC blanks, making the contamination attributable to laboratory contamination. Figure 4-7 presents the organics that were detected in groundwater samples collected at the site.

Iron and manganese were the only elements detected at concentrations exceeding state and/or federal groundwater standards. The 13 elements detected in the groundwater samples are presented on Figure 4-8. The occurrence of iron and manganese at levels that exceed NC DEHNR standards correlates with the evaluation of metals in groundwater (Baker, 1994), which indicates that both of these metals are naturally occurring in shallow and deep groundwater at the base at elevated concentrations. The relatively high concentrations of manganese correlates with the previous work performed during the SI.

4.7.4 Surface Water

The detected organic compounds in surface water are presented on Figure 4-9. As discussed previously, the only compounds detected were acetone and 1,2-dichloroethene, however these compounds were not detected at levels considered to be site-related.

The elevated metals detected in the surface water samples (see Figure 4-10) are considerably less than the surrounding soils, but are higher than the groundwater in the area. The only sources of recharge for the ponds are groundwater and stormwater runoff. Since there are no streams replenishing the ponds with fresh water or removing water from the ponds, it is suspected that the contamination may be the result of water evaporation increasing the concentration of salts and metal while groundwater continues to discharge elements into the ponds. Additionally, soil erosion (especially in the equipment training area) may also contribute to the elevated concentrations of metals.

4.7.5 Sediments

The source for the VOCs detected in the sediments of the two ponds (see Figure 4-9) has not been determined. However, the results indicate that the concentrations observed do not exceed the Sediment Screening Values (SSVs). The single carbon tetrachloride concentration does not correlate to any contamination residing in any other media.

As discussed previously, the pesticide concentrations observed in the sediment samples are similar to the concentrations observed in the surface soils, particularly in the vicinity of the training area. Given the proximity of the two ponds to the equipment training area, the large quantities of earth that is moved during training exercises, and the absence of pesticides in the surface water samples, it is suspected that the pesticide contamination within the sediments was the result of surface soil erosion or the past application of pesticides in the vicinity of the ponds.

The elemental contamination detected in the sediments of the two ponds is suspected to be the result of precipitation of the metals contained within the surface water as evaporation occurs (see Figure 4-10). In addition, the surrounding soils may contribute to the sediments via erosion, especially considering the turbidity of Courthouse Bay Pond, thus increasing the contamination within the sediments.

4.8 Summary

PAH constituents were detected at elevated levels in both surface and subsurface soils at the site. These contaminants are likely attributable to the past activities at the site due to their distribution and concentrations. Relatively low levels of xylene, ethylbenzene and carbon disulfide were detected in the soils and may be attributed to past and/or current activities at the site. Pesticides were detected at low concentrations across most of the site. These contaminants were most likely due to the historical usage of pesticides at the site. PCBs were exhibited at an isolated sample location during this investigation, but were also detected at another location during a previous investigation. There is no history of PCB disposal at Site 65; however, the detection of the compound in the vicinity of the debris piles indicates that some product containing PCBs may have been disposed or spilled at the site. A specific source for the contamination has not been identified.

The groundwater contained no site-related organic contamination that exceeded the state and/or federal standards. No organics were detected in the surface water which can be attributed as site related contamination due to past activities. The only organics which exceeded the SSVs in the sediments were pesticides, which are most likely related to the historical usage of pesticides at the base.

Inorganics were detected in all media. Their wide distribution and concentrations similar to base background levels, and concentrations detected at other areas of the base, indicate that they are not site related.

4.9 References

Baker. 1994. Baker Environmental, Inc. <u>Site Inspection Report, Site 65</u>. Final. Prepared for the Department of the Navy, Naval Facilities Engineering Command, Atlantic Division, Norfolk, Virginia. January 1994.

Baker. 1995. Baker Environmental, Inc. <u>Remedial Investigation/Feasibility Study Project Plans:</u> Operable Unit No. 9 (sites 65 and 73), Camp Lejeune, North Carolina. Final. Prepared for the Department of the Navy, Naval Facilities Engineering Command, Atlantic Division, Norfolk, Virginia, March 1995.

Greenhorne & O'Mara, Inc. 1992. <u>Preliminary Draft Report Wellhead Monitoring Study Engineering Study 92-34</u>. Prepared for the Department of the Navy Civil Branch. December 1992.

USEPA. 1988. United States Environmental Protection Agency. <u>Guidance for Conducting Remedial Investigations and Feasibility Studies Under CERCLA</u>. Office of Emergency and Remedial Response, Washington, D.C., EPA/540/G-89/004.

USEPA. 1989(a). United States Environmental Protection Agency. <u>Risk Assessment Guidance for Superfund Volume I. Human Health Evaluation Manual (Part A) Interim Final</u>. Office of Solid Waste and Emergency Response. Washington, D.C. EPA/540/1-89-002. December 1989.

USEPA. 1989(b). United States Environmental Protection Agency. <u>Exposure Factors Handbook</u>. Office of Health and Environmental Assessment. Washington, D.C. EPA/600/8-89-043. May 1989.

USEPA. 1991. United States Environmental Protection Agency. <u>Risk Assessment Guidance for Superfund Volume I. Human Health Evaluation Manual Supplemental Guidance</u>. "Standard Default Exposure Factors" Interim Final. Office of Solid Waste and Emergency Response. Washington, D.C. OSWER Directive 9285.6-03. March 25, 1991.

Water and Air Research. 1983. Water and Air Research, Inc. <u>Initial Assessment Study of Marine Corps Base Camp Lejeune</u>, North Carolina. Prepared for Naval Energy and Environmental Support Activity.

SECTION 4.0 TABLES

TABLE 4-1

COMPARISON OF SITE BACKGROUND CONCENTRATIONS TO BASE BACKGROUND LEVELS IN SURFACE SOILS SITE 65 - ENGINEER AREA DUMP REMEDIAL INVESTIGATION, CTO-0312 MCB, CAMP LEJEUNE, NORTH CAROLINA

	Site Background (mg/kg)	Base Background (mg/kg)
Aluminum	773	17.7 - 9,570
Antimony	ND	0.33 - 8
Arsenic	ND	0.065 - 3.9
Barium	6.9	0.65 - 20.8
Beryllium	ND	0.02 - 0.26
Cadmium	ND	0.04 - 1.0
Calcium	79.3	4.25 - 10,700
Chromium	ND - 8.6	0.33 - 12.5
Cobalt	ND	0.185 - 4.15
Copper	ND	0.5 - 87.2
Iron	509	69.7 - 9,640
Lead	2	0.47 - 142
Magnesium	30.3	2.55 - 610
Manganese	9.6	0.87 - 66
Mercury	ND	0.01 - 0.13
Nickel	ND	0.45 - 7.2
Potassium	ND	1 - 416
Selenium	ND	0.075 - 1.3
Silver	ND	0.0435 - 4.3
Sodium	ND	4.7 - 126
Thallium	ND	0.055 - 1.2
Vanadium	ND	0.305 - 48.6
Zinc	ND	0.3 - 28.3

Note:

ND = Not Detected

TABLE 4-2

COMPARISON OF SITE BACKGROUND CONCENTRATIONS TO BASE BACKGROUND LEVELS IN SUBSURFACE SOILS SITE 65 - ENGINEER AREA DUMP REMEDIAL INVESTIGATION, CTO-0312 MCB, CAMP LEJEUNE, NORTH CAROLINA

	Site Background (mg/kg)	Base Background (mg/kg)
Aluminum	4,560	16.9 - 11,000
Antimony	ND	0.355 - 6.9
Arsenic	ND	0.033 - 15.4
Barium	10.9	0.65 - 22.6
Beryllium	ND	0.01 - 0.31
Cadmium	ND	0.155 - 1.2
Calcium	111	4.75 - 4,410
Chromium	5.7	0.65 - 66.4
Cobalt	ND	0.175 - 7
Copper	ND	0.16 - 9.5
Iron	925	63.3 - 90,500
Lead	2.7	0.465 - 21.4
Magnesium	192 ⁻	2.85 - 852
Manganese	5.6	0.395 - 19.9
Mercury	ND	0.01 - 0.68
Nickel	ND	0.45 - 9.2
Potassium	ND	1.05 - 1,250
Selenium	ND	0.085 - 2.4
Silver	ND	0.175 - 1
Sodium	69.9	2.2 - 141
Thallium	ND	0.055 - 2.7
Vanadium	4.1	0.34 - 69.4
Zinc	NA	0.32 - 26.6

Note:

ND = Not Detected

TABLE 4-3

SUMMARY OF SITE CONTAMINATION SITE 65 - ENGINEER AREA DUMP REMEDIAL INVESTIGATION, CTO-0312 MCB, CAMP LEJEUNE, NORTH CAROLINA

		Detected	Comparis	on Criteria	i		Site Contamination			
Media	Fraction	Contaminants	Criteria I	Criteria II	Min. Conc.	Max. Conc.	Location(s) of Maximum Concentration	Detection Frequency	Number of Detections Above Comparison Criteria I	Number of Detections Above Comparison Criteria II
Surface Soil ⁽¹⁾	Volatiles	Methylene Chloride	8.5 X 10 ⁴	NA	2J	2J	65-MW07A-00 & SB12-00	2/13	0	NA
		Acetone	7.8 X 10 ⁵	NA	10J	10J	65-MWO5A-00	1/13	0	NA
	1	Trichloroethene	5.8 X 10 ⁴	NA	1J	1J	65-SB06-00	1/13	0	NA
		Toluene.	1.6 X 10 ⁶	NA	1J	2Ј	65-DW04-00 & MW07A-0	3/13	0	NA
		Ethylbenzene	7.8 X 10 ⁵	NA	1J	1J	65-SB07-00	1/13	0	NA
•		Xylene (total)	1.6 X 10 ⁷	NA	3J	5J	65-SB07-00	2/13	0	NA
	Semivolatiles	Acenaphthene (PAH)	4.7 X 10 ⁵	NA	130J	130J	65-DW01-00	1/13	0	NA
		2,4-Dinitrophenol	1.6 X 10⁴	NA	150J	150J	65-DW04-00	1/13	0	NA
		Dibenzofuran	3.1 X 10 ⁴	NA	58J	58J	65-DW01-00	1/13	0	NA
		Fluorene (PAH)	3.1 X 10 ⁵	NA	100J	100J	65-DW01-00	1/13	0	NA
		Phenanthrene (PAH)	2.3 X 10 ⁵	NA	59J	860	65-DW01-00	3/13	0	NA
		Anthracene (PAH)	2.3 X 10 ⁶	NA	190J	190J	65-DW01 - 00	1/13	0	NA
		Carbazole	3.2 X 10 ⁴	NA	180J	180J	65-DW01-00	1/13	0	NA
-		di-n-Butyl-phthalate	7.8 X 10 ⁵	NA	260J	390J	65-SB06-00	2/13	0	NA
		Fluoranthene (PAH)	3.1 X 10 ⁵	NA	130J	830	65-DW01-00	3/13	0	NA
		Benzo(a)anthracene (PAH)	880	NA	76J	510	65-DW01-00	3/13	0	NA
		Chrysene (PAH)	8.8 X 10 ⁴	NA	70J	470	65-DW01-00	3/13	0	NA
		bis(2-Ethylhexyl)phthalate	4.6 X 10 ⁴	NA	48J	87J	65-MW06A-00	9/13	0	NA
)		Benzo(b)fluoranthene (PAH)	880	NA	89J	360J	65-DW01-00	3/13	0	NA
	ļ	Benzo(k)fluoranthene (PAH)	8800	NA	120J	510	65-DW01-00	2/13	0	NA

Notes:

Concentrations are presented in µg/Kg for organics in soil and sediment and in µg/L for all water contaminants (ppb); metal concentrations for soil and sediment are presented in mg/Kg (ppm).

NA - Not applicable

ND - Not detected

Organics and Metals in both surface and subsurface soils are compared to EPA Region III risk based Contaminent of Concern (COC) Screeing Values for a residential area (Criteria I), and two times base background concentrations for MCB, Camp Lejeune (Criteria II) (Metals only). Only priority pollutant metals (i.e., aluminum, antimony, arsenic, barium, cadmium, chromium, cobalt, copper, iron, lead, manganese, nickel, selenium, silver, thallium, vanadium, zinc) are presented on this table. Refer to Table 4-5 and 4-6 for completed metals detection data.

SUMMARY OF SITE CONTAMINATION SITE 65 - ENGINEER AREA DUMP REMEDIAL INVESTIGATION, CTO-0312 MCB, CAMP LEJEUNE, NORTH CAROLINA

		Detected	Comparis	on Criteria			Site Contamination			
Media	Fraction	Contaminants	Criteria I	Criteria II	Min, Conc.	Max. Conc.	Location(s) of Maximum Concentration	Detection Frequency	Number of Detections Above Comparison Criteria I	Number of Detections Above Comparison Criteria II
Surface Soil	Semivolatiles	Benzo(a)pyrene (PAH)	88	NA NA	100J	400	65-DW01-00	2/13	2	NA
	(continued)	Indeno(1,2,3-cd)pyrene (PAH)	880	NA	88J	310J	65-DW01-00	2/13	0	NA
		Dibenzo(a,h)anthracene (PAH)	88	NA	45J	150J	65-DW01-00	2/13	1	NA NA
		Benzo(g,h,i)perylene (PAH)	2.3 X 10 ⁵	NA	70J	250J	65-DW01-00	2/13	0	NA
	Pesticides	Heptachlor epoxide	70	NA	2.3	2.3	65-MW07A-00	1/13	0	NA
		4-4'-DDE	1900	NA	4.3	83J	65-MW07A-00	6/13	0	NA
		Endosulfan II	4.7 X 10 ⁴	NA	3.8NJ	3.9NJ	65-DW02-00	2/13	0	NA
		4-4'-DDD	2700	NA	3.8NJ	59J	65-SB10-00	7/13	0	NA
		4-4'-DDT	1900	NA	25	56J	65-MW07A-00 & SB07-00	3/13	0	NA
٠	PCBs	Aroclor 1260	83	NA	52J	52J	65-DW01-00	1/13	0	NA
	Metals	Aluminum	7800	5940	656	5040	65-DW01-00	13/13	0	0
		Barium	550	17.36	2.7	36.3	65-DW01-00	13/13	0	3
		Chromium	39	6.693	2.3	8.6	65-DW01-00	11/13	0	2
		Copper	290	7.2	2.5	55.6	65-DW01-00	9/13	0 .	6
		Iron	NA	3755	50.9	16400	65-SB12-00	13/13	NA	2
		Lead	400	23.75	2	178	65-DW01-00	13/13	0	4
		Manganese	39	18.5	2.9	163J	65-DW01-00	13/13	3	5
		Nickel	160	3.434	4.6	5.7	65-SB12-00	2/13	0	2
		Thallium	NA	0.889	2.3	2.3	65-SB10-00	1/13	NA	1
		Vanadium	55	11.63	2.8	12	65-DW01-00	9/13	0	1
		Zinc	2300	13.88	3.7	377J	65-DW01-00	11/13	0	6

Notes:

Concentrations are presented in µg/Kg for organics in soil and sediment and in µg/L for all water contaminants (ppb); metal concentrations for soil and sediment are presented in mg/Kg (ppm).

NA - Not applicable

ND - Not detected

SUMMARY OF SITE CONTAMINATION SITE 65 - ENGINEER AREA DUMP REMEDIAL INVESTIGATION, CTO-0312 MCB, CAMP LEJEUNE, NORTH CAROLINA

		Detected	Comparis	on Criteria			Site Contamination			
Media	Fraction	Contaminants	Criteria I	Criteria II	Min. Conc.	Max. Conc.	Location(s) of Maximum Concentration	Detection Frequency	Number of Detections Above Comparison Criteria I	Number of Detections Above Comparison Criteria II
Subsurface	Volatiles	Acetone	7.8 X 10 ⁵	NA	73	380	65-DW02-02	13/19	0	NA
Soil ⁽¹⁾		Carbon Disulfide	7.8 X 10 ⁵	NA	2J	2J	65-TP04	1/19	0	NA
		2-Butanone	4.7 X 10 ⁶	NA	2J	29	65-TP05	3/19	0	NA
Semivolatiles	Trichloroethene	5.8 X 10 ⁴	NA	2J	2J	65-SB07-04	1/19	0	NA	
		Toluene	1.6 X 10 ⁶	NA	IJ	1J	65-SB11-04	1/19	0	NA
		Xylene (total)	1.6 X 10 ⁷	NA	1J	3J	65-SB10-01	5/19	0	NA
	Semivolatiles	Naphthalene (PAH)	3.1 X 10 ⁵	NA	55J	55J	65-TP07	1/19	0	NA
	1	2-Methylnaphthalene	3.1 X 10 ⁵	NA	60J	60J	65-TP07	1/19	0	NA
		Acenaphthene	4.7 X 10 ^s	NA	94J	97J	65-SB06-02	2/19	0	NA
		Fluorene	3.1 X 10 ⁵	NA	110J	110J	65-SB06-02	1/19	0	NA
		Dibenzofuran	3.1 X 10 ⁴	NA	42J	42J	65-TP07	1/19	0	NA
	ļ	Phenanthrene (PAH)	2.3 X 10 ⁵	NA	150J	1200	65 - SB06-02	2/19	0	NA
		Anthracene	2.3 X 10 ⁶	NA	290J	290J	65-SB06-02	1/19	0	NA
	ł	Carbazole	3.2 X 10 ⁴	NA	120J	120J	65-SB06-02	1/19	0	NA
		di-n-Butylphtalate	7.8 X 10 ⁵	NA	160J	340J	65-SB06-02	8/19	0	NA
		Fluoranthene (PAH)	3.1 X 10 ⁵	NA	230J	1900	65-SB06-02	2/19	0	NA
		Pyrene (PAH)	2.3 X 10 ⁵	NA	190J	1400	65-SB06-02	2/19	0	NA
		Benzo(a)anthracene (PAH)	880	NA	100J	900	65-SB06-02	2/19	1	NA
	1	Chrysene (PAH)	8.8 X 10 ⁴	NA	110J	800	65-SB06-02	2/19	0	NA

Notes:

Concentrations are presented in µg/Kg for organics in soil and sediment and in µg/L for all water contaminants (ppb); metal concentrations for soil and sediment are presented in mg/Kg (ppm).

NA - Not applicable

ND - Not detected PAH - Polynuclear aromatic hydrocarbon

Organics and Metals in both surface and subsurface soils are compared to EPA Region III risk based Contaminent of Concern (COC) Screeing Values for a residential area (Criteria I), and two times base background concentrations for MCB, Camp Lejeune (Criteria II) (Metals only). Only priority pollutant metals (i.e., aluminum, antimony, arsenic, barium, cadmium, chromium, cobalt, copper, iron, lead, manganese, nickel, selenium, silver, thallium, vanadium, zinc) are presented on this table. Refer to Table 4-5 and 4-6 for completed metals detection data.

SUMMARY OF SITE CONTAMINATION SITE 65 - ENGINEER AREA DUMP REMEDIAL INVESTIGATION, CTO-0312 MCB, CAMP LEJEUNE, NORTH CAROLINA

		Detected	Comparis	on Criteria			Site Contamination			
Media	Fraction	Contaminants	Criteria I	Criteria II	Min. Conc.	Max. Conc.	Location(s) of Maximum Concentration	Detection Frequency	Number of Detections Above Comparison Criteria I	Number of Detections Above Comparison Criteria II
Subsurface	Semivolatiles	bis(2-ethylhexyl)phthalate	4.6 X 10 ⁴	NA	37J	370	65-DW01-04	15/19	0	NA
Soil	(continued)	Benzo(b)fluoranthene (PAH)	880	NA	96J	710	65-SB06-02	2/19	0	NA
		Benzo(k)fluoranthene (PAH)	8800	NA	110J	620	65-SB06-02	2/19	0	NA
		Benzo(a)pyrene (PAH)	88	NA	69J	680	65-SB06-02	2/19	1	NA
		Ideno(1,2,3-cd)pyrene (PAH)	880	NA	480	480	65-SB06-02	1/19	0	NA
		Benzo(g,h,i)perylene (PAH)	2.3 X 10 ⁵	NA	67J	360J	65-SB06-02	1/19	0	NA
	Pesticides	Endosulfan I	3.2 X 10 ⁴	NA	3.1NJ	3.1NJ	65-TP05	1/19	0	NA
		4,4'-DDE	1900	NA	4.6	45J	65-TP04	8/19	. 0	NA
		4,4'-DDD	2700	NA	4.4J	340J	65-TP05	8/19	0	NA
		4,4'-DDT	1900	NA	9.6	40	65-TP07	4/19	0	NA
		Endrin Aldehyde	2300	NA	9.4J	9.4J	65-DW01-04	1/19	0	NA
		alpha-Chlordane	490	NA	8.3J	8.3J	65-SB06-02	1/19	0	NA
		gamma-Chlordane	490	NA	3J	7.5J	65-SB06-02	3/19	0	NA
	PCBs	ND	NA	NA	NA	NA	NA	0/19	NA	NA
	Metals	Aluminum	7800	7375	1020	10600	65-SB07-04	19/19	1	1
		Antimony	3.1	6.409	11.8	11.8	65-TP07	1/19	1	1
		Arsenic	0.37	1.968	2.6	3.3	65-SB06-02	3/19	3	3
		Barium	550	14.2	2.7	38.3	65-SB06-02	19/19	0	7
		Cadmium	3.9	0.712	1.3	1.3	65-SB06-02 & TP04	2/19	0	2
		Chromium	39	12.56	2.6	17.3	65-SB07-04	16/19	0	1
		Cobalt	470	1.504	11.5	11.5	65-TP07	1/19	0	1
	,	Copper	290	2.416	7.7	67.2	65-TP07	8/19	2	8
		Iron	NA	7252	236J	31300	65-SB06-02	19/19	NA	5

Notes

Concentrations are presented in µg/Kg for organics in soil and sediment and in µg/L for all water contaminants (ppb); metal concentrations for soil and sediment are presented in mg/Kg (ppm).

NA - Not applicable

ND - Not detected

SUMMARY OF SITE CONTAMINATION SITE 65 - ENGINEER AREA DUMP **REMEDIAL INVESTIGATION, CTO-0312** MCB, CAMP LEJEUNE, NORTH CAROLINA

		Detected	Comparis	on Criteria			Site Contamination			
Media	Fraction	Contaminants	Criteria I	Criteria II	Min. Conc.	Max. Conc.	Location(s) of Maximum Concentration	Detection Frequency	Number of Detections Above Comparison Criteria I	Number of Detections Above Comparison Criteria II
Subsurface	Metals	Lead	400	8.327	1.6	539	65-SB06-02	19/19	1	8
Soil	(continued)	Manganese	39	7.919	2	471	65-SB06-02	19/19	5	10
		Nickel	160	3.714	4.8	243	65-SB06-02	3/19	1	3
		Selenium	39	0.801	1.5	1.5	65-TP07	1/19	0	1
		Silver	39	0.866	4.2	4.2	65-TP07	1/19	0	1
-	[Thallium	NA	0.955	4.2	4.2	65-SB06-02	1/19	NA	NA
		Vanadium	55	13.45	3.1	27.2	65-SB07-04	15/19	0	1
		Zinc	2300	6.662	2.5J	764	65-SB06-02	16/19	0	12
Groundwater ⁽²⁾	Volatiles	Methylene Chloride	NA	5	1J	2J	65-MW06	6/11	NA	0
	ļ	Acetone	NA	700	5J	73	65 - MW06	7/11	NA	0
)	Carbon Disulfide	NA	700	5J	5J	65-MW04	1/11	NA	0
		1,2-Dichloroethane	5	0.38	2J	2J	65-MW07	8/11	0_	8
		2-Butanone	NA	NA	1J	1J	65-MW03, 05, & 06	3/11	NA	NA
	Semivolatiles	Naphthalene .	NA	21	3J	3J	65 - DW04	1/11	NA	0
		di-n-Butylphthalate	NA	700	2 J	6J	65-MW07	3/11	NA	0
	ļ.	bis(2-ethylhexyl)phthalate	NA	3	1J	6J	65-MW07	5/11	NA	2
	Pesticides	ND	NA	NA	NA	NA	NA NA	0/11	NA	NA
	PCBs	ND	NA	NA	NA	NA	NA	0/11	NA	NA
	Metals	Aluminum	50-200 ⁽³⁾	NA	40.3	421	65 - MW06	7/11	NA	6
	İ	Barium	2000	2000	17.9	151	65-MW03	10/11	0	0

Notes:

Concentrations are presented in µg/Kg for organics in soil and sediment and in µg/L for all water contaminants (ppb); metal concentrations for soil and sediment are presented in mg/Kg (ppm).

NA - Not applicable

ND - Not detected

⁽²⁾ Comparison Criteria for groundwater are Federal Maximum Contaminant Levels (MCL) (Criteria I) and North Carolina Water Quality Standards (NCWQS) (Criteria II).
(3) Secondary MCL for aluminum, iron, and zinc; if MCL is a range, the lower concetration is used for comparison.

SUMMARY OF SITE CONTAMINATION SITE 65 - ENGINEER AREA DUMP REMEDIAL INVESTIGATION, CTO-0312 MCB, CAMP LEJEUNE, NORTH CAROLINA

		Detected	Compariso	on Criteria			Site Contamination			
Media	Fraction	Contaminants	Criteria I	Criteria II	Min. Conc.	Max. Conc.	Location(s) of Maximum Concentration	Detection Frequency		Number of Detections Above Comparison Criteria II
Groundwater	Metals	Chromium	100	50	10	10.2	65-MW01	2/11	0	0
	(continued)	Cobalt	NA	NA	20.1	52.4	65-DW02-02	4/11	NA	NA
		Iron	300 ⁽³⁾	300	41.9	6580	65-MW02	10/11	5	5
		Lead	15 ⁽⁴⁾	15	3.4	3.4	65-DW04	1/11	0	0
1		Manganese	NA	50	3	186	65-DW02-02	11/11	NA	5
		Nickel	100	100	53.1	59.6	65-DW02-02	2/11	0	0
		Zinc	5000 ⁽³⁾	2100	11	58.9	65-DW02-02	10/11	NA	0
Surface	Volatiles	Acetone	NA	NA	5J	5J	65-SW04-01	1/2		
Water ⁽⁵⁾		1,2-Dichloroethane	0.38 (EPA)	NA	13	13	65-SW04-01 & SW05-01	2/2	2	NA
	Semivolatiles	ND	NA	NA	NA	NA	NA	0/2	NA	NA
	Pesticides	ND	NA	NA	NA	NA	NA	0/2	NA	NA
	PCBs	ND	NA	NA	NA	NA	NA	0/2	NA	NA
	Metals	Aluminum	NA	333.17	25800	25800	65-SW04-01	1/2	NA	1
		Barium	1000 (NC)	25.67	36.7	69.3	65-SW04-01	2/2	0	1
1	1	Chromium (total)	50 ⁽⁶⁾ (EPA)	NA	27.6	27.6	65-SW04-01	1/2	0	0
		Copper	1300 ⁽⁷⁾ (EPA)	NA	41.1	41.1	65-SW04-01	1/2	0	NA
		Iron	300 ⁽⁶⁾ (EPA)	575.67	348	7890	65-SW04-01	2/2	2	1

Notes:

Concentrations are presented in µg/Kg for organics in soil and sediment and in µg/L for all water contaminants (ppb); metal concentrations for soil and sediment are presented in mg/Kg (ppm).

NA - Not applicable

ND - Not detected

⁽³⁾ Secondary MCL for aluminum, iron, and zinc; if MCL is a range, the lower concetration is used for comparison.

⁽⁴⁾ Federal Action Level for lead.

Positive contaminant detections in surface water are compared to freshwater screening values for human health (water and organism consumption): EPA Region IV Water Quality Standards (EPA), 1995 or NCWQS (NC) (Criteria I), and upstream background concentrations from the White Oak River Basin Study (Criteria II).

⁽⁶⁾ EPA Water Quality Criteria, 1991, Human Health Published Criteria (water and organism consumption).

⁽⁷⁾ EPA Ween Quality Criteria, 1991, Human Health Recalculated Values using IRIS, as of 9/90 (water and organism consumption).

SUMMARY OF SITE CONTAMINATION SITE 65 - ENGINEER AREA DUMP REMEDIAL INVESTIGATION, CTO-0312 MCB, CAMP LEJEUNE, NORTH CAROLINA

		Detected	Comparis	on Criteria			Site Contamination			
Media	Fraction	Contaminants	Criteria I	Criteria II	Min. Conc.	Max. Conc.	Location(s) of Maximum Concentration	Detection Frequency	1	Number of Detections Above Comparison Criteria II
Surface	Metals	Lead	50 ⁽⁶⁾ (EPA)	NA	45.8	45.8	65-SW04-01	1/2	0	NA
Water	(continued)	Manganese	200 (NC)	NA	57.3	88.4	65-SW04-01	2/2	0	0
		Vanadium	NA	NA	26.2	26.2	65-SW04-01	1/2	NA	NA
		Zinc	NA	NA	33.6	144	65-SW04-01	2/2	NA	NA
Sediment ⁽⁸⁾ V	Volatiles	Acetone	NA	NA	190J	450J	65-SD05-612	4/4	NA	NA
		Chloroform	NA	NA	7 9J	79J	65-SD04-06	1/4	NA	NA
		2-Butanone	NA	NA	72J	94J	65-SD04-06	4/4	NA	NA
		Carbon Tetrachloride	NA	NA	13J	18J	65-SD04-06	2/4	NA	NA_
		Tetrachloroethene	NA	NA	6J	15J	65-SD04-06	2/4	NA	NA
		Toluene	NA	NA	3J	7J	65-SD04-06	3/4	NA	NA
l	Semivolatiles	Di-n-Butylphthalate	NA	NA	940J	1,600J	65-SD04-612	4/4	NA	NA
	Pesticides	beta-BHC	NA	2.51	8.3NJ	8.3NJ	65-SD04-612	1/4	NA	1
		4,4'-DDE	NA	2.42	18J	19NJ	65-SD05-06	2/4	NA NA	2
		4,4'-DDD	NA	1.57	76J	84J	65-SD05-06	2/4	NA	2
	Metals	Vanadium	NA	17.57	40.5	40.5	65-SD04-06	1/4	NA	1
•		Zinc	NA	27.38	7.9	280J	65-SD04-06	4/4	NA	. 3

Notes

Concentrations are presented in µg/Kg for organics in soil and sediment and in µg/L for all water contaminants (ppb); metal concentrations for soil and sediment are presented in mg/Kg (ppm).

NA - Not applicable

ND - Not detected

⁽⁶⁾ EPA Water Quality Criteria, 1991, Human Health Published Criteria (water and organism consumption).

⁽⁷⁾ EPA Water Quality Criteria, 1991, Human Health Recalculated Values using IRIS, as of 9/90 (water and organism consumption).

⁽⁸⁾ There are no established criteria for sediment, therefore Criteria I is NA. Criteria II is the average upstream background sediment concetration from the White Oak River Basin Study.

SUMMARY OF SITE CONTAMINATION SITE 65 - ENGINEER AREA DUMP REMEDIAL INVESTIGATION, CTO-0312 MCB, CAMP LEJEUNE, NORTH CAROLINA

		Detected	Comparis	on Criteria			Site Contamination			
Media	Fraction	Contaminants	Criteria I	Criteria II	Min. Conc.	Max. Conc.	Location(s) of Maximum Concentration	Detection Frequency		Number of Detections Above Comparison Criteria II
Fish Tissue ⁽⁹⁾	Volatiles	Acetone	14000	NA	5600J	7900J	65-FS05-LB01F	2/4	0	NA
Pe	Pesticides	4,4'-DDD	13	NA	5.7J	5.73	65-FS04-BG01F	1/4	0	NA
	Metals	Aluminum	140	NA	0.99	0.99	65-FS05-LB01F	1/4	0	NA
		Barium	9.5	NA	0.21J	0.21	65-FS04-BG01F	1/4	0	NA
		Copper	5	NA	0.46	0.49	65-FS04-BG01F	2/4	0	NA
		Manganese	0.68	NA	0.092J	0.45J	65-FS04-BG01F	4/4	0	NA
		Mercury	0.041	NA	0.051J	0.3J	65-FS05-LB01F	4/4	4	NA
		Selenium	0.68	NA	0.14	0.22	65-FS04-BG01F	4/4	0	NA
	1	Thallium	NA	NA	0.11	0.11	65-F\$05-R\$01F	3/4	NA	NA
		Zinc	41	NA	5.8J	8.4J	65-FS05-BG01F	4/4	0	NA

Notes:

Concentrations are presented in $\mu g/Kg$ (ppb) for organics in fish tissue and in mg/Kg for metals in fish tissue (ppm).

NA - Not applicable

⁽⁹⁾ Organics and Metals in fish tissue (fillet samples) are compared to EPA Region III risk based Contaminent of Concern (COC) Screeing Values for human injection of fish (Criteria I). There is no Criteria II.

TABLE 4-4

DETECTED ORGANICS IN SURFACE SOILS SITE 65 - ENGINEER AREA DUMP REMEDIAL INVESTIGATION, CTO-0312 MCB, CAMP LEJEUNE, NORTH CAROLINA

LOCATION	65-DW01-00	65-DW02-00	65-DW04-00	65-MW05-00	65 - MW06-00	65-MW07-00
DATE COLLECTED	04/10/95	04/09/95	04/05/95	04/05/95	04/08/95	04/04/95
DEPTH	0-1'	0-1'	0-1'	0-1'	0-1	0-1'
VOLATILES (ug/Kg)	•					
METHYLENE CHLORIDE	ND	ND	ND	ND	ND	2 Ј
ACETONE	ND	ND	ND	10 J	ND	ND
TRICHLOROETHENE	ND	ND	ND	ND	ND	ND
TOLUENE	ND	ND	2 J	1 J	ND	2 J
ETHYLBENZENE	ND	ND	ND	ND	ND	ND
TOTAL XYLENES	3 Ј	ND	ND	ND	ND	ND
SEMIVOLATILES (ug/Kg)			-			
ACENAPHTHENE	130 Ј	ND	ND	ND	ND	ND
2,4-DINITROPHENOL	ND	ND	150 J	ND	ND	, ND
DIBENZOFURAN	58 J	ND	ND	ND	ND	ND
FLUORENE	100 J	ND	ND	ND	ND	ND
PHENANTHRENE	860	ND	ND	ND	ND	ND
ANTHRACENE	190 J	ND	ND	ND	ND	ND
CARBAZOLE	180 J	ND	ND	ND	ND	ND
DI-N-BUTYL PHTHALATE	ND	ND	ND	ND	ND	ND
FLUORANTHENE	830	ND	ND	ND	ND	ND
PYRENE	850	ND	ND	ND	ND	ND
BENZO(A)ANTHRACENE	510	ND	ND	ND	ND	ND
CHRYSENE	470	ND	ND	ND	ND	ND
BIS(2-ETHYLHEXYL)PHTHALATE	64 J	ND	ND	60 Ј	87 J	51 J
BENZO(B)FLUORANTHENE	360 J	ND	ND	ND	ND	ND
BENZO(K)FLUORANTHENE	510	ND	ND	ND	ND	ND
BENZO(A)PYRENE	400	ND	ND	ND	ND	ND
INDENO(1,2,3-CD)PYRENE	310 J	ND	ND	ND	ND	ND
DIBENZO(A,H)ANTHRACENE	150 J	ND	ND	ND	ND	ND
BENZO(G,H,I)PERYLENE	250 J	ND	ND	ND	ND	ND

NOTES: ug/Kg - Microgram per kilogram

J - value is estimated

ND - Not Detected

All samples were analyzed for TCL Organics per CLP Method.

DETECTED ORGANICS IN SURFACE SOILS SITE 65 - ENGINEER AREA DUMP REMEDIAL INVESTIGATION, CTO-0312 MCB, CAMP LEJEUNE, NORTH CAROLINA

LOCATION	65-DW01-00	65-DW02-00	65-DW04-00	65-MW05-00	65-MW06-00	65-MW07-00
DATE COLLECTED	04/10/95	04/09/95	04/05/95	04/05/95	04/08/95	04/04/95
DEPTH	0-1'	0-1'	0-1'	0-1'	0-1'	0-1'
PESTICIDE/PCBS (ug/Kg) HEPTACHLOR EPOXIDE 4,4'-DDE ENDOSULFAN II 4,4'-DDD	ND	ND	ND	ND	ND	2.3
	27	ND	ND	ND	ND	83 J
	ND	3.9 J	ND	3.8 J	ND	ND
	3.8 J	ND	ND	ND	ND	5 J
4,4'-DDT	ND	ND	ND	ND	ND	56 J
PCB-1260	52 J	ND	ND	ND	ND	ND

NOTES: ug/Kg - Microgram per kilogram

J - value is estimated ND - Not Detected

All samples were analyzed for TCL Organics per CLP Method.

Only those parameters with positive detections are included on this table. For complete results refer to Appendix O.

11/07/95 65°°OH.WK4

2

TABLE 4-4 (continued)

DETECTED ORGANICS IN SURFACE SOILS SITE 65 - ENGINEER AREA DUMP REMEDIAL INVESTIGATION, CTO-0312 MCB, CAMP LEJEUNE, NORTH CAROLINA

LOCATION	65-SB06-00	65-SB07-00	65-SB08-00	65-SB09-00	65-SB10-00	65-SB11-00
DATE COLLECTED	04/10/95	04/08/95	04/11/95	04/08/95	04/08/95	04/08/95
DEPTH	0-1'	0-1'	0-1'	0-1'	0-1'	0-1'
VOLATILES (ug/Kg)						
METHYLENE CHLORIDE	ND	ND	ND	ND	ND	ND
ACETONE	ND	ND	ND	ND	ND	ND
TRICHLOROETHENE	1 J	ND	ND	ND	ND	ND
TOLUENE	ND	ND	ND	ND	ND	ND
ETHYLBENZENE	ND	1 J	ND	ND	ND	ND
TOTAL XYLENES	ND	5 J	ND	ND	ND	ND
SEMIVOLATILES (ug/Kg)						
ACENAPHTHENE	ND	ND	ND	ND	ND	ND
2,4-DINITROPHENOL	ND	ND	ND	ND	ND	ND
DIBENZOFURAN	ND	ND	ND	ND	ND	ND
FLUORENE	ND	ND	ND	ND	ND	ND
PHENANTHRENE	74 J	ND	ND	ND	ND	ND
ANTHRACENE	ND	ND	ND ·	ND	ND	ND
CARBAZOLE	ND	ND	ND	ND	ND	ND
DI-N-BUTYL PHTHALATE	390 J	ND	260 J	ND	ND	ND
FLUORANTHENE	210 J	ND	ND	ND	ND	ND
PYRENE	150 J	ND	ND	ND	ND	ND
BENZO(A)ANTHRACENE	110 J	ND	ND	ND	ND	ND
CHRYSENE	110 J	ND	ND	ND	ND	ND
BIS(2-ETHYLHEXYL)PHTHALATE	72 J	73 J	ND	57 J	48 Ј	74 J
BENZO(B)FLUORANTHENE	96 J	ND	ND	ND	ND	ND
BENZO(K)FLUORANTHENE	120 J	ND	ND	ND	ND	ND
BENZO(A)PYRENE	100 J	ND	ND	ND	ND	ND
INDENO(1,2,3-CD)PYRENE	88 J	ND	ND	ND	ND	ND
DIBENZO(A,H)ANTHRACENE	45 J	ND	ND	ND	ND	ND
BENZO(G,H,I)PERYLENE	70 J	ND	ND	ND	ND	ND
	,,,,	. (12)			• . –	

NOTES: ug/Kg - Microgram per kilogram

J - value is estimated ND - Not Detected

All samples were analyzed for TCL Organics per CLP Method.

Only those parameters with positive detections are included on this table. For complete results refer to Appendix O.

3

11/07/95 65SSOH.WK4

DETECTED ORGANICS IN SURFACE SOILS SITE 65 - ENGINEER AREA DUMP REMEDIAL INVESTIGATION, CTO-0312 MCB, CAMP LEJEUNE, NORTH CAROLINA

LOCATION	65-\$B06-00	65-SB07-00	65-SB08-00	65-SB09-00	65-SB10-00	65-SB11-00
DATE COLLECTED	04/10/95	04/08/95	04/11/95	04/08/95	04/08/95	04/08/95
DEPTH	0-1'	0-1'	0-1'	0-1'	0-1'	0-1'
PESTICIDE/PCBS (ug/Kg) HEPTACHLOR EPOXIDE 4,4'-DDE ENDOSULFAN II 4,4'-DDD 4,4'-DDT PCB-1260	ND 47 ND 17 J ND ND	ND 77 J ND ND 56 J ND	ND ND ND ND ND	ND ND 31 J ND ND	ND ND ND 59 J ND ND	ND 4.3 ND 16 J ND ND

NOTES: ug/Kg - Microgram per kilogram

J - value is estimated ND - Not Detected

All samples were analyzed for TCL Organics per CLP Method.

DETECTED ORGANICS IN SURFACE SOILS SITE 65 ENGINEER AREA DUMP REMEDIAL INVESTIGATION, CTO-0312 MCB, CAMP LEJEUNE, NORTH CAROLINA

LOCATION	65-SB12-00
DATE COLLECTED	03-3612-00
DEPTH	0-1'
DBI 111	0-1
VOLATILES (ug/Kg)	
METHYLENE CHLORIDE	2 J
ACETONE	ND
TRICHLOROETHENE	ND
TOLUENE	ND
ETHYLBENZENE	ND
TOTAL XYLENES	ND
SEMIVOLATILES (ug/Kg)	
ACENAPHTHENE	ND
2,4-DINITROPHENOL	ND
DIBENZOFURAN	ND
FLUORENE	ND
PHENANTHRENE	59 J
ANTHRACENE	ND
CARBAZOLE	ND
DI-N-BUTYL PHTHALATE	ND
FLUORANTHENE	130 J
PYRENE	260 J
BENZO(A)ANTHRACENE	76 J
CHRYSENE	70 J
BIS(2-ETHYLHEXYL)PHTHALATE	ND
BENZO(B)FLUORANTHENE	89 J
BENZO(K)FLUORANTHENE	ND
BENZO(A)PYRENE	ND
INDENO(1,2,3-CD)PYRENE	ND
DIBENZO(A,H)ANTHRACENE	ND
BENZO(G,H,I)PERYLENE	ND

NOTES: ug/Kg - Microgram per kilogram

J - value is estimated ND - Not Detected

All samples were analyzed for TCL Organics per CLP Method.

DETECTED ORGANICS IN SURFACE SOILS SITE 65 ENGINEER AREA DUMP REMEDIAL INVESTIGATION, CTO-0312 MCB, CAMP LEJEUNE, NORTH CAROLINA

LOCATION DATE COLLECTED DEPTH	65-SB12-00 04/17/95 0-1'
PESTICIDE/PCBS (ug/Kg)	
HEPTACHLOR EPOXIDE	ND
4,4'-DDE	75
ENDOSULFAN II	ND
4,4'-DDD	20 .
4,4'-DDT	25
PCB-1260	ND

NOTES: ug/Kg - Microgram per kilogram

J - value is estimated ND - Not Detected

All samples were analyzed for TCL Organics per CLP Method.

TABLE 4-5

DETECTED METALS IN SURFACE SOILS SITE 65 - ENGINEER AREA DUMP REMEDIAL INVESTIGATION, CTO-0312 MCB, CAMP LEJEUNE, NORTH CAROLINA

LOCATION DATE_STAMP DEPTH MOISTURE	65-DW01-00 04/10/95 0-1' 10.74	65-DW02-00 04/09/95 0-1' 9.43	65-DW04-00 04/05/95 0-1' 10.17	65-MW05-00 04/05/95 0-1' 10.34	65-MW06-00 04/08/95 0-1' 15.45	65-MW07-00 04/04/95 0-1' 11.66
MOISTORE	10.74	9.43	10.17	10.54	10.40	11.00
ANALYTES (mg/Kg)						
ALUMINUM	5040	1350	773	1050	3190	1520
BARIUM	36.3	5.4	6.9	6.2	6.8	19.2
CALCIUM	806	176	79.3	243	367	3460
CHROMIUM	8.6	2.3	ND	2.4	4.1	2.3
COPPER	55.6	2.5	ND	ND	3.3	ND
IRON	7470 J	773 J	509	1020	1300 J	684
LEAD	178 Ј	7.7 J	2	3.7	7.3 J	8.6
MAGNESIUM	169	32.4	30.3	42.8	88.1	82.5
MANGANESE	163 J	7.9 J	9.6	8,2	8 J	7.1
NICKEL	4.6	ND	ND	ND	ND	ND
POTASSIUM	ND .	ND	ND	ND	ND	ND
SODIUM	51.3	ND	ND	ND	ND	56.3
THALLIUM	ND	ND	ND	ND	ND	ND
VANADIUM	12	ND	ND	2.8	3.4	ND
ZINC	377 Ј	12.2 J	ND	5.3	13.8 J	ND

NOTES: ug/Kg - Microgram per kilogram

J - Value is estimated ND - Not Detected

All samples were analyzed for TAL Metals per CLP Method.

DETECTED METALS IN SURFACE SOILS SITE 65 - ENGINEER AREA DUMP REMEDIAL INVESTIGATION, CTO-0312 MCB, CAMP LEJEUNE, NORTH CAROLINA

LOCATION DATE_STAMP	65-SB06-00 04/10/95	65-SB07-00 04/08/95	65-SB08-00 04/11/95	65-SB09-00 04/08/95	65-SB10-00 04/08/95	65-SB11-00 04/08/95
DEPTH	0-1'	0-1'	0-1'	0-1'	0-1'	0-1'
MOISTURE	19.19	23.14	7.48	11,86	13.86	18.31
ANALYTES (mg/Kg)						
ALUMINUM	2140	1490	656	2830	4700	4110
BARIUM	17.5	6.8	2.7	10.9	11.5	9.9
CALCIUM	542	168	121	554	514	470
CHROMIUM	4.6	3	ND	4.6	6.8	6.3
COPPER	51	6	ND	15	10	9
IRON	3600	890 J	597	2110 J	2010 Ј	2050 J
LEAD	94.5	8.8 J	2.5	40.9 J	20.4 Ј	15.4 J
MAGNESIUM	55	52	28.5	97.1	187	143
MANGANESE	119	6.9 J	2.9	19.1	19.3 J	17.6 J
NICKEL	ND	ND	ND	ND	ND	ND
POTASSIUM	ND	ND	ND	ND	ND	248
SODIUM	ND	ИD	ND	ND	ND	ИD
THALLIUM	ND	ND	ND	ND	2.3	ND
VANADIUM	7.2	2.9	ND	3.2	5.1	4.8
ZINC	190	9 J	3.7	39.7 J	33.2 J	24 J

NOTES: ug/Kg - Microgram per kilogram

J - Value is estimated

ND - Not Detected

All samples were analyzed for TAL Metals per CLP Method.

Only those parameters with positive detections are included on this table. For complete results refer to Appendix O.

11/07/95 65°°'H.WK4

DETECTED METALS IN SURFACE SOILS SITE 65 - ENGINEER AREA DUMP REMEDIAL INVESTIGATION, CTO-0312 MCB, CAMP LEJEUNE, NORTH CAROLINA

LOCATION	65-SB12-00
DATE_STAMP	04/17/95
DEPTH	0-1'
MOISTURE	9.13
ANALYTES (mg/Kg)	
ALUMINUM	2940
BARIUM	12.6
CALCIUM	729
CHROMIUM	4.8
COPPER	42.3
IRON	16400
LEAD	117
MAGNESIUM	54.8
MANGANESE	75.4
NICKEL	5.7
POTASSIUM	ND
SODIUM	ND
THALLIUM	ND
VANADIUM	5.1
ZINC	110

NOTES: ug/Kg - Microgram per kilogram

J - Value is estimated ND - Not Detected

All samples were analyzed for TAL Metals per CLP Method.

TABLE 4-6

DETECTED ORGANICS IN SUBSURFACE SOILS SITE 65 - ENGINEER AREA DUMP REMEDIAL INVESTIGATION, CTO-312 MCB, CAMP LEJEUNE, NORTH CAROLINA

LOCATION	65-DW01-04	65-DW02-02	65-DW04-05	65-MW05-04	65-MW06-03	65-MW07-05
DATE COLLECTED	04/10/95	04/09/95	04/05/95	04/05/95	04/08/95	04/04/95
DEPTH	7-9'	3-5'	9-11'	7-9'	5-7'	9-11'
VOLATILES (ug/Kg)				•		
ACETONE	ND	380	180	10 J	ND	ND
2-BUTANONE	ND	ND	ND	ND	ND	ND
TRICHLOROETHENE	ND	ND	ND	ND	ND	ND
TOLUENE	ND	ND	ND	ND	ND	ND
TOTAL XYLENES	3 Ј	1 J	ND	ND	1 J	ND
SEMIVOLATILES (ug/Kg)						
ACENAPHTHENE	ND	ND	ND	ND	ND	ND
FLUORENE	ND	ND	ND	ND	ND	ND
PHENANTHRENE	ND	ND	ND	ND	ND	ND
ANTHRACENE	ND	ND	ND	ND	ND	ND
CARBAZOLE	ND	ND	ND	ND	ND	ND
DI-N-BUTYL PHTHALATE	ND	ND	ND	ND	ND	ND
FLUORANTHENE	ND	ND	ND	ND	ND	ND
PYRENE	ND	ND	ND	ND	ND	ND
BENZO(A)ANTHRACENE	ND	ND	ND	ND	ND	ND
CHRYSENE	ND	ND	ND	ND	ND	ND
BIS(2-ETHYLHEXYL)PHTHALATE	370	65 J	ND	96 J	49 J	61 J
BENZO(B)FLUORANTHENE	ND	ND	ND	ND	ND	ND
BENZO(K)FLUORANTHENE	ND	ND	ND	ND	ND	ND
BENZO(A)PYRENE	ND	ND	ND	ND	ND	ND
INDENO(1,2,3-CD)PYRENE	ND	ND	ND	ND	ND	ND
BENZO(G,H,I)PERYLENE	ND	ND	ND	ND	ND	ND
PESTICIDE/PCBS (ug/Kg)						
4,4'-DDE	8.8 J	ND	ND	ND	ND	ND
4,4'-DDD	4.4 J	ND	ND	ND	ND	ND
ENDRIN ALDEHYDE	9.4 J	ND	ND	ND	ND	ND
ALPHA CHLORDANE	ND	ND	ND	ND	ND	ND
GAMMA CHLORDANE	ND	ND	ND	ND	ND	ND

NOTES: ug/Kg - Microgram per kilogram

J - Value is estimated ND - Not Detected

All samples were analyzed for TCL Organics per CLP Method.

TABLE 4-6 (continued)

DETECTED ORGANICS IN SUBSURFACE SOILS SITE 65 - ENGINEER AREA DUMP REMEDIAL INVESTIGATION, CTO-312 MCB, CAMP LEJEUNE, NORTH CAROLINA

LOCATION	65-SB06-02	65-SB07-04	65-SB08-04	65-SB09-02	65-SB10-01	65-SB11-04
DATE COLLECTED	04/10/95	04/08/95	04/11/95	04/08/95	04/08/95	04/08/95
DEPTH	3-5'	7-9'	7-9'	3-5'	1-3'	7-9'
VOLATILES (ug/Kg)						
ACETONE	ND	79	ND	31	26	37
2-BUTANONE	ND	ND	ND	. 4 Ј	2 Ј	ND
TRICHLOROETHENE	ND	2 Ј	ND	ND	ND	ND
TOLUENE	ND	ND	ND .	ND	ND	1 J
TOTAL XYLENES	ND	ND	ND	2 Ј	3 Ј	ND
SEMIVOLATILES (ug/Kg)						
ACENAPHTHENE	97 J	ND	ND	ND	ND	ND
FLUORENE	110 J	ND	ND	ND	ND	ND
PHENANTHRENE	1200	ND	ND	ND	ND	ND
ANTHRACENE	290 J	ND	ND	ND	ND	ND
CARBAZOLE	120 J	ND	ND	ND	ND	ND
DI-N-BUTYL PHTHALATE	340 J	ND	240 J	ND	ND	ND
FLUORANTHENE	1900	ND	ND	ND	ND	ND
PYRENE	1400	ND	ND	ND	ND	ND
BENZO(A)ANTHRACENE	900	ND	ND	ND	ND	ND
CHRYSENE	800	ND	ND	ND	ND	ND
BIS(2-ETHYLHEXYL)PHTHALATE	110 J	90 Ј	95 J	81 Ј	93 J	110 J
BENZO(B)FLUORANTHENE	710	ND	ND	ND	ND	ND
BENZO(K)FLUORANTHENE	620	ND	ND	ND	ND	ND
BENZO(A)PYRENE	680	ND	ND	ND	ND	ND
INDENO(1,2,3-CD)PYRENE	480 J	ND	ND	ND	ND	ND
BENZO(G,H,I)PERYLENE	360 J	ND	ND	ND	ND ·	ND
PESTICIDE/PCBS (ug/Kg)						
4,4'-DDE	41	ND	ND	13	4.6	ND
4,4'-DDD	9.1 J	ND	ND	68 J	76 J	ND
ENDRIN ALDEHYDE	ND	ND	ND	ND	ND	ND
ALPHA CHLORDANE	8.3 J	ND	ND	ND	ND	ND
GAMMA CHLORDANE	7.5 Ј	ND	ИD	ND	ND	ND

NOTES: ug/Kg - Microgram per kilogram

J - Value is estimated

ND - Not Detected

All samples were analyzed for TCL Organics per CLP Method.

TABLE 4-6 (continued)

DETECTED ORGANICS IN SUBSURFACE SOILS SITE 65 - ENGINEER AREA DUMP REMEDIAL INVESTIGATION, CTO-312 MCB, CAMP LEJEUNE, NORTH CAROLINA

LOCATION	65-SB12-05
DATE COLLECTED	04/17/95
DEPTH	9-11'
55111	<i>y</i> -11
VOLATILES (ug/Kg)	
ACETONE	ND
2-BUTANONE	ND
TRICHLOROETHENE	ND
TOLUENE	ND
TOTAL XYLENES	ND
SEMIVOLATILES (ug/Kg)	
ACENAPHTHENE	ND
FLUORENE	ND
PHENANTHRENE	ND
ANTHRACENE	ND
CARBAZOLE	ND
DI-N-BUTYL PHTHALATE	ND
FLUORANTHENE	ND
PYRENE	ND
BENZO(A)ANTHRACENE	ND
CHRYSENE	ND
BIS(2-ETHYLHEXYL)PHTHALATE	ND
BENZO(B)FLUORANTHENE	ND
BENZO(K)FLUORANTHENE	ND
BENZO(A)PYRENE	ND
INDENO(1,2,3-CD)PYRENE	ND
BENZO(G,H,I)PERYLENE	ND
PESTICIDE/PCBS (ug/Kg)	
4,4'-DDE	ND
4,4'-DDD	ND
ENDRIN ALDEHYDE	ND
ALPHA CHLORDANE	ND
GAMMA CHLORDANE	ND

NOTES: ug/Kg - Microgram per kilogram

J - Value is estimated ND - Not Detected

All samples were analyzed for TCL Organics per CLP Method.

TABLE 4-7

DETECTED METALS IN SUBSURFACE SOILS SITE 65 - ENGINEER AREA DUMP REMEDIAL INVESTIGATION, CTO-0312 MCB, CAMP LEJEUNE, NORTH CAROLINA

LOCATION	65-DW01-04	65-DW02-02	65-DW04-05	65-MW05-04	65-MW06-03	65-MW07-05
DATE COLLECTED	04/10/95	04/09/95	04/05/95	04/05/95	04/08/95	04/04/95
DEPTH	7-9'	3-5'	9-11'	7-9'	5-7'	9-11'
MOISTURE	13.13	16.36	4.68	14.25	9.72	13.65
ANALYTES (mg/Kg) ALUMINUM ARSENIC	4840 ND	1020 ND	4560 ND	1380 ND	3790 ND	1050 ND
BARIUM	35.5	5.6	10.9	2.7	3.3	3.5
CADMIUM	ND	ND	ND	ND	ND	ND
CALCIUM	1040	320	111	ND	208	90.6
CHROMIUM	10.8	ND	5.7	2.8	2.6	ND
COPPER	55.8	ND	ND	ND	ND	ND
IRON	9120 J	1250 J	925	686	236 J	412
LEAD	159 J	2.9 J	2.7	1.6	2.1 J	1.7
MAGNESIUM	159	23.8	192	83.1	102	67.1
MANGANESE	127 J	4.8 J	5.6		3.2 J	2
NICKEL	8.9	ND	ND	ND	ND	ND
POTASSIUM	ND	ND	ND	ND	ND	ND
SODIUM	ND	ND	69.9	ND	ND	ND
THALLIUM	ND	ND	ND	ND	ND	ND
VANADIUM	9.8	ND	4.1	3.1	ND	ND
ZINC	302 J	4.2 J	ND	ND	2.5 J	ND

NOTES: mg/Kg - Milligram per kilogram

J - Value is estimated ND - Not Detected

All samples were analyzed for TAL Metals per CLP Method.

TABLE 4-7 (continued)

DETECTED METALS IN SUBSURFACE SOILS SITE 65 - ENGINEER AREA DUMP REMEDIAL INVESTIGATION, CTO-0312 MCB, CAMP LEJEUNE, NORTH CAROLINA

LOCATION	65-SB06-02	65-SB07-04	65-SB08-04	65-SB09-02	65-SB10-01	65-SB11-04
DATE COLLECTED	04/10/95	04/08/95	04/11/95	04/08/95	04/08/95	04/08/95
DEPTH	3-5'	7-9'	7-9'	3-5'	1-3'	7-9'
MOISTURE	19.19	26.15	19.45	10.99	12.23	15.06
ANALYTES (mg/Kg)						
ALUMINUM	4340	10600	3190	5730	4720	6440
ARSENIC	3.3	2.8	ND	ND	ND	ND
BARIUM	38.3	17.5	6.4	16.4	11.6	9.4
CADMIUM	1.3	ND	ND	ND	ND	ND
CALCIUM	1350	49.8	103	628	511	219
CHROMIUM	10.4	17.3	7.3	7.8	6.4	7.7
COPPER	478	ND	ND	11.5	12.2	ND
IRON	31300	8890 J	7850	2450 Ј	2610 J	1570 J
LEAD	539	6.9 J	3.6	24.6 J	19.1 J	3.4 J
MAGNESIUM	180	410	223	201	183	309
MANGANESE	471	3.7 J	2.7	21.1 J	15.1 J	3.4 J
NICKEL	243	ND	ND	ND	ND	ND
POTASSIUM	ND	453	292	253	ND	284
SODIUM	63.9	130	50.8	ND	ND	ND
THALLIUM	4.2	ND	ND	ND	ND	ND
VANADIUM	11.1	27.2	10.5	5	5.9	6.2
ZINC	764	7.8 J	5.3	44.7 J	41.7 J	15.2 J

NOTES: mg/Kg - Milligram per kilogram

J - Value is estimated

ND - Not Detected

All samples were analyzed for TAL Metals per CLP Method.

Only those parameters with positive detection are included on this table. For complete results refer to appendix O.

11/07/95 650PH.WK4

-

TABLE 4-7 (continued)

DETECTED METALS IN SUBSURFACE SOILS SITE 65 - ENGINEER AREA DUMP REMEDIAL INVESTIGATION, CTO-0312 MCB, CAMP LEJEUNE, NORTH CAROLINA

LOCATION DATE COLLECTED DEPTH MOISTURE	65-SB12-05 04/17/95 9-11' 10.3
ANALYTES (mg/Kg)	
ALUMINUM	5190
ARSENIC	ND
BARIUM	10.1
CADMIUM	ND
CALCIUM	587
CHROMIUM	4.8
COPPER	ND
IRON	1010
LEAD	3.1
MAGNESIUM	122
MANGANESE	4.9
NICKEL	ND
POTASSIUM	ND
SODIUM	ND
THALLIUM	ND
VANADIUM	3.5
ZINC	5.5

NOTES: mg/Kg - Milligram per kilogram

J - Value is estimated ND - Not Detected

All samples were analyzed for TAL Metals per CLP Method.

TABLE 4-8

DETECTED ORGANICS IN SUBSURFACE SOILS (TEST PITS) SITE 65 - ENGINEER AREA DUMP REMEDIAL INVESTIGATION, CTO-0312 MCB, CAMP LEJEUNE, NORTH CAROLINA

LOCATION	65-TP01	65-TP02	65-TP04	65-TP05	65-TP06	65-TP07
DATE SAMPLED	05/07/95	05/08/95	05/07/95	05/07/95	05/08/95	05/07/95
		-2				
VOLATILES (ug/Kg)						
ACETONE	12	46	25	210	9 Ј	7 J
CARBON DISULFIDE	ND	ND	2 J	ND	ND	ND
2-BUTANONE	ND	ND	ND	29	ND	ND
SEMIVOLATILES (ug/Kg)						
NAPHTHALENE	ND	ND	ND	ND	ND	55 J
2-METHYLNAPHTHALENE	ND	ND	ND	ND	ND	60 J
ACENAPHTHENE	ND	ND	ND	ND	ND	94 J
DIBENZOFURAN	ND	ND	ND	ND	ND	42 J
PHENANTHRENE	ND	ND	ND	ND	ND	150 J
DI-N-BUTYL PHTHALATE	280 Ј	250 J	200 J	160 J	210 J	270 J
FLUORANTHENE	ND	ND	ND	ND	ND	230 Ј
PYRENE	ND	ND	ND	ND	ND	190 J
BENZO(A)ANTHRACENE	ND	ND	ND	ND	ND	100 J
CHRYSENE	ND	ND	ND	ND	ND	110 J
BIS(2-ETHYLHEXYL)PHTHALATE	ND	37 J	ND	49 J	39 Ј	230 J
BENZO(B)FLUORANTHENE	ND	ND	ND	ND	ND	96 J
BENZO(K)FLUORANTHENE	ND	ND	ND	ND	ND	110 J
BENZO(A)PYRENE	ND	ND	ND	ND	ND	69 J
BENZO(G,H,I)PERYLENE	ND	ND	ND	ND	ND	67 J
PESTICIDE/PCBS (ug/Kg)						
ENDOSULFAN I	ND	ND	ND	3.1 J	ND	ND
4,4'-DDE	ND	28	45 J	38 Ј	ND	43 J
4,4'-DDD	ND	7.3 J	140	340 J	ND	110
4,4'-DDT	ND	15	31	9.6	ND	40
GAMMA CHLORDANE	ND	ND	3.1 J	ND	ND	3 J

NOTES: ug/Kg - Microgram per kilogram

J - Value is estimated

ND - Not Detected

TP - Sample was collected from a test pit excavation.

All samples were analyzed for TCL Organics per CLP Methods.

TABLE 4-9

DETECTED METALS IN SUBSURFACE SOILS (TEST PITS) SITE 65 - ENGINEER AREA DUMP REMEDIAL INVESTIGATION, CTO-0312 MCB, CAMP LEJEUNE, NORTH CAROLINA

LOCATION	65-TP01	65-TP02	65-TP04	65-TP05	65-TP06	65-TP07
DATE SAMPLED	05/07/95	05/08/95	05/07/95	05/07/95	05/08/95	05/07/95
ANALYTES (mg/Kg)						
ALUMINUM	2750	4740	5030	5730	2590	3680
ANTIMONY	ND	ND	ND	ND	ND	11.8
ARSENIC	ND	ND	2.6	ND	ND	ND
BARIUM	4.2	9.9	21.6	34.7	6.4	31.8
CADMIUM	ND	ND	1.3	ND	ND	ND
CALCIUM	259	439	847	1270	130	1230
CHROMIUM	ND	4.4	8.5	6.6	3.2	8.2
COBALT	ND	ND	ND	ND	ND	11.5
COPPER	ND	7.7	61.4	29.4	ND	672
IRON	571	1010	4290	3640	992	9170
LEAD	3.7	12.1	129	59.2	4.9	210
MAGNESIUM	57.7	80.7	193	223	82.1	136
MANGANESE	10.1	-11.5	132	60.2	13.3	223
NICKEL	ND	ND	ND	ND	ND	4.8
SELENIUM	ND	ND	ND	ND	ND	1.5
SILVER	ND	ND	ND	ND	ND	4.2
SODIUM	ND	ND	ND	110	ND	ND
VANADIUM	ND	3.4	8.9	5.3	3.5	9.1
ZINC	11.4	30.6	480	158	10.1	418

NOTES: ug/Kg - Microgram per kilogram

ND - Not Detected

TP - Sample was collected from a test pit excavation.

All samples were analyzed for TAL Metals per CLP Methods.

TABLE 4-10

DETECTED ORGANICS IN GROUNDWATER SITE 65 - ENGINEER AREA DUMP REMEDIAL INVESTIGATION, CTO-0312 MCB, CAMP LEJEUNE, NORTH CAROLINA

LOCATION DATE COLLECTED	65-DW01-01 05/08/95	65-DW02-01 05/09/95	65-DW02-02 05/18/95	65-DW04-01 05/16/95	65-MW01-01 05/08/95	65-MW0 2- 01 05/09/95	65-MW03-01 05/09/95
VOLATILES (ug/L)						,	
METHYLENE CHLORIDE	ND	1 J	ND	ND	ND	1 J	1 J
ACETONE	ND	5 J	5 J	ND	ND	5 J	7 Ј
CARBON DISULFIDE	ND	ND	ND	ND	ND	ND	ND
1,2-DICHLOROETHANE	2 Ј	2 Ј	ND	ND	2 J	ND	2 J
2-BUTANONE	ND	ND	ND	ND	ND	ND	1 J
SEMIVOLATILES (ug/L)							
NAPHTHALENE	ND	ND	ND	3 J	ND	ND	ND
DI-N-BUTYL PHTHALATE	ND	3 J	ND	ND	ND	ND	2 J
BIS(2-ETHYLHEXYL)PHTHALATE	1 J	4 J	ND	ND	1 J	ND	2 Ј

NOTES: ug/L - Microgram per liter

J - Value is estimated

ND - Not Detected

DW - Sample was collected from a deep well (ie, upper portion of Castle Hayne Aquifer).

MW - Sample was collected from a shallow well (ie, surficial aquifer). All samples were analyzed for TCL Organics per CLP Methods.

TABLE 4-10 (continued)

DETECTED ORGANICS IN GROUNDWATER SITE 65 - ENGINEER AREA DUMP REMEDIAL INVESTIGATION, CTO-0312 MCB, CAMP LEJEUNE, NORTH CAROLINA

LOCATION DATE COLLECTED	65-MW04-01 05/16/95	65-MW05-01 05/09/95	65-MW06-01 05/09/95	65-MW07-01 05/09/95
VOLATILES (ug/L)				
METHYLENE CHLORIDE	ND	1 J	2 J	1 J
ACETONE	ND	5 J	7 J	5 J
CARBON DISULFIDE	5 J	ND	ND	ND
1,2-DICHLOROETHANE	2 J	2 J	2 J	2 J
2-BUTANONE	ND	1 J	1 J	ND
SEMIVOLATILES (ug/L)				
NAPHTHALENE	ND	ND	ND	ND
DI-N-BUTYL PHTHALATE	ND	ND	ND	6 .J
BIS(2-ETHYLHEXYL)PHTHALATE	ND	ND	ND	6 J

NOTES: ug/L - Microgram per liter

J - Value is estimated

ND - Not Detected

DW - Sample was collected from a deep well (ie, upper portion of Castle Hayne Aquifer).

 $\ensuremath{\mathsf{MW}}$ - Sample was collected from a shallow well (ie, surficial aquifer).

All samples were analyzed for TCL Organics per CLP Methods.

TABLE 4-11

DETECTED METALS IN GROUNDWATER SITE 65 - ENGINEER AREA DUMP REMEDIAL INVESTIGATION, CTO-0312 MCB, CAMP LEJEUNE, NORTH CAROLINA

LOCATION DATE COLLECTED	65-DW01-01 05/08/95	65-DW02-01 05/09/95	65-DW02-02 05/18/95	65-DW04-01 05/16/95	65-MW01-01 05/08/95	65-MW02-01 05/09/95
ANALYTES (ug/L)		.	, Alb	222	ND	C0.5
ALUMINUM BARIUM	233 ND	ND 33.6	ND 32.6	322 17.9	ND 54.6	68.5 27.7
CALCIUM	52000	107000	116000	33600	146000	58200
CHROMIUM	ND	ND	ND	ND ND	10.2 20.1	ND ND
COBALT IRON	ND 84.4	40.9 2060	52.4 2300	557	253	6580
LEAD	ND	ND	ND	3,4	ND	ND
MAGNESIUM	2030	6120	6400	1200	16200	2470
MANGANESE	4.2	172	186	15.7	178	20.1
NICKEL	ND	53.1	59.6	ND	ND	ND
POTASSIUM	3000	2150	2340	2440	5790	1590
SODIUM	6720	11000	11500	8240	10700	6350
ZINC	19.4	27.6	58.9	31.8	19.1	20.5

NOTES: ug/L - Microgram per liter

ND - Not Detected

DW - Sample was collected from a deep well (ie, upper portion of Castle Hayne Aquifer).

MW - Sample was collected from a shallow well (ie, surficial aquifer).

All samples were analyzed for TAL Metals per CLP Methods.

TABLE 4-11 (continued)

DETECTED METALS IN GROUNDWATER SITE 65 - ENGINEER AREA DUMP REMEDIAL INVESTIGATION, CTO-0312 MCB, CAMP LEJEUNE, NORTH CAROLINA

LOCATION	65-MW03-01	65-MW04-01	65-MW05-01	65-MW06-01	65-MW07-01	65-MW01F-01
DATE COLLECTED	05/09/95	05/16/95	05/09/95	05/09/95	05/09/95	05/08/95
ANALYTES (ug/L)						
	ND.	101	40.2	401	120	ND
ALUMINUM	ND	121	40.3	421	138	ND
BARIUM	151	21	35.3	25.8	44.3	61.4
CALCIUM	50500	2820	21100	2700	30400	161000
CHROMIUM	10	ND	ND	ND	ND	ND
COBALT	ND	ND	ND	ND	20.4	ND
IRON	41.9	ND	232	1730	99.4	187
LEAD	ND	ND	ND	ND	ND	ND
MAGNESIUM	5160	2550	7810	2890	8160	18300
MANGANESE	6.6	3	52.8	28.7	87.8	182
NICKEL	ND	ND	ND	ND	ND	ND
POTASSIUM	3650	ND	4030	1200	7940	6220
SODIUM	5620	5880	11400	16400	9390	11900
ZINC	11	ND	22.5	17.8	14.5	ND

NOTES: ug/L - Microgram per liter

ND - Not Detected

DW - Sample was collected from a deep well (ie, upper portion of Castle Hayne Aquifer).

MW - Sample was collected from a shallow well (ie, surficial aquifer).

All samples were analyzed for TAL Metals per CLP Methods.

Only those samples with positive detections are included on this table. For complete results refer to Appendix O.

11/07/95 65014[H.WK4

TABLE 4-12

DETECTED ORGANICS IN SURFACE WATER SITE 65 - ENGINEER AREA DUMP REMEDIAL INVESTIGATION, CTO-0312 MCB, CAMP LEJEUNE, NORTH CAROLINA

LOCATION DATE COLLECTED	65-SW04-01 05/15/95	65-\$W05-01 05/16/95	
VOLATILES (ug/L)			
ACETONE	5 J	ND	
1,2-DICHLOROETHANE	1 J	1 J	

NOTES: ug/L - Microgram per liter J - Value is estimated

J - Value is estimated ND - Not Detected

All samples were analyzed for TCL Organics per CLP Methods.

TABLE 4-13

DETECTED METALS IN SURFACE WATER SITE 65 - ENGINEER AREA DUMP REMEDIAL INVESTIGATION, CTO-0312 MCB, CAMP LEJEUNE, NORTH CAROLINA

LOCATION DATE COLLECTED	65-SW04-01 05/15/95	65-SW05-01 05/16/95
ANALYTES (ug/L)		
ALUMINUM	25800	ND
BARIUM	69.3	36.7
CALCIUM	12000	26800
CHROMIUM	27.6	ND
COPPER	41.1	ND
IRON	7890	348
LEAD	45.8	ND
MAGNESIUM	2060	2520
MANGANESE	88.4	57.3
POTASSIUM	2970	. ND
SODIUM	3330	6320
VANADIUM	26.2	ND
ZINC	144	33.6

NOTES: ug/L - Microgram per liter

ND - Not Detected

All samples were analyzed for TAL Metals per CLP Methods.

TABLE 4-14

DETECTED ORGANICS IN SEDIMENTS SITE 65 - ENGINEER AREA DUMP REMEDIAL INVESTIGATION, CTO-0312 MCB, CAMP LEJEUNE, NORTH CAROLINA

LOCATION DATE COLLECTED DEPTH	65-SD04-06 05/16/95 0-6"	65-SD04-612 05/16/95 6-12"	65-SD05-06 05/17/95 0-6"	65-SD05-612 05/17/95 6-12"
VOLATILES (ug/Kg)				
ACETONE	220 Ј	190 Ј	260 J	450 J
CHLOROFORM	79 J	ND	ND	ND
2-BUTANONE	94 J	79	72 J	88
CARBON TETRACHLORIDE	18 J	13 Ј	ND	ND
TETRACHLOROETHENE	15 J	6 J	ND	ND
TOLUENE	7 Ј	ND	6 J	3 J
SEMIVOLATILES (ug/Kg)				
DI-N-BUTYL PHTHALATE	1400 J	1600 J	1200 J	940 J
PESTICIDE/PCBS (ug/Kg)				
BETA-BHC	ND	8.3 J	ND	ND
4,4'-DDE	18 J	ND	19 J	ND
4,4'-DDD	76 J	, ND	84 J	ND

NOTES: ug/Kg- Microgram per kilogram

J - Value is estimated ND - Not Detected

All samples were analyzed for TCL Organics per CLP Methods.

TABLE 4-15

DETECTED METALS IN SEDIMENTS SITE 65 - ENGINEER AREA DUMP REMEDIAL INVESTIGATION, CTO-0312 MCB, CAMP LEJEUNE, NORTH CAROLINA

LOCATION DATE COLLECTED DEPTH	65-SD04-06 05/16/95 0-6"	65-SD04-612 05/16/95 6-12"	65-SD05-06 05/17/95 0-6"	65-SD05-612 05/17/95 6-12"
ANALYTES (mg/Kg)				
ALUMINUM	37000 J	10900 J	3090	394
ANTIMONY	46.6 J	ND	ND	ND
BARIUM	110	94.2	86.1	13.6
CALCIUM	4470	2470	4640	322
CHROMIUM	43.6 J	9.8 J	ND	ND
COBALT	36.3	ND	ND	ND
COPPER	100 J	21.4 J	8.2	ND
IRON	14600 J	3250 J	985	414
LEAD	176 J	38.5 J	23.9	ND
MAGNESIUM	1140	674	ND	94.8
MANGANESE	126 J	37.4 J	38.7	25.6
POTASSIUM	1410	ND	ND	ND
SODIUM	203	177	139	ND
VANADIUM	40.5	ND	ND	ND
ZINC	280 J	56.3 J	36.5	7.9

NOTES: mg/Kg- Milligram per kilogram

J - Value is estimated ND - Not Detected

All samples were analyzed for TAL Metals per CLP Methods.

TABLE 4-16

DETECTED ORGANICS IN FISH (FILLET) SITE 65 - ENGINEER AREA DUMP REMEDIAL INVESTIGATION, CTO-0312 MCB, CAMP LEJEUNE, NORTH CAROLINA

SAMPLE ID METHOD DATE COLLECTED	65-FS04-BG01F 8240 05/17/95	65-FS05-BG01F 8240 05/16/95	65-FS05-LB01F 8240 05/16/95	65-FS05-RS01F 8240 05/16/95
VOLATILES (ug/Kg) ACETONE PESTICIDE/PCBS (ug/Kg)	ND	5600 J	7900 J	ND ·
4,4'-DDD	5.7 Ј	ND	ND	ND

NOTES: ug/Kg - Microgram per kilogram

J - Value is estimated ND - Not Detected

All samples were analyzed for TCL Organics per CLP Methods.

TABLE 4-17

DETECTED METALS IN FISH (FILLET) SITE 65 - ENGINEER AREA DUMP REMEDIAL INVESTIGATION, COT-0312 MCB, CAMP LEJEUNE, NORTH CAROLINA

SAMPLE ID. METHOD DATE COLLECTED	65-FS04-BG01F CLP 05/17/95	65-F805-BG01F CLP 05/16/95	65-FS05-LB01F CLP 05/16/95	65-FS05-RS01F CLP 05/16/95
ANALYTES (mg/Kg)				
ALUMINUM	ND	ND	0.99	ND
BARIUM	0.21 J	ND	ND	ND
CALCIUM	2100 J	560 J	399 J	385 J
COPPER	0.49	0.46	ND	ND
MAGNESIUM	298 Ј	299 J	290 Ј	293 Ј
MANGANESE	0.45 J	0.22 J	0.092 J	0.14 J
MERCURY	0.22 Ј	0.07 J	0.3 Ј	0.051 J
POTASSIUM	2700 J	3220 J	3540 J	3520 J
SELENIUM	0.22	0.15	0.16	0.14
SODIUM	869	708	441	620
THALLIUM	0.11	ND	0.11	0.11
ZINC	8.1 J	8.4 J	5.8 J	8.2 J

NOTES: mg/Kg - Milligram per kilogram

J - Value is estimated ND - Not Detected

All samples were analyzed for TAL Metals per CLP Methods.

TABLE 4-18

DETECTED ORGANICS IN FISH (WHOLE BODY) SITE 65 - ENGINEER AREA DUMP REMEDIAL INVESTIGATION, CTO-0312 MCB, CAMP LEJEUNE, NORTH CAROLINA

SAMPLE ID. METHOD DATE COLLECTED	65-FS04-BG01W 8240 05/17/95	65-FS04-RS01W 8240 05/17/95	65-FS05-BG01W 8240 05/16/95	65-FS05-LB01W 8240 05/16/95	65-FS05-RS01W 8240 05/16/95
VOLATILES (ug/kg) METHYLENE CHLORIDE ACETONE	ND ND	1000 J ND	ND 1400000 J	ND 690000 J	ND 27000
2-BUTANONE (MEK)	ND ND	ND ND	1400000 J ND	090000 J	27000 560 J
TOLUENE PESTICIDE/PCBS (ug/kg)	ND	ND	ND	5000 J	ND
4,4'-DDE	15 J	ND	ND	ND	ND
4,4'-DDD	40 J	6.9 J	ND	ND	ND

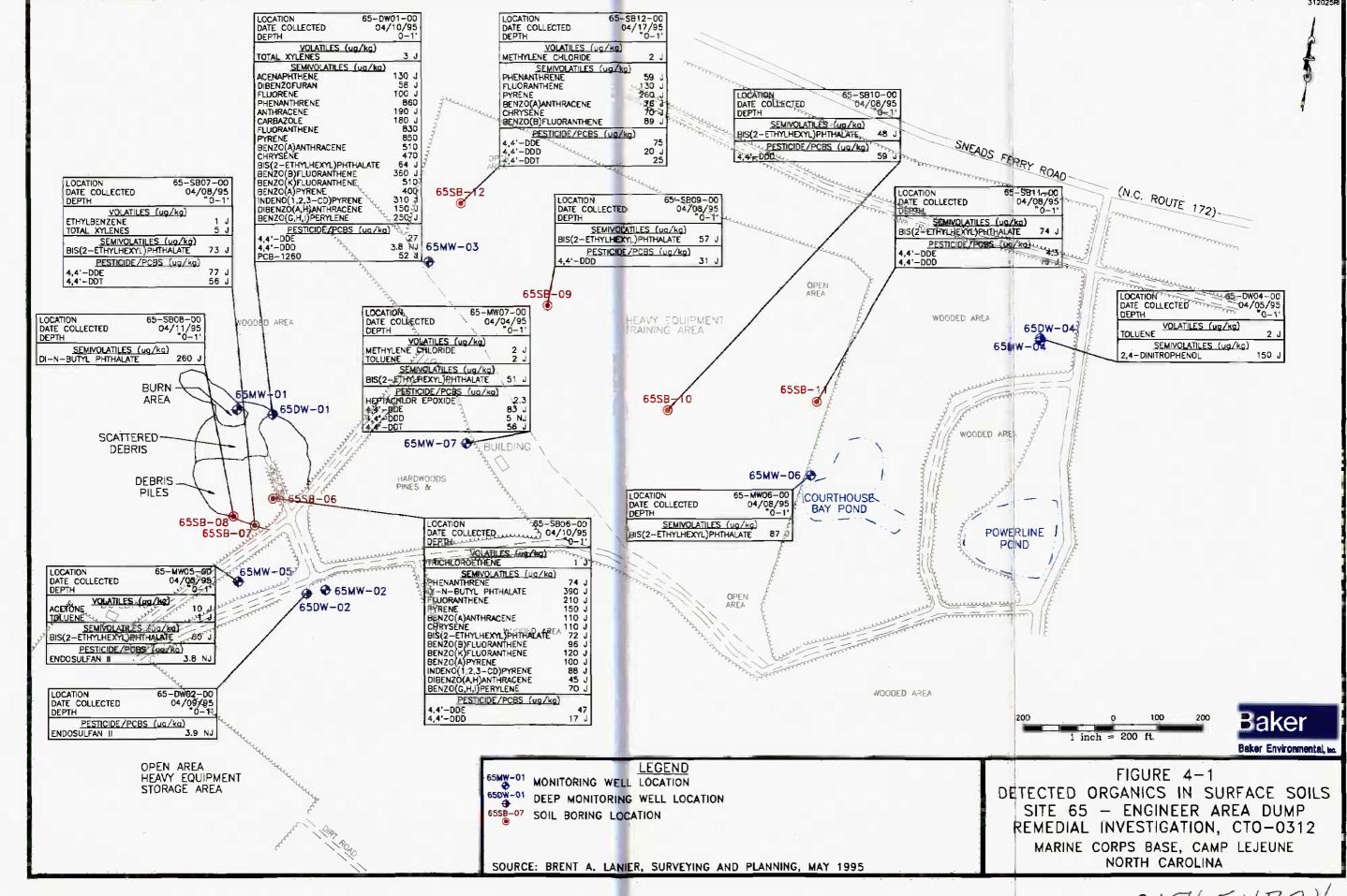
NOTES: ug/Kg - Microgram per kilogram

J - Value is estimated ND - Not Detected

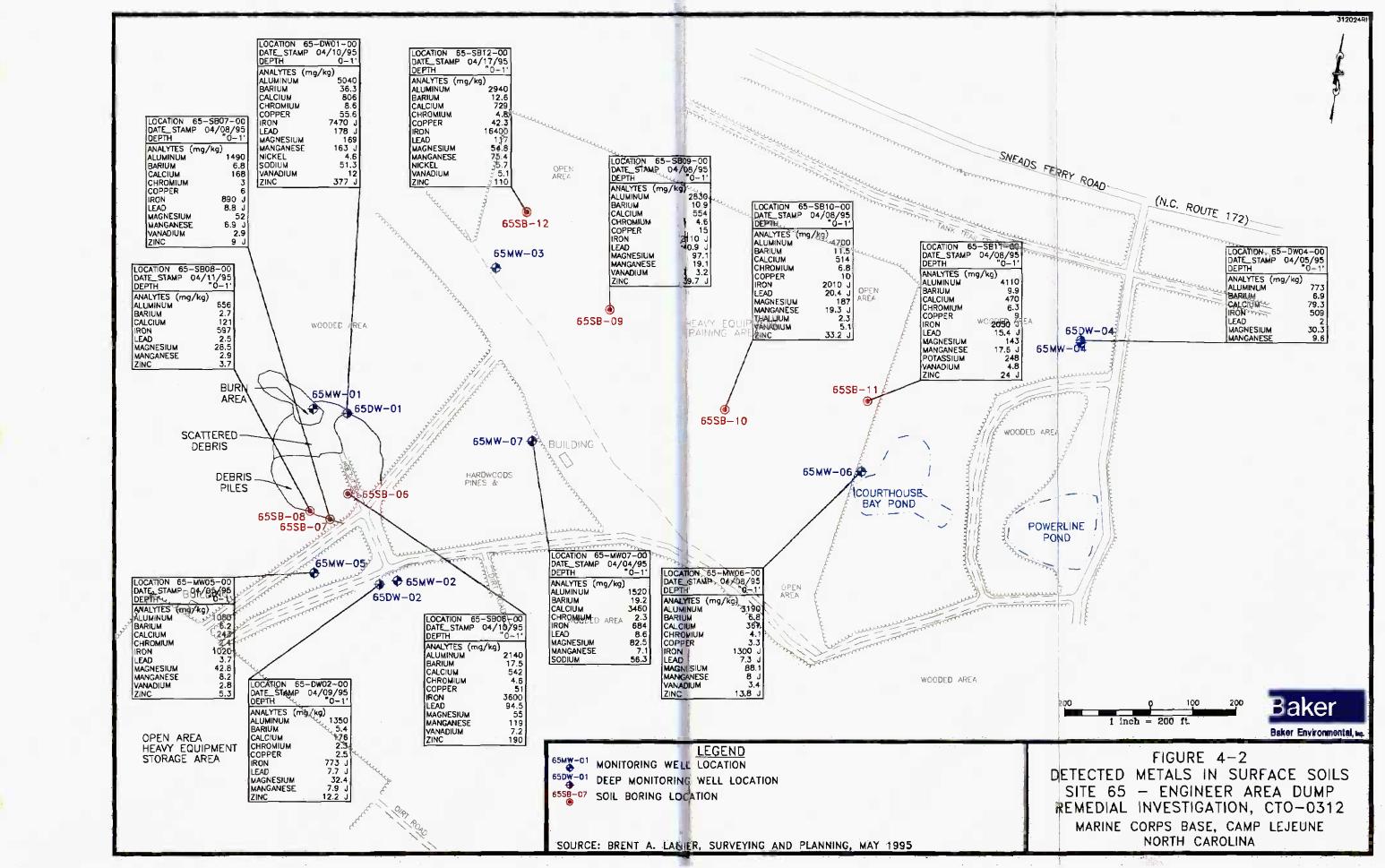
All samples were analyzed for TCL Organics per CLP Methods.

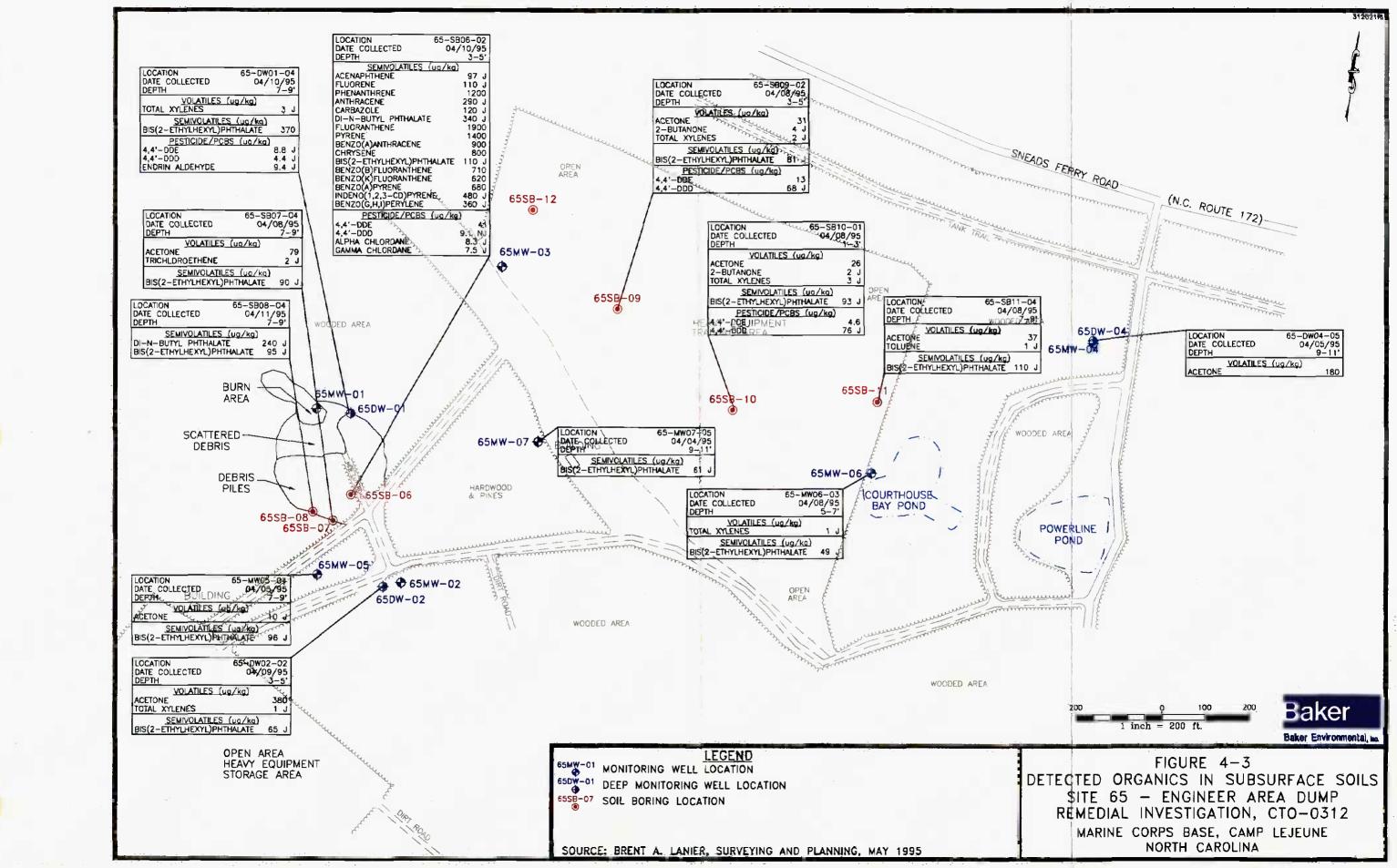
TABLE 4-19

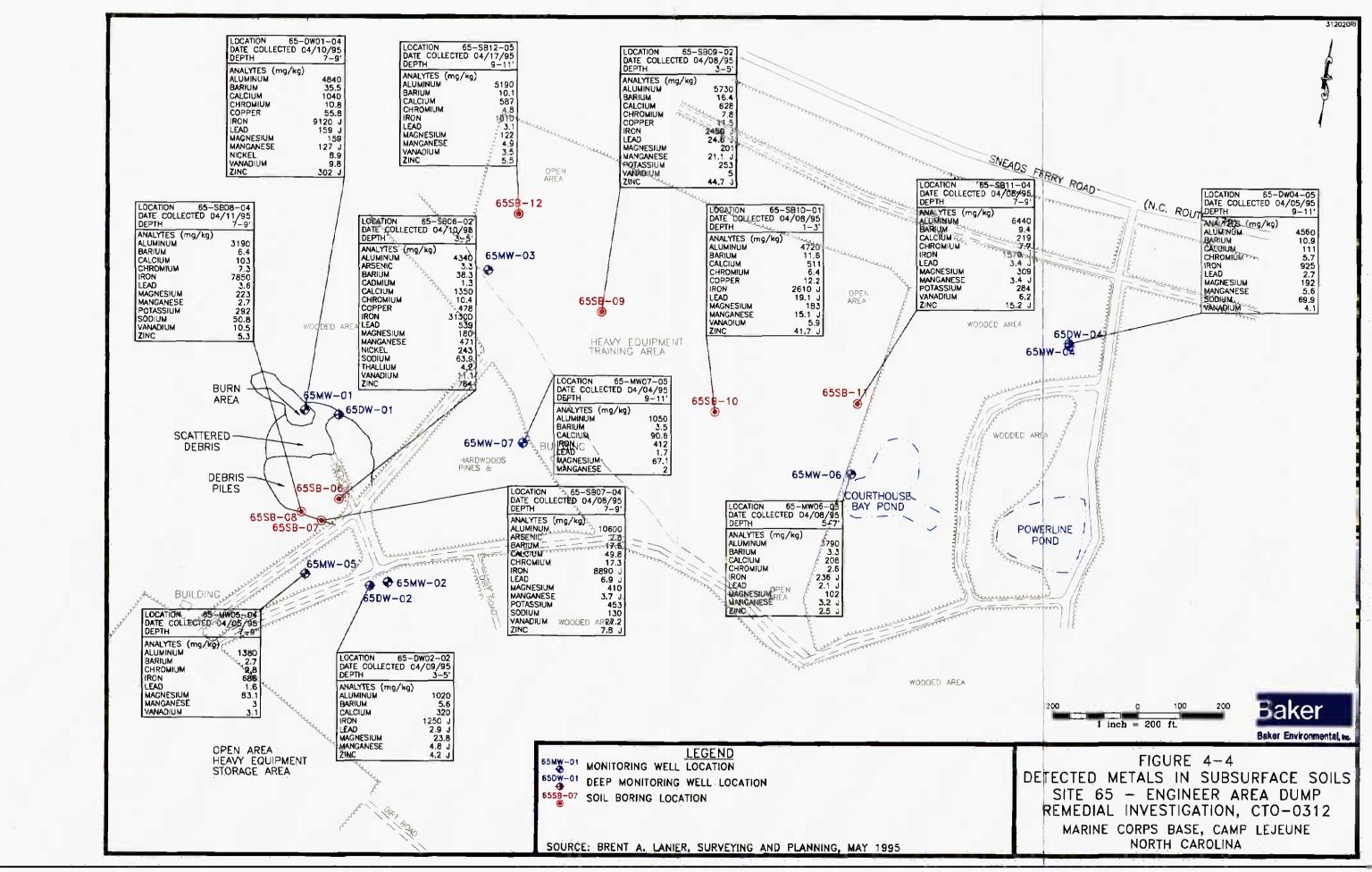
DETECTED METALS IN FISH (WHOLE BODY) SITE 65 - ENGINEER AREA DUMP REMEDIAL INVESTIGATION, COT-0312 MCB, CAMP LEJEUNE, NORTH CAROLINA

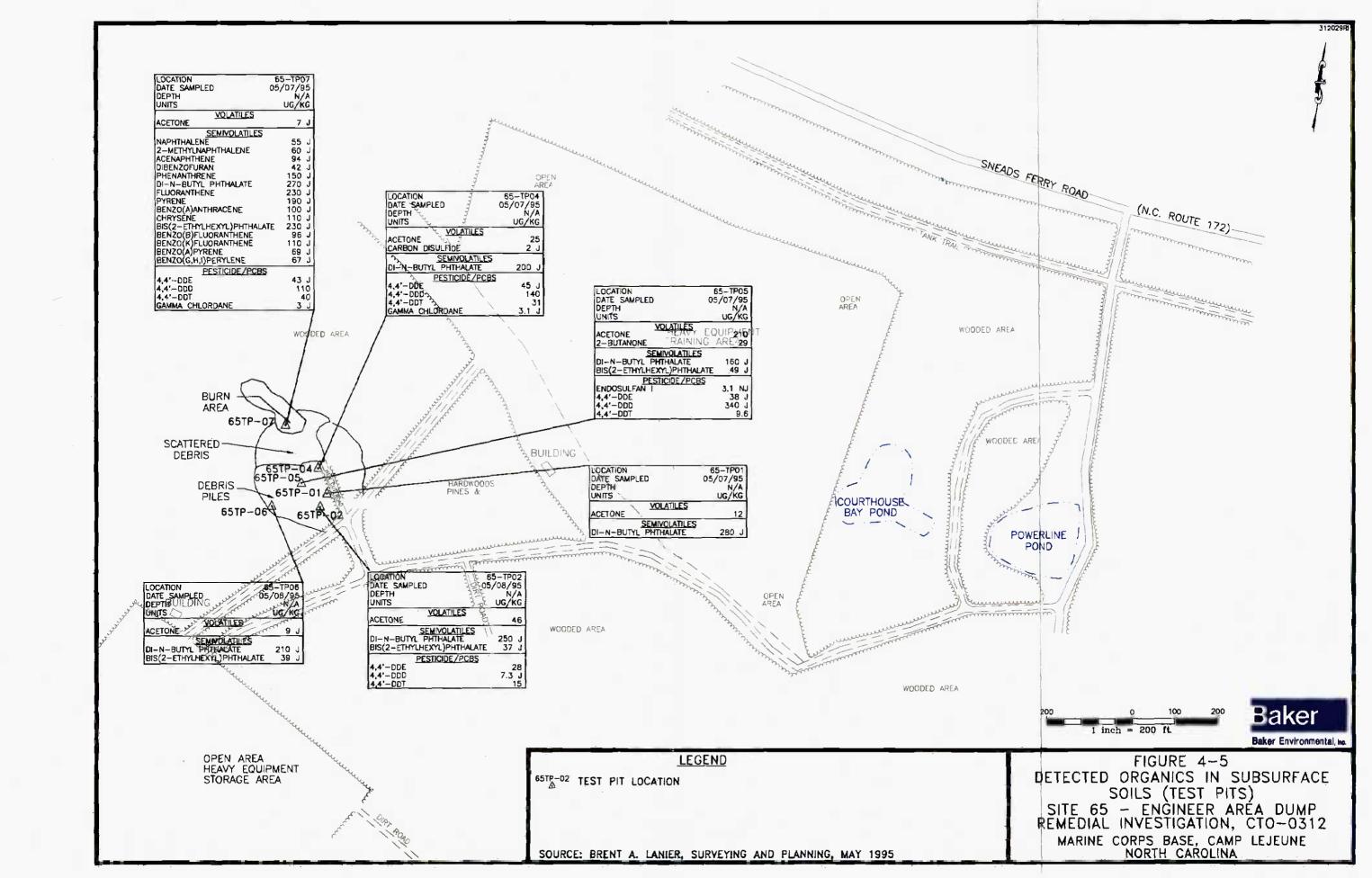

SAMPLE ID. METHOD DATE COLLECTED	65-FS04-BG01W CLP 05/17/95	65-F804-R801W CLP 05/17/95	65-FS05-BG01W CLP 05/16/95	65-FS05-LB01W CLP 05/16/95	65-FS05-RS01W CLP 05/16/95
ANALYTES (mg/Kg)					
ALUMINUM	18,8 J	18 J	ND	9.6 J	ND
ANTIMONY	ND	1.5	1.1	1.4	1.1
ARSENIC	0.15 J	ND	ND	ND	ND
BARIUM	1.8 J	2,9 J	1.8 J	1.3 J	0.44 J
BERYLLIUM	ND	ND	0.028	ND	ND
CALCIUM	19600 J	42500 J	22600 J	22400 J	8840 J
COPPER	1.1	ND	ND	ND	8.6
IRON	22.9 J	24.4 Ј	7.8 J	26.1 J	11.8 J
LEAD	0.17	0.49	ND	ND	0.33
MAGNESIUM	557 J	951 J	538 J	593 J	370 J
MANGANESE	3.6 J	4.1 J	4.9 J	2.3 J	1 J
MERCURY	ND	0.11 J	ND	0.11 J	ND
POTASSIUM	2580 J	1850 Ј	2790 J	2860 J	2740 J
SELENIUM	0.42	0.17	0.16	0.33	0.32
SODIUM	1260	2400	1250	1160	992
THALLIUM	0.12	0.11	0.11	0.11	0.11
ZINC	26.2 J	31.5 J	26.6 J	14.8 J	23.3 J

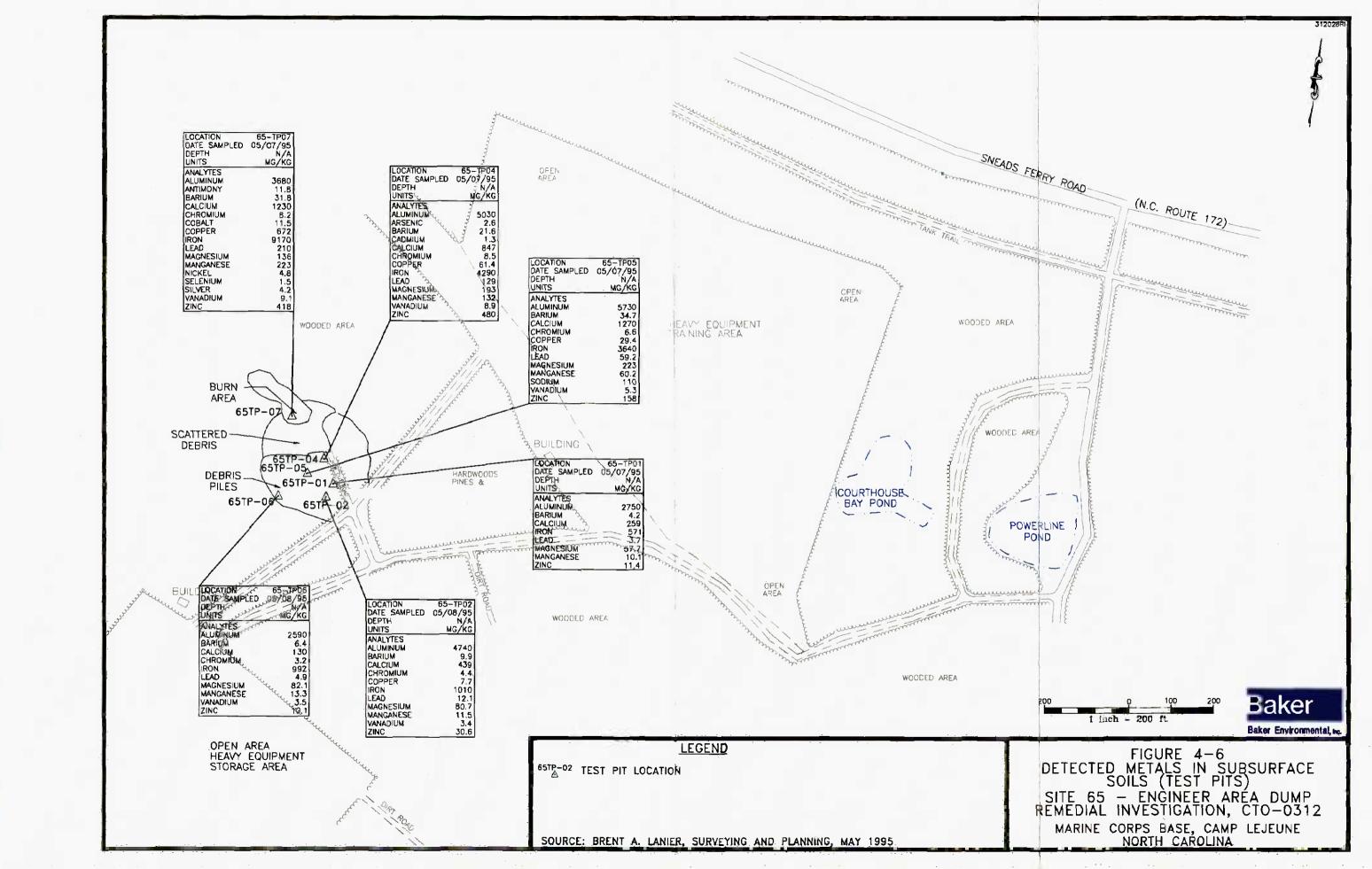
NOTES: mg/Kg - Milligram per kilogram

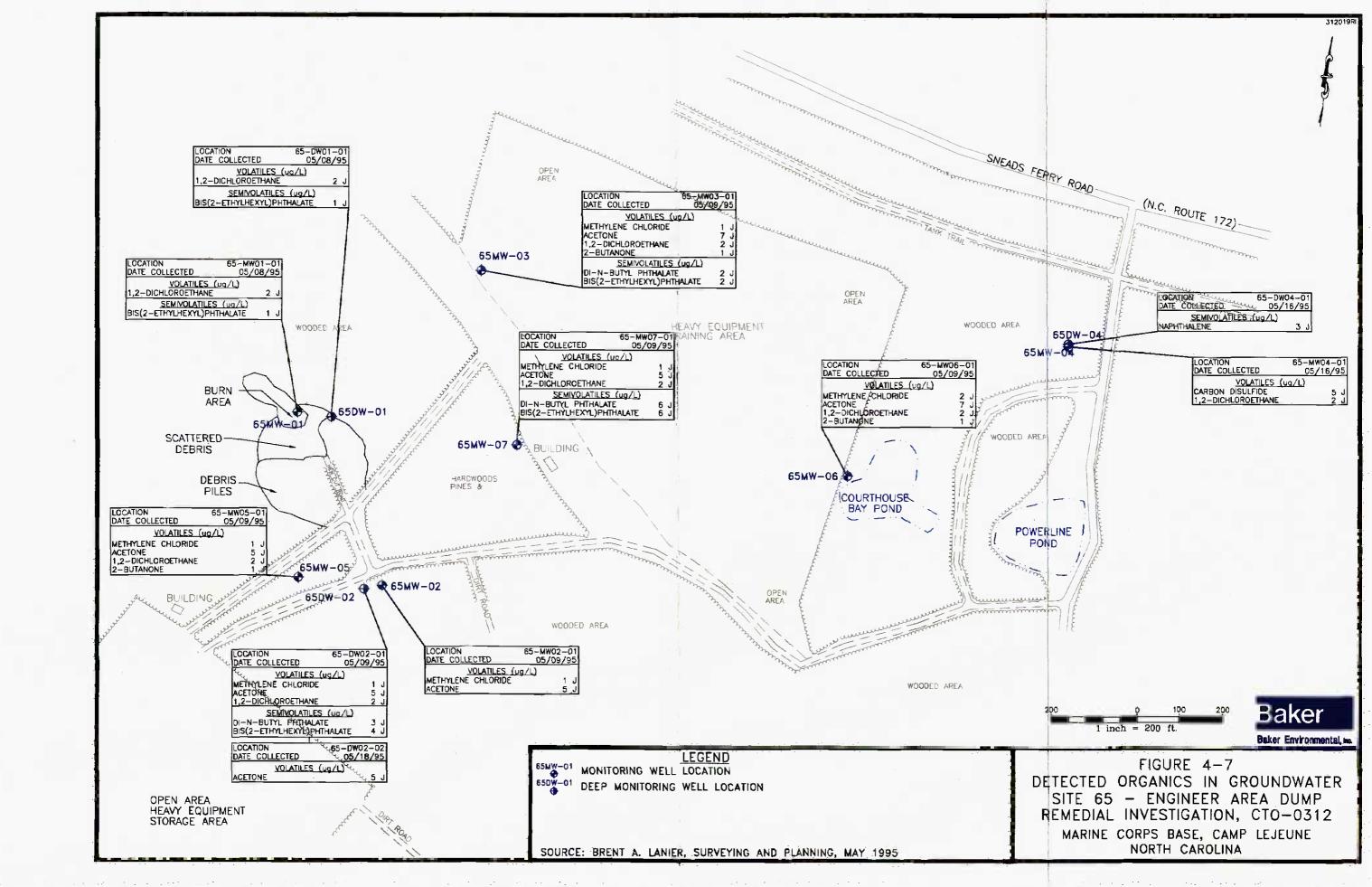

J - Value is estimated ND - Not Detected

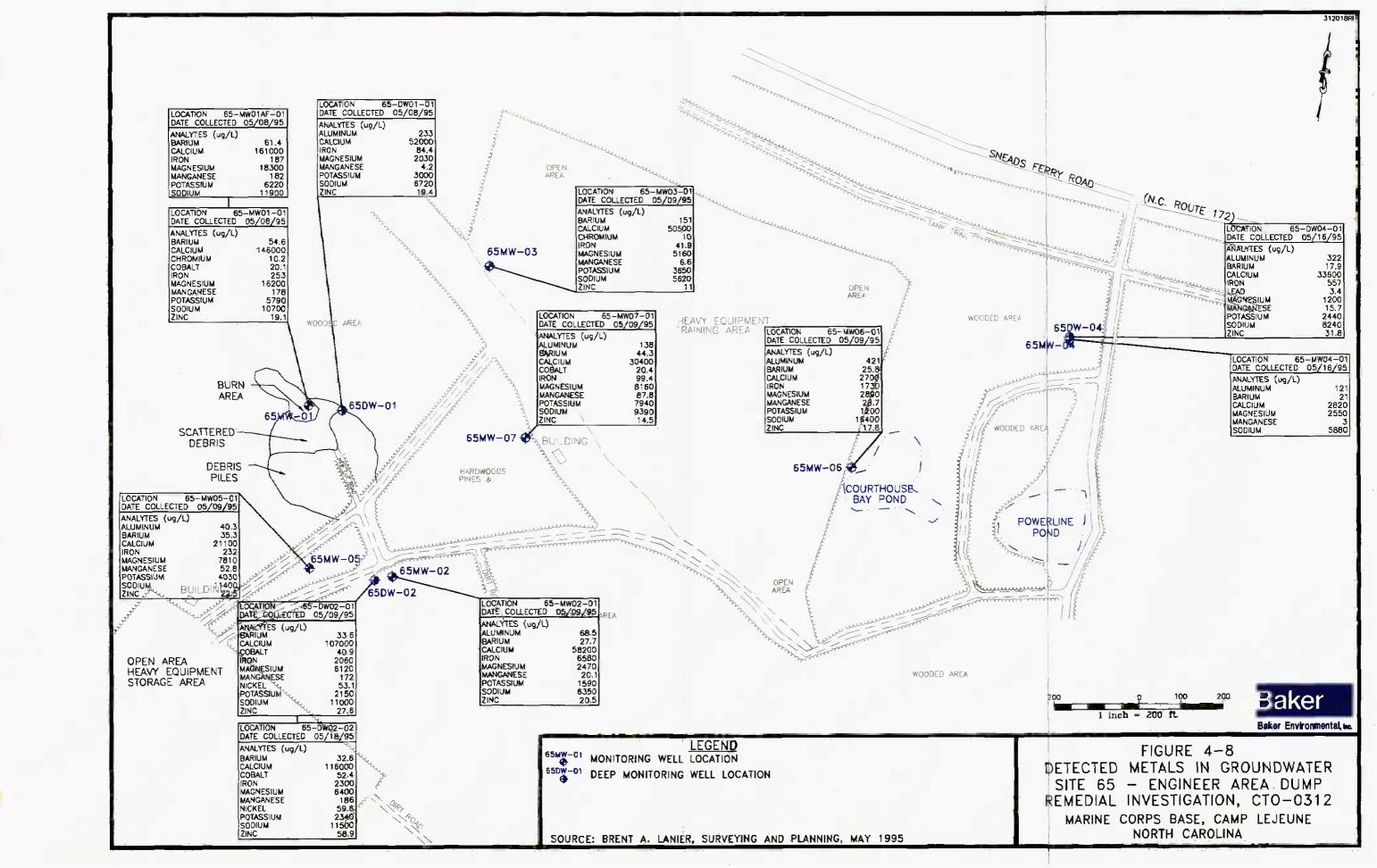

All samples were analyzed for TAL Metals per CLP Methods.

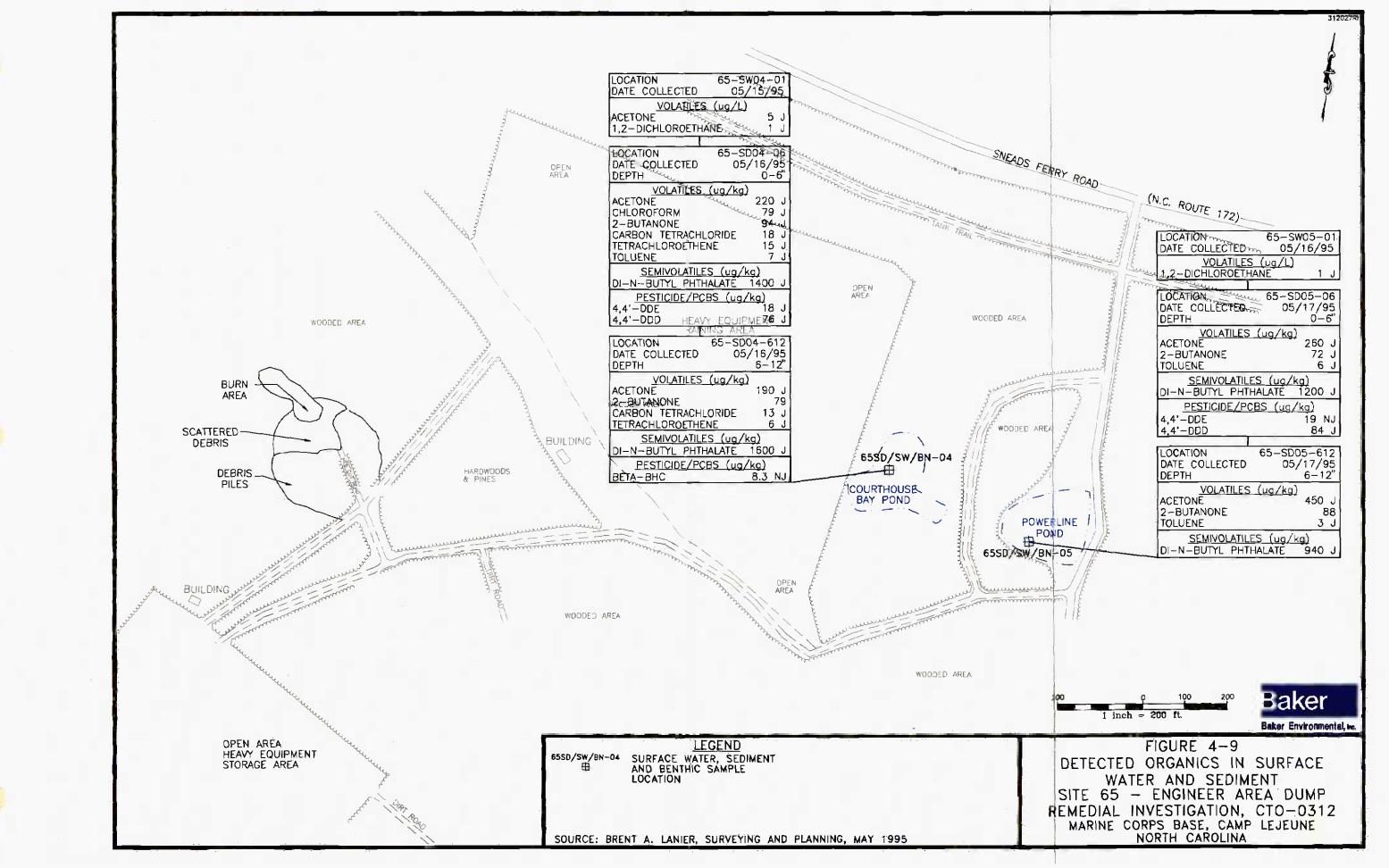

SECTION 4.0 FIGURES

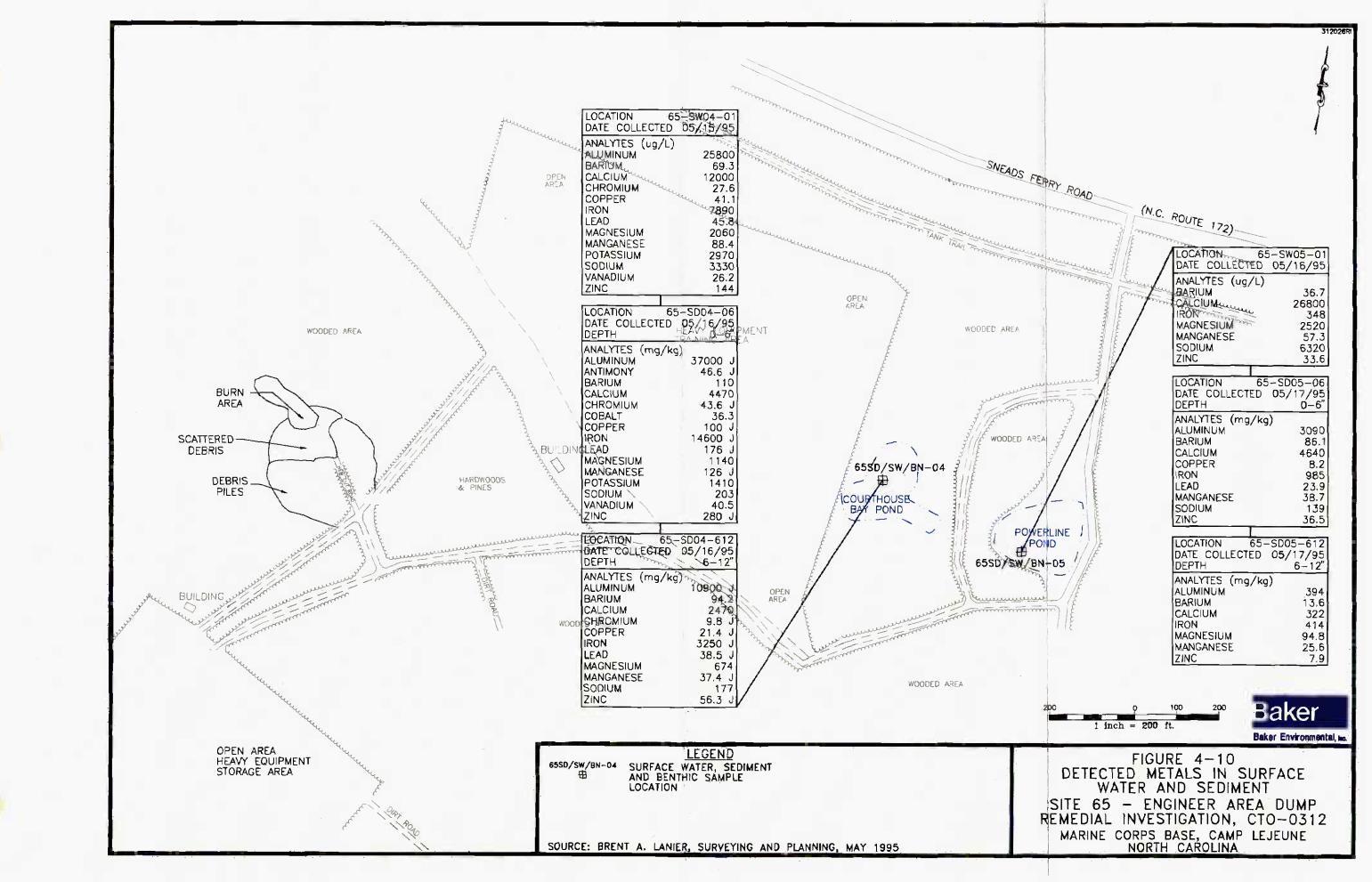



01765 VB2Y









5.0 CONTAMINANT FATE AND TRANSPORT

The potential for a contaminant to migrate and persist in an environmental medium is critical when evaluating the potential for a chemical to elicit an adverse human health or ecological effect. The environmental mobility of a chemical is influenced by its physical and chemical properties, the physical characteristics of the site, and the site chemistry. This section presents a discussion of the various physical and chemical properties of contaminants detected at OU No. 9, Site 65, that impact the fate and transport of the contaminants in the environment. The basis for this discussion of contaminant fate and transport is presented in Section 4.0, Nature and Extent of Contamination.

5.1 Chemical and Physical Properties Impacting Fate and Transport

Table 5-1 presents the physical and chemical properties associated with a representative group of organic contaminants detected at the site which determine inherent environmental mobility and fate. These properties include:

- Vapor pressure
- Water solubility
- Octanol/water partition coefficient
- Organic carbon partition coefficient
- Specific gravity
- Henry's Law constant
- Mobility index

A discussion of the environmental significance of each of these properties follows.

<u>Vapor pressure</u> provides an indication of the rate at which a chemical may volatilize. It is of primary significance at environmental interfaces such as surface soil/air and surface water/air. Volatilization is not as important when evaluating groundwater and subsurface soils. Vapor pressure for monocyclic aromatics are generally higher than vapor pressures for PAHs. Contaminants with higher vapor pressures will enter the atmosphere at a quicker rate than the contaminants with low vapor pressures.

The rate at which a contaminant is leached from soil by infiltrating precipitation is proportional to its <u>water solubility</u>. More soluble contaminants are usually more readily leached than less soluble contaminants. The water solubilities indicate that the volatile organic contaminants, including monocyclic aromatics, are usually several orders-of-magnitude more soluble than PAHs.

The octanol/water partition coefficient (K_{ow}) is a measure of the equilibrium partitioning of contaminants between octanol and water. A linear relationship between octanol/water partition coefficient and the uptake of chemicals by fatty tissues of animal and human receptors (the bioconcentration factor - BCF) has been established (Lyman et al., 1982). The coefficient is also useful in characterizing the sorption of compounds by organic soils where experimental values are not available.

The organic carbon partition coefficient (K_{oc}) indicates the tendency of an organic chemical to adhere to soil particles. Contaminants with high soil/sediment partition coefficients generally have low water solubilities and vice versa. For example, contaminants such as PAHs are relatively immobile in the environment and are preferentially bound to the soil. The compounds are not

subject to aqueous transport to the extent of compounds with higher water solubilities. Erosional properties of surface soils may; however, enhance the mobility of these bound soils contaminants.

<u>Specific gravity</u> is the ratio of the weight of a given volume of pure chemical at a specified temperature to the weight of the same volume of water at a given temperature. Its primary use is to determine whether a contaminant will have a tendency to float or sink (as an immiscible liquid) in water, if it exceeds its corresponding water solubility.

Vapor pressure and water solubility are of use in determining volatilization rates from surface water bodies and from groundwater. These two parameters can be used to estimate an equilibrium concentration of a contaminant in the water phase and in the air directly above the water. This can be expressed as <u>Henry's Law Constant</u>.

A quantitative assessment of mobility has been developed that uses water solubility (S), vapor pressure (VP), and organic carbon partition coefficient (K_{oc}) (Laskowski, 1983). This value is referred to as the <u>Mobility Index</u> (MI). It is defined as:

$$MI = log((S*VP)/K_{\infty})$$

A scale to evaluate MI is presented by Ford and Gurba (1984):

Relative MI	Mobility Description
> 5	extremely mobile
0 to 5	very mobile
-5 to 0	slightly mobile
-10 to -5	immobile
<-10	very immobile

5.2 Contaminant Transport Pathways

Based on the evaluation of existing conditions at Site 65, the following potential contaminant transport pathways have been identified:

- Erosion of contaminated soils and transportation of the soils to surface water and sediment.
- Off-site atmospheric deposition of windblown dust.
- Leaching of sediment contaminants to surface water.
- Leaching of soil contaminants to groundwater.
- Migration of groundwater contaminants off site.
- Groundwater infiltration from the shallow aquifer to the deep aquifer.
- Groundwater discharge to surface water.

Contaminants released to the environment could also undergo the following during transportation:

- Physical transformations: volatilization, precipitation
- Chemical transformations: photolysis, hydrolysis, oxidation, reduction
- Biological transformation: biodegradation
- Accumulation in one or more media

The following paragraphs describe the potential transport pathways listed above.

5.2.1 Erosion of Contaminated Soils and Transportation to Surface Water and Sediment

Surface water run-off can transport contaminated surface soils from the site to a surface water body, contaminating the surface water and/or sediment. This is influenced by the velocity of the surface water run-off; vegetation; grain size of the soils; solubility of the contaminants; distance to the water body and the proximity of the contaminated soils to the water body.

The majority of Site 65 is covered with vegetation, except the heavy equipment training area located directly west of Courthouse Bay Pond and Powerline Pond. Erosion is likely to occur in the training area carrying potential contaminants to Courthouse Bay Pond or other portions of the site. However, surface and subsurface soils are primarily sand, indicating that a high probability exists that most of the rainfall will infiltrate the soils and become groundwater.

5.2.2 Off-Site Deposition of Windblown Dust

Wind can act as a contaminant transport pathway agent by eroding exposed soil and exposed sediment and blowing it off site. This is influenced by: wind velocity, the grain size/density of the soil/sediment particles and the amount of vegetative cover over the soil or sediment.

The majority of Site 65 is covered with vegetation and, therefore would not be susceptible to wind erosion. However, the training area would be very susceptible and would be the suspected source area of any airborne contaminant.

5.2.3 Contaminant Transfer Between Sediments and Surface Water

When in contact with surface water, contaminants attached to sediment particles can disassociate from the sediment particle into surface water or visa versa. This is primarily influenced by the physical and chemical properties of the contaminant, (i.e., water solubility, K_{oc}) and the physical and chemical properties of the sediment particle (i.e., grain size, f_{oc}).

Surface water sample analytical results indicate that there has not been significant leaching of sediment contaminants into surface water (Section 4.0), based on the infrequent occurrence and level of contamination. However, the concentrations of elemental contamination observed in the sediments may have originated by evaporation of surface water causing precipitation of the elements into the sediments.

5.2.4 Leaching of Soil Contaminants to Groundwater

Contaminants that adhere to soil particles or have accumulated in soil pore spaces can leach and migrate vertically to the groundwater. This is influenced by the depth to the water table, precipitation, infiltration, physical and chemical properties of the soil, and physical and chemical properties of the contaminant.

Groundwater samples were collected from shallow, and deep monitoring wells at Site 65. The groundwater analytical results can be compared to soil sample analytical results to determine if contaminants detected in soil have migrated or may migrate in the future, to underlying

groundwater. The analytical results indicate that contamination residing within the soils do not appear to have leached into groundwater at the site.

5.2.5 Migration of Groundwater Contaminants

Contaminants leaching from soils to underlying groundwater can migrate as dissolved constituents in groundwater in the direction of groundwater flow. Three general processes govern the migration of dissolved contaminants caused by the flow of water: (1) advection - movement caused by flow of groundwater; (2) dispersion - movement caused by irregular mixing of waters during advection; and (3) retardation - principally chemical mechanisms which occur during advection. Subsurface transport of the immiscible contaminants is governed by a set of factors different from those of dissolved contaminants. The potential movement of immiscible organic liquids (non-aqueous phase liquids) will not be discussed in this section.

Advection is the process which most strongly influences the migration of dissolved organic solutes. Groundwater, under water table aquifer conditions (i.e., unconfined aquifer), generally flows from regions of the subsurface where the water table is under a higher head to regions (i.e., recharge areas) of where the water table is under a lower head (i.e., discharge areas). Hydraulic gradient is the term used to describe the magnitude of this force (i.e., the slope of the water table). In general, the gradient usually follows the topography for shallow, uniform sandy aquifers which are commonly found in coastal regions. In general, groundwater flow velocities, in sandy aquifers under natural gradient conditions, are probably between 10 meters/year to 100 meters/year (Lyman, et al., 1982).

The average seepage velocity of groundwater flow at Site 65 for both the shallow and deep water-bearing zones can be estimated using a variation of Darcy's Equation:

$$V_x = \frac{Ki}{N}$$
 (Fetter, 1988)

Where:

V_v = average seepage velocity

K = hydraulic conductivity (cm/sec)

i = hydraulic gradient N_e = effective porosity

Thus, when monitoring wells or potable supply wells in sandy aquifers are located hundreds of meters downgradient of a contaminant source, the average travel time for the groundwater to flow from the source to the well point is typically on the order of years. In the zone of influence created by a high capacity production well or well field; however, the artificially increased gradient could substantially increase the local velocity, and the average travel times for groundwater flow are increased.

Dispersion results from two basic processes, molecular diffusion and mechanical mixing. The kinetic activity of dissolved solutes result in diffusion of solutes from a zone of high concentration to a lower concentration. Dispersion and spreading during transport result in the dilution of contaminants (maximum concentration of contaminant decreases with distance from the plume). For simple hydrogeological systems, the spreading is reported to be proportional to the flow rate. Furthermore, dispersion in the direction of flow is often observed to be markedly greater than

dispersion in the directions transverse (perpendicular) to the flow. In the absence of detailed studies to determine dispersive characteristics at Site 65, longitudinal and transverse dispersivities are estimated based on similar hydrogeological systems (Mackay, et al., 1985).

Some dissolved contaminants may interact with the aquifer solids encountered along the flow path through adsorption, partitioning, ion exchange, and other processes. The interactions result in the contaminant distribution between aqueous phase and aquifer solids, diminution of concentrations in the aqueous phase, and retardation of the movement of the contaminant relative to groundwater flow. The higher the fraction of the contaminant sorbed, the more retarded its transport. Certain halogenated organic solvents sorption is affected by hydrophobility (antipathy for dissolving in water) and the fraction of solid organic matter in the aquifer solids (organic carbon content). If the aquifer below Site 65 is homogeneous, sorption of hydrophobic organic solute should be constant in space and time. If the sorptive interaction is at equilibrium and completely reversible, the solute should move at a constant average velocity equal to the average velocity of the groundwater divided by the retardation factor.

Organic contaminants can be transformed into other organic compounds by a complex set of chemical and biological mechanisms. The principal classes of chemical reactions that can affect organic contaminants in water are hydrolysis and oxidation. However, it is believed that most chemical reactions occurring in the groundwater zone are likely to be slow compared with transformations mediated by microorganisms. Certain organic groundwater contaminants can be biologically transformed by microorganisms attached to solid surfaces within the aquifer. Factors which affect the rates of biotransformation of organic compounds include: water temperature and pH, the number of species of microorganisms present, the concentration of substrate, and presence of microbial toxicants and nutrients, and the availability of electron acceptors. Transformation of a toxic organic solute is no assurance that it has been converted to harmless or even less harmless hazardous products. Biotransformation of common groundwater contaminants, such as trichloroethene and tetrachloroethene, can result in the formation of such intermediates as vinyl chloride (Mackay, et al., 1985).

The interaction of non-ionic organic compounds with solid phases can also be used to predict the fate of the highly nonpolar organic contaminants (i.e., 4,4'-DDT, PCBs). Sorptive binding is proportional to the organic content of the sorbent. Sorption of non-ionic organic pesticides can be attributed to an active fraction of the soil organic matter (Lyman et al., 1982). The uptake of neutral organics by soils results from their partitioning to the solutes aqueous solubility and to its liquid-liquid (e.g., octanol-water) partition coefficient. Currently, information is available on the interrelation of soil organic properties to the binding of pesticides, herbicides, and high molecular weight pollutants such as PCBs. However, data is lacking for the non-ionic components of solvents and fuels. Organic matrices in natural systems that have varying origins, degrees of humification, and degrees of association with inorganic matrices exhibit dissimilarities in their ability to sorb non-ionic organic contaminants.

The soils and sediments formed or deposited on the land surface can act as a reservoir for inorganic contaminants. Soils contain surface-active mineral and humic constituents involved in reactions that affect metal retention. The surfaces of fine-grained soil particles are very active chemically; surface sites are negatively or positively charged or they are electronically neutral. Oppositely charged metallic counterions from solutions in soils (i.e., groundwater) are attracted to these charged surfaces. The relative proportions of ions attracted to these various sites depends on the degree of acidity or alkalinity of the soil, on its mineralogical composition, and on its content of organic

matter. The extent of adsorption depends on either the respective charges on the adsorbing surface and the metallic cation. In addition to these adsorption reactions, precipitation of new mineral phases also may occur if the chemical composition of the soil solution becomes supersaturated with respect to the insoluble precipitates. Of the probable precipitates, the most important of these phases are hydroxides, carbonates, and sulfides. The precipitation of hydroxide minerals is important for metals such as iron and aluminum. The precipitation of carbonate minerals is significant for calcium and barium; and the precipitation of sulfide minerals dominates the soil chemistry of zinc, cadmium, and mercury. A number of precipitates may form if metals are added to soils. The concentration of metal in solution, will be controlled, at equilibrium, by the solid phase that results in the lowest value of the activity of the metallic ion in solution (Evans, 1989).

5.2.6 Groundwater Discharge to Surface Water

Groundwater discharge to Courthouse Bay Pond and Powerline Pond is likely at Site 65. Groundwater can transport contamination to these ponds, but is dependent on the solubility of the contamination. Like groundwater flow, three general processes govern the flow of the water: advection, dispersion and retardation. These three processes are described in detail in section 5.2.5.

5.2.7 Groundwater Infiltration from the Shallow to the Deep Aquifer

Vertical movement of groundwater from one aquifer system to another, through a semi-confining unit is dependent on a number of factors including: intrinsic permeability of all involved units; density of the fluid (i.e., water and/or contaminant); viscosity of the fluid; hydraulic head; unit thickness; effective porosity; and bulk density of the soil comprising the semi-confining unit. At Site 65, the vertical hydraulic gradient was calculated using the three deep wells (completed below the confining unit) and adjacent shallow wells (screened across the water table). A potential for downward movement through the semi-confining unit exists at the site. Since there is a head difference between the aquifers, migration will continued from the surficial into the Castle Hayne aquifer.

5.3 Fate and Transport Summary

The following paragraphs summarize the contaminant group fate and transport data for contaminants detected in media collected at Site 65.

5.3.1 Volatile Organic Compounds

VOCs tend to be mobile in environmental media as indicated by their presence in groundwater and their corresponding values. Their environmental mobility is a function of high water solubilities, high vapor pressures, low K_{ow} and K_{oc} values, and high mobility indices (see Table 5-1). Without a continuing source, VOCs do not generally tend to persist in environmental media because photolysis, oxidation, and biodegradation figure significantly in their removal.

5.3.2 Polynuclear Aromatic Hydrocarbons

Low water solubilities, high K_{ow} and K_{oc} indicate a strong tendency for PAHs to adsorb to soils. Of the PAHs, fluoranthene, is probably the best marker compound, since it is consistently the most abundant of the PAHs measured and provides the strongest correlation with total PAH values. Benzo(g, h, i) perylene is usually the most abundant compound in soils with low PAH values, but

becomes less important with increasing total PAH values. Other PAHs are benzo(a)anthracene, chrysene, pyrene, benzo(g,h,i) perylene, benzo(b)fluoranthene and phenanthrene. Their mobility indices indicate that they are relatively immobile from a physical-chemical standpoint. An exception is naphthalene, which is considered only slightly immobile because of somewhat higher water solubility (Jones, et al., 1989).

PAHs generally lack adequate vapor pressures to be transmitted via vaporization and subsequent airborne transport. However, surface and shallow surface soil particles containing PAHs could potentially be subject to airborne transport and subsequent deposition, especially during mechanical disturbances such as vehicle traffic or digging (Jones, et al., 1989).

PAHs are somewhat persistent in the environment. In general, their persistence increases with increasing aromatic ring numbers. Photolysis and oxidation may be important removal mechanisms in surface waters and surficial soils, while biodegradation could be an important fate process in groundwater, surface soils or deeper soils. PAHs are ubiquitous in nature. The presence of PAHs in the soil may be the result of aerially deposited material, and the chemical and biological conditions in the soil which result in selective microbial degradation/breakdown.

5.3.3 Pesticides/PCBs

Pesticides/PCBs are persistent and immobile contaminants in environmental media. Pesticides travel at varying rates through soil, mainly due to their affinity for soil surfaces. The soil sorption coefficient (K_d) is the distribution of a pesticide between soil and water. In general, the K_d values are higher for high organic carbon soil than for low organic carbon soils. Therefore, soils with high K_d values will retain pesticides (i.e., 4,4'-DDT, 4,4'-DDE, and 4,4'-DDD). As evidenced by the ubiquitous nature of 4,4'-DDT, 4,4'-DDE, and 4,4'-DDD, volatilization is an important transport process from soils and waters. PCBs have low vapor pressures, low water solubilities, and high K_{oc} and K_{ow} values. Adsorption of these contaminants to soil and sediment is the major fate of these contaminants in the environment.

5.3.4 Inorganics

Inorganics can be found as solid complexes at ambient temperature and pressure in soils at the site. Inorganic ions exist in pure solutions as hydrated ions. Groundwater, as opposed to a pure solution, is a highly complex chemical system which is heavily influenced by the mineralogy of the substrate. Factors affecting the transport of inorganics in saturated soils are interactive and far more complex and numerous than those affecting the transport of organic contaminants.

The most complicated pathway for inorganic contaminants is migration in subsurface soils and groundwaters, where oxidation reduction potential (Eh) and pH play critical roles. Table 5-2 presents and assessment of relative inorganic environmental mobilities as a function of Eh and pH. Soils at MCB, Camp Lejeune are relatively neutral; therefore, inorganics in the subsurface soil should be relatively immobile.

Transport of inorganic species in groundwater is mainly a function of the inorganic's solubility in solution under the chemical conditions of the soil-solution matrix. The inorganic must be dissolved (i.e., in solution) for leaching and transport by advection with the groundwater to occur. Generally, dynamic and reversible processes control solubility and transport of the dissolved metal ions. Such processes include precipitation/dissolution, adsorption/desorption, and ion exchange.

Inorganics could be sorbed onto colloidal materials, theoretically increasing their inherent mobility in saturated porous media. It is important to note; however, that colloids themselves are not mobile in most soil/water systems.

Inorganics, such as arsenic and chromium, depend upon speciation to influence their mobility. Speciation varies with the chemistry of the environmental medium and temporal factors. These variables make the site-specific mobility of an inorganic constituent difficult to assess. As stated in Section 4.5.3, the only metals that exceeded state and/or federal standards in groundwater at the site were iron and manganese. These elements occur historically at elevated levels throughout MCB, Camp Lejeune.

5.4 References

Evans, L.J. 1989. "Chemistry of Metal Retention by Soils." Environment Science Technology, Vol. 23, No. 9. 1989.

Federal Register. April 16, 1993. Vol. 158. No. 72. pp. 21029-21030.

Fetter, C.S., Jr. 1988. <u>Applied Hydrogeology</u>. Charles E. Merrill Publishing Company, Columbus, Ohio.

Ford, K.L. and P. Gurba. 1984. <u>Methods of Determining Relative Contaminant Mobilities and Migration Pathways Using Physical-Chemical Data</u>. Ecology and Environment, Inc. Denver, Colorado.

Jones, Kevin, Jennifer Stafford, Keith Waterhouse, and Nils B. Vogt. 1989. "Organic Contaminants in Welsh Soils, Polyaromatic Hydrocarbons." Environmental Science Technology, Vol. 23, No. 5. 1989.

Laskowski, et al. 1983. "Terrestrial Environment in Environmental Risk Analysis for Chemicals." Environmental Risk Analysis for Chemicals. R.A. Conway, ed., Van Nostrand Reinhold Company. New York, New York.

Lyman, et al. 1982. <u>Handbook of Chemical Property Estimation Methods</u>. Environmental Behavior of Organic Compounds. 1982.

MacKay, D.M., P.V. Roberts, and J.A. Cherry. 1985. "Transport of Organic Chemicals in Groundwater."

SECTION 5.0 TABLES

TABLE 5-1

PHYSICAL AND CHEMICAL PROPERTIES OF ORGANIC COMPOUNDS SITE 65 - ENGINEER AREA DUMP REMEDIAL INVESTIGATION, CTO-312 MCB, CAMP LEJEUNE, NORTH CAROLINA

COPCs	Vapor Pressure (mm Hg)	Water Solubility (mg/L)	Log K _{ow}	Log K _{oc}	Specific Gravity (g/cm³)	Henry's Law Constant (atm-m³/mole)	Mobility Index
VOLATILE ORGANIC COMPOUNDS							
Carbon disulfide	3.6×10^{02}	1.2 x 10 ⁰³	2.0	1.73	1.263	3.0 x 10 ⁻⁰²	3.9
Ethyl benzene	9.6	1.7 x 10 ⁰²	3.2	3.04	0.867	8.4 x 10 ⁻⁰³	0.2
Xylenes Total	10	1.98 x 10 ⁰²	3.26	2.38	0.87	7.04 x 10 ⁻⁰³	0.9
SEMIVOLATILE ORGANIC COMPOUNDS							
2,4-Dimethylphenol	9.8 x 10 ⁻⁰²	6.2 x 10 ⁰³	2.30	1.98	NA	6.30 x 10 ⁻⁰⁷	NA
Acenaphthene	1.5 x 10 ⁻⁰³	3.42	4.33	1.25	0.994	1.50 x 10 ⁻⁰⁴	2.5
Anthracene	9.6 x 10 ⁻⁰⁴	1.0	4.45	4.20	1.24	2.25 x 10 ⁻⁰⁴	-7.2
Benzo(a)anthracene	2.2 x 10 ⁻⁰⁸	5.7 x 10 ⁻⁰³	5.61	5.34	NA	7.34 x 10 ⁻⁰⁷	-15.2
Benzo(a)pyrene	5.6 x 10 ⁻⁰⁹	3.8 x 10 ⁻⁰³	6.04	NA	1.274	4.90 x 10 ⁻⁰⁷	NA
Benzo(b)fluoranthene	5.0 x 10 ⁻⁰⁷	1.0 x 10 ⁻⁰³	6.08	NA	NA	1.66 x 10 ⁻⁰⁴	NA
Benzo(g,h,i)perylene	1.0 x 10 ⁻¹⁰	3.0 x 10 ⁻⁰⁴	6.51	NA	NA	1.21 x 10 ⁻⁰⁷	NA
Benzo(k)fluoranthene	5.0 x 10 ⁻⁰⁷	5.5 x 10 ⁻⁰⁴	6.08	NA	NA	3.02 x 10 ⁻⁰⁴	NA
Bis(2-ethylhexyl)phthalate	9.8 x 10 ⁻⁰⁶	0.34	5.11	8.73	0.99	1.5 x 10 ⁻⁰⁵	-14.2
Carbazole	7.0 x 10 ⁻⁰⁴	1.2	NA	3.72	1.1	NA	NA
Chrysene	6.3 x 10 ⁻⁰⁹	1.8 x 10 ⁻⁰³	5.61	5.44	1.274	1.10 x 10 ⁻⁰⁶	-16.3
Di-n-butyl phthalate	7.3 x 10 ⁻⁰⁵	11	5.23	5.2	1.047	NA	-8.3
Dibenzo(a,h)anthracene	1 x 10 ⁻¹⁰	2.5 x 10 ⁻⁰⁶	6.52	6.5	NA	1.2 x 10 ⁻⁰⁴	-22.1
Dibenzofuran	NA	10	3.9-4.1	4.12-4.31	1.089	NA	NA
2,4 Dinitrophenol	NA	NA	NA	NA	NA	NA	NA
Fluoranthene	5.0 x 10 ⁻⁰⁶	0.265	5.33	4.64	NA	5.12 x 10 ⁻⁰⁶	-10.5
Fluorene	1.0 x 10 ⁻⁰²	1.69	4,2	3.65	NA	1.29 x 10 ⁻⁰³	-5.4

Note:

NA = Not Available

TABLE 5-1 (Continued)

PHYSICAL AND CHEMICAL PROPERTIES OF ORGANIC COMPOUNDS SITE 65 - ENGINEER AREA DUMP REMEDIAL INVESTIGATION, CTO-312 MCB, CAMP LEJEUNE, NORTH CAROLINA

	Vapor Pressure	Water Solubility			Specific Gravity	Henry's Law Constant	
COPCs	(mm Hg)	(mg/L)	Log K _{ow}	Log K _{oc}	(g/cm³)	(atm-m³/mole)	Mobility Index
Indeno(1,2,3-cd)pyrene	1.0 x 10 ⁻¹⁰	5.3 x 10 ⁻⁰⁴	6.51	NA	NA	6.0 x 10 ⁻¹⁰	NA
2-Methynaphthalene	NA	insoluble	3.03	3.6	1.006	NA	NA
Naphthalene	8.2 x 10 ⁻⁰²	31.7	3.60	2.97	1.152	4.83 x 10 ⁻⁰⁴	-2.5
Phenanthrene	9.6 x 10 ⁻⁰⁴	1.29	4.46	4.2	1.025	2.25 x 10 ⁻⁰⁴	-7.2
Pyrene	2.5 x 10 ⁻⁰⁶	0.14	5.32	4.91	1.271	5.10 x 10 ⁻⁰⁶	-11.90
PESTICIDES/PCBs							
Beta-BHC	2.8 x 10 ⁻⁰⁷	0.70	3.35	3.80	NA	NA	-10
4,4'-DDD	1.0 x 10 ⁻⁰⁶	0.16	6.2	5,9	NA	4 x 10 ⁻⁰⁶	-12.7
4,4'-DDE	6.5 x 10 ⁻⁰⁶	0.12	7.0	6.6	NA	2.1 x 10 ⁻⁰⁵	-10.0
4,4'-DDT	1.9 x 10 ⁻⁰⁷	3.4 x 10 ⁻⁰³	6.19	5.4	NA	8.3 x 10 ⁻⁰⁶	-14.6
Endosulfan I	NA	NA	NA	NA	NA	NA	NA
Endosulfan II	1.5 x 10 ⁻⁰⁵	0.51	3.83	3.31	NA	1.1 x 10 ⁻⁰⁵	-8.6
Endrin Aldehyde	3.0 x 10 ⁻⁰⁶	2.5 x 10 ⁻⁰⁴	3.92	4.56	NA	7.52 x 10 ⁻⁰⁶	-13
Heptachlor epoxide	1.95 x 10 ⁻⁰⁵	0.20	5.40	NA	NA	3.20 x 10 ⁻⁰⁵	NA
alpha-Chlordane	9.8 x 10 ⁻⁰⁶	5.6 x 10 ⁻⁰²	5.54	NA	NA	4.85 x 10 ⁻⁰⁵	-11.4
gamma-Chlordane	9.8 x 10 ⁻⁰⁶	5.6 x 10 ⁻⁰²	5.54	NA	NA	4.85 x 10 ⁻⁰⁵	-11.4
PCB-1260	4.1 x 10 ⁻⁰⁵	2.7 x 10 ⁻⁰³	6.8	5.72	1.58	4.6 x 10 ⁻⁰³	-12.7

Notes:

NA = Not Available

References:

ATSDR, 1989 Clement, 1985 Howard, 1989-1991 Montgomery, 1990 Sax and Lewis, 1987 SCDM, 1991, 1992 SPHEM, 1986 USEPA, 1986 USEPA, 1986a Verscheuren, 1983

TABLE 5-2

RELATIVE MOBILITIES OF INORGANICS AS A FUNCTION OF ENVIRONMENTAL CONDITIONS (Eh, pH) SITE 65, ENGINEER AREA DUMP REMEDIAL INVESTIGATION CTO-0312 MCB CAMP LEJEUNE, NORTH CAROLINA

	Environmental Conditions					
Relative Mobility	Oxidizing	Acidic	Neutral/ Alkaline	Reducing		
Very high			Se			
High	Se, Zn	Se, Zn, Cu, Ni, Hg, Ag				
Medium	Cu, Ni, Hg, Ag, As, Cd	As, Cd	As, Cd			
Low	Pb, Ba, Se	Pb, Ba, Be	Pb, Ba, Be			
Very Low	Fe, Cr	Cr	Cr, Zn, Cu, Ni, Hg, Ag	Cr, Se, Zn, Cu, Ni, Hg, Pb, Ba, Be, Ag		

Notes:

Se	=	Selenium	Cd	=	Cadmium
Zn	-	Zinc	Ba	=	Barium
Cu	=	Copper	Pb	==	Lead
Ni	=	Nickel	Fe	=	Iron
Hg	=	Mercury	Cr	=	Chromium
Ag	==	Silver	Be	=	Beryllium
As	=	Arsenic	Zn	=	Zinc

Source:

Swartzbaugh, et al., "Remediating Sites Contaminated with Heavy Metals." Hazardous Materials Control, November/December 1992.

6.0 BASELINE RISK ASSESSMENT

6.1 Introduction

This Baseline Risk Assessment (BRA) evaluates the projected impact of contaminants of potential concern (COPCs) on human health and/or the environment, now and in the future, in a "no further remedial action scenario". The BRA process examines the data generated during the sampling and analytical phase of the RI, identifying areas of concern and COPCs with respect to geographical, demographic, physical and biological characteristics of the study area. These factors are combined with an understanding of physical and chemical properties of site-associated constituents relative to environmental fate and transport processes, and are then used to estimate contaminant concentrations at logical exposure pathway endpoints. Finally, contaminant intake levels are calculated for hypothetical receptors. Toxicological properties are applied in order to estimate potential public health threats posed by detected contaminants.

The BRA for Operable Unit (OU) No. 9, Site 65 has been conducted in accordance with current USEPA Risk Assessment Guidance (USEPA, 1989a and USEPA, 1991a) and USEPA Region IV Supplemental Risk Guidance (USEPA, 1991b).

The components of the BRA include:

- Identification of contaminants of potential concern
- The exposure assessment
- The toxicity assessment
- Risk characterization
- Uncertainty analysis
- Conclusions of the BRA and potential site risk

The BRA is divided into eight sections, including the introduction. Section 6.2 presents criteria for selecting COPCs. COPCs are chosen, for each environmental medium at each site, from an overall list of detected contaminants. Section 6.3 lists site characteristics, identifies potential exposure pathways, and describes current and future exposure scenarios. In section 6.4, potential exposure is calculated by estimating daily intakes, incremental cancer risks and hazard indices. In addition, advisory criteria for evaluating human health risk is presented. Section 6.5 addresses risk characterization. Section 6.6 addresses sources of uncertainty in the BRA. Section 6.7 provides conclusions regarding potential human health impacts, in terms of total site risk. Section 6.8 lists references sited in the BRA text. Referenced tables and figures are presented after the text portion of this section.

6.2 Contaminants of Potential Concern

COPCs are site-related contaminants used to quantitatively estimate potential human exposures and associated health effects. Six environmental media were investigated during this RI: surface soil, subsurface soil, groundwater, surface water, sediment, and fish tissue. This section presents COPC selection for these media.

6.2.1 Criteria for Selecting Contaminants of Potential Concern

Criteria used in selecting COPCs from constituents detected during the field sampling and analytical phase of the investigation are:

- Historical information
- Comparison to background or naturally occurring levels
- Comparison to field and laboratory blank data
- Comparison to USEPA Region III Contaminants of Concern (COCs)
- Prevalence
- Federal and State criteria and standards
- Toxicity
- Comparison to anthropogenic levels
- Persistence
- Mobility

USEPA's Risk Assessment Guidance for Superfund (USEPA, 1989a) provides the criteria used to establish COPCs. COPC selection also involves comparing detected concentrations to additional contaminant-specific criteria. A brief description of the selection criteria used in choosing final COPCs is presented below. A contaminant must not necessarily fit into all of these categories to be retained as a COPC.

6.2.1.1 Historical Information

Using historical information to associate contaminants with site activities, when combined with the following selection procedures, helps determine contaminant retention or elimination.

6.2.1.2 Background or Naturally-Occurring Levels

Naturally-occurring levels of chemicals are present under ambient conditions. Generally, a comparison to naturally-occurring levels applies only to inorganic analytes, because the majority of organic contaminants are not naturally occurring. Background samples are collected from areas that are known to be uninfluenced by site contamination. An inorganic concentration is considered site-related only if it exceeds two times the mean concentration estimated for the site-specific, background samples. The mean for surface soil inorganics was estimated using results from 41 sample locations. The mean for subsurface soil inorganics was estimated using results from 35 sample locations.

Background soil data is presented in Appendix L.

6.2.1.3 Contaminant Concentrations in Blanks

Associating contaminants detected in field related QA/QC samples (i.e., trip blanks, equipment rinsates and/or field blanks) or laboratory method blanks with the same contaminants detected in analytical samples can eliminate non-site-related contaminants from the list of COPCs. Blank data should be compared to sample results with which the blanks are associated; however, due to the comprehensive nature of data sets, it is difficult to associate specific blanks with specific environmental samples. Thus, in order to evaluate contaminant levels, maximum contaminant concentrations reported in a given set of blanks are applied to an entire data set for a given medium.

In accordance with the National Functional Guidelines for Organics, common lab contaminants (i.e., acetone, 2-butanone, methylene chloride, toluene, and phthalate esters) should be regarded as a direct result of site activities only when sample concentrations exceed 10 times the maximum detected blank concentration. For other contaminants not considered common in a lab, concentrations exceeding five times the maximum blank concentration indicate contamination resulting from site activities (USEPA, 1991).

When evaluating contaminant concentrations in soil, Contract Required Quantitation Limits (CRQLs) and percent moisture are employed, in order to correlate solid and aqueous detection limits. The CRQLs for semivolatiles (SVOCs) and pesticide/PCBs in soil are either 33 or 66 times that of aqueous samples, depending on the contaminant. In order to assess SVOC and pesticide/PCB contaminant levels in soil using aqueous blanks, blank concentrations must be multiplied by 33 or 66 to account for variance from the CRQL. The final value is divided by the sample percent moisture, in order to account for the aqueous-to-solid blank medium adjustment.

Eliminating a sample result correlates directly to a reduction in the contaminant prevalence in that medium. Consequently, if elimination due to blank concentration reduces the prevalence of a contaminant to less than five percent, a contaminant that may have been previously included according to its prevalence is eliminated as a COPC. Maximum concentrations of common laboratory contaminants detected in blanks are presented in Table 6-1.

Blanks containing organic constituents that are not considered common laboratory contaminants (i.e., all other TCL compounds) are regarded as positive results only when observed concentrations exceed five times the maximum concentration detected in any blank (USEPA, 1989b). All TCL compounds at concentrations less than five times the maximum level of contamination noted in any blank are considered not detected in that sample. Maximum concentrations of other contaminants detected in blanks are presented in Table 6-1.

6.2.1.4 USEPA Region III COC Screening Values

Contaminant of concern (COC) screening values are derived using conservative USEPA promulgated default values and the most recent toxicological criteria available. COC screening values for potentially carcinogenic and noncarcinogenic chemicals are individually derived based on a target incremental lifetime cancer risk (ICR) of 1.0E-06 and a target hazard quotient of 0.1, respectively. For potential carcinogens, the toxicity criteria applicable to the derivation of COC screening values are oral and inhalation cancer slope factors; for noncarcinogens, they are chronic oral and inhalation reference doses. These toxicity criteria are subject to change as more updated information and results from the most recent toxicological/epidemiological studies become available. Therefore, the use of toxicity criteria in the derivation of COC screening values requires that the screening concentrations be updated periodically to reflect changes in the toxicity criteria.

Since the most recent COC screening values table was issued by USEPA in March 1994, the values from these tables can be updated by incorporating information from another set of tables containing risk-based concentrations (RBCs) that are issued by USEPA Region III on a semi-annual basis. The RBCs are derived using the same equations and USEPA promulgated default exposure assumptions that were used by Region III to derive the COC screening values. In addition, the quarterly RBCs for potentially carcinogenic chemicals are based on a target ILCR of 1.0E-06. The only difference in the derivation methodologies for the COC screening values and the RBCs is that the RBCs for noncarcinogens are based on a target hazard quotient of 1.0 rather than 0.1. The COC screening

values for noncarcinogens are derived based on a target hazard quotient of 0.1, to account for cumulative risk from multiple chemicals in a medium. Re-derivation of the semi-annual noncarcinogenic RBCs based on a target hazard quotient of 0.1, while using the most recent toxicological criteria available, results in a set of values that can be used as COC screening values. In other words, COC screening values can be updated every six months by using the carcinogenic RBCs issued semi-annually USEPA Region III and dividing the accompanying noncarcinogenic RBCs by a factor of 10.

6.2.1.5 Prevalence

The frequency of positive detections in sample sets and the level at which a contaminant is detected in a given medium are factors that determine a chemical's prevalence. The frequency of detection for a contaminant is determined as the number of positive detections of the contaminant out of the total number of samples analyzed for that contaminant. Contaminants that are infrequently detected, (i.e., less than 5 percent when at least 20 samples of a medium are available) do not necessarily indicate contamination. Such detections may result from certain sampling or analytical practices. A contaminant may not be retained for quantitative evaluation in the BRA if: (1) it is detected infrequently in an environmental medium; (2) it is absent or detected at low concentrations in other media; or (3) site history does not provide evidence to suggest that the contaminant should be present.

6.2.1.6 State and Federal Criteria and Standards

Contaminant concentrations in aqueous media can be compared to contaminant-specific state and federal criteria. This risk assessment utilizes North Carolina Water Quality Standards (NCWQS) for groundwater and surface water. The only enforceable federal regulatory standards for drinking water are federal Maximum Contaminant Levels (MCLs).

Regulatory guidelines are used, when necessary, to infer potential human health risks and environmental impacts. Relevant regulatory guidelines include Ambient Water Quality Criteria (AWQC) for surface water and Health Advisories (HA) for drinking water.

Chemical-specific criteria and standards for soil are generally not available; however, base-specific, background concentrations have been compiled in order to evaluate background levels of organic and inorganic constituents in surface and subsurface soil at MCB, Camp Lejeune.

Tables 6-2 through 6-9 present analytical data from samples collected during the RI compared to applicable standards and criteria. A brief explanation of the criteria and standards used for qualitative evaluation of COPCs is presented below.

North Carolina Water Quality Standards (Groundwater) - NCWQSs are the maximum allowable concentrations, resulting from any discharge of contaminants to the lands or waters of the state, that may be tolerated without threatening human health or otherwise rendering the groundwater unsuitable for its intended purposes.

Maximum Contaminant Levels - MCLs are enforceable standards for public water supplies, designed to protect human health and promulgated under the Safe Drinking Water Act. MCLs also account for the technical feasibility of removing contamination from a public water supply. MCLs are based on laboratory or epidemiological studies and are applied to analyses of drinking water

supplies consumed by a minimum of 25 persons. MCLs establish limits under which 70 kg adults, drinking 2 liters of water a day for 70 years, can avoid detrimental health effects.

Health Advisories - HAs are guidelines developed by the USEPA Office of Drinking Water for nonregulated constituents in drinking water. These guidelines are designed to consider both acute and chronic toxic effects in children (assumed body weight 10 kg) who consume 1 liter of water per day or in adults (assumed body weight 70 kg) who consume 2 liters of water per day. HAs are generally available for acute (1 day), subchronic (10 days), and chronic (longer-term) exposure scenarios. These guidelines are designed to consider only threshold effects and, as such, are not used to set acceptable levels for potential human carcinogens.

North Carolina Water Quality Standards (Surface Water) - The NCWQSs for surface water are the standard concentrations that, either alone or in conjunction with other wastes in surface waters, will neither render waters injurious to aquatic life, wildlife, or public health, nor impair the waters for any designated use.

Ambient Water Quality Criteria - AWQCs are non-enforceable regulatory guidelines and are of primary utility in assessing acute and chronic toxic effects in aquatic systems. They may also be used for identifying the potential for human health risks. AWQCs consider acute and chronic effects in both freshwater and saltwater aquatic life, and potential carcinogenic and noncarcinogenic health effects in humans from ingestion of both water (2 liters/day) and aquatic organisms (6.5 grams/day), or from ingestion of water alone (2 liters/day). The human health AWQCs for potential carcinogenic substances are based on the USEPA's specified incremental cancer risk range of one additional case of cancer in an exposed population of 10,000,000 to 100,000 (i.e. the 10E-7 to 10E-5 range).

6.2.1.7 <u>Toxicity</u>

Contaminant toxicity assessment must be incorporated when selecting COPCs with respect to human health risk. Toxic properties to be considered in COPC selection include weight-of-evidence classification, carcinogenicity, mutagenicity, teratogenicity, systemic effects and reproductive toxicity. Bioaccumulation and bioconcentration properties may affect the severity of toxic response in an organism and/or subsequent receptors; these additional properties are evaluated if relevant data exist.

Despite their inherent toxicity, certain inorganic contaminants are essential nutrients (eg., calcium, iron). As such, these contaminants need not be considered in a quantitative risk assessment, if one of the following conditions applies: (1) they are detected at relatively low concentrations, (i.e., below two times average base-specific background levels or slightly elevated above naturally occurring levels) or (2) the contaminant is toxic at doses much higher than those which can be assimilated through exposures at the site.

6.2.1.8 Anthropogenic Levels

Ubiquitous anthropogenic background concentrations result from sources of contamination not related to the site, such as combustion of fossil fuels (i.e., automobiles), plant synthesis, natural fires and factories. Polynuclear aromatic hydrocarbons (PAHs) are examples of ubiquitous, anthropogenic chemicals. Sometimes it is difficult to determine whether contamination is related to past site activities, or caused by contaminant-producing activities that are not site-related (i.e., anthropogenic). It follows that systematically omitting anthropogenic background chemicals from the risk assessment

may produce false negative results. For this reason, anthropogenic chemicals are typically not eliminated as COPCs without considering other selection criteria.

The remaining sections apply the aforementioned selection criteria, beginning with prevalence of detected analytical results in each medium of interest, in order to establish a preliminary list of COPCs for Site 65. Once this task is completed, a final list of media-specific COPCs is selected using the remaining criteria (persistence, mobility, toxicity, ARARs, RBCs, blank concentrations, background concentrations, and anthropogenic concentrations).

6.2.1.9 Persistence

Contaminant persistence in the environment varies in accordance with factors such as microbial content in soil and water, organic carbon content, contaminant concentration, climate and potential for microbes to degrade a contaminant under site conditions. In addition, chemical degradation, (i.e., hydrolysis) photochemical degradation and certain fate processes such as absorption may contribute to the elimination or retention of a particular compound in a given medium.

6.2.1.10 Mobility

A contaminant's physical and chemical properties are responsible for its transport in the environment. These properties, in conjunction with site conditions, determine whether a contaminant will have a greater tendency to volatilize into the air, out of surface soils or surface waters, or to relocate via advection or diffusion through soils, groundwaters, and surface waters. Physical and chemical properties also determine tendency for contaminant adsorption onto soil/sediment particles. In summary, environmental mobility factors can increase or decrease contaminant effects on human health and/or the environment.

6.2.2 Selection of Contaminants of Potential Concern

The following sections present an overview of the analytical data obtained for each environmental medium during the RI and the subsequent retention or elimination of COPCs using the aforementioned selection criteria. Summaries of the analytical data are provided in Table 6-2 through 6-9 and aided in the selection of COPCs in each environmental medium. Worksheets used for COPC selection are presented in Appendix S.

6.2.2.1 Surface Soil

Table 6-2 shows that thirteen surface soil samples were analyzed for volatile organic contaminants (VOCs). Toluene was detected in three of 13 samples, at a maximum concentration of 2 μ g/kg. This value is less than the corresponding residential soil COC screening value and toluene is not retained as a COPC. In addition, toluene was detected in blanks at a concentration of 4 μ g/kg. Methylene chloride and total xylenes were detected in two of 13 samples at concentrations less than their respective COC screening values for residential soil. Methylene chloride was also detected in blanks at a concentration of 1 μ g/kg. These compounds were not retained as surface soil COPCs. Finally, acetone, trichloroethene, and ethylbenzene were each detected in one out of 13 samples at concentrations below the corresponding residential soil COC screening values. Acetone was also detected in blanks at a concentration of 93 μ g/kg. Therefore, no VOCs are retained as surface soil COPCs.

Thirteen surface soil samples were analyzed for SVOCs. Acenaphthene, 2,4-dinitrophenol, dibenzofuran, fluorene, anthracene, and carbazole were detected in one out of 13 samples. In each case, maximum concentrations are less than respective residential soil COC screening values. These compounds were not retained as surface soil COPCs. Di-n-butylphalate, benzo(k)fluoranthene, indeno(1,2,3-cd)pyrene, and benzo(g,h,i,)perylene were detected in two of 13 samples at concentrations less than corresponding COC screening values for residential soil. These compounds were not retained as surface soil COPCs. Phenanthrene, fluoranthene, pyrene, benzo(a)anthracene, chrysene, and benzo(b)fluoranthene were detected in three out of 13 samples. In all instances, maximum concentrations are less than respective COC screening values. In addition, bis(2-ethylhexyl)phthalate, a common laboratory contaminant, was detected in nine out of 13 samples. However, the maximum concentration detected is below the COC screening value for bis(2-ethylhexyl)phthalate in residential soils. Therefore, bis(2-ethylhexyl)phthalate is not retained as a surface soil COPC.

Benzo(a)pyrene was detected in two of 13 samples, a frequency greater than 5 percent. At 400 μ g/kg, its maximum concentration exceeds its residential soil COC screening value. In addition, dibenzo(a,h)anthracene was detected in two out of 13 samples. Furthermore, its maximum concentration of 150 μ g/kg exceeds its residential soil COC screening value. Consequently, these SVOCs are retained as COPCs in surface soil.

Thirteen surface soil samples were analyzed for pesticides/PCBs. Heptachlor epoxide, endosulfan II, Aroclor-1260, 4,4'-DDD, 4,4'-DDE, and 4,4'-DDT were detected at concentrations less than respective residential soil COC screening values. Therefore, no pesticide/PCBs are retained as surface soil COPCs.

Table 6-3 shows that thirteen surface soil samples were analyzed for inorganic contaminants. Aluminum, barium, chromium, copper, manganese, nickel, vanadium and zinc were detected at maximum concentrations less than respective residential soil COC screening values. Lead was detected in 13 of 13 samples at a maximum concentration of 178 mg/kg, which is less than the USEPA lead action level for soil of 400 mg/kg. For this reason, these inorganics are not retained as COPCs. Calcium, magnesium, potassium and sodium are not retained as COPCs, because these inorganics are considered essential nutrients.

Iron was detected in all surface soil samples. Its maximum concentration of 16,400 mg/kg exceeds the respective background level and residential soil COC screening value. Thallium was detected in one of 13 samples at a concentration of 2.3 mg/kg that exceeds its residential soil COC screening value. Consequently, manganese and thallium are retained as surface soil COPCs.

6.2.2.2 Subsurface Soil

Table 6-4 shows that 19 subsurface soil samples (13 subsurface soil samples and six test pit samples) were analyzed for VOCs. Acetone, carbon disulfide, 2-butanone, trichloroethene, toluene, and total xylenes were detected at maximum concentrations less than respective residential soil COC screening values. For this reason, none of the VOCs detected are retained as COPCs.

Nineteen subsurface soil samples were analyzed for SVOCs. The following SVOCs are not retained as COPCs, because they were detected at maximum concentrations less than respective residential soil COC screening values: naphthalene, 2-methylnaphthalene, acenaphthene, fluorene, dibenzofuran, phenanthrene, anthracene, carbazole, di-n-butylphtalate, fluoranthene, pyrene, chrysene,

bis(2-ethylhexyl)phthalate, benzo(b)fluoranthene, benzo(k)fluoranthene, ideno(1,2,3-cd)pyrene, and benzo(g,h,i)perylene.

Benzo(a)anthracene and benzo(a)pyrene were detected at a relatively low frequency of two of 19 samples. However, in each case, the maximum concentrations of 900µg/kg and 680 µg/kg, respectively, exceed the corresponding residential soil COC screening values. For this reason, benzo(a)anthracene and benzo(a)pyrene are retained as subsurface soil COC screening values.

Nineteen subsurface soil samples were analyzed for pesticides/PCBs. The following pesticide/PCBs are not retained as COPCs, because they were detected at maximum concentrations less than respective residential soil COC screening values: endosulfan I, 4,4'-DDE, 4,4'-DDE, 4,4'-DDT, endrin aldehyde, alpha-chlordane, and gamma-chlordane.

Table 6-5 shows that 19 subsurface soil samples were analyzed for inorganic contaminants. The following inorganics are not retained as COPCs because they were detected at concentrations less than respective residential soil COC screening values: barium, cadmium, chromium, cobalt, selenium, silver, vanadium and zinc. Calcium, magnesium, potassium and sodium are not retained as COPCs because these inorganics are considered essential nutrients.

Aluminum, iron, and manganese were detected in all nineteen subsurface soil samples. The maximum concentrations for these analytes (10,600 mg/kg, 31,300 mg/kg, and 471 mg/kg, respectively) exceeded background levels as well as the corresponding COC screening values for residential soil. Lead was also detected in all samples at a maximum concentration (539 mg/kg) exceeding both background and the lead action level. For this reason, aluminum, iron, lead, and manganese are retained as subsurface soil COPCs. In addition, antimony, arsenic, copper, nickel, and thallium were detected in subsurface soil samples at concentrations exceeding background and/or residential soil COC screening values. Therefore, these analytes are also retained as subsurface soil COPCs.

6.2.2.3 Groundwater

Table 6-6 shows that eleven groundwater samples were analyzed for VOCs. Methylene chloride and acetone, common laboratory contaminants, were detected at fairly high frequencies of six of 11 and seven of 11, respectively. They were not retained as COPCs; however, because the maximum sample concentrations (2 μ g/L and 7 μ g/L, respectively) are less than the tap water COC screening values. 1,2-Dichloroethane was detected in eight of 11 groundwater samples at a maximum concentration of 2 μ g/L. It was also detected in the blanks at a concentration of 2 μ g/L. Since the maximum concentration of 1,2-dichloroethane does not exceed five times the blank concentration of this contaminant, it is not retained as a COPC. 2-Butanone was detected in three of 11 samples. This compound is not retained as a groundwater COPC because its maximum concentration is below the corresponding tap water COC screening value.

Carbon disulfide was detected in one of 11 samples at a maximum concentration of 5 μ g/L. It is retained as a COPC since it exceeded its tap water screening value.

Eleven groundwater samples were analyzed for SVOCs. Naphthalene and di-n-butylphthalate were detected at maximum concentrations less than respective tap water COC screening values. For this reason, these SVOCs are not retained as COPCs. Bis(2-ethylhexyl)phthalate was detected in blanks at 2 μ g/L. Because bis(2-ethylhexyl)phthalate is a common lab contaminant, this concentration is multiplied by 10 to yield a blank concentration of 20 μ g/L. Bis(2-ethylhexyl)phthalate was detected

in five of 11 samples, at a maximum concentration of 6 μ g/L. Because the sample concentration is less than the concentration in blanks, bis(2-ethylhexyl)phthalate is not retained as a COPC.

No pesticides/PCBs were detected in the groundwater samples; therefore, none were retained as COPCs.

Eleven groundwater samples were analyzed for inorganic contaminants. Aluminum, barium, chromium, cobalt, nickel, and zinc were detected at maximum concentrations less than respective tap water COC screening values. Lead was detected at a maximum concentration less than its action level for drinking water. Calcium, magnesium, potassium, and sodium are not retained as COPCs, because these inorganics are considered essential nutrients.

Manganese was detected in all 11 groundwater samples at a maximum concentration of 186 μ g/L. Iron was detected in 10 of 11 groundwater samples at 6,580 μ g/L. These concentrations exceed the corresponding tap water COC screening values. Therefore, manganese and iron are retained as groundwater COPCs.

6.2.2.4 Surface Water

Table 6-7 shows that two surface water samples were analyzed for VOCs. Acetone, a common laboratory contaminant, was detected in one of two samples at a maximum concentration of 5 μ g/L. It was also detected in the blanks at a concentration of 44 μ g/L. For this reason, acetone is not retained as a surface water COPC. 1,2-Dichloroethane was detected in both surface water samples at 1 μ g/L. It was also; however, detected in blanks at 2 μ g/L. As 1,2-dichloroethane is considered a contaminant not common to the laboratory, the blank concentration is multiplied by a factor of five to yield a blank concentration. of 5 μ g/L. The 1,2-dichloroethane concentration in the samples is less than the blank concentration, so it is not retained as a COPC.

No SVOCs were detected in surface water; therefore, none were retained as COPCs.

No pesticides/PCBs were detected in surface water samples; therefore, none were retained as COPCs.

Two surface water samples were analyzed for inorganic contaminants. Chromium was detected at a concentration less than its NCWQS and was therefore, not retained as a surface water COPC. Calcium, magnesium, potassium, and sodium were detected in the surface water samples. However, these inorganics are not retained as COPCs, because they are considered essential nutrients.

Aluminum, barium, copper, iron, lead, manganese, vanadium, and zinc were detected in surface water samples. Copper, iron, lead, and zinc were detected at maximum concentrations that exceeded corresponding NCWQS and retained as surface water COPCs. There were no NCWQS for aluminum, barium, manganese, and vanadium For this reason, these analytes are also retained as surface water COPCs.

6.2.2.5 Sediment

Table 6-8 shows that four sediment samples were analyzed for VOCs. Toluene, a common laboratory contaminant, was detected in three of four sediment samples at maximum concentration of 7 μ g/kg. This contaminant was also detected in blanks at 4 μ g/L. When the blank concentrations of toluene

is multiplied by 10, the concentrations for comparison becomes 40 µg/kg. Consequently, toluene is not retained as a COPC.

Acetone, chloroform, 2-butanone, carbon tetrachloride, and tetrachloroethene were detected in all sediment samples at a maximum concentrations less than their respective residential soil COC screening values. Therefore, these VOCs were not retained as sediment COPCs.

Four sediment samples were analyzed for SVOCs. Di-n-butylphthalate was detected in all sediment samples at a maximum concentration less than its residential soil COC screening value. Di-n-butylphalate is not retained as a sediment COPC.

Four sediment samples were analyzed for pesticides/PCBs. Beta-BHC, 4,4'-DDE, and 4,4'-DDD were detected at maximum concentrations less than their respective soil COC screening values. Therefore, beta-BHC, 4,4'-DDE, and 4,4'-DDD are not retained as sediment COPCs.

Four sediment samples were analyzed for inorganic contaminants. Calcium, magnesium, potassium, and sodium were detected frequently, but these inorganics are not retained as COPCs because they are considered essential nutrients.

Aluminum, antimony, chromium, and iron were detected in sediment samples at maximum concentrations that exceeded corresponding soil RBCs. Consequently, these analytes are retained as sediment COPCs. Barium, cobalt, copper, lead, manganese, vanadium, and zinc were detected in sediment samples at maximum concentrations less than corresponding soil COC screening values. Therefore, these inorganics were not retained as sediment COPCs.

6.2.2.6 Fish Tissue

Table 6-9 shows that four fillet fish tissue samples were analyzed for VOCs. Acetone was detected at a frequency of two in four samples. The maximum detected concentration was 7,900 μ g/kg. It was not retained as a COPC since the maximum concentration is less than the fish tissue COC screening value.

No SVOCs were detected in the fillet fish tissue samples; therefore, none were retained as COPCs.

Four fillet fish tissue samples were analyzed for pesticides/PCBs. 4,4'-DDD was detected in one of four samples at a concentration of 5.7 µg/kg. This concentration is less than the fish COC screening value for 4,4'-DDD. Therefore, 4,4'-DDD was not retained as a fish tissue COPC.

Four fillet fish tissue samples were analyzed for inorganic contaminants. Copper, manganese, selenium, and zinc were detected at high frequencies, but in each case maximum concentrations are less than the fish tissue COC screening values. Aluminum and barium were detected in one out of four samples at concentrations less than the respective COC screening values. Calcium, magnesium, potassium, and sodium were found in all samples; however, these inorganics are not retained as COPCs because they are considered essential nutrients.

Mercury was detected in all four samples with concentrations ranging from 0.051 mg/kg to 0.3 mg/kg. All concentrations exceed the fish COC screening value for mercury. Thallium was detected in 3 of 4 sediment samples at a maximum concentration of 0.11 mg/kg, which exceeds the fish tissue COC screening value. Consequently, mercury and thallium are retained as fish tissue COPCs.

6.2.2.7 Summary of COPCs

Table 6-10 presents a detailed summary of COPCs identified in each environmental medium sampled at Site 65.

6.3 Exposure Assessment

This section addresses potential human exposure pathways at Site 65 and presents the rationale for their evaluation. Potential source areas and potential migration routes, in conjunction with contaminant fate and transport information, are combined to produce a site conceptual model. Exposure pathways to be retained for quantitative evaluation are subsequently selected, based on the conceptual site model.

6.3.1 Conceptual Site Model of Potential Exposure

A conceptual site model of potential sources, migration pathways and human receptors is developed to encompass all current and future routes for potential exposure at Site 65. Figure 6-1 presents the Site 65 conceptual model. Inputs to the conceptual model include qualitative descriptions of current and future land use patterns in the vicinity of Site 65. All available analytical data and meteorological data are considered, in conjunction with a general understanding of surrounding habitat demographics. The following list of receptors is developed for a quantitative health risk analysis:

- Future on-site residents (child and adult)
- Current military personnel in training
- Current military recreational user
- Current fisherman (child and adult)
- Future construction worker

Contaminants detected in surface and subsurface soils are discussed in Section 4.0 (Nature and Extent of Contamination) and in Section 6.2.2, selection of COPCs. Migration of COPCs from these sources can occur in the following ways:

- Vertical migration of contaminants from surface soil to subsurface soil.
- Leaching of contaminants from subsurface soil to water-bearing zones.
- Vertical migration from shallow water-bearing zones to deeper flow systems.
- Horizontal migration in groundwater in the direction of groundwater flow.
- Groundwater discharge into local streams.
- Wind erosion and subsequent deposition of windblown dust.

The potential for a contaminant to migrate and persist in environmental media is important in estimating exposure. A more detailed discussion of migration pathways is provided in Section 5.

6.3.2 Current and Future Scenarios

The Engineer Area Dump (Site 65) is a four- to five-acre, former, land-disposal site that is now primarily a wooded area due to heavy overgrowth. Immediately east of Site 65 is an equipment training area occupying the area between Site 65 and two small ponds located to the southeast. The Marine Corps Engineer School, which occupies property between Site 65 and Courthouse Bay, utilizes the training area to conduct heavy construction equipment (i.e., bulldozers, graders, etc.) training

activities. There are wide, cleared trails between the school and the equipment training area used for movement of the construction equipment. Also, there is a circuit/fitness course with exercise stops (called Butler's Way) along the northern perimeter of the site. This course is used frequently by military base personnel for fitness training.

Current receptors are on-site military personnel. The military personnel are divided into two groups: those involved in training with heavy equipment (referred to as trainees) and those who use the fitness course (referred to as recreational users). The training maneuvers consist of such activities as digging up the soil and moving it around with the bulldozers, graders, etc. Consequently, it is necessary to consider exposure to both surface and subsurface soil through ingestion, dermal contact and inhalation of fugitive dust from vehicular traffic. Military personnel who use the fitness course for exercising are considered to be exposed to surface soil. Potential surface soil exposure pathways are incidental ingestion, dermal contact, and inhalation of fugitive dust.

Presently, the groundwater at the site is not used for potable purposes. Consequently, exposure to groundwater is not considered to be applicable to current scenarios at the site. Exposure to surface water and sediment is not expected for either military personnel group. However, fishing is allowed in the two small ponds, Courthouse Bay Pond and Power Line Pond, southeast of Site 65. Members of the public are allowed limited access to these ponds from 8:00 AM to 5:00 PM to fish. To be conservative, surface water and sediment exposure to adult and child fisherman receptors is assessed. The potential exposure pathways are ingestion and dermal contact of surface water and sediment. Fish were taken from Courthouse Bay Pond and Powerline Pond to obtain fish tissue for chemical analysis. Ingestion of fish tissue, the edible or fillet portion, is also evaluated.

It is unlikely that this site will be used for a residential area in the future. However, to be conservative future groundwater exposure to a child and adult residential receptor was assessed. It assumed that a private well could be installed on-site in the future case. The potential exposure pathways were ingestion, dermal contact, and inhalation while showering.

Similarly, it is anticipated that a residential child and adult may become exposed to surface soil. As a result, potential surface soil exposures via ingestion, dermal contact and inhalation were evaluated for the future residential child and adult receptor. While it is doubtful that surface water recreational facilities will be expanded in the future, a conservative exposure scenario was examined for a future residential population. The potential exposure pathways are ingestion and dermal contact of surface water and sediment.

Finally, potential subsurface soil exposures resulting from future excavation and construction activities were assessed. A future construction worker was evaluated for subsurface soil ingestion, dermal contact, and inhalation.

6.3.3 Exposure Pathways

This section presents exposure pathways, shown in Figure 6-1, associated with each environmental medium and each human receptor group. Each pathway is then qualitatively evaluated for further consideration in the quantitative risk analysis. Table 6-11 presents the matrix of human exposure at Site 65.

6.3.3.1 Surface Soil

Potential exposure to surface soil may occur by incidental soil ingestion, contaminant absorption through the skin and inhalation of airborne particulates. Surface soil exposure is evaluated for future residential children and adults, as well as current military trainees and recreational users.

6.3.3.2 Subsurface Soil

Subsurface soil is available for contact only during excavation activities, so potential exposure to subsurface soil is limited to current military personnel involved in heavy equipment training exercises and construction workers. Exposure pathways involving ingestion, dermal contact, and inhalation of airborne particulates are evaluated for current military personnel in training and future construction workers only.

6.3.3.3 Groundwater

Currently, shallow groundwater at Site 65 is not used as a potable supply for residents or base personnel. However, in the future, (albeit unlikely due to poor transmissivity, insufficient flow, and availability of other sources) shallow groundwater may be tapped for potable water. In this scenario, potential exposure pathways are ingestion, dermal contact and inhalation of volatile contaminants while showering. Groundwater exposure is evaluated for future residential children and adults.

6.3.3.4 Surface Water/Sediment

Access to surface water at Site 65 is limited to two freshwater ponds adjacent to the site - Courthouse Bay Pond and Power Line Pond. It is known that individuals fish in these ponds. In a current scenario, swimming and/or wading are unlikely due to the murky quality of the water. In a future scenario, it is possible that surface water recreational facilities may be expanded for residents. Surface water and sediment exposure pathways include ingestion and dermal contact. Exposure is evaluated for current fisherman (adult and child receptors) and future residential children and adults (although it will be a conservative estimate).

6.3.3.5 Biota

The potential release sources to be considered in evaluating exposure via fish consumption are contaminated surface water and sediments. Fish can uptake contaminants present in these media by bioaccumulation and biomagnification. The exposure pathway for human receptors is fish ingestion. Exposure is evaluated for current fishermen, adult and child.

6.3.4 Quantification of Exposure

The concentrations used to estimate chronic daily intakes (CDIs) must represent the type of exposure evaluated. Exposure to groundwater, surface water and sediment can occur distinctly, at one sampling location, or collectively, from various locations. These media are transitory in that their contaminant concentrations change over time. Averaging transitory data obtained from multiple locations is difficult and requires many more data points than those existing at Site 65. Consequently, the existing RI groundwater, surface water and sediment contaminant concentrations, from an exposure standpoint, are considered to be the most representative exposure concentrations available.

Soils are less transitory than the aforementioned media, and in most cases, soil exposure occurs over a wider area (eg., residential exposure). For this reason, upper confidence intervals are used to represent soil contaminant concentrations.

The human health risk assessment for future groundwater use incorporates groundwater data collected from all monitoring wells at a given site. Because the RI data sets are assumed to originate from a skewed underlying distribution, lognormal distribution is used to represent relevant media. This ensures conservative CDI calculations.

In order to account for uncertainty and to be health protective, USEPA risk assessment guidance (USEPA, 1989a) requires that an upper bound estimate of the arithmetic mean concentration, be used to calculate CDI. This estimate, which should be in the high end of the concentration frequency distribution, is called the RME concentration. The RME concentration is defined as the highest concentration that could reasonably be expected to be contacted via a given pathway over a long-term exposure period.

Ninety-five percent upper confidence levels, (95 percent UCL) derived for lognormal data sets, produce concentrations in excess of the 95 percent confidence interval derived assuming normality. The 95 percent UCL for lognormal distribution, or RME, is used for each contaminant in a given data set, in order to quantify conservative exposure values. For exposure areas with limited amounts of data or extreme variability in measured data, the 95 percent UCL can be greater than the maximum detected concentration. In such cases, the maximum concentration is used instead. The true mean; however, may still be higher than this maximum value. In other words, the 95 percent UCL indicates that a higher mean is possible, especially if the most contaminated portion of the site, by chance, has not been sampled (USEPA, 1992c). Statistical summaries are presented in Appendix R.

The 95 percent UCL of the lognormal distribution was calculated using the following equation (USEPA, 1992c):

Lognormal 95% UCL =
$$e^{(\tilde{x} + 0.5s^2 + sH/\sqrt{n}-1)}$$

where:

 $\begin{array}{lll} UCL & = & upper confidence limit \\ e & = & constant \text{ (base of the natural log, equal to 2.718)} \\ \overline{x} & = & mean of the transformed data \\ s & = & standard deviation of the transformed data \\ H & = & H\text{-statistic (Gilbert, 1987)} \\ n & = & number of samples \end{array}$

In addition to the RME risk descriptor, which is represented by the maximum and/or 95% UCL concentration for the selected COPC, the central tendency (CT) risk descriptor was also used for data sets when the RME concentration term showed a potential risk to human health, specifically, to future on-site residential children. The CT concentration term utilized was the lognormal 95% UCL or the arithmetic mean (if the UCL was greater than the arithmetic mean) (USEPA, 1993). The CT concentrations were then utilized to calculate chemical intakes for the CT-case scenarios. The results of the CT calculations are presented in Section 6.6.6.

6.3.5 Calculation of Chronic Daily Intakes (CDI)

In order to numerically calculate risks for current and future human receptors at Site 65, a CDI must be computed for each COPC, in each relevant exposure pathway. Appendix U contains CDI equations for specific exposure scenarios (USEPA, 1989a).

The following paragraphs present the general equations and input parameters used to calculate CDIs. Input parameters are taken from USEPA's default exposure factors guidelines. USEPA promulgated exposure factors are used in conjunction with USEPA standard default exposure factors for both the CT and RME exposure scenarios; however, the CT exposure scenario was utilized only for future residential children. All inputs not defined by this source are derived either from other USEPA exposure documents or by using best professional judgment. All exposure assessments incorporate representative contaminant concentrations; only one exposure scenario is developed for each exposure route/receptor combination. The CT assumptions, though not discussed below, are presented in the tables in parentheses. Exposure assessment summaries are presented in Tables 6-12 through 6-22.

Carcinogenic risk is calculated as an incremental lifetime risk, and thereby involves exposure duration (years) over the course of a lifetime (70 years, or 25,550 days). Noncarcinogenic risk, on the other hand, involves average annual exposure. Exposure time and frequency represent the number of hours of exposure per day, and days of exposure per year, respectively. Generally, noncarcinogenic risk for certain exposure routes (e.g., soil ingestion) is greater for children, as the combination of a lower body weight and an exposure frequency equal to that of an adult increases their ingestion rates.

Future residential exposure scenarios address one to six-year old children weighing 15 kg, and adults weighing 70 kg, on average (USEPA, 1989a). An exposure duration of four years is used to estimate military residential exposure duration. A one year duration is used for future construction workers.

6.3.5.1 Incidental Ingestion of Soil

The equation for CDI, calculated for all human receptors potentially experiencing incidental soil ingestion, is as follows:

$$CDI = \frac{C \times IR \times CF \times Fi \times EF \times ED}{BW \times AT}$$

Where:

C = Contaminant concentration in soil (mg/kg)

IR = Ingestion rate (mg/day)

CF = Conversion factor (1E-6 kg/mg)

Fi = Fraction ingested from source (dimensionless)

EF = Exposure frequency (days/year)

ED = Exposure duration (years)

BW = Body weight (kg)

AT = Averaging time (days)

The following paragraphs explain the exposure assumptions used to evaluate the impact of COPCs in incidental soil ingestion. In each exposure scenario, the Fi value, indicating the portion of exposure from soils actually containing COPCs, is 100 percent.

Future On-Site Residents

Future on-site residents may be exposed to COPCs in surface soil, during outdoor activities around their homes. In addition, children and adults may be exposed to COPCs by incidental ingestion of surface soil through hand-to-mouth contact.

Ingestion rates (IR) for adults and children in this scenario are assumed to be 100 mg/day and 200 mg/day, respectively (USEPA, 1991a). The EF for both receptor groups is 350 days per year (USEPA, 1991a). Residential exposure duration (ED) is divided into two parts. First, a six-year ED, used for young children, represents the period of highest soil ingestion (200 mg/day). Second, a 24-year ED, used for older children and adults, represents a period of lower soil ingestion (100 mg/day) (USEPA, 1991a).

The BW of future residential children (age one to six years) is assumed to be 15 kg, and 70 kg is used as the BW for future residential adults (USEPA, 1989a).

AT values of 25,550 days (70 years x 365 days/year) (USEPA, 1989a) and 8,760 days (24 years x 365 days/year) (USEPA, 1989a) are assigned to potentially carcinogenic and noncarcinogenic constituents, respectively, to estimate adult CDIs. The AT used for children exposed to noncarcinogens is 2,190 days (6 years x 365 days/year) (USEPA, 1989a).

Military Personnel - Trainee

Military personnel may be exposed to COPCs by ingesting surface soil and subsurface soil, during the course of heavy construction equipment training activities conducted at Site 65.

The IR for military personnel exposed to surficial soils is assumed to be 100 mg/day (USEPA, 1989a). An EF of 260 days per year is used in conjunction with a four-year ED. The EF value, based on site-specific professional judgement, represents the reasonable worst case scenario of a training instructor present five days/week for 52 weeks over the course of a year.

Carcinogenic compounds have an AT 25,550 days (70 years x 365 days/year), and the AT for noncarcinogenic compounds is 1,460 days (four years ED x 365 days/year). Adult average body weight (BW) is 70 kg (USEPA, 1989a).

Military Personnel - Recreational User

Military personnel may be exposed to COPCs by ingesting surface soil while jogging and/or exercising on the fitness course, Butler's Way, located near Site 65.

The IR for military personnel exposed to surficial soils is assumed to be 100 mg/day (USEPA, 1989a). An EF of 260 days per year is used in conjunction with a four-year ED. The EF value, based on site-specific professional judgement, maintains a reasonable worst case scenario of an individual using the fitness course 5 days/week for 52 weeks/year.

AT (carcinogens and noncarcinogens) and BW values are the same as those used in the military trainee scenario.

Future Construction Worker

Construction workers may be exposed to COPCs through incidental ingestion of subsurface soil, during the course of excavation activities. An IR of 480 mg/day (USEPA, 1991a) is assigned to future construction workers. A 90-day per year EF is used in conjunction with a one-year ED, representing the estimated length of a typical construction job (USEPA, 1991a). AT_{nc} is 365 days (USEPA, 1989a). CF, Fi, BW and AT_c values are the same as those used for adults in the residential exposure scenarios. A summary of incidental soil ingestion exposure assessment input parameters is presented in Table 6-12.

6.3.5.2 Dermal Contact with Soil

The equation for CDI, calculated for all human receptors potentially experiencing dermal contact with soil, is as follows:

$$CDI = \frac{C \times CF \times SA \times AF \times ABS \times EF \times ED}{BW \times AT}$$

Where:

C = Contaminant concentration in soil (mg/kg)

CF = Conversion factor (kg/mg)

SA = Skin surface available for contact (cm²)

AF = Soil to skin adherence factor (mg/cm²)

ABS = Absorption factor (dimensionless)

EF = Exposure frequency (days/year)

ED = Exposure duration (years)

BW = Body weight (kg)

AT = Averaging time (days)

The following paragraphs explain the exposure assumptions used to evaluate the impact of COPCs in dermal contact with soil.

Future On-Site Residents

Future on-site residents may be exposed to COPCs through dermal contact with surface soil during outdoor activities near their homes. The SA values represent reasonable worst case scenarios for an individual wearing a short-sleeved shirt, shorts, and shoes. The exposed skin surface area is limited to the head, hands, forearms and lower legs. Twenty-five percent of the upper-bound total body surface area yields a default SA of 5,800 cm² for adults (USEPA, 1992a). The exposed skin surface for a child (2,300 cm²) is estimated using an average of the 50th (0.866 m²) and the 95th (1.06 m²) percentile body surface for a six year old child, multiplied by 25 percent (USEPA, 1992a). ED, EF, BW and AT values are the same as those used in the incidental soil ingestion scenario. Data on AF is limited. A value of 1.0 mg/cm² is used in this assessment (USEPA, 1991b).

Military Personnel - Trainees

Base personnel in training may be exposed to COPCs through dermal contact with surface and subsurface soil, during the course of equipment training activities. It is assumed that military

personnel taking part in training exercises near Site 65 wear military issue work clothes consisting of a short-sleeved shirt, fatigue trousers (long pants), and boots. Exposed body parts include the hands (840 cm²), head (1,180 cm²), and arms (2,280 cm²) (USEPA, 1992a). The total SA for the military trainee is 4,300 cm². The ED, EF, BW and AT values are the same as those used in the incidental soil ingestion scenario.

Military Personnel - Recreational User

Military personnel may be exposed to COPCs through dermal contact with surface soil while using the fitness course (called Butler's Way) adjacent to Site 65. It is assumed that military personnel involved in recreational activities have approximately 5,800 cm² of skin surface (SA) available for contact with COPCs (USEPA, 1992a). Exposed body parts include the head, hands, forearms, and lower legs, and represent 25 percent of total body surface area (23,000 cm²). The ED, EF, BW and AT values are the same as those used in the incidental soil ingestion scenario.

Future Construction Worker

Construction workers may be exposed to COPCs through dermal contact with subsurface soil, experienced during excavation activities. It is assumed that a construction worker wears a short-sleeved shirt, long pants and boots. Exposed skin surface area is then limited to the head, (1,180 cm²) arms (2,280 cm²) and hands (840 cm²) (USEPA, 1992a). Total SA for the construction worker is 4,300 cm². ED and EF values are the same as those used in the incidental soil ingestion scenario. Data on AF is limited. A value of 1.0 mg/cm² is used in this assessment (USEPA, 1991b). A summary of dermal contact with soil exposure assessment input parameters is presented in Table 6-13.

6.3.5.3 Inhalation of Fugitive Particulates

The equation for CDI, calculated for future residents and base personnel potentially inhaling particulates, is as follows:

$$CDI = \frac{C \times IR \times EF \times ED \times 1/PEF}{BW \times AT}$$

Where:

C = Contaminant concentration in soil (mg/kg)

IR = Inhalation rate (m^3/hr)

EF = Exposure frequency (days/year)

ED = Exposure duration (years)

1/PEF = Particulate emission factor (m³/kg)

BW = Body weight (kg)

AT = Averaging time (days)

PEF relates contaminant concentrations in soil to concentrations of respirable particles in air, from surface soil fugitive dust emissions. A default PEF is used in this assessment (USEPA 1989b). Particulate emissions at contaminated sites occur vis-a-vis wind erosion, and thereby vary according to irritability of the surface material. PEF is 4.63E+09 m³/kg for all receptors in this scenario (USEPA, 1989b).

The following paragraphs explain the exposure assumptions used to evaluate COPC impact in particulate inhalation.

Future On-Site Residents

Future on-site residents may be exposed to COPCs by inhaling fugitive dust during outdoor activities near their homes. The adult IR for residential exposure scenarios is 20 m³/day (USEPA 1991a), and the IR for children is 15 m³/day (USEPA, 1995). ED, EF, BW and AT values are the same as those used the incidental soil ingestion scenario.

Military Personnel - Trainee

During work related activities, military personnel may inhale COPCs emitted as fugitive dust from surface and subsurface soil. An inhalation rate of 20 m³/day is used in this scenario (USEPA 1991a). ED, EF, BW and AT values are the same as those used in the incidental soil ingestion scenario.

Military Personnel - Recreational User

During fitness related activities, military personnel may inhale COPCs emitted as fugitive dust. An inhalation rate of 20 m³/day is used in this scenario (USEPA 1991a). ED, EF, BW and AT values are the same as those used in the incidental soil ingestion scenario.

Future Construction Worker

Construction workers may be exposed to COPCs through inhalation of fugitive particulates in subsurface soil, during excavation activities. IR is 20 m³/day (USEPA 1991a). ED, EF, BW and AT values are the same as those used in the incidental soil ingestion scenario. A summary of particulate inhalation exposure assessment input parameters is presented in Table 6-14.

6.3.5.4 <u>Ingestion of Groundwater</u>

Currently at Site 65, deep groundwater provides the potable water supply. Due to the generally low water quality and poor flow rates in the shallow aquifer, it is not likely that the shallow aquifer will be developed as a potable water supply. However, should residential housing be constructed in the future, shallow groundwater may be used to provide potable supplies. Currently, there are five supply wells within a one mile radius of this site. These supply wells utilize the Castle Hayne aquifer. If well contamination is reported, the wells are no longer used as potable water supplies.

The equation for CDI, calculated for all human receptors potentially ingesting groundwater, is as follows:

$$CDI = \frac{C \times IR \times EF \times ED}{BW \times AT}$$

Where:

C = Contaminant concentration is groundwater (mg/L)

IR = Ingestion rate (L/day)

EF = Exposure frequency (days/year)

ED = Exposure duration (years)

BW = Body weight (kg) AT = Averaging time (days)

The following paragraphs explain the exposure assumptions used to calculate the impact of COPCs in groundwater ingestion.

Future On-Site Residents

Exposure to COPCs by groundwater ingestion is a possible future exposure pathway for children and adults. A six-year-old child weighing 15kg has an IR of 1.0 L/day (USEPA, 1989a). This rate provides a conservative exposure estimate, in terms of systemic health effects. This value assumes that children obtain all the tap water they drink from the same source, for 350 days/year (EF). ED for young children is six years (USEPA, 1991a). AT is 2,190 days (six years x 365 days/year) for noncarcinogenic compound exposure.

IR for a 70 kg adult is 2 L/day (USEPA 1989a). ED is 30 years, the national upper-bound (90th percentile) time spent at one residence (USEPA 1991a). AT for noncarcinogens is 10,950 days. An AT of 25,550 days (70 years x 365 days/year) is used to evaluate exposure to potential carcinogenic compounds, for children and adults. A summary of groundwater ingestion exposure assessment input parameters is presented in Table 6-15.

6.3.5.5 Dermal Contact with Groundwater

As stated previously, deep groundwater currently provides the potable water supply at Site 65. Due to the generally low water quality and poor flow rates in the shallow aquifer, it is not likely that the shallow aquifer will be developed as a potable water supply. However, should residential housing be constructed in the future, shallow groundwater may be used to provide potable supplies. Currently, there are five supply wells within a one mile radius of this site. These supply wells tap the Castle Hayne aquifer. If well contamination is reported, the wells are no longer used as potable water supplies.

The equation for CDI, calculated for all human receptors potentially experiencing dermal contact with groundwater, is as follows:

$$CDI \approx \frac{C \times SA \times PC \times ET \times EF \times ED \times CF}{BW \times AT}$$

Where:

C = Contaminant concentration in groundwater (mg/L)

SA = Surface area available for contact (cm²) PC = Dermal permeability constant (cm/hr)

ET = Exposure time (hour/day)

EF = Exposure frequency (days/year)

ED = Exposure duration (years)

CF = Conversion factor (1 L/1000 cm³)

BW = Body weight (kg)

AT = Averaging time (days)

The following paragraphs explain the exposure assumptions used to evaluate the impact of COPCs in dermal contact with groundwater.

Future On-Site Residents

Children and adults may be exposed to COPCs through dermal contact with groundwater while bathing or showering. It is assumed that bathing takes place 350 days/year (EF). The SA available for dermal absorption is estimated at 10,000 cm² for children and 23,000 cm² for adults (USEPA, 1992a).

PC indicates the movement of a chemical through the skin and into the blood stream. The permeability of a chemical is an important property in evaluating actual absorbed dose; however, many compounds do not have published PC values. The permeability constant for water (1.55E-03 cm/hr) is used as a default value for those compounds without established PC values (USEPA 1992a). This value may, in fact, be a reasonable estimate of chemical absorption rates when COPC concentrations are in the part-per-billion range. ET for bathing or showering is 0.25 hours/day, a conservative estimate. ED, BW and AT values are the same as those used in the groundwater ingestion scenario. A summary of dermal contact with groundwater exposure assessment input parameters is presented in Table 6-16.

6.3.5.6 Inhalation of Volatile Organics While Showering

The Andelman Shower Model (1985) is applied in a qualitative assessment of inhaling VOCs released from shower water. Contaminant (VOC) concentrations in air while showering are estimated by a balance between the rate of chemical release from the shower and the rate of air exchange between the shower and the bathroom and the rest of the house. The calculations are based on the efficiency of the volatilization of trichloroethene from shower water as observed in model showers, as well as in several homes.

The equation for CDI, calculated for all human receptors potentially inhaling groundwater volatile contaminants while showering, is as follows:

$$CDI \; \frac{C \; x \; IR \; x \; ET \; x \; EF \; x \; ED}{BW \; x \; AT}$$

Where:

C = Contaminant concentration in air (mg/m³)

IR = Inhalation rate (m³/hr)

ET = Exposure time (hr/day)

EF = Exposure frequency (days/year)

ED = Exposure duration (years)

BW = Body weight (kg)

 AT_c = Averaging time carcinogen (days) AT_{nc} = Averaging time noncarcinogen (days)

Future On-Site Residents

The potential to inhale vaporized volatile organic COPCs while showering is considered for both children and adults. It is assumed that showering takes place 350 days/year (EF). IR for children and adults is 0.6 m³/hr. ET is 0.25 hrs/day for both receptors (USEPA, 1989a). ED, BW, and AT values are the same as those used in the groundwater ingestion scenario. A summary of groundwater inhalation exposure assessment input parameters is presented in Table 6-17.

6.3.5.7 <u>Incidental Ingestion of Surface Water</u>

The equation for CDI, calculated for all human receptors potentially ingesting surface water, is as follows:

$$CDI = \frac{C \times IR \times ET \times EF \times ED}{BW \times AT \times DY}$$

Where:	C	=	Contaminant concentration in surface water (mg/L)
	IR	=	Ingestion rate (L/hr)
	ET	=	Exposure time (hrs/day)
	EF	=	Exposure frequency (days/year)
	ED		Exposure duration (years)
	BW	=	Body weight (kg)
	AT	=	Averaging time (years)
	DY		Days per year (days)

The following paragraphs explain the exposure assumptions used to evaluate the impact of COPCs in surface water ingestion.

Future On-Site Residents

The IR, ET and EF values used for future residents apply to both children and adults. IR is 0.05 L/hr (USEPA, 1989a). ET is 2.6 hr/day (USEPA, 1992a). EF is 48 days/yr. This value represents a site-specific professional judgement, according to which exposure to surface water is estimated at eight days/month, for six months/year. ED values represent lifetime residential exposure durations. They are the same as those used for future children and adult residents in the groundwater exposure scenarios. BW and AT values are also the same as those used in groundwater exposure scenarios.

Fisherman

Individuals known to fish from Courthouse Bay Pond and Power Line Pond may be exposed to COPCs through surface water ingestion. Exposure to surface water through activities such as swimming or wading is considered unlikely due to the murky nature and high algae content of the pond water. However, a surface water ingestion scenario is included based on conservative professional judgement. The IR, ET, EF, ED, BW and AT values are the same as those given above for future resident adults and children. A summary of surface water ingestion exposure assessment input parameters is presented in Table 6-18.

6.3.5.8 Dermal Contact with Surface Water

The equation for CDI, for all residents potentially experiencing dermal contact with surface water, is as follows:

$$CDI = \frac{C \times CF \times SA \times EF \times ED \times ET \times PC}{BW \times AT}$$

Where: C = Contaminant concentration in soil (mg/kg) CF Conversion factor (kg/mg) SA Surface available for contact (cm²/event) **EF** Exposure frequency (days/year) ED Exposure duration (years) Exposure Time (hr/day ET PC Dermal Permeability Constant (cm/hr) BW Body weight (kg) Averaging time carcinogen (days) AT_c AT_{nc} Averaging time noncarcinogen (days)

The following paragraphs explain the exposure assumptions used to evaluate the impact of COPCs in dermal contact with surface water.

Future On-Site Residents

SA values represent dermal surface area of hands, forearms and lower extremities exposed for contact with surface water. SA is 2,100 cm² for children and 8,300 cm² for adults (USEPA, 1992a). ET, EF, ED, BW and AT values are the same as those used for future children and adult residents in the surface water ingestion exposure scenario. PC values are chemical specific (USEPA, 1992a). They are provided on the CDI spreadsheets in Appendix U.

<u>Fisherman</u>

Although unlikely, an exposure scenario for individuals who may fish in the ponds adjacent to Site 65 is presented to evaluate the impact of COPCs in dermal contact with surface water. Values of 8,300 cm² for adults and 2,100 cm² for children are used for the surface area exposed for contact with surface water. ET, EF, ED, BW and AT values are the same as those used in the surface water ingestion exposure scenario. PC values are chemical-specific. A summary of surface water dermal contact exposure assessment input parameters is presented in Table 6-19.

6.3.5.9 Incidental Ingestion of Sediment

The equation for CDI, for all residents and fishermen potentially experiencing incidental ingestion of sediment, is as follows:

$$CDI = \frac{C \times IR \times CF \times EF \times ED}{BW \times AT}$$

C Contaminant concentration in sediment (mg/kg) Where: = IR = Ingestion rate (mg/day) Conversion factor for kg to mg (mg/day) CF Exposure frequency (days/year) EF Exposure duration (years) ED Body weight (kg) BW = AT Averaging time (years)

The following paragraphs explain the exposure assumptions used to evaluate the impact of COPCs in sediment ingestion.

Future On-Site Residents

IR is 200 mg/day for children and 100 mg/day for adults (USEPA, 1989a). EF, ED, BW and AT values are the same as those used for future children and adult residents in the surface water exposure scenarios.

Fisherman

Contact with sediment by individuals who fish from the ponds on Site 65 is considered unlikely for the same reasons given in the surface water ingestion section. However, a conservative exposure scenario is presented in the event that exposure to sediment were to occur.

IR for the fisherman is 200 mg/day for an adult and 100 mg/day for a child. EF, ED, BW and AT values are the same as those for the fisherman in the surface water exposure scenario. CF is 1E-06 kg/mg (USEPA, 1989a). It is applied to sediment exposure analyses for both children and adults. A summary of sediment ingestion exposure assessment input parameters is presented in Table 6-20.

6.3.5.10 Dermal Contact with Sediment

The equation for CDI, for all residents potentially experiencing dermal contact with sediment, is as follows:

$$CDI = \frac{C \times CF \times SA \times AF \times Abs \times EF \times ED}{BW \times AT \times DY}$$

C Concentration of contaminant in sediment (mg/kg) Where: = Conversion factor for kg to mg CF = Exposed skin surface area (cm²) SA = Sediment to skin adherence factor (mg/cm²⁾ AF = Fraction absorbed (unitless) Abs Exposure frequency (events/year) EF Exposure duration (years) ED Body weight (kg) BW= AT Averaging time (years) = DY Days per year (days)

The following paragraphs explain the exposure assumptions used to evaluate the impact of COPCs in dermal contact with sediment.

Future On-Site Residents

SA values are the same as those used for future residential children and adults in the dermal contact with surface water exposure scenario. AF is 1.0 mg/cm². It is used to evaluate dermal contact with sediment for both children and adults. ABS is 1.0 percent for organics and 0.1 percent for inorganics (USEPA, 1991b). EF, ED, BW, AT and CF values are the same as those used in the sediment ingestion exposure scenario.

Fisherman

The SA value is the same as that used for the fisherman (adult and child) in the dermal contact with surface water exposure scenario. EF, ED, BW, AT and CF values are the same as those used in the sediment ingestion exposure scenario. A summary of sediment dermal contact exposure assessment input parameters is presented in Table 6-21. Appendix U contains CDI calculation spreadsheets for specific exposure scenarios (USEPA 1989a).

6.3.5.11 Ingestion of Fish Tissue

The equation for CDI, for those individuals potentially ingesting edible fish tissue, is as follows:

$$CDI = \frac{C \times IR \times Fi \times EF \times ED}{BW \times AT \times DY}$$

Where:	C	=	Concentration of contaminant in fish (mg/kg)
	IR	=	Ingestion rate (kg/meal)
	Fi	==	Fraction ingested from source (dimensionless)
	EF	==	Exposure frequency (meals/yr)
	ED	=	Exposure duration (years)
	BW	=	Body weight (kg)
	AT	==	Averaging time (years)
	DY	=	days per year (days/yr)

Fisherman

The IR and EF values used for the adult and child fisherman are 0.145 kg/meal (USEPA, 1993) and 48 meals/year (USEPA, 1989a), respectively. Due to the lack of site-specific information as well as a published IR value for children, 0.145 kg/meal was used to provide a conservative estimate. ED, BW, and AT values are the same as those used for future children and adult residents in the sediment ingestion exposure scenario. The Fi value, indicating the portion of exposure from fish tissue actually containing COPCs, is 100 percent. A summary of fish ingestion exposure assessment input parameters is presented in Table 6-22.

6.4 Toxicity Assessment

This section reviews toxicological information available for COPCs identified in Section 6.2.

6.4.1 Toxicological Evaluation

Toxicological evaluation addresses the inherent toxicity of chemical compounds. It consists of the review of scientific data to determine the nature and extent of the potential human health and environmental effects associated with exposure to various contaminants.

Because of uncertainties in exposure estimates and inherent difficulties in determining causal relationships established by epidemiological studies, human data from occupational exposures are often insufficient for determining quantitative indices of toxicity. For this reason, animal bioassays are conducted under controlled conditions, and results are extrapolated to humans. There are several stages in this extrapolation. First, to account for species differences, conversion factors are used to apply test animal data to human studies. Second, high dosages administered to test animals must be translated into lower dosages, more typical of human exposure. When developing acceptable human doses of noncarcinogenic contaminants, safety factors and modifying factors are applied to animal test results. When studying carcinogens, mathematical models are used to convert high dosage effects to effects at lower dosages. Epidemiological data can then be used to determine credibility of these experimentally derived indices.

Reference dose (RfD) is an experimentally derived exposure index for noncarcinogenic contaminants, and carcinogenic slope factor (CSF) is an experimentally derived exposure index for carcinogens. These values are addressed, within the context of dose-response evaluation, in the next section.

Available toxicological information indicates that many COPCs have both carcinogenic and noncarcinogenic health effects in humans and/or experimental animals. Although COPCs may cause adverse health and environmental effects, dose-response relationships and exposure must be evaluated before receptor risk can be determined. Dose-response relationships correlate dose magnitude with the probability of toxic effects, as discussed in the following section.

6.4.2 Dose-Response Evaluation

An important component in risk assessment is the relationship between the dose of a compound and the potential for adverse health effects resulting from the exposure to that dose. Dose-response relationships provide a means by which potential public health impacts may be evaluated. The published information on doses and responses is used in conjunction with information on the nature and magnitude of exposure to develop an estimate of risk.

6.4.2.1 Carcinogenic Slope Factor

CSFs are used to estimate upper-bound lifetime probability of developing cancer as a result of exposure to a particular dose of a potential carcinogen (USEPA, 1989a). This factor is generally reported in (mg/kg/day)⁻¹ CSF is derived by converting high dose-response values produced by animal studies to low dose-response values, and by using an assumed low-dosage linear multistage model. The value used in reporting the slope factor is the upper 95th percent confidence limit.

USEPA weight-of-evidence classifications accompany CSFs. They provide the weight of evidence according to which particular contaminants are defined as potential human carcinogens.

The USEPA's Human Health Assessment Group (HHAG) classifies carcinogenic potential by placing chemicals into one of the following groups, according to weight of evidence from epidemiological and animal studies:

- Group A Human Carcinogen (sufficient evidence of carcinogenicity in humans)
- Group B Probable Human Carcinogen (B1 limited evidence of carcinogenicity in humans; B2 sufficient evidence of carcinogenicity in animals with inadequate or lack of evidence in humans)
- Group C Possible Human Carcinogen (limited evidence of carcinogenicity in animals and inadequate or lack of human data)
- Group D Not Classifiable as to Human Carcinogenicity (inadequate or no evidence)
- Group E Evidence of Noncarcinogenicity for Humans (no evidence of carcinogenicity in adequate studies)

6.4.2.2 Reference Dose

RfD is developed for chronic and/or subchronic chemical exposure and is based solely on noncarcinogenic effects of chemical substances. It is defined as an estimate of the daily exposure level for a human population that is not likely to produce an appreciable risk of adverse effects during a lifetime. The RfD is usually expressed as dose (mg) per unit body weight (kg) per unit time (day). It is generally derived by dividing a no-observed-(adverse)-effect-level (NOAEL or NOEL) or a lowest observed-adverse-effect-level (LOAEL) for the critical toxic effect, by the appropriate "uncertainty factor (UF)". Effect levels are determined by laboratory or epidemiological studies. The UF is based on the availability of toxicity data.

UFs usually consist of multiples of 10, where each factor represents a specific area of uncertainty naturally present in the extrapolation process. These UFs are presented below and were taken from the Risk Assessment Guidance Document for Superfund, Volume I, Human Health Evaluation Manual (Part A) (USEPA, 1989a):

- A UF of 10 is to account for variation in the general population and is intended to protect sensitive populations (e.g., elderly; children).
- A UF of 10 is used when extrapolating from animals to humans. This factor is intended to account for the interspecies variability between humans and other mammals.
- A UF of 10 is used when a NOAEL derived from a subchronic instead of a chronic study is used as the basis for a chronic RfD.
- A UF of 10 is used when a LOAEL is used instead of a NOAEL. This factor is intended to account for the uncertainty associated with extrapolating from LOAELs to NOAELs.

In addition to UFs, a modifying factor (MF) is applied to each reference dose and is defined as:

• An MF ranging from >0 to 10 is included to reflect a qualitative professional assessment of additional uncertainties in the critical study and in the entire data base for the chemical not explicitly addressed by the preceding uncertainty factors. The default for the MF is 1.

Thus, the RfD incorporates the uncertainty of the evidence for chronic human health effects. Even if applicable human data exist, the RfD still maintains a margin of safety so that chronic human health effects are not underestimated.

Toxicity factors and the USEPA weight-of-evidence classifications are presented in Table 6-23. The hierarchy for choosing these values is as follows (USEPA, 1989a):

- Integrated Risk Information System (IRIS)
- Health Effects Assessment Summary Table (HEAST)
- USEPA National Center for Environmental Assessment (EPA-NCEA) (USEPA, 1997)

The IRIS database is updated monthly and contains both verified CSFs and RfDs. The USEPA has formed the Carcinogen Risk Assessment Verification Endeavor (CRAVE) Workgroup to review and to validate toxicity values used in developing CSFs. Once the slope factors have been verified with extensive peer review, they appear in the IRIS database. Like the CSF Workgroup, an RfD Workgroup has been formed by the USEPA to review existing data used to derive RfDs. Once RfDs have been verified, they also appear in IRIS.

HEAST, on the other hand, provides both interim (unverified) and verified CSFs and RFDs. This document is published quarterly and incorporates any applicable changes to its database.

6.5 Risk Characterization

This section presents estimated incremental lifetime cancer risks (ICRs) and hazard indices (HIs) for identified receptor groups possibly exposed to COPCs by the exposure pathways presented in Section 6.3.

Quantitative risk calculations for carcinogenic compounds estimate ICR levels for individuals in a given population. An ICR of 1E-06, for example, indicates that, within a lifetime of exposure to site-specific contamination, one additional case of cancer may occur per one million exposed individuals.

The following represents an individual's ICR:

$$ICR = \sum_{i=1}^{n} CDI_{i} \times CSF_{i}$$

where CDI_i is the chronic daily intake (mg/kg/day) for compound I, and CSF_I is the compound's carcinogenic slope factor [(mg/kg/day)⁻¹]. The CSF is defined as an upper 95th percentile confidence limit of the probability of a carcinogenic response, based on experimental animal data. The CDI defines exposure, expressed as a mass of a substance contracted per unit body weight per unit time,

averaged over a period of time (i.e., six years to a lifetime). The above equation is derived assuming that cancer is a non-threshold process and that the potential excess risk level is proportional to the cumulative intake over a lifetime.

Quantitative noncarcinogenic risk calculations assume that noncarcinogenic compounds have threshold values for toxicological effects. Noncarcinogenic effect weighs CDI against threshold levels (RfDs). Noncarcinogenic effect is estimated by calculating the hazard index (HI), defined by the following equation:

$$HI = HQ_1 + HQ_2 + ...HQ_n$$
$$= \sum_{i=1}^{n} HQ_i$$

$$\gamma$$
 where $HQ_i = CDI_i / RfD_i$

where HQi is the hazard quotient for contaminant I, CDI_i is chronic daily intake (mg/kg/day) and RfD_i is the reference dose (mg/kg/day) for contaminant I, over a prolonged period of exposure.

6.5.1 Human Health Risks

ICR and HI values associated with exposure to environmental media at Site 65 (soil, groundwater, surface water/sediment, and fish tissue) are presented in Tables 6-24, 6-25 and 6-26, respectively. Total carcinogenic and noncarcinogenic risks, per medium, for all relevant receptor groups, are provided in these tables. ICR and HI are also broken down to show risks from specific exposure pathways: ingestion, dermal contact and inhalation (where applicable).

The text in this section explains the calculated risk results for Site 65, presented in Tables 6-24, 6-25 and 6-26. A cancer risk range of 1E-04 to 1E-06 is used to evaluate calculated ICR levels. Any ICR value within this range is considered "acceptable"; an ICR greater than 1E-04 denotes an existing cancer risk. A noncarcinogenic risk of 1.0 is used as an upper limit to which calculated HI values are compared. Any HI exceeding 1.0 indicates an existing noncarcinogenic risk (USEPA 1989a).

6.5.1.1 Soil

As shown in Table 6-24, ICR values calculated for future residential children and adults, military personnel (both trainees and recreational users), and future construction workers fall within the USEPA's acceptable risk range. These receptors are then not at risk from carcinogens in Site 65 soil. HI values calculated for these receptors are less than 1.0, below the acceptable risk level. Adverse systemic health effects are then not likely to be caused by noncarcinogens in Site 65 soil.

6.5.1.2 Groundwater

As shown in Table 6-25, no carcinogenic contaminants were retained as COPCs in groundwater. Therefore, no ICR values were calculated. These receptors are then not at risk from carcinogens in Site 65 groundwater. The HI value calculated for future residential adults is less than 1.0, the acceptable risk level. However, the HI calculated for future residential children exceeded 1.0. The groundwater ingestion pathway contributed 100 percent of the elevated HI (1.9). Iron was the primary risk driver for this pathway.

6.5.1.3 Surface Water/Sediment

As shown in Table 6-26, no carcinogenic contaminants were retained as COPCs in surface water. Therefore, no ICR values were calculated. These receptors are then not at risk from carcinogens in Site 65 surface water/sediment. HI values calculated for future residential children and adults are less than 1.0, below the acceptable risk level. Adverse systemic health effects are then not likely to be caused by noncarcinogens in Site 65 surface water/sediment.

6.5.1.4 Fish Tissue

As shown in Table 6-26, no carcinogenic contaminants were retained as COPCs in fish tissue. Therefore, no ICR values were calculated. These receptors are then not at risk from carcinogens in Site 65 fish tissue.

The HI values calculated for the adult and child fisherman (HI=1.3 and 6.1, respectively) are above EPA's acceptable risk level of 1.0. It should be noted that the exposure parameters used to calculate the CDI for these receptors are very conservative. The IR value of 0.145 kg/meal, the RME for a 70 kg adult, was used for the child since there is no site-specific information available concerning the fish consumption rate of young children. This HI value, while very conservative, is considered protective of young children, as well as adults, for adverse systemic health effects.

6.6 Sources of Uncertainty

Uncertainties may arise during the risk assessment process. This section presents site specific sources of uncertainty in the risk assessment:

- Analytical data
- Exposure assessment
- Sampling strategy
- Toxicity assessment
- Compounds not qualitatively evaluated
- Results of CT calculations

6.6.1 Analytical Data

The credibility of the BRA relies on the quality of the analytical data available to the risk assessor. Analytical data are limited by the precision and accuracy of the analytical method. In addition, the statistical methods used to compile and analyze data (mean concentration, standard deviation, and detection frequencies) are subject to uncertainty in the ability to evaluate data. In general, increasing the number of data points reduces the statistical uncertainty.

Data validation serves to reduce some of the inherent uncertainty associated with analytical data by establishing the usability of the data to the risk assessor who may or may not choose to include the data point in risk estimation. Data can be qualified as "J" (estimated) for many reasons, including a slight exceedence of holding times, high or low surrogate recovery, or intra-sample variability. Data qualified with "J" were retained for risk assessment. Organic data qualified with "B" (detected in blank) or "R" (rejected/unreliable) were not applied to risk analysis. Because the sampling and analytical program at Site 65 was comprehensive, dismissing data points qualified with "B" or "R" did not significantly increase uncertainty in the risk assessment.

6.6.2 Exposure Assessment

When performing exposure assessments, uncertainties can arise from two main sources. First, the chemical concentration to which a receptor may be exposed must be estimated for every medium of interest. Second, uncertainties can arise in estimating contaminant intakes resulting from contact with a particular medium.

Estimating the contaminant concentration in a given medium to which a human receptor may be exposed can be as simple as deriving the 95th percent upper confidence limit of the mean for a given data set. More complex methods for deriving contaminant concentration are necessary when exposure to COPCs in a given medium occurs subsequent to contaminant release from another medium, or when analytical data are not available to characterize the release. In this case, modeling is usually employed to estimate potential human exposure.

Potential inhalation of fugitive dusts from affected soils is estimated by using USEPA's Rapid Assessment of Exposure to Particulate Emissions from Surface Contamination (Cowherd et al., 1985). The Cowherd model employs the use of a site-specific PEF for wind erosion based on source area and vegetative cover. A conservative PEF estimate was derived for Site 65 by assuming that the entire area was not covered with vegetation and was unlimited in its erosion potential.

Groundwater samples were analyzed for total (unfiltered) and dissolved (filtered) inorganic contaminants. These samples were obtained from wells which were constructed using USEPA Region IV monitoring well design specifications. Groundwater taken from monitoring wells cannot be considered representative of potable groundwater, or groundwater which is obtained from a domestic well at the tap. The use of total inorganic analytical results overestimates the potential human health risks associated with potable use scenarios. However, in order to produce the most conservative risk estimates, total organic results were used to calculate the potential intake associated with groundwater use.

As stated previously, the shallow groundwater at Camp Lejeune is currently not used as a potable source. Receptors are only exposed to groundwater drawn from the deep zone. For this reason, exposure to shallow groundwater is not evaluated for current receptors. Groundwater exposure is evaluated for future residents only, as there is a possibility that shallow groundwater may be tapped someday.

To estimate receptor intake, certain assumptions must be made about exposure events, exposure durations and the corresponding assimilation of contaminants by the receptor. Exposure factors have been created from a range of values generated by studies conducted by the scientific community, and have been reviewed by the USEPA. Conservative assumption for daily intakes are employed throughout the BRA when values are not available; they are designed to produce low error, to protect human health and to yield reasonable clean-up goals. In all instances, the values, conservative scientific judgments and conservative assumptions used in the risk assessment concur with USEPA guidelines.

6.6.3 Sampling Strategy

As an environmental medium, soil is available for direct contact exposure, and it is often the main source of contamination released to other media. Soil sampling intervals should be appropriate for the exposure pathways and contaminant transport routes of concern. Surface soil exposure assessment

is based on samples collected from the shallowest depth, zero to one foot below the ground surface. Subsurface soil samples are necessary to generate data for exposure assessment when soil excavation is possible, or if leaching of chemicals to groundwater is likely. Subsurface soil samples are collected at depths greater than one foot below the ground surface.

6.6.4 Toxicity Assessment

In making quantitative estimates about the toxicity of varying chemical doses, uncertainties arise from two sources. First, existing data usually provide insufficient information about toxic exposure and subsequent effects. Human exposure data display inherent temporal variability and often lack adequate concentration estimates. Animal studies are often used to subsidize available human data. In the process of extrapolating animal results to humans; however, more uncertainties can arise. Second, in order to obtain visible toxic effects in experimental animals, high chemical doses are employed over short periods of time. Doses typical of human exposure; however, are much lower, relative to those doses administered to experimental animals. In order to apply animal test results to human exposure assessments, data must be adjusted to extrapolate from high dose effects to low dose effects.

In extrapolating effects from animal receptors to human receptors, and from high doses to low doses, scientific judgment and conservative assumptions are employed. In selecting animal studies for use in dose response calculations, the following factors are considered:

- Studies are preferred in which the animal closely mimics human pharmacokinetics
- Studies are preferred in which dose intake most closely mimics intake route and duration for humans
- Studies are preferred in which the most sensitive responses to the compound in question is demonstrated

In order to evaluate compounds that cause threshold effects, (i.e., noncarcinogens) safety factors are taken into account when experimental results are extrapolated from animals to humans, and from high to low doses. Employing conservative assumptions yields quantitative toxicity indices that are not expected to underestimate potential toxic effects, but may overestimate these effects by some magnitude.

6.6.5 Compounds Not Quantitatively Evaluated

The following contaminants detected at Site 65 were not quantitatively evaluated in the BRA, as there is no toxicity information promulgated by the USEPA:

• lead.

6.6.6 Results of CT Calculations

There was an unacceptable HI calculated for the future residential child under the groundwater ingestion RME exposure scenario. CT exposure scenarios for the future residential child were then applied to all media and pathways and carcinogenic and noncarcinogenic risks were recalculated. Under the CT exposure scenarios, the total site HI for the future residential child (0.66) was less than

the acceptable risk level of 1.0. Specifically, the HI calculated for the groundwater ingestion pathway was 0.3. In addition, the total site ICR for the future residential child fell below USEPA's acceptable risk range (1.0E-06<ICR<1.0E-04). Therefore, it is unlikely that under a CT (or average) exposure scenario, adverse huma health effects would occur. The CDI calculations for the CT exposure scenarios can be found in Appendix T.

6.7 BRA Conclusions

The BRA evaluates environmental media at Site 65, in terms of human health risk. Potential receptors at the site include future residential children and adults, current military personnel (trainees and recreational users), fisherman (adult and child), and future construction workers. Total site ICR and HI per receptor group are estimated by combining ICRs and HIs associated with specific exposure pathways. The following algorithms define total site risk:

- 1. Future Residents (Children and Adults)
 - a. Incidental ingestion of COPCs in surface soil + dermal contact with COPCs in surface soil + inhalation of COPCs in particulates
 - b. Ingestion of COPCs in groundwater + dermal contact with COPCs in groundwater + inhalation of volatile COPCs
 - Ingestion of COPCs in surface water + ingestion of COPCs in sediment + dermal contact with COPCs in surface water + dermal contact with COPCs in sediment
- 2. Current Military Personnel Trainees
 - a. Incidental ingestion of COPCs in surface soil + dermal contact with COPCs in surface soil + inhalation of airborne COPCs
 - b. Incidental ingestion of COPCs in subsurface soil + dermal contact with COPCs in subsurface soil + inhalation of airborne COPCs
- 3. Military Personnel Recreational User
 - a. Incidental ingestion of COPCs in surface soil + dermal contact with COPCs in surface soil + inhalation of airborne COPCs
- 4. Fisherman (Adult and Child)
 - Ingestion of COPCs in surface water + ingestion of COPCs in sediment + dermal contact with COPCs in surface water + dermal contact with COPCs in sediment
 - b. Ingestion of COPCs in fish tissue

5. Future Construction Worker

a. Incidental ingestion of COPCs subsurface soil + dermal contact with COPCs in subsurface soil + inhalation of airborne COPCs

6.7.1 Total Site Risk

The text below addresses total site risks by receptor group. Total site ICR and HI values are presented in Table 6-27.

6.7.1.1 Future Residential Children

Total ICR for future residential children, 3.7E-06, is within the USEPA acceptable cancer risk range. Total HI, 3.0, is above 1.0. This elevated HI value is primarily a result of iron detected in the groundwater. However, it should be noted that iron is still considered an essential nutrient. Also, toxicity criteria, which have not been finalized by the USEPA, have only recently been introduced for iron. Finally, as noted in Section 6.6.6, the CT exposure scenarios calculated for the future residential child showed no unacceptable risk.

6.7.1.2 Future Residential Adults

Total ICR for future residential adults at, 2.8E-06, is within the USEPA acceptable cancer risk range. Total HI, 0.25, is less than 1.0. It can then be concluded that COPCs in environmental media at Site 65 generate no health risks in excess of acceptable levels.

6.7.1.3 Current Military Personnel - Trainee

Total ICR for current military personnel involved in heavy equipment training activities near Site 65, 7.3E-07, is below the USEPA acceptable risk range. Total HI, 0.2, is less than 1.0. It can then be concluded that COPCs in environmental media at Site 65 generate no health risks in excess of acceptable levels.

6.7.1.4 Current Military Personnel - Recreational User

Total ICR for current military personnel involved in physical fitness/recreational activities through the use of Butler's Way adjacent to Site 65, 3.5E-07, is below the USEPA acceptable risk range. Total HI, less than 0.05, is well below the USEPA limit of 1.0. It can then be concluded that COPCs in environmental media at Site 65 generate no health risks in excess of acceptable levels.

6.7.1.5 Adult Fisherman

There were no carcinogens selected as COPCs for surface water, sediment, or fish tissue. Therefore, a carcinogenic risk was not calculated for the adult fisherman. It can then be concluded that COPCs in environmental media at Site 65 generate no carcinogenic health risks in excess of acceptable levels.

The total HI, 1.3, is above 1.0. The elevated HI is primarily due to the presence of mercury in fish tissue (69% of the total fish tissue HI). It should be noted that the HQ for mercury (0.82) was less than 1.0. In addition, several factors indicate that the presence of mercury is not site related. The mercury was detected only in the fish tissue. It was not detected in any other media sampled at

Site 65. The location of the ponds from the heavy equipment training area prevents them from being affected by surface run-off. Finally, Courthouse Bay Pond and Powerline Pond are stocked with fish. It can be concluded that there may be potential non-carcinogenic risks above the acceptable level from the ingestion of fish tissue, but that it is not related to Site 65.

6.7.1.6 Child Fisherman

There were no carcinogens selected as COPCs for surface water, sediment, or fish tissue. Therefore, a carcinogenic risk was not calculated for the child fisherman. It can then be concluded that COPCs in environmental media at Site 65 generate no carcinogenic health risks in excess of acceptable levels.

The total HI, 6.1, is above 1.0. The elevated HI is primarily due to the presence of mercury in fish tissue (69% of the total fish tissue HI). As stated previously in Section 6.5.1.4, the fish tissue ingestion HI calculated for the child fisherman is very conservative. In addition, several factors indicate that the presence of mercury is not site related. The mercury was detected only in the fish tissue. It was not detected in any other media sampled at Site 65. The location of the ponds from the heavy equipment training area prevents them from being affected by surface run-off. Finally, Courthouse Bay Pond and Powerline Pond are stocked with fish. It can be concluded that there may be potential non-carcinogenic risks above the acceptable level from the ingestion of fish tissue, but that it is not related to Site 65.

6.7.1.7 Future Construction Workers

Total ICR for future construction workers at Site 65, 1.3E-07, is less than 1.0E-06; it is within the USEPA acceptable risk range. Total HI, 0.2, is less than 1.0. It can then be concluded that COPCs in environmental media at Site 65 generate no health risks in excess of acceptable levels. Total site ICR and HI values are presented in Table 6-27.

6.8 References

Andelman, Julian B. 1985. <u>Inhalation Exposure in the Home to Volatile Organic Contaminants of Drinking Water</u>.

IRIS, <u>Integrated Risk Information System</u>. 1995. Accessed through Chemical Information Systems, Inc., Baltimore, Maryland.

USEPA. 1989(a). United States Environmental Protection Agency. <u>Risk Assessment Guidance for Superfund Volume I. Human Health Evaluation Manual (Part A) Interim Final.</u> Office of Solid Waste and Emergency Response. Washington, D.C. EPA/540/1-89-002. December 1989.

USEPA. 1989(b). United States Environmental Protection Agency. <u>Risk Assessment Guidance for Superfund Volume II. Environmental Evaluation Manual Interim Final</u>. Office of Solid Waste and Emergency Response. Washington, D.C. EPA/540/1-89-001. May 1989.

USEPA. 1991. United States Environmental Protection Agency. <u>National Functional Guidelines for Organic Data Review</u>. Draft. USEPA Hazardous Site Evaluation Division. June, 1991.

USEPA. 1991(a). United States Environmental Protection Agency. <u>Risk Assessment Guidance for Superfund Volume I. Human Health Evaluation Manual Supplemental Guidance</u>. "Standard Default

Exposure Factors" Interim Final. Office of Solid Waste and Emergency Response. Washington, D.C. OSWER Directive 9285.6-03. March 25, 1991.

USEPA. 1991(b). United States Environmental Protection Agency. <u>Supplemental Region IV Risk</u> Assessment Guidance. Health Assessment Office. March 20, 1991.

USEPA. 1992(a). United States Environmental Protection Agency. <u>Dermal Exposure Assessment:</u> <u>Principles and Applications</u>. Interim Report. Office of Health and Environmental Assessment. Washington, D.C. EPA/600/8-91/011B. January, 1992.

USEPA. 1992(b). United States Environmental Protection Agency. <u>New Interim Region IV Guidance for Toxicity Equivalency Factor (TEF) Methodology</u>. Region IV Water Management Division. February 11, 1992.

USEPA. 1992(c). United States Environmental Protection Agency. Supplemental Guidance to RAGS: <u>Calculating the Concentration Term</u>. Office of Solid Waste and Emergency Response. Washington, D.C., Publication 9285.7-081. May, 1992.

USEPA. 1993. United States Environmental Protection Agency. <u>Draft Superfund's Standard Default Exposure Factors for the Central Tendency and Reasonable Maximum Exposure</u>. November, 1993.

USEPA. 1994(a). United States Environmental Protection Agency. <u>Drinking Water Regulations and Health Advisories</u>. Office of Water. Washington, D.C. November, 1994.

USEPA. 1994(b). United States Environmental Protection Agency. <u>Health Effects Assessment Summary Tables (HEAST)</u>. Office of Research and Development. Office of Emergency and Remedial Response.

USEPA. 1995. United States Environmental Protection Agency. <u>Supplemental Guidance to RAGS:</u> <u>Region IV Bulletins</u>. Office of Water. Washington, D.C. November, 1995.

USEPA. 1997. United States Environmental Protection Agency. <u>Region III Risk-Based</u> <u>Concentration Table</u>. Philadelphia, Pennsylvania. March 17, 1997.

SECTION 6.0 TABLES

TABLE 6-1

SUMMARY OF BLANK CONTAMINANT RESULTS SITE 65 - ENGINEER AREA DUMP REMEDIAL INVESTIGATION, CTO-0312 MCB, CAMP LEJEUNE, NORTH CAROLINA

	Maximum	Medium Associated with	Type of		
(Concentration	Maximum	Blank with	Concentration	Concentration
	Detected in Blank	Concentration Detected in	Maximum Detected	for Comparison ⁽¹⁾	for Comparison ⁽²⁾
Constituent	μg/L)	Blank	Value	(Aqueous -µg/L)	(Solid - μg/kg)
Volatiles	, , ,			1 13 /	(
Methylene Chloride	1J	Soil	Trip	10	10
Acetone	93	Soil	Rinsate	930	930
2-Butanone	7J	Soil	Rinsate	70	70
Toluene	4J	Soil	Trip	40	40
Semivolatiles					
Di-n-butylphthalate	1J	Soil	Field	10	330
Bis(2-ethylhexyl)phthalate	2J	Soil	Field	20	660
Pesticide/PCBs					
4,4'-DDT	0.3	Soil	Rinsate	1.5	49.5
Inorganics					
Aluminum	73.6	Soil	Field	368	368
Barium	2.7	Soil	Field	13.5	13.5
Calcium	138	Soil	Field	690	690
Copper	16.1	Soil	Field	80.5	80.5
Iron	20.4	Soil	Field	102	102
Zinc	20.3	Soil	Field	101.5	101.5
Volatiles					•
Methylene Chloride	1J	Groundwater	Trip	10	NA
Acetone	12	Groundwater	Field	120	NA
1,2-Dichloroethane	2J	Groundwater	Trip	20	NA
Semivolatiles				·	
Di-n-butylphthalate	1J	Groundwater	Field	10	NA
Bis(2-ethylhexyl)phthalate	2J	Groundwater	Field	20	NA
Inorganics					
Aluminum	73.6	Groundwater	Field	368	NA
Barium	2.7	Groundwater	Field	15	NA
Calcium	138	Groundwater	Field	2,990	NA
Copper	16.1	Groundwater	Field	80.5	NA
Iron	20.4	Groundwater	Field	102	NA
Zinc	20.3	Groundwater	Field	140	NA

TABLE 6-1 (Continued)

SUMMARY OF BLANK CONTAMINANT RESULTS SITE 65 - ENGINEER AREA DUMP REMEDIAL INVESTIGATION, CTO-0312 MCB, CAMP LEJEUNE, NORTH CAROLINA

		Medium			
	Maximum	Associated with	Type of		_
	Concentration	Maximum	Blank with	Concentration	Concentration
	Detected in	Concentration	Maximum	for	for
	Blank	Detected in	Detected	Comparison ⁽¹⁾	Comparison ⁽²⁾
Constituent	(μg/L)	Blank	Value	(Aqueous -μg/L)	(Solid - μg/kg)
Volatiles					
		Surface Water/			
Methylene Chloride	10	Sediment	Trip	10	10
		Surface Water/			
Acetone	44	Sediment	Rinsate	440	440
		Surface Water/			
1,2-Dichloroethane	2Ј	Sediment	Trip	10	10
		Surface Water/			
Toluene	4 J	Sediment	Trip	40	40
Inorganics					
		Surface Water/			
Aluminum	65.2	Sediment	Rinsate	326	326
		Surface Water/			
Calcium	598	Sediment	Rinsate	2,990	2,990
		Surface Water/			
Magnesium	120	Sediment	Rinsate	600	600
		Surface Water/	·		
Sodium	290	Sediment	Rinsate	1,450	1,450

Notes:

NA - Not applicable

⁽¹⁾ Concentration is five or ten times (for common laboratory blank contaminants) the maximum detected concentration in a blank.

⁽²⁾ Concentration is five or ten times the maximum detected concentration in a blank; converted to µg/kg.

⁽³⁾ Semivolatile blank concentrations are multiplied by 33 or 66 to account for matrix difference.

ORGANIC DATA SUMMARY - SURFACE SOIL SITE 65 - ENGINEER AREA DUMP **REMEDIAL INVESTIGATION, CTO-0312** MCB, CAMP LEJEUNE, NORTH CAROLINA

	Contaminant	Range/Frequency	Region III Criteria	Comprison to Criteria
	Range of Positive		Residential	Positive Detects
	Detections	No. of Positive Detects/	COC Value	Above Residential
Contaminant	(μg/kg)	No. of Samples	(μg/kg)	COC Value
Volatiles				
Methylene Chloride	2J - 2J	2/13	85,000	0
Acetone	10Ј	1/13	780,000	0
Trichloroethene	1 J	1/13	58,000	0
Toluene	1J - 2J	3/13	1,600,000	0
Ethylbenzene	1Ј	1/13	780,000	0
Xylenes (Total)	3J - 5J	2/13	16,000,000	0
Semivolatiles	,			
Acenaphthene	130J	1/13	470,000	0
2,4-Dinitrophenol	150J	1/13	16,000	0
Dibenzofuran	58J	1/13	31,000	0
Fluorene	100J	1/13	310,000	0
Phenanthrene	59 J - 860	3/13	230,000 ⁽¹⁾	0
Anthracene	190Ј	1/13	230,000	0
Carbazole	180Ј	1/13	32,000	0
Di-n-butylphthalate	260 J - 390J	2/13	780,000	0
Fluoranthene	130J - 830	3/13	310,000	0
Pyrene	150J - 850	3/13	230,000	0
Benzo(a)anthracene	76J - 510	3/13	880	0
Chrysene	70J - 470	3/13	88,000	0
bis(2-Ethylhexyl)phthalate	48J - 87J	9/13	46,000	0
Benzo(b)fluoranthene	89J - 360J	3/13	880	0
Benzo(k)fluoranthene	120J - 510	2/13	8,800	0
Benzo(a)pyrene	100J - 400	2/13	88	2
Indeno(1,2,3-cd)pyrene	88J - 310J	2/13	880	0
Dibenzo(a,h)anthracene	45J - 150J	2/13	88	1
Benzo(g,h,i)perylene	70J - 250J	2/13	230,000	0
Pesticide/PCBs				
Heptachlor Epoxide	2.3	1/13	70	0
4,4'-DDE	4.3 - 83J	6/13	1,900	0
Endosulfan II	3.8NJ - 3.9NJ	2/13	47,000	0
4,4'-DDD	3.8NJ - 59J	7/13	2,700	0
4,4'-DDT	25 - 56J	3/13	1,900	0
Aroclor-1260	52J	1/13	319	0

Notes:

Shaded areas indicate contaminant selected as a risk-based COPC.

J - Estimated value

N - Indicates presumptive evidence of a compound.

(1) USEPA Region III COC value for pyrene used as a surrogate.

TABLE 6-3

INORGANIC DATA SUMMARY - SURFACE SOIL SITE 65 - ENGINEER DUMP AREA **REMEDIAL INVESTIGATION, CTO-0312** MCB, CAMP LEJEUNE, NORTH CAROLINA

	Range	Frequency		Comparison	to Criteria	
	Range of Positive Detections	No. of Positive Detects/	Twice the Average Base Specific Background(1) Concentration	No. of Times Exceeded Twice the Average Background	Residential COC Value	Positive Detects Above Residential
Inorganic	(mg/kg)	No. of Samples	(mg/kg)	Concentration	(mg/kg)	COC Value
Aluminum	656 - 5,040	13/13	5,940.594	0	7,800	0
Barium	2.7 - 36.3	13/13	17.36	3	550	0
Calcium+	79.3 - 3,460	13/13	1,396.788	1	NE	NA
Chromium	2.3 -8.6	11/13	6.693	2	39	0
Copper	2.5 - 55.6	9/13	7.2	6	290	0
Iron+	509 - 16,400	13/13	3,755.063	2	2,300	3
Lead	2 - 178J	13/13	23.749	4	400 ⁽²⁾	0
Magnesium+	28.5 - 187	13/13	205.751	0	NE	NA
Manganese	2.9 - 163J	13/13	18.497	5	180	0
Nickel_	4.6 - 5.7	2/13	3.434	2	160	0
Potassium+	248	1/13	199.610	1	NE	NA
Sodium+	51.3 - 56.3	2/13	59.298	0	NE	NA
Thallium	2.3	1/13	0.899	1	0.63(3)	1
Vanadium	2.8 - 12	9/13	11.628	1	55	0
Zinc	3.7 - 377J	11/13	13.880	6	2,300	0

Notes:

Shaded areas indicate contaminant selected as a risk-based COPC.

+ = Essential Nutrient

NE = Not Established

- NA = Not Applicable

 (1) Soil background concentrations are based on reference background soil samples collected from MCB Camp Lejeune investigations.
 (2) Action Level for residential soils (USEPA, 1994).
 (3) Value for thallium carbonate used as a surrogate.

- J = Estimated Value

ORGANIC DATA SUMMARY - SUBSURFACE SOIL SITE 65 - ENGINEER AREA DUMP **REMEDIAL INVESTIGATION, CTO-0312** MCB, CAMP LEJEUNE, NORTH CAROLINA

			Region III	Comparison to
	Contaminant Ra	nge/Frequency	Criteria	Criteria
	Range of Positive	No. of Positive	Residential	Positive Detects
	Detections	Detects/	COC Value	Above Residential
Contaminant	(μg/kg)	No. of Samples	(μg/kg)	COC Value
Volatiles				·
Acetone	7J - 380	13/19	780,000	0
Carbon Disulfide	2Ј	1/19	780,000	0
2-Butanone	2J - 29	3/19	4,700,000	0
Trichloroethene	2J ·	1/19	58,000	0
Toluene	1J	1/19	1,600,000	0
Xylenes (Total)	1J - 3J	5/19	16,000,000	0
Semivolatiles				
Naphthalene	55J	1/19	310,000	0
2-Methylnaphthalene	60J	1/19	310,000	0
Acenaphthene	94J - 97J	2/19	470,000	0
Fluorene	110J	1/19	310,000	0
Dibenzofuran	42J	1/19	31,000	0
Phenanthrene	150J - 1,200	2/19	230,000(1)	0
Anthracene	290Ј	1/19	2,300,000	0
Carbazole	120J	1/19	32,000	0
Di-n-butylphthalate	160J - 340J	8/19	780,000	0
Fluoranthene	230J - 1,900	2/19	310,000	0
Pyrene	190J - 1,400	2/19	230,000	0
Benzo(a)anthracene	100J - 900	2/19	880	1
Chrysene	110J - 800	2/19	88,000	0
bis(2-Ethylhexyl)phthalate	37J - 370	15/19	46,000	0
Benzo(b)fluoranthene	96J - 710	2/19	880	0
Benzo(k)fluoranthene	110J - 620	2/19	8,800	0
Benzo(a)pyrene	69J - 680	2/19	88	1
Ideno(1,2,3-cd)pyrene	480J	1/19	880	0
Benzo(g,h,i)perylene	67J - 360J	1/19	230,000	0
Pesticide/PCBs				
Endosulfan I	3.1NJ	1/19	47,000	0
4,4'-DDE	4.6 - 45J	8/19	1,900	0
4,4'-DDD	4.4J - 340J	8/19	2,700	0
4,4'-DDT	9.6 - 40	4/19	1,900	0
Endrin Aldehyde	9.4J	1/19	2,300	0
alpha-Chlordane	8.3J	1/19	490	0
gamma-Chlordane	3J - 7.5J	3/19	490	0

Shaded areas indicate contaminant selected as a risk-based COPC.

J = Estimated value

N = Indicates presumptive evidence of a compound

(1) USEPA Region III COC value for pyrene used as a surrogate.

TABLE 6-5

INORGANIC DATA SUMMARY - SUBSURFACE SOIL SITE 65 - ENGINEER AREA DUMP **REMEDIAL INVESTIGATION, CTO-0312** MCB, CAMP LEJEUNE, NORTH CAROLINA

·	Range/Fre	quency		Comparison to	Critorio	· · · · · · · · · · · · · · · · · · ·
	Kange/11e	I	Trying the Assessment			
	Range of Positive	No. of Positive	Twice the Average Base Specific	No. of Times Exceeded Twice the	Region III Residential	Positive Detects
	Detections	Detects/	Background ⁽¹⁾	Average Background	COC Value	Above Residential
Inorganic	(mg/kg)	No. of Samples	Concentration (mg/kg)	Concentration	(mg/kg)	COC Value
Alumnum	1,020 - 10,600	19/19	7,375.302	1	7,800	1
Antimony	11.8	1/19	6.409	1	3.1	1
Arsenic	2.6 - 3.3	3/19	1.968	3	0.37	3
Barium	2.7 - 38.3	19/19	14.204	7	550	0
Cadmium	1.3 - 1.3	2/19	0.712	2	3.9	0
Calcium+	49.8 - 1,350	18/19	391.509	9	NE	NA
Chromium	2.6 - 17.3	16/19	12.562	1	39	0
Cobalt	11.5	1/19	1.504	1	470	0
Copper	7.7 - 672	8/19	2.416	8	290	2
fron+	236J - 31,300	19/19	7,252.076	5	2,300	9
Lead	1.6 - 539	19/19	8.327	8	400(2)	1
Magnesium+	23.8 - 410	19/19	260.718	2	NE	NA
Manganese	2 - 471	19/19	7.919	10	180	2
Nickel	4.8 - 243	3/19	3.714	3	160	1
Potassium+	253 - 453	4/19	347.236	1	NE	NA
Selenium	1.5	1/19	0.801	1	39	0
Silver	4.2	1/19	0.866	1	39	0
Sodium+	50.8 - 130	5/19	52.676	4	NE	NA
Thallium	4.2	1/19	0.955	1	0.63(3)	1
Vanadium	3.1 - 27.2	15/19	13.454	1	55	0
Zinc	2.5J - 764	16/19	6.662	12	2,300	0

Notes:

Shaded areas indicate contaminant selected as a risk-based COPC.

NE = Not Established NA = Not Applicable

J = Estimated Value

⁽¹⁾ Soil background concentrations are based on reference background soil samples collected from MCB Camp Lejeune investigations.
(2) Action Level for residential soils (USEPA, 1994).

⁽³⁾ Value for thallium carbonate used as a surrogate.

^{+ =} Essential Nutrient

GROUNDWATER DATA SUMMARY SITE 65 - ENGINEER AREA DUMP REMEDIAL INVESTIGATION, CTO-0312 MCB, CAMP LEJEUNE, NORTH CAROLINA

		Groun	dwater Criteria			Frequenc	y/Range		Compari	son to Criteria		
	NCWQS ⁽¹⁾	MCL ⁽²⁾	Region III Tap Water COC Value	Federal Adviso (µg	ories ⁽³⁾ /L) 70 kg	No. of Positive Detects/	Concentration Range	No. of Detects Above	No. of Detects Above	No. of Detects	Above Advi 10 kg	Detects Health sories 70 kg
Contaminant	(μg/L)	(µg/L)	(μg/L)	Child	Adult	No. of Samples	(μg/L)	NCWQS	MCL	Above COC	Child	Adult
Volatiles	_					<i>21</i> 33	1, 0,	•	37.4) TA	374
Methylene Chloride	5	NE	4.1	NE	NE	6/11	1J - 2J	0	NA	0	NA	NA
Acetone	700	NE	370	NE	NE	7/11	5J - 7J	0	NA	0	NA	NA
Carbon Disulfide	NE	NE	2.1	NE	NE	1/11	5J	NA	NA	1	NA	NA
1,2-Dichloroethane	0.38	5	0.12	700	2,600	8/11	2J - 2J	8	0	8	0	0
2-Butanone	NE	NE	190	NE	NE	3/11	1J - 1J	NA	NA	0	NA	NA
Semivolatiles							[
Naphthalene	210	NE	150	400	1,000	1/11	3Ј	0	NA	0	0	0
Di-n-butylphthalate	700	NE	370	NE	NE	3/11	2J - 6J	0	NA	0	NA	NA
bis(2-Ethylhexyl)phthalate	3.0	6.0	4.8	NE	NE	5/11	1J - 6J	2	0	1	NA	NA
Inorganics]			ļ]	
Aluminum	NE	50/200 ⁽⁴⁾	3,700	NE	NE	7/11	40.3 - 421	6/3	NA	0	NA	NA
Barium	2,000	2,000	260	NE	NE	10/11	17.9 - 151	0	0	0	NA	NA
Calcium	NE	NE	NE	NE	NE	11/11	2,700 - 146,000	NA	NA	NA	NA.	NA
Chromium	50	100	18	200	800	2/11	10 - 10.2	0	0	0	0	0
Cobalt	NE	NE	220	NE	NE	4/11	20.1 - 52.4	NA	NA	0	NA	NA
Iron	300	300 ⁽⁴⁾	1,100	NE	NE	10/11	41.9 - 6,580	5	5	4	NA	NA
Lead	15	15 ⁽⁵⁾	NE	NE	NE	1/11	3.4	0	0	NA	NA	NA
Magnesium	NE	NE	NE	NE	NE	11/11	1,200 - 16,200	NA	NA	NA	NA	NA
Manganese	50	50 ⁽⁴⁾	84	NE	NE	11/11	3 - 186	6	6	4	NA	NA
Nickel	100	100	. 73	500	1,700	2/11	53.1 - 59.6	0	0	0	0	0
Potassium	NE	NE	NE	NE	NE	10/11	1,200 - 7,940	NA	NA	NA	NA	NA
Sodium	NE	NE	NE	NE	NE	11/11	5,620 - 16,400	NA	NA	NA	NA	NA
Zinc	2,100	5,000 ⁽⁴⁾	1,100	3,000	10,000	10/11	11 - 58.9	0	0	0	0	0

Notes:

Shaded areas indicate contaminant selected as a risk-based COPC.

- (1) NCWQS = North Carolina Water Quality Standards for Groundwater.
- (2) MCL = Safe Drinking Water Act Maximum Contaminant Level
- (3) Longer Term Health Advisories for a 10 kg Child and 70 kg Adult.
- (4) SMCL = Secondary Maximum Contaminant Level.
- (5) Action Level.

ssential Nutrient

NE = Not Established

NA = Not Applicable

J = Estimated value

TABLE 6-7

SURFACE WATER DATA SUMMARY SITE 65 - ENGINEER AREA DUMP **REMEDIAL INVESTIGATION, CTO-0312** MCB, CAMP LEJEUNE, NORTH CAROLINA

	Surf	ace Water Cri	teria			(Comparison to Crit	eria
		Federal AWC	l Health PCs ⁽²⁾					
	;	(μջ	g/L)	Contaminant	Frequency/Range	Positive	Positive Detects	s Above AWQC
Continuent	NCWQS ⁽¹⁾	Water &	Organisms	No. of Positive Detects/ Contaminant Range		Detects Above	Water &	Organisms
Contaminant	(μg/L)	Organisms	Only	No. of Samples	(μg/L)	NCWQS	Organisms	Only
Volatiles Acetone	NE_	NE	NE	1/2	5J	NA	NA	NA
1,2-Dichloroethane	NE	0.38	99	2/2	1J - 1J	NA	2	0
Inorganics								
Aluminum	NE	NE	NE	1/2	25,800	NA	NA	NA
Barium	NE	1,000	NE	2/2	36.7 - 69.3	NA	0	NA
Calcium+	NE	NE	NE	2/2	12,000 - 26,800	NA	NA	NA
Chromium	50	170 ⁽³⁾	3,400 ⁽³⁾	1/2	27.6	0	0	0
Copper	7	1,300 ⁽³⁾	NE	1/2	41.1	1	0	NA
Iron	1,000	NE	NE	2/2	348 - 7,890	1	NA	NA
Lead	25	NE	NE	1/2	45.8	1	NA	NA
Magnesium+	NE	NE	NE	2/2	2,060 - 2,520	NA	NA	NA
Manganese	NE	NE	100	2/2	57.3 - 88.4	NA	NA	0
Potassium+	NE	NE	NE	1/2	2,970	NA	NA	NA
Sodium+	NE	NE	NE	2/2	3,330 - 6,320	NA	NA	NA
Vanadium	NE	NE	NE	1/2	26.2	NA	NA	NA
Zinc	50	NE	NE	2/2	33.6 - 144	1	NA	NA

Notes:

Shaded areas indicate contaminant selected as a risk-based COPC.

+ = Essential Nutrient

NE = Not Established

NA = Not Applicable

J = Estimated value

⁽¹⁾ NCWQS = North Carolina Water Quality Standards for Surface Water, surface water classification C.
(2) AWQC = Ambient Water Quality Standard.
(3) Recalculated values using IRIS, as of 9/90.

SEDIMENT DATA SUMMARY SITE 65 - ENGINEER AREA DUMP REMEDIAL INVESTIGATION, CTO-0312 MCB, CAMP LEJEUNE, NORTH CAROLINA

	Region III	1		Comparison to
	Criteria	Range/F	requency	Criteria
			No. of	
,		Range of	Positive	
	Residential	Positive	Detects/	Positive Detects
Contaminant	COC Value	Detections	No. of Samples	Above COC
Volatiles (µg/kg)				
Acetone	780,000	190Ј - 450Ј	4/4	0
Chloroform	100,000	79J	1/4	0
2-Butanone	4,700,000	72J - 94J	4/4	0
Carbon Tetrachloride	4,900	13J - 18J	2/4	0
Tetrachloroethene	12,000	6J - 15J	2/4	0
Toluene	1,600,000	3J - 7J	3/4	0
Semivolatiles (µg/kg)		·		0
Di-n-butylphthalate	780,000	940J - 1,600J	4/4	0
Pesticide/PCBs (μg/kg)				0
beta-BHC	350	8.3NJ	1/4	0
4,4'-DDE	2,700	18J - 19NJ	2/4	0
4,4'-DDD	1,900	76 J - 84J	2/4	0
Inorganics (mg/kg)				
Aluminum	7,800	394 - 37,500J	4/4	2
Antimony	3.1	46.6J	1/4	1
Barium	550	13.6 - 110	4/4	0
Calcium+	NE	322 - 4,640	4/4	1
Chromum	39	9.8J - 43.6J	2/4	0
Cobalt	470	36.3	1/4	0
Copper	290	8.2 - 100J	3/4	0
Iron	2,300	414 - 14,600J	4/4	2
Lead	400(1)	23.9 - 176J	3/4	0
Magnesium+	NE	94.8 - 1,140	3/4	NA
Manganese	180	25.6 - 126J	4/4	0
Potassium+	NE	1,410	1/4	NA
Sodium+	NE	139 - 203	3/4	NA
Vanadium	55	40.5	1/4	0
Zinc	2,300	7.9 - 280J	4/4	0

Notes:

Shaded areas indicate contaminant selected as a risk-based COPC.

ER-L = Effects Range-Low

ER-M = Effects Range-Medium

(1) Action level for soils (USEPA, 1994).

+ = Essential Nutrient

NA = Not Applicable

NE = Not Established

J = Estimated value

N = Indicates presumptive evidence of a compound

FISH TISSUE⁽¹⁾ DATA SUMMARY SITE 65 - ENGINEER AREA DUMP REMEDIAL INVESTIGATION, CTO-0312 MCB, CAMP LEJEUNE, NORTH CAROLINA

	Contaminant l	Frequency/Range	Region III Criteria	Comprison to Criteria
Contaminant	Range of Positive Detections	No. of Positive Detects/ No. of Samples	Fish COC Value	Positive Detects Above Fish COC Value
Volatiles (µg/kg)				
Acetone	5,600J - 7,900J	2/4	14,000	0
Pesticide/PCBs (µg/kg)				
4,4'-DDD	5.7J	1/4	13	0
Inorganics (mg/kg)				
Aluminum	0.99	1/4	140	0
Barium	0.21J	1/4	9.5	0
Calcium+	385J - 2,100J	4/4	NE	NA
Copper	0.46 - 0.49	2/4	5	0
Magnesium+	290J - 299J	4/4	NE	NA
Manganese	0.092J - 0.45J	4/4	0.68	0
Mercury	0.051J - 0.3J	4/4	0.014	4
Potassium+	2,700J - 3,540J	4/4	NE	NA
Selenium	0.14 - 0.22	4/4	0.68	0
Sodium+	441 - 869	4/4	NE	NA
Thallium	0.11 - 0.11	3/4	0.011(2)	NA
Zinc	5.8J - 8.4J	4/4	41	0

Notes:

Shading indicates contaminant selected as a risk-based COPC.

NA = Not Applicable

NE = Not Established

+ = Essential Nutrient

J = Estimated value

⁽¹⁾ Fillet (or edible) portion of fish tissue was analyzed for human health BRA.

⁽²⁾ Value for thallium carbonate used as a surrogate.

SUMMARY OF COPCs IN ENVIRONMENTAL MEDIA OF CONCERN SITE 65 - ENGINEER AREA DUMP REMEDIAL INVESTIGATION, CTO-0312 MCB, CAMP LEJEUNE, NORTH CAROLINA

Volatiles	G	Surf		•	ırface		1 ,	G 6	***				
Methylene Chloride	Contaminant	So	11	S	011	Groun	dwater	Surface	e Water	Sedi	ment	Fish	Tissue
Acetone		Γ .	Т	T	T		1	r			Ι	1	Т
Carbon disulfide Chloroform 1,2-Dichloroethane 1,2-Dichloroethane Carbon Tetrachloride Trickloroethene Toluene Others of the state of t		 	<u> </u>	<u> </u>	ļ						·		
Chloroform		-	<u> </u>			 		-		•	ļ	<u> </u>	ļ
1,2-Dichloroethane			<u> </u>	<u> </u>			X	<u></u>				<u> </u>	
2-Butanone Carbon Tetrachloride Trichloroethene Toluene Toluen			<u> </u>		<u> </u>]				•		<u></u>	<u> </u>
Carbon Tetrachloride Trichloroethene Tetrachloroethene Toluene Ethylbenzene Xylenes (Total) Semivolatiles Naphthalene 2-Methylnaphthalene Acenaphthene 2,4-Dinitrophenol Dibenzofuran Fluorene Phenanthrene Anthracene Carbazole Di-n-butylphthalate Pyrene Benzo(a)anthracene Denzo(a)phyrene Benzo(a)phyrene Benzo(a)phyrene Benzo(a)phyrene Benzo(a)phyrene Benzo(a)phyrene Benzo(a)phyrene Benzo(a)phyrene Benzo(a)phyrene Benzo(b,hjperylene Benzo(b,hjperylene Benzo(b,hjperylene Benzo(b,hjperylene Benzo(b,hjperylene Betzoticherostiche ostiche Betzoticherostiche Betzoticherostiche Betzoticherosticherostiche Betzoticherosticherostiche Betzoticherostich			ļ	<u> </u>				•					<u> </u>
Trichloroethene Tetrachloroethene Toluene Ethylbenzene Nylenes (Total) Semivolatiles Naphthalene 2-Methylnaphthalene Acenaphthene 2,4-Dinitrophenol Dibenzofuran Fluorene Phenanthrene Anthracene Carbazole Di-n-butylphthalate Pyrene Benzo(a)anthracene Benzo(a)phrene Benzo(a)phrene Benzo(a)phyrene Benzo(b)fluoranthene Benzo(b)fluoranthene Benzo(b)fluoranthene Benzo(b)fluoranthene Benzo(a)phyrene Benzo(a)phyrene Benzo(a)phyrene Benzo(b)fluoranthene Be		ļ	<u> </u>	•		•				•			
Toluene		<u> </u>	<u> </u>		ļ	<u> </u>				•			
Toluene		•		•				<u> </u>				<u> </u>	
Ethylbenzene				<u> </u>						•			
Semivolatiles		•		•				<u> </u>		•			
Naphthalene		•											
Naphthalene	Xylenes (Total)	•		•									
2-Methylnaphthalene	Semivolatiles												
Acenaphthene 2,4-Dinitrophenol Dibenzofuran Fluorene Phenanthrene Anthracene Carbazole Di-n-butylphthalate Fluoranthene Pyrene Benzo(a)anthracene Senzo(b)fluoranthene Benzo(b)fluoranthene Benzo(a)pyrene Benzo(a)pyrene XX XX Benzo(a)pyrene XX Benzo(a)pyrene Ben	Naphthalene			•		•							
2,4-Dinitrophenol •	2-Methylnaphthalene			•									
Dibenzofuran ● <	Acenaphthene	•		•									
Phenanthrene	2,4-Dinitrophenol	•											
Phenanthrene • <t< td=""><td>Dibenzofuran</td><td>•</td><td></td><td>•</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	Dibenzofuran	•		•									
Anthracene Carbazole Di-n-butylphthalate Fluoranthene Pyrene Benzo(a)anthracene National Scarb S	Fluorene	•		•									
Carbazole ●	Phenanthrene	•		•									
Di-n-butylphthalate ●	Anthracene	•		•						1			
Fluoranthene ● ● ■ <	Carbazole	•		•							<u> </u>		<u> </u>
Fluoranthene ● ● ■ <	Di-n-butylphthalate	•		•		•				•			
Benzo(a)anthracene ◆ X	Fluoranthene	•	<u> </u>	•						**			
Benzo(a)anthracene ◆ X	Pyrene	•		•									
Chrysene •<		•		•	X								
bis(2-Ethylhexyl)phthalate • </td <td></td> <td>•</td> <td></td> <td>•</td> <td></td> <td><u> </u></td> <td></td> <td></td> <td></td> <td>****</td> <td></td> <td></td> <td></td>		•		•		<u> </u>				****			
Benzo(b)fluoranthene ● ■		•		•		•		<u> </u>					
Benzo(k)fluoranthene ● ■		•		•	 								
Benzo(a)pyrene • X • X Ideno(1,2,3-cd)pyrene •		•		•								 -	<u> </u>
Ideno(1,2,3-cd)pyrene • •		•	X	•	X							-	
Dibenzo(a,h)anthracene X								<u> </u>				 -	
Benzo(g,h,i)perylene ● ■ ■ Pesticide/PCBs beta-BHC ● ■ ■ Heptachlor Epoxide ● ■ ■		•	X								<u> </u>		 -
Pesticide/PCBs beta-BHC ● ■				•	 			-					 -
beta-BHC Heptachlor Epoxide •		L	l	L	L			I	L		L	L	L
Heptachlor Epoxide ●						T		T		•		<u> </u>	<u> </u>
		•		-	<u> </u>			<u> </u>					$\vdash \vdash$
Endosulfan I	Endosulfan I		 -	•		 		 					<u> </u>

TABLE 6-10 (Continued)

SUMMARY OF COPCs IN ENVIRONMENTAL MEDIA OF CONCERN SITE 65 - ENGINEER AREA DUMP REMEDIAL INVESTIGATION, CTO-0312 MCB, CAMP LEJEUNE, NORTH CAROLINA

Contaminant	Surfa So			urface oil	Grour	dwater	Surface	e Water	Sedi	ment	Fish	Tissue
4,4'-DDE	•	1	•		Groun		Barrac	T T T	•		1 1011	A ROBGIO
Endosulfan II	•		l			1						
4,4'-DDD	1.		•	<u> </u>	İ				•		•	
4,4'-DDT	•		•									
Endrin Aldehyde	1		•									
Alpha Chlordane	1		•	1								
Gamma Chlordane			•									
Aroclor-1260	•											
Inorganics			4	·	<u> </u>	<u> </u>				<i></i>		<u></u>
Aluminum	•		•	X	•		•	X	•	X	•	
Antimony			•	X					•	X		
Arsenic			•	X								
Barium	•		•		•		•	X	•		•	
Beryllium												
Cadmium			•									
Calcium	•		•		•		•		•		•	
Chromium	•		•		•		•	X	•	X		
Cobalt			•		•				•			
Copper	•		•	X			•	X	•		•	
Iron	•	X	•	X	•	X	•		•	Х		
Lead	•		•	X	•		•	X	•			
Magnesium	•		•		•		•		•		•	
Manganese	•	X	•	X	•	X	•	X	•		•	
Mercury											•	X
Nickel	•		•	X	•							
Potassium	•		•		•		•		•		•	
Selenium			•								•	
Silver			•									
Sodium	•		•		•		•		•		•	
Thallium	•	Х	•	X							•	X
Vanadium	•		•				•	X	•			
Zinc	•		•		<u> </u>		•	X	•		•	

Notes:

- Detected in media; compared to relevant criteria and standards.
- X = Selected as a COPC for human health risk assessment.

MATRIX OF POTENTIAL HUMAN EXPOSURE SITE 65 - ENGINEER AREA DUMP REMEDIAL INVESTIGATION, CTO-0312 MCB, CAMP LEJEUNE, NORTH CAROLINA

Exposure Medium/ Exposure Route	Current Military Personnel	Current Military Recreational User	Future Construction Worker	Future Residential Population	Current Fisherman
Soil					
Incidental Ingestion	M	A	NA	A,C	NA
Dermal Contact	M	A	NA	A,C	NA
Subsurface Soil					
Incidental Ingestion	M	NA	W	NA	NA
Dermal Contact	M	NA	W	NA	NA
Groundwater					
Ingestion	NA	NA	NA	A,C	NA
Dermal Contact	NA	NA	NA	A,C	NA
Surface Water					
Ingestion	NA	NA	NA	A,C	A, C
Dermal Contact	NA	NA	NA	A,C	A, C
Sediment					
Incidental Ingestion	NA	NA	NA	A,C	A, C
Dermal Contact	NA	NA	NA	A,C	A, C
Fish Tissue Incidental Ingestion	NA	NA	NA	NA	A, C
Air					
Inhalation of Vapor Phase Chemicals					
Indoor	NA	NA	NA	A,C	NA
Inhalation of Particulates Outdoor	<u>M</u>	A	W	A,C	NA

Notes:

A = Exposure - adults

C = Exposure - children

M = Military exposure during training
 W = Construction duration exposure
 NA = Not applicable to receptor group

EXPOSURE ASSESSMENT SUMMARY INCIDENTAL INGESTION OF SOIL CONTAMINANTS SITE 65 - ENGINEER AREA DUMP **REMEDIAL INVESTIGATION, CTO-0312** MCB, CAMP LEJEUNE, NORTH CAROLINA

Futur	e Residential Child and Adu	lt, Current Military Person Future Construction Work		d Recreational User,
Input Parameter	Description	Value ⁽¹⁾		Reference
С	Exposure Concentration	95% UCL ⁽²⁾	(mg/kg)	USEPA, 1992b
IR	Ingestion Rate	Child Adult Military Personnel Construction Worker	200 mg/day (100 mg/day) 100 mg/day 100 mg/day 480 mg/day	USEPA, 1989a USEPA, 1991a
CF	Conversion Factor	1E-6 kg/mg		USEPA, 1989a
Fi	Fraction Ingested from Contaminated Source	100%		Conservative Professional Judgement
EF	Exposure Frequency	Child Adult Military Personnel Trainee Recreational User Construction Worker	350 days/yr (234 days/yr) 350 days/yr 260 days/yr 260 days/yr 90 days/yr	USEPA, 1989a USEPA, 1991a Site specific professional judgement (5 days/week x 52 weeks/year)
ED	Exposure Duration	Child Adult Military Personnel Construction Worker	6 years 24 years 4 years 1 year	USEPA, 1991a USEPA, 1989a
BW	Body Weight	Child Adult Military Personnel Construction Worker	15 kg 70 kg 70 kg 70 kg	USEPA, 1989a
AT_c	Averaging Time Carcinogen	All 25,550 days		USEPA, 1989a
AT_{nc}	Averaging Time Noncarcinogen	Child Adult Military Personnel Construction Worker	2,190 days 8,760 days 1,460 days 365 days	USEPA, 1989a

Note:

Values in parentheses represent CT exposure assumptions.

Maximum detected soil concentrations will be used in situations where the 95% UCL exceeds the maximum.

EXPOSURE ASSESSMENT SUMMARY DERMAL CONTACT WITH SOIL CONTAMINANTS SITE 65 - ENGINEER AREA DUMP REMEDIAL INVESTIGATION, CTO-0312 MCB, CAMP LEJEUNE, NORTH CAROLINA

Fu	Future Residential Child and Adult, Current Military Personnel - Trainee and Recreational User, Future Construction Worker				
Input Parameter	Description	Value ⁽¹⁾		Reference	
С	Exposure Concentration	95% UCL ⁽²⁾	(mg/kg)	USEPA, 1992b	
CF	Conversion Factor	1E-6 kg/mg		USEPA, 1989a	
SA	Exposed Surface Area of Skin Available for Contact	Child Adult Military Personnel Trainee ⁽³⁾ Recreational User Construction Worker ⁽³⁾	2,300 cm ² (1,745 cm ²) 5,800 cm ² 4,300 cm ² 5,800 cm ² 4,300 cm ²	USEPA, 1992a Reasonable worst case: individual skin area limited to head, hands, forearms, lower legs	
AF	Soil-to-Skin Adherence Factor	1.0 mg/cm ² (0.2 mg/cm ²)		USEPA, 1991b	
ABS	Fraction Absorped (unitless)	Organics Inorganics	1.0% 0.1%	USEPA, 1991b	
EF	Exposure Frequency	Child Adult Military Personnel Trainee Recreational User Construction Worker	350 days/yr (234 days/yr) 350 days/yr 260 days/yr 260 days/yr 90 days/yr	USEPA, 1989a USEPA, 1991a	
ED	Exposure Duration	Child Adult Military Personnel Construction Worker	6 years 24 years 4 years 1 year	USEPA, 1989a USEPA, 1991a	
BW	Body Weight	Child Adult Military Personnel Construction Worker	15 kg 70 kg 70 kg 70 kg	USEPA, 1989a	
AT _c	Averaging Time Carcinogen	All	25,550 days	USEPA, 1989a	

TABLE 6-13 (Continued)

EXPOSURE ASSESSMENT SUMMARY DERMAL CONTACT WITH SOIL CONTAMINANTS SITE 65 - ENGINEER AREA DUMP REMEDIAL INVESTIGATION, CTO-0312 MCB, CAMP LEJEUNE, NORTH CAROLINA

Fut	ure Residential Child and	Adult, Current Military Pers Future Construction W		and Recreational User,
Input Parameter	Description	Value ⁽¹⁾		Reference
AT _{nc}	Averaging Time Noncarcinogen	Child Adult Military Personnel Construction Worker	2,190 days 8,760 days 1,460 days 365 days	USEPA, 1989a

Notes:

⁽¹⁾ Values in parentheses represent CT exposure assumptions.

⁽²⁾ Maximum detected soil concentrations will be used in situations were the 95% UCL exceeds the maximum.

⁽³⁾ Exposed surface area limited to head, hands, and arms.

EXPOSURE ASSESSMENT SUMMARY INHALATION OF FUGITIVE PARTICULATES SITE 65 - ENGINEER AREA DUMP **REMEDIAL INVESTIGATION, CTO-0312** MCB, CAMP LEJEUNE, NORTH CAROLINA

Futur	e Residential Child and Adu	lt, Current Military Perso Future Construction Wo		and Recreational User,
Input Parameter	Description	Value ⁽¹⁾)	Reference
С	Exposure Concentration	95% UCL ⁽²⁾	(mg/kg)	USEPA, 1992b
EF	Exposure Frequency	Child Adult Military Personnel Trainee Recreational User Construction Worker	350 days/yr (234 days/yr) 350 days/yr 260 days/yr 260 days/yr 90 days/yr	USEPA, 1989a Site specific professional judgement (5 days/week x 52 weeks)
ED	Exposure Duration	Child Adult Military Personnel Construction Worker	6 years 24 years 4 years 1 year	USEPA, 1991a
IR	Inhalation Rate	Child Adult Military Personnel Construction Worker	15 m ³ 20 m ³ 20 m ³ 20 m ³	USEPA, 1991a USEPA, 1989b
BW	Body Weight	Child Adult Military Personnel Construction Worker	15 kg 70 kg 70 kg 70 kg	USEPA, 1989a
AT _c	Averaging Time Carcinogen	All	25,550 days	USEPA, 1989a
AT _{nc}	Averaging Time Noncarcinogens	Child Adult Military Personnel Construction Worker	2,190 days 8,760 days 1,460 days 365 days	USEPA, 1989a
PEF	Site-Specific Particulate Emission Factor	4.63E+09 m	n³/kg	USEPA, 1989b

Note:

Values in parentheses represent CT exposure assumptions.
 Maximum detected soil concentrations will be used in situations where the 95% UCL exceeds the maximum.

EXPOSURE ASSESSMENT SUMMARY INGESTION OF GROUNDWATER CONTAMINANTS SITE 65 - ENGINEER AREA DUMP REMEDIAL INVESTIGATION, CTO-0312 MCB, CAMP LEJEUNE, NORTH CAROLINA

Future Residential Child and Adult					
Input Parameter	Description	Va	lue ⁽¹⁾	Reference	
С	Exposure Concentration	95% UCL ⁽²⁾	(mg/L)	USEPA, 1992b	
IR	Ingestion Rate	Child Adult	1 L/day 2 L/day	USEPA, 1991a USEPA, 1989a	
EF	Exposure Frequency	Child Adult	350 days/yr (234 days/yr) 350 days/yr	USEPA, 1989a	
ED	Exposure Duration	Child Adult	6 years 30 years	USEPA, 1991a	
BW	Body Weight	Child Adult	15 kg 70 kg	USEPA, 1989a	
AT _c	Averaging Time Carcinogen	All	25,550 days	USEPA, 1989a	
AT _{nc}	Averaging Time Noncarcinogen	Child Adult	2,190 days 10,950 days	USEPA, 1989a	

Note:

(1) Values in parentheses represent CT exposure assumptions.

⁽²⁾ Maximum detected aqueous concentrations will be used in situations where the 95% UCL exceeds the maximum.

EXPOSURE ASSESSMENT SUMMARY DERMAL CONTACT WITH GROUNDWATER CONTAMINANTS SITE 65 - ENGINEER AREA DUMP REMEDIAL INVESTIGATION, CTO-0312 MCB, CAMP LEJEUNE, NORTH CAROLINA

	Future Residential Child and Adult				
Input Parameter	Description	Value ⁽¹⁾		Reference	
С	Exposure Concentration	95% UCL ⁽²⁾	(mg/L)	USEPA, 1992b	
SA	Exposed Surface Area of Skin Available for Contact	Child Adult	10,000 cm ² (6,978 cm ²) 23,000 cm ²	USEPA, 1992a	
PC	Permeability Constant	Chemical Specifi	c	USEPA, 1992a	
ET	Exposure Time	All	0.25 hr/day	USEPA, 1992a	
EF	Exposure Frequency	Child Adult	350 days/yr (234 days/yr) 350 days/yr	USEPA, 1991a	
ED	Exposure Duration	Child Adult	6 years 30 years	USEPA, 1989a	
CF	Conversion Factor	1 L/1000 cm ³		USEPA, 1989a	
BW	Body Weight	Child Adult	15 kg 70 kg	USEPA, 1989a	
AT _c	Averaging Time Carcinogen	All	25,550 days	USEPA, 1989a	
AT _{nc}	Averaging Time Noncarcinogen	Child Adult	2,190 days 10,950 days	USEPA, 1989a	

Note:

⁽¹⁾ Values in parentheses represent CT exposure assumptions.

⁽²⁾ Maximum detected aqueous concentrations will be used in situations where the 95% UCL exceeds the maximum.

EXPOSURE ASSESSMENT SUMMARY INHALATION OF GROUNDWATER VOLATILE CONTAMINANTS SITE 65 - ENGINEER AREA DUMP REMEDIAL INVESTIGATION, CTO-0312 MCB, CAMP LEJEUNE, NORTH CAROLINA

	Future Residential Child and Adult					
Input Parameter	Description	Va	lue ⁽¹⁾	Reference		
С	Exposure Concentration	95% UCL ⁽²⁾	(mg/m³)	USEPA, 1992b		
IR	Inhalation Rate	Child Adult	0.6 m ³ /hr 0.6 m ³ /hr	USEPA, 1989a		
ET	Exposure Time	All	0.25 hr/day	USEPA, 1992a		
EF	Exposure Frequency	All	350 day/yr (234 days/yr)	USEPA, 1989a		
ED	Exposure Duration	Child Adult	6 years 30 years	USEPA, 1989a		
BW	Body Weight	Child Adult	15 kg 70 kg	USEPA, 1989a		
AT _c	Averaging Time Carcinogen	All	25,550 days	USEPA, 1989a		
AT _{nc}	Averaging Time Noncarcinogens	Child Adult	2,190 days 10,950 days	USEPA, 1989a		

Note:

(1) Values in parentheses represent CT exposure assumptions.

⁽²⁾ Maximum detected concentrations will be used in situations where the 95% UCL exceeds the maximum.

EXPOSURE ASSESSMENT SUMMARY INGESTION OF SURFACE WATER SITE 65 - ENGINEER AREA DUMP REMEDIAL INVESTIGATION, CTO-0312 MCB, CAMP LEJEUNE, NORTH CAROLINA

Future Residential Child and Adult, Fisherman - Adult and Child					
Input Parameter	Description	v	alue	Reference	
С	Exposure Concentration	95% UCL ⁽¹⁾	(mg/L)	USEPA, 1992b	
IR	Ingestion Rate	Child Adult	0.05 L/hr 0.05 L/hr	USEPA, 1989a	
ET	Exposure Time	Child Adult	2.6 hr/day 2.6 hr/day	USEPA, 1992a	
EF	Exposure Frequency	Child Adult	48 events/yr 48 events/yr	Site-Specific Professional Judgement (8 days/month x 6 months/year)	
ED	Exposure Duration	Child Adult	6 years 30 years	USEPA, 1989a	
BW	Body Weight	Child Adult	15 kg 70 kg	USEPA, 1989a	
AT _c	Averaging Time Carcinogen	All	25,550 days	USEPA, 1989a	
AT _{nc}	Averaging Time Noncarcinogens	Child Adult	2,190 days 10,950 days	USEPA, 1989a	

Note:

⁽¹⁾ Maximum detected aqueous concentrations will be used in situations where the 95% UCL exceeds the maximum.

EXPOSURE ASSESSMENT SUMMARY DERMAL CONTACT WITH SURFACE WATER SITE 65 - ENGINEER AREA DUMP REMEDIAL INVESTIGATION, CTO-0312 MCB CAMP LEJEUNE, NORTH CAROLINA

1	Future Residential Child and Adult, Fisherman - Adult and Child					
Input Parameter	Description	Value ⁽¹⁾		Reference		
С	Exposure Concentration	95% UCL ⁽²⁾	(mg/L)	USEPA, 1992b		
SA	Exposed Surface Area of Skin Available for Contact	Child Adult	2,100 cm ² (1,745 cm ²) 8,300 cm ²	USEPA, 1992a Individual skin area limited to hands, forearms, lower extremities		
ET	Exposure Time	Child Adult	2.6 hr/day 2.6 hr/day	USEPA, 1992a		
EF	Exposure Frequency	Child Adult	48 days/yr 48 days/yr	Site-Specific Professional Judgement (8 days/month x 6 months/year)		
ED	Exposure Duration	Child Adult	6 years 30 years	USEPA, 1989a		
CF	Volumetric Conversion Factor for Water	1 L/1000 cm ³		USEPA, 1989a		
BW	Body Weight	Child Adult	15 kg 70 kg	USEPA, 1989a		
AT _c	Averaging Time Carcinogen	A11	25,550 days	USEPA, 1989a		
AT _{nc}	Averaging Time Noncarcinogen	Child Adult	2,190 days 10,950 days	USEPA, 1989a		
PC	Permeability Constant	Chemical-Specific		USEPA, 1992a		

Note:

⁽¹⁾ Values in parentheses represent CT exposure assumptions.
(2) Maximum detected aqueous concentrations will be used in situations where the 95% UCL exceeds the maximum.

EXPOSURE ASSESSMENT SUMMARY INGESTION OF SEDIMENT SITE 65 - ENGINEER AREA DUMP REMEDIAL INVESTIGATION, CTO-0312 MCB, CAMP LEJEUNE, NORTH CAROLINA

	Future Residential Child and Adult, Fisherman - Adult and Child					
Input Parameter	Description		Value ⁽¹⁾	Reference		
С	Exposure Concentration	95% UCL ⁽²⁾	(mg/kg)	USEPA, 1992b		
IR	Sediment Ingestion Rate	Child Adult	200 mg/day (100 mg/day) 100 mg/day	USEPA, 1989a		
EF	Exposure Frequency	Child Adult	48 days/yr 48 days/yr	Site-Specific Professional Judgement (8 days/month x 6 months/year)		
ED	Exposure Duration	Child Adult	6 years 30 years	USEPA, 1989a		
BW	Body Weight	Child Adult	15 kg 70 kg	USEPA, 1989a		
AT _c	Averaging Time Carcinogen	All	25,550 days	USEPA, 1989a		
AT _{nc}	Averaging Time Noncarcinogen	Child Adult	2,190 days 10,950 days	USEPA, 1989a		
CF	Conversion Factor		1E-06 kg/mg	USEPA, 1989a		

Notes:

⁽¹⁾ Values in parentheses represent CT exposure assumptions.

⁽²⁾ Maximum detected sediment concentrations will be used in situations where the 95% UCL exceeds the maximum.

EXPOSURE ASSESSMENT SUMMARY DERMAL CONTACT WITH SEDIMENT SITE 65 - ENGINEER AREA DUMP REMEDIAL INVESTIGATION, CTO-0312 MCB, CAMP LEJEUNE, NORTH CAROLINA

	Future Residential Child and Adult, Fisherman - Adult and Child					
Input Parameter	Description	Value ⁽¹⁾		Reference		
С	Exposure Concentration	95% UCL ⁽²⁾	(mg/kg)	USEPA, 1992b		
SA	Surface Area of Skin Available for Contact	Child Adult	2,100 cm ² (1,745 cm ²) 8,300 cm ²	USEPA, 1992a Individual skin area limited to hands, forearms, lower extremities		
AF	Sediment Adherence Factor	1.0 mg/cm ² (0.2 mg/cm ²)		USEPA, 1991b		
ABS	Absorption Factor (dimensionless)	Organics Inorganics	1.0% 0.1%	USEPA, 1991b		
EF	Exposure Frequency	Child Adult	48 events/yr 48 events/yr	Site-Specific Professional Judgement (8 days/month x 6 months/year)		
ED	Exposure Duration	Child Adults	6 years 30 years	USEPA, 1989a		
BW	Body Weight	Child Adult	15 kg 70 kg	USEPA, 1989a		
AT _c	Averaging Time Carcinogen	All	25,550 days	USEPA, 1989a		
AT _{nc}	Averaging Time Noncarcinogen	Child Adult	2,190 days 10, 950 days	USEPA, 1989a		
CF	Conversion Factor	1E-06 kg/mg	3	USEPA, 1989a		

Note:

⁽¹⁾ Values in parentheses represent CT exposure assumptions.

⁽²⁾ Maximum detected sediment concentrations will be used in situations where the 95% UCL exceeds the maximum.

TOXICITY FACTORS ENGINEER AREA DUMP

SITE 65 - ENGINEER AREA DUMP REMEDIAL INVESTIGATION, CTO-0312

MCB, CAMP LEJEUNE, NORTH CAROLINA

					τ	
	RfD	RfC	CSF	CSFI	WOE	Reference
Volatiles						
Acetone	1.00E-01	ND	ND	ND	D	IRIS, 1997
Chloroform	1.00E-02	ND	6.10E-03	8.05E-02	B2	IRIS, 1997
2-Butanone	6.00E-01	2.86E-01	ND	ND	ND	IRIS, 1997
Carbon Disulfide	1.00E-01	2.86E-05	ND	ND	ND	IRIS, 1997
Carbon Tetrachloride	7.00E-04	5.71E-04	1.30E-01	5.25E-02	B2	IRIS, 1997
Tetrachloroethene	1.00E-02	ND	5.20E-02	2.03E-03	ND	IRIS, 1997
Semivolatiles						
Benzo(a)anthracene	ND	ND	7.30E-01	6.10E-01	B2	EPA-NCEA, 1997
Benzo(a)pyrene	ND	ND	7.30E+00	6.10E+00	B2	IRIS, 1997
Dibenzo(a,h)anthracene	ND	ND	7.30E+00	6.10E+00	B2	EPA-NCEA, 1997
Di-n-butylphthalate	1.00E-01	ND	ND	ND	D	IRIS, 1997
Pesticides/PCBs						
beta-BHC	ND	ND	1.80E+00	1.80E+00	С	IRIS, 1997
4,4'-DDE	ND	ND	3.40E-01	ND	B2	IRIS, 1997
4,4' - DDD	ND	ND	2.40E-01	ND	B2	IRIS, 1997
Inorganics						
Aluminum	1.00E+00	ND	ND	ND	ND	EPA-NCEA, 1997
Antimony	4.00E-04	ND	ND	ND	D	IRIS, 1997
Arsenic	3.00E-04	ND	1.50E+00	1.51E+01	A _I	IRIS, 1997
Barium	7.00E-02	1.43E-04	ND	ND	D	IRIS, 1997, HEAST Alternate, 1997
Chromium	5.00E-03	ND	ND	4.20E+01	D	IRIS, 1997
Cobalt	6.00E-02	ND	ND	ND	ND	EPA-NCEA, 1997
Copper	3.71E-02	ND	ND	ND	D	EPA-NCEA, 1997
Iron	3.00E-01	ND	ND	ND	D	EPA-NCEA, 1997
Lead	ND	ND	ND	ND	B2	IRIS, 1997
Manganese	1.4E-01	1.43E-05	ND	ND	D	IRIS, 1997
Mercury	3.00E-04	8.57E-05	ND	ND	D	HEAST, 1997
Thallium (carbonate)	8.00E-05	ND	ND	ND	ND	IRIS, 1997
Vanadium	7.00E-03	ND	ND	ND	D	HEAST, 1997
Zinc	3.00E-01	ND	ND	ND	D	IRIS, 1997

Notes:

PDG

Α

Pending

Human Carcinogen

RfD RfC	Oral Reference Dose (mg/kg - day) Inhalation Reference Concentration (mg/cu m)	B1	Probable Human Carcinogen - Limited Evidence
CSF	Oral Cancer Slope Factor (mg/kg-day)-1	B2	Probable Human Carcinogen - Sufficient
CSFI	Inhalation Cancer Slope Factor (mg/kg-day) ⁻¹		Evidence
WOE	Weight of Evidence	C	Possible Human Carcinogen
IRIS	Integrated Risk Information System	D	Not Classifiable as to Human
HEAST	Health Effects Assessment Summary Tables		Carcinogenicity
USEPA	United States Environmental Protection Agency	I	Ingestion
ND	Not Determined		•

TOTAL INCREMENTAL LIFETIME CANCER RISKS (ICRs) AND HAZARD INDICES (HIs) ASSOCIATED WITH SOIL SITE 65 - ENGINEER AREA DUMP REMEDIAL INVESTIGATION, CTO-0312 MCB, CAMP LEJEUNE, NORTH CAROLINA

	Future Residential Child		Future Residential Adult		Current Military Personnel - Trainee		Current Military Personnel - Recreational User		Construction Worker	
4.	ICR	HI	ICR	НІ	ICR	НІ	ICR	HI	ICR	HI
Incidental Ingestion of Soil	3.0E-06	0.54	1.3E-06	0.06	4.5E-07	0.2	1.6E-07	0.04	1.2E-07	0.2
Dermal Contact with Soil	7.0E-07	0.03	1.5E-06	0.02	2.8E-07	0.04	1.9E-07	0.01	1.2E-08	0.01
Inhalation of Soil Particulates	2.7E-11	NA	4.7E-11	NA	7.4E-11	<0.01	5.8E-12	NA	5.8E-12	<0.01
Total	3.7E-06	0.6	2.8E-06	0.08	7.3E-07	0.2	3.5E-07	0.05	1.3E-07	0.2

Notes:

NA = Not Applicable. Toxicity criteria not available.

TOTAL INCREMENTAL LIFETIME CANCER RISKS (ICRs) AND HAZARD INDICES (HIs) ASSOCIATED WITH GROUNDWATER SITE 65 - ENGINEER AREA DUMP REMEDIAL INVESTIGATION, CTO-0312 MCB, CAMP LEJEUNE, NORTH CAROLINA

		esidential nild	Future Residential Adult		
	ICR	HI	ICR	НІ	
Incidental Ingestion of Groundwater	NA	1.9	NA	0.8	
Dermal Contact with Groundwater	NA	0.03	NA	0.01	
Inhalation - Shower	NA	<0.01	NA	<0.01	
Total	NA	1.9	NA	0.08	

Note:

NA = Not Applicable (no carcinogenic contaminants selected as COPCs).

TOTAL INCREMENTAL LIFETIME CANCER RISKS (ICRs) AND HAZARD INDICES (HIS) ASSOCIATED WITH SURFACE WATER/SEDIMENT AND INGESTION OF FISH TISSUE SITE 65 - ENGINEER AREA DUMP **REMEDIAL INVESTIGATION, CTO-0312** MCB, CAMP LEJEUNE, NORTH CAROLINA

	Future Residential Child		l .	esidential lult	Fisherman Child		Fisherman Adult	
	ICR	ні	ICR	HI	ICR	HI	ICR	ні
Incidental Ingestion of Surface Water		0.07		0.02		0.07		0.02
Dermal Contact with Surface Water		0.02		0.01		0.02		0.01
Incidental Ingestion of Sediment		0.35		0.04		0.35		0.04
Dermal Contact with Sediment		0.02		0.02		0.02		0.02
Ingestion of Fish Tissue	NA	NA	NA	NA	1	5.6		1.2
Total		0.5		0.09		6.1		1.3

Notes:

NA = Not applicable to receptor group

-- = No carcinogenic COPCs selected

TOTAL SITE RISK SITE 65 - ENGINEER AREA DUMP REMEDIAL INVESTIGATION, CTO-0312 MCB, CAMP LEJEUNE, NORTH CAROLINA

	Sc	oil Gro		dwater	Surface Water/Sediment		Fish Tissue		Total	
Receptors	ICR	HI	ICR	HI	ICR	НІ	ICR	НІ	ICR	НІ
Current Military Personnel - Trainee	7.3E-07 (100)	0.2 (100)	NA	NA	NA	NA	NA	NA	7.3E-07	0.2
Current Military Personnel - Recreational User	3.5E-07 (100)	<0.05 (100)	NA	NA	NA	NA	NA	NA	3.5E-07	0.05
Future Child Resident	3.7E-06 (100)	0.6 (20)		1.9 (63)		0.5 (17)	NA	NA	3.7E-06	3.0
Future Adult Resident	2.8E-06 (100)	0.08 (32)		0.08 (32)		0.09 (36)	ΝA	NA	2.8E-06	0.25
Future Construction Worker	1.3E-07 (100)	0.8 (100)	NA	NA	NA	NA	NA	NA	1.3E-07	0.2
Fisherman - Child Receptor	NA	NA	NA	NA		0.5 (7)		5.6 (93)		6.1
Fisherman - Adult Receptor	NA	NA	NA	NA		0.09 (8)		1.2 (92)		1.3

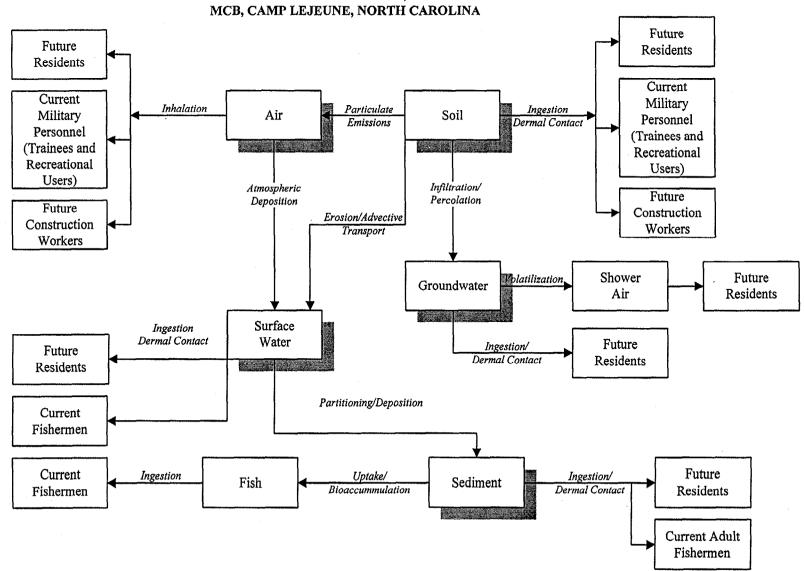
Notes:

ICR = Incremental Lifetime Cancer Risk

HI = Hazard Index

() = Approximate percent contribution to the total ICR or HI values Total = Soil + Groundwater + Surface Water/Sediment + Fish Tissue

NA = Not Applicable


-- = No carcinogenic COPCs selected

SECTION 6.0 FIGURES

FIGURE 6-1

CONCEPTUAL SITE MODEL FOR CURRENT AND FUTURE HUMAN RECEPTORS SITE 65 - ENGINEER AREA DUMP

SITE 65 - ENGINEER AREA DUMP REMEDIAL INVESTIGATION, CTO-0312 MCR. CAMP LEJELINE NORTH CAROLINA

7.0 ECOLOGICAL RISK ASSESSMENT

The Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA) as amended by the Superfund Amendments and Reauthorization Act (SARA) of 1986, directs USEPA to protect human health and the environment with respect to releases or potential releases of contaminants from abandoned hazardous waste sites (USEPA, 1989a). This section of the report presents the ecological risk assessment (ERA) conducted at Operable Unit No. 9 (Site 65) that assesses the potential impacts to ecological receptors from contaminants detected at this site.

7.1 Objectives, Scope, and Organization of the Ecological Risk Assessment

The objective of this ERA is to evaluate if past reported disposal practices at Site 65 are potentially adversely impacting the terrestrial and aquatic communities on, or adjacent to, the site. This assessment also evaluates the potential effects of contaminants related to Site 65 on sensitive environments including wetlands and protected species. The conclusions of the ERA are used in conjunction with the human health risk assessment to evaluate the appropriate remedial action for this site for the overall protection of public health and the environment. If potential risks are characterized for the ecological receptors, further ecological evaluation of the site and surrounding areas may be warranted.

This ERA evaluates and analyzes the results from the Remedial Investigation (RI) including chemical analysis of the soil, groundwater, surface water, and sediment. In addition, fish were collected and chemically analyzed and benthic macroinvertebrate samples were collected and identified.

Information used to evaluate sensitive environments is obtained from historical data and previous studies obtained in the literature, or through conversations with appropriate state, federal, and local personnel.

The risk assessment methodologies used in this evaluation are consistent with those outlined in the Ecological Risk Assessment Guidance for Superfund: Process for Designing and Conducting Ecological Risk Assessments (USEPA, 1994) and Framework for Ecological Risk Assessment (USEPA, 1992a). In addition, information found in the following documents was used to supplement the USEPA guidance document:

- <u>USEPA Supplemental Risk Assessment Guidance for Superfund, Volume II,</u>
 <u>Environmental Evaluation Manual</u> (USEPA, 1989b)
- <u>Ecological Assessment of Hazardous Waste Sites: A Field and Laboratory Reference</u> (USEPA, 1989c)
- Macroinvertebrate Field and Laboratory Methods for Evaluating the Biological Integrity of Surface Waters (USEPA, 1990)
- <u>Fish Field and Laboratory Methods for Evaluating the Biological Integrity of Surface</u> Waters (USEPA, 1993a)

Based on the USEPA <u>Framework for Ecological Risk Assessment</u>, an ERA consists of three main components: 1) Problem Formulation; 2) Analysis; and, 3) Risk Characterization (USEPA, 1992a). The problem formulation section includes a preliminary characterization of exposure and effects of

the stressors to the ecological receptors. During the analysis, the data are evaluated to determine the exposure and potential effects on the ecological receptors from the stressors. Finally, in the risk characterization, the likelihood of adverse effects occurring as a result of exposure to a stressor are evaluated. This section also evaluates the potential impact on the ecological integrity at the site from the contaminants detected in the media. This ERA is organized to parallel these three components.

7.2 Problem Formulation

Problem formulation is the first step of an ERA and includes a preliminary characterization of exposure and effects (USEPA, 1992a). The problem formulation of this ERA includes sections 7.3 through 7.7 of this report. Chemical analyses were performed on samples collected from the soil, groundwater, surface water, sediment, and fish to evaluate the presence, concentrations, and variabilities of the contaminants. Ecological surveys and a habitat characterization also were conducted as part of the field activities. Based on these observations, potential ecological receptors were identified. Finally, toxicological information for the contaminants detected in the media was obtained from available references and literature and used to evaluate the potential adverse ecological effects to the ecological receptors.

The components of the problem formulation include identifying the stressors and their potential ecological effects, identification of ecosystems potentially at risk, defining ecological endpoints and presenting a conceptual model. The following sections discuss each of these components, and how they are evaluated in this ERA.

7.3 Contaminants of Potential Concern

One of the initial steps in the problem formulation stage of an ERA is identifying the stressors and their potential ecological effects. For this ERA, the stressors that are evaluated include contaminants detected in the surface soil, surface water, sediment, and fish.

Contaminants in the subsurface soil and groundwater are not evaluated in this ERA. Some terrestrial species burrow in the subsurface soil, and microorganisms most likely exist in the groundwater. However, current guidance does not provide sufficient information to evaluate risk to these receptors.

The nature and extent of contaminants detected in the environmental media at Site 65 are presented in Section 4.0 of this report. Sample locations are based on available historical site information and a site visit to evaluate potential ecosystems and ecological receptors.

7.3.1 Criteria for Selecting Contaminants of Potential Concern

Quantifying risk for all positively identified contaminants may distract from the dominant risk-driving contaminants at the site. Therefore, the data set was reduced to a list of contaminants of potential concern (COPCs). COPCs are site-related contaminants used to quantitatively estimate ecological exposures and associated potential ecological effects.

The criteria used in selecting the COPCs from the contaminants detected during the field sampling and analytical phase of the investigation are:

- Historical information
- Prevalence
- Toxicity
- Comparison to federal and state criteria and standards
- Comparison to investigation associated field and laboratory blank data
- Comparison to background or naturally occurring levels
- Comparison to anthropogenic levels

7.3.1.1 Historical Information

Using historical information to associate contaminants with site activities, when combined with the following selection procedures, helps determine contaminant retention or elimination. To be conservative, contaminants detected in the surface soil, surface water, sediment, and fish that may not have been historically used at a site are retained as COPCs to evaluate risk, but may be eliminated in the ecological significance section as not being site-related.

7.3.1.2 Prevalence

The frequency of positive detections in sample sets and the level at which a contaminant is detected in a given medium are factors that determine a chemical's prevalence. Prevalence is discussed in more detail in Section 6.2. Contaminants that were detected infrequently are not retained as COPCs.

7.3.1.3 <u>Toxicity</u>

The potential toxicity of a contaminant is an important consideration when selecting COPCs for further evaluation in the ERA. Several of the contaminants detected in the media at Site 65 are prevalent; however, their inherent toxicity to aquatic and terrestrial receptors is low (e.g., calcium, magnesium, potassium, and sodium). Therefore, they are not retained as COPCs. In addition, several the contaminants have not been adequately studied to develop published toxicity values, or even accepted toxicological data with which to assess the contaminants. Contaminants that fall into this category are retained as COPCs (if they are not eliminated due to other criteria); however, they are not quantitatively evaluated in the ERA.

7.3.1.4 State and Federal Criteria and Standards

North Carolina Water Quality Standards (NCWQS) for surface water have been developed (NC DEHNR, 1994). These are the only enforceable surface water standards. In addition to the NCWQS, Water Quality Screening Values (WQSVs) have been developed by USEPA Region IV (USEPA, 1995a), USEPA Region III (USEPA, 1995b), and Oak Ridge National Laboratory (ORNL) (Suter and Mabrey, 1994). The NCWQS and WQSVs will be herein referred to as Surface Water Screening Values (SWSVs).

Sediment quality standards have not been developed for North Carolina. However, Sediment Screening Values (SSVs) are available for many contaminants. These SSVs include: Sediment Screening Levels (SSLs) (Long et.al. 1995; Long and Morgan, 1991; and, USEPA, 1995b), calculated sediment quality criteria (SQC) (USEPA, 1993b), Apparent Effect Threshold values (Tetra-Tech, Inc.,

1986), and Wisconsin Department of Natural Resources interim guidance criteria for in-water disposal of dredged sediments (Sullivan, et.al., 1985).

The SWSVs and SSVs are used for comparative purposes to infer potential ecological risks. Contaminants that were detected at concentrations less than these screening values are not retained as COPCs for aquatic receptors since contaminants detected at concentrations less than these values are not expected to pose a significant risk to the aquatic receptor population. However, the contaminants in the surface water may be retained as COPCs for the terrestrial receptors. None of the contaminants in the sediment are retained as COPCs for the terrestrial receptors because current guidance does not exist to evaluate this pathway.

There are no state or federal soil screening values that can be used to evaluate potential ecological risks to terrestrial receptors (other than plants or invertebrates). Therefore, toxicity of contaminants in the surface soil to terrestrial receptors is not used as a criteria for retaining COPCs except for calcium, magnesium, potassium, and sodium, which are not retained as COPCs in any of the media.

There are no state or federal fish tissue screening values that can be used to evaluate potential ecological risks to fish. Therefore, toxicity of contaminants in the tissue samples to aquatic receptors is not used as a criteria for retaining COPCs except for calcium, magnesium, potassium, and sodium, which are not retained as COPCs in any of the media.

A brief explanation of the standards, criteria, and screening values used for the evaluation of the COPCs is presented below.

North Carolina Water Quality Standards (Surface Water) - NCWQS are the concentrations of toxic substances that will not result in chronic toxicity to aquatic life (NC DEHNR, 1994). NCWQS are provided for both freshwater and saltwater aquatic systems.

USEPA Water Quality Screening Values (WQSVs) - WQSVs are non-enforceable regulatory guidelines and are of primary utility in assessing acute and chronic toxic effects in aquatic systems. WQSVs are provided for both freshwater and saltwater aquatic systems and are reported as acute and/or chronic values (USEPA, 1995a,b). Most of the WQSVs are the same as the USEPA Ambient Water Quality Criteria (AWQC) (USEPA, 1991b); however, some of the WQSVs are based on more current studies.

Oak Ridge National Laboratory (ORNL) Aquatic Benchmarks - ORNL Aquatic Benchmarks are developed for many contaminants, including those that do not have NCWQS or WQSVs (Suter and Mabrey, 1994). The ORNL aquatic benchmarks include secondary acute values and secondary chronic values that are calculated using the Tier II method described in the EPA's <u>Proposed Water Quality Guidance for the Great Lakes System</u> (USEPA, 1993c). Tier II values are developed so that aquatic benchmarks could be established with fewer data than are required for the USEPA AWQC. The benchmarks are limited to contaminants in freshwater.

Sediment Screening Levels - Sediment Screening Levels (SSLs) have been compiled to evaluate the potential for contaminants in sediments to cause adverse biological effects (Long, et.al, 1995; Long and Morgan 1991; and, USEPA, 1995b). The lower ten percentile (Effects Range-Low [ER-L]) and the median percentile (Effects Range-Median [ER-M]) of biological effects have been developed for several contaminants. The concentration below the ER-L represents a minimal-effects range (adverse effects would be rarely observed). The concentration above the ER-L but below the ER-M represents

a possible-effects range (adverse effects would occasionally occur). Finally, the concentration above the ER-M represents a probable-effects range (adverse effects would probable occur).

In addition to the SSLs, Apparent Effects Threshold Sediment Quality Values have been developed by Tetra Tech Inc., (1986) for the Puget Sound. These values are the concentrations of contaminants above which statistically significant biological effects would always be expected. Finally, the Wisconsin Department of Natural Resources has developed interim criteria for in-water disposal of dredged sediments (Sullivan, et.al., 1985). However, these criteria are established using background data and are not based on aquatic toxicity.

Sediment Quality Criteria - Currently, promulgated sediment quality criteria (SQC) only exist for a few contaminants. However, SQC for nonionic organic compounds can be calculated using the procedures in the <u>Technical Basis for Deriving Sediment Quality Criteria for Nonionic Organic Contaminants for the Protection of Benthic Organisms by using Equilibrium Partitioning</u> (USEPA, 1993b) as follows:

SQC = (Foc)(Koc)(FCV)/1,000,000

Where:

SQC = sediment quality criteria (µg/kg)

Foc = sediment organic carbon content (mg/kg)

Koc = chemical organic carbon partition coefficient (mL/g)

FCV = final chronic water quality value ($\mu g/L$)

7.3.1.5 Field and Laboratory Blank Data

Associating contaminants detected in field related blanks (i.e., trip blanks, equipment rinsates and/or field blanks) or laboratory method blanks with the same contaminants detected in analytical samples can eliminate non-site-related contaminants from the list of COPCs. Blank data should be compared to sample results with which the blanks are associated. However, for this data set it is difficult to associate specific blanks with specific environmental samples. Thus, in order to evaluate detection levels, maximum contaminant concentrations reported in a given set of blanks are applied to a corresponding set of samples.

In accordance with the National Functional Guidelines for Organics (USEPA, 1991a), common lab contaminants (i.e., acetone, 2-butanone, methylene chloride, toluene, and phthalate esters) should be regarded as a direct result of site activities only when sample concentrations exceed 10 times the maximum blank concentration. For other contaminants not considered common in a lab, concentrations exceeding 5 times the maximum blank concentration indicate contamination resulting from site activities (USEPA, 1991a). Maximum concentrations of contaminants detected in blanks are presented in Section 6.0, Table 6.1.

Contract Required Quantitation Limits (CRQLs) and percent moisture are employed when evaluating contaminant concentrations in soil, in order to correlate solid and aqueous detection limits. For example, the CRQL for semivolatiles in soil is 33 to 66 times that of aqueous samples, depending on the contaminant. In order to assess semivolatile contaminant levels in soil using aqueous blanks, the blank concentration must then also be multiplied by 33 or 66 to account for variance from the CRQL (common lab contaminants must first be multiplied by 5 or 10, as explained in the paragraph above). The final value is divided by the sample percent moisture.

Eliminating a sample result correlates directly to a reduction in the contaminant prevalence in that medium. Consequently, if elimination due to blank concentration reduces the prevalence of a contaminant to less than 5 percent, a contaminant that may have been included according to its prevalence is eliminated as a COPC.

7.3.1.6 <u>Background or Naturally Occurring Levels</u>

Contaminants that were detected in the surface soil at concentrations less than two-times the average Base background concentration are not retained as COPCs. As is presented in Section 4.0, off-site surface water and sediment samples were collected from several waterbodies in the White Oak River water basin. The contaminant in the off-site samples and the site stations are compared to each other to determine if contaminants concentrations in the site stations are below naturally occurring regional levels.

The two water bodies sampled at Site 65 were Courthouse Bay Pond and Powerline Pond. Since both ponds are freshwater, the freshwater off-site background surface water and sediment samples are compared to the Site 65 samples to determine if contaminant concentrations are within background concentrations. Contaminants that were detected in the Site 65 surface water or sediment samples at concentrations less than the average background concentrations are not retained as COPCs.

7.3.1.7 Anthropogenic Levels

Ubiquitous anthropogenic background concentrations result from non-site related sources such as combustion of fossil fuels (i.e., automobiles), plant synthesis, natural fires and factories. Examples of ubiquitous, anthropogenic chemicals are polycyclic aromatic hydrocarbons (PAHs). Anthropogenic chemicals are typically not eliminated as COPCs without considering other selection criteria. It is difficult to determine that such chemicals are present at the site due to operations not related to the site or the surrounding area. Omitting anthropogenic background chemicals from the risk assessment may result in the loss of important information for those potentially exposed.

The following sections apply the aforementioned selection criteria beginning with the prevalence of detected analytical results in each medium of interest to establish a preliminary list of COPCs for Site 65. Once this task has been completed, a final list of media-specific COPCs will be selected based on the remaining criteria.

7.3.2 Selection of Contaminants of Potential Concern

The following sections present an overview of the analytical data obtained for each medium during the RI and the subsequent retention or elimination of COPCs using the aforementioned selection criteria. Contaminants that were not eliminated due to the above criteria were retained as COPCs. The primary reasons for retaining contaminants as COPCs include, but may not be limited to the following: (1) frequently detected, (2) detected at concentrations above the screening values (if available) and/or (3) detected at concentrations above background (if available). In addition, some common laboratory contaminants (i.e., phthalates, acetone, 2-butanone) are retained as COPCs if they were detected frequently and were detected at levels slightly less than 10 times the concentration in the blank samples. Calcium, magnesium, potassium, and sodium are not retained as COPCs in any of the media because they are common naturally occurring chemicals, are not related to the site, and no published toxicity data was identified to assess potential impacts to aquatic or terrestrial life.

Table 7-1 presents the comparison of the surface water contaminant concentrations to the SWSVs and the off-site background sample contaminant concentrations. Table 7-2 presents the comparison of the sediment contaminant concentrations to applicable SSVs and the off-site background sample contaminant concentrations. A comparison of the surface soil contaminant concentrations to Base background concentrations is presented in Section 6.0, Table 6-3. A summary of the COPCs in each media are presented in Table 7-3. All of the media samples were analyzed for TCL volatile organic compounds (VOCs), semivolatile organic compounds (SVOC), pesticides and PCBs, and TAL metals.

7.3.2.1 Surface Soil

Thirteen surface soil samples were collected at Site 65. Six VOCs (methylene chloride, acetone, trichloroethene, toluene, ethylbenzene, and xylenes) were detected in the surface soil. Methylene chloride, acetone, and toluene are not retained as COPCs because they are common laboratory contaminants and they were detected at less than 10 times the concentration in the blank samples. Trichloroethene, ethylbenzene, and xylenes are retained as COPCs.

Nineteen SVOCs were detected in the surface soil. Acenaphthene, 2,4-dinitrophenol, anthracene, benzo(a)anthracene, benzo(b)fluoranthene, benzo(k)fluoranthene, benzo(a)pyrene, ideno(1,2,3-cd)pyrene, benzo(g,h,i)perylene, carbazole, chrysene, dibenzo(a,h)anthracene, dibenzofuran, fluorene, phenanthrene, di-n-butylphthalate, fluoranthene, pyrene, and bis(2-ethylexyl)phthalate are retained as COPCs.

Five pesticides were detected in the surface soil. Endosulfan II, 4,4'-DDE, 4,4'-DDT, 4,4'-DDD, and heptachlor epoxide are retained as COPCs. Aroclor 1260 was detected in one of the surface soil samples and is retained as a COPC.

Fifteen metals were detected in the surface soil. As presented above, calcium, magnesium, potassium, and sodium are not retained as a COPCs. Copper is not retained as a COPC because it was detected at a concentration of less than five times the concentration in the blank sample. Aluminum is not retained as COPC because it was detected at concentrations of less than twice base background. Barium, chromium, iron, lead, manganese, nickel, thallium, vanadium and zinc are retained as COPCs.

7.3.2.2 Surface Water

Two surface water samples were collected at Site 65. Two VOCs (acetone, and 1,2-dichloroethane) were detected in the surface water. Neither contaminant is retained as a COPC for the aquatic and terrestrial receptors because they are common laboratory contaminants and were detected at a concentration of less than 10 times the concentration in the blank sample. No SVOCs, pesticides, or PCBs were detected in the surface water samples.

Thirteen metals were detected in the surface water samples. As presented above, calcium, magnesium, potassium, and sodium are not retained as COPCs for the aquatic or terrestrial receptors. Chromium is not retained as a COPC for the aquatic receptors because detected concentrations do not exceed the SWSV. However, chromium is retained as a COPC for terrestrial receptors. Aluminum, barium, copper, iron, lead, manganese, vanadium, and zinc are retained as COPCs for both the aquatic and terrestrial receptors.

7.3.2.3 Sediment

Four sediment samples were collected at Site 65. At each station sediment samples were collected from two depths, zero to six inches and six to 12 inches. Six VOCs were detected in the sediment. Acetone, chloroform, and toluene are not retained as COPCs because they are common laboratory contaminants and were detected at a concentration of less than 10 times the concentration in the blank sample. Carbon tetrachloride, 2-butanone, and tetrachloroethene are not retained as COPCs because they were detected at concentrations below the SSVs.

One SVOC (di-n-butylphthalate) was detected and retained as COPC in the sediment. Three pesticides were detected in the sediment. Beta-BHC, 4,4'-DDE, and 4,4'-DDD are all retained as COPCs.

Fifteen metals were detected in the sediment. As presented above, calcium, magnesium, potassium, and sodium are not retained as COPCs. Barium, chromium, iron, and manganese are not retained as COPCs because they did not exceed their respective SSVs. Aluminum, antimony, cobalt, copper, lead, vanadium, and zinc are retained as COPCs.

7.3.2.4 <u>Tissue Samples</u>

Four, fish-fillet samples and five, whole-body fish samples were chemically analyzed for Site 65.

Fish Fillet Samples

Four, fish-fillet samples were collected for tissue analysis at Site 65. One VOC (acetone) was detected and retained as a COPC in the fish fillet tissue. No SVOCs were detected in the fish fillet samples. One pesticide (4,4'-DDD) was detected and retained as a COPC.

Twelve metals were detected in the fish fillet tissue. As presented above, calcium, magnesium, potassium, and sodium are not retained as COPCs. Aluminum, barium, copper, manganese, mercury, selenium, thallium, and zinc are retained as COPCs.

Fish Whole Body Samples

Five, whole-body fish samples were collected for tissue analysis at Site 65. Four VOCs were detected in the fish, whole-body tissue. Acetone, 2-butanone, methylene chloride, and toluene are retained as COPCs. No SVOCs were detected in the fish, whole-body samples. Two pesticides were detected in the fish, whole-body tissue. Pesticides 4,4'-DDD and 4,4'-DDE are retained as COPCs.

Seventeen metals were detected in the fish, whole-body tissue. As presented above, calcium, magnesium, potassium, and sodium are not retained as COPCs. The remaining thirteen metals (aluminum, antimony, arsenic, barium, beryllium, copper, iron, lead, manganese, mercury, selenium, thallium, and zinc) are retained as COPCs.

7.3.3 Physical/Chemical Characteristics of COPCs

Physical and chemical characteristics of contaminants may affect their mobility, transport, and bioavailability in the environment. These characteristics include bioconcentration factors (BCFs), organic carbon partition coefficient (K_{oc}), octanol water partition coefficient (K_{ow}), and biotransfer

factors (Bv, Bb, Br). Table 7-4 summarizes these values for the COPCs detected in the surface soil, surface water, sediment, and fish tissue samples. Information from this table is used to assess the fate and transport of the constituents and the potential risks to the environmental receptors at each site. The following paragraphs discuss the significance of each parameter included in the table.

Bioconcentration factors measure the tendency for a chemical to partition from the water column or sediment and concentrate in aquatic organisms. Bioconcentration factors are important for ecological receptors because chemicals with high BCFs could accumulate in lower-order species and subsequently accumulate to toxic levels in species higher up the food chain. The BCF is the concentration of the chemical in the organism at equilibrium divided by the concentration of the chemical in the water. Therefore, the BCF is unitless. The BCF used to determine if a contaminant has a high potential to bioaccumulate in aquatic or terrestrial organisms.

 K_{∞} measures the tendency for a chemical to partition between soil or sediment particles containing organic carbon and water. This coefficient is important in the ecological environment because it determines how strongly an organic chemical will be bound to the organics in the sediments. The K_{∞} is used to calculate sediment quality criteria.

 K_{ow} is the ratio of a chemical concentration in octanol divided by the concentration in water. The octanol/water partition coefficient has been shown to correlate well with bioconcentration factors in aquatic organisms and with adsorption to soil or sediment. The K_{ow} is used to calculate the plant biotransfer factors that are used to estimate the COPC concentration in plants that would potentially be ingested by the terrestrial receptors in the intake model.

The plant biotransfer factors (Bv or Br) measures the potential for a chemical to accumulate in a plant. These factors are used to calculate the concentration of the COPCs in either the leafy part of the plant (Bv) or the fruit of the plant (Br). The factors for inorganics are obtained from Baes <u>et.al.</u>, 1984, while the factors for organics are calculated according to Travis and Arms, 1988. The Bv and Br values for the organics are assumed to be same value.

Finally, the beef biotransfer factors (Bb) measures the potential for a chemical to accumulate in an animal. This factor is used to calculate the COPC concentration in the small mammal that is ingested by the red fox. The factors for inorganics are obtained from Baes et.al., 1984, while the factors for organics are calculated according to Travis and Arms, 1988.

7.4 Ecosystems Potentially at Risk

Ecological receptors that might be potentially at risk from contaminants at Site 65 were identified during the field investigations and the habitat evaluation. The regional and site-specific ecology are presented in Section 3.0. Based on the results of the field investigations and the habitat evaluation, potential receptors of contaminants in surface water and sediment include: fish, benthic macroinvertebrates, other aquatic flora and fauna and some terrestrial faunal species. Potential receptors of contaminants in soil include: deer, rabbits, foxes, raccoons, birds and other terrestrial flora and fauna.

7.5 <u>Ecological Endpoints</u>

The information compiled during the first stage of problem formulation (stressor characteristics and ecosystems potentially at risk) is used to select the ecological endpoints for this ERA. The following section presents the ecological endpoints selected for this ERA, and the reasons they are selected.

There are two primary types of ecological endpoints: assessment endpoints and measurement endpoints. Assessment endpoints are explicit expressions of the actual environmental values that are to be protected (USEPA, 1994). Measurement endpoints are measurable responses to a stressor that are related to the valued characteristics chosen as the assessment endpoints (USEPA, 1994). Measurement endpoints may be identical to assessment endpoints (e.g., measurement of abundance of fish), or they may be used as surrogates for assessment endpoints (e.g., toxicity test endpoints). Both types of endpoints are used in the ecological risk evaluation and are presented in the following sections.

A measurement endpoint, or "ecological effects indicator" as it is sometimes referred, is used to evaluate the assessment endpoint. Therefore, measurement endpoints must correspond to, or be predictive of, assessment endpoints. In addition, they must be readily measurable, preferably quickly and inexpensively, using existing techniques. Measurement endpoints must take into consideration the magnitude of the contamination and the exposure pathway. The measurement endpoint should be an indicator of effects that are temporally distributed. Low natural variability in the endpoint is preferred to aid in attributing the variability in the endpoint to the contaminant. Measurement endpoints should be diagnostic of the pollutants of interest, as well as broadly applicable to allow comparison among sites and regions. Also, measurement endpoints should be standardized (e.g., standard procedures for toxicity tests). Finally, it is desirable to use endpoints that already are being measured (if they exist) to determine baseline conditions.

7.5.1 Aquatic Endpoints

The assessment endpoints for the aquatic receptors are changes in the structure (i.e., density, diversity) of benthic macroinvertebrate communities attributable to site-related contaminants and the protection of benthic macroinvertebrates and fish due to exposure of site-related contaminants in the surface water and sediment. Measurement endpoints for the first aquatic assessment endpoint include: 1) lower benthic macroinvertebrate species diversity and richness when compared to an ecologically similar background location; 2) the dominance of contaminant-tolerant species (opportunistic) over contaminant sensitive species (equilibrium); 3) elevated levels of contaminants in the biota tissue samples as compared to tissue samples collected at off-site background stations or in the literature; and, 4) contaminant levels in the tissue samples that exceed toxicity values in the literature (where available). The measurement endpoints for the second aquatic assessment endpoint include exceedences of contaminant-specific surface water and sediment effect concentrations (i.e., SWSVs, and SSVs).

Species diversity, richness, and change in species dominance are evaluated by comparing the type of species, the species diversity, and community similarity of the benthic macroinvertebrates collected at Site 65 to the appropriate off-site background stations. The dominance of contaminant-tolerant species over contaminant sensitive species is evaluated by comparing the Macroinvertebrate Biotic Index (MBI) of the benthic macroinvertebrates collected at Site 65 to the MBI from the appropriate off-site background stations. The following paragraphs present how the species diversity, community similarity, and MBI are calculated and interpreted.

7.5.1.1 Species Diversity

The benthic macroinvertebrate community was examined using a mathematical expression of community structure called a diversity index. Diversity data are useful because they condense a substantial amount of data into a single value. The Shannon-Wiener diversity index and Brillouin diversity index both were calculated for the benthic macroinvertebrate species.

The Shannon-Wiener (H¹) function is one of the more commonly used formulas for calculating species diversity. Species diversity was calculated in logarithmic base 10 using the following equation (Brower and Zar, 1977):

$$H^1 = \sum (p_i * \log(p_i)).$$

 H^1 = mean species diversity

p_i = proportion of the total number of individuals occurring in species i.

Brillouin's diversity (H) is used if a data set is not considered to be a random sample. This situation arises when data comprising an entire population are available or for data that are from a sample obtained non-randomly from a population. Brillouin's diversity is calculated using the following equation (Brower and Zar, 1977):

$$H = \frac{(\log n! - \sum (\log(f_i!))}{n}.$$

H = species diversity

n =the sample size

f =the number of observations in category i

The operative assumption in the interpretation of diversity values is that relatively undisturbed environments tend to support communities that consist of a large number of species with no single species present in overwhelming abundance. Many forms of stress tend to reduce diversity by producing an environment that is less desirable for some taxa and, therefore, giving a competitive advantage to other taxa.

7.5.1.2 Community Similarity

Community similarity between benthic macroinvertebrate stations was measured using two qualitative indices of community similarity, the Jaccard coefficient (S_I) and the $S\Phi$ renson index (S_S) . The indices use two possible attributes of the ecosystem, that is whether a species was or was not present in the collected sample. Because these coefficients are based on the number of species collected and not the number of individuals, a few organisms from several taxa could significantly change the similarity value, whereas there may not be an overall significant difference between the communities.

The S_J is better than the S_S at discriminating between highly similar collections and has been used widely in stream pollution investigations. The S_J ranges from 0.0 (dissimilar) to 1.0 (similar) and is calculated using the following equation (Brower and Zar, 1977):

$$S_j = \frac{a}{a+b+c}$$

a = number of species common to both collections

b = number of species in the first collection but not the second

c = number of species in the second collection but not in the first

The S_s places more emphasis on common attributes, and is better than the S_J at discriminating between highly dissimilar collections. The S_s ranges from 0.0 (dissimilar) to 1.0 (similar) and is calculated using the following equation (Brower and Zar, 1977):

$$S_s = \frac{2a}{2a+b+c}$$

Where a, b, and c are as described above.

These indices are used to detect changes in the community structure. Stressed communities presumably have different species than relatively non-stressed communities, given that all other factors are equal. Several factors determine the type of benthic population that will inhabit an area including salinity fluctuations, sediment type, size of water body, and time of collection. Although the community similarity indices will give some indication as to the similarities of the communities, more weight will be placed on the types of species that were collected, the relative densities, and the species diversities of the site stations as compared to the reference stations.

7.5.1.3 Macroinvertebrate Biotic Index

Most of the benthic macroinvertebrates collected during the ecological investigation have been assigned a pollution tolerance rating. The tolerances were obtained from the NC DEHNR DEM Environmental Sciences Branch (Lenat, 1993) and the USEPA Environmental Monitoring Systems Laboratory (USEPA, 1990). NC DEHNR maintains a complete list of benthic macroinvertebrate species collected, or known to occur, in North Carolina on a database called BINDEX. BINDEX contains the species Latin name, order, biotic index (BI), and feeding group. However, BI have not been developed for many estuarine species. The BI ranges from zero to ten; a zero is assigned to taxa found only in unaltered streams of high water quality, and a ten is assigned to taxa known to occur in streams with intermediate degrees of pollution or disturbance. In addition, USEPA lists many common benthic macroinvertebrate species along with their tolerance to organic wastes, heavy metals, and acids (USEPA, 1990)

The MBI was developed to provide a rapid stream quality assessment. North Carolina had a data set of over 2,000 stream macroinvertebrate samples that were divided into five water-quality ratings. This data set was used to derive preliminary tolerance values for over 500 benthic macroinvertebrate taxa. the MBI is intended for the examination of the general level of pollution regardless of the source. The index is an average of the BIs weighed by individual abundance, and is calculated as follows:

$$MBI = \frac{\sum (n_i * BI)}{N}$$

Where:

MBI = Macroinvertebrate Biotic Index

n_i = Number of individuals occurring in the ith taxa

BI = Biotic Index assigned to the ith taxa

N = Total number of individuals in the sample

The sample benthic macroinvertebrate populations were assigned a general stream/water quality condition based on the MBI value. The five classes and their corresponding MBI values are presented below (Lenat, 1993)

Excellent	Good	Good-Fair	Fair	Poor
Water	Water	Water	Water	Water
Quality	Quality	Quality	Quality	Quality
< 5.24	5.25-5.95	5.96-6.67	6.68-7.70	

The MBI for the benthic macroinvertebrate stations was calculated using the values listed in BINDEX. When a BI for a specific species was not listed, either the family BI (if available) was used or the species was not included in the MBI calculations.

7.5.2 Terrestrial Endpoints

The assessment endpoint for the terrestrial receptors as follows: 1) the protection of terrestrial herbivore and carnivore mammals from ingesting plants, soil, surface water, fish, and/or small mammals that contain site-related contaminants; 2) the protection of terrestrial herbivore avian species from ingesting plants, soil, and surface water that contain site-related contaminants; and 3) the protection of terrestrial plants and invertebrates from direct exposure to site-related contaminants in the soil.

The measurement endpoints for the terrestrial ERA include: 1) exceedences of contaminant-specific soil effect concentrations (i.e., SSSVs); 2) CDI exceedences of contaminant-specific effect doses (TRVs); and, 3) tissue sample concentration exceedences of proposed criteria for piscivorous wildlife.

7.6 <u>Conceptional Model</u>

This section of the ERA presents each potential exposure pathway via soil, groundwater, surface water, sediment, and air, and the likelihood that an exposure will occur through these pathways. Figure 7-1 presents the flowchart of potential exposure pathways and ecological receptors.

To determine if ecological exposure via these pathways may occur in the absence of remedial actions, an analysis is conducted including the identification and characterization of the exposure pathways. The following four elements are examined to determine if a complete exposure pathway is present:

- A source and mechanism of chemical release
- An environmental transport medium

- A receptor exposure route
- A receptor exposure point

7.6.1 Soil Exposure Pathway

Potential release sources to be considered in evaluating the soil pathway are surface or buried wastes and contaminated soil. The release mechanisms to be considered are fugitive dust, leaching, tracking, and surface runoff. The transport medium is the soil. The potential routes to be considered for ecological exposure to the contaminated soil are ingestion and dermal contact. Potential exposure points for ecological receptors include species living in, or coming in contact with, the soil. COPCs were detected in the surface soil demonstrating a release from a source to the surface soil transport medium. Potential receptors that may be exposed to contaminants in surface soil at/or around surface soil in the areas of detected COPCs including: deer, fox, raccoon, rabbits, birds, plants, and other terrestrial life.

Terrestrial receptors potentially are exposed to contaminants in the soil through ingestion, dermal contact, and/or direct uptake (for flora). The magnitude of the exposure depends on their feeding habits and the amount of time they reside in the contaminated soil. In addition, terrestrial species may ingest organisms that have bioconcentrated contaminates from the soil. This exposure pathway is likely to occur at Site 65 and is retained for further analysis.

7.6.2 Groundwater Exposure Pathway

The potential release source to be considered in evaluating the groundwater pathway is contaminated soil. The release mechanism to be considered is leaching. The routes to be considered for ecological exposure to the contaminated groundwater are ingestion and dermal contact. Groundwater discharge to area surface waters may represent a pathway for contaminant migration.

Subsurface biota (i.e., microorganisms) are the only ecological receptors expected to be directly exposed to groundwater. Potential impacts to these biota are not assessed in this ERA because current guidance does not provide sufficient information to evaluate risk. In addition, since the receptors of concern are not directly exposed to groundwater at Site 65, the groundwater to surface water exposure is accounted for in the surface water section of the ERA.

7.6.3 Surface Water and Sediment Exposure Pathway

Potential release sources to be considered in evaluating the surface water and sediment pathways are contaminated surface soil and groundwater. The release mechanisms to be considered are groundwater seepage and surface runoff. The potential routes to be considered for ecological exposure to the contaminated surface water/sediment are ingestion and dermal contact. Potential exposure points for ecological receptors include species living in, or coming in contact with, the surface water/sediment on-site. COPCs were detected in the surface water and sediment demonstrating a release from a source to the surface water or sediment transport medium. Potential receptors that may be exposed to contaminants in surface water and sediment include: fish, benthic macroinvertebrates, deer, birds, and other aquatic and terrestrial life.

Aquatic receptors are exposed to contaminants in the surface water and sediment by ingesting water while feeding and by direct contact while feeding or swimming. This exposure pathway is likely to occur at Site 65 and is evaluated in the ERA. In addition, aquatic organisms may ingest other aquatic flora and fauna that have bioaccumulated chemicals from the surface water and sediment. This

potential exposure pathway is not evaluated in the ERA because current guidance does not provide sufficient information to evaluate risk.

Terrestrial faunal receptors potentially are exposed to contaminants in the surface water and sediment through ingestion and dermal contact. The magnitude of the exposure depends on their feeding habits and the amount of time they reside in the contaminated waters. In addition, terrestrial species may ingest organisms (e.g., fish, small mammals, invertebrates, and plants) that have bioconcentrated contaminates from the surface water and sediment. These exposure pathways are likely to occur at Site 65. However, only the surface water and surface soil ingestion pathway is evaluated in the ERA. Current guidance does not exist to evaluate the sediment pathway, sub-surface soil pathway, or dermal contact pathway for terrestrial receptors, therefore, these pathways are not evaluated in the ERA.

7.6.4 Air Exposure Pathway

There are two potential release mechanisms to be considered in evaluating the atmospheric pathway: release of contaminated particulates and volatilization from surface soil, groundwater and surface water. The potential exposure points for receptors are areas on or adjacent to the site. The air exposure pathway is not evaluated in this ERA because air sampling was not conducted, and current guidance does not provide sufficient information to evaluate risk.

7.7 <u>Exposure Assessment</u>

The next phase after the problem formulation is the exposure assessment that consists of quantifying the potential exposure of the stressors (COPCs) to the ecological receptors. The RI included collecting samples for analytical analysis from five media; soil, groundwater, surface water, sediment, and tissue (fish). As presented earlier in the ERA, contaminants in the subsurface soil and groundwater are not evaluated. The analytical results for the data used in ERA are presented in Section 4.0 of this report.

The regional ecology, site ecology, and habitat characterization in the areas surrounding Site 65 are presented in Section 3.0 of this report. Information on sensitive environments and endangered species also is included in this section.

Exposure of contaminants in the surface soil to terrestrial flora and fauna (invertebrates and microorganisms) are assumed to be equal to the contaminant concentration in the surface soil. It is noted in the uncertainty section of this ERA that all the contaminants in the surface soil may not be bioavailable to the terrestrial flora or fauna. Exposure of contaminants in the surface water and sediment to aquatic receptors are assumed to be equal to the contaminant concentration in the surface water and sediment. Exposure of contaminants in the surface soil and surface water to other terrestrial fauna (mammals, birds) are estimated using the chronic daily intake models presented in the next section of this ERA.

The following sections presents the results of the ecosystem characterization including the biological sampling, abiotic habitat, and biotic habitat.

7.7.1 Surface Water, Sediment, and Biological Sampling

Biological samples collected at Site 65 included fish to obtain tissue samples, and benthic macroinvertebrates to obtain population statistics. Water quality measurements were collected during the sampling event prior to the surface water and sediment sample collection. These measurements

consisted of temperature, pH, specific conductance, salinity, and dissolved oxygen. Site specific descriptions, and field water quality measurements were recorded on field data sheets (see Appendix V). The station locations and sampling procedures for collecting each of the environmental media are presented in Section 2.0 of this report.

7.7.1.1 Abiotic Habitat

The abiotic habitat consists of the description of the stations with regard to size of the ponds, depth of the water, substrate type, water chemistry and other such non-biological descriptors. The following sections present the abiotic habitat for the sampling stations at Site 65.

Table 7-5 presents the sampling station characterization summary that includes the dimensions of the ponds including depth, canopy cover, sediment type, and sediment odor of the Site 65 stations and the upstream stations. Courthouse Bay Pond has a perimeter of 750 feet and encompasses an area of 26,000 square feet. The canopy cover is open. The sediment was primarily, a silty-sand with organic material below the three inch depth, with a decaying organic odor. Powerline Pond has a perimeter of 630 feet and encompasses an area of 27,900 square feet. The canopy cover is open. Finally, the sediment was primarily a silty-sand with large amounts of organic material, with an anaerobic odor.

Table 7-6 presents the results of the field chemistry including the temperature, pH, dissolved oxygen concentration, conductivity, and salinity. The temperature ranged from 17.3 to 30.4 °C; the pH ranged from 6.32 to 7.62 standard units; the dissolved oxygen ranged from 2.0 to 10.6 mg/L; the conductivity ranged from 12 to 214 umhos/cm; and the salinity for both ponds was 0.0 parts per thousand. The field chemistry at these stations appear to be typical of surface waters at MCB, Camp Lejeune based on previous sampling experience.

7.7.1.2 Biotic Habitat

The biotic habitat consists of the description of the stations with regard to the biological community. The following sections present the results of the benthic macroinvertebrate community for the sampling stations at Site 65.

Fish Community

Fish were collected from both ponds at Site 65, the results of the fish sampling effort at these ponds are summarized on Table 7-7. The fish distribution and characterization summary is presented in Table 7-8. Appendix W presents the lengths and weights of the individual fish collected at each station. One bluegill that was collected from Courthouse Bay Pond had an enlarged dorsal end in front of the dorsal fin. The remaining fish did not have any visible signs of abnormalities. In general, the fish collected from Courthouse Bay Pond were not as brilliant in color as those collected from Powerline Pond.

Two fish species (i.e., bluegill [Lepomis macrochirus, 32 individuals] and redear sunfish [L. microlophus, 8 individuals]) were collected from Courthouse Bay Pond (65-FS04). Three fish species (i.e., largemouth bass [Micropterus salmoides, nine individuals], bluegill [30 individuals], and redear sunfish, [31 individuals]) were collected from Powerline Pond (65-FS05). Fish from Courthouse Bay Pond were collected by setting a series of hoop nets within the pond. Fish from Powerline Pond were collected via electrofishing and hoop nets. Hoop nets were deployed at

Powerline Pond due to the extremely high amounts of aquatic vegetation inhibiting the stunned fish from surfacing during electroshocking operations. Electroshocking was not performed at Courthouse Bay Pond due to the low visibility (less than one inch) caused by an excessive amount of suspended solids.

Benthic Macroinvertebrate Community

Table 7-9 presents the benthic macroinvertebrates collected from both of the Site 65 stations. Appendix X presents the benthic macroinvertebrates collected from the off-site reference station (WC02). Table 7-10 presents the tolerance values of each species to organic pollution and metals, and the North Carolina Biotic Index. Table 7-11 presents all the samples summary statistics.

A total of one benthic macroinvertebrate specie consisting of 6 individuals was collected at Courthouse Bay Pond (65-BN04), and a total of six species consisting of 14 individuals was collected at Powerline Pond (65-BN05). At the off-site reference station (WC02), 20 species consisting of 286 individuals were collected. It should be noted that benthic macroinvertebrate locations at the Site 65 were within the ponds, while the off-site reference station was a small ponded area through which a creek flowed.

The arthropod *Chaborus sp.* comprised the total percentage (100 %) of the individuals collected at 65-BN04. The arthropod *Ablabesmyia ramphe gr.* comprised the majority (35.7 %) of the individuals collected at 65-BN05.

Only one specie (Chaborus sp.) was identified within Courthouse Bay Pond. Six species were identified within Powerline Pond. Two of the species (A. ramphe gr.), and (Chrysops sp.) were quantified at the highest percentages, 36% and 21% respectively. Species densities for Courthouse Bay Pond and Powerline Pond were 38 and 89 individuals/square meter, respectively. The Shannon-Wiener and Brillouin's specie diversities for Courthouse Bay Pond were both zero. These diversities for Powerline Pond were 0.71 and 0.53, respectively. Diversities for the off-site reference station were 0.80 and 0.76, respectively. The MBI value for Powerline Pond was 7.1 and the off-site reference station was 7.8. The MBI was not calculated for Courthouse Bay Pond since the one benthic macroinvertebrate species collected in this pond did not have a biotic index value. Finally, Table 7-12 presents the community similarity for the benthic macroinvertebrates between the two Site 65 stations, and between the Site 65 stations and the off-site reference station. The similarities between all the stations are very low.

7.8 <u>Ecological Effects Characterization</u>

The ecological effects data that were used to assess potential risks to aquatic and/or terrestrial receptors in this ERA include aquatic and terrestrial screening values as presented in Section 7.3.4.1 to aid in the selection of the COPCs. The following sections present a summary of the ecological effects comparison.

7.8.1 Surface Water

Contaminant concentrations detected in the surface water at Site 65 were compared to the freshwater SWSVs to determine if there were any exceedences of the published values (see Table 7-1).

In summary, aluminum, barium, copper, iron, lead, manganese, vanadium, and zinc are the only contaminants detected in the surface water that exceeded any of the SWSVs. The SWSVs for barium (69.1 μ g/L-acute, 3.8 μ g/L-chronic) were the ORNL aquatic benchmarks (Suter and Mabrey, 1994). These values appear to be overly conservative since the lowest chronic value for aquatic organisms (daphnids) was 5,800 μ g/L (Suter and Mabrey, 1994). In addition, it is reported in the Quality Criteria for Water-1986 that soluble barium concentrations in fresh waters generally would have to exceed 50,000 μ g/L before toxicity to aquatic life would be expected (USEPA, 1987). Therefore, the maximum barium concentration in the surface water sample (69.3 μ g/L) is below the concentrations that are expected to cause adverse impacts to aquatic life.

The SWSVs for manganese (1,470 μ g/L-acute, 80.3 μ g/L-chronic) were the ORNL aquatic benchmarks (Suter and Mabrey, 1994). These values also appear to be overly conservative since the lowest chronic value for aquatic organisms (daphnids) was <1,100 μ g/L, while the lowest chronic value for fish was 1,770 μ g/L (Suter and Mabrey, 1994). In addition, it is reported in the Quality Criteria for Water-1986 that the tolerance values for aquatic life in freshwaters range from 1500 μ g/L to 1,000,000 μ g/L (USEPA, 1987). Therefore, the maximum manganese concentration in the surface water sample (88.4 μ g/L) is below the concentrations that are expected to cause adverse impacts to aquatic life.

The SWSVs for vanadium (284 μ g/L-acute, 19.1 μ g/L-chronic) were the ORNL aquatic benchmarks (Suter and Mabrey, 1994). These values also appear to be overly conservative since the lowest chronic value for aquatic organisms (fish) was 80 μ g/L (Suter and Mabrey, 1994). Therefore, the maximum vanadium concentration in the surface water sample (26.2 μ g/L) is below the concentration that is expected to cause adverse impacts to aquatic life.

Finally, NCWQS for turbidity is less than 25 Nephelometric Turbidity Units (NTU) (NC DEHNR, 1994), while the USEPA AWOC for turbidity is the "settleable and suspended solids should not reduce the depth of the compensation point for photosynthesis activity by more than 10 percent from the seasonally established norm for aquatic life" (USEPA, 1987). Turbidity was not measured in Courthouse Bay Pond. However, based on Baker's previous sampling experience, it is assumed that the turbidity in Courthouse bay Pond is greater than 25 NTU, and that the compensation point for photosynthesis activity is reduced by more than 10 percent. It is reported in the Quality Criteria for Water-1986, that suspended solids have four effects on fish and fish food populations: 1) by acting directly on the fish swimming in water in which solids are suspended, and either killing them or reducing their growth rate, resistance to disease, etc.; 2) by preventing the successful development of fish eggs and larvae; 3) by modifying natural movements and migration; and, 4) by reducing the abundance of food available to fish (USEPA, 1987). Largemouth bass are considered intolerant of suspended solids that may interfere with reproductive processes and reduce growth (USDI, 1982). It also is reported that largemouth bass are more sensitive to turbidity than are redear sunfish and bluegills (USEPA, 1977). Finally, suspended solids also are harmful to many aquatic invertebrates that cannot tolerate appreciable concentrations of inorganic particulate matter, and may significantly reduce organism density by smothering bottom invertebrates (Wetzel and Likens, 1991 and USEPA, 1987).

7.8.2 Sediment

Contaminant concentrations detected in the sediment at Site 65 were compared to SSVs and calculated SQC values to determine if there were any exceedences of the published values (see Table 7-2). Dinbutylphthalate, beta-BHC, 4,4'-DDE, and 4,4'-DDD are the only organics that exceeded the SSVs.

A few of the organics only exceeded either the ER-L or the SQC. However, only 4,4'-DDD exceeded ER-M value. The di-n-butylphthalate SSV is an apparent effect threshold value (Tetra Tech, Inc, 1986), and is placed only in the ER-M column.

Antimony, copper, lead, and zinc are the only inorganics that exceeded the SSVs. The copper, lead, and zinc SSVs are sediment screening levels (USEPA, 1995a, Long et.al., 1995), and have both ER-L and ER-M values. All of these inorganics exceeded the ER-L. Antimony was the only inorganic that exceeded the ER-M. Aluminum, cobalt, and vanadium do not have associated SSVs, and therefore, their potential effects on aquatic life can not be evaluated.

7.8.3 Fish Tissue

The following sections discuss the chemical concentrations detected in the tissue samples collected from Site 65. The fish tissue samples were divided into two groups for discussion: fillet and whole body. Table 7-13 presents a summary of the fish sent to the laboratory for analysis along with their trophic level. Positive detection tables for the tissue samples collected at Site 65 are presented in Section 4.0. The statistical summaries for these samples are presented in Appendix R.

The individuals in each sample that are retained for chemical analysis are presented in Appendix W. The appendix lists the length and weight of all the individuals in each composite, along with the new sample number, and how the sample should be prepared for analysis (i.e., fillet, or whole body). In accordance with the <u>Guidance for Assessing Chemical Contaminant Data for use in Fish Advisories, Volume I, Fish Sampling and Analysis</u> (USEPA, 1993d), the smallest fish in a composite should be no less than 75 percent of the total length of the largest individual. As is presented in Appendix W, the minimum to maximum ratio is greater than 75 percent in all but two of the samples. The two samples with ratios less then 75 percent are 65-FS04-BG01F (67 percent), and 65-FS04-RS01W (69 percent). Both of these samples were collected from Courthouse Bay Pond. Samples 65-FS04-BG01F and 65-FS04-RS01W were less than 75 percent because a greater size variety of individuals had to be used to ensure adequate sample volume for analysis.

The Site 65, fish-fillet contaminant concentrations were compared to the tissue contaminant concentrations in an off-site tissue study Baker conducted in the White Oak River Basin in 1993 (Baker, 1994a). This background study was limited to the fillet portion of the fish (see Appendix N). The Site 65, fish, whole-body, tissue, contaminant concentrations were compared to the tissue contaminant concentrations in an fish survey conducted in Albermarl and Pamlico Sounds in North Carolina (NC Study) (Benkert, 1992). This background study was limited to the whole-body portion of the fish. Table 7-14 presents these comparisons. Contaminant concentrations in the fish also were compared to various proposed criteria values for piscivorous wildlife (see Table 7-15) (Newell et.al., 1987).

7.8.3.1 Fish Tissue Organics

Acetone, 2-butanone, methylene chloride, and toluene are the only VOCs retained as COPCs in the fish tissue. Only acetone was detected in the off-site background tissue samples. The remaining VOCs were not detected in either study.

Two pesticides (4,4'-DDD, and 4,4'-DDE) are retained as COPCs in the whole body fish tissue. Both pesticides were detected within their respective range of the NC Study. The pesticide 4,4'-DDD was detected in the fillet fish tissue but not in the off-site background tissue samples.

Table 7-15 presents a comparison of the maximum fish tissue concentrations to New York State proposed fish tissue criteria for the diet of piscivorous wildlife (Newell et.al., 1987). No COPCs were detected at concentrations above either the proposed non-carcinogenic or 10⁻² carcinogenic criteria for the diet of piscivorous wildlife.

7.8.3.2 Fish Tissue Inorganics

Toxicity data for metals in fish tissue were located for arsenic, mercury, and zinc. Therefore, toxicological impacts to aquatic and piscivorous wildlife only could be evaluated for these elements. The comparison of tissue concentrations to other studies was conducted for remaining metals (aluminum, antimony, barium, beryllium, copper, iron, lead, manganese, and selenium).

Diminished growth and survival have been reported in immature bluegills (Lepomis macrochirus) when total arsenic residues in muscle was greater than 1.3 mg/kg fresh weight, or greater than 5 mg/kg in adults (Eisler, 1988). In addition, depending on the chemical form of arsenic, certain marine teleosts may be unaffected at muscle total arsenic residues of 40 mg/kg (Eisler, 1988). Prescribed limits for arsenic in feedstuff (fishmeals) of domestic livestock is less than 10 mg/kg. Arsenic was not detected in the fillet samples, and was detected at a maximum concentration of 0.15 mg/kg in the whole body samples. Therefore, arsenic is less than the 5 mg/kg reported to cause diminished growth and survival in adult fish, and was detected at a concentration less than the prescribed limits for arsenic in feedstuff.

To protect sensitive species of mammals and birds that regularly consume fish and other aquatic organisms, total mercury concentrations in these food items should probably not exceed 0.1 mg/kg for avian protection and 1.1 mg/kg for small mammals (Eisler, 1987). The maximum mercury tissue concentration at Site 65 whole body samples (0.11 mg/kg) is just slightly above the avian protection value but it is within the range of mercury detected in the NC Study. The concentration of mercury in the fillet samples are slightly higher than the mercury concentration in the off-site background fish samples.

Bird diets should contain 93 to 120 mg/kg of zinc for adequate to optimal growth, and it should be less than 178 mg/kg to prevent marginal sublethal effects (Eisler, 1993). Dietary loadings that optimally prevent zinc deficiency for the mink is 150 mg/kg (Eisler, 1993). The maximum zinc concentration in the Site 65 whole body fish tissue samples (31.5 mg/kg) is below this concentration. The whole body sample concentrations are within the NC Study sample concentrations, while the concentration of zinc in the fillet samples are slightly higher than the zinc concentration in the off-site background fish samples.

With the exception of copper, all the metals detected in the Site 65 whole body samples were detected within the range of the fish analyzed in the NC Study (where analyzed). Copper in the Site 65 whole body samples just slightly exceeded the range in the NC Study. With the exception of barium, selenium, and thallium, which were not detected in the off-site background samples, the remaining metals in the Site 65 fillet samples were detected within the range, or slightly above the range in the off-site background samples.

7.8.4 Surface Soil

Although promulgated standards do not exist, Surface Soil Screening Values (SSSVs) that may be used to evaluate potential ecological risks to terrestrial flora and fauna have been developed by the

Ditch (Richardson, 1987), USEPA Region III (USEPA, 1995b) and Oak Ridge National Laboratory (ORNL) (Will and Suter, 1994a, 1994b). The contaminant concentrations in the surface soils are compared to the SSSVs to determine if potential impacts to terrestrial flora and fauna invertebrates may be expected (see Table 7-16).

Several of the SVOCs and metals were detected in the surface soil samples at concentrations above the SSSVs. One pesticide and one PCB were detected in the surface soil samples at concentrations above the SSSVs. The SVOCs with the highest number of exceedences were pyrene, fluoranthrene, and chrysene with three exceedences, and benzo(k)fluoranthene and benzo(a)anthracene with two exceedences. The inorganics with the highest number of exceedences were iron (13), chromium (11), copper (3) and lead (3). Pesticide 4,4'-DDT had the highest number of exceedences for the pesticides (3), followed by Aroclor 1260 with one exceedence. Most of the inorganic SSSVs were developed by ORNL, while most of the organic SSSVs were developed by USEPA Region III.

7.8.5 Terrestrial Chronic Daily Intake Model

In addition to comparing the soil concentrations to toxicity values for terrestrial invertebrates and plants, a terrestrial Chronic Daily Intake (CDI) Model is used to estimate the exposure of the COPCs to terrestrial receptors. The following describes the procedures used to evaluate the potential soil exposure to terrestrial fauna at Site 65 by both direct and indirect exposure to COPCs via surface water, soil, and foodchain transfer.

Based on the regional ecology and potential habitat at the site, the indicator species used in this analysis were white-tailed deer, cottontail rabbit, red fox, the bobwhite quail, and the raccoon. It is realized that all the terrestrial species may not exist at the site, and that other species may exist at the site. The species were chosen based on the most likely exposure scenarios and the availability of exposure data (i.e., ingestion rates, body weights). The white-tailed deer represents a large mammal ingesting vegetation. The cottontail rabbit represents a small mammal ingesting vegetation. The red fox represents a small mammal ingesting vegetation and other small mammals. The bobwhite quail represents a bird ingesting vegetation. The raccoon represents a small mammal ingesting vegetation and fish. The exposure points for these receptors were the surface soil and biota transfers. The routes for terrestrial exposure to the COPCs in the soil were incidental soil ingestion, vegetation (leafy plants, seeds and berries) ingestion, and ingestion of small mammals.

7.8.5.1 Derivation of Terrestrial Reference Value

Total exposure of the terrestrial receptors to the COPCs in the soil and surface waters is determined by estimating the CDI dose and comparing this dose to Terrestrial Reference Values (TRVs) representing acceptable daily doses in mg/kg/day. The TRVs were developed from No-Observed-Adverse-Effect-Levels (NOAELs) or Lowest-Observed-Adverse-Effect-Levels (LOAELs) obtained from the Integrated Risk Information System (IRIS), Agency for Toxic Substances and Disease Registry Toxicological Profiles, mineral tolerance levels of domestic animals (NAS, 1992) or other toxicological data in the literature. Appendix U presents the methodology used in deriving the TRVs and the animals that were used to derive each TRV.

7.8.5.2 <u>Calculation of Chronic Daily Intake</u>

Potential impacts of the terrestrial receptors to the COPCs in the soil and surface water is determined by estimating the CDI dose and comparing this dose to TRVs representing acceptable daily doses

in mg/kg/day. The estimated CDI dose of the bobwhite quail, cottontail rabbit, white-tailed deer and small mammal, to soil, surface water, and vegetation was determined using the following equation:

$$CDI = \frac{(Cw)(Iw) + [(Cs)(Bv)(Iv) + (Cs)(Is)][H]}{BW}$$

Where:

CDI = Chronic Daily Intake, mg/kg/d

Cw = Contaminant concentration in the surface water, mg/L

Iw = Rate of drinking water ingestion, L/d Cs = Contaminant concentration in soil, mg/kg

By = Soil to plant transfer coefficient (leaves, stems, straw, etc.), unitless

Iv = Rate of vegetation ingestion, kg/d Is = Incidental soil ingestion, kg/d

H = Contaminated area/Home area range area ratio, unitless

BW = Body weight, kg

To calculate the contaminant concentration in the small mammal (meadow vole), the resulting CDI from the above equation is multiplied by the biotransfer factor for beef (Bb) for organics (Travis and Arms, 1988) and metals (Baes et.al., 1984).

The estimated CDI dose of the raccoon is determined using the following equation.

$$CDI = \frac{(Cw)(Iw) + (Cf)(If) + [(Cs)(Br)(Iv) + (Cs)(Is)][H]}{BW}$$

where:

CDI = Chronic Daily Intake, mg/kg/d

Cw = Contaminant concentration in the surface water, mg/L

Iw = Rate of drinking water ingestion, L/d

Cf = Contaminant concentration in the fish, mg/kg

If = Rate of fish ingestion, kg/d

Cs = Contaminant concentration in soil, mg/kg

Br = Soil to plant transfer coefficient (fruit, seeds, tubers, etc.), unitless

Iv = Rate of vegetation ingestion, kg/d

Is = Incidental soil ingestion, kg/d

H = Contaminated area/Home area range area ratio, unitless

BW = Body weight, kg

The contaminant concentration in the fish is the whole body fish concentration from the samples collected at Site 65.

The estimated CDI dose of the red fox is determined using the following equation:

$$CDI = \frac{(Cw)(Iw) + [(Cs)(Bv)(Iv) + (Cs)(Is) + (Cm)(Im)][H]}{BW}$$

where:

CDI = Chronic Daily Intake, mg/kg/d

Cw = Contaminant concentration in the surface water, mg/L

Iw = Rate of drinking water ingestion, L/d Cs = Contaminant concentration in soil, mg/kg

By = Soil to plant transfer coefficient (leaves, stems, straw, etc.), unitless

Iv = Rate of vegetation ingestion, kg/d Is = Incidental soil ingestion, kg/d

Cm = Contaminant concentrations in small mammals, mg/kg

Im = Rate of small mammal ingestion, kg/d

H = Contaminated area/Home area range area ratio, unitless

BW = Body weight, kg

Bioconcentration of the COPCs to plants is calculated using the soil to plant transfer coefficient (Bv or Br) for organics (Travis and Arms, 1988) and metals (Baes et.al., 1984). The concentrations of the COPCs used in the models were the lower of the upper 95 percent confidence limit or the maximum concentration detected of each COPC. The exposure parameters used in the CDI calculations are presented in Table 7-17.

7.9 Risk Characterization

The risk characterization is the final phase of a risk assessment. It is at this phase that the likelihood of adverse effects occurring as a result of exposure to a stressor are evaluated. This section evaluates the potential decrease in aquatic and terrestrial populations at Site 65 from contaminants identified at the site.

A Quotient Index (QI) approach is used to characterize the risk to aquatic receptors from exposure to surface water and sediments and terrestrial receptors from exposure to surface soil, surface water, and biota. This approach characterizes the potential effects by comparing exposure levels of COPCs in the surface water and sediments to the aquatic reference values presented in Section 7.8, Ecological Effects Characterization. The QI is calculated as follows:

$$QI = \frac{(EC, CDI)}{(SWSV, SSV, TRV)}$$

Where:

OI = Ouotient Index

EC = Exposure Concentration, $\mu g/L$, $\mu g/kg$ or mg/kg

CDI = Chronic Daily Intake, mg/kg/day

SWSV = Surface Water Screening Value, µg/L

SSV = Sediment Screening Value, $\mu g/kg$ or mg/kg

TRV = Terrestrial Reference Value, mg/kg/day

A QI greater than "unity" (one) is considered to be indicative of potential risk. Such values do not necessarily indicate that an effect will occur but only that a lower threshold has been exceeded. However, it is important to determine which contaminants are posing the highest risks, in order to

evaluate the significance of those contaminants to the site. Therefore, the evaluation of the significance of the QI has been judged as follows: (Menzie et.al., 1993)

- QI exceeds one but less than 10: some small potential for environmental effects
- QI exceeds 10: significant potential that greater exposures could result in effects based on experimental evidence
- QI exceeds 100: effects may be expected since this represents an exposure level at which effects have been observed in other species

The risks characterized above provide insight into general effects upon animals and plants in the local population. However, depending on the endpoint selected, they may not indicate if population-level effects will occur.

7.9.1 Surface Water

Table 7-18 present the surface water QIs. This table only presents the COPCs with QIs greater than one. The QIs for the hardness dependent metals are calculated using a sample specific hardness value. Figure 7-2 graphically displays the QIs that exceed one.

A hardness of 38.45 mg/L calcium carbonate (CaCO₃) was used to calculate the hardness-dependent SWSVs for the metals (copper, lead, and zinc) in Section 7.3.2, since this was the lowest hardness detected at any of the stations. The hardness ranged from 38.45 to 77.30 mg/L CaCO₃ in the two surface water samples. Copper, lead, and zinc exceeded a SWSV after adjusting the hardness for the specific sample. All three of these metals were collected from Courthouse Bay Pond (65-SW04) where large amounts of silt and suspended solids were present during the time of sampling. In summary, aluminum (QI = 297) was the only surface water COPC that had a QI greater than 100. Barium (QI = 18) and lead (QI = 49) were the only surface water COPCs that had QIs greater than 10. The remaining metals COPCs (barium, copper, iron, manganese, vanadium, and zinc) had QIs greater than one, but less than eight. With the exception of one barium sample, all the metals with OIs greater than one were collected in Courthouse Bay Pond.

As presented in the Ecological Effects section of this ERA, the SWSVs for barium, manganese, and vanadium appear to be extremely conservative based on other literature sources. Therefore, the concentrations of these contaminants are not expected to significantly decrease the population of aquatic receptors. Based on the high QIs for aluminum and lead, there is a probable potential for these contaminants to decrease the population of aquatic receptors. The remaining inorganics (copper, iron, and zinc) have a slight potential in decreasing the population of aquatic receptors.

7.9.2 Sediment

Table 7-19 presents the sediment QIs. This table only presents the COPCs with QIs greater than one. Figure 7-2 graphically displays the QIs that exceed one.

Di-n-butylphthalate was the only SVOC with an ER-M QI that exceeded one. The pesticides, 4,4'-DDD, and 4,4'-DDE are the only organics detected in the sediment with ER-L QIs that exceed one. The pesticide 4,4'-DDD was the only organic with a ER-L QI greater than 10; however, the ER-M and

SQC QIs were less than five. Therefore, there is only a very slight potential for decreasing the aquatic receptor population from organics in the sediment.

Antimony, copper, lead, and zinc are the only metals detected in the sediment with ER-L QIs that exceed one. Antimony, which had a ER-L QI value of 23, was the only metal detected in the sediment with an ER-M QI that exceeds one. Therefore there is only a slight potential for metals in the sediment to cause a decrease in the aquatic receptor population.

7.9.3 Terrestrial Chronic Daily Intake Model

Table 7-20 presents the QI for the terrestrial CDI model. Appendix U contains the CDI spreadsheets. The red fox, and white-tail deer had QIs that range from 0.627 to 0.847. The QI for the bobwhite quail was 4.77. The QIs for the cottontail rabbit and raccoon are 11.4 and 25.6, respectively. A significant portion of the QI values are due to metals, namely, aluminum, antimony, iron, and vanadium. In addition, acetone did contribute to a relatively high QI (8.6) in the raccoon model. The majority of the individual QIs were less than one, with a maximum QI of 2 for aluminum in the bobwhite quail and rabbit models. Iron, manganese, and vanadium also had QIs above one for the cottontail rabbit model. Aluminum and antimony had QIs above one for the raccoon model.

7.10 Ecological Significance

This section essentially summarizes the overall risks to the ecology at the site. It addresses potential impacts to the ecological receptors at Site 65 from the COPCs detected in the media, and determines which COPCs are impacting the site to the greatest degree. This section also describes if these contaminants appear to be site-related based on historical use or disposal of the contaminants, and/or if the contaminants were detected in other media (i.e., groundwater). This information, to be used in conjunction with the human health risk assessment, supports the selection of remedial action(s) for Site 65 that are protective of public health and the environment.

Figure 1-2 presents the locations of the two ponds in relationship to Site 65. The burn area and debris areas associated with Site 65 are located nearly 1,000 feet west of the ponds, and are separated by the heavy equipment training area. Potential contamination from Site 65 to the ponds could result from two release mechanisms, surface soil runoff and/or groundwater recharge. Initially, it was thought that some surface soil from Site 65 may have been pushed into the heavy equipment training area, and could subsequently work its way into Courthouse Bay Pond. However, based on the analytical results presented in Section 4.0 of this report, it does not appear that contaminants in the surface soil at Site 65 are migrating to Courthouse Bay Pond. It also was determined from the RI that groundwater at Site 65 flows in a southwesterly direction. Therefore, site-related contaminants in the groundwater will not be discharging to the ponds. In summary, it does not appear that any of the contaminants detected in the surface water or sediment in either pond are related to Site 65.

7.10.1 Aquatic Endpoints

Based on the risk characterization, there is a slight potential for organic compounds (di-n-butylphthalate, 4,4'-DDE and 4,4'-DDD) detected in the sediments to cause a decrease in the aquatic life population. Based on the risk characterization, there is a probable potential for (aluminum and lead) and a slight potential for (copper, iron, and zinc) in the surface water to decrease in the population of aquatic life.

In general, the pesticides 4,4'-DDE and 4,4'-DDD were detected at similar concentrations in Courthouse Bay Pond and Powerline Pond. These pesticides were detected at similar concentrations inside and outside of the site boundaries and are most likely attributable to the historical pesticide applications that have taken place at Camp Lejeune over the years.

The majority of inorganics that exceeded either SWSVs or SSVs were detected in Courthouse Bay Pond that is directly east and downgradient of the heavy equipment training area. Evidence of surface water runoff from the heavy equipment training area into this pond was apparent during the time of sampling. The suspended solids in the Courthouse Bay Pond are due to this runoff. It has been reported that for ambient waters, typically 30 to 80 percent of the copper, nickel, and zinc, and 90 to 95 percent of the lead may be in a particulate phase measured by the total recoverable method but not the dissolved method (USEPA, 1992). Therefore, the suspended solids probably are significantly contributing to the elevated inorganic concentrations in the surface water. This is important because it is generally supported by the scientific community within and outside USEPA that dissolved metal more closely approximates the bioavailable fraction of metal in the water column than does total recoverable metal (USEPA, 1993h). Since dissolved inorganics were not collected, the actual impacts to the aquatic life (based on dissolved inorganics), could not be evaluated. It should be noted; however, that as presented above, none of the inorganics in the surface water or sediment are thought to be site-related.

The bluegill and redear sunfish collected at Courthouse Bay Pond were not as brilliant in color as the same species collected from Powerline Pond. It has been reported that environmental background and light intensity are important factors in determining color changes in fish (Chavin, 1973). Therefore, the apparent color difference in the Courthouse Bay Pond fish is probably due to color difference of the water, and the decreased intensity of light penetration due to the turbidity.

No largemouth bass were collected in Courthouse Bay Pond. However, small fish resembling the shape of largemouth bass were observed swimming on the surface of this pond during the sampling investigation. The contaminants in the surface water and sediment may be reducing the fish population in Courthouse Bay Pond. As presented in the Ecological Effects section of this report, high turbidity is associated with adverse effects on fish, especially largemouth bass. Therefore, the reason for the decrease in numbers and types of fish collected in Courthouse Bay Pond also may be the large amount of suspended solids in the surface water.

As presented in the Ecological Effects section of this report, high turbidity is associated with adverse effects on benthic macroinvertebrates. The only species that was collected in Courthouse Bay Pond was *Chaborus* sp. This species is reportedly able to exist in turbid and anaerobic conditions (Hackney et.al., 1992). The absence of other benthic macroinvertebrate species may be due to the contaminants detected in the surface water and sediments. However, the high turbidity (>25 NTU) and low dissolved oxygen concentration (2.0 ppm) is most likely contributing significantly to the absence of other species.

In general, the summary statistics for the benthic macroinvertebrates collected in Powerline Pond were lower than those for the benthic macroinvertebrates collected in the off-site reference station. However, several of the species identified in Powerline Pond are sensitive to pollution and organic wastes. In addition, barium in the surface water, and 4,4'-DDE and 4,4'-DDD in the sediment were the only COPCs that exceeded screening values. As presented earlier in this ERA, the SWSV for barium appears to be overly conservative in the surface water and the pesticides in the sediment are not thought to be site-related. Therefore, the benthic macroinvertebrate population in Powerline Pond does not appear to adversely impacted by site-related contaminants.

7.10.2 Terrestrial Endpoints

Several contaminants were detected in the surface soil at concentrations that exceeded the SSSVs. Therefore, there is the potential for a decrease in the population of terrestrial plants and invertebrates in these areas. It is noted that no visible signs of stressed or dead vegetation in these areas were observed during the field investigations.

The CDI versus the TRV for the bobwhite quail, cottontail rabbit, raccoon, and whitetail deer all exceeded one. For the whitetail deer, none of the individual QIs exceeded "1". For the bobwhite quail, vanadium caused the high QI value, while aluminum, iron, and vanadium caused the high QI in the rabbit. Aluminum was detected in the surface soil at concentrations below the base-background concentration, and therefore is not expected to be site-related. In addition, vanadium was detected at a maximum concentration of 12 mg/kg in the Site 65 surface soil, which just slightly exceeded twice the average base background concentration (11.6 mg/kg). Therefore, it is unlikely that the vanadium is site-related. Iron, which may be site-related, had a QI value of 1.43. Based on the model being very conservative and the fact the heavy equipment training area (which would not be inhabitated by rabbits) is factored into the model, there does not appear to be an actual risk to the rabbit. Acetone and aluminum in the fish caused most of the high QI value in the raccoon. Acetone is not expected to bioconcentrate to the concentration detected in the fish due to its low bioconcentration factor, and the fact that it was detected at low concentrations (less than ten times the concentration in the blank samples) in the surface water (5 µg/L). Therefore, the acetone in the fish is most likely due to laboratory activities. In addition, aluminum in not thought to be related to site activities since it was detected below the base-background concentration in the surface soil, which would be the only pathway from Site 65 to the ponds.

7.10.3 Threatened and Endangered Species

Presently, no threatened or endangered species are known to reside at Site 65 or the immediately surrounding areas. However, a natural heritage resources survey conducted at Camp Lejeune (Leblond, 1991), identified the plant specie, blackfruit spikerush (*Eleocharis melanocarpa*) as being located in the vicinity of the ponds at Site 65. This specie presently has a state candidate status. The exact location of the plant is not known at this time, because of the large scale used on the survey map. Since the surface soil near the ponds does not contain contaminants related to Site 65, any potential impacts to this plant would not be site related.

7.10.4 Wetlands

National Wetland Inventory (NWI) maps identify both Courthouse Bay Pond and Powerline Pond as wetlands. Contaminants that exceeded screening values were present in the surface soil, surface water, and sediment. These contaminants may be effecting the wetland areas. It should be noted that no areas of stressed or dead vegetation were observed during the field investigations. Also, since the ponds do not contain contaminants related to Site 65, any potential impacts to wetlands are not site related.

7.11 <u>Uncertainty Analysis</u>

The procedures used in this evaluation to assess risks to ecological receptors, as in all such assessments, are subject to uncertainties. The following discusses some of the uncertainty in this ERA.

The chemical sampling program at Site 65 consisted of two surface water samples and four sediment samples. Because there were less than twenty samples, contaminants could not be eliminated because of infrequency. Therefore, contaminants not related to the site may have been retained as COPCs and thus carried through the ERA.

There is uncertainty in the ecological endpoint comparison. The SWSVs (NCWQS and AWQC) are established to be protective of a majority of the potential receptors. However, there will be some species will not be protected by the values because of their increased sensitivity to the chemicals. In addition, most of the values are established using laboratory tests, where the concentrations of certain water quality parameters (pH, hardness, total organic carbon) that may influence toxicity are most likely at different concentrations in the site water.

Potential adverse impacts to aquatic receptors from contaminants in the sediments were evaluated by comparing the COPC concentration in the sediments to SSVs. These SSVs have more uncertainty associated with them than do the SWSLs, since the procedures for developing them are not as established as those used in developing SWSLs. In addition, sediment type (pH, acid volatile sulfide, total organic carbon) also has a significant impact on the bioavailability and toxicity of contaminants.

There is uncertainty in comparing tissue concentrations to fish collected in Courthouse Bay Pond and Powerline Pond to fish collected in other studies. In many cases, the fish that were collected from the ponds were different species than the fish collected in the other studies. Many contaminants bioaccumulate differently in different species. Therefore, comparisons of contaminant concentrations of different fish may be misleading. Finally, there is limited data in the literature to assess potential impacts to fish from contaminants in their tissue.

Potential adverse impacts to terrestrial invertebrates and plants were evaluated by comparing the COPC concentration in the soil to SSSVs. Most of these studies do not take into account the soil type, which may have a large influence on the toxicity of the contaminants. For example, soil with high organic carbon content will tend to sorb many of the organic COPCs, thus making them less bioavailable to terrestrial receptors. In addition, most of the SSSVs are based on one or two studies, which greatly adds to their uncertainty.

There are some differences of opinion found in the literature as to the effectiveness of using models to predict concentrations of contaminants found in terrestrial species. According to one source, the food chain models currently used incorporate simplistic assumptions that may not represent actual site conditions, bioavailability of contaminants, or site-specific behavior of the receptors. Simple food chain models can provide an effective means of initial characterization of risk; however, residue analyses, toxicity tests, and the use of biomarkers provide a better approach for assessing exposure (Menzie et.al., 1993).

There are several sources of uncertainty when using these models. First, most of the terrestrial reference values are based on toxicity data from another species, which is then extrapolated to the species of concern using a body-size scaling equation. Since the toxicity of all contaminants may not

be proportional to body size, the calculated TRVs may not accurately predict risk to the species of concern. Another source of uncertainty with the models is that many of the input parameters are based on default values (i.e., ingestion rate) that may or may not adequately represent the actual values of the parameters. In addition, there is uncertainty in the amount that the indicator species will represent other species potentially exposed to COPCs at the site.

There is uncertainty in use of the bioconcentration and biotransfer factors. Bioconcentration and biotransfer factors can vary widely from species to species. The species used in the calculation of the bioconcentration and biotransfer factors are different that the species that actually occur at the site. Therefore, use of the factors will tend to either overestimate or underestimate actual bioaccumulation of contaminants. Finally, terrestrial receptors also may be exposed to contaminants in the sediments. However, currently, there is no guidance in the literature that can be used to evaluate this potential exposure pathway.

The toxicity of chemical mixtures is not well understood. All the toxicity information used in the ERA for evaluating risk to the ecological receptors is for individual chemicals. Chemical mixtures can affect the organisms very differently than the individual chemicals due to synergistic or antagonistic effects. In addition, the species that were used to develop the toxicity data may not be present at the site, or have the potential to exist at the site. Depending on the sensitivity of the tested species to the species at the site use of the toxicity values may overestimate of underestimate risk. Many chemicals are not acutely toxic; however, they have the potential to bioaccumulate in ecological receptors through food chain transfer. This bioaccumulation potential typically is not taken into account when comparing contaminant concentrations to screening values.

Finally, toxicological data for several of the COPCs were limited or do not exist. Therefore, there is uncertainty in any conclusions involving the potential impacts to aquatic receptors from these contaminants

7.12 Conclusions

7.12.1 Aquatic Ecosystem

As presented earlier in the ERA, the assessment endpoints for the aquatic receptors are changes in the structure of benthic macroinvertebrate communities attributable to site-related contaminants and the potential reduction of an aquatic receptor population or subpopulation that is attributable to site-related contaminants. The remaining portion of the ERA evaluates these assessment endpoints using a series of measurement endpoints. This section of the ERA examines each of the measurement endpoints to determine if the assessment endpoints are impacted.

The first measurement endpoint is determining if there is lower benthic macroinvertebrate species diversity and richness in the Site 65 stations when compared to an ecologically similar background location. There was lower species diversity and richness in the Site 65 stations. However, it is important to note that the ecologically similar off-site reference location to which the Site 65 samples were compared, was not another pond; rather, it was a small (75 to 100 feet diameter) ponded area along a creek. The reason that this sample was chosen as the off-site reference sample was because this was the most ecologically similar off-site reference sample that was collected. The benthic macroinvertebrate samples were collected along the bank of the off-site reference station, as opposed to the middle of the ponds at Site 65. Also, the dissolved oxygen was higher in the ponded area (7.1 ppm) as opposed to the Site 65 ponds (2.0 and 3.0 ppm). Therefore, the differences in species

diversity and richness between these stations may be due to these differences in the abiotic and biotic habitat.

The second measurement endpoint is determining if the Site 65 benthic macroinvertebrates are dominated by contaminant-tolerant species as opposed to contaminant-sensitive species. The 7.1 MBI in Powerline Pond is indicative of a water body with fair water quality. In addition, over 75 percent of the species that have biotic index values are indicative of fair water quality. Of these 75 percent, half of the individuals are indicative of good to fair water quality, and 12.5 percent are indicative of excellent water quality. Therefore, it appears that Powerline Pone is dominated more by contaminant-sensitive species, as opposed to contaminant-tolerant species. The benthic macroinvertebrate specie collected in Courthouse Bay Pond does not have a biotic index.

The third measurement endpoint is determining if the contaminant levels in the Site 65 biota tissue samples are elevated when compared to tissue samples collected at off-site background stations or reference levels in the literature. With the exception of 4,4'-DDD, the VOCs, and a few of the inorganics (barium, selenium, and thallium), the remaining COPCs were detected in the fish tissue within the range of, or just slightly above the concentration in their respective comparison samples. 4,4'-DDD was detected in one fish sample, at a relatively low concentration (5.7 µg/kg). The VOCs that were detected in the fish tissue are most likely associated with the laboratory preparation procedures, since the VOCs either were not detected, or detected at low concentrations in the surface water and sediment. In addition, based on the relatively low BCFs, these VOCs are not expected to significantly bioconcentrate in fish tissue. Finally, barium, selenium, and thallium all were detected in low concentrations, and are not expected to be related to site activities.

The fourth measurement endpoint is determining if the contaminant levels in the Site 65 fish tissue samples exceed toxicity values in the literature. Arsenic was the only contaminant detected in the fish tissue samples for which toxicity data was located in the literature. Arsenic was detected at a concentration in the fish tissue below the reported toxicity concentration.

The last measurement endpoint is determining if the contaminant concentrations in the surface water and sediment exceed the contaminant-specific surface water and sediment effect concentrations (i.e., SWSVs, and SSVs). Several contaminants were detected in the surface water and sediment at concentrations exceeding the SWSVs and SSVs. The majority of the exceedences in the surface water and sediment occurred in Courthouse Bay Pond. Therefore, some of these contaminants have the potential to cause a reduction in the aquatic life population. However, as presented earlier in this ERA, none of these contaminants are thought to be site-related.

Based on these endpoints, the change in the structure of the benthic macroinvertebrate communities and/or the potential reduction of an aquatic receptor population or subpopulation may be attributable to contaminants detected in the surface water and/or sediment. Also, as presented earlier in this ERA, none of these contaminants are thought to be site-related. The low number of species and benthic macroinvertebrates in Courthouse Bay Pond most likely is due to the low dissolved oxygen concentration (2.0 ppm) and suspended solids in the pond. Since one benthic macroinvertabrate species collected in Powerline Pond is indicative of excellent water quality, and another is indicative of good to fair water quality, the benthic macroinvertebrate population in this pond does not appear to be adversely impacted. The decreased fish population in Courthouse Bay Pond also is most likely due to the high suspended solids concentration in this pond.

Overall, there is a moderate potential risk to aquatic life in Courthouse Bay Pond, with most of the risk associated with the non-site-related suspended solids in the surface water. There is only a slight risk to aquatic life in Powerline Pond; however, these risks are due to non-site-related contaminants (4,4'-DDD and 4,4'-DDE). Based on the ERA, no further investigations are deemed necessary. However, it is recommended that controls be established to prevent runoff from the heavy equipment training area to Courthouse Bay Pond.

7.12.2 Terrestrial Ecosystem

As presented earlier in the ERA, the assessment endpoints for the terrestrial receptors is the potential reduction of a receptor population or subpopulation that is attributable to contaminants from the site. This section evaluates this assessment endpoint using the measurement endpoints.

The first measurement endpoint is determining if there are exceedences of contaminant-specific soil effect concentrations (i.e., SSSVs). Several contaminants were detected at concentrations in the surface soil that exceed the SSSVs.

The second measurement endpoint is determining if the terrestrial CDI exceeds the TRVs. The CDI exceeded the TRV for the bobwhite quail, cottontail rabbit, raccoon, and whitetail deer. However, as presented in the Rick Characterization section of this ERA, none of the contaminants significantly adding to the risk are expected to be site-related.

Finally, the last measurement endpoint is determining if the tissue sample concentrations exceed proposed criteria for piscivorous wildlife. Mercury was the only contaminant detected in the fish tissue at a concentration that was just slightly above limits for ingestion by birds; however, it was below the limit for the protection of small mammals. Mercury was not detected in and of the surface water, sediment, surface soil, or groundwater. The source of the mercury in the fish may have bioconcentrated from non-detected concentrations in the surface water or sediment. As presented earlier in this ERA, no contaminants in the surface water or sediment are thought to be related to Site 65. Therefore, any potential impacts to the bird population are not expected to be site-related.

Overall, some potential impacts to soil invertebrates and plants may occur as a result of site-related contaminants. It should be noted that there is much uncertainty in the SSSVs. A potential decrease in the terrestrial vertebrate population from site-related contaminants is not expected based on the terrestrial intake model.

7.13 References

Arthur and Alldredge. 1979. <u>Public Health Evaluation and Ecological Assessment</u>. Martin Marrietta Astronautics Group, Waterton Facility, Vol. II of III, Appendix A and B. Cited in Scarano, 1993.

Agency for Toxic Substances and Disease Registry (ASTDR). 1993. <u>Toxicological Profile for Endosulfan</u>. Prepared by Clement Associates for the US Department of Health and Human Services.

Baes, C.F., Sharp, A.L., and R.W. Shor. September 1984. "Review and Analysis of Parameters for Assessing Transport of Environmentally Released Radionuclides through Agriculture." Oak Ridge National Laboratory.

Baker, 1994a. Supplemental Aquatic Survey for Wallace Creek and Bearhead Creek Operable Unit No. 2 (Sites 6,9, and 82). Prepared by Baker Environmental Inc., for the Department of the Navy, Atlantic Division, Naval Facilities Engineering Command. September, 1994.

Benkert, Kathryn, A. 1992. Contaminant Assessment of Biota and Sediments in the Albemarle-Pamlico Region. U.S. Fish and Wildlife Service, Fish and Wildlife Enhancement, Raleigh Field Office, Raleigh, North Carolina. January 1992.

Beyer, N., E. Connor, and S. Gerould. 1993. "Estimates of Soil Ingestion by Wildlife". Patuxent Wildlife Research Center, Laurel, Maryland.

Boschung, Herbert T., James D. Williams, Danial W. Gotshall, Melba C. Caldwell, and David K. Caldwell. 1983. The Audubon Society Field Guide to North American Fishes, Whales, and Dolphins. Alfred A. Knopf, Inf. New York.

Brower, James E, and Jerrold H. Zar. 1977. Field and Laboratory Methods for General Ecology. Wm. C. Brown Company Publishers.

Chavin, Walter. 1973. Responses of Fish to Environmental Changes. Charles C Thomas, Publisher, Bannerstone House, Springfield, Illinois.

Dee, J.C. November, 1991. "Methodology For Assessing Potential Risks To Deer Populations: A Case Study at a Superfund Site". Paper presented at the 1991 Annual Meeting of the Society of Environmental Toxicology and Chemistry. Abstract No. 426.

Eisler, Ronald. 1993. Zinc Hazards to Fish, Wildlife, and Invertebrates: A Synoptic Review. U.S. Fish and Wildlife Service, Patuxent Wildlife Research Center, Laurel, Maryland. Biological Report 10. April, 1993.

Eisler, Ronald. 1988. <u>Arsenic Hazards to Fish, Wildlife, and Invertebrates: A Synoptic Review</u>. U.S. Fish and Wildlife Service, Patuxent Wildlife Research Center, Laurel, Maryland. Biological Report 85 (1.12). January, 1988.

Eisler, Ronald. 1987. Mercury Hazards to Fish, Wildlife, and Invertebrates: A Synoptic Review. U.S. Fish and Wildlife Service, Patuxent Wildlife Research Center, Laurel, Maryland. Biological Report 85(1.10). April 1987.

Fitchko, J. 1989. <u>Criteria for Contaminated Soil/Sediment Cleanup</u>. Pudvan Publishing Company, Northbrook, Illinois.

Hackney, C.T., S.M. Adams, and W.H. Martin. 1992. <u>Biodiversity of the Southeastern United States</u>. <u>Aquatic Communities</u>. Hohn Wiley & Sons, Inc. New York.

Hulzebos, E.M., Adema, D.M.M., Dirven-van Breemen, E.M., Henzen, L., Van Dis, W.A., Herbold, H.A., Hoekstra, J.A., Baerselman, R., and Van Gestel, C.A.M. 1993. "Phytotoxicity Studies with Lactuca sativa in Soil and Nutrient Solution." Environmental Toxicology and Chemistry. Vol. 12, No. 6:1079-1094.

Kennish, Michael J. Ph.D. 1986. <u>Ecology of Estuaries, Volume II Biological Aspects</u>. CRC Press, Boca Raton, Florida.

Lenat, David R. 1993. "A Biotic Index for the Southeast United States: Derivation and List of Tolerance Values, with Criteria for Assigning Water-Quality Ratings". Includes February 1994 Table Update. J. N. Am. Benthol. Sci., 1993, 12(3):279-290.

Long, E.W., D.D. Macdonald, S.L. Smith, and F.D. Calder. 1995. "Incidence of Adverse Biological Effects within Ranges of Chemical Concentrations in Marine and Estuarine Sediments." Environmental Management Vol. 19, No.1, pp. 81-97.

Long, E.R and Morgan, L.G. 1991. The Potential for Biological Effects of Sediment-Sorbed Contaminants Tested in the National Status and Trends Program. National Oceanic and Atmospheric Administration Technical Memorandum NOS OMA 52.

Menhinick, Edward F. 1992. <u>The Freshwater Fishes of North Carolina</u>. North Carolina Wildlife Resources Commission. Raleigh, North Carolina.

Menzie, C.A., Cura J. and J. Freshman. January 1993. <u>Evaluating Ecological Risks and Developing Remedial Objectives at Forested Wetland Systems in New England</u>. Paper contained in: <u>Application of Ecological Risk Assessment To Hazardous Waste Site Remediation</u>. Water Environmental Federation.

Montgomery, J.H. and L.M. Welkon. 1990. <u>Groundwater Chemicals Desk Reference</u>. Lewis Publishers, Inc. Chelsea, Michigan.

Nagy, Kennith. 1987. "Field Metabolic Rate and Food Requirement Scaling in Mammals and Birds. Ecological Monographs." 57(2). pp. 111-128.

NAS. 1992. Subcommittee on Mineral Toxicity in Animals. <u>Mineral Tolerance of Domestic Animals</u>. National Academy of Sciences. Washington, D.C. pp 5-7.

NC DEHNR. 1994. 15A NCAC 2b.0200 - Classifications and Water Quality Standards Applicable to Surface Waters of North Carolina. State of North Carolina Department of Health and Natural Resources. June 1, 1994.

NC DEHNR. 1993. <u>Classifications and Water Quality Standards Assigned to the Waters of the White Oak River Basin</u>. State of North Carolina Department of Health and Natural Resources. February 1, 1993.

Newell, Arthur J., David W. Johnson, and Laurie K. Allen. 1987. <u>Niagara River Biota Contamination Project: Fish Flesh Criteria for Piscivorous Wildlife</u>. Division of Fish and Wildlife, Bureau of Environmental Protection. Technical Report 87-3. July 1987.

Opresko, D.M., B.E. Sample, and G.W. Suter II. 1994. <u>Toxicological Benchmarks for Wildlife, 1994 Revisions</u>. Prepared for the US Department of Energy, Office of Environmental Restoration and Waste Management. September, 1994. ES/ER/TM-86/R1.

Raasch, Maynard S. and Vaughn L. Altemus, Sr. 1991. <u>Delaware's Freshwater and Brackish Water Fishes: A Popular Account</u>. Delaware State College Center for the Study of Del-Mar-Va Habitats and Society of Natural History of Delaware, Dover, Delaware.

Rhode, Fred C., Rudolf G. Arndt, David G. Lindquist, and James F. Parnell. 1994. <u>Freshwater Fishes of the Carolinas, Virginia, Maryland, and Delaware</u>. Univ. of North Carolina Press.

Richardson, G.M. 1987. <u>Inventory of Cleanup Criteria and Methods to Select Criteria</u>. Unpublished Report. Committee on Industrial Site Decommissioning, Industrial Programs Branch, Environment Canada, Ottawa Ontario KTA IG2. (Cited in Beyer, 1990 <u>Evaluating Soil Contamination</u>. USFWS Biological Report 90(2). July 1990.)

Scarano, Louis, J. Ph.D. and Daniel M. Woltering, Ph.D. January 1993. "Terrestrial and Aquatic Eco-Assessment for A RCRA Hazardous Waste Site". Paper contained in: <u>Application of Ecological Risk Assessment To Hazardous Waste Site Remediation</u>. Cited in WEF, 1993.

SCDM. 1991. <u>Superfund Chemical Data Matrix</u>. United States Environmental Protection Agency Hazardous Site Evaluation Division. December 1991.

Sullivan, J., J. Ball, E. Brick, S. Hausmann, G., G. Pilarski, and D. Sopcich. 1985 Report of the Technical Subcommittee on Determination of Dredge Material Suitability for In-Water Disposal. Wisconsin Department of Natural Resources, Madison, Wisconsin. November, 1985.

Suter, Glenn W. II. 1993 Ecological Risk Assessment. Lewis Publishers. Chelsea, Michigan.

Suter, G.W. II. and J.B. Mabrey. 1994. <u>Toxicological Benchmarks for Screening Potential Contaminants of Concern for Effects on Aquatic Biota: 1994 Revision</u>. Environmental Sciences Division, Oak Ridge National Laboratory.

Tenore, Kennith R. 1971. "Macrobenthos of the Pamlico River Estuary, North Carolina". Department of Zoology, North Carolina State University, Raleigh North Carolina.

Tetra Tech, Inc. 1986. <u>Development of Sediment Quality Values for Puget Sound, Volume I. Puget Sound Dredged Disposal Analysis Report</u>. Cited in Fitchko, 1989.

Travis, Curtis C. and Angela Arms. 1988. <u>Bioconcentration of Organics in Beef, Milk, and Vegetation</u>. Environmental Science Technology. Vol. 22, No. 3.

USDI, US Department of the Interior. July, 1982. <u>Habitat Suitability Index Models: Largemouth Bass.</u> Fish and Wildlife Service, Office of Biological Services. FWS/OBS-82/10.16.

USEPA, US Environmental Protection Agency. January 26, 1995a. "Toxic Substance Spreadsheet". Region IV, Atlanta, Georgia.

USEPA, US Environmental Protection Agency. January 19, 1995b. "Region III BTAG Screening Levels". Region III, Philadelphia, Pennsylvania.

USEPA, US Environmental Protection Agency. November 1995c. Supplemental Guidance to RAGS: Region 4 Bulletins Ecological Risk Assessment. Region IV. Atlanta, Georgia.

USEPA, US Environmental Protection Agency. September 26, 1994. <u>Ecological Risk Assessment Guidance for Superfund: Process for Designing and Conducting Ecological Risk Assessments</u>. Environmental Response Team, Edison, New Jersey.

USEPA, US Environmental Protection Agency. March 1993a. <u>Fish Field and Laboratory Methods for Evaluating the Biological Integrity of Surface Waters</u>. Office of Research and Development. EPA/600/R-92/111.

USEPA, US Environmental Protection Agency. September 1993b. <u>Technical Basis for Deriving Sediment Quality Criteria for Nonionic Organic Contaminants for the Protection of Benthic Organisms by using Equilibrium Partitioning</u>. Office of Water. EPA-822-R-93-011.

USEPA, US Environmental Protection Agency. 1993c. "Water Quality Guidance for the Great Lakes System and Correction: Proposed Rules". Federal Register. 58(72) 20802-21047. Cited in Suter and Mabrey, 1994.

USEPA, US Environmental Protection Agency. September 1993d. <u>Guidance for Assessing Chemical Contaminant Data for Use in Fish Advisories, Volume I, Fish Sampling and Analysis</u>. Office of Water. EPA-823-R-93-002.

USEPA, US Environmental Protection Agency. September 1993e. <u>Sediment Quality Criteria for the Protection of Benthic Organisms- Fluoranthene</u>. Office of Science and Technology. Health and Ecological Criteria Section. Washington, D.C. EPA-822-R-93-012.

USEPA, US Environmental Protection Agency. September 1993f. <u>Sediment Quality Criteria for the Protection of Benthic Organisms- Phenanthrene</u>. Office of Science and Technology. Health and Ecological Criteria Section. Washington, D.C. EPA-822-R-93-014.

USEPA, US Environmental Protection Agency. December 1993g. <u>Wildlife Exposure Factors Handbook</u>. Office of Research and Development. Washington, D.C. EPA/600/R-93/187a.

USEPA, US Environmental Protection Agency. October 1993h. <u>Technical Guidance on Interpretation and Implementation of Aquatic Life Metals Criteria</u>. Office of Water Policy. Washington, D.C.

USEPA. US Environmental Protection Agency. February 1992a. <u>Framework for Ecological Risk Assessment</u>. Risk Assessment Forum. EPA/630/R-92/001.

USEPA, US Environmental Protection Agency. October 1992b. <u>Interim Guidance on Interpretation and Implementation of Aquatic Life Criteria for Metals</u>. Office of Science and Technology, Health and Ecological Criteria Division. Washington, D.C.

USEPA, US Environmental Protection Agency. June 1991a. National Functional Guidelines for Organic Data Review. Draft. USEPA Contract Laboratory Program.

USEPA, US Environmental Protection Agency. May 1, 1991b. "Water Quality Criteria Summary" (Wall Chart). Office of Science and Technology. Health and Ecological Criteria Section. Washington, D.C.

USEPA, US Environmental Protection Agency. November 1990. <u>Macroinvertebrate Field and Laboratory Methods for Evaluating The Biological Integrity of Surface Waters</u>. United States Environmental Protection Agency. Office of Research and Development. Washington, D.C. EPA/600/4-90/030.

USEPA. US Environmental Protection Agency. December 1989a. <u>Risk Assessment Guidance for Superfund, Volume I, Human Health Evaluation Manual (Part A)</u>. Interim Final EPA/540/1-89/002.

USEPA. US Environmental Protection Agency. March 1989b. <u>Risk Assessment Guidance for Superfund Volume II. Environmental Evaluation Manual Interim Final</u>. Office of Solid Waste and Emergency Response. Washington, D.C. EPA/540/1-89-001.

USEPA. US Environmental Protection Agency. March 1989c. <u>Ecological Assessment of Hazardous Waste Sites: A Field and Laboratory Reference</u>. Environmental Research Laboratory, Corvallis, OR. EPA/600/3-89/013.

USEPA. US Environmental Protection Agency. May 1989d. <u>Rapid Bioassessment Protocols for Use in Streams and Rivers</u>. Office of Water. Washington, D.C. EPA/440/4-89/001.

USEPA. US Environmental Protection Agency. May 1987. Quality Criteria for Water-1986. Office of Water Regulations.

USEPA. US Environmental Protection Agency. October 1986. <u>Chemical, Physical, and Biological Properties of Compounds Present at Hazardous Waste Sites</u>. Office of Solid Waste and Remedial Response. Washington D.C. EPA/540/1-86/060.

USEPA. US Environmental Protection Agency. April 1977. <u>Suspended and Dissolved Solids Effects on Freshwater Biota</u>. A Review. Environmental Research Laboratory, Office of Research and Development. Corvallis, Oregon. EPA-600/3-77-042.

Water Environment Federation (WEF). 1989. <u>Application of Ecological Risk Assessment to Hazardous Waste Site Remediation</u>. Based on a January 10, 1993 Workshop., 601 Wythe Street, Alexandria, VA 22314-1994.

Wetzel, R.G., Likens, G.E. 1991. Limnological Analysis. Springer-Verlag, New York.

Will, M.E. and Suter, G.W. II. 1994a. <u>Toxicological Benchmarks for Screening Potential Contaminants of Concern for Effects on Soil and Litter Invertebrates and Heterotrophic Process</u>. Environmental Sciences Division, Oak Ridge National Laboratory.

Will, M.E. and Suter, G.W. II. 1994b. <u>Toxicological Benchmarks for Screening Potential Contaminants of Concern for Effects on Terrestrial Plants</u>. Environmental Sciences Division, Oak Ridge National Laboratory.

SECTION 7.0 TABLES

TABLE 7-1

FREQUENCY AND RANGE OF CONTAMINANT DETECTIONS COMPARED TO SURFACE WATER SCREENING VALUES SITE 65 - ENGINEER AREA DUMP REMEDIAL INVESTIGATION, CTO-0312 MCB, CAMP LEJEUNE, NORTH CAROLINA

		Surface Water creening Valu (SWSV)			L	aminant ncy/Range		
North Carolina Water		USEPA Region IV Water Quality Screening Values (WQSV)(2)		Average	No. of		No. of	No. of Positive Detects
Contaminant	Quality Standards (WQS) ⁽¹⁾	Acute	Chronic	Reference Station Concentration	Positive Detects/No. of Samples	Range of Positive Detections	Positive Detects Above Lowest SWSV	Above the Average Reference Station Concentration
Volatiles (µg/L)								
1,2-Dichloroethane (total)	NE	218,000(4)	1,100	ND	2/2	1J	0	2
Acetone	500	9,000,000(4)	11,200 ⁽⁵⁾	ND	1/2	5J	0	1
Inorganics (μg/L)	,							
Aluminum	NE	750	87	333	1/2	25,800	1	1
Barium	NE	69.1 ⁽⁵⁾	3.8(5)	25.7	2/2	36.7-69.3	2	2
Calcium	NE	NE	NE	17,567	2/2	12,000-26,800	NA	11
Chromium Chromium	50	794 ⁽³⁾	95 ⁽³⁾	ND	1/2	27.6	0	11
Copper	7	7.2 (3)	5.22 (3)	ND	1/2	41.1	1	1
Iron	1,000	NE	1,000	576	2/2	348-7,890	1	1
Lead	25	24.18	0.94	ND	1/2	45.8	1	1
Magnesium	NE	NE	NE	1,745	2/2	2,060-2,520	NA	2

TABLE 7-1 (Continued)

FREQUENCY AND RANGE OF CONTAMINANT DETECTIONS COMPARED TO SURFACE WATER SCREENING VALUES SITE 65 - ENGINEER AREA DUMP REMEDIAL INVESTIGATION, CTO-0312 MCB, CAMP LEJEUNE, NORTH CAROLINA

		Surface Water creening Valu (SWSV)			Contaminant Frequency/Range			
Contaminant	North Carolina Water Quality Standards (WQS) ⁽¹⁾	Water (WQSV) ⁽²⁾ uality undards		Average Reference Station Concentration	No. of Positive Detects/No. of Samples	Range of Positive Detections	No. of Positive Detects Above Lowest SWSV	No. of Positive Detects Above the Average Reference Station Concentration
Inorganics (µg/L) (continued)								
Manganese	NE	1,470(5)	80.3(5)	ND	2/2	57.3-88.4	1	2
Potassium	NE	NE	NE	ND	1/2	2,970	NA	1
Sodium	NE	NE	NE	9,830	2/2	3,330-6,320	NA	2
Vanadium	NE	284(5)	19.1%	ND	1/2	26.2	1	1
Zinc	50	52	47	ND	2/2	33.6-144	1	2

Notes:

NE = Not Established

NA = Not Applicable

⁽¹⁾ NC DEHNR, 1994 (Water Quality Standards).

⁽²⁾ USEPA, 1995a (Region IV Toxic Substance Spreadsheet).

⁽³⁾ Criteria are hardness dependent; values are based on a hardness of 38 mg/L as CaCO₃.

⁽⁴⁾ USEPA, 1995b (Region III BTAG Screening Levels).

⁽⁵⁾ Suter and Mabrey, 1994 (Toxicological Benchmarks for Screening Potential COCs for Effects on Aquatic Biota).

FREQUENCY AND RANGE OF CONTAMINANT DETECTIONS COMPARED TO SEDIMENT SCREENING VALUES SITE 65 - ENGINEER AREA DUMP REMEDIAL INVESTIGATION, CTO-0312 MCB, CAMP LEJEUNE, NORTH CAROLINA

		nent Scree			Contar Frequence	1	No. of	No. of Positive
Contaminant	ER-L	ER-M	SQC ⁽³⁾	Average Reference Station Concentration	No. of Positive Detects/No. of Samples	Range of Positive Detections	Positive Detects Above Lowest SSV	Detect Above the Average Reference Concentration
Volatiles (µg/kg)								
Acetone	NE	NE	614	ND	4/4	190J-450J	Ö	- 4
Chloroform	NE	NE	957	ND	1/4	79J	0 -	1
2-Butanone	NE	NE	2,331	ND	4/4	72 J -94J	0	4
Carbon Tetrachloride	NE	NE	627	ND	2/4	13J-18J	0	2
Tetrachloroethene	NE	140 ⁽⁵⁾	1,133	ND	2/4	6J-15J	0	2
Toluene	NE	NE	82	ND	3/4	3J-7J	0	3
Semivolatiles (μg/kg)								
Di-n-butylphthalate	NE	1,400 ⁽⁵⁾	12,699	ND	4/4	940J-1,600J	1	4
Pesticides (μg/kg)								
Beta-BHC	NE	NE	7.57	2.51	1/4_	8.3NJ	1	1
4,4'-DDD	2 ⁽²⁾	20(2)	19.17	1.57	2/4	76J-84J	2	2
4,4'-DDE	2.2(1)	27 ⁽¹⁾	109.56	2.42	2/4	18J-19NJ	2	2
Inorganics (mg/kg)								
Aluminum	NE	NE	NE	1,166	4/4	394- 37,000J	NA	3
Antimony	2(2)	25 [©]	NE	ND	1/4	46.6J	1	1
Barium	500 ⁽⁶⁾	NE	NE	6.46	4/4	13.6-110	0	4
Calcium	NE	NE	NE	1,967	4/4	322-4,640	NA	3
Chromium	52.3 ⁽²⁾	370 ⁽¹⁾	NE	1.86	2/4	9.8J-43.6J	0	2
Cobalt	NE	NE	NE	ND	1/4	36.3	NA	1
Copper	18.7 ⁽²⁾	270(1)	NE	0.75	3/4	8.2-100J	2	3
Iron	27,000	NE	NE	434	4/4	414- 14,600J	0	3
Lead	30.2(2)	218(1)	NE	0.79	3/4	23.9-176J	2	3
Magnesium	NE	NE	NE	45.25	3/4	94.8-1,140	NA	3
Manganese	230(5)	NE	NE	3.63	4/4	25.6-126J	0	4

TABLE 7-2 (Continued)

FREQUENCY AND RANGE OF CONTAMINANT DETECTIONS COMPARED TO SEDIMENT SCREENING VALUES SITE 65 - ENGINEER AREA DUMP REMEDIAL INVESTIGATION, CTO-0312 MCB, CAMP LEJEUNE, NORTH CAROLINA

	Sediment Screening Values (SSV)			Contaminant Frequency/Range		No. of	No. of Positive	
Contaminant	ER-L	ER-M	SQC ⁽³⁾	Average Reference Station Concentration	No. of Positive Detects/No. of Samples	Range of Positive Detections	Positive Detects Above Lowest SSV	Detect Above the Average Reference Concentration
Inorganics (mg/kg) (continued)							· · · · · · · · · · · · · · · · · · ·	
Potassium	NE	NE	NE	ND	1/4	1,410	NA	1
Sodium	NE	NE	NE	ND	3/4	139-203	NA	3
Vanadium	NE	NE	NE	1.52	1/4	40.5	NA	1
Zinc	124 ⁽²⁾	410(1)	NE	5.11	4/4	7.9-280J	1	4

Notes:

NE = Not Established

ER-L = Effects Range Low

SQC - Sediment Quality Criteria

NA = Not Applicable

ER-M = Effects Range Median

(2) USEPA, 1995c (Supplemental Guidance to RAGs., Region IV Bulletins, Ecological Risk Assessment)

(3) Values were calculated using the following equation: SQC = Foc*Koc*FCV/1000000

Where:

Foc = Fraction of organic carbon in the sediments (used 24,900 mg/kg)

Koc = Organic carbon partition coefficient (chemical specific)

FCV = Final water chronic value (chemical specific)

⁽¹⁾ Long et.al., 1995.

⁽⁴⁾ USEPA, 1995b (Region III BTAG Screening Levels).

⁽⁵⁾ Tetra Tech Inc., 1986 (Apparent Effects Threshold Sediment Quality Values).

⁽⁶⁾ Sulliven et.al., 1985.

CONTAMINANTS OF POTENTIAL CONCERN IN EACH MEDIA SITE 65 - ENGINEER AREA DUMP REMEDIAL INVESTIGATION, CTO-0312 MCB, CAMP LEJEUNE, NORTH CAROLINA

	Surfac	e Water			F	ish
Contaminant	Aquatic Receptors	Terrestrial Receptors	Sediment	Surface Soil	Fillet	Whole Body
Volatiles						
Acetone					X	x
2-Butanone				7		Х
Ethylbenzene				Х		
Methylene chloride						X
Toluene						X
Trichloroethane				X		
Xylenes (Total)				X		
Semivolatiles						
Acenaphthene				X		
Anthracene				Х		
Benzo(a)anthracene				Х		
Benzo(a)pyrene				Х		
Benzo(b)fluoranthene				Х		
Benzo(g,h,i)perylene				X		
Benzo(k)fluoranthene				X		
Bis(2-ethylhexyl)phthalate				Х		
Carbazole				X		
Chrysene				X		
Dibenz(a,h)anthracene				X		
Dibenzofuran				X		
Di-n-butylphthalate			X	X		
2,4-Dinitrophenol				X		
Fluoranthene				X		
Fluorene				X		
Indeno(1,2,3-cd)pryene				X		
Phenanthrene				х		
Pyrene				X		<u> </u>

TABLE 7-3 (Continued)

CONTAMINANTS OF POTENTIAL CONCERN IN EACH MEDIA SITE 65 - ENGINEER AREA DUMP REMEDIAL INVESTIGATION, CTO-0312 MCB, CAMP LEJEUNE, NORTH CAROLINA

	Surfac	e Water	·		F	ish
Contaminant	Aquatic Receptors	Terrestrial Receptors	Sediment	Surface Soil	Fillet	Whole Body
Pesticides/PCBs						
Beta-BHC			X			
4,4'-DDE			X	Х		Х
4,4'-DDD			Х	Х	Х	Х
4,4'-DDT				X		
Endosulfan II				X		
Heptachlor epoxide				X		
Aroclor-1260				Х		
Inorganics						
Aluminum	X	X	X		X	X
Antimony			X			X
Arsenic						X
Barium	X	X		X	X	X
Beryllium						X
Chromium		X		X		
Cobalt			X			
Copper	X	X	X		X	X
Iron	х	X		Х		X
Lead	X	X	X	Х		X
Manganese	X	X		X	X	X
Mercury		-			X	Х
Nickel				X		
Selenium					X	X
Thallium				X ·	X	X
Vanadium	X	X	Х	Х		
Zinc	X	X	Х	Х	Х	X

TABLE 7-4

REGION IV, PHYSICAL/CHEMICAL CHARACTERISTICS OF THE COCS SITE 65 - ENGINEER AREA DUMP REMEDIAL INVESTIGATION, CTO-0312 MCB, CAMP LEJEUNE, NORTH CAROLINA

		Organic Carbon Partition	Log Octanol/	Bio	otransfer Facto	ors
Contaminant of Potential Concern	BCF	Coefficient (mL/g)	Water Coefficient	Bv ⁽¹⁾⁽²⁾	Br ⁽¹⁾⁽²⁾	Bb ⁽¹⁾⁽²⁾
Volatiles						
Acetone	0.69(4)	2.2 ⁽⁵⁾	-0.24 ⁽⁶⁾	5.30e+01	5.30e+01	1.45e-08
2-Butanone	ND	4.5(5)	0.28(6)	3.73e+01	3.73e+01	2.68e-08
Ethylbenzene	37.5 ⁽³⁾	1,100 ⁽⁵⁾	3.1 ⁽⁶⁾	6.25e-01	6.25e-01	3.16e-05
Methylene chloride	$0.9^{(3)}$	ND	1.3 ⁽⁶⁾	6.86e+00	6.86e+00	5.01e-07
Toluene	10.70(3)	300 ⁽⁵⁾	2.8 ⁽⁶⁾	9.32e-01	9.32e-01	1.58e-05
Trichloroethene	10.6(4)	126 ⁽⁵⁾	2.7 ⁽⁶⁾	1.07e+00	1.07e+00	1.26e-05
Xylenes	2.20(4)	240 ⁽⁵⁾	3.2(6)	5.48e-01	5.48é-01	3.98e-05
Semivolatiles						
Acenaphthylene	30 ⁽³⁾	2,500 ⁽⁵⁾	3.6 ⁽⁶⁾	3.22e-01	3.22e-01	1.00e-04
Anthracene	30 ⁽³⁾	14,000 ⁽⁵⁾	4.6 ⁽⁶⁾	8.50e-02	8.50e-02	1.00e-03
Benzo(a)anthracene	30 ⁽³⁾	1,380,000 ⁽⁵⁾	5.7 ⁽⁶⁾	2.00e-02	2.00e-02	1.26e-02
Benzo(a)pyrene	30 ⁽³⁾	5,500,000 ⁽⁵⁾	6.1 ⁽⁶⁾	1.15e-02	1.15e-02	3.16e-02
Benzo(b)fluoranthene	30 ⁽³⁾	550,000 ⁽⁵⁾	6.2(6)	1.01e-02	1.01e-02	3.98e-02
Benzo(k)fluoranthene	30 ⁽³⁾	550000	6.2 ⁽⁶⁾	1.01e-02	1.01e-02	3.98e-02
Benzo(g,h,i)perylene	30 ⁽³⁾	1,600,000(5)	6.7 ⁽⁶⁾	5.19e-03	5.19e-03	1.26e-01
Bis(2-ethylhexyl)phthalate	130 ⁽³⁾	100,000 ⁽⁷⁾	7.3 ⁽⁶⁾	2.34e-03	2.34e-03	5.01e-01
Butylbenzylphthalate	414 ⁽³⁾	ND	4.8 ⁽⁶⁾	6.51e-02	6.51e-02	1.58e-03
Carbazole	ND	ND	3.6 ⁽⁶⁾	5.50e-01	5.50e-01	1.00e-04
Chrysene	30 ⁽³⁾	200,000(5)	5.7 ⁽⁶⁾	2.00e-02	2.00e-02	1.26e-02
Dibenz(a,h)anthracene	30 ⁽³⁾	3,300,000 ⁽⁵⁾	6.7 ⁽⁶⁾	5.14e-03	5.14e-03	1.26e-01
Dibenzofuran	ND	ND	4.2 ⁽⁸⁾	5.50e-01	5.50e-01	3.98e-04
2,4-Dinitrophenol	1.5(3)	16.6 ⁽⁵⁾	1.6 ⁽⁶⁾	4.60e+00	4.60e+00	1.00e-06
Di-n-butylphthalate	89 ⁽³⁾	170,000(5)	4.6 ⁽⁶⁾	8.50e-02	8.50e-02	1.00e-03
Fluoranthene	1,150 ⁽³⁾	100,000(9)	5.1 ⁽⁹⁾	4.40e-02	4.40e-02	3.90e-03
Fluorene	30 ⁽³⁾	7,300 ⁽⁵⁾	4.2 ⁽⁶⁾	1.45e-01	1.45e-01	3.98e-04
Indeno(1,2,3-cd)pyrene	30 ⁽³⁾	1,600,000(5)	6.7 ⁽⁶⁾	5.19e-03	5.19e-03	1.26e-01
Phenanthrene	30 ⁽³⁾	28,840(10)	4.6(10)	8.50e-25	8.50e-02	1.00e-03

TABLE 7-4 (Continued)

REGION IV, PHYSICAL/CHEMICAL CHARACTERISTICS OF THE COCS SITE 65 - ENGINEER AREA DUMP REMEDIAL INVESTIGATION, CTO-0312 MCB, CAMP LEJEUNE, NORTH CAROLINA

Contaminant of Potential Concern	BCF	Organic Carbon Partition Coefficient (mL/g)	Log Octanol/ Water Coefficient	Bv ⁽¹⁾⁽²⁾	otransfer Fact Br ⁽¹⁾⁽²⁾	ors
Semivolatiles (continued)						
Pyrene	30 ⁽³⁾	38,000 ⁽⁵⁾	5.1 ⁽⁶⁾	4.37e-02	4.37e-02	2 16- 02
Pesticides/PCBs	30**	38,000	3.1	4.376-02	4.3 /e-02	3.16e-03
1 csticides/1 Cbs						
Beta-BHC	130 ⁽³⁾	3,800 ⁽⁵⁾	3.8 ⁽⁶⁾	2.46e-01	2.46e-01	1.58e-04
4,4'-DDD	53,600 ⁽³⁾	770,000 ⁽⁵⁾	6.1 ⁽⁶⁾	1.15e-02	1.15e-02	3.16e-02
4,4'-DDE	53,600 ⁽³⁾	4,400,000 ⁽⁵⁾	6.8 ⁽⁶⁾	4.55e-02	4.55e-02	1.58e-01
4,4'-DDT	53,600 ⁽³⁾	243,000 ⁽⁵⁾	6.5 ⁽⁶⁾	6.78e-03	6.78e-03	7.94e-02
Endosulfan II	270 ⁽³⁾	3,162(11)	4.1 ⁽⁶⁾	1.65e-01	1.65e-01	3.16e-04
Endosulfan Sulfate	270 ⁽³⁾	3,162(11)	3.7 ⁽⁶⁾	2.81e-01	2.81e-01	1.26e-04
Heptachlor epoxide	11,200(3)	220 ⁽⁵⁾	5.0 ⁽⁶⁾	4.99e-02	4.99e-02	2.51e-03
Aroclor 1260	31,200(3)	530,000 ⁽⁵⁾	6.0 ⁽⁶⁾	1.32e-02	1.32e-02	2.51e-02
Inorganics						
Aluminum	231 ⁽⁴⁾	ND	ND	4.00e-03	6.50e-04	1.50e-03
Antimony	1 ⁽³⁾	ND	ND	2.00e-01	3.00e-02	1.00e-03
Arsenic	44 ⁽³⁾	ND	ND	4.00e-02	6.00e-03	2.00e-03
Barium	8(4)	ND	ND	1.50e-01	1.50e-02	1.50e-04
Beryllium	19 ⁽³⁾	ND	ND	1.00e-02	1.50e-03	1.00e-03
Chromium	16 ⁽³⁾	ND	ND	7.50e-03	4.50e-03	5.50e-03
Cobalt	40 ⁽⁴⁾	ND	ND	2.00e-02	7.00e-03	2.00e-02
Copper	36 ⁽³⁾	ND	ND	4.00e-01	2.50e-01	1.00e-02
Iron	ND	ND	ND	4.00e-03	1.00e-03	2.00e-02
Lead	49 ⁽³⁾	ND	ND	4.50e-02	9.00e-03	3.00e-04
Manganese	35 ⁽⁴⁾	ND	ND	2.50e-01	5.00e-02	4.00e-04
Mercury	5,500 ⁽³⁾	ND	ND	9.00e-01	2.00e-01	2.50e-01
Selenium	6(3)	ND	ND	2.50e-02	2.50e-02	1.50e-02
Silver	0.5(3)	ND	ND	4.00e-01	1.00e-01	3.00e-03
Thallium	119 ⁽³⁾	ND	ND	4.00e-03	4.00e-04	4.00e-02
Vanadium	ND	ND	ND	5.50e-03	3.00e-03	2.50e-03
Zinc	47 ⁽³⁾	ND	ND	1.50e+00	9.00e-01	1.00e-01

Notes:

TABLE 7-4 (Continued)

REGION IV, PHYSICAL/CHEMICAL CHARACTERISTICS OF THE COCS SITE 65 - ENGINEER AREA DUMP REMEDIAL INVESTIGATION, CTO-0312 MCB, CAMP LEJEUNE, NORTH CAROLINA

- (1) Baes et. al., 1984 for the inorganics.
- (2) The organics were calculated using Travis and Arms, 1988.
- (3) USEPA, 1995a (Region IV).
- (4) USEPA, 1995b (Region III).
- (5) USEPA, 1986.
- (6) SCDM, 1991.
- (7) Montgomery, 1990.
- (8) Used benzo(a)pyrene Kow.
- (9) USEPA, 1993e (Sediment Quality Criteria for Fluoranthene).
- (10) USEPA, 1993f (Sediment Quality Criteria for Phenanthrene).
- (11) ASTDR, 1993 (Toxicological Profile for Endosulfan).

BCF = Bioconcentration Factor

ND = No Data

Bv = Biotransfer factor for vegetation (stems, leaves)

Br = Biotransfer factor for vegetation (berries, fruits)

Bb = Biotransfer factor for beef

SAMPLING STATION CHARACTERIZATION SUMMARY SITE 65 - ENGINEER AREA DUMP REMEDIAL INVESTIGATION, CTO-0312 MCB, CAMP LEJEUNE, NORTH CAROLINA

Station	Pond Width (ft)	Pond Depth (ft)	Canopy Cover	Sediment Description	Sediment Odor
65-SW/SD/BN/FS04	NM	3	Open	Silt with some sand, organic material below 3"	Decaying organics
65-SW/SD/BN/FS05	MN	4	Open	Silt with some sand, much organic material	Anaerobic

Notes:

NM = Not measured due to irregular shape of the ponds

SW = Surface Water Sample

SD = Sediment Sample

BN = Benthic Macroinvertebrate Sample

FIELD CHEMISTRY DATA SITE 65 - ENGINEER AREA DUMP REMEDIAL INVESTIGATION, CTO-0312 MCB, CAMP LEJEUNE, NORTH CAROLINA

Station	Temperature (°C)	pH (S.U.)	Dissolved Oxygen (mg/L)	Conductivity (umhos/cm)	Salinity (ppt)
65-SW/SD04	17.3-30.4	6.7-7.2	2.0-10.6	12.0-21.5	0
65-SW/SD05	24.1-27.8	6.32-7.62	3.0-9.0	196-214	0

Notes:

°C = Degrees Centigrade mg/L = Miligrams per Liter S.U. = Standard Units umhos/cm = Micromhos per centimeter ppt = Parts Per Thousand

TABLE 7-7

TOTAL NUMBER OF FISH COLLECTED PER STATION SITE 65 - ENGINEER AREA DUMP REMEDIAL INVESTIGATION, CTO-0312 MCB, CAMP LEJEUNE, NORTH CAROLINA

	Number of Fish per Station					
Fish Species	65-FS04	65-FS05				
Largemouth Bass	0	9				
Redear Sunfish	8	31				
Bluegill	32	30				

FISH DISTRIBUTION AND CHARACTERIZATION SUMMARY SITE 65 - ENGINEER AREA DUMP **REMEDIAL INVESTIGATION, CTO-0312** MCB, CAMP LEJEUNE, NORTH CAROLINA

Common Name	Scientific Name	Length N.C. (cm)	Length Atlas (cm)	Water Type	Habitat	Spawning	Tolerance	Family	Sources
Bluegill	Lepomis macrochirus	25	18-20	Freshwater	Rivers, Streams Creeks, Ponds	May through June	Intermediate	Centrarchidae	1,2,3
Largemouth bass	Micropterus salmoides	48	12-70	Freshwater	Rivers, Streams Creeks, Ponds	May through October	Intermediate	Centrarchidae	1,2,3
Redear sunfish	Lepomis microlophus	NA	36	Freshwater	Rivers, Streams Creeks, Ponds	May through June	Intermediate	Centrarchidae	1,2,3

Notes:

- Menhinick, 1992.
- 2 = Boschung, 1983. 3 = USEPA, 1989d.

NUMBER AND PERCENTAGE OF BENTHIC MACROINVERTEBRATE SPECIES PER STATION SITE 65 - ENGENEER AREA DUMP REMEDIAL INVESTIGATION, CTO-0312 MCB, CAMP LEJEUNE, NORTH CAROLINA

TAXON	65-BN04	65-BN05
Arthropoda		
Insecta		
Ephemeroptera		
Caenidae		
Caenis punctata		2 (14.3)
Diptera		
Chaoboridae		
<u>Chaborus</u> sp.	6 (100)	
Chironomidae		
Ablabesmyia ramphe gr.		5 (35.7)
Cricotopus elagans		1 (7.1)
Psectrocladius elatus		1 (7.1)
<u>Tanypus</u> sp.		2 (14.3)
Tabanidae		
Chrysops sp.		3 (21.4)

Note:

The number in parentheses is the percentage of individuals of that species.

TOLERANCE VALUES OF BENTHIC MACROINVERTEBRATE SPECIES SITE 65 - ENGINEER AREA DUMP REMEDIAL INVESTIGATION, CTO-0312 MCB, CAMP LEJEUNE, NORTH CAROLINA

	USEPA To	plerance Values(1)	NCDEHNR
Species	Metals	Organic Waste	Biotic Index ⁽²⁾
Arthropoda			
Insecta			
Ephemeroptera			
Caenidae			
<u>Caenis punctata</u>	NA	NA	7.4
Diptera			
Chaoboridae			
<u>Chaborus</u> sp.	NA	NA	NA
Chironomidae			
Ablabesmyia ramphe gr.	NA	2	NA
Cricotopus elagans	NA	NA	NA
Psectrocladius elatus	NA	2	3.5
Tanypus sp.	NA	NA	9.2
Tabanidae			
Chrysops sp.	NA_	NA	6.7

Notes:

NA = Not Available

S = Sensitive to heavy metals

T = Tolerant to heavy metals

Organics Ranking = 0 to 5 with 0 being the least tolerant to organic wastes

^{(1) -} USEPA, 1990.

^{(2) -} Lenat, 1993.

SUMMARY STATISTICS OF BENTHIC MACROINVERTEBRATE SPECIES SITE 65 - ENGINEER AREA DUMP **REMEDIAL INVESTIGATION, CTO-0312** MCB, CAMP LEJEUNE, NORTH CAROLINA

Station	Number of Species	Number of Individuals	Species Density (#/m²)	Brillouin's Species Diversity	Shannon- Wiener Species Diversity	Macroinvertebrate Biotic Index
Site 65 Stations						
65-BN04	11	6	38	0	0	NC
65-BN05	6	14	89	0.53	0.71	7.1
Off-Site Background Station						
WC02	20	286	1,823	0.76	0.80	7.8

Notes:

 $\#/m^2$ = Total number of individuals per square meter. NC = Not calculated since the specie did not have a Biotic Index value.

RESULTS OF THE JACCARD COEFFICIENT (Sj) OF COMMUNITY SIMILARITY AND SΦRENSON INDEX (Ss) OF COMMUNITY SIMILARITY BETWEEN BENTHIC MACROINVERTERBRATE STATIONS SITE 65 - ENGINEER AREA DUMP REMEDIAL INVESTIGATION, CTO-0312 MCB, CAMP LEJEUNE, NORTH CAROLINA

		Sj		
	STATION	65-BN04	65-BN05	HC01
_	65-BN04	NA	0.00	0.00
Ss	65-BN05	0.00	NA	0.04
	HC01	0.00	0.08	NA

SUMMARY OF SAMPLES SENT TO LABORATORY FOR CHEMICAL ANALYSIS SITE 65 - ENGINEER AREA DUMP REMEDIAL INVESTIGATION, CTO-0312 MCB, CAMP LEJEUNE, NORTH CAROLINA

Sample Number	Species	Sample Analysis	Trophic Level
65-FS04-BG01W	Bluegill	Whole Body	Insectivore
65-FS04-BG01F	Bluegill	Fillet	Insectivore
65-FS04-RS01W	Redear Sunfish	Whole Body	Insectivore
65-FS05-LB01W	Largemouth Bass	Whole Body	Piscivore
65-FS05-LB01F	Largemouth Bass	Fillet	Piscivore
65-FS05-RS01W	Redear Sunfish	Whole Body	Insectivore
65-FS05-RS01F	Redear Sunfish	Fillet	Insectivore
65-FS05-BG01W	Bluegill	Whole Body	Insectivore
65-FS05-BG01F	Bluegill	Fillet	Insectivore

COMPARISON OF CONTAMINANT LEVELS IN SITE 65 TISSUE SAMPLES TO CONTAMINANT LEVELS IN TISSUE COLLECTED IN OTHER STUDIES SITE 65 - ENGINEER AREA DUMP REMEDIAL INVESTIGATION, CTO-0312 MCB, CAMP LEJEUNE, NORTH CAROLINA

Contaminant of Potential Concern	Site 65 Fish Whole Body Concentrations ⁽¹⁾	Pamlico Sound Study Fish Whole Body Concentrations ⁽²⁾	Site 65 Fish Fillet Concentration ⁽¹⁾	Off-Site Background Fish Fillet Concentrations
Pesticides (µg/kg)				
4,4'-DDD	6.9J-40J(BG)	20 - 160	5.7J(BG)	ND
4,4'-DDE	15J(BG)	30 - 850	ND	9.7 - 12
Volatiles (μg/kg)				
Acetone	27,000-1,400,000J(BG)	NA	5,600-7,900(LMB)	16Ј-130Ј
2-Butanone	560J(RS)	NA	ND	ND
Methylene chloride	1,000J (RS)	NA	ND	ND
Toluene	5,000J(LMB)	NA	ND	ND
Inorganics (µg/kg)				
Aluminum	9.6J-18J(BG)	NA	0.99(LMB)	36.5
Antimony	1.1-1.5(RS)	NA	ND	ND
Arsenic	0.15J(BG)	NA	ND	0.34L-3.7L
Barium	0.44J-2.9J(RS)	NA	0.21J(BG)	ND
Beryllium	0.028(BG)	NA	ND	ND
Copper	1.1-8.6(RS)	1.43 - 5.33	0.46-0.49(BG)	0.18J - 0.46J
Iron	7.8J-26.1J(LMB)	NA	ND	ND
Lead	0.17-0.49(RS)	0.04 - 1.15	ND	ND
Manganese	1J-4.9J(BG)	NA	0.092J-0.45J(BG)	0.08J - 0.38
Mercury	0.11J(LMB)	0.04 - 1.26	0.051J-0.3J(LMB)	0.05 - 0.24
Selenium	0.16-0.42(BG)	NA	0.14-0.22(BG)	ND
Thallium	0.11-0.12(BG)	NA	0.11(RS)	ND
Zinc	14.8J-31.5J(RS)	44.9 - 67.7	5.8J-8.4J(BG)	3.9 - 6.5

Notes:

LMB = Large Mouth Bass

BG = Bluegill

RS = Redear Sunfish
NA = Not Analyzed
ND = Not Detected

(1) Species in parenthesis is sample with the highest detection.

(2) Benkert, 1992.

COMPARISON OF WHOLE BODY FISH TISSUE CONCENTRATIONS TO PROPOSED PISCIVOROUS WILDLIFE CRITERIA SITE 65 - ENGINEER AREA DUMP REMEDIAL INVESTIGATION, CTO-0312 MCB, CAMP LEJEUNE, NORTH CAROLINA

Contaminant	Maximum Tissue Concentration (mg/kg)	Non-Carcinogenic Risk (mg/kg) ⁽¹⁾	Carcinogenic Risk (10 ⁻²) (mg/kg) ⁽¹⁾
4,4'-DDD	0.040J	0.2	0.266
4,4'-DDE	0.015J	0.2	0.266

Note:

⁽¹⁾ Newell <u>et.al</u>., 1987.

TABLE 7-16

FREQUENCY AND RANGE OF CONTAMINANT DETECTIONS COMPARED TO SOIL FLORA AND FAUNA SCREENING VALUES SITE 65 - ENGINEER AREA DUMP REMEDIAL INVESTIGATION, CTO-0312 MCB, CAMP LEJEUNE, NORTH CAROLINA

	·			ra and Fauna ing Values(1)		Contam Frequency		No. of Positive	No. of
Contaminant	Dutch Background Soil Values ⁽⁴⁾	Plant	Earthworm	Invertebrate	Microorganisms and Microbial Processes	No. of Positive Detects/No. of Samples	Range of Positive Detections	Detects Above Dutch Background Value	Positive Detects Above Lowest Screening Value
Volatiles (μg/kg)									
Ethylbenzene	50	NE	100 ⁽²⁾	100 ⁽²⁾	NE	1/13	1J	0	0
Trichloroethene	NE	NE	<300 (2)	<300 (2)	NE	1/13	1J	NA	0
Xylene	50	>1000(3)	NE	NE	NE	2/13	3J-5J	0	0
Semivolatiles (µg/kg)						,			
Acenaphthene	NE	NE	100(2)	100(2)	NE	1/13	130J	NA	1
Anthracene	100	NE	100(2)	100(2)	NE	1/13	190J	11	1
Benzo(a)anthracene	NE	NE	100(2)	100(2)	NE	3/13	76J - 510	NA	2
Benzo(b)fluoranthene	NE	NE	100(2)	100 ⁽²⁾	NE	3/13	89J-360J	NA	1
Benzo(k)fluoranthene	NE	NE	100(2)	100(2)	NE	2/13	120J-510	NA	2
Benzo(g,h,i)perylene	NE	NE	100(2)	100(2)	NE	2/13	70J-250J	NA	1
Benzo(a)pyrene	100	NE	20,000(2)	25,000	NE	2/13	100J - 400	1	00
Bis(2-ethylhexyl)phthalate	NE	NE	NE	NE	NE	9/13	48J-87J	NA	NA
Carbazole	NE	NE	NE	NE	NE	1/13	180J	NA	NA NA
Chrysene	NE	NE	100(2)	100(2)	NE	3/13	70J-470	NA	2
Dibenzo(a,h)anthracene	NE	NE	100(2)	100(2)	NE	2/13	45J-150J	NA	1
Dibenzofuran	NE	NE	NE	NE	NE	1/13	58J	NA	NA

TABLE 7-16 (Continued)

FREQUENCY AND RANGE OF CONTAMINANT DETECTIONS COMPARED TO SOIL FLORA AND FAUNA SCREENING VALUES SITE 65 - ENGINEER AREA DUMP REMEDIAL INVESTIGATION, CTO-0312 MCB, CAMP LEJEUNE, NORTH CAROLINA

					Flora and Fauna reening Values ⁽¹⁾		Contaminant Frequency/Range		No. of
Contaminant	Dutch Background Soil Values ⁽⁴⁾	Plant	Earthworm	Invertebrate	Microorganisms and Microbial Processes	No. of Positive Detects/No. of Samples	Range of Positive Detections	No. of Positive Detects Above Dutch Background Value	Positive Detects Above Lowest Screening Value
Semivolatiles (µg/kg) (continued)									
Di-n-butylphthalate	NE	200,000	NE	NE	NE	2/13	260J-390J	NA	0
2,4-Dinitrophenol	NE	200,000	NE	NE	NE	1/13	150J	NA	0
Fluoranthene	100	NE	100(2)	100(2)	NE	3/13	130J-830	3	3
Fluorene	NE	NE	30,000	100(2)	NE	1/13	100J	NA	0
Indeno(1,2,3-cd)pyrene	NE	NE	100(2)	100(2)	NE	2/13	88J-310J	NA	1
Phenanthrene	100	NE	100(2)	100(2)	NE	3/13	59J-860	1	1
Pyrene	100	NE	100(2)	100(2)	NE	3/13	150J-850	3	3
Pesticides/PCBs (μg/kg)									
4',4 - DDD	100	NE	100(2)	100 [©]	NE	7/13	3.8NJ-59J	0	0
4',4-DDE	100	NE	100 ⁽²⁾	100(2)	NE	6/13	4.3-83J	0	0
4',4-DDT	100	NE	4(2)	4(2)	NE	3/13	25-56J	0	3
Endosulfan II	100	>1000(3)	NE	NE	NE	2/13	3.8NJ-3.9NJ	0	0
Heptachlor epoxide	100	NE	<100(2)	<100(2)	NE	1/13	2.3	0	0
PCBs	50	40,000	40(2)	40(2)	NE	1/13	52J	1	1

TABLE 7-16 (Continued)

FREQUENCY AND RANGE OF CONTAMINANT DETECTIONS COMPARED TO SOIL FLORA AND FAUNA SCREENING VALUES SITE 65 - ENGINEER AREA DUMP REMEDIAL INVESTIGATION, CTO-0312 MCB, CAMP LEJEUNE, NORTH CAROLINA

			Soil Flora and Fauna Screening Values ⁽¹⁾			Contaminant Frequency/Range		No. of Positive	No. of
Contaminant	Dutch Background Soil Values ⁽⁴⁾	Plant	Earthworm	Invertebrate	Microorganisms and Microbial Processes	No. of Positive Detects/No. of Samples	Range of Positive Detections	Detects Above Dutch Background Value	Positive Detects Above Lowest Screening Value
Inorganics (mg/kg)									
Barium	200	500	400 ⁽²⁾	400 ⁽²⁾	3,000	13/13	2.7-36.3	0	0
Chromium	100	1	0.4	0.0075(2)	10	11/13	2.3-8.6	0	11
Copper	50	100	50	20	100	9/13	2.5-55.6	2	3
Iron	NE	100(2)	NE	3,515	200	13/13	509-16400	NA	13
Lead	50	50	500	300	900	13/13	2-178J	3	4
Manganese	NE	500	330(2)	330 ⁽²⁾	100	13/13	2.9-163J	NA	2
Nickel	50	30	200	NE	90	2/13	4.6-5.7	0	0
Thallium	NE	1	NE	NE	NE	1/13	2.3	NA	11
Vanadium	NE	2	58 ⁽²⁾	58 ⁽²⁾	20	9/13	2.8-12	NA	9
Zinc	200	50	200	500	100	11/13	3.7-377J	1	3

Notes:

Will and Suter, 1994a and 1994b unless indicated otherwise. (Values presented for plants, earthworms, and microorganisms and microbial processes are benchmarks below which adverse inpacts to these species are not expected. Values for invertebrates are No Observed Effects Concentrations however, they are based on less data than the benchmarks).

⁽²⁾ USEPA, 1995b (Region III BTAG Soil Screening Values for Soil Fauna).

⁽³⁾ Hulzebos <u>et.al.</u>, 1993 (EC50).

⁽⁴⁾ Richardson, 1987 (Dutch Soil Criteria)

TABLE 7-17

EXPOSURE FACTORS FOR TERRESTRIAL CHRONIC DAILY INTAKE MODEL SITE 65 - ENGINEER AREA DUMP **REMEDIAL INVESTIGATION, CTO-0312** MCB, CAMP LEJEUNE, NORTH CAROLINA

Exposure Parameter	Units	White-Tailed Deer	Eastern Cottontail Rabbit	Bobwhite Quail	Red Fox	Raccoon	Small Mammal
Food Source Ingestion	NA	Vegetation 100%	Vegetation 100%	Vegetation 100%	Small Mammals 80% Vegetation 20%	Vegetation 40% Fish 60%	Vegetation 100%
Feeding Rate	kg/day	1.6(2)	0.237(4)	0.0135(3)	0.601 ⁽³⁾	0.214 ⁽⁶⁾	0.112(3)
Incident Soil Ingestion	kg/day	0.0185(1)	0.0057(5)	0.0011(5)	0.0168 ⁽⁵⁾	0.0201(5)	0.00269(5)
Rate of Drinking Water Ingestion	L/day	1.1 ⁽²⁾	0.119(3)	0.0191(3)	0.385(3)	0.422(3)	0.0652(3)
Rate of Vegetation Ingestion	kg/day	1.6	0.237	0.0135	0.12	0.086	0.112
Body Weight	kg	45.4 ⁽²⁾	1.229(3)	0.174 ⁽³⁾	4.54 ⁽³⁾	5.12 ⁽³⁾	0.3725(3)
Rate of Small Mammal Ingestion	kg/day	NA	NA	NA	0.48	NA	NA
Rate of Fish Ingestion	kg/day	NA	NA	NA	NA	0.128	NA
Home Range Size	acres	454 ⁽²⁾	9.30(3)	26.24 ⁽³⁾	1,245(3)	257 ⁽³⁾	0.032(3)

Notes:

NA = Not Applicable

(1) Arthur and Alldridge, 1979.

Opresko, <u>et. al.</u>, 1994.
Beyer, 1993.
Nagy, 1987.

⁽²⁾ Dee, 1991.

⁽³⁾ USEPA, 1993g.

SURFACE WATER QUOTIENT INDEX SITE 65 - ENGINEER AREA DUMP REMEDIAL INVESTIGATION CTO-0312 MCB, CAMP LEJEUNE, NORTH CAROLINA

			Quotient Index			
				USEPA SWSV		
Contaminant	Station	Concentration (µg/L)	North Carolina WQS	Acute	Chronic	
Total Inorganics						
Aluminum	65-SW04	25800	NA	34.40	296.55	
Barium	65-SW04	69.3	NA	1.00	18.24	
	65-SW05	36.7	NA	0.53	9,66	
Copper	65-SW04	41.1	5.87	5.71	7.87	
Iron	65-SW04	7890	7.89	NA	7.89	
Lead	65-SW04	45.8	1.83	1.89	48.72	
Manganese	65-SW04	88.4	NA	0.06	1,10	
Vanadium	65-SW04	26.2	NA	0.09	1.37	
Zinc	65-SW04	144	2.88	2.77	3.06	

Notes:

Shaded samples are Quotient Indices that exceed "1".

NA = Not Available

WQS = Water Quality Standard

SWSV = Surface Water Screening Value

SEDIMENT QUOTIENT INDEX STIE 65 - ENGINEER AREA DUMP **REMEDIAL INVESTIGATION CTO-0312** MCB, CAMP LEJEUNE, NORTH CAROLINA

				Quotient Index	
Contaminant	Station	Concentration	ER-L	ER-M	SQC
Semivolatiles (μg/Kg)					
Di-n-butylphthalate	65-SD04-612	1600 J	NA	1.14	0.01
Pesticides (µg/Kg)					
4,4'-DDE	65-SD04-06	18J	8,18	0.67	0.16
	65-SD05-06	19NJ	8.64	0.70	0.02
4,4'-DDD	65-SD04-06	76Ј	38.00	3.80	3.96
	65-SD05-06	84J	42.00	4.20	0.63
Total Metals (μg/Kg)					
Antimony	65-SD04-06	47J	23.30	1.86	NA
Copper	65-SD04-06	100Ј	2.94	0.37	NA
	65-SD04-612	21.4J	1.14	0.08	NA
Lead	65-SD04-06	176J	3,77	0.81	NA
	65-SD04-612	38.5J	1.27	0.18	NA
Zinc	65-SD04-06	280J	2.26	0.68	NA

Notes:

Shaded samples are Quotient Indices that exceed "1". NE = Not Established

ER-L = Effects Range Low

ER-M = Effects Range Median

SQC = Sediment Quality Criteria

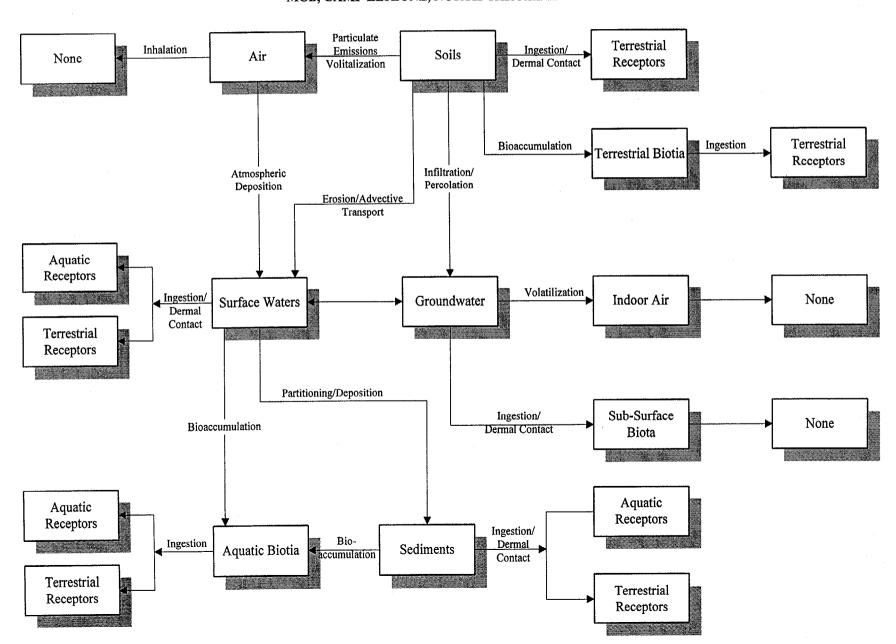
TERRESTRIAL QUOTIENT INDEX SITE 65 - ENGINEER AREA DUMP REMEDIAL INVESTIGATION, CTO-0312 MCB, CAMP LEJEUNE, NORTH CAROLINA

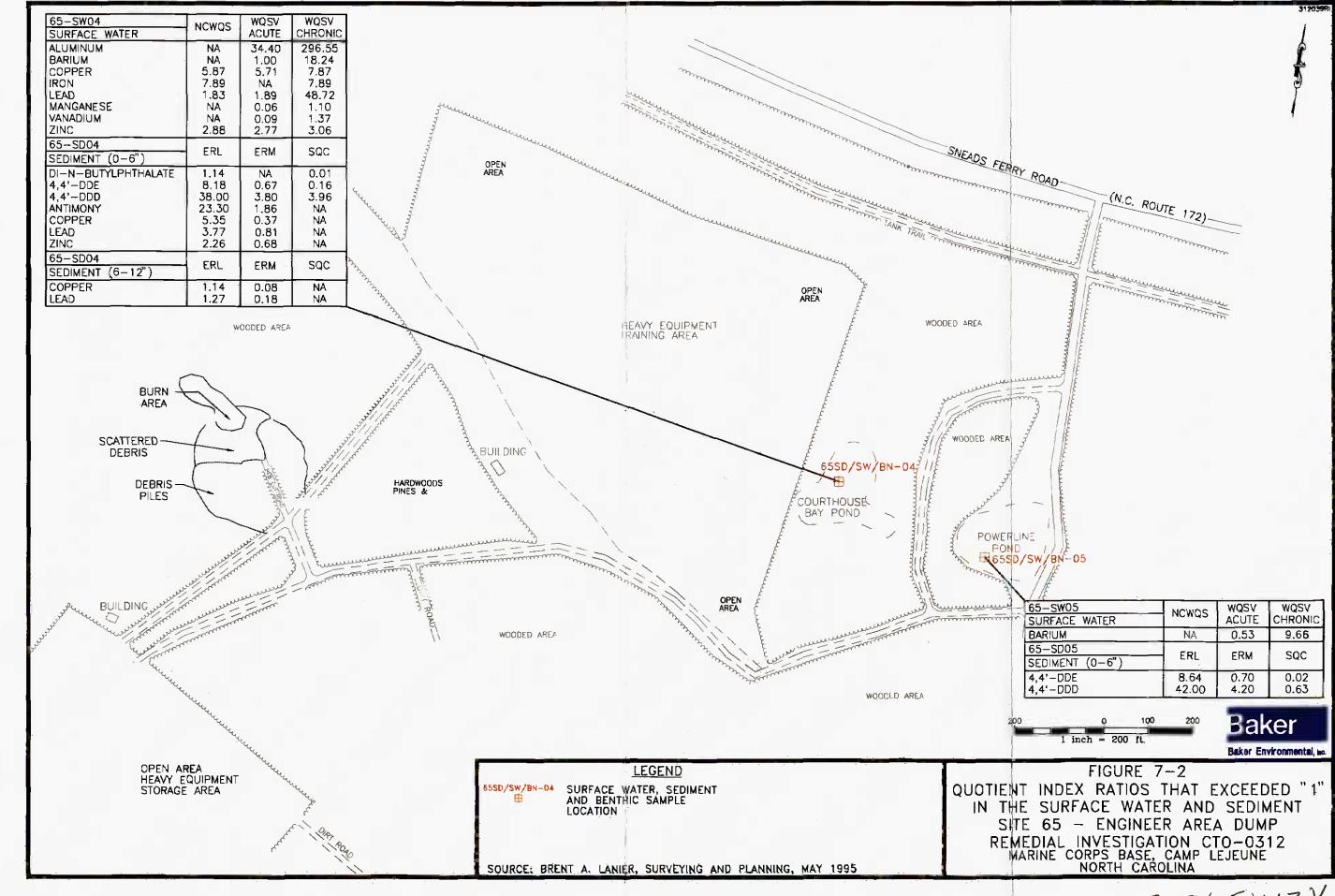
		Bobwhite	Cottontail		Whitetail
Contaminant	Red Fox	Quail	Rabbit	Raccoon	Deer
Acetone	1.46E-04	2.23E-03	1.05E-02	8.60E+00	4.26E-04
2-Butanone	NA	NA	NA	NA NA	NA
Ethylbenzene	1.02E-07	4.45E-06	1.96E-05	3.67E-07	6.70E-07
Methylene chloride	NA	NA	NA	NA	NA
Toluene	1.25E-07	5.55E-06	2.51E-05	1.38E-02	8.65E-07
Trichloroethene	1.57E-08	7.00E-07	3.19E-06	5.39E-08	1.10E-07
Xylenes (total)	2.50E-08	1.07E-06	4.68E-06	9.05E-08	1.60E-07
Acenaphthene	3.73E-06	1.49E-04	5.89E-04	1.48E-05	1.96E-05
Anthracene	1.26E-06	4.39E-05	1.38E-04	5.71E-06	4.25E-06
Benzo(a)anthracene	1.21E-04	3.60E-03	7.42E-03	6.11E-04	1.85E-04
Benzo(a)pyrene	1.04E-04	2.98E-03	5.45E-03	5.34E-04	1.23E-04
Benzo(b)fluoranthene	1.02E-04	2.91E-03	5.18E-03	5.26E-04	1.15E-04
Benzo(g,h,i)perylene	9.58E-05	2.62E-03	4.22E-03	4.90E-04	8.44E-05
Benzo(k)fluoranthene	1.10E-04	3.14E-03	5.59E-03	5.67E-04	1.24E-04
Bis(2-ethylhexyl)phthalate	7.23E-05	5.29E-04	2.72E-03	3.46E-04	4.99E-05
Carbazole	3.66E-04	1.57E-02	6.87E-02	1.33E-03	2.34E-03
Chrysene	1.19E-04	3.55E-03	7.31E-03	6.03E-04	1.82E-04
Dibenz(a,h)anthracene	6.61E-05	1.81E-03	2.91E-03	3.38E-04	5.82E-05
Dibenzofuran	1.18E-04	5.07E-03	2.21E-02	4.28E-04	7.55E-04
Di-n-butylphthalate	5.50E-07	2.86E-02	6.01E-05	2.49E-06	1.85E-06
2,4-Dinitrophenol	4.62E-05	3.75E-03	1.02E-02	1.50E-04	3.54E-04
Fluoranthene	1.28E-05	4.13E-04	1.07E-03	6.20E-05	3.06E-05
Fluorene	2.96E-06	1.11E-04	3.96E-04	1.26E-05	1.28E-05
Indeno(1,2,3-cd)pyrene	9.68E-05	2.65E-03	4.26E-03	4.96E-04	8.53E-05
Phenanthrene	2.35E-06	8.20E-05	2.57E-04	1.07E-05	7.94E-06
Pyrene	2.20E-05	7.05E-04	1.82E-03	1.06E-04	5.19E-05
4,4'-DDD	1.35E-05	4.46E-03	7.10E-04	3.14E-03	1.61E-05
4,4'-DDE	2.02E-05	6.29E-03	8.68E-04	1.22E-03	1.71E-05
4,4'-DDT	1.36E-05	4.35E-03	6.32E-04	7.01E-05	1.31E-05
Endosulfan II	5.79E-07	3.67E-06	2.35E-04	7.02E-06	7.65E-06
Heptachlor epoxide	7.89E-04	2.57E-02	6.92E-02	3.77E-03	2.00E-03
Aroclor-1260	9.91E-04	2.87E-02	5.39E-02	5.08E-03	1.25E-03
Aluminum	1.29E-01	2.07E+00	2.09E+00	1.21E+01	1.16E-01
Antimony	0.00E+00	0.00E+00	0.00E+00	2.63E+00	0.00E+00
Arsenic	0.00E+00	0.00E+00	0.00E+00	1.66E-01	0.00E+00
Barium	8.34E-02	2.40E-01	5.46E-01	8.45E-01	5.97E-02
Beryllium	0.00E+00	0.00E+00	0.00E+00	3.18E-03	0.00E+00
Chromium	2.80E-03	6.71E-04	7.25E-04	4.97E-03	1.41E-04

TABLE 7-20 (Continued)

TERRESTRIAL QUOTIENT INDEX SITE 65 - ENGINEER AREA DUMP REMEDIAL INVESTIGATION, CTO-0312 MCB, CAMP LEJEUNE, NORTH CAROLINA

Contaminant	Red Fox	Bobwhite Quail	Cottontail Rabbit	Raccoon	Whitetail Deer	
Copper	2.60E-03	9.71E-02	3.92E-01	3.54E-02	7.25E-02	
Iron	6.79E-02	7.18E-01	1.43E+00	2.40E-01	6.59E-02	
Lead	6.49E-03	5.00E-01	1.36E+00	2.74E-02	1.10E-01	
Manganese	8.42E-03	2.01E-02	2.54E-01	5.11E-02	4.69E-02	
Mercury	0.00E+00	0.00E+00	0.00E+00	2.11E-02	0.00E+00	
Nickel	1.12E-05	1.68E-03	1.83E-02	8.01E-04	1.46E-03	
Selenium	0.00E+00	0.00E+00	0.00E+00	6.44E-01	0.00E+00	
Thallium	1.13E-02	3.15E-01	4.93E-01	1.65E-01	9.54E-03	
Vanadium	1.01E-02	2.53E-03	7.51E-01	1.91E-02	2.71E-03	
Zinc	3.02E-01	6.47E-01	3.82E+00	1.14E-02	3.55E-01	
Total Quotient Index	6.27e-01	4.77e+00	1.14e+01	2.56e+01	8.47e+01	


Note:


Shaded areas are Quotient Indices that exceed "1"

SECTION 7.0 FIGURES

FIGURE 7-1

CONCEPTUAL EXPOSURE MODEL FOR ECOLOGICAL RECEPTORS SITE 65 - ENGINEER AREA DUMP REMEDIAL INVESTIGATION, CTO-0312 MCB, CAMP LEJEUNE, NORTH CAROLINA

017/25V13Y

APPENDIX A
TEST BORING AND WELL CONSTRUCTION RECORDS

Baker Environmental, Inc.

TEST BORING AND WELL CONSTRUCTION RECORD

PROJECT: NAVY CLEAN SITE 65

S.O. NO.: <u>62470-312-0000-09000</u>

COORDINATES: EAST: 2494926.23 ELEVATION: SURFACE 23.50 **BORING NO.:** <u>65-DW02</u>

NORTH: 306941.21

TOP OF CASING: 25.40

RIG: Truckmo	5								
	SPLIT SPOON	CASING	AUGERS	CORE BARREL	DATE	PROGRESS (FT)	WEATHER	WATER DEPTH (FT)	TIME
SIZE (DIAM.)	2" OD	6" ID	4¼" ID		4/9/95	40.0	Clear, 55°	6.0	8:30
LENGTH	24"	10.0'	5.0'		4/11/95	16.0	Cloudy, 50°		
TYPE	S.S.	3/16"	H.S.		4/20/95			7.75 msi	
HAMMER WT.	140				4/23/95			8.43 mst	
FALL	STD		·		8/21/95			7.07 msl	
STICK UP									

REMARKS: At 40.0', drilling methods were changed to fluid rotary methods.

ş	SAMPLE TYPE \$ = Split Spoon A = Auger T = Shelby Tube W = Wash						WELL INFORMATION	DIAM	TYP	E	TOP DEPTH (FT)	BOTTOM DEPTH (FT)
-	R = Air Rotary C = Core						Well Casing	2.0"	PVC Threaded			44.0
<u> </u>	D = Denison P = Piston N = No Sample						Well Screen	2.0"	PVC Slotted		44.0	54.0
	Depth (Ft.) Sample Rec. Type Ft. and & SPT or RQD HNu (ppm) Point Source					(ppm) Point	Visual Description Instal De			Vell allation etail	Elevation (msl)	
-					0.2	0.3	(*Sample 65-DW0	2-00 collecte	i)		Locking, Protective Cover	1
2 —	1.0 3.0	S-01	1.8 90%	3 3 5 6	0.2	0.3	SAND, fine to very to tan, trace tree ro SAND, fine to very little CLAY, light	oots, damp, l — ——— - fine, trace S	SILT, trace to		Cement/ Bentonite Grout	22.5
3 4 5	5.0	S-02	2.0 100%	6 10 10 7	0.2	0.2	dense to loose, som	e orange sta	ining.		3/16" Steel Casing	19.5
6	7.0	S-03	2.0 100%	4 4 5 6	0.2	0.2					Blank Sch.	17.5
7 - 8 -	9.0	S-04	2.0 100%	6 5 5 4		0.2					Casing	15.5
9 —	11.0	S-05	2.0	4 3 4 5	0.2	0.2					Match to Sheet 2	13.5

DRILLING CO.: Parrott Wolff

DRILLER: Mark Eaves

BAKER REP.: R.M. Lewis

BORING NO.: 65-DW02

SHEET 1 OF 4

TEST BORING AND WELL CONSTRUCTION RECORD

DEFINITIONS

Baker Environmental, Inc.

SAMPLE TYPE

PROJECT: NAVY CLEAN SITE 65

S.O. NO.: 62470-312-0000-09000 BORING NO.: 65-DW02

= Split Spoon Α = Auger SPT = Standard Penetration Test (ASTM D-1586) (Blows/0.5') RQD = Rock Quality Designation (%) = Shelby Tube W = Wash = Air Rotary C = Core Lab Class. = USCS (ASTM D-2487) or AASHTO (ASTM D-3282) = Denison = Piston Lab Moist. = Moisture Content (ASTM D-2216) Dry Weight Basis N = No SampleHNu Samp HNU Sample SPT (ppm) Rec. (ppm) Well Installation Depth Type (Ft. **Bkgrd** Point or Flevation (Ft.) and Detail Source & Continued from Sheet 1 (msl) RQD No. %) S-06 12.5 SAND, fine to very fine, trace SILT, gray 6 stained orange, wet, medium dense to loose. 5 7 S-07 2.0 11.5 12 0.2 0.2 13.0 100% Cement/ 10.5 13 Bentonite Grout 9.5 14 15.0 8.5 3/16" S-08 1.5 2 16 7.5 Steel 3 0.2 0.2 Casing 75% 17.0 6.5 17 5.5 18 Blank Sch. 40 PVC 4.5 19 Riser 20.0 20 3.5 S-09 2.0 3 21 2.5 2 0.2 0.2 100% 2 22.0 Trace wood fragments. 22 1.5 SAND, fine to very fine, trace SILT, dark gray, 2 wood fragments, wet, medium dense. 23 S-10 1.8 0.5 7 0.2 0.2 90% 7 24.0 24 -0.56 25 S-11 1.75 5 -1.50.2 0.3 1 Some orange staining present. 26.0 85% 1 26 -2.5 3 27 5 S-12 1.75 -3.5 5 0.2 0.3 6 28.0 85% 28 -4.53 29 S-13 1.75 3 -5.5 Match to 9 0.2 Sheet 3 30.0 85% 9

DRILLING CO.: Parrott Wolff

DRILLER: Mark Eaves

BAKER REP.: R.M. Lewis

BORING NO.: <u>65-DW02</u> SHEET <u>2</u> OF <u>4</u>

TEST BORING AND WELL CONSTRUCTION RECORD

Baker Environmental, Inc.

PROJECT: NAVY CLEAN SITE 65

S.O. NO.: <u>62470-312-0000-09000</u> BORING NO.: <u>65-DW02</u>

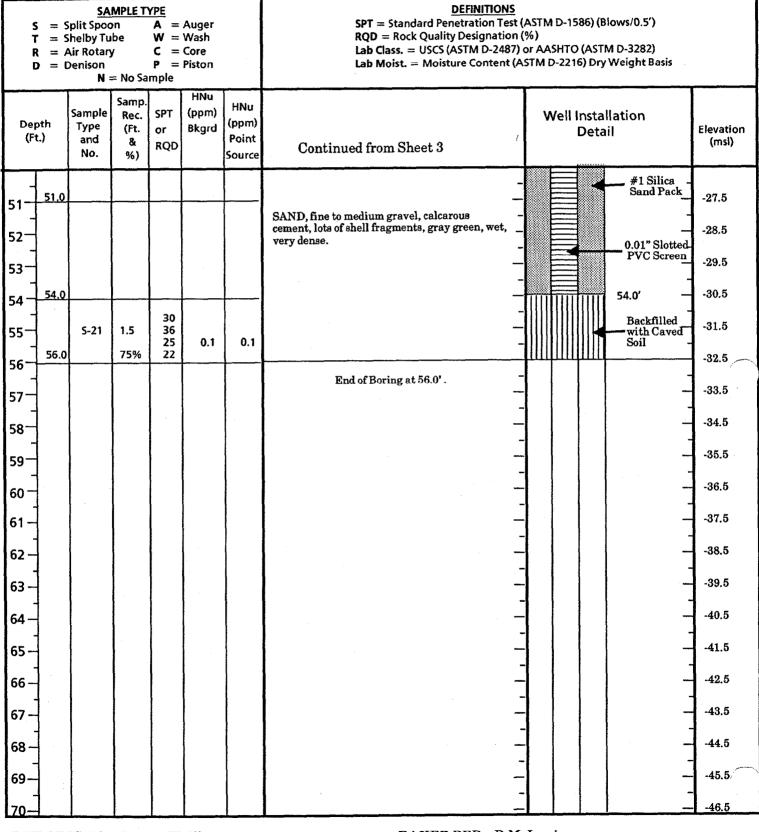
		SA	MPLE T	YPE			DEFINITIONS				
	T = S $R = A$	iplit Spoo ihelby Tu Air Rotary Denison N =	be	W = C = P =	Auger Wash Core Piston		SPT = Standard Penetration Test (RQD = Rock Quality Designation (Lab Class. = USCS (ASTM D-2487) Lab Moist. = Moisture Content (A	(%) or AASH	TO (ASTM D)-3282)	:
	epth (Ft.)	Sample Type and No.	Samp. Rec. (Ft. & %)	SPT or RQD	HNu (ppm) Bkgrd	HNu (ppm) Point Source	Continued from Sheet 2	We	ll Installa Detail		Elevation (msl)
31-	32.0	S-14	1.8	7 5 3	0.2	0.2	SAND, fine to very fine, trace SILT, gray, wet, loose. CLAY in tip.			Cement/_ Bentonite Grout	-7.5
32 ⁻	-	S-15	1.8	3			SAND, fine to medium, trace SILT, gray, wet, 2" CLAY in tip, loose.			- 3/16" -	-8.5 -9.5
34	34.0		90%	5 3	0.2	0.2	<u> </u>			Steel Casing	-10.5
35	36.0	S-16	1.5 75%	3 3 4 3	0.1	0.1	SAND, fine to very fine, some CLAY, gray stained orange, moist, loose.			Blank Sch.	-11.5
\36· 	1	S-17	1.9	2 2			- -			40 PVC Riser _	-12.5 -13.5
38	- 20 0		95%	3	0.1	0.1	SAND, fine to very fine, trace SILT, dark gray, wet	2222	3	37.5' - —	-14.5
39	40.0	S-18	2.0 100%	5 9 10	0.2	0.2	SAND, fine to very fine, and CLAY, light brown to gray stained orange, wet. SAND, fine to medium gravel, calcarous	-	Ļ	3/16" — Steel — Casing — Ends	-15.5
40			100%				cement, lots of shell fragments, gray green, wet. —			39.0'. — Bentonite_ Pellet Seal	-16.5 -17.5
42	4						- -		4	2.0'	-18.5
43	44.0						<u>-</u>			-	-19.5
44	-	S-19	2.0	12						44.0' - - -	-20.5 -21.5
46	46.0		100%	17	0.0	0.0		1		0.01 Slottled PVC screen	22.5
47 48							- -		-	#1 Silica Sand —	-23.5 -24.5
49	+			20			-			Pack _ Match to	-25.5
50	50.0	S-20	1.0 50%	20 19 17 19	0.1	0.1				Sheet 4	-26.5

DRILLING CO.: Parrott Wolffe

DRILLER: Mark Eaves

BAKER REP.: R.M. Lewis

BORING NO.: 65-DW02


SHEET $\underline{3}$ OF $\underline{4}$

TEST BORING AND WELL CONSTRUCTION RECORD

Baker Environmental, Inc.

PROJECT: NAVY CLEAN SITE 65

S.O. NO.: 62470-312-0000-09000 BORING NO.: 65-DW02

DRILLING CO.: Parrott Wolffe

DRILLER: Mark Eaves

BAKER REP.: R.M. Lewis

BORING NO.: 65-DW02

SHEET 4OF 4

Baker Environmental, Inc.

TEST BORING AND WELL CONSTRUCTION RECORD

PROJECT: NAVY CLEAN SITE 65

S.O. NO.: 62470-312-0000-09000

COORDINATES: EAST: 2496564.35 ELEVATION: SURFACE 42,43 NORTH: <u>307503.91</u>

TOP OF CASING: 44.49

BORING NO.: 65-DW04

RIG: Truckmo	unt CME-7	5							
Ne - Al-	SPLIT SPOON	CASING	AUGERS	CORE BARREL	DATE	PROGRESS (FT)	WEATHER	WATER DEPTH (FT)	TIME
SIZE (DIAM.)	2" OD	6" ID	41/4" ID		4/5/95	31	Windy, 75°	10.5	15:00
LENGTH	24"	10.0'	5.0'		4/6/95	24	Overcast, 55°		
TYPE	S.S.	3/16"	H.S.		4/7/95	15	Clear, 75°		
HAMMER WT.	140				4/20/95			10.39 msl	
FALL	STD				4/23/95			11.21 msl	
STICK UP					8/21/95			9.67 msl	

REMARKS: At 31.0', drilling methods were changed to fluid rotary methods.

		SAI olit Spoo nelby Tu		A =	Auger Wash		WELL INFORMATION	DIAM	TYI	PE	TOP DEPTH (FT)	BOTTOM DEPTH (FT)
	R = A	ir Rotary		C =	Core	i	Well Casing	2.0"	PVC Threaded		-2.06	58.0
7	$\mathbf{D} = \mathbf{D}$	enison N =	= No Sai	-	Piston		Well Screen	2.0"	PVC Slotted		58.0	68.0
	epth Ft.)	Sample Type and No.	Samp. Rec. Ft. & %	SPT or RQD	HNu (ppm) Bkgrd	HNu (ppm) Point Source		Descripti	on	Insta	Vell allation etail	Elevation (msl)
1	1.0	NA.			1.0	1.1	(*Sample 65-DW04				Locking, Protective Cover	re_ 41.4
2 -	3.0	S-01	1.7 85%	2 3 3 3	1.0	1.1	SAND, fine to very ORGANICS, black dry, loose.				Cement/ Bentonite Grout	40.4
3 -	5.0	S-02	1.5 75%	3 5 3 4	1.0	1.0	SAND, fine to very to gray, damp, loos		SILT, light brown		3/16" Steel Casing	38.4
5 - 6 -	7.0	S-03	2.0 100%	5 3 3	1.1	1.1					Blank Sch 40 PVC	36.4
8	9.0	S-04	1.7	3 3 4 5	1.1	1.1					Casing	35.4
0	10.5	S-05	1.7	6 5 3 3	 	1.1	(*Sample 65-DW0-	4-05 collecte	d)		Match to Sheet 2	33.4

DRILLING CO.: Parrott Wolff

DRILLER: Mark Eaves

BAKER REP.: R.M. Lewis

BORING NO.: 65-DW04

SHEET 1 OF 4

TEST BORING AND WELL CONSTRUCTION RECORD

Baker Environmental, Inc.

PROJECT: NAVY CLEAN SITE 65

S.O. NO.: <u>62470-312-0000-09000</u> BORING NO.: <u>65-DW04</u>

1	T = 9 R = A	plit Spoo helby Tu Air Rotan Denison	be	A = W = C = P =	Auger Wash Core Piston		DEFINITIONS SPT = Standard Penetration Tes RQD = Rock Quality Designatio Lab Class. = USCS (ASTM D-248' Lab Moist. = Moisture Content	- st (ASTM on (%) 7) or AA	SHTO (ASTM	1 D-3282)	
	pth t.)	Sample Type and No.	Samp. Rec. (Ft. & %)	SPT or RQD	HNu (ppm) Bkgrd	HNU (ppm) Point Source	Continued from Sheet 1	٧	Vell Instal Detai		Elevation (msl)
11-	11.0	S-05								-	31.4
12	42.0	S-06	1.8	6 6 5	0.9	0.9	SAND, fine to very fine, and CLAY, trace SILT, gray, damp, medium dense.			- 	30.4
13-	13.0	S-07	90%	3 6			SAND, fine to very fine, trace SILT, gray, moist to wet, medium dense.			Cement/ Bentonite Grout -	29.4 28.4
14-	15.0	3-07	75%	8 11	0.8	0.8	SAND, fine to very fine, and CLAY, gray, damp to moist, medium dense.			- -	27.4
16- -	17.0	S-08	2.0 100%	10 12 16 19	0.8	0.8	SAND, fine to very fine, trace SILT, gray to light brown, wet, some staining.			3/16" — Steel Casing -	26.4
17- 18-	40.0	S-09	2.0	8 12 16	0.8	0.8				Blank Sch 40 PVC	25.4 24.4
19- 20-	19.0	S-10	1.0	29 33 40	0.8	0.8	24" color change to light gray to white.			Riser -	23.4 22.4
21 –	21.0		50%	46 49				- ##		- -	21.4
22 — 23 —	23.0	S-11	2.0 100%	42 33 21	0.8	0.8		- - - -			20.4 19.4
24 -	25.0	S-12	2.0	4 8 12 17	1.0	1.1		- 111		- -	18.4
25 – 26 –	23.0	S-13	1.7	5 6 8	0.8	0.8	SAND, fine to very fine, trace SILT, gray to dark brown, wet, medium dense to dense.	- 111		 	17.4 16.4
27 –	27.0		85%	14	0.0	J. 0				-	15.4
28 -	29.0	S-14	2.0 100%	22 22 24	0.8	0.8		- <u>1111</u> - <u>1111</u>		 	14.4
29 <i>-</i> - 30-	30.0	S-15	1.0 50%	15 10 11 19	0.8	0.8				Match to Sheet 3	13.4

DRILLING CO.: Parrott Wolff

DRILLER: Mark Eaves

BAKER REP.: R.M. Lewis

BORING NO.: 65-DW04

SHEET 2 OF 4

TEST BORING AND WELL CONSTRUCTION RECORD

Baker Environmental, Inc.

PROJECT: NAVY CLEAN SITE 65

S.O. NO.: <u>62470-312-0000-09000</u> BORING NO.: <u>65-DW04</u>

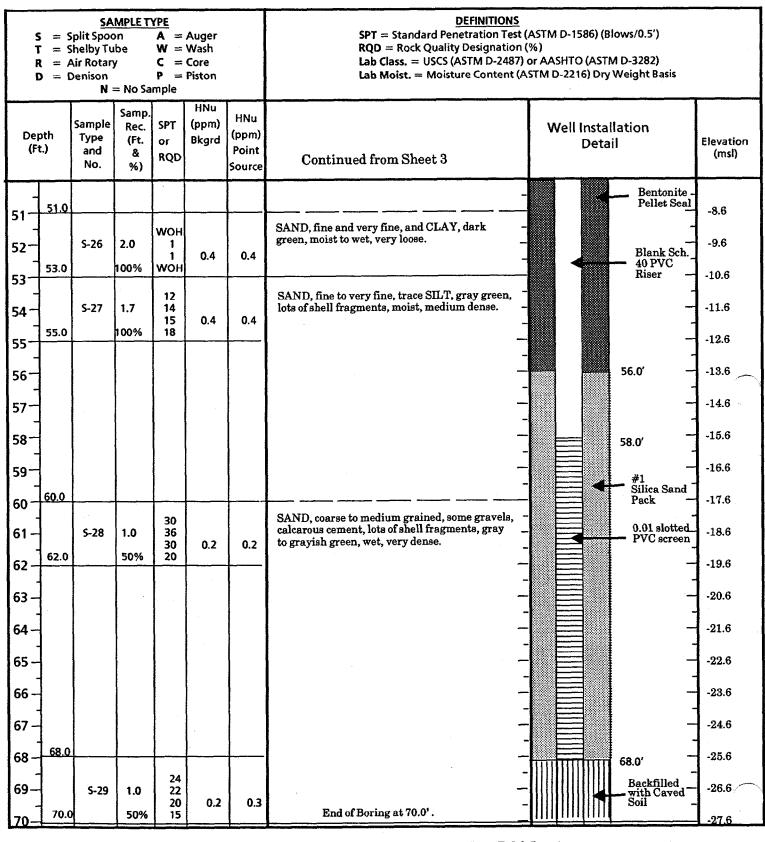
Г			CAI	MOLETY				DEFINITIONS	5			
	S T R D	= S = A	plit Spoo helby Tu Air Rotary Denison	be	A = . W = . C = . P = .	Auger Wash Core Piston		SPT = Standard Penetration Tes RQD = Rock Quality Designatio Lab Class. = USCS (ASTM D-248' Lab Moist. = Moisture Content	- st (ASTM I on (%) 7) or AASI	HTO (ASTM	D-3282)	
	Dep (Ft		Sample Type and No.	Samp. Rec. (Ft. & %)	SPT or RQD	bkgru	HNu (ppm) Point Source	Continued from Sheet 2	w	'ell Instal Deta		Elevation (msl)
Ţ	31	31.0	S-15								Cement/— Bentonite	11.4
	32-		S-16	1.9	2 3 3	0.6	0.6	CLAY, gray to black, moist, soft.	-		Grout _	10.4
	33-	33.0		95%	4				- ###	### ###	3/16" — Steel _	9.4
	34		S-17	1.9	15 7 9	0.6	0.6	SAND, fine to very fine, trace SILT, gray to reddish brown, wet.	- 		Casing	8.4
	35-	35.0		95%	10		 	SAND, fine to very fine, some CLAY, some SILT, black, wet.	7			7.4
	36-	37.0	S-18	2.0 100%	3 1 2 2	0.5	0.5	CLAY, black, wet. SAND, fine to very fine, trace SILT, trace			Blank Sch. 40 PVC — Riser _	6.4 5.4
	37		S-19	2.0	5 3			CLAY, gray to dark brown, wet.			-	4.4
	38 - 39	39.0		100%	7 5	0.5	0.5		- ##		-	3.4
Ì	40 –		S-20	2.0	5 7 12	0.3	0.3		- - - -		-	2.4
	41 –	41.0		100%	16	0.5		CLAY, black, dry.				1.4
	42 –		S-21	2.0	12 14 30	0.4	0.4	SAND, fine to very fine, trace SILT, greenish gray, wet, very dense to medium dense.	-		-	0.4
	43 -	43.0)	100%	21				- ###		-	-0.6
	44 -	45.0	S-22	1.0 50%	9 12 9		0.4		- 2222		44.0'	-1.6 -2.6
	45 —				2			SAND, fine to very fine, and CLAY, greenish gray, moist.	-		Bentonite Pellet Seal	-3.6
	46 – - 47 –	47.0	S-23	2.0 100%	1 2 1	0.4	0.4	gray, moise.			-	-4.6
	47 -		S-24	2.0	WOH WOH	0.4	0.4		-		-	-5.6
لہ	49—	49.0		100%	1 2	<u> </u>	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		-		Match to -	-6.6
\ 	50 <u>-</u>	50.0	S-25	2.0 100%	1 2	0.4	0.4				Sheet 4 -	7.6

DRILLING CO.: Parrott Wolffe

DRILLER: Mark Eaves

BAKER REP.: R.M. Lewis

BORING NO.: 65-DW04


SHEET 3OF 4

TEST BORING AND WELL CONSTRUCTION RECORD

Baker Environmental, Inc.

PROJECT: NAVY CLEAN SITE 65

S.O. NO.: <u>62470-312-0000-09000</u> BORING NO.: <u>65-DW04</u>

DRILLING CO.: Parrott Wolffe

DRILLER: Mark Eaves

BAKER REP.: R.M. Lewis

BORING NO.: 65-DW04

SHEET 40F4

Baker Environmental, Inc.

TEST BORING AND WELL CONSTRUCTION RECORD

PROJECT: NAVY CLEAN SITE 65

S.O. NO.: 62470-312-0000-09000

COORDINATES: EAST: 2496564.78

ELEVATION: SURFACE 42.90

BORING NO.: 65-MW04

NORTH: 307498.29

TOP OF CASING: 44.84

RIG: Truckmo	unt CME-7	5							
	SPLIT SPOON	CASING	AUGERS	CORE BARREL	DATE	PROGRESS (FT)	WEATHER	WATER DEPTH (FT)	TIME
SIZE (DIAM.)			6‡ ID		4/7/95	23.0	Clear, 55°	10.5	08:00
LENGTH			5.0'		4/20/95			29.40 msl	
TYPE			H.S.		4/23/95			30.30 msl	
HAMMER WT.					8/21/95			28.09 msl	
FALL									
STICK UP									

REMARKS:

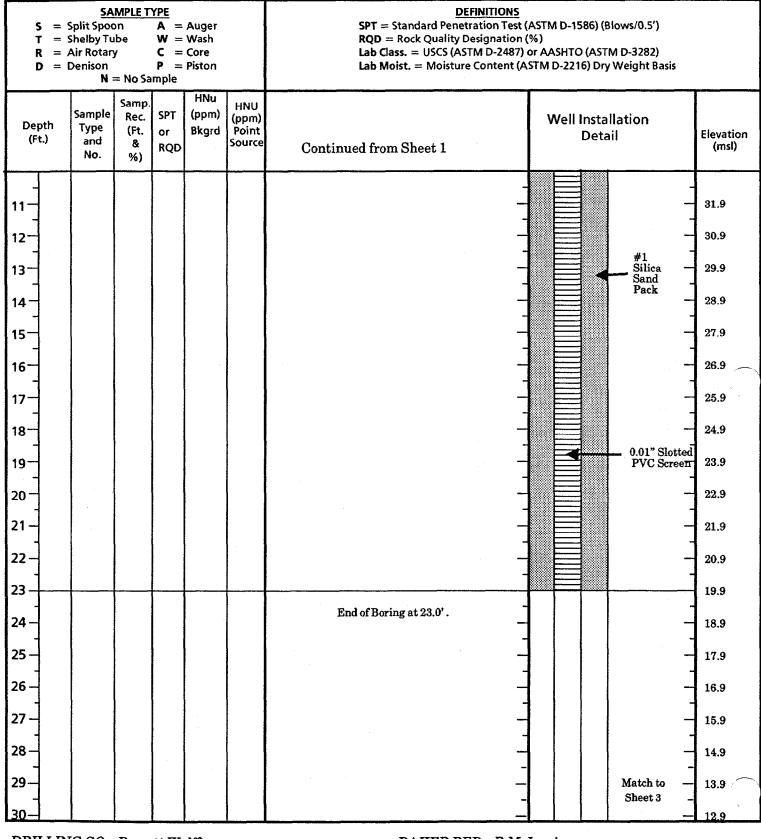
	SAN olit Spoor nelby Tub		A =	Auger Wash		WELL INFORMATION	DIAM	ТҮР	E	TOP DEPTH (FT)	BOTTOM DEPTH (FT)
R = A	ir Rotary		C =	Core		Well Casing	2.0"	PVC Threaded		-1.94	8.0
D = D	enison N =	No Sa		Piston		Well Screen	2.0"	PVC Slotted		8.0	23.0
Depth (Ft.)	Sample Type and No.	Samp. Rec. Ft. & %	SPT or RQD	HNu (ppm) Bkgrd	HNu (ppm) Point Source		Descript	ion	Insta	/ell llation etail	Elevatio (msl)
1 — 2 — 3 — 4 — 5 — 6 — 7 — 8 — 9 —						(*See test boring re	ecord for 65-	DW04.)	★	Locking, Protecti Cover Cement/ Bentonite Grout Blank Sch 40 PVC Casing 4.0' Bentonite Pellet Sc 6.0' #1 Silica Sand Pack 0.01" Slott PVC Scree Match to	- 41.9 - 40.9 - 39.9 - 38.9 e 37.9 - 36.9 - 35.9 - 34.9

DRILLING CO.: Parrott Wolff

DRILLER: Mark Eaves

BAKER REP.: R.M. Lewis

BORING NO.: <u>65-MW04</u> SHEET <u>1</u> OF <u>2</u>



TEST BORING AND WELL CONSTRUCTION RECORD

Baker Environmental, Inc.

PROJECT: NAVY CLEAN SITE 65

S.O. NO.: <u>62470-312-0000-09000</u> BORING NO.: <u>65-MW04</u>

DRILLING CO.: Parrott Wolff

DRILLER: Mark Eaves

BAKER REP.: R.M. Lewis

BORING NO.: 65-MW04 SHEET 2 OF 2

TEST BORING AND WELL CONSTRUCTION RECORD

PROJECT: NAVY CLEAN SITE 65

S.O. NO.: <u>62470-312-0000-09000</u>

COORDINATES: EAST: 2494774.11

ELEVATION: SURFACE 28.00

BORING NO.: 65-MW05

NORTH: 306968.44

TOP OF CASING: 30.28

RIG: Truckmo	unt CME-7	5							
	SPLIT SPOON	CASING	AUGERS	CORE BARREL	DATE	PROGRESS (FT)	WEATHER	WATER DEPTH (FT)	TIME
SIZE (DIAM.)	2" OD		4¼" ID		4/5/95	23.0	Windy, 60°	9.0	09:20
LENGTH	24"		5.0'			4/20/94		18.58 msl	
TYPE	S.S.		H.S.			4/23/95		19.46 msl	
HAMMER WT.	140					8/21/95		17.99 msl	
FALL	STD								
STICK UP									

REMARKS: Borehole reamed with 6 1/4" ID augers before well completion.

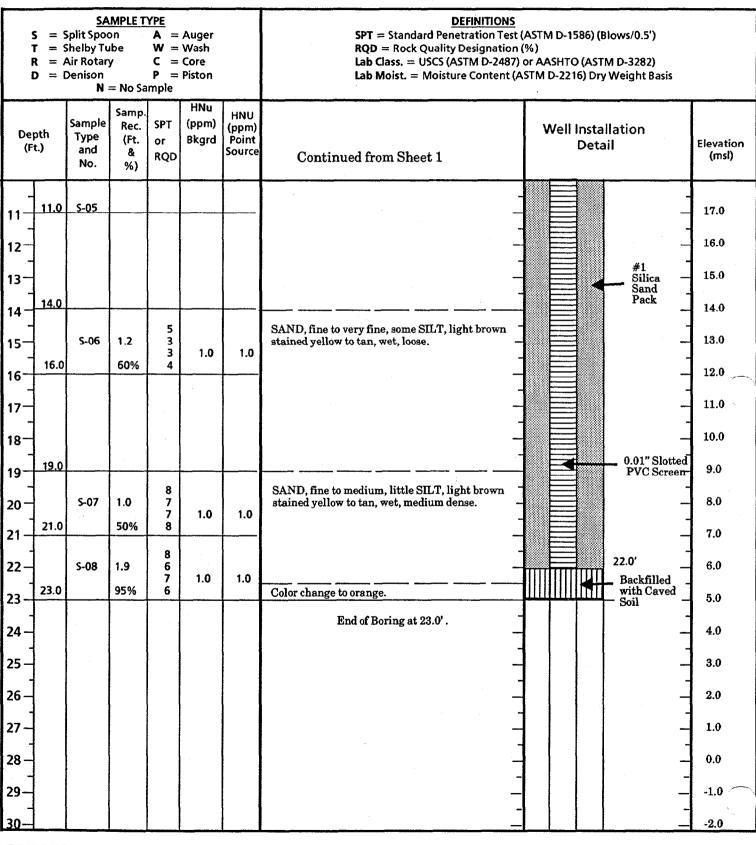
		SA olit Spoo nelby Tu		A =	Auger Wash		WELL INFORMATION	DIAM	ТҮР	E	TOP DEPTH (FT)	BOTTOM DEPTH (FT)
	R = A	ir Rotary enison		C =	Core Piston		Well Casing	2.0"	PVC Threaded		-2.28	7.0
	U = U		= No Sa	•	ristori		Well Screen	2.0"	PVC Slotted		7.0	22.0
	epth it.)	Sample Type and No.	Samp. Rec. Ft. & %	SPT or RQD	HNu (ppm) Bkgrd	HNu (ppm) Point Source	Visual [Descripti	on	Insta	/ell llation etail	Elevation (msl)
1 –	1.0	NA.			1.0	1.0	(*Sample 65-MW09		· .		Locking, Protective Cover	27.0
2 – -	3.0	S-01	1.0 50%	2 3 3 4	1.4	1.4	SAND, fine to very fine, some SILT, some ORGANICS, light brown to brown, damp, loose.				Bentonite Grout	26.0
3 4 5	5.0	S-02	1.7	4 5 12 14	1.1	1.1	CLAY, some SILT, some fine to very fine, SAND, light brown mottled gray to red, damp, medium dense.			4	Blank Sch. 10 PVC Casin Bentonite Pellet Sea	24.0
6 -	7.0	S-03	1.5 75%	3 5 11	1.1	1.1	SAND, fine to very		SILT, light brown		5.0	23.0
7 8	9.0	S-04	1.7 85%	10 12 17	1.1	1.1	to gray, moist, medium dense. (*Sample 65-MW05A-04 collected)				7.0' 3ilica - Sand Pack 0.01" Slottee PVC Screen	7
.0 –	10.5	S-05	1.7 85%	9 12 14 14	1.0	1.0	SAND, fine to very brown, stained yell medium dense.				Match to Sheet 2	19.0

DRILLING CO.: Parrott Wolff

DRILLER: Mark Eaves

BAKER REP.: R.M. Lewis

BORING NO.: 65-MW05


SHEET 1 OF 2

TEST BORING AND WELL CONSTRUCTION RECORD

Baker Environmental, Inc.

PROJECT: NAVY CLEAN SITE 65

S.O. NO.: <u>62470-312-0000-09000</u> BORING NO.: <u>65-MW05</u>

DRILLING CO.: Parrott Wolff BAKER REP.: R.M. Lewis

DRILLER: Mark Eaves BORING NO.: 65-MW05 SHEET 2 OF 2

Baker Environmental, Inc.

TEST BORING AND WELL CONSTRUCTION RECORD

PROJECT: NAVY CLEAN SITE 65

S.O. NO.: 62470-312-0000-09000

COORDINATES: EAST: 2496052.20

ELEVATION: SURFACE 32.55

BORING NO.: 65-MW06

NORTH: 307201.04

TOP OF CASING: 34.71

RIG: Truckmo	unt CME-7	5							
	SPLIT SPOON	CASING	AUGERS	CORE BARREL	DATE	PROGRESS (FT)	WEATHER	WATER DEPTH (FT)	TIME
SIZE (DIAM.)	2" OD		4¼" ID		4/8/95	21.0	Foggy, 50°	7.5	08:45
LENGTH	24"		5.0'		4/20/95			25.38 msl	
TYPE	S.S.		H.S.		4/23/95			26.29 msi	
HAMMER WT.	140				8/21/95			24.37 msl	
FALL	STD								
STICK UP									

REMARKS: Borehole was reamed with 61/4" ID augers before well completion.

	S	•	SA blit Spoo		A =	Auger Wash		WELL INFORMATION	DIAM	ТҮР	E	TOP DEPTH (FT)	BOTTOM DEPTH (FT)
	R	: = A	r Rotary		C =	Core Piston		Well Casing	2.0"	PVC Threaded		-2,16	5.0
لـر) = D	enison N =	= No Sa	•	Piston		Well Screen	2.0"	PVC Slotted		5.0	20.0
	Der (Ft	oth	Sample Type and No.	Samp. Rec. Ft. & %	SPT or RQD	HNu (ppm) Bkgrd	HNu (ppm) Point Source		Descripti	on	Insta	/ell llation etail	Elevation (msl)
	1 -	1.0		·		0.1	0.2	(*Sample 65-MW0		-		Locking, Protecti Cement/ Bentoni] 21 6
	2 — -	3.0	S-01	2.0 100%	4 4 9 10	0.1	0.1	SAND, fine to very brown, moist to da				Grout Bentonite Pellet Sea	30.6
	3 - 4		S-02	2.0	4 4 8	0.2	0.2				-	Blank Sch 40 PVC Riser	29.6 - 28.6
	5 <u>-</u>	5.0		100%	8	0.2		SAND, fine to very to black, damp, loos			1		27.6
	6 — -	7.0	S-03	1.5 75%	5 4 3 5	0.2	0.2	(*Sample 65-MW06	SA-03 collect	ed) –		0.01" Slotte PVC Scree	n
	7 — 8 — -	9.0	S-04	1.5	4 4 4 4	0.2	0.2	SAND, fine to very wet at 7.5', loose.	— ——— - fine, trace S	ILT, light gray,		#1 Silica Sand	25.6 - - 24.6
	9 -	9.0		/5%	4							Pack Match to Sheet 2	23.6

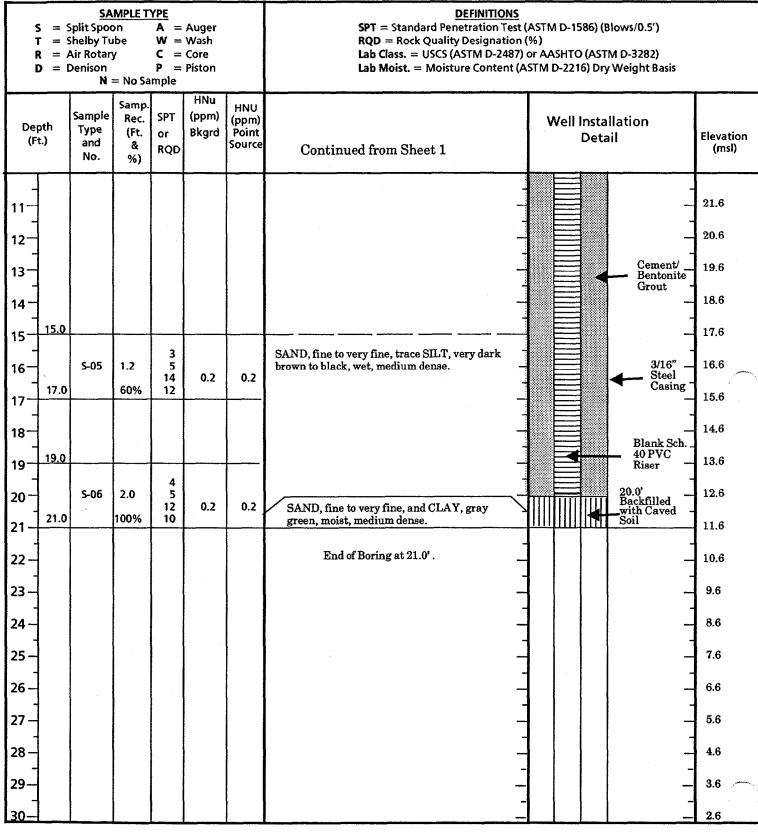
DRILLING CO.: Parrott Wolff

DRILLER: Mark Eaves

BAKER REP.: R.M. Lewis

BORING NO.: <u>65-MW06</u>

SHEET 1 OF 2



TEST BORING AND WELL CONSTRUCTION RECORD

Baker Environmental, Inc.

PROJECT: NAVY CLEAN SITE 65

S.O. NO.: 62470-312-0000-09000 BORING NO.: 65-MW06

DRILLING CO.: Parrott Wolff

DRILLER: Mark Eaves

BAKER REP.: R.M. Lewis

BORING NO.: 65-MW06

SHEET 2 OF 2

Baker Environmental, fic.

TEST BORING AND WELL CONSTRUCTION RECORD

PROJECT: NAVY CLEAN SITE 65

S.O. NO.: 62470-312-0000-09000

COORDINATES: EAST: 2495281.52

ELEVATION: SURFACE 34.47

BORING NO.: 65-MW07

NORTH: 307271.63

TOP OF CASING: 36.74

RIG: Truckmo		,						WATER	
	SPLIT SPOON	CASING	AUGERS	CORE BARREL	DATE	PROGRESS (FT)	WEATHER	WATER DEPTH (FT)	TIME
SIZE (DIAM.)	2" OD		41/4" ID		4/4/95	23.0	Clear, 75°	11.0	14:00
LENGTH	24"		5.0'		4/21/95			23.31 msl	
TYPE	S.S.		H.S.		4/23/95			24.36 msl	
HAMMER WT.	140				8/21/95			22.89 msl	
FALL	STD								
STICK UP									

REMARKS: Borehole reamed with 61" ID augers before well completion.

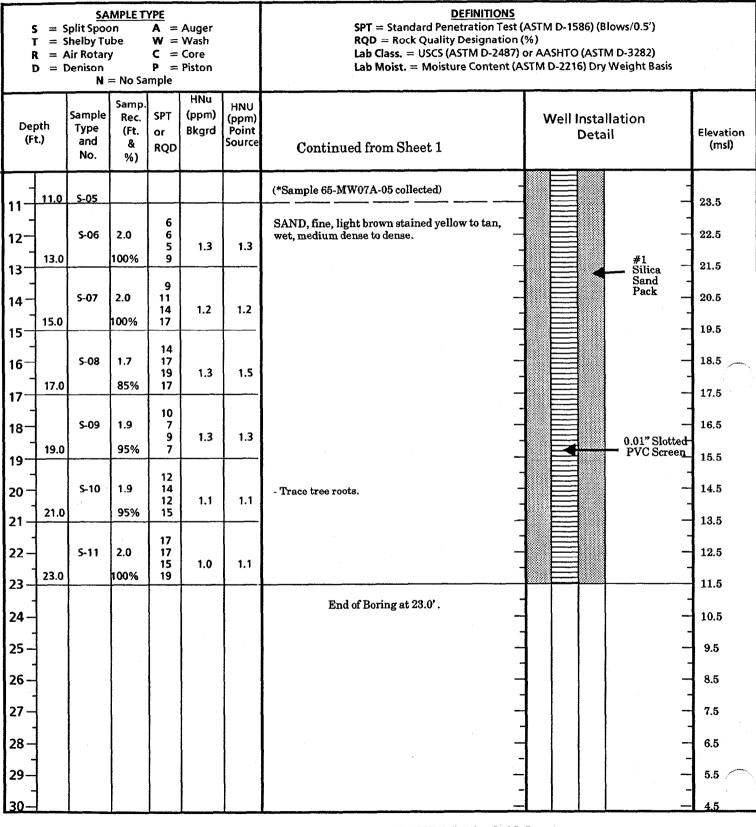
	S		<u>SAI</u> olit Spoo nelby Tu		A =	Auger Wash		WELL INFORMATION	DIAM	ТҮРІ	₹	TOP DEPTH (FT)	BOTTOM DEPTH (FT)
	R	= Ai	r Rotary		C =	Core		Well Casing	2.0"	PVC Threaded		-2.27	8.0
[D	= De	enison N =	= No Sai	-	Piston		Well Screen	2.0"	PVC Slotted		8.0	23.0
	Dep (Ft.)	th	Sample Type and No.	Samp. Rec. Ft. & %	SPT or RQD	HNu (ppm) Bkgrd	HNu (ppm) Point Source	Visual [Descripti	on	Insta	/ell llation tail	Elevation (msl)
	1	1.0	NA			3,4	1.9	(*Sample 65-MW0' to very fine, little S	7A-00 collect SILT, gray to	ted) SAND, fine black, dry, loose.		Locking, Protective Cover	33.5
	_	3.0	S-01 1.2 3 2 1.4 30% 3 1.4					SAND, fine to very to brown, dry, loose		SILT, light brown		Cement/ . Bentonite Grout	32.5
4	3 - † 4 - 4 -	5.0	S-02	1.5 75%	2 2 3 3	1.4	1.4	SAND, fine to very CLAY, light brown				4.0 Bentonite Pellet Sea	
,	5 -	7.0	S-03	1.0	2 3 4	1.8	1.7	SAND, fine to very black ORGANICS, loose.	fine, trace S brown to lig	SILT, 1" layer of ht brown, moist,		Blank Sci 40 PVC 6.0 Casing #1 Silica	28.5
	7 - 3 - 1	9.0	S-04	2.0	5 4 3 3	1.5	1.5	SAND, fine to very CLAY, brown to lig				8.0' Sand Pa	26.5
	9 -	10.5	S-05	1.0	3334	-	1.4	SAND, fine to very to brown, moist, we	fine, trace S et at 11.0°, lo	SILT, light brown ose.		PVC Scree Match to Sheet 2	25.5 24.5

DRILLING CO.: Parrott Wolff

DRILLER: Mark Eaves

BAKER REP.: R.M. Lewis

BORING NO.: <u>65-MW07</u>


SHEET 1 OF 2

TEST BORING AND WELL CONSTRUCTION RECORD

Baker Environmental, inc.

PROJECT: NAVY CLEAN SITE 65

S.O. NO.: <u>62470-312-0000-09000</u> BORING NO.: <u>65-MW07</u>

DRILLING CO .: Parrott Wolff

DRILLER: Mark Eaves

BAKER REP.: R.M. Lewis

BORING NO.: <u>65-MW07</u> SHEET <u>2 OF 2</u>

PROJECT: NAVY CLEAN SITE 65

S.O. NO.: 62470-312-0000-09000

COORDINATES: EAST 2494852.50

ELEVATION: SURFACE Not surveyed

BORING NO.: 65-SB06

NORTH: 307150.70

RIG: Truckmo	unt CME-7	5				·		,	
	SPLIT SPOON	CASING	AUGERS	CORE BARREL	DATE	PROGRESS (FT)	WEATHER	WATER DEPTH (FT)	TIME
SIZE (DIAM.)	2" OD		41" ID		4/10/95	7.0	Clear, 60°	5.0	16:40
LENGTH	24"		5.0'						
TYPE	S.S.		H.S.						
HAMMER WT.	140								
FALL	STD								
STICK UP									

REMARKS: HNu background = 0.1.

		D	RILLF	RECO	RD			VISUA	L DES	CRIPTI	ON	, ,	
	D E	S O I L	Sample ID Type -	Samp. Rec. (Ft.	SPT Blows Per 0.5'	HNu		Gradation	Color	Consist. or Density	Moisture Content, Organic Content, Plasticity, and Other Observations	S O I L	ELEVA
	P T H	R O C K	No. (N = No Samp.)	and %)	RQD (Ft. & %)		Time	Classification	Color	Hardness	Weathering, Bedding Fracturing, and Other Observations	R O C K	T 0 N
	1 =	1.0	NA.			0.2		(*Sample 65-SB06-00 collected)	Light brown	Loose	Possible fill, damp.		
	2 -	3.0	S-01	2.0 100%	2 2 4 4	0.1		SAND, fine to very fine, trace SILT.			Black streaks, damp.	-	
	4 -	5.0	S-02	1.0 50%	4 4 3 3	0.1		(*Sample 65-SB07-02 collected)			Moist.	-	
	6 -	7.0	S-03	0.2 10%	2 1 1 3	0.1					· Wes as 5.0 .	1	
	8 -							End of Boring at 7.0'.					-
	9 -	1										_	
1	10 -	1									·		

DRILLING CO.Parrott Wolff

DRILLER Mark Eaves

BAKER REP.R.M. Lewis

BORING NO. 65-SB06

PROJECT: NAVY CLEAN SITE 65

S.O. NO.: <u>62470-312-0000-09000</u> BORING NO.: <u>65-SB07</u>

COORDINATES: EAST <u>2494811.94</u> NORTH: <u>307091.49</u>

ELEVATION: SURFACE Not surveyed

RIG: Truckmon	unt CME-7	5				·			
	SPLIT SPOON	CASING	AUGERS	CORE BARREL	DATE	PROGRESS (FT)	WEATHER	WATER DEPTH (FT)	TIME
SIZE (DIAM.)	2" OD		41," ID		4/8/95	9.0	Clear, 60°	7.5	15:40
LENGTH	24"		5.0'						
TYPE	S.S.		H.S.						
HAMMER WT.	140			·					
FALL	STD								
STICK UP									

REMARKS: HNu background = 0.1.

		D	RILLF	RECO	RD			VISUA	L DES	CRIPTI	ON		
DE		S O I L	Sample ID Type - No.	Samp. Rec. (Ft.	SPT Blows Per 0.5'	HNu		Gradation	Color	Consist. or Density	Moisture Content, Organic Content, Plasticity, and Other Observations	S O 1 L	E ~ A
P T H		R O C K	No. (N = No Samp.)	and %)	RQD (Ft. & %)	ppm	Time	Classification	Color	Hardness	Weathering, Bedding Fracturing, and Other Observations	R O C K	T 1 0 N
1	-	1.0				0.1		(*Sample 65-SB07-00 collected) SAND, fine to very fine, trace SILT.	Light brown to brown	Loose	Damp.		
2	-	3.0	S-01	1.8 90%	5 4 4 5	0.1					Little tree roots.	_	
4	ı —	5.0	S-02	2.0 100%	5 7 5 6	0.1		SAND, fine to very fine, little CLAY.	Light brown to orange	Medium Dense	Damp, some mottling.		
6	5 —	7.0	S-03	2.0 100%	4 6 6 7	0.2		(*Sample 65-SB07-03 collected)			Moist.	-	
8	- 3 -	9.0	S-04	2.0 100%	5 6 7 7	0.1		SAND, fine to very fine, trace SILT.	Gray	Medium Dense	Wet at 7.5'.		
د 10	9 -							End of Boring at 9.0' .				_	

DRILLING CO.Parrott Wolff

BAKER REP.R.M. Lewis

DRILLER Mark Eaves

BORING NO. 65-SB07

PROJECT: NAVY CLEAN SITE 65

S.O. NO.: <u>62470-312-0000-09000</u>

COORDINATES: EAST 2494765.10

ELEVATION: SURFACE Not surveyed

BORING NO.: 65-SB08

NORTH: 307111.32

RIG: Truckmon	unt CME-7	5							
	SPLIT SPOON	CASING	AUGERS	CORE BARREL	DATE	PROGRESS (FT)	WEATHER	WATER DEPTH (FT)	TIME
SIZE (DIAM.)	2" OD		41," ID		4/10/95	13.0	Clear, 60°	11.0	8:00
LENGTH	24"		5.0'						
TYPE	S.S.		H.S.						
HAMMER WT.	140								
FALL	STD								
STICK UP									

REMARKS: HNu background = 0.1.

Γ		DI	RILLF	RECO	RD	··· ·		VISUA	L DES	CRIPTI	ON		
<u>「</u> 」	D E	S O I L	Sample ID Type -	Samp. Rec. (Ft.	SPT Blows Per 0.5'	HNu		Gradation	Color	Consist. or Density	Moisture Content, Organic Content, Plasticity, and Other Observations	S 0 1 L	E L E V A
	P T H	R O C K	No. (N = No Samp.)	and %)	RQD (Ft. & %)	ppm	Time	Classification	Color	Hardness	Weathering, Bedding Fracturing, and Other Observations	R O C K	TION
	1 _	1.0						(*Sample 65-SB08-00 collected) SAND, fine to very fine, trace	Dark gray		Damp.	_	
	2 -		S-01	2.0	2 2 3	0.1		SILT.	Light brown	Loose			
	3 -	3.0		100%	3								
	4 -	5.0	S-02	2.0 100%	4 3 4 5	0.1		SAND, fine to very fine, some	Brown				
	5 - 6 -		S-03	2.0	10 8 8	0.1		<u> </u>	Gray	Medium Dense	Stained orange.	<u>-</u>	
	7 - 8 -	7.0	S-04	2.0	10 8 7	0.1		SAND, fine to very fine, and CLAY. (*Sample 65-SB08-04 collected)			Moist.	-	
1	9 -	9.0		100%	9			SAND, fine to very fine, trace	1			-	1
Ĺ	10 -	11.0	S-05	1.8 90%	9 8 9 10	0.1		CLAY.					

DRILLING CO.Parrott Wolff

BAKER REP.R.M. Lewis

DRILLER Mark Eaves

BORING NO. 65-SB08

PROJECT: NAVY CLEAN SITE 65

S.O NO.: <u>62470-312-0000-09000</u> BORING NO:<u>65-SB08</u>

		DRIL	L REC	COR	D		VIS	UAL D	ESCRI	PTION		
D E P	S O I L	Sample ID Type - No.	Samp. Rec. (Ft.	SPT Blows Per 0.5'	HNu		Classification (Grain Size, Principal Constituents, Etc.)	Color	Consist. or Density	Moisture Content, Organic Content, Plasticity, and Other Observations	S O I L	E L E V A
T H	R O C K	(N = No Samp.)	and %)	RQD (Ft. & %)	ppm	Time	Classification (Name, Grain Size, Principal Constituents, Etc.)	Color	Hardness	Weathering, Bedding Fracturing, and Other Observations	R O C K	T I O N
11 — 12 — 13 —	11.0	S-06	2.0 100%	10 9 10 12	0.1		SAND, fine to very fine, trace SILT.	Gray	Medium Dense	Wet at 11.0'. Stained orange.		
14 — 15 — 16 — 17 — 18 — 20 — 21 — 22 — 23 — 24 — 25 — 26 — 27 — 28 —							End of Boring at 13.0'.					
29 <u> </u>											-	

DRILLING CO. Parrott Wolff

BAKER REP.R.M. Lewis

DRILLERMark Eaves

BORING NO. 65-SB08 Sheet 2 of 2

PROJECT: NAVY CLEAN SITE 65

S.O. NO.: 62470-312-0000-09000

COORDINATES: EAST 2495465.18

ELEVATION: SURFACE Not surveyed

BORING NO.: 65-SB09

NORTH: 307575.47

RIG: Truckmo	unt CME-7	5							
	SPLIT SPOON	CASING	AUGERS	CORE BARREL	DATE	PROGRESS (FT)	WEATHER	WATER DEPTH (FT)	TIME
SIZE (DIAM.)	2" OD		41," ID		4/8/95	7.0	Clear, 60°	6.0	14:30
LENGTH	24"		5.0'						
TYPE	S.S.		H.S.						
HAMMER WT.	140								
FALL	STD								
STICK UP								:	

REMARKS: HNu background = 0.1.

		DI	RILL F	RECO	RD			VISUA	L DES	CRIPTI	ON		
	D E	S O I L	Sample ID Type -	Samp. Rec. (Ft.	SPT Blows Per 0.5'	HNu		Gradation	Color	Consist. or Density	Moisture Content, Organic Content, Plasticity, and Other Observations	S O I L	E E V A
	P T H	R O C K	No. (N = No Samp.)	and %)	RQD (Ft. & %)		Time	Classification	Color	Hardness	Weathering, Bedding Fracturing, and Other Observations	R O C K	A T O Z
	1 -	1.0		·		0.1		(*Sample 65-SB09-00 collected) SAND, fine to very fine, trace	Light brown	Medium Dense	Damp.	_	
	2 -	3.0	S-01	2.0 100%	6 11 14 15	0.2		SILT.				-	
	3 - 4 -	5.0	S- 0 2	2.0 100%	12 19 18 10	0.1		(*Sample 65-SB09-02 collected)	Brown	Dense			
	5 -	3.0	S-03	2.0	9 6	·						_	
	7 -	7.0	703	100%	5 7	0.1			Gray	Loose	- Wet at 6.0'.	_	
	8 -	1						End of Boring at 7.0'.				-	
	9 -											-	
L	10 -											_	

DRILLING CO.Parrott Wolff

DRILLER Mark Eaves

BAKER REP.R.M. Lewis

BORING NO. 65-SB09

PROJECT: NAVY CLEAN SITE 65

S.O. NO.: 62470-312-0000-09000

COORDINATES: EAST 2495732.63

ELEVATION: SURFACE Not surveyed

BORING NO.: 65-SB10

NORTH: 307345.10

RIG: Truckmon	unt CME-7	5							
	SPLIT SPOON	CASING	AUGERS	CORE BARREL	DATE	PROGRESS (FT)	WEATHER	WATER DEPTH (FT)	TIME
SIZE (DIAM.)	2" OD		4 <u>1</u> " ID		4/8/95	5.0	Clear, 60°	5.0	10:55
LENGTH	24"		5.0'						
TYPE	S.S.		H.S.						
HAMMER WT.	140								
FALL	STD								
STICK UP									-

REMARKS: HNu background = 0.1.

	D	RILL F	RECO	RD			VISUA	L DES	CRIPTI	ON		
D E	S O I L	Sample ID Type -	Samp. Rec. (Ft.	SPT Blows Per 0.5'	HNu		Gradation	Color	Consist. or Density	Moisture Content, Organic Content, Plasticity, and Other Observations	S O I L	E L E V A
P T H	R O C K	No. (N = No Samp.)	and %)	RQD (Ft. & %)		Time	Classification	Color	Hardness	Weathering, Bedding Fracturing, and Other Observations	R O C K	T I O N
1 .	1.0	NA.		3	0.1		(*Sample 65-SB10-00 collected) SAND, fine to very fine, trace SILT.	Light brown	Loose	Damp.	_	
2 -	3.0	S-01	1.7 85%	3 3 7	0.1		SAND fine to very fine and CLAY (*Sample 65-SB10-01 collected)	Gray			_	
4 -	5.0	S-02	2.0 100%	4 7 11 9	0.1		SAND, fine to very fine, trace SILT.	Gray	Medium Dense	- Wet at 5.0'.	-	
6							End of Boring at 5.0'.					
7 · 8 ·	-										-	
9 .	1						,					
10	1							<u> </u>				

DRILLING CO.Parrott Wolf	D	\mathbf{RILI}	LIN	3 CO	.Parro	tt	Wolff
--------------------------	---	-----------------	-----	------	--------	----	-------

DRILLER Mark Eaves

BAKER REP.R.M. Lewis

BORING NO. 65-SB10

PROJECT: NAVY CLEAN SITE 65

S.O. NO.: <u>62470-312-0000-09000</u>

COORDINATES: EAST 2496067.37

ELEVATION: SURFACE Not surveyed

BORING NO.: 65-SB11

NORTH: 307363.60

RIG: Truckmo	unt CME-7	5							
	SPLIT SPOON	CASING	AUGERS	CORE BARREL	DATE	PROGRESS (FT)	WEATHER	WATER DEPTH (FT)	TIME
SIZE (DIAM.)	2" OD		41," ID		4/8/95	11.0	Overcast, 50°	9.0	10:55
LENGTH	24"		5.0'						
TYPE	S.S.		H.S.						
HAMMER WT.	140								
FALL	STD							·	
STICK UP							***************************************		

REMARKS: HNu background = 0.1.

Ţ		D	RILL F	RECO	RD			VISUA	L DES	CRIPTI	ON		
	D E	S O I L	Sample ID Type - No.	Samp. Rec. (Ft.	SPT Blows Per 0.5'	HNu		Gradation	Color	Consist. or Density	Moisture Content, Organic Content, Plasticity, and Other Observations	S O I L	E L E V A
	P T H	R O C K	(N = No Samp.)	and %)	RQD (Ft. & %)	ppm	Time	Classification	Color	Hardness	Weathering, Bedding Fracturing, and Other Observations	R O C K	T
	1 -	1.0	·			0.2		(*Sample 65-SB11-00 collected) SAND, fine to very fine, trace	Light brown	Medium Dense	Damp.	-	
	2 -	3.0	S-01	2.0 100%	4 7 11 11	0.1		SILT.					
l	3 -	3.0		100%	10							-	
١	4 -	5.0	S-02	2.0 100%	12 18 19	0.1						_	
	5 -	3.0		100%	4							-	
	6 -	7.0	S-03	1.7 85%	6 7 7	0.1		SAND, fine to very fine, and	Light	Medium	Some mottling, moist.	_	
	7	7.0			10			CLAY. (*Sample 65-SB11-04 collected)	gray to gray	Dense			
	8 -	9.0	S-04	2.0 100%	12 15 17	0.1						_	
1	9 -	<u> </u>	S-05	2.0	4 5 7						Wet at 9.0'.	-	
L	10 -	11.0	1	100%	7	0.1		End of Boring at 11.0°.				_	

DRILLING CO.Parrott Wolff

BAKER REP.R.M. Lewis

DRILLER Mark Eaves

BORING NO. 65-SB11

PROJECT: NAVY CLEAN SITE 65

S.O. NO.: <u>62470-312-0000-09000</u>

COORDINATES: EAST 2495271.74

ELEVATION: SURFACE Not surveyed

BORING NO.: 65-SB12

NORTH: 307800.79

RIG: Truckmon	unt CME-7	5							
A+++	SPLIT SPOON	CASING	AUGERS	CORE BARREL	DATE	PROGRESS (FT)	WEATHER	WATER DEPTH (FT)	TIME
SIZE (DIAM.)	2" OD		41" ID		4/17/95	13.0	Clear, 70°	11.0	16:00
LENGTH	24"		5.0'						
TYPE	S.S.		H.S.						
HAMMER WT.	140								
FALL	STD								
STICK UP								-	

REMARKS: HNu background = 0.1.

		DI	RILL F	RECO	RD			VISUA	L DES	CRIPTI	ON		
	D E	S O I L	Sample ID Type -	Samp. Rec. (Ft.	SPT Blows Per 0.5'	HNu		Gradation	Color	Consist. or Density	Moisture Content, Organic Content, Plasticity, and Other Observations	S O I L	ELEVA
	P T H	R O C K	No. (N = No Samp.)	and %)	RQD (Ft. & %)	ppm	Time	Classification	Color	Hardness	Weathering, Bedding Fracturing, and Other Observations	R O C K	T I O N
	1	1.0				0.2		(*Sample 65-SB12-00 collected) SAND, fine to very fine, trace	Gray		(Fill) Concrete and wood fragments, dry.	_	
	2 -		S-01	2.0	3 4 9	0.1		SILT.	Dark brown	Medium Dense	wooding menon, any	- - -	
	3 -	3.0		100%	10					Dense	(Fill) Damp.		
	4 -	5.0	S-02	2.0 100%	21 14 16	0.1						_	
	5 -		S-03	2.0	8 3					Loose	(Fill) Tire and scrap metal.	_	
	7 -	7.0		100%	5 3	0.1							
	8 -		S-04	1.7	2 7 12	0.1		·	Gray	Medium Dense	Moist.		
	9 -	9.0	-	85%	12							-	1
→ □	10 -	11.0	S-05	1.7 85%	6 7 7 8	0.1		(*Sample 65-SB12-05 collected)				_	

n	RI	INC	CO	Parre	1	Wolff
•	1111				.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	AA GIII

DRILLER Mark Eaves

BAKER REP.R.M. Lewis

BORING NO. 65-SB12

PROJECT: NAVY CLEAN SITE 65

S.O NO.: <u>62470-312-0000-09000</u>

BORING NO:65-SB12

		DRIL	L REC	OR	D		VIS	UAL D	ESCRIP	TION		
D E	S O I L	Sample ID Type -	Samp. Rec. (Ft.	SPT Blows Per 0.5'	HNu		Classification (Grain Size, Principal Constituents, Etc.)	Color	Consist. or Density	Moisture Content, Organic Content, Plasticity, and Other Observations	S O I L	E L E V
P T H	R O C K	No. (N = No Samp.)	and %)	RQD (Ft. & %)	ppm	Time	Classification (Name, Grain Size, Principal Constituents, Etc.)	Color	Hardness	Weathering, Bedding Fracturing, and Other Observations	R O C K	T I O N
11 - 12 - 13 -	11.0	S-06	2.0 100%	6 7 6 6	0.1		SAND, fine to very fine, trace SILT.	Gray	Medium Dense	Wet at 11.0'.	-	
14 <u> </u>							End of Boring at 13.0'.				-	
17 <u> </u>	1											\(\)
19 - 20 - 21 -											- - -	
22 - 23 - 24 -	1										-	
25 - 26 - 27 -												
28 -											- - -	
29 -	1										-	

DRILLING CO.Parrott Wolff

BAKER REP.R.M. Lewis

DRILLERMark Eaves

BORING NO. 65-SB12 Sheet 2 of 2

TEST BORING AND WELL CONSTRUCTION RECORD

PROJECT: NAVY CLEAN SITE 65

S.O. NO.: 62470-312-0000-09000

COORDINATES: EAST: 2494851.66

ELEVATION: SURFACE 30.00

BORING NO.: <u>65-DW01</u>

NORTH: 307336.56

TOP OF CASING: 32.07

RIG: Truckmo	unt CME-7	5							
	SPLIT SPOON	CASING	AUGERS	CORE BARREL	DATE	PROGRESS (FT)	WEATHER	WATER DEPTH (FT)	TIME
SIZE (DIAM.)	2" OD	6" ID	4¼" ID		4/10/95	43.0	Clear, 60°	11.0	08:30
LENGTH	24"	10.0'	5.0'		4/18/95	23.0			
TYPE	S.S.	3/16"	H.S.		4/20/95			7.96 msl	
HAMMER WT.	140				4/23/95			9.24 msl	
FALL	STD				8/21/95			8.06 msl	
STICK UP									

REMARKS:

		<u>SA</u> plit Spoo nelby Tu		A =	Auger Wash		WELL INFORMATION	DIAM	ТҮР	E	TOP DEPTH (FT)	BOTTOM DEPTH (FT)
	R = A	ir Rotan		C =	Core Piston	·	Well Casing	2.0"	PVC Threaded		-1.88	56
	U – U		= No Sa	-	riston		Well Screen	2.0"	PVC Slotted		56	66
	epth Ft.)	Sample Type and No.	Samp. Rec. Ft. & %	SPT or RQD	HNu (ppm) Bkgrd	HNu (ppm) Point Source		Descripti	on	Insta	Vell Illation etail	Elevation (msl)
1 -	1.0						(*Sample 65-DW01	-00 collected	1)		Locking, Protective	29.0
2 -	3.0	S-01	1.75 85%	5 6 7 7	0.2	0.2	SAND, fine to very light brown, damp,				Cement/Bentonite Grout	28.0
3 - 4 -	5.0	S-02	1.75 100%	5 3 3 4	0.1	0.1			-		3/16" Steel Casing	27.0 - 26.0
6 -	7.0	S-03	2.0 100%	7 8 10 6	0.2	0.2	Some black staining SAND, fine to very i		AY, gray, damp,		Blank Sch.	25.0 - 24.0
7 - 8 -		5-04	2.0	16 18 12	0.2	0.2	dense. (*Sample 65-DW0)	·			Casing -	23.0
9 -	9.0	S-05	2.0 100%	12 2 2 3 3	0.2	0.2	CLAY, little fine to stained orange, mo stiff.				Match to Sheet 2	21.0

DRILLING CO.: Parrott Wolff

DRILLER: Mark Eaves

BAKER REP.: R.M. Lewis

BORING NO.: 65-DW01

SHEET 1 OF 4

TEST BORING AND WELL CONSTRUCTION RECORD

Baker Environmental, time.

PROJECT: NAVY CLEAN SITE 65

S.O. NO.: <u>62470-312-0000-09000</u> BORING NO.: <u>65-DW01</u>

;	r = 9 R = A	iplit Spoo Shelby Tu Air Rotar Denison	ıbe	A = W = C = P =	Auger Wash Core Piston		<u>DEFINITION</u> SPT = Standard Penetration Te RQD = Rock Quality Designati Lab Class. = USCS (ASTM D-240 Lab Moist. = Moisture Content	est (ASTM on (%) 87) or AAS	SHTO (ASTM	I D-3282)		
De (F	pth t.)	Sample Type and No.	Samp. Rec. (Ft. & %)	SPT or RQD	HNu (ppm) Bkgrd	HNU (ppm) Point Source	Continued from Sheet 1	W	'ell Install Detai		Elevation (msl)	n
-	11.0										19.0	
11	13.0	S-06	1.5 75%	3 5 6	0.2	0.2	SAND, fine to very fine, trace to some CLAY, trace SILT, gray stained orange, wet, medium dense to loose.			-	18.0	
13-	13.0		7370	J				- ###		Cement/Bentonite Grout -	17.0	
14-	15,0							- 1111		- -	16.0	
15-	13.0	S-07	1.0	3 6 5	0.1	0.1				3/16" — Steel	15.0	
17-	17.0		50%	6				- - - -		Casing	13.0	1
18-								- ###		Blank Sch	12.0	
19-								- ###	▼ ###	- 40 PVC Riser –	11.0	
20 - 21 -	20.0	S-08	1.0	3 4						<u>-</u> -	10.0 9.0	
22-	22.0		50%	4	0.1	0.1				_	8.0	
23 –								- ###		· _	7.0	
24 <i>-</i>			Ì					- ###		· -	6.0	
25 –	25.0							- ##		_	5.0	
26 –		s-09	1.5	5 6 9	0.1	0.1	- 2" layer of dark brown SILT.			<u> </u>	4.0	
27 –	27.0		75%	11	-						3.0	
28 –								- - - -			2.0	
29-								- ##		Match to — Sheet 3 —	1.0	ا ۔ ر
30-	30.0		<u> </u>	<u></u>				- ###	###		0.0	

DRILLING CO.: Parrott Wolff

DRILLER: Mark Eaves

BAKER REP.: R.M. Lewis

BORING NO.: <u>65-DW01</u>

SHEET 2 OF 4

Baker Environmental, Inc.

TEST BORING AND WELL CONSTRUCTION RECORD

PROJECT: NAVY CLEAN SITE 65

S.O. NO.: <u>62470-312-0000-09000</u> BORING NO.: <u>65-DW01</u>

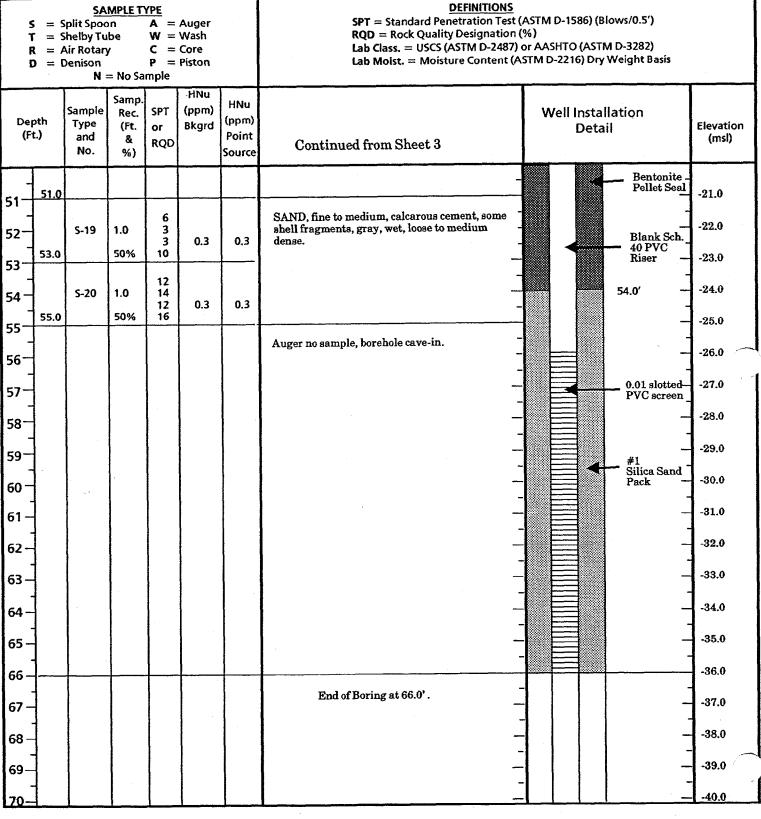
5 1	\ = 5 \ = /	iplit Spoo Shelby Tu Air Rotary Denison	be	A = W = C = P =	Auger Wash Core Piston		DEFINITIONS SPT = Standard Penetration Test RQD = Rock Quality Designation Lab Class. = USCS (ASTM D-2487 Lab Moist. = Moisture Content (t (ASTM n (%) r) or AAS	HTO (AST	M D-3282)	
De _l (F		Sample Type and No.	Samp. Rec. (Ft. & %)	SPT or RQD	HNu (ppm) Bkgrd	HNu (ppm) Point Source	Continued from Sheet 2	W	'ell Insta Deta	· ·	Elevation (msl)
31-	32.0	S-10	1.5 75%	3 5 10 8	0.1	0.1	SAND, fine, trace SILT, gray stained orange, wet, medium dense.			Cement/_ Bentonite Grout	-1.0 -2.0
32- 33-										3/16" — Steel Casing	-3.0
34 - 35 -	35.0			9						Blank Sch.	-4.0 -5.0
37-	37.0	S-11	2.0 100%	10 12 12	0.1	0.1	· .			40 PVC Riser	-6.0 -7.0
38-	39.0	S-12	1.7 85%	12 12 10 9	0.1	0.1	SAND, fine to very fine, and CLAY, gray to gray green, wet.			39.0′ —	-8.0 -9.0
40 -	41.0	S-13	1.9 95%	4 5 6 5	0.1	0.1		- 		Bentonite Pellet Seal	-10.0 -11.0
42 -	43.0	S-14	1.0 50%	3 2 2 3	0.1	0.1	CLAY, little to trace fine SAND, gray green wet, soft.	-		3/16" Steel 42.0 Casing — Ends 42.0'	-12.0 -13.0
44 -	45.0	S-15	2.0	6 5 3 4	0.3	0.3		_		- -	-14.0 -15.0
45 - 46 -	47.0	S-16	2.0	3 3 2 2	0.3	0.3				- -	-16.0
47 -	49.0	S-17	2.0	2 1 4 2	0.3	0.3	SAND, fine to very fine, trace CLAY, trace fine gravel, gray, wet, loose.			- - -	-17.0 -18.0
	50.0	S-18	2.0	3 6 9 16	0.3	0.3		 - 		Match to Sheet 4	-19.0 - -20.0

DRILLING CO.: Parrott Wolffe

DRILLER: Mark Eaves

BAKER REP.: R.M. Lewis

BORING NO.: <u>65-DW01</u>


SHEET 3OF 4

TEST BORING AND WELL CONSTRUCTION RECORD

Baker Environmental, Inc.

PROJECT: NAVY CLEAN SITE 65

S.O. NO.: <u>62470-312-0000-09000</u> BORING NO.: <u>65-DW01</u>

DRILLING CO.: Parrott Wolffe

DRILLER: Mark Eaves

BAKER REP .: R.M. Lewis

BORING NO.: 65-DW01

SHEET 4OF 4

APPENDIX B
SAMPLING SUMMARY

APPENDIX

SAMPLING SUMMARY SITE 65 - ENGINEER AREA DUMP REMEDIAL INVESTIGATION, CTO-0312 MCB, CAMP LEJEUNE, NORTH CAROLINA

Media	Sample ID	Date Shipped	TCL VOA	TCL SVOA	TCL PEST/PCB	TAL Metals	Dissolved Metals	ENG PAR	TSS	ТРН	TOC
Soil	65-SB06-00	4/11/95	X	X	X	Х	NA	-	NA	•	-
	65-SB06-02	4/11/95	X	X	Х	X	NA	•	NA	•	•
	65-SB06	4/11/95	_					X			
	65-SB07-00	4/10/95	X	X	X	X	NA	-	NA	-	-
	65-SB07-00D	4/10/95	X	X	X	X	NA	-	NA	-	-
	65-SB07-04	4/10/95	X	X	X	X	NA	-	NA	-	-
	65-RB-03	4/11/95	X	X	Х	X	NA	-	NA	-	-
	65-SB08-00	4/11/95	X	X	X	X	NA	-	NA	-	-
	65-SB08-04	4/11/95	X	X	Х	X	NA	•	NA	•	-
	65-SB09-00	4/10/95	X	X	X	X	NA	-	NA	-	-
	65-SB09-02	4/10/95	X	X	X	X	NA	_	NA	-	-
	65-SB10-00	4/10/95	X	X	X	X	NA	-	NA	-	-
	65-SB10-01	4/10/95	Х	X	X	X	NA	-	NA	-	-
	65-SB11-00	4/10/95	X	X	X	X	NA	-	NA	-	-
	65-SB11-04	4/10/95	X	X	X	X	NA	-	NA	-	-
	65-SB11-04D	4/10/95	Х	Х	X	X	NA	-	NA	-	-
	65-SB12-00	4/18/95	X	X	X	X	NA	-	NA	-	-
	65-SB12-05	4/18/95	X	X	X	X	NA		NA		-
	65-TP01	5/9/95	X	X	Х	X	NA	+	NA	Х	-
	65-TP02	5/9/95	Х	X	X	X	NA	•	NA	X	-
	65-TP04	5/9/95	X	X	X	X	NA		NA	X	-

NA = Not an Applicable Analysis for the Media

^{- =} Not Analyzed

APPENDIX (CONTINUED)

SAMPLING SUMMARY SITE 65 - ENGINEER AREA DUMP REMEDIAL INVESTIGATION, CTO-0312 MCB, CAMP LEJEUNE, NORTH CAROLINA

Media	Sample ID	Date Shipped	TCL VOA	TCL SVOA	TCL PEST/PCB	TAL Metals	Dissolved Metals	ENG PAR	TSS	ТРН	TOC
Soil	65-TP05	5/9/95	X	X	X	X	NA		NA	X	-
(Continued)	65-TP06	5/9/95	X	X	X	Х	NA	-	NA	X	-
	65-TP07	5/9/95	X	X	X	X	NA	-	NA	X	-
	65-DW01-00	4/10/95	X	X	X	X	NA	-	NA	-	-
	65-DW01-04	4/10/95	X	X	X	X	NA	-	NA .	-	-
	65-DW01-04D	4/10/95	X	X	X	X	NA	-	NA	-	-
	65-DW02 - 00	4/10/95	X	X	X	X	NA	•	NA	-	-
	65-DW02-02	4/10/95	X	X	X	X	NA	-	NA	-	•
	65-RB-01	4/10/95	X	X	X	X	NA	-	NA	-	-
	65-TB-01	4/10/95	X	•	-	7	NA	-	NA	-	-
	65-TB-02	4/11/95	X		-		NA	•	NA	-	-
	65-DW04-00	4/6/95	X	X	X	X	NA	-	NA	-	-
	65-DW04 - 05	4/6/95	X	X	X	X	NA	-	NA	-	-
	65-MW05-00	4/5/95	X	X	X	X	NA	•	NA	-	-
	65-MW05-04	4/5/95	X	X	X	X	NA	-	NA	-	-
	65-MW06-00	4/10/95	X	X	X	X	NA	-	NA	_	-
	65-MW06-00D	4/10/95	X	X	X	X	NA	-	NA	-	-
	65-MW06-03	4/10/95	X	X	X	X	NA	•	NA	•	+
	65-MW07-00	4/5/95	X	X	X	X	NA		NA	-	
	65-MW07-05	4/5/95	X	X	X	X	NA	-	NA	•	

NA = Not an Applicable Analysis for the Media

- = Not Analyzed

APPENDIX (CONTINUED)

SAMPLING SUMMARY SITE 65 - ENGINEER AREA DUMP REMEDIAL INVESTIGATION, CTO-0312 MCB, CAMP LEJEUNE, NORTH CAROLINA

Media	Sample ID	Date Shipped	TCL VOA	TCL SVOA	TCL PEST/PCB	TAL Metals	Dissolved Metals	ENG PAR	TSS	ТРН	тос
Groundwater	65-MW01-01	5/9/95	X	X	X	X	-	-	X	-	
]	65-MW01-01D	5/9/95	X	X	X	Х	-	•	X	-	-
	65-MW01F-01	5/9/95	-	•	-	-	Х	-	-	-	•
	65-MW01F-01D	5/9/95	-	-		-	X	-	-	•	-
	65-DW01-01	5/9/95	Х	Х	X	X	-	•	Х	-	-
1	65-MW02-01	5/10/95	X	X	Х	X	-	· -	X	-	-
	65-DW02-01	5/10/95	X	X	X	X	-	-	X	-	•
	65-DW02-02	5/20/95	X	X	X	X	-	-	Х	-	-
	65-MW03-01	5/10/95	X	X	X	Х	-	-	Х	-	-
li.	65-MW04-01	5/17/95	X	X	Х	Х	-	-	X	-	-
Ì	65-DW04-01	5/17/95	Х	X	X	X	-	-	X	-	-
	65-MW05-01	5/10/95	X	X	X	Х	-	-	X	-	-
	65-MW06-01	5/10/95	X	X	X	X	-	-	X	-	•
	65-MW07-01	5/10/95	X	X	X	X	-	Х	X	-	-
Surface Water	65-SW04-01	5/16/95	X	X	X	X	•	-	-	-	-
	65-SW04-01D	5/16/95	X	X	Х	X		-	-	-	-
	65-TB-03	5/16/95	X				•	-	-	•	•
	65-SW05-01	5/17/95	X	X	X	Х	-		-	-	-
	65-RB-23	5/17/95	X	X	Х	X	-	-	-	-	-

NA = Not an Applicable Analysis for the Media

- = Not Analyzed

APPENDIX (CONTINUED)

SAMPLING SUMMARY SITE 65 - ENGINEER AREA DUMP REMEDIAL INVESTIGATION, CTO-0312 MCB, CAMP LEJEUNE, NORTH CAROLINA

Media	Sample ID	Date Shipped	TCL VOA	TCL SVOA	TCL PEST/PCB	TAL Metals	Dissolved Metals	ENG PAR	ISS	ТРН	тос
Sediment	65-SD04-06	5/17/95	X	X	X	X	NA	X	NA	X	X
	65-SD04-06D	5/17/95	X	Х	X	X	NA	-	NA	Х	-
	65-SD04-612	5/17/95	X	X	X	X	NA	-	NA	X	X
	65-SD05-06	5/18/95	X	X	X	X	NA	X	NA	Х	X
	65-SD05-612	5/18/95	X	X	X	X	NA	*	NA	X	X
Fish	65-FS04-BG01W	6/6/95	X	X	X	Х	NA	NA	NA	-	-
	65-FS04-BG01WMS	6/6/95	X	X	X	X	NA	NA	NA	-	-
	65-FS04-BG01WMD	6/6/95	X	X	X	Х	NA	NA	NA	•	
	65-FS04-BG01WD	6/6/95	X	X	X	X	NA	NA	NA		-
	65-FS04-BG01F	6/6/95	X	X	X	X	NA	NA	NA	-	-
	65-FS04-RS01W	6/6/95	X	X	X	X	NA	NA	NA	-	-
	65-FS05-LB01W	6/6/95	X	X	Х	Х	NA	NA	NA	-	-
	65-FS05-LB01F	6/6/95	X	X	X	Х	NA	NA	NA	-	
	65-FS05-RS01W	6/6/95	X	X	X	X	NA	NA	NA	-	_
	65-FS05-RS01F	6/6/95	X	X	Х	X	NA	NA	NA	-	-
	65-FS05-BG01W	6/6/95	X	X	X	X	NA	NA	NA	-	
L	65-FS05-BG01F	6/6/95	X	X	Х	X	NA	NA	NA		_

NA = Not an Applicable Analysis for the Media

- = Not Analyzed

APPENDIX C TEST PIT RECORDS Baker Baker Environmental,

TEST PIT RECORD

MCB Camp Lejeune, O. U. #9, Sites 65 and 73 Remedial Investigations 0312 TEST PIT NO.: PROJECT: 65TP-06 CTO NO.: 0312 2,494,756,91 NORTH: COORDINATES: EAST:

SURFACE ELEVATION: WEATHER:

WATER LEVEL: DATE:

1	REMARKS:	70	et P	vit c	Pimens.	ions: length 10 ppt Nigth 3. Step Depth	10 test					
	HNU = Pho OVA = Org					DEFINITIONS LEL/O ₂ (Results) = Readings Recorded by LEL/O ₂ Meter						
	Depth (ft.)	Samp. Type and No.	CHN		LEL/O ₂ (Results)	Visual Description (Principal Constituents, Gradation, Color, Moisture Content, Organic Content, Plasticity, and Other Observations)	Elevation 32.0 Feet					
Background HNU = 0.Z LEL/Oz=0.0/11%	1	Grab Sample	0.7	No Reabore	round	SAND v.f. light brown, loose, dry to	-30 C feeT					
	3	65.7906 was collected at bottem	0.3	,		test pit.	- 28.0 feet					
	' -	of test Pit ≈10'.	0.2	· ,		Probable all Notive Soils	- 26.0 feet					
`	7 =		0.2									
	8 — 9 —		0.2	٠.			- 24.0 feet					
	11		0.0			End of Test Pit	zz.o fee t					
	12											
	14											

CONTRACTOR: Porcett

BAKER REP.: TEST PIT NO.: 657P.06

Voll, Thomas

EQUIPMENT:

15

16

17

18

19

20

D

SHEET 1 OF 1

TEST PIT RECORD

MCB Camp Lejeune, O. U. #9, Sites 65 and 73 Remedial Investigations PROJECT: TEST PIT NO.: CTO NO.: 0312 2,494,813,74 COORDINATES: EAST: NORTH: 9.2 feet WATER LEVEL: 32.5 feet SURFACE ELEVATION:

Sunshine, @ 85°F, Humid WEATHER: DATE: width 3.5 feet Test P.t Dimensions: **REMARKS:**

_									
						DEFINITIONS	1		
- 1	HNU = Photoionization Detector Read					LEL/O ₂ (Results) = Readings Recorded by LEL/O ₂ Meter	1		
		VA = Organic Vapor Analyzer Reading Depth Samp. (HNU or LEL/O ₂ (ft.) Type OVA (ppm) (Results) and Field Head-							
- 1	Depth				Vienal Lacomption				
1	(ft.)			(Results)	ults) (Principal Constituents, Gradation, Color, Moisture Content, Organic				
					Content, Plasticity, and Other Observations)	Elevation			
l		No.		space		Contoni, I have by, and outer occur, and have	32.5 feet		
	1 -	G _{RAB}	0.4	No Read		SAND if, light brown to brown loose dry			
		د ۱۰۰		HECVE.	Buckground	SAND of light brown to brown loose dry			
%	2	SAMPLE	C. 5			Probable Fill Material	- 30.5 feet		
	3 _	65.TPOI was	0.6			SAND. V. F. brown, loose, moist, frequent			
		Collected car bottom	0.4			Roots from trees.	- 28.5 feet		
	· · · · · · · · · · · · · · · · · · ·	of test		1	l	Probable Notive Soils	- 40,5 fee!		
	5	P.7 ≈9.21.	0.3						
	6		0.4			SAND, V.f. blown, loose, domp.	-26.5 feet		
	7		0.4			Probable Notive soils			
			0,3			, · · · · · · · · · · · · · · · · · · ·			
	8					·	-24.5 feet		
	9 📑		୍ଦ୍ର ଧ	,			,		
	10					End of Test Pit	22.0 feet		
	10								
	11 🗂					WATER at 9.2 feet / -			
						SAME AS ALOVE, WET			
	12								
	13		•						
	4		.	1		-			
	14					·	1		
	_	i	l ·			-	l .		
	15						[
						-	1		
	16				1				
	17		1		1	-	1 1		
	17					_			
	18]		
	~ -]		
	19		· ·						
		1				_			
	20			1	1	<u> </u>			
1		1	1	ŧ	l	[·	1 1		

Background HNv = 0.3 LEL/02 = 0.0/219

CONTRACTOR: Parcett Wolff

EQUIPMENT:

Ford 555 P

BAKER REP .: Thomas Voll;

TEST PIT NO .: 65 TP-01

SHEET 1 OF 1

Baker

TEST PIT RECORD

PROJECT:

MCB Camp Lejeune, O. U. #9, Sites 65 and 73 Remedial Investigations

CTO NO.:

0312

TEST PIT NO.: 2.494, 826, 46

65 TP-02

COORDINATES: EAST:

SURFACE ELEVATION:

NORTH: WATER LEVEL: 307,130.95

WEATHER:

Sunshine

REMARKS:

Dimensions:

OVA = Organic Vapor Analyzer Reading

HNU = Photoionization Detector Reading

DEFINITIONS LEL/O₂ (Results) = Readings Recorded by LEL/O₂ Meter

		L Comm					
	Depth	Samp.	(HN		LEL/O ₂	Visual Description	
i	(ft.)	Туре		(ppm)	(Results)	(Principal Constituents, Gradation, Color, Moisture Content, Organic	Elevation
		and	Field	Head-		Content, Plasticity, and Other Observations)	j
		No.		space		· · · · · · · · · · · · · · · · · · ·	27.5 feet
Background			^ -2	11 -	1.	SAND, V. f. light blows to blown, loose, damp	
HNU=0.3	1 7	Grab	0.3	No Rec	dings	A S. V. I. Hypri blows it shows, rock, damp.	1
ביח = מאש		5			buckground	// · · · · · · · · · · · · · · · · · ·	
LEL/02 - CO/2196	2	Sample	0, 3		and a diente	Probable Fill moterial Scrap Pieces of Metal-	25.5 feet
		65TP-02					13.5 teel
		Vas	2.4			SAND, V.f. brown, losse, damp	
· ·	3 —	collected					
		near botton	0.5			│ <u>ੵ</u> ੵ	
	4	of Test				Probable Native soils -	23.5 fee Z
	L	Fit = 8.0'.	C.4			· · · · · · · · · · · · · · · · · · ·	
	5	~ 8.0.	J. 1			No foreign objects observed.	
	6 7		0.5			SAME AS ALOVE, moist	215 feet
	, ⊢		0.4			-	
	7 —					SAME AS Above, trace silt, truce clay,	1
			0.4		wet at	any ms maye, care site,	
•	8	ŀ	* . ,		8 feet	meist to wet	
		ļ			υτεει		-19.0 feet
	9		l .			End of test Fit	
		İ					
	10 🗍					Clay, gray, soft, damp -	
			1			1, 1, 1, 20, 0, vamp	ŀ
	11	1]	
* *	⁺⁺					·	
,		1					
·	12	Ī				·	
						<u> </u>	
	13				[
		1	l				
	14	1		ł			
	15		1	l			
	'' -]		l			1 1
	I., ⊢			1			
	16		1				
	-	1					
	17	1	1				1
				ŀ		<u>-</u>	
	18						
	1 7	1	1	1	1	_	1
•	19				1] [
	I - T	1		1		,	
****	120 -		1	1	1] [
,	20		1	1			1
	LL_	J	<u> </u>	<u> </u>			
	CONTRACT	ror: _f	Pollot	+ W	0144	BAKER REP .: Thomas Vall / James	ec Culp
							•

EQUIPMENT:

TEST PIT NO .: 65TROZ

SHEET 1 OF 1

Baker
Baker Environmental

TEST PIT RECORD

PROJECT:

MCB Camp Lejeune, O. U. #9, Sites 65 and 73 Remedial Investigations

CTO NO.:

0312

TEST PIT NO.:

307, 327. 86

COORDINATES: EAST:

2,494, 754.54 32.8 feet

NORTH: WATER LEVEL:

NΑ

WEATHER:

SURFACE ELEVATION: @850F Humid

REMARKS:

Sunshine

DATE:

Depth

10 feet.

Background HNV = C.Z
LEL/02 = 00/21%

ſ								DEFINITIONS	:
				toionizati				LEL/O ₂ (Results) = Readings Recorded by LEL/O ₂ Meter	į
				anic Vapo	or Analy		LEL/O ₂		
١		epth (ft.)		Samp. Type		(ppm)	(Results)	Visual Description	771
	,	(16.)		and	Field	Head-	(ICOSULU)	(Principal Constituents, Gradation, Color, Moisture Content, Organic	Elevation
				No.	1 1010	space		Content, Plasticity, and Other Observations)	32.8 feet
١				Grab		No	Recidings	SAND. N.f. light brown, loose, dry -	
	1			Sample	0.4	Above		-	
		4		657P-07 Was	0.8	LIPCAG	Background	Se scrop Metal -	
ار	2	\dashv		collected at bottom	0,5	1		Metal Pine	30.8 feet
ا ۶		4		of test	0.4			Metal Pipe 5 inch O.D.	
١	3	\dashv		Pt≈10.	anin' s			2 -	1
		\dashv			0.4				28.8 feet
	4	-				1		Probable F.11 Muterial	28.8 fee 7
	5	_			0.6]
	,					l		Sciap Metal]
	6				0.5	ļ		Sciap Metal Rebar	-26.8 feet
								* {/]
	7				0.5				4
1					0,4			Scrop Metal - Ve	1 1
	8				-, ,	brown V	V. light	coble wires	24.8 feet
		4			0.4	domp	10075		1 1
	9	_				,,,		Probable Fill Soils	1
	••	-			04		(Probable Fill So, 15	22.8 Feet
	10	_				1	`	End of Test Pit	1
	11	-				ł		End of test Pit]
	11			l			1	·	
	12	_						<u>_</u>	
						l		-	4 1
	13				l	ŀ		<u> </u>	4
		_			1			-	-
	14				İ			-	-
		_	1					-	1
	15		ł			l		· · · · · · · · · · · · · · · · · · ·	1 !
	16	_			1			·	1
	16	_	1	l			1]
	17		1					<u> </u>	
	l		1		İ			-	_
	18	_]					-	-
		_	1	Į				•	-
	19		1					-	1
		_	-						-
	20	_	1				1	-	1
	L		<u> </u>	<u></u>	<u> </u>	1		111.71	<i>c</i> / ^

CONTRACTOR: Parratt Wolff

BAKERREP .: Thomas Vall . / James Culf

EQUIPMENT:

Ford 555 D TEST PIT NO.: 65TP-07

SHEET I OF I

TEST PIT RECORD

MCB Camp Lejeune, O. U. #9, Sites 65 and 73 Remedial Investigations PROJECT: TEST PIT NO.: CTO NO.: 0312 2,494,791,92 307,197.75 NORTH: COORDINATES: EAST: 9.5 feet 28.1 feet WATER LEVEL: SURFACE ELEVATION: 5/7/95 DATE: WEATHER: 10 feet 7.5 feet 35 feet. **REMARKS:**

			••	DEFINITIONS VELOCO CONTROL Properties Properties Described by LEL (C. Motor	
	oionization Det mic Vapor Ana		-	LEL/O ₂ (Results) = Readings Recorded by LEL/O ₂ Meter	
Depth (ft.)	Samp. H	MLdr (ppm)	LEL/O ₂ (Results)	Visual Description (Principal Constituents, Gradation, Color, Moisture Content, Organic Content, Plasticity, and Other Observations)	Elevation
2	No. Grab Sample 65TROS Nos Collected near the bettom 0,4 0,4 0,4 0,4 0,4 0,4 0,4 0,4 0,4 0,4	SAND V	to dum	Scrap Metal — Metal cans — Metal Cons — Metal Pipe — Metal Pipe — Mood - 2 inch by 4 inch by 5 feet long — Scrap Metal — Moved Cons — Motal Cons — Motal Cons — Motal Cons — Motal Cons — End of Test Pit — End of Test Pit —	- 26.1 for Prokub F.II Materia

Thomas Vell:

BAKER REP.:

TEST PIT NO.: 65TP-05

Parrott

555 D

Ford

CONTRACTOR: .

EQUIPMENT:

Homes Culp

SHEET 1 OF 1

Background HNU= 0.3 LEL/0z= 0.0/2,%

Baker

TEST PIT RECORD

MCB Camp Lejeune, O. U. #9. Sites 65 and 73 Remedial Investigations PROJECT: 65TR-04 TEST PIT NO.: CTO NO.: 0312 307222.91 2494821.00 NORTH: COORDINATES: EAST: 9 feet 29.2 feet WATER LEVEL: SURFACE ELEVATION: 5/7/95 @ 95°F Humid DATE: Sunny @ 95°F Humid Test Pit Dimensions: Length WEATHER: Depth 10 feet 7 feet width **REMARKS:**

DOWA - Organic Vapor Analyzer Reading Depth Samp. HNU or Chest (Results) (Results) (Principal Constituents, Gradation, Color, Moisture Content, Organic Content, Plasticity, and Other Observations) 1	HNU = Photoionization Detector Reading OVA = Organic Vapor Analyzer Reading Depth Samp. HNU or (ft.) Type OVA (ppm) (ft.) Field Head-No. Field Head-No. Sanple 65 Th. orl 2
DOWA = Organic Vapor Analyzer Reading Dopth Samp. HNU or LEIJO2 (Results) (Results) (Results) (Principal Constituents, Gradation, Color, Moisture Content, Organic Content, Plasticity, and Other Observations) 1	OVA = Organic Vapor Analyzer Reading Depth Samp. HNU or (Results) Type OVA (ppm) And Field Head-No. Space 1 Sample 0.3 SAND V. F. light blown, loose, diy 1 Letton of test of tes
Depth (ft.) Type OVA (ppm) and No. Field Head No. Pield Head No. Pield Head Space (Principal Constituents, Gradation, Color, Moisture Content, Organic Content, Plasticity, and Other Observations) 2	Depth (ft.) Type OVA (ppm) (Results) Field Head- No. Gral Sample 0.3 Sample
No. space Condition Condi	No. space No. Space Collecting, masterly, and other constitutions 20 Gral
2 SAND VF light Scrap Metal Scrap Meta	1 Sample 0.3 65TP-OH Was 6STP-OH Was collected 3 SAND V. F. light brown, loose, dry 4 Rt 210' 5 C.2 Scrop Metal Scrop Metal Scrop Metal Wood Wood Scrop Metal
	8 - C.3 SAND, v.f. grayish black, locase, maiss to damp. 0.3 SAND, v.f. grayish black, locase, maiss to damp. C.3 SAND, v.f. grayish black, locase, wet Sand v.f. grayish black, locase, wet End of test = t

EQUIPMENT:

Ford 555 D TEST PIT NO .: 6 5 T P - 04

SHEET 1 OF 1

APPENDIX D CHAIN OF CUSTODY RECORDS

	Jake The Co					_	_) zamac
TECHNOLO CORPORA	DGY	AI CHA	NALYSI IN OF (IS R∟⊿UE CUSTODY	ST AND RECOR	D* Rei	ference Document ge 1 of <u>/</u>	J. 32526
			海井 侧形	化 數學 等是			to: 5 Baker Envir	Daniel to
T 11: 11:	No. 1 070-03/2			the control of the co			420 ROUSEY RO	L
Sample Leam Memb	ers 2		Lab De	estination <u>° </u>			Bldg-3	
Profit Center I	No. 3		Lal	Contact		·	Coraopolis, Pa	15108
Project Mana	iger4 ///ac Petr	occia Proje	ct Contac	t/Phone 12	State Water	Report t	10:10 Mal Petroca	! 1a
Purchase Order I	No. 6		arrier/W	/aybill No <u>. ¹³ </u>			Correspolis, Pa Correspolis, Pa co: 10 Mai Petrocco	
Required Report D	ate 11 14-28 d	Bys .		CONTAI				
Sample ¹⁴ Number	Sample ¹⁵ Description/Type	Collected	Type	7Sample ¹⁸ ∣ Volume ser	pre- ¹⁹ vative	Requested Testing ²⁰ Program	Condition on ²¹ Receipt	Disposal ²² Record No.
65-MW07A-05	Soil	4/4/95 1458	Glass			e organics		aura wegana.
65- MOVO7A-00		4/4/95/410	Glass			Organics Lytals	FOR	
65-MW054-04	Soil	4/5/95 1025	6lass		910	L Organics L Metals	USEV	
65-MW05A-00	Soil	4/5/50922	Glass	2	Ve	i Organics		
	U		(4) (4) (4) (4) (4) (4) (4) (4) (4) (4)	ě v	ę į			
			1	8 5				
		G.						
Special Instruction	ns: ²³	20						
Possible Hazard I	dentification: 24	ritant 🔲 🗼 Rois	son B 🗐	Unknown 🖵	Sam Retui	ple Disposal: ²⁵ rn to Client 🔟 🗡 Disp	posal by Lab 🔟 🛚 Archiv	/e (mos.
Turnaroynd Time Normal 🖾 Rush	Required: ²⁶		G	C Level: 27		ject Specific (specify):		
1. Relinquished by (Signature/Affiliation)	28 James S. Cli	Date Time	=: 4-5-4 =: 1420		Received I	oy 28)	Date: Time	
2. Relinquished by (Signature/Affiliation)		Date Time	3 :	2.	Received I	oy. 1	Date Time	
3. Relinquished by (Signature/Affiliation)		Date Time		3. (Sig	Received L))	Date: Time	
Comments: 29			1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1					

INTERNA TECHNO CORPOR	THOMAL	00 # <u>65 0</u> A Cha	NALYSIS REC IN OF CUSTO	QUEST A IDY REC	ND Refe	rence Document e 1 of <u>/</u>	No. 32524
Project Name, Sample Team Mem	/No. 1				- 93 Bill to	5 Baker Envir 420 Rouser	Pand
Profit Center	r No. ³		l ah Contac	₊ 9		Bidg 3 Coran polis fr	d 15108
Project Mar	nager 4 MAL Petr	occia_ Proje	ct Contact/Phone	9 ¹²	Report to	10 Mal Petroes	212
· ·	r No. ⁶ Date ¹¹ / <i>4-28 DA</i>		Carrier/Waybill No			×	
Sample ¹⁴ Number	Sample ¹⁵ Description/Type	Date/Time ¹⁶ Collected	Container ¹⁷ Sample ¹ Type Volume		Requested Testing ²⁰ Program	Condition on ²¹ Receipt	Disposal ²² Record No.
65-DW04-05	SOIL	4-5-95 153B	Glass		TCL ORGANICS TAL METALS		
65-DW04-00	SOIL	4-5-95	Glass		TOL Organics TAL METALS	USE O	AB NLY
1							
t .							
						USE O	NIV.
						Admini Admini Mandani Admini	***************************************
	Identification: 24	ritant 🖳 Pois	son B 🖳 Unknow	કું કું કું કું કું /n □	Sample Disposal: ²⁵ Return to Client Dispo	sal by Lab 🖵 🗘 Archive	3 (mos.)
Turnaround Time Normal 🛂 Rush		*	QC Level:	27 .□	Project Specific (specify):	LEVEL D	
1. Relinquished by (Signature/Affiliation)	y 28 Janus 1/	Date Time	3:	1. Receiv	ved by ²⁸	Date: Time:	
2. Relinquished by (Signature/Affiliation)	y //	Date Time		2. Recei	/ed by filiation)	Date: Time:	
3. Relinquished by (Signature/Affiliation)	y	Date Time		3. Receiv	/ed by filiation)	Date: Time:	
Comments: 29							

TERNATIO	NAL
TECHNOLOG	
CORPORATION	

Baker COC # 100005

		Baker	100	#	62003			
TECHNOLO		A A	NALYSI	5 R	UEST: A		erence Document	325253
CORPORA		CHA	in of C	USTO	DY REC		ge 1 of	. 14 .: **
Project Name/	No. 1 CTO-312	Samp	les Shipme	ent Date	7 4-1	0-95 Bill t	50:5 Baker Ent 420 Rouser	uronmental
ample Team Memb							Bldg3	- Kd 5
Profit Center	No 3	\mathcal{D}_{n}	Lab	Contact	9*		Coraspoles	Pa 15108 C
Project Mana	ager ⁴ Mal Petro	occia Proje	ct Contact	/Phone	12	Report t	0:10 Mal Petro	<u>ce ia</u>
Purchase Order	_		Carrier/Wa					ny sa
Required Report D)ate	· · · · · · · · · · · · · · · · · · ·	ONE	CONT	AINER	PER LINE		
Sample ¹⁴ Number	Sample ¹⁵ Description/Type	Date/Time 16 Collected	Container ¹⁷				Condition on ²¹ Receipt	Disposal ²² Record No.
65-RB-01	WATER	4-8-95	Glass PLASTIC	. 4	HCL HNO3	TEL ORGANICS, TALMETALS	and the second sections of the second sections of the second section second section second section second section second second section second second section second secon	Yellow
65-RB-02	Water	4- 8 0-95 0720	Glassic		HCL HNO3	THE ORGANICS	HOLD FOR ANAL	/s/s
65-MW06A-00 MG	MSD SOIL	4-8-95	Glas			TAL METALS	U3E U	copy
65-MW06A-00D	Soil	08 5	Glass	الكست		TAL METALS		
65-0W02-00	SOIL	0830	Glass			TOL Organics TOL HETALS		
65-DW02-02	Soil	4-9-95 0848	Glass			TEL Organics TAL METALS	Lugeo	ď
65-DWOY-04	SOIL	4-10-95 0852	Glass			TEL Organics THE METALS		e bac
65-0W01-040	V SOIL	4-10:450	Elass &	a _{se}		TEL Organics TAL METALS		01
Special Instruction	ons: ²³ <i>FPH (80)</i>	5) / DIL 4	Grease	(9071)		14 DAY TURK	()54	m
Possible Hazard Non-hazard 🔲 🕞 F	Identification: ²⁴ Iammable 📮 🛚 Skin Irr	itant 🖳 Poi	son B 📮 -	Unknow		Sample Disposal: ²⁵ Return to Client _1 Disp	posal by Lab 🔀 Árchiv	e(mos.)
Turnaround Time			QC I.⊡	Level: 2	.7 Ⅲ. □ I	Project Specific (specify):	LEVEL D	
1. Relinquished by (Signature/Affiliation)		Dat Tim			1. Recei	ved by ²⁸ (filiation)	Date: Time:	
2. Relinquished by (Signature/Affiliation)		Dat Tim	e: <u>/</u>		2. Recei	ved by (filiation)	Date: Time:	
3. Relinquished by (Signature/Affiliation)		Dat Tim	e:	<u>iz</u>	3. Recei	ved by (ffiliation)	Date: Time:	
Comments: 29	· · · · · · · · · · · · · · · · · · ·							

BAKER COC # 65003

INTERNATIONAL TECHNOLOGY CORPORATION

ANALYSIS REQUEST AND CHAIN OF CUSTODY RECORD (cont.)*

neierence Document 170.~		· Jac.	<u> </u>
Pageof	•	* * * * *	

Project Name <u>C70 - 3/2</u> Project No. <u>62470 - 3/2</u>

Samples Shipment Date 4-10-95

			ONE	CONTA	AINER	PER LINE		
Sample 14 Number	Sample 15 Description/Type	Date/Time ¹⁶ Collected	Container ¹⁷ Type	Sample 18 Volume	Pre-19 servative	Requested Testing 20 Program	Condition on 21 Receipt	Disposal 22 Record No.
65-8811-04	Soic	4.8.95	GLASS			TCL VOLS, TCL Organics, TAL META	•	1
65-SB11-040	SOLL	4-8-95	Glass	dig.	٠	TEL Organics TAL METALS		
65-SBII-00	SOIL	4-8-95	Glass		<i>*</i>	TEL Organics TAL METALS	USE (Q.N.L.Y
5-5811-04	5014	4-8-95	Glass			THE METALS		
5-SB10-00	SOIL	4-8-95	Class	1	A .	TOL OPPANIES THE METALS	·	
5-5310-01	Son	4-8-95	Glass			TELL OFGANICS TAL METALS		
5-8809-00	Sail	4-8-95	Glass			TAL METALS		
5-5309-02	Sore	1430	Glass			TEL Organies	. JS=1	
5-5807-00	SOIL 1	4-8-95	Glass	1	J. Parker	TCL Organies TAL METALS		
5-5867-000	SOIL	1540	Glass	*		TEL Organies THE METALS		
5. SB07-04	SOIL	4-8-95	Glass		. .	TCL Organics TAL METALS		
5-18-01	water	4-10-95	Glass			TEL VOLS.	=(0)(2)	
5-MW06A-03	Soil	4-8-95	Glass			TAL METALS	USE (
5-MW06A-00	SOIL	4-8-95	Glass			TEL ORGANICS TAL METALS		
					g de	proving the same of the same o		
		W 14			1			
		3/1						
								1

TERNATIONAL ANALYSIS R. JUEST AND F
TECHNOLOGY
CORPORATION CHAIN OF CUSTODY RECORD*

Reference	Document	325255
Page 1, of	1	

							- 0 . 9	
	No. 1 CTO - 3/2		医精液 的声				5 Baker Enver	General
Sample Team Memb	ers ²		Lab De	stination	8 % % % % #		RIAND	
Profit Center l	No. ³		Lab	Contact	9.5		Coraspolis, Fo	2.15108
Project Mana	ager 4 Mai Petroco	<i>!/a</i> Proje	ct Contact	/Phone	12	Penort to	10 Mai Petroc	
Purchase Order	No. 6		Carrier/Wa	aybill No.	ģ13. Š	r report to		
Required Report D	Date ¹¹							, , , , , , , , , , , , , , , , , , ,
		9 16				PER LINE		
Sample ¹⁴ Number	Sample ¹⁵ Description/Type	Date/Time. 16 Collected	Container / Type	Sample 19 Volume	Pre 19 servative	Requested Testing ²⁰ Program	Condition on ²¹ Receipt	Disposal ²² Record No.
65-5B06-00	SOIL	4-10-95	Glass	7 THE T		TCL Organics TAL METALS	sommer addition. Nationals. Since	
65-5B06-02	Soil	4-10-95	Glass			Tel Organies	FOR	
65-5806	Soil	4-10-95	GLASS PLASTIC			Microbial Count, TKI	, UJE U	
					ta fi, av i i	Units, Particle Sice	erburg hydrometer	
65-RB-03	Water	4-10-95	Plass Plastic		HCL HNO3	TCL Organics, TAC METALS		//\ I=0
65-5B08-04	Soil	4-11-856	Glass			TCL Organics, TAL PLETALS		
65-5808-00	SOIL	4-11-95	Glass		, i	TRL Organics TAL HETAIS		
65-RB-04	Water	4-11-95	Glass Plastic		HCL HNO3	TEL Organics THE Metals	- HOLD FOR AN	ALSES
Special Instructio	ins: ²³							
Possible Hazard I Non-hazard 🖵 🛚 Fl		tant 🖳 Pois	son B 📮	Unknowr		Sample Disposal: ²⁵ Return to Client 🖳 💎 Dispo	osal by Lab 🖳 🗡 Archive	e (mos.)
Turnaround Time Normal Rush		, A.	QC I.⊒	Level: ²		Project Specific (specify):	LEVEL D	
1. Relinquished by (Signature/Affiliation)	28 Janus (Date Time	3: 4-11- 3: 163		1. Recei	ved by 28 filiation)	Date: Time:	
2. Relinquished by (Signature/Affiliation)	0	0 Date	9;		2. Recei	ved by ffiliation)	Date: Time:	
3. Relinquished by (Signature/Affiliation)		Date Time	9:		3. Recei	ved by	Date: Time:	
Comments: ²⁹								

	INTERNATIONAL TECHNOLOGY
لت	CORPORATION

Baker UOC # 65005 ANALYSIS REQUEST AND CHAIN OF CUSTODY RECORD*

Reference Document No.	32526
Page 1 of/_	

Project Name/	No. 1 CTO-3/2	Samı	oles Shipm	ent Date	7 4-18	-95 Bill to	5 Baher Envie 420 Rouser K Blag3 Cornopolis,	onmental
	oers <u>2</u>				92		420 ROUSER K	
Profit Center	No. 3		Lab	Contact	9		Cornopoles,	Pa 15108
Project Mana	ager ⁴ Mac Petro	occ/a_ Proje	ect Contac	t/Phone	12	D	10 Mc Petro	na ia
Purchase Order	No. ⁶		Carrier/W	avbill No.	13 5	Heport to:	- 1110C 12710C	: 4,10
Required Report D				i v sa				
) 	74.6					PER LINE		
Sample ¹⁴ Number	Sample ¹⁵ Description/Type	Date/Time ¹⁶ Collected	Container ¹ Type	Sample 18 Volume	Pre- ¹⁹ servative	Program	Condition on ²¹ Receipt	Disposal ²² Record No.
65-5B12-05	Soil	(1622)	Glass			TEL Organics, TAL METALS		
65-SB12-00	Soil	4/17/95	Glass			,,	FURL	
							woe w	
)					
							LGEO	

Special Instruction	ons: 23		.					
Possible Hazard Non-hazard 🗀 🛚 F		ritant 📮 🛮 Poi	son B 🛄	- Unknow	n 🔟	Sample Disposal: ²⁵ Return to Client 🔲 💎 Dispo	sal by Lab Archive	e (mos.
Turnaround Time Normal Rush	e Required: ²⁶ □ j	26 ·	Q(l	C Level: 2	7 	Project Specific (specify):	LEVELD	
1. Relinquished by (Signature/Affiliation)	James C	Dat US Tim	ce: <u>4/-/8</u> ne: / <i>50</i>	7-45 V)		ved by ²⁸	Date: Time:	
2. Relinquished by (Signature/Affiliation)		Dat Tim	e: ne:		2. Recei	ved by ffiliation)	Date: Time:	
3. Relinquished by (Signature/Affiliation)		Dat			3. Recei	ved by ffiliation)	Date: Time:	
Comments: 29								

TERNAT. TECHNOLO CORPORAL	OAKER C IONAL DGY TION	ä A	OOG NALYSI IN OF C			ND R ORD* P	eference Documo age 1 of <u>a</u>	ent). 3253 3 6
Project Name/I	No. 1 CTO-3/2	Sam	oles Shipme	ent Date	7 5-9	<i>1-95</i> Bi	11 to:5 Baker En	
Sample Team Member	ers 2		Lab De	stination	8		420 ROUSE	RRd. Bldg3
Profit Center I	No. ³		Lab	Contact	9%		- Cor aco pare	15108
Project Mana	nger 4 Mal Petroci	1a Proje	ect Contact	/Phone	12	Penor	t to: 10 Mal Ret	rollia
	No. 6 62470 -312		Carrier/W	aybill No	13 × 🧃	, incholu		
Required Report D	ate_ 11		拉罗一直黑	F to B	AINER	PER LINE		
Sample ¹⁴ Number	Sample ¹⁵ Description/Type	Date/Time 16	Container 17 Type	Sample ¹⁸ Volume	Pre- ¹⁹ servative	Requested Testing ² Program	Condition on 21 Receipt	Disposal ²² Record No.
65-MWOIA-OIMS		1500 5-8-95	Glass		HN03 HCL	TEL Organies, TAL METALS, TSS	anna parah.	
65-MWOIAFOIMS		5-8-95	1		HN03	DISSOLVED Metal	(s FUL	
65-MWOIA-01MS		1500			HNOS	The Organics, TAL	USE	UNLY
65-MWOIAF-DIMS		5			HN03	DISSOLVED MET	ALS	
65-MW0/A-01D					HN03	THE METALS, TILL DEGANILS, TSS		
65-MWOIAF-015)		HN03	DISSOUED METAL	5	ANIV
65-MWSIA-01			5		HN03	TAL METALS, TSS TU. Organics		
65-MWOIAF-01	4	*	₩ 🔻		HN03	DISSOLVED HET	ALS	
Special Instructio	ns: ²³		9		多子 (A)			
Possible Hazard I Non-hazard 🖵 🛚 Fl		itant 🖳 Poi	son B 💷	Unknowr		Sample Disposal: ²⁵ Return to Client 🗐 🌐 🗅	Disposal by Lab 🔼 🔼	rchive(mos.)
Turnaround Time Normal Rush			QC 1.	Level: ²	7 . 	Project Specific (specif	y): LEVEL D	
1. Relinquished by (Signature/Affiliation)		Dat Tim	ie: 5-9-	95	1. Recei	ived by ²⁸ Iffiliation))ate: ime:
2. Relinquished by (Signature/Affiliation)	7.7	Dat Tim			2. Recel	ived by (filiation)	· · · · · · · · · · · · · · · · · · ·	Jate: ime:
3. Relinquished by (Signature/Affiliation)		Dat Tim			3. Recei	ived by (filiation)	•	Pate: ime:
Comments: 29	•							

BAKER UNC# 65006

INTERNATIONAL TECHNOLOGY CORPORATION

ANALYSIS REQUEST AND CHAIN OF CUSTODY RECORD (cont.)*

Project Name C70-3/2

Project No. <u>62470-3/2</u>

Reference Document No.30 325336 Page 2 of 2

Samples Shipment Date <u>5-9-95</u>

Sample 14 Number	Sample 15 Description/Type	Date/Time 16 Collected	Container 17	Sample 18 Volume	Pre-19 servative	Requested Testing 20 Program	Condition on 21 Receipt	Disposal 22 Record No.
65-TP01	SOIL	5-7-95	Glass			TOI DEGRINICS, THE		necord 140,
65-TP02	SOIL	5-8-95	coh			METALS, TPH (8013 TEL Organics, THE METALS, TPH (8015		
25-TP04	SOIL	5-7-95)			(USE	DMEY
5-TP05	(5-7-95						
5-TP06	ζ	5-8-95				(
5-TP07	V	5-7-95	A			*		
5-MWOLB-01	Water	5-8-95	Glass PLASTIC		HN03 HCL	TCHOFGANICS, TAL		/ (-)
F DWH- OF C	Water				N.			
					. /			
							ED D	
					/			
						,		4.4.5
							USE	
				9				. Sag. 1

MACA SHEM

Quanterra

Environmental
Services

5815 Middlebrook Pike Knoxville, Tennessee 37921

Baker COL # 13020 65008 ANALYSIS REQUEST AND CHAIN OF CUSTODY RECORD*

Reference Document No. 2470 Page 1 of _/

(615) 588-6401	है है है है है है है है है है है है है ह	1 age 1 et/	
Project Name/No. 1070-3/2	Samples Shipment Date 75-16-95	Bill to: 5 Balde	a Environmental
Sample Team Members 2	Lab Destination 8	420	Couser Rd Bld3
Profit Center No. 3	Lab Contact. 92	_Coru	00005, 10 15708
Project Manager 4 Mal Petroceia	Project Contact/Phone: 12	Report to: 10 Mal	Padra sais
Purchase Order No. 6 62470-3/2	Carrier/Waybill No. 13	report to: 77/200	remoceia
Required Report Date 11			
	ONE CONTAINER PER LINE		
그 그 그 그 가는 가는 그를 가는 살을 다 하나요 한 말을	4 G 6 6 6 17 4 5 6 19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		

				00141	WIIAP U	I THE FOLING		
Sample ¹⁴ Number	Sample ¹⁵ Description/Type	Date/Time	Container 7	Sample ¹ Volume	8 Pre 19 servative	Requested Testing ²⁰ Program	Condition on ²¹ Receipt	Disposal ²² Record No.
65-SW404-01	Water	5-15-95	GLASTIC	# 14 4 4 .	HNO3 HCL	THE Organics THE METHES		
65 SW404-01b	Water	5-15-95	CLASS PLASTIC		HNO3 HCI	TRE Organics TRE Metals	FOR	
65-SW04-01MS	Water	5-15-95	GLASS PLASTIC	11	HNO3	The organics	USEU	
5-SW04-01M	so Water	5-15-95	GLASS = AASTIC	19 (19 c)	HNO3	THE Organics		
65-TB-03	Water	5-16-95	Glass	60 to	the			
	Service Control	Control of the contro	500 (d) 1544 1880 14	comission of the second of the	/ Barry print h	3 (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)		
w W		SEO FO (TOTE CARBO (SAS)		* * * * * * * * * * * * * * * * * * *	s Vitto Series Ocottes			
		in to	01 01 01 01 01 01 01 01 01 01 01 01 01 0	6 to 18	10000000000000000000000000000000000000		4.	
	* b		≥ ′.	3, 5, 3	3 75 6 6 9			

Special Instructions: 23 702	VOLS REQUI	RE 14-DAY TU	20 s		
Possible Hazard Identification: Non-hazard Flammable	24	Roison B 1 Unknow	Sample Disposa	[: 25 → Disposal by Lab	Archive (mos.)
Turnaround Time Required; 26 Normal A. Rush J	A COLOR	San San San San San San San San San San	7 6 9 6 Project Specific (s	specify): /=V=/ >	
1. Relinquished by 28 (Signature/Affiliation)	3 (lula)	Date: 5-1/2-95 ?	1 Received by 28 (Sgraume/Affiliation)		Date: Time:
2. Relinquished by (Signature/Affiliation)	7	Date: E & S	2. Received by (Signature/Affiliation)	e grander of the second	Date: Time:
3. Relinquished by (Signature/Affiliation)		Date: \$	3. Received by (Signature/Affiliation)	3 A 3	Date: Time:
Comments: 29	. de				

Baker () #65009 ANALYSIS REQUEST AND Reference Document No. CHAIN OF CUSTODY RECORD* Page 1 of _/_ 5815 Middlebrook Pike Knoxville, Tennessee 37921 (615) 588-6401 Samples Shipment Date 725-12-95 Bill to: 5 Baker Environmental 420 Louser Rd BLD 3 Coraopolis, Pa Project Name/No. 1 CTO-3/2 E Lab Destination 8 Sample Team Members 2 Lab Contact 9 Profit Center No. 3 Project Manager Mal Petrocela Project Contact/Phone 12 Report to: 10 Mac Purchase Order No. 6 62470 - 3/2 Carrier/Waybill No. 13 Required Report Date 11 ONE CONTAINER Container¹ Condition on 21 Date/Time 16 Requested Testing 20 Disposal ²² Sample 15 Sample 18 Sample 14 Record No. Volume Receipt Collected Type servative Program Number Description/Type TAL METALS, TPH(8015) (0910) GLASS 65-5004-612 5-16-95 SOIL TCL ORGANICS TAL METALS, TPH (8015), (0915) 65-5004-06 SOIL 5-16-95 TEL Organies, Partick Size TACMETALS, TPH(8415), 65-5004-060 SOIL TCC Organics TAL METALS, TPH/8015) 65-5004-06 MS/MSD SOIL TU Organics 5-16-95 TCL Organies, HCL GLASS WATER 65-MW04A-01 TALMETALS, TSS HUDR (1030) PIASTIC TCL Organics 5-16-95 65-DW04-01 TAL HETALS, TSS (1705) TEL Organics 5-16-95 65-SW05-01 (1335) TAC Metals TCL Organics 5-16-95 65 RB-23 TAL METALS IS NOT 7-DAY TURN TPH (8015) Special Instructions: 23 Sample Disposal: 25 Possible Hazard Identification: 246 Skin Irritant 15 Poison B 15 Unknown 25 Return to Client 15 Disposal by Lab Archive (mos. Non-hazard __ Flammable 1 Project Specific (specify): QC Level: 27 Turnaround Time Required: 26 LEVEL D Normal M Rush __ 1. Received by 28 Date: # Date: 1. Relinquished by 21 (Signature / Affiliation) Time:5 Time: (Signature/Affiliation) 2. Received by Date: Date: 2. Relinquished by (Signature/Affiliation) Time: (Signature/Affiliation) Time: Date: 3. Relinquished (by Date: ₫ 3. Received by (Signature/Affiliation) (Signature/Affiliation)

Time:

Time:

Comments: 29

INTERNATI TECHNOLO CORPORAT	GY		NALYS		WEST !	ND Re ORD* Pa	ference Document ge 1 of/	No. 32546
Project Name/N	Vo. 1 070-312	Samr	oles Shipm	ent Date	7 5-	<i>18-95</i> Bill	to: 5 Baker Env	ilonne ital
Sample Team Membe							420 Rouset	- Rd. Bldg3 Fd. 15108
Profit Center N	۱۰. <u>3</u>		Lat	Contact	9		COPA & PACES,	15108
Project Mana	ger4 Mai Petro	ccia_ Proje	ect Contac	t/Phone	12	Penort	to: 10 Mal Petr	MANA
Purchase Order N	No. 6 62470-31.	2(Carrier/W	aybill No	13	neporc	60. // (at / + 7/	υεενα
Required Report Da						PER LINE		
Sample ¹⁴ Number	Sample ¹⁵ Description/Type	Date/Time 16 Collected	Container ¹ Type			Requested Testing ²⁰ Program	Receipt	Disposal ²² Record No.
65-5005-612	Soel	5-17-95	Glass	S		TEL Vols, Semiv	PALLEDIS TOA	
65-5105-06	Sach	(1145)	- Glass			TCC VOLS, SEMILY	S, Pest Page	AZ
125 31100 00	304	5-//-9	, (4.5)			THE METALS, 1PH	(8015) TOA GM	Ser Ser Comment
)					
		<u> </u>						<u> </u>
	· · · · · · · · · · · · · · · · · · ·			1		,		
Special Instruction	ns: ²³ TPH (8015)	15 not	RUN	25 14	-DAY	TURN		
Possible Hazard Id	lentification: 24	***************************************				Sample Disposal: ²⁵		
· · · · · · · · · · · · · · · · · · ·	_	itant 🖳 Pois		C Level: 2		Return to Client 🖳 🏻 Dis	posal by Lab Archiv	e (mos.)
Turnaround Time Normal Rush	J		1.0	a. 3 () 1		Project Specific (specify)	LEVELD	
1. Relinquished by 2 (Signature/Affiliation)	James S. Cu	Dat.	e: <u>5-/8</u> e: /7		1. Recei	ved by 28	Date:	
2. Relinguished by/	man. Co	Dat			2. Recei		Time: Date:	
(Signature/Affiliation)		Tim	е:		(Signature/A	ffiliation)	Time:	
3. Relinquished by (Signature/Affiliation)		Dati Tim	<u></u>		3. Recei	ffiliation)	Date: Time:	
Comments: 29							11110.	

ANALYSIS A JUEST AND CHAIN OF CUSTODY RECORD*

Reference	Document) .	325	468
Page 1 of	1.			7

CORPORA	TION	CHE	MIN OF C	,0310D	REU	URD ' 996		
Project Name/	No. 1 670-312	Sam	ples Shipm	ent Date 7	5-20	- <i>9.5</i> Bill to:	5 Baken Env.	connectal
							420 Rouses Coraopolis	2 Rd Bldgs
Profit Center	No. 3		Lab	Contact 9			-coraopeces	15108
Project Man	ager4 Mal Pet	roccia. Proj	ect Contac	t/Phone 12	2 -	Report to:	10 Mai Pot	roccia
Purchase Order	No. 6 62470-30	12	Carrier/W	aybill No. 13	3	incport to.		
Required Report [Date_11	· · · · · · · · · · · · · · · · · · ·	ONE	CONTAI	NER	PER LINE		
Sample ¹⁴ Number	Sample ¹⁵ Description/Type	Date/Time 16 Collected	Container Type	Sample ¹⁸ Volume se		Requested Testing ²⁰ Program	Condition on ²¹ Receipt	Disposal ²² Record No.
65-DW02-01	Water	(1600)	Glass PLASTIC		HCL HNO3	TCL Organics TAI MICHAIS		
00 700A 01		3-78-73	, choire				FOR	AB
			1				Jak 4	
							·	
								ì
7				1.7	32			
Special Instruction	nne 23			a e gree	M. Maria	and another s		
Possible Hazard	Identification: 24	ritant 🖳 Po	ison B 밀	Unknown		Sample Disposal: ²⁵ Return to Client Dispo	sal by Lab 🏋 🗘 Archiv	/e (mos
Turnaround Time Normal 🖳 Rush	e Required: ²⁶		QC 1. <u></u>	C Level: ²⁷	III. 🖳	Project Specific (specify):		
1. Relinquished by (Signature/Affiliation)	128 anus S	Dai Tim	te: <u>5 - 3</u> ne: 690	0-95 1	1. Recei	ved by ²⁸ ffiliation)	Date Time	.,
2. Relinquished by Date: (Signature/Affiliation) Time:					2. Recei Signature/Al	ved by ffiliation)	Date Time	
3. Relinquished by (Signature/Affiliation)	<i>!</i>	. Da Tin	te: : ne: .	<u> </u>	3. Recei Signature/Al	ved by filiation)	Date Time	
Comments: 29								

APPENDIX E WELL DEVELOPMENT RECORDS

LEGEND FOR FIELD WELL DEVELOPMENT RECORDS

PVC - Measurement taken from the top of the well stick-up, top of the PVC casing.

NA - Not Applicable BG - Background

BZ - Breathing Zone

PS - Point Source

NTU - Nephelometric Turbidity Units

V - Visual Turbidity Estimate

aker		
Baker Environme	ental, inc	

PROJECT: MCB Camp Le	geune, O.U. #9, Sites 65 and	13 Remedial Investi	gations
CTO NO.:0312	WELL NO.:	65-MW01	(exist
DATE: 5/6/95			
GEOLOGIST/ENGINEER:	Karl A. The	mas	·

TIME START 1203			DEVEI	LOPMI	ENT DATA			
TIME FINISH / 249	TIME	CUMULATIVE VOLUME (gallons)	pН	TEMP (°C)	SPEC. COND. (µmhos/cm)	TEMP (°C)	Eh	TURBIDITY
INITIAL WATER LEVEL (FT) 11. 98' (PVC)	1132	SURGED 4.5	WEU 6.74	,	PVC SLUG 876	- 10 202	MINUTE	5 >200
TOTAL WELL DEPTH (TD)	1209	10.5	6.73	20.4	868	19.4		>200
21.4'(pvc)	1213	16.5	6.74	19.8	849	/8.8		>200
WELL DIAMETER (INCHES) 2"	1217	24.0	6.74	19.5	638	18.4		7200 V
CALCULATED WELL VOLUME	1221	31.5	6.75	20.7	863	20.0		7200
~1.5 gal BOREHOLE DIAMETER	1225	39.0	6.76	20.6	860	19.9		127
(INCHES) ~ /0 "	1229	46.5	6.76	19.5	831	18.9	Λ	~100 V
BOREHOLE VOLUME ~ 38.45al	1233	54.0	6.76	19.8	815	18.3		13.9
AMOUNT OF WATER ADDED DURING DRILLING	1238	61.5	7.00	20.3	827	18.4		15.4
DEVELOPMENT METHOD	1242	69.0	6.80	19.3	8/3	18.7		15.2
Pump: Surge	1246	76.5	6.82	19.4	818	18.3		8.6
PUMP TYPE Centrifugal	1249	84.0	4-5	7	ABLE -	-		8.0
TOTAL TIME (A)								~~
46 min								
AVERAGE FLOW (GPM)(B)			<u> </u>					
1.83 gpm								
TOTAL ESTIMATED WITHDRAWAL AXB- 84 gal								
HNU/OVA READING 36=0.0 PS= 5.0 82=0.0 (Well openim								

Baker	
Baker Environmental,	Inc

PROJECT: <u>MCB Camp Lejeu</u>	ine, O.U. #9, Sites 65 and 73 Remedial Investigations
CTO NO.: 0312	WELL NO .: 65 - MW02 (1
DATE: 4/20/95	
GEOLOGIST/ENGINEER:	Karl A. Thomas

time start 0920			DEVEI	LOPMI	ENT DATA			
TIME FINISH	TIME	CUMULATIVE VOLUME (gallons)	pН	TEMP (°C)	SPEC. COND. (µmhos/cm)	TEMP (°C)	Eh	TURBIDITY [NTU]
initial water level (FT) 6.64' (PVC)	0923	3	6.61	19.4	339	20.2		>200
TOTAL WELL DEPTH (TD)	0928	9	6.37	16.0	292	16.5		7200
15.10' (pvc)	0934	15	6.29	16.1	263	17.0		7200 M
WELL DIAMETER (INCHES) 2"	0941	21	6.29	16.4	259	16.9		79
CALCULATED WELL VOLUME	0949	27	6.29	16.9	251	17.0		18.9
BOREHOLE DIAMETER	0956	33	6.31	16.9	263	17.2		9.6
(INCHES)	1002	39	6.37	16.6	260	17.0	•	7.4
BOREHOLE VOLUME ~ 34.5 gal	1010	45	6.27	16.9	246	17.0		5.3
AMOUNT OF WATER ADDED DURING DRILLING		<u></u>						<u></u>
DEVELOPMENT METHOD Pump : Surge								
PUMP TYPE Centrifugal								
TOTAL TIME (A) 50 min								
AVERAGE FLOW (GPM)(B) 0.9 gpm								
TOTAL ESTIMATED WITHDRAWAL AXB= 45 gal	• 08	27 Becan slug f any sediment TD Final	devel or 10 ts, w	opmen minu wheed	test down the	ing we wel	U with bottom	₽vc
HNU/OVA READING PS= 0.0	· San hos	as install	= 13.	ted to	re pump h	uses -	- LP ch	anged -

Baker	
Baker Environmental, Inc	

PROJECT: MCB Camp Lejeune, O.I.	J. #9, Sites 65 and 73 Remedial Investigations
CTO NO.: <u>0312</u>	WELL NO .: 65-MW03
DATE: 5/5/95	

GEOLOGIST/ENGINEER: Karl A. Thomas

TIME START	DEVELOPMENT DATA							
TIME FINISH	TIME	CUMULATIVE VOLUME	рН	ТЕМР	SPEC. COND.	ТЕМР	Eh	TURBIDITY
1115	IIIVIL	(gallons)	pr.	(°C)	(µmhos/cm)	(°C)		CNTAI
INITIAL WATER LEVEL (FT)	1841	3.0	6.25	19.5	265	19.2		>>>200
12.62'(Pv4) TOTAL WELL DEPTH (TD)	1842	6.0	6.27	19.6	230	19.6		>> 200
22.30'(PVc)	1843	9.0	6.26	19.0	269	18.7		>200
WELL DIAMETER (INCHES)	1845	12.0	6.26	18.7	278	18.6		>200
CALCULATED WELL VOLUME 1.6 gal (Page)	1948	16.5	6.28	18.9	284	18.5	11	149
BOREHOLE DIAMETER	1850	21.0	6.28	18.6	282	18,7		>200
(INCHES)	1851	25.5	6.27	18.4	278	18.3		>200
BOREHOLE VOLUME ~ 39.5 gal	1852	30,0	6.28	18.1	282	18.1		>200
AMOUNT OF WATER ADDED DURING DRILLING	1854	34.5	6.28	18.6	277	18.6		>200
Ø gal	1957	40.5	6.30	18.2	280	18.2		154
Pump! Surge	1858	46,5	6.29	19.3	277	18.3		142
PUMP TYPE	1903	58.5	6.31	19.3	262	18.1		86
Centri fugal TOTAL TIME (A)	1907	70.5	6.35	18.6	272	17.9		19.2
35 min	1911	82.5	6.41	18.2	270	17.9		22.6
average flow (GPM)(B) 2.70 gpm	1915		6.34	19.6	265	19.0		2.8
TOTAL ESTIMATED WITHDRAWAL AXB= 94.5 gal	1820-	30 Surged	' Well	wita	PVC Slug	,		
HNU/OVA READING BG=0.0 PS=0.3 BZ=0.0 (et well open	top al	5						

Baker
Baker Environmental

PROJECT:	MCB Camp Le	jeune, O.U. #9, Sites 65 and	73 Remedial Investigations
CTO NO.:	0312	WELL NO.:	65-MW04
DATE	4/25/95		

GEOLOGIST/ENGINEER: _____ Tom P. Valli

TIME START			DEVE	LOPMI	ENT DATA				
0904	ALL	DATA PUN	TS N	ST PX	CESENTED,	FOL	CIMPI	LET	E RECOR
TIME FINISH	TIME	CUMULATIVE VOLUME (gallons)	pH	TEMP (°C)	SPEC. COND. (µmhos/cm)	TEMP (°C)	Eh		TURBIDITY CAMA
INITIAL WATER LEVEL (FT)	0904	3	4.88	15.5	71.5	15.7	1	-	>260
TOTAL WELL DEPTH (TD)	0916	9	3.97	15.4	68.4	16.6			>200
24.60'(PVL)	0927	15	4.19	14.6	64.9	16.0		\exists	>200
WELL DIAMETER (INCHES)	0939	21	4,41	15.5	64.7	15.9		1	> 200
CALCULATED WELL VOLUME	0952	27	4.63	16.2	65.9	16.4		\int	>200
1.70 gal Borehole diameter	1002	30	4.31	15.5	66.7	16.5		I	152
(INCHES) -10"	1026	39	4.64	16.6	67.4	16.6			172
borehole volume ~40.8 gal	1039	45	4.27	17.0	66.3	16.7			118
AMOUNT OF WATER ADDED	1102	54	3.97	16.5	66.2	16.8			91
DEVELOPMENT METHOD	1106	57	4.23	15.9	65.7	16.1			88
Pump! Surge	1114	63	4,79	15.8	66./	16.2			63
PUMP TYPE Watevra	1/30	69	4.96	16.2	66.2	16.4			52.5
TOTAL TIME (A)	1144	75	4.97	16.1	66.3	16.5			48.8
170 min	1149	78	4.98	16.4	66.4	16.6			45.9
average flow (gpm)(b) 0.48 gpm	1154	81	4.99	17.5	66.6	17.1	J		44.5
TOTAL ESTIMATED WITHDRAWAL AXB= 8 gal INU/OVA READING	wat the	evra's ac well. the	tion evefo devel	while re to loped	pumping e Put de with the	Servi lug Cent	es to fised	, s ,-4;	iurge L pump

Baker
Baker Environmental, mc

PROJECT: MC	B Camp Lejeune, O.U. #9, Sites 65 and	73 Remedial Investigations
CTO NO.:031	2 WELL NO.:	65-MW05

DATE: 5/5/95

GEOLOGIST/ENGINEER: Karl A. Thomas

TIME START	AUL " BECI	DATA PAI	(TE A	CT 2	NT DATA PRESENTED 104 BOOK : C	, FIR 70 312	CIMPLE, VIC. TE.	5TE p. 78-
TIME FINISH 1721	TIME	CUMULATIVE VOLUME (gallons)	рН	TEMP (°C)	SPEC. COND. (µmhos/cm)	TEMP (°C)	Eh	TURBIDITY ENTUR
INITIAL WATER LEVEL (FT)	1610	5	5.85	19.3	221	18.2		>>200
TOTAL WELL DEPTH (TD)	1616	15	5.98	18.0	240	17.8		>260
24.91' (PVC)	1622	25	5.99	18.0	245	17.9		7200
WELL DIAMETER (INCHES)	1631	35	6.03	18.0	243	17.9		195
CALCULATED WELL VOLUME	1638	45	6.01	17.9	244	18.3		81
2.3 gal Pamp BOREHOLE DIAMETER	1645	55	6.11	18.2	245	17.4		97
(INCHES)	1053	65	6.06	18.1	245	18.0		61
BOREHOLE VOLUME ~ 56.3 gal	1656	70	6.06	18.1	240	18.2	\	27
AMOUNT OF WATER ADDED DURING DRILLING	1700	75	4-5	7	ABL	E		24
20 gal	1703	80						26
Pany: Surge	1706	85						21
PUMP TYPE	1710	90						20
Centrifugal TOTAL TIME (A)	1714	15						18.4
73 min	1718	100						12.9
AVERAGE FLOW (GPM)(B) 1.44 g pm	1721	105		+				7.6
TOTAL ESTIMATED WITHDRAWAL AXB= 105 gal	Duri	in develop in across	oment ff bot most	tom) of t	ed jutahe lown to to he well s	e from he we orcen.	the wa U botten	nter m-
HNU/OVA READING BG=0.1 PS= 2.5 B7=0.1 (well opening)	2w +							

Baker
Baker Environmental, inc

FIELD WELL DEVELOPMENT RECORD

PROJECT: MCB Camp Lejeune, O.	U. #9. Sites 65 and 73 Remedial Investigation	S
CTO NO.:0312	WELL NO.: 65-MW06	
DATE: 4/25/95		

Tom P. Valli

TIME START	T							
1330 reading	ALL				ent data Cese <i>nt</i> ed ,	FOR C	MAETE	MELL
1230 3		OCP SEC TP	V's Fil	SLD LO	4 BOOK : CTO	315	VAL. T.	0. 83-85
TIME FINISH	TIME	CUMULATIVE VOLUME (gallons)	рН	TEMP (°C)	SPEC. COND. (µmhos/cm)	TEMP (°C)	Eh	TURBIDITY
INITIAL WATER LEVEL (FT) 7.50' (PVL)	1330	5	5.44	16.4	183.2	16.4	1	>200
TOTAL WELL DEPTH (TD)	1345	15	5.44	16.2	171.0	15.9		> 200
21.38 (PVC)	1400	25	5.44	16.1	166.8	16.0		>200
WELL DIAMETER (INCHES)	1415	35	5.49	16.3	161.7	16.1		>200
CALCULATED WELL VOLUME	1429	45	5.47	16.2	157.1	16.2		>200
2.36 gal BOREHOLE DIAMETER	1440	<i>55</i>	5.50	16.3	156.6	16.4		>200
(INCHES)	1452	65	5.48	16.4	156.0	16.6		>200
BOREHOLE VOLUME ∼56.6 gal	1505	75	5.47	16.6	156.1	16.4		>200
AMOUNT OF WATER ADDED DURING DRILLING	1520	85	5.44	16.9	155.5	16.6		192
DEVELOPMENT METHOD	1529	95	5.44	16.9	155.7	16.6		>200
Pump	1536	105	5.49	16.6	157.7	16.7		> 200
PUMP TYPE Waterra	1544	115	5,50	16.4	156.1	16.6		>206
TOTAL TIME (A)	1553	125	5.50	16.6	154.1	16.5		>200
153 min	1559	135	5.51	16.8	155,7	16.8	/ \	200
O.91 gpm	1603	140	5.52	17.0	156.7	16.8	/	200
TOTAL ESTIMATED WITHDRAWAL AXB- 140 gal HNU/OVA READING PS=0.0	The dexi	waterra pi se through to its desi TURB never	shout gred got	SErve the a motion	is the pur duratial of . This m - below i	pose the ag be	of a su developm the hea tu.	nge but son why_

GEOLOGIST/ENGINEER:

Baker
Baker Environmental, Inc.

PROJECT: MCB Camp Lejeur	ne, O.U. #9, Sites 65 and 73 Remedial Investigations
CTO NO.: <u>0312</u>	WELL NO.: 65-MW07
DATE: 5/6/95	
GEOLOGIST/ENGINEER:	Karl A Thomas

TIME START 0952		DEVELOPMENT DATA							
TIME FINISH	TIME	CUMULATIVE VOLUME (gallons)	рН	TEMP (°C)	SPEC, COND. (µmhos/cm)	TEMP (°C)	Eh	TURBIDITY	
INITIAL WATER LEVEL (FT)	0956	8	5.78	17.9	227	17.8		>> Z00	
TOTAL WELL DEPTH (TD)	0959	12	5.84	17.8	243	F7.9		>> 200	
24.91' (PVC)	1002	18	5.98	17.8	242	17.9		>200	
WELL DIAMETER (INCHES)	1006	26	5.89	17.2	240	17.6		>208	
CALCULATED WELL VOLUME	1010	34	5.08	17.8	243	17.9		173 M >200 V	
2.1gal (Pump) BOREHOLE DIAMETER	1014	42	5.92	17.1	240	17.4	<u> </u>	145	
(INCHES)	1018	50	5.81	17.5	236	17.7		>200	
BOREHOLE VOLUME ~ 49.6 Gal	1022	58	ER +	ene-	DUMPED SAMPLE			81	
AMOUNT OF WATER ADDED	1027	66	5.91	17.7	231	17.7		17./	
DURING DRILLING -25 gal	1031	74	5.91	17.9	241	17.7		6.5	
Pump : Surge	1035	82	4- 5	7	ABL	E+		8.9	
PUMP TYPE Centrifugal	<u></u>			/					
TOTAL TIME (A)									
43 min									
AVERAGE FLOW (GPM)(B)				·					
TOTAL ESTIMATED WITHDRAWAL AXB= 82 gal	092	5-33 Pe	umped urged	25 well	gallona of with PVC	inot slug	allation	water	
HNU/OVA READING BY=0.2 PS=0.2 BZ=0.2 (Athorite	vc)								

Baker	

Baker									
Baker Environmental, Inc.	OJECT:	MCB Cam	p Lejeu	ne, O.U	. #9, Sites 65 a	and 73 F	temedial In	vestigation	S
СТ	ONO.:								
DA	ΛΤΕ:	5/6/95	-						
GE	OLOGI	ST/ENGINEE	R:	Ka	MA. T	hom	a.s		
		oumping ant							-
TIME START (After par	king)				ENT DATA			· · · · · · · · · · · · · · · · · · ·	7
1513									
TIME FINISH	TD C	CUMULATIVE	Ī	ТЕМР	SPEC, COND.	ТЕМР			1
1725	TIME	VOLUME (gallons)	pН	(°C)	(µmhos/cm)	(°C)	Eh	TURBIDITY ENTER	
INITIAL WATER LEVEL (FT) 19.19' (PVC)	1513	160 gal	7.99	24.0	3/6	21.0		34	2
TOTAL WELL DEPTH (TD)	1524	• • =	8.17	ł		20.7		34	
final: 66.90'	1534	125.2	-	21.1	3/0	20.7	2 141	7200	
WELL DIAMETER (INCHES)	1544	/ 37.8	7.98	21.3	3/3	21.0		76	
CALCULATED WELL VOLUME (based on initial	1554	150.4	8.02	20.7	3/2	20.6		62	
6.3 gal	1604	163.0	8.06	20.4	309	20.3	I Y	76	
BOREHOLE DIAMETER (INCHES)	· >70P	ED. SCREE PED POMPIN CH WATER	4 70		- WATBERA VEGE -> MA	MOTE	Frece.	ont to	ı
BOREHOLE VOLUME			WHILE	İ	CNG SCRE	FA	1		1
~ 70.0 gal	1655	203.2	7.87	21.2	3/3	20.8		13.3	
AMOUNT OF WATER ADDED DURING DRILLING	1705	222.1	7.80	20.7	309	20.6		9.9	
1,200gal + DEVELOPMENT METHOD	1715	241.0	7.92	20.5	310	20.6		8.3	
Pump: Surge	1725	266.2	7.92	247	3/0	20.6		8.3	
PUMP TYPE		~		\rightarrow	\			~~	
Centrifuzal									
TOTAL TIME (A)									
132 min									ŀ
AVERAGE FLOW (GPM)(B)									
1.15 gpm						<u> </u>			
TOTAL ESTIMATED WITHDRAWAL AXB=	+140	00 Start	ed pu	empin	adings.	out.	of well	before	
- 166.2 gal	Init	Hal Botton	- was	ven	soft. Du	vily	168 galla	s, pump	4
HNU/OVA READING PS = 0.0	work	Hal Botton obvious is led down	stallat	to	TD final	7 6	6.90%	,	L

Due to the unusually large volume of water lost to formation during well installation, decided to pump for at least 3 horns and in this case we pumped 100 gal, then began taling the billity measurements. Did get removed the entire 1,200

Baker	
Baker Environmental, Inc.	

PROJECT: MCB Camp I	ejeune, O.U. #9, Sites 65 and 73 Remedial Investigations
CTO NO.:0312	WELL NO.: 65-DW02
DATE: 4/26/95	·
GEOLOGIST/ENGINEER:	Karl A. Thomas

TIME START 0905		DATA PO	DEVEI	OPME	NT DATA PRESBAT POUR BOOK:	EO, F	OR COM	aere
TIME FINISH	TIME	CORD SEE CUMULATIVE VOLUME	pH	TEMP (°C)	SPEC. COND.	TEMP (°C)	Eh	TURBIDITY
1052		(gallons)	<u> </u>	(6)	(minosen)			ENTU]
NITIAL WATER LEVEL (FT) 17.0'(PVC)	0914	6.5	7.32	16.6	469	17.3		>200
TOTAL WELL DEPTH (TD)	0919	13.0	6.99	16.7	482	16.9		7200
55.4'(PVC)	0924	19.5	6.92	175	491	17.3		140
WELL DIAMETER (INCHES)	0931	32.5	6.86	16.7	498	17.4	\.	105
CALCULATED WELL VOLUME 6.5 gal	0943	45.5	6,86	17.2	495	17.3		79
BOREHOLE DIAMETER	0150	52.0	6.83	16.7	500	17.3		4-3
(INCHES) ~ 6 "	1003	65.0	6.82	17.0	510	17.6		28
BOREHOLE VOLUME	1009	71. 5	6.80	16.9	511	17.6		25
~56.4 gal AMOUNT OF WATER ADDED DURING DRILLING	1015	78.0	+-	ST	ABL	E >		20.6
~120gal	1027	84.5						35
Pump: Surge	1032	91.0						17.9
PUMP TYPE Waterra	1037	97.5						13,5
TOTAL TIME (A)	1042	104.0						11.8
107 min	1046	110.5						9.9
Average flow (GPM)(B)	1052	117.0			Į.		-	9.0
TOTAL ESTIMATED WITHDRAWAL AXB=	Although well met criteria of stability and TURB 210 NTU, not all the estimated volume of Mestallatia water (120 gal) was removed during development. GRA returned to the well on 5/4/45 and pumped out a 40 gallons of water, then nearwest for water stability and turbidity <10 NTU. Achieved both quickly							
HNU/OVA READING BZ=0.0 BG=0.0 PS=0.5 (attopotpy)	GR	A returned to 40 gal ability as	lto s Lons i	the was arbidi	ter, then by all NTU	measur 1. Ac	ed for thicked l	water

Baker Baker Environmental, ma

FIELD WELL DEVELOPMENT RECORD

PROJECT: MCB Camp Le	jeune, O.U. #9, Sites 65 and 73 Remedial Investigations
CTO NO.: 0312	WELL NO.: 65- DW04
DATE: 5/8/95	
• •	GraydonkAllen

TIME START	DEVELOPMENT DATA The farther information regarding 65-DW64 and personation of particles please see 1607's Log Book : CTD 312 VOL. II CUMULATIVE TEMP SEE COND TEMP TEMP							
1825	权	For fartz	er 17	please s	atim regar	ding Log Boo	65 -DW6	12 vol. II
TIME FINISH 2143	TIME	CUMULATIVE VOLUME (gallons)	рН	TEMP (°C)	ee also JS SPEC. COND. (µmhos/cm)	TEMP (°C)	i Posk Kat Eh	TURBIDITY TOTAL
INITIAL WATER LEVEL (FT) 34.2'	1836	11	9.28	17.4	215	18.1	•	93.6
TOTAL WELL DEPTH (TD)	1846	23	8.71	17.3	213	18.1		77.5
70.0 (est.)	1856	35	8.72	17.3	212	18.0		85
WELL DIAMETER (INCHES)	1906	45	8.69	17.3	213	19.1		80
CALCULATED WELL VOLUME	1916	55	8.63	17.2	2/4	18.1		65
6 gal BOREHOLE DIAMETER	1926	65	8.67	17.4	214	18.1	l V	60
(INCHES) ~ 6 "	1937	75	9.61	17.4	214	18.0		60
borehole volume ~ 53 gal	1947	85	8.59	17.2	214	18.0		53
AMOUNT OF WATER ADDED DURING DRILLING	2/27	195	9.76	16.7	2/2	17.8		58
200+gal	2135	192	8.59	16.6	214	17.6	/	58
Pump: Surge	2143	200	8.55	17.0	214	17.8	/ /	61)
PUMP TYPE Waterra		→						$\bigg)\bigg\rangle$
TOTAL TIME (A)								
198 min		· · · · · · · · · · · · · · · · · · ·						
AVERAGE FLOW (GPM)(B)								
1.05 gpm TOTAL ESTIMATED WITHDRAWAL AXB= 200 gal	· Although tot clearly noted in GRA's notes, he had to pump out 200+ gollons of installation water from well. · with new 1/2" PVC piping; GRA; driller set up waterra and allowed it to pump for a timed interval, starting at							
HNU/OVA READING NOT ICECARDED BEING TAICEN		1200 going u		•		_		

on the Puc siping which was the inteles for the pump.

As the crew withdraw the piping, the powder was Visible on the Piping which entered the well water.

* NOTE: ISC returned to this well laster to pump and any inteduced particle:

APPENDIX F
IDW MANAGEMENT AND DISPOSAL INFORMATION

August 2, 1995

Baker Environmental, Inc. Airport Office Park, Building 3 420 Rouser Road Coraopolis, Pennsylvania 15108

(412) 269-6000 FAX (412) 269-2002

Commander Atlantic Division Naval Facilities Engineering Command 1510 Gilbert Street (Building N-26) Norfolk, Virginia 23511-2699

Attn:

Mr. Lance Laughmiller, EIT

Code 18236

Re:

Contract N62470-89-D-4814

Navy CLEAN, District III

Contract Task Order (CTO) 0312 IDW Handling and Disposal

Operable Unit No. 9 (Site 73)

MCB, Camp Lejeune, North Carolina

Dear Mr. Laughmiller:

This letter report describes the sample collection activities, results, and recommendations for the disposition of investigative-derived waste (IDW) at Site 73, Marine Corps Base, Camp Lejeune, North Carolina.

The IDW from Sites 65 and 73 field activities, presently being stored at Site 73, is contained in one 6,500-gallon storage tanker, one 1,000-gallon polyethylene tank, and one 20-cubic yard roll-off box. A second 6,500-gallon storage tanker was judged to contain "clean" water and was discharged at Site 73. An inventory of the IDW along with quantities are provided in Table 1. Analytical results are provided in Attachment A.

Sample Collection and Analysis Site 73

One grab sample was collected from the 6,500-gallon tanker and given the sample identification 73-TK-615. A grab sample was also collected from the second 6,500-gallon tanker and given the sample identification 73-TK-3617. These samples were analyzed for full Target Compound List (TCL) Organics, Target Analyte List (TAL) Inorganics, and Total Suspended Solids (TSS). Another grab sample was collected from the 1,000 gallon polyethylene tank and given the sample identification 73-POLY-01. This sample was analyzed for full TCL Organics and TAL Inorganics. Five solid grab samples were collected from varying locations within the roll-off box. These grab samples were placed within a stainless steel mixing bowl, homogenized into one composite sample and given the sample identification 73-RX-01. A representative sample was collected for volatile organics analysis prior to homogenizing the samples. This composite sample was analyzed for full Toxicity Characteristic Leachate Procedure (TCLP), TCL PCBs and Resource Conservation Recovery Act (RCRA) characteristics (corrosivity, ignitability, and reactivity).

Baker

Mr. Lance Laughmiller August 2, 1995 Page 2

Results Site 73

Sample 73-TK-615 had five positive volatile detections, one positive semivolatile detection, and no positive detections for ether pesticides or PCBs. Inorganic analysis did not indicate concentrations above regulatory standards. Sample 73-POLY-01 had six volatile detections, two positive semivolatile detections, and no positive detections for ether pesticides or PCBs. Inorganic analysis did not indicate concentrations above regulatory standards. Sample 73-RX-01 did not have any positive detections for organics, and inorganic analysis did not indicate concentrations above regulatory standards. In addition, sample 73-RX-01 was not found to be reactive to sulfide and cyanide, ignitable at less than 140°F, or corrosive at less than or equal to 2 or greater than or equal to 12.5.

Conclusions and Recommendations Site 73

Analytical results indicate that samples 73-TK-615 and 73-POLY-01 have levels of organic contamination that do not exceed regulatory values, however due to the organic contamination levels present in both tanks site disposal is not recommended. Through working with base EMD personnel, disposal of tanker 73-TK-615 can be accomplished by utilizing the Hadnot Point Shallow Aquifer Remedial Action System located on base. This tanker will be returned to Site 73 and the contents of the polyethylene tank will be pumped into it. The tanker will remain on-site for the additional work that will begin at Site 73 during September 1995. Upon completion of the additional work at Site 73, this tanker will be sampled for TCL Organics, TAL Inorganics, and TSS. Appropriate disposal methods will be deployed upon review of the analytical results. Sample 73-RX-01 did not indicate contamination and it is recommended that the contents of the roll-off box be returned to the site and graded.

Upon LANTDIV's approval of these disposal recommendations, the IDW will be managed as identified within this letter.

If you have any questions, please do not hesitate to contact me at (412) 269-4695 or Mr. Matthew D. Bartman (Activity Coordinator) at (412) 269-2053.

Sincerely,

BAKER ENVIRONMENTAL, INC.

Malcolm W. Petroccia for

Project Manager

MWP/PAM/Iq

Attachments

cc: Mr. Neal Paul - w/attachments

Mr. John Riggs - w/attachments

TABLE 1

SUMMARY OF INVESTIGATIVE DERIVED WASTE OPERABLE UNIT NO. 9 (SITES 65 and 73) REMEDIAL INVESTIGATION, CTO-0312 MCB, CAMP LEJEUNE, NORTH CAROLINA

MATERIAL (LOCATION)	QUANTITY PRODUCED	CONTAINER TYPE	VOLUME OF WASTE	UNIT	LABORATORY ANALYSIS
Development/Purge Water (Site 73)	2	6,500 Gallon Tanker	6,500	gallons	TCL Organics TAL Inorganics TSS
Development/Purge Water (Site 73)	1	1,000 Gallon Polyethylene Tank	1,000	gallons	TCL Organics TAL Inorganics
Drill Mud/Cuttings (Site 73)	1	20 cubic yard roll-off box	20	cubic yards	TCLP Organics TCLP Inorganics TCL PCBs RCRA Hazardous Characteristics

1A VOLATILE ORGANICS ANALYSIS DATA SHEET

				73TK	615	
لسي Name	S: TAS-KNOXVIDDE	t: BAKER			200722	l
Lab Code	e: ITSTU Case No.: 3572 SAS No	.:	SDG N	.0.: <u>/</u>	31173	
Matrix:	(soil/water) WATER	Lab Sample			57	
	wt/vol: <u>5.0</u> (g/mL) ML	Lab File			57	
	(low/med) LOW	Date Rece	ived:	05/11	<u>1/95</u>	
	ure: not dec	Date Analy				
	mn: RTX624 ID: 0.530 (mm)	Dilution				
	ctract Volume: (uL)	Soil Aliq	uot Vo	lume:	. <u> </u>	_(uL)
	CON	CENTRATION U	NITS:	٠.	•	
	CAS NO. COMPOUND (ug	/L or ug/Kg)	UG/L		Q 	•
1	74-87-3Chloromethane				ប ប	
	74 02-0Bromomethane				บ	
	75-01-4Vinyl Chloride			10	U	1
	75-00-3Chloroethane 75-09-2Methylene Chloride			10	Ŭ 	1
	75-09-2			7	ВJ	1
	75-15-0Carbon Disulfide			10	U	1
	75-35-41,1-Dichloroethene_			10	U	
	1 1-Dichloroethane			10	ប	Ì
	540-59-01,2-Dichloroethene (1	total)		12	J	1
1	ca.cc.a			1 2	BJ	1.
1	107-06-21,2-Dichloroethane			10	U	1
	ma as serutanone			10	บ	1
1	71-55-61.1.1-Trichloroethan	e		10	บ	
1	56-23-5Carbon Tetrachioride			10	U	1
1	75-27-4Bromodichloromethane			10	U	
l	70-07-51.2-Dichloropropane_			10	ับ	1
1	10061-01-5cis-1,3-Dichloroprop			12	1	1
1	79-01-6Trichloroethene			10	U	1
\	124-48-1Dibromochloromethane	0		10	ប	1
	79-00-51,1,2-Trichloroethan			10	שׁ	
	71-43-2Benzene 10061-02-6trans-1,3-Dichloropr	opene		10	ט	1.
	Dromoform			10	ū	1
	108-10-14-Methyl-2-Pentanone			10	U	1
				10	U	1
	l and to the most rach loroethene			10 10	บ	_
	1 79-34-5	ethane		10	Ü	1.
	1 108-88-3Toluene			10	บ	
	108-90-7Chlorobenzene			10	บ	
	100-41-4Ethylbenzene			10	ט	
	100-42-5Styrene			10	ប	
•	1330-20-7Xylene (total)					

EPA SAMPLE NO.

1E VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

IMMINITARE TOWNIE TOWN	73TK615
Lab Name: <u>ITAS-KNOXVILLE</u>	
Lab Code: <u>ITSTU</u> Case No.: <u>3572</u>	SAS No.: SDG No.: 73TK3
Matrix: (soil/water) <u>WATER</u>	Lab Sample ID: AF3167
Sample wt/vol: 5.0 (g/mL) ML	Lab File ID: AF3167
Level: (low/med) LOW	Date Received: 05/11/95
% Moisture: not dec	Date Analyzed: 05/17/95
GC Column: <u>RTX624</u> ID: <u>0.530</u> (mm)	Dilution Factor: 1.0
Soil Extract Volume: (uL)	Soil Aliquot Volume:(uL
Number TICs found:0	CONCENTRATION UNITS: (ug/L or ug/Kg) <u>UG/L</u>
CAS NUMBER COMPOUND NAM	E RT EST. CONC. Q

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

SEMIVOLATILE ORGANICS ANABIBLE DILLI	U1122
	73TK615
Lab Name: <u>ITAS-KNOXVILLE</u> Contract	BAKER
Lab Code: <u>ITSTU</u> Case No.: <u>3572</u> SAS No.	: SDG No.: <u>73TK6</u>
Matrix: (soil/water) <u>WATER</u>	Lab Sample ID: AF3168
Sample wt/vol: 1000 (g/mL) ML	Lab File ID: AF3168
Level: (low/med) LOW	Date Received: 05/11/95
% Moisture: decanted: (Y/N)	Date Extracted: 05/12/95
Concentrated Extract Volume: 1000 (uL)	Date Analyzed: 05/17/95
Injection Volume: 2.0(uL)	Dilution Factor: . 1.0
	NCENTRATION UNITS: g/L or ug/Kg) <u>UG/L</u> Q
108-95-2Phenol 111-44-4bis(2-Chloroethyl)Ether 95-57-82-Chlorophenol 541-73-11,3-Dichlorobenzene	10 U
54T-12-TT'2-PTCHTOLOPEHSCHO	10 11

108-95-2Phenol	10	ប
111-44-4bis(2-Chloroethyl)Ether	10	ט
95-57-82-Chlorophenol	10	ប
541-73-11,3-Dichlorobenzene	10	ט
106-46-71,4-Dichlorobenzene	10	ប
95-50-11,2-Dichlorobenzene	10	ט
95-48-72-Methylphenol	10	ט .
108-60-12,2'-oxybis(1-Chloropropane)_	10	ט
106-44-54-Methylphenol	10	U
621-64-7N-Nitroso-Di-n-Propylamine	10	ט
67-72-1Hexachloroethane	10	ט
98-95-3Nitrobenzene	10	U
78-59-1Isophorone	10	U .
88-75-52-Nitrophenol	10	ע
105-67-92,4-Dimethylphenol	10	ע (
111-91-1bis(2-Chloroethoxy)Methane	10	U
120-83-22,4-Dichlorophenol	10	ן ט
120-82-11,2,4-Trichlorobenzene	10	ט
91-20-3Naphthalene	10	ן טן
106-47-84-Chloroaniline	10	U
87-68-3Hexachlorobutadiene	10	ן ט
59-50-74-Chloro-3-Methylphenol	10	[U]
91-57-62-Methylnaphthalene	10	U
77-47-4Hexachlorocyclopentadiene	10	ט
88-06-22,4,6-Trichlorophenol	10	U
95-95-42,4,5-Trichlorophenol	25	U
91-58-72-Chloronaphthalene	10	U
88-74-42-Nitroaniline	25	[U]
131-11-3Dimethylphthalate	10	ប
208-96-8Acenaphthylene	10	ע
606-20-22,6-Dinitrotoluene	10	U .
99-09-23-Nitroaniline	25	U
83-32-9Acenaphthene	· 10	U .
		_
		· 2

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

	1 73TK615
Lab Name: <u>ITAS-KNOXVILLE</u> Contra	the state of the s
Lab Code: <u>ITSTU</u> Case No.: <u>3572</u> SAS 1	No.: SDG No.: <u>73TK6</u>
Matrix: (soil/water) <u>WATER</u>	Lab Sample ID: AF3168
Sample wt/vol: 1000 (g/mL) ML	Lab File ID: AF3168
Level: (low/med) LOW	Date Received: 05/11/95
% Moisture: decanted: (Y/N)	Date Extracted: 05/12/95
Concentrated Extract Volume: 1000 (uL)	Date Analyzed: 05/17/95
Injection Volume:2.0(uL)	Dilution Factor:1.0
GPC Cleanup: (Y/N) N pH:	CONCENTRATION UNITS:

CAS NO.	COMPOUND	(ug/L or ug/		Q
	2,4-Dinitrophenol		25	υ
100-02-7	4-Nitrophenol		25	U
132-64-9	Dibenzofuran		10	U
121-14-2	2,4-Dinitrotoluene		10	U
84-66-2	Diethylphthalate		10	U
	4-Chlorophenyl-phe	nylether	10	U
86-73-7	Fluorene		10	U
100-01-6	4-Nitroaniline		25	U
534-52-1	4,6-Dinitro-2- <u>Meth</u>	ylphenol	25	U
86-30-6	N-Nitrosodiphenyla	mine (1)	10	U
101-55-3	4-Bromophenyl-phen	ylether	10	U
118-74-1	Hexachlorobenzene		10	U
87-86-5	Pentachlorophenol		25	ប
85-01-8	Phenanthrene		10	ט
	Anthracene		10	บ
	Carbazole		10	บ
	Di-n-Butylphthalat	e	1	ВJ
206-44-0	Fluoranthene		10	U
129-00-0			. 10	U
85-68-7	Butylbenzylphthala	te	10	U
91-94-1	3,3'-Dichlorobenzi	dine	10	U
56-55-3	Benzo(a)Anthracene		10	U
218-01-9	Chrysene		10	U
117-81-7	bis(2-Ethylhexyl)P	hthalate	10	U
117-84-0	Di-n-Octyl Phthala	te	10	U
205-99-2	Benzo(b)Fluoranthe	ne	10	U
207-08-9	Benzo(k)Fluoranthe	ne	10	U
50-32-8	Benzo(a)Pyrene		10	lσ
193-39-5	Indeno(1,2,3-cd)Py	rene	10	Ū
53-70-3	Dibenz(a,h)Anthrac	ene	10	U
191-24-2	Benzo(g,h,i)Peryle	ne	10	Ū
	200 (9,,1,1,101,10		 .	1

(1) - Cannot be separated from Diphenylamine

EPA SAMPLE NO.

1F SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

Name: ITAS-KNOXVII	rae Con	ract: BAK	ER		73TK61	5
Lab Code: ITSTU Ca	,				о.: 73Т	 К6
					•	•
Matrix: (soil/water) <u>V</u>	WATER	Lab	Sample	ID:	<u>AF3168</u>	
Sample wt/vol:	1000 (g/mL) ML	Lab	File II):	AF3168	
Level: (low/med)]	LOW	Date	Receiv	ved:	05/11/9	<u>5</u>
% Moisture:	decanted: (Y/N)	Date	Extra	cted:	05/12/9	<u>5</u>
Concentrated Extract V	Volume: <u>1000</u> (uL)	Date	analy:	zed:	05/17/9	<u>5</u>
Injection Volume:	2.0(uL)	Dilu	tion F	actor:	1	.0
GPC Cleanup: (Y/N) 1	м рн:		4			
Number TICs found:		CONCENTRAT (ug/L or u				
CAS NUMBER	COMPOUND NAME	F	RT .	EST.	CONC.	Q

PESTICIDE ORGANICS ANALYSIS DATA SHEET

73TK615

Lab Name: ITAS-KNOXVILLE

Contract:

Lab Code:

Case No.: W03573

SAS No.:

SDG No.: 73RB19

Matrix: (soil/water) WATER

Lab Sample ID: AF3176

Sample wt/vol:

1000 (g/mL) ML

Lab File ID:

% Moisture:

decanted: (Y/N)

Date Received:

Dilution Factor:

05/11/95

Extraction:

(SepF/Cont/Sonc)

CONT

Date Extracted: 05/15/95

Concentrated Extract Volume:

(bepr/cone/bone)

./111

ate Bestered. OF/SE/OF

Injection Volume: 1.00

.00 (uL)

(uL)

Date Analyzed: 05/25/95

GPC Cleanup:

(Y/N) N

pH: 7.0

10000

Sulfur Cleanup: (Y/N) N

CONCENTRATION UNITS:

CAS NO.

COMPOUND '

(ug/L or ug/Kg) UG/L

Q .

1.00

***		·	
319-84-6	alpha-BHC	0.050	บ ์
319-85-7	beta-BHC	0.050	U
319-86-8	delta-BHC	0.050	
	gamma-BHC (Lindane)	0.050	U
76-44-8	Heptachlor	0.050	U
309-00-2	Aldrin	0.050	U
	Heptachlor epoxide	0.050	U
	Endosulfan I	0.050	ប
60-57-1		0.10	U
72-55-9		0.10	U
72-20-8	Endrin	0.10	U
	Endosulfan II	0.10	
72-54-8		0.10	
1031-07-8	Endosulfan sulfate	— 0.10	ប
50-29-3		0.10	
72-43-5	Methoxychlor	0.50	
53494-70-5	Endrin ketone	0.10	
7421-93-4	Endrin aldehyde	0.10	
5103-71-9	alpha-Chlordane	0.050	U
5103-74-2	gamma-Chlordane	0.050	
8001-35-2	Toxaphene		
12674-11-2	Aroclor-1016	1.0	
	Aroclor-1221	2.0	
	Aroclor-1232	1.0	Ū
53469-21-9	Aroclor-1242	1.0	U
12672-29-6	Aroclor-1248	1.0	
11097-69-1	Aroclor-1254	1.0	B [*]
11006 02 5	Aroclor-1260	1.0	

1

EPA	SAMPLE	NO.

TNORGANIC	ANALYSES	DATA	SHEET

73TK615

ab Name: QUANTERRA_KNOXVILLE_
ab Code: ITSTU_ Case No.: 35 Contract: BAKER/CL SAS No.: Case No.: 3572_

SDG No.: N/A

atrix (soil/water): WATER

Lab Sample ID: AF3169

evel (low/med): 0.0 Solids:

Date Received: 05/11/95

Concentration Units (ug/L or mg/kg dry weight): UG/L_

CAS No.	Analyte	Concentration	С	Q	M
7429-90-5	Aluminum	21700	-		P
7440-36-0	Antimony	50.0	ប		P_
7440-38-2	Arsenic	10.0	ש		P_
7440-39-3	Barium	79.6	В		P
7440-41-7	Beryllium	1.0	U		P
7440-43-9	Cadmium	5.0	U		P
7440-70-2	Calcium	84600			P_
7440-47-3	Chromium	43.5	-		P_
7440-48-4	Cobalt	20.0	ਹ		P
7440-50-8	Copper	24.4			P
7439-89-6	Iron	17300			P
7439-92-1	Lead	23.0	-		P
7439-95-4	Magnesium	4850	B		P
7439-96-5	Manganese	159	-		P_
7439-97-6	Mercury	0.20	ਰ		CV
7440-02-0	Nickel	20.0	Ū		P
7440-02-0	Potassium	4500	B		P-
7782-49-2	Selenium	5.0	U		P-
7440-22-4	Silver	5.0	U		P-
7440-22-4	Sodium Sodium	23200	١	·	P-
	Thallium	10.0	ਰ		P-
7440-28-0	Vanadium	37.5	_		P-
7440-62-2	_	154	٦	-	P-
7440-66-6	Zinc	154	-		- 1
			 -		·
			1-		·
			1-	İ	·
	.		-		.
			-		-1
	.		- -		-
			-		·
			. _	I	- -
		·	.1_		. —

olor Before:		Clarity Clarity	Before: After:	CLEAR_ CLEAR_	Texture: Artifacts:	N/A
cLIENT_SAMP	LE_ID_NOIS_	73-TK-615.				

OUANTERRA INCORPORATED PRELIMINARY DATA SUMMARY

Data have NOT been through final levels of review and are subject to change upon this review.

Actions taken on these Data are the responsibility of the Data user.

C5E120060

QUANTERRA CAMP LEJEUNE			PAGE 1		
PARAMETER	result	REPORTING LIMIT	UNIT	METHOD	
73-TK-3617 05/09/95 00:00					
Inorganic Analysis				Review	eđ
Reactive Cyanide	ND	50.0	mg/kg	SW846 7.3.3.	
Flash Point Closed Cup	>200		deg F	SW846 1010	
pH Aqueous	6.9	1.0	su	SW846 9040	
Sulfide Reactive	ND	50.0	mg/kg	SW846 7.3.4.	
73-TK-615 05/09/95 00:00					
Inorganic Analysis				Review	eđ
Reactive Cyanide	ND	50.0	mg/kg	SW846 7.3.3.	
Flash Point Closed Cup	>200		deg P	SW846 1010	
pH Aqueous	8.0	1.0	8u	SW846 9040	
Sulfide Reactive	· N D	. 50.0	mg/kg	SW846 7.3.4.	

TOTAL SUSPENDED SOLIDS ANALYSIS

Laboratory Name:

Quanterra-Knoxville

Contract Name:

Baker Camp Lejeune

Analysis Date:

05/25/95

Sample Matrix:

Water

Concentration Units:

Job Number:

mg/L

3682

Client Sample ID	Lab Sample ID	Result	Qualifier
Method Blank	AF5017	1	U
73-TK-3617	AF4536	3300	+
73-TK-615	AF4537	700	+

^{+ -} Positive result.

U - Compound was analyzed for but not detected. The number is the detection limit for the sample.

VOLATILE ORGANICS ANALYSIS DATA SHEET

COMPOUND

Soil Extract Volume: _____ (uL)

CAS NO.

73TK3617 Lab Name: <u>ITAS-KNOXVILLE</u> Contract: <u>BAKER</u> Lab Code: ITSTU Case No.: 3572 SAS No.: SDG No.: 73TK3 AF3163____ Lab Sample ID: Matrix: (soil/water) WATER_ Lab File ID: AF3163 <u>5.0</u> (g/mL) <u>ML</u> Sample wt/vol: Date Received: 05/11/95 (low/med) <u>LOW</u> Level: Date Analyzed: 05/17/95 % Moisture: not dec. ____ Dilution Factor: 1.0 GC Column: <u>RTX624</u> ID: <u>0.530</u> (mm)

CONCENTRATION UNITS: (ug/L or ug/Kg) UG/L

Soil Aliquot Volume: ____(uL)

10 74-87-3-----Chloromethane U 10 74-83-9----Bromomethane 10 U 75-01-4-----Vinyl Chloride 10 U 75-00-3-----Chloroethane 10 U 75-09-2----Methylene Chloride 5 BJ 67-64-1-----Acetone U 75-15-0-----Carbon Disulfide 10 10 U 75-35-4----1,1-Dichloroethene_ 10 U 75-34-3-----1,1-Dichloroethane 540-59-0----1,2-Dichloroethene (total)_ 5 J 67-66-3----Chloroform 10 U 2 BJ 107-06-2----1,2-Dichloroethane__ U 10 78-93-3----2-Butanone 10 U 71-55-6----1,1,1-Trichloroethane____ U 56-23-5-----Carbon Tetrachloride 10 10 U 75-27-4----Bromodichloromethane____ 10 U 78-87-5----1,2-Dichloropropane___ U 10 10061-01-5----cis-1,3-Dichloropropene___ J 6 79-01-6----Trichloroethene 10 U 124-48-1-----Dibromochloromethane 79-00-5-----1,1,2-Trichloroethane_ U 10 U 10 71-43-2----Benzene 10 U 10061-02-6----trans-1,3-Dichloropropene U 10 75-25-2----Bromoform U 10 108-10-1----4-Methyl-2-Pentanone U 10 591-78-6----2-Hexanone IJ 127-18-4----Tetrachloroethene 10 10 U 79-34-5----1,1,2,2-Tetrachloroethane_ 10 IJ 108-88-3----Toluene 10 U 108-90-7-----Chlorobenzene U 10 100-41-4----Ethylbenzene U 10 100-42-5----Styrene U 10 1330-20-7-----Xylene (total)

1E

EPA SAMPLE NO.

VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

Tab Name TMXCVNOVIITITE	contract: BAKER
Lab Name: <u>ITAS-KNOXVILLE</u>	Once doc. Dakek
Lab Code: ITSTU Case No.: 3572	SAS No.: SDG No.: 73TK3
Matrix: (soil/water) <u>WATER</u>	Lab Sample ID: AF3163
Sample wt/vol: 5.0 (g/mL) ML	Lab File ID: AF3163
Level: (low/med) LOW	Date Received: 05/11/95
% Moisture: not dec	Date Analyzed: 05/17/95
GC Column: <u>RTX624</u> ID: <u>0.530</u> (mm)	Dilution Factor: 1.0
Soil Extract Volume: (uL)	Soil Aliquot Volume:(uL)
Number TICs found:0	CONCENTRATION UNITS: (ug/L or ug/Kg) <u>UG/L</u>
CAS NUMBER COMPOUND NAME	RT EST. CONC. Q

1B SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

Lab Name: ITAS-KNOXVILLE Contrac	et: BAKER /SIRSOI?
Lab Code: ITSTU Case No.: 3572 SAS No	sDG No.: <u>73TK6</u>
Matrix: (soil/water) <u>WATER</u>	Lab Sample ID: AF3164
Sample wt/vol: 1000 (g/mL) ML	Lab File ID: AF3164
Level: (low/med) <u>LOW</u>	Date Received: 05/11/95
% Moisture: decanted: (Y/N)	Date Extracted: 05/12/95
Concentrated Extract Volume: 1000 (uL)	Date Analyzed: 05/17/95
Injection Volume: 2.0(uL)	Dilution Factor: 1.0
	ONCENTRATION UNITS:
CAS NO. COMPOUND	ug/L or ug/Kg) <u>UG/L</u> Q

			11
108-95-2	Phenol	· 10	บ
	bis(2-Chloroethyl)Ether	10	U
	2-Chlorophenol	10	U
541-73-1	1,3-Dichlorobenzene	10	U
106-46-7	1,4-Dichlorobenzene	10	U
	1,2-Dichlorobenzene	10	ע ו
	2-Methylphenol	10	ט
108-60-1	2,2'-oxybis(1-Chloropropane)_	10	ן ט
106-44-5	4-Methylphenol	10	ט
621-64-7	N-Nitroso-Di-n-Propylamine	10	ប
	Hexachloroethane	10	ן ט
	Nitrobenzene	10	ט ו
	Isophorone	10	U
	2-Nitrophenol	10	ן ט
	2,4-Dimethylphenol	10	U
	bis(2-Chloroethoxy)Methane	10	U
	2,4-Dichlorophenol	10	υ
	1,2,4-Trichlorobenzene	10	U
91-20-3	Naphthalene	10	U
	4-Chloroaniline	10	ט
	Hexachlorobutadiene	10	ן ט
	4-Chloro-3-Methylphenol	10	ן מן
	2-Methylnaphthalene	10	U
77-47-4	Hexachlorocyclopentadiene	10	U
	2,4,6-Trichlorophenol	10	U
	2,4,5-Trichlorophenol	25	ן מ
	2-Chloronaphthalene	10	U
	2-Nitroaniline	25	ט
	Dimethylphthalate	10	ប
	Acenaphthylene	10	Ū
	2,6-Dinitrotoluene	10	U
	3-Nitroaniline	25	ן מ
	Acenaphthene	10	Ū
05-34-y	Acenaphonene		
	FORM I SV-1	I	$-1 - \frac{1}{3}$

1C SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

					731	rK3617
		ILLE			- I 	
o Cod	e: <u>ITSTU</u>	Case No.: 3572	SAS No.:		SDG No.:	73TK6
trix:	(soil/water)	WATER		Lab Sample	ID: <u>AF31</u>	L64
mple '	wt/vol:	1000 (g/mL) ML		Lab File ID	: <u>AF3</u> :	L64
vel:	(low/med)	LOW		Date Receiv	red: <u>05/</u>	11/95
Moist	ure:	decanted: (Y/N)		Date Extrac	ted: <u>05/</u>	12/95
ncent	rated Extract	Volume: 1000	_(uL)	Date Analyz	ed: <u>05/</u>	<u>17/95</u>
jecti	on Volume:	2.0 (uL)		Dilution Fa	ctor:	1.0
C Cle	eanup: (Y/N)	<u>N</u> pH: _				
	CAS NO.	COMPOUND		CENTRATION (/L or ug/Kg)		Q
-	51-28-5	2,4-Dinitroph	enol	·	25	U
1	100-02-7	4-Nitrophenol			25	U
	132-64-9	Dibenzofuran	• .		10	U
	121-14-2	2,4-Dinitroto	luene		10	U
1.	84-66-2	Diethylphthal	ate.	i	10	ן ט
- 1	7005-72-3	4-Chloropheny	1-phenylet	her	10	U
1	86-73-7	Fluorene	• •		10	ט
		4-Nitroanilin	e		25	ן ט
		4,6-Dinitro-2		nol	25	\U -
		N-Nitrosodiph			10	ן ט
l		4-Bromophenyl			10	U
1		Hexachloroben			10	ן ט
1		Pentachloroph			25	U
		Phenanthrene			10	U
1	120-12-7	Anthracene			10	ן ט
1	86-74-8				10	ע
- 1		Di-n-Butylpht	halate		1	BJ
1		Fluoranthene			10	ע
ļ	129-00-0				10	JU
1		Butylbenzylph	thalate		10	ע
1		3,3'-Dichloro		· ·	10	U
		Benzo(a)Anthr			10	U
· ·	218-01-9	Chrysene			10	ט
- 1	117-81-7	bis(2-Ethylhe	xyl)Phthal	late	10	ן ש
1	117-84-0	Di-n-Octyl Ph	thalate		10	ט
.		Benzo(b)Fluor			10	ū
j		Benzo(k)Fluor			10	U
	50-32-8	Benzo(a)Pyrer	ıe		10	U
1	193-39-5	Indeno(1,2,3-	cd) Pyrene_		10	ū
1		Dibenz(a,h)Ar			10	Ü
	101 01 0	Benzo(g,h,i)E			10	U

1 F

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

			73TK3617
Lab Name: <u>ITAS-KNOXVI</u>	Contract:	BAKEK	
Lab Code: ITSTU	Case No.: <u>3572</u> SAS No.:	SDG	No.: <u>73TK6</u>
Matrix: (soil/water)	WATER	Lab Sample ID:	AF3164
Sample wt/vol:	1000 (g/mL) ML	Lab File ID:	AF3164
Level: (low/med)	LOW	Date Received:	05/11/95
% Moisture:	decanted: (Y/N)	Date Extracted:	05/12/95
Concentrated Extract	Volume: 1000 (uL)	Date Analyzed:	05/17/95
Injection Volume:	2.0(uL)	Dilution Factor	:1.0
GPC Cleanup: (Y/N)	<u>N</u> pH:		
Number TICs found:	000.000	NTRATION UNITS: or ug/Kg) <u>UG/L</u>	•

CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	Q
1.	UNKNOWN HYDROCARBON	16.68	6	J

PESTICIDE ORGANICS ANALYSIS DATA SHEET

73TK3617

Lab Name: ITAS-KNOXVILLE

Contract:

Lab Code:

Case No.: W03573

SAS No.:

SDG No.: 73RB19

Matrix: (soil/water) WATER

Lab Sample ID: **AF3175**

Sample wt/vol:

1000 (g/mL) ML Lab File ID:

% Moisture:

decanted: (Y/N)

Date Received: 05/11/95

Extraction:

(SepF/Cont/Sonc)

CONT

Date Extracted: 05/15/95

Concentrated Extract Volume:

(uL) 10000

Date Analyzed: 05/25/95

Injection Volume: 1.00

(uL)

Dilution Factor: 1.00

GPC Cleanup:

(Y/N) N

pH: 7.0

Sulfur Cleanup: (Y/N) N

CONCENTRATION UNITS: (ug/L or ug/Kg) UG/L

CAS NO.	COMPOUND (ug/L or	r ug/Kg)	UG/L	Q
319-84-6	alpha-BHC		0.050	
319-85-7	beta-BHC		0.050	
319-86-8	delta-BHC		0.050	
58-89-9	gamma-BHC (Lindane)		0.050	U
76-44-8	Heptachlor		0.050	
309-00-2			0.050	U
1024-57-3	Heptachlor epoxide		0.050	U
	Endosulfan I		0.050	U
60-57-1			0.10	Ŭ
72-55-9	4,4'-DDE		0.10	U
72-20-8			0.10	U
33213-65-9	Endosulfan II		0.10	
72-54-8			0.10	U
1031-07-8	Endosulfan sulfate		0.10	U
	4,4'-DDT		0.10	U
72-43-5	Methoxychlor		0.50	U
53494-70-5	Endrin ketone		0.10	U
	Endrin aldehyde		0.10	
	alpha-Chlordane		0.050	บ
	gamma-Chlordane		0.050	U
	Toxaphene		5.0	U
	Aroclor-1016		1.0	U
	Aroclor-1221		2.0	
	Aroclor-1232		1.0	U
	Aroclor-1242		1.0	U
	Aroclor-1248		1.0	
	Aroclor-1254		1.0	U .
	Aroclor-1260		1.0	U
,- 				

1 INORGANIC ANALYSES DATA SHEET

ע כוים	כי א	MPT.E	NTO

ab Name: QUANTERRA F	(NOXVII.I.E		Contract: BA	KEP/CT.	73TK36
<pre>ab Code: ITSTU_ latrix (soil/water): evel (low/med): Solids:</pre>	Case No.:	3572_	SAS No.:	Lab Sampl	SDG No.: N/A e ID: AF3165 ived: 05/11/95
			4		

Concentration Units (ug/L or mg/kg dry weight): UG/L_

1	T	T			, ,
CAS No.	Analyte	Concentration	C	Q	м
7429-90-5	Aluminum	487	-	l ———	P-
7440-36-0	Antimony_	50.0	Ū		$ \mathbf{P}^- $
7440-38-2	Arsenic	10.0	שׁ	l ———	P
7440-39-3	Barium -	24.9	В		$ \bar{P}^- $
7440-41-7	Beryllium	1.0	U		$ \mathbf{p}^{-} $
7440-43-9	Cadmium	5.0	ש		P^-
7440-70-2	Calcium	33300			$ \mathbf{p}^- $
7440-47-3	Chromium	10.0	ซิ		P_
7440-48-4	Cobalt	20.0	ש		P^-
7440-50-8	Copper	10.0	U		P_
7439-89-6	Iron	437			P
7439-92-1	Lead	3.0	Ū		P_
7439-95-4	Magnesium	2570	В		P
7439-96-5	Manganese	24.8			\mathbf{P}^{-}
7439-97-6	Mercury	0.20	ซ		C∇
7440-02-0	Nickel	20.0	υ		P
7440-09-7	Potassium	2590	В	·	P
7782-49-2	Selenium_	5.0	U		p ⁻
7440-22-4	Silver	5.0	υ		P_
7440-23-5	Sodium	26100			P
7440-28-0	Thallium	10.0	ਹ		P_
7440-62-2	Vanadium	10.0	U	-	P
7440-66-6	Zinc	73.3			\mathbf{P}^{-}
			_		_
		-	_		
			-		
			_		_
			_		
					_
			-		
			_		_
			_		
			-		
		I	_ '	·	1

olor:	Before: After:	COLORLESS COLORLESS	Clarity Clarity	Before:	CLEAR_ CLEAR_	Texture: Artifacts:	N/A
ommer CL		E_ID_NOIS_73	-TK-3617		••		
							

Q

1A VOLATILE ORGANICS ANALYSIS DATA SHEET

COMPOUND

CAS NO.

	73POLY01
Name: <u>ITAS-KNOXVILLE</u> Contra	ct: BAKER
Lab Code: ITSTU Case No.: 3707 SAS N	o.: SDG No.: <u>73POLY</u>
Matrix: (soil/water) WATER_	Lab Sample ID: AF4795
Sample wt/vol: 5.0 (g/mL) ML	Lab File ID: <u>AF4795</u>
Level: (low/med) LOW	Date Received: 05/24/95
% Moisture: not dec	Date Analyzed: 05/30/95
GC Column: <u>RTX624</u> ID: <u>0.530</u> (mm)	Dilution Factor:1.0
Soil Extract Volume: (uL)	Soil Aliquot Volume:(uL)

CONCENTRATION UNITS: (ug/L or ug/Kg) UG/L

· · · · · · · · · · · · · · · · · · ·			<u> </u>
74-87-3	Chloromethane	10	υ
74-83-9		10	U
	Vinyl Chloride	10	U
75-00-3		10	U
	Methylene Chloride	. 1	вЈ
67-64-1		2900	BE
	Carbon Disulfide	10	U
	-1,1-Dichloroethene	10	ט
	-1,1-Dichloroethane	10	บ
540-59-0	1,2-Dichloroethene (total)	3	J
67-66-3		10	ן ט
	1,2-Dichloroethane	10	ן ט
78-93-3		1	J
	1,1,1-Trichloroethane	10	ט
56-23-5	Carbon Tetrachloride	10	ע
	Bromodichloromethane	10	ט
	1,2-Dichloropropane	10	ט
	cis-1,3-Dichloropropene	10	ט
	Trichloroethene	3	J
	Dibromochloromethane	10	ט
	1,1,2-Trichloroethane	. 10	ן מ
71-43-2		10	ן ט
	trans-1,3-Dichloropropene	10	U
75-25-2		10	U
	4-Methyl-2-Pentanone	1	J
591-78-6		10	ប
	Tetrachloroethene	10	U
70 24 5	1,1,2,2-Tetrachloroethane	10	U
108-88-3		10	Ū
	Chlorobenzene	10	ប
		10	บ
-	Ethylbenzene	10	U
100-42-5		10	TI
T330-20-7	Xylene (total)	10	

1E

Number TICs found: 2

VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

EPA SAMPLE NO.

7	3	Р	o	${f L}$	Y	0	1

Lab Name: ITAS-KNOXVILLE Contract	: BAKER
Lab Code: <u>ITSTU</u> Case No.: <u>3707</u> SAS No.	: SDG No.: <u>73POLY</u>
Matrix: (soil/water) <u>WATER</u>	Lab Sample ID: AF4795
Sample wt/vol: 5.0 (g/mL) ML	Lab File ID: AF4795
Level: (low/med) <u>LOW</u>	Date Received: 05/24/95
% Moisture: not dec	Date Analyzed: 05/30/95
GC Column: <u>RTX624</u> ID: <u>0.530</u> (mm)	Dilution Factor: 1.0
Soil Extract Volume: (uL)	Soil Aliquot Volume:(uL)

CONCENTRATION UNITS: (ug/L or ug/Kg) UG/L

CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	Q ======
1	UNKNOWN ALCOHOL	3.37	86	J
	DECANE	11.13	94	BJN

Soil Aliquot Volume: ____(uL)

VOLATILE ORGANICS ANALYSIS DATA SHEET

Soil Extract Volume: _____ (uL)

 Lab Name: ITAS-KNOXVILLE
 Contract: BAKER
 73POLY01DL

 Lab Code: ITSTU
 Case No.: 3707
 SAS No.: SDG No.: 73POLY

 Matrix: (soil/water)
 WATER
 Lab Sample ID: AF4795

 Sample wt/vol: 5.0 (g/mL)
 Lab File ID: AF4795D2

 Level: (low/med)
 Low Date Received: 05/24/95

 % Moisture: not dec. Date Analyzed: 05/31/95

 GC Column: RTX624
 ID: 0.530 (mm)
 Dilution Factor: 20.0

CONCENTRATION UNITS:

CAS NO. COMPOUND (ug/L or ug/Kg) UG/L Q

4-87-3Chloromethane	200	ប
4-83-9Bromomethane	200	U
5-01-4Vinyl Chloride	200	ש
5-00-3Chloroethane	200	U
5-09-2Methylene Chloride	37	BDJ
57-64-1Acetone	3200	D
75-15-0Carbon Disulfide	200	ប
75-35-41,1-Dichloroethene	200	U.
75-34-31,1-Dichloroethane	200	U
540-59-01,2-Dichloroethene (total)	200	U
57-66-3Chloroform	200	U
107-06-21,2-Dichloroethane	200	U
78-93-32-Butanone	200	U
71-55-61,1,1-Trichloroethane	200	U
56-23-5Carbon Tetrachloride	200	U
75-27-4Bromodichloromethane	200	U
78-87-51,2-Dichloropropane	200	υ
10061-01-5cis-1,3-Dichloropropene	200	ט
79-01-6Trichloroethene	200	U
124-48-1Dibromochloromethane	200	ប
79-00-51,1,2-Trichloroethane	200	ប
71-43-2Benzene	200	U
10061-02-6trans-1,3-Dichloropropene	200	ប
75-25-2Bromoform	200	ប
108-10-14-Methyl-2-Pentanone	200	U
591-78-62-Hexanone	200	U
127-18-4Tetrachloroethene	200	U
79-34-51,1,2,2-Tetrachloroethane	200	U
108-88-3Toluene	200	U
108-90-7Chlorobenzene	200	U
100-41-4Ethylbenzene	200	U
100-42-5Styrene	200	U
1330-20-7Xylene (total)	200	υ

1E

VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

EPA SAMPLE NO.

73POLY01DL

Lab Name: <u>ITAS-KNOXVILLE</u> Contrac	et: BAKER
Lab Code: ITSTU Case No.: 3707 SAS No.	
Matrix: (soil/water) <u>WATER</u>	Lab Sample ID: AF4795
Sample wt/vol: 5.0 (g/mL) ML	Lab File ID: <u>AF4795D2</u>
Level: (low/med) LOW	Date Received: 05/24/95
% Moisture: not dec	Date Analyzed: 05/31/95
GC Column: <u>RTX624</u> ID: <u>0.530</u> (mm)	Dilution Factor: 20.0
Soil Extract Volume: (uL)	Soil Aliquot Volume:(uL)

CONCENTRATION UNITS: (ug/L or ug/Kg) UG/L

Number TICs found: 1

CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	Q
1. 124-18-5	DECANE	11.03	1100	BJN

1B SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

73POLY01

Name: <u>ITAS-KNOXVILLE</u> Contract: <u>BA</u>	KER
ab Code: ITSTU Case No.: 3707 SAS No.:	SDG No.: 73POLY
Matrix: (soil/water) WATER Lab	Sample ID: AF4796
Sample wt/vol: 1000 (g/mL) ML Lab	File ID: AF4796
Date (low/med) LOW Date	e Received: <u>05/24/95</u>
Moisture: decanted: (Y/N) Dat	e Extracted: <u>05/25/95</u>
Concentrated Extract Volume: 1000 (uL) Dat	te Analyzed: <u>05/31/95</u>
Injection Volume: 2.0(uL) Dil	ution Factor: 1.0
	PRATION UNITS: or ug/Kg) UG/L Q
108-95-2Phenol 111-44-4	10 U U U U U U U U U U U U U U U U U U U
208-96-8Acenaphthylene 606-20-22,6-Dinitrotoluene 99-09-23-Nitroaniline 83-32-9Acenaphthene	10 U U U 25 U U U U U U U U U U U U U U U
FORM I SV-1	

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

73POLY01 Lab Name: <u>ITAS-KNOXVILLE</u> Contract: BAKER Lab Code: ITSTU Case No.: 3707 SAS No.: SDG No.: 73POLY Matrix: (soil/water) WATER Lab Sample ID: AF4796 Sample wt/vol: 1000 (g/mL) ML Lab File ID: AF4796 Date Received: Level: (low/med) LOW 05/24/95 % Moisture: decanted: (Y/N) ____ Date Extracted: 05/25/95 Concentrated Extract Volume: 1000 (uL) Date Analyzed: 05/31/95 Dilution Factor: ____1.0 Injection Volume: ___ 2.0(uL) GPC Cleanup: (Y/N) N рН: _ CONCENTRATION UNITS: CAS NO. COMPOUND (ug/L or ug/Kg) <u>UG/L</u> Q 51-28-5----2,4-Dinitrophenol 25 U 100-02-7----4-Nitrophenol 25 U 132-64-9-----Dibenzofuran 10 U 121-14-2----2,4-Dinitrotoluene U 10 84-66-2----Diethylphthalate 10 U 7005-72-3----4-Chlorophenyl-phenylether 10 U 86-73-7----Fluorene 10 U 100-01-6----4-Nitroaniline 25 U 534-52-1----4,6-Dinitro-2-methylphenol 25 U 86-30-6----N-Nitrosodiphenylamine (1) 10 U 101-55-3----4-Bromophenyl-phenylether 10 U 118-74-1-----Hexachlorobenzene 10 U 87-86-5----Pentachlorophenol 25 U 85-01-8-----Phenanthrene 10 U 120-12-7-----Anthracene 10 U 86-74-8-----Carbazole 10 U 84-74-2----Di-n-Butylphthalate U 10 206-44-0----Fluoranthene U 10 129-00-0----Pyrene U 10 85-68-7----Butylbenzylphthalate 10 U 91-94-1----3,3'-Dichlorobenzidine 10 U 56-55-3----Benzo(a) Anthracene 10 U 218-01-9-----Chrysene 10 U 117-81-7----bis(2-Ethylhexyl)Phthalate 1 J 117-84-0----Di-n-Octyl Phthalate U 10 U 205-99-2----Benzo(b) Fluoranthene 10 207-08-9----Benzo(k) Fluoranthene_ 10 U 50-32-8----Benzo(a) Pyrene U 10 193-39-5----Indeno(1,2,3-cd)Pyrene 10 U 53-70-3----Dibenz(a,h)Anthracene U 10 191-24-2----Benzo(g,h,i)Perylene_ 10 U

(1) - Cannot be separated from Diphenylamine

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

Name: ITAS-KNOXVILLE Contract: BAKER 73POLY01

ab Code: ITSTU Case No.: 3707 SAS No.: ____ SDG No.: 73POLY

latrix: (soil/water) WATER Lab Sample ID: AF4796

Sample wt/vol: 1000 (g/mL) ML Lab File ID: AF4796

Level: (low/med) LOW Date Received: 05/24/95

Moisture: ____ decanted: (Y/N) ___ Date Extracted: 05/25/95

Concentrated Extract Volume: 1000 (uL) Date Analyzed: 05/31/95

Injection Volume: 2.0(uL) Dilution Factor: 1.0

PC Cleanup: (Y/N) N pH: ____

CONCENTRATION UNITS: lumber TICs found: 28 (ug/L or ug/Kg) UG/L

CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	Q
1. 141-79-7	3-PENTEN-2-ONE, 4-METHYL-	1.82	28	JN
_2.	UNKNOWN	2.03	4	AJ
. 123-42-2	2-PENTANONE, 4-HYDROXY-4-MET	2.57	15	ABJN
4.	UNKNOWN	2.90	3	J
5. 124-07-2	OCTANOIC ACID	7.65	7	JN
6. 7112-02-9	OCTANAMIDE, N-(2-HYDROXYETHY	9.53	11	JN
7.	UNKNOWN (SUBSTITUTED ORGANIC	9.65	4	J
8.	UNKNOWN	10.03	8	J
9. 7726-08-1	DECANAMIDE, N-(2-HYDROXYETHY	11.87	7	JN
10. 143-07-7	DODECANOIC ACID	12.27	25	JN
11. 134-62-3	BENZAMIDE, N, N-DIETHYL-3-MET	12.58	8	JN
12. 74381-40-1	PROPANOIC ACID, 2-METHYL-, 1	12.65	4	JN
13.	UNKNOWN	13.03	6	J
14. 142-78-9	DODECANAMIDE, N-(2-HYDROXYET	13.95	26	JN
15.	UNKNOWN	14.10	4	J
16.	UNKNOWN	14.20	2	J
17.	UNKNOWN	14.37	19	J
18.	UNKNOWN	15.03	. 2	J
19.	UNKNOWN (ALKYL AMIDE, N-(2-H)	15.83	2	J
20.	UNKNOWN	16.07	4	J
21.	UNKNOWN	16.27	12	J
22.	UNKNOWN	16.92	. 4	J
23.	UNKNOWN	17.32	3	J
24.	UNKNOWN	17.78	. 4	J
25.	UNKNOWN	18.02	36	J
26.	UNKNOWN	19.35	3	J
27.	UNKNOWN	19.68	4	J
	UNKNOWN	20.17	3	J

1D PESTICIDE ORGANICS ANALYSIS DATA SHEET

73POLY01

ab Name: ITAS-KNOXVILLE

Contract:

ab Code:

Case No.: W03711

SAS No.:

SDG No.: POLY01

atrix: (soil/water) WATER

Lab Sample ID: AF4894

ample wt/vol:

1000

(q/mL) ML

Lab File ID:

Moisture:

decanted: (Y/N)

Date Received: 05

05/24/95

xtraction:

(SepF/Cont/Sonc)

CONT

Date Extracted: 05/25/95

oncentrated Extract Volume:

10000 (uL)

Date Analyzed: 06/12/95

njection Volume: 1.00

L.00 (uL)

Dilution Factor:

PC Cleanup:

(Y/N) N

pH: 7.0

Sulfur Cleanup: (Y/N) N

CAS NO.

COMPOUND

CONCENTRATION UNITS: (uq/L or uq/Kg) UG/L

Q

319-84-6alpha-BHC	319-85-7		(1		,	~
319-85-7	319-85-7	319-84-6	alpha-BHC		0.050	U
319-86-8	319-86-8	319-85-7	beta-BHC			
58-89-9gamma-BHC (Lindane) 0.050 U 76-44-8	58-89-9gamma-BHC (Lindane) 0.050 U 76-44-8	319-86-8	delta-BHC		0.050	ប
76-44-8	76-44-8Heptachlor 309-00-2Aldrin 1024-57-3Heptachlor epoxide 959-98-8					
309-00-2	309-00-2Aldrin 0.050 U 1024-57-3Heptachlor epoxide 0.050 U 959-98-8Endosulfan I 0.050 U 60-57-1	76-44-8	Heptachlor`		0.050	U .
959-98-8Endosulfan I 0.050 U 60-57-1Dieldrin 0.10 U 72-55-94,4'-DDE 0.10 U 72-20-8Endrin 0.10 U 33213-65-9Endosulfan II 0.10 U 72-54-84,4'-DDD 0.10 U 1031-07-8Endosulfan sulfate 0.10 U 50-29-34,4'-DDT 0.10 U 72-43-5Methoxychlor 0.50 U 53494-70-5Endrin ketone 0.10 U 7421-93-4Endrin aldehyde 0.10 U 5103-71-9alpha-Chlordane 0.050 U 8001-35-2Toxaphene 5.0 U 12674-11-2Aroclor-1016 1.0 U 11141-16-5Aroclor-1221 2.0 U 11141-16-5Aroclor-1242 1.0 U 12672-29-6Aroclor-1242 1.0 U 12672-29-6Aroclor-1248 1.0 U 11097-69-1Aroclor-1254 1.0 U	959-98-8Endosulfan I 0.050 U 60-57-1Dieldrin 0.10 U 72-55-94,4'-DDE 0.10 U 72-20-8Endrin 0.10 U 33213-65-9Endosulfan II 0.10 U 72-54-84,4'-DDD 0.10 U 1031-07-8Endosulfan sulfate 0.10 U 50-29-34,4'-DDT 0.10 U 72-43-5Methoxychlor 0.50 U 53494-70-5Endrin ketone 0.10 U 7421-93-4Endrin aldehyde 0.10 U 5103-71-9alpha-Chlordane 0.050 U 8001-35-2Toxaphene 5.0 U 11104-28-2Aroclor-1211 2.0 U 11141-16-5Aroclor-1222 1.0 U 53469-21-9Aroclor-1242 1.0 U 12672-29-6	309-00-2	Aldrin		0.050	ប
959-98-8Endosulfan I 0.050 U 60-57-1Dieldrin 0.10 U 72-55-94,4'-DDE 0.10 U 72-20-8Endrin 0.10 U 33213-65-9Endosulfan II 0.10 U 72-54-84,4'-DDD 0.10 U 1031-07-8Endosulfan sulfate 0.10 U 50-29-34,4'-DDT 0.10 U 72-43-5Methoxychlor 0.50 U 53494-70-5Endrin ketone 0.10 U 7421-93-4Endrin aldehyde 0.10 U 5103-71-9alpha-Chlordane 0.050 U 8001-35-2Toxaphene 5.0 U 12674-11-2Aroclor-1016 1.0 U 11141-16-5Aroclor-1221 2.0 U 11141-16-5Aroclor-1242 1.0 U 12672-29-6Aroclor-1242 1.0 U 12672-29-6Aroclor-1248 1.0 U 11097-69-1Aroclor-1254 1.0 U	959-98-8Endosulfan I 0.050 U 60-57-1Dieldrin 0.10 U 72-55-94,4'-DDE 0.10 U 72-20-8Endrin 0.10 U 33213-65-9Endosulfan II 0.10 U 72-54-84,4'-DDD 0.10 U 1031-07-8Endosulfan sulfate 0.10 U 50-29-34,4'-DDT 0.10 U 72-43-5Methoxychlor 0.50 U 53494-70-5Endrin ketone 0.10 U 7421-93-4Endrin aldehyde 0.10 U 5103-71-9alpha-Chlordane 0.050 U 8001-35-2Toxaphene 5.0 U 11104-28-2Aroclor-1211 2.0 U 11141-16-5Aroclor-1222 1.0 U 53469-21-9Aroclor-1242 1.0 U 12672-29-6	1024-57-3	Heptachlor epoxide		0.050	U
72-55-94,4'-DDE 0.10 U 72-20-8Endrin 0.10 U 33213-65-9Endosulfan II 0.10 U 72-54-84,4'-DDD 0.10 U 1031-07-8Endosulfan sulfate 0.10 U 50-29-34,4'-DDT 0.10 U 72-43-5Methoxychlor 0.50 U 53494-70-5Endrin ketone 0.10 U 7421-93-4Endrin aldehyde 0.10 U 5103-71-9alpha-Chlordane 0.050 U 8001-35-2Toxaphene 5.0 U 12674-11-2Aroclor-1016 1.0 U 11141-16-5Aroclor-1221 2.0 U 11141-16-5Aroclor-1232 1.0 U 53469-21-9Aroclor-1242 1.0 U 12672-29-6Aroclor-1248 1.0 U 11097-69-1	72-55-94,4'-DDE 0.10 U 72-20-8Endrin 0.10 U 33213-65-9Endosulfan II 0.10 U 72-54-84,4'-DDD 0.10 U 1031-07-8Endosulfan sulfate 0.10 U 50-29-34,4'-DDT 0.10 U 72-43-5Methoxychlor 0.50 U 53494-70-5Endrin ketone 0.10 U 7421-93-4Endrin aldehyde 0.10 U 5103-71-9alpha-Chlordane 0.050 U 8001-35-2Toxaphene 5.0 U 12674-11-2Aroclor-1016 1.0 U 11104-28-2Aroclor-1232 1.0 U 53469-21-9Aroclor-1242 1.0 U 12672-29-6Aroclor-1248 1.0 U 11097-69-1Aroclor-1254 1.0 U	959-98-8	Endosulfan I		0.050	U
72-20-8Endrin 0.10 U 33213-65-9Endosulfan II 0.10 U 72-54-84,4'-DDD 0.10 U 1031-07-8Endosulfan sulfate 0.10 U 50-29-34,4'-DDT 0.10 U 72-43-5Methoxychlor 0.50 U 53494-70-5Endrin ketone 0.10 U 7421-93-4Endrin aldehyde 0.10 U 5103-71-9alpha-Chlordane 0.050 U 8001-35-2Toxaphene 5.0 U 12674-11-2Aroclor-1016 1.0 U 11141-16-5Aroclor-1221 2.0 U 112672-29-6Aroclor-1242 1.0 U 12672-29-6Aroclor-1248 1.0 U 11097-69-1Aroclor-1254 1.0 U	72-20-8Endrin 0.10 U 33213-65-9Endosulfan II 0.10 U 72-54-84,4'-DDD 0.10 U 1031-07-8Endosulfan sulfate 0.10 U 50-29-34,4'-DDT 0.10 U 72-43-5Methoxychlor 0.50 U 53494-70-5Endrin ketone 0.10 U 7421-93-4Endrin aldehyde 0.10 U 5103-71-9alpha-Chlordane 0.050 U 8001-35-2Toxaphene 5.0 U 12674-11-2Aroclor-1016 1.0 U 11104-28-2Aroclor-1221 2.0 U 11141-16-5Aroclor-1232 1.0 U 53469-21-9Aroclor-1242 1.0 U 12672-29-6Aroclor-1248 1.0 U 11097-69-1Aroclor-1254 1.0 U	60-57-1	Dieldrin		0.10	U
72-20-8Endrin 0.10 U 33213-65-9Endosulfan II 0.10 U 72-54-84,4'-DDD 0.10 U 1031-07-8Endosulfan sulfate 0.10 U 50-29-34,4'-DDT 0.10 U 72-43-5Methoxychlor 0.50 U 53494-70-5Endrin ketone 0.10 U 7421-93-4Endrin aldehyde 0.10 U 5103-71-9alpha-Chlordane 0.050 U 8001-35-2Toxaphene 5.0 U 12674-11-2Aroclor-1016 1.0 U 11141-16-5Aroclor-1221 2.0 U 112672-29-6Aroclor-1242 1.0 U 12672-29-6Aroclor-1248 1.0 U 11097-69-1Aroclor-1254 1.0 U	72-20-8Endrin 0.10 U 33213-65-9Endosulfan II 0.10 U 72-54-84,4'-DDD 0.10 U 1031-07-8Endosulfan sulfate 0.10 U 50-29-34,4'-DDT 0.10 U 72-43-5Methoxychlor 0.50 U 53494-70-5Endrin ketone 0.10 U 7421-93-4Endrin aldehyde 0.10 U 5103-71-9alpha-Chlordane 0.050 U 8001-35-2Toxaphene 5.0 U 12674-11-2Aroclor-1016 1.0 U 11104-28-2Aroclor-1221 2.0 U 11141-16-5Aroclor-1232 1.0 U 53469-21-9Aroclor-1242 1.0 U 12672-29-6Aroclor-1248 1.0 U 11097-69-1Aroclor-1254 1.0 U	72-55-9	4,4'-DDE		0.10	U
72-54-84,4'-DDD 0.10 U 1031-07-8Endosulfan sulfate 0.10 U 50-29-34,4'-DDT 0.10 U 72-43-5Methoxychlor 0.50 U 53494-70-5Endrin ketone 0.10 U 7421-93-4Endrin aldehyde 0.10 U 5103-71-9alpha-Chlordane 0.050 U 8001-35-2Toxaphene 5.0 U 12674-11-2Aroclor-1016 1.0 U 11141-16-5Aroclor-1221 2.0 U 11141-16-5Aroclor-1242 1.0 U 12672-29-6Aroclor-1248 1.0 U 11097-69-1Aroclor-1254 1.0 U	72-54-84,4'-DDD 0.10 U 1031-07-8Endosulfan sulfate 0.10 U 50-29-34,4'-DDT 0.10 U 72-43-5Methoxychlor 0.50 U 53494-70-5Endrin ketone 0.10 U 7421-93-4Endrin aldehyde 0.10 U 5103-71-9alpha-Chlordane 0.050 U 8001-35-2Toxaphene 5.0 U 12674-11-2Aroclor-1016 1.0 U 11104-28-2Aroclor-1221 2.0 U 11141-16-5Aroclor-1242 1.0 U 12672-29-6Aroclor-1248 1.0 U 11097-69-1Aroclor-1254 1.0 U	72-20-8	Endrin		0.10	U
1031-07-8Endosulfan sulfate 0.10 U 50-29-34,4'-DDT 0.10 U 72-43-5Methoxychlor 0.50 U 53494-70-5Endrin ketone 0.10 U 7421-93-4Endrin aldehyde 0.10 U 5103-71-9alpha-Chlordane 0.050 U 8001-35-2Toxaphene 5.0 U 12674-11-2Aroclor-1016 1.0 U 11104-28-2Aroclor-1221 2.0 U 11141-16-5Aroclor-1242 1.0 U 12672-29-6Aroclor-1248 1.0 U 11097-69-1Aroclor-1254 1.0 U	1031-07-8Endosulfan sulfate 0.10 U 50-29-34,4'-DDT 0.10 U 72-43-5Methoxychlor 0.50 U 53494-70-5Endrin ketone 0.10 U 7421-93-4Endrin aldehyde 0.10 U 5103-71-9alpha-Chlordane 0.050 U 8001-35-2Toxaphene 5.0 U 12674-11-2Aroclor-1016 1.0 U 11141-16-5Aroclor-1232 1.0 U 53469-21-9Aroclor-1242 1.0 U 12672-29-6Aroclor-1248 1.0 U 11097-69-1Aroclor-1254 1.0 U	33213-65-9	Endosulfan II		0.10	U
1031-07-8Endosulfan sulfate 0.10 U 50-29-34,4'-DDT 0.10 U 72-43-5Methoxychlor 0.50 U 53494-70-5Endrin ketone 0.10 U 7421-93-4Endrin aldehyde 0.10 U 5103-71-9alpha-Chlordane 0.050 U 8001-35-2Toxaphene 5.0 U 12674-11-2Aroclor-1016 1.0 U 11104-28-2Aroclor-1221 2.0 U 11141-16-5Aroclor-1242 1.0 U 12672-29-6Aroclor-1248 1.0 U 11097-69-1Aroclor-1254 1.0 U	1031-07-8Endosulfan sulfate 0.10 U 50-29-34,4'-DDT 0.10 U 72-43-5Methoxychlor 0.50 U 53494-70-5Endrin ketone 0.10 U 7421-93-4Endrin aldehyde 0.10 U 5103-71-9alpha-Chlordane 0.050 U 8001-35-2Toxaphene 5.0 U 12674-11-2Aroclor-1016 1.0 U 11141-16-5Aroclor-1232 1.0 U 53469-21-9Aroclor-1242 1.0 U 12672-29-6Aroclor-1248 1.0 U 11097-69-1Aroclor-1254 1.0 U	72-54-8	4,4'-DDD		0.10	U
50-29-34,4'-DDT 0.10 U 72-43-5Methoxychlor 0.50 U 53494-70-5Endrin ketone 0.10 U 7421-93-4Endrin aldehyde 0.10 U 5103-71-9alpha-Chlordane 0.050 U 8001-35-2Toxaphene 5.0 U 12674-11-2Aroclor-1016 1.0 U 11104-28-2Aroclor-1221 2.0 U 11141-16-5Aroclor-1232 1.0 U 53469-21-9Aroclor-1242 1.0 U 12672-29-6Aroclor-1248 1.0 U 11097-69-1Aroclor-1254 1.0 U	50-29-34,4'-DDT 0.10 U 72-43-5Methoxychlor 0.50 U 53494-70-5Endrin ketone 0.10 U 7421-93-4Endrin aldehyde 0.10 U 5103-71-9alpha-Chlordane 0.050 U 8001-35-2Toxaphene 5.0 U 12674-11-2Aroclor-1016 1.0 U 11141-16-5Aroclor-1232 1.0 U 53469-21-9Aroclor-1242 1.0 U 12672-29-6Aroclor-1248 1.0 U 11097-69-1Aroclor-1254 1.0 U	1031-07-8	Endosulfan sulfate		0.10	U
53494-70-5Endrin ketone 0.10 U 7421-93-4Endrin aldehyde 0.10 U 5103-71-9alpha-Chlordane 0.050 U 5103-74-2gamma-Chlordane 0.050 U 8001-35-2Toxaphene 5.0 U 12674-11-2Aroclor-1016 1.0 U 11104-28-2Aroclor-1221 2.0 U 11141-16-5Aroclor-1232 1.0 U 53469-21-9Aroclor-1242 1.0 U 12672-29-6Aroclor-1248 1.0 U 11097-69-1Aroclor-1254 1.0 U	53494-70-5Endrin ketone 0.10 U 7421-93-4Endrin aldehyde 0.10 U 5103-71-9alpha-Chlordane 0.050 U 5103-74-2gamma-Chlordane 0.050 U 8001-35-2Toxaphene 5.0 U 12674-11-2Aroclor-1016 1.0 U 11104-28-2Aroclor-1221 2.0 U 11141-16-5Aroclor-1232 1.0 U 53469-21-9Aroclor-1242 1.0 U 12672-29-6Aroclor-1248 1.0 U 11097-69-1Aroclor-1254 1.0 U	50-29-3	4,4'-DDT		0.10	U
53494-70-5Endrin ketone 0.10 U 7421-93-4Endrin aldehyde 0.10 U 5103-71-9alpha-Chlordane 0.050 U 5103-74-2gamma-Chlordane 0.050 U 8001-35-2Toxaphene 5.0 U 12674-11-2Aroclor-1016 1.0 U 11104-28-2Aroclor-1221 2.0 U 11141-16-5Aroclor-1232 1.0 U 53469-21-9Aroclor-1242 1.0 U 12672-29-6Aroclor-1248 1.0 U 11097-69-1Aroclor-1254 1.0 U	53494-70-5Endrin ketone 0.10 U 7421-93-4Endrin aldehyde 0.10 U 5103-71-9alpha-Chlordane 0.050 U 5103-74-2gamma-Chlordane 0.050 U 8001-35-2Toxaphene 5.0 U 12674-11-2Aroclor-1016 1.0 U 11104-28-2Aroclor-1221 2.0 U 11141-16-5Aroclor-1232 1.0 U 53469-21-9Aroclor-1242 1.0 U 12672-29-6Aroclor-1248 1.0 U 11097-69-1Aroclor-1254 1.0 U	72-43-5	Methoxychlor		0.50	U
5103-71-9alpha-Chlordane 0.050 U 5103-74-2gamma-Chlordane 0.050 U 8001-35-2Toxaphene 5.0 U 12674-11-2Aroclor-1016 1.0 U 11104-28-2Aroclor-1221 2.0 U 11141-16-5Aroclor-1232 1.0 U 53469-21-9Aroclor-1242 1.0 U 12672-29-6Aroclor-1248 1.0 U 11097-69-1Aroclor-1254 1.0 U	5103-71-9alpha-Chlordane 0.050 U 5103-74-2gamma-Chlordane 0.050 U 8001-35-2Toxaphene 5.0 U 12674-11-2Aroclor-1016 1.0 U 11104-28-2Aroclor-1221 2.0 U 11141-16-5Aroclor-1232 1.0 U 53469-21-9Aroclor-1242 1.0 U 12672-29-6Aroclor-1248 1.0 U 11097-69-1Aroclor-1254 1.0 U	53494-70-5	Endrin ketone		0.10	U
5103-71-9alpha-Chlordane 0.050 U 5103-74-2gamma-Chlordane 0.050 U 8001-35-2Toxaphene 5.0 U 12674-11-2Aroclor-1016 1.0 U 11104-28-2Aroclor-1221 2.0 U 11141-16-5Aroclor-1232 1.0 U 53469-21-9Aroclor-1242 1.0 U 12672-29-6Aroclor-1248 1.0 U 11097-69-1Aroclor-1254 1.0 U	5103-71-9alpha-Chlordane 0.050 U 5103-74-2gamma-Chlordane 0.050 U 8001-35-2Toxaphene 5.0 U 12674-11-2Aroclor-1016 1.0 U 11104-28-2Aroclor-1221 2.0 U 11141-16-5Aroclor-1232 1.0 U 53469-21-9Aroclor-1242 1.0 U 12672-29-6Aroclor-1248 1.0 U 11097-69-1Aroclor-1254 1.0 U	7421-93-4	Endrin aldehyde		0.10	υ··
5103-74-2gamma-Chlordane 0.050 U 8001-35-2Toxaphene 5.0 U 12674-11-2Aroclor-1016 1.0 U 11104-28-2Aroclor-1221 2.0 U 11141-16-5Aroclor-1232 1.0 U 53469-21-9Aroclor-1242 1.0 U 12672-29-6Aroclor-1248 1.0 U 11097-69-1Aroclor-1254 1.0 U	5103-74-2gamma-Chlordane 0.050 U 8001-35-2Toxaphene 5.0 U 12674-11-2Aroclor-1016 1.0 U 11104-28-2Aroclor-1221 2.0 U 11141-16-5Aroclor-1232 1.0 U 53469-21-9Aroclor-1242 1.0 U 12672-29-6Aroclor-1248 1.0 U 11097-69-1Aroclor-1254 1.0 U	5103-71-9	alpha-Chlordane	·	0.050	U
8001-35-2Toxaphene 5.0 U 12674-11-2Aroclor-1016 1.0 U 11104-28-2Aroclor-1221 2.0 U 11141-16-5Aroclor-1232 1.0 U 53469-21-9Aroclor-1242 1.0 U 12672-29-6Aroclor-1248 1.0 U 11097-69-1Aroclor-1254 1.0 U	8001-35-2Toxaphene 5.0 U 12674-11-2Aroclor-1016 1.0 U 11104-28-2Aroclor-1221 2.0 U 11141-16-5Aroclor-1232 1.0 U 53469-21-9Aroclor-1242 1.0 U 12672-29-6Aroclor-1248 1.0 U 11097-69-1Aroclor-1254 1.0 U	5103-74-2	gamma-Chlordane		0.050	U
11104-28-2Aroclor-1221 2.0 U 11141-16-5Aroclor-1232 1.0 U 53469-21-9Aroclor-1242 1.0 U 12672-29-6Aroclor-1248 1.0 U 11097-69-1Aroclor-1254 1.0 U	11104-28-2Aroclor-1221 2.0 U 11141-16-5Aroclor-1232 1.0 U 53469-21-9Aroclor-1242 1.0 U 12672-29-6Aroclor-1248 1.0 U 11097-69-1Aroclor-1254 1.0 U	8001-35-2	Toxaphene			
11141-16-5Aroclor-1232 53469-21-9Aroclor-1242 12672-29-6Aroclor-1248 11097-69-1Aroclor-1254	11141-16-5Aroclor-1232	12674-11-2	Aroclor-1016		1.0	U
53469-21-9Aroclor-1242 12672-29-6Aroclor-1248 11097-69-1Aroclor-1254 1.0 U	53469-21-9Aroclor-1242 12672-29-6Aroclor-1248 11097-69-1Aroclor-1254 1.0 U	11104-28-2	Aroclor-1221			
12672-29-6Aroclor-1248 11097-69-1Aroclor-1254	12672-29-6Aroclor-1248 1.0 U 11097-69-1Aroclor-1254 1.0 U	11141-16-5	Aroclor-1232			
11097-69-1Aroclor-1254 1.0 U	11097-69-1Aroclor-1254 1.0 U	53469-21-9	Aroclor-1242			
11097-69-1Aroclor-1254 11096-82-5Aroclor-1260 1.0 U	11097-69-1Aroclor-1254	12672-29-6	Aroclor-1248			
11096-82-5Aroclor-12601.0 U	11096-82-5Aroclor-12601.0 U	11097-69-1	Aroclor-1254		1.0	U
		11096-82-5	Aroclor-1260	•	1.0	U

	1.		
INORGANIC	ANALYSES	DATA	SHEET

EPA	SAMPLE	NO.

7	73	_	P	0	L	Y	_	0	1	

Contract: BAKER_CL ab Name: QUANTERRA_KNOXVILLE____ Case No.: 3707 SAS No.:

SDG No.: N/A

ab Code: ITSTU_ atrix (soil/water): WATER evel (low/med): LOW_

: Solids:

0.0

Lab Sample ID: AF4797 Date Received: 05/24/95

Concentration Units (ug/L or mg/kg dry weight): UG/L_

CAS No.	Analyte	Concentration	С	Q	M
7429-90-5	Aluminum	860	-		P_
7440-36-0	Antimony	50.0	ਹ		P_
7440-38-2	Arsenic	10.0	ט		P_
7440-39-3	Barium	43.4	В		P_
7440-41-7	Beryllium	1.0	ש		P_
7440-43-9	Cadmium	5.0	บ		P_
7440-70-2	Calcium	34400			P_
7440-47-3	Chromium	10.0	ប៊		P_
7440-48-4	Cobalt	20.0	บ		P_
7440-50-8	Copper	14.1	B		P_
7439-89-6	Iron	3150	_		P_
7439-92-1	Lead	3.0	ប		P
7439-95-4	Magnesium	2450	В		P_
7439-96-5	Manganese	90.3	 _		P
7439-97-6	Mercury	0.20			CV
7440-02-0	Nickel	20.0	U	l	P_
7440-09-7	Potassium	4490			P_
7782-49-2	Selenium	5.0			P_
7440-22-4	Silver	5.0			P_
7440-23-5	Sodium	20300			P_
7440-28-0	Thallium	10.0	ט	`l	P_
7440-62-2	Vanadium	10.0	ט		P_
7440-66-6	Zinc	48.7	` _		P
, 110 00 0					_ _
					_
	-				_]
		-			_ _
					_ _
	-		- -		_ _
		-	- -		
	-		- -		
	-	-	- -		_ _
	-		- -		

Color Before: Color After:	COLORLESS COLORLESS	Clarity Clarity	Before:	CLEAR_ CLEAR_	Texture: Artifacts:	N/A
Comments:		:				· ———

TOTAL SUSPENDED SOLIDS ANALYSIS

Laboratory Name:

Quanterra-Knoxville

Job Number:

3707

Contract Name:

Baker Camp Lejeune

Analysis Date:

05/25/95

Sample Matrix:

Water

Concentration Units:

mg/l

Client Sample ID	Lab Sample ID	Result	Qualifier
Method Blank	AF5017	1	Ŭ
73-POLY-01	AF4798	40	+

^{+ -} Positive result.

U - Compound was analyzed for but not detected. The number is the detection limit for the sample.

TCLP VOLATILE ORGANICS ANALYSIS

Quanterra-Knoxville 3573 Laboratory Name: Job Number: Baker Camp Lejeune TCLP Date: 05/23/95 Contract Name: Client Sample ID: 73RX01 Analysis Date: 05/31/95 Lab Sample ID: AF3317 Concentration Units: mg/liter in the leachate

Sample Matrix: Leachate

Compound	Concentration	Qualifier	Detection Limit	
benzene	0.025	U	0.025	
carbon tetrachloride	0.025	U	0.025	
chlorobenzene	0.025	U	0.025	
chloroform	0.025	U	0.025	
1,2-dichloroethane	0.025	U	0.025	
1,1-dichloroethene	0.025	U	0.025	
methyl ethyl ketone	0.050	U	0.050	
tetrachloroethene	0.025	U	0.025	
trichloroethene	0.025	U	0.025	
vinyl chloride	0.050	Ŭ	0.050	

⁻ Compound was analyzed for but not detected. The number is the detection limit for the sample.

TCLP SEMIVOLATILE ORGANICS ANALYSIS

Laboratory Name:	Quanterra-Knoxville	-Job Number:	3573
Contract Name:	Baker Camp Lejeune	TCLP Date:	05/23/95
Client Sample ID:	73-RX-01	Extraction Date:	05/24/95
Lab Sample ID:	AF3318	Analysis Date:	06/04/95
Sample Matrix:	Leachate	Concentration Units:	mg/liter in the leachate

Compound	Concentration	Qualifier	Reporting Limit
total cresols	0.04	U	0.04
1,4-dichlorobenzene	0.04	U	0.04
2,4-dinitrotoluene	0.04	ט	0.04
hexachlorobenzene	0.04	υ	0.04
hexachloro-1,3-butadiene	0.04	ប	0.04
hexachloroethane	0.04	υ	0.04
nitrobenzene	0.04	υ	0.04
pentachlorophenol	0.20	υ ·	0.20
pyridine	0.40	. U	0.40
2,4,5-trichlorophenol	0.20	ប	0.20
2,4,6-trichlorophenol	0.04	υ	0.04

TCLP PESTICIDES ANALYSIS

Laboratory Name: Quanterra-Knoxville Job Number: 3573 Baker Camp Lejeune TCLP Date: 05/23/95 Contract Name: Client Sample ID: 73-RX-01 **Extraction Date:** 05/24/95 Lab Sample ID: AF3318 Analysis Date: 05/30/95

Concentration Units:

mg/liter in the leachate

Sample Matrix:

Leachate

Compound	Concentration	Concentration Qualifier	
lindane	0.008	U	0.008
heptachlor	0.001	U	0.001
heptachlor epoxide	0.001	U	0.001
endrin	0.004	ប	0.004
methoxychlor	0.08	U	0.08
chlordane	0.006	U	0.006
toxaphene	0.1	U	0.1

Surrogate Recovery		tetrachloro-m-xylene	dibutylchlorendate
Acceptance Limits:		(23-128%)	(64-132%)
Lab Sample ID:	AF3318	89	112

73RX01

Lab Name: ITAS-KNOXVILLE Contract:

Lab Code: Case No.: W03573 SAS No.: SDG No.: 73RB19

Matrix: (soil/water) SOIL Lab Sample ID: AF3315

Sample wt/vol: 30.1 (g/mL) G Lab File ID:

% Moisture: 24 decanted: (Y/N) N Date Received: 05/11/95

Extraction: (SepF/Cont/Sonc) SONC Date Extracted: 05/17/95

Concentrated Extract Volume: 5000 (uL) Date Analyzed: 06/01/95

Injection Volume: 1.00 (uL) Dilution Factor: 1.00

GPC Cleanup: (Y/N) Y pH: 7.4 Sulfur Cleanup: (Y/N) N

CONCENTRATION UNITS:

CAS NO. COMPOUND (ug/L or ug/Kg) UG/KG Q

CAD NO.	COMPOND	(49/12 01			~
319-84-6	alpha-BHC			2.2	U
319-85-7				2.2	
	delta-BHC		_	2.2	U
	gamma-BHC (Lindar	ne)	—	2.2	ប
76-44-8	Heptachlor		—	2.2	U
309-00-2	Aldrin			2.2	U
	Heptachlor epoxic	de		2.2	U
	Endosulfan I		<u> </u>	2.2	U
60-57-1			— <u>I</u>	4.3	ប
72-55-9				4.3	U
72-20-8	Endrin		-	4.3	ט
	Endosulfan II			4.3	ប
72-54-8	4,4'-DDD		<u> </u>	49	P
1031-07-8	Endosulfan sulfa	te		4.3	U
50-29-3				4.3	U
	Methoxychlor			22	U
53494-70-5	Endrin ketone			4.3	Ū
	Endrin aldehyde			4.3	U
	alpha-Chlordane			2.2	บ
5103-74-2	gamma-Chlordane			2.2	U
8001-35-2	Toxaphene			220	U
12674-11-2	Aroclor-1016		_	43	U
	Aroclor-1221			88	U
	Aroclor-1232	<u></u>		43	ប
	Aroclor-1242			43	บ
	Aroclor-1248			43	U
11097-69-1	Aroclor-1254			43	ប
	Aroclor-1260			43^	ប
			_		

	1 INORGANIC ANALYSES DATA SHEET					EP 	EPA SAMPLE NO.	
			a L	***	n ar		73RX01	
b Name: QUANT b Code: ITSTU trix (soil/wa vel (low/med) Solids:	(ter): WATE	se No.: 35' R	Contract: BA	La	b Samp	le I	G No.: 73RX01 D: AF3318 d: 06/12/95	
Con	centration	Units (ug	/L or mg/kg dry	, w	veight)	: UG	}/L_	
	CAS No.	Analyte	Concentration	С	Q	м		
	7440-38-2 7440-39-3	Barium	200 286	·		P_ P_		
	7440-47-3	Cadmium_ Chromium_	50.0 100	ט		P_ P_		
	7439-92-1 7439-97-6 7782-49-2	Lead Mercury Selenium	200 2.0 200	σ		P CV P		
		Silver	50.0			P_		
				-		_		
				- -				
				- -				
				- -				
				 - -				
				- -				
				_				
				<u>-</u>				
		-		<u> </u>			·	
				<u> -</u>		_		
lor Before: lor After:		Clari Clari	ty Before:				xture:	
mments:								

FORM I - IN

QUANTERRA

73-RX-01

WO #: A4J4D

LAB #: C5E130014-009

MATRIX: SOLID

DATE SAMPLED:

5/09/95

DATE RECEIVED:

5/13/95

- - - - - - INORGANIC ANALYTICAL REPORT - - -

PARAMETER	RESULT	REPORTING LIMIT	UNIT	METHOD	PREPARATION - ANALYSIS DATE	QC BATCH
Flash Point Closed Cup pH Non-Aqueous Reactive Cyanide	<200 7.8 ND	1.0 50.0	deg F su mg/kg	SW846 1010 SW846 9045 SW846 7.3.3.2	5/31/95 5/16/95 5/15- 5/17/95	5151069 5136132 5137077
Sulfide Reactive	ND	50.0	mg/kg	SW846 7.3.4.2	5/15- 5/16/95	5135119

NOTE: AS RECEIVED

ND NOT DETECTED AT THE STATED REPORTING LIMIT

TCLP HERBICIDES ANALYSIS

Quanterra-Knoxville Laboratory Name: Job Number: 3573 Contract Name: Baker Camp Lejeune TCLP Date: 05/23/95 Client Sample ID: 73-RX-01 **Extraction Date:** 05/30/95 Lab Sample ID: AF3318 Analysis Date: 06/02/95 mg/liter in the leachate Concentration Units: Sample Matrix: Leachate

Compound	Concentration	Qualifier	Reporting Limit	
2,4D	0.1	U	0.1	
2,4,5-TP (silvex)	0.02	υ	0.02	

Surrogate Recove	ту	2,4-DCPA	
Lab Sample ID:	AF3318	41	

September 12, 1995

Baker Environmental, Inc. Airport Office Park, Building 3 420 Rouser Road Coraopolis, Pennsylvania 15108

(412) 269-6000 FAX (412) 269-2002

Commander Atlantic Division Naval Facilities Engineering Command 1510 Gilbert Street (Building N-26) Norfolk, Virginia 23511-6299

Attn: Mr. Lance Laughmiller

Navy Technical Representative

Code 18235

Re:

Contract N62470-89-D-4814

Navy CLEAN, District III

Contract Task Order (CTO) 0312

IDW Removal

Operable Unit No. 9 (Site 73)

MCB, Camp Lejeune, North Carolina

Dear Mr. Laughmiller:

This letter report summarizes the investigative-derived waste (IDW) disposal activities conducted at Operable Unit No. 9 (Site 73), Marine Corps Base, Camp Lejeune, North Carolina. The IDW was generated during the remedial investigation activities conducted from April 3 through May 25, 1995, and was contained in two (6,500-gallon) tankers, one (1,000 gallon) polyethylene tanker, and one roll-off box (20 cubic yards).

The water in one of the tankers, was discharged on-site on June 20, 1995, since no contaminants were detected which would result in increased human health or ecological risks.

In a letter dated August 2, 1995, Baker Environmental provided details concerning sample collection and analytical findings of the remaining IDW, and provided conclusions and recommendations with respect to handling and disposal. The recommendations were subsequently approved by the Navy/Marine Corps. One addition to the recommendations was that the water contained in the remaining tankers was unable to be treated by the Hadnot Point Shallow Aquifer Remedial Action System. However, this water was able to be taken off-base as a nonhazardous waste water and transported to HOH Corporation, a Treatment Storage Disposal Facility (TSDF) located in Winston-Salem North Carolina. The remainder of this letter report provides a summary of the disposal activities conducted under this CTO.

DISPOSAL

Based on LANTDIV/MCB Camp Lejeune approval, Baker arranged for the disposal of the following:

- 6,678 gallons of nonhazardous well development and purge water
- 20 cubic yards of nonhazardous drilling and mud cuttings

Mr. Lance Laughmiller September 12, 1995 Page 2

Based on the nonhazardous determination of the IDW, the roll-off box contents were emptied on site and then graded. The roll-off box was then removed from Site 73. The development and purge water was removed via a vacuum truck and transported to HOH Corporation for disposal. Two trips were necessary to deplete all of the waste water. Both the 6,500-gallon and the 1,000-gallon polyethylene tankers were removed from Site 73. The Nonhazardous Profile Sheet, along with the Nonhazardous Waste Manifests, are provided in Attachment A.

Baker appreciates the opportunity to serve LANTDIV on this important project. If you have any questions, please do not hesitate to call me at (412) 269-4695.

Sincerely,

BAKER ENVIRONMENTAL, INC.

Malcolm W. Petroccia Project Manager

MWP/PAM/Iq

Attachments

cc: Mr. Neal Paul, IRP Director, MCB Camp Lejeune (w/attachments)

Mr. John Riggs Environmental Control Specialist, MCB Camp Lejeune (w/attachments)

Ms. Lee Ann Rapp, Code 1832 (w/o attachments) Ms. Beth Collier, Code 02115 (w/o attachments)

MATERIAL PROFILE

1701 Vargrave St., Winston-Salem, NC 27107 • 910-727-4644 • Fax 910-727-8840

Environmental Management Name of Waste Stream	brunduks fer (lef	73 TK615/-	13 POLY DI)
Approved ☐ Yes ☐ No	Date	Initial	5
Generator Name Marine Corps Bax - Carp lejeune Facility Address Sneeds Ferry Base Carp lejeune Site 73 City Carp lejeune State DC Zip 28542 EPA Identification Number N C 6170022 580 Carty: Onslow	Technical Contact Title EMD Phone (910) 45 Fax (910) 45 Billing Address 51 Po Box 1451 City Greensb	Juhn Riggs - MCB Comp legen 1-5066 1-5948 Langele Environmen 37	
Physical Characteristics at 70°F Physical State: Liquid	Multilayers ds (%) 1 High N able? Yes N vity (g/cc) F 101°F - 140 Vater (%) > ?? %	0	is Sample Available Upon Request? Yes No
Process Generating Waste Rate of Generation Container Type/Size Town 1. Does this waste contain spent solvents? (F001 through F0) 2. Is this waste listed for Dioxin as defined in 40 CFR 262.31? 3. Is this waste INFECTIOUS? Y N N N N N N N N N N N N N N N N N N	EPA Waste No 05) Y N`_ (F020 and F026-28) Y.		aste No. NowE_

1701 Vargrave St., Winston-Salem, NC 27107 • 910-727-4644 • Fax 910-727-8840

	opm) (IIIqq	المرا لمحان	Metals (pp	om)	Me	tals (ppm)
Total	TCLP	Kedarras	Total	TCLP	Total	Total
		CR (Total)			Ве	_ Si
As					1	Na
Ag		ł			Sb	,
Cd				1	S	Cu
Ba Pb				1	P	Zn
Sedina_+	you grown	Lunter_	>49 no < 1 no -	(Must Total 100%		
•		-	(Ple	ease Attach All MSDS's,	Sample Analysis	and Additional
ee Cyanide ee Sulfide enolics	0 0	CB's O	(Ple	Frequency of General	ation Gallons per Tons per	Week Month Quarter
her: (Specify in ee Cyanideee Sulfideenolicsenolicsenolics Halorinee	O P	CB'sO	(Ple	Frequency of General 1000-8000	ation Gallons per	Week Month

NON-HAZARDOUS WASTE MANI

1 78

	Environmental Management	Bill to: S	hamsek to	r-20012	manifest to K.W
			740 . 13	م مام مام	
	Manifest # 031501		Date:	8/19/173	
	Generator: Marine Co	ps Base Cample evene		: <u>(910) 451 - 51</u>	
	IK DUISON - EMD	Building 67		. <u>NC 617 00 22</u>	
	MCB Camplejeune	146 128245	Contact:	John Riggs -	WCB END
.·· /	marked and the applical Department I certify tha	ste: It the materials described by the materials described by the labeled, and are in proper ble regulations of the State of Transportation. I certify at the specific waste was storage, or disposal at the site of Signature	r condition to le, the Environ y that the waste delivered to t	be transported in commer mental Protection Agency described below is non-ha	ce under and the azardous.
	Date	Signature	y pro-		
	Description of Waste	Circle Form	Quantity	Circle Units	Container
		- Chickeronia	Quantity		No. Type
	Grandwater from	Solid		Cu. Yards/Drums/Tons	
	development of	· (Liquid	232	Gallons Drums	1 77
	monitoring wells	Gas		Pounds	
	(Lab =0= 73TK61)	Sludge		Cu. Yards/Drums/Tons	•
	Transporter: Shammek Environment	stal Corp.	Phone No.	Unit Numbers: R : (910) 375 1989	T3/172
	POBOX14987 Gree	TIPTS 24,000 CA	_ EPA ID No	: NC 0000 94214	14
	Vehicle License Tag Number(s	LE SOIL NO	Container	tanker PT	2
•	disposal trea	the specified waste was transtment, storage, or disposal fractions of the specified waste was transfer at the specified waste with the specified waste			8215285
	Pick-up Driver's Sig	ridiare Date E	<i></i>		
/	Pick-up Driver's Sig	ndure Dute 2	Phone No:	910-727-4644	
		ndure Due Z			Sun .
	Facility: HOH Corp			910-727-4644	
· ·	Facility: HOH Corp 1701 Vargrave St.		Permit No	: 910-727-4644 : 34-11TP	
· ·	Facility: HOH Corp 1701 Vargrave St. Winston-Salem, NC 27 Handling Method: I certify that	7107 the Transporter above deliv	Permit No Contact:	910-727-4644 34-11TP David Briant fied material to this facility	and was
· ·	Facility: HOH Corp 1701 Vargrave St. Winston-Salem, NC 27 Handling Method: I certify that	7107 the Transporter above delived properly handled in the abo	Permit No Contact:	is 910-727-4644 is 34-11TP David Boyant fied material to this facility e are authorized and qualified	and was
	Facility: HOH Corp 1701 Vargrave St. Winston-Salem, NC 27 Handling Method: I certify that to accepted and	7107 the Transporter above delived properly handled in the abo	Permit No Contact: vered the speciove manner. We file this materia	is 910-727-4644 is 34-11TP David Boyant fied material to this facility e are authorized and qualified	and was

NON-HAZARDOUS WASTE MANIFEST

1701 Vargrave St., Winston-Salem, NC 27107 910-727-4644 Fax 910-727-8849 : Shannok Ervironal-tal Corp. Job # 95 - ROOIS Manifest # Phone No: _ Generator: EPA ID No.: . NC 617 00 22 580 Process which generated waste: I certify that the materials described below are properly described, classified, packaged, marked and labeled, and are in proper condition to be transported in commerce under the applicable regulations of the State, the Environmental Protection Agency and the Department of Transportation. I certify that the waste described below is non-hazardous. I certify that the specific waste was delivered to the carrier named below for legal treatment, storage, or disposal at the site indicated. Date Signature Container **Circle Units** Description of Waste Circle Form Quantity Solid Cu. Yards/Drums/Tons Galloids/Drums Liquid 1.448 Gas **Pounds** Cn. Yards/Drums/Tons Sludge ىي <equation-block> 🦠 Transporter: Unit Numbers: (910) 375 194º Shanrock Environmental Co Phone No: _ eenshoro. NC 27415 NC 0000 94214 EPAID No: _ Vehicle License Tag Number(s) Container: I certify that the specified waste was transferred in a registered (licensed) vehicle to the disposal treatment, storage, or disposal facility named below and was accepted. E-16-95 Pick-up Driver's Signature Delivering Driver's Signature Date Facility: HOH Corp Phone No: 910-727-4644 1701 Vargrave St. Permit No: 34-11TP Contact: David Bryant. Winston-Salem, NC 27107 Handling Method: I certify that the Transporter above delivered the specified material to this facility and was accepted and properly handled in the above manner. We are authorized and qualified by the to handle this material. Signature / COPY 4 - Generator Retain

9000

ORIGINAL - Destination Retain

COPY 2 - Return to Generator

YFIIOW

COPY 3 - Transporter Retain

APPENDIX G SUMMARY OF GROUNDWATER DATA AND AQUIFER CHARACTERISTICS

SUMMARY OF GROUNDWATER DATA AND AQUIFER CHARACTERISTICS MARINE CORPS BASE, CAMP LEJEUNE JACKSONVILLE, NORTH CAROLINA

SUMMARY

This study examines the utility of exploratory aquifer tests (pump tests) at investigation sites across Marine Corps Base, Camp Lejeune (MCB-CL). The study reviews the available information on the relevant water-bearing layers, considers the general characteristics and applicability of aquifer tests, and concludes:

- That available information is satisfactorily complete to allow appropriate designs of groundwater systems in the main operating areas of MCB-CL;
- That quantified characterization of the water-bearing layers in explored areas of MCB-CL can be extended to other areas having similar geologic terrane;
- That exploratory tests are no longer routinely required or advisable;
- That reconnaissance testing (well-head tests or slug tests) of each newly installed or otherwise uncharacterized data station is highly advisable; and,
- That performance testing of groundwater extraction systems should be the recommended form of evaluating and adjusting withdrawal systems.

BACKGROUND

This study considers the aquifer characteristics (especially, the Coefficient of Transmissivity) and the production capacities (available discharge rates) of the two water-bearing layers relevant to the studies at MCB-CL. These water-bearing layers are the (shallow or surficial) water table and the Upper Castle Hayne Aquifer.

The water table at MCB-CL occupies the water-bearing zone within 25 to 35 feet of the surface; the Castle Hayne, immediately below this. However, the separation of the water table and the Castle Hayne is not always obvious. Usually, this separation is effected only by the low permeability material of the water table transiting to the significantly more permeable material of the Upper Castle Hayne; there is rarely an aquiclude or aquitard of vertically extensive clay separating the water table from the Castle Hayne.

The data available for this summary derive from three main sources:

- Assessment of Hydrologic and Hydrogeologic Data at Camp Lejeune Marine Corps Base, North Carolina; U.S. Geological Survey, Water-Resources Investigation Report 89-4096; 1989
- Wellhead Management Program Engineering Study 91-36; Geophex, Ltd.; 22Jan91
- Various site investigations by Baker Environmental, Inc., and reported to LANTDIV and MCB-CL

DISTRIBUTION OF DATA

The data available from the various sources have been compiled on Tables 1, 2 and 3, with Table 3 summarizing the relevant flow information. The accompanying map indicates the distribution of stations from which data are available.

The tabulated data indicate the main characteristics of each water-bearing layer:

- There is low available production from the water table.
- There is an excessive availability of production from the Castle Hayne compared to the probably acceptable levels of treatment volumes foreseeable in groundwater remediation systems.

The water table had production capacities of less than 5 gallons per minute (gpm) in all cases tested. The specific capacities of the discharge wells were always less than 1 gallon per minute per foot of drawdown (gpm/ft). The transmissivities calculated were generally near or below 1000 gallons per day per foot of drawdown (gpd/ft); only the deeper wells, which intercepted at least part of the Castle Hayne, had transmissivities in a range indicative of an acceptably producing zone. The hydraulic conductivity values were commonly in the range of tenths of feet per day (ft/d). The low production rates, low transmissivities and low hydraulic conductivities indicate that the water table is only marginally, at best, under Darcian conditions. Calculations based on these data would, therefore, be highly unreliable. However, the available information all indicate an expectably low rate of groundwater discharge, which in turn would produce only a narrow radius of effect around an individual production well:

The standard equation for calculation of the radius of capture around an individual well is r_c =720Q/ π Ti. With a discharge rate (Q) of 3 gpm, a transmissivity (T) of 500 gpd/ft and a representative gradient of 0.005, the radius of capture would be 275 ft. However, this calculation applies only to Darcian conditions in a homogeneous medium; the water table at MCB-CL is marginally Darcian and is highly non-homogeneous. The calculation of radius must, therefore, be in some degree of error, with no more usable data or calculation possible.

The Castle Hayne has production capacities generally ranging above 200 gpm. The estimated transmissivities are at least in the range of several tens of thousands gpd/ft, with specific capacities usually about 5 to 10 gpm/ft. The calculated hydraulic conductivities are usually in the scores of feet per day. The available discharge from the Castle Hayne is, therefore, much greater than that from the water table. The limiting factor in remediation schemes for the Castle Hayne then becomes the amount of water that can be treated by an affordable system, usually less than 500 gpm; this value of 500 gpm would be available from one or two wells in the Castle Hayne. The high values of aquifer parameters, the relatively low total discharge and the low number of production wells would conspire to limit the radius of effect available to a remediation scheme:

The standard equation for calculation of the radius of capture around an individual well is $r_c=720Q/\pi Ti$. With a Q of 500 gpm, a T of 50000 gpd/ft and a representative gradient of 0.005, the radius of capture would be only 460 ft.

COMPARABILITY OF DATA ACROSS MCB-CL

The stratigraphic sequences of MCB-CL containing the water table and the Upper Castle Hayne have been well characterized. The available information indicates that the lithology and the hydrologic conditions can be correlated stratigraphically across the base (Tables 1 and 2). From these correlations, aquifer performance can be predicted sufficiently for an engineering design whose final criteria for suitability are performance-based.

The upper water-bearing zone is a highly variable layering and intercalation of clay, silt and sand. This variability, however, is found within recognizable limits. These limits correspond to the range of hydrologic characteristics described previously. Similar correlation is available for the lithology and hydrology of the Upper Castle Hayne.

In areas not near stations catalogued in Tables 1, 2 and 3, a reconnaissance comparison of well-head tests (slug tests) and an examination of lithologic descriptions will likely be sufficient to support the engineering evaluation of the site. There is ample demonstration that lithology has a significant influence on the hydrology of a site, and that, for a given geologic terrane, the influence is fairly consistent. The geologic terrane of MCB-CL has been broadly characterized and correlated between lithologic (stratigraphic descriptions) and hydrologic (aquifer tests and well-head tests) sequences. Lithologic descriptions can now provide a good indication of hydrologic conditions at MCB-CL in areas of similar terrane.

GENERAL APPLICABILITY OF AQUIFER TESTS

Aquifer (pump) tests are an extremely dangerous activity at contamination sites. While the information available from aquifer tests is required for engineering design of withdrawal systems, aquifer tests should not be a reconnaissance or an initial step in the investigation. Full consideration must be made of the redistribution of contaminants expectable from the test, of the change in structural support of disposal features by relaxation or increase of hydrostatic loading, and so forth.

Consideration must also be made of alternative sources of acceptable data on the aquifer. In the case of MCB-CL, alternatives to exploratory aquifer tests are available from the tabulation and correlation of aquifer characteristics, production performance and geologic terrane presently available.

From the available information and in light of the relative consistency of the geologic terrane of MCB-CL, exploratory tests at MCB-CL are not generally required. Therefore, exploratory tests are not advisable and should not form part of the initial investigation of a site. While they may be useful in certain circumstances after the initial investigation of a site, they should not, in the general case, be part of the investigation. Sufficiently satisfactory information is presently available to allow the initial engineering design of a groundwater response.

While exploratory aquifer tests are not advisable, performance tests of a newly installed system are highly recommended. These tests, to some extent, are a normal part of the initial operation of a system. Only minor additional monitoring and modification of the system during operation would provide data directly relevant to the long-term operation of that system.

In the Coastal Plain of MCB-CL, the information from an exploratory data station not coincident with the long-term extraction system is not fully transferable. That is, if the test station and the

recovery station are not the same, the aquifer parameters and calculations based on those parameters will differ. This means that data from an exploratory station are no more reliably usable that the data presently available, unless the exploratory station is collocated with the recovery system. However, if the exploratory and recovery stations are identical, and considering that alternative sources of acceptable data on the aquifer are available and that a performance test must be run as part of the initial operation of a recovery system, the exploratory test represents a superfluous duplication of effort.

TABLE 1
CAMP LEJEUNE PUMP TEST DATA

			Total	T		Water-level	Pumping Rate		Specific	T TOTAL TOTAL			
	Well	Well	i .	Screened	Screened	Drawdown	(Recovery	Duration	Capacity	Т	lκ	s	
	Depth	Diameter	Thickness	Length	Interval	During Pumping	, ,	of Pumping	(pumping rate/	(square ft/	(ft/day)		Soils
Well Number	(ft,BGS)	(in)	(ft)	(ft)	(ft,BGS)	(ft.BGS)	GPM	(min)	drawdown)	day)	` "		(fi,BGS)
013RW-01*	23	2	15	20	3-23	8.773	1	480	0.11	7,17	0.48	NA	0-10 silt/clay, 10-23 sand.
013MW-18	13	2	15	10	3-13	0.297	NA	480	NA	105.98	7.06	1.40E-02	0-7 silt/clay, 7-13 sand.
013MW-21	14:	2	. 15	10	4-14	0.31	NA	480	NA	82.27	5.48	2.77E-02	0-4 silt/sand, 0-14 clay/silt
108RW-01*	15	2	9	9.1	2.45-11.55	6.38	0.5	. 485	0.08	5.30	0.59	NA	very fine sand
108MW- 0 4		2	9				NA	485	NA	118.63	13.18	1.33E-02	
108MW-15	12.5	2	9	9.03	2.79-11.82		NA	485	NA	56.78	6.31	7.33E-03	0-8 sand/silt, 8-10 silt/clay
											·		
109MW-15		2	15			0.939	NA	460	NA	76.26	5.08	1.11E-02	
109MW-17	14.5	2	15	10	4.5-14.5	0.545	NA	460	NA	163.10	10.87	7.30E-03	0-15 fine sand
109RW-01*	15	2	15	9.5	2-11.5	6.265	3	460	0.48	7.80	0.52	NA	0-4 sand, 4-8 silt, 8-15 sand
·													
110RW-01* (Drawdown, Theis)	21.8	2	50	19.2	2-21.2	9.53	3	475	0.31	200.02	4.00	NA	0-10.5 sand/silt, 10.5-15 sand/clay, 15-21.5 sand/clay, 21.5- sand
110RW-01* (Drawdown, Cooper)										161.86	3.24	NA	
110RW-01* Recovery(Theis)										106.06	2.12	NA	
110DW-01 (Drawdown, Theis)	30.3	2	50	4.8	24.9-29.7	0.02	3	475	NA	7080.48	142.00	4.52E-03	0-4 sand/silt, 4-10.5 clay, 10.5-15.5 sand/silt, 15.5-20.5 clay, 20.5-on sand
110DW-01 (Drawdown, Cooper)									NA	7099.20	142	4.51E-03	
110DW-02 (Drawdown, Theis)	30	2	50	4.7	24.7-29.4	0.52	NA	475	NA	5398.56	108.00	1.51E-03	0-3 sand and silt with clay layers, 3-11 sand and silt, 11-30 sand with some limited clay layers
110DW-02 (Drawdown, Cooper)				<u> </u>					NA	5400.00	108	1.51E-03	
110DW-03 (Drawdown,Theis)	30	2	50	4.9	24,5-29.4	0.47	NA	475	NA NA	2952,00	59.00	7.48E-02	0-6 sand and silt, 6-12 sand, 12-23 sand/clay, 23-30 sand
110DW-03 (Drawdown, Cooper)									NA.	3225.60	64	5.85E-02	

T = Transmissivity

K = Hydraulic Conductivity

S = Storativity

⁼ Pumping well

NA - Not applicable

TABLE 2
HYDRAULIC CONDUCTIVITY TEST RESULTS (SLUG TEST)

			Saturated				
	Well	Well	Aquifer	Screened	Screened	ĸ	
Well	Depth	Diameter	Thickness*	Length	Interval	Rising	Soils
Number	(ft,BGS)	(in)	(ft)	(ft)	(ft,BGS)	(ft/day)	(ft,BGS)
013MW-03	14	2	1	9.8	4-13.8	0.75	0-6 clay, 6-14 silt
013MW-04	14	2	8.13	9.8	4-13.8	0.27	0-8 clay, 8-14 silt
013MW-11	16	2	9.14	10	6-16	0.37	0-4 sand/silt, 4-14 clay, 14-16 sand
013MW-21	14	2	9.2	10	4-14	0.46	0-4 silt/sand, 4-14 clay
1	***************************************						
108MW-08	12.8	2	8.83	9.7	2.7-12.4	0.59	0-8 very fine sand, 8-12 clayey peat, 12-13 sandy clay
108MW-09	12.8	2	7.81	9.7	2.8-12.5	0.53	0-13 silt/sand
108MW-13	10.8	2	NA	9.02	0.69-9.71	0.061	0-2 very fine sand, 8-9.5 sandy clay
108MW-17	13.1	2	NA	9.03	3.39-12.42	0.59	0-8 fine grained sand, 8-9 clayey peat, 9-12.5 sandy clay
109MW-17	14.5	2	9.04	10	4.5-14.5	9.00	0-15 fine sand
109MW-18	14	2	10.19	10	4.5-14.5	5.70	0-3 sand, 3-10 silt, 10-14 sand
110MW-07	11.96	2	9	9.8	1.5-11.3	0.0115	0-2 clay/silt, 2-4 clay/sand, 4-6 sand, 6-10 silt/clay, 10-14 silt /sand
110MW-09	14.2	2	9.47	9.8	3.8-13.6	0.16	0-6 sand/silt, 6-9 clay/silt, 9-12 sand/silt, 12-14 clay
110DW-03	30	6	22.04	4.9	24.5-29.4	1.07	0-3 sand, 3-4 clay, 4-10 sand/silt, 10-12 sand, 12-13 clay, 13-22 silt/clay, 22-30 sand
				·			
41GW-07	20.5	2	12.03	10	10.5-20.5	1.15	1-5 silty sand, 5-9 clay, 9-10 silty sand, 10-12 fill, 12-16 silty sand with 1 ft clay layer, 16-21 sand
41GW-08	15	2	9.48	10	5-15	0.14	0-1 silty sand, 1-6 sand, 6-14 clay with sand and silt, 14-16 silty sand
41GW-09	21	2	11.89	10	11-21	3.67	0-5 clay and sand, 5-21 silty sand
41GW-10	13	2	8.59	10	3-13	0.94	0-2 silty sand, 2-7 sand, 7-9 silty sand and clay, 9-12 lithified sandstone, 12-13 sand. 13-14 lithified sandstone
41GW-12	16	2	12.45	10	6-16	4.57	0-4 silty sand, 4-14 sand, 14-17 lithified sandstone
							
69GW-09	20.5	2	14.22	10	10.5-20.5	1.7	1-4 Sand/silt, 4-10 clay some sand, 10-21 sand/silt
69GW-10	16	2	10.5	10	6-16	0.17	1-17 sand/silt
69GW-12	12.5	2	11.27	10.5	2-12.5	0.12	0-13.5 sand/silt
69GW-02D	125	2	22.1	10	40-50	0.29	0-125 silty sand **
69GW-12D	58	2	53.83	10	48-58	6.66	0-58 silty sand **
					·		
74GW-03A	18	2	13.58	10	8-18	0.59	0-17 silty sand, 17-18.5 sandy clay
74GW-06	16.5	2	8.18	9.74	15.5-26	6.33	1-26 sand/silt
74GW-08	23	2	10.51	10	13-23	3.55	0-1 silty sand, 1-24 sand

^{*} Values taken from AQTESOL results. (Bottom of screened interval- water level)

)

^{**} Due to depth, soils were very generally described.

K = Hydraulic Conductivity

TABLE 3

BARONE: 8SEP94:CL5-1A1:1/5

MCB-CL5	CTO-232	CL5-1B1.wks		8SEP94	MCB-CAMP	LEJEUNE
STATION	b ft	Q gpm	Sc gpm/ft	T ft-sq/d	T gpd/ft	
013RW-01 013MW-1 013MW-2 013MW-03 013MW-04 013MW-11 013MW-21 41GW-07 41GW-08 41GW-09 41GW-10 41GW-12 69GW-10 69GW-12 69GW-09 69GW-12 69GW-02DW 69GW-12DW 74GW-03A 74GW-06	15 15 15 1 8 9 8	1.0	0.11	7.2 106.0 82.3	54 793 615	7.1 5.5 0.8 0.3 0.4 0.5 1.2 0.1 3.7 0.9 4.6 1.7 0.2 0.1
74GW-08 74GW-08 108RW-01 8MW-0 58MW-1 108MW-08 108MW-09 108MW-13 108MW-17	9 9 9 9 8 8	0.5	0.08	5.3 118.6 56.8	40 887 425	13.2
109MW-1 109MW-1 109RW-01 109MW-17 109MW-18	15 15 15 15 15	3.0	0.48	76.3 163.1 7.8	570 1220 58	5.1 10.9
110RW-01 110RW-01 110RW-01 110DW-01 110DW-02 110DW-02 110DW-03 110DW-03 110DW-03 110MW-07 110MW-09	50 50 50 50 50 50 50 50 9 9	3.0 3.0 3.0	0.31	200.0 161.9 106.1 7080 7099 5399 5400 2952 3226	1496 1211 793 52962 53102 40381 40392 22081 24127	4.0 3.2 2.1 142.0 142.0 108.0 108.0 59.0

BARONE:8SEP94:CL5-1A1:1/5

BARONE:8SEP94:CL5-1A1:2/5

STATION	b ft	Q gpm	Sc gpm/ft	T ft-sq/d	T gpd/ft	K ft/d
BB-43	275	170	5.0	8900	66572	32.4
BB-44	275	450	10.0	17900	133892	65.1
BB-222	275	329	9.4	10600	79288	38.5
HP-612	285	275	5.4	7900	59092	27.7
HP-614	285	323	4.9	6600	49368	23.2
HP-621	300	200	9.1	24500	183260	81.7
HP-628	320	160	3.4	6400	47872	20.0
HP-629	300	210	5.7	7900	59092	26.3
HP-634	300	163	4.5	4300	32164	14.3
HP-636	300	211	6.8	6900	51612	23.0
HP-643	295	278	5.3	9700	72556	32.9
HP-644	300	246	4.3	8100	60588	27.0
HP-646	305	304	10.6	20200	151096	66.2
HP-647	305	500	9.8	18700	139876	61.3
HP-648	310	250	2.9	5600	41888	18.1
HP-649	310	257	2.6	5000	37400	16.1
HP-651	305	270	3.8	7300	54604	23.9
HP-652	320	218	2.2	4400	32912	13.8
HP-663	325	350	4.8	6400	47872	19.7
HP-699	275	250	5.7	7700	57596	28.0
HP-700	270	250	6.8	11500	86020	42.6
HP-701	275	250	7.2	12400	92752	45.1
HP-705	295	250	9.0	13100	97988	44.4
HP-706	300	250	3.8	4700	35156	15.7
HP-709	310	200	4.4	8500	63580	27.4
HP-710	310	200	5.1	9900	74052	31.9
HP-711	320	200	6.8	10700	80036	33.4
LCH-4006	295	540	10.0	14500	108460	49.2
LCH-4007	295	275	11.8	13700	102476	46.4
M-267	260	170	7.7	10300	77044	39.6
M-628	260	70	3.0	6100	45628	23.5
RR-229	290	429	12.2	19400	145112	66.9
TT-25	280	150	5.0	7200	53856	25.7

STATION	PUMPING LEVEL	Q gpm	Sc gpm/ft
STATION HP-602 HP-603 HP-606 HP-607 HP-608 HP-610 HP-613 HP-616 HP-620 HP-622 HP-623 HP-623 HP-623 HP-634 HP-635 HP-635 HP-636 HP-637 HP-638 HP-637 HP-638 HP-644 HP-645 HP-645 HP-645 HP-645 HP-645 HP-646 HP-645 HP-651 HP-652 HP-651 HP-652 HP-651 HP-652 HP-651 HP-652 HP-6661 HP-6661 HP-6661	LEVEL 44 30 38 46 21 45 147 15 95 30 45 21 18 33 35 40 42 35 240 126 84 80 76 82 29 30 37	gpm 154 129 267 246 208 199 214 157 178 224 330 210 216 2219 130 [] 210 351 [] 269 230 192 154 302 216 197 175 [-5] 150 275	gpm/ft 3.530394.329900888711.9 15.394.329924.007.05007.4.8 10.11.4.320.7 11.31.345688RRR 14.0613.340507.4 14.0613.345688RRR 14.0613.345688RRR 7.4
HP-663 HP-698 HP-699	53 23 33 21	148 100 216 140	2.8 4.3 6.5 6.7

STATION	PUMPING LEVEL	Q gpm	Sc gpm/ft
HP-700	39	192	4.9
HP-701	36	236	6.6
HP-703	. 33	293	8.9
HP-704	38	159	4.2
HP-705	25	214	8.6
HP-706	33	214	6.5
HP-707 HP-708	51 42	50	1.0
HP-709	52	219 239	5.2 4.6
HP-710	29	115	4.0
HP-711	56	235	4.2
HP-5186	38	336	8.8
LCH-4007	34	150	4.4
LCH-4009	22	349	15.9
TT-23	36	160	4.4
TT-25	22	130	5.9
TT-26	32	127	4.0
TT-31	28	111	4.0
TT-52	18	236	13.1
TT-54	20	119	6.0
TT-67	29	119	4.1
RR-45	11	192	17.5
RR-47	5	140	28.0
RR-97	14	170	12.1
RR-229	35	[]	0.0
BB-44	11	125	11.4
BB-47 BB-218	6	341	56.8
BB-210	17 13	192 119	11.3 9.2
BB-221	19	230	12.1
TC-325	8	100	12.5
TC-502	1	180	180.0
TC-504	. 35	203	5.8
TC-600	32	172	5.4
TC-604	16	137	8.6
TC-700	28	125	4.5
TC-901	37	[]	0.0
TC-1000	25	110	4.4
TC-1001	16	160	10.0
TC-1251	6	150	25.0
TC-1253	5	128	25.6
TC-1254	3	122	40.7
TC-1255	36	104	2.9
TC-1256	48	108	2.3

BARONE:8SEP94:CL5-1A1:5/5

STATION	PUMPING LEVEL	Q gpm	Sc gpm/ft
AS-108	8	226	28.3
AS-131	11	310	28.2
AS-190	60	220	3.7
AS-191	16	220	13.8
AS-203	19	220	11.6
AS-4140	6	110	18.3
AS-4150	10	128	12.8
AS-5001	27	185	6.9
AS-5009	53	111	2.1
BA-164	21	214	10.2
BA-190	17	303	17.8

APPENDIX H RAINFALL DATA FROM MCAS NEW RIVER

Weather Service H&HS MCAS New River Jacksonville, NC 28545-1002 (910)451-6828/6968 DSN 484-6828/6968 Fax: (910)451-6351 DSN 484-6351

FAX TRANSMISSION COVER SHEET

Date:	950911
To:	JAMES CULP
Fax:	(412) 269-2002
Subject:	RAINFALL DATA
Sender:	CPL LYNN, WEATHER ADMIN CLERK
	OULD RECEIVE [

NOTES:

Weather Service Section

MCAS New River Jacksonville, NC

Compiler: CPL LYNN

Month. JUNE

Year:

1995

							76.20							
	Ter	nperati	ures	CI	ecio.	Wing Summary		TRW	Field Summary			R	RH%	
			T	t	1	Avg	Avg	Peak	-	Hrs	Hrs	Hrs	 	- 175
	High	Low	Avg	Amt	Type*	Dir	Speed	Speed	Hours	ВМ	IFR	VFR	Avg	High
1	86	64	75	0.00		SE	5	14	0.00	0.00	0.00	24.00	69	84
2	85	70	77.5	0.05	R	S	4	14	1.63	0.00	0.00	24.00	80	87
3	79	71	75	1.35	R	SW	3	14	1.07	0.00	3.53	20.47	83	93
4	89	71	80	0.00		SW	3	13	0.00	0.00	0.00	24.00	78	90
5	78	72	75	2.54	R	SE	7	22	0.00	0.00	7.47	16.53	86	93
6	79	71	75	1.87	R	W	10	. 30	1.08	0.00	11.30	12.70	86	90
7	94	68	81	0.44	R	WSW	6	34	i 1.87	0.00	3.32	20.68	77	94
8	96	71	83.5	0.00		W	6	28	0.00	0.00	0.00	24.00	66	87
9	96	71	83.5	0.28	R	NNW	6	22	2.67	0.00	0.20	23,80	66	85
10	88	71	79.5	0.15	R	SE	5	14	0.00	0.00	0.00	24.00	77	87
11	89	73	81	0.01	R	S	6	18	1.18	0.00	4.40	19.60	77	90
12	88	68	78	0.54	R ·	S	7	27	8.95	0.00	0.47	23.53	80	87
13	74	62	. 68	<u>T</u>	, <u>L</u>	N	8	21	0.00	0.00	5.00	19.00	74	87
14	83	56	69.5	0.00		W	6	21	0.00	0.00	0.00	24.00	58	81
15	88	58	73	0.00		SE	3	14	0.00	0.00	0.00	24.00	59	80
16	85	64	74.5	0.00		NE	6	13	0.00	0.00	0.00	24.00	58	81
17	84	62	73	0.17	R	Ņ	5	23	0.75	0.00	0.00	24.00	64	81
18:	77 83	68 68	72.5 75.5	0.79	R	NE	6	18	0.50	0.00	0.00	24.00	75	87
-	85	<u>0</u> 0	76.5	0.55	R	E	<u>8</u> 5	23	3.48	0.00	8.75	15.25	79	89
20	78	71	74.5	0.00		SW		15	0.00	0.00	0.00	24.00	73	88
22	80	71	75.5		R	F	. 4	17	0.00	0.00	0.62	23.38	83	87
23	90	71	80.5	0.02 T	R,L	SSW	5.		0.00	0.30	5.52	18.18	83	90
24	90	71	80.5	0.05	L R	SE	3	13	0.00	0.00 1.23	0.00	24.00	75	91
25	90	73	81.5	T	<u>R</u>	SW	4	13 16	0.00 1.75	0.00	1.27	21.50	78 78	94 90
26	91	72	81.5	0.03	- R	S	3 4	16	1.50	0.00	0.00	20.00	- <u>78</u>	90
27	90	71	80.5	0.15	<u>R</u>	VRB	- 4 -	28	2.33	2.84	2.88	18.28	- 70	91
28	87	73	80	0.42	R	E	· + _	16	1.58	0.00	3.43	20.57	78	90
29	86	73	79.5	<u> </u>	R	SE	5	10	0.00	0.00	0.00	24.00	- 77 -	87
30	90	69	79.5	0.00	11	E	3	7	0.00	0.00	0.00	24.00	69	87
31			ERR	2.50			· Ÿ	'_ -	<u></u>	<u> </u>	0.00	27.00		
				l		;	i]		I			
		Ter	np	Pro	ecip.		Winds		TRW	BM	IFR	VFR		
			-		17.1	Avg	Avg	Peak	Total	Total	Total	Total	<i>?</i>	1%
		High	Low	Am	ount	Dir.	Spd.	Spd.	Hrs.	Hrs.	Нгз.	Hirs.	Avg.	High
Abso	lute	96	56		.54			34	30.34	4.37		653,47		94
Avera	age	86	69		0.32	SSE	5			0.15	2.07	1	74.80	
	•		خد.		,				ALCOHOLOGO CONTRACTOR			· · · · · · · · · · · · · · · · · · ·		

*: R - RAIN OR RAIN SHOWERS

L - DRIZZLE

S - SNOW OR SNOW SHOWERS

H - HAIL

ZL - FREEZING DRIZZLE

ZR - FREEZING RAIN

IP - ICE PELLETS

Weather Service Section

MCAS New River Jacksonville, NC

Compiler: CPL LYNN

Month: JULY

Year:

1995

	Ter	nperatu	ıres	Pr	ecip.	+	nd Sumi		TRW		d Sumn		R)	1%	
						Avg	Avg	Peak		Hrs	Hrs	Hrs			
	High	Low	Avg	Amt	Type*	Dir	Speed	Speed	Hours	BM	IFR	VFR	Avg	High	
1	90	71	80.5	0.21	R	SSW	5	22	2.00	0.00	0.48	23.52	77	87	
2	88	72	80	0.31	R	NW	3	14	0.00	0.00	2.42	21.58	74	87	
3	89	73	81	0.20	R	SE	3	15	4.85	0.00	0.00	24,00	79	87	
4	91	72	81.5	0.00		E	4	16	0.42	0.00	0.00	24.00	75	90	
5	91	73	82	0.20	R	SE	4	18	1.30	0.00	0.00	24.00	73	90	
6	91	71	81	Т	R	E	5	26	0.32	0.00	0.00	24.00	69	84	
7	87	70	78.5	0.19	R	SW	4	28	1.08	0.00	0.55	23.45	75	84	
8	93	72	82.5	0.00		W	5	14	0.00	0.00	0.00	24.00	68	87	
9	93	71	82	0.00		NW	3	12	0.00	0.00	0.00	24.00	69	87	
10	91	70	80.5	0.01	R	E	4	25	3.52	0.00	0,00	24.00	77	87	
11	93	71	82	0.06	R	S	4	16	1.83	0.00	0.30	23.70	78	87	
12	90	74	82	0.00			5	17	0.00	0.00	0.00	24.00	71	88	
13	90	72	81	0.05	R	E	3	19	0.00	0.00	2.00	22.00	75	87	
14	91	73	82	0.28	R	S	5	19	0.92	0.00	0.00	24.00	77	87	
15	94	74	84	0.00		SSW	7	15	0.00	0,00	0.00	24.00	` 74	91	
16	93	76	84.5	T	R	S	4	15	0.00	0.00	0.00	24.00	79	88	
17	91	77	84	0.53	R	S	. 4	16	1.15	0.00	0.50	23.50	77	87	
18	91	74	82.5	0.00		SW	5	17	3.50	0.00	0.00	24.00	78	88	
19	91	73	82	0.02	R	SW	1	6	0.00	0.00	0.00	24.00	78	87	
20	97	74	85.5	0.00		S	2	16	0.00	0.00	0.00	24.00	72	87	
21	93	75	84	0.05	R	SSW	_ 6	22	2.68	0.00	0.00	24.00	76	87	
22	94	74	84	0.26	R	SW	5	16	3.00	0.00	0.00	24.00	76	88	
23	97	79	88	0.00		SW	6	23	0.00	0.00	2.00	22.00	72	90	
24	97	72	84.5	0.00		SW	6	18	0.60	0.00	0.00	24.00	72	85	
25	93	73	83	0.00		S	8	21	0.00	0.00	0.00	24.00	_73	87	
26	94	78	86	0.00		SW	7	24	0.00	0.00	0.00	24.00	76	87	
27	91	78	84.5	T	R	S	6	19	0.48	0.00	0.00	24.00	75	85	
28	91	75	83	0.00		S	5	18	0.00	0.00	0.00	24.00	72	87	
29	93	74	83.5	0.00		S	6	17	0.00	0.00	0.00	24.00	74	88	
30	95	74	84.5	0.00		SE	4	17	0.00	0.00	0.00	24.00	70	87	
31	93	76	84.5	T	R	SE	3	15	0.00	0.00	0.00	24.00	71	84	
		Tei	mp	Pr	ecip.	<u> </u>	Winds		TRW	ВМ	IFR	VFR			
				_		Avg	Avg	Peak	Total	Total	Total	Total	RH		
		High	Low		rount	Dir.	Spd.	Spd.	Hrs.	Hrs.	Hrs.	Hrs.	Avg.	High	
	olute	97	70		2.37			28	27.65	0.00	8.25	735.75		91	
Ave	rage	92	74	<u> </u>	0.08	SSW	5			0.00	0.27	23.73	74.26		

*: R - RAIN OR RAIN SHOWERS

L - DRIZZLE

S - SNOW OR SNOW SHOWERS

H - HAIL

ZL - FREEZING DRIZZLE

ZR - FREEZING RAIN

IP - ICE PELLETS

Weather Service Section

MCAS New River Jackeonville, NC

Compiler: CPL LYNN

Month: AUGUST

Year: 1995

	Too	nperatu	roa	P	ecip.	. W	nd Sumr	nary	1RW	Field Summary			RH%		
10.000		ipei cro			1	Ava	Ava	Peak		iHra	Hra	Hra			
	Hìgh	Low	Avg	Amt	Type"	Dir	Speed	Speed	Houre	BM	IFR	VFR	Avg	High	
1	94	74	84	0.00		SE	5	14	0.00	0.00	0.00	24.00	68	81	
2	92	75	83.5	T	R	SSE	В	24	0.85	0.00	0.00	24.00	70	84	
3	23	76	84.5	0.03	R	ESE	8	20	0.00	0.00	0.00	24.00	75	84	
4	93	74	83.5	0.00		SSE	5	16	0.00	0.00	0.00	24.00	72	87	
5	95	75	85	0.00		SW	6	16	0.00	0.00	0.00	24.00	72	87	
8	96	78	88	0.17	R	SW	8	27	00.0	0.00	0.00	24.00	67	86	
7	86	69	77.5	0.00		NE	7	18	0.00	0.00	0.00	24.00	70	88	
8	85	රිට්	75	0.00		NNE	6	18	0.00	0.00	0.00	24.00	68	79	
9	88	71	79.5	2.91	R	NNE	5	18	1.50	0.00	6.37	17.83	83	90	
10	86	74	80	0.08	R.L	NE	6	23	0.92	0.00	1.13	22.87	80	80	
11	88	71	80	0.02	L	NWW	- 6	19	0.00	0.00	5.02	18.98	73	87	
12	95	68	81.5	0.00		SW	4	13	0.00	0.00	0.00	24.00	71	87	
13	100	75	87.5	0.00		SW	4	12	0.00	0.00	0.00	24.00	73	87	
14	95	77	86	0.00		ESE	4	13	0.00	0.00	0.32	23.68	71	87	
15	92	72	82	0.00		NNE	7	10	0.00	0.00	0.00	24.00	59	81	
16	91	70	80.5	T	R	NW	10	26	0.00	0.50	4.15	19.85	68	89	
17	97	77	87	0.00		NYY	7	20	מַנימַנ	0.00	0.00	24 00	85	85	
18	96	75	85.5	0.00		N	5	17	0.50	0.00	0.00	24.00	ซิวิ	88	
19	38	68	79	0.00		NYY	8	18	2.20	0.00	0.00	24.00	50	?5	
20	87	63	75	0.00		MWY	5	16	0.00	0.00	0.00	24.00	56	84	
21	89	85	77	סמ.מ		SW	4	19	0.00	0.00	0.00	24.00	67	58	
22	92	69	80.5	0.00		8	5	14	0.00	0.60	0.00	24.00	70	පිව	
23	88	74	81	0.03	R	SE	6	50	0.00	0.00	1.08	22.92	77	δŪ	
24	92	75	83.5	0.00		ESE	8	16	00.00	6.00	0.00	24.00	73	37	
25	91	74	82.5	0 07	R	SE	5	18	0.00	0.00	0.00	24.00	74	90	
28	78	75	77	1.96	R	E	g	21	0.00	0.00	3.20	20.80	38	30	
27	83	75	79	1.87	R	SSE	fl	26	3 37	0.00	2.32	21 68	83	90	
28	82	72	77	0.35	R,L	NNE	8	23	0.00	0.00	7.33	18.87	64	\$4 04	
29	88	70	78	0.00		NNE	7	19	0.00	0.00	0.00	24.00	70	84	
30	88	67	78	0.00		NE	5	14	0.00	0.00	0.00	24.00	66	<u>84</u>	
31	89	69	79	0.00		8	4	14 (0.00	0.00	000	24.00	72	97	
		100 13 Sept. 12 William							TRW	BM	IFR	VFR		100	
	ar dan berekala Septimber	Ter	פויז		ecip.	Avg	Winds Avg	Peak	Total	Total	Total	Total	킩	0/	
45 2 10 1		High	Law	Δn	nount	Dir.	Spd.	Spd.	Hrs.	Hra.	Hra.	Hra.	Avg.	High	
Abs	ojuje	100	63		7.49	٠,,,		27	5.54	0.00	30.92	713.08		94	
Aver	*****	80	72		0.24	E	6			0.00	1.00		71,52		

*: R - RAIN OR RAIN SHOWERS

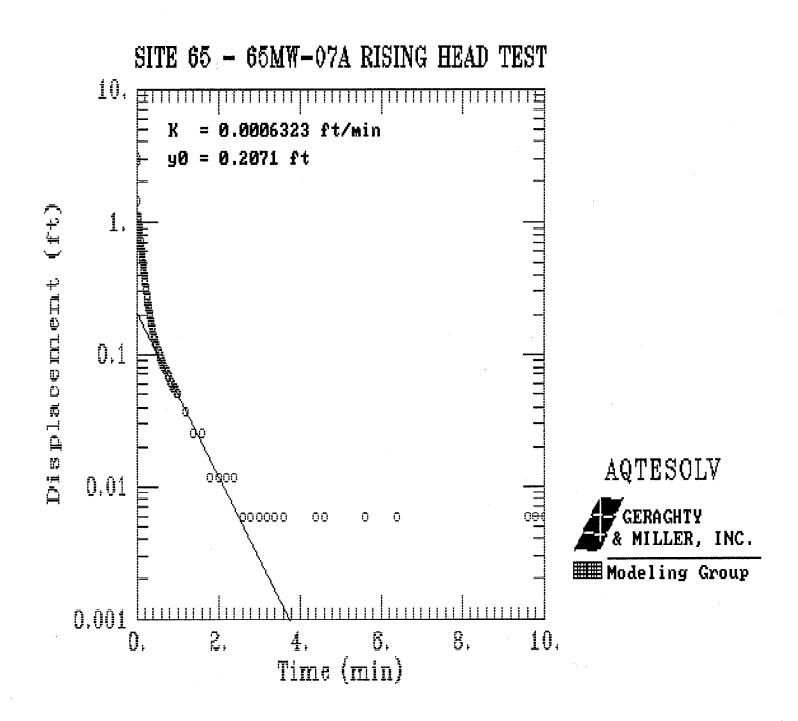
L - DRIZZLE

S - SNOW OR SNOW SHOWERS

H - HAIL

21 - FREEZING DRIZZLE

ZR - FREEZING RAIN IP - ICE PELLETS


0.7 0.7166 0.7333 0.75 0.7666 0.7833 0.8 0.8166 0.8333 0.85 0.8666 0.8833 0.9 0.9166 0.9333 0.95 0.9666 0.9833 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3.3 3.4	0.101 0.094 0.094 0.094 0.088 0.082 0.088 0.082 0.082 0.082 0.082 0.082 0.082 0.076 0.076 0.076 0.076 0.076 0.076 0.076 0.076 0.076 0.057 0.057 0.057 0.044 0.038 0.032 0.032	0.093996 0.093285 0.092575 0.091871 0.091177 0.090483 0.089795 0.089116 0.087102 0.085782 0.085133 0.085782 0.085133 0.084486 0.083843 0.083209 0.082577 0.081948 0.074788 0.062288 0.056845 0.056845 0.051878 0.047345 0.047345 0.047345 0.047345 0.043208 0.039432 0.035986 0.032842 0.029972	0.0070044 0.00071504 0.0014246 0.0021287 0.0028233 -0.0024832 -0.007795 -0.0011161 -0.00043825 -0.0057656 -0.005102 -0.0044395 -0.0037821 -0.0031335 -0.008486 -0.0078433 -0.0012094 -0.0065765 -0.0059485 0.0012124 0.00074754 -0.0052884 -0.0052884 -0.0052884 -0.0052884 -0.0051218 -0.0033449 0.00079221 -0.0014322 0.0020135 -0.008419 0.002279	
2.4 2.6 2.8 3	0.044 0.038 0.038 0.032	0.043208 0.039432 0.035986 0.032842	0.00079221 -0.0014322 0.0020135 -0.0008419	111111111111

RESULTS FROM VISUAL CURVE MATCHING

VISUAL MATCH PARAMETER ESTIMATES

Estimate

K = 2.0353E-004y0 = 1.2945E-001

AQTESOLV RESULTS Version 1.10

06/19/95

17:08:10

TEST DESCRIPTION

Data set..... a:\65mw07ar.dat

Data set title..... SITE 65 - 65MW-07A RISING HEAD TEST

Knowns and Constants:

A, B, C..... 0.000, 0.000, 1.571

ANALYTICAL METHOD

Bouwer-Rice (Unconfined Aquifer Slug Test)

RESULTS FROM STATISTICAL CURVE MATCHING

STATISTICAL MATCH PARAMETER ESTIMATES

Estimate Std. Error K = 6.3231E-004 +/- 1.8899E-005 y0 = 2.0706E-001 +/- 7.0572E-003

ANALYSIS OF MODEL RESIDUALS

residual = calculated - observed
weighted residual = residual * weight

Weighted Residual Statistics:

Model Residuals:

Time	Observed	Calculated	Residual	Weight
0.6166	0.087	0.086248	0.00075208	1
0.6333	0.087	0.084226	0.0027738	1
0.65	0.081	0.082252	-0.0012518	1
0.6666	0.081	0.080335	0.00066482	1
0.6833	0.081	0.078452	0.002548	1

0.7	0.075	0.076613	-0.001613	1
0.7166	0.075	0.074828	0.00017222	1
0.7333	0.075	0.073074	0.0019263	1
0.75	0.068	0.071361	-0.0033608	1
0.7666	0.068	0.069698	-0.001698	1
0.7833	0.068	0.068064	-6.4161E-005	1 1 1
0.8	0.068	0.066469	0.0015313	
0.8166	0.062	0.06492	-0.0029198	1
0.8333	0.062	0.063398	-0.001398	1
0.85	0.062	0.061912	8.8104E-005	1
0.8666	0.062	0.060469	0.0015308	1
0.8833	0.056	0.059052	-0.0030517	1
0.9	0.056	0.057668	-0.0016675	1
0.9166	0.056	0.056324	-0.00032373	1
0.9333	0.056	0.055003	0.00099656	1
0.95	0.056	0.053714	0.0022859	1
0.9666	0.056	0.052462	0.0035376	1
0.9833	0.05	0.051233	-0.0012327	1
1	0.05	0.050032	-3.1727E-005	1
1.2	0.037	0.037659	-0.00065945	1
1.4	0.025	0.028347	-0.0033467	1
1.6	0.025	0.021337	0.0036631	1
1.8	0.012	0.016061	-0.0040605	1
2	0.012	0.012089	-8.8936E-005	1
2.2	0.012	0.0090995	0.0029005	1
2.4	0.012	0.0068493	0.0051507	1 1 1 1 1 1 1 1 1 1 1
2.6	0.006	0.0051555	0.00084447	1

RESULTS FROM VISUAL CURVE MATCHING

UAL MATCH PARAMETER ESTIMATES

Estimate 6.3231E-004 y0 = 2.0706E-001

APPENDIX J INVENTORY OF THE RARE SPECIES, NATURAL COMMUNITIES, AND CRITICAL AREAS OF THE CAMP LEJEUNE MARINE CORPS BASE, NORTH CAROLINA

INVENTORY OF THE RARE SPECIES,

NATURAL COMMUNITIES, AND CRITICAL AREAS OF THE CAMP LEJEUNE MARINE CORPS BASE, NORTH CAROLINA

Ву

Richard J. LeBlond John O. Fussell and Alvin L. Braswell

Edited by Inge K. Smith

For the

North Carolina Natural Heritage Program
Division of Parks and Recreation
Department of Environment, Health, and Natural Resources
Raleigh, North Carolina 27611

February 1994

Table 2. Endangered and rare animal species documented from Camp Lejeune.

	Federal	North Carolina
Scientific Name/Common Name	Status	Status
Accipiter cooperii Cooper's Hawk	-	Special Concern
Aimophila <u>aestivalis</u> Bachman's Sparrow	Candidate	Special Concern
Alligator mississippiensis American Alligator	-	Threatened
<u>Caretta</u> <u>caretta</u> American Loggerhead Turtle	Threatened	Threatened
<u>Charadrius</u> <u>melodus</u> Piping Plover	Threatened	Threatened
<u>Chelonia mydas</u> Green Turtle	Threatened	Threatened
<u>Crotalus adamanteus</u> <u>Eastern Diamondback Rattlesnake</u>	-	Significantly Rare
Falco peregrinus Peregrine Falcon	Endangered	Endangered
<u>Heterodon simus</u> Southern Hognose Snake	Candidate	Significantly Rare
Malaclemys terrapin Diamondback Terrapin	Candidate	Special Concern
<u>Micrurus fulvius</u> Eastern Coral Snake	-	Significantly Rare
Picoides borealis Red-cockaded Woodpecker	Endangered	Endangered
Rana capito capito Carolina Gopher Frog	Candidate	Special Concern
<u>Sistrurus miliarius</u> Pigmy Rattlesnake	<u>-</u>	Significantly Rare
<u>Ursus americanus</u> Black Bear	-	Significantly Rare

Table 3. Endangered and rare plant species documented from Camp Lejeune.

Scientific Name/Common Name	Federal <u>Status</u>	North Carolina Status
Agalinis aphylla Scale-leaf Gerardia		Candidate
Agalinis <u>linifolia</u> Flaxleaf Gerardia	-	Significantly Rare
Agalinis virgata Branched Gerardia	-	Candidate
Amaranthus pumilus Seabeach Amaranth	Candidate	Threatened
Amphicarpum purshii Pinebarrens Goober Grass	-	Significantly Rare
<u>Aristida palustris</u> Longleaf Three-awn	-	Significantly Rare
Asclepias pedicellata Stalked Milkweed	-	Candidate
<u>Calamovilfa brevipilis</u> Pinebarrens Sandreed	-	Endangered
<u>Carex chapmanii</u> Chapman's Sedge	Candidate	Threatened
<u>Carex verrucosa</u> Warty Sedge	-	Significantly Rare
<u>Cladium mariscoides</u> Smooth Sawgrass	-	Significantly Rare
Cornus asperifolia Roughleaf Dogwood	-	Candidate
<u>Cyperus lecontei</u> Leconte's Flatsedge	-	Significantly Rare
<u>Dichanthelium</u> <u>erectifolium</u> Erectleaf Witchgrass	-	Significantly Rare
<u>Dichanthelium</u> species 1 Hirst's Witchgrass	Candidate	Candidate

Table 3 con't

Dionaea muscipula Venus Flytrap	*1	Candidate- Special Concern
Eleocharis <u>elongata</u> Elongate Spikerush	-	Candidate
Eleocharis equisetoides Horsetail Spikerush		Significantly Rare
Eleocharis melanocarpa Blackfruit Spikerush	-	Candidate
Eleocharis montevidensis Sand Spikerush	-	Significantly Rare
Eleocharis robbinsii Robbins's Spikerush	-	Candidate
<u>Litsea aestivalis</u> Pondspice	Candidate	Candidate
<u>Lobelia boykinii</u> Boykin's Lobelia	Candidate	Candidate
<u>Ludwigia linifolia</u> Flaxleaf Seedbox	-	Significantly Rare
<u>Lysimachia</u> <u>asperulifolia</u> Rough-leaf Loosestrife	Endangered	Endangered
Muhlenbergia torreyana Torrey's Muhley	-	Endangered
Myriophyllum laxum Loose Watermilfoil	Candidate	Threatened
Oxypolis ternata Savanna Cowbane	Candidate	Candidate
Panicum tenerum Southeastern Panic Grass	-	Significantly Rare
<u>Peltandra sagittifolia</u> Spoonflower	-	Significantly Rare
<u>Polygala hookeri</u> Hooker's Milkwort	-	Candidate
Ponthieva racemosa Shadow-witch	~	Significantly Rare

Table 3 con't

•		
Rhexia aristosa Awned Meadow-beauty	Candidate	Threatened
Rhexia <u>cubensis</u> West Indies Meadow-beauty	-	Significantly Rare
Rhynchospora harperi Harper's Beakrush	-	Candidate
Rhynchospora oligantha Feather-bristle Beakrush	-	Candidate
Rhynchospora pallida Pale Beakrush	<u> </u>	Significantly Rare
Rhynchospora pleiantha Coastal Beakrush	· -	Candidate
Rhynchospora scirpoides Longbeak Baldsedge	· <u>-</u> · ·	Significantly Rare
Rhynchospora tracyi Tracy's Beakrush		Significantly Rare
Sageretia minutiflora Small-flowered Buckthorn	_	Candidate
Sagittaria graminea var. chapmani Chapman's Arrowhead	<u>i</u> -	Candidate
Scirpus etuberculatus Canby's Bulrush	-	Significantly Rare
Scirpus lineatus Drooping Bulrush	-	Candidate
<u>Scleria georgiana</u> Georgia Nutrush	-	Candidate
Scleria minor Slender Nutrush		Significantly Rare
<u>Scleria reticularis</u> (sensu strict Netted Nutrush	0) -	Candidate
Solidago pulchra Carolina Goldenrod	Candidate	Endangered
Solidago species 1 Lejeune Goldenrod	-	Significantly Rare

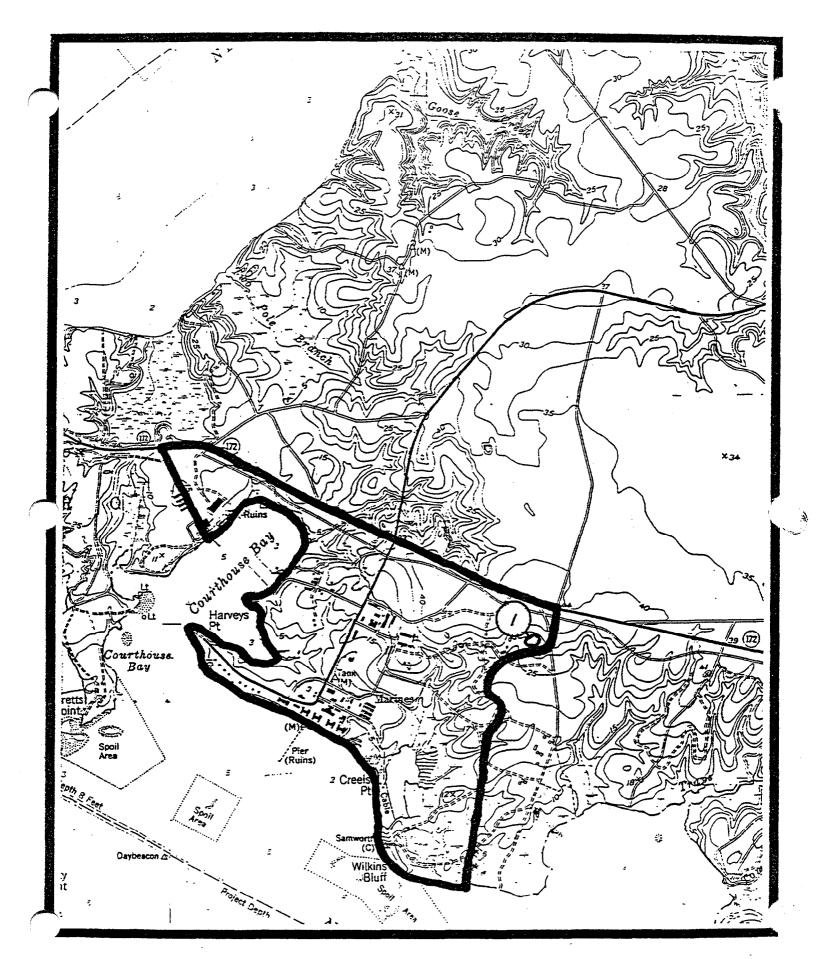
Table 3 con't

<u>Spiranthes</u> <u>laciniata</u> Lace-lip Ladies'-tresses	-	Candidate
Sporobolus species 1 Carolina Dropseed	Candidate	Threatened
Tofieldia glabra Carolina Asphodel	Candidate	Candidate
<u>Utricularia</u> <u>olivacea</u> Dwarf Bladderwort	-	Threatened
Xyris elliottii Elliott's Yellow-eyed Grass	-	Significantly Rare
<u>Xyris flabelliformis</u> Savanna Yellow-eyed Grass	-	Candidate

 $[\]star 1$ - <u>Dionaea</u> <u>muscipula</u> had been recommended for upgrading to Federal Candidate (level 2) at the time of this report.

Table 4. Distribution of rare plants in Camp Lejeune by primary natural community types.

Community Types:


A - Calcareous Coastal Fringe Forest

- B Coastal Plain Small Stream Swamp (Blackwater Subtype)
- C Cypress Savanna
- D Depression Meadow E - Maritime Evergreen Forest
- F Maritime Wet Grassland
- G Pine Savanna
- H Pond Pine Woodland
- I Small Depression Pocosin
- J Small Depression Pond
- K Streamhead Pocosin
- L Upper Beach
- M Vernal Pool
- N Wet Pine Flatwoods
- O undetermined (intermediate between Mesic Mixed Hardwood Forest and Maritime Deciduous Forest)

	Status				C	omr	nuı	nit	ĖУ	Ty	χpe	es				
<u>Species</u>	<u>US,NC</u>	<u>A</u>	<u>B</u>	<u>c</u>	<u>D</u>	$\underline{\mathbf{E}}$	F	<u>G</u>	<u>H</u>	Ī	J	<u>K</u>	$\underline{\mathtt{L}}$	<u>M</u>	$\underline{\mathbf{N}}$	<u>o</u>
Agalinis aphylla	С							x								
A. linifolia	SR			v	х			^			х			v	٠	
A. virgata	. C			^	^			х			^			X	х	
Amaranthus pumilus	C2,T							A					٠,	Х	х	
Amphicarpum purshii	SR							x		v		х	Х		3.5	
Aristida palustris	SR			ν,	v			^		X	÷,	Λ		٠,	X	
Asclepias pedicellata	C			A	X			37			X			Х		
Calamovilfa brevipilis	E							X X							X	
Carex chapmanii	C2, T	v	x					^							X	
Carex verrucosa	SR	^	^	v	х						x					
Cladium mariscoides	SR			Λ	Λ						x					
Cornus asperifolia	C	х									^-					
Cyperus lecontei	č	21.													x	
Dichanthelium erectifolium	SR			х	v						x				^	
D. species 1	C2,C				x						21					
Dionaea muscipula	C C			22	7.			x		x		x			х	
Eleocharis elongata	č										x	**			4 2.	
E. equisetoides	SR			x	x						x					
E. melanocarpa	C			••	x						x	•				
E. montevidensis	SR						x									
E. robbinsii	C										x					
Litsea aestivalis	C2,C				x					х						
Lobelia boykinii	cz,c			x						_						
Ludwigia linifolia	SR				X						x					
Lysimachia asperulifolia	E,E								х							
Muhlenbergia torreyana	E			х	x											
Myriophyllum laxum	C2,T										x					

Table 4 con't

Oxypolis ternata Panicum tenerum Peltandra sagittifolia Polygala hookeri Ponthieva racemosa	C2,C SR SR C SR	x x	x	x	x	x
Rhexia aristosa	C2,T	хх		3	X	x
R. cubensis	_	x		2	X	x
Rhynchospora harperi	C	x x			K	
R. oligantha	C		x			
R. pallida	SR		X	X	X	x
R. pleiantha	C			2	ζ	
R. scirpoides	SR			2	ζ.	
R. tracyi	SR	хх		2	ζ	
Sageretia minutiflora Sagittaria graminea	С	x				
var. chapmanii	С				ζ.	
Scirpus etuberculatus	SR			3	ζ	
S. lineatus	С	x				
Scleria georgiana	С	хх				
S. minor	SR					x
S. reticularis	С	x		X	ζ .	
Solidago pulchra	C2,E		x		x	x
S. species 1	SR					x
Spiranthes laciniata	С	хх		×	:	
Sporobolus species 1	C2,T		x	x		x
Tofieldia glabra	C2,C		x		x	x
Utricularia olivacea	${f T}$			x		
Xyris elliottii	SR		х		-	x
X. flabelliformis	C		x			X
		_				

Significant sites in Training Area CB.

B. CRITICAL AREA DESCRIPTIONS AND MAPS

SITE NAME: CB-1 Courthouse Bay Area.

UTM COORDINATES: 844290. OUAD: New River Inlet.

SIZE: 1 acre.

DATE OF INVESTIGATION: 1990-7-19.

OBSERVER: R.J. LeBlond.

NATURAL COMMUNITY: Small Depression Pond.

LOCATION: Along west side of powerline corridor 0.15 mile due south of NC 172 0.1 mile east of junction with Plexiglass Road.

QUALITY AND INTEGRITY OF NATURAL COMMUNITY: Low quality pond community heavily impacted by dredging for creation of a fishing pond. The <u>Eleocharis melanocarpa</u> population is primarily restricted to the shelf above the steeply-sloped margin along the north and northeast shores.

EVIDENT AND POTENTIAL DISTURBANCES AND THREATS: Habitat greatly altered by dredging and filling associated with construction of fishing pond.

MANAGEMENT NEEDS: Site has value only as a refugium for rare species.

ELEMENT OCCURRENCES

PLANTS

NC: Eleocharis melanocarpa.

REPORT REFERENCE: Chapter IV for Small Depression Pond community description.

FINAL

REMEDIAL INVESTIGATION REPORT OPERABLE UNIT NO. 9 (SITE 65)

MARINE CORPS BASE CAMP LEJEUNE, NORTH CAROLINA

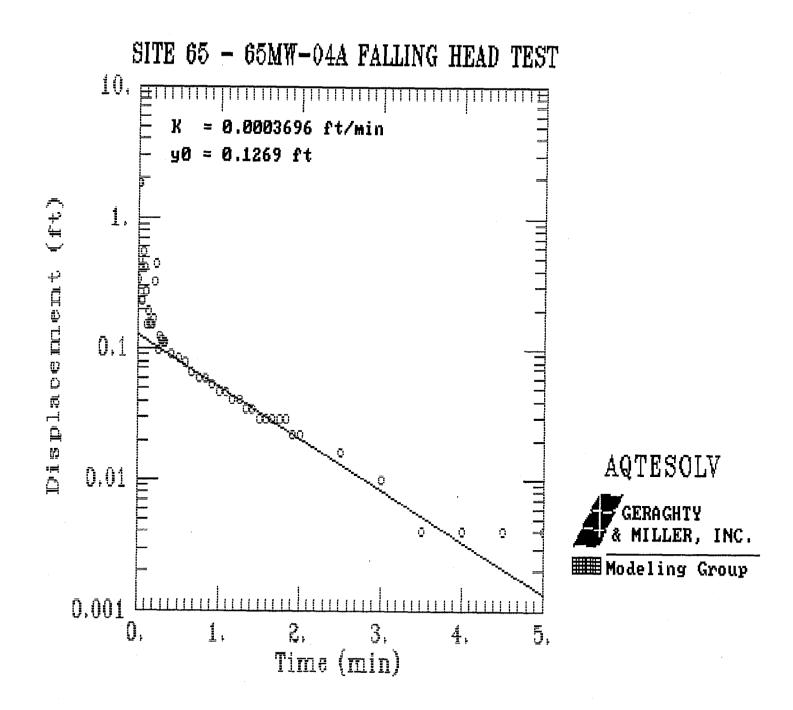
VOLUME II

CONTRACT TASK ORDER 0312

NOVEMBER 7, 1997

Prepared For:

DEPARTMENT OF THE NAVY
AFLANTIC DIVISION
NAVAL FACILITIES
ENGINEERING COMMAND
Norfolk, Virginia


Under:

LANTDIV CLEAN Program Contract N62470-89-D-4814

Prepared by:

BAKER ENVIRONMENTAL, INC. Coraopolis, Pennsylvania

APPENDIX I HYDRAULIC CONDUCTIVITY DATA

AQTESOLV RESULTS Version 1.10

06/19/95 16:45:33

TEST DESCRIPTION

Data set..... a:\65mw04af.dat

Data set title..... SITE 65 - 65MW-04A FALLING HEAD TEST

Knowns and Constants:

A, B, C..... 0.000, 0.000, 1.571

ANALYTICAL METHOD

Bouwer-Rice (Unconfined Aquifer Slug Test)

RESULTS FROM STATISTICAL CURVE MATCHING

STATISTICAL MATCH PARAMETER ESTIMATES

Estimate Std. Error K = 3.6962E-004 +/- 1.4462E-005 y0 = 1.2689E-001 +/- 4.5294E-003

ANALYSIS OF MODEL RESIDUALS

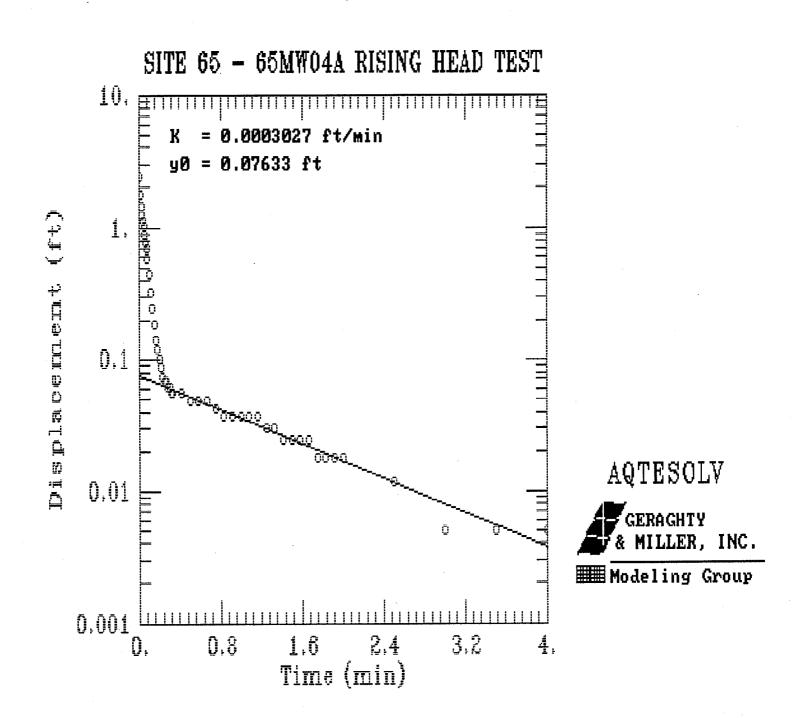
residual = calculated - observed
weighted residual = residual * weight

Weighted Residual Statistics:

Model Residuals:

Time	Observed	Calculated	Residual	Weight
0.5	0.085	0.080414	0.0045862	1
0.5833	0.079	0.074529	0.0044706	î
0.6666	0.066	0.069076	-0.0030755	1
0.75	0.06	0.064015	-0.0040149	1
0.8333	0.06	0.05933	0.00066953	1

0.054	0.054989	-0.00098883	1
0.047	0.05096	-0.0039602	1
0.047	0.047231	-0.00023111	1
0.041	0.043775	-0.0027749	1
0.041	0.040568	0.00043217	1
0.035	0.037599	-0.0025992	1
0.035	0.034848	0.00015222	1
0.029	0.032295	-0.0032948	1
0.029	0.029932	-0.00093152	1
0.029	0.027741	0.0012588	1
0.029	0.025709	0.0032912	1
0.029	0.023828	0.0051725	1
0.022	0.022084	-8.39E-005	1
0.022	0.020466	0.001534	1
0.016	0.01297	0.0030302	1
0.01	0.0082193	0.0017807	1
	0.047 0.047 0.041 0.041 0.035 0.035 0.029 0.029 0.029 0.029 0.022 0.022 0.022	0.047 0.05096 0.047 0.047231 0.041 0.043775 0.041 0.040568 0.035 0.037599 0.035 0.034848 0.029 0.032295 0.029 0.029932 0.029 0.027741 0.029 0.025709 0.029 0.023828 0.022 0.022084 0.022 0.020466 0.016 0.01297	$\begin{array}{cccccccccccccccccccccccccccccccccccc$



RESULTS FROM VISUAL CURVE MATCHING

VISUAL MATCH PARAMETER ESTIMATES

Estimate

K = 3.6962E-004y0 = 1.2689E-001

AQTESOLV RESULTS Version 1.10

06/19/95

16:48:35

TEST DESCRIPTION

Data set..... a:\65mw04ar.dat

Data set title.... SITE 65 - 65MW04A RISING HEAD TEST

Knowns and Constants:

A, B, C..... 0.000, 0.000, 1.571

ANALYTICAL METHOD

Bouwer-Rice (Unconfined Aquifer Slug Test)

RESULTS FROM STATISTICAL CURVE MATCHING

STATISTICAL MATCH PARAMETER ESTIMATES

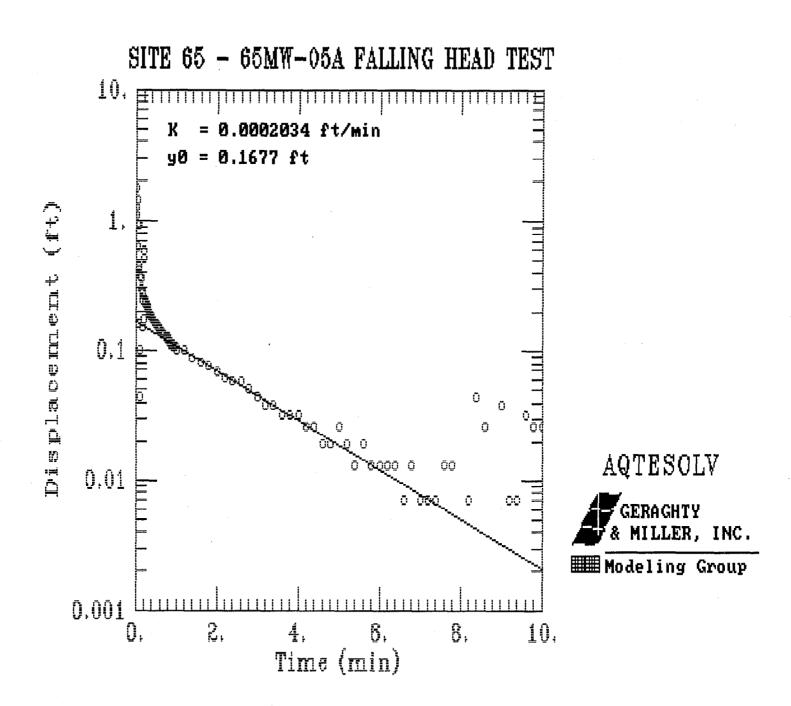
Estimate Std. Error K = 3.0271E-004 +/- 1.2099E-005 y0 = 7.6326E-002 +/- 1.7034E-003

ANALYSIS OF MODEL RESIDUALS

residual = calculated - observed
weighted residual = residual * weight

Weighted Residual Statistics:

Model Residuals:


Time	Observed	Calculated	Residual	Weight
0.25	0.068	0.063322	0.0046778	1
0.2666	0.068	0.062542	0.0054583	1
0.2833	0.062	0.061766	0.00023377	- <u>1</u>
0.3	0.062	0.061	0.00099963	1
0.3166	0.055	0.060248	-0.0052485	1.

0.3333	0.055	0.059501	-0.0045014		1
0.4166	0.055	0.055911	-0.00091122		1
0.5	0.049	0.052534	-0.0035337		1
0.5833	0.049	0.049364	-0.00036391		1
0.6666	0.049	0.046385	0.0026146		1
0.75	0.043	0.043583	-0.00058329		. 1
0.8333	0.037	0.040954	-0.0039535		1
0.9166	0.037	0.038482	-0.0014825	4	1
1	0.037	0.036158	0.0008422		1
1.0833	0.037	0.033976	0.0030239		1
1.1666	0.037	0.031926	0.005074		1
1.25	0.03	0.029997	2.5721E-006		1
1.3333	0.03	0.028187	0.0018126		1
1.4166	0.024	0.026487	-0.0024866		1
1.5	0.024	0.024887	-0.00088663		1
1.5833	0.024	0.023385	0.00061499		1 1
1.6666	0.024	0.021974	0.002026		1
1.75	0.018	0.020647	-0.0026466		1
1.8333	0.018	0.019401	-0.0014008		1
1.9166	0.018	0.01823	-0.00023018		1
2	0.018	0.017129	0.00087108	•	1
2.5	0.012	0.011789	0.00021054		1

RESULTS FROM VISUAL CURVE MATCHING

VISUAL MATCH PARAMETER ESTIMATES

Estimate K = 3.0271E-004 y0 = 7.6326E-002

AQTESOLV RESULTS Version 1.10

06/19/95 17:03:52

TEST DESCRIPTION

Data set..... a:\65mw05af.dat

Data set title..... SITE 65 - 65MW-05A FALLING HEAD TEST

Knowns and Constants:

No. of data points..... 121 Log (Re/Rw) 2.019 A, B, C..... 0.000,

0.000, 1.571

ANALYTICAL METHOD

Bouwer-Rice (Unconfined Aguifer Slug Test)

RESULTS FROM STATISTICAL CURVE MATCHING

STATISTICAL MATCH PARAMETER ESTIMATES

Estimate Std. Error 2.0335E-004 +/- 6.2009E-006 y0 = 1.6772E-001 +/-5.9447E-003

ANALYSIS OF MODEL RESIDUALS

residual = calculated - observed weighted residual = residual * weight

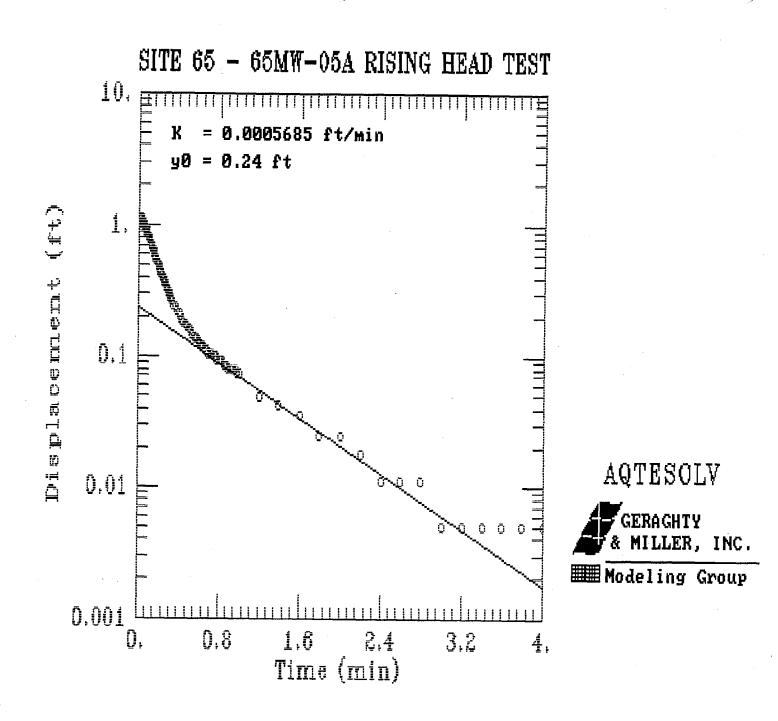
Weighted Residual Statistics:

Degrees of freedom..... 14

Residual mean..... -0.0003441 Residual standard deviation..... 0.007285 Residual variance..... 5.307E-005

Model Residuals:

Time	Observed	Calculated	Residual	Weight
1.2	0.101	0.099095	0.0019047	2
1.4	0.088	0.090775	-0.0027747	$\bar{2}$
1.6	0.082	0.083153	-0.0011527	2
1.8	0.076	0.076171	-0.00017073	$\tilde{2}$
2	0.069	0.069775	-0.00077501	2


2.2 2.4 2.6 2.8 3.2 3.4 3.6 3.8	0.063 0.057 0.057 0.051 0.044 0.038 0.032 0.032	0.05855 0.053633 0.04913 0.045005 0.041226 0.037764 0.034593 0.031689	-0.0009163 -0.0015495 0.0033666 0.00187 -0.0010048 -0.0032259 0.00023565 -0.0025934 0.00031122	2 2 4 4 4 4 4 4
4 4.2	0.032 0.032 0.026	0.029028	0.002972 -0.00059065	4 4

RESULTS FROM VISUAL CURVE MATCHING

VISUAL MATCH PARAMETER ESTIMATES

Estimate

K = 2.0335E-004y0 = 1.6772E-001

AQTESOLV RESULTS Version 1.10

06/19/95

16:52:17

TEST DESCRIPTION

Data set..... a:\65mw05ar.dat

Data set title..... SITE 65 - 65MW-05A RISING HEAD TEST

Knowns and Constants:

No. of data points..... 94 Radius of well casing..... 0.083 Radius of well..... 0.875

0.000, 1.571

ANALYTICAL METHOD

Bouwer-Rice (Unconfined Aquifer Slug Test)

RESULTS FROM STATISTICAL CURVE MATCHING

STATISTICAL MATCH PARAMETER ESTIMATES

Estimate Std. Error 5.6853E-004 +/-2.3995E-001 +/-4.5843E-005 y0 =3.1171E-002

ANALYSIS OF MODEL RESIDUALS

residual = calculated - observed weighted residual = residual * weight

Weighted Residual Statistics:

Number of residuals..... 8 Number of estimated parameters.... 2 Degrees of freedom..... 6

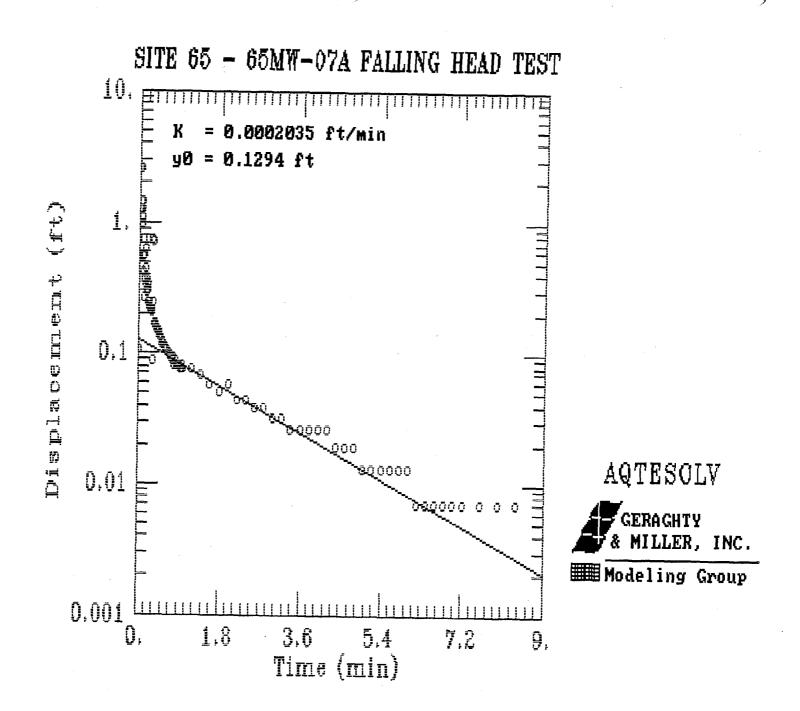
Residual mean..... 8.694E-005 Residual standard deviation..... 0.00361 Residual variance...... 1.303E-005

Model Residuals:

Time	Observed	Calculated	Residual	Weight
1	0.074	0.07042	0.0035796	1
1.2	0.049	0.055108	-0.0061077	1
1.4	0.043	0.043125	-0.00012471	1
1.6	0.036	0.033747	0.0022526	1
1.8	0.024	0.026409	-0.0024091	1

 2
 0.024
 0.020667
 0.0033335
 1

 2.2
 0.018
 0.016173
 0.0018273
 1


 2.4
 0.011
 0.012656
 -0.001656
 1

RESULTS FROM VISUAL CURVE MATCHING

VISUAL MATCH PARAMETER ESTIMATES

Estimate

K = 5.6853E-004y0 = 2.3995E-001

AQTESOLV RESULTS Version 1.10

06/19/95

17:06:18

TEST DESCRIPTION

Data set..... a:\65mw07af.dat

Data set title.... SITE 65 - 65MW-07A FALLING HEAD TEST

Knowns and Constants:

A, B, C..... 0.000, 0.000, 1.571

ANALYTICAL METHOD

Bouwer-Rice (Unconfined Aquifer Slug Test)

PROJECT OF THE PROJEC

RESULTS FROM STATISTICAL CURVE MATCHING

STATISTICAL MATCH PARAMETER ESTIMATES

Estimate Std. Error K = 2.0353E-004 +/- 8.7869E-006 y0 = 1.2945E-001 +/- 2.8737E-003

ANALYSIS OF MODEL RESIDUALS

residual = calculated - observed
weighted residual = residual * weight

Weighted Residual Statistics:

Model Residuals:

Time	Observed	Calculated	Residual	Weight
0.6166	0.113	0.097649	0.015351	1
0.6333	0.107	0.096906	0.010094	1
0.65	0.101	0.096169	0.0048309	$ar{f 1}$
0.6666	0.101	0.095442	0.005558	1
0.6833	0.101	0.094716	0.006284	1

APPENDIX K DATA VALIDATION REPORTS

HEARTLAND ENVIRONMENTAL SERVICES, INC.

SDG# 65MW05

SAMPLES AND FRACTIONS REVIEWED

Sample Identifications			Aı	nalytic	al Frac	tions
BAKER ID	RFW ID	<u>Matrix</u>	VOA	<u>sv</u>	<u>P/P</u>	<u>TAL</u>
65-MW05A-00	AE9046	SOIL	×	X	X	×
65-MW05A-04	AE9043	SOIL	X	X	Χ	Χ
65-MW07A-00	AE9040	SOIL	X	X	X	Χ
65-MW07A-05	AE9038	SOIL	X	X	X	X
Total Number of Sa	mples (Water/Soil)		0/4	0/4	0/4	0/4

Marie Santa Santa

MS - Matrix Spike MD - Matrix Spike/Matrix Duplicate

Individual fractions were reviewed as follows:

•	<u>Primary</u>	Secondary
VOA - Volatiles (CLP, OLM01.8)	Dan Heil	Gene Watson
SV - Semivolatiles (CLP, OLM01.8)	Dan Heil	Gene Watson
P/P - Pesticide\PCBs (CLP, OLM01.8)	Jackie Cleveland	Gene Watson
TAL - Total Metals (CLP, ILM02.1)	Paul Humburg	

DATA ASSESSMENT AND NARRATIVE VOLATILE ORGANICS

General

The organic findings offered in this screening report assumes that all analytical results are correct as reported and is based upon the examination of the reported holding times, blank analysis results, surrogate and matrix spike recoveries, GC/MS performance, tuning results, calibration results and internal standard areas. This report was prepared in compliance relative to the analytical and deliverable requirements specified in the U.S. EPA CLP, 3/90 SOW; Region III Modifications to the National Functional Guidelines for Organic Data Review, and DQO Level III. All comments made within this report should be considered when examining the analytical results (Form I's).

SDG # 65MW05

Holding Times

The holding times for all of the samples were not met per the Organic Functional Guidelines and the CLP SOW (fourteen (14) days from collection date). No qualifications are required.

Tuning

All of the BFB tunes in the initial and continuing calibrations met the percent relative abundance criteria of the SOW and the Organic Functional Guidelines. No qualifications are required.

Initial Calibrations

The initial calibration that was analyzed by the laboratory for these samples was acceptable for all compound %RSDs and average RRFs. No qualifications are required.

Continuing calibrations

The continuing calibrations that were analyzed with this data package exhibited %Ds that were not within %D continuing calibration criteria. All RRFs were within calibration criteria.

VOLATILE ANALYSIS

PAGE - 2

Continuing calibrations (continued)

Specific Finding:

1. The continuing calibration, QS0407, contained compounds with %Ds greater than 25%, but less than 50%. For the samples and non-compliant compounds listed below, qualify all-positive results as estimated (J).

VBLKAE603	bromomethane
65MW07A05	vinyl chloride
65MW05A04	2-butanone
65MW05A00	

2. The continuing calibration, QS0411, contained compounds with %Ds greater than 25%, but less than 50%. For the samples and non-compliant compounds listed below, qualify all positive results as estimated (J).

VBLKAE9707	chloromethane
65MW07A00	vinyl chloride
	chloroform
	2-butanone

Internal Standards

All internal standard EICP areas met the internal standard EICP area QA/QC criteria. No qualifications are required.

Method Blanks

The method blanks that were analyzed exhibited contamination for methylene chloride, acetone, 2-butanone, 2-hexanone, 1,1,2,2-tetrachloroethane and xylene. The method blank results will be compared to their associated samples. Refer to the glossary of data qualifiers for a list and definition of the method blank qualifiers: CRQL, U and No Action.

VOLATILE ANALYSIS

PAGE - 3

Method Blanks (continued)

Specific findings:

3 The following samples have been qualified for method blank contamination. The qualifications are for all the method blanks.

65MW05A00 methylene chloride 65MW05A04 65MW07A05 65MW07A00 acetone CRQL

xylene (total) 65MW05A00 CRQL

Trip Blanks

The associate trip blank was not identified for this SDG. No qualifications are required.

Rinseate Blanks

The associate rinseate blank was not identified for this SDG. No qualifications are required.

Field Blanks

The associate field blank was not identified for this SDG. No qualifications are required.

Surrogates

All of the surrogate recoveries for the all blanks and samples were within QA/QC limits. No qualifications are required.

Matrix Spike/Matrix Spike Duplicate (MS/MSD)

The associated MS/MSD was not identified for this SDG. No qualifications are required.

CRQL

DATA ASSESSMENT AND NARRATIVE VOLATILE ANALYSIS

PAGE - 4

Field Duplicate

No qualifications are required.

Compound Identification/Quantitation

No qualifications are required:

System Performance and Overall Assessment

The overall system performance was fair. The laboratory did not encounter any large problems. The data reviewer estimates that less than 5% of the data is qualified.

GLOSSARY OF DATA QUALIFIERS

QUALIFICATION CODES

U = Not detected

J = Estimated value

UJ = Reported quantitation limit is qualified as estimated

R = Result is rejected and unusable

NJ = Presumptive evidence for the presence of the material at an estimated value

K = Result is biased high

L = Result is biased low

METHOD BLANK QUALIFICATION CODES

CRQL = The sample result for the blank contaminant is less than the sample CRQL and is less than 10X the method blank value. The sample result for the blank contaminant is rejected and the CRQL for that analyte is reported.

U = The sample result for the blank contaminant is greater than the sample CRQL and is less than 10X the method blank value. The sample result for the blank contaminant is qualified as non detected at the analyte value reported.

No Action = The sample result for the blank contaminant is greater than the sample CRQL and is greater than 10X the method blank value. The sample result for the blank contaminant is not qualified with any blank qualifiers.

The specific findings will be noted in numerical form on the Form Is in this data validation report. These specific finding footnotes will reflect the conclusions found in the data validation process that resulted in the qualification of the data.

SUMMARY OF DATA QUALIFICATIONS

SAMPLE ID	ANALYTE ID	DL	<u>QL</u>	SPECIFIC FINDINGS
VBLKAE603 65MW07A05 65MW05A04 65MW05A00	bromomethane vinyl chloride 2-butanone	+	J .	1
VBLKAE9707 65MW07A00	chloromethane vinyl_chloride chloroform 2-butanone	+	J	2
65MW05A00 65MW05A04 65MW07A05	methylene chloride	+	CRQI	L 3
65MW07A00	acetone	+	CRQI	. 3
65MW05A00	xylene (total)	+	CRQI	_ 3

^{*} DL denotes the Form I qualifier supplied by the laboratory QL denotes the qualifier used by the data validation firm

⁺ in the DL column denotes a positive result

⁻ in the DL column denotes a non detect result

SEMIVOLATILE ORGANICS

General

The organic findings offered in this screening report assumes that all analytical results are correct as reported and is based upon the examination of the reported holding times, blank analysis results, surrogate and matrix spike recoveries, GC/MS performance, tuning results, calibration results and internal standard areas. This report was prepared in compliance relative to the analytical and deliverable requirements specified in the U.S. EPA CLP, 3/90 SOW; Region III Modifications to the National Functional Guidelines for Organic Data Review, and DQO Level III. All comments made within this report should be considered when examining the analytical results (Form I's).

SDG # 65MW05

Holding Times

All extraction and analysis holding times for all samples were met for all samples per the SOW and National Functional Guidelines. No qualifications are required.

Tuning

All of the DFTPP tunes in the initial and continuing calibrations met the percent relative abundance criteria of the SOW and the Organic Functional Guidelines. No qualifications are required.

Initial Calibrations

The initial calibrations that were analyzed by the laboratory for these samples were not acceptable for all compound %RSDs and the average RRFs for all of the criteria compounds did not meet the initial calibration criteria.

Specific Finding:

 The initial calibration analyzed on, 04/13/95, contained compounds with %RSDs greater than 30%. No qualifications are required, because no samples were analyzed following the calibration.

carbazole

SEMIVOLATILE ANALYSIS

PAGE - 2

Continuing Calibrations

The continuing calibrations that were analyzed all of the criteria and non criteria compounds met requirements for RRFs. Qualifications are required for compounds with non compliant %Ds.

Specific Findings:

The continuing calibration, BCC0414, contained compounds with %Ds greater 2. than 25% D but less than 50% D. For the samples and non compliant compounds listed below, qualify all positive results as estimated (J).

SBLKAE9132B 65MW07A05 65MW07A00 65MW05A04

65MW05A00

hexachlorocyclopentadiene 2,4-dinitrophenol

internal Standards

All internal standard EICP areas met the internal standard EICP area QA/QC criteria. No qualifications are required.

Method Blanks

The method blank that was analyzed exhibited contamination for di-n-butylphthalate and TICs. The method blank results will be compared to their associated samples. Refer to the glossary of data qualifiers for a list and definition of the method blank qualifiers: CRQL, U and No Action.

Specific Finding:

The samples listed below have been qualified for method blank contamination. 3. The qualification are for all method blanks.

65MW05A00 65MW05A04 65MW07A00

di-n-butylphthalate

CRQL

65MW07A05

SEMIVOLATILE ANALYSIS

PAGE - 3

Method Blanks (continued)

Specific Finding:

4. Reject all TICs flagged with the laboratory qualifier "B", due to method blank contamination.

Rinseate Blanks

The associated rinseate blank was not identified for this SDG. No qualifications are required.

Field Blanks

The associated field blank was not identified for this SDG. No qualifications are required.

Surrogates

Surrogate recoveries for all samples and blanks met QA/QC criteria. No qualifications are required.

Matrix Spike/Matrix Spike Duplicate

The associated MS/MSD was not identified for this SDG. No qualifications are required.

Field Duplicates

No qualifications are required.

Compound Identification/Quantitation

No qualifications are required.

System Performance and Overall Assessment

Overall performance was fair. The laboratory did not encounter any large problems. The data reviewer estimates less than 10% of data required qualifications.

GLOSSARY OF DATA QUALIFIERS

QUALIFICATION CODES

= Not detected

J = Estimated value

UJ = Reported Quantitation limit is qualified as estimated

R = Result is rejected and unusable

NJ = Presumptive evidence for the presence of the material at an estimated value

K = Result is biased high

L = Result is biased low

METHOD BLANK QUALIFICATION CODES

CRQL = The sample result for the blank contaminant is less than the sample CRQL and is less than 10X the method blank value. The sample result for the blank contaminant is rejected and the CRQL

for that analyte is reported.

The sample result for the blank contaminant is greater than the U =sample CRQL and is less than 10X the method blank value. The sample result for the blank contaminant is qualified as non

detected at the analyte value reported.

The sample result for the blank contaminant is greater than the No Action = sample CRQL and is greater than 10X the method blank value. The sample result for the blank contaminant is not qualified with any blank qualifiers.

The specific findings will be noted in numerical form on the Form Is in this data validation report. These specific finding footnotes will reflect the conclusions found in the data validation process that resulted in the qualification of the data.

SUMMARY OF DATA QUALIFICATIONS

SAMPLE ID	ANALYTE ID	DL	QL	SPECIFIC FINDINGS
SBLKAE9132B	hexachlorocyclo- pentadiene	+	. J .	2
65MW07A05	2,4-dinitrophenol			
65MW07A00				. •
65MW05A04 ⁻				
65MW05A00				
65MW05A00	di-n-butylphthalate	+	CRQI	_ 3
65MW05A04				
65MW07A00				
65MW07A05				
All samples	"B" flagged TICs	+	R	4

DL denotes the Form I qualifier supplied by the laboratory
 QL denotes the qualifier used by the data validation firm
 + in the DL column denotes a positive result
 - in the DL column denotes a non detect result

PESTICIDE/AROCLOR ANALYSIS

General

The organic findings offered in this screening report assume that all analytical results are correct as reported and are based upon the examination of the reported holding times, GC instrument performance, initial and continuing calibrations, analytical sequence, blank analysis results, surrogate recoveries, and MS/MSD results. All comments made within this report should be considered when examining the analytical results (Form Is). Please refer the specific findings found in each category to the Summary of Data Qualification table.

SDG # 05A-00

Holding Times

All extraction and analysis holding times were met based on extraction and analysis information in the data package and the chain of custody records.

GC Instrument Performance

The resolution requirements were met on both columns in the sequence. The analytical sequence was acceptable. All 4,4'-DDT and endrin breakdowns were within QC limits. All surrogate retention times were within the established retention time windows (RTWs). All PEM standard RPDs were within the 25% QC limit.

Initial Calibrations

The initial calibrations were not acceptable for the linearity of all compounds. Raw data was not required in this Level E data package.

Specific Finding

1. The initial calibration on 05/18/95 contained a compound with a %RSD greater than 20%. For the samples and non compliant compound listed below, qualify all positive and non-detect results as estimated J/UJ.

65MW-07A00DL

4,4'-DDD

DATA ASSESSMENT NARRATIVE PESTICIDE/AROCLORS

PAGE - 2

Continuing Calibrations

All compounds in the calibration standards were within the laboratory reported Retention Time Windows (RTWs) for all columns. All continuing calibration standard associated with the reported samples exhibited relative percent differences, RPDs, within the QC limits. Raw data was not required in this Level E data package. No qualifications are required.

Method Blanks

The associated method blanks did not exhibit contamination for target compounds.

Instrument Blanks

The instrument blanks were free of target compound contamination.

QC Blanks

There were no QC blanks in this SDG.

Florisil/GPC Checks

The GPC clean-up check standard exhibited acceptable recoveries for all compounds. The Florisil cartridge check exhibited acceptable spike recoveries for all compounds. Raw data was not required in the Level E data package.

Surrogate Recoveries

The surrogate recoveries in the field samples were within QC limits in all samples with the exception of the 1:2 dilution of sample 65MW07A00DL. A dilution of 1:2 should not affect surrogate recoveries so the data was qualified.

Specific Finding

 The positive and non-detect results in the following sample are qualified as estimated, J/UJ, due to TCMX and DCB recoveries which were below the QC limits, but above 10%.

65MW07A00DL

DATA ASSESSMENT NARRATIVE PESTICIDE/AROCLORS

PAGE - 3

Matrix Spike/Matrix Spike Duplicate

There was no MS/MSD pair in this SDG. The LCS exhibited acceptable recoveries for spiked compounds. No qualifications were required.

Field Duplicates

There was no field duplicate pair in this SDG.

Analyte Identification/Quantitation

Some positive results were reported in the samples. Identification and quantitation appear reasonable based on sample and standard review. Quantitation calculations were not verified because raw data is not a required deliverable for NEESA Level E QC. Some of the reported results exhibited column quantitation differences which were greater than 25%. One sample required a dilution to bring detected target compound within the calibration range.

Specific Finding

- 3. All positive results which exhibited column quantitation %Ds which are greater than 25% but less than 100% are qualified as estimated, J.
- 4. For sample 65-MW-07A-00, reject all Z flagged results and report all D flagged results for those compounds from the dilution analysis.
- 5. All positive results which exhibited column quantitation %Ds which are greater than or equal to 100% are qualified as presumptively present at an estimated concentration, NJ.

Overall Assessment

The overall quality of the data package is good. The reported results are accepted as reported by the laboratory with the noted qualifications based on the limited deliverables in a Level E data package.

Bus

GLOSSARY OF DATA QUALIFIERS

QUALIFICATION CODES

U = Not detected

J = Estimated value

UJ = Reported quantitation limit is qualified as estimated

R = Result is rejected and → nusable

NJ = Presumptive evidence for the presence of the material at an estimated value

K = Result is biased high

L = Result is biased low

METHOD BLANK QUALIFICATION CODES

CRQL = The sample result for the blank contaminant is less than the sample CRQL and is less than 10X the method blank value. The sample result for the blank contaminant is rejected and the CRQL for that analyte is reported.

U = The sample result for the blank contaminant is greater than the sample CRQL and is less than 10X the method blank value. The sample result for the blank contaminant is qualified as non detected at the analyte value reported.

No Action = The sample result for the blank contaminant is greater than the sample CRQL and is greater than 10X the method blank value. The sample result for the blank contaminant is not qualified with any blank qualifiers.

The specific findings will be noted in numerical form on the Form Is in this data validation report. These specific finding footnotes will reflect the conclusions found in the data validation process that resulted in the qualification of the data.

SUMMARY OF DATA QUALIFICATIONS

SAMPLE ID	ANALYTE ID	DL	QL	SPECIFIC FINDINGS
65-MW-07A-00DL	4,4'-DDD	+/U	J/UJ	1
65-MW-07A-00DL	All	+/U	J/UJ	2
ALL SAMPLES	ALL P > 25%, But < 100%	+	J .	3
65-MW-07A00 65-MW-07A-00DL	ALL Z flagged ALL but D flagged	+ +/U	R	4
ALL SAMPLES	All P ≥ 100%	+	NJ	5

RESUB

^{*} DL denotes the Form I qualifier supplied by the laboratory QL denotes the qualifier used by the data validation firm

⁺ in the DL column denotes a positive result

⁻ in the DL column denotes a non detect result

DATA ASSESSMENT NARRATIVE Metals

General

The inorganic findings offered in this screening report assumes that all analytical results are correct as reported and is based upon the examination of the reported holding times, calibration standards, blank analysis results and MS/MSD results. A minimum of ten percent of all laboratory calculations are recalculated by the reviewer. All comments made within this report should be considered when examining the analytical results (Form Is).

This data package consisted of results from CTO-312, SDG# N\A, the analysis of four (4) field soil samples and no Matrix Spike and Duplicate pair for TAL Metals and Cyanide. Overall, the inorganic data quality was fair. All protocol requirements were followed with the exception of the following problems.

<u>Specific</u> QA/QC deficiency <u>Findings</u> are listed numerically in the following categories:

Holding Times

The holding times were met as specified in Section 3 of the NEESA (20.2-047B) QA protocol.

Calibration

No deficiencies in this section.

Preparation and Field Blank

1. The preparation blanks exhibited contamination for the following elements.

Calcium	8.94	mg/kg
Cobalt	5.09	mg/kg
Zinc	3.57	mg/kg

The USEPA requires that all sample values below five times the preparation or calibration blank contamination be qualified as non-detect, "U".

Interferences

No significant interferences were observed.

Metals Data Assessment Narrative (continued - Page 2)

Spike Recovery

No spike for this SDG.

Duplicate

No duplicate for this SDG.

<u>LCS</u>

No deficiencies in this section.

Bus

SUMMARY OF DATA QUALIFICATIONS

SAMPLE ID	ANALYTE	DL	<u>OL</u>	SPECIFIC FINDING
All soil samples	Ca, Co and Zn.	+	U	1

- DL denotes laboratory qualifier/reported value + denotes positive values U denotes non-detect values
- QL denotes data validation qualifier

Esus

024

HEARTLAND ENVIRONMENTAL SERVICES, INC.

SDG# 65DW04

SAMPLES AND FRACTIONS REVIEWED

Sample Identifications		A	nalytic	al Frac	tions	
BAKER ID	QUANT ID	<u>Matrix</u>	<u>VOA</u>	<u>sv</u>	<u>P/P</u>	<u>TAL</u>
65-DW04-05	AE9158	SOIL	X	X	X	X
65-DW04-00	AE9167	SOIL	Χ	X	X	Χ

Individual fractions were reviewed as follows:

	<u>Primary</u>	Secondary
VOA - Volatiles (CLP, OLM01.8)	Dan Heil	Gene Watson
SV - Semivolatiles (CLP, OLM01.8)	Dan Heil	Gene Watson
P/P - Pesticide/PCBs (CLP, OLM01.8)	Jackie Cleveland	Gene Watson
TAL - Total Metals (CLP, ILM02.1)	Paul Humburg	

VOLATILE ORGANICS

General

The organic findings offered in this screening report assumes that all analytical results are correct as reported and is based upon the examination of the reported holding times, blank analysis results, surrogate and matrix spike recoveries, GC/MS performance, tuning results, calibration results and internal standard areas. This report was prepared in compliance relative to the analytical and deliverable requirements specified in the U.S. EPA CLP SOW; the National Functional Guidelines for Organic Data Review, June, 1991; NEESA Level C requirements, and good professional judgement. All comments made within this report should be considered when examining the analytical results (Form I's).

SDG # 65DW04

Holding Times

All of the analyses were performed within fourteen (14) days from date of collection. No qualifications are required.

Tuning

All the BFB tunes met the tuning criteria set forth by the method and the Functional Guidelines. No qualifications are required.

Initial Calibrations

The initial calibration exhibited acceptable %RSDs and RRFs. No qualifications are required.

Continuing Calibrations

The continuing calibrations exhibited %Ds that were non compliant. All RRFs were acceptable.

PAGE - 2

Continuing Calibrations - continued

Specific findings:

1. The continuing calibration QS0411 contained compounds with %Ds greater than 25%, but less than 50%. For the samples listed below, qualify all positive results as estimated (J).

All samples

chloromethane vinyl chloride chloroform 2-butanone

Internal Standards

All of the internal standard EICP areas are within the QA/QC limits of the continuing calibration EICP internal standard areas. No qualifications are required.

Method Blanks

The method blanks that were analyzed exhibited contamination for acetone, 2-butanone, 2-hexanone, and 1,1,2,2-tetrachloroethane. All samples will be qualified based on their associated method blank.

Specific findings:

2. The following samples have been qualified for method blank contamination.

65DW0400

acetone

+BJ CRQL 2

65DW0405

acetone

+B NA 2

Trip Blanks

A trip blank was not identified in this SDG.

System Monitoring Compounds

All of the surrogate recoveries for the samples were acceptable. No qualifications are required.

PAGE - 3

Matrix Spike/Matrix Spike Duplicate

A MS/MSD was not identified in this SDG.

Field Duplicates

A field duplicate pair was not identified.

Compound Identification/Quantitation

No qualifications are required.

System Performance and Overall Assessment

The overall performance of the GC/MS system was acceptable. The overall quality of the data package is acceptable. The data validator estimates that less than 5% of the data is qualified or rejected.

GLOSSARY OF DATA QUALIFIERS

QUALIFICATION CODES

U = Not detected

J = Estimated value

UJ = Reported quantitation limit is qualified as estimated

R = Result is rejected and unusable

NJ = Presumptive evidence for the presence of the material at an estimated value

K = Result is biased high

L = Result is biased low

METHOD BLANK QUALIFICATION CODES

CRQL = The sample result for the blank contaminant is less than the sample CRQL and is less than 10X the method blank value. The sample result for the blank contaminant is rejected and the CRQL

for that analyte is reported.

U = The sample result for the blank contaminant is greater than the sample CRQL and is less than 10X the method blank value. The sample result for the blank contaminant is qualified as non detected at the analyte value reported.

No Action = The sample result for the blank contaminant is greater than the sample CRQL and is greater than 10X the method blank value. The sample result for the blank contaminant is not qualified with any blank qualifiers.

The specific findings will be noted in numerical form on the Form Is in this data validation report. These specific finding footnotes will reflect the conclusions found in the data validation process that resulted in the qualification of the data.

SUMMARY OF DATA QUALIFICATIONS

SAMPLE ID	ANALYTE ID	<u>DL</u>	QL	SPECIFIC FINDINGS
All samples	chloromethane vinyl chloride chloroform 2-butanone	+	J	1
65DW0400	acetone	+BJ	CRQL	2
65DW0405	acetone	+ B	NA	2

^{*} DL denotes the Form I qualifier supplied by the laboratory QL denotes the qualifier used by the data validation firm

⁺ in the DL column denotes a positive result

⁻ in the DL column denotes a non detect result

SEMIVOLATILE ORGANICS

General

The organic findings offered in this screening report assumes that all analytical results are correct as reported and is based upon the examination of the reported holding times, blank analysis results, surrogate and matrix spike recoveries, GC/MS performance, tuning results, calibration results and internal standard areas. This report was prepared in compliance relative to the analytical and deliverable requirements specified in the U.S. EPA CLP, 3/90 SOW; Region III Modifications to the National Functional Guidelines for Organic Data Review, and DQO Level III. All comments made within this report should be considered when examining the analytical results (Form I's).

SDG # 65DW04

Holding Times

All extraction and analysis holding times for all samples were met for all samples per the SOW and National Functional Guidelines. No qualifications are required.

Tuning

All of the DFTPP tunes in the initial and continuing calibrations met the percent relative abundance criteria of the SOW and the Organic Functional Guidelines. No qualifications are required.

Initial Calibrations

The initial calibrations that were analyzed by the laboratory for these samples were not acceptable for all compound %RSDs and the average RRFs for all of the criteria compounds did not meet the initial calibration criteria.

Specific Finding:

1. The initial calibration analyzed on, 03/31/95, contained compounds with %RSDs greater than 30%. No qualifications are required, because no samples were analyzed following the calibration.

2,4-dinitrophenol

SEMIVOLATILE ANALYSIS

PAGE - 2

Continuing Calibrations

The continuing calibrations that were analyzed all of the criteria and non criteria compounds met requirements for RRFs. Qualifications are required for compounds with non compliant %Ds.

Specific Findings:

2. The continuing calibration, CCA0413, contained compounds with %Ds greater than 25% D but less than 50% D. For the samples and non compliant compounds listed below, qualify all positive results as estimated (J).

65DW0400 SBLKAE9260A 2-nitrophenol 4-chloroaniline

3. The continuing calibration, CCA0413, contained compounds with %Ds greater than 50% D but less than 90% D. For the samples and non compliant compounds listed below, qualify all positive results as estimated (J) and all non detects as estimated (UJ).

65DW0400

4,6-dinitro-2-methylphenol

SBLKAE9260A

4. The continuing calibration, CCA0413, contained compounds with %Ds greater than 90% D. For the samples and non compliant compounds listed below, qualify all positive results as estimated (J) and reject all non detects (R).

65DW0400

2,4-dinitrophenol

SBLKAE9260A

5. The continuing calibration, CCA0417, contained compounds with %Ds greater than 25% D but less than 50% D. For the samples and non compliant compounds listed below, qualify all positive results as estimated (J).

65DW0405

2-nitroaniline

2,4-dinitrophenol

SEMIVOLATILE ANALYSIS

PAGE - 3

Continuing Calibrations (continued)

Specific Finding:

6. The continuing calibration, CCA0417, contained compounds with %Ds greater than 90% D. For the samples and non compliant compounds listed below, qualify all positive results as estimated (J) and reject all non detects (R).

65DW0405

4-nitroaniline

Internal Standards

All internal standard EICP areas met the internal standard EICP area QA/QC criteria. No qualifications are required.

Method Blanks

The method blank that was analyzed exhibited contamination for di-n-butylphthalate, bis(2-ethylhexyl)phthalate and TICs. The method blank results will be compared to their associated samples. Refer to the glossary of data qualifiers for a list and definition of the method blank qualifiers: CRQL, U and No Action.

Specific Finding:

7. The samples listed below have been qualified for method blank contamination. The qualification are for all method blanks.

65DW0400

di-n-butylphthalate

CRQL

65DW0405

65DW0400

bis(2-ethylhexyl)

CRQL

phthalate

8. Reject all TICs flagged with the laboratory qualifier "B", due to method blank contamination.

RESUB

013

SEMIVOLATILE ANALYSIS

PAGE - 4

Rinseate Blanks

The associated rinseate blank was not identified for this SDG. No qualifications are required.

Field Blanks

The associated field blank was not identified for this SDG. No qualifications are required.

Surrogates

Surrogate recoveries for all samples and blanks met QA/QC criteria. No qualifications are required.

Matrix Spike/Matrix Spike Duplicate

The associated MS/MSD was not identified. No qualifications are required.

Field Duplicates

No qualifications are required.

Compound Identification/Quantitation

No qualifications are required.

System Performance and Overall Assessment

Overall performance was fair. The laboratory did not encounter any large problems. The data reviewer estimates less than 10% of data required qualifications.

GLOSSARY OF DATA QUALIFIERS

QUALIFICATION CODES

U = Not detected

J = Estimated value

UJ = Reported Quantitation limit is qualified as estimated

R = Result is rejected and unusable

NJ = Presumptive evidence for the presence of the material at an estimated value

K = Result is biased high

L = Result is biased low

METHOD BLANK QUALIFICATION CODES

CRQL = The sample result for the blank contaminant is less than the sample CRQL and is less than 10X the method blank value. The sample result for the blank contaminant is rejected and the CRQL for that analyte is reported.

U = The sample result for the blank contaminant is greater than the sample CRQL and is less than 10X the method blank value. The sample result for the blank contaminant is qualified as non detected at the analyte value reported.

No Action = The sample result for the blank contaminant is greater than the sample CRQL and is greater than 10X the method blank value. The sample result for the blank contaminant is not qualified with any blank qualifiers.

The specific findings will be noted in numerical form on the Form Is in this data validation report. These specific finding footnotes will reflect the conclusions found in the data validation process that resulted in the qualification of the data.

SUMMARY OF DATA QUALIFICATIONS

SAMPLE ID	ANALYTE ID	<u>DL</u>	<u>QL</u>	SPECIFIC FINDINGS
65DW0400 SBLKAE9260A	2-nitrophenol 4-chloroaniline	+	. J	2
65DW0400	4,6-dinitro-2- methylphenol	+/-	J/UJ	3
SBLKAE9260A	metryiphenoi			
65DW0400 SBLKAE9260A	2,4-dinitrophenol	+/-	J/R	4
65DW0405	2-nitroaniline 2,4-dinitrophenol	+	J	5
65DW0405	4-nitroaniline	+/-	J/R	6
65DW0400 65DW0405	di-n-butylphthalate	+	CRQI	. 7
65DW0400	bis(2-ethylhexyl) phthalate	+	CRQI	_ 7
All samples	"B" flagged TICs	+	R	8

DL denotes the Form I qualifier supplied by the laboratory
QL denotes the qualifier used by the data validation firm
+ in the DL column denotes a positive result
- in the DL column denotes a non detect result

PESTICIDE/AROCLOR ANALYSIS

General

The organic findings offered in this screening report assume that all analytical results are correct as reported and are based upon the examination of the reported holding times, GC instrument performance, initial and continuing calibrations, analytical sequence, blank analysis results, surrogate recoveries, and MS/MSD results. All comments made within this report should be considered when examining the analytical results (Form Is). Please refer the specific findings found in each category to the Summary of Data Qualification table.

SDG # 65DW04

Holding Times

All extraction and analysis holding times were met based on extraction and analysis information in the data package and the chain of custody records.

GC Instrument Performance

The resolution requirements were met on both columns in the sequence. The analytical sequence was acceptable. All 4,4'-DDT and endrin breakdowns were within QC limits. All surrogate retention times were within the established retention time windows (RTWs). All PEM standard RPDs were within the 25% QC limit.

Initial Calibrations

The initial calibrations were not acceptable for the linearity of all compounds. Raw data was not required in this Level C data package.

Specific Finding

1. The initial calibration on instrument 5890K, 4/18/95, exhibited a compound with a %RSD greater than 20%. All positive and non-detect results in the following samples for the non-compliant compound noted below associated with the ICAL are qualified as estimated, J/UJ.

All Samples

4.4'-DDD

resuls

ハゴ

DATA ASSESSMENT NARRATIVE PESTICIDE/AROCLORS

PAGE - 2

Continuing Calibrations

All compounds in the calibration standards were within the laboratory reported Retention Time Windows (RTWs) for all columns. All continuing calibration standard associated with the reported samples exhibited relative percent differences, RPDs, within the QC limits. Raw data was not required in this Level C data package. No qualifications are required.

Method Blanks

The associated method blank did not exhibit contamination for target compounds.

Instrument Blanks

The instrument blanks were free of target compound contamination.

QC Blanks

There were no field QC blanks in this SDG.

Florisil/GPC Checks

The GPC clean-up check standard exhibited acceptable recoveries for all compounds. The Florisil cartridge check exhibited acceptable spike recoveries for all compounds. Raw data was not required in the Level C data package.

Surrogate Recoveries

The surrogate recoveries in the field samples were within QC limits in all soil samples with the exception of DCB on one (1) column in sample 65DW0400. The recovery was above the QC limits and there were no positive results in the sample. Qualifications were not required.

Matrix Spike/Matrix Spike Duplicate

There was no MS/MSD pair in this SDG. The LCS sample exhibited acceptable recoveries for spiked compounds. No qualifications were required.

resub

DATA ASSESSMENT NARRATIVE PESTICIDE/AROCLORS

PAGE - 3

Field Duplicates

There was no field duplicate pair in this SDG.

Analyte Identification/Quantitation

No positive results were reported in the samples. Identification and quantitation appear reasonable based on sample and standard review. Quantitation calculations were not verified because raw data is not a required deliverable for NEESA Level C QC. No further qualifications were required.

Overall Assessment

The overall quality of the data package is good. The reported results are accepted as reported by the laboratory with the noted qualifications based on the limited deliverables in a Level C data package.

GLOSSARY OF DATA QUALIFIERS

QUALIFICATION CODES

U = Not detected

J = Estimated value

UJ = Reported quantitation limit is qualified as estimated

R = Result is rejected and unusable

NJ = Presumptive evidence for the presence of the material at an estimated value

K = Result is biased high

L = Result is biased low

METHOD BLANK QUALIFICATION CODES

CRQL = The sample result for the blank contaminant is less than the sample CRQL and is less than 10X the method blank value. The sample result for the blank contaminant is rejected and the CRQL

for that analyte is reported.

U = The sample result for the blank contaminant is greater than the

sample CRQL and is less than 10X the method blank value. The sample result for the blank contaminant is qualified as non

detected at the analyte value reported.

No Action = The sample result for the blank contaminant is greater than the

sample CRQL and is greater than 10X the method blank value. The sample result for the blank contaminant is not qualified with

any blank qualifiers.

The specific findings will be noted in numerical form on the Form Is in this data validation report. These specific finding footnotes will reflect the conclusions found in the data validation process that resulted in the qualification of the data.

SUMMARY OF DATA QUALIFICATIONS

SAMPLE ID	ANALYTE ID	DL	QL	SPECIFIC FINDINGS
All	4,4'-DDD	+/U	J/UJ	1

* DL denotes the Form I qualifier supplied by the laboratory QL denotes the qualifier used by the data validation firm

- + in the DL column denotes a positive result
- in the DL column denotes a non detect result

DATA ASSESSMENT NARRATIVE Metals

General

The inorganic findings offered in this screening report assumes that all analytical results are correct as reported and is based upon the examination of the reported holding times, calibration standards, blank analysis results and MS/MSD results. A minimum of ten percent of all laboratory calculations are recalculated by the reviewer. All comments made within this report should be considered when examining the analytical results (Form Is).

This data package consisted of results from CTO-312, SDG# DW0400, the analysis of two (2) field soil samples and no Matrix Spike and Duplicate pair for TAL Metals. Overall, the inorganic data quality was fair. All protocol requirements were followed with the exception of the following problems.

<u>Specific</u> QA/QC deficiency <u>Findings</u> are listed numerically in the following categories:

Holding Times

The holding times were met as specified in Section 3 of the NEESA (20.2-047B) QA protocol.

Calibration

No deficiencies in this section.

Preparation and Field Blank

1. The preparation blanks exhibited contamination for the following elements.

PBS

Calcium 8.94 mg/kg Cobalt 5.09 mg/kg Zinc 3.57 mg/kg

The calibration blanks exhibited contamination for the following elements.

Cobalt 44.6 ug/l

The USEPA requires that all sample values below five times the preparation or calibration blank contamination be qualified as non-detect, "U".

roub

125

Metals Data Assessment Narrative (continued - Page 2)

Interferences

No significant interferences were observed.

Spike Recovery

No deficiencies in this section.

Duplicate

No deficiencies in this section.

LCS

No deficiencies in this section.

risub

1) 23

SUMMARY OF DATA QUALIFICATIONS

SAMPLE ID	ANALYTE	DL	<u>OL</u>	SPECIFIC FINDING
All soil samples	Ca, Co and Zn.	+	U	1

- DL denotes laboratory qualifier/reported value
 + denotes positive values
 U denotes non-detect values
- QL denotes data validation qualifier

result

024

HEARTLAND ENVIRONMENTAL SERVICES, INC.

JOB# 3318

SAMPLES AND FRACTIONS REVIEWED

Sample Identi	<u>fications</u>		<u>Ar</u>	alytic	al Frac	tions
BAKER ID	QUANT ID	<u>Matrix</u>	<u>VOA</u>	<u>sv</u>	<u>P/P</u>	<u>TAL</u>
65RB01	AE9413	WATER	Χ	X	X	Χ
65TB01	AE9419	WATER	X			
65DW0100-	AE9458	SOIL	X	Χ	X	X
64DW 0104	AE9428	SOIL	Χ	Χ	Χ	Χ
65DW0104D-	AE9430	SOIL	X	Χ	X	X
65DW0200	AE9424	SOIL	Χ	X	Χ	Χ
65DW0202-	AE9426	SOIL	X	Χ	X	X
65MW06A00	AE9456	SOIL	X	Χ	X	Χ
65MW06A00MS	AE9456MS	SOIL	Χ	Χ	Χ	Χ
65MW 06A 00MD	AE9456MD	SOIL	X	Χ	X	Χ
65MW06A00D	AE9422	SOIL	X	Χ	X	X
65MW06A03	AE9454	SOIL	X	X	X	X
658B 070 0	AE9448	SOIL	X	X	X	Χ
65SB0700D	AE9450	SOIL	X	X	Χ	X
65SB0 704	AE9452	SOIL	Χ	X	Χ	Χ
65SB0900	AE9444	SOIL	X	Χ	Χ	Χ
65SB0902	AE9446	SOIL	X	Χ	X	Χ
65SB1000	AE9440	SOIL	Χ	X	Χ	Χ -
65SB1001—	AE9442	SOIL	X	X	X	X
65SB1100	AE9436	SOIL	X	X	X	Χ
65 SB1104	AE9432	SOIL	X	X	X	X
65SB1104MS	AE9432MS	SOIL	X	Χ	X	Χ
65SB1104MD	AE9432MD	SOIL	X	Χ	X	Χ
65SB1104D	AE9434D	SOIL	Χ	X	Χ	X

Total Number of Samples (Water/Soil)

2/22 1/22 1/22 1/22

DATA ASSESSMENT AND NARRATIVE VOLATILE ORGANICS

General

The organic findings offered in this screening report assumes that all analytical results are correct as reported and is based upon the examination of the reported holding times, blank analysis results, surrogate and matrix spike recoveries, GC/MS performance, tuning results, calibration results and internal standard areas. This report was prepared in compliance relative to the analytical and deliverable requirements specified in the U.S. EPA CLP, 3/90 SOW; the National Functional Guidelines for Organic Data Review, and NEESA Level C. All comments made within this report should be considered when examining the analytical results (Form I's).

SDG # DW01; CASE # 3318

Holding Times

The holding times for all of the samples were not met per the Organic Functional Guidelines and the CLP SOW (fourteen (14) days from collection date). No qualifications are required.

Tuning

All of the BFB tunes in the initial and continuing calibrations met the percent relative abundance criteria of the SOW and the Organic Functional Guidelines. No qualifications are required.

Initial Calibrations

The initial calibrations that were analyzed by the laboratory for these samples were not acceptable for all compound %RSDs and the average RRFs for all of the criteria compounds did not meet the initial calibration criteria.

Specific Finding:

1. The initial calibration analyzed on, 04/03/95, contained compounds with %RSDs greater than 30%. No qualifications are required, because no samples were analyzed following the calibration.

acetone

VOLATILE ANALYSIS

PAGE - 2

Continuing calibrations

The continuing calibrations that were analyzed with this data package exhibited %Ds that were not within %D continuing calibration criteria. All RRFs were within calibration criteria.

Specific Finding:

2. The continuing calibration, WS0412, contained compounds with %Ds greater than 25%, but less than 50%. For the samples and non-compliant compounds listed below, qualify all positive results as estimated (J).

VBLKAE9691

bromoform

65RB01

3. The continuing calibration, WSO417, contained compounds with %Ds greater than 25%, but less than 50%. For the samples and non-compliant compounds listed below, qualify all positive results as estimated (J).

VBLKAE9942

bromoform

65TB01

2-hexanone

4. The continuing calibration, QS0412, contained compounds with %Ds greater than 25%, but less than 50%. For the samples and non-compliant compounds listed below, qualify all positive results as estimated (J).

VBLKAE9715

chloroethane

65MW06A00MS

2-hexanone

65MW06A00MSD

65MW06A00D

ODIVIVOOROC

65DW0200

65DW0202

65DW0104

65DW0104D

65SB1100

65SB1104MS

65SB1104MSD

65SB1104

65SB1104D

VOLATILE ANALYSIS

PAGE - 3

Continuing calibrations (continued)

Specific Finding:

5. The continuing calibration, QS0413, contained compounds with %Ds greater than 25%, but less than 50%. For the samples and non-compliant compounds listed below, qualify all positive results as estimated (J).

VBLKAE9944

chloroethane

65DW0202DL

65SB1000

65SB1001

65SB0900

65SB0902

65SB0302

65SB0704

65MW06A00

65DW0100

6. The continuing calibration, QS0414, contained compounds with %Ds greater than 25%, but less than 50%. For the samples and non-compliant compounds listed below, qualify all positive results as estimated (J).

VBLKAE9945

chloroethane

65SB0700D

4-methyl-2-pentanone

65SMW06A03

2-hexanone

Internal Standards

All internal standard EICP areas met the internal standard EICP area QA/QC criteria. No qualifications are required.

Method Blanks

The method blanks that were analyzed exhibited contamination for methylene chloride, acetone, 2-butanone, 2-hexanone, 1,1,2,2-tetrachloroethane and xylene. The method blank results will be compared to their associated samples. Refer to the glossary of data qualifiers for a list and definition of the method blank qualifiers: CRQL, U and No Action.

VOLATILE ANALYSIS

PAGE - 4

Method Blanks (continued)

Specific findings:

7. The following samples have been qualified for method blank contamination. The qualifications are for all the method blanks.

65TB01	toluene	CRQL:
65DW0104 65DW0200	acetone	U
65MW06A00D 65MW06A00MSD 65MW06A00MSD 65DW0100 65SB0700 65SB0900 65SB1000 65MW06A03	acetone	CRQL
65MW06A03 65SB0700D	methylene chloride	CRQL

Trip Blanks

The trip blank that was analyzed exhibited contamination for toluene. however, the contamination was attributed to the associated method blank. No qualifications are required.

Rinseate Blanks

The rinseate blank that was analyzed exhibited contamination for methylene chloride acetone and 1,2-dichloroethane. However, the contamination found in the samples was attributed to the associated method blank. No qualifications are required.

Field Blanks

The associate field blank was not identified for this SDG. No qualifications are required.

VOLATILE ANALYSIS

PAGE - 5

Surrogates

All of the surrogate recoveries for the all blanks and samples were within QA/QC limits. No qualifications are required.

Matrix Spike/Matrix Spike Duplicate (MS/MSD)

All spike and RPD recoveries were within advisory limits for MS/MSD 65MW06A00 and MS/MSD 65SB1104. No qualifications are required.

Field Duplicate

No qualifications are required.

Compound Identification/Quantitation

Specific Finding:

8. For sample 65DW0202, reject all E-flagged results in favor of the D-flagged results in the diluted sample. For the diluted sample 65DW0202DL, reject all results except for the D-flagged results with corresponding E-flagged results in the original sample analysis.

System Performance and Overall Assessment

The overall system performance was fair. The laboratory did not encounter any large problems. The data reviewer estimates that less than 5% of the data is qualified.

GLOSSARY OF DATA QUALIFIERS

QUALIFICATION CODES

U = Not detected

J = Estimated value

UJ = Reported quantitation limit is qualified as estimated

R = Result is rejected and unusable

NJ = Presumptive evidence for the presence of the material at an estimated value

K = Result is biased high

L = Result is biased low

METHOD BLANK QUALIFICATION CODES

CRQL = The sample result for the blank contaminant is less than the sample CRQL and is less than 10X the method blank value. The sample result for the blank contaminant is rejected and the CRQL for that analyte is reported.

U = The sample result for the blank contaminant is greater than the sample CRQL and is less than 10X the method blank value. The sample result for the blank contaminant is qualified as non detected at the analyte value reported.

No Action = The sample result for the blank contaminant is greater than the sample CRQL and is greater than 10X the method blank value. The sample result for the blank contaminant is not qualified with any blank qualifiers.

The specific findings will be noted in numerical form on the Form Is in this data validation report. These specific finding footnotes will reflect the conclusions found in the data validation process that resulted in the qualification of the data.

SUMMARY OF DATA QUALIFICATIONS

SAMPLE ID	ANALYTE ID	<u>DL</u>	<u> </u>	SPECIFIC FINDINGS
VBLKAE9691 65RB01	bromoform	+	J	2
VBLKAE9942 65TB01	bromoform 2-hexanone	+	J	3
VBLKAE9715 65MW06A00MS 65MW06A00MSD 65MW06A00D 65DW0200 65DW0202 65DW0104 65DW0104D 65SB1100 65SB1104MS 65SB1104 65SB1104	chloroethane 2-hexanone	+	J	4
VBLKAE9944 65DW0202DL 65SB1000 65SB1001 65SB0900 65SB0902 65SB0700 65SB0704 65MW06A00 65DW0100	chloroethane	+	J	5
VBLKAE9945 65SB0700D 65SMW06A03	chloroethane 4-methyl-2-pentanone 2-hexanone	+	J	6

^{*} DL denotes the Form I qualifier supplied by the laboratory QL denotes the qualifier used by the data validation firm + in the DL column denotes a positive result

⁻ in the DL column denotes a non detect result

SUMMARY OF DATA QUALIFICATIONS

Page - 2

SAMPLE ID	ANALYTE ID	<u>DL</u>	<u>OL</u>	SPECIFIC FINDINGS
65TB01	toluene	+	CRQI	_:7
65DW0104 65DW0200	acetone	+	U	7 .
65MW06A00D 65MW06A00MSD 65MW0100 65SB0700 65SB0900 65SB1000 65MW06A03	acetone	+	CRQI	. 7
65MW06A03 65SB0700D	methylene chloride	+	CRQI	_ 7
65DW0202	All E-flagged results	+	R	8
65DW0202DL	All results except D-flagged results	+/-	R	8

^{*} DL denotes the Form I qualifier supplied by the laboratory QL denotes the qualifier used by the data validation firm

⁺ in the DL column denotes a positive result

⁻ in the DL column denotes a non detect result

SEMIVOLATILE ORGANICS

General

The organic findings offered in this screening report assumes that all analytical results are correct as reported and is based upon the examination of the reported holding times, blank analysis results, surrogate and matrix spike recoveries, GC/MS performance, tuning results, calibration results and internal standard areas. This report was prepared in compliance relative to the analytical and deliverable requirements specified in the U.S. EPA CLP, 3/90 SOW; to the National Functional Guidelines for Organic Data Review, and NEESA Level C. All comments made within this report should be considered when examining the analytical results (Form I's).

SDG # DW01; CASE # 3318

Holding Times

All extraction and analysis holding times for all samples were met for all samples per the SOW and National Functional Guidelines. No qualifications are required.

Tuning

All of the DFTPP tunes in the initial and continuing calibrations met the percent relative abundance criteria of the SOW and the Organic Functional Guidelines. No qualifications are required.

Initial Calibrations

The initial calibrations that were analyzed by the laboratory for these samples were not acceptable for all compound %RSDs and the average RRFs for all of the criteria compounds did not meet the initial calibration criteria.

Specific Finding:

1. The initial calibration analyzed on, 04/13/95, contained compounds with %RSDs greater than 30%. No qualifications are required, because no samples were analyzed following the calibration.

carbazole

SEMIVOLATILE ANALYSIS

PAGE - 2

Continuing Calibrations

The continuing calibrations that were analyzed all of the criteria and non criteria compounds met requirements for RRFs. Qualifications are required for compounds with non compliant %Ds.

Specific Findings:

2. The continuing calibration, BCC0419, contained compounds with %Ds greater than 25% D but less than 50% D. For the samples and non compliant compounds listed below, qualify all positive results as estimated (J).

SBLKAE9604B 65MW06A00MS 65MW06A00MSD 65MW06A00D 65DW0200 65DW0104D 65DW0202 65SB1104 65SB1104D 65SB1100 65SB1104MSD 65SB1104MSD 65SB1000 65SB1001 2,2'-oxybis(1-chloropropane)
2-nitroaniline
4-nitrophenol
4-nitroaniline
pentachlorophenol
carbazole
di-n-butylphthalate
bis(2-ethylhexyl)phthalate
di-n-octylphthalate

SEMIVOLATILE ANALYSIS

PAGE - 3

Continuing Calibrations (continued)

Specific Findings:

3. The continuing calibration, BCCO419, contained compounds with %Ds greater than 50% D but less than 90% D. For the samples and non compliant compounds listed below, qualify all positive results as estimated (J) and all non detects as estimated (UJ).

SBLKAE9604B

hexachlorocyclopentadiene

65MW06A00MS

65MW06A00MSD

65MW06A00D

65DW0200

65DW0104

65DW0104D

65DW0202

65SB1104

65SB1104D

65SB1100

65SB1104MS

65SB1104MSD

65SB1000

65SB1001

4. The continuing calibration, BCC0422, contained compounds with %Ds greater than 25% D but less than 50% D. For the samples and non compliant compounds listed below, qualify all positive results as estimated (J).

65RB01

2,4-dinitrophenol 4-nitrophenol

5. The continuing calibration, BCC0425, contained compounds with %Ds greater than 25% D but less than 50% D. For the samples and non compliant compounds listed below, qualify all positive results as estimated (J).

65MW06A00

4-nitrophenol

65DW0100

4,6-dinitro-2-methylphenol-

SBLKAE9763B

SEMIVOLATILE ANALYSIS

PAGE - 4

Continuing Calibrations (continued)

Specific Findings:

6. The continuing calibration, BCC0425, contained compounds with %Ds greater than 50% D but less than 90% D. For the samples and non compliant compounds listed below, qualify all positive results as estimated (J) and all non detects as estimated (UJ).

65MW06A00

2,4-dinitrophenol

65DW0100 SBLKAE9763B

Internal Standards

All internal standard EICP areas met the internal standard EICP area QA/QC criteria. No qualifications are required.

Method Blanks

The method blank that was analyzed exhibited contamination for di-n-butylphthalate and TICs. The method blank results will be compared to their associated samples. Refer to the glossary of data qualifiers for a list and definition of the method blank qualifiers: CRQL, U and No Action.

Specific Finding:

7. The samples listed below have been qualified for method blank contamination. The qualification are for all method blanks.

All samples

di-n-butylphthalate

CRQL

8. Reject all TICs flagged with the laboratory qualifier "B", due to method blank contamination.

Rinseate Blanks

The rinseate blank that was analyzed did not exhibited any contamination. No qualifications are required.

SEMIVOLATILE ANALYSIS

PAGE - 5

Field Blanks

The associated field blank was not identified for this SDG. No qualifications are required.

Surrogates

Surrogate recoveries for all samples and blanks met QA/QC criteria. No qualifications are required.

Matrix Spike/Matrix Spike Duplicate

All spike and RPD recoveries were within advisory limits the MS/MSD 65MW06A00. However, all spike and RPD recoveries were within advisory limits the MS/MSD 65SB1104. The MS/MSD samples exhibited high RPDs for 1,4-dichlorobenzene, 1,2,4-trichlorobenzene and acenaphthene. No qualifications are required.

Field Duplicates

No qualifications are required.

Compound Identification/Quantitation

No qualifications are required.

System Performance and Overall Assessment

Overall performance was fair. The laboratory did not encounter any large problems. The data reviewer estimates less than 10% of data required qualifications.

GLOSSARY OF DATA QUALIFIERS

QUALIFICATION CODES

U = Not detected

J = Estimated value

UJ = Reported Quantitation limit is qualified as estimated

R = Result is rejected and unusable

NJ = Presumptive evidence for the presence of the material at an estimated value

K = Result is biased high

L = Result is biased low

METHOD BLANK QUALIFICATION CODES

CRQL = The sample result for the blank contaminant is less than the sample CRQL and is less than 10X the method blank value. The sample result for the blank contaminant is rejected and the CRQL for that analyte is reported.

U = The sample result for the blank contaminant is greater than the sample CRQL and is less than 10X the method blank value. The sample result for the blank contaminant is qualified as non detected at the analyte value reported.

No Action = The sample result for the blank contaminant is greater than the sample CRQL and is greater than 10X the method blank value. The sample result for the blank contaminant is not qualified with any blank qualifiers.

The specific findings will be noted in numerical form on the Form Is in this data validation report. These specific finding footnotes will reflect the conclusions found in the data validation process that resulted in the qualification of the data.

SAMPLE ID	ANALYTE ID	<u>DL</u>	<u>QL</u>	SPECIFIC FINDINGS
SBLKAE9604B 65MW06A00MS 65MW06A00MSD 65MW06A00D 65DW0200 65DW0104 65DW0104D 65DW0202 65SB1104 65SB1104D 65SB1100 65SB1104MS 65SB1104MSD 65SB1000 65SB1000	2,2'-oxybis (1-chloropropane) 2-nitroaniline 4-nitrophenol 4-nitroaniline pentachlorophenol carbazole di-n-butylphthalate bis(2-ethylhexyl)phthala di-n-octylphthalate	+ te	J	2
SBLKAE9604B 65MW06A00MS 65MW06A00MSD 65MW06A00D 65DW0200 65DW0104D 65DW0202 65SB1104 65SB1104D 65SB1100 65SB1104MS 65SB1104MSD 65SB1000 65SB1000	hexachlorocyclo- pentadiene	+/-	J/UJ	3
65RB01	2,4-dinitrophenol 4-nitrophenol	+	J	4

^{*} DL denotes the Form I qualifier supplied by the laboratory QL denotes the qualifier used by the data validation firm + in the DL column denotes a positive result - in the DL column denotes a non detect result

Page - 2

SAMPLE ID	ANALYTE ID	<u>DL</u>	<u> </u>	SPECIFIC FINDINGS
65MW06A00 65DW0100 SBLKAE9763B	4-nitrophenol 4,6-dinitro-2-methylpher	+ nol	J	5 .
65MW06A00 65DW0100 SBLKAE9763B	2,4-dinitrophenol	+/-	J/UJ	6
All samples	di-n-butylphthalate	+	CRQL	. 7
All samples	"B" flagged TICs	+	R	8

^{*} DL denotes the Form I qualifier supplied by the laboratory QL denotes the qualifier used by the data validation firm

⁺ in the DL column denotes a positive result - in the DL column denotes a non detect result

PESTICIDE/AROCLOR ANALYSIS

General

The organic findings offered in this screening report assume that all analytical results are correct as reported and are based upon the examination of the reported holding times, GC instrument performance, initial and continuing calibrations, analytical sequence, blank analysis results, surrogate recoveries, and MS/MSD results. All comments made within this report should be considered when examining the analytical results (Form Is). Please refer the specific findings found in each category to the Summary of Data Qualification table.

SDG # 65DW01

Holding Times

All extraction and analysis holding times were met based on extraction and analysis information in the data package and the chain of custody records.

GC Instrument Performance

The resolution requirements were met on both columns in the sequence. The analytical sequence was acceptable. All 4,4'-DDT and endrin breakdowns were within QC limits. All surrogate retention times were within the established retention time windows (RTWs). All PEM standard RPDs were within the 25% QC limit.

Initial Calibrations

The initial calibrations were not acceptable for the linearity of all compounds. Raw data was not required in this Level C data package.

Specific Finding

1. The initial calibration on instrument 5890K, 4/18/95, exhibited a compound with a %RSD greater than 20%. All positive and non-detect results in the following samples for the non-compliant compound noted below associated with the ICAL are qualified as estimated, J/UJ.

All Samples

4,4'-DDD

PAGE - 2

Continuing Calibrations

All compounds in the calibration standards were within the laboratory reported Retention Time Windows (RTWs) for all columns. All continuing calibration standard associated with the reported samples exhibited relative percent differences, RPDs, within the QC limits. Raw data was not required in this Level C data package. No qualifications are required.

Method Blanks

The associated method blank did not exhibit contamination for target compounds.

Instrument Blanks

The instrument blank data was not present in this NEESA Level C data package.

QC Blanks

The field rinseate blank analyzed in this SDG exhibited contamination for the compound 4,4'-DDT at 0.24 ug/L. This concentration corresponds to a soil contamination level of 8.0 ug/Kg. The samples exhibiting positive results for 4,4'-DDT were compared to the rinseate blank contamination level for qualifications.

Specific Finding

2.	Compound	Concentration	Action Level
	4,4'-DDT	0.24ug/L + 8.0 ug/Kg	40 ug/Kg
	U		
	65DW0100 65DW0104 65SB0700D 65SB0900		

PAGE - 3

Florisil/GPC Checks

The GPC clean-up check standard exhibited acceptable recoveries for all compounds. The Florisil cartridge check exhibited acceptable spike recoveries for all compounds. Raw data was not required in the Level C data package.

Surrogate Recoveries

The surrogate recoveries in the field samples were within QC limits in all soil samples with the exception sample 65SB1104D. The recoveries for TCMX and DCB were below the QC limits.

Specific Finding

3. The reported positive and non-detect results in the following sample are qualified as estimated, J/UJ, due to TCMX and DCB recoveries below the QC limits on one (1) or both columns.

65SB1104D

Matrix Spike/Matrix Spike Duplicate

The MS/MSD pairs of samples 65SB01104 and 65MW06A00 exhibited acceptable recoveries and RPDs for all spike compounds. The LCS samples exhibited acceptable recoveries for spiked compounds. No qualifications were required.

Field Duplicates

The field duplicate pair of sample 65DW0104 exhibited positive results with poor precision results for three (3) compounds. The compounds were detected in the original sample but not the field duplicate sample. The field duplicate pair of sample 65SB0700 exhibited positive results with poor precision for two (2) compounds. The compound 4,4'-DDT was negated in the field duplicate sample due to rinseate blank contamination, but the concentration in the original sample was above the action limit for qualification. The field duplicate pairs of samples 65SB1104 and 65MW06A00 did not exhibit positive results for target compounds. Positive results reported in the field duplicate pairs for compounds exhibiting poor precision were qualified as estimated,

PAGE - 4

Field Duplicates, continued

Specific Finding

4. The positive results reported in the following samples for the noted compounds are qualified as estimated, J, due to poor duplicate precision.

65DW0104

4,4'-DDE

65DW0104D

4,4'-DDD

ENDRIN ALDEHYDE

65SB0700 65SB0700D

4,4'-DDE

4,4'-DDT

Analyte Identification/Quantitation

Positive results were reported in the samples. Identification and quantitation appear reasonable based on sample and standard review. Quantitation calculations were not verified because sample chromatograms were not included in the NEESA Level C data package. Several reported compounds exhibited column quantitations greater than 25%. Three sample required dilution to bring target compounds within the calibration range.

Specific Findings

- 5. Results reported with a Z flag indicating that the compound is outside the linear range of the calibration range are rejected and replaced with the D flagged result from the dilution analysis of the sample. All other results reported from the dilution analysis are rejected in favor of the results reported from the undiluted analysis of the sample.
- 6. Positive results exhibited column quantitation %Ds greater than 25% but less than or equal to 100% are qualified as estimated, J.
- 7. Positive results exhibited column quantitation %Ds greater than 100% are qualified as presumptively present at an estimated concentration, NJ.

PAGE - 5

Overall Assessment

The overall quality of the data package is good. The reported results are accepted as reported by the laboratory with the noted qualifications based on the limited deliverables in a Level C data package. Sample chromatograms should have been included in the Level C package, but were not.

GLOSSARY OF DATA QUALIFIERS

QUALIFICATION CODES

U = Not detected

J = Estimated value

UJ = Reported quantitation limit is qualified as estimated

R = Result is rejected and unusable

NJ = Presumptive evidence for the presence of the material at an estimated value

K = Result is biased high

L = Result is biased low

METHOD BLANK QUALIFICATION CODES

CRQL = The sample result for the blank contaminant is less than the sample CRQL and is less than 10X the method blank value. The sample result for the blank contaminant is rejected and the CRQL

for that analyte is reported.

U = The sample result for the blank contaminant is greater than the

sample CRQL and is less than 10X the method blank value. The sample result for the blank contaminant is qualified as non

detected at the analyte value reported.

No Action = The sample result for the blank contaminant is greater than the

sample CRQL and is greater than 10X the method blank value. The sample result for the blank contaminant is not qualified with

any blank qualifiers.

The specific findings will be noted in numerical form on the Form Is in this data validation report. These specific finding footnotes will reflect the conclusions found in the data validation process that resulted in the qualification of the data.

SAMPLE ID	ANALYTE ID	DL	<u>OL</u>	SPECIFIC FINDINGS
All	4,4'-DDD	+/U	J/UJ	1
65DW0100 65DW0104 65SB0700D 65SB0900	4,4'-DDT	+	U	2
65SB1104D	All	+/U	J/UJ	3
65DW0104 65DW0104D	4,4'-DDE 4,4'-DDD ENDRIN ALDEHYDE	+	J	4
65SB0700 65SB0700D	4,4'-DDE 4,4'-DDT			
All	All Z flagged	+	R	5
ALL	ALL P > 25%, BUT ≤ 100%	+	J	6
ALL	ALL P > 100%	+	NJ	7

^{*} DL denotes the Form I qualifier supplied by the laboratory QL denotes the qualifier used by the data validation firm + in the DL column denotes a positive result - in the DL column denotes a non detect result

DATA ASSESSMENT NARRATIVE Metals

General

The inorganic findings offered in this screening report assumes that all analytical results are correct as reported and is based upon the examination of the reported holding times, calibration standards, blank analysis results and MS/MSD results. A minimum of ten percent of all laboratory calculations are recalculated by the reviewer. All comments made within this report should be considered when examining the analytical results (Form Is).

This data package consisted of results from CTO-312, SDG# DW0104, the analysis of eighteen (18) field soil samples and one Matrix Spike and Duplicate pair and one water QC sample for TAL Metals. Overall, the inorganic data quality was fair. All protocol requirements were followed with the exception of the following problems.

Specific QA/QC deficiency Findings are listed numerically in the following categories:

Holding Times

The holding times were met as specified in Section 3 of the NEESA (20.2-047B) QA protocol.

Calibration

No deficiencies in this section.

Preparation and Field Blank

1. The calibration blanks exhibited contamination for the following elements.

Beryllium 1.4 ug/l

The USEPA requires that all sample values below five times the preparation or calibration blank contamination be qualified as non-detect, "U".

2. The preparation blanks exhibited negative bias for the following elements.

PBS			PBW		
Cobalt	-6.1	mg/kg	Cobalt	-42.7	ug/l
Iron	-3.13	mg/kg		•	

All positive and non-detect results below ten times the negative bias will be qualified as estimated, "J" or "UJ".

Metals Data Assessment Narrative (continued - Page 2)

Interferences

No significant interferences were observed.

Spike Recovery

3. The Matrix Spike recovery for Zinc was below the lower control limits. All positive and non-detect results are qualified as estimated, "J' or "UJ".

Duplicate

4. The Duplicate analyses for Iron, Lead, Manganese and Zinc were outside the control limits. All positive results are qualified as estimated, "J". The RPD for Aluminum was not greater than 35% and will not be qualified.

LCS

No deficiencies in this section.

SAMPLE ID	ANALYTE	DL	<u>QL</u>	SPECIFIC FINDING
All samples	Be.	+	U	1
All soil samples All water samples	Co and Fe. Co.	+/U	J/UJ	2
All soil samples	Zn.	+/U	J/UJ	3
All soil samples	Fe, Pb, Mn and Zn.	+	J	4

- DL denotes laboratory qualifier/reported value
 + denotes positive values
 U denotes non-detect values
- QL denotes data validation qualifier

Inorganics Major and Minor findings

- Holding times
 No major or minor findings for this section.
- 2. Calibration
 No major or minor findings for this section.
- 3. Blanks
 Minor findings for Beryllium, Cobalt and Iron for this section.
- 4. Interferences
 No major or minor findings for this section.
- 5. Matrix Spikes
 Minor findings for Zinc for this section.
- 6. Duplicates
 Minor findings for Iron, Lead, Manganese and Zinc for this section.
- 7. LCS
 No major or minor findings for this section.
- 8. Serial Dilutions
 No major or minor findings for this section.

HEARTLAND ENVIRONMENTAL SERVICES, INC.

JOB# 3333

SAMPLES AND FRACTIONS REVIEWED

Sample Identifications		<u>A</u>	nalytic	al Frac	tions	
BAKER ID	QUANT ID	<u>Matrix</u>	VOA	<u>sv</u>	<u>P/P</u>	<u>TAL</u>
65RB03	AE9667	WATER	X	X	X	×
65TB02	AE9673	WATER	Χ			
65SB0600	AE9659	SOIL	X	X	X	Χ
65SB0602	AE9661	SOIL	X	X	Χ	Χ
65SB0800	AE9665	SOIL	X	X	X	Χ
65SB0804	AE9663	SOIL	X	X	X	X
Total Number of S	amples (Water/Soil)		2/4	1/4	1/4	1/4

MS - Matrix Spike MD - Matrix Spike Duplicate

Individual fractions were reviewed as follows:

	<u>Primary</u>	Secondary
VOA - Volatiles (CLP, OLM01.8) SV - Semivolatiles (CLP, OLM01.8) P/P - Pesticide/PCBs (CLP, OLM01.8) TAL - Total Metals (CLP, ILM02.1)	Dan Heil Dan Heil Jackie Cleveland Paul Humburg	Gene Watson Gene Watson Gene Watson Jackie Cleveland

VOLATILE ORGANICS

General

The organic findings offered in this screening report assumes that all analytical results are correct as reported and is based upon the examination of the reported holding times, blank analysis results, surrogate and matrix spike recoveries, GC/MS performance, tuning results, calibration results and internal standard areas. This report was prepared in compliance relative to the analytical and deliverable requirements specified in the U.S. EPA CLP, 3/90 SOW; the National Functional Guidelines for Organic Data Review, and NEESA Level C. All comments made within this report should be considered when examining the analytical results (Form I's).

SDG # 65RB0; CASE # 3333

Holding Times

The holding times for all of the samples were not met per the Organic Functional Guidelines and the CLP SOW (fourteen (14) days from collection date). No qualifications are required.

Tuning

All of the BFB tunes in the initial and continuing calibrations met the percent relative abundance criteria of the SOW and the Organic Functional Guidelines. No qualifications are required.

Initial Calibrations

The initial calibrations that were analyzed by the laboratory for these samples were not acceptable for all compound %RSDs and the average RRFs for all of the criteria compounds did not meet the initial calibration criteria.

Specific Finding:

1. The initial calibration analyzed on, 04/03/95, contained compounds with %RSDs greater than 30%. No qualifications are required, because no samples were analyzed following the calibration.

acetone

VOLATILE ANALYSIS

PAGE - 2

Continuing calibrations

The continuing calibrations that were analyzed with this data package exhibited %Ds that were not within %D continuing calibration criteria. All RRFs were within calibration criteria.

Specific Finding:

2. The continuing calibration, WS0412, contained compounds with %Ds greater than 25%, but less than 50%. For the samples and non-compliant compounds listed below, qualify all positive results as estimated (J).

VBLKAE9691

bromoform

65TB02

65RB03

3. The continuing calibration, WSO414, contained compounds with %Ds greater than 25%, but less than 50%. For the samples and non-compliant compounds listed below, qualify all positive results as estimated (J).

VBLKAE9945

chloroethane

65SB0600

65SB0602

65SB0800

4. The continuing calibration, QS0420B, contained compounds with %Ds greater than 25%, but less than 50%. For the samples and non-compliant compounds listed below, qualify all positive results as estimated (J).

VBLKAF0294

chloromethane

65SB0804

carbon tetrachloride

Internal Standards

All internal standard EICP areas met the internal standard EICP area QA/QC criteria. No qualifications are required.

VOLATILE ANALYSIS

PAGE - 3

Method Blanks

The method blanks that were analyzed exhibited contamination for methylene chloride, acetone, 2-butanone, 2-hexanone, 1,1,2,2-tetrachloroethane and xylene. The method blank results will be compared to their associated samples. Refer to the glossary of data qualifiers for a list and definition of the method blank qualifiers: CRQL, U and No Action.

Specific findings:

5. The following samples have been qualified for method blank contamination. The qualifications are for all the method blanks.

65SB0602	acetone	U
65SB0600 65SB0800 65SB0804	acetone	CRQL
65\$B0600 65\$B0602 65\$B0800	methylene chloride	CRQL
65SB0602	2-butanone	CRQL

Trip Blanks

The trip blank that was analyzed exhibited contamination for methylene chloride, acetone, 1,2-dichloroethane and toluene. The trip blank results will be compared to their associated samples. Refer to the glossary of data qualifiers for a list and definition of the method blank qualifiers: CRQL, U and No Action.

Specific findings:

The following samples have been qualified for blank contamination. The qualifications are for all the blanks.

65SB0804 methylene chloride - CRQL

VOLATILE ANALYSIS

PAGE - 4

Rinseate Blanks

The rinseate blank that was analyzed exhibited contamination for methylene chloride acetone, 1,2-dichloroethane and 2-butanone. However, the contamination found in the samples was attributed to the associated method blank and/or trip blank. No qualifications are required.

Field Blanks

The associate field blank was not identified for this SDG. No qualifications are required.

Surrogates

All of the surrogate recoveries for the all blanks and samples were within QA/QC limits. No qualifications are required.

Matrix Spike/Matrix Spike Duplicate (MS/MSD)

The associated MS/MSD was not identified for this SDG. No qualifications are required.

Field Duplicate

No qualifications are required.

Compound Identification/Quantitation

No qualifications are required.

System Performance and Overall Assessment

The overall system performance was fair. The laboratory did not encounter any large problems. The data reviewer estimates that less than 5% of the data is qualified.

GLOSSARY OF DATA QUALIFIERS

QUALIFICATION CODES

U = Not detected

J = Estimated value

UJ = Reported quantitation limit is qualified as estimated

R = Result is rejected and unusable

NJ = Presumptive evidence for the presence of the material at an estimated value

K = Result is biased high

L = Result is biased low

METHOD BLANK QUALIFICATION CODES

CRQL = The sample result for the blank contaminant is less than the sample CRQL and is less than 10X the method blank value. The sample result for the blank contaminant is rejected and the CRQL for that analyte is reported.

U = The sample result for the blank contaminant is greater than the sample CRQL and is less than 10X the method blank value. The sample result for the blank contaminant is qualified as non detected at the analyte value reported.

No Action = The sample result for the blank contaminant is greater than the sample CRQL and is greater than 10X the method blank value. The sample result for the blank contaminant is not qualified with any blank qualifiers.

The specific findings will be noted in numerical form on the Form Is in this data validation report. These specific finding footnotes will reflect the conclusions found in the data validation process that resulted in the qualification of the data.

SAMPLE ID	ANALYTE ID	DL	<u>QL</u>	SPECIFIC FINDINGS
VBLKAE9691 65TB02 65RB03	bromoform	+	J	2
VBLKAE9945 65SB0600 65SB0602 65SB0800	chloroethane	+	J	3
VBLKAF0294 65SB0804	chloromethane carbon tetrachloride	+	J	4
65SB0602	acetone	+	U	5
65SB0600 65SB0800 65SB0804	acetone	+	CRQI	L 5
65SB0600 65SB0602 65SB0800	methylene chloride	+	CRQI	L 5
65SB0602	2-butanone	+	CRQI	_ 5
65SB0804	methylene chloride	+	CRQI	_ 6

^{*} DL denotes the Form I qualifier supplied by the laboratory QL denotes the qualifier used by the data validation firm + in the DL column denotes a positive result

⁻ in the DL column denotes a non detect result

DATA ASSESSMENT NARRATIVE SEMIVOLATILE ORGANICS

General

The organic findings offered in this screening report assumes that all analytical results are correct as reported and is based upon the examination of the reported holding times, blank analysis results, surrogate and matrix spike recoveries, GC/MS performance, tuning results, calibration results and internal standard areas. This report was prepared in compliance relative to the analytical and deliverable requirements specified in the U.S. EPA CLP, 3/90 SOW; to the National Functional Guidelines for Organic Data Review, and NEESA Level C. All comments made within this report should be considered when examining the analytical results (Form I's).

SDG # 65RB0; CASE # 3333

Holding Times

All extraction and analysis holding times for all samples were met for all samples per the SOW and National Functional Guidelines. No qualifications are required.

Tuning

All of the DFTPP tunes in the initial and continuing calibrations met the percent relative abundance criteria of the SOW and the Organic Functional Guidelines. No qualifications are required.

Initial Calibrations

The initial calibration that was analyzed by the laboratory for these samples was acceptable for all compound %RSDs and the average RRFs. No qualifications are required.

Continuing Calibrations

The continuing calibrations that were analyzed all of the criteria and non criteria compounds met requirements for RRFs. Qualifications are required for compounds with non compliant %Ds.

SEMIVOLATILE ANALYSIS

PAGE - 2

Continuing Calibrations (continued)

Specific Findings:

1. The continuing calibration, BCC0422, contained compounds with %Ds greater than 25% D but less than 50% D. For the samples and non compliant compounds listed below, qualify all positive results as estimated (J).

65RB03

2,4-dinitrophenol

SBLKAE9812B

4-nitrophenol

2. The continuing calibration, BCC0426, contained compounds with %Ds greater than 25% D but less than 50% D. For the samples and non compliant compounds listed below, qualify all positive results as estimated (J).

65SB0600

hexachlorocyclopentadiene

65SB0602 65SB0804 4-nitrophenol anthracene

65SB0800

di-n-octylphthalate

indeno(1,2,3-cd)pyrene dibenzo(a,h)anthracene benzo(a,h,i)perylene

3. The continuing calibration, BCC0426, contained compounds with %Ds greater than 50% D but less than 90% D. For the samples and non compliant compounds listed below, qualify all positive results as estimated (J) and all non detects as estimated (UJ).

65SB0600

2,4-dinitrophenol

65SB0602

65SB0804

65SB0800

Internal Standards

All internal standard EICP areas met the internal standard EICP area QA/QC criteria. No qualifications are required.

SEMIVOLATILE ANALYSIS

PAGE - 3

Method Blanks

The method blank that was analyzed exhibited contamination for TICs. The method blank results will be compared to their associated samples. Refer to the glossary of data qualifiers for a list and definition of the method blank qualifiers: CRQL, U and No Action.

Specific Finding:

4. Reject all TICs flagged with the laboratory qualifier "B", due to method blank contamination.

Rinseate Blanks

The rinseate blank that was analyzed did not exhibited any contamination. No qualifications are required.

Field Blanks

The associated field blank was not identified for this SDG. No qualifications are required.

Surrogates

Surrogate recoveries for all samples and blanks met QA/QC criteria. No qualifications are required.

Matrix Spike/Matrix Spike Duplicate

The associated MS/MSD was not identified for this SDG. No qualifications are required.

Field Duplicates

No qualifications are required.

Compound Identification/Quantitation

No qualifications are required.

SEMIVOLATILE ANALYSIS

PAGE - 4

System Performance and Overall Assessment

Overall performance was fair. The laboratory did not encounter any large problems. The data reviewer estimates less than 10% of data required qualifications.

GLOSSARY OF DATA QUALIFIERS

QUALIFICATION CODES

U = Not detected

J = Estimated value

UJ = Reported Quantitation limit is qualified as estimated

R = Result is rejected and unusable

NJ = Presumptive evidence for the presence of the material at an estimated value

K = Result is biased high

L = Result is biased low

METHOD BLANK QUALIFICATION CODES

CRQL = The sample result for the blank contaminant is less than the sample CRQL and is less than 10X the method blank value. The sample result for the blank contaminant is rejected and the CRQL for that analyte is reported.

U = The sample result for the blank contaminant is greater than the sample CRQL and is less than 10X the method blank value. The sample result for the blank contaminant is qualified as non detected at the analyte value reported.

No Action = The sample result for the blank contaminant is greater than the sample CRQL and is greater than 10X the method blank value. The sample result for the blank contaminant is not qualified with any blank qualifiers.

The specific findings will be noted in numerical form on the Form Is in this data validation report. These specific finding footnotes will reflect the conclusions found in the data validation process that resulted in the qualification of the data.

SAMPLE ID	ANALYTE ID	<u>DL</u>	<u>QL</u>	SPECIFIC FINDINGS
65RB03 SBLKAE9812B	2,4-dinitrophenol 4-nitrophenol	+	J	1
65SB0600 65SB0602 65SB0804 65SB0800	hexachlorocyclo- pentadiene 4-nitrophenol anthracene di-n-octylphthalate indeno(1,2,3-cd)pyrene dibenzo(a,h)anthracene benzo(g,h,i)perylene	+	J	2
65SB0600 65SB0602 65SB0804 65SB0800	2,4-dinitrophenol	+/-	J/UJ	3
All samples	"B" flagged TICs	+	R	4

^{*} DL denotes the Form I qualifier supplied by the laboratory QL denotes the qualifier used by the data validation firm

⁺ in the DL column denotes a positive result

⁻ in the DL column denotes a non detect result

PESTICIDE/AROCLOR ANALYSIS

General

The organic findings offered in this screening report assume that all analytical results are correct as reported and are based upon the examination of the reported holding times, GC instrument performance, initial and continuing calibrations, analytical sequence, blank analysis results, surrogate recoveries, and MS/MSD results. All comments made within this report should be considered when examining the analytical results (Form Is). Please refer the specific findings found in each category to the Summary of Data Qualification table.

SDG # 65RB03

Holding Times

All extraction and analysis holding times were met based on extraction and analysis information in the data package and the chain of custody records.

GC Instrument Performance

The resolution requirements were met on both columns in the sequence. The analytical sequence was acceptable. All 4,4'-DDT and endrin breakdowns were within QC limits. All surrogate retention times were within the established retention time windows (RTWs). All PEM standard RPDs were within the 25% QC limit.

Initial Calibrations

The initial calibrations were not acceptable for the linearity of all compounds. Raw data was not required in this Level C data package.

Specific Finding

1. The initial calibration on instrument 5890K, 4/18/95, exhibited a compound with a %RSD greater than 20%. All positive and non-detect results in the following samples for the non-compliant compound noted below associated with the ICAL are qualified as estimated, J/UJ.

All Samples

4.4'-DDD

PAGE - 2

Continuing Calibrations

All compounds in the calibration standards were within the laboratory reported Retention Time Windows (RTWs) for all columns. All continuing calibration standard associated with the reported samples exhibited relative percent differences, RPDs, within the QC limits. Raw data was not required in this Level C data package. No qualifications are required.

Method Blanks

The associated method blank did not exhibit contamination for target compounds.

Instrument Blanks

The instrument blanks were free of target compound contamination.

QC Blanks

The field rinseate blank analyzed in this SDG exhibited contamination for the compound 4,4'-DDT at 0.30 μ g/L. This concentration corresponds to a soil contamination level of 10.0 μ g/Kg. The samples exhibiting positive results for 4,4'-DDT were compared to the rinseate blank contamination level for qualifications.

Specific Finding

2.	Compound	Concentration	Action Level
	4,4'-DDT	0.30μg/L + 10.0 μg/Kg	50 <i>μ</i> g/Kg
	U		
	65SB0600 65SB0602		

Florisil/GPC Checks

The GPC clean-up check standard exhibited acceptable recoveries for all compounds. The Florisil cartridge check exhibited acceptable spike recoveries for all compounds. Raw data was not required in the Level C data package.

PAGE - 3

Surrogate Recoveries

The surrogate recoveries were within QC limits in all the samples and blanks. No qualifications were required.

Matrix Spike/Matrix Spike Duplicate

There was no MS/MSD pair in this SDG. The LCS samples exhibited acceptable recoveries for spiked compounds. No qualifications were required.

Field Duplicates

There was no field duplicate pair in this SDG.

Analyte Identification/Quantitation

Positive result were reported in the samples. Identification and quantitation appear reasonable based on sample and standard review. Quantitation calculations were not verified because raw data is not a required deliverable for NEESA Level C QC. Results in one (1) sample exhibited column quantitation %Ds greater than 25%.

Specific Finding

- 3. Positive results reported with column quantitation %Ds greater than 25% but less than or equal to 100% are qualified as estimated, J.
- 4. Positive results reported with column quantitation %Ds greater than 100% are qualified as presumptively present at an estimated concentration, NJ.

Overall Assessment

The overall quality of the data package is good. The reported results are accepted as reported by the laboratory with the noted qualifications based on the limited deliverables in a Level C data package.

GLOSSARY OF DATA QUALIFIERS

QUALIFICATION CODES

U = Not detected

J = Estimated value

UJ = Reported quantitation limit is qualified as estimated

R = Result is rejected and unusable

NJ = Presumptive evidence for the presence of the material at an estimated value

K = Result is biased high

L = Result is biased low

METHOD BLANK QUALIFICATION CODES

CRQL = The sample result for the blank contaminant is less than the sample CRQL and is less than 10X the method blank value. The

sample result for the blank contaminant is rejected and the CRQL

for that analyte is reported.

U = The sample result for the blank contaminant is greater than the

sample CRQL and is less than 10X the method blank value. The sample result for the blank contaminant is qualified as non

detected at the analyte value reported.

No Action = The sample result for the blank contaminant is greater than the

sample CRQL and is greater than 10X the method blank value. The sample result for the blank contaminant is not qualified with

any blank qualifiers.

The specific findings will be noted in numerical form on the Form Is in this data validation report. These specific finding footnotes will reflect the conclusions found in the data validation process that resulted in the qualification of the data.

SAMPLE ID	ANALYTE ID	DL	QL	SPECIFIC FINDINGS
All	4,4'-DDD	+/U	J/UJ	1
65SB0600 65SB0602	4,4'-DDT	+-	U	2 .
All	All P > 25%, But ≤ 100%	+	J	3
All	All P > 100%	+	NJ	4

DL denotes the Form I qualifier supplied by the laboratory
 QL denotes the qualifier used by the data validation firm
 + in the DL column denotes a positive result

⁻ in the DL column denotes a non detect result

DATA ASSESSMENT NARRATIVE Metals

General

The inorganic findings offered in this screening report assumes that all analytical results are correct as reported and is based upon the examination of the reported holding times, calibration standards, blank analysis results and MS/MSD results. A minimum of ten percent of all laboratory calculations are recalculated by the reviewer. All comments made within this report should be considered when examining the analytical results (Form Is).

This data package consisted of results from CTO-312, SDG# N/A, the analysis of four (4) field soil samples and no Matrix Spike and Duplicate pair and one water QC sample for TAL Metals. Overall, the inorganic data quality was fair. All protocol requirements were followed with the exception of the following problems.

Specific QA/QC deficiency Findings are listed numerically in the following categories:

Holding Times

The holding times were met as specified in Section 3 of the NEESA (20.2-047B) QA protocol.

Calibration

No deficiencies in this section.

Preparation and Field Blank

1. The calibration blanks exhibited contamination for the following elements.

Beryllium 1.4 ug/l

The USEPA requires that all sample values below five times the preparation or calibration blank contamination be qualified as non-detect, "U".

2. The preparation blanks exhibited negative bias for the following elements.

PBS PBW
Cobalt -6.1 mg/kg Cobalt -42.7 ug/l
Iron -2.42 mg/kg

All positive and non-detect results below ten times the negative bias will be qualified as estimated, "J" or "UJ".

Metals Data Assessment Narrative (continued - Page 2)

<u>Interferences</u>

No significant interferences were observed.

Spike Recovery

No deficiencies in this section.

Duplicate

No deficiencies in this section.

LCS

No deficiencies in this section.

SAMPLE ID	ANALYTE	DL	<u>QL</u>	SPECIFIC FINDING
All soil samples	Be.	+	U	1
All soil samples All water samples	Co and Fe. Co.	+/U	J/UJ	2

- DL denotes laboratory qualifier/reported value + denotes positive values U denotes non-detect values
- QL denotes data validation qualifier

JOB# 3374 & 3375

SAMPLES AND FRACTIONS REVIEWED

Sample Identifications			A	Analytical Fractions			
BAKER ID	QUANT ID	<u>Matrix</u>	VOA	<u>sv</u>	<u>P/P</u>	TAL	
73TB04 73RB06 5 73SB0100 73SB0101	AF0177 AF0178 AF0173 AF0175	WATER WATER SOIL SOIL	X X X	X X X	X X X	X X X	·
Total Number of Sa	mples (Water/Soil)		2/2	1/2	1/2	1/2	

Individual fractions were reviewed as follows:

	<u>Primary</u>	Secondary
VOA - Volatiles (CLP, OLM01.8) SV - Semivolatiles (CLP, OLM01.8) P/P - Pesticide/PCBs (CLP, OLM01.8) TAL - Total Metals (CLP, ILM02.1)	Dan Heil Dan Heil Jackie Cleveland Paul Humburg	Gene Watson Gene Watson Gene Watson Jackie Cleveland

DATA ASSESSMENT AND NARRATIVE VOLATILE ORGANICS

General

The organic findings offered in this screening report assumes that all analytical results are correct as reported and is based upon the examination of the reported holding times, blank analysis results, surrogate and matrix spike recoveries, GC/MS performance, tuning results, calibration results and internal standard areas. This report was prepared in compliance relative to the analytical and deliverable requirements specified in the U.S. EPA CLP, 3/90 SOW; the National Functional Guidelines for Organic Data Review, and NEESA Level C. All comments made within this report should be considered when examining the analytical results (Form I's).

SDG # SB01; CASE # 3375

Holding Times

The holding times for all of the samples were not met per the Organic Functional Guidelines and the CLP SOW (fourteen (14) days from collection date). No qualifications are required.

Tuning

All of the BFB tunes in the initial and continuing calibrations met the percent relative abundance criteria of the SOW and the Organic Functional Guidelines. No qualifications are required.

Initial Calibrations

The initial calibrations that were analyzed by the laboratory for these samples were not acceptable for all compound %RSDs and the average RRFs for all of the criteria compounds did not meet the initial calibration criteria.

Specific Finding:

1. The initial calibration analyzed on, 04/03/95, contained compounds with %RSDs greater than 30%. No qualifications are required, because no samples were analyzed following the calibration.

acetone

VOLATILE ANALYSIS

PAGE - 2

Continuing calibrations

The continuing calibrations that were analyzed with this data package exhibited %Ds that were not within %D continuing calibration criteria. All RRFs were within calibration criteria.

Specific Finding:

2. The continuing calibration, WS0421, contained compounds with %Ds greater than 25%, but less than 50%. For the samples and non-compliant compounds listed below, qualify all positive results as estimated (J).

VBLKAF0412

acetone

73RB05

1,1-dichloroethane

2-butanone

3. The continuing calibration, WS0426, contained compounds with %Ds greater than 25%, but less than 50%. For the samples and non-compliant compounds listed below, qualify all positive results as estimated (J).

VBLKAF1097

bromomethane

73TB04

1,1-dichloroethane

4. The continuing calibration, QS0420B, contained compounds with %Ds greater than 25%, but less than 50%. For the samples and non-compliant compounds listed below, qualify all positive results as estimated (J).

VBLKAF0294

chloromethane

73SB0100

carbon tetrachloride

73SB0101

Internal Standards

All internal standard EICP areas met the internal standard EICP area QA/QC criteria. No qualifications are required.

VOLATILE ANALYSIS

PAGE - 3

Method Blanks

The method blanks that were analyzed exhibited contamination for methylene chloride, acetone, 2-butanone, 2-hexanone, 1,1,2,2-tetrachloroethane and xylene. The method blank results will be compared to their associated samples. Refer to the glossary of data qualifiers for a list and definition of the method blank qualifiers: CRQL, U and No Action.

Specific findings:

5. The following samples have been qualified for method blank contamination. The qualifications are for all the method blanks.

73SB0101

2-butanone

CRQL

Trip Blanks

The trip blank that was analyzed exhibited contamination for methylene chloride, acetone, 1,2-dichloroethane and toluene. The trip blank results will be compared to their associated samples. Refer to the glossary of data qualifiers for a list and definition of the method blank qualifiers: CRQL, U and No Action.

Specific findings:

6. The following samples have been qualified for blank contamination. The qualifications are for all the blanks.

73SB0101

methylene chloride

CRQL

Rinseate Blanks

The rinseate blank that was analyzed exhibited contamination for methylene chloride acetone, 1,2-dichloroethane and 2-butanone. However, the contamination found in the samples was attributed to the associated method blank and/or trip blank. No qualifications are required.

Field Blanks

The associate field blank was not identified for this SDG. No qualifications are required.

DATA ASSESSMENT AND NA

VOLATILE ANALYSI

PAGE - 4

Surrogates

All of the surrogate recoveries for the all blanks ar limits. No qualifications are required.

Matrix Spike/Matrix Spike Duplicate (MS/MSD)

The associated MS/MSD was not identified for th required.

Field Duplicate

No qualifications are required.

Compound Identification/Quantitation

No qualifications are required.

System Performance and Overall Assessment

The overall system performance was fair. The laborat problems. The data reviewer estimates that less that

GLOSSARY OF DATA QUALIFIERS

QUALIFICATION CODES

U = Not detected

J = Estimated value

UJ = Reported quantitation limit is qualified as estimated

R = Result is rejected and unusable

NJ = Presumptive evidence for the presence of the material at an estimated value

K = Result is biased high

L = Result is biased low

METHOD BLANK QUALIFICATION CODES

CRQL = The sample result for the blank contaminant is less than the sample CRQL and is less than 10X the method blank value. The sample result for the blank contaminant is rejected and the CRQL for that analyte is reported.

U = The sample result for the blank contaminant is greater than the sample CRQL and is less than 10X the method blank value. The sample result for the blank contaminant is qualified as non detected at the analyte value reported.

No Action = The sample result for the blank contaminant is greater than the sample CRQL and is greater than 10X the method blank value. The sample result for the blank contaminant is not qualified with any blank qualifiers.

The specific findings will be noted in numerical form on the Form Is in this data validation report. These specific finding footnotes will reflect the conclusions found in the data validation process that resulted in the qualification of the data.

SUMMARY OF DATA QUALIFICATIONS

SAMPLE ID	ANALYTE ID	<u>DL</u>	<u>QL</u>	SPECIFIC FINDINGS
VBLKAF0412 73RB05	acetone 1,1-dichloroethane 2-butanone	+	J	2
VBLKAF1097 73TB04	bromomethane 1,1-dichloroethane	+	J	3
VBLKAF0294 73SB0100 73SB0101	chloromethane carbon tetrachloride	+	J	4
73SB0101	2-butanone	+	CRQ	L 5
73SB0101	methylene chloride	+	CRO	L 6

^{*} DL denotes the Form I qualifier supplied by the laboratory QL denotes the qualifier used by the data validation firm

⁺ in the DL column denotes a positive result

⁻ in the DL column denotes a non detect result

SEMIVOLATILE ORGANICS

General

The organic findings offered in this screening report assumes that all analytical results are correct as reported and is based upon the examination of the reported holding times, blank analysis results, surrogate and matrix spike recoveries, GC/MS performance, tuning results, calibration results and internal standard areas. This report was prepared in compliance relative to the analytical and deliverable requirements specified in the U.S. EPA CLP, 3/90 SOW; to the National Functional Guidelines for Organic Data Review, and NEESA Level C. All comments made within this report should be considered when examining the analytical results (Form I's).

SDG # SB01; CASE # 3375

Holding Times

All extraction and analysis holding times for all samples were met for all samples per the SOW and National Functional Guidelines. No qualifications are required.

Tuning

All of the DFTPP tunes in the initial and continuing calibrations met the percent relative abundance criteria of the SOW and the Organic Functional Guidelines. No qualifications are required.

Initial Calibrations

The initial calibrations that were analyzed by the laboratory for these samples were not acceptable for all compound %RSDs and the average RRFs for all of the criteria compounds did not meet the initial calibration criteria.

Specific Finding:

1. The initial calibration analyzed on, 04/13/95, contained compounds with %RSDs greater than 30%. No qualifications are required, because no samples were analyzed following the calibration.

pentachlorophenol

SEMIVOLATILE ANALYSIS

PAGE - 2

Continuing Calibrations

The continuing calibrations that were analyzed all of the criteria and non criteria compounds met requirements for RRFs and %Ds. No qualifications are required.

Internal Standards

All internal standard EICP areas met the internal standard EICP area QA/QC criteria. No qualifications are required.

Method Blanks

The method blank that was analyzed exhibited contamination for di-n-butylphthalate, bis(2-ethylhexyl)phthalate and TICs. The method blank results will be compared to their associated samples. Refer to the glossary of data qualifiers for a list and definition of the method blank qualifiers: CRQL, U and No Action.

Specific Finding:

1. The samples listed below have been qualified for method blank contamination. The qualification are for all method blanks.

73SB0100

di-n-butylphthalate

CRQL

2. Reject all TICs flagged with the laboratory qualifier "B", due to method blank contamination.

Rinseate Blanks

The rinseate blank that was analyzed did not exhibited any contamination. No qualifications are required.

Field Blanks

The associated field blank was not identified for this SDG. No qualifications are required.

SEMIVOLATILE ANALYSIS

PAGE - 3

Surrogates

Surrogate recoveries for all samples and blanks met QA/QC criteria. No qualifications are required.

Matrix Spike/Matrix Spike Duplicate

The associated MS/MSD was not identified for this SDG. No qualifications are required.

Field Duplicates

No qualifications are required.

Compound Identification/Quantitation

No qualifications are required.

System Performance and Overall Assessment

Overall performance was fair. The laboratory did not encounter any large problems. The data reviewer estimates less than 10% of data required qualifications.

GLOSSARY OF DATA QUALIFIERS

QUALIFICATION CODES

U = Not detected

J = Estimated value

UJ = Reported Quantitation limit is qualified as estimated

R = Result is rejected and unusable

NJ = Presumptive evidence for the presence of the material at an estimated value

K = Result is biased high

L = Result is biased low

METHOD BLANK QUALIFICATION CODES

CRQL = The sample result for the blank contaminant is less than the sample CRQL and is less than 10X the method blank value. The sample result for the blank contaminant is rejected and the CRQL for that analyte is reported.

U = The sample result for the blank contaminant is greater than the sample CRQL and is less than 10X the method blank value. The sample result for the blank contaminant is qualified as non detected at the analyte value reported.

No Action = The sample result for the blank contaminant is greater than the sample CRQL and is greater than 10X the method blank value. The sample result for the blank contaminant is not qualified with any blank qualifiers.

The specific findings will be noted in numerical form on the Form Is in this data validation report. These specific finding footnotes will reflect the conclusions found in the data validation process that resulted in the qualification of the data.

SUMMARY OF DATA QUALIFICATIONS

SAMPLE ID	ANALYTE ID	DL	<u>QL</u>	SPECIFIC FINDINGS
73SB0100	di-n-butylphthalate	+	CRQ	L 1
All samples	"B" flagged TICs	+	R	2

DL denotes the Form I qualifier supplied by the laboratory QL denotes the qualifier used by the data validation firm + in the DL column denotes a positive result

PESTICIDE/AROCLOR ANALYSIS

General

The organic findings offered in this screening report assume that all analytical results are correct as reported and are based upon the examination of the reported holding times, GC instrument performance, initial and continuing calibrations, analytical sequence, blank analysis results, surrogate recoveries, and MS/MSD results. All comments made within this report should be considered when examining the analytical results (Form Is). Please refer the specific findings found in each category to the Summary of Data Qualification table.

SDG # SB0100

Holding Times

All extraction and analysis holding times were met based on extraction and analysis information in the data package and the chain of custody records.

GC Instrument Performance

The resolution requirements were met on both columns in the sequence. The analytical sequence was acceptable. All 4,4'-DDT and endrin breakdowns were within QC limits. All surrogate retention times were within the established retention time windows (RTWs). All PEM standard RPDs were within the 25% QC limit.

Initial Calibrations

The initial calibrations were acceptable for the linearity of all compounds. Raw data was not required in this Level C data package. No qualifications were required.

Continuing Calibrations

All compounds in the calibration standards were within the laboratory reported Retention Time Windows (RTWs) for all columns. All continuing calibration standard associated with the reported samples exhibited relative percent differences, RPDs, within the QC limits. Raw data was not required in this Level C data package. No qualifications are required.

Method Blanks

The associated method blank did not exhibit contamination for target compounds.

PAGE - 2

Instrument Blanks

The instrument blanks were free of target compound contamination.

QC Blanks

The field rinseate blank analyzed in this SDG did not exhibit contamination for target compounds.

Florisil/GPC Checks

The GPC clean-up check standard exhibited acceptable recoveries for all compounds. The Florisil cartridge check exhibited acceptable spike recoveries for all compounds. Raw data was not required in the Level C data package.

Surrogate Recoveries

The surrogate recoveries were within QC limits in all the samples and blanks. No qualifications were required.

Matrix Spike/Matrix Spike Duplicate

There was no MS/MSD pair in this SDG. The LCS samples exhibited acceptable recoveries for spiked compounds. No qualifications were required.

Field Duplicates

There was no field duplicate pair in this SDG.

Analyte Identification/Quantitation

Positive result were reported in the samples. Identification and quantitation appear reasonable based on sample and standard review. Quantitation calculations were not verified because raw data is not a required deliverable for NEESA Level C QC.

Overall Assessment

The overall quality of the data package is good. The reported results are accepted as reported by the laboratory with the noted qualifications based on the_limited deliverables in a Level C data package.

GLOSSARY OF DATA QUALIFIERS

QUALIFICATION CODES

U = Not detected

J = Estimated value

UJ = Reported quantitation limit is qualified as estimated

R = Result is rejected and unusable

NJ = Presumptive evidence for the presence of the material at an estimated value

K = Result is biased high

L = Result is biased low

METHOD BLANK QUALIFICATION CODES

CRQL = The sample result for the blank contaminant is less than the sample CRQL and is less than 10X the method blank value. The sample result for the blank contaminant is rejected and the CRQL

for that analyte is reported.

U = The sample result for the blank contaminant is greater than the sample CRQL and is less than 10X the method blank value. The sample result for the blank contaminant is qualified as non

detected at the analyte value reported.

No Action = The sample result for the blank contaminant is greater than the sample CRQL and is greater than 10X the method blank value.

The sample result for the blank contaminant is not qualified with

any blank qualifiers.

The specific findings will be noted in numerical form on the Form Is in this data validation report. These specific finding footnotes will reflect the conclusions found in the data validation process that resulted in the qualification of the data.

SUMMARY OF DATA QUALIFICATIONS

SAMPLE ID	ANALYTE ID	DL	QL	SPECIFIC FINDINGS
NO QUALIFICATIONS \	WERE REQUIRED			

- * DL denotes the Form I qualifier supplied by the laboratory QL denotes the qualifier used by the data validation firm + in the DL column denotes a positive result
 - in the DL column denotes a non detect result

DATA ASSESSMENT NARRATIVE Metals

General

The inorganic findings offered in this screening report assumes that all analytical results are correct as reported and is based upon the examination of the reported holding times, calibration standards, blank analysis results and MS/MSD results. A minimum of ten percent of all laboratory calculations are recalculated by the reviewer. All comments made within this report should be considered when examining the analytical results (Form Is).

This data package consisted of results from CTO-312, SDG# SB0100, the analysis of two (2) field soil samples and no Matrix Spike and Duplicate pair and one water QC sample for TAL Metals. Overall, the inorganic data quality was fair. All protocol requirements were followed with the exception of the following problems.

Specific QA/QC deficiency Findings are listed numerically in the following categories:

Holding Times

The holding times were met as specified in Section 3 of the NEESA (20.2-047B) QA protocol.

Calibration

No deficiencies in this section.

Preparation and Field Blank

The preparation blanks exhibited contamination for the following elements.

Zinc

7.52

ug/l

The USEPA requires that all sample values below five times the preparation or calibration blank contamination be qualified as non-detect, "U".

<u>Interferences</u>

No significant interferences were observed.

Spike Recovery

No deficiencies in this section.

Metals Data Assessment Narrative (continued - Page 2)

Duplicate

No deficiencies in this section.

<u>LCS</u>

No deficiencies in this section.

SUMMARY OF DATA QUALIFICATIONS

SAMPLE ID	ANALYTE	DL	<u>OL</u>	SPECIFIC FINDING
All water samples	Zn.	+	U	1

- DL denotes laboratory qualifier/reported value
 + denotes positive values
 U denotes non-detect values
- QL denotes data validation qualifier

JOB# 3557 & 3558

SAMPLES AND FRACTIONS REVIEWED

Sample Identi	fications		An	alytical	Fractio	ons
BAKER ID	QUANT ID	<u>Matrix</u>	<u>VOA</u>	<u>sv</u>	<u>P/P</u>	<u>TAL</u>
65TP01	AF2841	SOIL	×	X	X	X
65TP02	AF2843	SOIL	X	Χ	X	X
65TP04	AF2845	SOIL	Χ	Χ	X	X
65TP05	AF2847	SOIL	Χ	Χ	X	X
65TP06	AF2849	SOIL	Χ	X	Χ	X
65TP07	AF2851	SOIL	X	X	Χ	X
65MW01A01MD	AF2853MD	WATER	X	X	X	X
65MW01A01MS	AF2857MS	WATER	X	Χ	X	X
65MW01A01D	AF2861	WATER	X	X	Χ	X
65MW01A01	AF2865	WATER	Х	. X	Χ	X
65DW0101	AF2869	WATER	Χ	Χ	Χ	X
65MW01AF01MD	AF2873MD	WATER				X
65MW01AF01MS	AF2874MS	WATER				X
65MW01AFDD	AF2875	WATER				X
65-MW01AF-01	AF2876	WATER				X
Total Number of Sam	nples (Water/Soil)		5/6	5/6	5/6	9/6

MS - Matrix Spike MD - Matrix Spike Duplicate/Matrix Duplicate

Individual fractions were reviewed as follows:

	Primary	Secondary
VOA - Volatiles (CLP, OLM01.8) SV - Semivolatiles (CLP, OLM01.8) P/P - Pesticides/PCB's (CLP, OLM01.8)	Dan Heil Dan Heil Jackie Cleveland	Gene Watson Gene Watson Gene Watson
TAL - Total Metals (CLP, ILM02.1)	Paul Humburg	Jackie Cleveland

VOLATILE ORGANICS

General

The organic findings offered in this screening report assumes that all analytical results are correct as reported and is based upon the examination of the reported holding times, blank analysis results, surrogate and matrix spike recoveries, GC/MS performance, tuning results, calibration results and internal standard areas. This report was prepared in compliance relative to the analytical and deliverable requirements specified in the U.S. EPA CLP, 3/90 SOW; the National Functional Guidelines for Organic Data Review, and NEESA Level E. All comments made within this report should be considered when examining the analytical results (Form I's).

SDG # 65DW01; CASE # 3558

Holding Times

The holding times for all of the samples were not met per the Organic Functional Guidelines and the CLP SOW (fourteen (14) days from collection date). No qualifications are required.

Tuning

All of the BFB tunes in the initial and continuing calibrations met the percent relative abundance criteria of the SOW and the Organic Functional Guidelines. No qualifications are required.

Initial Calibrations

The initial calibrations that were analyzed by the laboratory for these samples were not acceptable for all compound %RSDs and the average RRFs for all of the criteria compounds did not meet the initial calibration criteria.

Specific Finding:

1. The initial calibration analyzed on, 05/05/95, contained compounds with %RSDs greater than 30%. No qualifications are required because, no samples were analyzed following the calibration.

chloroethane

VOLATILE ANALYSIS

PAGE - 2

Continuing calibrations

The continuing calibrations that were analyzed with this data package exhibited %Ds that were not within %D continuing calibration criteria. All RRFs were within calibration criteria.

Specific Finding:

2. The continuing calibration, WS0517, contained compounds with %Ds greater than 25%, but less than 50%. For the samples and non-compliant compounds listed below, qualify all positive results as estimated (J).

VBLKAF4632	acetone
65TP01	carbon disulfide
65TP02	2-butanone
65TP04	4-methyl-2-pentanone
65TP05	2-hexanone
65TP06	
65TP07	

3. The continuing calibration, QS0522, contained compounds with %Ds greater than 50%, but less than 90%. For the samples and non-compliant compounds listed below, qualify all positive results as estimated (J), and all non detects as estimated (UJ).

VBLKAF4684 chloroethane 65DW0101 65MW01A01 65MW01A01D 65MW01A01MS 65MW01A01MSD

Internal Standards

All internal standard EICP areas met the internal standard EICP area QA/QC criteria. No qualifications are required.

VOLATILE ANALYSIS

PAGE - 3

Method Blanks

The method blanks that were analyzed exhibited contamination for methylene chloride, acetone, 1,2-dichloroethane, 2-butanone, 2-hexanone, 1,1,2,2-tetrachloroethane and xylene. The method blank results will be compared to their associated samples. Refer to the glossary of data qualifiers for a list and definition of the method blank qualifiers: CRQL, U and No Action.

Specific findings:

4. The following samples have been qualified for method blank contamination. The qualifications are for all the method blanks.

65DW0101 65MW01A01 65MW01A01D 65MW01A01MS 65MW01A01MSD	methylene chloride	CRQL
65DW0101 65MW01A01 65MW01A01MSD	acetone	CRQL
65MW01A01 65MW01A01D 65MW01A01MS 65MW01A01MSD	2-butanone	CRQL
65TP04 65TP06	xylene	CRQL
65TP02 65TP06	1,2-dichloroethane	CRQL

Trip Blanks

The associated trip blank was not identified for this SDG. No qualifications are required.

VOLATILE ANALYSIS

PAGE - 4

Rinseate Blanks

The associated rinseate blank was not identified for this SDG. No qualifications are required.

Field Blanks

The associated field blank was not identified for this SDG. No qualifications are required.

Surrogates

All of the surrogate recoveries for the all blanks and samples were within QA/QC limits. No qualifications are required.

Matrix Spike/Matrix Spike Duplicate (MS/MSD)

All spike and RPD recoveries were within advisory limit for MS/MSD, 65MW01A01. No qualifications are required.

Field Duplicate

No qualifications are required.

Compound Identification/Quantitation

No qualifications are required.

System Performance and Overall Assessment

The overall system performance was fair. The laboratory did not encounter any large problems. The data reviewer estimates that less than 5% of the data is qualified.

GLOSSARY OF DATA QUALIFIERS

QUALIFICATION CODES

U = Not detected

J = Estimated value

UJ = Reported quantitation limit is qualified as estimated

R = Result is rejected and unusable

NJ = Presumptive evidence for the presence of the material at an estimated value

K = Result is biased high

L = Result is biased low

METHOD BLANK QUALIFICATION CODES

CRQL = The sample result for the blank contaminant is less than the sample CRQL and is less than 10X the method blank value. The sample result for the blank contaminant is rejected and the CRQL for that analyte is reported.

U = The sample result for the blank contaminant is greater than the sample CRQL and is less than 10X the method blank value. The sample result for the blank contaminant is qualified as non detected at the analyte value reported.

No Action = The sample result for the blank contaminant is greater than the sample CRQL and is greater than 10X the method blank value. The sample result for the blank contaminant is not qualified with any blank qualifiers.

The specific findings will be noted in numerical form on the Form Is in this data validation report. These specific finding footnotes will reflect the conclusions found in the data validation process that resulted in the qualification of the data.

SUMMARY OF DATA QUALIFICATIONS

SAMPLE ID	ANALYTE ID	<u>DL</u>	<u>QL</u>	SPECIFIC FINDINGS
VBLKAF4632 65TP01 65TP02 65TP04 65TP05 65TP06 65TP07	acetone carbon disulfide 2-butanone 4-methyl-2-pentanone 2-hexanone	+	J	2
VBLKAF4684 65DW0101 65MW01A01 65MW01A01D 65MW01A01MS 65MW01A01MSD	chloroethane	+/-	J/UJ	3
65DW0101 65MW01A01 65MW01A01D 65MW01A01MS 65MW01A01MSD	methylene chloride	+	CRQL	. 4
65DW0101 65MW01A01 65MW01A01MSD	acetone	+	CROL	4
65MW01A01 65MW01A01D 65MW01A01MS 65MW01A01MSD	2-butanone	+	CRQL	4
65TP04 65TP06	xylene	+	CRQL	4
65TP02 65TP06	1,2-dichloroethane	+	CRQL	4

^{*} DL denotes the Form I qualifier supplied by the laboratory QL denotes the qualifier used by the data validation firm + in the DL column denotes a positive result

⁻ in the DL column denotes a non detect result

SEMIVOLATILE ORGANICS

General

The organic findings offered in this screening report assumes that all analytical results are correct as reported and is based upon the examination of the reported holding times, blank analysis results, surrogate and matrix spike recoveries, GC/MS performance, tuning results, calibration results and internal standard areas. This report was prepared in compliance relative to the analytical and deliverable requirements specified in the U.S. EPA CLP, 3/90 SOW; to the National Functional Guidelines for Organic Data Review, and NEESA Level E. All comments made within this report should be considered when examining the analytical results (Form I's).

SDG # 65DW01; CASE # 3558

Holding Times

All extraction and analysis holding times for all samples were met for all samples per the SOW and National Functional Guidelines. No qualifications are required.

Tuning

All of the DFTPP tunes in the initial and continuing calibrations met the percent relative abundance criteria of the SOW and the Organic Functional Guidelines. No qualifications are required.

Initial Calibrations

The initial calibrations that were analyzed by the laboratory for these samples were not acceptable for all compound %RSDs and the average RRFs for all of the criteria compounds did not meet the initial calibration criteria.

Specific Finding:

1. The initial calibration analyzed on, 05/22/95, contained compounds with %RSDs greater than 30%. No qualifications are required, because no samples were analyzed following the calibration.

hexachlorocyclopentadiene

SEMIVOLATILE ANALYSIS

PAGE - 2

Continuing Calibrations

The continuing calibrations that were analyzed all of the criteria and non criteria compounds met requirements for RRFs. Qualifications are required for compounds with non compliant %Ds.

Specific Findings:

2. The continuing calibration, BCC05262, contained compounds with %Ds greater than 25% D but less than 50% D. For the samples and non compliant compounds listed below, qualify all positive results as estimated (J).

hexachlorocyclopentadiene

4,6-dinitro-2-methylphenol

SBLKAF3171B

65MW01A01D

65MW01A01MS

65MW01A01MSDD

65MW01A01

SBLKAF3740B

65TP01

65TP02

65TP04

65TP05

65TP06

65TP07

009

SEMIVOLATILE ANALYSIS

PAGE - 3

Continuing Calibrations (continued)

Specific Finding;

3. The continuing calibration, BCC05262, contained compounds with %Ds greater than 50% D but less than 90% D. For the samples and non compliant compounds listed below, qualify all positive results as estimated (J), and all non detects as estimated (UJ).

SBLKAF3171B

2,4-dinitrophenol

65MW01A01D

OSWWOTACID

65MW01A01MS

65MW01A01MSDD

65MW01A01

SBLKAF3740B

65TP01

65TP02

65TP04

001101

65TP05

65TP06

65TP07

Internal Standards

All internal standard EICP areas met the internal standard EICP area QA/QC criteria. No qualifications are required.

Method Blanks

The method blank that was analyzed exhibited contamination for TICs. The method blank results will be compared to their associated samples. Refer to the glossary of data qualifiers for a list and definition of the method blank qualifiers: CRQL, U and No Action.

Specific Finding:

4. Reject all results for the "B" flagged TICs due to method blank contamination.

SEMIVOLATILE ANALYSIS

PAGE - 4

Rinseate Blanks

The associated rinseate blank was not identified for this SDG. No qualifications are required.

Field Blanks

The associated field blank was not identified for this SDG. No qualifications are required.

Surrogates

Surrogate recoveries for all samples and blanks met QA/QC criteria. No qualifications are required.

Matrix Spike

All spike recoveries were not within advisory limits the MS/MSD 65MW01A01. The MS sample exhibited a high recovery for 4-nitrophenol. No qualifications are required.

Field Duplicates

No qualifications are required.

Compound Identification/Quantitation

No qualifications are required.

System Performance and Overall Assessment

Overall performance was fair. The laboratory did not encounter any large problems. The data reviewer estimates less than 10% of data required qualifications.

GLOSSARY OF DATA QUALIFIERS

QUALIFICATION CODES

U = Not detected

J = Estimated value

UJ = Reported Quantitation limit is qualified as estimated

R = Result is rejected and unusable

NJ = Presumptive evidence for the presence of the material at an estimated value

K = Result is biased high

L = Result is biased low

METHOD BLANK QUALIFICATION CODES

CRQL = The sample result for the blank contaminant is less than the sample CRQL and is less than 10X the method blank value. The sample result for the blank contaminant is rejected and the CRQL for that analyte is reported.

U = The sample result for the blank contaminant is greater than the sample CRQL and is less than 10X the method blank value. The sample result for the blank contaminant is qualified as non detected at the analyte value reported.

No Action = The sample result for the blank contaminant is greater than the sample CRQL and is greater than 10X the method blank value. The sample result for the blank contaminant is not qualified with any blank qualifiers.

The specific findings will be noted in numerical form on the Form Is in this data validation report. These specific finding footnotes will reflect the conclusions found in the data validation process that resulted in the qualification of the data.

SUMMARY OF DATA QUALIFICATIONS

SAMPLE ID	ANALYTE ID	DL	<u>QL</u>	SPECIFIC FINDINGS
SBLKAF3171B 65MW01A01D 65MW01A01MS 65MW01A01MSDD 65MW01A01 SBLKAF3740B 65TP01 65TP02 65TP04 65TP05 65TP06 65TP07	hexachlorocyclo- pentadiene 4,6-dinitro-2-methylpher	+ nol	J	2
SBLKAF3171B 65MW01A01D 65MW01A01MS 65MW01A01MSDD 65MW01A01 SBLKAF3740B 65TP01 65TP02 65TP04 65TP05 65TP06 65TP06	2,4-dinitrophenol	+/-	J/UJ	3
All samples	"B" flagged TICs	+	R	4

^{*} DL denotes the Form I qualifier supplied by the laboratory QL denotes the qualifier used by the data validation firm-

⁺ in the DL column denotes a positive result

⁻ in the DL column denotes a non detect result

PESTICIDE/AROCLOR ANALYSIS

General

The organic findings offered in this screening report assume that all analytical results are correct as reported and are based upon the examination of the reported holding times, GC instrument performance, initial and continuing calibrations, analytical sequence, blank analysis results, surrogate recoveries, and MS/MSD results. All comments made within this report should be considered when examining the analytical results (Form Is). Please refer the specific findings found in each category to the Summary of Data Qualification table.

SDG # 65DW01

Holding Times

All extraction and analysis holding times were met based on extraction and analysis information in the data package and the chain of custody records.

GC Instrument Performance

The resolution requirements were met on both columns in the sequence. The analytical sequence was acceptable. All 4,4'-DDT and endrin breakdowns were within QC limits. All surrogate retention times were within the established retention time windows (RTWs). All PEM standard RPDs were within the 25% QC limit.

Initial Calibrations

The initial calibrations were not acceptable for the linearity of all compounds. Raw data was not required in this Level C data package.

Specific Findings

1. The initial calibration on instrument 5890L, 5/30/95, exhibited compounds with %RSDs greater than 20%. All positive and non-detect results in the following samples for the non-compliant compounds noted below associated with the ICAL are qualified as estimated, J/UJ.

65TP01	65TP07		Methoxychlor
65TP02	65TP04DL		
65TP04	65TP05DL		
65TP05	65TP07DL	•	
65TP06	65DW0101		

PAGE - 2

Continuing Calibrations

All compounds in the calibration standards were within the laboratory reported Retention Time Windows (RTWs) for all columns. All continuing calibration standard associated with the reported samples exhibited relative percent differences, RPDs, within the QC limits. Raw data was not required in this Level C data package. No qualifications are required.

Method Blanks

The associated method blanks did not exhibit contamination for target compounds.

Instrument Blanks

The instrument blanks were free of target compound contamination.

QC Blanks

There were no QC blanks in this SDG.

Florisil/GPC Checks

The GPC clean-up check standard exhibited acceptable spike recoveries for all compounds. The Florisil cartridge check exhibited acceptable spike recoveries for all compounds. Raw data was not required in the Level C data package.

Surrogate Recoveries

Two samples exhibited non-compliant DCB recoveries.

Specific Finding

2. The positive and non-detect results for the following samples are qualified as estimated, J/UJ, due to DCB recoveries below the QC limits.

650W0101 65MW01A01

PAGE - 3

Matrix Spike/Matrix Spike Duplicate

The MS/MSD pair of sample 65MW01A01 exhibited acceptable recoveries for all compounds. The LCS sample exhibited acceptable recoveries for spiked compounds. No qualifications were required.

Field Duplicates

The field duplicate pair of sample 65MW01A01 did not exhibit positive results for target compounds. No qualifications were required.

Analyte Identification/Quantitation

Positive results were reported in the samples. Identification and quantitation appear reasonable based on sample and standard review. Quantitation calculations were not verified because raw data is not a required deliverable for NEESA Level C QC. Sample data chromatograms were not provided although they are required with a NEESA Level C data package. Dilutions were required for some samples. Some reported positive results exhibited column quantitation %Ds greater than 25%.

Specific Findings

 For the following samples reject the Z flagged compounds and replace them with the D flagged compounds from the dilution analysis of the sample. For the DL samples reject all other compounds.

65TP04 65TP05 65TP07

- 4. Positive results exhibited column quantitation %Ds greater than 25% but less than or equal to 100% are qualified as estimated, J.
- 5. Positive results exhibited column quantitation %Ds greater than 100% are qualified as presumptively present at an estimated concentration, NJ.

PAGE - 4

Overall Assessment

The overall quality of the data package is good. The reported results are accepted as reported by the laboratory with the noted qualifications based on the limited deliverables in a Level C data package.

GLOSSARY OF DATA QUALIFIERS

QUALIFICATION CODES

U = Not detected

J = Estimated value

UJ = Reported quantitation limit is qualified as estimated

R = Result is rejected and unusable

NJ = Presumptive evidence for the presence of the material at an estimated value

K = Result is biased high

L = Result is biased low

METHOD BLANK QUALIFICATION CODES

CRQL = The sample result for the blank contaminant is less than the sample CRQL and is less than 10X the method blank value. The sample result for the blank contaminant is rejected and the CRQL for that analyte is reported.

U = The sample result for the blank contaminant is greater than the sample CRQL and is less than 10X the method blank value. The sample result for the blank contaminant is qualified as non detected at the analyte value reported.

No Action = The sample result for the blank contaminant is greater than the sample CRQL and is greater than 10X the method blank value. The sample result for the blank contaminant is not qualified with any blank qualifiers.

The specific Findings will be noted in numerical form on the Form Is in this data validation report. These specific finding footnotes will reflect the conclusions found in the data validation process that resulted in the qualification of the data.

SUMMARY OF DATA QUALIFICATIONS

SAMPLE ID	ANALYTE ID	<u>DL</u>	QL	SPECIFIC FINDINGS
65TP01 65TP07 65TP02 65TP04DL 65TP04 65TP05DL 65TP05 65TP07DL 65TP06 65DW0101	Methoxychlor	+/U	J\NJ	1
65 p W0101 65MW01A01	ALL	+/U	J/UJ	2
65TP04 65TP05 65TP07	All Z flagged	+	R	3
All	All P > 25% But ≤ 100%	+	J	4
All	All P >100%	+	NJ	5

DL denotes the Form I qualifier supplied by the laboratory
 QL denotes the qualifier used by the data validation firm

⁺ in the DL column denotes a positive result

⁻ in the DL column denotes a non detect result

DATA ASSESSMENT NARRATIVE Metals

General

The inorganic findings offered in this screening report assumes that all analytical results are correct as reported and is based upon the examination of the reported holding times, calibration standards, blank analysis results and MS/MSD results. A minimum of ten percent of all laboratory calculations are recalculated by the reviewer. All comments made within this report should be considered when examining the analytical results (Form Is).

This data package consisted of results from Lejuene, SDG# N/A, the analysis of five (5) field water samples and two Matrix Spike and Duplicate pairs and six (6) field soil samples and no Matrix Spike and Duplicate pair for TAL Metals. Overall, the inorganic data quality was fair. All protocol requirements were followed with the exception of the following problems.

Specific QA/QC deficiency Findings are listed numerically in the following categories:

Holding Times

The holding times were met as specified in Section 3 of the NEESA (20.2-047B) QA protocol.

Calibration

No deficiencies in this section.

Preparation and Field Blank

No deficiencies in this section.

<u>Interferences</u>

No significant interferences were observed.

Spike Recovery

No deficiencies in this section.

Duplicate

No deficiencies in this section.

Metals Data Assessment Narrative (continued - Page 2)

LCS

No deficiencies in this section.

Serial Dilution

No deficiencies in this section.

SUMMARY OF DATA QUALIFICATIONS

SAMPLE ID	ANALYTE	DL	QL	FINDING		
Data stands as reported without qualification.						
	· · · · · · · · · · · · · · · · · · ·					

- DL denotes laboratory qualifier/reported value
 + denotes positive values
 U denotes non-detect values
- QL denotes data validation qualifier

JOB# 3565

SAMPLES AND FRACTIONS REVIEWED

Sample Iden	tifications		An	alytical	Fractio	ons
BAKER ID	QUANT ID	<u>Matrix</u>	<u>VOA</u>	<u>sv</u>	<u>P/P</u>	<u>TAL</u>
65MW07A-01	AF3027	WATER	×	X	X	X
65DW02-01	AF3031	WATER	X	X	Χ	X
65MW05A-01	AF3044	WATER	X	Χ	X	Χ
65MW02A-01	AF3048	WATER	X	X	X	Χ
65MW03-01	AF3052	WATER	X	X	Х	X
65MW06A-01	AF3056	WATER	X	×	X	X
Total Number of Sa	amples (Water/Soil)		6/0	6/0	6/0	6/0

Individual fractions were reviewed as follows:

	Primary	Secondary
VOA - Volatiles (CLP, OLM01.8)	Dan Heil	Gene Watson
SV - Semivolatiles (CLP, OLM01.8)	Dan Heil	Gene Watson
P/P - Pesticides/PCB's (CLP, OLM01.8)	Jackie Cleveland	Gene Watson
TAL - Total Metals (CLP, ILM02.1)	Paul Humburg	Jackie Cleveland

VOLATILE ORGANICS

General

The organic findings offered in this screening report assumes that all analytical results are correct as reported and is based upon the examination of the reported holding times, blank analysis results, surrogate and matrix spike recoveries, GC/MS performance, tuning results, calibration results and internal standard areas. This report was prepared in compliance relative to the analytical and deliverable requirements specified in the U.S. EPA CLP, 3/90 SOW; the National Functional Guidelines for Organic Data Review, and NEESA Level C. All comments made within this report should be considered when examining the analytical results (Form I's).

SDG # 65DW02; CASE # 3565

Holding Times

The holding times for all of the samples were not met per the Organic Functional Guidelines and the CLP SOW (fourteen (14) days from collection date). No qualifications are required.

Tuning

All of the BFB tunes in the initial and continuing calibrations met the percent relative abundance criteria of the SOW and the Organic Functional Guidelines. No qualifications are required.

Initial Calibrations

The initial calibrations that were analyzed by the laboratory for these samples were not acceptable for all compound %RSDs and the average RRFs for all of the criteria compounds did not meet the initial calibration criteria.

Specific Finding:

1. The initial calibration analyzed on, 05/05/95, contained compounds with %RSDs greater than 30%. No qualifications are required because, no samples were analyzed following the calibration.

chloroethane

VOLATILE ANALYSIS

PAGE - 2

Continuing calibrations

The continuing calibrations that were analyzed with this data package exhibited %Ds that were not within %D continuing calibration criteria. All RRFs were within calibration criteria.

Specific Finding:

2. The continuing calibration, QS0522, contained compounds with %Ds greater than 50%, but less than 90%. For the samples and non-compliant compounds listed below, qualify all positive results as estimated (J) and all non detects as estimated (UJ).

VBLKAF4684

chloroethane

65MW06A01

65MW02A01

65MW05A01

65DW0201

65MW07A01

3. The continuing calibration, QS0523, contained compounds with %Ds greater than 25%, but less than 50%. For the samples and non-compliant compounds listed below, qualify all positive results as estimated (J).

VBLKAF4675

bromomethane

65MW0301

4. The continuing calibration, QS0523, contained compounds with %Ds greater than 50%, but less than 90%. For the samples and non-compliant compounds listed below, qualify all positive results as estimated (J) and all non detects as estimated (UJ).

VBLKAF4675

chloroethane

65MW0301

Internal Standards

All internal standard EICP areas met the internal standard EICP area QA/QC criteria. No qualifications are required.

VOLATILE ANALYSIS

PAGE - 3

Method Blanks

The method blanks that were analyzed exhibited contamination for methylene chloride, acetone, 2-butanone, 2-hexanone, 1,1,2,2-tetrachloroethane, xylenes (total) and TICs. The method blank results will be compared to their associated samples. Refer to the glossary of data qualifiers for a list and definition of the method blank qualifiers: CRQL, U and No Action.

Specific findings:

5. The following samples have been qualified for method blank contamination. The qualifications are for all the method blanks.

65DW0201 65MW02A01 65MW05A01 65MW06A01 65MW07A01 65MW0301	methylene chloride	CRQL
65DW0201 65MW02A01 65MW05A01 65MW06A01 65MW07A01 65MW0301	acetone	CRQL
65MW05A01 65MW06A01 65MW0301	2-butanone	CRQL

6. Reject all "B" flagged TICs due to method blank contamination.

Trip Blanks

The trip blank that was analyzed exhibited contamination for methylene chloride, acetone, 1,2-dichloroethane and toluene. The rinseate blank results will be compared to their associated samples. Refer to the glossary of data qualifiers for a list and definition of the method blank qualifiers: CRQL, U and No Action.

VOLATILE ANALYSIS

PAGE - 4

Trip Blanks (continued)

Specific findings:

7. The following samples have been qualified for blank contamination. The qualifications are for all the blanks.

65DW0201

1,2-dichloroethane

CROL

65MW0301

65MW05A01

65MW06A01

65MW07A01

Rinseate Blanks

The rinseate blanks that were analyzed exhibited contamination for methylene chloride, acetone, 2-butanone and 1,2-dichloroethane. However, the contamination was attributed to the associated method blank and trip blank. No qualifications are required.

Field Blanks

The associated field blank was not identified for this SDG. No qualifications are required.

Surrogates

All of the surrogate recoveries for the all blanks and samples were within QA/QC limits. No qualifications are required.

Matrix Spike/Matrix Spike Duplicate (MS/MSD)

The associated MS/MSD was not identified for this SDG. No qualifications are required.

VOLATILE ANALYSIS

PAGE - 5

Field Duplicate

No qualifications are required.

Compound Identification/Quantitation

No qualifications are required.

System Performance and Overall Assessment

The overall system performance was fair. The laboratory did not encounter any large problems. The data reviewer estimates that less than 5% of the data is qualified.

GLOSSARY OF DATA QUALIFIERS

QUALIFICATION CODES

U = Not detected

J = Estimated value

UJ = Reported quantitation limit is qualified as estimated

R = Result is rejected and unusable

NJ = Presumptive evidence for the presence of the material at an estimated value

K = Result is biased high

L = Result is biased low

METHOD BLANK QUALIFICATION CODES

CRQL = The sample result for the blank contaminant is less than the sample CRQL and is less than 10X the method blank value. The sample result for the blank contaminant is rejected and the CRQL

for that analyte is reported.

U = The sample result for the blank contaminant is greater than the sample CRQL and is less than 10X the method blank value. The

sample result for the blank contaminant is qualified as non

detected at the analyte value reported.

No Action = The sample result for the blank contaminant is greater than the

sample CRQL and is greater than 10X the method blank value. The sample result for the blank contaminant is not qualified with

any blank qualifiers.

The specific findings will be noted in numerical form on the Form Is in this data validation report. These specific finding footnotes will reflect the conclusions found in the data validation process that resulted in the qualification of the data.

SUMMARY OF DATA QUALIFICATIONS

SAMPLE ID	ANALYTE ID	<u>DL</u>	<u>QL</u>	SPECIFIC FINDINGS
VBLKAF4684 65MW06A01 65MW02A01 65MW05A01 65DW0201 65MW07A01	chloroethane	+/-	J/UJ	2
VBLKAF4675 65MW0301	bromomethane	+	J	3
VBLKAF4675 65MW0301	ch loroethane	+/-	J/UJ	4
65DW0201 65MW02A01 65MW05A01 65MW06A01 65MW07A01 65MW0301	methylene chloride	+	CRQL	. 5
65DW0201 65MW02A01 65MW05A01 65MW06A01 65MW07A01 65MW0301	acetone	+	CRQL	. 5
65MW05A01 65MW06A01 65MW0301	2-butanone	+	CRQL	. 5
All samples	"B" flagged TICs	+	R	6

^{*} DL denotes the Form I qualifier supplied by the laboratory QL denotes the qualifier used by the data validation firm + in the DL column denotes a positive result - in the DL column denotes a non detect result

SUMMARY OF DATA QUALIFICATIONS

Page - 2

SAMPLE ID	ANALYTE ID	DL	QL	SPECIFIC FINDINGS
65DW0201 65MW0301 65MW05A01 65MW06A01 65MW07A01	1,2-dichloroethane	+	CRO	L 7

DL denotes the Form I qualifier supplied by the laboratory QL denotes the qualifier used by the data validation firm + in the DL column denotes a positive result - in the DL column denotes a non detect result

DATA ASSESSMENT NARRATIVE SEMIVOLATILE ORGANICS

General

The organic findings offered in this screening report assumes that all analytical results are correct as reported and is based upon the examination of the reported holding times, blank analysis results, surrogate and matrix spike recoveries, GC/MS performance, tuning results, calibration results and internal standard areas. This report was prepared in compliance relative to the analytical and deliverable requirements specified in the U.S. EPA CLP, 3/90 SOW; to the National Functional Guidelines for Organic Data Review, and NEESA Level C. All comments made within this report should be considered when examining the analytical results (Form I's).

SDG # 65DW02; CASE # 3565

Holding Times

All extraction and analysis holding times for all samples were met for all samples per the SOW and National Functional Guidelines. No qualifications are required.

Tuning

All of the DFTPP tunes in the initial and continuing calibrations met the percent relative abundance criteria of the SOW and the Organic Functional Guidelines. No qualifications are required.

Initial Calibrations

The initial calibration that was analyzed by the laboratory for these samples was acceptable for all compound %RSDs and the average RRFs. No qualifications are required.

Continuing Calibrations

The continuing calibrations that were analyzed all of the criteria and non criteria compounds met requirements for RRFs. Qualifications are required for compounds with non compliant %Ds.

SEMIVOLATILE ANALYSIS

PAGE - 2

Continuing Calibrations (continued)

Specific Findings:

1. The continuing calibration, BCC0610, contained compounds with %Ds greater than 25% D but less than 50% D. For the samples and non compliant compounds listed below, qualify all positive results as estimated (J).

65MW07A01

4-nitrophenol

65DW0201

di-n-octylphthalate

65MW05A01

2. The continuing calibration, BCC0610, contained compounds with %Ds greater than 50% D but less than 90% D. For the samples and non compliant compounds listed below, qualify all positive results as estimated (J) and all non detects as estimated (UJ).

65MW07A01

carbazole

65DW0201 65MW05A01

3. The continuing calibration, BCC0611, contained compounds with %Ds greater than 25% D but less than 50% D. For the samples and non compliant compounds listed below, qualify all positive results as estimated (J).

65MW02A01

n-nitrosodi-n-propylamine

65MW0301

2,4-dinitrophenol

65MW06A01

4-nitrophenol

4-nitroaniline

di-n-octylphthalate

4. The continuing calibration, BCC0611, contained compounds with %Ds greater than 50% D but less than 90% D. For the samples and non compliant compounds listed below, qualify all positive results as estimated (J) and all non detects as estimated (UJ).

65MW02A01

carbazole

65MW0301 65MW06A01

SEMIVOLATILE ANALYSIS

PAGE - 3

Internal Standards

All internal standard EICP areas met the internal standard EICP area QA/QC criteria. No qualifications are required.

Method Blanks

The method blank that was analyzed exhibited contamination for bis(2-ethylhexyl)phthalate, di-n-butylphthalate, butylbenzylphthalate and TICs. The method blank results will be compared to their associated samples. Refer to the glossary of data qualifiers for a list and definition of the method blank qualifiers: CRQL, U and No Action.

Specific Finding:

5. The samples listed below have been qualified for method blank contamination. The qualification are for all method blanks.

65DW0201 65MW0301 65MW07A01	bis(2-ethylhexyl) phthalate	CRQL
65DW0201 65MW0301 65MW07A01	di-n-butylphthalate	CROL

6. Reject all results for the "B" flagged TICs due to method blank contamination.

Rinseate Blanks

The rinseate blanks that were analyzed exhibited contamination for di-n-butylphthalate, butylbenzylphthalate and bis(2-ethylhexyl)phthalate. However, the contaminations was attributed to the associated method blanks. No qualifications are required.

Field Blanks

The associated field blank was not identified for this SDG. No qualifications are required.

SEMIVOLATILE ANALYSIS

PAGE - 4

Surrogates

Surrogate recoveries for all samples and blanks met QA/QC criteria. No qualifications are required.

Matrix Spike

The associated MS/MSD was not identified for this SDG. No qualifications are required.

Field Duplicates

No qualifications are required.

Compound Identification/Quantitation

No qualifications are required.

System Performance and Overall Assessment

Overall performance was fair. The laboratory did not encounter any large problems. The data reviewer estimates less than 10% of data required qualifications.

GLOSSARY OF DATA QUALIFIERS

QUALIFICATION CODES

U = Not detected

J = Estimated value

UJ = Reported Quantitation limit is qualified as estimated

R = Result is rejected and unusable

NJ = Presumptive evidence for the presence of the material at an estimated value

K = Result is biased high

L = Result is biased low

METHOD BLANK QUALIFICATION CODES

CRQL = The sample result for the blank contaminant is less than the sample CRQL and is less than 10X the method blank value. The sample result for the blank contaminant is rejected and the CRQL for that analyte is reported.

U = The sample result for the blank contaminant is greater than the sample CRQL and is less than 10X the method blank value. The sample result for the blank contaminant is qualified as non detected at the analyte value reported.

No Action = The sample result for the blank contaminant is greater than the sample CRQL and is greater than 10X the method blank value. The sample result for the blank contaminant is not qualified with any blank qualifiers.

The specific findings will be noted in numerical form on the Form Is in this data validation report. These specific finding footnotes will reflect the conclusions found in the data validation process that resulted in the qualification of the data.

SUMMARY OF DATA QUALIFICATIONS

SAMPLE ID	ANALYTE ID	<u>DL</u>	<u>QL</u>	SPECIFIC FINDINGS
65MW07A01 65DW0201 65MW05A01	4-nitrophenol di-n-octylphthalate	+	J	1
65MW07A01 65DW0201 65MW05A01	carbazole	+/-	J/UJ	2
65MW02A01 65MW0301 65MW06A01	n-nitrosodi-n- propylamine 2,4-dinitrophenol 4-nitrophenol 4-nitroaniline di-n-octylphthalate	+	J	3
65MW02A01 65MW0301 65MW06A01	carbazole	+/-	J/UJ	4
65DW0201 65MW0301 65MW07A01	bis(2-ethylhexyl) phthalate	+	CRQL	- 5
65DW0201 65MW0301 65MW07A01	di-n-butylphthalate	+	CRQI	- 5
All samples	"B" flagged TICs	+ .	R	6

^{*} DL denotes the Form I qualifier supplied by the laboratory QL denotes the qualifier used by the data validation firm + in the DL column denotes a positive result

⁻ in the DL column denotes a non detect result

PESTICIDE/AROCLOR ANALYSIS

General

The organic findings offered in this screening report assume that all analytical results are correct as reported and are based upon the examination of the reported holding times, GC instrument performance, initial and continuing calibrations, analytical sequence, blank analysis results, surrogate recoveries, and MS/MSD results. All comments made within this report should be considered when examining the analytical results (Form Is). Please refer the specific findings found in each category to the Summary of Data Qualification table.

SDG # DW0201

Holding Times

All extraction and analysis holding times were met based on extraction and analysis information in the data package and the chain of custody records.

GC Instrument Performance

The resolution requirements were met on both columns in the sequence. The analytical sequence was acceptable. All 4,4'-DDT and endrin breakdowns were within QC limits. All surrogate retention times were within the established retention time windows (RTWs). All PEM standard RPDs were within the 25% QC limit.

Initial Calibrations

The initial calibrations were not acceptable for the linearity of all compounds. Raw data was not required in this Level C data package.

1. The initial calibration on instrument 5890K, 5/23/95, exhibited compounds with %RSDs greater than 20%. All positive and non-detect results in the following samples for the non-compliant compounds noted below associated with the ICAL are qualified as estimated, J/UJ.

All Samples

δ-BHC Methoxychlor

DATA ASSESSMENT NARRATIVE PESTICIDE/AROCLORS

PAGE - 2

Continuing Calibrations

All compounds in the calibration standards were within the laboratory reported Retention Time Windows (RTWs) for all columns. All continuing calibration standard associated with the reported samples exhibited relative percent differences, RPDs, within the QC limits. Raw data was not required in this Level C data package. No qualifications are required.

Method Blanks

The associated method blanks did not exhibit contamination for target compounds.

Instrument Blanks

The instrument blanks were free of target compound contamination.

QC Blanks

There were no QC blanks in this SDG.

Florisil/GPC Checks

The GPC clean-up check standard exhibited acceptable spike recoveries for all compounds. The Florisil cartridge check exhibited acceptable spike recoveries for all compounds. Raw data was not required in the Level C data package.

Surrogate Recoveries

Three (3) field samples exhibited non-compliant DCB recoveries.

Specific Finding

2. The positive and non-detect results for the following samples are qualified as estimated, J/UJ, due to DCB recoveries below the QC limits.

65DW0201 65MW02A01 65MW06A01

DATA ASSESSMENT NARRATIVE PESTICIDE/AROCLORS

PAGE - 3

Matrix Spike/Matrix Spike Duplicate

There was no MS/MSD pair in this SDG. The LCS sample exhibited acceptable recoveries for spiked compounds. No qualifications were required.

Field Duplicates

There was no field duplicate pair in this SDG.

Analyte Identification/Quantitation

No positive results were reported in the samples. Identification and quantitation appear reasonable based on sample and standard review. Quantitation calculations were not verified because raw data is not a required deliverable for NEESA Level C QC. Sample data chromatograms were not provided although they are required with a NEESA Level C data package.

Overall Assessment

The overall quality of the data package is good. The reported results are accepted as reported by the laboratory with the noted qualifications based on the limited deliverables in a Level C data package.

GLOSSARY OF DATA QUALIFIERS

QUALIFICATION CODES

U = Not detected

J = Estimated value

UJ = Reported quantitation limit is qualified as estimated

R = Result is rejected and unusable

NJ = Presumptive evidence for the presence of the material at an estimated value

K = Result is biased high

L = Result is biased low

METHOD BLANK QUALIFICATION CODES

CROL = The sample result for the blank contaminant is less than the

sample CRQL and is less than 10X the method blank value. The sample result for the blank contaminant is rejected and the CRQL

for that analyte is reported.

U = The sample result for the blank contaminant is greater than the

sample CRQL and is less than 10X the method blank value. The sample result for the blank contaminant is qualified as non

detected at the analyte value reported.

No Action = The sample result for the blank contaminant is greater than the

sample CRQL and is greater than 10X the method blank value. The sample result for the blank contaminant is not qualified with

any blank qualifiers.

The specific Findings will be noted in numerical form on the Form Is in this data validation report. These specific finding footnotes will reflect the conclusions found in the data validation process that resulted in the qualification of the data.

SUMMARY OF DATA QUALIFICATIONS

SAMPLE ID	ANALYTE ID	DL	QL	SPECIFIC FINDINGS
All Samples	δ-BHC Methoxychlor	+/U	J/UJ	1
65DW0201 65MW02A01 65MW06A01	ALL	+/U	J/UJ	2

DL denotes the Form I qualifier supplied by the laboratory
 QL denotes the qualifier used by the data validation firm

⁺ in the DL column denotes a positive result

⁻ in the DL column denotes a non detect result

DATA ASSESSMENT NARRATIVE Metals

General

The inorganic findings offered in this screening report assumes that all analytical results are correct as reported and is based upon the examination of the reported holding times, calibration standards, blank analysis results and MS/MSD results. A minimum of ten percent of all laboratory calculations are recalculated by the reviewer. All comments made within this report should be considered when examining the analytical results (Form Is).

This data package consisted of results from Lejuene, SDG# N/A, the analysis of six (6) field water samples and no Matrix Spike and Duplicate pairs for TAL Metals. Overall, the inorganic data quality was fair. All protocol requirements were followed with the exception of the following problems.

Specific QA/QC deficiency Findings are listed numerically in the following categories:

Holding Times

The holding times were met as specified in Section 3 of the NEESA (20.2-047B) QA protocol.

Calibration

No deficiencies in this section.

Preparation and Field Blank

No deficiencies in this section. The Calcium contamination had not impact on the data.

Interferences

No significant interferences were observed.

Spike Recovery

No deficiencies in this section.

Duplicate

No deficiencies in this section.

Metals Data Assessment Narrative (continued - Page 2)

LCS

No deficiencies in this section.

Serial Dilution

No deficiencies in this section.

SUMMARY OF DATA QUALIFICATIONS

SAMPLE ID	ANALYTE	DL	<u>OL</u>	SPECIFIC FINDING
Data stands as reported without	qualification.			

- DL denotes laboratory qualifier/reported value
 + denotes positive values
 U denotes non-detect values
- QL denotes data validation qualifier

JOB# 3631

SAMPLES AND FRACTIONS REVIEWED

Sample Ident	ifications		An	alytica	Fraction	ons
BAKER ID	QUANT ID	<u>Matrix</u>	<u>VOA</u>	<u>sv</u>	<u>P/P</u>	TAL
65SW04-01	AF3866	WATER	×	X	X	Х
65SW04-01D	AF3869	WATER	X	X	X	X
65SW04-01MS	AF3872	WATER	X	X	X	X
65SW04-01MD	AF3875	WATER	X	Χ	X	Х
65TB-03	AF3878	WATER	X			
Total Number of Sa	mples (Water/Soil)		5/0	4/0	4/0	4/0

Individual fractions were reviewed as follows:

	<u>Primary</u>	Secondary
VOA - Volatiles (CLP, OLM01.8)	Dan Heil	Gene Watson
SV - Semivolatiles (CLP, OLM01.8)	Dan Heil	Gene Watson
P/P - Pesticides/PCB's (CLP, OLM01.8)	Jackie Cleveland	Gene Watson
TAL - Total Metals (CLP, ILM02.1)	Paul Humburg	Jackie Cleveland

VOLATILE ORGANICS

General -

The organic findings offered in this screening report assumes that all analytical results are correct as reported and is based upon the examination of the reported holding times, blank analysis results, surrogate and matrix spike recoveries, GC/MS performance, tuning results, calibration results and internal standard areas. This report was prepared in compliance relative to the analytical and deliverable requirements specified in the U.S. EPA CLP, 3/90 SOW; the National Functional Guidelines for Organic Data Review, and NEESA Level C. All comments made within this report should be considered when examining the analytical results (Form I's).

SDG # 65SW04; CASE # 3631

Holding Times

The holding times for all of the samples were not met per the Organic Functional Guidelines and the CLP SOW (fourteen (14) days from collection date). No qualifications are required.

Tuning

All of the BFB tunes in the initial and continuing calibrations met the percent relative abundance criteria of the SOW and the Organic Functional Guidelines. No qualifications are required.

Initial Calibrations

The initial calibrations that were analyzed by the laboratory for these samples were not acceptable for all compound %RSDs and the average RRFs for all of the criteria compounds did not meet the initial calibration criteria.

Specific Finding:

1. The initial calibration analyzed on, 05/05/95, contained compounds with %RSDs greater than 30%. No qualifications are required because, no samples were analyzed following the calibration.

chloroethane

VOLATILE ANALYSIS

PAGE - 2

Continuing calibrations

The continuing calibrations that were analyzed with this data package exhibited %Ds that were not within %D continuing calibration criteria. All RRFs were within calibration criteria.

Specific Finding:

2. The continuing calibration, QS0523, contained compounds with %Ds greater than 25%, but less than 50%. For the samples and non-compliant compounds listed below, qualify all positive results as estimated (J).

VBLKAF4675 65SW0401 bromomethane

655W0401

65SW0401D

65SW0401MS

65SW0401MSD

65TB03

3. The continuing calibration, QS0523, contained compounds with %Ds greater than 50%, but less than 90%. For the samples and non-compliant compounds listed below, qualify all positive results as estimated (J) and all non detects as estimated (UJ).

VBLKAF4675

chloroethane

65SW0401

65SW0401D

65SW0401MS

65SW0401MSD

65TB03

Internal Standards

All internal standard EICP areas met the internal standard EICP area QA/QC criteria. No qualifications are required.

VOLATILE ANALYSIS

PAGE - 3

Method Blanks

The method blanks that were analyzed exhibited contamination for methylene chloride, acetone, 2-butanone, 2-hexanone, 1,1,2,2-tetrachloroethane, xylenes (total) and TICs. The method blank results will be compared to their associated samples. Refer to the glossary of data qualifiers for a list and definition of the method blank qualifiers: CRQL, U and No Action.

Specific findings:

4. The following samples have been qualified for method blank contamination. The qualifications are for all the method blanks.

65TB03	methylene chloride	CRQL
65SW0401	acetone	CRQL
65SW0401D		
65SW0401MS		
65SW0401MSD		
65TB03		

Trip Blanks

The trip blank that was analyzed exhibited contamination for methylene chloride, acetone, 1,1-dichloroethene, 1,2-dichloroethane, trichloroethene and toluene. The trip blank results will be compared to their associated samples. Refer to the glossary of data qualifiers for a list and definition of the method blank qualifiers: CRQL, U and No Action.

Specific findings:

5. The following samples have been qualified for blank contamination. The qualifications are for all the blanks.

65SW0401 1,2-dichloroethane CRQL 65SW0401D 65SW0401MS 65SW0401MSD

VOLATILE ANALYSIS

PAGE - 4

Rinseate Blanks

The associated rinseate blank was not identified for this SDG. No qualifications are required.

Field Blanks

The associated field blank was not identified for this SDG. No qualifications are required.

Surrogates

All of the surrogate recoveries for the all blanks and samples were within QA/QC limits. No qualifications are required.

Matrix Spike/Matrix Spike Duplicate (MS/MSD)

All spike and RPD recoveries were within advisory limits for MS/MSD 65SW0401. No qualifications are required.

Field Duplicate

No qualifications are required.

Compound Identification/Quantitation

No qualifications are required.

System Performance and Overall Assessment

The overall system performance was fair. The laboratory did not encounter any large problems. The data reviewer estimates that less than 5% of the data is qualified.

GLOSSARY OF DATA QUALIFIERS

QUALIFICATION CODES

U = Not detected

J = Estimated value

UJ = Reported quantitation limit is qualified as estimated

R = Result is rejected and unusable

NJ = Presumptive evidence for the presence of the material at an estimated value

K = Result is biased high

L = Result is biased low

METHOD BLANK QUALIFICATION CODES

CRQL = The sample result for the blank contaminant is less than the sample CRQL and is less than 10X the method blank value. The sample result for the blank contaminant is rejected and the CRQL for that analyte is reported.

U = The sample result for the blank contaminant is greater than the sample CRQL and is less than 10X the method blank value. The sample result for the blank contaminant is qualified as non detected at the analyte value reported.

No Action = The sample result for the blank contaminant is greater than the sample CRQL and is greater than 10X the method blank value. The sample result for the blank contaminant is not qualified with any blank qualifiers.

The specific findings will be noted in numerical form on the Form Is in this data validation report. These specific finding footnotes will reflect the conclusions found in the data validation process that resulted in the qualification of the data.

SUMMARY OF DATA QUALIFICATIONS

SAMPLE ID	ANALYTE ID	DL	QL	SPECIFIC FINDINGS
VBLKAF4675 65SW0401 65SW0401D 65SW0401MS 65SW0401MSD 65TB03	bromomethane	+	.J .	2
VBLKAF4675 65SW0401 65SW0401D 65SW0401MS 65SW0401MSD 65TB03	chloroethane	+/-	J/UJ	3
65TB03	methylene chloride	+	CRQL	. 4
65SW0401 65SW0401D 65SW0401MS 65SW0401MSD 65TB03	acetone	+	CRQL	4
65SW0401 65SW0401D 65SW0401MS 65SW0401MSD	1,2-dichloroethane	+	CRQL	5

^{*} DL denotes the Form I qualifier supplied by the laboratory QL denotes the qualifier used by the data validation firm

⁺ in the DL column denotes a positive result

⁻ in the DL column denotes a non detect result

SEMIVOLATILE ORGANICS

General

The organic findings offered in this screening report assumes that all analytical results are correct as reported and is based upon the examination of the reported holding times, blank analysis results, surrogate and matrix spike recoveries, GC/MS performance, tuning results, calibration results and internal standard areas. This report was prepared in compliance relative to the analytical and deliverable requirements specified in the U.S. EPA, Method 625 modified; to the National Functional Guidelines for Organic Data Review, and NEESA Level C. All comments made within this report should be considered when examining the analytical results (Form I's).

SDG # 65SW04; CASE # 3631

Holding Times

All extraction and analysis holding times for all samples were met for all samples per the SOW and National Functional Guidelines. No qualifications are required.

Tuning

All of the DFTPP tunes in the initial and continuing calibrations met the percent relative abundance criteria of the SOW and the Organic Functional Guidelines. No qualifications are required.

Initial Calibrations

The initial calibrations that were analyzed by the laboratory for these samples were acceptable for all compound %RSDs and average RRFs. No qualifications are required.

Continuing Calibrations

The continuing calibrations that were analyzed all of the criteria and non criteria compounds met requirements for RRFs. Qualifications are required for compounds with non compliant %Ds.

SEMIVOLATILE ANALYSIS

PAGE - 2

Continuing Calibrations (continued)

Specific Findings:

1. The continuing calibration, BCC0609, contained compounds with %Ds greater than 25% D but less than 50% D. For the samples and non compliant compounds listed below, qualify all positive results as estimated (J).

SBLKAF4006B

n-nitrosodi-n-propylamine

65SW0401

2,4-dinitrophenol

4-nitrophenol 4-nitroaniline

di-n-octylphthalate benzo(k)fluoranthene

2. The continuing calibration, BCC0609, contained compounds with %Ds greater than 50% D but less than 90% D. For the samples and non compliant compounds listed below, qualify all positive results as estimated (J) and all non detects as estimated (UJ).

SBLKAF4006B

carbazole

65SW0401

3. The continuing calibration, BCC0610, contained compounds with %Ds greater than 25% D but less than 50% D. For the samples and non compliant compounds listed below, qualify all positive results as estimated (J).

65SW0401D

4-nitrophenol

65SW0401MS

carbazole

65SW0401MSD

di-octylphthalate

Internal Standards

All of the internal standard EICP areas, that were submitted with this package, met the internal standard EICP area QA/QC criteria. However, the laboratory did not submit internal standard areas for the samples that were analyzed following an initial calibration. In a phone conversation with Baker Environmental, the data reviewer was informed that the internal standard area forms for the above mention samples would not be re-submitted. No qualifications are required.

SEMIVOLATILE ANALYSIS

PAGE - 3

Method Blanks

The method blanks that were analyzed exhibited contamination for phenol. However, the positive results found in associated samples exceeded 5x the method blank concentration. No qualifications are required.

Rinseate Blanks

The rinseate blanks that were analyzed did not exhibit contamination. No qualifications are required.

Field Blanks

The associated field blank was not identified for this SDG. No qualifications are required.

Surrogates

Surrogate recoveries for all samples and blanks did not meet QA/QC criteria. The SOW and the National Functional Guidelines allow one surrogate for each fraction to fall out side the QA/QC criteria as long as the recovery is greater than 10%. No qualifications are required.

Matrix Spike

All spike and RPD recoveries were within advisory limits for MS/MSD 65SW0401. No qualifications are required.

Field Duplicates

No qualifications are required.

Compound Identification/Quantitation

No qualifications are required.

SEMIVOLATILE ANALYSIS

PAGE - 3

System Performance and Overall Assessment

Overall performance was fair. The laboratory did not encounter any large problems. The data reviewer estimates less than 10% of data required qualifications.

GLOSSARY OF DATA QUALIFIERS

QUALIFICATION CODES

U = Not detected

J = Estimated value

UJ = Reported Quantitation limit is qualified as estimated

R = Result is rejected and unusable

NJ = Presumptive evidence for the presence of the material at an estimated value

K = Result is biased high

L = Result is biased low

METHOD BLANK QUALIFICATION CODES

CRQL = The sample result for the blank contaminant is less than the sample CRQL and is less than 10X the method blank value. The sample result for the blank contaminant is rejected and the CRQL for that analyte is reported.

U = The sample result for the blank contaminant is greater than the sample CRQL and is less than 10X the method blank value. The sample result for the blank contaminant is qualified as non detected at the analyte value reported.

No Action = The sample result for the blank contaminant is greater than the sample CRQL and is greater than 10X the method blank value. The sample result for the blank contaminant is not qualified with any blank qualifiers.

The specific findings will be noted in numerical form on the Form Is in this data validation report. These specific finding footnotes will reflect the conclusions found in the data validation process that resulted in the qualification of the data.

SAMPLE ID	ANALYTE ID	<u>DL</u>	QL	SPECIFIC FINDINGS
SBLKAF4006B	n-nitrosodi-n- propylamine	+	. J -	1 .
65SW0401	2,4-dinitrophenol 4-nitrophenol 4-nitroaniline di-n-octylphthalate benzo(k)fluoranthene			• • ·
SBLKAF4006B 65SW0401	carbazole	+/-	J/UJ	2
65SW0401D 65SW0401MS 65SW0401MSD	4-nitrophenol carbazole di-octylphthalate	+	J	3

DL denotes the Form I qualifier supplied by the laboratory
 QL denotes the qualifier used by the data validation firm
 + in the DL column denotes a positive result

⁻ in the DL column denotes a non detect result

PESTICIDE/AROCLOR ANALYSIS

General

The organic findings offered in this screening report assume that all analytical results are correct as reported and are based upon the examination of the reported holding times, GC instrument performance, initial and continuing calibrations, analytical sequence, blank analysis results, surrogate recoveries, and MS/MSD results. All comments made within this report should be considered when examining the analytical results (Form Is). Please refer the specific findings found in each category to the Summary of Data Qualification table.

SDG # SW0401

Holding Times

All extraction and analysis holding times were met based on extraction and analysis information in the data package and the chain of custody records. No qualifications are required.

GC Instrument Performance

The resolution requirements were met on both columns in the sequence. The analytical sequence was acceptable. All 4,4'-DDT and endrin breakdowns were within QC limits. All surrogate retention times were within the established retention time windows (RTWs). All PEM standard RPDs were within the 25% QC limit. No qualifications are required.

Initial Calibrations

The initial calibrations were not acceptable for the linearity of all compounds. Raw data was not required in this Level C data package.

PAGE - 2

Initial Calibrations, continued

Specific Findings

1. The initial calibration on instrument 5890K, 5/23/95-5/27/95, exhibited a %RSD greater than 20% for delta-BHC. The initial calibration on instrument 5890L, 5/23/95-5/27/95, exhibited a %RSD greater than 20% for Methoxychlor. All positive and non-detect results in the following samples for the non-compliant compounds noted below associated with the ICAL are qualified as estimated, J/UJ.

All Samples

delta-BHC Methoxychlor

Continuing Calibrations

All compounds in the calibration standards were within the laboratory reported Retention Time Windows (RTWs) for all columns. All continuing calibration standards associated with the reported samples exhibited relative percent differences, RPDs, within the QC limits. Raw data was not required in this Level C data package. No qualifications are required.

Method Blanks

The associated method blank did not exhibit contamination for target compounds.

Instrument Blanks

The instrument blanks were free of target compound contamination.

QC Blanks

QC blanks were not included in this data package.

Florisil/GPC Checks

The Florisil cartridge check exhibited acceptable spike recoveries for all compounds. The GPC clean-up check standard was not required as the data package included only water samples. Raw data was not required in the Level C data package.

PAGE - 3

Surrogate Recoveries

Several samples exhibited non-compliant DCB recoveries.

Specific Finding

2. The positive and non-detect results for the following samples are qualified as estimated, J/UJ, due to DCB recoveries below the QC limits.

65SW0401 65SW0401D 65SW0401MS 65SW0401MSD

Matrix Spike/Matrix Spike Duplicate

The MS/MSD pair exhibited acceptable recoveries for all spiked compounds. The LCS sample exhibited acceptable recoveries for spiked compounds. No qualifications were required.

Field Duplicates

The field duplicate pair of sample 65SW0401 did not exhibit positive results of target compounds. No qualifications were required.

Analyte Identification/Quantitation

Positive results were reported in the MS/MSD pair and LCS sample. Identification and quantitation appear reasonable based on sample and standard review. Quantitation calculations were not verified because raw data is not a required deliverable for NEESA Level C QC. Sample data chromatograms were not provided although they are required with a NEESA Level C data package. Dilutions were not required.

Overall Assessment

The overall quality of the data package is good. The reported results are accepted as reported by the laboratory with the noted qualifications based on the limited deliverables in a Level C data package.

GLOSSARY OF DATA QUALIFIERS

QUALIFICATION CODES

U = Not detected

J = Estimated value

UJ = Reported quantitation limit is qualified as estimated

R = Result is rejected and unusable

NJ = Presumptive evidence for the presence of the material at an estimated value

K = Result is biased high

L = Result is biased low

METHOD BLANK QUALIFICATION CODES

CRQL = The sample result for the blank contaminant is less than the sample CRQL and is less than 10X the method blank value. The sample result for the blank contaminant is rejected and the CRQL for that applyto is reported.

for that analyte is reported.

U = The sample result for the blank contaminant is greater than the sample CRQL and is less than 10X the method blank value. The sample result for the blank contaminant is qualified as non detected at the analyte value reported.

No Action = The sample result for the blank contaminant is greater than the sample CRQL and is greater than 10X the method blank value. The sample result for the blank contaminant is not qualified with any blank qualifiers.

The specific Findings will be noted in numerical form on the Form Is in this data validation report. These specific finding footnotes will reflect the conclusions found in the data validation process that resulted in the qualification of the data.

SAMPLE ID	ANALYTE ID	DL	QL	SPECIFIC FINDINGS
65SW0401 65SW0401D 65SW0401MS 65SW0401MSD	delta-BHC Methoxychlor	+ /U	์ J/บJ	1
65SW0401 65SW0401D 65SW0401MS 65SW0401MSD	ALL	+/U	J/UJ	2

- * DL denotes the Form I qualifier supplied by the laboratory QL denotes the qualifier used by the data validation firm
 - + in the DL column denotes a positive result
 - in the DL column denotes a non detect result

DATA ASSESSMENT NARRATIVE Metals

General

The inorganic findings offered in this screening report assumes that all analytical results are correct as reported and is based upon the examination of the reported holding times, calibration standards, blank analysis results and MS/MSD results. A minimum of ten percent of all laboratory calculations are recalculated by the reviewer. All comments made within this report should be considered when examining the analytical results (Form Is).

This data package consisted of results from Lejuene, SDG# N/A, the analysis of two (2) field water samples and one Matrix Spike and Duplicate pairs for TAL Metals. Overall, the inorganic data quality was fair. All protocol requirements were followed with the exception of the following problems.

Specific QA/QC deficiency Findings are listed numerically in the following categories:

Holding Times

The holding times were met as specified in Section 3 of the NEESA (20.2-047B) QA protocol.

Calibration

No deficiencies in this section.

Preparation and Field Blank

No deficiencies in this section. The Calcium contamination had not impact on the data.

Interferences

No significant interferences were observed.

Spike Recovery

No deficiencies in this section.

Duplicate

1. The Duplicate analysis for Manganese was outside the control limits. All positive results are qualified as estimated, "J".

Metals Data Assessment Narrative (continued - Page 2)

<u>LCS</u>

No deficiencies in this section.

Serial Dilution

No deficiencies in this section.

SAMPLE ID	ANALYTE	DL	QL	SPECIFIC FINDING
All water samples	Mn.	+	J	1

- DL denotes laboratory qualifier/reported value + denotes positive values U denotes non-detect values
- QL denotes data validation qualifier

JOB# 3651 and 3653

SAMPLES AND FRACTIONS REVIEWED

Sample Identifications		Analytical Fractions				
BAKER ID	QUANT ID	<u>Matrix</u>	VOA	<u>sv</u>	<u>P/A</u>	TAL
65DW0401	AF4024	WATER	X	X	X	X
65MW04A01	AF4023	WATER	Χ	X	X	X
65RB23	AF4066	WATER	Χ	Χ	Χ	X
65SW0501	AF4061	WATER	Χ	Χ	Χ	Х
65SD0406	AF4033	SOIL	Χ	Χ	Χ	X
65SD0406MS	AF4033	SOIL	Χ	Χ	Χ	X
65SD0406MSD	AF4033	SOIL	X	X	X	X
65SD0406D	AF4040	SOIL	Χ	Χ	Χ	X
65SD04612	AF4028	SOIL	X	X	Χ	X
Total Number of Sa	mples (Water/Soil)		4/5	4/5	4/5	4/5

Individual fractions were reviewed as follows:

	<u>Primary</u>	Secondary
VOA - Volatiles (CLP, OLMo1.8)	Dan Heil	Gene Watson
SV - Semivolatiles (CLP, OLM01.8)	Dan Heil	Gene Watson
P/A - Pesticide/PCBs (CLP, OLM01.8)	Jackie Cleveland	Gene Watson
TAL - Total Metals (CLP, ILM02.1)	Paul Humburg	Jackie Cleveland

VOLATILE ORGANICS

General

The organic findings offered in this screening report assumes that all analytical results are correct as reported and is based upon the examination of the reported holding times, blank analysis results, surrogate and matrix spike recoveries, GC/MS performance, tuning results, calibration results and internal standard areas. This report was prepared in compliance relative to the analytical and deliverable requirements specified in the U.S. EPA CLP, 3/90 SOW; the National Functional Guidelines for Organic Data Review, and NEESA Level C. All comments made within this report should be considered when examining the analytical results (Form I's).

SDG # 65DW04; CASE # 3651

Holding Times

The holding times for all of the samples were not met per the Organic Functional Guidelines and the CLP SOW (fourteen (14) days from collection date). No qualifications are required.

Tuning

All of the BFB tunes in the initial and continuing calibrations met the percent relative abundance criteria of the SOW and the Organic Functional Guidelines. No qualifications are required.

Initial Calibrations

The initial calibrations that were analyzed by the laboratory for these samples were not acceptable for all compound %RSDs and the average RRFs for all of the criteria compounds did not meet the initial calibration criteria.

Specific Finding:

1. The initial calibration analyzed on, 05/05/95, contained compounds with %RSDs greater than 30%. No qualifications are required because, no samples were analyzed following the calibration.

chloroethane

VOLATILE ANALYSIS

PAGE - 2

Continuing calibrations

The continuing calibrations that were analyzed with this data package exhibited %Ds that were not within %D continuing calibration criteria. All RRFs were within calibration criteria.

Specific Finding:

2. The continuing calibration, QS0523, contained compounds with %Ds greater than 25%, but less than 50%. For the samples and non-compliant compounds listed below, qualify all positive results as estimated (J).

VBLKAF4675

bromomethane

65MW04A01

65DW0401

65SW0501

65RB23

3. The continuing calibration, WS0530, contained compounds with %Ds greater than 25%, but less than 50%. For the samples and non-compliant compounds listed below, qualify all positive results as estimated (J).

VBLKAF5330

chloromethane

65SD04612

acetone

65SD0406

65SD0406D

00000-000

65SD0406MS

65SD0406MSD

65SD04612RE

VOLATILE ANALYSIS

PAGE -3

Continuing calibrations (continued)

Specific Finding:

4. The continuing calibration, WS0530, contained compounds with %Ds greater than 50%, but less than 90%. For the samples and non-compliant compounds listed below, qualify all positive results as estimated (J) and all non detects as estimated (UJ).

VBLKAF5330

carbon disulfide

65SD04612

65SD0406

65SD0406D

65SD0406MS

65SD0406MSD

65SD04612RE

Internal Standards

All internal standard EICP areas did not meet the internal standard EICP area QA/QC criteria.

Specific Finding:

5. The samples listed below exhibited low internal standard areas. Qualify all positive results associated with the non compliant internal standard areas as estimated (J) and all non detected results as estimated (UJ).

65SD0406

chlorobenzene-d₅

65SD04612

65SD0406MSD

65SD04612RE

1,4-difluorobenzene

chlorobenzene-d5

VOLATILE ANALYSIS

PAGE - 4

Method Blanks

The method blanks that were analyzed exhibited contamination for methylene chloride, acetone, 2-butanone, 2-hexanone, 4-methyl-2-pentanone, 1,1,2,2-tetrachloroethane, xylenes and TICs. The method blank results will be compared to their associated samples. Refer to the glossary of data qualifiers for a list and definition of the method blank qualifiers: CRQL, U and No Action.

Specific findings:

6. The following samples have been qualified for method blank contamination. The qualifications are for all the method blanks.

65RB23 65SD0406 65SD0406D 65SD04612 65SD04612RE 65SD0406MS 65SD0406MSD	methylene chloride	CRQL
65SD0406 65SD0406D 65SD04612 65SD04612RE 65DW04A01	acetone	U
65DW0401 65SW0501	acetone	CRQL
65RB23	2-butanone	CRQL

Trip Blanks

The associated trip blank was not identified for this SDG. No qualifications are required.

VOLATILE ANALYSIS

PAGE - 5

Rinseate Blanks

The rinseate blank that was analyzed exhibited contamination for methylene chloride, acetone, 2-butanone and 1,2-dichloroethane. The rinseate blank results will be compared to their associated samples. Refer to the glossary of data qualifiers for a list and definition of the method blank qualifiers: CRQL, U and No Action.

Specific findings:

7. The following samples have been qualified for blank contamination. The qualifications are for all the blanks.

65SD0406MS

acetone

U

65SD0406MSD

65SD0406MS

1,2-dichloroethane

CRQL

65DW0401 65DW04A01 65SW0501

Field Blanks

The associated field blank was not identified for this SDG. No qualifications are required.

Surrogates

All of the surrogate recoveries for the all blanks and samples were not within QA/QC limits.

Specific Finding:

8. Samples 65SD0406 and 65sd0406MS, exhibited high surrogate recoveries for toluene-d₈ and 1,2-dichloroethane-d₄. Qualify all positive results as estimated (J).

VOLATILE ANALYSIS

PAGE - 6

Matrix Spike/Matrix Spike Duplicate (MS/MSD)

All spike and RPD recoveries were not within advisory limits for MS/MSD 65SD0406. The MS/MSD samples exhibited high spike and RPD recoveries for benzene and toluene. No qualifications are required.

Field Duplicate

No qualifications are required.

Compound Identification/Quantitation

Specific Finding:

9. Reject all results for sample 65SD04612RE, in favor of the original sample analysis due to non compliant internal standard areas.

System Performance and Overall Assessment

The overall system performance was fair. The laboratory did not encounter any large problems. The data reviewer estimates that less than 5% of the data is qualified.

GLOSSARY OF DATA QUALIFIERS

QUALIFICATION CODES

U = Not detected

J = Estimated value

UJ = Reported quantitation limit is qualified as estimated

R = Result is rejected and unusable

NJ = Presumptive evidence for the presence of the material at an estimated value

K = Result is biased high

L = Result is biased low

METHOD BLANK QUALIFICATION CODES

CRQL = The sample result for the blank contaminant is less than the sample CRQL and is less than 10X the method blank value. The sample result for the blank contaminant is rejected and the CRQL

for that analyte is reported.

U = The sample result for the blank contaminant is greater than the sample CRQL and is less than 10X the method blank value. The sample result for the blank contaminant is qualified as non

detected at the analyte value reported.

No Action = The sample result for the blank contaminant is greater than the

sample CRQL and is greater than 10X the method blank value. The sample result for the blank contaminant is not qualified with

any blank qualifiers.

The specific findings will be noted in numerical form on the Form Is in this data validation report. These specific finding footnotes will reflect the conclusions found in the data validation process that resulted in the qualification of the data.

SAMPLE ID	ANALYTE ID	DL	<u>QL</u>	SPECIFIC FINDINGS
VBLKAF4675 65MW04A01 65DW0401 65SW0501 65RB23	bromomethane	+	J	2
VBLKAF5330 65SD04612 65SD0406 65SD0406D 65SD0406MS 65SD0406MSD 65SD04612RE	chloromethane acetone	+	J	3
VBLKAF5330 65SD04612 65SD0406 65SD0406D 65SD0406MS 65SD0406MSD 65SD04612RE	carbon disulfide	+/-	J/UJ	4
65SD0406 65SD04612 65SD0406MSD	All associated analytes chlorobenzene-d ₅	+/-	J/UJ	5
65SD04612RE	1,4-difluorobenzene chlorobenzene-ds			

^{*} DL denotes the Form I qualifier supplied by the laboratory QL denotes the qualifier used by the data validation firm

⁺ in the DL column denotes a positive result

⁻ in the DL column denotes a non detect result

Page - 2

SAMPLE ID	ANALYTE ID	DL	<u>OL</u>	SPECIFIC FINDINGS
J65RB23 65SD0406 65SD0406D 65SD04612 65SD04612RE 65SD0406MS 65SD0406MSD	methylene chloride	+	CRQI	_ 6
65SD0406 65SD0406D 65SD04612 65SD04612RE 65DW04A01	acetone	+	U	6
65DW0401 65SW0501	acetone	+	CRQI	_ 6
65RB23	2-butanone	+	CRQI	_ 6
65SD0406MS 65SD0406M:SD	acetone	+	U	7
65SD0406MS 65DW0401 65DW04A01 65SW0501	1,2-dichloroethane	+	CRQI	- 7
65SD0406 65SD0406MS	All analytes	+	J	8
65SD04612RE	All analytes	+/-	R	9

^{*} DL denotes the Form I qualifier supplied by the laboratory QL denotes the qualifier used by the data validation firm

⁺ in the DL column denotes a positive result

⁻ in the DL column denotes a non detect result

SEMIVOLATILE ORGANICS

General

The organic findings offered in this screening report assumes that all analytical results are correct as reported and is based upon the examination of the reported holding times, blank analysis results, surrogate and matrix spike recoveries, GC/MS performance, tuning results, calibration results and internal standard areas. This report was prepared in compliance relative to the analytical and deliverable requirements specified in the U.S. EPA CLP, 3/90 SOW; to the National Functional Guidelines for Organic Data Review, and NEESA Level E. All comments made within this report should be considered when examining the analytical results (Form I's).

SDG # 65DW04; CASE # 3653

Holding Times

All extraction and analysis holding times for all samples were met for all samples per the SOW and National Functional Guidelines. No qualifications are required.

Tuning

All of the DFTPP tunes in the initial and continuing calibrations met the percent relative abundance criteria of the SOW and the Organic Functional Guidelines. No qualifications are required.

Initial Calibrations

The initial calibrations that were analyzed by the laboratory for these samples were not acceptable for all compound %RSDs and the average RRFs for all of the criteria compounds did not meet the initial calibration criteria.

Specific Finding:

1. The initial calibration analyzed on, 05/22/95, contained compounds with %RSDs greater than 30%. No qualifications are required, because no samples were analyzed following the calibration.

hexachlorocyclopentadiene

SEMIVOLATILE ANALYSIS

PAGE - 2

Continuing Calibrations

The continuing calibrations that were analyzed all of the criteria and non criteria compounds met requirements for RRFs. Qualifications are required for compounds with non compliant %Ds.

Specific Findings:

2. The continuing calibration, BCC0531, contained compounds with %Ds greater than 25% D but less than 50% D. For the samples and non compliant compounds listed below, qualify all positive results as estimated (J).

SBLKAF4450	4-methylphenol
65MW04A01	4,6-dinitro-2-methylphenol
65DW0401	carbazole
65SW0501	3,3'-dichlorobenzidine
65RB23	

3. The continuing calibration, BCC0531, contained compounds with RRFs less than 0.05. For the samples and non compliant compounds listed below, qualify all positive results as estimated (J) and reject all non detects (R).

SBLKAF4450	hexachlorocyclopentadiene
65MW04A01	2,4-dinitrophenol
65DW0401	
65SW0501	
65RB23	

4. The continuing calibration, BCC06052, contained compounds with %Ds greater than 25% D but less than 50% D. For the samples and non compliant compounds listed below, qualify all positive results as estimated (J).

SBLKAF5197B		hexachlorocyclopentadiene
65SD04612		2,4-dinitrophenol
65SD0406		
65SD0406D	~	
65SD0406MS		
65SD0406MSD		

SEMIVOLATILE ANALYSIS

PAGE - 3

Continuing Calibrations (continued)

Specific Finding;

5. The continuing calibration, BCC06052, contained compounds with %Ds greater than 50% D but less than 90% D. For the samples and non compliant compounds listed below, qualify all positive results as estimated (J), and all non detects as estimated (UJ).

SBLKAF5197B

carbazole

65SD04612

65SD0406

65SD0406D

65SD0406MS

65SD0406MSD

Internal Standards

All internal standard EICP areas met the internal standard EICP area QA/QC criteria. No qualifications are required.

Method Blanks

The method blank that was analyzed exhibited contamination for bis(2-ethylhexyl)phthalate and TICs. The method blank results will be compared to their associated samples. Refer to the glossary of data qualifiers for a list and definition of the method blank qualifiers: CRQL, U and No Action.

Specific Finding:

6. The samples listed below have been qualified for method blank contamination. The qualification are for all method blanks.

65DW0401

bis(2-ethylhexyl)

CRQL

phthalate

7. Reject all results for the "B" flagged TICs due to method blank contamination.

SEMIVOLATILE ANALYSIS

PAGE - 4

Rinseate Blanks

The rinseate blank that was analyzed did not exhibit contamination. No qualifications are required.

Field Blanks

The associated field blank was not identified for this SDG. No qualifications are required.

Surrogates

Surrogate recoveries for all samples and blanks did not meet QA/QC criteria. The SOW and the National Functional Guidelines allow one surrogate for each fraction to fall out side the QA/QC criteria as long as the recovery is greater than 10%. No qualifications are required.

Matrix Spike

All spike recoveries were within advisory limits the MS/MSD 65SD0406. No qualifications are required.

Field Duplicates

No qualifications are required.

Compound Identification/Quantitation

No qualifications are required.

System Performance and Overall Assessment

Overall performance was fair. The laboratory did not encounter any large problems. The data reviewer estimates less than 10% of data required qualifications.

GLOSSARY OF DATA QUALIFIERS

QUALIFICATION CODES

U = Not detected

J = Estimated value

UJ = Reported Quantitation limit is qualified as estimated

R = Result is rejected and unusable

NJ = Presumptive evidence for the presence of the material at an estimated value

K = Result is biased high

L = Result is biased low

METHOD BLANK QUALIFICATION CODES

CRQL = The sample result for the blank contaminant is less than the sample CRQL and is less than 10X the method blank value. The sample result for the blank contaminant is rejected and the CRQL

for that analyte is reported.

U = The sample result for the blank contaminant is greater than the sample CRQL and is less than 10X the method blank value. The sample result for the blank contaminant is qualified as non

detected at the analyte value reported.

No Action = The sample result for the blank contaminant is greater than the

sample CRQL and is greater than 10X the method blank value. The sample result for the blank contaminant is not qualified with

any blank qualifiers.

The specific findings will be noted in numerical form on the Form Is in this data validation report. These specific finding footnotes will reflect the conclusions found in the data validation process that resulted in the qualification of the data.

SAMPLE ID	ANALYTE ID	DL	<u>QL</u>	SPECIFIC FINDINGS
SBLKAF4450 65MW04A01 65DW0401 65SW0501 65RB23	4-methylphenol 4,6-dinitro-2-methylpher carbazole 3,3'-dichlorobenzidine	+ nol	J	2
SBLKAF4450	hexachlorocyclo- pentadiene	+/-	J/R	3
65MW04A01 65DW0401 65SW0501 65RB23	2,4-dinitrophenol			
SBLKAF5197B	hexachlorocyclo- pentadiene	+	J	4
65SD04612 65SD0406 65SD0406D 65SD0406MS 65SD0406MSD	2,4-dinitrophenol			
SBLKAF5197B 65SD04612 65SD0406	carbazole	+/-	J/UJ	5
65SD0406D 65SD0406MS 65SD0406MSD				
65DW0401	bis(2-ethylhexyl) phthalate	+	CRQL	- 6
All samples	"B" flagged TICs	+	R	7

^{*} DL denotes the Form I qualifier supplied by the laboratory QL denotes the qualifier used by the data validation firm

⁺ in the DL column denotes a positive result

⁻ in the DL column denotes a non detect result

PESTICIDE/AROCLOR ANALYSIS

General

The organic findings offered in this screening report assume that all analytical results are correct as reported and are based upon the examination of the reported holding times, GC instrument performance, initial and continuing calibrations, analytical sequence, blank analysis results, surrogate recoveries, and MS/MSD results. All comments made within this report should be considered when examining the analytical results (Form Is). Please refer the specific findings found in each category to the Summary of Data Qualification table.

SDG # DW0401

Holding Times

All extraction and analysis holding times were met based on extraction and analysis information in the data package and the chain of custody records. No qualifications are required.

GC Instrument Performance

The resolution requirements were met on both columns in the sequence. The analytical sequence was acceptable. All 4,4'-DDT and endrin breakdowns were within QC limits. All surrogate retention times were within the established retention time windows (RTWs). All PEM standard RPDs were within the 25% QC limit. No qualifications are required.

Initial Calibrations

The initial calibrations were not acceptable for the linearity of all compounds. Raw data was not required in this Level C data package.

Specific Findings

1. The initial calibration on instrument 5890L, 5/30/95, exhibited a %RSD greater than 20% for Methoxychlor. All positive and non-detect results in the following samples are qualified as estimated, J/UJ, for the non-compliant compounds noted below.

65MW04A01

65RB23

Methoxychlor

65DW0401 65SW0501

PAGE - 2

Specific Findings, continued

2. The initial calibration on instrument 5890K, 6/12/95, exhibited a %RSD greater than 20% for 4,4'-DDD. All positive and non-detect results in the following samples are qualified as estimated, J/UJ, for the non-compliant compounds noted below.

65SD04612 65SD0406 4,4'-DDD

65SD0406D

Continuing Calibrations

All compounds in the calibration standards were within the laboratory reported Retention Time Windows (RTWs) for all columns. All continuing calibration standards associated with the reported samples exhibited relative percent differences, RPDs, within the QC limits. Raw data was not required in this Level C data package. No qualifications are required.

Method Blanks

The associated method blanks did not exhibit contamination for target compounds.

Instrument Blanks

The instrument blanks were free of target compound contamination.

QC Blanks

The associated rinseate blank did not exhibit contamination for target compounds.

Florisil/GPC Checks

The GPC clean-up check standard exhibited acceptable spike recoveries for all compounds. The Florisil cartridge check exhibited acceptable spike recoveries for all compounds. Raw data was not required in the Level C data package.

PAGE - 3

Surrogate Recoveries

Two samples exhibited non-compliant DCB recoveries and one method blank exhibited non-compliant TCX recoveries.

Specific Finding

3. The positive and non-detect results for the following samples are qualified as estimated, J/UJ, due to DCB recoveries below the QC limits.

65DW0401 65SW0501

Matrix Spike/Matrix Spike Duplicate

The MS/MSD pair exhibited acceptable recoveries for spiked compounds. The LCS samples exhibited acceptable recoveries for spiked compounds. No qualifications were required.

Field Duplicates

The field duplicate pair of sample 65SD0406 exhibited non-compliant RPDs for 4,4'-DDE and 4,4'-DDD.

Specific Finding

4. All positive results for the following samples are qualified as estimated, J, due to poor duplicate precision, for the non-compliant compounds noted below.

65SD0406

4,4'-DDE

65SD0406D

4,4'-DDD

PAGE - 4

Analyte Identification/Quantitation

Positive results were reported in several samples. Identification and quantitation appear reasonable based on sample and standard review. Quantitation calculations were not verified because raw data is not a required deliverable for NEESA Level C QC. Sample data chromatograms were not provided although they are required with a NEESA Level C data package. Some reported positive results exhibited column quantitation %Ds greater than 25%.

Specific Findings

- 5. Positive results exhibited column quantitation %Ds greater than 25% but less than or equal to 100% are qualified as estimated, J.
- 6. Positive results exhibited column quantitation %Ds greater than 100% are qualified as presumptively present at an estimated concentration, NJ.

Overall Assessment

The overall quality of the data package is good. The reported results are accepted as reported by the laboratory with the noted qualifications based on the limited deliverables in a Level C data package.

GLOSSARY OF DATA QUALIFIERS

QUALIFICATION CODES

U = Not detected

J = Estimated value

UJ = Reported quantitation limit is qualified as estimated

R = Result is rejected and unusable

NJ = Presumptive evidence for the presence of the material at an estimated value

K = Result is biased high

L = Result is biased low

METHOD BLANK QUALIFICATION CODES

CRQL = The sample result for the blank contaminant is less than the sample CRQL and is less than 10X the method blank value. The sample result for the blank contaminant is rejected and the CRQL for that analyte is reported.

U = The sample result for the blank contaminant is greater than the sample CRQL and is less than 10X the method blank value. The sample result for the blank contaminant is qualified as non detected at the analyte value reported.

No Action = The sample result for the blank contaminant is greater than the sample CRQL and is greater than 10X the method blank value. The sample result for the blank contaminant is not qualified with any blank qualifiers.

The specific Findings will be noted in numerical form on the Form Is in this data validation report. These specific finding footnotes will reflect the conclusions found in the data validation process that resulted in the qualification of the data.

SAMPLE ID	ANALYTE ID	<u>DL</u>	<u>QL</u>	SPECIFIC FINDINGS
65MW04A01 65DW0401 65SW0501 65RB23	Methoxychlor	+/U	J/UJ	1
65SD04612 65SD0406 65SD0406D	4,4'-DDD	+ /U	J/UJ	2
65DW0401 65SW0501	All	+/U	J/UJ	3
65SD0406 65SD0406D	4,4'-DDE 4,4'-DDD	+	J	4
All	All P > 25% But ≤ 100%	+	J	5
All	All P >100%	+	NJ	6

^{*} DL denotes the Form I qualifier supplied by the laboratory QL denotes the qualifier used by the data validation firm + in the DL column denotes a positive result

⁻ in the DL column denotes a non detect result

DATA ASSESSMENT NARRATIVE Metals

General

The inorganic findings offered in this screening report assumes that all analytical results are correct as reported and is based upon the examination of the reported holding times, calibration standards, blank analysis results and MS/MSD results. A minimum of ten percent of all laboratory calculations are recalculated by the reviewer. All comments made within this report should be considered when examining the analytical results (Form Is).

This data package consisted of results from Lejuene, SDG# N/A, the analysis of three (3) field soil samples and one Matrix Spike and Duplicate pair and four (4) field water samples for TAL Metals. Overall, the inorganic data quality was fair. All protocol requirements were followed with the exception of the following problems.

Specific QA/QC deficiency Findings are listed numerically in the following categories:

Holding Times

The holding times were met as specified in Section 3 of the NEESA (20.2-047B) QA protocol.

Calibration

No deficiencies in this section.

Preparation and Field Blank

1. The preparation blank exhibited contamination for the following elements.

PBW			PBS		
Calcium	44.1	ug/l	Iron	3.17	mg/kg
Iron	18.5	ug/l			
Zinc	5.36	ug/l			

The USEPA requires that all sample values below five times the preparation or calibration blank contamination be qualified as estimated, "U".

Interfere: ces

No significant interferences were observed.

Metals Data Assessment Narrative (continued - Page 2)

Spike Recovery

- 2. The Matrix Spike recovery for soils for Antimony was below the lower control limits. All positive and non-detect results are qualified as estimated, "J" or "UJ".
- 3. The Matrix Spike recovery for soils for Lead was above the upper control limits.

 All positive results are qualified as estinated, "J".

Duplicate

4. The Duplicate analyses for soils for Aluminum, Chromium, Copper, Lead, Manganese and Zinc were outside the control limits. All positive results are qualified as estimated, "J".

LCS

No deficiencies in this section.

Serial Dilution

No deficiencies in this section.

SAMPLE ID	ANALYTE	DL	<u>OL</u>	SPECIFIC FINDING
All water samples	Ca, Fe and Zn.	+	U	1
All soil samples	Fe.			
All soil samples	Sb.	+/U	J/UJ	2
All soil samples	Pb.	+	J	3
All soil samples	Al, Cr, Cu, Fe, Pb, Mn and Zn.	+	J	4

- DL denotes laboratory qualifier/reported value + denotes positive values U denotes non-detect values
- QL denotes data validation qualifier

JOB# 3666

SAMPLES AND FRACTIONS REVIEWED

Sample Identifications			Analytical Fractions			
BAKER ID	QUANT ID	<u>Matrix</u>	VOA	<u>sv</u>	<u>P/A</u>	TAL
65SD0506 65SD05612	AF4240 AF4233	SOIL SOIL	X X	X X	X X	X
Total Number of S	amples (Water/Soil)		0/2	0/2	0/2	0/2

Individual fractions were reviewed as follows:

	<u>Primary</u>	<u>Secondary</u>
VOA - Volatiles (CLP, OLMo1.8)	Dan Heil	Gene Watson
SV - Semivolatiles (CLP, OLMO1.8)	Dan Heil	Gene Watson
P/A - Pesticide/PCBs (CLP, OLMO1.8)	Jackie Cleveland	Gene Watson
TAL - Total Metals (CLP, ILMO2.1)	Paul Humburg	Jackie Cleveland

VOLATILE ORGANICS

General

The organic findings offered in this screening report assumes that all analytical results are correct as reported and is based upon the examination of the reported holding times, blank analysis results, surrogate and matrix spike recoveries, GC/MS performance, tuning results, calibration results and internal standard areas. This report was prepared in compliance relative to the analytical and deliverable requirements specified in the U.S. EPA CLP, 3/90 SOW; the National Functional Guidelines for Organic Data Review, and NEESA Level C. All comments made within this report should be considered when examining the analytical results (Form I's).

SDG # 65sd05; CASE # 3666

Holding Times

The holding times for all of the samples were not met per the Organic Functional Guidelines and the CLP SOW (fourteen (14) days from collection date). No qualifications are required.

Tuning

All of the BFB tunes in the initial and continuing calibrations met the percent relative abundance criteria of the SOW and the Organic Functional Guidelines. No qualifications are required.

Initial Calibrations

The initial calibration that was analyzed by the laboratory for these samples was acceptable for all compound %RSDs and average RRFs. No qualifications are required.

Continuing calibrations

The continuing calibrations that were analyzed with this data package exhibited %Ds that were not within %D continuing calibration criteria. All RRFs were within calibration criteria.

VOLATILE ANALYSIS

PAGE - 2

Continuing calibrations (continued)

Specific Finding:

1. The continuing calibration, WS0530, contained compounds with %Ds greater than 25%, but less than 50%. For the samples and non-compliant compounds listed below, qualify all positive results as estimated (J).

VBLKAF5330

chloromethane

65SD0506

acetone

2. The continuing calibration, WS0530, contained compounds with %Ds greater than 50%, but less than 90%. For the samples and non-compliant compounds listed below, qualify all positive results as estimated (J) and all non detects as estimated (UJ).

VBLKAF5330

carbon disulfide

65SD0506

3. The continuing calibration, WS0531, contained compounds with %Ds greater than 25%, but less than 50%. For the samples and non-compliant compounds listed below, qualify all positive results as estimated (J).

VBLKAF6082

vinyl chloride

65SD0506RE

cis-1,3-dichloropropene

65SD05612

4. The continuing calibration, WS0531, contained compounds with %Ds greater than 50%, but less than 90%. For the samples and non-compliant compounds listed below, qualify all positive results as estimated (J) and all non detects as estimated (UJ).

VBLKAF6082

acetone

65SD0506RE

carbon disulfide

65SD05612

VOLATILE ANALYSIS

PAGE -3

Internal Standards

All internal standard EICP areas did not meet the internal standard EICP area QA/QC criteria.

Specific Finding:

5. The samples listed below exhibited low internal standard areas. Qualify all positive results associated with the non compliant internal standard areas as estimated (J) and all non detected results as estimated (UJ).

65SD0506

chlorobenzene-d₅

65SD0506RE

bromochloromethane 1,4-difluorobenzene chlorobenzene-d₅

Method Blanks

The method blanks that were analyzed exhibited contamination for chloromethane methylene chloride, acetone and TICs. The method blank results will be compared to their associated samples. Refer to the glossary of data qualifiers for a list and definition of the method blank qualifiers: CRQL, U and No Action.

Specific findings:

6. The following samples have been qualified for method blank contamination. The qualifications are for all the method blanks.

65SD0506

methylene chloride

U

65SD05612

methylene chloride

CRQL

Trip Blanks

The associated trip blank was not identified for this SDG. No qualifications are required.

VOLATILE ANALYSIS

PAGE - 4

Rinseate Blanks

The associated rinseate blank was not identified for this SDG. No qualifications are required.

Field Blanks

The associated field blank was not identified for this SDG. No qualifications are required.

Surrogates

All of the surrogate recoveries for the all blanks and samples were not within QA/QC limits.

Specific Finding:

- 7. Sample 65SD0506, exhibited high surrogate recoveries for toluene-d₈ and 1,2-dichloroethane-d₄. Qualify all positive results as estimated (J).
- 8. Sample 65SD0506RE, exhibited high surrogate recoveries for BFB and low recoveries for toluene-d₈ and 1,2-dichloroethane-d₄. Qualify all positive results as estimated (J) and all non detects as estimated (UJ).

Matrix Spike/Matrix Spike Duplicate (MS/MSD)

The associated MS/MSD was not identified for this SDG. No qualifications are required.

Field Duplicate

No qualifications are required.

Compound Identification/Quantitation

Specific Finding:

9. reject all results for sample 65SD0506RE, in favor of the original sample analysis due to non compliant surrogate recoveries and internal standard areas.

VOLATILE ANALYSIS

PAGE - 5

System Performance and Overall Assessment

The overall system performance was fair. The laboratory did not encounter any large problems. The data reviewer estimates that less than 5% of the data is qualified.

GLOSSARY OF DATA QUALIFIERS

QUALIFICATION CODES

U = Not detected

J = Estimated value

UJ = Reported quantitation limit is qualified as estimated

R = Result is rejected and unusable

NJ = Presumptive evidence for the presence of the material at an estimated value

K = Result is biased high

L = Result is biased low

METHOD BLANK QUALIFICATION CODES

CRQL = The sample result for the blank contaminant is less than the sample CRQL and is less than 10X the method blank value. The sample result for the blank contaminant is rejected and the CRQL for that analyte is reported.

U = The sample result for the blank contaminant is greater than the sample CRQL and is less than 10X the method blank value. The sample result for the blank contaminant is qualified as non detected at the analyte value reported.

No Action = The sample result for the blank contaminant is greater than the sample CRQL and is greater than 10X the method blank value. The sample result for the blank contaminant is not qualified with any blank qualifiers.

The specific findings will be noted in numerical form on the Form Is in this data validation report. These specific finding footnotes will reflect the conclusions found in the data validation process that resulted in the qualification of the data.

SUMMARY OF DATA QUALIFICATIONS

SAMPLE ID	ANALYTE ID	DL	<u>QL</u>	SPECIFIC FINDINGS
VBLKAF5330 65SD0506	chloromethane acetone	+	J	1
VBLKAF5330 65SD0506	carbon disulfide	+/-	J/UJ	2
VBLKAF6082 65SD0506RE 65SD05612	vinyl chloride cis-1,3-dichloropropene	+	J	3
VBLKAF6082 65SD0506RE 65SD05612	acetone carbon disulfide	+/-	J/UJ	4
65SD0506	All associated analytes chlorobenzene-d ₅	+/-	J/UJ	5
65SD0506RE	bromochloromethane 1,4-difluorobenzene chlorobenzene-d ₅			
65SD0506	methylene chloride	+	U	6
65SD05612	methylene chloride	+	CRQL	- 6
65SD0506	All analytes	+	J	7
65SD0506RE	All analytes	+/-	J/UJ	8
65SD0506RE	All analytes	+/-	R	9

^{*} DL denotes the Form I qualifier supplied by the laboratory QL denotes the qualifier used by the data validation firm + in the DL column denotes a positive result - in the DL column denotes a non detect result

SEMIVOLATILE ORGANICS

General

The organic findings offered in this screening report assumes that all analytical results are correct as reported and is based upon the examination of the reported holding times, blank analysis results, surrogate and matrix spike recoveries, GC/MS performance, tuning results, calibration results and internal standard areas. This report was prepared in compliance relative to the analytical and deliverable requirements specified in the U.S. EPA CLP, 3/90 SOW; to the National Functional Guidelines for Organic Data Review, and NEESA Level E. All comments made within this report should be considered when examining the analytical results (Form I's).

SDG # 65SD05; CASE # 3666

Holding Times

All extraction and analysis holding times for all samples were met for all samples per the SOW and National Functional Guidelines. No qualifications are required.

Tuning

All of the DFTPP tunes in the initial and continuing calibrations met the percent relative abundance criteria of the SOW and the Organic Functional Guidelines. No qualifications are required.

Initial Calibrations

The initial calibration that was analyzed by the laboratory for these samples was acceptable for all compound %RSDs and average RRFs. No qualifications are required.

Continuing Calibrations

The continuing calibrations that were analyzed all of the criteria and non criteria compounds met requirements for RRFs. Qualifications are required for compounds with non compliant %Ds.

SEMIVOLATILE ANALYSIS

PAGE - 2

Continuing Calibrations (continued)

Specific Findings:

1. The continuing calibration, BCC06052, contained compounds with %Ds greater than 25% D but less than 50% D. For the samples and non compliant compounds listed below, qualify all positive results as estimated (J).

SBLKAF5197B

hexachlorocyclopentadiene

65SD05612

2,4-dinitrophenol

65SD0506

2. The continuing calibration, BCC06052, contained compounds with %Ds greater than 50% D but less than 90% D. For the samples and non compliant compounds listed below, qualify all positive results as estimated (J), and all non detects as estimated (UJ).

SBLKAF5197B

carbazole

65SD05612 65SD0506

Internal Standards

All internal standard EICP areas met the internal standard EICP area QA/QC criteria. No qualifications are required.

Rethod Blanks

The method blank that was analyzed exhibited contamination for TICs. The method blank results will be compared to their associated samples. Refer to the glossary of data qualifiers for a list and definition of the method blank qualifiers: CRQL, U and No Action.

Specific Finding:

3. Reject all results for the "B" flagged TICs due to method blank contamination.

SEMIVOLATILE ANALYSIS

PAGE - 3

Rinseate Blanks

The associated rinseate blank was not identified for this SDG. No qualifications are required.

Field Blanks

The associated field blank was not identified for this SDG. No qualifications are required.

Surrogates

Surrogate recoveries for all samples and blanks met QA/QC criteria. No qualifications are required.

Matrix Spike

The associated MS/MSD was not identified for this SDG. No qualifications are required.

Field Duplicates

No qualifications are required.

Compound Identification/Quantitation

No qualifications are required.

System Performance and Overall Assessment

Overall performance was fair. The laboratory did not encounter any large problems. The data reviewer estimates less than 10% of data required qualifications.

GLOSSARY OF DATA QUALIFIERS

QUALIFICATION CODES

U = Not detected

J = Estimated value

UJ = Reported Quantitation limit is qualified as estimated

R = Result is rejected and unusable

NJ = Presumptive evidence for the presence of the material at an estimated value

K = Result is biased high

L = Result is biased low

METHOD BLANK QUALIFICATION CODES

CRQL = The sample result for the blank contaminant is less than the sample CRQL and is less than 10X the method blank value. The

sample result for the blank contaminant is rejected and the CRQL

for that analyte is reported.

 $\mathbf{U} = \mathbf{U}$ The sample result for the blank contaminant is greater than the

sample CRQL and is less than 10X the method blank value. The sample result for the blank contaminant is qualified as non

detected at the analyte value reported.

No Action = The sample result for the blank contaminant is greater than the

sample CRQL and is greater than 10X the method blank value. The sample result for the blank contaminant is not qualified with

any blank qualifiers.

The specific findings will be noted in numerical form on the Form Is in this data validation report. These specific finding footnotes will reflect the conclusions found in the data validation process that resulted in the qualification of the data.

SUMMARY OF DATA QUALIFICATIONS

SAMPLE ID	ANALYTE ID	DL	QL	SPECIFIC FINDINGS
SBLKAF5197B	hexachlorocyclo- pentadiene	+	J	1
65SD05612 65SD0506	2,4-dinitrophenol			
SBLKAF5197B 65SD05612 65SD0506	carbazole	+/-	J/UJ	2
All samples	"B" flagged TICs	+	R	3

^{*} DL denotes the Form I qualifier supplied by the laboratory QL denotes the qualifier used by the data validation firm

⁺ in the DL column denotes a positive result

⁻ in the DL column denotes a non detect result

PESTICIDE/AROCLOR ANALYSIS

General

The organic findings offered in this screening report assume that all analytical results are correct as reported and are based upon the examination of the reported holding times, GC instrument performance, initial and continuing calibrations, analytical sequence, blank analysis results, surrogate recoveries, and MS/MSD results. All comments made within this report should be considered when examining the analytical results (Form Is). Please refer the specific findings found in each category to the Summary of Data Qualification table.

SDG # SD0506

Holding Times

All extraction and analysis holding times were met based on extraction and analysis information in the data package and the chain of custody records. No qualifications are required.

GC Instrument Performance

The resolution requirements were met on both columns in the sequence. The analytical sequence was acceptable. All 4,4'-DDT and endrin breakdowns were within QC limits. All surrogate retention times were within the established retention time windows (RTWs). All PEM standard RPDs were within the 25% QC limit. No qualifications are required.

Initial Calibrations

The initial calibrations were not acceptable for the linearity of all compounds. Raw data was not required in this Level C data package.

Specific Findings

1. The initial calibration on instrument 5890K, 6/12/95, exhibited a %RSD greater than 20% for 4,4'-DDD. All positive and non-detect results in the following samples are qualified as estimated, J/UJ, for the non-compliant compounds noted below.

65SD0506 65SD05612 4,4'-DDD

DATA ASSESSMENT NARRATIVE PESTICIDE/AROCLORS

PAGE - 2

Continuing Calibrations

All compounds in the calibration standards were within the laboratory reported Retention Time Windows (RTWs) for all columns. All continuing calibration standards associated with the reported samples exhibited relative percent differences, RPDs, within the QC limits. Raw data was not required in this Level C data package. No qualifications are required.

Method Blanks

The associated method blank did not exhibit contamination for target compounds.

Instrument Blanks

The instrument blanks were free of target compound contamination.

QC Blanks

QC Blanks were not included with this SDG.

Florisil/GPC Checks

The GPC clean-up check standard exhibited acceptable spike recoveries for all compounds. The Florisil cartridge check exhibited acceptable spike recoveries for all compounds. Raw data was not required in the Level C data package.

Surrogate Recoveries

All samples exhibited compliant TCX and DCB recoveries. No qualifications are required.

Matrix Spike/Matrix Spike Duplicate

A MS/MSD pair was not included with this SGD.

Field Duplicates

A field duplicate pair was not included with this SGD.

DATA ASSESSMENT NARRATIVE PESTICIDE/AROCLORS

PAGE - 3

Analyte Identification/Quantitation

Positive results were reported in one sample. Identification and quantitation appear reasonable based on sample and standard review. Quantitation calculations were not verified because raw data is not a required deliverable for NEESA Level C QC. Sample data chromatograms were not provided although they are required with a NEESA Level C data package. Some reported positive results exhibited column quantitation %Ds greater than 25%.

Specific Findings

2. Positive results exhibited column quantitation %Ds greater than 100% are qualified as presumptively present at an estimated concentration, NJ.

Overall Assessment

The overall quality of the data package is good. The reported results are accepted as reported by the laboratory with the noted qualifications based on the limited deliverables in a Level C data package.

GLOSSARY OF DATA QUALIFIERS

QUALIFICATION CODES

U = Not detected

J = Estimated value

UJ = Reported quantitation limit is qualified as estimated

R = Result is rejected and unusable

NJ = Presumptive evidence for the presence of the material at an estimated value

K = Result is biased high

L = Result is biased low

METHOD BLANK QUALIFICATION CODES

CRQL = The sample result for the blank contaminant is less than the sample CRQL and is less than 10X the method blank value. The

sample result for the blank contaminant is rejected and the CRQL

for that analyte is reported.

 $\mathbf{U} = \mathbf{U}$ The sample result for the blank contaminant is greater than the

sample CRQL and is less than 10X the method blank value. The sample result for the blank contaminant is qualified as non

detected at the analyte value reported.

No Action = The sample result for the blank contaminant is greater than the

sample CRQL and is greater than 10X the method blank value. The sample result for the blank contaminant is not qualified with

any blank qualifiers.

The specific Findings will be noted in numerical form on the Form Is in this data validation report. These specific finding footnotes will reflect the conclusions found in the data validation process that resulted in the qualification of the data.

SUMMARY OF DATA QUALIFICATIONS

SAMPLE ID	ANALYTE ID	DL	<u>QL</u>	SPECIFIC FINDINGS
65SD0506 65SD05612	4,4'-DDD	+/U	J/UJ	1
All	All P >100%	+	NJ	2

^{*} DL denotes the Form I qualifier supplied by the laboratory QL denotes the qualifier used by the data validation firm

⁺ in the DL column denotes a positive result

⁻ in the DL column denotes a non detect result

DATA ASSESSMENT NARRATIVE Metals

General

The inorganic findings offered in this screening report assumes that all analytical results are correct as reported and is based upon the examination of the reported holding times, calibration standards, blank analysis results and MS/MSD results. A minimum of ten percent of all laboratory calculations are recalculated by the reviewer. All comments made within this report should be considered when examining the analytical results (Form Is).

This data package consisted of results from Lejuene, SDG# N/A, the analysis of two (2) field soil samples and no Matrix Spike and Duplicate pair for TAL Metals. Overall, the inorganic data quality was fair. All protocol requirements were followed with the exception of the following problems.

Specific QA/QC deficiency Findings are listed numerically in the following categories:

Holding Times

The holding times were met as specified in Section 3 of the NEESA (20.2-047B) QA protocol.

Calibration

No deficiencies in this section.

Preparation and Field Blank

1. The preparation blank exhibited contamination for the following elements.

Calcium 11.4 mg/kg Zinc 1.29 mg/kg

The USEPA requires that all sample values below five times the preparation or calibration blank contamination be qualified as estimated, "U".

Interferences

No significant interferences were observed.

Metals Data Assessment Narrative (continued - Page 2)

Spike Recovery

No deficiencies in this section.

Duplicate

No deficiencies in this section.

LCS

No deficiencies in this section.

Serial Dilution

No deficiencies in this section.

SUMMARY OF DATA QUALIFICATIONS

SAMPLE ID

ANALYTE

DL

OL

FINDING

All soil samples

Ca and Zn. + U 1

DL - denotes laboratory qualifier/reported value + denotes positive values U denotes non-detect values

QL - denotes data validation qualifier

JOB# 3681

SAMPLES AND FRACTIONS REVIEWED

Sample Identifications			Analytical Fractions			
BAKER ID	QUANT ID	<u>Matrix</u>	<u>VOA</u>	<u>sv</u>	P/A	TAL
65DW0201	AF4532	WATER	X	X	X	X
Total Number of Samples (Water/Soil)			1/0	1/0	1/0	1/0
Individual fractions were reviewed as follows:						

	Primary	Secondary
VOA - Volatiles (CLP, OLMo1.8) SV - Semivolatiles (CLP, OLMO1.8) P/A - Pesticide/PCBs (CLP, OLMO1.8) TAL - Total Metals (CLP, ILMO2.1)	Dan Heil Dan Heil Jackie Cleveland Paul Humburg	Gene Watson Gene Watson Gene Watson Jackie Cleveland

VOLATILE ORGANICS

General

The organic findings offered in this screening report assumes that all analytical results are correct as reported and is based upon the examination of the reported holding times, blank analysis results, surrogate and matrix spike recoveries, GC/MS performance, tuning results, calibration results and internal standard areas. This report was prepared in compliance relative to the analytical and deliverable requirements specified in the U.S. EPA CLP, 3/90 SOW; the National Functional Guidelines for Organic Data Review, and NEESA Level C. All comments made within this report should be considered when examining the analytical results (Form I's).

SDG # 65DW02; CASE # 3681

Holding Times

The holding times for all of the samples were not met per the Organic Functional Guidelines and the CLP SOW (fourteen (14) days from collection date). No qualifications are required.

Tuning

All of the BFB tunes in the initial and continuing calibrations met the percent relative abundance criteria of the SOW and the Organic Functional Guidelines. No qualifications are required.

Initial Calibrations

The initial calibrations that were analyzed by the laboratory for these samples were not acceptable for all compound %RSDs and the average RRFs for all of the criteria compounds did not meet the initial calibration criteria.

Specific Finding:

1. The initial calibration analyzed on, 05/05/95, contained compounds with %RSDs greater than 30%. No qualifications are required because, no samples were analyzed following the calibration.

chloroethane

VOLATILE ANALYSIS

PAGE - 2

Continuing calibrations

The continuing calibrations that were analyzed with this data package exhibited %Ds that were not within %D continuing calibration criteria. All RRFs were within calibration criteria.

Specific Finding:

2. The continuing calibration, QS0531, contained compounds with %Ds greater than 25%, but less than 50%. For the samples and non-compliant compounds listed below, qualify all positive results as estimated (J).

VBLKAF5431 65DW0201 styrene

Internal Standards

All internal standard EICP areas met the internal standard EICP area QA/QC criteria. No qualifications are required.

Method Blanks

The method blanks that were analyzed exhibited contamination for methylene chloride, acetone, xylene and TICs. The method blank results will be compared to their associated samples. Refer to the glossary of data qualifiers for a list and definition of the method blank qualifiers: CRQL, U and No Action.

Specific findings:

3. The following samples have been qualified for method blank contamination. The qualifications are for all the method blanks.

65DW0201

methylene chloride

CRQL

4. Reject all "B" flagged TICs due to method blank contamination.

VOLATILE ANALYSIS

PAGE - 3

Trip Blanks

The associated trip blank was not identified for this SDG. No qualifications are required.

Rinseate Blanks

The associated rinseate blank was not identified for this SDG. No qualifications are required.

Field Blanks

The associated field blank was not identified for this SDG. No qualifications are required.

Surrogates

All of the surrogate recoveries for the all blanks and samples were within QA/QC limits. No qualifications are required.

Matrix Spike/Matrix Spike Duplicate (MS/MSD)

The associated MS/MSD was not identified for this SDG. No qualifications are required.

Field Duplicate

No qualifications are required.

Compound Identification/Quantitation

No qualifications are required.

System Performance and Overall Assessment

The overall system performance was fair. The laboratory did not encounter any large problems. The data reviewer estimates that less than 5% of the data is qualified.

GLOSSARY OF DATA QUALIFIERS

QUALIFICATION CODES

U = Not detected

J = Estimated value

UJ = Reported quantitation limit is qualified as estimated

R = Result is rejected and unusable

NJ = Presumptive evidence for the presence of the material at an estimated value

K = Result is biased high

L = Result is biased low

METHOD BLANK QUALIFICATION CODES

CROL = The sample result for the blank contaminant is less than the sample CRQL and is less than 10X the method blank value. The sample result for the blank contaminant is rejected and the CRQL

for that analyte is reported.

U = The sample result for the blank contaminant is greater than the sample CRQL and is less than 10X the method blank value. The sample result for the blank contaminant is qualified as non

detected at the analyte value reported.

No Action = The sample result for the blank contaminant is greater than the

sample CRQL and is greater than 10X the method blank value. The sample result for the blank contaminant is not qualified with

any blank qualifiers.

The specific findings will be noted in numerical form on the Form Is in this data validation report. These specific finding footnotes will reflect the conclusions found in the data validation process that resulted in the qualification of the data.

SUMMARY OF DATA QUALIFICATIONS

SAMPLE ID	ANALYTE ID	DL	<u>QL</u>	SPECIFIC FINDINGS
VBLKAF5431 65DW0201	styrene	+	J	2
65DW0201	methylene chloride	+	CRQL	3
65DW0201	"B" flagged TICs	+	R	4

^{*} DL denotes the Form I qualifier supplied by the laboratory QL denotes the qualifier used by the data validation firm

⁺ in the DL column denotes a positive result

⁻ in the DL column denotes a non detect result

SEMIVOLATILE ORGANICS

General

The organic findings offered in this screening report assumes that all analytical results are correct as reported and is based upon the examination of the reported holding times, blank analysis results, surrogate and matrix spike recoveries, GC/MS performance, tuning results, calibration results and internal standard areas. This report was prepared in compliance relative to the analytical and deliverable requirements specified in the U.S. EPA CLP, 3/90 SOW; to the National Functional Guidelines for Organic Data Review, and NEESA Level E. All comments made within this report should be considered when examining the analytical results (Form I's).

SDG # 65DW02; CASE # 3681

Holding Times

All extraction and analysis holding times for all samples were met for all samples per the SOW and National Functional Guidelines. No qualifications are required.

Tuning

All of the DFTPP tunes in the initial and continuing calibrations met the percent relative abundance criteria of the SOW and the Organic Functional Guidelines. No qualifications are required.

Initial Calibrations

The initial calibration that was analyzed by the laboratory for these samples was acceptable for all compound %RSDs and average RRFs. No qualifications are required.

Continuing Calibrations

The continuing calibration that was analyzed all of the criteria and non criteria compounds met requirements for RRFs and %Ds. No qualifications are required.

Internal Standards

All internal standard EICP areas met the internal standard EICP area QA/QC criteria. No qualifications are required.

SEMIVOLATILE ANALYSIS

PAGE - 2

Method Blanks

The method blank that was analyzed exhibited contamination for bis(2-ethylhexyl)phthalate. The method blank results will be compared to their associated samples. Refer to the glossary of data qualifiers for a list and definition of the method blank qualifiers: CRQL, U and No Action.

Specific Finding:

1. The samples listed below have been qualified for method blank contamination. The qualification are for all method blanks.

65DW0201

bis(2-ethylhexyl) phthalate

CRQL

Rinseate Blanks

The associated rinseate blank was not identified for this SDG. No qualifications are required.

Field Blanks

The associated field blank was not identified for this SDG. No qualifications are required.

Surrogates

Surrogate recoveries for all samples and blanks met QA/QC criteria. No qualifications are required.

Matrix Spike

The associated MS/MSD was not identified for this SDG. No qualifications are required.

Field Duplicates

No qualifications are required.

SEMIVOLATILE ANALYSIS

PAGE - 3

Compound Identification/Quantitation

No qualifications are required.

System Performance and Overall Assessment

Overall performance was fair. The laboratory did not encounter any large problems. The data reviewer estimates less than 10% of data required qualifications.

GLOSSARY OF DATA QUALIFIERS

QUALIFICATION CODES

U = Not detected

J = Estimated value

UJ = Reported Quantitation limit is qualified as estimated

R = Result is rejected and unusable

NJ = Presumptive evidence for the presence of the material at an estimated value

K = Result is biased high

L = Result is biased low

METHOD BLANK QUALIFICATION CODES

CRQL = The sample result for the blank contaminant is less than the sample CRQL and is less than 10X the method blank value. The sample result for the blank contaminant is rejected and the CRQL for that analyte is reported.

U = The sample result for the blank contaminant is greater than the sample CRQL and is less than 10X the method blank value. The sample result for the blank contaminant is qualified as non detected at the analyte value reported.

No Action = The sample result for the blank contaminant is greater than the sample CRQL and is greater than 10X the method blank value. The sample result for the blank contaminant is not qualified with any blank qualifiers.

The specific findings will be noted in numerical form on the Form Is in this data validation report. These specific finding footnotes will reflect the conclusions found in the data validation process that resulted in the qualification of the data.

SUMMARY OF DATA QUALIFICATIONS

SAMPLE ID

ANALYTE ID

DL QL

SPECIFIC FINDINGS

65DW0201

bis(2-ethylhexyl) phthalate

+ CRQL 1

DL denotes the Form I qualifier supplied by the laboratory
QL denotes the qualifier used by the data validation firm
+ in the DL column denotes a positive result
- in the DL column denotes a non detect result

DATA ASSESSMENT NARRATIVE PESTICIDE/AROCLOR ANALYSIS

General

The organic findings offered in this screening report assume that all analytical results are correct as reported and are based upon the examination of the reported holding times, GC instrument performance, initial and continuing calibrations, analytical sequence, blank analysis results, surrogate recoveries, and MS/MSD results. All comments made within this report should be considered when examining the analytical results (Form Is). Please refer the specific findings found in each category to the Summary of Data Qualification table.

SDG # DW0201

Holding Times

All extraction and analysis holding times were met based on extraction and analysis information in the data package and the chain of custody records. No qualifications are required.

GC Instrument Performance

The resolution requirements were met on both columns in the sequence. The analytical sequence was acceptable. All 4,4'-DDT and endrin breakdowns were within QC limits. All surrogate retention times were within the established retention time windows (RTWs). All PEM standard RPDs were within the 25% QC limit. No qualifications are required.

Initial Calibrations

The initial calibrations were acceptable for the linearity of all compounds. Raw data was not required in this Level C data package. No qualifications are required.

Continuing Calibrations

All compounds in the calibration standards were within the laboratory reported Retention Time Windows (RTWs) for all columns. All continuing calibration standards associated with the reported samples exhibited relative percent differences, RPDs, within the QC limits. Raw data was not required in this Level C data package. No qualifications are required.

DATA ASSESSMENT NARRATIVE PESTICIDE/AROCLORS

PAGE - 2

Method Blanks

The associated method blank did not exhibit contamination for target compounds.

Instrument Blanks

The instrument blanks were free of target compound contamination.

QC Blanks

QC Blanks were not included with this SDG.

Florisil/GPC Checks

The Florisil cartridge check exhibited acceptable spike recoveries for all compounds. A GPC clean-up check standard was not required as only water samples were included in this data package. Raw data was not required in the Level C data package.

Surrogate Recoveries

All samples exhibited compliant TCX and DCB recoveries. No qualifications are required.

Matrix Spike/Matrix Spike Duplicate

A MS/MSD pair was not included with this SGD.

Field Duplicates

A field duplicate pair was not included with this SGD.

Analyte Identification/Quantitation

No positive results were reported. Identification and quantitation appear reasonable based on sample and standard review. Quantitation calculations were not verified because raw data is not a required deliverable for NEESA Level C QC. Sample data chromatograms were not provided although they are required with a NEESA Level C data package.

DATA ASSESSMENT NARRATIVE PESTICIDE/AROCLORS

PAGE - 3

Overall Assessment

The overall quality of the data package is good. The reported results are accepted as reported by the laboratory with the noted qualifications based on the limited deliverables in a Level C data package.

GLOSSARY OF DATA QUALIFIERS

QUALIFICATION CODES

U = Not detected

J = Estimated value

UJ = Reported quantitation limit is qualified as estimated

R = Result is rejected and unusable

NJ = Presumptive evidence for the presence of the material at an estimated value

K = Result is biased high

L = Result is biased low

METHOD BLANK QUALIFICATION CODES

CRQL = The sample result for the blank contaminant is less than the sample CRQL and is less than 10X the method blank value. The sample result for the blank contaminant is rejected and the CRQL for that analyte is reported.

U = The sample result for the blank contaminant is greater than the sample CRQL and is less than 10X the method blank value. The sample result for the blank contaminant is qualified as non detected at the analyte value reported.

No Action = The sample result for the blank contaminant is greater than the sample CRQL and is greater than 10X the method blank value. The sample result for the blank contaminant is not qualified with any blank qualifiers.

The specific Findings will be noted in numerical form on the Form Is in this data validation report. These specific finding footnotes will reflect the conclusions found in the data validation process that resulted in the qualification of the data.

SAMPLE ID	ANALYTE ID	DL	<u>QL</u>	SPECIFIC FINDINGS
NO QUALIFICATIONS	ARE REQUIRED.			

* DL denotes the Form I qualifier supplied by the laboratory QL denotes the qualifier used by the data validation firm + in the DL column denotes a positive result - in the DL column denotes a non detect result

016

DATA ASSESSMENT NARRATIVE Metals

General

The inorganic findings offered in this screening report assumes that all analytical results are correct as reported and is based upon the examination of the reported holding times, calibration standards, blank analysis results and MS/MSD results. A minimum of ten percent of all laboratory calculations are recalculated by the reviewer. All comments made within this report should be considered when examining the analytical results (Form Is).

This data package consisted of results from Lejuene, SDG# N/A, the analysis of one (1) field water sample and no Matrix Spike and Duplicate pair for TAL Metals. Overall, the inorganic data quality was fair. All protocol requirements were followed with the exception of the following problems.

Specific QA/QC deficiency Findings are listed numerically in the following categories:

<u>Holding Times</u>

The holding times were met as specified in Section 3 of the NEESA (20.2-047B) QA protocol.

Calibration

No deficiencies in this section.

Preparation and Field Blank

No deficiencies in this section.

Interferences

No significant interferences were observed.

Spike Recovery

No deficiencies in this section.

Duplicate

No deficiencies in this section.

Metals Data Assessment Narrative (continued - Page 2)

<u>LCS</u>

No deficiencies in this section.

Serial Dilution

No deficiencies in this section.

SAMPLE ID	ANALYTE	DL	<u>QL</u>	FINDING
Data stands as reported withou	t qualification.			

- DL denotes laboratory qualifier/reported value + denotes positive values U denotes non-detect values
- QL denotes data validation qualifier

SDG# AC01F (Case # 82295)

SAMPLES AND FRACTIONS REVIEWED

Sample Iden	tifications		Analytical Fractions			ons
BAKER ID	QUANT ID	<u>Matrix</u>	<u>VOA</u>	<u>sv</u>	<u>P/P</u>	<u>M&C</u>
73-FS01-BC01F	082295-0001	TISSUE	X	X	X	X
73-FS01-BC01FDUP	082295-0001DUP	TISSUE	Χ	X	X	X
73-FS01-BC02F	082295-0002	TISSUE	Χ	X	Χ	X
73-FS01-BF01F	082295-0003	TISSUE	Χ	Χ	Χ	Χ
73-FS01-PF01F	082295-0004	TISSUE	X	X	X	X
73-FS01-SF01W	082295-0005	TISSUE	Χ	X	X	X
73-FS01-SF01F	082295-0006	TISSUE	Χ	Χ	Χ	Χ
73-FS02-BC01F	082295-0007	TISSUE	Χ	X	Χ	Χ
73-FS02-BC02F	082295-0008	TISSUE	X	X	X	Χ
73-FS02-YM01W	082295-0009	TISSUE	Χ	Χ	X	Χ
73-FS02-SF01W	082295-0010	TISSUE	Χ	X	X	X
73-FS02-SF01WMS	082295-0010MS	TISSUE	Χ	X	X	Χ
73-FS02-SF01WMD	082295-0010MD	TISSUE	X	X	Χ	Χ
73-FS02-SF01WDUP	082295-0010DUP	TISSUE	Χ	X	Χ	Χ
73-FS02-SF01F	082295-0011	TISSUE	Χ	X	X	Χ
73-FS02-SS01F	082295-0012	TISSUE	Χ	X	X	X
73-FS02-SPM01F	082295-0013	TISSUE	Χ	X	Χ	X
73-FS02-PF01W	082295-0014	TISSUE	Χ	X	X	X
73-FS03-BC01F	082295-0015	TISSUE	Χ	X	Χ	Χ
73-FS03-BC02F	082295-0016	TISSUE	Χ	Χ	Χ	X
73-FS03-AC01F	082295-0017	TISSUE	X	X	X	Χ
73-FS03-SF01F	082295-0018	TISSUE	Χ	X	Χ	Χ
73-FS03-SM01F	082295-0019	TISSUE	Χ	X	X	X
73-FS03-YM01W	082295-0020	TISSUE	Χ	X	X	Χ
65-FS04-BG01W	082295-0021	TISSUE	X	X	X	X
65-FS04-BG01WMS	082295-0021MS	TISSUE	X		Χ	X
65-FS04-BG01WMD	082295-0021MD	TISSUE	Χ		Χ	Χ
65-FS04-BG01WDUP	082295-0021DUP	TISSUE	X	Χ	X	
65-FS04-BG01F	082295-0022	TISSUE	Χ	Χ	Χ	X
65-FS04-RS01W	082295-0023	TISSUE	X	X	X	X
65-FS05-LB01W	082295-0024	TISSUE	Χ	X	Χ	Χ
65-FS05-LB01F	082295-0025	TISSUE	Χ	X	X	X
65-FS05-RS01W	082295-0026	TISSUE	X	X	X	Χ
65-FS05-RS01F	082295-0027	TISSUE	X	Χ	X	X
65-FS05-BG01W	082295-0028	TISSUE	X	X	X	Χ
65-FS05-BG01F	082295-0029	TISSUE	X	X	X	Χ

VOLATILE ORGANICS

General

The organic findings offered in this screening report assumes that all analytical results are correct as reported and is based upon the examination of the reported holding times, blank analysis results, surrogate and matrix spike recoveries, GC/MS performance, tuning results, calibration results and internal standard areas. This report was prepared in compliance relative to the analytical and deliverable requirements specified in the U.S. EPA CLP, 3/90 SOW; the National Functional Guidelines for Organic Data Review, and NEESA Level C. All comments made within this report should be considered when examining the analytical results (Form I's).

SDG # AC01F; CASE # 82295

Holding Times

The holding times for all of the samples were not met per the Organic Functional Guidelines and the CLP SOW (fourteen (14) days from collection date). However, there is no established holding time for tissue samples, and the data reviewer is assuming that the samples remained frozen until analysis. No qualifications are required.

Tuning

All of the BFB tunes in the initial and continuing calibrations met the percent relative abundance criteria of the SOW and the Organic Functional Guidelines. No qualifications are required.

Initial Calibrations

The initial calibrations that were analyzed by the laboratory for these samples were not acceptable for all compound %RSDs and the average RRFs for all of the criteria compounds did not meet the initial calibration criteria.

Specific Finding:

1. The initial calibration analyzed on, 06/21/95, contained compounds with %RSDs greater than 30%. No qualifications are required because, no samples were analyzed following the calibration.

acetone

VOLATILE ANALYSIS

PAGE - 2

Continuing calibrations

The continuing calibrations that were analyzed with this data package exhibited %Ds that were not within %D continuing calibration criteria. All RRFs were within calibration criteria.

Specific Finding:

2PF01W

2. The continuing calibration, V2872, contained compounds with %Ds greater than 25%, but less than 50%. For the samples and non-compliant compounds listed below, qualify all positive results as estimated (J).

3. The continuing calibration, V4380, contained compounds with %Ds greater than 25%, but less than 50%. For the samples and non-compliant compounds listed below, qualify all positive results as estimated (J).

VBLK49 bromomethane
1BF01F chloroethane
2BC01F 1,1-dichloroethene
2BC02F
2YM01W
2SF01W
2SF01WDUP
2SF01WMS
2SF01WMSD
2SPM01F

VOLATILE ANALYSIS

PAGE - 3

Continuing calibrations (continued)

Specific Finding:

4. The continuing calibration, V4381, contained compounds with %Ds greater than 25%, but less than 50%. For the samples and non-compliant compounds listed below, qualify all positive results as estimated (J).

VBLK51 2SS01F chloromethane

acetone

5RS01F

2-butanone

Internal Standards

All internal standard EICP areas met the internal standard EICP area QA/QC criteria. No qualifications are required.

Method Blanks

The method blanks that were analyzed exhibited contamination for methylene chloride, acetone, chlorobenzene and TICs. The method blank results will be compared to their associated samples. Refer to the glossary of data qualifiers for a list and definition of the method blank qualifiers: CRQL, U and No Action.

Specific findings:

5. The following samples have been qualified for method blank contamination. The qualifications are for all the method blanks.

3SM01F

methylene chloride

CRQL

4BG01W

4BG01WDUP

4BG01WMS

1BF01F

2BC01F

2BC02F

200021

2SF01W 2SF01WDUP

2SPM01F

VOLATILE ANALYSIS

PAGE - 4

Method Blanks (continued)

Specific findings:

5. The following samples have been qualified for method blank contamination. The qualifications are for all the method blanks.

2YM01W 2SF01WMS 2SF01WMSD 2SS01F methylene chloride

CRQL

6. Reject all "B" flagged TICs due to method blank contamination.

Trip Blanks

The associated trip blank was not identified for this SDG. No qualifications are required.

Rinseate Blanks

The associated rinseate blank was not identified for this SDG. No qualifications are required.

Field Blanks

The associated field blank was not identified for this SDG. No qualifications are required.

Surrogates

All of the surrogate recoveries for the all blanks and samples were not within QA/QC limits. Several samples exhibited surrogates that were diluted out. No qualifications are required.

VOLATILE ANALYSIS

PAGE - 5

Matrix Spike/Matrix Spike Duplicate (MS/MSD)

All spike and RPD recoveries were within advisory limit for MS/MSD 2SF01W and MS/MSD 4BGw01W. No qualifications are required.

Field Duplicate

No qualifications are required.

Compound Identification/Quantitation

No qualifications are required.

System Performance and Overall Assessment

The overall system performance was fair. The laboratory did not encounter any large problems. The data reviewer estimates that less than 5% of the data is qualified.

GLOSSARY OF DATA QUALIFIERS

QUALIFICATION CODES

U = Not detected

J = Estimated value

UJ = Reported quantitation limit is qualified as estimated

R = Result is rejected and unusable

NJ = Presumptive evidence for the presence of the material at an estimated value

K = Result is biased high

L = Result is biased low

METHOD BLANK QUALIFICATION CODES

CRQL = The sample result for the blank contaminant is less than the sample CRQL and is less than 10X the method blank value. The

sample result for the blank contaminant is rejected and the CRQL

for that analyte is reported.

U = The sample result for the blank contaminant is greater than the

sample CRQL and is less than 10X the method blank value. The sample result for the blank contaminant is qualified as non

detected at the analyte value reported.

No Action = The sample result for the blank contaminant is greater than the

sample CRQL and is greater than 10X the method blank value. The sample result for the blank contaminant is not qualified with

any blank qualifiers.

The specific findings will be noted in numerical form on the Form Is in this data validation report. These specific finding footnotes will reflect the conclusions found in the data validation process that resulted in the qualification of the data.

SAMPLE ID	ANALYTE ID	DL	<u>QL</u>	SPECIFIC FINDINGS
VBLK20 3BC01F 3BC02F 3AC01F 3SF01F 4RS01W 5LB01W 5LB01F 5BG01W 5BG01F	acetone	+	J	2
VBLK49 1BF01F 2BC01F 2BC02F 2YM01W 2SF01W 2SF01WDUP 2SF01WMS 2SF01WMSD 2SPM01F 2PF01W	bromomethane chloroethane 1,1-dichloroethene	+	J	3
VBLK51 2SS01F 5RS01F	chloromethane acetone 2-butanone	+	J	4
3SM01F 4BG01W 4BG01WDUP 4BG01WMS 1BF01F 2BC01F 2BC02F 2SF01W	methylene chloride -	+	CROL	5

^{*} DL denotes the Form I qualifier supplied by the laboratory OL denotes the qualifier used by the data validation firm + in the DL column denotes a positive result - in the DL column denotes a non detect result

Page - 2

SAMPLE ID	ANALYTE ID	<u>DL</u>	OL SPEC	CIFIC FINDINGS
2YM01W 2SF01WMS 2SF01WMSD 2SS01F 2SF01WDUP 2SPM01F	methylene chloride	+	CRQL	5
All samples	"B" flagged TICs	+	R	6

^{*} DL denotes the Form I qualifier supplied by the laboratory QL denotes the qualifier used by the data validation firm

⁺ in the DL column denotes a positive result

⁻ in the DL column denotes a non detect result

SEMIVOLATILE ORGANICS

General

The organic findings offered in this screening report assumes that all analytical results are correct as reported and is based upon the examination of the reported holding times, blank analysis results, surrogate and matrix spike recoveries, GC/MS performance, tuning results, calibration results and internal standard areas. This report was prepared in compliance relative to the analytical and deliverable requirements specified in the U.S. EPA CLP, 3/90 SOW; to the National Functional Guidelines for Organic Data Review, and NEESA Level C. All comments made within this report should be considered when examining the analytical results (Form I's).

SDG # AC01F; CAGE # 82295

Holding Times

The holding times for all of the samples were not met per the Organic Functional Guidelines and the CLP SOW. However, there is no established holding time for tissue samples, and the data reviewer is assuming that the samples remained frozen until extraction. No qualifications are required.

Tuning

All of the DFTPP tunes in the initial and continuing calibrations met the percent relative abundance criteria of the SOW and the Organic Functional Guidelines. No qualifications are required.

Initial Calibrations

The initial calibration that was analyzed by the laboratory for these samples was acceptable for all compound %RSDs and average RRFs. No qualifications are required.

Continuing Calibrations

The continuing calibrations that were analyzed all of the criteria and non criteria compounds met requirements for RRFs. Qualifications are required for compounds with non compliant %Ds.

SEMIVOLATILE ANALYSIS

PAGE - 2

Continuing Calibrations (continued)

Specific Findings:

1. The continuing calibration, ST20950725A, contained compounds with %Ds greater than 25% D but less than 50% D. For the samples and non compliant compounds listed below, qualify all positive results as estimated (J).

SBLK1A
3YM01W
4BG01W
1BC01FDUP
1BC02F
1BF01F
1PF01F
1SF01W
1SF01F
2BC01F

2BC02F

3-nitroaniline

2. The continuing calibration, ST20950726, contained compounds with %Ds greater than 25% D but less than 50% D. For the samples and non compliant compounds listed below, qualify all positive results as estimated (J).

SBLK20 4BG01WMSD 4BG01WMS 2SF01F 3,3'-dichlorobenzidine

SEMIVOLATILE ANALYSIS

PAGE - 3

Continuing Calibrations (continued)

Specific Finding;

3. The continuing calibration, ST20950728, contained compounds with %Ds greater than 25% D but less than 50% D. For the samples and non compliant compounds listed below, qualify all positive results as estimated (J).

4-chloroaniline

2PF01W 3SF01F 3SM01F 5LB01W 5RS01W 5BG01W 5BG01F SBLK10 2SF01W

4-nitroaniline 3,3'-dichlorobenzidine -

4. The continuing calibration, ST20950728, contained compounds with %Ds greater than 50% D but less than 90% D. For the samples and non compliant compounds listed below, qualify all positive results as estimated (J), and all non detects as estimated (UJ).

2PF01W 3SF01F

3-nitroaniline

35F01F

3SM01F

5LB01W

5RS01W

5BG01W

5BG01F

SBLK10

2SF01W

Internal Standards

All internal standard EICP areas met the internal standard EICP area QA/QC criteria. No qualifications are required.

SEMIVOLATILE ANALYSIS

PAGE - 4

Method Blanks

The method blank that was analyzed exhibited contamination for phenol, di-n-butylphthalate and TICs. The method blank results will be compared to their associated samples. Refer to the glossary of data qualifiers for a list and definition of the method blank qualifiers: CRQL, U and No Action.

Specific Finding:

5. The following samples have been qualified for method blank contamination. The qualifications are for all the method blanks.

di-n-butylphthalate CRQL 1BC01F 2SPM01F 2SS01F 4BG01F 4RS01W 5LB01F 2SF01WMS 2SF01WMSD 1BC02F 1BF01F 1SF01F 2BC01F 2BC02F 2PF01W

6. Reject all results for the "B" flagged TICs due to method blank contamination.

Rinseate Blanks

2SF01F 5BG01F

The rinseate blank that was analyzed did not exhibit contamination. No qualifications are required.

SEMIVOLATILE ANALYSIS

PAGE - 5

Field Blanks

The associated field blank was not identified for this SDG. No qualifications are required.

Surrogates

Surrogate recoveries for all samples and blanks did not meet QA/QC criteria. The SOW and the National Functional Guidelines allow one surrogate for each fraction to fall out side the QA/QC criteria as long as the recovery is greater than 10%. No qualifications are required.

Matrix Spike

All spike and RPD recoveries were not within advisory limits for MS/MSD 4BG01W. The MS sample exhibited a low spike recovery for pyrene. No qualifications are required.

Field Duplicates

No qualifications are required.

Compound Identification/Quantitation

No qualifications are required.

System Performance and Overall Assessment

Overall performance was fair. The laboratory did not encounter any large problems. The data reviewer estimates less than 10% of data required qualifications.

GLOSSARY OF DATA QUALIFIERS

QUALIFICATION CODES

U = Not detected

J = Estimated value

UJ = Reported Quantitation limit is qualified as estimated

R = Result is rejected and unusable

NJ = Presumptive evidence for the presence of the material at an estimated value

K = Result is biased high

L = Result is biased low

METHOD BLANK QUALIFICATION CODES

CRQL = The sample result for the blank contaminant is less than the sample CRQL and is less than 10X the method blank value. The sample result for the blank contaminant is rejected and the CRQL for that analyte is reported.

U = The sample result for the blank contaminant is greater than the sample CRQL and is less than 10X the method blank value. The sample result for the blank contaminant is qualified as non detected at the analyte value reported.

No Action = The sample result for the blank contaminant is greater than the sample CRQL and is greater than 10X the method blank value. The sample result for the blank contaminant is not qualified with any blank qualifiers.

The specific findings will be noted in numerical form on the Form Is in this data validation report. These specific finding footnotes will reflect the conclusions found in the data validation process that resulted in the qualification of the data.

SAMPLE ID	ANALYTE ID	DL	<u>QL</u>	SPECIFIC FINDINGS
SBLK1A 3YM01W 4BG01W 1BC01FDUP 1BC02F 1BF01F 1PF01F 1SF01W 1SF01F 2BC01F 2BC02F	3-nitroaniline	+	J	1
SBLK20 4BG01WMSD 4BG01WMS 2SF01F	3,3'-dichlorobenzidine	+	J	2
2PF01W 3SF01F 3SM01F 5LB01W 5RS01W 5BG01W 5BG01F SBLK10 2SF01W	4-chloroaniline 4-nitroaniline 3,3'-dichlorobenzidine	+	J	3
2PF01W 3SF01F 3SM01F 5LB01W 5RS01W 5BG01F SBLK10 2SF01W	3-nitroaniline	+/-	J/UJ	4

DL denotes the Form I qualifier supplied by the laboratory QL denotes the qualifier used by the data validation firm + in the DL column denotes a positive result

⁻ in the DL column denotes a non detect result

Page - 2

SAMPLE ID	ANALYTE ID	<u>DL</u>	<u>OL</u>	SPECIFIC FINDINGS
1BC01F 2SPM01F 2SS01F 4BG01F 4RS01W 5LB01F	di-n-butylphthalate	+	CRQL	5
2SF01WMS 2SF01WMSD 1BC02F 1BF01F 1SF01F 2BC01F				
2BC01F 2PF01W 2SF01F 5BG01F				
All samples	"B" flagged TICs	+	R	6

^{*} DL denotes the Form I qualifier supplied by the laboratory QL denotes the qualifier used by the data validation firm

⁺ in the DL column denotes a positive result

⁻ in the DL column denotes a non detect result

PESTICIDE/AROCLOR ANALYSIS

General

The organic findings offered in this screening report assume that all analytical results are correct as reported and are based upon the examination of the reported holding times, GC instrument performance, initial and continuing calibrations, analytical sequence, blank analysis results, surrogate recoveries, and MS/MSD results. All comments made within this report should be considered when examining the analytical results (Form Is). Please refer the specific findings found in each category to the Summary of Data Qualification table.

SDG # AC01F

Holding Times

All extraction and analysis holding times were met based on extraction and analysis information, chain of custody records, and the assumption that the tissue samples were frozen upon receipt. No qualifications are required.

GC Instrument Performance

The resolution requirements were met on both columns in the sequence. The analytical sequence was acceptable. All 4,4'-DDT and endrin breakdowns were within QC limits. All surrogate retention times were within the established retention time windows (RTWs). All PEM standard RPDs were within the 25% QC limit. No qualifications are required.

Initial Calibrations

The initial calibrations were not acceptable for the linearity of all compounds. Rawdata was not required in this Level C data package.

Specific Findings

1. The initial calibration analyzed on instrument GC42A, 07/28/95, on the DB-608 and DB-1701 columns exhibited three (3) compounds with %RSDs outside the criteria. All positive and non-detect results for the noted compounds, in the following samples are qualified as estimated, J/UJ.

All Samples

Dieldrin 4,4'-DDE Endosulfan sulfate

DATA ASSESSMENT NARRATIVE PESTICIDE/AROCLORS

PAGE - 2

Continuing Calibrations

All compounds in the calibration standards were within the laboratory reported Retention Time Windows (RTWs) for all columns. All continuing calibration standards associated with the reported samples exhibited relative percent differences, RPDs, within the QC limits with the exception of several compounds in the CCAL INDAMA%, 7/30/95, 1512, on the DB-608 column. Raw data was not required in this Level C data package.

Specific Finding

2. The continuing calibration standard INDAMA analyzed on 07/30/95 at 1512 exhibited non-compliant %Ds for all compounds on the DB-608 column. All positive and non-detect results for the noted compounds in the following samples are qualified as estimated, J/UJ.

3-SM01F
3-YM01W
4-BG01W
4-BG01WDU
4-BG01F
4-RS01W
5-LB01W
5-LB01F
5-RS01W
5-RS01F
5-BG01W
5-BG01F

α-BHC γ-BHC Heptachlor Endosulfan I Dieldrin Endrin 4,4'-DDD 4,4'-DDT Methoxychlor

Method Blanks

The associated method blank did not exhibit contamination for target compounds.

Instrument Blanks

One (1) instrument blank exhibited contamination for three (3) target compounds. All compounds detected were less than the CRQLs. Qualifications were not required because the contamination was not noted in the associated field samples. The laboratory noted that a contaminated syringe caused the problem.

DATA ASSESSMENT NARRATIVE PESTICIDE/AROCLORS

PAGE - 3

QC Blanks

QC blanks were not included in this data package.

Florisil/GPC Checks

The Florisil cartridge check and the GPC clean-up check standard exhibited acceptable spike recoveries for all compounds. Raw data was not required in the Level C data package.

Surrogate Recoveries

Many samples exhibited non-compliant DCB recoveries.

Specific Finding

- 3. The positive and non-detect results for the following samples are qualified as estimated, J/UJ, due to DCB recoveries below the QC limits.
 - 1-BF01F
 - 1-PF01F
 - 1-SF01W
 - 2-BC01F
 - 2-PF01W
 - 2-SF01W
 - 2-SF01WDU
 - 2-SP01F
 - 2-SS01F
 - 2-YM01W
 - 2-AC01F
 - 3-SM01F
 - 3-YM01W
 - 4-BG01F
 - 4-BG01W
 - 4-BG01WDU
 - 4-RS01W
 - 5-BG01W
 - 5-LB01W
 - 5-RS01W

DATA ASSESSMENT NARRATIVE PESTICIDE/AROCLORS

PAGE - 4

Matrix Spike/Matrix Spike Duplicate

The MS/MSD pair of sample 2-SF01W exhibited acceptable recoveries for all compounds except γ-BHC in the MS and endrin in the MS and MSD. The MS/MSD pair of sample 4-BG01W exhibited non-compliant recoveries for the compounds dieldrin, endrin, and 4,4'-DDT in the MS and the MSD, and γ-BHC in the MS. All RPDs were acceptable. No qualifications were required.

Field Duplicates

Three (3) pairs of duplicates were present in this SDG. The duplicate pairs are assumed to be laboratory duplicates because there was no indication on the sample chain of custody that they were field duplicates. Two (2) of the duplicate pairs, 1-BC01F and 2-SF01W did not exhibit positive results for target compounds. The pair of sample 4-BG01W exhibited positive results for two (2) compounds, 4,4'-DDE and 4,4'-DDD. The precision results were greater that 35%. However, standard criteria has not been established for tissue samples. The RPDs for the compounds were 40% and 50%, respectively. No qualifications were required.

Analyte Identification/Quantitation

Positive results were reported in some samples. Identification and quantitation appear reasonable based provided deliverables. Quantitation calculations were not verified because raw data is not a required deliverable for NEESA Level C QC. Sample data chromatograms were not provided although they are required with a NEESA Level C data package. Dilutions were not required. Some results exhibited P flags due to column quantitation %Ds.

Specific Finding

4. All reported positive results exhibited P flags are qualified as estimated, J, due to column quantitation %Ds > 25% but < 100%.

Overall Assessment

The overall quality of the data package is fair. The reported results are accepted as reported by the laboratory with the noted qualifications based on the limited deliverables in a Level C data package.

GLOSSARY OF DATA QUALIFIERS

QUALIFICATION CODES

U = Not detected

J = Estimated value

UJ = Reported quantitation limit is qualified as estimated

R = Result is rejected and unusable

NJ = Presumptive evidence for the presence of the material at an estimated value

K = Result is biased high

L = Result is biased low

METHOD BLANK QUALIFICATION CODES

CRQL = The sample result for the blank contaminant is less than the sample CRQL and is less than 10X the method blank value. The sample result for the blank contaminant is rejected and the CRQL

for that analyte is reported.

U = The sample result for the blank contaminant is greater than the sample CRQL and is less than 10X the method blank value. The sample result for the blank contaminant is qualified as non

detected at the analyte value reported.

No Action = The sample result for the blank contaminant is greater than the

sample CRQL and is greater than 10X the method blank value. The sample result for the blank contaminant is not qualified with

any blank qualifiers.

The specific Findings will be noted in numerical form on the Form Is in this data validation report. These specific finding footnotes will reflect the conclusions found in the data validation process that resulted in the qualification of the data.

SAMPLE ID	ANALYTE ID	DL	QL	SPECIFIC FINDINGS
All Samples	Dieldrin 4,4'-DDE Endosulfan sulfate	+/U	J/UJ	1
3-SM01F 3-YM01W 4-BG01WDU 4-BG01F 4-RS01W 5-LB01W 5-LB01F 5-RS01W 5-RS01F 5-BG01W 5-BG01F	α-BHC γ-BHC Heptachlor Endosulfan I Dieldrin Endrin 4,4'-DDD 4,4'-DDT Methoxychlor	+/U	J/UJ	2
1-BF01F 1-PF01F 1-SF01W 2-BC01F 2-PF01W 2-SF01WDU 2-SF01WDU 2-SP01F 2-SS01F 2-YM01W 2-AC01F 3-SM01F 3-YM01W 4-BG01F 4-BG01W 4-RS01W 5-BG01W 5-RS01W	All	+/U	J/UJ	3

SAMPLE ID ANALYTE ID			DL	QL	SPECIFIC FINDINGS
All	All P	-	+	j	4

- DL denotes the Form I qualifier supplied by the laboratory QL denotes the qualifier used by the data validation firm + in the DL column denotes a positive result
 - in the DL column denotes a non detect result

DATA ASSESSMENT NARRATIVE Metals

General

The inorganic findings offered in this screening report assumes that all analytical results are correct as reported and is based upon the examination of the reported holding times, calibration standards, blank analysis results and MS/MSD results. A minimum of ten percent of all laboratory calculations are recalculated by the reviewer. All comments made within this report should be considered when examining the analytical results (Form Is).

This data package consisted of results from CTO-312, SDG# ACO1F, the analysis of twenty-eight (28) field tissue samples and two Matrix Spike and Duplicate pairs for TAL Metals. Overall, the inorganic data quality was fair. All protocol requirements were followed with the exception of the following problems.

Specific QA/QC deficiency Findings are listed numerically in the following categories:

Holding Times

No holding times for tissues. The reviewer assumes that the tissues were kept frozen until analysis.

Calibration

No deficiencies in this section.

Preparation and Field Blank

1. The preparation blank exhibited contamination for the following elements.

Aluminum	1.52	mg/kg
Barium	0.04	mg/kg
Calcium	1.51	mg/kg
Chromium	0.18	mg/kg
Copper	0.15	mg/kg
Iron :	0.80	mg/kg
Magnesium	2.00	mg/kg
Potassium	25.1	mg/kg
Zinc	0.09	mg/kg
Boron	0.72	mg/kg

The USEPA requires that all sample values below five times the preparation or calibration blank contamination be qualified as estimated, "U".

Metals Data Assessment Narrative (continued - Page 2)

Interferences

No significant interferences were observed.

Spike Recovery

2. The Matrix Spike recoveries for Arsenic, Mercury and Zinc were below the lower control limits. All positive and non-detect results are qualified as estimated, "J" or "UJ".

Duplicate

3. The Duplicate analyses for Aluminum and Calcium were outside the control limits. All positive results are qualified as estimated, "J". The RPDs for Iron, Arsenic, Manganese and Zinc were not greater than 35% and will not be qualified.

LCS

No deficiencies in this section.

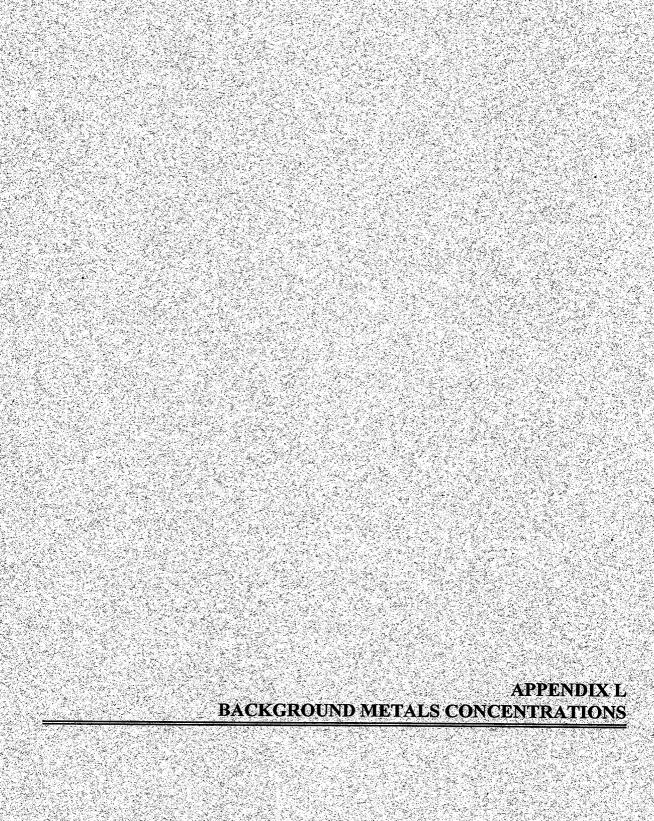
Serial Dilution

4. The Serial dilutions for Barium, Calcium, Iron, Magnesium, Manganese, Potassium and Zinc were outside the control limits. All positive results are qualified as estimated, "J".

MSA

5. The following analytes exhibited low recovery during the GFAA spiking procedure. All positive and non-detect results are qualified as estimated, "J" or "UJ".

Analytes Samples
Arsenic BG01F, BG01W, LB01W, PF01W, RS01W, YM01W, 1SF01W and 2SS01F.
Selenium SM01F.


6. The following analytes exhibited high recovery during the GFAA spiking procedure. All positive results are qualified as estimated, "J".

Analytes Samples
Thallium BG01F, BG01W, LB01F, LB01W, RS01F, RS01W and YM01W.

SAMPLE ID	ANALYTE	DL	<u> </u>	SPECIFIC FINDING
All tissue samples	Al, Ba, Ca, Cr, Cu, Fe, Mg, K, Zn and B.	+	υ	1
All tissue samples	As, Hg and Zn.	+ /U	J/UJ	2
All tissue samples	Al and Ca.	+	J	3
All tissue samples	Ba, Ca, Fe, Mg, Mn, K and Zn.	+	J	4
BG01F, BG01W, LB01W, PF01W, RS01W, YM01W, 1SF01W and 2SS01F. SM01F.	As. Se.	+/U	J/UJ	5
BG01F, BG01W, LB01F, LB01W, RS01F, RS01W and YM01W.	TI.	+	J	6

DL - denotes laboratory qualifier/reported value + denotes positive values U denotes non-detect values

QL - denotes data validation qualifier

APPENDIX L.1
BASE BACKGROUND METALS CONCENTRATIONS
IN SURFACE SOIL

APPENDIX BASE BACKGROUND METALS CONCENTRATIONS IN SURFACE SOILS SITE 65 - ENGINEER AREA DUMP REMEDIAL INVESTIGATION, CTO-0312 MCB, CAMP LEJEUNE, NORTH CAROLINA

	6-201N-SB11-00	6-201N-SB12-00	6-201C-SB38-00	6-201C-SB39-00	78-BB - SB-00	41-BB-SB01-00	41-BB-SB02-00	41-BB-SB03-00
Aluminum	1120	45.25	748	245	1490	528	1430	2100
Antimony	4.7	4.8	1.4	1.3	0.33	2.07	0.865	0.87
Arsenic	0.28	0.29	0.91	0.28	0.22	0.356	0.317	0.3205
Barium	2	2.05	16.5	3.5	8,6	1.525	4.06	4.53
Beryllium	0.095	0.1	0.03	0.03	0.11	0.1	0.09	0.09
Cadmium	0.285	0.295	0.58	0.175	0.55	0.392	0.349	0.3525
Calcium	178	108	10700	402	941	18.3	54.6	79.2
Chromium	0.475	0.49	1.6	0.33	2.2	1.02	0.91	2.64
Cobalt	0.85	0.9	0.195	0.185	1.8	1.965	1.75	1.77
Copper	0.55	0.6	3.1	0.75	2	2	87.2	1.8
Iron	525	160	684	238	1020	83	970	1120
Lead	2	3	62.9	25.1	20.4	2.59	10.9	9.98
Magnesium	11.65	10.1	200	26	118	8.85	39.1	74
Manganese	3.1	1	16	4.5	11.1	0.87	10.2	11.6
Mercury	0.01	0.01	0.05	0.06	0.05	0.0305	0.078	0.057
Nickel	1.6	1.65	0.8	0.75	2.2	3.55	3.15	3.2
Potassium	36.55	37.5	54.5	30.6	102	91.5	81.5	190
Selenium	0.47	0.485	0.5	0.465	0.31	0.311	0.277	0.2795
Silver	0.95	1	0.195	0.185	0.33	0.1965	0.175	0.177
Sodium	19.65	15.85	14	4.7	67.5	44.1	39.3	39.65
Thallium	0.19	0.195	0.205	0.185	0.11	0.565	0.505	0.51
Vanadium	1.05	0.8	2.8	1.6	5.3	2.505	2.23	2.255
Zinc	0.55	0.8	23.1	4.6	28.3	2.66	6.11	5.97
Cyanide					0.265	1.23	1.09	1.1

Concentrations are in millograms per kilogram (mg/Kg).

Qualifiers have been removed per Baker's standards.

Qualifiers R, U, and UJ have been given one-half the detection value.

Qualifiers J, NJ, and B have been removed with no detection value change.

10/23/95/SSBACK.WK4

APPENDIX BASE BACKGROUND METALS CONCENTRATIONS IN SURFACE SOILS SITE 65 - ENGINEER AREA DUMP REMEDIAL INVESTIGATION, CTO-0312 MCB, CAMP LEJEUNE, NORTH CAROLINA

	41-BB-SB04-00	69-BB-SB01-00	69-BB-SB02-00	69-BB-SB03-00	69-BB-\$B04-00	74-BB-SB01-00	74-BB-SB02-00	74-BB-SB03-00
Aluminum	5370	1310	4150	9570	5360	3110	1730	1000
Antimony	0.94	0.85	0.95	0.95	0.95	0.905	0.925	0.855
Arsenic	0.345	0.31	0.345	0.79	0.35	0.3325	0.339	0.314
Barium	13.4	5.6	15.4	19.6	20.8	11.1	1.6	3.12
Beryllium	0.095	0.14	0.155	0.155	0.155	0.148	0.151	0.14
Cadmium	0.38	0.26	0.285	0.29	0.29	0.2695	0.275	0.2545
Calcium	46.3	28.2	43.6	282	53	181	46.9	43.9
Chromium	3.24	0.75	4	12,5	5.8	0.84	2.7	0.795
Cobalt	1.905	2.1	2.3	2.35	2.35	2.225	2.27	2.1
Copper	1.94	1.75	1.9	1.95	1,95	4.56	3.92	1.755
Iron	2160	425	1430	9640	3890	1740	401	787
Lead	6.61	2.8	6	5.3	5.6	5.19	3.79	1.14
Magnesium	144	37.3	91.8	610	247	70	37.5	16.1
Manganese	11.8	15.1	12.7	12.3	8.3	9.44	3.13	7.37
Mercury	0.08	0.015	0.06	0.045	0.025	0.04	0.048	0.0305
Nickel	3.45	2.9	1.6	1.65	1.65	1.56	1.59	1.475
Potassium	177	32,25	35.5	361	106	87.5	89	82.5
Selenium	0.301	0.27	0.295	0.3	0.3	0.29	0.296	0.274
Silver	0.1905	0.045	0.045	4.3	0.39	0.046	0.047	0.0435
Sodium	42.75	20	22	22.4	22.3	70.4	71.8	87.6
Thallium	0.55	0.495	0.55	0.55	0.55	0.53	0.54	0.4985
Vanadium	2.43	1.8	1.95	13.5	5.6	5,21	1.94	1.8
Zinc	7.15	3.1	5.2	10.8	7.9	1.27	1.15	1.97
Cyanide	1.19	2.2	2.4	2.4	2.4	1.15	1.17	1.08

APPENDIX BASE BACKGROUND METALS CONCENTRATIONS IN SURFACE SOILS SITE 65 - ENGINEER AREA DUMP REMEDIAL INVESTIGATION, CTO-0312 MCB, CAMP LEJEUNE, NORTH CAROLINA

	74-BB-SB04-00	MIN	MAX	AVG	2Xaverage
Aluminum	2100	45,25	9570	2435,662	4871.324
Antimony	0.96	0.33	4.8	1.448	2.896
Arsenic	0.352	0.22	0.91	0.379	0.759
Barium	16	1.525	20.8	8.787	17.575
Beryllium	0.1565	0.03	0.1565	0.114	0.228
Cadmium	0.285	0.175	0.58	0.328	0.655
Calcium	377	18.3	10700	799.000	1598.000
Chromium	1.98	0.33	12.5	2.486	4.973
Cobalt	2.355	0.185	2.355	1.728	3.455
Copper	1.965	0.55	87.2	7.041	14.081
Iron	1640	83	9640	1583.118	3166.235
Lead	142	1.14	142	18.547	37.094
Magnesium	52.5	8.85	610	105.524	211.047
Manganese	4.61	0.87	16	8.419	16,838
Mercury	0.05	0.01	0.08	0.043	0.087
Nickel	1.65	0.75	3.55	2.025	4.050
Potassium	92.5	30.6	361	99.259	198.518
Selenium	0.307	0.27	0.5	0.337	0.674
Silver	0.0485	0.0435	4.3	0.492	0.984
Sodium	122	4.7	122	42.706	85.412
Thallium	0.56	0.11	0.565	0.429	0.857
Vanadium	4.69	0.8	13.5	3.380	6.760
Zinc	2.87	0.55	28.3	6.676	13.353
Cyanide	1.21	0.265	2.4	1.453	2.905

APPENDIX L.2 BASE BACKGROUND METALS CONCENTRATIONS IN SUBSURFACE SOIL

	6-201N-SB11-07	6-201N-SB12-02	6-201C-SB38-01	6-201C-SB39-04	78-BB-SB-01	2-GW09-01	1-BB-SB38-05
Aluminum	672	857	3620	2970	10200	8520	4580
Antimony	4.7	4.85	1.4	1.25	0.355	1.6	4.2
Arsenic	0.31	0.315	0.033	0.305	0.24	0.47	1.1
Barium	2	2.05	7.6	6.5	10.9	6.6	7.5
Beryllium	0.095	0.1	0.03	0.025	0.12	0.23	0.125
Cadmium	0.285	0.295	0.57	0.17	0.6	1.2	0.370
Calcium	5.35	5.4	4410	12.1	81.3	10.6	35.600
Chromium	1.6	1.85	6	2,2	5.7	8.7	10.5
Cobalt	0.65	0.9	0.235	0.175	0.95	1.9	0.495
Copper	0.475	0.6	1.7	0.65	0.95	0.47	6,6
Iron	257	126	456	833	822	2840	4940
Lead	1.2	1.6	11.5	2.7	6.1	4.3	5.1
Magnesium	13.1	12.7	133	86.8	188	260	222
Manganese	0.475	0.395	7.5	2.6	2.4	5.2	4.1
Mercury	0.01	0.01	0.04	0.015	0.045	0,11	0.025
Nickel	1.6	1.7	0.8	0.7	2.4	4.7	0.850
Potassium	48.9	40.8	84.7	187	123	184	409
Selenium	0.5	0.5	0.55	0.5	0.29	0.115	0.495
Silver	0.95	1	0.195	0.175	0.355	0,7	0.600
Sodium	12.7	12,15	13.25	7.25	44.9	31.5	12.850
Thallium	0.205	0.21	0.22	0.2	0.12	0.23	0.495
Vanadium	0.75	1	3	4.7	7.4	13.4	12.200
Zinc	0.475	0.395	11.6	0.9	2.1	1.4	4.700

Concentrations are in millogrms per kilogram (mg/Kg).

Qualifiers have been removed per Baker's standards.

Qualifiers R, U, and UJ have been given one-half the detection value.

Qualifiers J, NJ, and B have been removed with no detection value change.

	1-BB-SB39-04	1-BB-SB39-06	1-GW13-04	1-GW13-08	28-BB-SB37-03	28-BB-SB38-04	28-GW09DW-01
Aluminum	6180	5980	4160	6600	5170	2830	5730
Antimony	3.25	2.95	6.9	3.2	3.55	3.55	3.75
Arsenic	0.29	0.26	0.285	0.280	0.315	0.315	1.500
Barium	11.800	8.600	7.500	8.400	9.700	5.000	11.700
Beryllium	0.095	0.085	0.095	0.095	0.105	0.105	0.110
Cadmium	0.290	0.260	0.285	0.280	0.315	0.315	0.330
Calcium	12.250	19.700	52.400	92.600	23.450	6.850	441.000
Chromium	5.5	5.3	7.1	8.3	7.3	3.4	4.7
Cobalt	0.385	0.350	0.380	0.375	0.42	0.42	0.93
Copper	0.6	0.5	2.1	1.6	0.65	0.65	0.65
Iron	1510	1210	567	959	2090	749	2780
Lead	3.8	3,1	3.3	4.0	4.1	2.3	7.4
Magnesium	189	217	131	262	153	66	157
Manganese	4.9	5.4	2.0	4.5	3.2	1.5	5.3
Mercury	0.025	0.020	0.050	0.025	0.025	0.025	0.025
Nickel	2.300	0.600	0.650	0.650	0.750	0.750	1
Potassium	191	268	98	308	122	91.3	136
Selenium	0.385	0.350	0.380	0.375	0.420	0.420	0.440
Silver	0.480	0.435	0,475	0.470	0.500	0.550	0.550
Sodium	21.6	9.2	9.6	10.9	33.8	28.6	20.3
Thallium	0.385	0.350	0.380	0.375	0.420	0.420	0.440
Vanadium	6.500	6.100	3.500	10.100	6.4	2.8	8.5
Zinc	2.900	2.400	1.000	2.700	1.9	1.0	4.2

Concentrations are in millogrms per kilogram (mg/Kg).

Qualifiers have been removed per Baker's standards.

Qualifiers R, U, and UJ have been given one-half the detection value.

Qualifiers J, NJ, and B have been removed with no detection value change.

	30-BB-SB12-03	30-BB-SB13-01	30-BB-\$B14-01	30-BB-SB15-01	30-BB-SB16-02	30-GW03-01	35-GWDS01-03
Aluminum	2970	17.1	25.7	42.6	777	16.9	2910
Antimony	3.9	3.1	3.6	3.6	3.4	3.9	2.750
Arsenic	0.34	0.28	0.32	0.32	0.30	0.34	0.12
Barium	0.8	0.7	0.8	0.8	3.5	0.8	5.5
Beryllium	0.12	0.09	0.11	0.11	0.10	0.12	0.06
Cadmium	0.34	0.28	0.32	0.32	0.30	0.34	0.30
Calcium	7.0	6.9	4.8	6.3	116	6.6	456.0
Chromium	3.9	0.7	0.8	0.8	0.7	0.8	2.2
Cobalt	0.45	0.37	0.42	0.43	0.40	0.46	0.65
Copper	0.7	0.6	0.7	0.7	0.6	0.7	0.550
Iron	908	95.9	155	63.3	514	74.5	442
Lead	0.7	0.47	1.9	0.91	3.2	0.59	8.1
Magnesium	24.7	7.5	2.9	2.9	30.2	3.1	63.5
Manganese	1.7	4.3	6.7	1.1	3.7	1.7	5.6
Mercury	0.03	0.03	0.08	0.25	0.03	0.68	0.03
Nickel	0.8	0.7	0.8	2.2	1.7	0.8	1.050
Potassium	13.2	6.3	1.1	21.3	21.9	1.2	145
Selenium	0.45	0.37	0.42	0.43	0.40	0.46	0.085
Silver	0.6	0.46	0.6	0.6	0.50	0.6	0.39
Sodium	12.5	11.1	19.3	5.4	14.4	5.8	141.0
Thallium	0.45	0.37	0.42	0.43	0.40	0.46	0.06
Vanadium	6.2	0.73	1.0	0.84	1.6	0.34	3.0
Zinc	0.35	0.32	0.39	1.2	1.7	1.3	2.6

Concentrations are in millogrms per kilogram (mg/Kg).

Qualifiers have been removed per Baker's standards.

Qualifiers R, U, and UJ have been given one-half the detection value.

Qualifiers J, NJ, and B have been removed with no detection value change.

	BB-SB02-07	BB-SB03-05	80-BB-SB01-06	80-SS-SB01-03	80-BB-SB2-03	80-BB-\$B02-06	80-BB-SB03-03
Aluminum	888	2330	11000	2520	5950	9600	9500
Antimony	5.000	5.600	6.200	1.300	1.350	1.650	3.500
Arsenic	1.00	1.10	15.40	0.245	1.60	4.70	1.80
Barium	1.6	3.8	22.3	4.5	9.9	13.5	10.9
Beryllium	0.10	0.11	0.31	0.01	0.04	0.20	0.09
Cadmium	0.50	0.55	0.205	0.16	0.165	0.205	0.16
Calcium	74.2	290.0	257.0	105.0	323.0	210.0	142.0
Chromium	2.4	4.2	66.4	2.1	10.0	22.0	12.0
Cobalt	1	1.1	7	0.42	0.71	1.40	0.75
Copper	1	1.1	9.5	0.670	1.6	4.4	2.2
Iron	1220	1870	90500	795	2920	12800	3350
Lead	2.4	3.8	21.4	2.9	5	11.7	7.8
Magnesium	35.7	115.0	852.0	76.0	282.0	455.0	357.0
Manganese	2.7	2.4	14.9	1.8	19.9	7.4	6.2
Mercury	0.055	0.06	0.07	0.045	0.055	0.07	0.045
Nickel	2	2.250	0.600	0.455	. 1.4	0.6	2.2
Potassium	100.5	228	1250	161	. 297	1020	458
Selenium	0.500	0.550	2.400	0.275	0.285	0.355	0.275
Silver	0.50	0.55	0.275	0.21	0.22	0.275	0.21
Sodium	20.6	28.2	124.0	63.4	25.5	47.1	73.2
Thallium	1.00	1.10	2.70	0.425	0.44	0.55	0.42
Vanadium	3.9	4.9	69.4	2.3	10.8	18.4	13.5
Zinc	8.7	4.9	26.6	2.0	3.5	8.1	4.8

Concentrations are in millogrms per kilogram (mg/Kg).

Qualifiers have been removed per Baker's standards.

Qualifiers R, U, and UJ have been given one-half the detection value.

Qualifiers J, NJ, and B have been removed with no detection value change.

,	80-BB-SB03-06	7-BB-SB01-05	7-BB-SB02-05	7-BB-SB03-09	16-BB-SB01-07	16-BB-SB02-07	16-BB-SB03-05
Aluminum	1060	1400	1700	581	1940	888	2330
Antimony	1.300	5.150	5.150	5.750	5.8	5	5.6
Arsenic	0.24	1.05	1.05	1.15	1.15	1.	1.1
Barium	4.3	16.1	22.6	10.8	3.7	0.8	3.8
Beryllium	0.01	0.105	0.105	0.115	0.115	0.1	0.11
Cadmium	0.155	0.50	0.50	0.550	0.6	0.5	0.55
Calcium	34.2	38.95	41.55	32.15	135	74.2	290
Chromium	2.9	5.0	6.2	3.9	4.7	2.4	4.2
Cobalt	0.20	1.05	1.05	1.15	1.15	1	1.1
Copper	0.630	1.05	1.05	1.15	1.15	1	1.1
Iron	557	571	709	1620	1150	1220	1870
Lead	5.4	3	1.8	1.1	2.9	2.4	3.8
Magnesium	50.7	30.6	44.1	12.25	104	35.7	115
Manganese	5.4	1.95	2.65	2.1	5	2.7	2.4
Mercury	0.045	0.055	0.050	0.060	0.06	0.055	0,06
Nickel	0.450	2.050	2.050	2.300	2.3	2	2.25
Potassium	130	103	102.5	114.5	116	100.5	228
Selenium	0.275	0.50	0.50	0.55	0.6	0.5	0.55
Silver	0.21	0.50	0.50	0.55	0.6	0.5	0.55
Sodium	18.3	16.85	13.6	15.65	29.8	10.3	28.2
Thallium	0.42	1.05	1.05	1.15	1.15	1	1.1
Vanadium	2.4	2.3	3.1	2.5	4	3.9	4.9
Zinc	1.7	3.1	2.1	3.15	15	4.35	2.45

Concentrations are in millogrms per kilogram (mg/Kg).

Qualifiers have been removed per Baker's standards.

Qualifiers R, U, and UJ have been given one-half the detection value.

Qualifiers J, NJ, and B have been removed with no detection value change.

	36-BB-SB01-02	36-BB-SB02-02	36-BB-\$B03-03	43-BB-SB01-02	43-BB-SB02-01	43-BB-SB03-02	44-BB-SB01-03
Aluminum	4480	8700	3810	4320	959	2260	10300
Antimony	1.15	1.2	1.9	2.3	1.75	2.25	1.15
Arsenic	0.155	0.69	0.185	0.44	0.115	0.31	1.2
Barium	13.9	13.7	5.5	8.9	2.2	9.1	12.5
Beryllium	0.032	0.035	0.08	0.1	0.075	0.1	0.065
Cadmium	0.31	0.315	0.255	0.31	0.235	0.305	0.305
Calcium	116	225	48.2	76.9	77.6	295	20.9
Chromium	4.2	13.5	3.7	5.5	1.2	2⁻	11
Cobalt	0.245	0.25	0.275	0.335	0.255	0.33	0.495
Copper	0.43	0.98	0.175	0.21	0.16	0,265	0.86
Iron	2690	4080	976	2370	414	507	4720
Lead	5.4	6.6	4	6.1	1.6	2.8	4.15
Magnesium	78.6	292	110	121	17.9	49.3	302
Manganese	2.5	6.7	3.6	3	1.3	2.5	3.9
Mercury	0.06	0.06	0.045	0.045	0.05	0.055	0.0425
Nickel	1	9.1	1	1.2	0.9	1.2	0.92
Potassium	91.3	222	62.5	76	57.5	75	207
Selenium	0.12	0.175	0.145	0.185	0.155	0.17	0.155
Silver	0.27	0.27	0.275	0.335	0.255	0.33	0.26
Sodium	11.3	25.6	6.1	36.65	4.2	8.75	86.4
Thallium	0.055	0.085	0,105	0.11	0.095	0.105	0.07
Vanadium	8.2	17	2.05	5.9	0.9	1.7	17.1
Zinc	0.82	2.6	0,89	2.3	0.76	1.6	2.5

Concentrations are in millogrms per kilogram (mg/Kg).

Qualifiers have been removed per Baker's standards.

Qualifiers R, U, and UJ have been given one-half the detection value.

Qualifiers J, NJ, and B have been removed with no detection value change.

	54-BB-SB01-04	54-BB-\$B02-04	86-BB-SB01-02	65-DW04-05	MIN	MAX	AVG
Aluminum	1100	1040	2460	4560	16.900	11000.000	3706.615
Antimony	1.25	1.25	2	5.25	0.355	6.900	3.249
Arsenic	0.16	0.195	0.22	1.05	0.033	15.400	0.985
Barium	1.15	1.05	4.4	10.9	0.650	22.600	7.185
Beryllium	0.06	0.0345	0.09	0.105	0.010	0.310	0.096
Cadmium	0.325	0.335	0.275	0.5	0.155	1.200	0.359
Calcium	24.6	14.7	50.8	111	4.750	4410.000	193.912
Chromium	1.15	1	3.1	5.7	0.650	66,400	6.268
Cobalt	0.26	0.305	0.29	3.2	0.175	7.000	0.805
Copper	0.45	0.46	0.185	1.05	0.160	9.500	1.205
Iron	392	319	3160	925	63.300	90500.000	3567.320
Lead	0.8	1.75	2.4	2.7	0.465	21.400	4.132
Magnesium	16.4	17.35	71.3	192	2.850	852.000	131.699
Manganese	0.5	0.6	1.8	5.6	0.395	19.900	3.995
Mercury	0.11	0.05	0.055	0.05	0.010	0.680	0.065
Nickel	9.2	7.7	1.05	2.1	0.450	9.200	1.863
Potassium	29.9	14.45	66.5	105	1.050	1250.000	172,126
Selenium	0.145	0.17	0.175	0.5	0.085	2.400	0.403
Silver	0.28	0.29	0.29	0.5	0.175	1.000	0.434
Sodium	4.4	2.2	6.8	69.9	2.200	141.000	27.285
Thallium	0.065	0.08	0.13	1.05	0.055	2.700	0.490
Vanadium	0.85	0.8	1.85	4.1	0.340	69,400	6.670
Zinc	0.92	1.3	0.37	3.45	0.320	26.600	3.334

Concentrations are in millogrms per kilogram (mg/Kg).

Qualifiers have been removed per Baker's standards.

Qualifiers R, U, and UJ have been given one-half the detection value.

Qualifiers J, NJ, and B have been removed with no detection value change.

APPENDIX

BASE BACKGROUND METALS CONCENTRATIONS IN SUBSURFACE SOIL SITE 65 - ENGINEER AREA DUMP REMEDIAL INVESTIGATION, CTO-0312 MCB, CAMP LEJEUNE, NORTH CAROLINA

	2Xaverage
Aluminum	7413.230
Antimony	6.498
Arsenic	1.971
Barium	14.370
Beryllium	0.191
Cadmium	0.718
Calcium	387.824
Chromium	12.537
Cobalt	1.611
Copper	2.410
Iron	7134.639
Lead	8.264
Magnesium	263.398
Manganese	7.990
Mercury	0.129
Nickel	3.725
Potassium	344.252
Selenium	0.806
Silver	0.869

2V-----

54.570

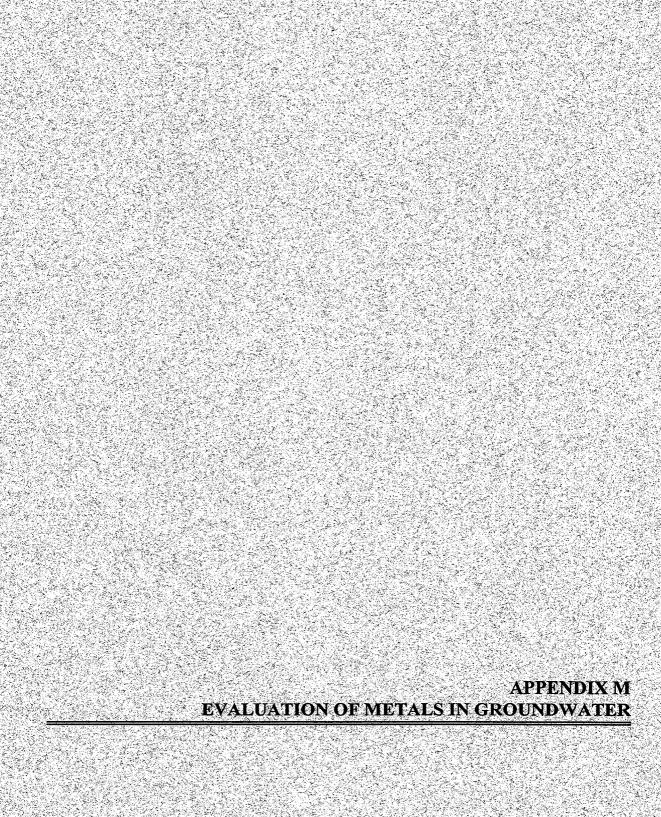
0.980

13,340

6.668

Concentrations are in millogrms per kilogram (mg/Kg).

Qualifiers have been removed per Baker's standards.


Qualifiers R, U, and UJ have been given one-half the detection value.

Qualifiers J, NJ, and B have been removed with no detection value change.

Sodium

Thallium Vanadium

Zinc

DRAFT

EVALUATION OF METALS IN GROUNDWATER

MARINE CORPS BASE, CAMP LEJEUNE, NORTH CAROLINA

CONTRACT TASK ORDER 0177

JUNE 3, 1994

Prepared for:

DEPARTMENT OF THE NAVY
ATLANTIC DIVISION
NAVAL FACILITIES
ENGINEERING COMMAND
Norfolk, Virginia

Under the:

LANTDIV CLEAN Program Contract N62470-89-D-4814

Prepared by:

BAKER ENVIRONMENTAL, INC. Coraopolis, Pennsylvania

TABLE OF CONTENTS

		Page
1.0	INTRODUCTION	. 1
2.0	STUDY OBJECTIVES	. 1
3.0	SCOPE OF WORK	. 2
4.0	DATA ANALYSIS	. 3
5.0	ANALYSIS OF STUDY OBJECTIVES	. 8
6.0	CONCLUSIONS	. 10
7.0	RECOMMENDATIONS	. 10
FIG	URES	•
1	Site Location Map	
2	Positive Detections Above Applicable Federal and State Standards for Filtered Inorganic Analytes in Groundwater-Site 2	Total and
3	Positive Detections of Total Metals Above Federal MCLs and NCWQS i Wells-Site 78	n Shallow
4	Positive Detections of Total Metals Above Federal MCLs and NCWQS in Int Wells-Site 78	ermediate
5	Positive Detections of Total Metals Above Federal MCLs and NCWQS in De Site 78	eep Wells-
TAE	BLES	
1	Summary of Total Metals in Shallow Wells	
2	Comparison of Repeat Sampling in Shallow Wells	
3	Summary of Dissolved Metals in Shallow Wells	
4	Summary of Total Metals in Upgradient Wells	· . ·
5	Comparison of Inorganic Subsurface Soil Concentrations in "Cl	ean" and
c	"Contaminated" Wells	
6 7	Total Metals in Deep Monitoring Wells Summary of Field Parameters in Shallow, Deep, and Supply Wells	
	- Dummary of Field Extrinelets in Juxilow. Deed. XNO JUDDIY WEUS	

1.0 INTRODUCTION

Numerous groundwater investigations have been conducted at Marine Corps Base (MCB), Camp Lejeune under the Department of the Navy (DON) Installation Restoration Program (IRP). These studies have identified elevated levels of total metals in shallow groundwater at almost every site. The degree of contamination, based on dissolved metals analysis of groundwater samples, is limited. It is believed that the presence of elevated metals are not always related to past disposal activities for several reasons, which is the basis of this study.

Currently, Records of Decision (ROD) are being prepared for Operable Units No. 1 (Sites 21, 24, and 78) and No. 5 (Site 2). Both RODs are proposing to not remediate shallow groundwater which contains elevated levels of total metals above State groundwater standards (i.e., North Carolina Water Quality Standards) and/or Federal drinking water standards (i.e., Maximum Contaminant Levels). Specifically, remediation of shallow groundwater due to elevated total metals is not cost effective, or practical, due to the following: (1) the shallow aquifer is not used for potable supply; (2) the source of metals in groundwater cannot be correlated with soil data or previous disposal practices; (3) the extent of shallow groundwater contamination (based on total metals analysis) is widespread and in many cases undefinable, since there are no apparent contaminant plumes or patterns associated with the metals; and (4) deep groundwater, which is the source of potable water, is not significantly contaminated with metals above the standards.

2.0 STUDY OBJECTIVES

The DON/Marine Corps initiated a study on inorganics in groundwater throughout MCB Camp Lejeune to assess whether total metals in groundwater are related to disposal practices or to other factors. The overall goal of this study is to provide information that would be used in consideration of not remediating shallow groundwater at Operable Units No. 1 and No. 5, and possibly other operable units where total metals are elevated without cause. The following study objectives were identified:

- (1) Determine whether the elevated total metals detected in the shallow aquifer are related to past disposal practices, well construction factors, sampling techniques, or suspended particulates in the samples;
- (2) Determine whether total metals in shallow groundwater are elevated throughout the region or MCB Camp Lejeune;
- (3) Determine whether there is a correlation between elevated total metals in groundwater and metals in soil; and

(4) Determine whether the concentrations of total metals (i.e., low versus high) is related to shallow and deep aquifer characteristics.

3.0 SCOPE OF WORK

Groundwater and soil data from a total of 21 sites were compiled as part of the overall study. Three of the 21 sites are located outside the boundary of the base. These sites include the ABC Cleaners Superfund Site, located along Route 24 in Jacksonville, and two sites located along Highway 17 (Off-site Properties No. 1 and No. 2). The two sites along Route 17 were investigated by the DON/Marine Corps as part of a real estate survey. The other 18 sites are located throughout various portions of MCB Camp Lejeune (see Figure 1).

Information from studies conducted by Baker and other consultants were obtained to evaluate metal concentrations in groundwater. The study focused on 14 metals of potential concern to human health and the environment. Some of the information was collected under the IR Program whereas other information was obtained during other investigations (e.g., ABC Cleaners RI/FS). The following data tables were then prepared to determine why total metals are generally elevated in shallow groundwater.

- Table 1 Total Metal Concentrations in Shallow Groundwater by Site
- Table 2 Summary of Repeat Sampling of Shallow Wells (Sites 2 and 78)
- Table 3 Dissolved Metal Concentrations in Shallow Groundwater by Site
- Table 4 Summary of Total Metal Concentrations in Upgradient Wells
- Table 5 Comparison of Subsurface Metal Concentrations in Uncontaminated and Contaminated Wells
- Table 6 Total Metal Concentrations in Deep Groundwater by Site
- Table 7 Summary of Field Parameters in Shallow Monitoring Wells, Deep Monitoring Wells, and Supply Wells

The tables are presented at the end of this report.

4.0 DATA ANALYSIS

The following discussion represents an analysis of the information contained in each of the previously mentioned tables.

Table 1 (Total Metal Concentrations in Shallow Groundwater)

All of the sites had at least one (and in most cases several) metal which exceeded either State water quality standards or Federal drinking water standards. The most frequently detected metals included chromium, lead, and manganese, which were detected at almost every site above drinking water standards. Other frequently detected metals which exceeded drinking water standards included arsenic, beryllium, cadmium, and nickel.

An analysis of the data from Table 1 indicates that elevated total metals are present in shallow groundwater at every site, including the three sites which are located off base. The two sites which did not exhibit significant contamination include the ABC Cleaners site (only chromium exceeded the standards) and Site 48 (only manganese exceeded the standards).

Total metals detected in shallow groundwater at Site 2 exceeded State and/or Federal standards in seven of the 11 shallow monitoring wells. Manganese was the most frequently detected metal (7/11). Lead (3/11), chromium (2/11), and cadmium (1/11) were also detected above the standards,, but less frequently (see Figure 2).

With the exception of Wells 78GW03 and 78GW19, total metals were detected at Site 78 (Hadnot Point Industrial Area) above Federal MCLs or NCWQS in every shallow well (see Figure 3). The extent of elevated total metals in groundwater is widespread, encompassing approximately one square mile (or approximately 660 acres) in total area. The distribution and concentration of total metals in shallow groundwater makes it virtually impossible to identify or illustrate contaminant plumes (see Figure 3).

An analysis of the total metals results indicates the following pattern. Samples exhibiting elevated levels of lead, chromium, or other contaminants of concern, also exhibited elevated levels of other metals such as aluminum, antimony, iron, and zinc. Samples which did not exhibit elevated levels of lead, chromium, or manganese also did not exhibit elevated levels of other metals. This pattern indicates that the elevated total metals are not limited to one or

two contaminants, which would be the case if a lead or chromium plume in the groundwater truly existed. In other words, if a site is impacted by a particular metal due to disposal activities (say chromium for example), then other metals such as aluminum, lead, or zinc should not be consistently elevated as in the case of samples collected from the shallow aquifer at MCB Camp Lejeune. This point is depicted in the data summary tables provided in Appendix A for Sites 2 and 78. These tables were taken from the Remedial Investigation Reports for Operable Units No. 1 and No. 5. As an example, note that sample numbers 78-MW08, 78-MW10, 78-MW11, and 78-MW12 all had elevated levels of total metals when compared to samples 78-MW09-2 and 78-MW09-3. It is clear that most of the metal concentrations in a particular sample follow a consistent pattern throughout.

Table 2 (Comparison of Repeat Sampling of Shallow Wells

Five wells from Sites 2 and 78 were randomly chosen to evaluate total metals concentrations between sampling rounds. The comparison was limited to only chromium, lead, and manganese since these contaminants were frequently detected throughout MCB Camp Lejeune. In several cases, metal concentrations were significantly different between the sampling rounds. If the shallow aquifer was impacted due to former disposal activities, a contaminant plume would be present and concentrations would not significantly deviate. The deviation in metal concentrations may indicate that sampling results are biased due to suspended particulates in the samples.

Table 3 (Dissolved Metal Concentration in Shallow Groundwater by Site)

The data base for Table 3 was limited to 12 sites since many of the previous investigations (i.e., prior to Navy CLEAN) did not analyze for dissolved metals. Nevertheless, an analysis of the 12 sites revealed that elevated levels of dissolved metals in groundwater is limited. Manganese was the most frequently detected metal above drinking water standards (10 of 12 sites exhibited elevated levels). Lead was detected at only one site (Site 21) above drinking water standards. Chromium was also detected at only one site (Site 78) above drinking water standards. No other metal was detected above the standards.

Literature searches have indicated that manganese is a naturally occurring metal in North Carolina. Therefore, the presence of manganese may not be attributable to site-related activities (Greenhorne & O'Mara, 1992).

An analysis of the data from Table 3 clearly shows a significant reduction in metal concentrations when compared to Table 1 (total metals in shallow groundwater). One possible reason for this reduction is that suspended solids or particles are not being introduced into the analysis of the sample due to filtering. A second possibility is that the metals are not significantly present in a dissolved state in shallow groundwater due to the species of metals under site conditions. It should be noted that calcium and sodium did not exhibit such a pattern since the salts of these metals are more soluble in water. For example, the concentrations of total calcium and total sodium versus dissolved calcium and dissolved sodium are similar and are not affected by the removal of the particulates during filtering. The fact that these salts do not exhibit the pattern that the other metals show supports the possibility that total metal concentrations are influenced by particulates in the sample.

Table 4 (Total Metals in Upgradient Shallow Wells)

The data base for Table 4 consists of groundwater results from 14 upgradient shallow monitoring wells (i.e., one well per site). These wells were installed to determine baseline groundwater quality to which on-site groundwater conditions could be compared. In some cases, the upgradient wells were located in areas where other base activities may have influenced groundwater quality.

The analysis of this data shows that manganese was the most frequently detected metal above Federal or State standards in upgradient shallow wells. Manganese was detected in 7 of the 14 upgradient wells above drinking water standards. Chromium and lead were also frequently detected above drinking water standards in upgradient (background) wells. These contaminants were detected in 6 of the 14 upgradient wells. At Site 2, samples collected from an upgradient well (2GW9) exhibited elevated levels of chromium (83µ/l), lead (27.2µ/l) and manganese (747µ/l). At Site 78, samples collected from upgradient wells 96W4 and 78GW26 did not exhibit elevated levels of total metals. The concentration range for metals detected above NC WQS and/of Federal MCLs in upgradient wells is provided below:

- beryllium (ND-46.5 μ/l)
- cadmium (ND-10 µ/l)
- chromium (ND-198 u/l)
- lead (ND-78.8 μ/l)
- manganese (ND-747 μ/l)
- mercury (ND-1.6J μ/l)

Based on the above range representing upgradient wells, none of the on-site wells at Site 2 exhibited total metals above the maximum background concentrations. However, at Site 78, lead and chromium were detected above the maximum background in several on-site wells.

An analysis of the data from Table 4 indicates that shallow groundwater upgradient of some sites contains total metals above drinking water standards. A comparison of Table 4 data against Table 1 data indicates that shallow groundwater samples from upgradient wells are less contaminated than samples collected from on-site monitoring wells. However, it should be noted that the data base for Table 4 consists of only 14 wells whereas the data base for Table 1 consists of over 130 wells. Therefore, to assume that upgradient groundwater quality is better than on-site groundwater quality may not be justified due to the different data bases.

<u>Table 5 (Comparison of Subsurface Metal Concentrations in Uncontaminated and Contaminated Wells)</u>

The purpose of this table is to determine whether metal concentrations in soils correlate with the elevated levels of metals in shallow groundwater.

To evaluate this, metals in subsurface soils, representing an area of groundwater contamination, were compared to metals in subsurface soil in areas which did not exhibit groundwater contamination. If the elevated total metals in shallow groundwater are present due to former disposal activities, subsurface metals in soil representing an area of groundwater contamination would be expected to be elevated or higher than metals in subsurface soil representing a non-contaminated area. This evaluation assumes that the well exhibiting elevated total metals is within a source area and that the soil sample is representative of soil impacted by metal contamination.

As shown on Table 5, there is no clear pattern or correlation which indicates that elevated total metals are due to soil contamination. Note that in many cases, the concentration of metals which represent "non-contaminated" areas are greater than the metals which represent "contaminated" areas. Also note that the metals in subsurface soil are within or close to background subsurface metal concentrations. Therefore, this supports the possibility that in many cases at MCB Camp Lejeune, the elevated total metals in shallow groundwater cannot be attributable to a source or to past disposal practices.

Table 6 (Total Metals in Deep Monitoring Wells)

Table 6 presents total metal concentrations in deep groundwater for each site. The data base is limited to only 8 sites. Metal concentrations in supply wells were also included for comparison purposes.

As shown on Table 6, total metals in deep groundwater are below drinking water standards with a few exceptions. Arsenic and cadmium were detected above the standards in one deep monitoring well at Site 78 (see Figure 4). Manganese was detected in deep groundwater at three sites and a few of the supply wells. Lead was detected in one supply well at 16 µ/l, which is slightly above the drinking water standard of 15 µ/l.

Elevated total metals are not widespread in deep groundwater for two possible reasons. First, most metals are not very mobile in the environment. Second, deep groundwater samples may not have significant amounts of suspended particulates due to different geologic conditions. Soils in the deeper aquifer are more compacted and consist primarily of calcareous sands, clays, and limestone fragments. Soils in the shallow aquifer are loosely compacted and consist primarily of fine-grained sands, silts, and clays. This classification may support the possibility that suspended solids are collected during sampling, thereby influencing the analysis for total metals.

Table 7 (Summary of Field Parameters in Shallow, Deep, and Supply Wells)

Table 7 provides a range of pH and specific conductivity values representative of shallow and deep groundwater. In general, lower pH values were noted more often in shallow wells than in deep wells (including the supply wells). This condition may influence the leachability and speciation of metals in groundwater.

Deep groundwater usually exhibited higher specific conductivity values. High specific conductivity values are representative of high dissolved conditions. The fact that deep groundwater generally exhibited higher specific conductivity values indicates that most of the metals, if present, are in a dissolved state. The high specific conductivity values could also indicate less suspended particulates due to the geologic conditions of the deep aquifer. The lower specific conductivity values observed in shallow wells indicates that the metals in the shallow aquifer are not in a dissolved state. This also supports the possibility that suspended particulates in the shallow aquifer are influencing the analysis of total metals.

5.0 ANALYSIS OF THE STUDY OBJECTIVES

Each of the objectives identified for this study are analyzed below based on the information collected.

Objective No. 1 (Determine whether the elevated total metals in the shallow aquifer are related to past disposal practices, well construction factors, sampling techniques, or suspended particulates in the samples)

Based on the analysis of information provided in Tables 1 through 7 and Appendix A, it appears that suspended particulates in groundwater samples could influence the concentration of total metals in groundwater. Well construction factors and sampling techniques are probably not a significant factor since the data base is representative of data obtained by Baker, ESE (Site 28 and 30), Roy F. Weston (ABC Cleaners), and Halliburton NUS (Site 7). No particular pattern was noted between sites which Baker obtained the samples versus sites in which other consultants obtained the data. Sampling methods were also considered. For Sites 63 and 65 for example, samples were collected with a bailer. At Sites 2 and 78, samples were collected with a low flow pump. All four sites exhibited elevated levels of total metals in groundwater samples. In addition, due to the fact that deep groundwater quality is not significantly impacted with metals indicates that well construction or sampling techniques are probably not factors related to elevated total metals in groundwater.

With respect to past disposal practices, Table 5 clearly shows that soil concentrations do not correlate with elevated total metals in groundwater. Based on this analysis, and on many of the sites previously investigated, the source of total metals in groundwater cannot be attributable to soil contamination or disposal practices in many cases. This is based on both the history of the site as well as the analytical soil results. In some cases, total metals were detected at elevated levels even when the site history did not correlate with the contaminants found. For example, Sites 2 and 21 have a history of pesticide storage and handling, and there are no known disposal areas (i.e., buried debris) within the site boundary. Nevertheless, both of these sites exhibited several metals above drinking water standards that would not be expected to be present at high concentrations based on the historical use of the site. These metals included lead, chromium, beryllium, cadmium, and manganese.

Objective No. 2 (Determine whether total metals in shallow groundwater are elevated throughout the region or MCB Camp Lejeune)

Based on groundwater data obtained from both upgradient wells and off base wells, total metals were detected above drinking water standards in shallow groundwater in areas that would not be influenced by former disposal activities at the sites. Given that some of the upgradient wells are contaminated, it is apparent that total metals in shallow groundwater are elevated in certain areas of the base outside of the influence of site-related disposal activities. However, it is unknown whether the shallow aquifer upgradient of the sites is contaminated due to other base-related activities or whether the levels in groundwater samples are also elevated due to the influence of suspended fines in the samples.

Objective No. 3 (Determine whether there is a correlation between elevated total metals in groundwater and metals in soil)

An evaluation of the data presented in Table 5 shows that metals in soil samples collected in areas of groundwater contamination are not elevated when compared to metals in soil samples collected in areas that did not exhibit groundwater contamination. This supports the possibility that in many cases, elevated levels of total metals in shallow groundwater are not related to the disposal history at the site. As previously mentioned, sites which did not exhibit soil contamination (when compared to background soil levels) or did not have a history of disposal indicative of metals contamination still exhibited elevated levels of total metals in groundwater. Since there is no apparent correlation between metals in soil and total metals in groundwater, then the possibility exists that the elevated total metals in groundwater are biased high due to suspended particulates.

Objective No. 4 (Determine whether the concentrations of total metals in groundwater is related to shallow and deep aquifer characteristics)

There is some evidence that the geologic conditions of the shallow and deep aquifers influence the amount of total metals detected in groundwater samples. The fact that the deep aquifer generally exhibited higher specific conductivity values indicates that there is more dissolved constituents in the deep aquifer when compared to the shallow aquifer. This was evident when comparing Table 1 (total metals in shallow groundwater) to Table 6 (total metals in deep groundwater). Table 6 did not indicate significant levels of total metals in deep groundwater throughout MCB Camp Lejeune.

The geologic conditions of the shallow aquifer would tend to result in samples that may contain suspended particulates. The suspended particulates could influence the total metals concentrations in the samples.

6.0 CONCLUSIONS

- 1. Elevated levels of total metals in the shallow aquifer are probably influenced to some degree by the geologic conditions of the site.
- 2. There is no correlation between metal levels in soil and total metals in groundwater. Therefore, elevated total metals in groundwater cannot be attributable to soil contamination of past disposal practices.
- 3. Elevated levels of total metals in the shallow aquifer may be biased high due to suspended particulates in the samples.
- 4. Dissolved metals in groundwater were generally below Federal MCLs and NC WQS and therefore, do not present a significant problem at MCB Camp Lejeune.
- Total and dissolved metal concentrations in the Castle Hayne aquifer were generally below drinking water standards and therefore, do not present a significant problem at MCB Camp Lejeune.
- 6. The presence of manganese in shallow and deep groundwater may be due to naturally occurring geologic conditions.

7.0 RECOMMENDATIONS

- 1. Remediation of total metals in the shallow aquifer at Operable Units 1 and 5 is not recommended based on the following:
 - Elevated metals in groundwater at both operable units does not appear to be related to soil contamination or past disposal practices;
 - The distribution of total metals in groundwater is not characteristic of a plume that would be present due to a source of contamination;
 - Remediation of total metals would not be practical from an engineering or cost standpoint; and
 - Currently, there is no human or environmental exposure to shallow groundwater.
- 2. Additional background wells should be installed at all sites in order to provide a baseline for comparing on-site groundwater quality.

TABLE 1 TOTAL METALS BY SITE SHALLOW MONITORING WELLS MCB, CAMP LEJEUNE, NORTH CAROLINA

Site Number Units	NCWQS ug/L	FEDERAL MCL ug/L	Site 1 ug/I,	Site 2 ug/L	Site 6 ug/L	Site 7 ug/L	Site 9 ug/L	Site 21 ug/L	Site 24 ug/L	Site 28 ug/L	Site 30 ug/L	Site 41 ug/L	Site 43 ug/L	Site 44 ug/L
Arsenic	50	50	7.2 - 57.4	2.2 - 23.6	ND - 23.3	ND - 43.4J	ND	ND - 101	ND - 116J	5.4 - 13J	6.4 - 12J	2.4 - 36.3	ND - 23.4	ND - 570
Barium	2000	2000	335 - 833	46 - 1420	ND - 1020	427 - 641	ND - 1060	ND - 647	ND - 1120	78.8 - 576	60.1 - 396	55.2 - 999	220 - 745	315 - 3180
Beryllium	NE	4	2.7 J - 43.4	1 - 3	ND - 7.5	ND - 10.3J	ND	ND-8	ND - 19	ND - 1.2J	ND - 2.4	0.80 - 42.8	1.5 - 4.2	1.4 - 36.6
Cadmium	5	5	ND - 12.9	7	ND	ND	ND	ND	ND - 12	3.3J - 17.3J	ND - 10.7J	3.2 - 110	ND • 6.9	ND - 32
Calcium	NA	NA	8850 - 726000	5710 - 450000	5430 - 64900	5050 - 51300	16100 - 90700	6130J - 63000J	ND - 151000	20200 - 160000	1730 - 11900	8750 - 828000	10300 - 91900	2430 - 191000
Chromium	50	100	172 - 627	11 - 117	ND - 201	47.8 - 220	ND - 214	ND - 348J	19 - 316	9.0J - 140	42.8 - 106J	10.5 - 244	161 - 249	126 - 895
Соррет	1000	1300	44.6 - 117	3 - 23	ND - 175	17.7 - 36.4	ND - 39.7	ND - 84	ND - 52	18.83 - 75.4	15.8 - 42.5	16.3 - 1030	64.2 - 104	28.6 - 313
Lead	15	15	40.8J - 176J	2.7 - 44.8	ND - 200	23 - 37.3	ND - 127	ND - 2000J	5.1 - 89	20,33 - 234J	7.7J - 115J	4.8 - 9340	16.5 - 28.8	15.8 - 508
Manganese	50	50(1)	125 - 1720	21 - 190	ND - 362	56.9 - 220	ND - 91.3	59 - 276J	29 - 518	82.2 - 304	78.5 - 578	56.6 - 2110	72.6 - 297	88 - 1730
Mercury	1.1	2	ND - 1.2J	ND	ND46	0.2 - 0.36	ND - 1.4	ND - 2.4J	ND - 3.2	ND - 1.4J	0.88J - 0.9J	0.13 - 0.92	ND - 0.24	ND - 1.1
Nickel	100	100	28.5 - 426	ND	ND - 41.9	ND	ND	ND - 123	ND - 140	ND - 59.8	17.1J - 52.6J	28.8 - 137	20.5 - 143	21.9 - 486
Sodium	NA	NA	9090 - 19000	ND - 103000	1110 - 68700	7040 - 156000	1390 - 4170	7950 - 15700	5230 - 19200	9480 - 74700	5320 - 8100	2080 - 40200	9160 - 22100	4060 - 12600
Vanadium	NE	NE	214 - 640	9 - 184	ND - 330	37.8 - 423	ND - 175	ND - 419	ND - 408	6.1 - 164	57 - 101	20.4 - 244	122 - 233	184 - 759
Zinc	2100	5000 (1)	ND - 1110	6 - 146	ND - 1620	83.6 - 133	ND - 118	27J - 487J	20 - 650	ND	79.2 - 104	25.7 - 5180	19 J - 661J	87.3 - 2800J

Site Number Units	Site 48 ug/L	Site 63 ug/L	Site 65 ug/L	Site 69 ug/L	Site 78 ug/L	Site 82 ug/L	ABC Cleaners ug/L	Offsite Property#1 ug/L	Offsite Property#2 ug/L
Arsenic	ND	ND - 23.4	ND - 308	2.9 - 29.0	ND - 405J	ND - 67.8	ND - 12	10.3 - 160	ND ND
Barium	18 - 51.3	56.1 - 5410	105 - 638	46.5 - 850	ND - 1250	ND - 540	35 - 220	ND - 468	ND
Beryllium	ND	ND - 3.1	ND	1.3 - 10.6	ND - 19	ND	NA	ND - 8.5	ND
Cadmium	2.2 - 3.3	ND	ND	2.4 - 11.4	ND - 21	ND	NA	ND	ИD
Calcium	30600 - 115000	2830 - 24300	33300 - 181000	2010 - 38700	ND - 642000	6580 - 60800	790 - 16000	ND - 22800	ND - 5200
Chromium	5.8 - 17.5	4,4 - 134	50.1 - 364	15.1 - 159	ND - 858J	ND - 174	ND - 57	52.8 - 636	ND - 94
Copper	3.1 • 13.5	10.7 - 126	28.2 - 127	16.2 - 70.8	ND - 699	ND - 29.3	ND - 89	ND - 140	ND
Lead	ND	4.3 J - 369	19.1 - 132	7,8 - 188	ND - 360J	ND • 89	ND - 10	12.3 - 345	6.3 - 62.3
Manganese	38.1 - 585	50.3 - 1020	56.2 - 474	13.0 - 912	26 - 714	26.9 - 283	4 - 44	56 - 973	ND - 60.1
Mercury	0.04 - 0.09	ND - 0.20	ND - 0.29	0.10 - 0.94	ND - 1.5	ND - 0.66	NA	ND	ND
Nickel	ND	19.8 - 54.2	19.4 - 84.3	13.6 - 99.8	ND - 234	ND - 34.6	ND - 77	40.2 - 380	ND
Sodium	5750 - 8760	3150 - 7100	3850 - 11700	4790 - 41300	ND - 42500	5670 - 36500	5800 - 33000	ND - 9390	ND - 7630
Vanadium	3.4 - 12.8	7.9 - 163	59.8 - 433	17.3 - 210	ND - 1700	ND - 256	ND - 45	70 - 739	ND - 64.7
Zinc	ND - 30.3	58.5J - 1110J	148J - 406J	36.2 - 12100	6J - 967J	ND - 204	14 - 220	ND - 736	ND - 40.8

NOTES:

J - Value is estimated.

JB - Value is estimated below the CRDL, but greater than the IDL.

NE - Not established.

NA - Not analyzed. ND - Not detected.

NCWQS - North Carolina Water Quality Standard

MCL - Maximum Contaminant Level

TABLE 2
COMPARISON OF REPEAT SAMPLING OF SHALLOW WELLS
MCB, CAMP LEJEUNE, NORTH CAROLINA

Well	2G'	W01	2G'	2GW03		2GW06		2GW08		W09
Date	5/1993	3/1994	5/1993	3/1994	5/1993	3/1994	5/1993	3/1994	5/1993	3/1994
Chromium	18	ND	11	ND	15	ND	ND	ND	25	83
Lead	15.5 J	ND	3.5 J	ND	6.7 J	ND	ND	3.4	27.2 J	23.6
Manganese	55	47	21	ND	79	140	53	415	290	747

Well	78G	W05	78G	W08	78G	W15	78G	W16	78G	W19
Date	1/1991	4/1994	1/1991	4/1994	1/1991	4/1994	1/1991	4/1994	1/1991	4/1994
Chromium	ND	17 J	91.8	491 J	21.4	215 J	209	353 J	13.8	, ND
Lead	13.6	13.1 J	54.1	131 J	16.6	53	100	224	31.7	8.3
Manganese	162	161 J	46.5	213 J	18.3	115	98.3	150	79	26

J - Value is estimated..

ND - Not detected.

TABLE 3 DISSOLVED METALS BY SITE SHALLOW MONITORING WELLS MCB, CAMP LEJEUNE, NORTH CAROLINA

Site Number Units	ncwqs ug/L	FEDERAL MCL wg/L	Site 1 ug/L	Site 2 ug/L	Site 6 ug/L	Site 7 ug/L	Site 9 ug/L	Site 21 ng/L	Site 24 ug/L	Site 28 ug/L	Site 30 ug/L	Site 41 ug/L	Site 43 ug/L	Site 44 ug/L
Arsenic	50	50	NA	2.2 - 7.1	ND	NA	ND	ND - 10.6	ND - 16.3	NA	NA	2.2 - 4.7	NA	NA
Barium	2000	2000	NA	25 - 149	ND	NA	ND	ND	ND	NA	NA	12.4 - 451	NA	NA
Beryllium	NE	4	NA	. 1	ND	NA	ND	ND	ND	NA	NA	0.80 - 3.2	NA	NA
Cadmium	5	5	NA	ND	ND	NA	ND	ND - 5	ND	NA	NA	3.2 - 4.2	NA	NA.
Calcium	NA .	NA	· NA	5800 - 441000	6230 - 57400	NA	15800 - 82400	35900	ND - 113000	NA	NA	4710 - 138000	NA	NA
Chromium	50	100	NA	10	ND	NA	ND	ND	ND	NA	NA	8.3 - 9.6	NA	NA
Copper	1000	1300	NA	2-9	ND	NA	ND	ND	ND	NA	NA	16.3 - 23.9	NA.	NA
Lead	15	15	NA	2.1	ND	NA	ND	ND - 94	ND	NA	NA	1.0	NA	NA
Manganese	50	50 (1)	NA	17 - 129	ND - 92.7	NA	ND	40 - 134	ND - 320	NA	NA	7.1 - 521	NA	NA
Mercury	1.1	2	NA.	ND	ND	NA	ND	ND	ND - 0.5	NA	NA	0.13 - 0.20	NA	NA.
Nickel	100	100	NA	ND	ND	NA	ND .	ND	ND - 57	NA	NA	28.8 - 31.2	NA	NA.
Sodium	NA.	NA	NA	ND - 103000	1420 - 70500	NA	1280 - 3860	16200	ND - 183000	NA	NA	2500 - 34200	NA	NA
Vanadium	NE	NE	NA	43	ND	NA	ND	ND	ND	NA	NA	20.4	NA	NA
Zinc	2100	5000 (1)	NA	8-35	ND-350	NA	ND	6B - 50	ND - 437	NA	NA	10.6 - 125	NA.	NA

Site Number Units	Site 48 ug/L	Site 63 ug/L	Site 65 ug/L	Site 69 ug/L	Site 78 ug/L	Site 82 ug/L	ABC Cleaners ug/L	Offsite Property#1 ug/L	Offsite Property#2 ug/L
Arsenic	ND	NA.	NA	2.9	ND - 21.6	ND	. NA	ND - 18.8	ND
Barium	16.8 - 27.6	NA	NA	13.7 - 35.8	ND	ND	NA	ND	ND
Baryllium	ND	NA	NA	1.3	ND	ND	NA.	ND	ND
Cadmium	ND - 3.1	NA	NA	2.4	ND	ND	NA	ND	ND
Calcium	72600 - 80700	NA	NA	764 - 10600	ND - 296000	15200 - 58500	NA	ND - 7710	ND
Chromium	ND	. NA	NA	7.2	ND - 59	ND	NA	ND - 30.0	ND
Copper	2.6 - 7.6	NA	NA	16.2	ND - 121	ND	NA	ND - 10.7	ND
Lead	ND	NA	NA	1	ND - 17.2	ND	NA	ND - 15.8	ND
Manganese	39.7 - 539	NA	NA	8.5 - 139	ND - 152	21 - 127	NA	ND - 63.8	ND - 21.3
Mercury	0.05 - 0.09	NA	NA	0.1	ND - 0.6	ND	NA	ND	ND
Nickel	ND	NA	NA	13.6	ND	ND	NA	ND	ND
Sodium	6430 - 8920	NA	ŇA	5170 - 41100	ND - 42200	5980 - 36000	NA	ND - 9540	ND - 6750
Vanadium	ND	NA	NA	16.6	ND	ND	NA	ND	ND
Zinc	ND	NA	NA	7.0 - 7670	ND - 58	ND - 119	NA	ND - 468	ND - 222

NOTES:

J - Value is estimated.

JB - Value is estimated below the CRDL, but greater than the IDL.

NE - Not established.

NA - Not analyzed. ND - Not detected.

NCWQS - North Carolina Water Quality Standard MCL - Maximum Contaminant Level

(1) - Secondary MCL

TABLES.XLS / Page 1 of 1

TABLE 4 SUMMARY OF TOTAL METALS IN UPGRADIENT WELLS SHALLOW MONITORING WELLS MCB, CAMP LEJEUNE, NORTH CAROLINA

Well Number Units	NCWQS	FEDERAL MCL ug/L	Upgradient of Site 1 1GW06 ug/L	Upgradient of Site 2 2GW09 ug/L	Upgradient of Site 6 6BP6S ug/L	Upgradient of Site 7 7GW03 ug/L	Upgradient of Site 9 9GW4S ug/L	Upgradient of Sites 21 and 78 78GW26 ug/L	Upgradient of Site 24 24GW07 ug/L	Upgradient of Site 28 28GW04 ug/L	Upgradient of Site 30	Upgradient of Site 41 41GW05 ug/L	Upgradient of Site 43	Upgradient of Site 44
Arsenic	50	50	17.8 J	12.9	ND	ND	ND	ND	3.7 J	7.4 J		13.1		- 10
Barium	2000	2000	548	328	257	428	71.3	ND	ND	576	\$	55.7	₹	
Beryllium	NE	4	3.2 J	3	ND	ND	ND	ND	ND	9.3 J	S	1.6		N N
Cadmium	5	5	ND	ND	ND	ND	ND	not reported	ND	3.3 J	5	10	□ 5 □	_ হ _
Chromium	50	100	193	75	198	124	ND	13	37	122	*	54.4	_ ≱ _	<u> </u>
Copper	1000	1300	64.8	25	35.6	36.4	ND	ND	ND	20.7 J		27	# _	- E -
Lead	15	15	78.8 J	27.2	64.4	30.3 J	ND	9	11.4	22.4 J	_ # _	23.7	L : š _	L # _
Manganese	50	50 (1)	202	747	84.5	56.9 J	ND	ND	39	206	ž	203	<u> </u>	<u>~</u> _
Mercury	1.1	2	1.6 J	ND	ND	0.36	ND	ND	ND	ND		0.16	&	
Nickel	100	100	51.6	ND	ND	ND	ND	ND	ND	59.8		38	<u> </u>	<u> </u>
Vanadium	NE	NE	214	86	209	152	ND	149	64	85.3		38.1	Ľž-	
Zinc	2100	5000 (1)	ND	103	56,6	86.4 J	ND	68.1	41	ND		173	L	

Well Number	Upgradient of Site 48 48GW1	Upgradient of Site 63	Upgradient of Site 65	Upgradient of Site 69 69GW07	Upgradient of Site 78 9GW04	Upgradient of Site 82 6MW3S	Upgradient of ABC Cleaners MW-801	Upgradient of Offsite Property #1	Upgradient of Offsite Property #2
Units	ug/L			ug/L	ug/L	ug/L	ug/L		
Arsenic	ND			2.9	ND	ND	ND	L	┖╸╻┛
Barium	29.4 J	if =	Sites	46.5	ND	ND	35	Sites	\$
Beryllium	ND	is –	is	1.3	ND	ND	NA		
Cadmium	2.5 J	78 -	- a -	2.4	ND	ND	NA	=	ା ≅ ା
Chromium	ND	_ ≱ _	┌ ≽ ┌	15.8	ND	ND	ND	≽	<u></u> ≱]
Copper	ND	= # =		16.2	ND	ND	ND	= _	#
Lead	ND	_ ₽ _	dient	7.8	ND	ND	3	dient	dient
Manganese	70.6	7 7 -	ল	13	ND	ND	10	1 65	ĕ
Mercury	ND	- <u>6</u> -		0,1	ND	ND	NA		
Nickel	ND	Upg	<u></u>	13.6	ND	ND	ND	上	f ₀
Vanadium	3.4 J	- ŝ -	_ 2 _	17,3	ND	ND	9		₽ Z
Zinc	ND	<u> </u>	_ ~ _	36.2	ND	ND	23		~ _

NOTES:

JP - Value is estimated.

JB - Value is estimated below the CRDL, but greater than the IDL.

NE - Not established.

NA - Not analyzed.

ND - Not detected.

NCWQS - North Carolina Water Quality Standard MCL - Maximum Contaminant Level

TABLE 5
COMPARISON OF INORGANIC SUBSURFACE SOIL CONCENTRATIONS IN "CLEAN" AND "CONTAMINATED" WELLS
MCB, CAMP LEJEUNE, NORTH CAROLINA

	Camp Lejeune Background		Site 1		Site 2		Site 6		Site 7		Site 9		Site 21
	Subsurface Soil Data	"Clean"	"Contaminated"	"Clean"	"Contaminated"	"Clean"	"Contaminated"	"Clean"	"Contaminated"	"Clean"	"Contaminated"	"Clean"	"Contaminated"
Units	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
Well Number		-	-	2GW07	2GW09	6GW18	6GW15	7GW03	7GW02	9GW5	9GW1	21GW03	21GW02
Soll Sample Number		-	_	2-GW07-01	2 - GW09-02	6-GW18-0303	6-GW15-03	GW03-002	GW02-7595	9-GW5-03	9-SB35-03	21-GW03	21-GW02
Arsenic	0.03 - 0.47	NA	NA	1.7 J	ND	ND	ND	1.5	ND	ND	ND	ND	0.55 J
Barium	2 • 11	NA	NA	12.5 J	ND	ND	ND	6.6	71	ND	ND	ND	4.4 J
Beryllium	0.03 - 0.23	NA	NA	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Cadmium	0.17 - 1.2	NA	NA	ND	ND	ND	ND	1.3	4.5	ND	ND	ND	ND
Chromium	2-9	NA	NA	10.9 J	4.6	ND	3.6	5.2	6	ND	263	15.2	3,27
Copper	0.47 - 2	NA	NA	0.97 J	ND	ND	ND	ND	ND	ND	ND	ND	ND
Lead	1 - 12	NA	NA .	81	4.3	3.3 J	3.2	2.5	34.4	1.6	83	7.1	6.93
Manganese	0.40 - 8	NA	NA	4.3 J	4.1	ND	1.8 B	3	11.5	ND	3.7 J	9.8	3,43
Mercury	0.01 - 0.11	NA	NA	0.3 J	ND	ND	ND	10.13	0.48	ND	ND	ND	ND
Nickel	0.70 - 5.0	NA	NA	ND	ND	ND	ND	3.4	11.8	ND	ND	ND	ND
Vanadium	0.75 • 13	NA	NA	13.8 J	ND	ND	2.9 B	5,5	4.5	ND	ND	15.5	4.4 J
Zinc	0.40 - 12	NA	NA	ND	ND	ND	ND	1.3	ND	ND	6.1 J	5.7	3 J

Shaded area indicates inorganic which exceeded a MCL and/or NCWQS in groundwater sample.

J - Value is estimated.

JB - Value is estimated below the CRDL, but greater than the IDL.

NA - No available wells to compare OR compound was not analyzed.

ND - Not detected.

NCWQS - North Carolina Water Quality Standard

MCL - Maximum Contaminant Level

TABLE 5
COMPARISON OF INORGANIC SUBSURFACE SOIL CONCENTRATIONS IN "CLEAN" AND "CONTAMINATED" WELLS
MCB, CAMP LEJEUNE, NORTH CAROLINA

		Site 24		Site 28		Site 30	Sit	e 41	8	Site 43	Si	te 44
Units	"Clean" mg/kg	"Contaminated" mg/kg	"Clean" mg/kg	"Contaminated" mg/kg	"Clean" mg/kg	"Contaminated" mg/kg	"Clean" mg/kg	"Contaminated" mg/kg	"Clean" mg/kg	"Contaminated" mg/kg	"Clean" mg/kg	"Contaminated" mg/kg
Well Number	24GW10	24GW02 24-BDA-SB09			-	-	41GW04 41-GW04-DW	41-GW11 41-GW11-01	43GW01 43-GW01-00	43GW02 43-GW02-00	44GW02 44-GW02-035	44GW01
Soll Sample Number	24-GW10 ND	ND	na	NA.	NA NA	NA NA	0.51	1.6	ND	ND	ND	1.7
Barium	ND	ND	NA NA	NA NA	NA NA	NA NA	9.4	22.6	ND	ND	ND	17.9
Beryllium	ND	ND	NA	NA	NA	NA	0.18	0.18	ND	ND	ND	ND
Cadmium	ND	ND	NA	NA	NA	NA	0.73	673	8.3	ND	ND	ND
Chromium	11.2	91	NA	NA.	NA	NA	3.6	112	8.3	6.7	5.63	101
Соррег	ND	ND	NA	NA	NA	NA NA	3.7	22.5	3.4	ND	6.2 J	25.4 J
Lead	4.6 J	623	NA	NA NA	NA	· NA	4.8	110	98	6.1	- 55	10.7
Manganese	4.7	£43	NA	NA NA	NA	NA	3.7	75.9	31.2	8.2	3.5	20.4
Mercury	ND	ND	NA NA	NA NA	NA	NA	0.06	0.31	ND	ND *3	ND 3.1	ND 54
Nickel	ND	ND	NA NA	· NA	NA NA	NA NA	6.6	9.3	7.6 7.2	7.3 5.8	3.1	14.7
Vanadium Zinc	18.4 ND	7.8	NA NA	NA NA	NA NA	NA NA	7,7	130	20.1	3	3,2	34.9

Shaded area indicates inorganic which exceeded a MCL and/or NCWQS in groundwater sample.

J - Value is estimated.

JB - Value is estimated below the CRDL, but greater than the IDL.

NA - No available wells to compare OR compound was not analyzed.

ND - Not detected.

NCWQS - North Carolina Water Quality Standard

MCL - Maximum Contaminant Level

TABLE 5 COMPARISON OF INORGANIC SUBSURFACE SOIL CONCENTRATIONS IN "CLEAN" AND "CONTAMINATED" WELLS MCB, CAMP LEJEUNE, NORTH CAROLINA

:	8	Site 48		Site 63		Site 65	8	Site 69		Site 78		Site 82
	"Clean"	"Contaminated"	"Clean"	"Contaminated"	"Clean"	"Contaminated"	"Clean"	"Contaminated"	"Clean"	"Contaminated"	"Clean"	"Contaminated"
Units	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
Well Number	48-GW01	48-GW03	63MW03	63MW02	65MW03	65MW02	69-GW11	69-GW03	78GW34	78GW24-1	6-GW28	82MW3
Soll Sample Number	48-GW1A-01	48-C3-03	63-MW03-04	63-MW02-06	65-MW03-11	65-MW02-06	69-GW11-04	69-CSA-SB23-00	78-GW34	78-B903-SB03	6-GW28-09	6-GW27D-06
Arsenic	1.3	0.77 J	ND	ND	ND	13	0.68	0.63	ND	ND	0.31	15.9
Barium	21.1	15	ND	ND	3.4	6.8	5.6	3	ND	ND	ND	ND
Beryllium	0.2	0.19	ND	ND	ND	ND	0.3	0.28	ND	ND	ND	ND
Cadmium	1.4	1.8 J	ND	ND	NA	NA	0.56	0.52	ND	ND	ND	ND
Chromium	18.2	18.6	7.7	ND	3.9	5.7	6.8	17	18.5	93	2.6	3
Copper	3.5	3.8	ND	ND	1.5	3.1	3,8	3.5	3.4 B	ND	ND	ND
Lead	32.3	14.3	4.2	2.6	1.7	17	4.3	1.1	4.5 J	261	2.7	43
Manganese	411	7	4.9	18.8	3.5 ·	6.9	4	1.2	9.2	ND	ND	ND
Morcury	ND	ND	ND	ND	NA	NA.	0.06	0.05	ND	ND	ND	ND
Nickel	2.2	1.9 J	ND	ND	ND	ND	3.2	3	ND	ND	ND	ND
Vanadium	28.3	20.8 J	ND	ND	4.4	3	4.4	3.6	18.7	19.2	ND	ND
Zinc	ND	ND	ND	ND	2.7	5	3.2	1.5	7.9	ND	ND	ND

Shaded area indicates inorganic which exceeded a MCL and/or NCWQS in groundwater sample.

J - Value is estimated.

JB - Value is estimated below the CRDL, but greater than the IDL

NA - No available wells to compare OR compound was not analyzed.

ND - Not detected.

NCWQS - North Carolina Water Quality Standard

MCL - Maximum Contaminant Level
(1) - Secondary MCL

TABLE 5
COMPARISON OF INORGANIC SUBSURFACE SOIL CONCENTRATIONS IN "CLEAN" AND "CONTAMINATED" WELLS
MCB, CAMP LEJEUNE, NORTH CAROLINA

	Al	BC Cleaners	Offsi	te Property #1	Offsi	te Property #2
Units	"Clean" mg/kg	"Contaminated" mg/kg	"Clean" mg/kg	"Contaminated" mg/kg	"Clean" mg/kg	"Contaminated" mg/kg
Well Number	-	_	-	-		-
Soil Sample Number	-	-	-	_	-	
Arsenic	NA	NA	NA	NA	NA	NA
Barium	NA	NA	NA	NA	NA	NA
Beryllium	NA	NA	NA	NA	NA	NA
Cadmium	NA	NA	NA	. NA	NA	NA
Chromium	NA	NA	NA	NA	NA	NA
Copper	NA	NA	NA	NA	NA	NA
Lead	NA	NA NA	NA	NA.	NA	NA
Manganese	NA	NA	NA	NA	NA	NA
Mercury	NA	NA NA	NA	NA	NA	NA.
Nickel	NA.	NA	NA	NA NA	NA	NA
Vanadium	NA	NA.	NA.	NA	NA	NA
Zinc	NA	NA	NA	NA	NA	NA

Shaded area indicates inorganic which exceeded a MCL and/or NCWQS in groundwater sample.

J - Value is estimated.

JB - Value is estimated below the CRDL, but greater than the IDL.

NA - No available wells to compare OR compound was not analyzed.

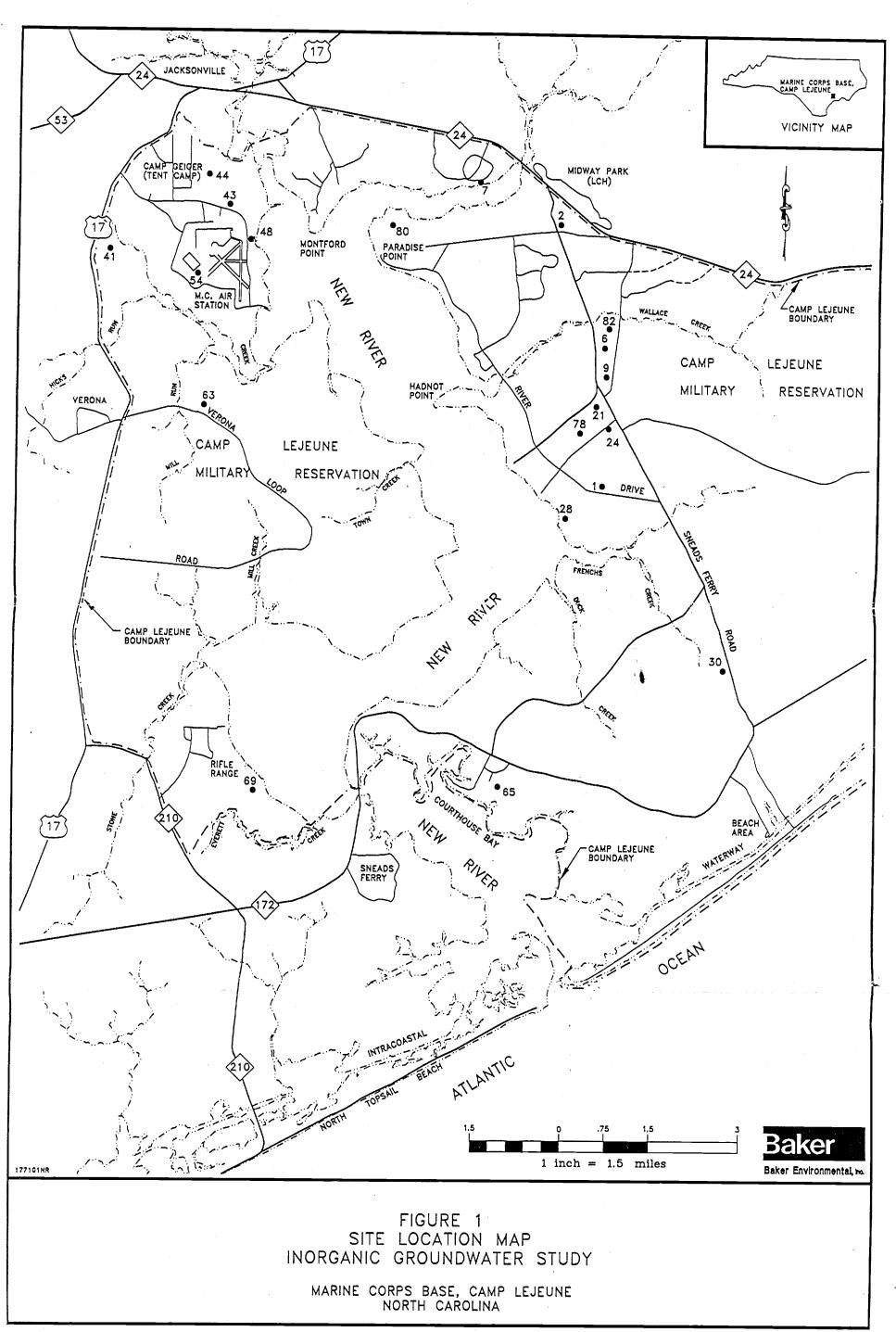
ND - Not detected.

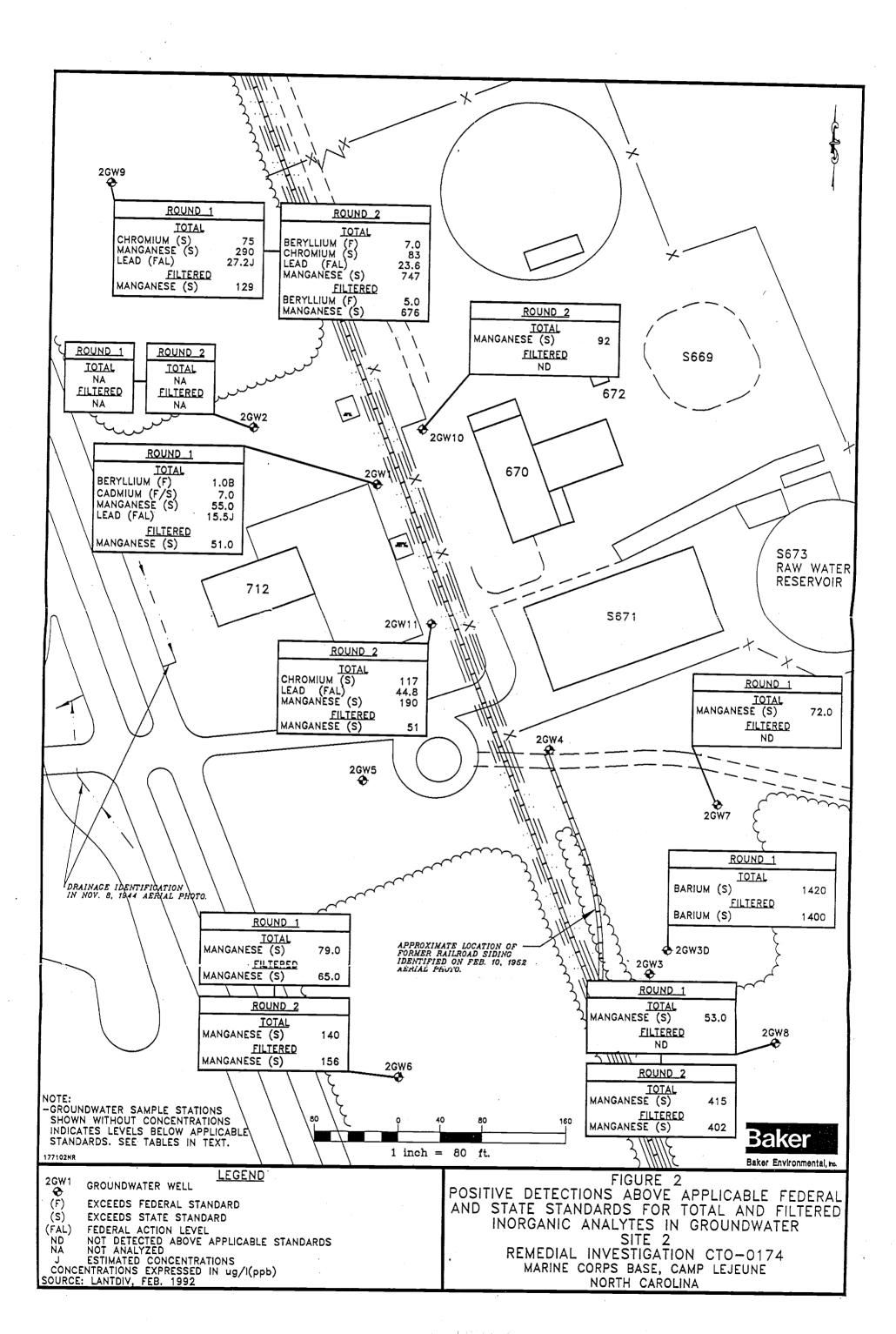
NCWQS - North Carolina Water Quality Standard

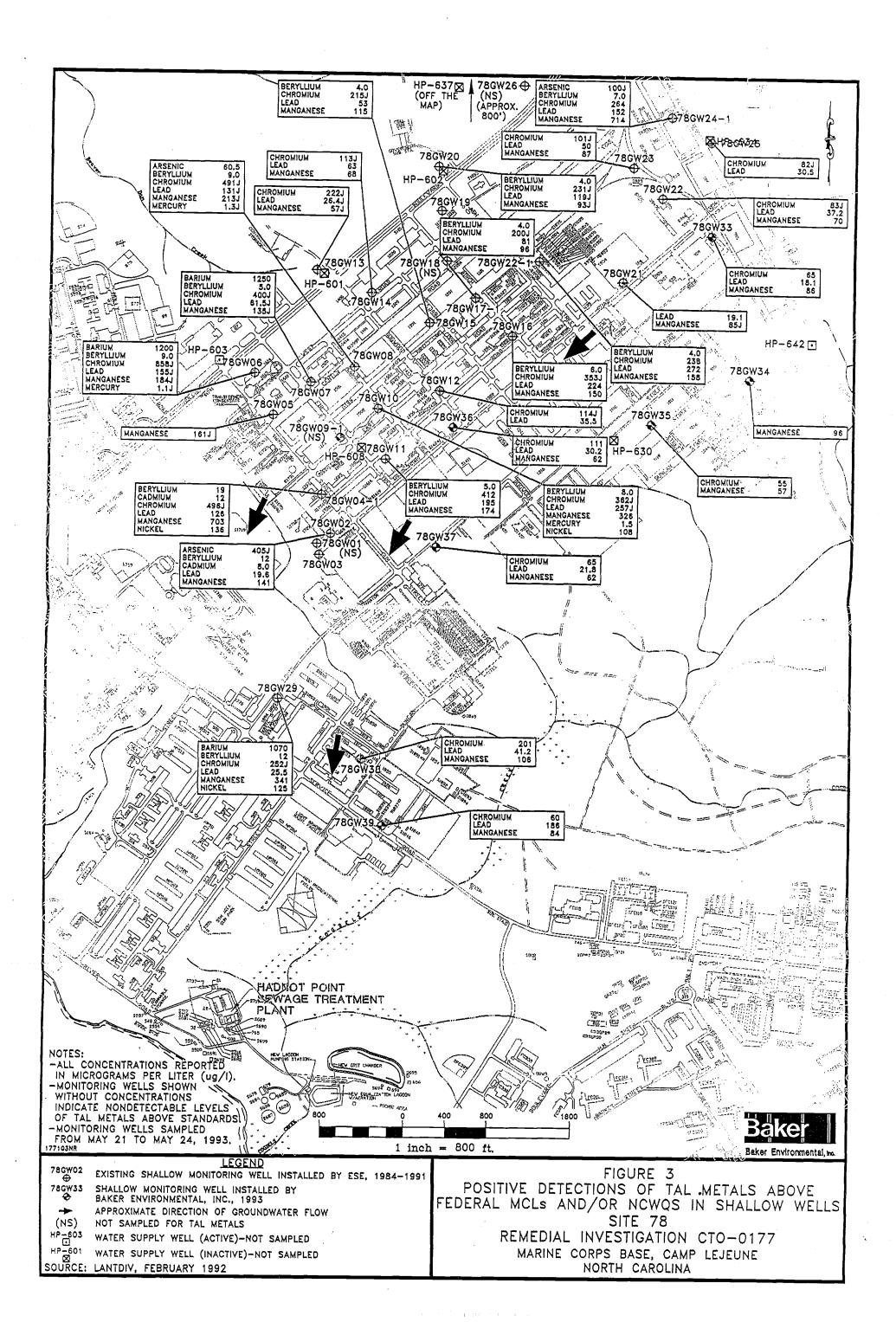
MCL - Maximum Contaminant Level

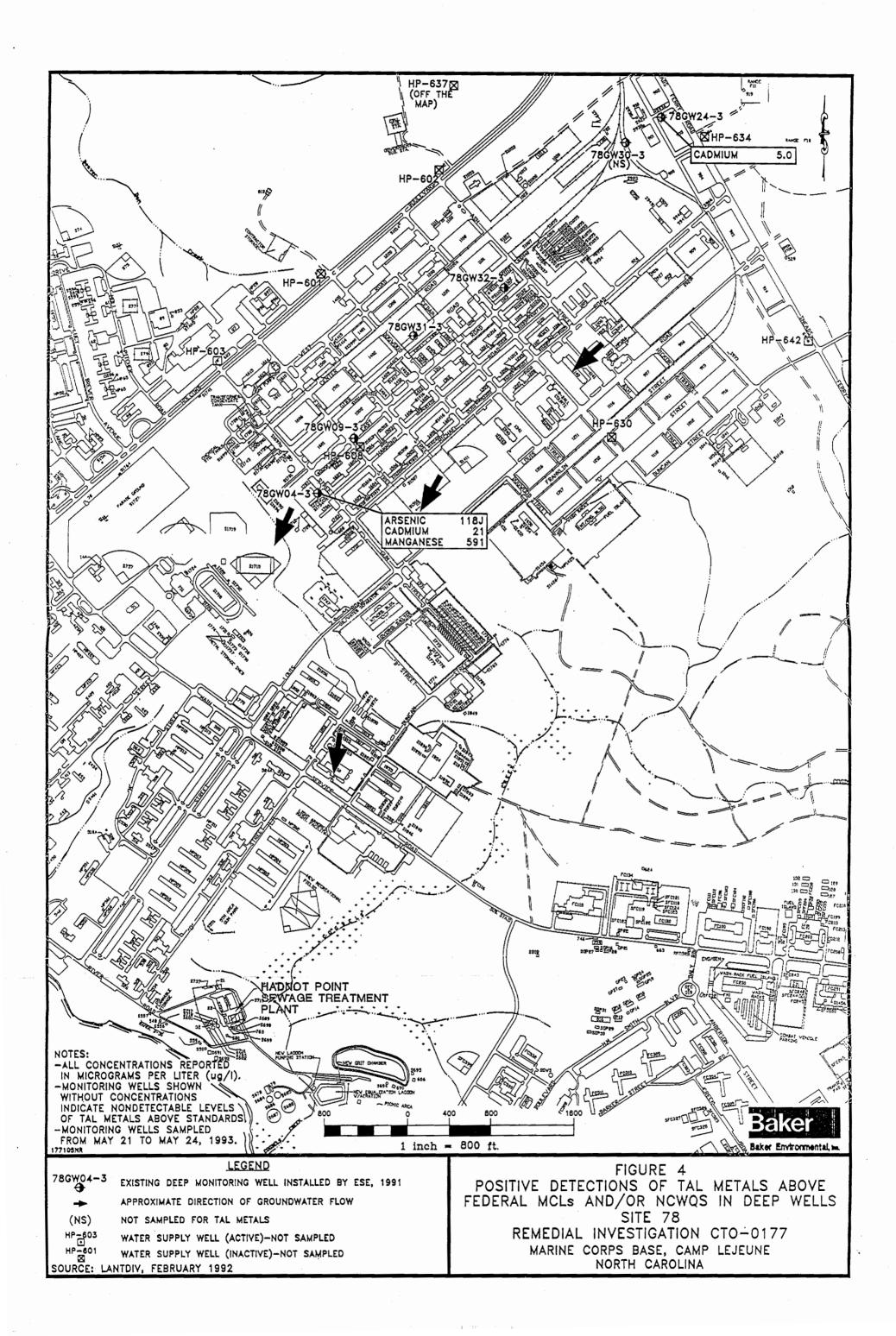
TABLE 6 TOTAL METALS BY SITE DEEP MONITORING WELLS MCB, CAMP LEJEUNE, NORTH CAROLINA

	Site 1	Site 2	Site 6	Site 7	Site 9	Site 21	Site 24	Site 28	Site 30	Site 41	Site 43	Site 44	Site 48	Site 63	Site 65	Site 69	Site 78	Site 82	ABC Cleaners	Base Supply Wells (1)
Arsenic		ND	ND		ND					2.2 - 9.6						2.2 - 3.5	2-118J	ND	ND - 14	ND
Barium		1420	ND	L	ND					22.6 - 186						42.3 - 58.0	ND - 547	ND	4-36	ND
Beryllium		ND	ND	L _	ND					3.2						0.80 - 0.89	ND	ND	NA	NA
Cadmium	ells	ND	ND	_ ¥ _	ND		lls -	ells	l ells I	4.2 - 4.7	_ ii _	IIS	S11	_ ≅ _	SI	3.2	ND-21	ND	NA	ND
Chromium	L š ⊒	16	ND	L 👸 🛚	ND	_w		We	- We	9.6 - 40.5	[&]	_ We □	[🕺]		_ & _	8.3 - 20.7	ND - 10	ND	ND - 32	ND
Copper	g.	ND	ND	_ e	ND	[·a]	_ d;	[d:]	_ d	23.9	_ g	d:			[a]	16.3	ND	ND	ND - 41	ND - 130
Lead	ا ۾	ND	ND	ے ق	ND	_ 6	_ Ğ _	Dec	_ Dec	1.0 - 11.1						3.1 - 6.8	ND	ND	ND - 10	ND - 16
Manganese	_ · •	ND	ND - 33.5	_ @ _	ND	_ چ	[₉ -	့	_ Q	16.9 - 101	_ چ	[e				53.7 - 114	ND - 591	ND - 21.6	ND - 45	10 - 120
Mercury	_ ~ _	ND	ND	[~]	ND		_ ~ _		- z -	0.15 - 0.17	_~	_ ~ _			_ ~	0.16 - 0.17	ND - 0.3	ND	NA	ND
Nickel		ND	ND		ND				_	31.2						28.8	ND	ND	ND - 14	NA
Vanadium	LÏ	ND	ND	L	ND		_			20.4 - 49.8						20,4	ND - 24 J	ND	ND - 15	NA
Zinc		ND	ND		ND				,	17.8 - 83.8			_			31.1 - 48.7	ND - 181 J	· ND	58 - 390	ND - 120


NOTES: J - Value is estimated., NA - Not analyzed. ND - Not detected.


(1) - Range is based on 67 supply wells located throughout MCB, Camp Lejeune, NC.


TABLE 7 SUMMARY OF FIELD PARAMETERS IN SHALLOW, DEEP, AND SUPPLY WELLS MCB, CAMP LEJEUNE, NORTH CAROLINA


	Shallov	v Wells	Deep	Wells	Suppl	y Wells
	Range (1)	Average Maximum	Range (2)	Average Maximum	Range (3)	Average Maximum
pH (standard units)	4.5 - 7.28	6.08	7.52 - 11.34	8.88	6.91 - 7.45	7.32
Specific Conductivity (micromhos/cm)	40 - 580	267	149 - 525	350	212 - 511	353

- (1) Based on data from 11 sites.
- (2) Based on data from 6 sites.
- (3) Based on data from 9 supply wells.

Appendix A
Data Summary Tables
for Sites 2 and 78

	MINIMUM	MAXIMUM	MINIMUM	MAXIMUM	LOCATION OF	FREQUENCY
	NONDETECTED	NONDETECTED	DETECTED	DETECTED	MAXIMUM	OF
	UG/L	UG/L	UG/L	UG/L	DETECTED	DETECTION
ALUMINUM	NA	NA	68 J	542000 J	78-GW06-01	59 / 59
ANTIMONY	3 U	20 U	3.3 B	169 J	78-GW02-01	7 / 33
ARSENIC	2 U	10 U	2.3 J	405 J	78-GW02-01	44 / 48
BARIUM	NA	NA	17 B	1250	78-GW07-01	59 / 59
BERYLLIUM	1 U	4 U	i B	19	24-GW02-01	52 / 59
CADMIUM	5 U	25 U	5	21	78-GW04-3-01	9 / 59
CALCIUM	NA	. NA	2420 B	642000	78-GW04-1-01	59 / 59
CHROMIUM	10 U	50 U	10	858 J	78-GW06-01	46 / 59
COBALT	8 U	8 U	8 B	170	78-GW22-2-01	25 / 59
COPPER	2 U	2 U	3 B	699	78-GW39-01	58 / 59
IRON	NA	NA	32 B	523000	78-GW04-3-01	59 / 59
LEAD	1.8 U	4.9 U	2.9 B	2000 J	21-GW0B-01	50 / 59
MAGNESIUM	NA	NA	88 B	37100	24-GW03-01	59 / 59
MANGANESE	2 U	2 U	2 B	714	78-GW24-1-01	57 / 59
MERCURY	0.2 U	0.2 U	0.23 J	3.2	24-GW06-01	24 / 52
NICKEL	20 U	20 U	20 B	234	78-GW22-2-01	31 / 59
POTASSIUM	NA	NA	982 B	67300	78-GW32-3-01	59 / 59
SELENIUM	1 U	5 U	1.1 J	99.5 J	78-GW32-2-01	41 / 54
SILVER	3 U	15 U	5 J	5 Ј	78-GW09-3-01	1 / 59
SODIUM	NA	NA	2450 B	42500	78-GW32-3-01	59 / 59
THALLIUM	1 U	1 U	1 B	7.3 J	78-GW32-2-01	16 / 59
VANADIUM	4 U	-, 4 U	4 J	1700	78-GW08-01	55 / 59
ZINC	6 U	6 U	6 Ј	967 J	78-GW22-2-01	57 / 59
CYANIDE	10 U	10 U	ND	ND	ND	0 / 54

	SAMPLE NO.	21-GW01-01	21-GW02-01	21-GW03-01	21-GW04-01	21-GW0A-01	21-GW0B-01
	UNITS	UG/L	UG/L	UG/L	UG/L	UG/L	UG/L
ALUMINUM		4910 J	319000 J	4820 J	20100 J	16900 J	118000 J
ANTIMONY		7 UJ	7 U	7 U	7 U	7 R	7 U
ARSENIC		15	10	2 U	11.8	45.2 J	30.4
BARIUM		32 B	647	51 B	119 B	100 B	386
BERYLLIUM		1 B	5	1 B	1 B	1 B	6
CADMIUM		5 U	10 U	5 U	5 U	5 U	10 U
CALCIUM		63000 J	24100 J	6130 J	21700 J	23800	6250 J
CHROMIUM		10 UJ	348 J	10 UJ	33 J	21 J	192 J
COBALT		8 U	18 B	8 U	10 B	8 U	36 B
COPPER		4 B	79	7 B	28	24 B	38
IRON		9920 J	122000 J	13400 Ј	24900 J	38900 J	72900 J
LEAD		1.8 UJ	214 J	4.9 UJ	33 J	29	· 2000 J
MAGNESIUM		5070	15400	4550 B	5490	4850 B	11600
MANGANESE		64 J	179 J	Į34 J	193 J	59	276 J
MERCURY		0.2 R	2.4 J	0.2 R	0.2 R	0.2 U	0.2 R
NICKEL		20 U	86	20 U	20 U	20 U	60
POTASSIUM		2390 B	10500	2240 B	3800 B	2360 B	9520
SELENIUM		1 U	11 J	1 U	1 U	1 UJ	3.7 J
SILVER		3 U	3 U	3 U	3 U	3 UJ	3 U
SODIUM		15700	12600	7950	14400	12600	14400
THALLIUM		1 U	1 UJ	1 U	1 UJ	1 UJ	1 U
VANADIUM		30 B	281	11 B	42 B	48 B	243
ZINC		65 J	136 J	27 J	57 J	41 J	175 J
CYANIDE		10 U					

	SAMPLE NO.	21-GW0C-01	24-GW01-01	24-GW02-01	24-GW03-01	24-GW04-01	24-GW06-01
	UNITS	UG/L	UG/L	UG/L	UG/L_	UG/L	UG/L
ALUMINUM		209000 J	262000	93700	50200	58900	19800
ANTIMONY		7 U	3 U	3 UJ	3 U	4.6 B	3.5 B
ARSENIC		101	10 UJ	2.3 J	4.7 Ј	116 J	10.1 J
BARIUM		467	380	1120	480	290	159 B
BERYLLIUM		8	3 B	19	5	2 B	9
CADMIUM		10 U	5 U	12	5 U	5 U	5
CALCIUM		35200 J	4120 B	2420 B	124000	65600	151000
CHROMIUM		291 J	296	316	110	153	78
COBALT		60	8 U	41 B	66	8 U	35 B
COPPER		84	49	52	22 B	31	15 B
IRON		106000 J	58600	395000	16300	70500	69500
LEAD		92.5 J	89	17.9	21.6	23.6	7.4
MAGNESIUM		16300	12200	7240	37100	7690	4320 B
MANGANESE		273 J	117	518	393	66	431
MERCURY		0.23 J	0.23	2.6	0.2 U	0.2 U	3.2
NICKEL		123	38 B	140	85	20 U	93
POTASSIUM		11800	12000	7550	15400	6130	3370 B
SELENIUM		4.3 B	1.3 J	1.1 J	16.2 J	4.3 J	1 UJ
SILVER		3 U	3 UJ	15 UJ	3 UJ	3 UJ	3 UJ
SODIUM		15200	6030	11600	19200	5230	7280
THALLIUM		1 U	1 U	1 U	2.4 B	1 U	1 B
VANADIUM		419	304	408	92	202	83
ZINC		487 J	118	461	650	80	489
CYANIDE	•	10 U			•		

	SAMPLE NO.	24-GW07-01	24-GW08-01	24-GW09-01	24-GW10-01	78-GW02-01	78-GW03-01
	UNITS	UG/L	UG/L	UG/L	UG/L	UG/L	UG/L
ALUMINUM		36000	61100	12800	23300	29200 J	23900 J
ANTIMONY		3 U	3 U	3.3 B	5.7 B	169 J	38.5 J
ARSENIC		3.7 J	8 J	4.3 J	2.5 J	405 J	5.7 J
BARIUM		85 B	112 B	164 B	59 B	109 B	36 B
BERYLLIUM		1 B	2 B	1 B	1 U	12	2 B
CADMIUM		5 U	5 U	5 U	5 U	8	5 U
CALCIUM		4960 B	27000	9530	3820 B	37000	32900
CHROMIUM		37	85	19	21	18 J	10 UJ
COBALT		8 U	8 U	11 B	8 U	8 U	8 U
COPPER	٠	19 B	24 B	11 B	13 B	20 B	8 B
IRON	•	13700	27500	13100	7010	427000 J	5020 J
LEAD		11.4	23.8	5.1	7.3	19.6	3.4
MAGNESIUM		2670 B	5050	7630	1760 B	3650 B	2210 B
MANGANESE		39	47	180	29	141	27
MERCURY		0.2 U	0.2 U	0.2 U	0,2 U	0.2 U	0.2 U
NICKEL		20 U					
POTASSIUM		3870 B	5580	4280 B	2620 B	2770 B	1320 B
SELENIUM		2.1 J	1.9 J	2.6 J	. 1 UJ	19.8 J	2.4 J
SILVER		3 UJ	3 UJ	3 UJ	3 UJ	15 UJ	3 UJ
SODIUM		6520	6550	6010	6650	5120	4270 B
THALLIUM		1 U	1 U	1 U	1 U	1 UJ	1 UJ
VANADIUM		64	129	26 B	34 B	1660	50
ZINC		41	47	50	20	58 J	5 12 J
CYANIDE		10 U					

	SAMPLE NO.	78-GW04-1-01	78-GW04-2-01	78-GW04-3-01	78-GW05-01	78-GW06-01	78-GW0 7- 01
	UNITS	UG/L	UG/L	UG/L	UG/L	UG/L	UG/L
ALUMINUM		297000 J	286	115 B	23000 J	542000 J	207000 J
ANTIMONY		7 R	7 R	7 R	7 U	7 U	7 U
ARSENIC		18.6 J	2 R	118 J	5.2 J	26 B	16.2
BARIUM	•	728	519	547	54 B	1200	1250
BERYLLIUM		19	1 B	1 B	2 B	9	5
CADMIUM		. 12	5 U	21	5 U	5 U	5 U
CALCIUM		642000	170000	105000	90200 J	7180 J	18700 J
CHROMIUM		496 J	10 U	50 U	17 J	858 J	400 J
COBALT		28 B	8 U	8 U	8 U	11 B	20 B
COPPER		87	4 B	7 B	8 B	127	53
IRON		267000 J	32 B	523000	14900 J	142000 J	96700 J
LEAD		126	2 U	2 U	13.1 J	155 J	61.5 J
MAGNESIUM		25500	88 B	3210 B	12700	24000	20000
MANGANESE		703	51	591	161 J	184 J	135 J
MERCURY		0.75	0.2 U	0.3	0.2 R	1.1 J	0.44 J
NICKEL		136	20 B	20 U	20 U	86	54
POTASSIUM		18800	21800	11300	4770 B	25600	13200
SELENIUM		9 J	1 R	1 R	6.4	5.5 B	9.1
SILVER		6 UJ	3 U	15 U	3 U	3 U	3 U
SODIUM		8870	11500	9290	23900	5090	9260
THALLIUM		1.2 J	1 U	1 U	1 UJ	1.1 B	1 UJ
VANADIUM		591	4 UJ	24 Ј	28 B	811	406
ZINC		373 J	7 J	79 J	32 J	223 Ј	158 J
CYANIDE		10 U	10 U	10 U	10 U	10 U	10 U

	SAMPLE NO. UNITS	78-GW08-01 UG/L	78-GW09-2-01 UG/L	78-GW09-3-01 UG/L	78-GW10-01 UG/L	78-GW11-01 UG/L	78-GW12-01 UG/L
ALUMINUM		483000 J	68 J	2710 J	404000 J	332000	108000 J
ANTIMONY		7 U	7 R	7 R	7 R	7 R	7 R
ARSENIC		60.5	2 R	2 R	43 J	10 R	9.6 J
BARIUM		740	27 B	41 B	582	631	155 B
BERYLLIUM		9	1 U	1 B	8	5	2 B
CADMIUM		25 U	5 U	5 U	10 U	25 U	10 U
CALCIUM		28200 Ј	114000	99100	54400	9130	31200
CHROMIUM		491 J	10 UJ	10 UJ	362 J	412	114 J
COBALT		29 B	8 U	8 U	31 B	8 U	8 U
COPPER		86	4 B	4 B	91	84	30
IRON		138000 J	955 J	99 J	157000 J	120000	26400 J
LEAD		131 J	2 U	2 U	257	195	35.5
MAGNESIUM		18500	2550 B	249 B	17400	15400	7220
MANGANESE	.*	213 J	19	2 U	326	174	47
MERCURY		1.3 J	0.2 U	0.2 U	1.5	0,75	0.2 U
NICKEL		89	20 U	20 U	108	79	20 U
POTASSIUM		14700	1220 B	7820	15800	13000	6090
SELENIUM		25.3	1 UJ	1 UJ	18 J	12 J	3.6 J
SILVER		3 U	3 UJ	5 J	3 UJ	3 U	3 UJ
SODIUM		4710 B	5820	7280	3340 B	3490 B	5420
THALLIUM		1.3 Ј	1 UJ	1 UJ	1 UJ	1 U	1 UJ
VANADIUM		1700	4 U	9 B	499	526	145
ZINC		200 J	11 J	181 J	217 J	120 J	64 J
CYANIDE		10 U	10 U	10 U	10 U	. 10 U	10 U

			,				
	SAMPLE NO.	78-GW13-01	78-GW14-01	78-GW15-01	78-GW16-01	78-GW17-1-01 UG/L	78-GW17-2-01 UG/L
ALUMINUM	UNITS	UG/L	UG/L	UG/L	UG/L 341000 J	168000 J	541 J
		61800 J	103000 J	· . 205000 J			
ANTIMONY		7 U	7 R	7 R	7 R	7 R	7 R
ARSENIC		38.3	18.4 Ј	4 R	19 J	11.6 J	2 R
BARIUM		236	321	469	511	261	57 B
BERYLLIUM		3 B	1 B	4 B	6	4 B	1 B
CADMIUM		5 U	10 U	5 U	5 U	10 U	5 U
CALCIUM		4040 J	5300	29100	62700	86900	144000
CHROMIUM		222 J	113 J	215 J	353 J	200 J	10 UJ
COBALT		20 B	8 U	9 B	13 B	9 B	8 U
COPPER	·	18 B	33	49	80	40	5 B
IRON		61800 J	49600 J	43300 J	80900 J	48700 J	2120 J
LEAD		26.4 J	63	53	224	81	5.9
MAGNESIUM		11800	10600	13400	10800	9940	2570 B
MANGANESE		57 J	68	115	150	96	33
MERCURY		0.3 J	0.38	0.2 U	0.38	0.2 U	0.2 U
NICKEL	•	40	34 B	29 B	61	30 B	20 U
POTASSIUM		8210	6460	12000	14000	11600	1630 B
SELENIUM	•	4.7 B	12.4 J	2.1 J	14.5 J	5 UJ	1 UJ
SILVER		3 U	3 UJ	3 UJ	3 UJ	3 UJ	3 UJ
SODIUM		15000	15400	6410	4120 B	3180 B	9480
THALLIUM		1 U	1 UJ	1 J	1.4 J	1 J	1 UJ
VANADIUM		158	122	248	371	289	4 U.
ZINC		96 J	51 J	116 J	. 157 J	98 J	6 UJ
CYANIDE		10 U	10 U	10 U	10 U	10 U	10 U

	SAMPLE NO.	78-GW19-01	78-GW20-01	78-GW21-01	78-GW22-01	78-GW22-1-01	78-GW22-2-01
	UNITS	UG/L_	UG/L	UG/L	UG/L	UG/L	UG/L
ALUMINUM		4110 J	149000 J	23800 J	78900 J	257000	190000 J
ANTIMONY		7 R	7 U	7 U	14 J	7 R	7 UJ
ARSENIC		3.1 J	30.3	6.3 J	10 J	59.5 J	75.6
BARIUM		101 B	430	382	107 B	411	471
BERYLLIUM		1 B	4 B	2 B	1 B	4 B	12
CADMIUM		5 U	5 U	5 U	10 U	25 U	6
CALCIUM		3700 B	5450 J	32900 Ј	90100	44500	118000 J
CHROMIUM		10 UJ	231 J	22 J	83 J	238	389 J
COBALT		8 U	35 B	10 B	8 U	8 U	170
COPPER		3 B	61	. 11 B	34	54	92
IRON		8500 J	101000 J	26400 J	27600 J	62300	140000 J
LEAD		8.3	119 J	19.1 Ј	37.2	272	360 J
MAGNESIUM		5740	13100	9110	5500	12000	13000
MANGANESE		26	93 J	85 J	70	158	348 J
MERCURY		0.2 U	0.37 J	0.2 R	0.3	0.45	0.2 R
NICKEL		20 U	75	20 U	21 B	99	234
POTASSIUM		2130 B	9100	4100 B	6180	12000	10200
SELENIUM		1 UJ	4.2 B	1.1 B	4.2 Ј	7.5 Ј	45
SILVER		3 UJ	3 U	3 Ú	3 UJ	3 U	3 U
SODIUM		24000	11900	9480	12100	9910	8230
THALLIUM		1 UJ	1.8 B	1 U	1.7 _. J	1 U	3 B
VANADIUM		9 B	236	86	114	269	547
ZINC		6 J	250 Ј	108 J	50 J	150 Ј	967 J
CYANIDE		10 U	10 U	10 U	10 U	10 U	10 U

	SAMPLE NO.	78-GW23-01	78-GW24-1-01	78-GW24-2-01	78-GW24-3-01	78-GW25-01	78-GW29-01
	UNITS	UG/L	UG/L	UG/L	UG/L	UG/L	UG/L
ALUMINUM		111000 J	160000	1340	304	101000 J	78800 J
ANTIMONY		7 R	7 R	7 R	7 R	7 R	7 R
ARSENIC		7.6 J	100 J	2 R	2 R	11.4 Ј	19 J
BARIUM		230	396	34 B	17 B	119 B	1070
BERYLLIUM		2 B	7	· 1 B	1 U	2 B	12
CADMIUM		5 U	. 5 บ	5	5	5 U	5 U
CALCIUM		10800	34400	107000	73400	37800	41600
CHROMIUM		101 J	264	10	10 U	82 J	252 J
COBALT		8 B	39 B	8 U	8 U	8 U	17 B
COPPER		25	71	6 B	5 B	26	34
IRON		30800 J	159000	. 2320	2370	26300 J	125000 J
LEAD		50	152	3.3	2.9 B	30.5	25.5
MAGNESIUM		7110	11600	1740 B	1500 B	4500 B	21900
MANGANESE		87	714	21	41	33	341
MERCURY		0.3	0.75	0.2 U	0.2 U	0.2 U	0.2 U
NICKEL		42	91	20 U	20 U	20 U	125
POTASSIUM		5450	9090	1050 B	982 B	4950 B	11600
SELENIUM		4.4 J	17.6 J	1 R	1 R	1.6 J	2.5 J
SILVER		3 UJ	. 3 U	3 U	3 U	3 UJ	3 UJ
SODIUM		7450	10800	8350	7050	16400	21200
THALLIUM		1.7 J	1.5 B	1 U	1 U	1.3 J	1 UJ
VANADIUM		108	436	4 J	4 UJ	144	183
ZINC		67 J	291 J	11 J	16 J	34 J	330 J
CYANIDE		10 U	10 U	10 U	10 U	10 U	10 U

	SAMPLE NO.	78-GW31-2-01	78-GW31-3-01	78-GW32-2-01	78-GW32-3-01	78-GW33-01	78-GW34-01
	UNITS	UG/L	. UG/L	UG/L	UG/L	UG/L	UG/L
ALUMINUM		110 B	1200	112000 J	539 J	78200	6870
ANTIMONY	•	7 R	7 R	7 R	7 R	3 U	3 U
ARSENIC		2 R	2 R	21.6 J	2 R	5.6 J	4.4 J
BARIUM		17 B	415	476	42 B	162 B	173 B
BERYLLIUM		1 B	1 B	10	1 B	1 B	1 U
CADMIUM		5 U	5 U	10	. 5 U	5 U	5 U
CALCIUM		77600	308000	94600	5440	64800	10400
CHROMIUM		10 U	21	215 J	10 UJ	65	10 U
COBALT		8 U	8 U	84	8 U	8 U	8 U
COPPER		3 B	5 B	87	2 U	20 B	11 B
IRON		280	72 B	98500 J	112 Ј	14900	7250
LEAD		2 U	2 U	146	2 U	18.1	5.5
MAGNESIUM		2200 B	151 B	13700	319 B	7290	2880 B
MANGANESE		8 B	2 B	328	2 U	86	96
MERCURY		0.3	0.2 U	0.3	0.2 U	0.2 U	0.2 U
NICKEL		20 U	20 U	166	20 U	20 B	20 U
POTASSIUM		1640 B	61600	8460	67300	6900	2620 B
SELENIUM		1 R	1.7 J	99.5 J	I UJ	12.8 J	1 UJ
SILVER		3 U	3 U	3 UJ	3 UJ	3 UJ	3 UJ
SODIUM		10400	26100	7510	42500	7030	4070 B
THALLIUM		· 1 U	1 UJ	7.3 Ј	1.3 J	1 U	1 U
VANADIUM		4 Ј	10 J	462	5 B	74	15 B
ZINC		23 Ј	10 J	826 J	6 UJ	37	59
CYANIDE		10 U 10 U					

	SAMPLE NO.	78-GW35-01	78-GW36-01	78-GW37-01	78-GW38-01	78-GW39-01	
·	UNITS	UG/L	UG/L_	UG/L	UG/L	UG/L_	
ALUMINUM		47100	120000	73500	102000	60000	
ANTIMONY		3 U	20 U	3 U	20 U	20 U	
ARSENIC	•	2 UJ	3.1 J	4 Ј	33.6 J	4 UJ	
BARIUM	•	. 261	152 B	123 B	420	256	
BERYLLIUM		1 B	2 U	2 B	4 U	1 U	
CADMIUM		\$ U	5 U	, 5 U	25 U	5 U	
CALCIUM		7480	35400	10100	62200	16800	
CHROMIUM		55	111	65	201	60	
COBALT		8 U	8 U	8 U	8 U	10 B	
COPPER		15 B	29	22 B	110	699	
IRON		11800	21200	18800	67500	28800	
LEAD	.•	13.2	30.2	21.8	41.2	186	
MAGNESIUM		5680	5740	4600 B	17500	14300	
MANGANESE		57	62	62	106	84	
MERCURY		0.2 U	0.3	0.2 U	0.2 U	0.52	
NICKEL		20 U	24 B	20 U	32 B	32 B	
POTASSIUM		6150	5820	5990	8180	3840 B	
SELENIUM		3.5 J	1.7 J	1.1 J	1.3 Ј	4.3 J	
SILVER		3 UJ	3 UJ	3 UJ	3 UJ	3 UJ	
SODIUM		10300	2450 B	7270	10300	19500	
THALLIUM		1 U	1 U	1 U	1 U	1 U	
VANADIUM		59 .	98	106	235	67	
ZINC		30	57	58	134	138	
CYANIDE		10 U	10 U	10 U	10 U	10 U	

OPERADÉE UNIT NO. 5 - SITE 2
SHALLOW AND DEEP MONITORING WELLS
GROUNDWATER STATISTICAL SUMMARY
REMEDIAL INVESTIGATION CTO - 19174
MCB CAMP LEJEUNE, NORTH CAROLINA
TAL METALS AND CYANIDE

	SAMPLE NO.	2-GW01-01	2-GW02-01	2-GW03-01	2-GW03DW-01	2-GW04-01	2-GW05-01
1	UNITS	UG/L	20.020.	UG/L	UG/L	UG/L	UG/L
ALUMINUM		36000		5200	269	16800	4050
ANTIMONY		10 U	•	10 U	3.5 U	10 U	10 U
ARSENIC		21.2		2.5 B	1 UJ	23.6	2.2 B
BARIUM		52 B		46 B	1420	95 B	100 B
BERYLLIUM		1 B	4	0.5 U	0.5 U	2 B	0.5 U
CADMIUM		7		2,5 U	2.5 U	2.5 U	2.5 U
CALCIUM		23700		8460	450000	11100	21000
CHROMIUM		. 18		11	16	√5 U	. 5 U
COBALT		10 B		4 U	4 U	4 U	4 U
COPPER		10 B		4 B	8 B	5 B	3 B
RON		10300		7190	127	28100	12700
EAD		15.5 L		3.5 J	1.1 UJ	2.7 J	0.5 U
MAGNESIUM		5660		1600 B	75 B	1920 B	4800 B
MANGANESE		35		21	2 U	21	46
MERCURY		0.1 U		0.1 U	0.1 U	0.1 U	0.1 U
NICKEL		10 U		10 U	10 U	10 U	10 U
OTASSIUM		2560 B		1030 B	187000	1210 B	2130 B
SELENIUM		4.2 B	•	· 0.5 U	0.5 U	0.5 U	0,5 U
SILVER		1.5 U		1,5 U	1.5 U	1.5 U	1.5 T
ODIUM		4040 B		5490	103000	5560	10100
HALLIUM		0.5 U		0.5 U	0.5 ŲJ	0.5 U	0.5 U
/ANADIUM		72		10 B	2 U	89	9 B
ZINC		146		13 B	9 B	16 B	6 B
CYANIDE		5 U	47	5 U	5 U	5 U	5 T

OPERABLE UNIT NO. 5 - SITE 2 SHALLOW AND DEEP MONITORING WELLS GROUNDWATER STATISTICAL SUMMARY REMEDIAL INVESTIGATION CTO - 19174 MCB CAMP LEJEUNE, NORTH CAROLINA TAL METALS AND CYANIDE

	SAMPLE NO.	2-GW06-01	2-GW07-01	2-GW08-01	2-GW09-01	
	UNITS	UG/L	UG/L	UG/L_	UG/L	
ALUMINUM		13600	8550	6380	56300	
ANTIMONY		10 U	10 U	3.5 UJ	10 U	
ARSENIC		5.4 B	5.7 B	9.2 B	12.9	
BARIUM		. 173 B	98 B	98 B	328	•
BERYLLIUM		0,5 U	0.5 U	0.5 U	3 B	
CADMIUM		2.5 U	2.5 U	2.5 U	2.5 U	
CALCIUM		7940	9350	5710	22100	
CHROMIUM		15	15	5 U	75	
COBALT		12 B	4 U	4 U	10 B	
COPPER		5 B	7 B	6 B	25	
IRON		11700	12500	9150	42000.	
LEAD		6,7 J	8.3 J	1.8 UJ	27.2 I	
MAGNESIUM		4120 B	3620 B	2020, B	9980	
MANGANESE		79	72	53	290	
MERCURY		0.1 U	0.1 U	0.1 U	0.1 U	
NICKEL		10 U	10 U	10 U	25 B	
POTASSIUM		2570 B	1940 B	1550 B	6610	
SELENIUM		0.5 U	0.5 U	0,5 U	0.5 U	•
SILVER		1.5 U	1.5 U	1.5 U	1.5 U	
SODIUM		21900	8180	11800	18300	
THALLIUM		0.5 U	0.5 U	0.5 U	0.5 U	
VANADIUM		15 B	18 B	12 B	86	
ZINC		26	22	27	103	
CYANIDE		5 U	5 U	. 5 U	5 U	

OPERABLE UNIT NO. 5 - SITE 2
SHALLOW AND DEEP MONITORING WELLS
GROUNDWATER STATISTICAL SUMMARY
REMEDIAL INVESTIGATION CTO - 19174
MCB CAMP LEJEUNE, NORTH CAROLINA
DISSOLVED METALS

	SAMPLE NO.	2-GW01D-01	2-GW02D-01	2-GW03D-01	2-GW03DWD-01	2-GW04D-01	2-GW05D-01
· · · · · · · · · · · · · · · · · · ·	UNITS	UG/L		UG/L	UG/L	UG/L	UG/L
ALUMINUM		1930		66 B	89 B	60 B	1990
ANTIMONY		10 U .		10 U	3.5 UJ	10 U	10 U
ARSENIC		2.2 B		1 U	1 UJ	6.1 B	1 U
BARIUM		42 B		25 B	1400	64 B	98 B
BERYLLIUM		1 B		0.5 U	0.5 U	0.5 U	1 B
CADMIUM		2.5 U		2.5 U	2.5 U	2.5 U	2.5 U
CALCIUM		24400		7100	441000	11300	21800
CHROMIUM		5 U		5 U	11	5 U	5 U
COBALT		4 U		4 U	4 U	4 U	4 U
COPPER		4 B		2 B	6 B	9 B	4 B
RON		2560		2170	10 U	2720	7400
LEAD		2.1 J		0.5 UJ	0.5 UJ	0.5 UJ	0.5 UJ
MAGNESIUM		5220		1030 B	26 B	1840 B	4900 B
MANGANESE		51	•	4.5 U	1 U	17	46
MERCURY		0.1 U		0.1 U	0.1 U	0.1 U	0.1 U
NICKEL		10 U		10 U	10 U	10 U	10 U
POTASSIUM		2140 B		589 B	188000	1130 B	2170 B
BELENIUM		0.5 U		0.5 U	0,5 U	0.5 U	0,5 U
SILVER		1.5 U		1.5 U	1.5 U	1.5 U	1.5 U
SODIUM		3590 B		5400	103000	5710	9970
THALLIUM		0.5 U		0,5 U	0.5 U	0.5 U	0,5 U
VANADIUM		2 U		2 U	2 U	2 U	2 U
ZINC		28		3 U	3 U	8 B	9 B
CYANIDE				•			

N

OPERABLE UNIT NO. 5 - SITE 2 SHALLOW AND DEEP MONITORING WELLS GROUNDWATER STATISTICAL SUMMARY REMEDIAL INVESTIGATION CTO - 19174 MCB CAMP LEJEUNE, NORTH CAROLINA DISSOLVED METALS

	SAMPLE NO.	2-GW06D-01	2-GW07D-01	2-GW08D-01	2-GW09D-01	
	UNITS	UG/L	UG/L	· . UG/L	UG/L	
ALUMINUM		149 B	43 B	95 B	1230	
ANTIMONY		10 U	10 U	3.5 U	10 U	
ARSENIC		2.9 B	1 U	7.1 B	1 U	
BARIUM		126 B	49 B	62 B	149 B	
BERYLLIUM		0.5 U	0.5 U	0.5 U	1 B	
CADMIUM	•	2.5 U	2.5 U	2.5 U	2.5 U	
CALCIUM		8080	9590	5800	20800	
CHROMIUM		5 Ü	5 U	5 U	10	
COBALT		10 B	8 B	4 U	14 B	
COPPER		2 B	5 B	4 B	5 B	
IRON		7070	4660	6180	7040	
LEAD		0.5 UJ	0.5 UJ	0.5 UJ	0.5 UJ	
MAGNESIUM		3610 B	3060 B	1730 B	6890	
MANGANESE		65	48	40	129	
MERCURY		0.1 U	0.1 U	0.1 U	0.1 U	
NICKEL		10 U	10 U	10 U	10 U	
POTASSIUM		1970 B	1490 B	1150 B	2790	
SELENIUM		0.5 U	0.5 U	0.5 U	0.5 U	
SILVER		1.5 U	1.5 U	1.5 U	1.5 U	
SODIUM		22600	8720	12100	17200	
THALLIUM		0.5 U	0.5 U	0.5 U	0.5 U	
VANADIUM		2 U	2 U	2 U	2 U	
ZINC		12 B	13 B	19 B	35	
CYANIDE						

APPENDEX N WHITE OAK RIVER BASIN REFERENCE DATA

DRAFT

EVALUATION OF METALS IN GROUNDWATER

MARINE CORPS BASE, CAMP LEJEUNE, NORTH CAROLINA

CONTRACT TASK ORDER 0177

JUNE 3, 1994

Prepared for:

DEPARTMENT OF THE NAVY
ATLANTIC DIVISION
NAVAL FACILITIES
ENGINEERING COMMAND
Norfolk, Virginia

Under the:

LANTDIV CLEAN Program Contract N62470-89-D-4814

Prepared by:

BAKER ENVIRONMENTAL, INC. Coraopolis, Pennsylvania

TABLE OF CONTENTS

	<u>Page</u>
1.0	INTRODUCTION 1
2.0	STUDY OBJECTIVES 1
3.0	SCOPE OF WORK 2
4.0	DATA ANALYSIS 3
5.0	ANALYSIS OF STUDY OBJECTIVES 8
6.0	CONCLUSIONS 10
7.0	RECOMMENDATIONS 10
FIG	URES
1	Site Location Map
2	Positive Detections Above Applicable Federal and State Standards for Total and Filtered Inorganic Analytes in Groundwater-Site 2
3	Positive Detections of Total Metals Above Federal MCLs and NCWQS in Shallow Wells-Site 78
4	Positive Detections of Total Metals Above Federal MCLs and NCWQS in Intermediate Wells-Site 78
5	Positive Detections of Total Metals Above Federal MCLs and NCWQS in Deep Wells- Site 78
TAI	BLES
1	Summary of Total Metals in Shallow Wells
2	Comparison of Repeat Sampling in Shallow Wells
3	Summary of Dissolved Metals in Shallow Wells
4	Summary of Total Metals in Upgradient Wells
5	Comparison of Inorganic Subsurface Soil Concentrations in "Clean" and "Contaminated" Wells
6	Total Metals in Deep Monitoring Wells
7	Summary of Field Parameters in Shallow, Deep, and Supply Wells

1.0 INTRODUCTION

Numerous groundwater investigations have been conducted at Marine Corps Base (MCB), Camp Lejeune under the Department of the Navy (DON) Installation Restoration Program (IRP). These studies have identified elevated levels of total metals in shallow groundwater at almost every site. The degree of contamination, based on dissolved metals analysis of groundwater samples, is limited. It is believed that the presence of elevated metals are not always related to past disposal activities for several reasons, which is the basis of this study.

Currently, Records of Decision (ROD) are being prepared for Operable Units No. 1 (Sites 21, 24, and 78) and No. 5 (Site 2). Both RODs are proposing to not remediate shallow groundwater which contains elevated levels of total metals above State groundwater standards (i.e., North Carolina Water Quality Standards) and/or Federal drinking water standards (i.e., Maximum Contaminant Levels). Specifically, remediation of shallow groundwater due to elevated total metals is not cost effective, or practical, due to the following: (1) the shallow aquifer is not used for potable supply; (2) the source of metals in groundwater cannot be correlated with soil data or previous disposal practices; (3) the extent of shallow groundwater contamination (based on total metals analysis) is widespread and in many cases undefinable, since there are no apparent contaminant plumes or patterns associated with the metals; and (4) deep groundwater, which is the source of potable water, is not significantly contaminated with metals above the standards.

2.0 STUDY OBJECTIVES

The DON/Marine Corps initiated a study on inorganics in groundwater throughout MCB Camp Lejeune to assess whether total metals in groundwater are related to disposal practices or to other factors. The overall goal of this study is to provide information that would be used in consideration of not remediating shallow groundwater at Operable Units No. 1 and No. 5, and possibly other operable units where total metals are elevated without cause. The following study objectives were identified:

- (1) Determine whether the elevated total metals detected in the shallow aquifer are related to past disposal practices, well construction factors, sampling techniques, or suspended particulates in the samples;
- (2) Determine whether total metals in shallow groundwater are elevated throughout the region or MCB Camp Lejeune;
- (3) Determine whether there is a correlation between elevated total metals in groundwater and metals in soil; and

(4) Determine whether the concentrations of total metals (i.e., low versus high) is related to shallow and deep aquifer characteristics.

3.0 SCOPE OF WORK

Groundwater and soil data from a total of 21 sites were compiled as part of the overall study. Three of the 21 sites are located outside the boundary of the base. These sites include the ABC Cleaners Superfund Site, located along Route 24 in Jacksonville, and two sites located along Highway 17 (Off-site Properties No. 1 and No. 2). The two sites along Route 17 were investigated by the DON/Marine Corps as part of a real estate survey. The other 18 sites are located throughout various portions of MCB Camp Lejeune (see Figure 1).

Information from studies conducted by Baker and other consultants were obtained to evaluate metal concentrations in groundwater. The study focused on 14 metals of potential concern to human health and the environment. Some of the information was collected under the IR Program whereas other information was obtained during other investigations (e.g., ABC Cleaners RI/FS). The following data tables were then prepared to determine why total metals are generally elevated in shallow groundwater.

- Table 1 Total Metal Concentrations in Shallow Groundwater by Site
- Table 2 Summary of Repeat Sampling of Shallow Wells (Sites 2 and 78)
- Table 3 Dissolved Metal Concentrations in Shallow Groundwater by Site
- Table 4 Summary of Total Metal Concentrations in Upgradient Wells
- Table 5 Comparison of Subsurface Metal Concentrations in Uncontaminated and Contaminated Wells
- Table 6 Total Metal Concentrations in Deep Groundwater by Site
- Table 7 Summary of Field Parameters in Shallow Monitoring Wells, Deep Monitoring Wells, and Supply Wells

The tables are presented at the end of this report.

4.0 DATA ANALYSIS

The following discussion represents an analysis of the information contained in each of the previously mentioned tables.

Table 1 (Total Metal Concentrations in Shallow Groundwater)

All of the sites had at least one (and in most cases several) metal which exceeded either State water quality standards or Federal drinking water standards. The most frequently detected metals included chromium, lead, and manganese, which were detected at almost every site above drinking water standards. Other frequently detected metals which exceeded drinking water standards included arsenic, beryllium, cadmium, and nickel.

An analysis of the data from Table 1 indicates that elevated total metals are present in shallow groundwater at every site, including the three sites which are located off base. The two sites which did not exhibit significant contamination include the ABC Cleaners site (only chromium exceeded the standards) and Site 48 (only manganese exceeded the standards).

Total metals detected in shallow groundwater at Site 2 exceeded State and/or Federal standards in seven of the 11 shallow monitoring wells. Manganese was the most frequently detected metal (7/11). Lead (3/11), chromium (2/11), and cadmium (1/11) were also detected above the standards,, but less frequently (see Figure 2).

With the exception of Wells 78GW03 and 78GW19, total metals were detected at Site 78 (Hadnot Point Industrial Area) above Federal MCLs or NCWQS in every shallow well (see Figure 3). The extent of elevated total metals in groundwater is widespread, encompassing approximately one square mile (or approximately 660 acres) in total area. The distribution and concentration of total metals in shallow groundwater makes it virtually impossible to identify or illustrate contaminant plumes (see Figure 3).

An analysis of the total metals results indicates the following pattern. Samples exhibiting elevated levels of lead, chromium, or other contaminants of concern, also exhibited elevated levels of other metals such as aluminum, antimony, iron, and zinc. Samples which did not exhibit elevated levels of lead, chromium, or manganese also did not exhibit elevated levels of other metals. This pattern indicates that the elevated total metals are not limited to one or

two contaminants, which would be the case if a lead or chromium plume in the groundwater truly existed. In other words, if a site is impacted by a particular metal due to disposal activities (say chromium for example), then other metals such as aluminum, lead, or zinc should not be consistently elevated as in the case of samples collected from the shallow aquifer at MCB Camp Lejeune. This point is depicted in the data summary tables provided in Appendix A for Sites 2 and 78. These tables were taken from the Remedial Investigation Reports for Operable Units No. 1 and No. 5. As an example, note that sample numbers 78-MW08, 78-MW10, 78-MW11, and 78-MW12 all had elevated levels of total metals when compared to samples 78-MW09-2 and 78-MW09-3. It is clear that most of the metal concentrations in a particular sample follow a consistent pattern throughout.

Table 2 (Comparison of Repeat Sampling of Shallow Wells

Five wells from Sites 2 and 78 were randomly chosen to evaluate total metals concentrations between sampling rounds. The comparison was limited to only chromium, lead, and manganese since these contaminants were frequently detected throughout MCB Camp Lejeune. In several cases, metal concentrations were significantly different between the sampling rounds. If the shallow aquifer was impacted due to former disposal activities, a contaminant plume would be present and concentrations would not significantly deviate. The deviation in metal concentrations may indicate that sampling results are biased due to suspended particulates in the samples.

Table 3 (Dissolved Metal Concentration in Shallow Groundwater by Site)

The data base for Table 3 was limited to 12 sites since many of the previous investigations (i.e., prior to Navy CLEAN) did not analyze for dissolved metals. Nevertheless, an analysis of the 12 sites revealed that elevated levels of dissolved metals in groundwater is limited. Manganese was the most frequently detected metal above drinking water standards (10 of 12 sites exhibited elevated levels). Lead was detected at only one site (Site 21) above drinking water standards. Chromium was also detected at only one site (Site 78) above drinking water standards. No other metal was detected above the standards.

Literature searches have indicated that manganese is a naturally occurring metal in North Carolina. Therefore, the presence of manganese may not be attributable to site-related activities (Greenhorne & O'Mara, 1992).

An analysis of the data from Table 3 clearly shows a significant reduction in metal concentrations when compared to Table 1 (total metals in shallow groundwater). One possible reason for this reduction is that suspended solids or particles are not being introduced into the analysis of the sample due to filtering. A second possibility is that the metals are not significantly present in a dissolved state in shallow groundwater due to the species of metals under site conditions. It should be noted that calcium and sodium did not exhibit such a pattern since the salts of these metals are more soluble in water. For example, the concentrations of total calcium and total sodium versus dissolved calcium and dissolved sodium are similar and are not affected by the removal of the particulates during filtering. The fact that these salts do not exhibit the pattern that the other metals show supports the possibility that total metal concentrations are influenced by particulates in the sample.

Table 4 (Total Metals in Upgradient Shallow Wells)

The data base for Table 4 consists of groundwater results from 14 upgradient shallow monitoring wells (i.e., one well per site). These wells were installed to determine baseline groundwater quality to which on-site groundwater conditions could be compared. In some cases, the upgradient wells were located in areas where other base activities may have influenced groundwater quality.

The analysis of this data shows that manganese was the most frequently detected metal above Federal or State standards in upgradient shallow wells. Manganese was detected in 7 of the 14 upgradient wells above drinking water standards. Chromium and lead were also frequently detected above drinking water standards in upgradient (background) wells. These contaminants were detected in 6 of the 14 upgradient wells. At Site 2, samples collected from an upgradient well (2GW9) exhibited elevated levels of chromium (83µ/1), lead (27.2µ/1) and manganese (747µ/1). At Site 78, samples collected from upgradient wells 96W4 and 78GW26 did not exhibit elevated levels of total metals. The concentration range for metals detected above NC WQS and/of Federal MCLs in upgradient wells is provided below:

- beryllium (ND-46.5 µ/l)
- cadmium (ND-10 µ/l)
- chromium (ND-198 µ/l)
- lead (ND-78.8 µ/l)
- manganese (ND-747 µ/l)
- mercury (ND-1.6J μ/l)

Based on the above range representing upgradient wells, none of the on-site wells at Site 2 exhibited total metals above the maximum background concentrations. However, at Site 78, lead and chromium were detected above the maximum background in several on-site wells.

An analysis of the data from Table 4 indicates that shallow groundwater upgradient of some sites contains total metals above drinking water standards. A comparison of Table 4 data against Table 1 data indicates that shallow groundwater samples from upgradient wells are less contaminated than samples collected from on-site monitoring wells. However, it should be noted that the data base for Table 4 consists of only 14 wells whereas the data base for Table 1 consists of over 130 wells. Therefore, to assume that upgradient groundwater quality is better than on-site groundwater quality may not be justified due to the different data bases.

<u>Table 5 (Comparison of Subsurface Metal Concentrations in Uncontaminated and</u> Contaminated Wells)

The purpose of this table is to determine whether metal concentrations in soils correlate with the elevated levels of metals in shallow groundwater.

To evaluate this, metals in subsurface soils, representing an area of groundwater contamination, were compared to metals in subsurface soil in areas which did not exhibit groundwater contamination. If the elevated total metals in shallow groundwater are present due to former disposal activities, subsurface metals in soil representing an area of groundwater contamination would be expected to be elevated or higher than metals in subsurface soil representing a non-contaminated area. This evaluation assumes that the well exhibiting elevated total metals is within a source area and that the soil sample is representative of soil impacted by metal contamination.

As shown on Table 5, there is no clear pattern or correlation which indicates that elevated total metals are due to soil contamination. Note that in many cases, the concentration of metals which represent "non-contaminated" areas are greater than the metals which represent "contaminated" areas. Also note that the metals in subsurface soil are within or close to background subsurface metal concentrations. Therefore, this supports the possibility that in many cases at MCB Camp Lejeune, the elevated total metals in shallow groundwater cannot be attributable to a source or to past disposal practices.

:.

Table 6 (Total Metals in Deep Monitoring Wells)

Table 6 presents total metal concentrations in deep groundwater for each site. The data base is limited to only 8 sites. Metal concentrations in supply wells were also included for comparison purposes.

As shown on Table 6, total metals in deep groundwater are below drinking water standards with a few exceptions. Arsenic and cadmium were detected above the standards in one deep monitoring well at Site 78 (see Figure 4). Manganese was detected in deep groundwater at three sites and a few of the supply wells. Lead was detected in one supply well at 16 µ/l, which is slightly above the drinking water standard of 15 µ/l.

Elevated total metals are not widespread in deep groundwater for two possible reasons. First, most metals are not very mobile in the environment. Second, deep groundwater samples may not have significant amounts of suspended particulates due to different geologic conditions. Soils in the deeper aquifer are more compacted and consist primarily of calcareous sands, clays, and limestone fragments. Soils in the shallow aquifer are loosely compacted and consist primarily of fine-grained sands, silts, and clays. This classification may support the possibility that suspended solids are collected during sampling, thereby influencing the analysis for total metals.

Table 7 (Summary of Field Parameters in Shallow, Deep, and Supply Wells)

Table 7 provides a range of pH and specific conductivity values representative of shallow and deep groundwater. In general, lower pH values were noted more often in shallow wells than in deep wells (including the supply wells). This condition may influence the leachability and speciation of metals in groundwater.

Deep groundwater usually exhibited higher specific conductivity values. High specific conductivity values are representative of high dissolved conditions. The fact that deep groundwater generally exhibited higher specific conductivity values indicates that most of the metals, if present, are in a dissolved state. The high specific conductivity values could also indicate less suspended particulates due to the geologic conditions of the deep aquifer. The lower specific conductivity values observed in shallow wells indicates that the metals in the shallow aquifer are not in a dissolved state. This also supports the possibility that suspended particulates in the shallow aquifer are influencing the analysis of total metals.

5.0 ANALYSIS OF THE STUDY OBJECTIVES

Each of the objectives identified for this study are analyzed below based on the information collected.

Objective No. 1 (Determine whether the elevated total metals in the shallow aquifer are related to past disposal practices, well construction factors, sampling techniques, or suspended particulates in the samples)

Based on the analysis of information provided in Tables 1 through 7 and Appendix A, it appears that suspended particulates in groundwater samples could influence the concentration of total metals in groundwater. Well construction factors and sampling techniques are probably not a significant factor since the data base is representative of data obtained by Baker, ESE (Site 28 and 30), Roy F. Weston (ABC Cleaners), and Halliburton NUS (Site 7). No particular pattern was noted between sites which Baker obtained the samples versus sites in which other consultants obtained the data. Sampling methods were also considered. For Sites 63 and 65 for example, samples were collected with a bailer. At Sites 2 and 78, samples were collected with a low flow pump. All four sites exhibited elevated levels of total metals in groundwater samples. In addition, due to the fact that deep groundwater quality is not significantly impacted with metals indicates that well construction or sampling techniques are probably not factors related to elevated total metals in groundwater.

With respect to past disposal practices, Table 5 clearly shows that soil concentrations do not correlate with elevated total metals in groundwater. Based on this analysis, and on many of the sites previously investigated, the source of total metals in groundwater cannot be attributable to soil contamination or disposal practices in many cases. This is based on both the history of the site as well as the analytical soil results. In some cases, total metals were detected at elevated levels even when the site history did not correlate with the contaminants found. For example, Sites 2 and 21 have a history of pesticide storage and handling, and there are no known disposal areas (i.e., buried debris) within the site boundary. Nevertheless, both of these sites exhibited several metals above drinking water standards that would not be expected to be present at high concentrations based on the historical use of the site. These metals included lead, chromium, beryllium, cadmium, and manganese.

Objective No. 2 (Determine whether total metals in shallow groundwater are elevated throughout the region or MCB Camp Lejeune)

Based on groundwater data obtained from both upgradient wells and off base wells, total metals were detected above drinking water standards in shallow groundwater in areas that would not be influenced by former disposal activities at the sites. Given that some of the upgradient wells are contaminated, it is apparent that total metals in shallow groundwater are elevated in certain areas of the base outside of the influence of site-related disposal activities. However, it is unknown whether the shallow aquifer upgradient of the sites is contaminated due to other base-related activities or whether the levels in groundwater samples are also elevated due to the influence of suspended fines in the samples.

Objective No. 3 (Determine whether there is a correlation between elevated total metals in groundwater and metals in soil)

An evaluation of the data presented in Table 5 shows that metals in soil samples collected in areas of groundwater contamination are not elevated when compared to metals in soil samples collected in areas that did not exhibit groundwater contamination. This supports the possibility that in many cases, elevated levels of total metals in shallow groundwater are not related to the disposal history at the site. As previously mentioned, sites which did not exhibit soil contamination (when compared to background soil levels) or did not have a history of disposal indicative of metals contamination still exhibited elevated levels of total metals in groundwater. Since there is no apparent correlation between metals in soil and total metals in groundwater, then the possibility exists that the elevated total metals in groundwater are biased high due to suspended particulates.

Objective No. 4 (Determine whether the concentrations of total metals in groundwater is related to shallow and deep aquifer characteristics)

There is some evidence that the geologic conditions of the shallow and deep aquifers influence the amount of total metals detected in groundwater samples. The fact that the deep aquifer generally exhibited higher specific conductivity values indicates that there is more dissolved constituents in the deep aquifer when compared to the shallow aquifer. This was evident when comparing Table 1 (total metals in shallow groundwater) to Table 6 (total metals in deep groundwater). Table 6 did not indicate significant levels of total metals in deep groundwater throughout MCB Camp Lejeune.

The geologic conditions of the shallow aquifer would tend to result in samples that may contain suspended particulates. The suspended particulates could influence the total metals concentrations in the samples.

6.0 CONCLUSIONS

- 1. Elevated levels of total metals in the shallow aquifer are probably influenced to some degree by the geologic conditions of the site.
- 2. There is no correlation between metal levels in soil and total metals in groundwater. Therefore, elevated total metals in groundwater cannot be attributable to soil contamination of past disposal practices.
- 3. Elevated levels of total metals in the shallow aquifer may be biased high due to suspended particulates in the samples.
- 4. Dissolved metals in groundwater were generally below Federal MCLs and NC WQS and therefore, do not present a significant problem at MCB Camp Lejeune.
- Total and dissolved metal concentrations in the Castle Hayne aquifer were generally below drinking water standards and therefore, do not present a significant problem at MCB Camp Lejeune.
- 6. The presence of manganese in shallow and deep groundwater may be due to naturally occurring geologic conditions.

7.0 RECOMMENDATIONS

- 1. Remediation of total metals in the shallow aquifer at Operable Units 1 and 5 is not recommended based on the following:
 - Elevated metals in groundwater at both operable units does not appear to be related to soil contamination or past disposal practices;
 - The distribution of total metals in groundwater is not characteristic of a plume that would be present due to a source of contamination;
 - Remediation of total metals would not be practical from an engineering or cost standpoint; and
 - Currently, there is no human or environmental exposure to shallow groundwater.
- 2. Additional background wells should be installed at all sites in order to provide a baseline for comparing on-site groundwater quality.

TABLE 1 TOTAL METALS BY SITE SHALLOW MONITORING WELLS MCB, CAMP LEJEUNE, NORTH CAROLINA

Site Number Units	NCWQS ug/L	FEDERAL NICL ug/L	Sité I ug/L	Site 2 ug/L	Site 6 ug/L	Site 7 ug/L	Site 9 ug/L	Site 21 ug/L	Site 24 ug/L	Site 28 ug/L,	Site 30 ug/L	Site 41 ug/L	Site 43 ug/L	Site 44 ug/L
Arsenic	50	50	7.2 - 57.4	2.2 - 23.6	ND - 23.3	ND • 43.4J	ND	ND - 101	ND-116J	5.4 - 133	6,4 - 123	2.4 - 36.3	ND - 23.4	ND - 570
Barium	2000	2000	335 - 833	46 - 1420	ND - 1020	427 - 641	ND - 1060	ND - 647	ND - 1120	78.8 - 576	60.1 - 396	55.2 - 999	220 - 745	315 - 3180
Beryllium	NE	4	2.7 J - 43.4	1-3	ND - 7.5	ND - 10.3J	, ND	ND-8	ND - 19	ND - 1.23	ND - 2.4	0.80 - 42.8	1.5 - 4.2	1.4 - 36.6
Cadmium	5	5	ND - 12.9	7	ND	ND	ND	ND	ND - 12	3.31 - 17.33	ND - 10.7J	3.2 - 110	ND - 6.9	ND - 32
Calcium	NA	NA	8850 - 726000	5710 - 450000	5430 - 64900	5050 - 51300	16100 - 90700	61301 - 630001	ND - 151000	20200 - 160000	1730 - 11900	8750 - 828000	10300 - 91900	2430 - 191000
Chromium	50	100	172 - 627	11-117	ND - 201	47.8 - 220	ND - 214	ND - 348J	19 - 316	9.0J - 140	42.8 - 106J	10.5 - 244	161 - 249	126 - 895
Серрет	1000	1300	44.6 - 117	3 - 23	ND - 175	17.7 - 36.4	ND - 39.7	ND - 84	ND - 52	18.83 - 75.4	15.8 - 42.5	16.3 - 1030	64.2 - 104	28.6 - 313
Lead	13	15	40.8J - 176J	2.7 - 44.8	ND - 200	23 - 37.3	ND - 127	ND - 2000J	5.1 - 89	20.3J - 234J	7.73 - 1153	4.8 - 9340	16,5 - 28.8	15.8 - 508
Manganese	50	50 (1)	125 - 1720	21 - 190	ND - 362	56.9 - 220	ND - 91.3	59 - 2763	29 - 518	82.2 - 304	78.5 - 578	56.6 - 2110	72.6 - 297	88 - 1730
Mercury	1.1	2	ND - 1.2J	ND	ND46	0.2 - 0.36	ND - 1.4	ND - 2.43	ND - 3.2	ND-1.4J	0.883 - 0.93	0.13 - 0.92	ND - 0.24	ND-1.1
Nickel	100	100 .	28.5 - 426	ND	ND - 41.9	ND	ND	ND - 123	ND - 140	ND - 59.8	17.11 - 52.61	28.8 - 137	20.5 - 143	21.9 - 486
Sodium	NA	NA.	9090 - 19000	ND - 103000	1110 - 68700	7040 - 156000	1390 - 4170	7950 - 15700	5230 - 19200	9480 - 74700	5320 - 8100	2080 - 40200	9160 - 22100	4060 - 12600
Vanadium	NE	NE	214 - 640	9-184	ND-330	37.8 - 423	ND - 175	ND-419	ND - 408	6.1 - 164	57 - 101	20.4 - 244	122 - 233	184 - 759
Zine	2100	5000 (1)	ND-1110	6-146	ND - 1620	83.6 - 133	ND-118	273 - 4873	20 - 650	סא	79.2 - 104	25.7 - 5180	193-6613	87.3 - 28003

Site Number Units	Site 48 ug/L	Site 63 ug/L	Site 65 ug/L	Site 69 ug/L	Site 78 ug/L	Site 82 ug/L	ABC Cleaners ug/L	Offsite Property#1 ug/L	Offile Property#2 ug/L,
Arsenic	ND	ND • 23.4	ND - 308	2.9 - 29.0	ND - 405J	ND • 67.8	ND - 12	10.3 - 160	ND
Barium	18 - 51.3	56.1 - 5410	105 - 638	46.5 - 850	ND - 1250	ND - 340	35 - 220	ND - 468	ND
Beryllium	DN	ND - 3.1	ND	1.3 - 10.6	ND - 19	ND	NA	ND - 8.5	ND
Cadmium	2.2 - 3.3	ND	ND	2.4 - 11.4	ND - 21	ND	NA	ND	ND
Calcium	30600 - 115000	2830 - 24300	33300 - 181000	2010 - 38700	ND - 642000	6580 - 60800	790 - 16000	ND - 22800	ND - 5200
Chromium	5.8 - 17.5	4.4 - 134	50.1 - 364	15.1 - 159	ND-858J	ND - 174	ND - 57	52.8 - 636	ND-94
Copper	3.1 - 13.5	10.7 - 126	28.2 - 127	16.2 - 70.8	ND - 699	ND - 29.3	ND - 89	ND-140	ND
Lead	ND	4.3 J - 369	19.1 • 132	7.8 - 188	ND-360J	ND-89	ND-10	12.3 - 345	6.3 • 62.3
Manganese	38.1 - 585	50.3 - 1020	56.2 - 474	13.0 - 912	26-714	26.9 - 283	4 - 44	56 - 973	ND - 60.1
Mercury	0.04 - 0.09	ND - 0.20	ND - 0,29	0.10 - 0.94	ND - 1.5	ND - 0.66	NA	ND	ND
Nickel	ND	19.8 - 54.2	19.4 - 84.3	13.6 - 99.8	ND - 234	ND-34.6	ND - 77	40.2 - 380	ND
Sodium	5750 - 8760	3150 - 7100	3850 - 11700	4790 - 41300	ND - 42500	5670 - 36500	5800 - 33000	ND - 9390	ND - 7630
Vanadium	3.4 - 12.8	7.9 - 163	59.8 • 433	17.3 - 210	ND - 1700	ND - 256	ND - 45	70 - 739	ND - 64.7
Zinc	ND - 30.3	38.53 - 11103	1483 - 4063	36.2 - 12100	61-9673	ND - 204	14 - 220	ND - 736	ND - 40.8

NOTES:

J - Value is estimated.

JB - Value is estimated below the CRDL, but greater than the IDL.
NE - Not established.
NA - Not analyzed.
ND - Not detected.

NCWQS - North Carolina Water Quality Standard MCL - Maximum Contaminant Level

(1) - Secondary MCL

TABLELXLS Page 1 of 1

TABLE 2 COMPARISON OF REPEAT SAMPLING OF SHALLOW WELLS MCB, CAMP LEJEUNE, NORTH CAROLINA

Well	20W01		2GW03		2GW06		2G'	W08	2GW09	
Date	5/1993	3/1994	5/1993	3/1994	5/1993	3/1994	5/1993	3/1994	5/1993	3/1994
Chromium	18	ND	11	ND	15	ND	ND	ND	25	83
Lead	15.5 J	ND	3.5 J	ND	6.7 J	ND	ND	3.4	27.2 J	23.6
Manganese	55	47	21	ND	79	140	53	415	290	747

Weli	78GW05		78GW08		78GW15		78GW16		78GW19	
Date	1/1991	4/1994	1/1991	4/1994	1/1991	4/1994	1/1991	4/1994	1/1991	4/1994
Chromium	ND	173	91.8	491 J	21.4	215 J	209	353 J	13.8	ND
Lead	13.6	13.1 J	54.1	131 J	16.6	53	100	224	31.7	8.3
Manganese	162	161 J	46.5	213 J	18.3	115	98.3	150	79	26

NOTES:

J-Value is estimated.

ND - Not detected,

TABLE 3 DISSOLVED METALS BY SITE SHALLOW MONITORING WELLS MCB, CAMP LEJEUNE, NORTH CAROLINA

Stie Number Units	ncwq8	FEDERAL MCL ug/L	SHe i ug/L	8He 2 Ng/L	Site 6 ug/L	Ske 7 ug/L	Stie 9 ug/L	SHe 21 ug/L	Site 24 ug/L	Site 28 ug/L	Site 30 ug/L	8He 41 Mg/L	8He 43 ng/L	Site 44 ug/L
Arsenic	50	50	NA	2.2 - 7,1	מא	' NA	ND	ND + 10,6	ND = 16.3	NA	NA	2.2 • 4.7	NA.	NA
Barium	2000	2000	NA	25 - 149	ND	NA	NĎ	ND	ND	NA	NA	12.4 - 451	NA	NA
Beryllium	ne	4	NA	1	ND	NA	ND	ND	ND	NA	NA	0.80 - 3.2	NA	NA
Cadmium	5	5	NA	ND	ND	NA	ND_	ND-5	ND	NA	NA	3.2 - 4.2	NA	NA
Calcium	NA	NA	NA	5800 - 441000	6230 - 57400	NA .	15800 - 82400	35900	ND-113000	NA	NA .	4710 - 138000	NA	NA
Chromium	50	100	NA	10	מא	NA	מא	ND	ND	NA	NA	8.3 - 9.6	NA	NA
Copper	1000	1300	NA	2-9	ND	NA	ND	ND	ND	NA	NA	16.3 - 23.9	NA	NA
Load	15	15	NA	2.1	ND	NA	ND	ND-94	ND	NA	NA	1.0	NA	NA
Manganess	50	50 (1)	NA	17-129	ND-92.7	NA	ND	40 - 134	ND - 320	NA	NA	7.1 - 521	NA	NA
Mercury	1,1	2	NA	ND	ND	NA	ND	ND	ND • 0.5	NA	NA	0.13 - 0.20	NA	NA
Nickel	100	100	NA	ND	ND	NA	ND	ND	ND - 57	NA	NA	28.8 - 31.2	NA.	NA
Sodium	. NA	NA	NA	ND - 103000	1420 - 70500	NA	1280 - 3860	16200	ND - 183000	NA	NA	2500 - 34200	NA	NA
Vanadium	NE	NE	NA	43	ND	NA_	ND	ND	ND	NA	NA	20.4	NA	NA
Zine	2100	5000 (1)	NA	8 - 35	ND-350	NA	ND	6B - 50	ND - 437	NA	NA	10.6 - 125	NA	NA

Site Number Units	SHe 48 Ug/L	Ske 63 ng/L	Stie 65 ng/L	SHe 69 Ug/L	Stie 78 ve/L	Site 82 Tg/L	ABC Cleaners ug/L	Office Property #1 ug/L	Offsite Property #2 ug/L
Amenic	מא	NA	NA	2.9	ND-21.6	ND	NA	ND - 18.8	ND
Barium	16.8 - 27.6	NA	NA	13.7 - 35.8	ND	ND	NA	ND	ND
Boryllium	ND	NA	NA	1.3	ND	ND	. NA	ND	DM
Cadmium	ND+3.1	NA	NA	2.4	ND	ND	NA	ND	ND
Celcium	72600 - 80700	NA	NA	764 - 10600	ND - 296000	15200 - 58500	NA	ND-7710	ND
Chromium	ND	NA	NA	7.2	ND - 59	ND	NA ·	ND - 30.0	ND
Copper	2.6 • 7.6	NA	NA	16.2	ND-121	ND	NA	ND - 10.7	ND
Lead	MD	NA	NA	1	ND - 17.2	ND	NA	ND - 15.8	ND
Manganese	39.7 - 539	NA	NA	'8.5 - 139	ND - 152	21 - 127	NA	ND - 63.8	ND-21.3
Mercury	0.05 - 0.09	NA	NA	0.1	ND-0.6	ND	NA	ND	ND
Nickel	ND	NA	NA	13.6	ND .	ND	NA	שא	מא
Sodium	6430 - \$920	NA	NA	5170 - 41100	ND - 42200	5980 - 36000	NA	ND-9540	ND - 6750
Vanadium	ND	NA	NA	16.6	ND	ND	NA	ND	ND
Zine	ND	NA	NA	7.0 - 7670	ND - 58	ND-119	NA	ND-468	ND - 222

J - Value is estimated.

JB - Value is estimated below the CRDL, but greater than the IDL.
NE - Not established.
NA - Not analyzed.
ND - Not detected.

NCWQS - North Carolina Water Quality Standard MCL - Maximum Contaminant Level (1) - Secondary MCL

TABLESAULE/Page Loft

Well Number	NCWQ8	FEDERAL MCL mg/L	Upgradient of Site 1 1GW06	Upgradient of 88te - 2 2GW09	Upgradient of 884e 6 6BP68	Upgradient of Site 7 7GW03	Upgradient of Site 9 9GW45	Upgradient of Sites 21 and 78 78GW26	Upgradient of 5He 24 24GW07	Upgradient of Site 28 28GW04	Upgradient of Site 30	Upgradient of Site 41 41GW05	Upgradient of Site 43	Upgradient of Site 44
Units	-2/4		we/L	wg/L	ug/L	wg/L	ug/L	ug/L	weL	mg/L		ug/L		
Arsenic	50	50	17.8 J	12.9	ND	ND	ND	ND	3.7 J	7.43		13.1	•	
Berium	2000	2000	548	328	257	428	71.3	ND	ND	376	<u>#</u>	55.7		<u>u</u>
Beryllium	NE	4	3.2 J	3	ND	ND	ND	ND	ND	9.3 J	S	1,6	S	N N
Cadmium	5	5	ND	מא	ND	ND	ND	not reported	ND	3.3 J		10	3 -	3 -
Chromium	50	100	193	75	198	124	ND	13	37	122	<u></u> ≱ _	54.4	≱ _	_ ≥ _
Copper	1000	1300	64.8	25	35.6	36.4	ND	ND	ND	20.7 3	# _	27		# _
Lead	15	15	72.2 J	27.2	64.4	30.3 J	ND	9	11.4	22.4 J	 	23.7	# _	_ ë _
Manganese	50	50 (1)	202	747	84.5	56.9 J	ND	ND	39	206		203	Ē _	É _
Mercury	1.1	2	1.6 J	ND	ND	0.36	ND	ND	ND	ND	<u> </u>	0.16	82	
Nickel	100	100	51.6	ND	ND	ND	ND	ND	ND	59.8	_ Þ _	38	Þ _	
Vanadium	NE	NB	214	86	209	152	ND	149	64	85.3	_ 2 _	38.1	<u> </u>	<u> </u>
Zinc	2100	5000 (1)	, ND	103	\$6,6	86.4 J	ND	68.1	41	ND		173		

Well Number	Upgradient of Site 48 48GW1	Upgradient of Site 63	Upgradient of Site 65	Upgradient of Site 69 69GW07	Upgradient of Site 78 9GW04	Upgradient of Site 82 6MW38	Upgradient of ABC Cleaners MW-801	Upgradient of Offsite Property #1	Upgradient of Offsite Property #2
Units	ug/L,			we/L	ug/L	us/L	we/L		
Arsenic	ND			2.9	ND	ND	ND		
Barium	29.4 J	Sites	Sites	46,5	ND	ND	35	Sites	\$
Beryllium	ND	si	is	1.3	ND	ND	NA	%	Si _
Cadmium	2.5 J	_ 7 _	□ ㅋ □	2.4	ND	ND	NA	- 명 _	
Chromium	• ND	*	*	15.8	ND	ND	ND	≽	<u> </u>
Copper	ND	ient		16.2	ND	ND	ND	<u> </u>	_ i _
Lead	ND	<u>;</u>		7.8	ND	ND .	3		- # -
Manganese	70.6	- P -		13	ND	מא	10		8
Mercury	ND		&	0.1	מא	ND	NA	man -	
Nickel	מא		rzgqu	13.6	ND	ND	ND		= _
Vanadium	3.4 J	£ _	二ء ニ	17.3	ND	ND	9	- 2 -	%
Zinc	ND		— ~ —	36.2	ND	ND	23		

J - Value is estimated.

JB - Value is estimated below the CRDL, but greater than the IDL.

NE - Not established.

NA - Not analyzed.

ND - Not detected.

NCWQ8 - North Carolina Water Quality Standard MCL - Maximum Contaminant Level (1) - Secondary MCL

TABLE 5
COMPARISON OF INORGANIC SUBSURFACE SOIL CONCENTRATIONS IN "CLEAN" AND "CONTAMINATED" WELLS
MCB, CAMP LEJEUNE, NORTH CAROLINA

	Cump Lejeune Background		Site 1		Site 2		Site 6		Site 7		Site 9		8He 21
. 1	Subourface Soll Data	"Clean"	"Contaminated"	"Clean"	"Contaminated"	"Clean"	"Contaminated"	"Clean"	"Contaminated"	"Clean"	"Contaminated"	"Clean"	"Contaminated"
Units	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	ang/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
Well Number		-	*	2GW07	2GW09	6GW18	6GW15	7GW03	7GW02	9GW5	9GWI	21GW03	21GW02
Soil Sample Number		-		2-GW07-01	2 - GW09-02	6-GW18-0303	6-GW15-03	GW03-002	GW02-7595	9-GW5-03	9-SB35-03	21-GW03	21-GW02
Anonic	0.03 - 0.47	NA	NA	1.73	ND	ND	ND	1.5	ND	ND	ND	ND	0.55 3
Barium	2-11	NA	NA	12.5 J	ND	ND	ND	6.6	71	ND	ND	מא	4,4 3
Beryllium	0.03 - 0.23	NA	NA	ΝĎ	ND	ND	ND	ND	300	ND	ND	מא	î î î ND
Cadmium	0.17 • 1.2	NA	NA	ND	ND	ND	ND	1.3	4.5	ND	מא	מא	ND
Chromium	2.9	NA	NA	10.9 J	4.6	ND	100	5.2		ND	0.00	15.2	3.833.33
Copper	0.47 - 2	NA	NA	0.973	ND	ND	סא	ND	. ND	ND	מא	סא	ND
Load	1 - 12	NA	NA .	8.7	4.3	3.3 J	10	2.5	34.4	1.6		7.1	200
Manganese	0.40 - 8	NA	NA	4.3 J	4.1	ND	1.8 B	3		ND	3.7 J	9.8	3.47
Mercury	0.01 + 0.11	NA	NA	0,3 J	ND	ND	ND	10.13	0.48	ND	ND	ND	ND
Nickel	0.70 + 5.0	NA	NA	ND	ND	ND	ND	3.4	11.8	ND	ND	ND	ND
Vanadium	0.75 • 13	NA	NA	13.8 J	ND	ND	2.9 B	5.5	4,5	ND	ND	15.5	4,4 J
Zinc	0.40 - 12	NA	NA	ND	ND	ND	ND	1.3	ND	ND	6.1 J	5.7	31

Shaded area indicates inorganic which exceeded a MCL and/or NCWQS in groundwater sample.

J - Value is estimated.

JB - Value is estimated below the CRDL, but greater than the IDL.

NA - No available wells to compare OR compound was not analyzed.

ND - Not detected.

NCWQS - North Carolina Water Quality Standard

MCL - Maximum Contaminant Level

(1) - Secondary MCL

TABLE 5 COMPARISON OF INORGANIC SUBSURFACE SOIL CONCENTRATIONS IN "CLEAN" AND "CONTAMINATED" WELLS MCB, CAMP LEJEUNE, NORTH CAROLINA

		8He 24		Site 28	•	Site 30	Site	41		Site 43	SI	le 44
Unita	"Clean" mg/kg	"Contaminated" mg/kg	"Clean" mg/kg	"Contaminated" mg/kg	"Clean" mg/kg	"Contaminated" mg/kg	"Clean" mg/kg	"Contaminated" mg/kg	"Clean" mg/kg	"Contaminated" mg/kg	"Clean" ing/kg	"Contaminated" mg/kg
Well Number	24GW10	24GW02	-	-	-	•	41GW04	41-GW11	43GW01	43GW02	44GW02	44GW01
Soll Sample Number	24-GW10	24-BDA-8B09	40	••		-	41-GW04-DW	41-GW11-01	43-GW01-00	43-GW02-00	44-GW02-035	-
Amenic	ND	ND	NA	NA	NA	NA	0.51	1.6	מא	ND	ND	1.7
Barium	ND	ND	NA	NA	NA	NA	9.4	22.6	ND	סא	ŇD	17.9
Beryllium	ND	ND .	NA	NA	NA	NA	0.18	0.18	ND .	510	SD.	ND:
Cadmium	ND	860	NA	NA	NA	NA	0.73	873	2. 3	ND	ND	NB
Chromium	11.2	(4)	NA	NA	NA	· NA	3.6	11.2			7,0	103
Соррыг	ND	ND	NA	NA '	NA	NA.	3.7	1 22.5	3.4	ND	6.2 J	25.4 J
Lead	4.6 J	(69)	NA	NA	NA	NA.	4.8	116	188	6.1	33	10.7
Manganese	4.7	(<u>(</u> 1)	NA	NA	NA	NÄ	(6)	0.00		6		20.4
Mercury	ND	860	NA	NA.	NA	NA	0.06	0.31	ND	ND	ND	ND.
Nickel	ND	81D	NA	NA.	NA	NA NA	6.6	06	7.6	38	3.1	34
Vanadium	18.4	10	NA	NA	NA	NA	6.8	9.3	7.2	5.8	5	14.7
Zine	ND	7.8	NA	NA	NA.	NA	7.7	190	20,1	3	3.2	349

Shaded area indicates inorganic which succeeded a MCL and/or NCWQS in groundwater sample.

J-Value is estimated.

JB - Value is estimated.

JB - Value is estimated below the CRDL, but greater than the IDL.

NA - No available wells to compare OR compound was not analyzed.

ND - Not detected.

NCWQS - North Carolina Water Quality Standard

MCL - Maximum Contaminant Level

(1) - Secondary MCL

TABLES.XLS/Page 2 of 4

Table 5 Comparison of Inorganic Subsurface Soil Concentrations in "Clean" and "Contaminated" wells MCB, Camp Lejeune, North Carolina

	8	ite 48	8	ite 63	1	lite 65		514 69		Site 78		Site 82
Ì	"Clean"	"Contaminated"	"Closs"	"Contaminated"	"Clean"	"Contaminated"	"Clean"	"Contaminated"	"Clean"	"Contaminated"	"Clean"	"Contaminated"
Units	mg/kg	mg/kg	mg/kg	mg/kg	me/kg	mg/kg	ang/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
Well Number	48-CW01	48-GW03	COWMCD	63MW02	65MW03	65MW02	69-GW11	69-GW03	78GW34	78GW24-1	6-GW28	82MW3
Soll Sample Number	48-GW1A-01	48-C3-03	63-MW03-04	63-MW02-06	65-MW03-11	65-MW02-06	69-GW11-04	69-CSA-SB23-00	78-GW34	78-B903-SB03	6-GW28-09	6-GW27D-06
Vrsenie	1.3	0.77 J	ND	ND	ND		0.68	0.63	ND	ND	0.31	15.9
Sarium .	21.1	15	ND	ND	3.4	6.8	5.6	3	ND	ND	DM	ND
Beryllium	0.2	0.19	ND	ND	ND	350	0.3	0.28	ND	ND 9	ND	סא
Cadmium	1.4	1.83	ND	ND	NA	NA	0.56	0.52	ND	ND	ND	מא
Decomium	18.2	18.6	7.7	(6)		600	6.8	11	18.5	33	2.6	1
Copper	3.5	3.8	ND	ND	1.5	3.1	3,8	3.5	3.4 B	ND	ND	ND
hed	32.3	14.3	4.2	2.5	Y.	10	4.3		4.53	200	2.7	4.0
danganese	7111	7	4.9	UY	3.5	6.9	4		978	\$ 80	ND	ND
Marcury	ND	ND	ND	ND	NA	. NA	0.06	0.05	ND	מא	מא	DN
Vickel	2.2	1.9 J	ND	ND	ND	ND	3.2	3	מא	. מא	ND	סא
Vanadium	21.3	20.8 J	ND	ND	. 4.4	3	4.4	3.6	18.7	19.2	ND	סא
line .	ΦN	ND	ND	ND	2.7	\$	3.2	36.013	7.9	ND	ND	ND

Shaded area indicates inorganic which exceeded a MCL and/or NCWQS in groundwater sample.

J - Value is estimated.

JB - Value is estimated below the CRDL, but greater than the IDL.

NA - No available wells to compare OR compound was not analyzed.

ND - Not detected.

NCWQS - North Carolina Water Quality Standard

MCL - Maximum Contaminant Level

(1) - Secondary MCL

TABLE 5
COMPARISON OF INORGANIC SUBSURFACE SOIL CONCENTRATIONS IN "CLEAN" AND "CONTAMINATED" WELLS
MCB, CAMP LEJEUNE, NORTH CAROLINA

•	AJ	BC Cleaners	Offic	ite Property #1	Offsi	te Property #2
Units	"Clean" mg/kg	"Contaminated" mg/kg	"Clean" mg/kg	"Contaminated" mg/kg	"Clean" mg/kg	"Contaminated" mg/kg
Well Number	~		-	**		
Soll Sample Number						**
Amenio	NA	NA	NA	'nΑ	NA	NA.
Barium	NA	NA NA	NA	NA	NA	NA.
Beryllium .	NA	NA.	NA	NA NA	NA.	NA
Cadmium	NA	NA	NA	NA '	NA	NA
Chromium	NA	NA	NA	NA	NA	NA
Copper	NA.	NA .	NA.	NA.	NA	NA.
Lead .	NA	ŇA	NA	NA NA	NA	NA.
Manganese	NA	NA	NA	NA	NA	NA
Mercury	NA	NA.	NA	NA.	NA	NA.
Nickel	NA	NA	NA.	NA	NA	NA
Vanadium	NA	NA	NA	NA	NA	NA
Zine	NA	NA	NA.	NA	NA	, NA

Shaded area indicates inorganic which exceeded a MCL and/or NCWQS in groundwater sample.

J - Value is estimated.

JB - Value is estimated below the CRDL, but greater than the IDL.

NA - No available wells to compare OR compound was not analyzed.

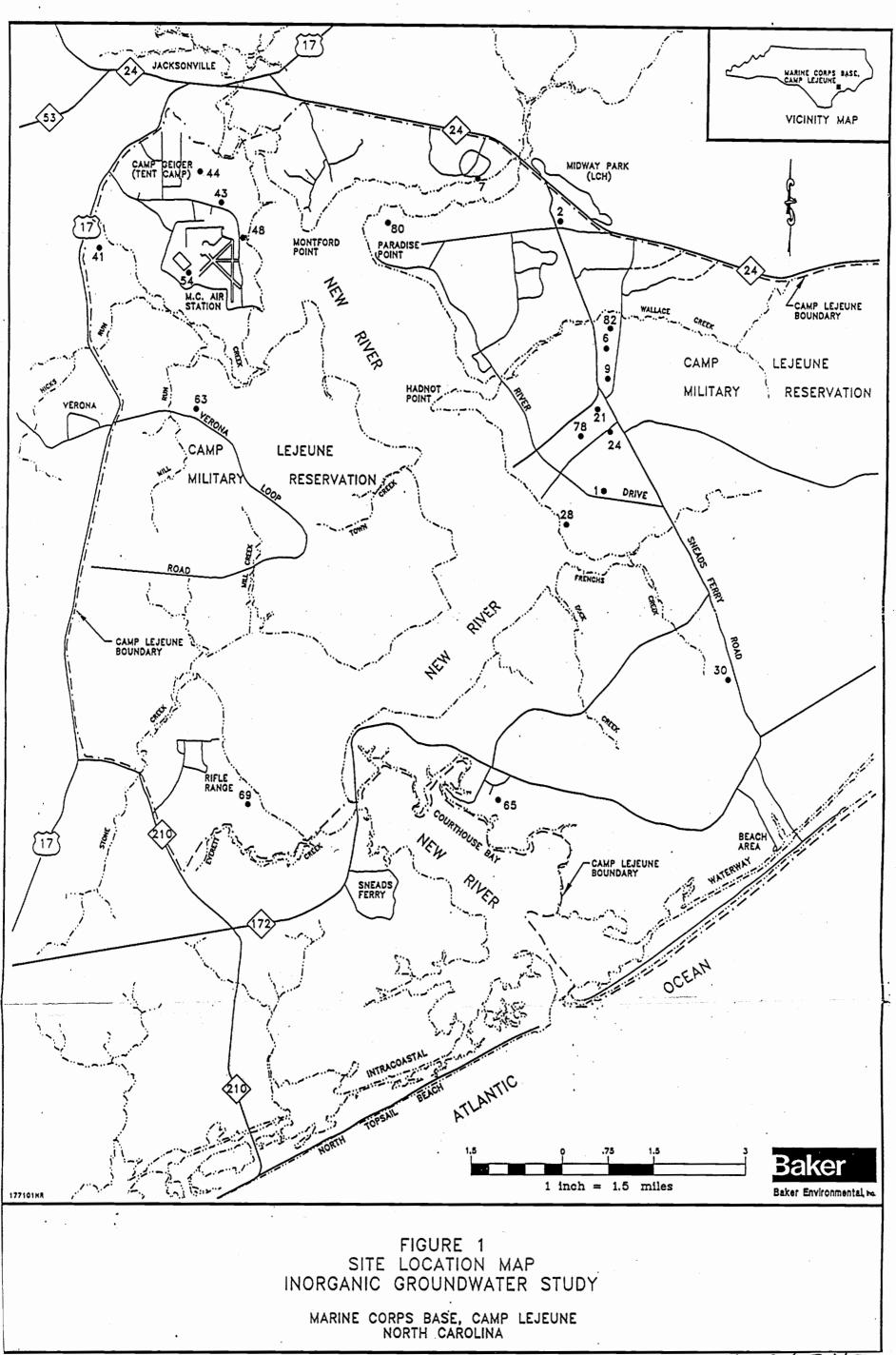
ND - Not detected.

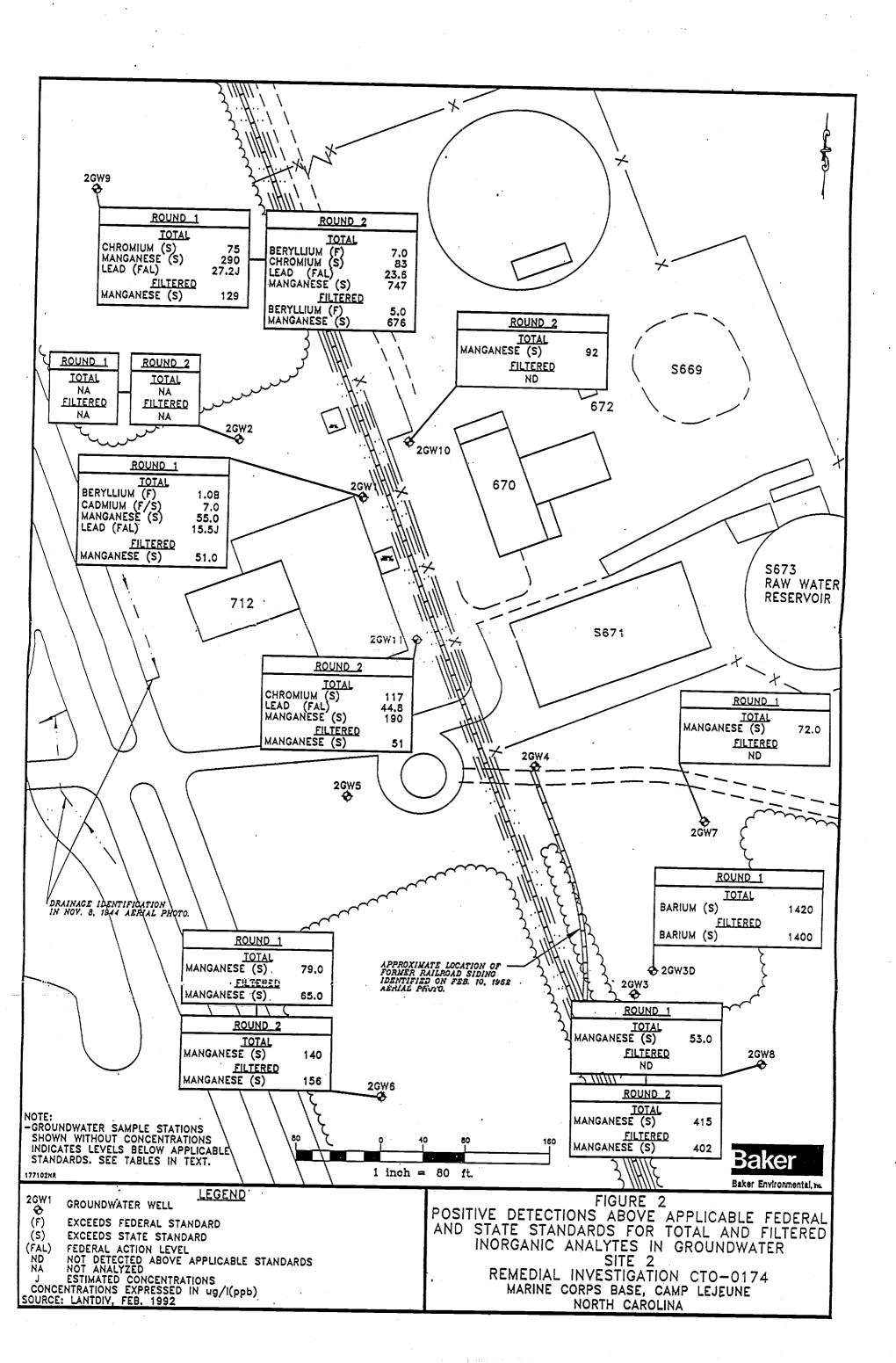
NCWQS - North Carolina Water Quality Standard

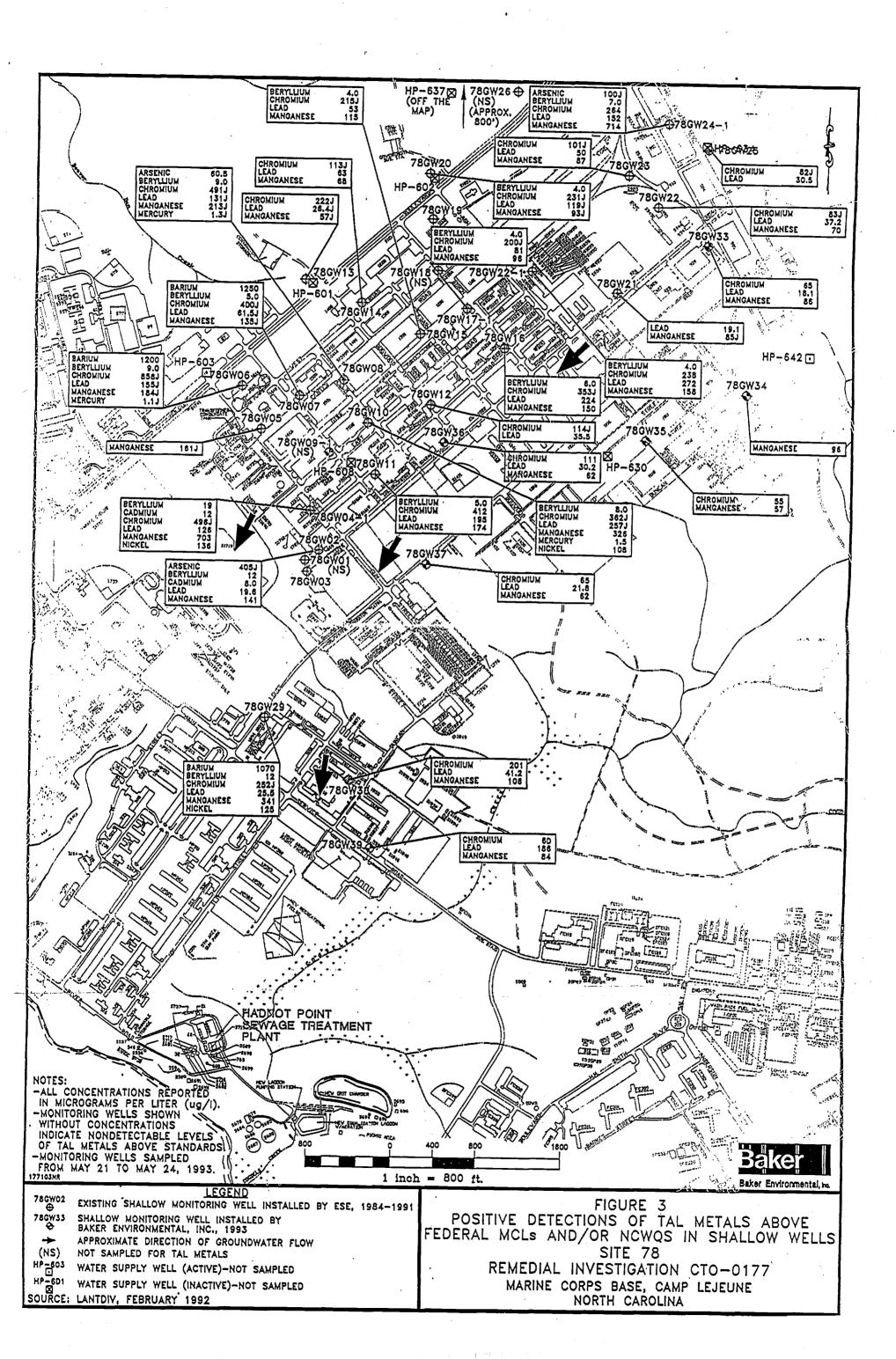
MCL - Maximum Contaminant Level

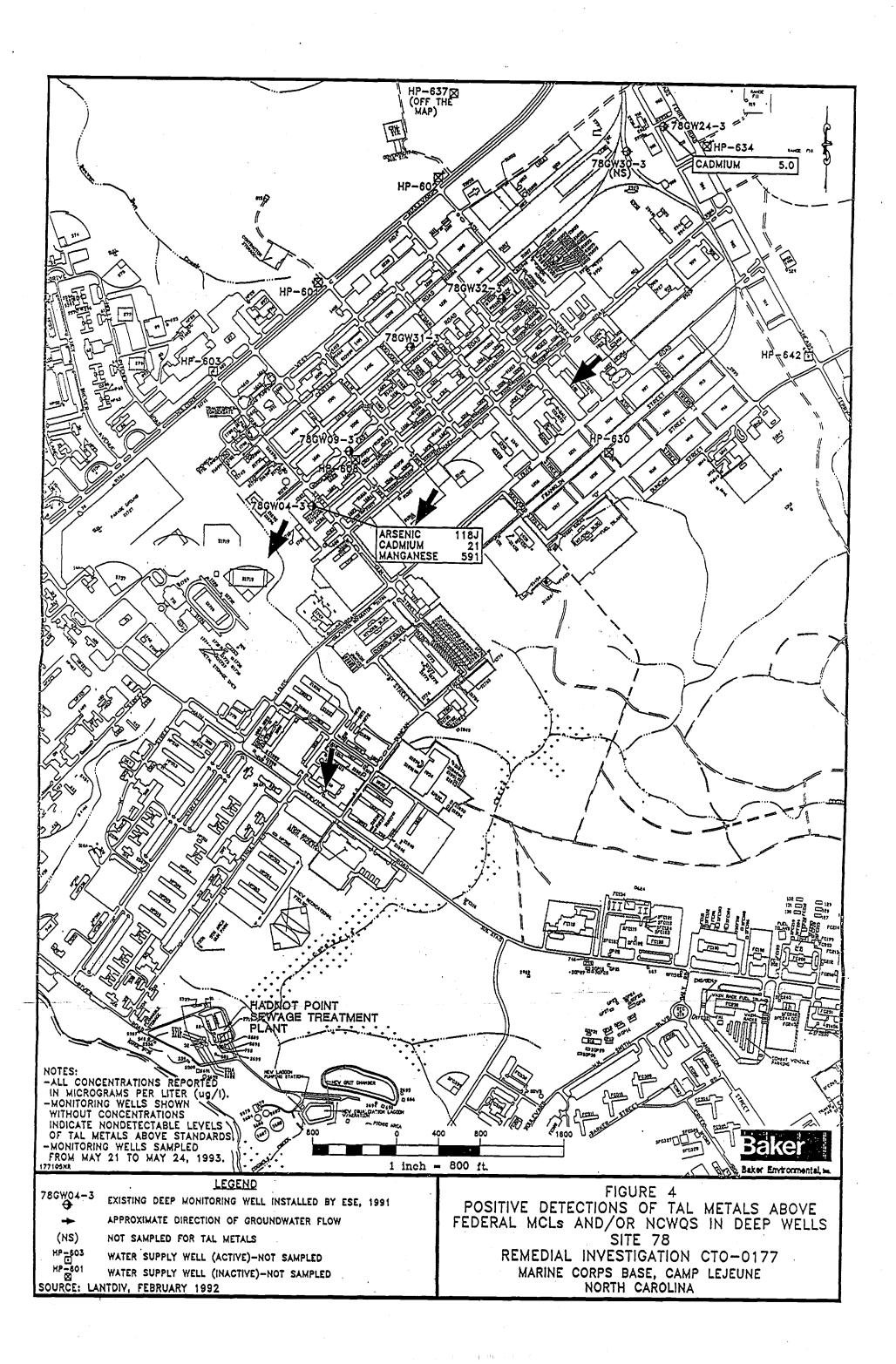
(1) - Secondary MCL

TABLE 6 TOTAL METALS BY SITE DEEP MONITORING WELLS MCB, CAMP LEJEUNE, NORTH CAROLINA


	Ste 1	SHe 2	SHe 6	BHe 7	Stie 9	8He 21	5Ke 24	8He 28	8(te 30	8ite 41	8tte 43	Bite:44	8ke 48	8tte 63	8He 65	8He 69	Site 78	5He 82	ABC Cleaners	Base Supply Wells (1)
Amenic		ND	ND		ND					2.2 - 9.6						2.2 - 3.5	2 - 118 J	ND	ND - 14	ND
Barium		1420	ND	Γ	ND					22.6 - 186						42.3 - 58.0	ND - 547	DN	4 • 36	ND
Beryllium		ND	ND	Γ 7	ND			Γ	_	3.2						0.80 - 0.89	מא	ND	NA	NA
Cadmium	- 13 -	ND	ND	2	ND	2	- 1	- 	- 43 -	4.2 - 4.7		_ ## _	[≅]	L≅I		3.2	ND - 21	ND	NA	ND
Chromium	- G -	16	ND	- 3 -	ND	- Xe	_ × _	- چ ا	_ × _	9.6 - 40.5	- ×	_ × _	_ \$	_ § _	%	8.3 - 20.7	ND - 10	ND	ND - 32	ND
Соррег		ND	ND	[a]	ND	Į d	a	<u> </u>	a.	23.9	ą.	۾ آ	<u></u>	P.	۾ ا	16.3	סא	ND	ND - 41	ND - 130
Load		ND	ND		ND	_ & _	- 9		- 8	1.0 - 11.1	_ & _		٦ ٥ ٦	T & T		3.1 - 6.8	ND	ND	ND - 10	ND - 16
Manganese	- 5 -	ND	ND - 33.5		מא	10	10		- 2 -	16.9 - 101	- <u>-</u>	Γ <u>Θ</u> -			7	53.7 - 114	ND - 591	ND - 21.6	ND - 45	10 - 120
Mercury	Z ~	ND	ND	- z -	ND	- z -	- z -	- နိ -	- z -	0.15 - 0.17	- z -	- z -	- z			0.16 - 0.17	ND • 0.3	ND	NA	מא
Nickel	r -	ND	ND	†	ND	_ ~	_	Γ -	Γ -	31.2	Γ	Γ -				28.8	ND	ND	ND - 14	NA
Vanadium	T -	ND	ND	T -	ND				Γ	20.4 - 49.8	Γ "	Γ -	ΓΞ	ΓΞ		20.4	ND-24J	ND	ND - 15	NA
Zine	r -	ND	ND	r -	ND		_ ~	Γ -		17,8 - 83.8	_				<u> </u>	31.1 - 48.7	ND-181 J	· ND	58 - 390	ND - 120


NOTES:
J - Value is estimated.
NA - Not analyzed.
ND - Not detected.
(1) - Range is based on 67 supply wells located throughout MCB, Camp Lejsune, NC.


TABLE 7 SUMMARY OF FIELD PARAMETERS IN SHALLOW, DEEP, AND SUPPLY WELLS MCB, CAMP LEJEUNE, NORTH CAROLINA


	Shallov	y Wells	Deep '	Wells	Supply Wells		
	Range (1)	Average Maximum	Range (2)	Average Maximum	Range (3)	Average Maximum	
pli (standard units)	4.5 - 7.28	6.08	7.52 - 11.34	8.88	6.91 - 7.45	7,32	
Specific Conductivity (micromhos/cm)	40 - 580	267	149 - 525	350	212 - 511	353	

- (1) Based on data from 11 sites.
- (2) Based on data from 6 sites.
- (3) Based on data from 9 supply wells.

APPENDIX O FREQUENCY OF DETECTION SUMMARIES

APPENDIX O.1 SURFACE SOIL ORGANICS

LOCATION DATE COLLECTED DEPTH	65-DW01-00 04/10/95 0-1'	65-DW02-00 04/09/95 0-1'	65-DW04-00 04/05/95 0-1'	65-MW05A-00 04/05/95 0-1'	65-MW06A-00 04/08/95 0-1'	65-MW07A-00 04/04/95 0-1'
VOLATILES (ug/kg)						
CHLOROMETHANE	11 U	11 U	11 U	11 U	12 U	11 U
BROMOMETHANE	11 U	11 U	11 U	11 U	12 U	11 U
VINYL CHLORIDE	11 U	11 U	11 U	11 U	12 U	11 U
CHLOROETHANE	11 U	11 U	11 U	11 U	12 U	11 U
METHYLENE CHLORIDE	11 U	11 U	11 U	2 U	12 U	2 J
ACETONE	11 U	13 U	11 U	10 J	12 U	11 U
CARBON DISULFIDE	11 U	11 U	11 U	11 U	12 U	11 U
1,1-DICHLOROETHENE	11 U	11 U	11 U	11 U	12 U	11 U
1,1-DICHLOROETHANE	11 U	11 U	11 Ŭ	11 U	12 U	11 U
1,2-DICHLOROETHENE	11 U	11 U	11 U	11 U	12 U	11 U
CHLOROFORM	11 U	11 U	11 U	11 U	12 U	11 Ŭ
1,2-DICHLOROETHANE	11 U	11 U	11 U	11 U	12 U	11 U
2-BUTANONE	11 U	11 U	11 U	11 U	12 U	11 U
1,1,1-TRICHLOROETHANE	11 U	11 U	11 U	11 U	12 U	11 U
CARBON TETRACHLORIDE	11 U	11 U	11 U	11 U	12 U	11 U
BROMODICHLOROMETHANE	11 U -	11 U	11 U	11 U	12 U	11 U
1,2-DICHLOROPROPANE	11 U	11 U	11 U	11 U	12 U	11 U
CIS-1,3-DICHLOROPROPENE	11 U	11 U	11 U	11 U	12 U	11 U
TRICHLOROETHENE	11 U	11 U	11 U	11 U	12 U	11 U
DIBROMOCHLOROMETHANE	11 U	11 U	11 U	11 U	12 U	11 U
1,1,2-TRICHLOROETHANE	11 U	11 U	11 U	11 U	12 U	11 U
BENZENE	11 U	11 U	11 U	11 U	12 U	11 U
TRANS-1,3-DICHLOROPROPENE	11 U	11 U	11 U	11 U	12 U	11 U
BROMOFORM	11 U	11 U	11 U	11 U	12 U	11 U
4-METHYL-2-PENTANONE	11 U	- 11 U	11 U	11 U	12 U	11 U
2-HEXANONE	11 U	11 U	11 U	11 U	12 U	11 U
TETRACHLOROETHENE	11 U	11 U	11 U	11 U	12 U	11 U
1,1,2,2-TETRACHLOROETHANE	11 U	11 U	11 U	11 U	12 U	11 U
TOLUENE	11 U	11 U	2 J	1 J	12 U	. 2 J
CHLOROBENZENE	11 U	11 U	11 U	11 U	12 U	11 U
ETHYLBENZENE	11 U	11 U	11 U	11 U	12 U	11 U
STYRENE	11 U	11 U	11 U	11 U	12 U	11 U
TOTAL XYLENES	` 3 J	11 U	11 U	11 U	12 U	11 U

FREQUENCY OF DETECTION SUMMARY SURFACE SOIL

SITE 65 - ENGINEER AREA DUMP REMEDIAL INVESTIGATION, CTO-0312 MCB, CAMP LEJUENE, NORTH CAROLINA

TCL ORGANICS

LOCATION DATE COLLECTED	65-SB06-00 04/10/95	65-SB07-00 04/08/95	65-SB08-00 04/11/95	65-SB09-00 04/08/95	65-SB10-00 04/08/95	65-SB11-00 04/08/95
	The state of the s					
DEPTH	0-1'	0-1'	0-1'	0-1'	0-1'	0-1'
VOLATILES (ug/kg)						
CHLOROMETHANE	12 U	13 U	11 U	11 U	12 U	12 U
BROMOMETHANE	12 U	13 U	11 U	11 U	12 U	12 U
VINYL CHLORIDE	12 U	13 U	11 U	11 U	12 U	12 U
CHLOROETHANE	12 U	13 U	11 U	11 U	12 U	12 U
METHYLENE CHLORIDE	12 U	13 U	11 U	11 U	12 U	12 U
ACETONE	12 U	13 U	11 U	11 U	12 U	12 U
CARBON DISULFIDE	12 U	13 U	11 U	11 U	12 U	12 U
1,1-DICHLOROETHENE	12 U	13 U	11 U	11 U	12 U	12 U
1,1-DICHLOROETHANE	12 U	13 U	11 U	11 U	12 U	12 U
1,2-DICHLOROETHENE	12 U	13 U	11 U	11 U	12 U	12 U
CHLOROFORM	12 U	13 U	11 U	11 U	12 U	12 U
1,2-DICHLOROETHANE	12 U	13 U	11 U	11 U	12 U	12 U
2-BUTANONE	12 U	13 U	11 U	11 U	12 U	12 U
1,1,1-TRICHLOROETHANE	12 U	13 U	11 U	11 U	12 U	12 U
CARBON TETRACHLORIDE	12 U	13 U	11 U	11 U	12 U	12 U
BROMODICHLOROMETHANE	12 U	13 U	11 U	11 U	12 U	12 U
1,2-DICHLOROPROPANE	12 U	13 U	11 U	11 U	12 U	12 U
CIS-1,3-DICHLOROPROPENE	12 U	13 U	11 U	11 U	12 U	12 U
TRICHLOROETHENE	1 J	13 U	11 U	11 U	12 U	12 U
DIBROMOCHLOROMETHANE	12 U	13 U	11 U	11 U	12 U	12 U
1,1,2-TRICHLOROETHANE	12 U	13 U	11 U	11 U	12 U	12 U
BENZENE	12 U	13 U	11 U	11 U	12 U	12 U
TRANS-1,3-DICHLOROPROPENE	12 U	13 U	11 U	11 U	12 U	12 U
BROMOFORM	12 U	13 U	11 U	11 U	12 U	12 U
4-METHYL-2-PENTANONE	12 U	. 13 U	11 U	11 U	12 U	12 U
2-HEXANONE	12 U	13 U	11 U	11 U	12 U	12 U
TETRACHLOROETHENE	12 U	13 U	11 U	11 U	12 U	12 U
1,1,2,2-TETRACHLOROETHANE	12 U	13 U	11 U	11 U	12 U	12 U
TOLUENE	12 U	- 13 U	11 U	11 U	12 U	12 U
CHLOROBENZENE	12 U	13 U	11 U	11 U	12 U	12 U
ETHYLBENZENE	12 U	1 J	11 U	11 U	12 U	12 U
STYRENE	12 U	13 U	11 U	11 U	12 U	12 U
TOTAL XYLENES	12 U	5 J	11 U	11 U	12 U	12 U

LOCATION	65-SB12-00
DATE COLLECTED	04/17/95
DEPTH	0-1'
VOLATILES (ug/kg)	
CHLOROMETHANE	11 Ü
BROMOMETHANE	11 U
VINYL CHLORIDE	11 U
CHLOROETHANE	11 U
METHYLENE CHLORIDE	2 J
ACETONE	11 U
CARBON DISULFIDE	11 U
1,1-DICHLOROETHENE	11 U
1,1-DICHLOROETHANE	11 U
1,2-DICHLOROETHENE	11 U
CHLOROFORM	11 U
1,2-DIGHLOROETHANE	11 U
2-BUTANONE	11 U
1,1,1-TRICHLOROETHANE	11 U
CARBON TETRACHLORIDE	11 U
BROMODICHLOROMETHANE	11 U
1,2-DICHLOROPROPANE	11 U
CIS-1,3-DICHLOROPROPENE	11 U
TRICHLOROETHENE	11 U
DIBROMOCHLOROMETHANE	11 U
1,1,2-TRICHLOROETHANE	11 U
BENZENE	11 U
TRANS-1,3-DICHLOROPROPENE	11 U
BROMOFORM	11 U
4-METHYL-2-PENTANONE	11 U
2-HEXANONE	11 U
TETRACHLOROETHENE	11 U
1,1,2,2-TETRACHLOROETHANE	11 U
TOLUENE	11 U
CHLOROBENZENE	11 U
ETHYLBENZENE	11 U
STYRENE	11 U
TOTAL XYLENES	11 U

FREQUENCY OF DETECTION SUMMARY SURFACE SOIL SITE 65 - ENGINEER AREA DUMP REMEDIAL INVESTIGATION, CTO-0312

MCB, CAMP LEJUENE, NORTH CAROLINA TCL ORGANICS

LOCATION DATE COLLECTED DEPTH	MINIMUM NONDETECTED	MAXIMUM NONDETECTED	MINIMUM DETECTED	MAXIMUM DETECTED	LOCATION OF MAXIMUM DETECTED	FREQUENCY OF DETECTION
VOLATILES (ug/kg)						
CHLOROMETHANE	11 U	13 U	ND	ND		0/13
BROMOMETHANE	11 U	13 U	ND	ND		0/13
VINYL CHLORIDE	11 U	13 U	ND	ND		0/13
CHLOROETHANE	11 U	13 U	ND	ND		0/13
METHYLENE CHLORIDE	2 U	13 U	2 J	2 J	65-SB12-00	2/13
ACETONE	11 U	13 U	10 J	10 J	65-MW05A-00	1/13
CARBON DISULFIDE	11 U	13 U	ND	ND		0/13
1,1-DICHLOROETHENE	11 U	13 U	ND	ND		0/13
1,1-DICHLOROETHANE	11 U	13 U	ND	ND		0/13
1.2-DICHLOROETHENE	11 U	13 U	ND	ND		0/13
CHLOROFORM	11 U	13 U	ND	ND		0/13
1,2-DICHLOROETHANE	11 U	13 U	ND	ND		0/13
2-BUTANONE	11 Ü	13 U	ND	ND		0/13
1,1,1-TRICHLOROETHANE	11 U	13 U	ND	ND		0/13
CARBON TETRACHLORIDE	11 U	13 U	ND	ND		0/13
BROMODICHLOROMETHANE	11 U	13 U	ND	ND		0/13
1,2-DICHLOROPROPANE	11 U	13 U	ND	ND		0/13
CIS-1,3-DICHLOROPROPENE	11 U	13 U	ND	ND		0/13
TRICHLOROETHENE	11 U	13 U	1 J	1 J	65-SB06-00	1/13
DIBROMOCHLOROMETHANE	11 U	13 U	NĎ	ND		0/13
1,1,2-TRICHLOROETHANE	11 U	13 U	ND	ND		0/13
BENZENE	11 U	13 U	ND	ND		0/13
TRANS-1,3-DICHLOROPROPENE	11 U	13 U	ND	ND		0/13
BROMOFORM	11 U	13 U	ND	ND		0/13
4-METHYL-2-PENTANONE	11 U	13 U	ND	ND		0/13
2-HEXANONE	11 U	13 U	ND	ND		0/13
TETRACHLOROETHENE	11 U	13 U	ND	ND		0/13
1,1,2,2-TETRACHLOROETHANE	11 U	13 U	ND	ND		0/13
TOLUENE	11 U	13 U	1 J	2 J	65-MW07A-00	3/13
CHLOROBENZENE	11 U	13 U	ND	ND		0/13
ETHYLBENZENE	11 U	12 U	1 J	1 J	65-SB07-00	1/13
STYRENE	11 U	13 U	ND	ND		0/13
TOTAL XYLENES	11 U	12 U	3 J	5 J	65-SB07 - 00	2/13

TALA	
16.16	RGANICS

LOCATION DATE COLLECTED	65-DW01-00 04/10/95	65-DW02-00 04/09/95	65-DW04-00 04/05/95	65-MW05A-00 04/05/95	65-MW06A-00 04/08/95	65-MW07A-00 04/04/95
DEPTH	0-1'	0-1'	0-1'	0-1'	0-1'	0-1'
52. ,	• •	• •	• •	• •	• •	• •
SEMIVOLATILES (ug/kg)						
PHENOL	360 U	360 U	360 U	360 U	390 U	370 U
BIS(2-CHLOROETHYL)ETHER	360 U	360 U	360 U	360 U	390 U	370 U
2-CHLOROPHENOL	360 U	360 U	360 U	360 U	390 U	370 U
1,3-DICHLOROBENZENE	360 U	360 U	360 U	360 U	390 U	370 U
1,4-DICHLOROBENZENE	360 U	360 U	360 U	360 U	390 U	370 U
1,2-DICHLOROBENZENE	360 U	360 U	360 U	360 U	390 U	370 U
2-METHYLPHENOL	360 U	360 U	360 U	360 U	390 U	370 U
2,2'-OXYBIS(1-CHLOROPROPANE)	360 U	360 U	360 U	360 U	390 U	370 U
4-METHYLPHENOL	360 U	360 U	360 U	360 U	390 U	370 U
N-NITROSO-DI-N-PROPYLAMINE	360 U	360 U	360 U	360 U	390 U	370 U
HEXACHLOROETHANE	360 U	360 U	360 U	360 U	390 U	370 U
NITROBENZENE	360 U	360 U	360 U	360 U	390 U	370 U
ISOPHORONE	360 U	360 U	360 U	360 U	390 U	370 U
2-NITROPHENOL	360 U	360 U	360 U	360 U	390 U	370 U
2,4-DIMETHYLPHENOL	360 U	360 U	360 U	360 U	390 U	370 U
BIS(2-CHLOROETHOXY)METHANE	360 U	360 U	360 U	360 U	390 U	370 U
2,4-DICHLOROPHENOL	360 U	360 U	360 U	360 U	390 U	370 U
1,2,4-TRICHLOROBENZENE	360 U	360 U	360 U	360 U	390 U	370 U
NAPHTHALENE	360 U	360 U	360 U	360 U	390 U	370 U
4-CHLOROANILINE	360 U	360 U	360 U	360 U	390 U	370 U
HEXACHLOROBUTADIENE	360 U	360 U	360 U	360 U	390 U	370 U
4-CHLORO-3-METHYLPHENOL	360 U	360 U	360 U	360 U	390 U	370 U
2-METHYLNAPHTHALENE	360 U	360 U	360 U	360 U	390 U	370 U
HEXACHLOROCYCLOPENTADIENE	360 U	360 UJ	360 Ú	360 U	390 U	370 U
2,4,6-TRICHLOROPHENOL	360 U	360 U	. 360 U	360 U	390 U	370 U
2,4,5-TRICHLOROPHENOL	880 U	860 U	880 U	860 U	930 U	900 U
2-CHLORONAPHTHALENE	360 U	360 U	360 U	360 U	390 U	370 U
2-NITROANILINE	880 U	860 U	880 U	860 U	930 U	900 U
DIMETHYL PHTHALATE	360 U	360 U	360 U	360 U	390 U	370 U
ACENAPHTHYLENE	360 U	360 U	360 U	360 U	390 U	370 U
2,6-DINITROTOLUENE	360 U	360 U	360 U	360 U	390 U	370 U
3-NITROANILINE	880 U	860 U	880 U	860 U	930 U	900 U
ACENAPHTHENE	130 J	360 U	360 U	360 U	390 U	370 U
2,4-DINITROPHENOL	880 UJ	860 U	150 J	860 U	930 UJ	900 U
4-NITROPHENOL	880 U	860 U	880 U	860 U	930 U	900 U

10/23/95 65SSSV.WK4

FREQUENCY OF DETECTION SUMMARY SURFACE SOIL

SITE 65 - ENGINEER AREA DUMP REMEDIAL INVESTIGATION, CTO-0312 MCB, CAMP LEJUENE, NORTH CAROLINA TCL ORGANICS

LOCATION DATE COLLECTED DEPTH	65-DW01-00 04/10/95 0-1'	65-DW02-00 04/09/95 0-1'	65-DW04-00 04/05/95 0-1'	65-MW05A-00 04/05/95 0-1'	65-MW06A-00 04/08/95 0-1'	65-MW07A-00 04/04/95 0-1'
D 1	• • • • • • • • • • • • • • • • • • • •		• • • • • • • • • • • • • • • • • • • •	0-1	V -1	0-1
SEMIVOLATILES (ug/kg) cont.						
DIBENZOFURAN	58 J	360 U	360 U	360 U	390 U	370 U
2,4-DINITROTOLUENE	360 U	360 U	360 U	360 U	390 U	370 U
DIETHYL PHTHALATE	360 U	360 U	360 U	360 U	390 U	370 U
4-CHLOROPHENYLPHENYL ETHER	360 U	360 U	360 U	360 U	390 U	370 U
FLUORENE	100 J	360 U	360 U	360 U	390 U	370 U
4-NITROANILINE	880 U	860 U	880 U	860 U	930 U	900 U
4,6-DINITRO-2-METHYLPHENOL	880 U	860 U	880 UJ	860 U	930 U	900 U
N-NITROSODIPHENYLAMINE	360 U	360 U	360 U	360 U	390 U	370 U
4-BROMOPHENYL PHENYL ETHER	360 U	360 U	360 U	360 U	390 U	370 U
HEXACHLOROBENZENE	360 U	360 U	360 U	360 U	390 U	370 U
PENTACHLOROPHENOL	880 U	860 U	880 U	860 U	930 U	900 U
PHENANTHRENE	860	360 U	360 U	360 U	390 U	370 U
ANTHRACENE	190 J	360 U	360 U	360 U	390 U	370 U
CARBAZOLE	180 J	360 U	360 U	360 U	390 U	370 U
DI-N-BUTYL PHTHALATE	360 U	360 U	360 U	360 U	390 U	370 U
FLUORANTHENE	830	360 U	360 U	360 U	390 U	370 U
PYRENE	850	360 U	360 U	360 U	390 U	370 U
BUTYL BENZYL PHTHALATE	360 U	360 U	360 U	360 U	390 U	370 U
3,3'-DICHLOROBENZIDINE	360 U	360 U	360 U	360 U	390 U	370 U
BENZO(A)ANTHRACENE	510	360 U	360 U	360 U	390 U	370 U
CHRYSENE	470	360 U	360 U	360 U	390 U	370 U
BIS(2-ETHYLHEXYL)PHTHALATE	64 J	360 U	360 U	60 J	87 J	51 J
DI-N-OCTYL PHTHALATE	360 U	360 U	360 U	360 U	390 U	370 U
BENZO(B)FLUORANTHENE	360 J	360 U	360 U	360 U	390 U	370 U
BENZO(K)FLUORANTHENE	510	360 U	360 U	360 U	390 U	370 U
BENZO(A)PYRENE	400	360 U	360 U	360 U	390 U	370 U
INDENO(1,2,3-CD)PYRENE	310 J	360 U	360 U	360 U	390 U	370 U
DIBENZO(A,H)ANTHRACENE	150 J	360 U	360 U	360 U	390 U	370 U
BENZO(G,H,I)PERYLENE	250 J	360 U	360 U	360 U	390 U	370 U

LOCATION DATE COLLECTED DEPTH	65-SB06-00 04/10/95 0-1'	65-SB07-00 04/08/95 0-1'	65-SB08-00 04/11/95 0-1'	65-SB09-00 04/08/95 0-1'	65-SB10-00 04/08/95 0-1'	65-SB11-00 04/08/95 0-1'
SEMIVOLATILES (ug/kg)						
PHENOL	410 U	420 U	350 U	370 U	380 U	390 U
BIS(2-CHLOROETHYL)ETHER	410 U	420 U	350 U	370 U	380 U	390 U
2-CHLOROPHENOL	410 U	420 U	350 U	370 U	380 U	390 U
1,3-DICHLOROBENZENE	410 U	420 U	350 U	370 U	380 U	390 U
1,4-DICHLOROBENZENE	410 U	420 U	350 U	370 U	380 U	390 U
1,2-DICHLOROBENZENE	410 U	420 U	350 U	370 U	380 U	390 U
2-METHYLPHENOL	410 U	420 U	350 U	370 U	380 U	390 U
2,2'-OXYBIS(1-CHLOROPROPANE)	410 U	420 U	350 U	370 U	380 U	390 U
4-METHYLPHENOL	410 U	420 U	350 U	370 U	380 U	390 U
N-NITROSO-DI-N-PROPYLAMINE	410 U	420 U	350 U	370 U	380. U	390 U
HEXACHLOROETHANE	410 U	420 U	350 U	370 U	380 U	390 U
NITROBENZENE	410 U	420 U	350 U	370 U	380 U	390 U
ISOPHORONE	410 U	420 U	350 U	370 U	380 U	390 U
2-NITROPHENOL	410 U	420 U	350 U	370 U	380 U	390 U
2,4-DIMETHYLPHENOL	410 U	420 U	350 U	370 U	380 U	390 U
BIS(2-CHLOROETHOXY)METHANE	410 U	420 U	350 U	370 U	380 U	390 U
2,4-DICHLOROPHENOL	410 U	420 U	350 U	370 U	380 U	390 U
1,2,4-TRICHLOROBENZENE	410 U	420 U	350 U	370 U	380 ∪	390 U
NAPHTHALENE	410 U	420 U	350 U	370 U	380 U	390 U
4-CHLOROANILINE	410 U	420 U	350 U	370 U	380 U	390 U
HEXACHLOROBUTADIENE	410 U	420 U	350 U	370 U	380 U	390 U
4-CHLORO-3-METHYLPHENOL	410 U	420 U	350 U	370 U	380 U	390 U
2-METHYLNAPHTHALENE	410 U	420 U	350 U	370 U	380 U	390 U
HEXACHLOROCYCLOPENTADIENE	410 U	420 U	350 U	370 U	380 UJ	390 UJ
2,4,6-TRICHLOROPHENOL	410 U	420 U	350 U	370 U	380 U	390 U
2,4,5-TRICHLOROPHENOL	1000 U	1000 U	850 U	900 U	930 U	950 U
2-CHLORONAPHTHALENE	410 U	420 U	350 U	370 U	380 U	390 U
2-NITROANILINE	1000 U	1000 U	850 U	900 U	930 U	950 U
DIMETHYL PHTHALATE	410 U	420 U	350 U	370 U	380 U	390 U
ACENAPHTHYLENE	410 U	420 U	350 U	370 U	380 U	390 U
2,6-DINITROTOLUENE	410 U	420 U	350 U	370 U	380 U	390 U
3-NITROANILINE	1000 U	1000 U	850 U	900 U	930 U	950 U
ACENAPHTHENE	410 U	420 U	350 U	370 U	380 U	390 U
2,4-DINITROPHENOL	1000 UJ	1000 U	850 UJ	900 U	930 U	950 U
4-NITROPHENOL	1000 U	1000 U	850 U	900 U	930 U	950 U

10/23/95 65SSSV.WK4

FREQUENCY OF DETECTION SUMMARY SURFACE SOIL

SITE 65 - ENGINEER AREA DUMP REMEDIAL INVESTIGATION, CTO-0312 MCB, CAMP LEJUENE, NORTH CAROLINA TCL ORGANICS

LOCATION DATE COLLECTED DEPTH	65-SB06-00 04/10/95 0-1'	65-SB07-00 04/08/95 0-1'	65-SB08-00 04/11/95 0-1'	65-SB09-00 04/08/95 0-1'	65-SB10-00 04/08/95 0-1'	65-SB11-00 04/08/95 0-1'
SEMIVOLATILES (ug/kg) cont.						
DIBENZOFURAN	410 U	420 U	350 U	370 U	380 U	390 U
2,4-DINITROTOLUENE	410 U	420 U	350 U	370 U	380 U	390 U
DIETHYL PHTHALATE	410 U	420 U	350 U	370 U	380 U	390 U
4-CHLOROPHENYLPHENYL ETHER	410 U	420 U	350 U	370 U	380 U	390 U
FLUORENE	410 U	420 U	350 U	370 U	380 U	390 U
4-NITROANILINE	1000 U	1000 U	850 U	900 U	930 U	950 U
4,6-DINITRO-2-METHYLPHENOL	1000 U	1000 U	850 U	900 U	930 U	950 U
N-NITROSODIPHENYLAMINE	410 U	420 U	350 U	370 U	380 U	390 U
4-BROMOPHENYL PHENYL ETHER	410 U	420 U	350 U	370 U	380 U	390 U
HEXACHLOROBENZENE	410 U	420 U	350 U	370 U	380 _. U	390 U
PENTACHLOROPHENOL	1000 U	1000 U	850 U	900 U	930 U	950 U
PHENANTHRENE	74 J	420 U	350 U	370 U	380 U	390 U
ANTHRACENE	410 U	420 U	350 U	370 U	380 U	390 U
CARBAZOLE	410 U	420 U	350 U	370 U	380 U	390 U
DI-N-BUTYL PHTHALATE	390 J	420 U	260 J	370 U	380 U	390 U
FLUORANTHENE	210 J	420 U	350 U	370 U	380 U	390 U
PYRENE	150 J	420 U	350 U	370 U	380 U	390 U
BUTYL BENZYL PHTHALATE	410 U	420 U	350 U	370 U	380 U	390 U
3.3'-DICHLOROBENZIDINE	410 U	420 U	350 U	370 U	380. U	390 U
BENZO(A)ANTHRACENE	110 J	420 U	350 U	370 U	380 U	390 U
CHRYSENE	· 110 J	420 U	350 U	370 U	380 U	390 U
BIS(2-ETHYLHEXYL)PHTHALATE	72 J	73 J	350 U	57 J	48 J	74 J
DI-N-OCTYL PHTHALATE	410 U	420 U	350 U	370 U	380 U	390 U
BENZO(B)FLUORANTHENE	96 J	420 U	350 U	370 U	380 U	390 U
BENZO(K)FLUORANTHENE	120 J	420 U	350 U	370 U	380 U	390 U
BENZO(A)PYRENE	100 J	420 U	350 U	370 U	380 U	390 U
INDENO(1,2,3-CD)PYRENE	88 J	420 U	350 U	370 U	380 U	390 U
DIBENZO(A,H)ANTHRACENE	45 J	420 U	350 U	370 U	380 U	390 U
BENZO(G,H,I)PERYLENE	70 J	420 U	350 U	370 U	380 U	390 U

LOCATION DATE COLLECTED DEPTH	65-SB12-00 04/17/95 0-1'
DATE COLLECTED	
2-METHYLNAPHTHALENE HEXACHLOROCYCLOPENTADIENE 2,4,6-TRICHLOROPHENOL	360 U 360 U 360 U
2,4,5-TRICHLOROPHENOL 2-CHLORONAPHTHALENE 2-NITROANILINE DIMETHYL PHTHALATE	870 U 360 U 870 U 360 U
ACENAPHTHYLENE 2,6-DINITROTOLUENE 3-NITROANILINE ACENAPHTHENE 2,4-DINITROPHENOL 4-NITROPHENOL	360 U 360 U 870 U 360 U 870 U 870 U

5

LOCATION DATE COLLECTED DEPTH	65-SB12-00 04/17/95 0-1'
DATE COLLECTED	04/17/95
DI-N-OCTYL PHTHALATE BENZO(B)FLUORANTHENE BENZO(K)FLUORANTHENE BENZO(A)PYRENE INDENO(1,2,3-CD)PYRENE DIBENZO(A,H)ANTHRACENE BENZO(G,H,I)PERYLENE	89 J 360 U 360 U 360 U 360 U 360 U

10/23/95 650 SSV.WK4

LOCATION DATE COLLECTED DEPTH	MINIMUM NONDETECTED	MAXIMUM NONDETECTED	MINIMUM DETECTED	MAXIMUM DETECTED	LOCATION OF MAXIMUM DETECTED	FREQUENCY OF DETECTION
SEMIVOLATILES (ug/kg)						
PHENOL	350 U	420 U	ND	ND		0/13
BIS(2-CHLOROETHYL)ETHER	350 U	420 U	ND	ND		0/13
2-CHLOROPHENOL	350 U	420 U	ND	ND		0/13
1,3-DICHLOROBENZENE	350 U	420 U	ND	ND		0/13
1,4-DICHLOROBENZENE	350 U	420 U	ND	ND		0/13
1,2-DICHLOROBENZENE	350 U	420 U	ND .	ND		0/13
2-METHYLPHENOL	350 U	420 U	ND	ND		0/13
2,2'-OXYBIS(1-CHLOROPROPANE)	350 U	420 U	ND	ND		0/13
4-METHYLPHENOL	350 U	420 U	ND	ND		0/13
N-NITROSO-DI-N-PROPYLAMINE	350 U	420 U	ND	ND		0/13
HEXACHLOROETHANE	350 U	420 U	ND	ND		0/13
NITROBENZENE	350 U	420 U	ND	ND		0/13
ISOPHORONE	350 U	420 U	ND	ND		0/13
2-NITROPHENOL	350 U	420 U	ND	ND		0/13
2,4-DIMETHYLPHENOL	350 U	420 U	ND	ND		0/13
BIS(2-CHLOROETHOXY)METHANE	350 U	420 U	ND	ND		0/13
2,4-DICHLOROPHENOL	350 U	420 U	ND	ND		0/13
1,2,4-TRICHLOROBENZENE	350 U	420 U	ND	ND		0/13
NAPHTHALENE	350 U	420 U	ND	ND		0/13
4-CHLOROANILINE	350 U	420 U	ND	ND		0/13
HEXACHLOROBUTADIENE	350 U	420 U	ND	ND		0/13
4-CHLORO-3-METHYLPHENOL	350 U	420 U	ND	ND		0/13
2-METHYLNAPHTHALENE	350 U	420 U	ND	ND		0/13
HEXACHLOROCYCLOPENTADIENE	350 U	420 U	ND	ND		0/13
2,4,6-TRICHLOROPHENOL	350 U	420 U	ND	ND		0/13
2,4,5-TRICHLOROPHENOL	850 U	1000 U	ND	ND		0/13
2-CHLORONAPHTHALENE	350 U	420 U	ND	ND		0/13
2-NITROANILINE	850 U	1000 U	ND .	ND		0/13
DIMETHYL PHTHALATE	350 U	420 U	ND	ND		0/13
ACENAPHTHYLENE	350 U	420 U	ND	ND		0/13
2,6-DINITROTOLUENE	350 U	420 U	ND	ND		0/13
3-NITROANILINE	850 U	1000 U	ND	ND		0/13
ACENAPHTHENE	350 U	420 U	130 J	130 J	65-DW01-00	1/13
2,4-DINITROPHENOL	850 UJ	1000 UJ	150 J	150 J	65-DW04-00	1/13
4-NITROPHENOL	850 U	1000 U	ND	ND		0/13

10/23/95 65SSSV.WK4

LOCATION DATE COLLECTED DEPTH	MINIMUM NONDETECTED	MAXIMUM NONDETECTED	MINIMUM DETECTED	MAXIMUM DETECTED	LOCATION OF MAXIMUM DETECTED	FREQUENCY OF DETECTION
DEI III	MONDE: LOTED	1101152120125	52.20.25			
SEMIVOLATILES (ug/kg) cont.						
DIBENZOFURAN	350 U	420 U	58 J	58 J	65-DW01-00	1/13
2.4-DINITROTOLUENE	350 U	420 U	ND	ND		0/13
DIETHYL PHTHALATE	350 U	420 U	ND	ND		0/13
4-CHLOROPHENYLPHENYL ETHER	350 U	420 U	ND	ND		0/13
FLUORENE	350 U	420 U	100 J	100 J	65-DW01-00	1/13
4-NITROANILINE	850 U	1000 U	ND	ND		0/13
4.6-DINITRO-2-METHYLPHENOL	850 U	1000 U	ND	ND		0/13
N-NITROSODIPHENYLAMINE	350 U	420 U	ND	ND		0/13
4-BROMOPHENYL PHENYL ETHER	350 U	420 U	ND	ND		0/13
HEXACHLOROBENZENE	350 U	420 U	ND	ND		0/13
PENTACHLOROPHENOL	850 U	1000 U	ND	ND		0/13
PHENANTHRENE	350 U	420 U	59 J	860	65-DW01-00	3/13
ANTHRACENE	350 U	420 U	190 J	190 J	65-DW01-00	1/13
CARBAZOLE	350 U	420 U	180 J	180 J	65-DW01-00	1/13
DI-N-BUTYL PHTHALATE	360 U	420 U	260 J	390 J	65-SB06-00	2/13
FLUORANTHENE	350 U	420 U	130 J	830	65-DW01-00	3/13
PYRENE	350 U	420 U	150 J	850	65-DW01-00	3/13
BUTYL BENZYL PHTHALATE	350 U	420 U	ND	ND		0/13
3.3'-DICHLOROBENZIDINE	350 U	420 U	ND	ND		0/13
BENZO(A)ANTHRACENE	350 U	420 U	76 J	510	65-DW01-00	3/13
CHRYSENE	350 U	420 U	70 J	470	65-DW01-00	3/13
BIS(2-ETHYLHEXYL)PHTHALATE	350 U	. 360 U	48 J	87 J	65-MW06A-00	9/13
DI-N-OCTYL PHTHALATE	350 U	420 U	ND	ND		0/13
BENZO(B)FLUORANTHENE	350 U	420 U	89 J	360 J	65-DW01-00	3/13
BENZO(K)FLUORANTHENE	350 U	420 U	120 J	510	65-DW01-00	2/13
BENZO(A)PYRENE	350 U	420 U	100 J	400	65-DW01-00	2/13
INDENO(1,2,3-CD)PYRENE	350 U	420 U	88 J	310 J	65-DW01-00	2/13
DIBENZO(A,H)ANTHRACENE	350 U	420 U	45 J	150 J	65-DW01-00	2/13
BENZO(G,H,I)PERYLENE	350 U	420 U	70 J	250 J	65-DW01-00	2/13

LOCATION DATE COLLECTED	65-DW01-00 04/10/95	65-DW02-00 04/09/95	65-DW04-00 04/05/95	65-MW05A-00 04/05/95	65-MW06A-00 04/08/95	65-MW07A-00 04/04/95
DEPTH	0-1'	0-1'	N/A	N/A	0-1'	N/A
PESTICIDE/PCBS (ug/kg)						
ALPHA-BHC	1.9 U	1.8 U	1,9 U	1.8 U	1.9 U	1.9 U
BETA-BHC	1.9 U	1.8 U	1.9 U	1.8 U	1.9 U	1.9 U
DELTA-BHC	1.9 U	1.8 U	1.9 U	1.8 U	1.9 U	1.9 U
GAMMA-BHC(LINDANE)	1.9 U	1.8 U	1.9 U	1.8 U	1.9 U	1.9 U
HEPTACHLOR	1.9 U	1.8 U	1.9 U	1.8 U	1.9 U	1.9 U
ALDRIN	1.9 U	1.8 U	1.9 U	1.8 U	1.9 U	1.9 U
HEPTACHLOR EPOXIDE	1.9 U	1.8 U	1.9 U	1.8 U	1.9 U	2.3
ENDOSULFAN I	1.9 U	1.8 U	1.9 U	1.8 U	1.9 U	1.9 U
DIELDRIN	3.7 U	3.5 U	3.6 U	3.6 U	3.8 U	3.7 U
4,4'-DDE	27	3.5 U	3.6 U	3.6 U	3.8 U	83 J
ENDRIN	3.7 U	3.5 U	3.6 U	3.6 U	3.8 U	3.7 U
ENDOSULFAN II	3.7 U	3.9 NJ	3.6 U	3.8 NJ	3.8 U	3.7 U
4,4'-DDD	3.8 NJ	3.5 UJ	3.6 UJ	3.6 U	3.8 UJ	5 NJ
ENDOSULFAN SULFATE	3.7 U	3.5 U	3.6 U	3.6 U	3.8 U	3.7 U
4,4'-DDT	20 U	3.5 U	3.6 U	3.6 U	3.8 U	56 J
METHOXYCHLOR	19 U	18 U	19 U	18 U	19 U	19 U
ENDRIN KETONE	3.7 U	3.5 U	3.6 U	3.6 U	3.8 U	3.7 U
ENDRIN ALDEHYDE	3.7 U	3.5 U	3.6 U	3.6 U	3.8 U	3.7 U
ALPHA CHLORDANE	1.9 U	1.8 U	1.9 U	1.8 U	1.9 U	1.9 U
GAMMA CHLORDANE	1.9 U	1.8 U	1.9 U	1.8 U	1.9 U	1.9 U
TOXAPHENE	190 U	180 U	190 U	180 U	190 U	190 U
PCB-1016	37 U	35 U	36 U	36 U	38 U	37 U
PCB-1221	74 U	72 U	73 U	72 U	77 U	75 U
PCB-1232	37 U	35 U	36 U	36 U	38 U	37 U
PCB-1242	37 U	35 U	36 U	. 36 U	38 U	37 U
PCB-1248	37 U	35 U	36 U	36 U	38 U	37 U
PCB-1254	37 U	35 U	36 U	36 U	38 U	37 U
PCB-1260	52 J	35 U	36 U	36 U	38 U	37 U

LOCATION DATE COLLECTED DEPTH	65-SB06-00 04/10/95 0-1'	65-SB07-00 04/08/95 0-1'	65-SB08-00 04/11/95 0-1'	65-SB09-00 04/08/95 0-1'	65-SB10-00 04/08/95 0-1'	65-SB11-00 04/08/95 0-1'
PESTICIDE/PCBS (ug/kg)						
ALPHA-BHC	2.1 U	2.2 U	1.8 U	1.9 U	1.9 U	2 U
BETA-BHC	2.1 U	2.2 U	1.8 U	1.9 U	1.9 U	2 U
DELTA-BHC	2.1 U	2.2 U	1.8 U	1.9 U	1.9 U	2 U
GAMMA-BHC(LINDANE)	2.1 U	2.2 U	1.8 U	1.9 U	1.9 U	2 U
HEPTACHLOR	2.1 U	2.2 U	1.8 U	1.9 U	1.9 U	2 U
ALDRIN	2.1 U	2.2 U	1.8 U	1.9 U	1.9 U	2 U
HEPTACHLOR EPOXIDE	2.1 U	2.2 U	1.8 U	1.9 U	1,9 U	2 U
ENDOSULFAN I	2.1 U	2.2 U	1.8 U	1.9 U	1.9 U	2 U
DIELDRIN	4.1 U	4.2 U	3.5 U	3.7 U	3.7 U	3.9 U
4,4'-DDE	47	77 J	3.5 U	3.7 U	3.7 U	4.3
ENDRIN	4.1 U	4.2 U	3.5 U	3.7 U	3.7 U	3.9 U
ENDOSULFAN II	4.1 U	4.2 U	3.5 U	3.7 U	3.7 U	3,9 U
4,4'-DDD	17 J	4.2 UJ	3.5 UJ	31 J	59 J	16 J
ENDOSULFAN SULFATE	4.1 U	4.2 U	3.5 U	3.7 U	3.7 U	3.9 U
4,4'-DDT	23 U	56 J	3.5 U	5.3 U	3.7 U	3.9 U
METHOXYCHLOR	21 U	22 U	18 U	19 U	19 U	20 U
ENDRIN KETONE	4.1 U	4,2 U	3.5 U	3.7 U	3.7 U	3,9 U
ENDRIN ALDEHYDE	4.1 U	4.2 U	3.5 U	3.7 U	3.7 U	3.9 U
ALPHA CHLORDANE	2.1 U	2.2 U	1.8 U	1.9 U	1.9 U	2 U
GAMMA CHLORDANE	2.1 U	2.2 U	1.8 U	1.9 U	1.9 U	2 U
TOXAPHENE	210 U	220 U	180 U	190 U	190 U	200 U
PCB-1016	41 U	42 U	35 U	37 U	37 U	39 U
PCB-1221	82 U	85 U	72 U	76 U	76 U	80 U
PCB-1232	41 U	42 U	35 U	37 U	37 U	39 U
PCB-1242	41 U	42 U	35 U	37 U	37 U	39 U
PCB-1248	41 U	42 U	35 U	37 U	37 U	39 U
PCB-1254	41 U	42 U	35 U	37 U	37 U	39 U
PCB-1260	41 U	42 U	35 U	37 U	37 U	39 U

LOCATION	65-SB12-00
DATE COLLECTED	04/17/95
DEPTH	0-1'
PESTICIDE/PCBS (ug/kg) ALPHA-BHC BETA-BHC DELTA-BHC GAMMA-BHC(LINDANE) HEPTACHLOR ALDRIN HEPTACHLOR EPOXIDE ENDOSULFAN I DIELDRIN 4,4'-DDE ENDRIN ENDOSULFAN II 4,4'-DDD ENDOSULFAN SULFATE 4,4'-DDT METHOXYCHLOR ENDRIN KETONE ENDRIN ALDEHYDE ALPHA CHLORDANE TOXAPHENE PCB-1016 PCB-1221 PCB-1232 PCB-1242 PCB-1248	1.9 U 1.9 U 1.9 U 1.9 U 1.9 U 1.9 U 3.6 U 3.6 U 20 J 3.6 U 25 19 U 3.6 U 1.9 U 1.9 U 1.9 U 1.9 U 1.9 U 3.6 U 3.6 U 3.6 U
PCB-1254	36 U
PCB-1260	36 U

LOCATION DATE COLLECTED DEPTH	MINIMUM NONDETECTED	MAXIMUM NONDETECTED	MINIMUM DETECTED	MAXIMUM DETECTED	LOCATION OF MAXIMUM DETECTED	FREQUENCY OF DETECTION
PESTICIDE/PCBS (ug/kg)						
ALPHA-BHC	1.8 U	2.2 U	ND	ND		0/13
BETA-BHC	1.8 U	2.2 U	ND	ND		0/13
DELTA-BHC	1.8 U	2.2 U	ND	ND		0/13
GAMMA-BHC(LINDANE)	1.8 U	2.2 U	ND	ND		0/13
HEPTACHLOR	1.8 U	2.2 U	ND	ND		0/13
ALDRIN	1.8 U	2.2 U	ND	ND		0/13
HEPTACHLOR EPOXIDE	1.8 U	2.2 U	2.3	2.3	65-MVV07A-00	1/13
ENDOSULFAN I	1.8 U	2.2 U	ND	ND		0/13
DIELDRIN	3.5 U	4.2 U	ND ND	ND		0/13
4,4'-DDE	3.5 U	3.8 U	4.3	83 J	65-MW07A-00	6/13
ENDRIN	3.5 U	4.2 U	ND	ND		0/13
ENDOSULFAN II	3.5 U	4.2 U	3.8 NJ	3.9 NJ	65-DW02-00	2/13
4,4'-DDD	3.5 UJ	4.2 UJ	3.8 NJ	59 J	65-SB10-00	7/13
ENDOSULFAN SULFATE	3.5 U	4.2 U	ND .	ND		0/13
4,4'-DDT	3.5 U	23 U	25	56 J	65-SB07-00	3/13
METHOXYCHLOR	18 U	22 U	ND	ND		0/13
ENDRIN KETONE	3.5 U	4.2 Ü	ND	ND .		0/13
ENDRIN ALDEHYDE	3.5 U	4.2 U	ND	ND		0/13
ALPHA CHLORDANE	1.8 U	2.2 U	ND	ND		0/13
GAMMA CHLORDANE	1.8 U	2.2 U	ND	ND		0/13
TOXAPHENE	180 U	220 U	ND	ND		0/13
PCB-1016	35 U	42 U	ND	ND		0/13
PCB-1221	72 U	85 U	ND	ND		0/13
PCB-1232	35 U	42 U	ND	ND		0/13
PCB-1242	35 U	42 U	ND	ND		0/13
PCB-1248	35 U	42 U	ND	ND		0/13
PCB-1254	35 U	42 U	ND	ND		0/13
PCB-1260	35 U	42 U	52 J	52 J	65-DW01-00	1/13

APPENDIX O.2 SURFACE SOIL METALS

LOCATION DATE_STAMP	65-DW01-00 04/10/95	65-DW02-00 04/09/95	65-DW04-00 04/05/95	65-MVV05A-00 04/05/95	65-MW06A-00 04/08/95	65-MW07A-00 04/04/95
DEPTH	0-1'	0-1'	0-1'	0-1'	0-1'	0-1'
MOISTURE	10.74	9.43	10.17	10.34	15.45	11.66
ANALYTES (mg/kg)						
ALUMINUM	5040	1350	773	1050	3190	1520
ANTIMONY	11.2 U	11 U	11.1 U	11.1 U	11.8 U	11.3 U
ARSENIC	2.2 U	2.2 U	2.2 U	2.2 U	2.4 U	2.3 U
BARIUM	36.3	5.4	6.9	6.2	6.8	19.2
BERYLLIUM	0.22 U	0.22 U	0.22 U	0.22 U	0.24 U	0.23 U
CADMIUM	1.1 U	1.1 U	1.1 U	1.1 U	1.2 U	1.1 U
CALCIUM	806	176	79.3	243	367	3460
CHROMIUM	8.6	2.3	2.2 U	2.4	4.1	2.3
COBALT	4.5 UJ	4.4 UJ	8.3 U	8.2 U	4.7 UJ	4.5 U
COPPER	55.6	2.5	2.2 U	2.2 U	3.3	2.3 U
IRON	7470 J	773 J	509	1020	1300 J	684
LEAD	178 J	7.7 J	2	3.7	7.3 J	8.6
MAGNESIUM	169	32.4	30.3	42.8	88.1	82.5
MANGANESE	163 J	7.9 J	9.6	8.2	8 J	7.1
MERCURY	0.11 U	0.11 U	0.11 U	0.11 U	0.12 U	0.11 U
NICKEL	4.6	4.4 U	4.5 U	4.5 U	4.7 U	4.5 U
POTASSIUM	224 U	221 U	223 U	223 U	236 U	227 U
SELENIUM	1.1 U	1.1 U	1.1 U	1.1 U	1:2 U	1.1 U
SILVER	1.1 U	1.1 U	1.1 U	1.1 U	1.2 U	1.1 U
SODIUM	51.3	44.2 U	44.5 U	44.6 U	47.3 U	56.3
THALLIUM	2.2 U	2.2 U	2.2 U	2.2 U	2.4 U	2.3 U
VANADIUM	12	2.2 U	2.2 U	2.8	3.4	2.3 U
ZINC	377 J	12.2 J	7.8 U	5.3	13.8 J	9.1 U

LOCATION	65-SB06-00 04/10/95	65-SB07-00 04/08/95	65-SB08-00 04/11/95	65-SB09-00 04/08/95	65-SB10-00 04/08/95	65-SB11-00 04/08/95
DATE_STAMP	04/10/95	04/06/95	04/11/95 0-1'	0-1'	0-1'	0-1'
DEPTH				11.86	13.86	18.31
MOISTURE	19.19	23.14	7.48	11,00	13.00	10.31
ANALYTES (mg/kg)						
ALUMINUM	2140	1490	656	2830	4700	4110
ANTIMONY	12.4 U	13 U	10.8 U	11.4 U	11.6 U	12.2 U
ARSENIC	2.5 U	2.6 U	2.2 U	2.3 U	2.3 U	2.4 U
BARIUM	17.5	6.8	2.7	10.9	11.5	9.9
BERYLLIUM	0.25 U	0.26 U	0.22 U	0,23 U	0.23 U	0.24 U
CADMIUM	1.2 U	1.3 U	1.1 U	1.1 U	1.2 U	1.2 U
CALCIUM	542	168	121	554	514	470
CHROMIUM	4.6	3	2.2 U	4.6	6.8	6.3
COBALT	5 UJ	5.2 UJ	4.3 UJ	4.5 UJ	4.6 UJ	4.9 UJ
COPPER	51	6	2.2 U	15	10	9
IRON	3600	890 J	597	2110 J	2010 J	2050 J
LEAD	94.5	8.8 J	2.5	40.9 J	20.4 J	15.4 J
MAGNESIUM	55	52	28.5	97.1	187	143
MANGANESE	119	6.9 J	2.9	19.1	19.3 J	17,6 J
MERCURY	0.12 U	0.13 U	0.11 U	0.11 U	0.12 U	0.12 U
NICKEL	5 U	5.2 U	4.3 U	4.5 U	4.6 U	4,9 U
POTASSIUM	248 U	260 U	216 U	227 U	232 U	248
SELENIUM	1.2 U	1.3 U	1.1 U	1.1 U	1.2 U	1.2 U
SILVER	1.2 U	1.3 U	1.1 U	1.1 U	1.2 U	1.2 U
SODIUM	49.5 U	52 U	43.2 U	45.4 U	46.5 U	49 U
THALLIUM	2.5 U	2.6 U	2.2 U	2.3 U	2.3	2.4 U
VANADIUM	7.2	2.9	2.2 U	3.2	5.1	4.8
ZINC	190	9 J	3.7	39.7 J	33.2 J	24 J

LOCATION DATE_STAMP DEPTH MOISTURE	65-SB12-00 04/17/95 0-1' 9.13
ANALYTES (mg/kg)	0.10
ALUMINUM	2940
ANTIMONY	2940 11 U
ARSENIC	
BARIUM	2.2 U 12.6
BERYLLIUM	
CADMIUM	0.22 U 1.1 U
CALCIUM	729
CHROMIUM	729 4.8
COBALT	4.6 4.4 U
COPPER	42.3
IRON	16400
LEAD	117
MAGNESIUM	54.8
MANGANESE	75.4
MERCURY	0.11 U
NICKEL	5.7
POTASSIUM	220 U
SELENIUM	1.1 U
SILVER	1.1 U
SODIUM	44 U
THALLIUM	2.2 U
VANADIUM	5.1
ZINC	110

LOCATION DATE_STAMP DEPTH MOISTURE	MINIMUM NONDETECTED	MAXIMUM NONDETECTED	MINIMUM DETECTED	MAXIMUM DETECTED	LOCATION OF MAXIMUM DETECTED	FREQUENCY OF DETECTION
ANALYTES (mg/kg)						
ALUMINUM	NA	NA	656	5040	65-DW01-00	13/13
ANTIMONY	10.8 U	13 U	ND	ND		0/13
ARSENIC	2.2 U	2.6 U	ND	ND		0/13
BARIUM	NA	NA	2.7	36.3	65-DW01-00	13/13
BERYLLIUM	0.22 U	0.26 U	ND	ND		0/13
CADMIUM	1.1 U	1.3 U	ND	ND		0/13
CALCIUM	NA	NA	79.3	3460	65-MW07A-00	13/13
CHROMIUM	2.2 U	2.2 U	2.3	8.6	65-DW01-00	11/13
COBALT	4.3 UJ	8.3 U	ND	ND		0/13
COPPER	2.2 U	2.3 U	2.5	55.6	65-DW01-00	9/13
IRON	NA	NA	509	16400	65-SB12-00	13/13
LEAD	NA	NA	2	178 J	65-DW01-00	13/13
MAGNESIUM	NA	NA	28.5	187	65-SB10-00	13/13
MANGANESE	NA	NA NA	2.9	163 J	65-DW01-00	13/13
MERCURY	0.11 U	0.13 U	ND	· ND		0/13
NICKEL	4.3 U	5.2 U	4.6	5.7	65-SB12-00	2/13
POTASSIUM	216 U	260 U	248	248	65-SB11-00	1/13
SELENIUM	1.1 Ü	1.3 U	ND	ND		0/13
SILVER	1.1 U	1.3 U	ND	ND		0/13
SODIUM	43.2 U	52 U	51.3	56.3	65-MW07A-00	2/13
THALLIUM	2.2 U	2.6 U	2.3	2.3	65-SB10-00	1/13
VANADIUM	2.2 U	2.3 U	2.8	12	65-DW01-00	9/13
ZINC	7.8 U	9.1 U	3.7	377 J	65-DW01-00	11/13

APPENDIX 0.3 SUBSURFACE SOIL ORGANICS

LOCATION DATE COLLECTED DEPTH	65-DW01-04 04/10/95 7-9'	65-DW02-02 04/09/95 3-5'	65-DW04-05 04/05/95 9-11'	65-MW05A-04 04/05/95 7-9'	65-MW06A-03 04/08/95 5-7'	65-MW07A-05 04/04/95 9-11'
VOLATILES (ug/kg)						
CHLOROMETHANE	11 U	12 U	11 U	12 U	11 U	12 U
BROMOMETHANE	11 U	12 U	11 U	12 U	11 U	12 U
VINYL CHLORIDE	11 U	12 U	11 U	12 U	11 U	12 U
CHLOROETHANE	11 U	12 U	11 U	12 U	11 U	12 U
METHYLENE CHLORIDE	11 U	12 U	11 U	12 U	11 U	12 U·
ACETONE	18 U	380	180	10 J	11 U	12 U
CARBON DISULFIDE	11 U	12 U	11 U	12 U	11 U	12 U
1,1-DICHLOROETHENE	11 U	12 U	11 U	12 U	11 U	12 U
1,1-DICHLOROETHANE	11 U	12 U	11 U	12 U	11 U	12 U
1,2-DICHLOROETHENE	11 U	12 U	11 U	12 U	11 U	12 U
CHLOROFORM	11 U	12 U	11 U	12 U	11 U	12 U
1,2-DICHLOROETHANE	11 U	12 U	11 U	12 U	11 U	12 U
2-BUTANONE	11 U	12 U	11 U	12 U	11 U	12 U
1,1,1-TRICHLOROETHANE	11 U	12 U	11 U	12 U	11 U	12 U
CARBON TETRACHLORIDE	11 U	12 U	11 U	12 U	11 U	12 U
BROMODICHLOROMETHANE	11 U	12 U	11 U	12 U	11 U	12 U
1,2-DICHLOROPROPANE	11 U	12 U	11 U	12 U	11 U	12 U
CIS-1,3-DICHLOROPROPENE	11 U	12 U	11 U	12 U	11 U	12 U
TRICHLOROETHENE	11 U	12 U	11 U	12 U	11 U	12 U
DIBROMOCHLOROMETHANE	11 U	12 U	11 U	12 U	11 U	12 U
1,1,2-TRICHLOROETHANE	11 U	12 U	11 U	12 U	11 U	12 U
BENZENE	11 U	12 U	11 U	12 U	11 U	12 U
TRANS-1,3-DICHLOROPROPENE	11 U	12 U	11 U	12 U	11 U	12 U
BROMOFORM	11 U	12 U	11 U	12 U	11 U	12 U
4-METHYL-2-PENTANONE	11 U	12 U	111 U	12 U	11 U	12 U
2-HEXANONE	11 U	12 U	44 U	12 U	11 U	12 U
TETRACHLOROETHENE	11 U	12 U	11 U	12 U	11 U	12 U
1,1,2,2-TETRACHLOROETHANE	11 U	12 U	11 U	12 U	11 U	12 U
TOLUENE	11 U	12 U	11 U	12 U	11 U	12 U
CHLOROBENZENE	11 U	12 U	11 U	12 U	11 U	12 U
ETHYLBENZENE	11 U	12 U	11 U	12 U	11 U	12 U
STYRENE	11 U	12 U	11 U	12 U	11 U	12 U
TOTAL XYLENES	3 J	1 J	11 U	12 U	1 J	12 U

LOCATION DATE COLLECTED DEPTH	65-SB06-02 04/10/95 3-5'	65-SB07-04 04/08/95 7-9'	65-SB08-04 04/11/95 7-9'	65-SB09-02 04/08/95 3-5'	65-SB10-01 04/08/95 1-3'	65-SB11-04 04/08/95 7-9'
VOLATILES (ug/kg)						
CHLOROMETHANE	12 U	14 U	12 U	11 U	11 U	12 U
BROMOMETHANE	12 U	14 U	12 U	11 U	11 U	12 U
VINYL CHLORIDE	12 U	14 U	12 U	11 U	11 U	12 U
CHLOROETHANE	12 U	14 U	12 U	11 U	11 U	12 U
METHYLENE CHLORIDE	12 U	14 U	12 U	11 U	11 U	12 U
ACETONE	21 U	79	12 U	31	26	37
CARBON DISULFIDE	12 U	14 U	12 U	11 U	11 U	12 U
1,1-DICHLOROETHENE	12 U	14 U	12 U	11 U	11 U	12 U
1.1-DICHLOROETHANE	12 U	14 U	12 U	11 Ü	11 U	12 U
1.2-DICHLOROETHENE	12 U	14 U	12 U	11 U	11 U	12 U
CHLOROFORM	12 U	14 U	12 U	11 U	11 Ū	12 U
1,2-DICHLOROETHANE	12 U	14 U	12 U	11 U	11 Ŭ	12 U
2-BUTANONE	12 U	14 U	12 U	4 J	2 J	12 U
1,1,1-TRICHLOROETHANE	12 U	14 U	12 U	11 U	11 U	12 U
CARBON TETRACHLORIDE	12 U	14 U	12 U	11 U	. 11 U	12 U
BROMODICHLOROMETHANE	12 U	14 U	12 U	11 · U	11 U	12 U
1,2-DICHLOROPROPANE	12 U	14 U	12 U	11 Ü	11 U	12 U
CIS-1,3-DICHLOROPROPENE	12 U	14 U	12 U	11 U	11 U	12 U
TRICHLOROETHENE	12 U	2 J	12 U	11 Ū	11 U	12 U
DIBROMOCHLOROMETHANE	12 U	14 U	12 U	11 U	11 U	12 U
1,1,2-TRICHLOROETHANE	12 U	14 U	12 U	11 U	11 U	12 U
BENZENE	12 U	14 U	12 U	11 U	11 U	12 U
TRANS-1,3-DICHLOROPROPENE	12 U	14 U	12 U	11 U	11 U	12 U
BROMOFORM	12 U	14 U	12 U	11 U	11 U	12 U
4-METHYL-2-PENTANONE	12 U	14 U	12 U	11 U	11 U	12 U
2-HEXANONE	12 U	14 U	12 U	11 U	11 U	12 U
TETRACHLOROETHENE	12 U	14 U	12 U	11 U	11 U	12 U
1,1,2,2-TETRACHLOROETHANE	12 U	14 U	12 U	11 U	11 U	12 U
TOLUENE	12 U	14 U	12 U	11 U	11 U	1 J
CHLOROBENZENE	12 U	14 U	12 U	11 U	11 U	12 U
ETHYLBENZENE	12 U	14 U	12 U	11 U	11 U	12 U
STYRENE	12 U	14 U	12 U	11 U	11 U	12 U
TOTAL XYLENES	12 U	14 U	12 U	2 J	3 J	12 U

LOCATION DATE COLLECTED DEPTH	65-SB12-05 04/17/95 9-11'	65-TP01 05/07/95	65-TP02 05/08/95	65-TP04 05/07/95	65-TP05 05/07/95	65-TP06 05/08/95
	• • • • • • • • • • • • • • • • • • • •					
VOLATILES (ug/kg)						
CHLOROMETHANE	11 U	12 U	11 U	11 U	14 U	11 U
BROMOMETHANE	11 U	12 U	11 U	11 U	14 U	11 U
VINYL CHLORIDE	11 U	12 U	11 U	11 U	14 U	11 U
CHLOROETHANE	11 U	12 U	11 U	11 U	14 U	11 U
METHYLENE CHLORIDE	11 U	12 U	11 U	11 U	14 U	11 U
ACETONE	11 U	12	46	25	210	9 J
CARBON DISULFIDE	11 U	12 U	11 U	2 J	14 U	11 U
1,1-DICHLOROETHENE	11 U	12 U	11 U	11 U	14 U	11 U
1,1-DICHLOROETHANE	11 U	12 U	11 U	11 U	14 U	11 U
1,2-DICHLOROETHENE	11 U	12 U	11 U	11 U	14 U	11 U
CHLOROFORM	11 U	12 U	11 U	11 U	14 U	11 U
1,2-DICHLOROETHANE	11 U	12 U	11 U	11 U	14 U	11 U
2-BUTANONE	11 U	12 U	11 U	11 U	29	11 U
1,1,1-TRICHLOROETHANE	11 U	12 U	11 U	11 U	14 U	` 11 U
CARBON TETRACHLORIDE	11 U	12 U	11 U	11 U	14 U	11 U
BROMODICHLOROMETHANE	11 U	12 U	11 U	11 U	14 U	11 U
1,2-DICHLOROPROPANE	11 U	12 U	11 U	11 U	14 U	11 U
CIS-1,3-DICHLOROPROPENE	11 U	12 U	11 U	11 U	14 U	11 U
TRICHLOROETHENE	11 U	12 U	11 U	11 U	14 U	11 U
DIBROMOCHLOROMETHANE	11 U	12 U	11 U	11 U	14 U	11 U
1,1,2-TRICHLOROETHANE	11 U	12 U	11 U	11 U	14 U	11 U
BENZENE	11 U	12 U	11 U	11 U	14 U	11 U
TRANS-1,3-DICHLOROPROPENE	11 U	12 U	11 U	11 U	14 U	11 U
BROMOFORM	11 U	12 U	11 U	11 U	14 U	11 U
4-METHYL-2-PENTANONE	11 U	12 U	11 U	11 U	14 U	11 U
2-HEXANONE	11 U	12 U	11 U	11 U	14 U	11 U
TETRACHLOROETHENE	11 U	12 U	11 U	11 U	14 U	11 U
1,1,2,2-TETRACHLOROETHANE	11 U	12 U	11 U	11 U	14 U	. 11 U
TOLUENE	11 U	12 U	11 U	11 U	14 U	11 U
CHLOROBENZENE	11 U	12 U	11 U	11 U	14 U	11 U
ETHYLBENZENE	11 U	12 U	11 U	11 U	14 U	11 U
STYRENE	11 U	12 U	11 U	11 U	14 U	11 U
TOTAL XYLENES	11 U	12 U	11 U	11 U	14 U	11 U

VOLATILES (ug/kg) CHLOROMETHANE 11 UNIVERS	
CHLOROETHANE METHYLENE CHLORIDE ACETONE CARBON DISULFIDE 1,1-DICHLOROETHENE 1,1-DICHLOROETHANE 1,2-DICHLOROETHANE 1,2-DICHLOROETHANE 1,1,1-TRICHLOROETHANE 1,1,1-TRICHLOROETHANE 1,1,1-TRICHLOROETHANE CARBON TETRACHLORIDE BROMODICHLOROMETHANE 1,2-DICHLOROPROPANE 1,2-DICHLOROPROPANE 1,2-DICHLOROPROPENE TRICHLOROETHANE 1,1,2-TRICHLOROETHANE 1,1,2-TRICHLOROETHANE 1,1,2-TRICHLOROETHANE 1,1,2-TRICHLOROETHANE 1,1,2-TRICHLOROPROPENE TRANS-1,3-DICHLOROPROPENE TRANS-1,3-DICHLOROPROPENE 11 EBENZENE TRANS-1,3-DICHLOROPROPENE 11 EBENZENE TRANS-1,3-DICHLOROPROPENE 11 ETRANS-1,3-DICHLOROPROPENE TETRACHLOROETHANE 11 ETRACHLOROETHANE 11 ET	חממממממממחחחחחחחחחחחרחחח
CHLOROBENZENE 11 ETHYLBENZENE 11 ESTYRENE 11 TOTAL XYLENES 11 E	UUU

LOCATION DATE COLLECTED	MINIMUM	MAXIMUM	MINIMUM	MAXIMUM	LOCATION OF MAXIMUM	FREQUENCY OF
DEPTH	NONDETECTED	NONDETECTED	DETECTED	DETECTED	DETECTED	DETECTION
VOLATILES (ug/kg)						
CHLOROMETHANE	11 U	14 U	ND	ND		0/19
BROMOMETHANE	11 Ŭ	14 U	ND	ND		0/19
VINYL CHLORIDE	11 U	14 U	ND	ND		0/19
CHLOROETHANE	11 Ü	14 U	ND	ND		0/19
METHYLENE CHLORIDE	11 U	14 U	ND	ND		0/19
ACETONE	11 U	21 U	7 J	380	65-DW02-02	13/19
CARBON DISULFIDE	11 U	14 U	2 J	2 J	65-TP04	1/19
1,1-DICHLOROETHENE	11 U	14 U	ND	ND		0/19
1,1-DICHLOROETHANE	11 U	14 U	ND	ND		0/19
1,2-DICHLOROETHENE	11 U	14 U	ND	ND		0/19
CHLOROFORM	11 U	14 U	ND	ND		0/19
1,2-DICHLOROETHANE	11 U	14 U	ND	ND		0/19
2-BUTANONE	11 U	14 U	2 J	29	65-TP05	3/19
1,1,1-TRICHLOROETHANE	11 U	14 U	ND	ND		0/19
CARBON TETRACHLORIDE	11 U	14 U	ND	ND		0/19
BROMODICHLOROMETHANE	11 U	14 U	ND	ND		0/19
1,2-DICHLOROPROPANE	11 U	14 U	ND	ND		0/19
CIS-1,3-DICHLOROPROPENE	11 U	14 U	ND	ND		0/19
TRICHLOROETHENE DIBROMOCHLOROMETHANE	11 U 11 U	14 U 14 U	2 J	2 J	65-SB07-04	1/19
	11 U	14 U	ND	ND		0/19
1,1,2-TRICHLOROETHANE BENZENE	11 U	14 U	ND ND	ND		0/19
TRANS-1,3-DICHLOROPROPENE	11 U	14 U	ND ND	ND ND		0/19
BROMOFORM	11 U	14 U	ND ND	ND ND		0/19 0/19
4-METHYL-2-PENTANONE	11 U	111 U	ND	ND		0/19
2-HEXANONE	11 U	44 U	ND ND	ND ND		0/19
TETRACHLOROETHENE	11 Ŭ	14 U	ND	ND		0/19
1,1,2,2-TETRACHLOROETHANE	11 Ŭ	14 U	ND	ND		0/19
TOLUENE	11 U	14 U	1 J	1 J	65-SB11-04	1/19
CHLOROBENZENE	11 U	14 U	ND	ND	03-3511-04	0/19
ETHYLBENZENE	11 U	14 U	ND	ND		0/19
STYRENE	11 U	14 U	ND	ND		0/19
TOTAL XYLENES	11 U	14 U	1 J	3 1	65-SB10-01	5/19

10/23/95 65SBTPV.WK4

LOCATION	65-DW01-04	65-DW02-02 04/09/95	65-DW04-05	65-MW05A-04 04/05/95	65-MW06A-03 04/08/95	65-MW07A-05 04/04/95
DATE COLLECTED	04/10/95		04/05/95			
DEPTH	7-9'	3-5'	9-11'	7-9'	5-7'	9-11'
SEMIVOLATILES (ug/kg)						
PHENOL	370 U	380 U	340 U	370 U	360 U	380 U
BIS(2-CHLOROETHYL)ETHER	370 U	380 U	340 U	370 U	360 U	380 U
2-CHLOROPHENOL	370 U	380 U	340 U	370 U	360 U	380 U
1,3-DICHLOROBENZENE	370 U	380 U	340 U	370 U	360 U	380 U
1,4-DICHLOROBENZENE	370 U	380 U	340 U	370 U	360 U	380 U
1,2-DICHLOROBENZENE	370 U	380 U	340 U	370 U	360 U	380 U
2-METHYLPHENOL	370 U	380 U	340 U	370 U	360 U	380 U
2,2'-OXYBIS(1-CHLOROPROPANE)	370 U	380 U	340 U	370 U	360 U	380 U
4-METHYLPHENOL	370 U	380 U	340 U	370 U	360 U	380 U
N-NITROSO-DI-N-PROPYLAMINE	370 U	380 U	340 U	370 U	360 U	380 U
HEXACHLOROETHANE	370 U	380 U	340 U	370 U	360 U	380 U
NITROBENZENE	370 U	380 U	340 U	370 U	360 U	380 U
ISOPHORONE	370 U	380 U	340 U	370 U	360 U	380 U
2-NITROPHENOL	370 U	380 U	340 U	370 U	360 U	380 U
2,4-DIMETHYLPHENOL	370 U	380 U	340 U	370 U	360 U	380 U
BIS(2-CHLOROETHOXY)METHANE	370 U	380 U	340 U	370 U	360 U	380 U
2,4-DICHLOROPHENOL	370 U	380 U	340 U	370 U	360 U	380 U
1,2,4-TRICHLOROBENZENE	370 U	380 U	340 U	370 U	360 U	380 U
NAPHTHALENE	370 U	380 U	340 U	370 U	360 U	380 U
4-CHLOROANILINE	370 U	380 U	340 U	370 U	360 U	380 U
HEXACHLOROBUTADIENE	370 U	380 U	340 U	370 U	360 U	380 U
4-CHLORO-3-METHYLPHENOL	370 U	380 U	340 U	370 U	360 U	380 U
2-METHYLNAPHTHALENE	370 U	380 U	340 U	370 U	360 U	380 U
HEXACHLOROCYCLOPENTADIENE	370 UJ	380 UJ	340 U	370 U	360 U	380 U
2,4,6-TRICHLOROPHENOL	370 U	380 U	340 U	370 U	360 U	380 U
2,4,5-TRICHLOROPHENOL	900 U	930 U	830 U	910 U	880 U	930 U
2-CHLORONAPHTHALENE	370 U	380 U	340 U	370 U	360 U	380 U
2-NITROANILINE	900 U	930 U	830 U	910 U	880 U	930 U
DIMETHYL PHTHALATE	370 U	380 U	340 U	370 U	360 U	380 U
ACENAPHTHYLENE	370 U	380 U	340 U	370 U	360 U	380 U
2,6-DINITROTOLUENE	370 U	380 U	340 U	370 U	360 U	380 U
3-NITROANILINE	900 U	930 U	830 U	910 U	880 U	930 U
ACENAPHTHENE	370 U	380 U	340 U	370 U	360 U	380 U
2,4-DINITROPHENOL	900 U	930 U	830 U	910 U	880 U	930 U
4-NITROPHENOL	900 U	930 U	830 U	910 U	880 U	930 U

LOCATION DATE COLLECTED DEPTH	65-DW01-04 04/10/95 7-9'	65-DW02-02 04/09/95 3-5'	65-DW04-05 04/05/95 9-11'	65-MW05A-04 04/05/95 7-9'	65-MW06A-03 04/08/95 5-7'	65-MW07A-05 04/04/95 9-11'
<i>52.</i> 111	. •		011	, ,	0.7	V -11
SEMIVOLATILES (ug/kg) cont.						
DIBENZOFURAN	370 U	380 U	340 U	370 U	360 U	380 U
2,4-DINITROTOLUENE	370 U	380 U	340 U	370 U	360 U	380 U
DIETHYL PHTHALATE	370 U	380 U	340 U	370 U	360 U	380 U
4-CHLOROPHENYLPHENYL ETHER	370 U	380 U	340 U	370 U	360 U	380 U
FLUORENE	370 U	380 U	340 U	370 U	360 U	380 U
4-NITROANILINE	900 U	930 U	830 R	910 U	880 U	930 U
4,6-DINITRO-2-METHYLPHENOL	900 U	930 U	830 U	910 U	880 U	930 U
N-NITROSODIPHENYLAMINE	370 U	380 U	340 U	370 U	360 U	380 U
4-BROMOPHENYL PHENYL ETHER	370 U	380 U	340 U	370 U	360 U	380 U
HEXACHLOROBENZENE	370 U	380 U	340 U	370 U	360 U	380 U
PENTACHLOROPHENOL	900 U	930 U	830 U	910 U	880 U	930 U
PHENANTHRENE	370 U	380 U	340 U	370 U	360 U	380 U
ANTHRACENE	370 U	380 U	340 U	370 U	360 U	380 U
CARBAZOLE	370 U	380 U	340 U	370 U	360 U	380 U
DI-N-BUTYL PHTHALATE	370 U	380 U	340 U	370 U	360 U	380 U
FLUORANTHENE	370 U	380 U	340 U	370 U	360 U	380 U
PYRENE	370 U	380 U	340 U	370 U	360 U	380 U
BUTYL BENZYL PHTHALATE	370 U	380 U	340 U	370 U	360 U	380 U
3,3'-DICHLOROBENZIDINE	370 U	380 U	340 U	370 U	360 U	380 U
BENZO(A)ANTHRACENE	370 U	380 U	340 U	370 U	360 U	380 U
CHRYSENE	370 U	380 U	340 U	370 U	360 U	380 U
BIS(2-ETHYLHEXYL)PHTHALATE	370	65 J	340 U	96 J	49 J	61 J
DI-N-OCTYL PHTHÁLATE	370 U	380 U	340 U	370 U	360 U	380 U
BENZO(B)FLUORANTHENE	370 U	380 U	340 U	370 U	360 U	380 U
BENZO(K)FLUORANTHENE	370 U	380 U	340 U	370 U	360 U	380 U
BENZO(A)PYRENE	370 U	380 U	340 U	370 U	360 U	380 U
INDENO(1,2,3-CD)PYRENE	370 U	380 U	340 U	370 U	360 U	380 U
DIBENZO(A,H)ANTHRACENE	370 U	380 U	340 U	370 U	360 U	380 U
BENZO(G,H,I)PERYLENE	370 U	380 U	340 U	370 U	360 U	380 U

FREQUENCY OF DETECTION SUMMARY SUBSURFACE SOIL

SITE 65 - ENGINEER AREA DUMP REMEDIAL INVESTIGATION, CTO-0312 MCB, CAMP LEJUENE, NORTH CAROLINA TCL ORGANICS

LOCATION	65-SB06-02 04/10/95	65-SB07-04 04/08/95	65-SB08-04 04/11/95	65-SB09-02	65-SB10-01	65-SB11-04
DATE COLLECTED				04/08/95	04/08/95	04/08/95
DEPTH	3-5'	7 - 9'	7 - 9'	3-5'	1-3'	7-9'
SEMIVOLATILES (ug/kg)						
PHENOL	410 U	440 U	400 U	370 U	370 U	380 U
BIS(2-CHLOROETHYL)ETHER	410 U	440 U	400 U	370 U	370 U	380 U
2-CHLOROPHENOL	410 U	440 U	400 U	370 U	370 U	380 U
1,3-DICHLOROBENZENE	410 U	440 U	400 U	370 U	370 U	380 U
1,4-DICHLOROBENZENE	410 U	440 U	400 U	370 U	370 U	380 U
1,2-DICHLOROBENZENE	410 U	440 U	400 U	370 U	370 U	380 U
2-METHYLPHENOL	410 U	440 U	400 U	370 U	370 U	380 U
2,2'-OXYBIS(1-CHLOROPROPANE)	410 U	440 U	400 U	370 U	370 U	380 U
4-METHYLPHENOL	410 U	440 U	400 U	370 U	370 U	380 U
N-NITROSO-DI-N-PROPYLAMINE	410 U	440 U	400 U	370 U	370.U	380 U
HEXACHLOROETHANE	410 U	440 U	400 U	370 U	370 U	380 U
NITROBENZENE	410 U	440 U	400 U	370 U	370 U	380 U
ISOPHORONE	410 U	440 U	400 U	370 U	370 U	380 U
2-NITROPHENOL	410 U	440 U	400 U	370 U	370 U	380 U
2,4-DIMETHYLPHENOL	410 U	440 U	400 U	370 U	370 U	380 U
BIS(2-CHLOROETHOXY)METHANE	410 U	440 U	400 U	370 U	370 U	380 U
2,4-DICHLOROPHENOL	410 U	440 U	400 U	370 U	370 U	380 U
1,2,4-TRICHLOROBENZENE	410 U	440 U	400 U	370 U	370 U	380 U
NAPHTHALENE	410 U	440 U	400 U	370 U	370 U	380 U
4-CHLOROANILINE	410 U	440 U	400 U	370 U	370 U	380 U
HEXACHLOROBUTADIENE	410 U	440 U	400 U	370 U	370 U	380 U
4-CHLORO-3-METHYLPHENOL	410 U	440 U	400 U	370 U	370 U	380 U
2-METHYLNAPHTHALENE	410 U	440 U	400 U	370 U	370 U	380 U
HEXACHLOROCYCLOPENTADIENE	410 U	440 U	400 U	370 U	370 UJ	380 UJ
2,4,6-TRICHLOROPHENOL	410 U	440 U	400 U	370 U	370 U	380 U
2.4.5-TRICHLOROPHENOL	1000 U	1100 U	980 U	890 U	910 U	910 U
2-CHLORONAPHTHALENE	410 U	440 U	400 U	370 U	370 U	380 U
2-NITROANILINE	1000 U	1100 U	980 U	890 U	910 U	910 U
DIMETHYL PHTHALATE	410 U	440 U	400 U	370 U	370 U	380 U
ACENAPHTHYLENE	410 U	440 U	400 U	370 U	370 U	380 U
2,6-DINITROTOLUENE	410 U	440 U	400 U	370 U	370 U	380 U
3-NITROANILINE	1000 U	1100 U	980 U	890 U	910 U	910 U
ACENAPHTHENE	97 J	440 U	400 U	370 U	370 U	380 U
2,4-DINITROPHENOL	1000 UJ	1100 U	980 UJ	890 U	910 U	910 U
4-NITROPHENOL	1000 U	1100 U	980 U	890 U	910 U	910 U
, , , , , , , , , , , , , , , , , , ,		3			2.2 2	2.3 €

LOCATION DATE COLLECTED	65-SB06-02 04/10/95	65-SB07-04 04/08/95	65-SB08-04 04/11/95	65-SB09-02 04/08/95	65-SB10-01 04/08/95	65-SB11-04 04/08/95
DEPTH	3-5'	7-9'	7-9'	3-5'	1-3'	7 - 9'
			, ,			
SEMIVOLATILES (ug/kg) cont.						
DIBENZOFURAN	410 U	440 U	400 U	370 U	370 U	380 U
2,4-DINITROTOLUENE	410 U	440 U	400 U	370 U	370 U	380 U
DIETHYL PHTHALATE	410 U	440 U	400 U	370 U	370 U	380 U
4-CHLOROPHENYLPHENYL ETHER	410 U	440 U	400 U	370 U	370 U	380 U
FLUORENE	110 J	440 U	400 U	370 U	370 U	380 U
4-NITROANILINE	1000 U	1100 U	980 U	890 U	910 U	910 U
4,6-DINITRO-2-METHYLPHENOL	1000 U	1100 U	980 U	890 U	910 U	910 U
N-NITROSODIPHENYLAMINE	410 U	440 U	400 U	370 U	370 U	380 U
4-BROMOPHENYL PHENYL ETHER	410 U	440 U	400 U	370 U	370 U	380 U
HEXACHLOROBENZENE	410 U	440 U	400 U	370 U	370. U	380 U
PENTACHLOROPHENOL	1000 U	1100 U	980 U	890 U	910 U	910 U
PHENANTHRENE	1200	440 U	400 U	370 U	370 U	380 U
ANTHRACENE	290 J	440 U	400 U	370 U	370 U	380 U
CARBAZOLE	120 J	440 U	400 U	370 U	370 U	380 U
DI-N-BUTYL PHTHALATE	340 J	440 U	240 J	370 UJ	370 U	380 U
FLUORANTHENE	1900	440 U	400 U	370 U	370 U	380 U
PYRENE	1400	440 U	400 U	370 U	370 U	380 U
BUTYL BENZYL PHTHALATE	410 U	440 U	400 U	370 U	370 U	380 U
3,3'-DICHLOROBENZIDINE	410 U	440 U	400 U	370 U	370 U	380 U
BENZO(A)ANTHRACENE	900	440 U	400 U	370 U	370 U	380 U
CHRYSENE	800	440 U	400 U	370 U	370 U	380 U
BIS(2-ETHYLHEXYL)PHTHALATE	110 J	90 J	95 J	81 J	93 J	110 J
DI-N-OCTYL PHTHALATE	410 U	440 U	400 U	370 U	370 U	380 U
BENZO(B)FLUORANTHENE	710	440 U	400 U	370 U	370 U	380 U
BENZO(K)FLUORANTHENE	620	440 U	400 U	370 U	370 U	380 U
BENZO(A)PYRENE	680	440 U	400 U	370 U	370 U	380 U
INDENO(1,2,3-CD)PYRENE	480 J	440 U	400 U	370 U	370 U	380 U
DIBENZO(A,H)ANTHRACENE	410 U	440 U	400 U	370 U	370 U	380 U
BENZO(G,H,I)PERYLENE	360 J	440 U	400 U	370 U	370 U	380 U

LOCATION	65-SB12-05	65-TP01	65-TP02	65-TP04	65-TP05	65-TP06
DATE COLLECTED	04/17/95	05/07/95	05/08/95	05/07/95	05/07/95	05/08/95
DEPTH	9-11'	N/A	N/A	· N/A	N/A	N/A
		UG/KG	UG/KG	UG/KG	UG/KG	UG/KG
SEMIVOLATILES (ug/kg)						
PHENOL	370 U	390 U	360 U	370 U	460 U	350 U
BIS(2-CHLOROETHYL)ETHER	370 U	390 U	360 U	370 U	460 U	350 U
2-CHLOROPHENOL	370 U	390 U	360 U	370 U	460 U	350 U
1,3-DICHLOROBENZENE	370 U	390 U	360 U	370 U	460 U	350 U
1,4-DICHLOROBENZENE	370 U	390 U	360 U	370 U	460 U	350 U
1,2-DICHLOROBENZENE	370 U	390 U	360 U	370 U	460 U	350 U
2-METHYLPHENOL	370 U	390 U	360 U	370 U	460 U	350 U
2,2'-OXYBIS(1-CHLOROPROPANE)	370 U	390 U	360 U	370 U	460 U	350 U
4-METHYLPHENOL	370 U	390 U	360 U	370 U	460 U	350 U
N-NITROSO-DI-N-PROPYLAMINE	370 U	390 U	360 U	370 U	460. U	350 U
HEXACHLOROETHANE	370 U	390 U	360 U	370 U	460 U	350 U
NITROBENZENE	370 U	390 U	360 U	370 U	460 U	350 U
ISOPHORONE	370 U	390 U	360 U	370 U	460 U	350 U
2-NITROPHENOL	370 U	390 U	360 U	370 U	460 U	350 U
2,4-DIMETHYLPHENOL	370 U	390 U	360 U	370 U	460 U	350 U
BIS(2-CHLOROETHOXY)METHANE	370 U	390 U	360 U	370 U	460 U	350 U
2,4-DICHLOROPHENOL	370 U	390 U	360 U	370 U	460 U	350 U
1,2,4-TRICHLOROBENZENE	370 U	390 U	360 U	370 U	460 U	350 U
NAPHTHALENE	370 U	390 U	360 U	370 U	460 U	350 U
4-CHLOROANILINE	370 U	390 U	360 U	370 U	460 U	350 U
HEXACHLOROBUTADIENE	370 U	390 U	360 U	370 U	460 U	350 U
4-CHLORO-3-METHYLPHENOL	370 U	390 U	360 U	370 U	460 U	350 U
2-METHYLNAPHTHALENE	370 U	390 U	360 U	370 U	460 U	350 U
HEXACHLOROCYCLOPENTADIENE	370 U	390 U	360 U	370 U	460 ป	350 U
2.4.6-TRICHLOROPHENOL	370 U	390 U	360 U	370 U	460 U	350 U
2,4,5-TRICHLOROPHENOL	890 U	940 U	870 U	890 U	1100 U	860 U
2-CHLORONAPHTHALENE	370 U	390 U	360 U	370 U	460 U	350 U
2-NITROANILINE	890 U	940 U	870 U	890 U	1100 U	860 U
DIMETHYL PHTHALATE	370 U	390 U	360 U	370 U	460 U	350 U
ACENAPHTHYLENE	370 U	390 U	360 U	370 U	460 U	350 U
2,6-DINITROTOLUENE	370 U	390 U	360 U	370 U	460 U	350 U
3-NITROANILINE	890 U	940 U	870 U	890 U	1100 U	860 U
ACENAPHTHENE	370 U	390 U	360 U	370 U	460 U	350 U
2,4-DINITROPHENOL	890 U	940 UJ	870 UJ	890 UJ	1100 UJ	860 UJ
4-NITROPHENOL	890 U	940 U	870 U	890 U	1100 U	860 U
+NITKOPHENOL	090 0	3-0-0	0,00	000 0	1100 0	000 0

LOCATION	65-SB12-05	65-TP01	65-TP02	65-TP04	65-TP05	65-TP06
DATE COLLECTED	04/17/95	05/07/95	05/08/95	05/07/95	05/07/95	05/08/95
DEPTH	9-11'	N/A	N/A	N/A	N/A	N/A
		UG/KG	UG/KG	UG/KG	UG/KG	UG/KG
SEMIVOLATILES (ug/kg) cont.						
DIBENZOFURAN	370 U	390 U	360 U	370 U	460 U	350 U
2,4-DINITROTOLUENE	370 U	390 U	360 U	370 U	460 U	350 U
DIETHYL PHTHALATE	370 U	390 U	360 U	370 U	460 U	350 U
4-CHLOROPHENYLPHENYL ETHER	370 U	390 U	360 U	370 U	460 U	350 U
FLUORENE	370 U	390 U	360 U	370 U	460 U	350 U
4-NITROANILINE	890 U	940 U	870 U	890 U	1100 U	860 U
4,6-DINITRO-2-METHYLPHENOL	890 U	940 U	870 U	890 U	1100 U	860 U
N-NITROSODIPHENYLAMINE	370 U	390 U	360 U	370 U	460 U	350 U
4-BROMOPHENYL PHENYL ETHER	370 U	390 U	360 U	370 U	460 U	350 U
HEXACHLOROBENZENE	370 U	390 U	360 U	370 U	460 U	350 U
PENTACHLOROPHENOL	890 U	940 U	870 U	890 U	1100 U	860 U
PHENANTHRENE	370 U	390 U	360 U	370 U	460 U	350 U
ANTHRACENE	370 U	390 U	360 U	370 U	460 U	350 U
CARBAZOLE	370 U	390 U	360 U	370 U	460 U	350 U
DI-N-BUTYL PHTHALATE	370 U	280 J	250 J	200 J	160 J	210 J
FLUORANTHENE	370 U	390 U	360 U	370 U	460 U	350 U
PYRENE	370 U	390 U	360 U	370 U	460 U	350 U
BUTYL BENZYL PHTHALATE	370 U	390 U	360 U	370 U	460 U	350 U
3,3'-DICHLOROBENZIDINE	370 U	390 U	360 U	370 U	460 U	350 U
BENZO(A)ANTHRACENE	370 U	390 U	360 U	370 U	460 U	350 U
CHRYSENE	370 U	390 U	360 U	370 U	460 U	350 U
BIS(2-ETHYLHEXYL)PHTHALATE	370 U	390 U	37 J	370 U	49 J	39 J
DI-N-OCTYL PHTHALATE	370 U	390 U	360 U	370 U	460 U	350 U
BENZO(B)FLUORANTHENE	370 U	390 U	360 U	370 U	460 U	350 U
BENZO(K)FLUORANTHENE	370 U	390 U	360 U	370 U	460 U	350 U
BENZO(A)PYRENE	370 U	390 U	360 U	370 U	460 U	350 U
INDENO(1,2,3-CD)PYRENE	370 U	390 U	360 U	370 U	460 U	350 U
DIBENZO(A,H)ANTHRACENE	370 U	390 U	360 U	370 U	460 U	350 U
BENZO(G,H,I)PERYLENE	370 U	390 U	360 U	370 U	460 U	350 U

LOCATION DATE COLLECTED DEPTH	65-TP07 05/07/95 N/A
DATE COLLECTED DEPTH SEMIVOLATILES (ug/kg) PHENOL BIS(2-CHLOROETHYL)ETHER 2-CHLOROPHENOL 1,3-DICHLOROBENZENE 1,4-DICHLOROBENZENE 1,2-DICHLOROBENZENE 2-METHYLPHENOL 2,2'-OXYBIS(1-CHLOROPROPANE) 4-METHYLPHENOL N-NITROSO-DI-N-PROPYLAMINE HEXACHLOROETHANE NITROBENZENE ISOPHORONE 2-NITROPHENOL 2,4-DIMETHYLPHENOL BIS(2-CHLOROETHOXY)METHANE 2,4-DICHLOROPHENOL 1,2,4-TRICHLOROBENZENE NAPHTHALENE	05/07/95 N/A UG/KG 360 U 360 U
4-CHLOROANILINE HEXACHLOROBUTADIENE 4-CHLORO-3-METHYLPHENOL 2-METHYLNAPHTHALENE	360 U 360 U 360 U 60 J
HEXACHLOROCYCLOPENTADIENE 2,4,6-TRICHLOROPHENOL 2,4,5-TRICHLOROPHENOL 2-CHLORONAPHTHALENE 2-NITROANILINE DIMETHYL PHTHALATE	360 U 360 U 870 U 360 U 870 U 360 U
ACENAPHTHYLENE 2,6-DINITROTOLUENE 3-NITROANILINE ACENAPHTHENE 2,4-DINITROPHENOL 4-NITROPHENOL	360 U 360 U 870 U 94 J 870 UJ 870 U

LOCATION DATE COLLECTED DEPTH	65-TP07 05/07/95 N/A UG/KG
SEMIVOLATILES (ug/kg) cont. DIBENZOFURAN 2,4-DINITROTOLUENE DIETHYL PHTHALATE 4-CHLOROPHENYLPHENYL ETHER	42 J 360 U 360 U 360 U
FLUORENE 4-NITROANILINE 4,6-DINITRO-2-METHYLPHENOL N-NITROSODIPHENYLAMINE	360 U 870 U 870 U 360 U 360 U
4-BROMOPHENYL PHENYL ETHER HEXACHLOROBENZENE PENTACHLOROPHENOL PHENANTHRENE ANTHRACENE	360 U 360 U 870 U 150 J 360 U
CARBAZOLE DI-N-BUTYL PHTHALATE FLUORANTHENE PYRENE	360 U 270 J 230 J 190 J
BUTYL BENZYL PHTHALATE 3,3'-DICHLOROBENZIDINE BENZO(A)ANTHRACENE CHRYSENE BIS(2-ETHYLHEXYL)PHTHALATE	360 U 360 U 100 J 110 J 230 J
DI-N-OCTYL PHTHALATE BENZO(B)FLUORANTHENE BENZO(K)FLUORANTHENE BENZO(A)PYRENE	360 U 96 J 110 J 69 J 360 U
INDENO(1,2,3-CD)PYRENE DIBENZO(A,H)ANTHRACENE BENZO(G,H,I)PERYLENE	360 U 360 U 67 J

10/23/95 CT PTPSV.WK4

LOCATION DATE COLLECTED DEPTH	MINIMUM NONDETECTED	MAXIMUM NONDETECTED	MINIMUM DETECTED	MAXIMUM DETECTED	LOCATION OF MAXIMUM DETECTED	FREQUENCY OF DETECTION
SEMIVOLATILES (ug/kg)						
PHENOL	340 U	460 U	ND	ND		0/19
BIS(2-CHLOROETHYL)ETHER	340 U	460 U	ND	ND		0/19
2-CHLOROPHENOL	340 U	460 U	ND	ND		0/19
1,3-DICHLOROBENZENE	340 U	460 U	ND	ND		0/19
1,4-DICHLOROBENZENE	340 U	460 U	ND	ND		0/19
1,2-DICHLOROBENZENE	340 U	460 U	ND	ND		0/19
2-METHYLPHENOL	340 U	460 U	ND	ND		0/19
2,2'-OXYBIS(1-CHLOROPROPANE)	340 U	460 U	ND	ND		0/19
4-METHYLPHENOL	340 U	460 U	ND	ND		0/19
N-NITROSO-DI-N-PROPYLAMINE	340 U	460 U	ND	ND		0/19
HEXACHLOROETHANE	340 U	460 U	ND	ND		0/19
NITROBENZENE	340 U	460 U	ND	ND		0/19
ISOPHORONE	340 U	460 U	ND	ND		0/19
2-NITROPHENOL	340 U	460 U	ND	ND		0/19
2,4-DIMETHYLPHENOL	340 U	460 U	ND	ND		0/19
BIS(2-CHLOROETHOXY)METHANE	340 U	460 U	ND	ND		0/19
2,4-DICHLOROPHENOL	340 U	460 U	ND	ND		0/19
1,2,4-TRICHLOROBENZENE	340 U	460 U	ND	ND		0/19
NAPHTHALENE	340 U	460 U	55 J	55 J	65-TP07	1/19
4-CHLOROANILINE	340 U	460 U	ND	ND		0/19
HEXACHLOROBUTADIENE	340 U	460 U	ND	ND		0/19
4-CHLORO-3-METHYLPHENOL	340 U	460 U	ND	ND		0/19
2-METHYLNAPHTHALENE	340 U	460 U	60 J	60 J	65-TP07	1/19
HEXACHLOROCYCLOPENTADIENE	340 U	460 U	ND	ND		0/19
2,4,6-TRICHLOROPHENOL	340 U	460 U	ND	ND		0/19
2,4,5-TRICHLOROPHENOL	830 U	1100 U	ND	ND		0/19
2-CHLORONAPHTHALENE	340 U	460 U	ND	ND		0/19
2-NITROANILINE	830 U	1100 U	ND	ND		0/19
DIMETHYL PHTHALATE	340 U	460 U	ND	ND		0/19
ACENAPHTHYLENE	340 U	460 U	ND	ND		0/19
2,6-DINITROTOLUENE	340 U	460 U	ND	ND		0/19
3-NITROANILINE	830 U	1100 U	ND	ND		0/19
ACENAPHTHENE	340 U	460 U	94 J	97 J	65-SB06-02	2/19
2.4-DINITROPHENOL	830 U	1100 U	ND	ND		0/19
4-NITROPHENOL	830 U	1100 U	ND	ND		0/19

LOCATION DATE COLLECTED DEPTH	MINIMUM NONDETECTED	MAXIMUM NONDETECTED	MINIMUM DETECTED	MAXIMUM DETECTED	LOCATION OF MAXIMUM DETECTED	FREQUENCY OF DETECTION
SEMIVOLATILES (ug/kg) cont.						
DIBENZOFURAN	340 U	460 U	42 J	42 J	65-TP07	1/19
2,4-DINITROTOLUENE	340 U	460 U	ND	ND		0/19
DIETHYL PHTHALATE	340 U	460 U	ND	ND		0/19
4-CHLOROPHENYLPHENYL ETHER	340 U	460 U	ND	ND		0/19
FLUORENE	340 U	460 U	110 J	110 J	65-SB06-02	1/19
4-NITROANILINE	860 U	1100 U	ND	ND		0/18
4,6-DINITRO-2-METHYLPHENOL	830 U	1100 U	ND	ND		0/19
N-NITROSODIPHENYLAMINE	340 U	460 U	ND	ND		0/19
4-BROMOPHENYL PHENYL ETHER	340 U	460 U	ND	ND		0/19
HEXACHLOROBENZENE	340 U	460 U	ND	ND		0/19
PENTACHLOROPHENOL	830 U	1100 U	ND	ND		0/19
PHENANTHRENE	340 U	460 U	150 J	1200	65-SB06-02	2/19
ANTHRACENE	340 U	460 U	290 J	290 J	65-SB06-02	1/19
CARBAZOLE	340 U	460 U	120 J	120 J	65-SB06-02	1/19
DI-N-BUTYL PHTHALATE	340 U	440 U	160 J	340 J	65-SB06-02	8/19
FLUORANTHENE	340 U	460 U	230 J	1900	65-SB06-02	2/19
PYRENE	340 U	460 U	190 J	1400	65-SB06-02	2/19
BUTYL BENZYL PHTHALATE	340 U	460 U	. ND	ND		0/19
3,3'-DICHLOROBENZIDINE	340 U	460 U	ND	ND		0/19
BENZO(A)ANTHRACENE	340 U	460 U	100 J	900	65-\$B06-02	2/19
CHRYSENE	340 U	460 U	110 J	800	65-SB06-02	2/19
BIS(2-ETHYLHEXYL)PHTHALATE	340 U	390 U	37 J	370	65-DW01-04	15/19
DI-N-OCTYL PHTHALATE	340 U	460 U	ND	ND		0/19
BENZO(B)FLUORANTHENE	340 U	460 U	96 J	710	65-SB06-02	2/19
BENZO(K)FLUORANTHENE	340 U	460 U	110 J	620	65-SB06-02	2/19
BENZO(A)PYRENE	340 U	460 U	69 J	680	65-SB06-02	2/19
INDENO(1,2,3-CD)PYRENE	340 U	460 U	480 J	480 J	65-SB06-02	1/19
DIBENZO(A,H)ANTHRACENE	340 U	460 U	ND	ND		0/19
BENZO(G,H,I)PERYLENE	340 U	460 U	67 J	360 J	65-SB06-02	2/19

LOCATION DATE COLLECTED	65-DW01-04 04/10/95	65-DW02-02 04/09/95	65-DW04-05 04/05/95	65-MW05A-04 04/05/95	65-MW06A-03 04/08/95	65-MW07A-05 04/04/95
DEPTH	7-9'	3-5'	9-11'	7-9'	5-7'	9-11'
PESTICIDE/PCBS (ug/kg)						
ALPHA-BHC	1.9 U	2 U	1.8 U	1.9 U	1.8 U	1.9 U
BETA-BHC	1.9 U	2 U	1.8 U	1.9 U	1.8 U	1.9 U
DELTA-BHC	1.9 U	2 Ū	1.8 U	1.9 U	1.8 U	1.9 U
GAMMA-BHC(LINDANE)	1.9 U	2 U	1.8 U	1.9 U	1.8 U	1.9 U
HEPTACHLOR	1.9 U	2 U	1.8 U	1.9 U	1.8 U	1.9 U
ALDRIN	1.9 U	2 U	1.8 U	1.9 U	1.8 U	1.9 U
HEPTACHLOR EPOXIDE	1.9 U	2 U	1.8 U	1.9 U	1.8 U	1.9 U
ENDOSULFAN I	1.9 U	2 U	1.8 U	1.9 U	1.8 U	1.9 U
DIELDRIN	3.8 U	3.9 U	3.4 U	3.7 U	3.6 U	3.7 U
4,4'-DDE	8.8 J	3.9 U	3.4 U	3.7 U	3.6 U	3.7 U
ENDRIN	3.8 U	3.9 U	3.4 U	3.7 U	3.6 U	- 3.7 U
ENDOSULFAN II	3.8 U	3.9 U	3.4 U	3.7 U	3.6 U	3.7 U
4,4'-DDD	4.4 J	3.9 UJ	3.4 UJ	3.7 U	3.6 UJ	3.7 U
ENDOSULFAN SULFATE	3.8 U	3.9 U	3.4 U	3.7 U	3.6 U	3.7 U
4,4'-DDT	6.3 U	3.9 U	3.4 U	3.7 U	3.6 U	3.7 U
METHOXYCHLOR	19 U	20 U	18 U	19 U	18 U	19 U
ENDRIN KETONE	3.8 U	3.9 U	3.4 U	3.7 U	3.6 U	3.7 U
ENDRIN ALDEHYDE	9.4 J	3.9 U	3.4 U	3.7 U	3.6 U	3.7 U
ALPHA CHLORDANE	1.9 U	2 U	1.8 U	1.9 U	1.8 U	1.9 U
GAMMA CHLORDANE	1.9 U	2 U	1.8 U	1.9 U	1.8 U	1.9 U
TOXAPHENE	190 U	200 U	180 U	190 U	180 U	190 U
PCB-1016	38 U	39 U	34 U	37 U	36 U	37 U
PCB-1221	77 U	79 U	70 U	76 U	72 U	76 U
PCB-1232	38 U	39 U	34 U	37 U	36 U	37 U
PCB-1242	38 U	39 U	34 U	37 U	36 U	37 U
PCB-1248	38 U	39 U	34 U	37 U	36 U	37 U
PCB-1254	38 U	39 U	34 U	37 U	36 U	37 U
PCB-1260	38 U	39 U	34 U	37 U	36 U	37 U

LOCATION DATE COLLECTED	65-SB06-02 04/10/95	65-SB07-04 04/08/95	65-SB08-04 04/11/95	65-SB09-02 04/08/95	65-SB10-01 04/08/95	65-SB11-04 04/08/95
DEPTH	3-5'	7-9'	7 - 9'	3-5'	1-3'	7-9'
PESTICIDE/PCBS (ug/kg)						
ALPHA-BHC	2.1 U	2.3 U	2.1 U	1.9 U	1.9 U	2 U
BETA-BHC	2.1 U	2.3 U	2.1 U	1.9 U	1.9 U	2 U
DELTA-BHC	2.1 U	2.3 U	2.1 U	1.9 U	1.9 U	2 U
GAMMA-BHC(LINDANE)	2.1 U	2.3 U	2.1 U	1.9 U	1.9 U	2 U
HEPTACHLOR	2.1 U	2.3 U	2.1 U	1.9 U	1.9 U	2 U
ALDRIN	2.1 U	2.3 U	2.1 U	1.9 U	1.9 U	2 U
HEPTACHLOR EPOXIDE	2.1 U	2.3 U	2.1 U	1.9 U	1.9 U	2 U
ENDOSULFAN I	2.1 U	2.3 U	2.1 U	1.9 U	1.9 U	2 U
DIELDRIN	4.1 U	4.4 U	2.1 U	3.6 U	3.7 U	3.8 U
4,4'-DDE	41	4.4 U	4 U	13	4.6	3.8 U
ENDRIN	4.1 U	4.4 U	4 Ü	3.6 U	3.7 U	3.8 U
ENDOSULFAN II	4.1 U	4,4 U	4 U	3.6 U	3.7 U	3.8 U
4,4'-DDD	9.1 NJ	4.4 UJ	4 UJ	68 J	76 J	3.8 UJ
ENDOSULFAN SULFATE	4.1 U	4.4 U	4 U	3.6 U	3.7 U	3.8 U
4,4'-DDT	37 U	4.4 U	4 U	3.6 U	3.7 U	3.8 U
METHOXYCHLOR	21 U	23 U	21 U	19 U	19 U	20 U
ENDRIN KETONE	4.1 U	4.4 U	4 U	3.6 U	3.7 U	3.8 U
ENDRIN ALDEHYDE	4.1 U	4.4 U	4 U	3.6 U	3.7 U	3.8 U
ALPHA CHLORDANE	8.3 J	2.3 U	2.1 U	1.9 U	1.9 U	2 U
GAMMA CHLORDANE	7.5 J	2.3 U	2.1 U	1.9 U	1.9 U	2 U
TOXAPHENE	210 U	230 U	210 U	190 U	190 U	200 U
PCB-1016	41 U	44 U	40 U	36 U	37 U	38 U
PCB-1221	83 U	89 U	82 U	73 U	76 U	78 U
PCB-1232	41 U	44 U	40 U	36 U	37 U	38 U
PCB-1242	41 U	44 U	40 U	36 U	37 U	38 U
PCB-1248	41 U	44 U	40 U	36 U	37 U	38 U
PCB-1254	41 U	44 U	40 U	36 U	37 U	38 U
PCB-1260	41 U	44 U	40 U	36 U	37 U	38 U

FREQUENCY OF DETECTION SUMMARY SUBSURFACE SOIL SITE 65 - ENGINEER AREA DUMP REMEDIAL INVESTIGATION, CTO-0312

MCB, CAMP LEJUENE, NORTH CAROLINA TCL ORGANICS

LOCATION DATE COLLECTED DEPTH	65-SB12-05 04/17/95 9-11'	65-TP01 05/07/95	65-TP02 05/08/95	65-TP04 05/07/95	65-TP05 05/07/95	65-TP06 05/08/95
PESTICIDE/PCBS (ug/kg)						
ALPHA-BHC	1.9 U	2 U	1.9 U	1.9 U	2.4 U	1.8 U
BETA-BHC	1.9 U	2 U	1.9 U	1.9 U	2.4 U	1.8 U
DELTA-BHC	1.9 U	2 U	1.9 U	1.9 U	2.4 U	1.8 U
GAMMA-BHC(LINDANE)	1.9 U	2 U	1.9 U	1,9 U	2.4 U	1.8 U
HEPTACHLOR	1.9 U	2 U	1.9 U	1.9 U	2.4 U	1,8 U
ALDRIN	1.9 U	2 U	1.9 U	1.9 U	2.4 U	1.8 U
HEPTACHLOR EPOXIDE	1.9 U	2 U	1.9 U	1.9 U	2.4 U	1.8 U
ENDOSULFAN I	1.9 U	2 U	1.9 U	1.9 U	3.1 NJ	1.8 U
DIELDRIN	3.6 U	3.9 U	3.6 U	3.6 U	4.6 U	3.6 U
4,4'-DDE	3.6 U	3.9 U	28	45 J	38 J	3.6 U
ENDRIN	3.6 U	3.9 U	3.6 U	3.6 U	4.6 U	3.6 U
ENDOSULFAN II	3.6 U	3.9 U	3.6 U	3.6 U	4.6 U	3.6 U
4.4'-DDD	3.6 U	3.9 U	7.3 J	140	340 J	3.6 U
ENDOSULFAN SULFATE	3.6 U	3.9 U	3.6 U	3.6 U	4.6 U	3.6 U
4,4'-DDT	3.6 U	3.9 U	15	31	9.6	3.6 U
METHOXYCHLOR	19 U	20 UJ	19 UJ	19 UJ	24 UJ	18 UJ
ENDRIN KETONE	3.6 U	3.9 U	3.6 U	3.6 U	4.6 U	3.6 U
ENDRIN ALDEHYDE	3.6 U	3.9 U	3.6 U	3.6 U	4.6 U	3.6 U
ALPHA CHLORDANE	1.9 U	2 U	1.9 U	1.9 U	2.4 U	1.8 U
GAMMA CHLORDANE	1.9 U	2 U	1.9 U	3.1 J	2.4 U	1.8 U
TOXAPHENE	190 U	200 U	190 U	190 U	240 U	180 U
PCB-1016	36 U	39 U	36 U	36 U	46 U	36 U
PCB-1221	74 U	79 U	73 U	74 U	94 U	73 U
PCB-1232	36 U	39 U	36 U	36 U	46 U	36 U
PCB-1242	36 U	. 39 U	36 U	36 U	46 U	36 U
PCB-1248	36 U	39 U	36 U	36 U	46 U	36 U
PCB-1254	36 U	39 U	36 U	36 U	46 U	36 U
PCB-1260	36 U	39 U	36 U	36 U	46 U	36 U

LOCATION DATE COLLECTED DEPTH	65-TP07 05/07/95
PESTICIDE/PCBS (ug/kg) ALPHA-BHC BETA-BHC DELTA-BHC GAMMA-BHC(LINDANE) HEPTACHLOR ALDRIN HEPTACHLOR EPOXIDE ENDOSULFAN I DIELDRIN 4,4'-DDE ENDRIN ENDOSULFAN II 4,4'-DDD ENDOSULFAN SULFATE 4,4'-DDT METHOXYCHLOR ENDRIN KETONE ENDRIN KETONE ENDRIN KETONE ENDRIN KETONE ENDRIN ALDEHYDE ALPHA CHLORDANE	1.9 U 1.9 U 1.9 U 1.9 U 1.9 U 1.9 U 3.6 U 3.6 U 110 3.6 U 19 UJ 3.6 U 3.6 U
GAMMA CHLORDANE TOXAPHENE	3 J 190 U
PCB-1016 PCB-1221	36 U 73 U
PCB-1232	36 U
PCB-1242	36 U
PCB-1248	36 U
PCB-1254	36 U
PCB-1260	36 U

10/23/95 6F0RTPP.WK4

4

LOCATION DATE COLLECTED DEPTH	MINIMUM NONDETECTED	MAXIMUM NONDETECTED	MINIMUM DETECTED	MAXIMUM DETECTED	LOCATION OF MAXIMUM DETECTED	FREQUENCY OF DETECTION
PESTICIDE/PCBS (ug/kg)						
ALPHA-BHC	1,8 U	2.4 U	ND	ND		0/19
BETA-BHC	1.8 U	2.4 U	ND	ND		0/19
DELTA-BHC	1,8 U	2.4 U	ND	ND		0/19
GAMMA-BHC(LINDANE)	1.8 U	2.4 U	ND	ND		0/19
HEPTACHLOR	1.8 U	2.4 U	ND	ND		0/19
ALDRIN	1.8 U	2.4 U	ND	ND		0/19
HEPTACHLOR EPOXIDE	1.8 U	2.4 U	ND	ND		0/19
ENDOSULFAN I	1.8 U	2.3 U	3.1 NJ	3.1 NJ	65-TP05	1/19
DIELDRIN	3.4 U	4.6 U	ND	ND		0/19
4,4'-DDE	3.4 U	4.4 U	4.6	45 J	65-TP04	8/19
ENDRIN	3.4 U	4.6 U	ND	ND		0/19
ENDOSULFAN II	3.4 U	4.6 U	ND	ND		0/19
4,4'-DDD	3.4 UJ	4.4 UJ	4.4 J	340 J	65-TP05	8/19
ENDOSULFAN SULFATE	3.4 U	4.6 U	ND	ND		0/19
4.4'-DDT	3.4 U	37 U	9.6	40	65-TP07	4/19
METHOXYCHLOR	18 U	24 UJ	ND	ND		0/19
ENDRIN KETONE	3.4 U	4.6 U	ND	ND		0/19
ENDRIN ALDEHYDE	3.4 U	4.6 U	9.4 J	9.4 J	65-DW01-04	1/19
ALPHA CHLORDANE	1.8 U	2.4 U	8.3 J	8.3 J	65-SB06-02	1/19
GAMMA CHLORDANE	1.8 U	2.4 U	3 J	7.5 J	65-SB06-02	3/19
TOXAPHENE	180 U	240 U	ND	ND		0/19
PCB-1016	34 U	46 U	ND	ND		0/19
PCB-1221	70 U	94 U	ND	ND		0/19
PCB-1232	34 U	46 U	ND	ND		0/19
PCB-1242	34 U	46 U	ND	ND		0/19
PCB-1248	34 U	46 U	ND ND	ND		0/19
PCB-1240 PCB-1254	34 U	46 U	ND	ND		0/19
PCB-1254 PCB-1260	34 U	46 U	ND	ND		0/19
PUD-1200	34 0	40 0	ND	ND		0/13

APPENDIX O.4 SUBSURFACE SOIL METALS

LOCATION DATE COLLECTED DEPTH MOISTURE	65-DW01-04 04/10/95 7-9' 13.13	65-DW02-02 04/09/95 3-5' 16.36	65-DW04-05 04/05/95 9-11' 4.68	65-MW05A-04 04/05/95 7-9' 14.25	65-MVV06A-03 04/08/95 5-7' 9.72	65-MW07A-05 04/04/95 9-11' 13.65
ANALYTES (mg/kg)						
ALUMINUM \	4840	1020	4560	1380	3790	1050
ANTIMONY	11.5 U	12 U	10.5 U	11.7 U	11.1 U	11.6 U
ARSENIC	2.3 U	2.4 U	2.1 U	2.3 U	2.2 U	2.3 U
BARIUM	35.5	5.6	10.9	2.7	3.3	3.5
BERYLLIUM	0.23 U	0.24 U	0.21 U	0.23 U	0.22 U	0.23 U
CADMIUM	1.2 U	1.2 U	1 U	1.2 U	1.1 U	1.2 U
CALCIUM	1040	320	111	57.4 U	208	90.6
CHROMIUM	10.8	2.4 U	5.7	2.8	2.6	2.3 U
COBALT	4.6 UJ	4.8 UJ	6.4 U	8.7 U	4.4 UJ	7.2 U
COPPER	55.8	2.4 U	2.1 U	2.3 U	2.2 U	2.3 U
IRON	9120 J	1250 J	925	686	236 J	412
LEAD	159 J	2.9 J	2.7	1.6	2.1 J	1.7
MAGNESIUM	159	23.8	192	83.1	102	67.1
MANGANESE	127 J	4.8 J	5.6	3	3.2 J	2
MERCURY	0.12 U	0.12 U	0.1 U	0.12 U	0.11 U	0.12 U
NICKEL	8.9	4.8 U	4.2 U	4.7 U	4.4 U	4.6 U
POTASSIUM	230 U	239 U	210 U	233 U	221 U	231 U
SELENIUM	1.2 U	1.2 U	1 U	1.2 U	1.1 U	1.2 U
SILVER	1.2 U	1.2 U	1 U	1,2 U	1.1 U	1.2 U
SODIUM	46 U	47.8 U	69.9	46.6 U	44.3 U	46.3 U
THALLIUM	2.3 U	2.4 U	2.1 U	2.3 U	2,2 U	2.3 U
VANADIUM	9.8	2.4 U	4.1	3.1	2.2 U	2.3 U
ZINC	302 J	4.2 J	6.9 U	3.7 U	2.5 J	4.5 U

1

LOCATION DATE COLLECTED DEPTH	65-SB06-02 04/10/95 3-5'	65-SB07-04 04/08/95 7-9'	65-SB08-04 04/11/95 7-9'	65-SB09-02 04/08/95 3-5'	65-SB10-01 04/08/95 1-3'	65-SB11-04 04/08/95 7-9'
MOISTURE	19.19	26.15	19.45	10.99	12.23	15.06
ANALYTES (mg/kg)						
ALUMINUM	4340	10600	3190	5730	4720	6440
ANTIMONY	12.4 U	13.6 U	12.4 U		4720	6440
ARSENIÇ	3.3	2.8		11.2 U	11.4 U	11.8 U
BARIUM			2.5 U	2.2 U	2.3 U	2.4 U
-	38.3	17.5	6.4	16.4	11.6	9.4
BERYLLIUM	0.25 U	0.27 U	0.25 U	0.22 U	0.23 U	0,24 U
CADMIUM	1.3	1.4 U	1.2 U	1.1 U	1.1 U	1.2 U
CALCIUM	1350	49.8	103	628	511	219
CHROMIUM	10.4	17.3	7.3	7.8	6.4	7.7
COBALT	5 UJ	5.4 UJ	5 UJ	4.5 UJ	4.6 UJ	4.7 UJ
COPPER	478	2.7 U	2.5 U	11.5	12.2	2.4 U
IRON	31300	8890 J	7850	2450 J	2610 J	1570 J
LEAD	539	6.9 J	3.6	24.6 J	19.1 J	3.4 J
MAGNESIUM	180	410	223	201	183	309
MANGANESE	471	3.7 J	2.7	21.1 J	15.1 J	3.4 J
MERCURY	0.12 U	0.14 U	0.12 U	0.11 U	0.11 U	0.12 U
NICKEL	243	5.4 U	5 U	4.5 U	4.6 U	4.7 U
POTASSIUM	248 U	453	292	253	228 U	284
SELENIUM	1.2 U	1.4 U	1.2 U	1.1 U	1.1 U	1.2 U
SILVER	1.2 U	1.4 U	1.2 U	1.1 U	1.1 U	1.2 U
SODIUM	63.9	130	50.8	44.9 U	45.6 U	47.1 U
THALLIUM	4.2	2.7 U	2.5 U	2.2 U	2.3 U	2.4 U
VANADIUM	11.1	27.2	10.5	5	5.9	6.2
ZINC	764	7.8 J	5.3	44.7 _~ J	41.7 J	15.2 J
6111V	704	7.00	0.0	77.1 ×J	41,7 3	10.2 J

LOCATION DATE COLLECTED DEPTH MOISTURE	65-SB12-05 04/17/95 9-11' 10.3	65-TP01 05/07/95	65-TP02 05/08/95	65-TP04 05/07/95	65-TP05 05/07/95	65-TP06 05/08/95
ANALYTES (mg/kg)						
ALUMINUM	5190	2750	4740	5030	5730	2590
ANTIMONY	11.1 U	12 U	11 U	11.3 U	14.4 U	10.9 U
ARSENIC	2.2 U	2.4 U	2.2 U	2.6	2.9 U	2.2 U
BARIUM	10.1	4.2	9.9	21.6	34.7	6.4
BERYLLIUM	0.22 U	0.24 U	0.22 U	0.23 U	0.29 U	0.22 U
CADMIUM	1.1 U	1.2 U	1.1 U	1.3	1.4 U	1.1 U
CALCIUM	587	259	439	847	1270	130
CHROMIUM	4.8	2.4 U	4.4	8.5	6.6	3.2
COBALT	4.5 U	4.8 U	4.4 U	4.5 U	5.7 U	4.3 U
COPPER	2.2 U	2.4 U	7.7	61. 4	29.4	2.2 U
IRON	1010	571	1010	4290	3640	992
LEAD	3.1	3.7	12.1	129	59.2	4.9
MAGNESIUM	122	57.7	80.7	193	223	82.1
MANGANESE	4.9	10.1	11.5	132	60.2	13.3
MERCURY	0.11 U	0.12 U	0.11 U	0.11 U	0.14° U	0.11 U
NICKEL	4.5 U	4.8 U	4.4 U	4.5 U	5.7 U	4.3 U
POTASSIUM	223 U	240 U	. 220 U	225 U	287 U	217 U
SELENIUM	1.1 U	1.2 U	1.1 U	1.1 U	1.4 U	1.1 U
SILVER	1.1 U	1.2 U	1.1 U	1.1 U	1.4 U	1.1 U
SODIUM	44.6 U	48 U	44 U	45 U	110	43.5 U
THALLIUM	2.2 U	2.4 U	2.2 U	2.3 U	2.9 U	2.2 U
VANADIUM	3.5	2.4 U	3.4	8.9	5.3	3.5
ZINC	5.5	11.4	30.6	480	158	10.1

LOCATION DATE COLLECTED DEPTH MOISTURE	65-TP07 05/07/95
ANALYTES (mg/kg)	
ALUMINUM	3680
ANTIMONY	11.8
ARSENIC	2.2 U
BARIUM	31.8
BERYLLIUM	0.22 U
CADMIUM	1.1 U
CALCIUM	1230
CHROMIUM	8.2
COBALT	11.5
COPPER	672
IRON	9170
LEAD	210
MAGNESIUM	136
MANGANESE	223
MERCURY	0.11 U
NICKEL	4.8
POTASSIUM	221 U
SELENIUM	1.5
SILVER	4.2
SODIUM	44.2 U
THALLIUM	2.2 U
VANADIUM	9.1
ZINC	418

10/23/95 6FTTPI.WK4

LOCATION DATE COLLECTED DEPTH MOISTURE	MINIMUM NONDETECTED	MAXIMUM NONDETECTED	MINIMUM DETECTED	MAXIMUM DETECTED	LOCATION OF MAXIMUM DETECTED	FREQUENCY OF DETECTION
ANALYTES (mg/kg)						
ALUMINUM	NA	NA	1020	10600	65-SB07-04	19/19
ANTIMONY	10.5 U	14.4 U	11.8	11.8	65-TP07	1/19
ARSENIC	2.1 U	2.9 U	2.6	3.3	65-SB06-02	3/19
BARIUM	NA	NA	2.7	38.3	65-SB06-02	19/19
BERYLLIUM	0.21 U	0.29 U	ND	ND		0/19
CADMIUM	1 U	1.4 U	1.3	1.3	65-TP04	2/19
CALCIUM	57.4 U	57.4 U	49.8	1350	65-SB06-02	18/19
CHROMIUM	2.3 U	2.4 U	2.6	17.3	65-SB07-04	16/19
COBALT	4.3 U	8.7 U	11.5	11.5	65-TP07	1/19
COPPER	2.1 U	2.7 U	7.7	672	65-TP07	8/19
IRON	NA	NA	236 J	31300	65-SB06-02	19/19
LEAD	NA	NA	1.6	539	65-SB06-02	19/19
MAGNESIUM	NA	NA	23.8	410	65-SB07-04	19/19
MANGANESE	NA	NA	2	471	65-SB06-02	19/19
MERCURY	0.1 U	0.14 U	ND	ND		0/19
NICKEL	4.2 U	5.7 U	4.8	243	65-SB06-02	3/19
POTASSIUM	210 U	287 U	253	453	65-SB07-04	4/19
SELENIUM	1 U	1.4 U	1.5	1.5	65-TP07	1/19
SILVER	1 U	1.4 U	4.2	4.2	65-TP07	1/19
SODIUM	43.5 U	48 U	50.8	130	65-SB07-04	5/19
THALLIUM	2.1 U	2.9 U	4.2	4.2	65-SB06-02	1/19
VANADIUM	2.2 U	2.4 U	3.1	27.2	65-SB07-04	15/19
ZINC	3.7 U	6.9 U	2.5 J	764	65-SB06-02	16/19

APPENDIX 0.5 GROUNDWATER ORGANICS

LOCATION	65-DW01-01	65-DW02-01	65-DW02-02	65-DW04-01	65-MW01A-01	65-MW02A-01
DATE COLLECTED	05/08/95	05/09/95	05/18/95	05/16/95	05/08/95	05/09/95
VOLATILES (ug/L)						
CHLOROMETHANE	10 U	10 U				
BROMOMETHANE	10 U	10 U				
VINYL CHLORIDE	10 U	10 U				
CHLOROETHANE	10 UJ	10 U	10 U	10 U	10 UJ	10 U
METHYLENE CHLORIDE	10 U	1 J	10 U	10 U	10 U	1 J
ACETONE	10 U	5 J	5 J	10 U	10 U	5 J
CARBON DISULFIDE	10 U	10 U				
1,1-DICHLOROETHENE	10 U	10 U				
1,1-DICHLOROETHANE	10 U	10 U				
1,2-DICHLOROETHENE	10 U	10 U	10 U	10 U	10. U	10 U
CHLOROFORM	10 U	10 U				
1,2-DICHLOROETHANE	2 J	2 J	10 U	10 U	2 J	10 U
2-BUTANONE	10 U	10 U				
1,1,1-TRICHLOROETHANE	10 U	10 U	10 U	10 U	10 U	10 U
CARBON TETRACHLORIDE	10 U	10 U	10 U	10 U	10 U	10 U
BROMODICHLOROMETHANE	10 U	10 U	10 U	10 U	10 U	10 U
1,2-DICHLOROPROPANE	10 U	10 U				
CIS-1,3-DICHLOROPROPENE	10 U	10 U	10 U	10 U	10 U	10 U
TRICHLOROETHENE	10 U	10 U				
DIBROMOCHLOROMETHANE	10 U	10 U	10 U	10 U	10 U	10 U
1,1,2-TRICHLOROETHANE	10 U	10 U	10 U	10 U	10 U	10 U
BENZENE	10 U	10 U				
TRANS-1,3-DICHLOROPROPENE	10 U	10 U	10 U	10 U	10 U	10 U
BROMOFORM	10 U	10 U				
4-METHYL-2-PENTANONE	10 U	10 U	10 U	10 U	10 U	10 U
2-HEXANONE	10 U	10 U	· 10 U	10 U	10 U	10 U
TETRACHLOROETHENE	10 U	10 U				
1,1,2,2-TETRACHLOROETHANE	10 U	10 U	10 U	10 U	10 U	10 U
TOLUENE	10 U	10 U				
CHLOROBENZENE	10 U	10 U				
ETHYLBENZENE	10 U	10 U				
STYRENE	10 U	10 U				
TOTAL XYLENES	10 U	10 U				

LOCATION	GE MANO2 04	CE BRAIO A A OA	OF \$80,050 04	OF 14141004 04	05 104074 04
LOCATION DATE COLLECTED	65-MW03-01 05/09/95	65-MW04A-01 05/16/95	65-MW05A-01 05/09/95	65-MW06A-01 05/09/95	65-MW07A-01 05/09/95
	00/00/00	\ \ \	00/09/90	00/09/90	00/03/30
VOLATILES (ug/L)					
CHLOROMETHANE	10 U	10 U	10 U	10 U	10 U
BROMOMETHANE	10 U	10 U	10 U	10 U	10 U
VINYL CHLORIDE	10 U	10 · U	10 U	10 U	10 U
CHLOROETHANE	10 U	10 U	10 U	10 U	10 U
METHYLENE CHLORIDE	1 J	10 U	1 J	2 J	1 J
ACETONE	7 J	14 U	5 J	7 J	5 J
CARBON DISULFIDE	10 U	5 J	10 U	10 U	10 U
1,1-DICHLOROETHENE	10 U	10 U	10 U	10 U	10 U
1,1-DICHLOROETHANE	10 U	10 U	10 U	10 U	10 U
1,2-DICHLOROETHENE	10 U	10 U	10 U	10 U	10 U
CHLOROFORM	10 U	10 U	10 U	10 U	10 U
1,2-DICHLOROETHANE	2 J	2 J	2 J	2 J	2 J
2-BUTANONE	1 J	10 U	1 J	1 J	10 U
1,1,1-TRICHLOROETHANE	10 U	10 U	10 U	10 U	10 U
CARBON TETRACHLORIDE	10 U	10 U	10 U	10 U	10 U
BROMODICHLOROMETHANE	10 U	10 U	10 U	10 U	10 U
1,2-DICHLOROPROPANE	10 U	10 U	10 U	10 U	10 U
CIS-1,3-DICHLOROPROPENE	10 U	10 U	10 U	10 U	10 U
TRICHLOROETHENE	10 U	10 U	10 U	10 U	10 U
DIBROMOCHLOROMETHANE	10 U	10 U	10 U	10 U	10 U
1,1,2-TRICHLOROETHANE	10 U	10 U	10 U	10 U	10 U
BENZENE	10 U	10 U	10 U	10 U	10 U
TRANS-1,3-DICHLOROPROPENE	10 U	10 U	10 U	10 U	10 U
BROMOFORM	10 U	10 U	10 U	10 U	10 U
4-METHYL-2-PENTANONE	10 U	10 U	10 U	10 U	10 U
2-HEXANONE	10 U	10 U	10 U	10 U	10 U
TETRACHLOROETHENE	10 U	10 U	10 U	10 U	10 U
1,1,2,2-TETRACHLOROETHANE	10 U	10 U	10 U	10 U	10 U
TOLUENE	10 U	10 U	10 U	10 U	10 U
CHLOROBENZENE	10 U	10 U	10 U	10 U	10 U
ETHYLBENZENE	10 U	10 U	10 U	10 U	10 U
STYRENE	10 U	10 U	10 U	10 U	10 U
TOTAL XYLENES	10 U	10 _, U	10 U	10 U	10 U

LOCATION DATE COLLECTED	MINIMUM NONDETECTED	MAXIMUM NONDETECTED	MINIMUM DETECTED	MAXIMUM DETECTED	LOCATION OF MAXIMUM DETECTED	FREQUENCY OF DETECTION
VOLATILES (ug/L)						
CHLOROMETHANE	10 U	10 U	ND	ND		0/11
BROMOMETHANE	10 U	10 U	ND	ND		0/11
VINYL CHLORIDE	10 U	10 U	ND	ND		0/11
CHLOROETHANE	10 UJ	10 UJ	ND	ND	05.184001.04	0/11
METHYLENE CHLORIDE	10 U	10 U	1 J	2 J	65-MW06A-01	6/11
ACETONE	10 U	14 U	5 J	7 J	65-MW06A-01	7/11
CARBON DISULFIDE	10 U	10 U	5 J	5 J	65-MW04A-01	1/11
1,1-DICHLOROETHENE	10 U	10 U	ND	ND		0/11
1,1-DICHLOROETHANE	10 U	10 U	ND	ND		0/11
1,2-DICHLOROETHENE	10 U	10 U	ND	ND		0/11
CHLOROFORM	10 U	10 U	ND	ND	05.454654.04	0/11
1,2-DICHLOROETHANE	10 U	10 U	2 J	2 J	65-MW07A-01	8/11
2-BUTANONE	10 U	10 U	1 J	1 J	65-MW06A-01	3/11
1,1,1-TRICHLOROETHANE	10 U	10 U	ND	ND		0/11
CARBON TETRACHLORIDE	10 U	10 U	ND	ND		0/11
BROMODICHLOROMETHANE	10 U	10 U	ND	ND		0/11
1,2-DICHLOROPROPANE	10 U	10 U	ND	ND		0/11
CIS-1,3-DICHLOROPROPENE	10 U	10 U	ND	ND		0/11
TRICHLOROETHENE	10 U	10 U	ND	ND		0/11
DIBROMOCHLOROMETHANE	10 U	10 U	ND	ND		0/11
1,1,2-TRICHLOROETHANE	10 U	10 U	ND	ND		0/11
BENZENE	10 U	10 U	ND	ND		0/11
TRANS-1,3-DICHLOROPROPENE	10 U	10 U	ND	ND		0/11
BROMOFORM	10 U	10 U	ND	ND		0/11
4-METHYL-2-PENTANONE	10 U	10 U	ND	ND		0/11
2-HEXANONE	10 U	10 U	ND	ND		0/11
TETRACHLOROETHENE	10 U	10 U	ND	ND		0/11
1,1,2,2-TETRACHLOROETHANE	10 U	10 U	ND	ND		0/11
TOLUENE	10 U	10 U	ND	ND		0/11
CHLOROBENZENE	10 U	10 U	ND	ND		0/11
ETHYLBENZENE	10 U	10 U	ND	ND		0/11
STYRENE	10 U	10 U	ND	ND		0/11
TOTAL XYLENES	10 U	10 U	ND	ND		0/11

FREQUENCY OF DETECTION SUMMARY GROUNDWATER

SITE 65 - ENGINEER AREA DUMP REMEDIAL INVESTIGATION, CTO-0312 MCB, CAMP LEJUENE, NORTH CAROLINA TCL ORGANICS

LOCATION DATE COLLECTED	65-DW01-01 05/08/95	65-DW02-01 05/09/95	65-DW02-02 05/18/95	65-DW04-01 05/16/95	65-MW01A-01 05/08/95	65-MW02A-01 05/09/95
SEMIVOLATILES (ug/L)	40.11	40.11	40.11	10 U	10 U	10 U
PHENOL	10 U	10 U	10 U 10 U	10 U	10 U	10 U
BIS(2-CHLOROETHYL)ETHER	10 U	10 U		10 U	10 U	10 U
2-CHLOROPHENOL	10 U	10 U	10 U 10 U	10 U	10 U	10 U
1,3-DICHLOROBENZENE	10 U	10 U			10 U	10 U
1,4-DICHLOROBENZENE	10 U	10 U	10 U	10 U 10 U	10 U	10 U
1,2-DICHLOROBENZENE	10 U	10 U	10 U			10 U
2-METHYLPHENOL	10 U	10 U	10 U	10 U	10 U 10 U	10 U
2,2'-OXYBIS(1-CHLOROPROPANE)	10 U	10 U	10 U	10 U		
4-METHYLPHENOL	10 U	10 U				
N-NITROSO-DI-N-PROPYLAMINE	10 U	10 U	10 U	10 U	10 U	10 U
HEXACHLOROETHANE	10 U	10 U				
NITROBENZENE	10 U	10 U				
ISOPHORONE	10 U	10 U				
2-NITROPHENOL	10 U	10 U				
2,4-DIMETHYLPHENOL	10 U	10 U				
BIS(2-CHLOROETHOXY)METHANE	10 U	10 U	10 U	10 U	10 U	10 U
2,4-DICHLOROPHENOL	10 U	10 U				
1,2,4-TRICHLOROBENZENE	10 U	10 U				
NAPHTHALENE	10 U	10 U	10 U	3 J	10 U	10 U
4-CHLOROANILINE	10 U	10 U				
HEXACHLOROBUTADIENE	10 U	10 U				
4-CHLORO-3-METHYLPHENOL	10 U	10 U	10 U	10 U	10 U	, 10 U
2-METHYLNAPHTHALENE	10 U	10 U				
HEXACHLOROCYCLOPENTADIENE	10 U	10 U	10 U	10 R	10 U	10 U
2,4,6-TRICHLOROPHENOL	10 U	10 U				
2,4,5-TRICHLOROPHENOL	25 U	25 U				
2-CHLORONAPHTHALENE	10 U	10 U				
2-NITROANILINE	25 U	25 U				
DIMETHYL PHTHALATE	10 U	10 U				
ACENAPHTHYLENE	10 U	10 U				
2,6-DINITROTOLUENE	10 U	10 U				
3-NITROANILINE	25 U	25 U				
ACENAPHTHENE	10 U	10 U				
2,4-DINITROPHENOL	25 UJ	25 U	25 U	25 R	25 UJ	25 U
4-NITROPHENOL	25 U	25 U				
DIBENZOFURAN	10 U	10 U				
	-					

FREQUENCY OF DETECTION SUMMARY GROUNDWATER

SITE 65 - ENGINEER AREA DUMP REMEDIAL INVESTIGATION, CTO-0312

MCB, CAMP LEJUENE, NORTH CAROLINA

TCL		

LOCATION DATE COLLECTED	65-DW01-01 05/08/95	65-DW02-01 05/09/95	65-DW02-02 05/18/95	65-DW04-01 05/16/95	65-MW01A-01 05/08/95	65-MW02A-01 05/09/95
SEMIVOLATILES (ug/L) cont.						
2,4-DINITROTOLUENE	10 U	10 U				
DIETHYL PHTHALATE	10 U	10 U				
4-CHLOROPHENYLPHENYL ETHER	10 U	10 U	10 U	10 U	10 U	10 U
FLUORENE	10 U	10 U				
4-NITROANILINE	25 U	25 U				
4,6-DINITRO-2-METHYLPHENOL	25 U	25 U	25 U	25 U	25 U	25 U
N-NITROSODIPHENYLAMINE	10 U	10 U	10 U	10 U	10 U	10 U
4-BROMOPHENYL PHENYL ETHER	10 U	10 U	10 U	10 U	10 Ü	10 U
HEXACHLOROBENZENE	10 U	10 U				
PENTACHLOROPHENOL	25 U	25 U				
PHENANTHRENE	10 U	10 U				
ANTHRACENE	10 U	10 U				
CARBAZOLE	10 U	10 U				
DI-N-BUTYL PHTHALATE	10 U	3 J	10 U	10 U	10 U	10 U
FLUORANTHENE	10 U	10 U				
PYRENE	10 U	10 U				
BUTYL BENZYL PHTHALATE	10 U	10 U	. 10 U	10 U	10 U	10 U
3,3'-DICHLOROBENZIDINE	10 U	10 U	10 U	10 U	10 U	10 U
BENZO(A)ANTHRACENE	10 U	10 U				
CHRYSENE	10 U	10 U				
BIS(2-ETHYLHEXYL)PHTHALATE	1 J	4 J	10 U	10 U	1 J	10 U
DI-N-OCTYL PHTHALATE	10 U	10 U				
BENZO(B)FLUORANTHENE	10 U	10 U				
BENZO(K)FLUORANTHENE	10 U	10 U				
BENZO(A)PYRENE	10 U	10 U				
INDENO(1,2,3-CD)PYRENE	10 U	. 10 U	10 U	10 U	10 U	10 U
DIBENZO(A,H)ANTHRACENE	10 U	10 U	10 U	10 U	10 U	10 U
BENZO(G,H,I)PERYLENE	10 U	10 U				

FREQUENCY OF DETECTION SUMMARY GROUNDWATER

SITE 65 - ENGINEER AREA DUMP REMEDIAL INVESTIGATION, CTO-0312 MCB, CAMP LEJUENE, NORTH CAROLINA TCL ORGANICS

LOCATION DATE COLLECTED	65-MW03-01 05/09/95	65-MW04A-01 05/16/95	65-MW05A-01 05/09/95	65-MW06A-01 05/09/95	65-MW07A-01 05/09/95
SEMIVOLATILES (ug/L)					
PHENOL	10 U	10 U	10 U	10 U	10 U
BIS(2-CHLOROETHYL)ETHER	10 U	10 Ü	10 U	10 U	10 U
2-CHLOROPHENOL	10 U	10 U	10 U	10 U	10 U
1,3-DICHLOROBENZENE	10 U	10 U	10 U	10 Ü	10 U
1,4-DICHLOROBENZENE	10 U	10 U	10 U	10 U	10 U
1,2-DICHLOROBENZENE	10 U	10 U	10 U	10 U	10 U
2-METHYLPHENOL	10 U	10 U	10 U	10 U	10 U
2,2'-OXYBIS(1-CHLOROPROPANE)	10 U	10 U	10 U	10 U	10 U
4-METHYLPHENOL	10 U	10 U	10 U	10 U	10 U
N-NITROSO-DI-N-PROPYLAMINE	10 U	10 U	10 U	10 U	10 U
HEXACHLOROETHANE	10 U	10 U	10 U	10 U	10 U
NITROBENZENE	10 U	10 U	10 U	10 U	10 U
ISOPHORONE	10 U	10 U	10 U	10 U	10 U
2-NITROPHENOL	10 U	10 U	10 U	10 U	10 U
2.4-DIMETHYLPHENOL	10 U	10 U	10 U	10 U	10 U
BIS(2-CHLOROETHOXY)METHANE	10 U	10 U	10 U	10 U	10 U
2.4-DICHLOROPHENOL	10 U	10 U	10 U	10 U	10 U
1.2.4-TRICHLOROBENZENE	10 U	10 U	10 U	10 U	10 U
NAPHTHALENE	10 U	10 U	10 U	10 U	10 U
4-CHLOROANILINE	10 U	10 U	10 U	10 U	10 U
HEXACHLOROBUTADIENE	10 U	10 U	10 U	10 U	10 U
4-CHLORO-3-METHYLPHENOL	10 U	10 U	10 U	10 U	10 U
2-METHYLNAPHTHALENE	10 U	10 U	10 U	10 U	10 U
HEXACHLOROCYCLOPENTADIENE	10 U	10 R	10 U	10 U	10 U
2,4,6-TRICHLOROPHENOL	10 U	10 U	10 U	10 U	10 U
2,4,5-TRICHLOROPHENOL	25 U	. 25 U	25 U	25 U	25 U
2-CHLORONAPHTHALENE	10 U	10 U	10 U	10 U	10 U
2-NITROANILINE	25 U	25 U	25 U	25 U	25 U
DIMETHYL PHTHALATE	10 U	10 U	10 U	10 U	10 U
ACENAPHTHYLENE	10 U	10 U	10 U	10 U	10 U
2,6-DINITROTOLUENE	10 U	10 U	10 U	10 U	10 U
3-NITROANILINE	25 U	25 U	25 U	25 U	25 U
ACENAPHTHENE	10 U	10 U	10 U	10 U	10 U
2,4-DINITROPHENOL	25 U	25 R	25 U	25 U	25 U
4-NITROPHENOL	25 U	25 U	25 U	25 U	25 U
DIBENZOFURAN	10 U	10 U	10 U	10 U	10 U

LOCATION DATE COLLECTED	65-MW03-01 05/09/95	65-MVV04A-01 05/16/95	65-MVV05A-01 05/09/95	65-MW06A-01 05/09/95	65-MW07A-01 05/09/95
SEMIVOLATILES (ug/L) cont.					
2,4-DINITROTOLUENE	10 U	10 U	10 U	10 U	10 U
DIETHYL PHTHALATE	10 U	10 U	10 U	10 U	10 U
4-CHLOROPHENYLPHENYL ETHER	10 U	10 U	10 U	10 U	10 U
FLUORENE	10 U	10 U	10 Ü	10 U	10 U
4-NITROANILINE	25 U	25 U	25 U	25 U	25 U
4,6-DINITRO-2-METHYLPHENOL	25 U	25 U	25 U	25 U	25 U
N-NITROSODIPHENYLAMINE	10 U	10 U	10 U	10 U	10 U
4-BROMOPHENYL PHENYL ETHER	10 U	10 U	10 U	10 U	10 U
HEXACHLOROBENZENE	10 U	10 U	10 U	10 U	10 U
PENTACHLOROPHENOL	25 U	25 U	25 U	25 U	25 U
PHENANTHRENE	10 U	10 U	10 U	10 U	10 U
ANTHRACENE	10 U	10 U	10 U	10 U	10 U
CARBAZOLE	10 U	10 U	10 U	10 U	10 U
DI-N-BUTYL PHTHALATE	2 J	10 U	10 U	10 U	6 J
FLUORANTHENE	10 U	10 U	10 U	10 U	10 U
PYRENE	10 U	10 U	10 U	10 U	10 U
BUTYL BENZYL PHTHALATE	10 U	10 U	10 U	10 U	10 U
3,3'-DICHLOROBENZIDINE	10 U	10 U	10 U	10 U	10 U
BENZO(A)ANTHRACENE	10 U	10 U	10 U	10 U	10 U
CHRYSENE	10 U	10 U	10 U	10 U	10 U
BIS(2-ETHYLHEXYL)PHTHALATE	2 J	10 U	10 U	10 U	6 J
DI-N-OCTYL PHTHALATE	10 U	10 U	10 U	10 U	10 U
BENZO(B)FLUORANTHENE	10 U	10 U	10 U	10 U	10 U
BENZO(K)FLUORANTHENE	10 U	10 U	10 U	10 U	10 U
BENZO(A)PYRENE	10 U	10 U	10 U	10 U	10 U
INDENO(1,2,3-CD)PYRENE	10 U	. 10 U	10 U	. 10 U	10 U
DIBENZO(A,H)ANTHRACENE	10 U	10 U	10 U	10 U	10 U
BENZO(G,H,I)PERYLENE	10 U	10 U	10 U	10 U	10 U

FREQUENCY OF DETECTION SUMMARY GROUNDWATER SITE 65 - ENGINEER AREA DUMP

REMEDIAL INVESTIGATION, CTO-0312 MCB, CAMP LEJUENE, NORTH CAROLINA TCL ORGANICS

			LOCATION OF	EDEOUENOV		
LOCATION DATE COLLECTED	MINIMUM NONDETECTED	MAXIMUM NONDETECTED	MINIMUM DETECTED	MAXIMUM DETECTED	LOCATION OF MAXIMUM DETECTED	FREQUENCY OF DETECTION
SEMIVOLATILES (ug/L)						
PHENOL	10 U	10 U	ND	ND		0/11
BIS(2-CHLOROETHYL)ETHER	10 U	10 U	ND	ND		0/11
2-CHLOROPHENOL	10 U	10 U	ND	ND		0/11
1,3-DICHLOROBENZENE	10 U	10 U	ND	ND ND		0/11
1,4-DICHLOROBENZENE	10 U	10 U	ND	ND ND		0/11
1,2-DICHLOROBENZENE	10 U	10 U	ND	ND		0/11
2-METHYLPHENOL	10 U	10 U	ND	ND		0/11
2,2'-OXYBIS(1-CHLOROPROPANE)	10 U	10 U	ND	ND		0/11
4-METHYLPHENOL	10 U	10 U	ND	ND		0/11
N-NITROSO-DI-N-PROPYLAMINE	10 U	10 U	ND	ND		0/11
HEXACHLOROETHANE	10 U	10 U	ND	ND	•	0/11
NITROBENZENE	10 U	10 U	ND	ND		0/11
ISOPHORONE	10 U	10 U	ND	ND		0/11
2-NITROPHENOL	10 U	10 U	ND	ND		0/11
2,4-DIMETHYLPHENOL	10 U	10 U	ND	ND		0/11
BIS(2-CHLOROETHOXY)METHANE	10 U	10 U	ND	ND		0/11
2,4-DICHLOROPHENOL	10 U	10 U	ND	ND		0/11
1,2,4-TRICHLOROBENZENE	10 U	10 U	ND	ND		0/11
NAPHTHALENE	10 U	10 U	3 J	3 J	65-DW04-01	1/11
4-CHLOROANILINE	10 U	10 U	ND	ND		0/11
HEXACHLOROBUTADIENE	10 U	10 U	ND	ND		0/11
4-CHLORO-3-METHYLPHENOL	10 U	10 U	ND	ND		0/11
2-METHYLNAPHTHALENE	10 U	10 U	ND	ND		0/11
HEXACHLOROCYCLOPENTADIENE		10 U	ND	ND		0/9
2,4,6-TRICHLOROPHENOL	10 U	10 U	ND	ND		0/11
2,4,5-TRICHLOROPHENOL	25 U	25 U	ND	ND		0/11
2-CHLORONAPHTHALENE	10 U	10 U	ND	ND		0/11
2-NITROANILINE	25 U	25 U	ND	ND		0/11
DIMETHYL PHTHALATE	10 U	10 U	ND	ND		0/11
ACENAPHTHYLENE	10 U	10 U	ND	ND		0/11
2,6-DINITROTOLUENE	10 U	10 U	ND	ND		0/11
3-NITROANILINE	25 U	25 U	ND	ND		0/11
ACENAPHTHENE	10 U	10 U	ND	ND		0/11
2,4-DINITROPHENOL	25 UJ	25 UJ	ND	ND		0/9
4-NITROPHENOL	25 U	25 U	ND	ND		0/11
DIBENZOFURAN	10 U	10 U	ND	ND		0/11

LOCATION DATE COLLECTED	MINIMUM NONDETECTED	MAXIMUM NONDETECTED	MINIMUM DETECTED	MAXIMUM DETECTED	LOCATION OF MAXIMUM DETECTED	FREQUENCY OF DETECTION
SEMIVOLATILES (ug/L) cont.				•		
2,4-DINITROTOLUENE	10 U	10 U	ND	ND		0/11
DIETHYL PHTHALATE	10 U	10 U	ND	ND		0/11
4-CHLOROPHENYLPHENYL ETHER	10 U	10 U	ND	ND		0/11
FLUORENE	10 U	10 U	ND	ND		0/11
4-NITROANILINE	25 U	25 U	ND	ND		0/11
4,6-DINITRO-2-METHYLPHENOL	25 U	25 U	ND	ND		0/11
N-NITROSODIPHENYLAMINE	10 U	10 U	ND	ND		0/11
4-BROMOPHENYL PHENYL ETHER	10 U	10 U	ND	ND		0/11
HEXACHLOROBENZENE	10 U	10 U	ND	ND		0/11
PENTACHLOROPHENOL	25 U	25 U	ND	ND		0/11
PHENANTHRENE	10 U	10 U	ND	ND		0/11
ANTHRACENE	10 U	10 U	ND	ND		0/11
CARBAZOLE	10 U	10 U	ND	ND		0/11
DI-N-BUTYL PHTHALATE	10 U	10 U	2 J	6 J	65-MW07A-01	3/11
FLUORANTHENE	10 U	10 U	ND	ND		0/11
PYRENE	10 U	10 บ	ND	ND		0/11
BUTYL BENZYL PHTHALATE	10 U	10 U	ND	ND		0/11
3,3'-DICHLOROBENZIDINE	10 U	10 U	ND	ND		0/11
BENZO(A)ANTHRACENE	10 U	10 U	ND	ND		0/11
CHRYSENE	10 U	10 U	ND	ND		0/11
BIS(2-ETHYLHEXYL)PHTHALATE	10 U	10 U	1 J	6 J	65-MW07A-01	5/11
DI-N-OCTYL PHTHALATE	10 U	10 U	ND	ND		0/11
BENZO(B)FLUORANTHENE	10 U	10 U	ND	ND		0/11
BENZO(K)FLUORANTHENE	10 U	10 U	ND	ND		0/11
BENZO(A)PYRENE	10 U	10 U	ND	ND		0/11
INDENO(1,2,3-CD)PYRENE	10 U	10 U	ND	ND		0/11
DIBENZO(A,H)ANTHRACENE	10 U	10 U	ND	ND		0/11
BENZO(G,H,I)PERYLENE	10 U	10 U	ND	ND		0/11

LOCATION DATE COLLECTED	65-DW01-01 05/08/95	65-DW02-01 05/09/95	65-DW02-02 05/18/95	65-DW04-01 05/16/95	65-MW01A-01 05/08/95	65-MW02A-01 05/09/95
PESTICIDE/PCBS (ug/L)						
ALPHA-BHC	0.05 UJ	0.05 U	0.05 U	0.05 UJ	0.05 UJ	0.05 U
BETA-BHC	0.05 UJ	0.05 U	0.05 U	0.05 UJ	0.05 UJ	0.05 U
DELTA-BHC	0.05 UJ	0.05 U	0.05 U	0.05 UJ	0.05 UJ	0.05 U
GAMMA-BHC(LINDANE)	0.05 UJ	0.05 U	0.05 U	0.05 UJ	0.05 UJ	0.05 U
HEPTACHLOR	0.05 UJ	0.05 U	0.05 U	0.05 UJ	0.05 UJ	0.05 U
ALDRIN	0.05 UJ	0.05 U	0.05 U	0.05 UJ	0.05 UJ	0.05 U
HEPTACHLOR EPOXIDE	0.05 UJ	0.05 U	0.05 U	0.05 UJ	0.05 UJ	0.05 U
ENDOSULFAN I	0.05 UJ	0.05 U	0.05 U	0.05 UJ	0.05 UJ	0.05 U
DIELDRIN	0.1 UJ	0.1 U	0.1 U	0.1 UJ	0.1 UJ	0.1 U
4,4'-DDE	0.1 UJ	0.1 U	0.1 U	0.1 UJ	0.1 _. UJ	0.1 U
ENDRIN	0.1 UJ	0.1 U	0.1 U	0.1 UJ	0.1 UJ	0.1 U
ENDOSULFAN II	0.1 UJ	0.1 U	0.1 U	0.1 UJ	0.1 UJ	0.1 U
4,4'-DDD	0.1 UJ	0.1 U	0.1 U	0.1 UJ	0.1 UJ	0.1 U
ENDOSULFAN SULFATE	0.1 UJ	0.1 U	0.1 U	0.1 UJ	0.1 UJ	0.1 U
4,4'-DDT	0.1 UJ	0.1 U	0.1 U	0.1 UJ	0.1 UJ	0.1 U
METHOXYCHLOR	0.5 UJ	0.5 U	0.5 U	0.5 UJ	0.5 UJ	0.5 U
ENDRIN KETONE	0.1 UJ	0.1 U	0.1 U	0.1 UJ	0.1 UJ	0.1 U
ENDRIN ALDEHYDE	0.1 UJ	0.1 U	0.1 U	0.1 UJ	0.1 UJ	0.1 U
ALPHA CHLORDANE	0.05 UJ	0.05 U	0.05 U	0.05 UJ	0.05 UJ	0.05 U
GAMMA CHLORDANE	0.05 UJ	0.05 U	0.05 U	0.05 UJ	0.05 UJ	0.05 U
TOXAPHENE	5 UJ	5 U	5 U	5 UJ	5 UJ	5 U
PCB-1016	1 UJ	1 U	1 U	1 UJ	1 UJ	1 U
PCB-1221	2 UJ	2 U	2 U	2 UJ	2 UJ	2 U
PCB-1232	1 UJ	1 U	1 U	1 UJ	1 UJ	1 U
PCB-1242	1 UJ	. 1 U	1 U	1 UJ	1 UJ	1 U
PCB-1248	1 UJ	1 U	1 U	1 UJ	1 UJ	1 U
PCB-1254	1 UJ	1 U	1 U	1 UJ	1 UJ	1 U
PCB-1260	1 UJ	1 U	1 U	1 UJ	1 UJ	1 U

LOCATION DATE COLLECTED	65-MW03-01 05/09/95	65-MW04A-01 05/16/95	65-MW05A-01 05/09/95	65-MVV06A-01 05/09/95	65-MW07A-01 05/09/95
PESTICIDE/PCBS (ug/L)					
ALPHA-BHC	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U
BETA-BHC	0.05 U	0.05 U	0.05 U	0.05 ป	0.05 U
DELTA-BHC	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U
GAMMA-BHC(LINDANE)	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U
HEPTACHLOR	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U
ALDRIN	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U
HEPTACHLOR EPOXIDE	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U
ENDOSULFAN I	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U
DIELDRIN	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U
4,4'-DDE	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U
ENDRIN	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U
ENDOSULFAN II	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U
4,4'-DDD	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U
ENDOSULFAN SULFATE	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U
4,4'-DDT	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U
METHOXYCHLOR	0.5 U	0.5 UJ	0.5 U	0.5 U	0.5 U
ENDRIN KETONE	0.1 U	0.1 U	0.1 U	0,1 U	0.1 U
ENDRIN ALDEHYDE	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U
ALPHA CHLORDANE	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U
GAMMA CHLORDANE	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U
TOXAPHENE	5 U	5 U	5 U	5 U	5 U
PCB-1016	1 U	1 U	1 U	1 U	1 U
PCB-1221	2 U	2 U	2 U	2 U	2 U
PCB-1232	1 U	1 U	1 U	. 1 U	1·U
PCB-1242	1 U	. 1 U	1 U	1 U	1 U
PCB-1248	1 U	1 U	1 U	1 U	1 U
PCB-1254	1 U	1 U	1 U	1 U	1 U
PCB-1260	1 U	1 U	1 U	1 U	1 U

LOCATION DATE COLLECTED	MINIMUM NONDETECTED	MAXIMUM NONDETECTED	MINIMUM DETECTED	MAXIMUM DETECTED	LOCATION OF MAXIMUM DETECTED	FREQUENCY OF DETECTION
PESTICIDE/PCBS (ug/L)						
ALPHA-BHC	0.05 UJ	0.05 UJ	ND	ND		0/11
BETA-BHC	0.05 UJ	0.05 UJ	ND	ND		0/11
DELTA-BHC	0.05 UJ	0.05 UJ	ND	ND		0/11
GAMMA-BHC(LINDANE)	0.05 UJ	0.05 UJ	ND	ND		0/11
HEPTACHLOR	0.05 UJ	0.05 UJ	ND	ND		0/11
ALDRIN	0.05 UJ	0.05 UJ	ND	ND		0/11
HEPTACHLOR EPOXIDE	0.05 UJ	0.05 UJ	ND	ND		0/11
ENDOSULFAN I	0.05 UJ	0.05 UJ	ND	ND		0/11
DIELDRIN	0.1 UJ	0.1 UJ	ND	ND		0/11
4,4'-DDE	0.1 UJ	0.1 UJ	ND	ND		0/11
ENDRIN	0.1 UJ	0.1 UJ	ND	ND		0/11
ENDOSULFAN II	0.1 UJ	0.1 UJ	ND	ND		0/11
4.4'-DDD	0.1 UJ	0.1 UJ	ND	ND		0/11
ENDOSULFAN SULFATE	0.1 UJ	0.1 UJ	ND	ND		0/11
4,4'-DDT	0.1 UJ	0.1 UJ	ND	ND		0/11
METHOXYCHLOR	0.5 UJ	0.5 UJ	ND	ND		0/11
ENDRIN KETONE	0.1 UJ	0.1 UJ	ND	ND		0/11
ENDRIN ALDEHYDE	0.1 UJ	0.1 UJ	ND	ND		0/11
ALPHA CHLORDANE	0.05 UJ	0.05 UJ	ND	ND		0/11
GAMMA CHLORDANE	0.05 UJ	0.05 UJ	ND	ND		0/11
TOXAPHENE	5 UJ	5 UJ	ND	ND		0/11
PCB-1016	1 UJ	1 UJ	ND	ND		0/11
PCB-1221	2 UJ	2 UJ	ND	ND		0/11
PCB-1232	1 UJ	1 UJ	ND	ND		0/11
PCB-1242	1 UJ	· 1 UJ	ND	ND		0/11
PCB-1248	1 UJ	1 UJ	ND	ND		0/11
PCB-1254	1 ŪJ	1 UJ	ND	ND		0/11
PCB-1260	1 UJ	1 UJ	ND	ND		0/11

APPENDIX O.6 GROUNDWATER METALS

LOCATION DATE COLLECTED	65-DW01-01 05/08/95	65-DW02-01 05/09/95	65-DW02-02 05/18/95	65-DW04-01 05/16/95	65-MW01A-01 05/08/95	65-MVV02A-01 05/09/95
ANALYTES (ug/L)						
ALUMINUM `	233	40 U	40 U	322	40 U	68.5
ANTIMONY	50 U	50 U				
ARSENIC	10 U	10 U				
BARIUM	15.6 U	33.6	32.6	17.9	54.6	27.7
BERYLLIUM	1 U	1 U	1 U	1 U	1 U	1 U
CADMIUM	5 U	5 U	5 U	5 U	5 U	5 U
CALCIUM	52000	107000	116000	33600	146000	58200
CHROMIUM	10 U	10 U	10 U	10 U	10.2	10 U
COBALT	20 U	40.9	52.4	20 U	20.1	20 U
COPPER	10 U	10 U				
IRON	84.4	2060	2300	557	253	6580
LEAD	3 U	3 U	3 U	3.4	3 U	3 U
MAGNESIUM	2030	6120	6400	1200	16200	2470
MANGANESE	4.2	172	186	15.7	178	20.1
MERCURY	0.2 U	0.2 U				
NICKEL	20 U	53.1	59.6	20 U	20 U	20 U
POTASSIUM	3000	2150	2340	2440	5790	1590
SELENIUM	5 U	5 U	5 U	5 U	5 U	5 U
SILVER	5 U	5 U	5 U	5 U	5 U	5 U
SODIUM	6720	11000	11500	8240	10700	6350
THALLIUM	10 U	10 U				
VANADIUM	10 U	10 U				
ZINC	19.4	27.6	58.9	31.8	19.1	20.5

LOCATION DATE COLLECTED	65-MW03-01 05/09/95	65-MW04A-01 05/16/95	65-MW05A-01 05/09/95	65-MW06A-01 05/09/95	65-MW07A-01 05/09/95
ANALYTES (ug/L)					
ALUMINUM	40 U	121	40.3	421	138
ANTIMONY	50 U	50 U	50 U	50 U	50 U
ARSENIC	10 U	10 U	10 U	10 U	10 U
BARIUM	151	21	35.3	25.8	44.3
BERYLLIUM	1 U	1 U	1 ប	1 U	1 U
CADMIUM	5 U	5 U	5 U	5 U	5 U
CALCIUM	50500	2820	21100	2700	30400
CHROMIUM	10	10 U	10 U	10 U	10 U
COBALT	20 U	20 U	20 U	20 U	20.4
COPPER	10 U	10 U	10 U	10 U	10 U
IRON	41.9	57.9 U	232	1730	99.4
LEAD	3 U	3 U	3 U	3 U	3 U
MAGNESIUM	5160	2550	7810	2890	8160
MANGANESE	6.6	3	52.8	28.7	87.8
MERCURY	0.2 U	0.2 U	0.2 U	. 0.2 U	0.2 U
NICKEL	20 U	20 U	20 U	20 U	20 U
POTASSIUM	3650	1000 U	4030	1200	7940
SELENIUM	5 U	5 U	5 U	5 U.	5 U
SILVER	5 U	5 U	5 U	5 U .	5 U
SODIUM	5620	5880	11400	16400	9390
THALLIUM	10 U	10 U	10 U	10 U	10 U
VANADIUM	10 U	10 U	10 U	10 U	10 U
ZINC	11	14.6 U	22.5	17.8	14.5

LOCATION DATE COLLECTED	MINIMUM NONDETECTED	MAXIMUM NONDETECTED	MINIMUM DETECTED	MAXIMUM DETECTED	LOCATION OF MAXIMUM DETECTED	FREQUENCY OF DETECTION
					•	
ANALYTES (ug/L)						
ALUMINUM	40 U	40 U	40.3	421	65-MW06A-01	7/11
ANTIMONY	50 U	50 U	ND	ND		0/11
ARSENIC	10 U	10 U	ND	ND		0/11
BARIUM	15.6 U	15.6 U	17.9	151	65-MW03-01	10/11
BERYLLIUM	1 U	1 U	ND	ND		0/11
CADMIUM	5 U	5 U	ND	ND		0/11
CALCIUM	NA	NA	2700	146000	65-MW01A-01	11/11
CHROMIUM	10 U	10 U	10	10.2	65-MW01A-01	2/11
COBALT	20 U	20 U	20.1	52.4	65-DW02-02	4/11
COPPER	10 U	10 U	ND	ND		0/11
IRON	57.9 U	57.9 U	41.9	6580	65-MW02A-01	10/11
LEAD	3 U	3 U	3.4	3.4	65-DW04-01	1/11
MAGNESIUM	NA	NA	1200	16200	65-MW01A-01	11/11
MANGANESE	NA	NA	3	186	65-DW02-02	11/11
MERCURY	0.2 U	0.2 U	ND	ND		0/11
NICKEL	20 U	20 U	53.1	59.6	65-DW02-02	2/11
POTASSIUM	1000 U	1000 U	1200	7940	65-MW07A-01	10/11
SELENIUM	5 U	5 U	ND	ND		0/11
SILVER	5 U	5 U	ND	ND		0/11
SODIUM	NA	NA	5620	16400	65-MW06A-01	11/11
THALLIUM	10 U	10 U	ND	ND		0/11
VANADIUM	10 U	10 U	ND	ND		0/11
ZINC	14.6 U	14.6 U	11	58,9	65-DW02-02	10/11

LOCATION	65-MW01AF-01
DATE COLLECTED	05/08/95
ANALYTES (ug/L)	
ALUMINUM	40 U
ANTIMONY	50 U
ARSENIC	10 U
BARIUM	61.4
BERYLLIUM	1 U
CADMIUM	5 U
CALCIUM	161000
CHROMIUM	10 U
COBALT	20 U
COPPER	10 U
IRON	187
LEAD	3 U
MAGNESIUM	18300
MANGANESE	182
MERCURY	0.2 Ų
NICKEL	20 U
POTASSIUM	6220
SELENIUM	5 U
SILVER	5 U
SODIUM	11900
THALLIUM	10 U
VANADIUM	10 U
ZINC	5.1 U

APPENDIX 0.7 SURFACE WATER ORGANICS

LOCATION	65-SW04-01	65-SW05-01
DATE COLLECTED	05/15/95	05/16/95
VOLATILES (ug/L)		
CHLOROMETHANE	10 U	10 U
BROMOMETHANE	10 U	10 U
VINYL CHLORIDE	10 U	10 U
CHLOROETHANE	10 U	10 U
METHYLENE CHLORIDE	10 U	10 U
ACETONE	5 J	10 U
CARBON DISULFIDE	10 U	10 U
1,1-DICHLOROETHENE	10 U	10 U
1,1-DICHLOROETHANE	10 U	10 U
1,2-DICHLOROETHENE	10 U	10 U
CHLOROFORM	10 U	10 U
1,2-DICHLOROETHANE	1 J	1 J
2-BUTANONE	10 U	10 U
1,1,1-TRICHLOROETHANE	10 U	10 U
CARBON TETRACHLORIDE	10 U	10 U
BROMODICHLOROMETHANE	10 U	10 U
1,2-DICHLOROPROPANE	10 U	10 U
CIS-1,3-DICHLOROPROPENE	10 U	10 U
TRICHLOROETHENE	10 U	10 U
DIBROMOCHLOROMETHANE	10 U	10 U
1,1,2-TRICHLOROETHANE	10 U	10 U
BENZENE	10 U	10 U
TRANS-1,3-DICHLOROPROPENE	10 U	10 U
BROMOFORM	10 U	10 U
4-METHYL-2-PENTANONE	10 U	10 U
2-HEXANONE	10 U	10 U
TETRACHLOROETHENE	10 U	10 U
1,1,2,2-TETRACHLOROETHANE	10 U	10 U
TOLUENE	10 U	10 U
CHLOROBENZENE	10 U	10 U
ETHYLBENZENE	10 U	10 U
STYRENE	10 U	10 U
TOTAL XYLENES	10 U	10 U

			ICL ORGANICS			
LOCATION DATE COLLECTED	MINIMUM NONDETECTED	MAXIMUM NONDETECTED	MINIMUM DETECTED	MAXIMUM DETECTED	LOCATION OF MAXIMUM DETECTED	FREQUENCY OF DETECTION
VOLATILES (ug/L)						
CHLOROMETHANE	10 U	10 U	ND	ND		0/2
BROMOMETHANE	10 U	10 U	ND	ND		0/2
VINYL CHLORIDE	10 U	10 U	ND	ND		0/2
CHLOROETHANE	10 U	10 U	ND	ND		0/2
METHYLENE CHLORIDE	10 U	10 U	ND	ND		0/2
ACETONE	10 U	10 U	5 J	5 J	65-SW04-01	1/2
CARBON DISULFIDE	10 U	10 U	ND	ND		0/2
1,1-DICHLOROETHENE	10°U	10 U	ND	ND		0/2
1,1-DICHLOROETHANE	10 U	10 U	ND	ND	,	0/2
1,2-DICHLOROETHENE	10 U	10 U	ND	ND .		0/2
CHLOROFORM	10 U	10 U	ND	ND		0/2
1,2-DICHLOROETHANE	NA	NA	1 J	1 J	65-SW05-01	2/2
2-BUTANONE	10 U	10 U	ND	ND		0/2
1,1,1-TRICHLOROETHANE	10 U	10 U	ND	ND		0/2
CARBON TETRACHLORIDE	10 U	10 U	ND	ND		0/2
BROMODICHLOROMETHANE	10 U	10 U	ND	ND		0/2
1,2-DICHLOROPROPANE	10 U	10 U	ND	ND		0/2
CIS-1,3-DICHLOROPROPENE	10 U	10 U	ND	ND		0/2
TRICHLOROETHENE	10 U	10 U	ND	ND		0/2
DIBROMOCHLOROMETHANE	10 U	10 U	ND	ND .		0/2
1,1,2-TRICHLOROETHANE	10 U	10 U	ND	ND		0/2
BENZENE	10 U	10 U	ND	ND		0/2
TRANS-1,3-DICHLOROPROPENE	10 U	10 U	ND	ND		0/2
BROMOFORM	10 U	10 U	ND	ND		0/2
4-METHYL-2-PENTANONE	10 U	10 U	ND	ND		0/2
2-HEXANONE	10 U	. 10 U	ND	ND		0/2
TETRACHLOROETHENE	10 U	10 U	ND	ND		0/2
1,1,2,2-TETRACHLOROETHANE	10 U	10 U	ND	ND		0/2
TOLUENE	10 U	10 U	ND	ND		0/2
CHLOROBENZENE	10 U	10 U	ND	ND		0/2
ETHYLBENZENE	10 U	10 U	ND	ND		0/2
STYRENE	10 U	10 U	ND	ND		0/2
TOTAL XYLENES	10 U	10 U	ND	ND		0/2

10/23/95 6F ^ \ \ \ VOA.WK4

FREQUENCY OF DETECTION SUMMARY SURFACE WATER SITE 65 - ENGINEER AREA DUMP

REMEDIAL INVESTIGATION, CTO-0312 MCB, CAMP LEJUENE, NORTH CAROLINA TCL ORGANICS

LOCATION DATE COLLECTED	65-SW04-01 05/15/95	65-SW05-01 05/16/95
SEMIVOLATILES (ug/L)		
PHENOL	10 U	10 U
BIS(2-CHLOROETHYL)ETHER	10 U	10 U
2-CHLOROPHENOL	10 U	10 U
1,3-DICHLOROBENZENE	10 U	10 U
1,4-DICHLOROBENZENE	10 U	10 U
1,2-DICHLOROBENZENE	10 U	10 U
2-METHYLPHENOL 2,2'-OXYBIS(1-CHLOROPROPANE)	10 U	10 U
2,2'-OXYBIS(1-CHLOROPROPANE)		10 U
4-METHYLPHENOL	10 U	10 U
N-NITROSO-DI-N-PROPYLAMINE	10 U	10 U
HEXACHLOROETHANE	10 U	10 U
NITROBENZENE	10 U	10 U
SUPHORONE	10 U	10 U
HEXACHLOROETHANE NITROBENZENE ISOPHORONE 2-NITROPHENOL 2,4-DIMETHYLPHENOL BIS(2-CHLOROETHOXY)METHANE 2.4-DICHLOROPHENOL	10 U	10 U
2,4-DIMETHTLYHENOL	10 U	10 U
2.4 DIGHT OROBUSHOL	10 U 10 U	10 U
BIS(2-CHLOROETHOXY)METHANE 2,4-DICHLOROPHENOL 1,2,4-TRICHLOROBENZENE NAPHTHALENE 4-CHLOROANILINE HEXACHLOROBUTADIENE 4-CHLORO-3-METHYLPHENOL 2-METHYLNAPHTHALENE	10 U	10 ป 10 ป
1,2,41 RICHLOROBENZENE	10 U	10 U
A-CHI OPOANII INE	10 U	10 U
HEYACHI ORORUTADIENE	10 U	10 U
4-CHI ORO-3-METHYI PHENOI	10 U	10 U
2-METHYLNAPHTHALENE	10 U	10 U
HEXACHLOROCYCL OPENTADIENE	10 U	10 C 10 R
2.4.6-TRICHLOROPHENOL	10 U	10 U
2.4.5-TRICHLOROPHENOL	25 U	25 U
2-CHLORONAPHTHALENE	10 U	10 U
2-NITROANILINE	25 U	25 U
DIMETHYL PHTHALATE	10 U	10 U
ACENAPHTHYLENE	10 U	10 U
2.6-DINITROTOLUENE	10 U	10 U
3-NITROANILINE	25 U	25 U
ACENAPHTHENE	10 U	10 U
2,4-DINITROPHENOL	25 U	25 R
4-NITROPHENOL	25 U	25 U
2-METHYLNAPHTHALENE HEXACHLOROCYCLOPENTADIENE 2,4,6-TRICHLOROPHENOL 2,4,5-TRICHLOROPHENOL 2-CHLORONAPHTHALENE 2-NITROANILINE DIMETHYL PHTHALATE ACENAPHTHYLENE 2,6-DINITROTOLUENE 3-NITROANILINE ACENAPHTHENE 2,4-DINITROPHENOL 4-NITROPHENOL DIBENZOFURAN	10 U	10 U

LOCATION DATE COLLECTED	65-SW04-01 05/15/95	65-SW05-01 05/16/95
SEMIVOLATILES (ug/L) cont. 2,4-DINITROTOLUENE DIETHYL PHTHALATE 4-CHLOROPHENYLPHENYL ETHER FLUORENE 4-NITROANILINE 4,6-DINITRO-2-METHYLPHENOL N-NITROSODIPHENYLAMINE 4-BROMOPHENYL PHENYL ETHER HEXACHLOROBENZENE PENTACHLOROPHENOL PHENANTHRENE ANTHRACENE CARBAZOLE DI-N-BUTYL PHTHALATE FLUORANTHENE PYRENE BUTYL BENZYL PHTHALATE 3,3'-DICHLOROBENZIDINE BENZO(A)ANTHRACENE CHRYSENE BIS(2-ETHYLHEXYL)PHTHALATE DI-N-OCTYL PHTHALATE BENZO(B)FLUORANTHENE BENZO(K)FLUORANTHENE	05/15/95 10 U 10 U 10 U 25 U 25 U 10 U 10 U 10 U 10 U 10 U 10 U 10 U 10	05/16/95 10 U 10 U 10 U 25 U 25 U 10 U 10 U 10 U 10 U 10 U 10 U 10 U 10
BENZO(A)PYRENE INDENO(1,2,3-CD)PYRENE DIBENZO(A,H)ANTHRACENE BENZO(G,H,I)PERYLENE	10 U 10 U 10 U 10 U	10 U 10 U 10 U 10 U

LOCATION DATE COLLECTED	MINIMUM NONDETECTED	MAXIMUM NONDETECTED	MINIMUM DETECTED	MAXIMUM DETECTED	LOCATION OF MAXIMUM	FREQUENCY OF DETECTION
DATE COLLECTED	NONDETECTED	NONDETECTED	DETECTED	DETECTED	DETECTED	DETECTION
SEMIVOLATILES (ug/L)						
PHENOL	10 U	10 U	ND	ND		0/2
BIS(2-CHLOROETHYL)ETHER	10 U	10 U	ND	ND		0/2
2-CHLOROPHENOL	10 U	10 U	ND	ND		0/2
1,3-DICHLOROBENZENE	10 U	10 U	ND	ND		0/2
1.4-DICHLOROBENZENE	10 U	10 U	ND	ND		0/2
1,2-DICHLOROBENZENE	10 U	10 U	ND	ND		0/2
2-METHYLPHENOL	10 U	10 U	ND	ND		0/2
2,2'-OXYBIS(1-CHLOROPROPANE)	10 U	10 U	ND	ND		0/2
4-METHYLPHENOL	10 U	10 U	ND	ND		0/2
N-NITROSO-DI-N-PROPYLAMINE	10 U	10 U	ND	ND		0/2
HEXACHLOROETHANE	10 U	10 U	ND	ND		0/2
NITROBENZENE	10 U	10 U	ND	ND		0/2
ISOPHORONE	10 U	10 U	ND	ND		0/2
2-NITROPHENOL	10 U	10 U	ND	ND		0/2
2,4-DIMETHYLPHENOL	10 U	10 U	ND	ND		0/2
BIS(2-CHLOROETHOXY)METHANE	10 U	10 U	ND	ND		0/2
2,4-DICHLOROPHENOL	10 U	10 U	ND	ND		0/2
1,2,4-TRICHLOROBENZENE	10 U	10 U	ND	ND		0/2
NAPHTHALENE	10 U	10 U	ND	ND		0/2
4-CHLOROANILINE	10 U	10 U	ND	ND		0/2
HEXACHLOROBUTADIENE	10 U	10 U	ND	ND		0/2
4-CHLORO-3-METHYLPHENOL	10 U	10 U	ND	ND		0/2
2-METHYLNAPHTHALENE	10 U	10 U	ND	ND		0/2
HEXACHLOROCYCLOPENTADIENE	10 U	10 U	ND	ND		0/1
2,4,6-TRICHLOROPHENOL	10 U	10 U	ND	ND		0/2
2,4,5-TRICHLOROPHENOL	25 U	25 U	ND	ND		0/2
2-CHLORONAPHTHALENE	10 U	10 U	ND	ND		0/2
2-NITROANILINE	25 U	25 U	ND	ND		0/2
DIMETHYL PHTHALATE	10 U	10 U	ND	ND		0/2
ACENAPHTHYLENE	10 U	10 U	ND	ND		0/2
2,6-DINITROTOLUENE	10 U	10 U	ND	ND		0/2
3-NITROANILINE	25 U	25 U	ND	ND		0/2
ACENAPHTHENE	10 U	10 U	ND	ND		0/2
2,4-DINITROPHENOL	25 U	25 U	ND	ND		0/1
4-NITROPHENOL	25 U	25 U	ND	ND		0/2
DIBENZOFURAN	10 U	10 U	ND	ND		0/2

			I OL ONGANIOS			
LOCATION DATE COLLECTED	MINIMUM NONDETECTED	MAXIMUM NONDETECTED	MINIMUM DETECTED	MAXIMUM DETECTED	LOCATION OF MAXIMUM DETECTED	FREQUENCY OF DETECTION
SEMIVOLATILES (ug/L) cont.						
2,4-DINITROTOLUENE	10 U	10 U	ND	ND		0/2
DIETHYL PHTHALATE	10 U	10 U	ND	ND		0/2
4-CHLOROPHENYLPHENYL ETHER	10 U	10 U	ND	ND		0/2
FLUORENE	10 U	10 U	ND	ND		0/2
4-NITROANILINE	25 U	25 U	ND	ND		0/2
4,6-DINITRO-2-METHYLPHENOL	25 U	25 U	ND	ND		0/2
N-NITROSODIPHENYLAMINE	10 U	10 U	ND	ND		0/2
4-BROMOPHENYL PHENYL ETHER	10 U	10 U	ND	ND		0/2
HEXACHLOROBENZENE	10 U	10 U	ND	ND		0/2
PENTACHLOROPHENOL	25 U	25 U	ND	ND		0/2
PHENANTHRENE	10 U	10 U	ND	ND		0/2
ANTHRACENE	10 U	10 U	ND	ND		0/2
CARBAZOLE	10 U	10 U	ND	ND		0/2
DI-N-BUTYL PHTHALATE	10 U	10 U	ND	ND		0/2
FLUORANTHENE	10 U	10 U	ND	ND		0/2
PYRENE	10 U	10 U	ND	ND		0/2
BUTYL BENZYL PHTHALATE	10 U	10 U	ND	ND		0/2
3,3'-DICHLOROBENZIDINE	10 U	10 U	ND	ND		0/2
BENZO(A)ANTHRACENE	10 U	10 U	ND	ND		0/2
CHRYSENE	10 U	10 U	ND	ND		0/2
BIS(2-ETHYLHEXYL)PHTHALATE	10 U	10 U	ND	ND		0/2
DI-N-OCTYL PHTHALATE	10 U	10 U	ND	ND		0/2
BENZO(B)FLUORANTHENE	10 U	10 U	ND	ND		0/2
BENZO(K)FLUORANTHENE	10 U	10 U	ND	. ND		0/2
BENZO(A)PYRENE	10 U	10 U	ND	ND		0/2
INDENO(1,2,3-CD)PYRENE	10 U	10 U	ND	ND		0/2
DIBENZO(A,H)ANTHRACENE	10 U	10 U	ND	ND		0/2
BENZO(G,H,I)PERYLENE	10 U	10 U	ND	ND		0/2

LOCATION	65-SW04-01	65-SW05-01
DATE COLLECTED	05/15/95	05/16/95
PESTICIDE/PCBS (ug/L) ALPHA-BHC BETA-BHC DELTA-BHC GAMMA-BHC(LINDANE) HEPTACHLOR ALDRIN HEPTACHLOR EPOXIDE ENDOSULFAN I DIELDRIN 4,4'-DDE ENDRIN ENDOSULFAN II 4,4'-DDD ENDOSULFAN SULFATE 4,4'-DDT METHOXYCHLOR ENDRIN KETONE ENDRIN ALDEHYDE	05/15/95 0.05 U 0.05 U 0.05 U 0.05 U 0.05 U 0.05 U 0.05 U 0.05 U 0.1 U 0.1 U 0.1 U 0.1 U 0.1 U 0.1 U 0.1 U 0.1 U 0.1 U 0.1 U 0.1 U 0.1 U 0.1 U 0.1 U 0.1 U 0.1 U 0.1 U	
ALPHA CHLORDANE GAMMA CHLORDANE TOXAPHENE	0.05 U 0.05 U 5 U	0.05 UJ 0.05 UJ 5 UJ
PCB-1016	1 U	1 UJ
PCB-1221	2 U	2 UJ
PCB-1232	1 U	1 UJ
PCB-1242	1 U	1 UJ
PCB-1248	1 U	1 UJ
PCB-1254	1 U	1 UJ
PCB-1260	1 U	1 UJ

			I OL ONGANIOS			
LOCATION DATE COLLECTED	MINIMUM NONDETECTED	MAXIMUM NONDETECTED	MINIMUM DETECTED	MAXIMUM DETECTED	LOCATION OF MAXIMUM DETECTED	FREQUENCY OF DETECTION
PESTICIDE/PCBS (ug/L)						
ALPHA-BHC	0.05 U	0.05 U	ND	ND		0/2
BETA-BHC	0.05 U	0.05 U	ND	ND		0/2
DELTA-BHC	0.05 U	0.05 U	ND	ND		0/2
GAMMA-BHC(LINDANE)	0.05 U	0.05 U	ND	ND		0/2
HEPTACHLOR	0.05 U	0.05 U	ND	ND		0/2
ALDRIN	0.05 U	0.05 U	ND	· ND		0/2
HEPTACHLOR EPOXIDE	0.05 ป	0.05 U	ND	ND.		0/2
ENDOSULFAN I	0.05 ป	0.05 U	ND	ND		0/2
DIELDRIN	0.1 U	0.1 U	ND	ND		0/2
4,4'-DDE	0.1 U	0.1 U	ND	ND		0/2
ENDRIN	0.1 U	0.1 U	ND	ND		0/2
ENDOSULFAN II	0.1 U	0.1 U	ND	ND		0/2
4,4'-DDD	0.1 U	0.1 U	ND	ND		0/2
ENDOSULFAN SULFATE	0,1 U	0.1 U	ND	ND		0/2
4,4'-DDT	0.1 U	0.1 U	ND	ND		0/2
METHOXYCHLOR	0.5 U	0.5 U	ND	ND		0/2
ENDRIN KETONE	0.1 U	0.1 U	ND	ND		0/2
ENDRIN ALDEHYDE	0.1 U	0.1 U	ND	ND		0/2
ALPHA CHLORDANE	0.05 U	0.05 U	ND	ND		0/2
GAMMA CHLORDANE	0.05 U	0.05 U	ND	ND .		0/2
TOXAPHENE	5 U	5 U	ND	ND		0/2
PCB-1016	1 U	1 U	ND	ND		0/2
PCB-1221	2 U	2 U	ND	ND		0/2
PCB-1232	1 U	1 U	ND	ND		0/2
PCB-1242	1 U	. 1 U	ND	ND		0/2
PCB-1248	1 U	1 U	ND	ND		0/2
PCB-1254	1 U	1 U	ND	ND		0/2
PCB-1260	1 U	1 U	ND:	ND		0/2

APPENDIX O.8 SURFACE WATER METALS

LOCATION DATE COLLECTED	65-SW04-01 05/15/95	65-SW05-01 05/16/95
ANALYTES (ug/L)		
ALUMINUM	25800	40 U
ANTIMONY	50 U	50 U
ARSENIC	10 U	10 U
BARIUM	69.3	36.7
BERYLLIUM	1 U	1 U
CADMIUM	5 U	5 U
CALCIUM	12000	26800
CHROMIUM	27.6	10 U
COBALT	20 U	20 U
COPPER	41.1	10 U
IRON	7890	348
LEAD	45.8	3 U
MAGNESIUM	2060	2520
MANGANESE	88.4	57.3
MERCURY	0.2 U	0.2 U
NICKEL	20 U	20 U
POTASSIUM	2970	1000 U
SELENIUM	5 U	5 U
SILVER	5 U	5 U
SODIUM	3330	6320
THALLIUM	10 U	10 U
VANADIUM	26.2	10 U
ZINC	144	33.6

LOCATION	MINIMUM	MAXIMUM	MINIMUM	MAXIMUM	LOCATION OF MAXIMUM	FREQUENCY OF
DATE COLLECTED	NONDETECTED	NONDETECTED	DETECTED	DETECTED	DETECTED	DETECTION
DATE OOLLEOILD	1101102120120	NONDELEGIES	BEILGILB	BETEOTEB	DETECTED	BETEGITOR
ANALYTES (ug/L)						
ALUMINUM	40 U	40 U	25800	25800	65-SW04-01	1/2
ANTIMONY	50 U	50 U	ND	ND		0/2
ARSENIC	10 U	10 U	ND	ND		0/2
BARIUM	NA	NA	36.7	69.3	65-SW04-01	2/2
BERYLLIUM	1 U	1 U	ND	ND		0/2
CADMIUM	5 U	5 U	ND	ND		0/2
CALCIUM	NA	NA	12000	26800	65-SW05-01	2/2
CHROMIUM	10 U	10 U	27.6	27.6	65-SW04-01	1/2
COBALT	20 U	20 U	ND	ND		0/2
COPPER	10 U	10 U	41.1	41.1	65-SW04-01	1/2
IRON.	NA	NA	348	7890	65-SW04-01	2/2
LEAD	3 U	3 U	45.8	45.8	65-SW04-01	1/2
MAGNESIUM	NA	NA	2060	2520	65-SW05-01	2/2
MANGANESE	NA	NA	57.3	88.4	65-SW04-01	2/2
MERCURY	0.2 U	0.2 U	ND	ND		0/2
NICKEL	20 U	20 U	ND	ND		0/2
POTASSIUM	1000 U	1000 U	2970	2970	65-SW04-01	1/2
SELENIUM	5 U	, 5 U	ND	ND		0/2
SILVER	5 U	5 U	ND	ND		0/2
SODIUM	NA	NA	3330	6320	65-SW05-01	2/2
THALLIUM	10 U	10 U	ND	ND		0/2
VANADIUM	10 U	10 U	26.2	26.2	65-SW04-01	1/2
ZINC	NA	· NA	. 33.6	144	65-SW04-01	2/2

APPENDIX 0.9 SEDIMENT ORGANICS

FREQUENCY OF DETECTION SUMMARY SEDIMENT

SITE 65 - ENGINEER AREA DUMP REMEDIAL INVESTIGATION, CTO-0312 MCB, CAMP LEJUENE, NORTH CAROLINA TCL ORGANICS

LOCATION	65-SD04-06	65-SD04-612	65-SD05-06	65-SD05-612
DATE COLLECTED	05/16/95	05/16/95	05/17/95	05/17/95
DEPTH	0-6"	6-12"	0-6"	6-12"
VOLATILES (ug/kg)				
CHLOROMETHANE	38 U	43 U	20.11	20.11
BROMOMETHANE	38 U		32 U	29 U
VINYL CHLORIDE		43 U	32 U	29 U
CHLOROETHANE	38 U	43 U	32 U	29 U
METHYLENE CHLORIDE	38 U 38 U	43 U	32 U	29 U
		43 U	35 U	29 U
ACETONE	220 J	190 J	260 J	450 J
CARBON DISULFIDE	38 UJ	43 UJ	32 UJ	29 UJ
1,1-DICHLOROETHENE	38 U	43 U	32 U	29 U
1,1-DICHLOROETHANE	38 U	43 U	32 U	29 U
1,2-DICHLOROETHENE	38 U	43 U	32 U	29 U
CHLOROFORM	79 J	43 U	32 U	29 U
1,2-DICHLOROETHANE	38 U	43 U	32 U	29 U
2-BUTANONE	94 J	79	72 J	88
1,1,1-TRICHLOROETHANE	38 U	43 U	32 U	29 U
CARBON TETRACHLORIDE	18 J	13 J	32 U	29 U
BROMODICHLOROMETHANE	38 U	43 U	32 U	29 U
1,2-DICHLOROPROPANE	38 U	43 U	32 U	29 U
CIS-1,3-DICHLOROPROPENE	38 U	43 U	32 U	29 U
TRICHLOROETHENE	38 U	43 U	32 U	29 U
DIBROMOCHLOROMETHANE	38 U	43 U	32 U	29 U
1,1,2-TRICHLOROETHANE	38 U	43 U	32 U	29 U
BENZENE	38 U	43 U	32 U	29 U
TRANS-1,3-DICHLOROPROPENE	38 Ų	43 U	32 U	29 U
BROMOFORM	38 U	43 U	32 U	29 U
4-METHYL-2-PENTANONE	38 UJ	43 UJ	32 UJ	29 U
2-HEXANONE	38 UJ	43 UJ	32 UJ	29 U
TETRACHLOROETHENE	15 J	6 J	32 UJ	29 U
1,1,2,2-TETRACHLOROETHANE	38 UJ	43 UJ	32 UJ	29 U
TOLUENE	7 J	43 UJ	6 J	3 J
CHLOROBENZENE	38 UJ	43 UJ	32 UJ	29 U
ETHYLBENZENE	38 UJ	43 UJ	32 UJ	29 U
STYRENE	38 UJ	43 UJ	32 UJ	29 U
TOTAL XYLENES	38 UJ	43 UJ	32 UJ	29 U

FREQUENCY OF DETECTION SUMMARY

SEDIMENT

SITE 65 - ENGINEER AREA DUMP REMEDIAL INVESTIGATION, CTO-0312 MCB, CAMP LEJUENE, NORTH CAROLINA

TCL ORGANICS

LOCATION DATE COLLECTED DEPTH	MINIMUM NONDETECTED	MAXIMUM NONDETECTED	MINIMUM DETECTED	MAXIMUM DETECTED	LOCATION OF MAXIMUM DETECTED	FREQUENCY OF DETECTION
VOLATILES (ug/kg)				,		
CHLOROMETHANE	29 U	43 U	ND	ND		0/4
BROMOMETHANE	29 U	43 U	ND	ND		0/4
VINYL CHLORIDE	29 U	43 U	ND	ND		0/4
CHLOROETHANE	29 U	43 U	ND	ND		0/4
METHYLENE CHLORIDE	29 U	43 U	ND	ND		0/4
ACETONE	NA	NA 10	190 J	450 J	65-SD05-612	4/4
CARBON DISULFIDE	29 UJ	43 UJ	ND	ND		0/4
1,1-DICHLOROETHENE	29 U	43 U	ND	ND		0/4
1,1-DICHLOROETHANE	29 U	43 U	ND	ND		0/4
1,2-DICHLOROETHENE	29 U	43 U	ND .	ND		0/4
CHLOROFORM	29 U	43 U	79 J	79 J	65-SD04-06	1/4
1,2-DICHLOROETHANE	29 U	43 U	ND	ND		0/4
2-BUTANONE	NA	NA	72 J	94 J	65-SD04-06	4/4
1,1,1-TRICHLOROETHANE	29 U	43 U	ND	ND	05.0504.00	0/4
CARBON TETRACHLORIDE	29 U	32 U	13 J	18 J	65-SD04-06	2/4
BROMODICHLOROMETHANE	29 U	43 U	ND -	ND		0/4
1,2-DICHLOROPROPANE	29 U	43 U	ND	ND		0/4
CIS-1,3-DICHLOROPROPENE	29 U	43 U	ND	ND		0/4
TRICHLOROETHENE	29 U	43 U	ND	ND		0/4
DIBROMOCHLOROMETHANE	29 U	43 U	ND	ND		0/4
1,1,2-TRICHLOROETHANE	29 U	43 U	ND	ND		0/4
BENZENE	29 U	43 U	ND	ND		0/4
TRANS-1,3-DICHLOROPROPENE	29 U	43 U	ND	ND		0/4
BROMOFORM	29 U	43 U	ND	ND		0/4
4-METHYL-2-PENTANONE	29 U	43 UJ	ND	ND		0/4
2-HEXANONE	29 U	43 UJ	ND	ND		0/4
TETRACHLOROETHENE	29 U	32 UJ	6 J	15 J	65-SD04-06	2/4
1,1,2,2-TETRACHLOROETHANE	29 U	43 UJ	ND	ND		0/4
TOLUENE	43 UJ	43 UJ	3 J	7 J	65-SD04-06	3/4
CHLOROBENZENE	29 U	43 UJ	ND	ND		0/4
ETHYLBENZENE	29 U	43 UJ	ND	ND ND		0/4
STYRENE	29 U	43 UJ	ND	ND		0/4
TOTAL XYLENES	29 U	43 UJ	ND	ND		0/4

LOCATION DATE COLLECTED	65-SD04-06 05/16/95	65-SD04-612 05/16/95	65-SD05-06 05/17/95	65-SD05-612 05/17/95
DEPTH	0-6"	6-12"	0-6"	6-12"
CEMBIOL ATH EC (conflet)				
SEMIVOLATILES (ug/kg) PHENOL	6200 11	7000 11	F000 11	4000 11
	6200 U 6200 U	7000 U	5200 U	4600 U
BIS(2-CHLOROETHYL)ETHER 2-CHLOROPHENOL	6200 U	7000 U 7000 U	5200 U	4600 U
1,3-DICHLOROBENZENE	6200 U	7000 U	5200 U	4600 U
1,4-DICHLOROBENZENE	6200 U	7000 U	5200 U 5200 U	4600 U
1,2-DICHLOROBENZENE	6200 U	7000 U		4600 U
2-METHYLPHENOL	6200 U	7000 U	5200 U 5200 U	4600 U 4600 U
2,2'-OXYBIS(1-CHLOROPROPANE)	6200 U	7000 U	5200 U	4600 U
4-METHYLPHENOL	6200 U	7000 U	5200 U	4600 U
N-NITROSO-DI-N-PROPYLAMINE	6200 U	7000 U	5200 U	4600 U
HEXACHLOROETHANE	6200 U	7000 U	5200 U	4600 U
NITROBENZENE	6200 U	7000 U	5200 U	4600 U
ISOPHORONE	6200 U	7000 U	5200 U	4600 U
2-NITROPHENOL	6200 U	7000 U	5200 U	4600 U
2,4-DIMETHYLPHENOL	6200 U	7000 U	5200 U	4600 U
BIS(2-CHLOROETHOXY)METHANE	6200 U	7000 U	5200 U	4600 U
2,4-DICHLOROPHENOL	6200 U	7000 U	5200 U	4600 U
1,2,4-TRICHLOROBENZENE	6200 U	7000 U	5200 U	4600 U
NAPHTHALENE	6200 U	7000 U	5200 U	4600 U
4-CHLOROANILINE	6200 U	7000 U	5200 U	4600 U
HEXACHLOROBUTADIENE	6200 U	7000 U	5200 U	4600 U
4-CHLORO-3-METHYLPHENOL	6200 U	7000 U	5200 U	4600 U
2-METHYLNAPHTHALENE	6200 U	7000 U	5200 U	4600 U
HEXACHLOROCYCLOPENTADIENE	6200 U	7000 U	5200 U	4600 U
2,4,6-TRICHLOROPHENOL	6200 U	7000 U	5200 U	4600 U
2,4,5-TRICHLOROPHENOL	15000 U	17000 U	12000 U	11000 U
2-CHLORONAPHTHALENE	6200 U	7000 U	5200 U	4600 U
2-NITROANILINE	15000 U	17000 U	12000 U	11000 U
DIMETHYL PHTHALATE	6200 U	7000 U	5200 U	4600 U
ACENAPHTHYLENE	6200 U	7000 U	5200 U	4600 U
2,6-DINITROTOLUENE	6200 U	7000 U	5200 U	4600 U
3-NITROANILINE	15000 U	17000 U	12000 U	11000 U
ACENAPHTHENE	6200 U	7000 U	5200 U	4600 U
2,4-DINITROPHENOL	15000 U	17000 U	12000 U	11000 U
4-NITROPHENOL	15000 U	17000 U	12000 U	11000 U

FREQUENCY OF DETECTION SUMMARY SEDIMENT

SITE 65 - ENGINEER AREA DUMP REMEDIAL INVESTIGATION, CTO-0312 MCB, CAMP LEJUENE, NORTH CAROLINA TCL ORGANICS

LOCATION DATE COLLECTED DEPTH	65-SD04-06 05/16/95 0-6"	65-SD04-612 05/16/95 6-12"	65-SD05-06 05/17/95 0-6"	65-SD05-612 05/17/95 6-12"
SEMIVOLATILES (ug/kg) cont.				
DIBENZOFURAN	6200 U	7000 U	5200 U	4600 U
2,4-DINITROTOLUENE	6200 U	7000 U	5200 U	4600 U
DIETHYL PHTHALATE	6200 U	7000 U	5200 U	4600 U
4-CHLOROPHENYLPHENYL ETHER	6200 U	7000 U	5200 U	4600 U
FLUORENE	6200 U	7000 U	5200 U	4600 U
4-NITROANILINE	15000 U	17000 U	12000 U	11000 U
4,6-DINITRO-2-METHYLPHENOL	15000 U	17000 U	12000 U	11000 U
N-NITROSODIPHENYLAMINE	6200 U	7000 U	5200 U	4600 U
4-BROMOPHENYL PHENYL ETHER	6200 U	7000 U	5200 U	4600 U
HEXACHLOROBENZENE	6200 U	7000 U	5200 U	4600 U
PENTACHLOROPHENOL	15000 U	17000 U	12000 U	11000 U
PHENANTHRENE	6200 U	7000 U	5200 U	4600 U
ANTHRACENE	6200 U	7000 U	5200 U	4600 U
CARBAZOLE	6200 UJ	7000 UJ	5200 UJ	4600 UJ
DI-N-BUTYL PHTHALATE	1400 J	1600 J	1200 J	940 J
FLUORANTHENE	6200 U	7000 U	5200 U	4600 U
PYRENE	6200 U	7000 U	5200 U	4600 U
BUTYL BENZYL PHTHALATE	6200 U	7000 ป	5200 U	4600 U
3,3'-DICHLOROBENZIDINE	6200 U	7000 U	5200 U	4600 U
BENZO(A)ANTHRACENE	6200 U	7000 ひ	5200 U	4600 U
CHRYSENE	6200 U	7000 U	5200 U	4600 U
BIS(2-ETHYLHEXYL)PHTHALATE	6200 U	7000 U	5200 U	4600 U
DI-N-OCTYL PHTHALATE	6200 U	7000 U	5200 U	4600 U
BENZO(B)FLUORANTHENE	6200 U	7000 U	5200 U	4600 U
BENZO(K)FLUORANTHENE	6200 U	7000 U	5200 U	4600 U
BENZO(A)PYRENE	6200 U	7000 U	5200 U	4600 U
INDENO(1,2,3-CD)PYRENE	6200 U	7000 U	5200 U	4600 U
DIBENZO(A,H)ANTHRACENE	6200 U	7000 U	5200 U	4600 U
BENZO(G,H,I)PERYLENE	6200 U	7000 U	5200 U	4600 U

TCL ORGANICS

LOCATION DATE COLLECTED DEPTH	MINIMUM NONDETECTED	MAXIMUM NONDETECTED	MINIMUM DETECTED	MAXIMUM DETECTED	LOCATION OF MAXIMUM DETECTED	FREQUENCY OF DETECTION
SEMIVOLATILES (ug/kg)						
PHENOL	4600 U	7000 U	ND	ND		0/4
BIS(2-CHLOROETHYL)ETHER	4600 U	7000 U	ND	ND		0/4
2-CHLOROPHENOL	4600 U	7000 U	ND	ND		0/4
1,3-DICHLOROBENZENE	4600 U	7000 U	ND	ND		0/4
1,4-DICHLOROBENZENE	4600 U	7000 U	ND	ND		0/4
1,2-DICHLOROBENZENE	4600 U	7000 U	ND	ND		0/4
2-METHYLPHENOL	4600 U	7000 U	ND	ND		0/4
2,2'-OXYBIS(1-CHLOROPROPANE)	4600 U	7000 U	ND	ND		0/4
4-METHYLPHENOL	4600 U	7000 U	ND	ND		0/4
N-NITROSO-DI-N-PROPYLAMINE	4600 U	7000 U	ND	ND		0/4
HEXACHLOROETHANE	4600 U	7000 U	ND	ND		0/4
NITROBENZENE	4600 U	7000 U	ND	ND		0/4
ISOPHORONE	4600 U	7000 U	ND	ND		0/4
2-NITROPHENOL	4600 U	7000 U	ND	ND		0/4
2,4-DIMETHYLPHENOL	4600 U	7000 U	ND	ND		0/4
BIS(2-CHLOROETHOXY)METHANE	4600 U	7000 U	ND	ND		0/4
2,4-DICHLOROPHENOL	4600 U	7000 U	ND	ND		0/4
1,2,4-TRICHLOROBENZENE	4600 U	7000 U	ND	ND		0/4
NAPHTHALENE	4600 U	7000 U	ND	ND		0/4
4-CHLOROANILINE	4600 U	7000 U	ND	ND		0/4
HEXACHLOROBUTADIENE	4600 U	7000 U	ND	ND		0/4
4-CHLORO-3-METHYLPHENOL	4600 U	7000 U	ND	ND		0/4
2-METHYLNAPHTHALENE	4600 U	7000 U	ND	ND		0/4
HEXACHLOROCYCLOPENTADIENE	4600 U	7000 U	ND	ND		0/4
2,4,6-TRICHLOROPHENOL	4600 U	. 7000 U	ND	ND		0/4
2,4,5-TRICHLOROPHENOL	11000 U	17000 U	ND	ND		0/4
2-CHLORONAPHTHALENE	4600 U	7000 U	ND	ND		0/4
2-NITROANILINE	11000 U	17000 U	ND	ND		0/4
DIMETHYL PHTHALATE	4600 U	7000 U	ND	ND		0/4
ACENAPHTHYLENE	4600 U	7000 U	ND	ND		0/4
2,6-DINITROTOLUENE	4600 U	7000 U	ND	ND		0/4
3-NITROANILINE	11000 U	17000 U	ND	ND		0/4
ACENAPHTHENE	4600 U	7000 U	ND	ND		0/4
2.4-DINITROPHENOL	11000 U	17000 U	ND	ND		0/4
4-NITROPHENOL	11000 U	17000 U	ND	ND		0/4

FREQUENCY OF DETECTION SUMMARY SEDIMENT

SITE 65 - ENGINEER AREA DUMP REMEDIAL INVESTIGATION, CTO-0312 MCB, CAMP LEJUENE, NORTH CAROLINA TCL ORGANICS

LOCATION DATE COLLECTED DEPTH	MINIMUM NONDETECTED	MAXIMUM NONDETECTED	MINIMUM DETECTED	MAXIMUM DETECTED	LOCATION OF MAXIMUM DETECTED	FREQUENCY OF DETECTION
SEMIVOLATILES (ug/kg) cont.						
DIBENZOFURAN	4600 U	7000 U	ND	ND		0/4
2,4-DINITROTOLUENE	4600 U	7000 U	ND	ND		0/4
DIETHYL PHTHALATE	4600 U	7000 U	ND	ND		0/4
4-CHLOROPHENYLPHENYL ETHER	4600 U	7000 U	ND	ND		0/4
FLUORENE	4600 U	7000 U	ND	ND		0/4
4-NITROANILINE	11000 U	17000 U	ND	ND		0/4
4,6-DINITRO-2-METHYLPHENOL	11000 U	17000 U	ND	ND		0/4
N-NITROSODIPHENYLAMINE	4600 U	7000 U	ND	ND		0/4
4-BROMOPHENYL PHENYL ETHER	4600 U	7000 U	ND	ND		0/4
HEXACHLOROBENZENE	4600 U	7000 U	ND	ND		0/4
PENTACHLOROPHENOL	11000 U	17000 U	ND	ND		0/4
PHENANTHRENE	4600 U	7000 U	ND	ND		0/4
ANTHRACENE	4600 U	7000 U	ND	ND		0/4
CARBAZOLE	4600 UJ	7000 UJ	ND	ND		0/4
DI-N-BUTYL PHTHALATE	NA	NA	940 J	1600 J	65-SD04-612	4/4
FLUORANTHENE	4600 U	7000 U	ND	ND		0/4
PYRENE	4600 U	7000 U	ND	ND		0/4
BUTYL BENZYL PHTHALATE	4600 U	7000 U	ND	ND		0/4
3,3'-DICHLOROBENZIDINE	4600 U	7000 U	ND	ND		0/4
BENZO(A)ANTHRACENE	4600 U	7000 U	ND	ND		0/4
CHRYSENE	4600 U	7000 U	ND	ND		0/4
BIS(2-ETHYLHEXYL)PHTHALATE	4600 U	7000 บ	ND	ND	,	0/4
DI-N-OCTYL PHTHALATE	4600 U	7000 U	- ND	ND		0/4
BENZO(B)FLUORANTHENE	4600 U	7000 U	ND	ND		0/4
BENZO(K)FLUORANTHENE	4600 U	7000 U	ND	ND		0/4
BENZO(A)PYRENE	4600 U	7000 U	ND	ND		0/4
INDENO(1,2,3-CD)PYRENE	4600 U	7000 U	ND	ND		0/4
DIBENZO(A,H)ANTHRACENE	4600 U	7000 U	ND	ND		0/4
BENZO(G,H,I)PERYLENE	4600 U	7000 U	ND	ND		0/4

FREQUENCY OF DETECTION SUMMARY SEDIMENT SITE 65 - ENGINEER AREA DUMP

SITE 65 - ENGINEER AREA DUMP REMEDIAL INVESTIGATION, CTO-0312 MCB, CAMP LEJUENE, NORTH CAROLINA TCL ORGANICS

LOCATION DATE COLLECTED DEPTH	65-SD04-06 05/16/95 0-6"	65-SD04-612 05/16/95 6-12"	65-SD05-06 05/17/95 0-6"	65-SD05-612 05/17/95 6-12"
PESTICIDE/PCBS (ug/kg)				
ALPHA-BHC	6.5 U	7.2 U	5.4 U	4.8 U
BETA-BHC	6.5 U	8.3 NJ	5.4 U	4.8 U
DELTA-BHC	6.5 U	7.2 U	5.4 U	4.8 U
GAMMA-BHC(LINDANE)	6.5 U	7.2 U	5.4 U	4.8 U
HEPTACHLOR	6.5 U	7.2 U	5.4 U	4.8 U
ALDRIN	6.5 U	7.2 U	5.4 U	4.8 U
HEPTACHLOR EPOXIDE	6.5 U	7.2 U	5.4 U	4.8 U
ENDOSULFAN I	6.5 U	7.2 U	5.4 U	4.8 U
DIELDRIN	13 U	14 U	10 U	9.4 U
4.4'-DDE	18 J	14 U	19 NJ	9.4 U
ENDRIN	13 U	14 U	10 U	9.4 U
ENDOSULFAN II	13 U	14 U	10 U	9.4 U
4,4'-DDD	76 J	14 ÜJ	84 J	9.4 UJ
ENDOSULFAN SULFATE	13 U	14 U	10 U	9.4 U
4,4'-DDT	13 U	14 U	10 U	9.4 U
METHOXYCHLOR	65 U	72 U	54 U	48 U
ENDRIN KETONE	13 U	14 U	10 U	9.4 U
ENDRIN ALDEHYDE	13 U	14 U	10 U	9.4 U
ALPHA CHLORDANE	6.5 U	7.2 U	5.4 U	4.8 U
GAMMA CHLORDANE	6.5 U	7.2 U	5.4 U	4.8 U
TOXAPHENE	650 U	720 U	540 U	480 U
PCB-1016	130 U	140 U	100 U	94 U
PCB-1221	260 U	280 U	210 U	190 U
PCB-1232	130 U	140 U	100 U	94 U
PCB-1242	130 U	140 U	100 U	94 U
PCB-1248	130 U	140 U	100 U	94 U
PCB-1254	130 U	140 U	100 U	94 U
PCB-1260	130 U	140 U	100 U	94 U

FREQUENCY OF DETECTION SUMMARY SEDIMENT

SITE 65 - ENGINEER AREA DUMP REMEDIAL INVESTIGATION, CTO-0312

MCB, CAMP LEJUENE, NORTH CAROLINA

TCL ORGANICS

LOCATION DATE COLLECTED DEPTH	MINIMUM NONDETECTED	MAXIMUM NONDETECTED	MINIMUM DETECTED	MAXIMUM DETECTED	LOCATION OF MAXIMUM DETECTED	FREQUENCY OF DETECTION
PESTICIDE/PCBS (ug/kg)						
ALPHA-BHC	4.8 U	7.2 U	ND	ND		0/4
BETA-BHC	4.8 U	6.5 U	8.3 NJ	8.3 NJ	65-SD04-612	1/4
DELTA-BHC	4.8 U	7.2 U	ND	ND		0/4
GAMMA-BHC(LINDANE)	4.8 U	7.2 U	ND	ND		0/4
HEPTACHLOR	4.8 U	7.2 U	ND	ND		0/4
ALDRIN	4.8 U	7.2 U	ND	ND		0/4
HEPTACHLOR EPOXIDE	4.8 U	7.2 U	ND	ND		0/4
ENDOSULFAN I	4.8 U	7.2 U	ND	ND		0/4
DIELDRIN	9.4 ป	14 U	ND	ND		0/4
4,4'-DDE	9.4 U	14 U	18 J	19 NJ	65-SD05-06	2/4
ENDRIN	9.4 U	14 U	ND	ND		0/4
ENDOSULFAN II	9.4 U	14 U	ND	ND		0/4
4,4'-DDD	9.4 UJ	14 UJ	76 J	84 J	65-SD05-06	2/4
ENDOSULFAN SULFATE	9.4 U	14 U	ND	ND		0/4
4,4'-DDT	9.4 U	14 U	ND	ND		0/4
METHOXYCHLOR	48 U	72 U	, ND	ND		0/4
ENDRIN KETONE	9.4 U	14 U	ND	ND		0/4
ENDRIN ALDEHYDE	9.4 U	14 U	ND	ND		0/4
ALPHA CHLORDANE	4.8 U	7.2 U	ND	ND		0/4
GAMMA CHLORDANE	4.8 U	7.2 U	ND	ND	·	0/4
TOXAPHENE	480 U	720 U	ND	ND		0/4
PCB-1016	94 U	140 U	ND	ND		0/4
PCB-1221	190 U	280 U	ND	ND		0/4
PCB-1232	94 U	140 U	ND	ND		0/4
PCB-1242	94 U	. 140 U	ND	ND		0/4
PCB-1248	94 U	140 U	ND	ND		0/4
PCB-1254	94 U	140 U	ND	ND		0/4
PCB-1260	94 U	140 U	ND	ND		0/4

APPENDIX O.10 SEDIMENT METALS

FREQUENCY OF DETECTION SUMMARY SEDIMENT

SITE 65 - ENGINEER AREA DUMP REMEDIAL INVESTIGATION, CTO-0312 MCB, CAMP LEJUENE, NORTH CAROLINA TAL METALS

LOCATION	65-SD04-06	65-SD04-612	65-SD05-06	65-SD05-612
DATE COLLECTED	05/16/95	05/16/95	05/17/95	05/17/95
DEPTH	0-6"	6-12"	0-6"	6-12"
ANALYTES (mg/kg)				
ALUMINUM	37000 J	10900 J	3090	394
ANTIMONY	46.6 J	44.1 UJ	32.5 U	28.5 U
ARSENIC	7.5 U	8.8 U	6.5 U	5.7 U
BARIUM	110	94,2	86.1	13.6
BERYLLIUM	0.75 U	0.88 U	0.65 U	0.57 U
CADMIUM	3.8 U	4,4 U	3.2 U	2.8 U
CALCIUM	4470	2470	4640	322
CHROMIUM	43.6 J	9.8 J	6.5 U	5.7 U
COBALT	36.3	17.6 U	13 U	11.4 U
COPPER	100 J	21.4 J	8.2	5.7 U
IRON	14600 J	3250 J	985	414
LEAD	176 J	38.5 J	23.9	1.7 U
MAGNESIUM	1140	674	470 U	94.8
MANGANESE	126 J	37.4 J	38.7	25.6
MERCURY	0.38 U	0.44 U	0.32 U	0.28 U
NICKEL	15.1 U	17.6 U	13 U	11.4 U
POTASSIUM	1410	881 U	649 U	570 U
SELENIUM	3.8 U	4.4 U	3.2 U	2.8 U
SILVER	3.8 U	4.4 U	3.2 U	2.8 U
SODIUM	203	177	139	114 U
THALLIUM	7.5 U	8.8 U	6.5 U	5.7 U
VANADIUM	40.5	8.8 U	6.5 U	5.7 U
ZINC	280 J	56.3 J	36.5	7.9

FREQUENCY OF DETECTION SUMMARY SEDIMENT SITE 65 - ENGINEER AREA DUMP

REMEDIAL INVESTIGATION, CTO-0312 MCB, CAMP LEJUENE, NORTH CAROLINA TAL METALS

LOCATION DATE COLLECTED DEPTH	MINIMUM NONDETECTED	MAXIMUM NONDETECTED	MINIMUM DETECTED	MAXIMUM DETECTED	LOCATION OF MAXIMUM DETECTED	FREQUENCY OF DETECTION
ANALYTES (mg/kg)						
ALUMINUM	NA	NA	394	37000 J	65-SD04-06	4/4
ANTIMONY	28.5 U	44.1 UJ	46.6 J	46.6 J	65-SD04-06	1/4
ARSENIC	5.7 U	8.8 U	ND	ND		0/4
BARIUM	NA	NA	13.6	110	65-SD04-06	4/4
BERYLLIUM	0.57 U	0.88 U	ND	ND		0/4
CADMIUM	2.8 U	4.4 U	ND	ND		0/4
CALCIUM	NA -	NA	322	4640	65-SD05-06	4/4
CHROMIUM	5.7 U	6.5 U	9.8 J	43.6 J	65-SD04-06	2/4
COBALT	11.4 U	17.6 U	36.3	36.3	65-SD04-06	1/4
COPPER	5.7 U	5.7 U	8.2	100 J	65-SD04-06	3/4
IRON	NA	NA	414	14600 J	65-SD04-06	4/4
LEAD	1.7 U	1.7 U	23.9	176 J	65-SD04-06	3/4
MAGNESIUM	470 U	470 U	94.8	1140	65-SD04-06	3/4
MANGANESE	NA	NA	25.6	126 J	65-SD04-06	4/4
MERCURY	0.28 U	0.44 U	ND	ND		0/4
NICKEL	11.4 U	17.6 U	ND	ND		0/4
POTASSIUM	570 U	881 U	1410	1410	65-SD04-06	1/4
SELENIUM	2.8 U	4.4 U	ND	ND		0/4
SILVER	2.8 U	4.4 U	ND	ND		0/4
SODIUM	114 U	114 U	139	203	65-SD04-06	3/4
THALLIUM	5.7 U	8.8 U	ND	ND		0/4
VANADIUM	5.7 U	8,8 U	40.5	40.5	65-SD04-06	1/4
ZINC	NA	NA	7.9	280 J	65-SD04-06	4/4

SAMPLE ID.	65-FS04-BG01F	65-FS05-BG01F	65-FS05-LB01F	65-FS05-RS01F
DATE COLLECTED	05/17/95	05/16/95	05/16/95	05/16/95
VOLATILES (ug/kg)				
CHLOROMETHANE	4800 U	4800 U	4800 U	4800 U
BROMOMETHANE	4800 U	4800 U	4800 U	4800 U
VINYL CHLORIDE	4800 U	4800 U	4800 U	4800 U
CHLOROETHANE	4800 U	4800 U	4800 U	4800 U
METHYLENE CHLORIDE	4800 U	4800 U	4800 U	4800 U
ACETONE	4800 U	5600 J	7900 J	7500 UJ
CARBON DISULFIDE	4800 U	4800 U	4800 U	4800 U
1,1-DICHLOROETHENE	4800 U	4800 U	4800 U	4800 U
1,1-DICHLOROETHANE	4800 U	4800 U	4800 U	4800 U
1,2-DICHLOROETHENE (TOTAL)	4800 U	4800 U	4800 U	4800 U
CHLOROFORM	4800 U	4800 U	4800 U	4800 U
1,2-DICHLOROETHANE	4800 U	4800 U	4800 U	4800 U
2-BUTANONE (MEK)	4800 U	4800 U	4800 U	4800 U
1,1,1-TRICHLOROETHANE	4800 U	4800 U	4800 U	4800 U
CARBON TETRACHLORIDE	4800 U	4800 U	4800 U	4800 U
BROMODICHLOROMETHANE	4800 U	4800 U	4800 U	4800 U
1,2-DICHLOROPROPANE	4800 U	4800 U	4800 U	4800 U
CIS-1,3-DICHLOROPROPENE	4800 U	4800 U	4800 U	4800 U
TRICHLOROETHENE	4800 U	4800 U	4800 U	4800 U
DIBROMOCHLOROMETHANE	4800 U	4800 U	4800 U	4800 U
1,1,2-TRICHLOROETHANE	4800 U	4800 U	4800 U	4800 U
BENZENE	4800 U	4800 U	4800 U	4800 U
TRANS-1,3-DICHLOROPROPENE	4800 U	4800 U	4800 U	4800 U
BROMOFORM	4800 U	4800 U	4800 U	4800 U
4-METHYL-2-PENTANONE (MIBK)	4800 U	4800 U	4800 U	4800 U
2-HEXANONE	4800 U	4800 U	4800 U	4800 U
TETRACHLOROETHENE	4800 U	4800 U	4800 U	4800 U
1,1,2,2-TETRACHLOROETHANE	4800 U	4800 U	4800 U	4800 U
TOLUENE	4800 U	4800 U	4800 U	4800 U
CHLOROBENZENE	4800 U	4800 U	4800 U	4800 U
ETHYLBENZENE	4800 U	4800 U	4800 U	4800 U
STYRENE	4800 U	4800 U	4800 U	4800 U
XYLENES (TOTAL)	4800 U	4800 U	4800 U	4800 U

SAMPLE ID. DATE COLLECTED	MINIMUM NONDETECTED	MAXIMUM NONDETECTED	MINIMUM DETECTED	MAXIMUM DETECTED	LOCATION OF MAXIMUM DETECTED	FREQUENCY OF DETECTION
VOLATILES (ug/kg)						
CHLOROMETHANE	4800 U	4800 U	ND	ND		0/4
BROMOMETHANE	4800 U	4800 U	ND	ND		0/4
VINYL CHLORIDE	4800 U	4800 U	ND	ND		0/4
CHLOROETHANE	4800 U	4800 U	ND	ND		0/4
METHYLENE CHLORIDE	4800 U	4800 U	ND	ND		0/4
ACETONE	4800 U	7500 UJ	5600 J	7900 J	65-FS05-LB01F	2/4
CARBON DISULFIDE	4800 U	4800 U	ND	ND		0/4
1,1-DICHLOROETHENE	4800 U	4800 U	ND	ND		0/4
1,1-DICHLOROETHANE	4800 U	4800 U	ND	ND		0/4
1,2-DICHLOROETHENE (TOTAL)	4800 U	4800 U	ND	ND		0/4
CHLOROFORM	4800 U	4800 U	ND	ND		0/4
1,2-DICHLOROETHANE	4800 U	4800 U	ND	ND		0/4
2-BUTANONE (MEK)	4800 U	4800 U	ND	ND		0/4
1,1,1-TRICHLOROETHANE	4800 U	4800 U	ND	ND		0/4
CARBON TETRACHLORIDE	4800 U	4800 U	ND	ND		0/4
BROMODICHLOROMETHANE	4800 U	4800 U	ND	ND		0/4
1,2-DICHLOROPROPANE	4800 U	4800 U	ND	ND		0/4
CIS-1,3-DICHLOROPROPENE	4800 U	4800 U	ND	ND		. 0/4
TRICHLOROETHENE	4800 U	4800 U	ND	ND		0/4
DIBROMOCHLOROMETHANE	4800 U	4800 U	ND	ND		0/4
1,1,2-TRICHLOROETHANE	4800 U	4800 U	ND	ND		0/4
BENZENE	4800 U	4800 U	ND	ND		0/4
TRANS-1,3-DICHLOROPROPENE	4800 U	4800 U	ND	ND		0/4
BROMOFORM	4800 U	4800 U	ND	ND		0/4
4-METHYL-2-PENTANONE (MIBK)	4800 U	4800 U	ND	ND		0/4
2-HEXANONE	4800 U	4800 U	ND	ND		0/4
TETRACHLOROETHENE	4800 U	4800 U	ND	ND		0/4
1,1,2,2-TETRACHLOROETHANE	4800 U	4800 U	ND	ND		0/4
TOLUENE	4800 U	4800 U	ND	ND		0/4
CHLOROBENZENE	4800 U	4800 U	ND	ND		0/4
ETHYLBENZENE	4800 U	4800 U	ND	ND		0/4
STYRENE	4800 U	4800 U	ND	ND		0/4
XYLENES (TOTAL)	4800 U	4800 U	ND	ND		0/4

SAMPLE ID DATE COLLECTED	65-FS04-BG01F 05/17/95	65-FS05-BG01F 05/16/95	65-FS05-LB01F 05/16/95	65-FS05-RS01F 05/16/95
SEMIVOLATILES (UG/KG)				
PHENOL	1000 U	1000 U	1000 U	1000 U
2-CHLOROPHENOL	1000 U	1000 U	1000 U	1000 U
1,3-DICHLOROBENZENE	1000 U	1000 U	1000 U	1000 U
1,4-DICHLOROBENZENE	1000 U	1000 U	1000 U	1000 U
1,2-DICHLOROBENZENE	1000 U	1000 U	1000 U	1000 U
2-METHYLPHENOL	1000 U	1000 U	1000 U	1000 U
2,2'-OXYBIS(1-CHLOROPROPANE)	1000 U	1000 U	1000 U	1000 U
4-METHYLPHENOL	1000 U	1000 U	1000 U	1000 U
N-NITROSO-DI-N-PROPYLAMINE	1000 U	1000 U	1000 U	1000 U
HEXACHLOROETHANE	1000 U	1000 U	1000 U	1000 U
NITROBENZENE	1000 U	1000 U	1000 U	1000 U
ISOPHORONE	1000 U	1000 U	1000 U	1000 U
2-NITROPHENOL	1000 U	1000 U	1000 U	1000 U
2,4-DIMETHYLPHENOL	1000 U	1000 U	1000 U	1000 U
2,4-DICHLOROPHENOL	1000 U	1000 U	1000 U	1000 U
1,2,4-TRICHLOROBENZENE	1000 U	1000 U	1000 U	1000 U
NAPHTHALENE	1000 U	1000 U	1000 U	1000 U
4-CHLOROANILINE	1000 U	1000 U	1000 U	1000 U
HEXACHLOROBUTADIENE	1000 U	1000 U	1000 U	1000 U
4-CHLORO-3-METHYLPHENOL	1000 U	1000 U	1000 U	1000 U
2-METHYLNAPHTHALENE	1000 U	1000 U	1000 U	1000 U
HEXACHLOROCYCLOPENTADIENE	1000 U	1000 U	1000 U	1000 U
2,4,6-TRICHLOROPHENOL	1000 U	1000 U	1000 U	1000 U
2,4,5-TRICHLOROPHENOL	2500 U	2500 U	2500 U	2500 U
2-CHLORONAPHTHALENE	1000 U	1000 U	1000 U	1000 U
2-NITROANILINE	2500 U	2500 U	2500 U	2500 U
DIMETHYL PHTHALATE	1000 U	1000 U	1000 U	1000 U
ACENAPHTHYLENE	1000 U	1000 U	1000 U	1000 U
2,6-DINITROTOLUENE	1000 U	1000 U	1000 U	1000 U
3-NITROANILINE	2500 U	2500 UJ	2500 U	2500 UJ
ACENAPHTHENE	1000 U	1000 U	1000 U	1000 U
2,4-DINITROPHENOL	2500 U	2500 U	2500 U	2500 U
4-NITROPHENOL	2500 U	2500 U	2500 U	2500 U

10/23/95 65FSSV.WK4

SAMPLE ID DATE COLLECTED	65-FS04-BG01F 05/17/95	65-FS05-BG01F 05/16/95	65-FS05-LB01F 05/16/95	65-FS05-RS01F 05/16/95
SEMINOLATILES (UG/VC) cont				
SEMIVOLATILES (UG/KG) cont. DIBENZOFURAN	1000 U	1000 U	1000 U	1000 U
2,4-DINITROTOLUENE	1000 U	1000 U	1000 U	1000 U
DIETHYL PHTHALATE	1000 U	1000 U	1000 U	1000 U
FLUORENE	1000 U	1000 U	1000 U	1000 U
4-NITROANILINE	2500 U	2500 U	2500 U	2500 U
4.6-DINITRO-2-METHYLPHENOL	2500 U	2500 U	2500 U	2500 U
N-NITROSODIPHENYLAMINE	1000 U	1000 U	1000 U	1000 U
4-BROMOPHENYL PHENYL ETHER	1000 U	1000 U	1000 U	1000 U
HEXACHLOROBENZENE	1000 U	1000 U	1000 U	1000 U
PENTACHLOROPHENOL	2500 U	2500 U	2500 U	2500 U
PHENANTHRENE	1000 U	1000 U	1000 U	1000 U
ANTHRACENE	1000 U	1000 U	1000 U	1000 U
CARBAZOLE	1000 U	1000 U	1000 U	1000 U
DI-N-BUTYL PHTHALATE	1000 U	1000 U	1000 U	1000 U
FLUORANTHENE	1000 U	1000 U	1000 U	1000 U
PYRENE	1000 U	1000 U	1000 U	1000 U
BUTYL BENZYL PHTHALATE	1000 U	1000 U	1000 U	1000 U
3,3'-DICHLOROBENZIDINE	1000 U	1000 U	1000 U	1000 U
BENZO(A)ANTHRACENE	1000 U	1000 U	1000 U	1000 U
CHRYSENE	1000 U	1000 U	1000 U	1000 U
BIS(2-ETHYLHEXYL)PHTHALATE	1000 U	1000 U	1000 U	1000 U
DI-N-OCTYL PHTHALATE	1000 U	1000 U	1000 U	1000 U
BENZO(B)FLUORANTHENE	1000 U	1000 U	1000 U	1000 U
BENZO(K)FLUORANTHENE	1000 U	1000 U	1000 U	1000 U
BENZO(A)PYRENE	1000 U	1000 U	1000 U	1000 U
INDENO(1,2,3-CD)PYRENE	1000 U	1000 U	1000 U	1000 U
DIBENZO(A,H)ANTHRACENE	1000 U	1000 U	1000 U	1000 U
BENZO(G,H,I)PERYLENE	1000 U	1000 U	1000 U	1000 U
BIS(2-CHLOROETHOXY)-METHANE	1000 U	1000 U	1000 U	1000 U
BIS(2-CHLOROETHYL) ETHER	1000 U	1000 U	1000 U	1000 U
4-CHLOROPHENYL PHENYL ETHER	1000 U	1000 U	1000 U	1000 U

SAMPLE ID DATE COLLECTED	MINIMUM NONDETECTED	MAXIMUM NONDETECTED	MINIMUM DETECTED	MAXIMUM DETECTED	LOCATION OF MAXIMUM DETECTED	FREQUENCY OF DETECTION
SEMIVOLATILES (UG/KG)						
PHENOL	1000 U	1000 U	ND	ND		0/4
2-CHLOROPHENOL	1000 U	1000 U	ND	ND		0/4
1,3-DICHLOROBENZENE	1000 U	1000 U	ND	ND		0/4
1,4-DICHLOROBENZENE	1000 U	1000 U	ND	ND		0/4
1,2-DICHLOROBENZENE	1000 U	1000 U	ND	ND		0/4
2-METHYLPHENOL	1000 U	1000 U	ND	ND		0/4
2,2'-OXYBIS(1-CHLOROPROPANE)	1000 U	1000 U	ND	ND		0/4
4-METHYLPHENOL	1000 U	1000 U	ND	ND		0/4
N-NITROSO-DI-N-PROPYLAMINE	1000 U	1000 U	ND	ND		0/4
HEXACHLOROETHANE	1000 U	1000 U	ND	ND		0/4
NITROBENZENE	1000 U	1000 U	ND	ND		0/4
ISOPHORONE	1000 U	1000 U	ND	ND		0/4
2-NITROPHENOL	1000 U	1000 U	ND	ND		0/4
2,4-DIMETHYLPHENOL	1000 U	1000 U	ND	ND		0/4
2,4-DICHLOROPHENOL	1000 U	1000 U	ND	ND		0/4
1,2,4-TRICHLOROBENZENE	1000 U	1000 U	ND	ND		0/4
NAPHTHALENE	1000 U	1000 U	ND	ND		0/4
4-CHLOROANILINE	1000 U	1000 U	ND	ND		0/4
HEXACHLOROBUTADIENE	1000 U	1000 U	ND	ND		0/4
4-CHLORO-3-METHYLPHENOL	1000 U	1000 U	ND	ND		0/4
2-METHYLNAPHTHALENE	1000 U	1000 U	ND	ND		0/4
HEXACHLOROCYCLOPENTADIENE		1000 U	ND	ND		0/4
2,4,6-TRICHLOROPHENOL	1000 U	1000 U	ND	ND		0/4
2,4,5-TRICHLOROPHENOL	2500 U	2500 U	ND	ND		0/4
2-CHLORONAPHTHALENE	1000 U	1000 U	ND	ND		0/4
2-NITROANILINE	2500 U	2500 U	ND	ND		0/4
DIMETHYL PHTHALATE	1000 U	1000 U	ND	ND		0/4
ACENAPHTHYLENE	1000 U	1000 U	ND	ND		0/4
2,6-DINITROTOLUENE	1000 U	1000 U	ND	ND		0/4
3-NITROANILINE	2500 U	2500 U	ND	ND		0/4
ACENAPHTHENE	1000 U	1000 U	ND	ND		0/4
2,4-DINITROPHENOL	2500 U	2500 U	ND	ND		0/4
4-NITROPHENOL	2500 U	2500 U	ND	ND		0/4

3

SAMPLE ID	MINIMUM NONDETECTED	MAXIMUM NONDETECTED	MINIMUM DETECTED	MAXIMUM DETECTED	LOCATION OF MAXIMUM DETECTED	FREQUENCY OF DETECTION
DATE COLLECTED						
SEMIVOLATILES (UG/KG) cont.						
DIBENZOFURAN	1000 U	1000 U	ND	ND		0/4
2,4-DINITROTOLUENE	1000 U	1000 U	ND ND	ND ND		0/4
DIETHYL PHTHALATE	1000 U	1000 U	ND ND	ND ND		0/4 0/4
FLUORENE	1000 U	1000 U	ND	ND ND		0/4
4-NITROANILINE	2500 U	2500 U	ND	ND		0/4
4,6-DINITRO-2-METHYLPHENOL	2500 U	2500 U	ND	ND		0/4
N-NITROSODIPHENYLAMINE	1000 U	1000 U	ND	ND		0/4
4-BROMOPHENYL PHENYL ETHER	1000 U	1000 U	ND	ND		0/4
HEXACHLOROBENZENE	1000 U	1000 U	ND	ND		0/4
PENTACHLOROPHENOL	2500 U	2500 U	ND	ND		0/4
PHENANTHRENE	1000 U	1000 U	ND	ND		0/4
ANTHRACENE	1000 U	1000 U	ND	ND		0/4
CARBAZOLE	1000 U	1000 U	ND	ND		0/4
DI-N-BUTYL PHTHALATE	1000 U	1000 U	ND	ND		0/4
FLUORANTHENE	1000 U	1000 U	ND	ND		0/4
PYRENE	1000 U	1000 U	ND	ND		0/4
BUTYL BENZYL PHTHALATE	1000 U	1000 U	ND	ND		0/4
3,3'-DICHLOROBENZIDINE	1000 U	1000 U	ND	ND		0/4
BENZO(A)ANTHRACENE	1000 U	1000 U	ND	ND		0/4
CHRYSENE	1000 U	1000 U	ND	ND		0/4
BIS(2-ETHYLHEXYL)PHTHALATE	1000 U	1000 U	ND	ND		0/4
DI-N-OCTYL PHTHALATE	1000 U	1000 U	ND	ND		0/4
BENZO(B)FLUORANTHENE	1000 U	1000 U	ND	ND		0/4
BENZO(K)FLUORANTHENE	1000 U	1000 U	ND	ND		0/4
BENZO(A)PYRENE	1000 U	1000 U	ND	ND		0/4
INDENO(1,2,3-CD)PYRENE	1000 U	1000 U	ND	ND		0/4
DIBENZO(A,H)ANTHRACENE	1000 U	1000 U	ND	ND		0/4
BENZO(G,H,I)PERYLENE	1000 U	1000 U	ND	ND		0/4
BIS(2-CHLOROETHOXY)-METHANE	1000 U	1000 U	ND	ND		0/4
BIS(2-CHLOROETHYL) ETHER	1000 U	1000 U	ND	ND		0/4
4-CHLOROPHENYL PHENYL ETHER	1000 U	1000 U	ND	ND		0/4

SAMPLE ID DATE COLLECTED	65-FS04-BG01F 05/17/95	65-FS05-BG01F 05/16/95	65-FS05-LB01F 05/16/95	65-FS05-RS01F 05/16/95
PESTICIDE/PCBS (ug/kg)				
ALPHA-BHC	5 UJ	5.1 UJ	5.1 UJ	5.1 UJ
BETA-BHC	5 UJ	5.1 U	5.1 U	5.1 U
DELTA-BHC	5 UJ	5.1 U	5.1 U	5.1 U
GAMMA-BHC(LINDANE)	5 UJ	5.1 UJ	5.1 UJ	5.1 UJ
HEPTACHLOR	5 UJ	5.1 UJ	5.1 UJ	5.1 UJ
ALDRIN	5 UJ	5.1 U	5.1 U	5.1 U
HEPTACHLOR EPOXIDE	5 UJ	5.1 U	5.1 U	5.1 U
ENDOSULFAN I	5 UJ	5.1 UJ	5.1 UJ	5.1 UJ
DIELDRIN	9.8 UJ	9.9 UJ	9.9 UJ	9.9 UJ
4,4'-DDE	9.8 UJ	9.9 UJ	9.9 UJ	9.9 UJ
ENDRIN	9.8 UJ	9.9 UJ	9.9 UJ	9.9 UJ
ENDOSULFAN II	9.8 UJ	9.9 U	9.9 U	9.9 U
4,4'-DDD	5.7 J	9.9 UJ	9.9 UJ	9.9 UJ
ENDOSULFAN SULFATE	9.8 UJ	9.9 UJ	9.9 UJ	9.9 UJ
4,4'-DDT	9.8 UJ	9.9 UJ	9.9 UJ	9.9 UJ
METHOXYCHLOR	50 UJ	51 UJ	51 UJ	51 UJ
ENDRIN KETONE	9.8 UJ	9,9 U	9.9 U	9.9 U
ENDRIN ALDEHYDE	9.8 UJ	9.9 U	9.9 U	9.9 U
ALPHA CHLORDANE	5 UJ	5.1 U	5.1 U	5.1 U
GAMMA CHLORDANE	5 UJ	5.1 U	5.1 U	5.1 U
TOXAPHENE	500 UJ	510 U	510 U	510 U
AROCLOR 1016	98 UJ	99 U	99 U	99 U
AROCLOR 1221	200 UJ	200 U	200 U	200 U
AROCLOR 1232	98 UJ	99 U	99 U	99 U
AROCLOR 1242	98 UJ	99 U	99 U	99 U
AROCLOR 1248	98 UJ	99 U	99 U	99 U
AROCLOR 1254	98 UJ	99 U	99 U	99 U
AROCLOR 1260	98 UJ	99 U	99 U	99 U

SAMPLE ID DATE COLLECTED	MINIMUM NONDETECTED	MAXIMUM NONDETECTED	MINIMUM DETECTED	MAXIMUM DETECTED	LOCATION OF MAXIMUM DETECTED	FREQUENCY OF DETECTION	÷
DATE COLLECTED							
PESTICIDE/PCBS (ug/kg)	5 III	54.111	ND	MD		0/4	
ALPHA-BHC	5 UJ	5.1 UJ	ND	ND		0/4	
BETA-BHC	5 UJ 5 UJ	5.1 U 5.1 U	ND	ND		0/4	
DELTA-BHC			ND	ND		0/4	
GAMMA-BHC(LINDANE)	5 UJ 5 UJ	5.1 UJ 5.1 UJ	ND ND	ND ND		0/4	
HEPTACHLOR ALDRIN	5 UJ			ND ND		0/4	
HEPTACHLOR EPOXIDE	5 UJ 5 UJ	5.1 U 5.1 U	ND ND	ND ND		0/4	
ENDOSULFAN I	5 UJ	5.1 UJ	ND ND	ND ND		0/4 0/4	
DIELDRIN	9.8 UJ	9.9 UJ	ND .	ND ND		0/4	
4,4'-DDE	9.8 UJ	9.9 UJ	ND ND	ND ND		0/4	
ENDRIN	9.8 UJ	9.9 UJ	ND ND	ND		0/4	
ENDOSULFAN II	9.8 UJ	9.9 U	ND	ND		0/4	
4,4'-DDD	9.9 UJ	9.9 UJ	5.7 J	5.7 J	65-FS04-BG01F	1/4	
ENDOSULFAN SULFATE	9.8 UJ	9.9 UJ	3.7 3 ND	ND	03-1304-00011	0/4	
4,4'-DDT	9.8 UJ	9.9 UJ	ND ND	ND ND		0/4	
METHOXYCHLOR	9.8 UJ 50 UJ	9.9 03 51 UJ	ND ND	ND		0/4	
ENDRIN KETONE	9,8 UJ	9.9 U	ND	ND		0/4	
ENDRIN ALDEHYDE	9.8 UJ	9.9 U	ND	ND		0/4	
ALPHA CHLORDANE	5 UJ	5.1 U	ND	ND		0/4	
GAMMA CHLORDANE	5 UJ	5.1 U	ND	ND	8	0/4	
TOXAPHENE	500 UJ	510 U	ND	ND		0/4	
AROCLOR 1016	98 UJ	99 U	ND	ND		0/4	
AROCLOR 1221	200 UJ	200 UJ	ND	ND		0/4	
AROCLOR 1232	98 UJ	99 U	ND	ND		0/4	
AROCLOR 1242	98 UJ	99 U	ND	ND		0/4	
AROCLOR 1248	98 UJ	99 U	ND	ND		0/4	
AROCLOR 1254	98 UJ	99 U	ND	ND		0/4	
AROCLOR 1260	98 UJ	99 U	, ND	ND		0/4	
ANOULON 1200	30 00	99 0	. 110	140		V/T	

SAMPLE ID DATE COLLECTED	65-FS04-BG01F 05/17/95	65-FS05-BG01F 05/16/95	65-FS05-LB01F 05/16/95	65-FS05-RS01F 05/16/95
ANALYTES (mg/kg)				
ALUMINUM	3.5 U	1.7 U	0.99	1 U
ANTIMONY	1 U	1 U	1 U	1 U
ARSENIC	0.08 UJ	0.08 UJ	0.08 UJ	0.08 UJ
BARIUM	0.21 J	0.1 U	0.052 U	0.051 U
BERYLLIUM	0.015 U	0.015 U	0.015 U	0.015 U
BORON	0.7 U	0.71 U	0.71 U	0.7 U
CADMIUM	0.1 U	0.1 U	0.1 U	0.1 U
CALCIUM	2100 J	560 J	399 J	385 J
CHROMIUM	0.31 U	0.22 U	0.15 U	0.3 U
COBALT	0.32 U	0.32 U	0.32 U	0.32 U
COPPER	0.49	0.46	0.23 U	0.51 U
CYANIDE, TOTAL	0.5 U	0.5 U	0.5 U	0.5 U
IRON	3.3 U	2.7 U	1.5 U	2.4 U
LEAD	0.054 _. U	0.055 U	0.054 U	0.054 U
MAGNESIUM	298 J	299 J	290 J	293 J
MANGANESE	0.45 J	0.22 J	0.092 J	0.14 J
MERCURY	0.22 J	0.07 J	0.3 J	0.051 J
MOLYBDENUM	0.12 U	0.12 U	0.12 U	0.12 U
NICKEL	0.86 U	0.87 U	0.87 U	0.86 U
POTASSIUM	2700 J	3220 J	3540 J	3520 J
SELENIUM	0.22	0.15	0.16	0.14
SILVER	0.094 U	0.094 U	0.094 U	0.094 U
SODIUM	869	708	441	620
THALLIUM	0.11	0.11 U	0.11	0.11
TIN	9.6 U	9.6 U	9.6 U	9.6 U
VANADIUM	0.12 U	0.12 U	0.12 U	0.12 U
ZINC	8.1 J	8.4 J	5.8 J	8.2 J

SAMPLE ID DATE COLLECTED	MINIMUM NONDETECTED	MAXIMUM NONDETECTED	MINIMUM DETECTED	MAXIMUM DETECTED	LOCATION OF MAXIMUM DETECTED	FREQUENCY OF DETECTION
ANALYTES (mg/kg)						
ALUMINUM	1 U	3.5 U	0.99	0.99	65-FS05-LB01F	1/4
ANTIMONY	1 U	1 U	ND	ND	00 1 000 250	0/4
ARSENIC	0.08 UJ	0.08 UJ	ND	ND		0/4
BARIUM	0.051 U	0.1 U	0.21 J	0.21 J	65-FS04-BG01F	1/4
BERYLLIUM	0.015 U	0.015 U	ND	ND	0010010011	0/4
BORON	0.7 U	0.71 U	ND	ND		0/4
CADMIUM	0.1 U	0.1 U	ND	ND		0/4
CALCIUM	NA	NA	385 J	2100 J	65-FS04-BG01F	4/4
CHROMIUM	0.15 U	0.31 U	ND	ND		0/4
COBALT	0.32 U	0.32 U	ND	ND		0/4
COPPER	0.23 U	0.51 U	0.46	0.49	65-FS04-BG01F	2/4
CYANIDE, TOTAL	0.5 U	0.5 U	ND	ND		0/4
IRON	1.5 U	3.3 U	ND	ND		0/4
LEAD	0.054 U	0.055 U	ND	ND ·		0/4
MAGNESIUM	NA	NA	290 J	299 J	65-FS05-BG01F	4/4
MANGANESE	NA	NA	0.092 J	0.45 J	65-FS04-BG01F	4/4
MERCURY	NA	NA	0.051 J	0.3 J	65-FS05-LB01F	4/4
MOLYBDENUM	0.12 U	0.12 U	ND	ND		0/4
NICKEL	0.86 U	0.87 U	ND	ND		0/4
POTASSIUM	NA	NA NA	2700 J	3540 J	65-FS05-LB01F	4/4
SELENIUM	NA	NA	0.14	0.22	65-FS04-BG01F	4/4
SILVER	0.094 U	0.094 U	ND	ND		0/4
SODIUM	NA	NA	441	869	65-FS04-BG01F	4/4
THALLIUM	0.11 U	0.11 U	0.11	0.11	65-FS05-RS01F	3/4
TIN	9.6 U	9.6 U	ND	ND		0/4
VANADIUM	0.12 U	0.12 U	ND	ND		0/4
ZINC	NA	NA	5.8 J	8.4 J	65-FS05-BG01F	4/4

10/23/95 6FT M.WK4

3

APPENDIX 0.12 FISH WHOLE BODY

SAMPLE ID. DATE COLLECTED	65-FS04-BG01W 05/17/95	65-FS04-RS01W 05/17/95	65-FS05-BG01W 05/16/95	65-FS05-LB01W 05/16/95	65-FS05-RS01W 05/16/95
VOLATILES (ug/kg)		4000 11	00000 11	40000 11	4900 11
CHLOROMETHANE	4800 U	4800 U	96000 U	48000 U	4800 U
BROMOMETHANE	4800 U	4800 U	96000 U	48000 U	4800 U
VINYL CHLORIDE	4800 U	4800 U	96000 U	48000 U	4800 U
CHLOROETHANE	4800 U	4800 U	96000 U	48000 U	4800 U
METHYLENE CHLORIDE	4800 U	1000 J	96000 U	48000 U	4800 U
ACETONE	4800 U	4800 U	1400000 J	690000 J	27000 4800 U
CARBON DISULFIDE	4800 U	4800 U	96000 U	48000 U	4800 U
1,1-DICHLOROETHENE	4800 U	4800 U	96000 U	48000 U	4800 U
1,1-DICHLOROETHANE	4800 U	4800 U	96000 U	48000 U	4800 U
1,2-DICHLOROETHENE (TOTAL)	4800 U	4800 U	96000 U	48000 U 48000 U	4800 U
CHLOROFORM	4800 U	4800 U	96000 U	48000 U	4800 U
1,2-DICHLOROETHANE	4800 U	4800 U	96000 U	48000 U	4600 U 560 J
2-BUTANONE (MEK)	4800 U	4800 U	96000 U	48000 U	4800 U
1,1,1-TRICHLOROETHANE	4800 U	4800 U	96000 U		4800 U
CARBON TETRACHLORIDE	4800 U	4800 U	96000 U	48000 U 48000 U	4800 U
BROMODICHLOROMETHANE	4800 U	4800 U	96000 U	48000 U	4800 U
1,2-DICHLOROPROPANE	4800 U	4800 U	96000 U 96000 U	48000 U	4800 U
CIS-1,3-DICHLOROPROPENE	4800 U	4800 U		48000 U	4800 U
TRICHLOROETHENE	4800 U	4800 U	96000 U	48000 U	4800 U
DIBROMOCHLOROMETHANE	4800 U	4800 U	96000 U 96000 U	48000 U	4800 U
1,1,2-TRICHLOROETHANE	4800 U	4800 U	96000 U	48000 U	4800 U
BENZENE	4800 U	4800 U	96000 U	48000 U	4800 U
TRANS-1,3-DICHLOROPROPENE	4800 U	4800 U	96000 U	48000 U	4800 U
BROMOFORM	4800 U	4800 U	96000 U	48000 U	4800 U
4-METHYL-2-PENTANONE (MIBK)	4800 U	4800 U	96000 U	48000 U	4800 U
2-HEXANONE	4800 U	4800 U		48000 U	4800 U
TETRACHLOROETHENE	4800 U	4800 U	96000 U	48000 U	4800 U
1,1,2,2-TETRACHLOROETHANE	4800 U	4800 U	96000 U	48000 U 5000 J	4800 U
TOLUENE	4800 U	4800 U	96000 U		4800 U
CHLOROBENZENE	4800 U	4800 U	96000 U	48000 U 48000 U	4800 U
ETHYLBENZENE	4800 U	4800 U	96000 U	48000 U	4800 U
STYRENE	4800 U	4800 U	96000 U	48000 U 48000 U	4800 U
XYLENES (TOTAL)	4800 U	4800 U	96000 U	40000 0	4000 0

SAMPLE ID. DATE COLLECTED	MINIMUM NONDETECTED	MAXIMUM NONDETECTED	MINIMUM DETECTED	MAXIMUM DETECTED	LOCATION OF MAXIMUM DETECTED	FREQUENCY OF DETECTION
VOLATILES (ug/kg)						
CHLOROMETHANE	4800 U	96000 U	ND	ND		0/5
BROMOMETHANE	4800 U	96000 U	ND	ND		0/5
VINYL CHLORIDE	4800 U	96000 U	ND ND	ND		0/5
CHLOROETHANE	4800 U	96000 U	ND	ND		0/5
METHYLENE CHLORIDE	4800 U	96000 U	1000 J	1000 J	65-FS04-RS01W	1/5
ACETONE	4800 U	4800 U	27000	1400000 J	65-FS05-BG01W	3/5
CARBON DISULFIDE	4800 U	96000 U	ND	ND	00-1 000-00144	0/5
1,1-DICHLOROETHENE	4800 U	96000 U	ND	ND		0/5
1,1-DICHLOROETHANE	4800 U	96000 U	ND	ND		0/5
1,2-DICHLOROETHENE (TOTAL)	4800 U	96000 Ú	ND	ND		0/5
CHLOROFORM	4800 U	96000 U	ND	ND		0/5
1,2-DICHLOROETHANE	4800 U	96000 U	ND	ND		0/5
2-BUTANONE (MEK)	4800 U	96000 U	560 J	560 J	65-FS05-RS01W	1/5
1,1,1-TRICHLOROETHANE	4800 U	96000 U	ND	ND	***************************************	0/5
CARBON TETRACHLORIDE	4800 U	96000 U	ND	ND		0/5
BROMODICHLOROMETHANE	4800 U	96000 U	ND	ND		0/5
1,2-DICHLOROPROPANE	4800 U	96000 U	ND	ND		0/5
CIS-1,3-DICHLOROPROPENE	4800 U	96000 U	ND	ND		0/5
TRICHLOROETHENE	4800 U	96000 U	ND	ND		0/5
DIBROMOCHLOROMETHANE	4800 U	96000 U	ND	ND		0/5
1,1,2-TRICHLOROETHANE	4800 U	96000 U	ND	ND		0/5
BENZENE	4800 U	96000 U	ND	ND		0/5
TRANS-1,3-DICHLOROPROPENE	4800 U	96000 U	ND	ND		0/5
BROMOFORM	4800 U	96000 U	ND	ND		0/5
4-METHYL-2-PENTANONE (MIBK)	4800 U	96000 U	ND	ND		0/5
2-HEXANONE	4800 U	96000 U	ND	ND		0/5
TETRACHLOROETHENE	4800 U	96000 U	ND	ND		0/5
1,1,2,2-TETRACHLOROETHANE	4800 U	96000 U	ND	ND	,	0/5
TOLUENE	4800 U	96000 U	5000 J	5000 J	65-FS05-LB01W	1/5
CHLOROBENZENE	4800 U	96000 U	ND	ND		0/5
ETHYLBENZENE	4800 U	96000 U	ND	ND		0/5
STYRENE	4800 U	96000 U	ND	ND		0/5
XYLENES (TOTAL)	. 4800 U	96000 U	ND	ND		0/5

2-CHLOROPHENOL 8000 U 1000 U 4	
SEMIVOLATILES (ug/kg) PHENOL 8000 U 1000 U 4000 U	
PHENOL 8000 U 1000 U 4000 U 4000 U 4000 U 40 2-CHLOROPHENOL 8000 U 1000 U 4000 U 4000 U 40 1,3-DICHLOROBENZENE 8000 U 1000 U 4000 U 4000 U 4000 U	,
PHENOL 8000 U 1000 U 4000 U 4000 U 4000 U 40 2-CHLOROPHENOL 8000 U 1000 U 4000 U 4000 U 40 1,3-DICHLOROBENZENE 8000 U 1000 U 4000 U 4000 U 4000 U	
1,3-DICHLOROBENZENE 8000 U 1000 U 4000 U 4000 U 4000 U 4000 U	00 U
1 o didition to the distribution of the distri	U 00
1.4_DICHLOPORENZENE 8000 II 1000 II 4000 II 4000 II 4000 II 40	00 U
I'ADIOTIONODEIRETIE 0000 0 1000 0 4000 0 4000 0	00 U
1,2-DICHLOROBENZENE 8000 U 1000 U 4000 U 4000 U 4000 U 40	00 U
2-METHYLPHENOL 8000 U 1000 U 4000 U 4000 U 40	00 U
2,2'-OXYBIS(1-CHLOROPROPANE) 8000 U 1000 U 4000 U 4000 U 4000 U	00 U
4-METHYLPHENOL 8000 U 1000 U 4000 U 4000 U 4000 U 40	00 U
17-11-11-10-00-01-11-11-11-11-11-11-11-11-	00 U
(IL) O TOTAL	00 U
	00 U
ISOPHORONE 8000 U 1000 U 4000 U 4000 U 4000 U 40	00 U
	00 U
2,1000001111001100	00 U
	00 U
	00 U
14/1/11/1/14/14	00 U
TOTAL	00 U
110/0/011001/0001/01010	00 U
TOTILOTO O METITIAL METITION	00 U
2-METHYLNAPHTHALENE 8000 U 1000 U 4000 U 4000 U 4000 U 40	00 U
TIEN COLLEGIO DE LA CALLE DE L	00 U
Z ₁ 1,0 (fillering) the fillering	00 U
Zidio illiono illiono	00 U
E-OHEOHOUNG HILLINGSHIE	00 U
Z INTICOMENTE	00 U
DINICITIES	00 U
ACENAPHTHYLENE 8000 U 1000 U 4000 U 4000 U 4000 U 40	00 U
2,6-DINITROTOLUENE 8000 U 1000 U 4000 U 4000 U 4000 U 40	00 U
3-NITROANILINE 20000 U 2500 U 10000 UJ 10000 UJ 1000	00 U
	00 U
2,4-DINITROPHENOL 20000 U 2500 U 10000 U 10000 U 10000 U	00 U
	00 U
	00 U

SAMPLE ID. DATE COLLECTED	65-FS04-BG01W 05/17/95	65-FS04-RS01W 05/17/95	65-FS05-BG01W 05/16/95	65-FS05-LB01W 05/16/95	65-FS05-RS01W 05/16/95
SEMIVOLATILES (ug/kg) cont.					
2,4-DINITROTOLUENE	8000 U	1000 U	4000 U	4000 U	4000 U
DIETHYL PHTHALATE	8000 U	1000 U	4000 U	4000 U	4000 U
FLUORENE	8000 U	1000 U	4000 U	4000 U	4000 U
4-NITROANILINE	20000 U	2500 U	10000 U	10000 U	10000 U
4,6-DINITRO-2-METHYLPHENOL	20000 U	2500 U	10000 U	10000 U	10000 U
N-NITROSODIPHENYLAMINE	8000 U	1000 U	4000 U	4000 U	4000 U
4-BROMOPHENYL PHENYL ETHER	8000 U	1000 U	4000 U	4000 U	4000 U
HEXACHLOROBENZENE	8000 U	1000 U	4000 U	4000 U	4000 U
PENTACHLOROPHENOL	20000 U	2500 U	10000 U	10000 U	10000 U
PHENANTHRENE	8000 U	1000 U	4000 U	4000 U	4000 U
ANTHRACENE	U 0008	1000 U	4000 U	4000 U	4000 U
CARBAZOLE	8000 U	1000 U	4000 U	4000 U	4000 U
DI-N-BUTYL PHTHALATE	8000 U	1000 U	4000 U	4000 U	4000 U
FLUORANTHENE	8000 U	1000 U	4000 U	4000 U	4000 U
PYRENE	8000 U	1000 U	4000 U	4000 U	4000 U
BUTYL BENZYL PHTHALATE	8000 U	1000 U	4000 U	4000 U	4000 U
3,3'-DICHLOROBENZIDINE	8000 U	1000 U	4000 U	4000 U	4000 U
BENZO(A)ANTHRACENE	8000 U	1000 U	4000 U	4000 U	4000 U
CHRYSENE	8000 U	1000 U	4000 U	4000 U	4000 U
BIS(2-ETHYLHEXYL)PHTHALATE	8000 U	1000 U	4000 U	4000 U	4000 U
DI-N-OCTYL PHTHALATE	8000 U	1000 U	4000 U	4000 U	4000 U
BENZO(B)FLUORANTHENE	8000 U	1000 U	4000 U	4000 U	4000 U
BENZO(K)FLUORANTHENE	8000 U	1000 U	4000 U	4000 U	4000 U
BENZO(A)PYRENE	8000 U	1000 U	4000 U	4000 U	4000 U
INDENO(1,2,3-CD)PYRENE	8000 U	1000 U	4000 U	4000 U	4000 U
DIBENZO(A,H)ANTHRACENE	8000 U	1000 U	4000 U	4000 U	4000 U
BENZO(G,H,I)PERYLENE	8000 U	1000 U	4000 U	4000 U	4000 U
BIS(2-CHLOROETHOXY)-METHANE	8000 U	1000 U	4000 U	4000 U	4000 U
BIS(2-CHLOROETHYL) ETHER	8000 U	1000 U	4000 U	4000 U	4000 U
4-CHLOROPHENYL PHENYL ETHER	8000 U	1000 U	4000 U	4000 U	4000 U

SAMPLE ID. DATE COLLECTED	MINIMUM NONDETECTED	MAXIMUM NONDETECTED	MINIMUM DETECTED	MAXIMUM DETECTED	LOCATION OF MAXIMUM DETECTED	FREQUENCY OF DETECTION
DATE GOLLLOTED						
SEMIVOLATILES (ug/kg)						
PHENOL	1000 U	8000 U	ND	ND		0/5
2-CHLOROPHENOL	1000 U	8000 U	ND	ND		0/5
1,3-DICHLOROBENZENE	1000 U	8000 U	ND	ND		0/5
1,4-DICHLOROBENZENE	1000 U	8000 U	ND	ND		0/5
1,2-DICHLOROBENZENE	1000 U	8000 U	ND	ND		0/5
2-METHYLPHENOL	1000 U	8000 U	ND	ND		0/5
2,2'-OXYBIS(1-CHLOROPROPANE)	1000 U	8000 U	ND	ND		0/5
4-METHYLPHENOL	1000 U	8000 U	ND	ND		0/5
N-NITROSO-DI-N-PROPYLAMINE	1000 U	8000 U	ND	ND		0/5
HEXACHLOROETHANE	1000 U	8000 U	ND	ND		0/5
NITROBENZENE	1000 U	U 0008	ND	ND		0/5
ISOPHORONE	1000 U	U 0008	ND	ND		0/5
2-NITROPHENOL	1000 U	8000 U	ND	ND		0/5
2,4-DIMETHYLPHENOL	1000 U	U 0008	ND	ND		0/5
2,4-DICHLOROPHENOL	1000 U	U 0008	ND ND	ND		0/5
1,2,4-TRICHLOROBENZENE	1000 U	8000 U	ND	ND		0/5
NAPHTHALENE	1000 U	8000 ป	NĎ	ND		0/5
4-CHLOROANILINE	1000 U	8000 U	ND	ND		0/5
HEXACHLOROBUTADIENE	1000 U	8000 U	ND	ND		0/5
4-CHLORO-3-METHYLPHENOL	1000 U	8000 ป	ND	ND		0/5
2-METHYLNAPHTHALENE	1000 U	8000 U	ND	ND		0/5
HEXACHLOROCYCLOPENTADIENE	1000 U	บ 0008	ND	ND		0/5
2,4,6-TRICHLOROPHENOL	1000 U	8000 U	ND	ND		0/5
2,4,5-TRICHLOROPHENOL	2500 U	20000 U	ND	ND		0/5
2-CHLORONAPHTHALENE	1000 U	U 0008	ND	ND		0/5
2-NITROANILINE	2500 U	20000 U	ND	ND		0/5
DIMETHYL PHTHALATE	1000 U	8000 U	ND	ND		0/5
ACENAPHTHYLENE	1000 U	U 0008	ND	ND		0/5
2,6-DINITROTOLUENE	1000 U	8000 U	ND	ND		0/5
3-NITROANILINE	2500 U	20000 U	ND	ND		0/5
ACENAPHTHENE	1000 U	8000 U	ND	ND		0/5
2,4-DINITROPHENOL	2500 U	20000 U	ND	ND		0/5
4-NITROPHENOL	2500 U	20000 U	ND	ND		0/5
DIBENZOFURAN	1000 U	8000 U	ND	ND		0/5

SAMPLE ID.	MINIMUM NONDETECTED	MAXIMUM NONDETECTED	MINIMUM DETECTED	MAXIMUM DETECTED	LOCATION OF MAXIMUM DETECTED	FREQUENCY OF DETECTION
DATE COLLECTED						
SEMIVOLATILES (ug/kg) cont.						
2,4-DINITROTOLUENE	1000 U	8000 U	ND	ND		0/5
DIETHYL PHTHALATE	1000 U	8000 U	ND	ND		0/5
FLUORENE	1000 U	8000 U	ND	ND		0/5
4-NITROANILINE	2500 U	20000 U	ND	ND		0/5
4,6-DINITRO-2-METHYLPHENOL	2500 U	20000 U	ND	ND		0/5
N-NITROSODIPHENYLAMINE	1000 U	8000 U	ND	ND		0/5
4-BROMOPHENYL PHENYL ETHER	1000 U	8000 U	ND	ND		0/5
HEXACHLOROBENZENE	1000 U	8000 U	ND	ND		0/5
PENTACHLOROPHENOL	2500 U	20000 U	ND	ND		0/5
PHENANTHRENE	1000 U	8000 U	ND	ND		0/5
ANTHRACENE	1000 U	8000 U	ND	ND		0/5
CARBAZOLE	1000 U	8000 U	ND	ND		0/5
DI-N-BUTYL PHTHALATE	1000 U	8000 U	ND	ND		0/5
FLUORANTHENE	1000 U	8000 U	ND	ND		0/5
PYRENE	1000 U	6000 U	ND	ND		0/5
BUTYL BENZYL PHTHALATE	1000 U	8000 U	ND	ND		0/5
3,3'-DICHLOROBENZIDINE	1000 U	U 0008	ND	ND		0/5
BENZO(A)ANTHRACENE	1000 U	8000 U	ND	ND		0/5
CHRYSENE	1000 U	8000 U	ND	ND		0/5
BIS(2-ETHYLHEXYL)PHTHALATE	1000 U	8000 U	ND	ND		0/5
DI-N-OCTYL PHTHALATE	1000 U	8000 U	ND	ND		0/5
BENZO(B)FLUORANTHENE	1000 U	8000 U	ND	ND		0/5
BENZO(K)FLUORANTHENE	1000 U	8000 U	ND	ND		0/5
BENZO(A)PYRENE	1000 U	8000 U	ND	ND		0/5
INDENO(1,2,3-CD)PYRENE	1000 U	8000 U	ND	ND		0/5
DIBENZO(A,H)ANTHRACENE	1000 U	8000 U	ND	ND		0/5
BENZO(G,H,I)PERYLENE	1000 U	8000 U	ND	ND		0/5
BIS(2-CHLOROETHOXY)-METHANE	1000 U	8000 U	ND	ND		0/5
BIS(2-CHLOROETHYL) ETHER	1000 U	8000 U	ND	ND		0/5
4-CHLOROPHENYL PHENYL ETHER	1000 U	8000 U	ND	ND		0/5

SAMPLE ID. DATE COLLECTED	65-FS04-BG01W 05/17/95	65-FS04-RS01W 05/17/95	65-FS05-BG01W 05/16/95	65-FS05-LB01W 05/16/95	65-FS05-RS01W 05/16/95
PESTICIDE/PCBS (ug/kg)	5.1 UJ	5.1 UJ	5 UJ	5.1 UJ	5.1 UJ
BETA-BHC	5.1 UJ	5.1 UJ	5 UJ	5.1 UJ	5.1 UJ
DELTA-BHC	5.1 UJ	5.1 UJ	5 UJ	5.1 UJ	5.1 UJ
GAMMA-BHC(LINDANE)	5.1 UJ	5.1 UJ	5 UJ	5.1 UJ	5.1 UJ
HEPTACHLOR	5.1 UJ	5.1 UJ	5 UJ	5.1 UJ	5.1 UJ
ALDRIN	5.1 UJ	5.1 UJ	5 UJ	5.1 UJ	5.1 UJ
HEPTACHLOR EPOXIDE	5.1 UJ	5.1 UJ	5 UJ	5.1 UJ	5.1 UJ
ENDOSULFAN I	5.1 UJ	5.1 UJ	5 UJ	5.1 UJ	5.1 UJ
DIELDRIN	9.9 UJ	9.9 UJ	9.8 UJ	9.9 UJ	9.9 UJ
4,4'-DDE	15 J	9.9 UJ	9.8 UJ	9.9 UJ	9.9 UJ
ENDRIN	9.9 UJ	9.9 UJ	9.8 UJ	9.9 UJ	9.9 UJ
ENDOSULFAN II	9.9 UJ	9.9 UJ	9.8 UJ	9.9 UJ	9.9 UJ
4,4'-DDD	40 J	6.9 J	9.8 UJ	9.9 UJ	9.9 UJ
ENDOSULFAN SULFATE	9.9 UJ	9.9 UJ	9.8 UJ	9.9 UJ	9.9 UJ
4,4'-DDT	9.9 UJ	9.9 UJ	9.8 UJ	9.9 UJ	9.9 UJ
METHOXYCHLOR	51 UJ	51 UJ	50 UJ	51 UJ	51 UJ
ENDRIN KETONE	9.9 UJ	9.9 UJ	9.8 UJ	9.9 UJ	9.9 UJ
ENDRIN ALDEHYDE	9.9 UJ	9.9 UJ	9.8 UJ	9.9 UJ	9.9 UJ
ALPHA CHLORDANE	5.1 UJ	5.1 UJ	5 UJ	5.1 UJ	5.1 UJ
GAMMA CHLORDANE	5.1 UJ	5.1 UJ	5 UJ	5.1 UJ	5.1 UJ
TOXAPHENE	510 UJ	510 UJ	500 UJ	510 UJ	510 UJ
AROCLOR 1016	99 UJ	99 UJ	98 UJ	99 UJ	99 UJ
AROCLOR 1221	200 UJ				
AROCLOR 1232	99 UJ	99 UJ	98 UJ	99 UJ	99 UJ
AROCLOR 1242	99 UJ	99 UJ	98 UJ	99 UJ	99 UJ
AROCLOR 1248	99 UJ	99 UJ	98 UJ	99 UJ	99 UJ
AROCLOR 1254	99 UJ	99 UJ	98 UJ	99 UJ	99 UJ
AROCLOR 1260	99 UJ	99 UJ	98 UJ	99 UJ	99 UJ

SAMPLE ID.	MINIMUM NONDETECTED	MAXIMUM NONDETECTED	MINIMUM DETECTED	MAXIMUM DETECTED	LOCATION OF MAXIMUM DETECTED	FREQUENCY OF DETECTION
DATE COLLECTED		·		22.20,20	32,20,12	
PESTICIDE/PCBS (ug/kg)						
ALPHA-BHC	5 UJ	5.1 UJ	ND	ND		0/5
BETA-BHC	5 UJ	5.1 UJ	ND	ND		0/5
DELTA-BHC	5 UJ	5.1 UJ	ND	ND		0/5
GAMMA-BHC(LINDANE)	5 UJ	5.1 UJ	ND	ND		0/5
HEPTACHLOR	5 UJ	5.1 UJ	ND	ND		0/5
ALDRIN	5 UJ	5.1 UJ	ND	ND		0/5
HEPTACHLOR EPOXIDE	5 UJ	5.1 UJ	ND	ND		0/5
ENDOSULFAN I	5 UJ	5.1 UJ	ND	ND		0/5
DIELDRIN	9.8 UJ	9.9 UJ	ND 45	ND 15	05 500 (500 ())	0/5
4,4'-DDE ENDRIN	9.8 UJ 9.8 UJ	9,9 UJ	15 J	15 J	65-FS04-BG01W	1/5
	9.8 UJ	9.9 UJ 9.9 UJ	ND	ND		0/5
ENDOSULFAN II	9.8 UJ 9.8 UJ		ND	ND 10	05 5004 000444	0/5
4,4'-DDD ENDOSULFAN SULFATE	9.6 UJ 9.8 UJ	9.9 UJ	6.9 J	40 J	65-FS04-BG01W	2/5
	9.8 UJ	9.9 UJ	ND	ND		0/5
4,4'-DDT METHOXYCHLOR	9.8 UJ 50 UJ	9.9 UJ 51 UJ	ND	ND		0/5 0/5
			ND	ND		0/5
ENDRIN KETONE ENDRIN ALDEHYDE	9.8 UJ 9.8 UJ	9.9 UJ	ND	ND		0/5 0/5
ALPHA CHLORDANE	9.6 UJ 5 UJ	9.9 UJ 5.1 UJ	ND	ND		0/5
GAMMA CHLORDANE	5 UJ	5.1 UJ	ND	ND		0/5 0/5
TOXAPHENE	500 UJ	5.1 UJ 510 UJ	ND	ND		0/5
AROCLOR 1016	98 UJ	99 UJ	ND ND	ND		0/5
AROCLOR 1016 AROCLOR 1221	200 UJ	99 UJ 200 UJ	ND ND	ND ND		0/5 0/5
AROCLOR 1221 AROCLOR 1232	200 UJ 98 UJ	200 03 99 UJ				0/5
AROCLOR 1232 AROCLOR 1242	98 UJ		ND ND	ND ND		0/5 0/5
	98 UJ	99 UJ	ND	ND		0/5
AROCLOR 1248	98 UJ 98 UJ	99 UJ	ND	ND		0/5
AROCLOR 1254		99 UJ	ND	ND		0/5
AROCLOR 1260	98 UJ	99 UJ	ND	ND		0/5

SAMPLE ID. DATE COLLECTED	65-FS04-BG01W 05/17/95	65-FS04-RS01W 05/17/95	65-FS05-BG01W 05/16/95	65-FS05-LB01W 05/16/95	65-FS05-RS01W 05/16/95
ANALYTES (mg/kg)					
ALUMINUM	18.8 J	18 J	3.3 U	9.6 J	2.1 U
ANTIMONY	1 U	1.5	1.1	1.4	1.1
ARSENIC	0.15 J	0.08 UJ	0.08 UJ	0.08 UJ	0.08 UJ
BARIUM	1.8 J	2.9 J	1.8 J	1.3 J	0.44 J
BERYLLIUM	0.02 U	0.015 U	0.028	0.015 U	0.015 U
BORON	0.72 U	0.71 U	0.82 U	0.88 U	0.71 U
CADMIUM	0.1 U				
CALCIUM	19600 J	42500 J	22600 J	22400 J	8840 J
CHROMIUM	0.7 U	0,89 U	0.57 U	0.55 U	0.34 U
COBALT	0.32 U				
COPPER	1.1	0.68 U	0.5 U	0.58 U	8.6
CYANIDE, TOTAL	0.5 U	0.5 U	0.5 U	0,5 U	0.5 U
IRON	22.9 J	24.4 J	7.8 J	26.1 J	11.8 J
LEAD	0.17	0.49	0.055 U	0.054 U	0.33
MAGNESIUM	557 J	951 J	538 J	593 J	370 J
MANGANESE	3.6 J	4.1 J	4.9 J	2.3 J	, 1 J
MERCURY	0.04 UJ	0.11 J	0.04 UJ	0.11 J	0.04 UJ
MOLYBDENUM	0.12 U				
NICKEL	0.88 U	0.87 U	0.87 U	0.87 U	0.87 U
POTASSIUM	2580 J	1850 J	2790 J	2860 J	2740 J
SELENIUM	0.42	0.17	0.16	0.33	0.32
SILVER	0.1 U	0.094 U	0.094 U	0.094 U	0.094 U
SODIUM	1260	2400	1250	1160	992
THALLIUM	0.12	0.11	0.11	0.11	0.11
TIN	9.6 U				
VANADIUM	0.12 U				
ZINC	26.2 J	31.5 J	26.6 J	14.8 J	23.3 J

SAMPLE ID. DATE COLLECTED	MINIMUM NONDETECTED	MAXIMUM NONDETECTED	MINIMUM DETECTED	MAXIMUM DETECTED	LOCATION OF MAXIMUM DETECTED	FREQUENCY OF DETECTION
ANALYTES (mg/kg)						
ALUMINUM	2.1 U	3.3 U	9.6 J	18.8 J	65-FS04-BG01W	3/5
ANTIMONY	1 U	1 U	1.1	1.5	65-FS04-RS01W	4/5
ARSENIC	0.08 UJ	0.08 UJ	0.15 J	0.15 J	65-FS04-BG01W	1/5
BARIUM	NA	NA	0.44 J	2.9 J	65-FS04-RS01W	5/5
BERYLLIUM	0.015 U	0.02 U	0.028	0.028	65-FS05-BG01W	1/5
BORON	0.71 U	0.88 U	ND	ND		0/5
CADMIUM	0.1 U	0.1 U	ND	ND		0/5
CALCIUM	NA	NA	8840 J	42500 J	65-FS04-RS01W	5/5
CHROMIUM	0.34 U	0.89 U	ND	ND		0/5
COBALT	0.32 U	0.32 U	ND	ND		0/5
COPPER	0.5 U	0.68 U	1.1	8.6	65-FS05-RS01W	2/5
CYANIDE, TOTAL	0.5 U	0.5 U	ND	ND		0/5
IRON	NA	NA	7.8 J	26.1 J	65-FS05-LB01W	5/5
LEAD	0.054 U	0.055 U	0.17	0.49	65-FS04-RS01W	3/5
MAGNESIUM	NA ·	NA	370 J	951 J	65-FS04-RS01W	5/5
MANGANESE	NA	NA	1 J	4.9 J	65-F\$05-BG01W	5/5
MERCURY	0.04 UJ	0.04 UJ	0.11 J	0.11 J	65-FS05-LB01W	2/5
MOLYBDENUM	0.12 U	0.12 U	ND	ND		0/5
NICKEL	0.87 U	0.88 U	ND	ND		0/5
POTASSIUM	NA	NA	1850 J	2860 J	65-FS05-LB01W	5/5
SELENIUM	NA	NA	0.16	0.42	65-FS04-BG01W	5/5
SILVER	0.094 U	0.1 U	ND	ND		0/5
SODIUM	NA	NA	992	2400	65-FS04-RS01W	5/5
THALLIUM	NA	NA	0.11	0.12	65-FS04-BG01W	5/5
TIN	9.6 U	9.6 U	ND	ND		0/5
VANADIUM	0.12 U	0.12 U	ND	ND		0/5
ZINC	NA	NA	14.8 J	31.5 J	65-FS04-RS01W	5/5

APPENDIX 0.13
RESULT OF ENGINEERING PARAMETERS

CTO 312 SITE 65 SOIL

LOCATION	65-SB06
DATE SAMPLED	04/10/95
UNITS	MG/KG
ENGINEERING	
PHOSPHORUS	70
TOTAL KJELDAHL NITROGEN (TKN)	220
ALKALINITY, AS CACO3	680
CHEMICAL OXYGEN DEMAND (COD)	2140
HETEROTROPHIC PLATE COUNT (GM)	500,000
CARBON, TOTAL ORGANIC	3,290

ALKALINITY ANALYSIS

Laboratory Name:

Quanterra-Knoxville

Job Number:

3333

Contract Name:

Baker Camp Lejeune

Analysis Date:

04/13/95

Sample Matrix:

Soil

Concentration Units:

Client Sample ID	Lab Sample ID	Result	Qualifier
Method Blank	AE9732	200	Ŭ
65-SB06	AE9676	680	+

^{+ -} Positive result.

U - Compound was analyzed for but not detected. The number is the detection limit for the sample.

CHEMICAL OXYGEN DEMAND ANALYSIS

Laboratory Name:

Quanterra-Knoxville

Job Number:

3333

Contract Name:

Baker Camp Lejeune

Analysis Date:

04/14/95

Sample Matrix:

Soil

Concentration Units:

Client Sample ID	Lab Sample ID	Result	Qualifier
Method Blank	AE9743	400	U
65-SB06	AE9676	2140	+

^{+ -} Positive result.

U - Compound was analyzed for but not detected. The number is the detection limit for the sample.

TOTAL KJELDAHL NITROGEN ANALYSIS

Laboratory Name:

Quanterra-Knoxville

Job Number:

3333

Contract Name:

Baker Camp Lejeune

Analysis Date:

04/18/95

Sample Matrix:

Soil

Concentration Units:

Lab Sample ID	Result	Qualifier
AE9736	10	U
AE9676	220	+
	AE9736	AE9736 10

^{+ -} Positive result.

U - Compound was analyzed for but not detected. The number is the detection limit for the sample.

TOTAL PHOSPHOROUS ANALYSIS

Laboratory Name:

Quanterra-Knoxville

Job Number:

3333

Contract Name:

Baker Camp Lejeune

Analysis Date:

05/04/95

Sample Matrix:

Soil

Concentration Units:

Client Sample ID	Lab Sample ID	Result	Qualifier
Method Blank	AF2049	0.20	U
65-SB06	AE9676	70	+

^{+ -} Positive result.

U - Compound was analyzed for but not detected. The number is the detection limit for the sample.

QUANTERRA

65-SB06

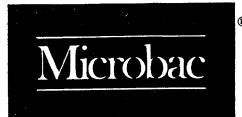
WO #: A40JT

LAB #: C5D130061-001

MATRIX: SOLID

DATE SAMPLED:

4/10/95


DATE RECEIVED:

4/13/95

- INORGANIC ANALYTICAL REPORT -

PARAMETER	RESULT	REPORTING LIMIT	UNIT	METHOD	PREPARATION - ANALYSIS DATE	QC <u>BATCH</u>
Solids, Total (TS) Carbon, Total Organic	88.7 3,290	56.4	% mg/kg	MCAWW 160.3 M MOSA WALKLEY-	•	5117046 5114121

NOTE: DRY WEIGHT

Microbac Laboratories, Inc.

PAGE

4580 McKNIGHT ROAD PITTSBURGH, PA 15237 (412) 931-5851

WASTES FOOD

CERTIFICATE OF ANALYSIS

QUANTERRA ENVIRONMENTAL SERV. 5815 MIDDLEBROOK PIKE

KNOXVILLE

TN 37921

ATTN: JAIME MCKINNEY

DATE SAMPLED TIME SAMPLED SAMPLER

PERMIT NO.

4/10/95 16:50

CUST

DATE REPORTED ORDER NO. INVOICE NO.

DATE RECEIVED TIME RECEIVED

> 9504-00388 015738 0003

CUST. NO. CUST. P.O. 2369

SUBJECT: SPECIAL TESTING

SAMPLE #

TEST PERFORMED

METHOD

RESULT

UNITS

4/13/95

4/17/95

00:00

65-SB06 AE9678 SDIL 4-10-95 1650 PROJ.#3333/BAKER

HETEROTROPHIC PLATE COUNT

SMEWW 9215C

500,000

PARTICLE DIAMETER IN MM

WASH SIEVE ANALYSIS

Client

QUANTERRA

Tested By Checked By

Client Project

3333 / BAKER

5.2.95

Project No.

95105

Boring No. Depth(ft.)

AE9679

Sample No.

NA

Soil Description

65-SB06

BROWN POORLY GRADED SAND WITH SILT (NON-PLASTIC FINES)

Wt. of Total Sample(dry) (2)

1058.2 gm.

Wt of Grand Total (1)

8478.29

Wt. of +#200 Sample

937.2 gm.

J Factor

0.9924

Wt. of -#200 Sample

121.0 gm.

(Percent finer than 3/4")

Sieve	Sieve	Wt. of Soil		Percent	Accumulate	Percent	Final
	Opening	Retained		Retained	Percent	Finer	Percent
	(mm)	(gm.)	 		Retained		Finer (3)
12"	300.0	0.00		0.00	0.00	100.00	100.0
6"	150.0	0.00		0.00	0.00	100.00	100.0
3"	75.0	0.00		0.00	0.00	100.00	100.0
2"	50.0	0.00		0.00	0.00	100.00	100.0
1 1/2"	37.5	0.00	+ 3/4"	0.00	0.00	100.00	100.0
1"	25.0	0.00	SIEVE	0.00	0.00	100.00	100.0
3/4"	19.0	64.59	ANALYSIS	0.76	0.76	99.24	99.2
1/2"	12.5	27.12	- 3/4"	2.56	2.56	97.44	96.7
3/8"	9.5	6.78	SIEVE	0.64	3.20	96.80	96.1
#4	4.75	17.84	ANALYSIS	1.69	4.89	95.11	94.4
#10	2.00	19.82		1.87	6.76	93.24	92.5
#20	0.85	12.08		1.14	7.90	92.10	91.4
#40	0.425	9.42		0.89	8.79	91.21	90.5
#60	0.250	110.54		10.45	19.24	80.76	80.1
#140	0.106	720.40		68.08	87.31	12.69	12.6
#200	0.075	13.24		1.25	88.57	11.43	11.3
Pan_	_	121.00		11.43	100.00	<u>-</u>	

Water Content		,
Tare No.	1082	TOTAL WET WGHT3/4 SIEVE
Wgt. Tare + WS.	1331.80	9751
Wgt. Tare + DS.	1163.60	
Wgt. Tare	105.36	TOTAL DRY WGHT3/4 SIEVE
Wgt. Of Water	168.20	8414
Wgt. Of DS.	1058.24	
% Water	15.9	

Note: 1) The +3/4" sieve analysis is based on the grand total dry weight of material.

- 2) The -3/4" sieve analysis is based on the total dry weight of the split portion of sample.
- 3) The final percent finer combines the two analysis.

HYDROMETER ANALYSIS

Client	QUANTERRA	Tested By TO Date	04-18-95
Client Project	3333 / BAKER	Checked By / CM Date	5.2.95
Project No.	95105	7	,
Boring No.	AE9679	/	
Depth(ft.)	NA		
Sample No.	65-SB06		
Soil Sample Weight			
Container No.	1133		
Wt. Contain.		K Factor	0.01308
& Dry Soil	117.83 gm.	Composite Correction	6.63
Wt. Contain.	106.07 gm.	a Factor	0.99
Wt. Dispers.	5.00 gm.		
Wt. Dry Soil	6.76 gm.	% Finer Than No. 200	11.35

Temperature C Specific Gravity 22.3 Measured 2.70 Assumed

Elapsed Time (min.)	R Measu		R Corrected	N (%)	D (mm)	N' (%)
0	n a	n.a.	n.a.	n.a.	n.a.	n.a.
2	n.a. 10.5	11.0	4.4	64.0	0.0352	7.3
5	10.0	11.0	4.4	64.0	0.0223	7.3
15		10.5	3.9	56.7	0.0129	6.4
30		10.5	3.9	56.7	0.0091	6.4
60		10.0	3.4	49.4	0.0065	5.6
250		9.5	2.9	42.0	0.0032	4.8
1440		9.5	2.9	42.0	0.0013	4.8

Client QUANTERRA
Client Project 3333 / BAKER
Project No. 95105
Boring No. AE9679
Depth(ft.) NA
Sample No. 65-SB06

(mm)	FINER
300.00	100.0
150.00	100.0
75.000	100.0
50.000	100.0
37.500	100.0
25.000	100.0
19.000	99.2
12.500	96.7
9.5000	96.1
4.7500	94.4
2.0000	92.5
0.8500	91.4
0.4250	90.5
0.2500	80.1
0.1060	12.6
0.0750	11.3
0.0352	7.3
0.0223	7.3
0.0129	6.4
0.0091	6.4
0.0065	5.6
0.0032	4.8
0.0013	4.8

SIEVE OPENING (mm)	PERCENT FINER	PERCENT OF EACH COMPONENT		CORRECTED PERCENT -2.0 mm MATERIAL FOR USDA DETERMINATION
100.00	100.00			
2.00	00.50	GRAVEL	7.47	0.00
2.00	92.53	SAND	83.37	90.10
0.05	9.16	2.		-
0.000		SILT	4.39	4.74
0.002	4.77	CLAY	4.77	5.16

USDA CLASSIFICATION

SAND

ATTERBERG LIMITS TEST

Client

QUANTERRA

Tested By

Date

04-26-95

Client Project

3333 / BAKER

Checked By

jom

Date

5.2.95

Project No.

95105

Boring No.

AE9679

Depth(ft.)

NA

Sample No.

65-SB06

Soil Description

NON PLASTIC (-40)

Liquid Limit

Tare Number

Wt. Tare & WS (gm)

Wt. Tare & DS (gm)

Wt. Water (gm)

Wt. Tare (gm)

Wt. DS (gm)

No. of Blows

Water Content (%)

Plastic Limit

Tare Number

Wt. Tare & WS (gm)

Wt. Tare & DS (gm)

Wt. Water (gm)

Wt. Tare (gm)

Wt. DS (gm)

Moisture Content (%)

Non Plastic Fines

CTO 312 SITE 65 GROUNDWATER

LOCATION DATE SAMPLED UNITS	65-MW07A-01 05/19/95 MG/L
ENGINEERING	
PHOSPHORUS	0.01 U
TOTAL KJELDAHL NITROGEN (TKN)	0.18
ALKALINITY ANALYSIS	91
CHEMICAL OXYGEN DEMAND (COD)	20 U
TOTAL DISSOLVED SOLIDS ANALYSIS	194
TOTAL ORGANIC CARBON (TOC)	2
HETEROTROPHIC PLATE COUNT (PER ML)	950

ALKALINITY ANALYSIS

Laboratory Name:

Quanterra-Knoxville

Job Number:

3565

Contract Name:

Baker Camp Lejeune

Analysis Date:

05/19/95

Sample Matrix:

Water

Concentration Units:

mg/l

Client Sample ID	Lab Sample ID	Result	Qualifier
Method Blank	AF4545	2	U
65-MW07A-01	AF3040	91	+

Positive result.

⁻ Compound was analyzed for but not detected. The number is the detection limit for the sample.

CHEMICAL OXYGEN DEMAND ANALYSIS

Laboratory Name:

Quanterra-Knoxville

Job Number:

3565

Contract Name:

Baker Camp Lejeune

Analysis Date:

05/30/95

Sample Matrix:

Water

Concentration Units:

mg/l

Client Sample ID	Lab Sample ID	Result	Qualifier
Method Blank	AF5465	20	U
65-MW07A-01	AF3041	20	U

TOTAL DISSOLVED SOLIDS ANALYSIS

Laboratory Name:

Quanterra-Knoxville

Job Number:

3565

Contract Name:

Baker Camp Lejeune

Analysis Date:

05/16/95

Sample Matrix:

Water

Concentration Units:

mg/l

Client Sample ID	Lab Sample ID	Result	Qualifier
Method Blank	AF3672	10	U
65-MW07A-01	AF3039	194	+

^{+ -} Positive result.

U - Compound was analyzed for but not detected. The number is the detection limit for the sample.

TOTAL KJELDAHL NITROGEN ANALYSIS

Laboratory Name:

Quanterra-Knoxville

Job Number:

3565

Contract Name:

Baker Camp Lejeune

Analysis Date:

05/16/95

Sample Matrix:

Water

Concentration Units:

Client Sample ID	Lab Sample ID	Result	Qualifier
Method Blank	AF3632	0.1	U
65-MW07A-01	AF3041	0.18	+

^{+ -} Positive result.

U - Compound was analyzed for but not detected. The number is the detection limit for the sample.

TOTAL ORGANIC CARBON ANALYSIS

Laboratory Name:

Quanterra-Knoxville

Job Number:

3565

Contract Name:

Baker Camp Lejeune

Analysis Date:

05/26/95

Sample Matrix:

Water

Concentration Units:

Client Sample ID	Lab Sample ID	Result	Qualifier
Method Blank	AF5238	1	U
65-MW07A-01	AF3043	2	+

^{+ -} Positive result.

U - Compound was analyzed for but not detected. The number is the detection limit for the sample.

TOTAL PHOSPHOROUS ANALYSIS

Laboratory Name:

Quanterra-Knoxville

Job Number:

3565

Contract Name:

Baker Camp Lejeune

Analysis Date:

06/01/95

Sample Matrix:

Water

Concentration Units:

Client Sample ID	Lab Sample ID	Result	Qualifier
Method Blank	AF5490	0.01	U
65-MW07A-01	AF3041	0.01	U

TOTAL SUSPENDED SOLIDS ANALYSIS

Laboratory Name:

Quanterra-Knoxville

Job Number:

3565

Contract Name:

Baker Camp Lejeune

Analysis Date:

05/15/95

Sample Matrix:

Water

Concentration Units:

Client Sample ID	Lab Sample ID	Result	Qualifier
Method Blank	AF3660	1	U
65-DW02-01	AF3034	4	+
65-MW02A-01	AF3051	3	+
65-MW03-01	AF3055	1	U
65-MW05A-01	AF3047	1	U
65-MW06A-01	AF3059	1	+
65-MW07A-01	AF3030	1	U

⁻ Positive result.

U - Compound was analyzed for but not detected. The number is the detection limit for the sample.

® Microbac Laboratories, Inc.

PAGE

4580 McKNIGHT ROAD PITTSBURGH, PA 15237 (412) 931-5851

FOOD • WATER • WASTES • AIR • FUEL

CERTIFICATE OF ANALYSIS

QUANTERRA ENVIRONMENTAL SERV. 5815 MIDDLEBROOK PIKE

KNOXVILLE

TN 37921

ATTN: JAIME MCKINNEY

DATE SAMPLED

TIME SAMPLED SAMPLER PERMIT NO.

5/09/95 09:45

CUST

DATE RECEIVED TIME RECEIVED

DATE REPORTED ORDER NO.

5/15/95 9505-00477 016834

09:55

5/12/95

INVOICE NO. CUST. NO.

Q003

CUST. P.O.

DOC. NO. 2540

SUBJECT: SPECIAL WATER TESTING 5/12/95

SAMPLE #

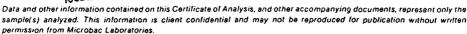
TEST PERFORMED

METHOD

RESULT

UNITS

1 65-MW07A-01 AF3042 WATER


HETEROTROPHIC PLATE COUNT

SMEWN 9215

950

PER ML

1000kg 70 Enterono

CTO 312 SITE 65 SEDIMENT

LOCATION DATE SAMPLED	65-SD04-06 05/16/95	65-SD04-612 05/16/95	65-SD05-06 05/17/95	65-SD05-612 05/17/95
DEPTH	0-6"	0-6"	0-6"	0-6"
UNITS	MG/KG	MG/KG	MG/KG	MG/KG
ENGINEERING CARBON (TOC) IN SOLIDS	24,900	200,000	173,000	44,700

QUANTERRA

65-SD04-06

WO #: A4LVJ

LAB #: C5E190037-001

MATRIX: SOLID

DATE SAMPLED:

5/16/95

TIME SAMPLED:

DATE RECEIVED:

9:15 5/19/95

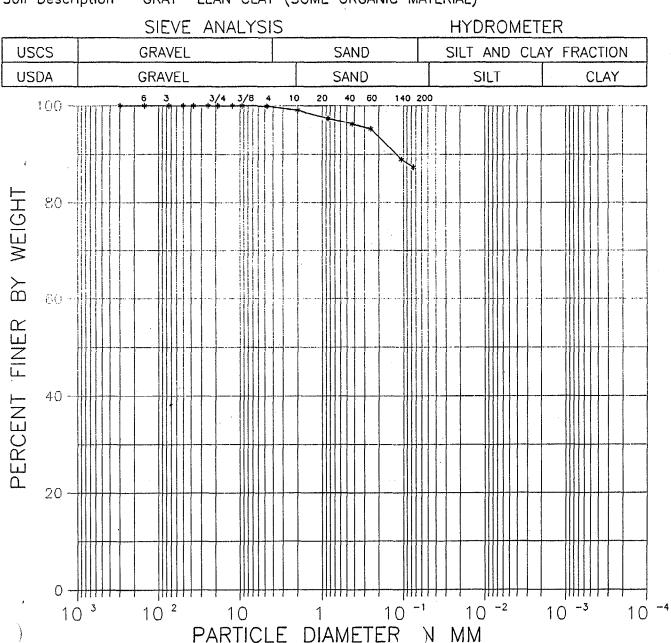
- - - INORGANIC ANALYTICAL REPORT - - - -

PARAMETER	RESULT	REPORTING LIMIT UNIT	METHOD	PREPARATION - ANALYSIS DATE	QC <u>BATCH</u>
Solids, Total (TS)	25.7	%	MCAWW 160.3 M	• • •	5143045
Carbon, Total Organic	24,900	202 mg/kg	MOSA WALKLEY-		5153062

NOTE: DRY WEIGHT

Client QUANTERRA Client Project 3653 / BAKER

Project No. 95151 USCS Classification cl


Depth(ft) NA Sample No. USDA Classification

Boring No.

65-SD04-06

AF 4039

Soil Description GRAY LEAN CLAY (SOME ORGANIC MATERIAL)

WASH SIEVE ANALYSIS

Client

QUANTERRA

Tested By Checked By Date Date

Client Project Project No.

3653 / BAKER 95151

Boring No. Depth(ft.)

AF 4039 NA

Sample No.

65-SD04-06

Soil Description

GRAY LEAN CLAY (SOME ORGANIC MATERIAL)

Wt. of Total Sample(dry)

297.05 gm. 37.45 gm.

259.60 gm.

Wt. of +#200 Sample Wt. of -#200 Sample

	(mm)	(gm.)		— • • •	
		(911.)		Retained	
12"	300.00	0.00	0.0	0.0	100.0
6"	150.00	0.00	0.0	0.0	100.0
3"	75.00	0.00	0.0	0.0	100.0
2"	50.00	0.00	0.0	0.0	100.0
1 1/2"	37.50	0.00	0.0	0.0	100.0
4 11	25.00	0.00	0.0	0.0	100.0
3/4"	19.00	0.00	0.0	9 0.0	100.0
1/2"	12.50	0.00	0.0	0.0	100.0
3/8"	9.50	0.00	0.0	0.0	100.0
#4	4.75	0.26	0.1	0.1	99.9
#10	2.00	2.51	0.8	0.9	99.
#20	0.85	4.99	1.7	2.6	97.4
#40	0.425	3.38	1.1	3.8	96.2
#60	0.250	3.06	1.0	4.8	95.3
#140	0.106	18.57	6.3	11.0	89.0
#200	0.075	4.68	1.6	12.6	87.4
Pan	•	259.60	87.4	100.0	

Water Content	
Tare No.	1649
Wgt. Tare + WS.	1310.00
Wgt. Tare + DS.	397.00
Wgt. Tare	99.95
Wgt. Of Water	913.00
Wgt. Of DS.	297.05
% Mater	307.4

QUANTERRA

65-SD04-612

WO #: A4M76

LAB #: C5E200017-001

MATRIX: SOLID

DATE SAMPLED:

5/16/95

TIME SAMPLED:

9:10

DATE RECEIVED:

5/20/95

PARAMETER	REPORTING RESULT LIMIT	G <u>UNIT</u>	METHOD	PREPARATION - ANALYSIS DATE	QC <u>BATCH</u>
Solids, Total (TS) Carbon, Total Organic	18.0 200,000 1,390	% mg/kg	MCAWW 160.3 M MOSA WALKLEY-	* * * *	5144031 5157101

NOTE: DRY WEIGHT

QUANTERRA

65-SD05-06

WO #: A4M74

LAB #: C5E200015-002

MATRIX: SOLID

DATE SAMPLED:

5/17/95

TIME SAMPLED:

11:45

DATE RECEIVED:

5/20/95

- INORGANIC ANALYTICAL REPORT -

PARAMETER	REPORTIN RESULT LIMIT	G <u>UNIT</u>	METHOD	PREPARATION - ANALYSIS DATE	QC BATCH
Solids, Total (TS)	17.4	%	MCAWW 160.3 M	• •	5144031
Carbon, Total Organic	173,000 695	mg/kg	MOSA WALKLEY-		5158007

NOTE: DRY WEIGHT

Client

QUANTERRA

Client Project 3666 / BAKER

Project No.

95154

USCS Classification SC

Soil Description

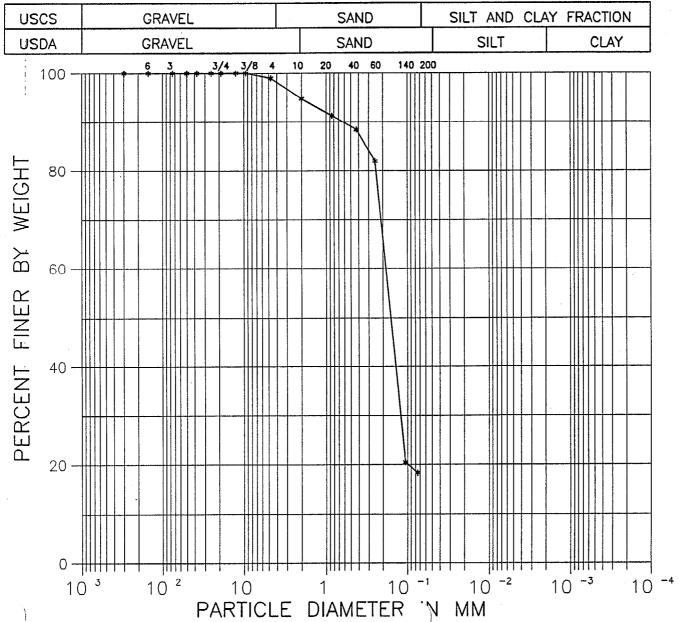
DARK GRAY CLAYEY SAND

Boring No.

AF 4246

Depth(ft) NA

Sample No.


65-SD05-06

USDA Classification

NA

HYDROMETER

WASH SIEVE ANALYSIS

Client

QUANTERRA

Tested By

Date 05-21-95

Client Project Project No.

3666 / BAKER

VG Checked By

95154

Date

Boring No.

AF 4246

Depth(ft.) Sample No. NA 65-SD05-06

Soil Description

DARK GRAY CLAYEY SAND

347.60 gm.

Wt. of Total Sample(dry) Wt. of +#200 Sample

283.91 gm.

Wt. of -#200 Sample

63.69 gm.

Sieve	Sieve	Wt. of Soil	Percent Retained	Accumulated Percent	Percent Finer
	Opening (mm)	Retained (gm.)	Retained	Retained	riner .
12"	300.00	0.00	0.0	0.0	100.0
6"	150.00	0.00	0.0	0.0	100.0
3"	75.00	0.00	0.0	0.0	100.0
2"	50.00	0.00	0.0	0.0	100.0
1 1/2"	37.50	0.00	0.0	0.0	100.0
1"	25.00	0.00	0.0	0.0	100.0
3/4"	19.00	. 0.00	0.0	0.0	100.0
1/2"	12.50	0.00	0.0	0.0	100.0
3/8"	9.50	0.00	0.0	0.0	100.0
#4	4.75	3.63	1.0	1.0	99.0
#10	2.00	14.81	4.3	5.3	94.7
#20	0.85	12.09	3.5	8.8	91.2
#40	0.425	9.63	2.8	11.6	88.4
#60	0.250	22.61	6.5	18.1	81.9
#140	0.106	213.86	61.5	79.6	20.4
#200	0.075	7.28	2.1	81.7	18.3
Pan	-	63.69	18.3	100.0	-
Water Content		•			
Tare No.	•	1058			
		1081.20			
Wgt. Tare + WS.					
Wgt. Tare + DS.		452.60 105.00			
Wgt. Tare		105.00			

105.00 628.60 347.60

% Water

180.8

QUANTERRA

65-SD05-612

WO #: A4M73

LAB #: C5E200015-001

MATRIX: SOLID

DATE SAMPLED:

5/17/95

TIME SAMPLED:

11:40

DATE RECEIVED:

5/20/95

INORGANIC ANALYTICAL REPORT - -

PARAMETER	RESULT	REPORTING LIMIT	UNIT	METHOD	PREPARATION - ANALYSIS DATE	QC <u>BATCH</u>
Solids, Total (TS) Carbon, Total Organic	64.8 44,700	193	% mg/kg	MCAWW 160.3 M MOSA WALKLEY-	• • •	5144031 5158007

NOTE: DRY WEIGHT

APPENDIX P FIELD DUPLICATE SUMMARIES

LOCATION DATE COLLECTED DEPTH UNITS	65-DW01-04D 04/10/95 7-9' UG/KG	65-MW01A-01D 05/08/95 NA UG/L	65-MW06A-00D 04/08/95 0-1' UG/KG	65-\$B07-00D 04/08/95 0-1' UG/KG	65-SB11-04D 04/08/95 7-9' UG/KG	65-SD04-06D 05/16/95 0-6" UG/KG
CHLOROMETHANE	11 U	10 U	12 U	11 U	12 U	12 J
BROMOMETHANE	11 U	10 U	12 U	11 U	12 U	56 U
VINYL CHLORIDE	11 U	10 U	12 U	11 U	12 U	56 U
CHLOROETHANE	11 U	10 UJ	12 U	11 U	12 U	56 U
METHYLENE CHLORIDE	11 U	10 U	12 U	11 U	12 U	56 U
ACETONE	24	10 U	12 U	11 U	63	250 J
CARBON DISULFIDE	11 U	10 U	12 U	11 U	12 U	56 UJ
1,1-DICHLOROETHENE	11 U	10 U	12 U	11 U	12 U	56 U
1,1-DICHLOROETHANE	11 U	10 U	12 U	11 U	12 U	56 U
1,2-DICHLOROETHENE	11 U	10 U	12 U	11 U	12 U	56 U
CHLOROFORM	11 U	10 U	12 U	11 U	12 U	6 J
1,2-DICHLOROETHANE	11 U	1 J	12 U	11 U	12 U	56 U
2-BUTANONE	11 U	10 U	3 J	11 U	1 J	56 U
1,1,1-TRICHLOROETHANE	11 U	10 U	12 U	11 U	12 U	56 U
CARBON TETRACHLORIDE	11 U	10 U	12 U	11 U	12 U	56 U
BROMODICHLOROMETHANE	11 U	10 U	12 U	11 U	12 U	56 U
1,2-DICHLOROPROPANE	11 U	10 U	12 U	11 U	12 U	56 U
CIS-1,3-DICHLOROPROPENE	11 U	10 U	12 U	11 U	12 U	56 U
TRICHLOROETHENE	11 U	10 U	12 U	11 U	12 U	56 U
DIBROMOCHLOROMETHANE	11 U	10 U	12 U	11 U	12 U	56 U
1,1,2-TRICHLOROETHANE	11 U	10 U	12 U	11 U	12 U	56 U
BENZENE	11 U	10 U	12 U	11 U	12 U	56 U
TRANS-1,3-DICHLOROPROPENE	11 U	10 U	12 U	11 U	12 U	56 U
BROMOFORM	11 U	10 U	12 U	11 U	12 U	56 U
4-METHYL-2-PENTANONE	11 U	10 U	12 U	11 U	12 U	56 U
2-HEXANONE	11 U	10 U	12 U	11 U	12 U	56 U
TETRACHLOROETHENE	11 U	10 U	12 U	11 U	12 U	26 J
1,1,2,2-TETRACHLOROETHANE	11 U	10 U	12 U	11 U	12 U	56 U
TOLUEŅE	11 U	10 U	12 U	11 U	12 U	11 J
CHLOROBENZENE	11 U	10 U	12 U	11 U	12 U	56 U
ETHYLBENZENE	11 U	10 U	12 U	11 U	12 U	56 U
STYRENE	11 U	10 U	12 U	11 U	12 U	56 U
TOTAL XYLENES	2 J	10 U	12 U	2 J	2 J	56 U

LOCATION DATE COLLECTED DEPTH UNITS	65-SW04-01D 05/15/95 NA UG/L
CHLOROMETHANE BROMOMETHANE VINYL CHLORIDE CHLOROETHANE METHYLENE CHLORIDE ACETONE CARBON DISULFIDE 1,1-DICHLOROETHENE 1,2-DICHLOROETHANE 1,2-DICHLOROETHANE 2-BUTANONE 1,1,1-TRICHLOROETHANE CARBON TETRACHLORIDE BROMODICHLOROMETHANE 1,2-DICHLOROPROPANE CIS-1,3-DICHLOROPROPENE TRICHLOROETHENE DIBROMOCHLOROMETHANE 1,1,2-TRICHLOROETHANE BENZENE TRANS-1,3-DICHLOROPROPENE BROMOFORM AMETHYL-2-PENTANONE HEXANONE TETRACHLOROETHENE 1,1,2,2-TETRACHLOROETHANE TOLUENE CHLOROBENZENE	10 U 10 U 10 U 10 U 10 U 10 U 10 U 10 U
ETHYLBENZENE STYRENE APTAL XYLENES	10 U 10 U 10 U

LOCATION DATE COLLECTED DEPTH UNITS	65-DW01-04D 04/10/95 7-9' UG/KG	65-MW01A-01D 05/08/95 NA UG/L	65-MW06A-00D 04/08/95 0-1' UG/KG	65-SB07-00D 04/08/95 0-1' UG/KG	65-SB11-04D 04/08/95 7-9' UG/KG	65-SD04-06D 05/16/95 0-6" UG/KG
PHENOL	370 U	10 U	380 U	370 U	390 U	9100 U
BIS(2-CHLOROETHYL)ETHER	370 U	10 U	380 U	370 U	390 U	9100 U
2-CHLOROPHENOL	370 U	10 U	380 U	370 U	390 U	9100 U
1.3-DICHLOROBENZENE	370 U	10 U	380 U	370 U	390 U	9100 U
1,4-DICHLOROBENZENE	370 U	10 U	380 U	370 U	390 U	9100 U
1,2-DICHLOROBENZENE	370 U	10 U	380 U	370 U	390 U	9100 U
2-METHYLPHENOL	370 U	10 U	380 U	370 U	390 U	9100 U
2,2'-OXYBIS(1-CHLOROPROPANE)	370 U	10 U	380 U	370 U	390 U	9100 U
4-METHYLPHENOL	370 U	10 U	380 U	370 U	390 U	9100 U
N-NITROSO-DI-N-PROPYLAMINE	370 U	10 U	380 U	370 U	390 U	9100 U
HEXACHLOROETHANE	370 U	10 U	380 U	370 U	390 U	9100 U
NITROBENZENE	370 U	10 U	380 U	370 U	390 U	9100 U
ISOPHORONE	370 U	10 U	380 U	370 U	390 U	9100 U
2-NITROPHENOL	370 U	10 U	380 U	370 U	390 U	9100 U
2,4-DIMETHYLPHENOL	370 U	10 U	380 U	370 U	390 U	9100 U
BIS(2-CHLOROETHOXY)METHANE	370 U	10 U	380 U	370 U	390 U	9100 U
2,4-DICHLOROPHENOL	370 U	10 U	380 U	370 U	390 U	9100 U
1,2,4-TRICHLOROBENZENE	370 U	10 U	380 U	370 U	390 U	9100 U
NAPHTHALENE	370 U	10 U	380 U	370 U	390 U	9100 U
4-CHLOROANILINE	370 U	10 U	380 U	370 U	390 U	9100 U
HEXACHLOROBUTADIENE	370 U	10 U	380 U	370 U	390 U	9100 U
4-CHLORO-3-METHYLPHENOL	370 U	10 U	380 U	370 U	390 U	9100 U
2-METHYLNAPHTHALENE	370 U	10 U	380 U	370 U	390 U	9100 U
HEXACHLOROCYCLOPENTADIENE	370 UJ	10 U	380 UJ	370 U	390 UJ	9100 U
2,4,6-TRICHLOROPHENOL	370 U	10 U	380 U	370 U	390 U	9100 U
2,4,5-TRICHLOROPHENOL	890 U	25 U	930 U	900 U	950 U	22000 U
2-CHLORONAPHTHALENE	370 U	10 U	380 U	370 U	390 U	9100 U
2-NITROANILINE	890 U	25 U	930 U	900 U	950 U	22000 U
DIMETHYL PHTHALATE	370 U _.	10 U	380 U	370 U	390 U	9100 U
ACENAPHTHYLENE	370 U	10 U	380 U	370 U	390 U	9100 U
2,6-DINITROTOLUENE	370 U	10 U	380 U	370 U	390 U	9100 U
3-NITROANILINE	890 U	25 U	930 U	900 U	950 U	22000 U
ACENAPHTHENE	370 U	10 U	380 U	370 U	390 U	9100 U
2,4-DINITROPHENOL	890 U	25 UJ	930 U	900 U	950 U	22000 U

11/09/95/65DSVOA.WK4

LOCATION DATE COLLECTED DEPTH UNITS	65-DW01-04D 04/10/95 7-9' UG/KG	65-MW01A-01D 05/08/95 NA UG/L	65-MW06A-00D 04/08/95 0-1' UG/KG	65-SB07-00D 04/08/95 0-1' UG/KG	65-SB11-04D 04/08/95 7-9' UG/KG	65-SD04-06D 05/16/95 0-6" UG/KG
4-NITROPHENOL DIBENZOFURAN 2,4-DINITROTOLUENE	890 U 370 U 370 U	25 U 10 U 10 U	930 U 380 U 380 U	900 U 370 U 370 U	950 U 390 U 390 U	22000 U 9100 U 9100 U
DIETHYL PHTHALATE	370 U	10 U	380 U	370 U	390 U	9100 U
4-CHLOROPHENYLPHENYL ETHER FLUORENE 4-NITROANILINE	370 U 370 U	10 U 10 U	380 U 380 U	370 U 370 U	390 U 390 U	9100 U 9100 U
4,6-DINITRO-2-METHYLPHENOL N-NITROSODIPHENYLAMINE	890 U 890 U 370 U	25 U 25 U	930 U 930 U	900 U 900 U	950 U 950 U	22000 U 22000 U
4-BROMOPHENYL PHENYL ETHER HEXACHLOROBENZENE	370 U 370 U 370 U	10 U 10 U	380 U 380 U	370 U 370 U	390 U 390 U	9100 U 9100 U
PENTACHLOROPHENOL	890 U	10 U 25 U	380 U 930 U	370 U 900 U	390 U 950 U	9100 U 22000 U
PHENANTHRENE	370 U	10 U	380 U	370 U	390 U	9100 U
ANTHRACENE	370 U	10 U	380 U	370 U	390 U	9100 U
CARBAZOLE DI-N-BUTYL PHTHALATE	370 U 370 U	10 U 10 U	380 U 380 U	370 U 370 U	390 U	9100 UJ
FLUORANTHENE	370 U	10 U	380 U	370 U	390 U 390 U	2400 J 9100 U
PYRENE	370 U	10 U	380 U	370 U	390 U	9100 U
BUTYL BENZYL PHTHALATE	370 U	10 U	380 U	370 U	390 U	9100 U
3,3'-DICHLOROBENZIDINE	370 U	10 U	380 U	370 U	390 U	9100 U
BENZO(A)ANTHRACENE	370 U	10 U	380 U	370 U	390 U	9100 U
CHRYSENE BIS(2-ETHYLHEXYL)PHTHALATE	370 U 130 J	10 U 10 U	380 U 380 U	370 U 120 J	390 U 300 J	9100 U
DI-N-OCTYL PHTHALATE	370 U	10 U	380 U	370 U	390 U	9100 U 9100 U
BENZO(B)FLUORANTHENE	370 U	10 U	380 U	370 U	390 U	9100 U
BENZO(K)FLUORANTHENE	370 U	10 U	380 U	370 U	390 U	9100 U
BENZO(A)PYRENE	370 U	10 U	380 U	370 U	390 U	9100 U
INDENO(1,2,3-CD)PYRENE	370 U	10 U	380 U	370 U	390 U	9100 U
DIBENZO(A,H)ANTHRACENE BENZO(G,H,I)PERYLENE	370 U 370 U	10 U 10 U	380 U 380 U	370 U 370 U	390 U 390 U	9100 U 9100 U

LOCATION	65-SW04-01D
DATE COLLECTED	05/15/95
DEPTH	NA
UNITS	UG/L
PHENOL BIS(2-CHLOROETHYL)ETHER 2-CHLOROPHENOL 1,3-DICHLOROBENZENE 1,4-DICHLOROBENZENE 1,2-DICHLOROBENZENE 2-METHYLPHENOL 2,2'-OXYBIS(1-CHLOROPROPANE) 4-METHYLPHENOL N-NITROSO-DI-N-PROPYLAMINE HEXACHLOROETHANE NITROBENZENE ISOPHORONE 2-NITROPHENOL 2,4-DIMETHYLPHENOL BIS(2-CHLOROETHOXY)METHANE 2,4-DICHLOROPHENOL 1,2,4-TRICHLOROBENZENE NAPHTHALENE 4-CHLOROANILINE HEXACHLOROBUTADIENE 4-CHLORO-3-METHYLPHENOL 2-METHYLNAPHTHALENE HEXACHLOROCYCLOPENTADIENE 2,4,6-TRICHLOROPHENOL 2,4,5-TRICHLOROPHENOL 2-CHLORONAPHTHALENE 2-NITROANILINE DIMETHYL PHTHALATE ACENAPHTHYLENE 2,6-DINITROTOLUENE	10 U 10 U 10 U 10 U 10 U 10 U 10 U 10 U
3-NITROANILINE	25 U
ACENAPHTHENE	10 U
2,4-DINITROPHENOL	25 U

LOCATION DATE COLLECTED DEPTH UNITS	65-SW04-01D 05/15/95 NA UG/L
4-NITROPHENOL DIBENZOFURAN 2,4-DINITROTOLUENE DIETHYL PHTHALATE 4-CHLOROPHENYLPHENYL ETHER FLUORENE 4-NITROANILINE 4,6-DINITRO-2-METHYLPHENOL N-NITROSODIPHENYLAMINE 4-BROMOPHENYL PHENYL ETHER HEXACHLOROBENZENE PENTACHLOROPHENOL PHENANTHRENE ANTHRACENE CARBAZOLE DI-N-BUTYL PHTHALATE FLUORANTHENE BUTYL BENZYL PHTHALATE 3,3'-DICHLOROBENZIDINE BENZO(A)ANTHRACENE CHRYSENE BIS(2-ETHYLHEXYL)PHTHALATE DI-N-OCTYL PHTHALATE	25 U 10 U 10 U 10 U 10 U 25 U 10 U 10 U 10 U 10 U 10 U 10 U 10 U 10
BENZO(B)FLUORANTHENE	10 U
BENZO(K)FLUORANTHENE	10 U
BENZO(A)PYRENE	10 U
INDENO(1,2,3-CD)PYRENE	10 U
DIBENZO(A,H)ANTHRACENE	10 U
BENZO(G,H,I)PERYLENE	10 U

LOCATION DATE COLLECTED DEPTH UNITS	65-DW01-04D 04/10/95 7-9' UG/KG	65-MW01A-01D 05/08/95 NA UG/L	65-MW06A-00D 04/08/95 0-1' UG/KG	65-SB07-00D 04/08/95 0-1' UG/KG	65-SB07-00DR 04/08/95 0-1' UG/KG
ALPHA-BHC	1.9 U	0.05 U	2 U	1.9 U	4.3 R
BETA-BHC	1.9 U	0.05 U	2 U	1.9 U	4.3 R
DELTA-BHC	1.9 U	0.05 U	2 U	1.9 U	4.3 R
GAMMA-BHC(LINDANE)	1.9 U	0.05 U	2 U	1.9 U	4.3 R
HEPTACHLOR	1.9 U	0.05 U	2 U	1.9 U	4.3 R
ALDRIN	1.9 U	0.05 U	2 U	1.9 U	4.3 R
HEPTACHLOR EPOXIDE	1.9 U	0.05 U	2 U	1.9 U	4.3 R
ENDOSULFAN I	1.9 U	0.05 U	2 U	1.9 U	4.3 R
DIELDRIN	3.7 U	0.1 U	3.8 U	3.8 U	8.4 R
4,4'-DDE	3.7 U	0.1 U	3.8 U	36 J	77 D
ENDRIN	3.7 U	0.1 U	3.8 U	3.8 U	8.4 R
ENDOSULFAN II	3.7 U	0.1 U	3.8 U	3.8 U	8.4 R
4,4'-DDD	3.7 UJ	0.1 U	3,8 UJ	3.8 UJ	8.4 R
ENDOSULFAN SULFATE	3.7 U	0.1 U	3.8 U	3.8 U	8.4 R
4,4'-DDT	3.7 U	0.1 U	3.8 U	29 U	53 R
METHOXYCHLOR	19 U	0.5 U	20 U	19 U	43 R
ENDRIN KETONE	3.7 U	0.1 U	3.8 U	3.8 U	8.4 R
ENDRIN ALDEHYDE	3.7 U	0.1 U	3.8 U	3.8 U	8.4 R
ALPHA CHLORDANE	1.9 U	0.05 U	2 U	1.9 U	4.3 R
GAMMA CHLORDANE	1.9 U	0.05 U	2 U	1.9 U	4.3 R
TOXAPHENE	190 U	5 ป	200 U	190 U	430 R
PCB-1016	37 U	1 U	38 U	38 U	84 R
PCB-1221	75 U	2 U	78 U	76 U	170 R
PCB-1232	37 U	. 1 U	38 U	38 U	84 R
PCB-1242	37 U	1 U	38 U	38 U	84 R
PCB-1248	37 U	1 U	38 U	38 U	84 R
PCB-1254	37 U	1 U	38 U	38 U	84 R
PCB-1260	37 U	1 U	38 U	38 U	. 84 R

LOCATION DATE COLLECTED DEPTH UNITS	65-SB11-04D	65-SD04-06D	65-SW04-01D
	04/08/95	05/16/95	05/15/95
	7-9'	0-6"	NA
	UG/KG	UG/KG	UG/L
ALPHA-BHC BETA-BHC DELTA-BHC GAMMA-BHC(LINDANE) HEPTACHLOR ALDRIN HEPTACHLOR EPOXIDE ENDOSULFAN I DIELDRIN 4,4'-DDE ENDRIN ENDOSULFAN II 4,4'-DDD ENDOSULFAN SULFATE 4,4'-DDT METHOXYCHLOR ENDRIN KETONE ENDRIN ALDEHYDE ALPHA CHLORDANE GAMMA CHLORDANE TOXAPHENE PCB-1016 PCB-1221 PCB-1232 PCB-1242	2 UJ 2 UJ 2 UJ 2 UJ 2 UJ 2 UJ 3.9 UJ 3.0 UJ	9.1 9.1 9.1 9.1 9.1 9.1 9.1 18 18 120 18 18 91 18 91 18 91 18 91 18	U 0.05 UJ U 0.05 UJ U 0.05 UJ U 0.05 UJ U 0.05 UJ U 0.05 UJ U 0.05 UJ U 0.05 UJ U 0.1 UJ
PCB-1248	39 UJ	180	U 1 UJ
PCB-1254	39 UJ	180	
PCB-1260	39 UJ	180	

LOCATION DATE COLLECTED DEPTH UNITS	65-DW01-04D 04/10/95 7-9' MG/KG	65-MW01A-01D 05/08/95 NA UG/L	65-MW06A-00D 04/08/95 0-1' MG/KG	65-SB07-00D 04/08/95 0-1' MG/KG	65-SB11-04D 04/08/95 7-9' MG/KG	65-SD04-06D 05/16/95 0-6" MG/KG
ANALYTES						
ALUMINUM	8520	40 U	1760	1230	9310	60500 J
ANTIMONY	11.4 U	50 U	11.9 U	11.4 U	12 U	55.2 UJ
ARSENIC	2.3 U	10 U	2.4 U	2.3 U	2.4 U	11 U
BARIUM	14.4	57.6	4.9	5.2	15.2	170
BERYLLIUM	0.23 U	1 U	0.24 U	0.23 U	0.24 U	1.1 U
CADMIUM	1.1 U	5 U	1.2 U	1.1 U	1.2 U	5.5 U
CALCIUM	371	152000	286	120	554	7290
CHROMIUM	10.5	10	3.5	2.3 U	10.5	73.6 J
COBALT	4.6 UJ	20 U	4.8 UJ	4.6 UJ	4.8 UJ	37.7
COPPER	4.2	10 U	7.2	4.1	2.4 U	159 J
IRON	2960 J	261	2090 J	707 J	2130 J	23200 J
LEAD	18.3 J	3 U	11.6 J	6.8 J	3.5 J	276 J
MAGNESIUM	296	17000	56.9	45.1	408	1910
MANGANESE	15 J	181	8.2 J	5.6 J	4.6 J	215 J
MERCURY	0.11 U	0.2 U	0.12 U	0.11 U	0.12 U	0.55 U
NICKEL	4.6 U	20 U	4.8 U	4.6 U	4.8 U	22.1 U
POTASSIUM	228 U	5610	238 U	229 U	375	2140
SELENIUM	1.1 U	5 U	1.2 ป	1.1 U	1.2 U	5,5 U
SILVER	1.1 U	5 U	1.2 U	1.1 U	1.2 U	5.5 U
SODIUM	46.2	11300	47.6 U	45.8 U	48.1 U	257
THALLIUM	2.3 U	10 U	2.4 U	2.3 U	2.4 U	11 U
VANADIUM	15.4	10 U	2.4 U	2.3 U	7.5	66.9
ZINC	32 J	10.7	68 J	7.6 J	6.9 J	420 J

ANALYTES ALUMINUM ANTIMONY ARSENIC BARIUM BERYLLIUM CADMIUM CALCIUM CHROMIUM COPPER IRON IEAD MAGNESIUM MANGANESE MERCURY NICKEL POTASSIUM SILVER SODIUM THALLIUM Z2600 CHROMIUM 25.8 COBALT 20 U COPPER 54 IRON 7830 LEAD MANGANESE MICKEL POTASSIUM SILVER SODIUM THALLIUM VANADIUM Z5.8 ZINC 10 U VANADIUM 25.8 ZINC 10 U VANADIUM 25.8 ZINC	LOCATION DATE COLLECTED DEPTH UNITS	65-SW04-01D 05/15/95 NA UG/L
ANTIMONY ARSENIC BARIUM BARIUM BERYLLIUM CADMIUM CADMIUM CALCIUM CHROMIUM COPPER COPPE	ANALYTES	
ARSENIC 10 U BARIUM 63.9 BERYLLIUM 1 U CADMIUM 5 U CALCIUM 12600 CHROMIUM 25.8 COBALT 20 U COPPER 54 IRON 7830 LEAD 50.5 MAGNESIUM 2030 MANGANESE 91.2 MERCURY 0.2 U NICKEL 20 U POTASSIUM 2890 SELENIUM 5 U SILVER 5 U SODIUM 3430 THALLIUM 10 U VANADIUM 25.8	ALUMINUM	22600
BARIUM 63.9 BERYLLIUM 1 U CADMIUM 5 U CALCIUM 12600 CHROMIUM 25.8 COBALT 20 U COPPER 54 IRON 7830 LEAD 50.5 MAGNESIUM 2030 MANGANESE 91.2 MERCURY 0.2 U NICKEL 20 U POTASSIUM 2890 SELENIUM 5 U SILVER 5 U SODIUM 3430 THALLIUM 10 U VANADIUM 25.8	ANTIMONY	50 U
BERYLLIUM 1 U CADMIUM 5 U CALCIUM 12600 CHROMIUM 25.8 COBALT 20 U COPPER 54 IRON 7830 LEAD 50.5 MAGNESIUM 2030 MANGANESE 91.2 MERCURY 0.2 U NICKEL 20 U POTASSIUM 2890 SELENIUM 5 U SILVER 5 U SODIUM 3430 THALLIUM 10 U VANADIUM 25.8	ARSENIC	10 U
CADMIUM 5 U CALCIUM 12600 CHROMIUM 25.8 COBALT 20 U COPPER 54 IRON 7830 LEAD 50.5 MAGNESIUM 2030 MANGANESE 91.2 MERCURY 0.2 U NICKEL 20 U POTASSIUM 2890 SELENIUM 5 U SILVER 5 U SODIUM 3430 THALLIUM 10 U VANADIUM 25.8	BARIUM	63,9
CALCIUM 12600 CHROMIUM 25.8 COBALT 20 U COPPER 54 IRON 7830 LEAD 50.5 MAGNESIUM 2030 MANGANESE 91.2 MERCURY 0.2 U NICKEL 20 U POTASSIUM 2890 SELENIUM 5 U SILVER 5 U SODIUM 3430 THALLIUM 10 U VANADIUM 25.8	BERYLLIUM	1 U
CHROMIUM 25.8 COBALT 20 U COPPER 54 IRON 7830 LEAD 50.5 MAGNESIUM 2030 MANGANESE 91.2 MERCURY 0.2 U NICKEL 20 U POTASSIUM 2890 SELENIUM 5 U SILVER 5 U SODIUM 3430 THALLIUM 10 U VANADIUM 25.8	CADMIUM	5 U
COBALT 20 U COPPER 54 IRON 7830 LEAD 50.5 MAGNESIUM 2030 MANGANESE 91.2 MERCURY 0.2 U NICKEL 20 U POTASSIUM 2890 SELENIUM 5 U SILVER 5 U SODIUM 3430 THALLIUM 10 U VANADIUM 25.8	CALCIUM	12600
COPPER 54 IRON 7830 LEAD 50.5 MAGNESIUM 2030 MANGANESE 91.2 MERCURY 0.2 U NICKEL 20 U POTASSIUM 2890 SELENIUM 5 U SILVER 5 U SODIUM 3430 THALLIUM 10 U VANADIUM 25.8	CHROMIUM	25.8
IRON 7830 LEAD 50.5 MAGNESIUM 2030 MANGANESE 91.2 MERCURY 0.2 U NICKEL 20 U POTASSIUM 2890 SELENIUM 5 U SILVER 5 U SODIUM 3430 THALLIUM 10 U VANADIUM 25.8	COBALT	20 U
LEAD 50.5 MAGNESIUM 2030 MANGANESE 91.2 MERCURY 0.2 U NICKEL 20 U POTASSIUM 2890 SELENIUM 5 U SILVER 5 U SODIUM 3430 THALLIUM 10 U VANADIUM 25.8	COPPER	54
MAGNESIUM 2030 MANGANESE 91.2 MERCURY 0.2 U NICKEL 20 U POTASSIUM 2890 SELENIUM 5 U SILVER 5 U SODIUM 3430 THALLIUM 10 U VANADIUM 25.8	IRON	7830
MANGANESE 91.2 MERCURY 0.2 U NICKEL 20 U POTASSIUM 2890 SELENIUM 5 U SILVER 5 U SODIUM 3430 THALLIUM 10 U VANADIUM 25.8		50.5
MERCURY 0.2 U NICKEL 20 U POTASSIUM 2890 SELENIUM 5 U SILVER 5 U SODIUM 3430 THALLIUM 10 U VANADIUM 25.8		
NICKEL 20 U POTASSIUM 2890 SELENIUM 5 U SILVER 5 U SODIUM 3430 THALLIUM 10 U VANADIUM 25.8	MANGANESE	91.2
POTASSIUM 2890 SELENIUM 5 U SILVER 5 U SODIUM 3430 THALLIUM 10 U VANADIUM 25.8		
SELENIUM 5 U SILVER 5 U SODIUM 3430 THALLIUM 10 U VANADIUM 25.8	*****	
SILVER 5 U SODIUM 3430 THALLIUM 10 U VANADIUM 25.8		
SODIUM 3430 THALLIUM 10 U VANADIUM 25.8		
THALLIUM 10 U VANADIUM 25.8		
VANADIUM 25.8		
	* * * * * * * * * * * * * * * * * * * *	
ZINC 128		
	ZINC	128

FIELD DUPLICATE SUMMARY FILTERED GROUNDWATER SITE 65 - ENGINEER AREA DUMP REMEDIAL INVESTIGATION, CTO-0312 MCB, CAMP LEJUENE, NORTH CAROLINA TAL METALS

LOCATION DATE COLLECTED DEPTH	5-MW01AF-01D 05/08/95 NA
ANALYTES (ug/L)	
ALUMINUM	40 U
ANTIMONY	.50 U
ARSENIC	10 U
BARIUM	62.8
BERYLLIUM	1 U
CADMIUM	5 U
CALCIUM	167000
CHROMIUM	10.4
COBALT	20 U
COPPER	10 U
IRON	202
LEAD	3 U
MAGNESIUM	18700
MANGANESE	198
MERCURY	0.2 U
NICKEL	20 U
POTASSIUM	6840
SELENIUM	5 U
SILVER	5 U
SODIUM	12300 10 U
THALLIUM	
VANADIUM	10 U
ZINC	5.1 U

APPENDIX Q FREQUENCY OF DETECTION SUMMARY, QA/QC SAMPLES

FREQUENCY OF DETECTION SUMMARY QA/QC SAMPLES SITE 65 - ENGINEER AREA DUMP REMEDIAL INVESTIGATION, CTO-0312 MCB, CAMP LEJUENE, NORTH CAROLINA TCL ORGANICS

LOCATION	65-TB-01	65-TB-02	65-TB-03
DATE COLLECTED	04/10/95	04/11/95	05/16/95
VOLATILES (ug/L)			
CHLOROMETHANE	10 U	10 U	10 U
BROMOMETHANE	10 U	10 U	10 U
VINYL CHLORIDE	10 U	10 U	10 U
CHLOROETHANE	10 U	10 U	10 U
METHYLENE CHLORIDE	10 U	1 J	1 J
ACETONE	10 U	8 J	3 J
CARBON DISULFIDE	10 U	10 U	10 U
1.1-DICHLOROETHENE	10 U	10 U	2 J
1,1-DICHLOROETHANE	10 U	10 U	10 U
1,2-DICHLOROETHENE	10 U	10 U	10 U
CHLOROFORM	10 U	10 U	10 U
1,2-DICHLOROETHANE	10 U	2 J	1 J
2-BUTANONE	10 U	10 U	10 U
1,1,1-TRICHLOROETHANE	10 U	10 U	10 U
CARBON TETRACHLORIDE	10 U	10 U	10 U
BROMODICHLOROMETHANE	10 U	10 U	10 U
1,2-DICHLOROPROPANE	10 U	10 U	10 U
CIS-1,3-DICHLOROPROPENE	10 U	10 U	10 U
TRICHLOROETHENE	10 U	10 U	2 J
DIBROMOCHLOROMETHANE	10 U	10 U	10 U
1,1,2-TRICHLOROETHANE	10 U	10 U	10 U
BENZENE	10 U	10 U	10 U
TRANS-1,3-DICHLOROPROPENE	10 U	10 U	10 U
BROMOFORM	10 U	10 U	10 U
4-METHYL-2-PENTANONE	10 U	10 U	10 U
2-HEXANONE	10 U	10 U	10 U
TETRACHLOROETHENE	10 U	10 U	10 U
1,1,2,2-TETRACHLOROETHANE	10 U	10 U	10 U
TOLUENE	10 U	4 J	2 J
CHLOROBENZENE	10 U	10 U	10 U
ETHYLBENZENE	10 U	10 U	10 U
STYRENE	10 Ü	10 U	10 U
TOTAL XYLENES	10 U	10 U	10 U

FREQUENCY OF DETECTION SUMMARY QA/QC SAMPLES

SITE 65 - ENGINEER AREA DUMP REMEDIAL INVESTIGATION, CTO-0312 MCB, CAMP LEJUENE, NORTH CAROLINA TCL ORGANICS

LOCATION DATE COLLECTED	MINIMUM NONDETECTED	MAXIMUM NONDETECTED	MINIMUM DETECTED	MAXIMUM DETECTED	LOCATION OF MAXIMUM DETECTED	FREQUENCY OF DETECTION
VOLATILES (ug/L)						
CHLOROMETHANE	10 U	10 U	ND	ND		0/3
BROMOMETHANE	10 U	10 U	. ND	ND		0/3
VINYL CHLORIDE	10 U	10 U	ND	ND		0/3
CHLOROETHANE	10 U	.10 U	ND	ND		0/3
METHYLENE CHLORIDE	10 U	10 U	1 J	1 J	65-TB-03	2/3
ACETONE	10 U	10 U	3 J	· 8 J	65-TB-02	2/3
CARBON DISULFIDE	10 U	10 U	ND	ND		0/3
1,1-DICHLOROETHENE	10 U	10 U	2 J	2 J	65-TB-03	1/3
1,1-DICHLOROETHANE	10 U	10 U	ND	ND		0/3
1,2-DICHLOROETHENE	- 10 U	10 U	ND	ND		0/3
CHLOROFORM	10 U	10 U	ND	ND		0/3
1,2-DICHLOROETHANE	10 U	10 U	1 J	2 J	65-TB-02	2/3
2-BUTANONE	10 U	10 U	ND	ND		0/3
1,1,1-TRICHLOROETHANE	. 10 U	10 U	ND	ND		0/3
CARBON TETRACHLORIDE	10 U	10 U	ND	ND		0/3
BROMODICHLOROMETHANE	10 U	10 U	ND	ND		0/3
1,2-DICHLOROPROPANE	10 U	10 U	ND	ND		0/3
CIS-1,3-DICHLOROPROPENE	10 U	10 U	ND	ND		0/3
TRICHLOROETHENE	10 U	10 U	2 J	2 J	65-TB-03	1/3
DIBROMOCHLOROMETHANE	10 U	10 U	ND	ND		0/3
1,1,2-TRICHLOROETHANE	10 U	10 U	ND	ND		0/3
BENZENE	10 U	10 U	ND	ND		0/3
TRANS-1,3-DICHLOROPROPENE	10 U	10 U	ND	ND		0/3
BROMOFORM	10 U	10 U	ND	ND		0/3
4-METHYL-2-PENTANONE	10 U	10 U	ND	ND		0/3
2-HEXANONE	10 U	10 U	ND	ND		0/3
TETRACHLOROETHENE	10 U	10 U	ND	ND		0/3
1,1,2,2-TETRACHLOROETHANE	10 U	10 U	ND	ND		0/3
TOLUENE	10 U	10 U	2 J	4 J	65-TB-02	2/3
CHLOROBENZENE	10 U	10 U	ND	ND	· - ·-	0/3
ETHYLBENZENE	10 U	10 U	ND	ND		0/3
STYRENE	10 U	10 U	ND	ND		0/3

ND

ND

0/3

10 U

65TRIP.WV 19/23/95

TOTAL XYLENES

10 U

FREQUENCY OF DETECTION SUMMARY QA/QC SAMPLES SITE 65 - ENGINEER AREA DUMP REMEDIAL INVESTIGATION, CTO-0312 MCB, CAMP LEJUENE, NORTH CAROLINA TCL ORGANICS

LOCATION	65-RB-01	65-RB-03	65-RB-23
DATE COLLECTED	04/08/95	04/10/95	05/16/95
MOLATICE (CALL)			
VOLATILES (ug/L)	40.11	40.11	40.11
CHLOROMETHANE	10 U	10 U	10 U
BROMOMETHANE	10 U	10 U	10 U
VINYL CHLORIDE	10 U	10 U	10 U
CHLOROETHANE	10 U	10 U	10 U
METHYLENE CHLORIDE	1 J	1 J	10 U
ACETONE	35	93	44
CARBON DISULFIDE	10 U	10 U	10 U
1,1-DICHLOROETHENE	10 U	10 U	10 U
1,1-DICHLOROETHANE	10 U	10 U	10 U
1,2-DICHLOROETHENE	10 U	10 U	10 U
CHLOROFORM	10 U	10 U	10 U
1,2-DICHLOROETHANE	1 J	1 J	1 J
2-BUTANONE	10 U	7 J	10 U
1,1,1-TRICHLOROETHANE	10 Ų	10 U	10 U
CARBON TETRACHLORIDE	10 U	10 U	10 U
BROMODICHLOROMETHANE	10 U	10 U	10 U
1,2-DICHLOROPROPANE	10 U	10 U	10 U
CIS-1,3-DICHLOROPROPENE	10 U	10 U	10 U
TRICHLOROETHENE	10 U	10 U	10 U
DIBROMOCHLOROMETHANE	10 U	10 U	10 U
1,1,2-TRICHLOROETHANE	10 U	10 U	10 U
BENZENE	10 U	10 U	10 U
TRANS-1,3-DICHLOROPROPENE	10 U	10 U	10 U
BROMOFORM	10 U	10 U	10 U
4-METHYL-2-PENTANONE	10 U	10 U	10 U
2-HEXANONE	10 U	10 U	10 U
TETRACHLOROETHENE	10 U	10 U	10 U
1.1.2.2-TETRACHLOROETHANE	10 U	10 U	10 U
TOLUENE	10 U	10 U	10 U
CHLOROBENZENE	10 U	10 U	10 U
ETHYLBENZENE	10 U	10 U	10 U
STYRENE	10 U	10 U	10 U
TOTAL XYLENES	10 U	10 U	10 U

FREQUENCY OF DETECTION SUMMARY QA/QC SAMPLES SITE 65 - ENGINEER AREA DUMP REMEDIAL INVESTIGATION, CTO-0312 MCB, CAMP LEJUENE, NORTH CAROLINA TCL ORGANICS

LOCATION DATE COLLECTED	MINIMUM NONDETECTED	MAXIMUM NONDETECTED	MINIMUM DETECTED	MAXIMUM DETECTED	LOCATION OF MAXIMUM DETECTED	FREQUENCY OF DETECTION
VOLATILES (ug/L)					-x-	
CHLOROMETHANE	10 U	10 U	ND	ND		0/3
BROMOMETHANE	10 U	10 U	ND	ND		0/3
VINYL CHLORIDE	10 U	10 U	ND	ND		0/3
CHLOROETHANE	10 U	10 U	ND	ND		0/3
METHYLENE CHLORIDE	10 U	10 U	1 J	1 J	65-RB-03	2/3
ACETONE	NA 10	NA	35	93	65-RB-03	3/3
CARBON DISULFIDE	10 U	10 U	ND	ND		0/3
1,1-DICHLOROETHENE	10 U	10 U	ND	ND		0/3
1,1-DICHLOROETHANE 1,2-DICHLOROETHENE	10 U	10 U	ND	ND		0/3
CHLOROFORM	10 U 10 U	10 U 10 U	ND ND	ND	•	0/3
1,2-DICHLOROETHANE	NA	NA	טא 1 J	ND	or pp 00	0/3
2-BUTANONE	10 U	10 U	7 J	1 J 7 J	65-RB-23	3/3
1,1,1-TRICHLOROETHANE	10 U	10 U	ND	7 J ND	65-RB-03	1/3
CARBON TETRACHLORIDE	10 U	10 U	ND	ND ND		0/3 0/3
BROMODICHLOROMETHANE	10 U	10 U	ND	ND		0/3 0/3
1,2-DICHLOROPROPANE	10 U	10 U	ND	ND		0/3
CIS-1,3-DICHLOROPROPENE	10 U	10 U	ND	ND		0/3
TRICHLOROETHENE	10 U	10 U	ND	ND		0/3
DIBROMOCHLOROMETHANE	10 U	10 U	ND	ND		0/3
1,1,2-TRICHLOROETHANE	10 U	10 U	ND	ND		0/3
BENZENE	10 U	10 U	ND	ND		0/3
TRANS-1,3-DICHLOROPROPENE	10 U	10 U	ND	ND		0/3
BROMOFORM	10 U	10 U	ND	ND	•	0/3
4-METHYL-2-PENTANONE	10 U	10 U	ND	ND		0/3
2-HEXANONE	10 U	10 U	ND	ND		0/3
TETRACHLOROETHENE	10 U	10 U	ND	ND		0/3
1,1,2,2-TETRACHLOROETHANE	10 U	10 U	ND	ND		0/3
TOLUENE	10 U	10 U	ND	ND		0/3
CHLOROBENZENE	10 U	10 U	ND	ND		0/3
ETHYLBENZENE	10 U	10 U	ND	ND		0/3
STYRENE	10 U	10 U	ND	ND		0/3
TOTAL XYLENES	10 U	10 U	ND	ND		0/3

FREQUENCY OF DETECTION SUMMARY QA/QC SAMPLES

SITE 65 - ENGINEER AREA DUMP REMEDIAL INVESTIGATION, CTO-0312 MCB, CAMP LEJUENE, NORTH CAROLINA TCL ORGANICS

LOCATION DATE COLLECTED	65-RB-01 04/08/95	65-RB-03 04/10/95	65-RB-23 05/16/95
SEMIVOLATILES (ug/L)			
SEMIVOLATILES (ug/L) PHENOL BIS(2-CHLOROETHYL)ETHER 2-CHLOROPHENOL 1,3-DICHLOROBENZENE	10 U	10 U	10 U
BIS(2-CHLOROETHYL)ETHER	10 U	10 U	10 U
2-CHLOROPHENOL	10 U	10 U	10 U
1,3-DICHLOROBENZENE	10 U	10 U	10 U
1,4-DICHLOROBENZENE	10 U	10 U	10 U
1,2-DICHLOROBENZENE	10 U	10 U	10 U
2-METHYLPHENOL	10 U	10 U	10 U
2,2'-OXYBIS(1-CHLOROPROPANE)	10 U	10 U	10 U
		10 U	10 U
4-METHYLPHENOL N-NITROSO-DI-N-PROPYLAMINE HEXACHLOROETHANE NITROBENZENE ISOPHORONE 2-NITROPHENOL 2,4-DIMETHYLPHENOL	10 U	10 U	10 U
HEXACHLOROETHANE	10 U	10 U	10 U
NITROBENZENE	10 U	10 U	10 U
ISOPHORONE	10 U	10 U	10 U
2-NITROPHENOL	10 U	10 U	10 U
2,4-DIMETHYLPHENOL	10 U	10 U	10 U
		10 U	10 U
2,4-DICHLOROPHENOL 1,2,4-TRICHLOROBENZENE NAPHTHALENE 4-CHLOROANILINE HEXACHLOROBUTADIENE 4-CHLORO-3-METHYLPHENOL	10 U	10 U	10 U
1,2,4-TRICHLOROBENZENE	10 U	10 U	10 U
NAPHTHALENE	10 U	10 U	10 U
4-CHLOROANILINE	10 U	10 U	10 U
HEXACHLOROBUTADIENE	10 U	10 U	10 U
4-CHLORO-3-METHYLPHENOL 2-METHYLNAPHTHALENE		10 U	10 U
2-METHYLNAPHTHALENE	10 U	10 U	10 U
HEXACHLOROCYCLOPENTADIENE	10 U	10 U	10 R
2,4,6-TRICHLOROPHENOL	10 U	10 U	10 U
2,4,5-TRICHLOROPHENOL	25 U	25 U	25 U
2-CHLORONAPHTHALENE	10 U	10 U	10 U
HEXACHLOROCYCLOPENTADIENE 2,4,6-TRICHLOROPHENOL 2,4,5-TRICHLOROPHENOL 2-CHLORONAPHTHALENE 2-NITROANILINE DIMETHYL PHTHALATE ACENAPHTHYLENE 2,6-DINITROTOLUENE	25 U	25 U	25 U
DIMETHYL PHTHALATE	10 U	10 U	10 U
ACENAPHTHYLENE	10 U	10 U	10 U
2,6-DINITROTOLUENE	10 U	10 U	10 U
3-NITROANILINE	25 U	25 U	25 U
ACENAPHTHENE	10 U	10 U	10 U
2,4-DINITROPHENOL	25 U	25 U	25 R
4-NITROPHENOL	25 U	25 U	25 U
DIBENZOFURAN	10 U	10 U	10 U

FREQUENCY OF DETECTION SUMMARY QA/QC SAMPLES SITE 65 - ENGINEER AREA DUMP REMEDIAL INVESTIGATION, CTO-0312 MCB, CAMP LEJUENE, NORTH CAROLINA TCL ORGANICS

LOCATION	65-RB-01	65-RB-03	65-RB-23
DATE COLLECTED	04/08/95	04/10/95	05/16/95
SEMIVOLATILES (ug/L) cont. 2,4-DINITROTOLUENE DIETHYL PHTHALATE 4-CHLOROPHENYLPHENYL ETHER FLUORENE 4-NITROANILINE 4,6-DINITRO-2-METHYLPHENOL N-NITROSODIPHENYLAMINE 4-BROMOPHENYL PHENYL ETHER HEXACHLOROBENZENE PENTACHLOROPHENOL PHENANTHRENE ANTHRACENE CARBAZOLE DI-N-BUTYL PHTHALATE FLUORANTHENE BUTYL BENZYL PHTHALATE 7,3'-DICHLOROBENZIDINE BENZO(A)ANTHRACENE CHRYSENE BIS(2-ETHYLHEXYL)PHTHALATE DI-N-OCTYL PHTHALATE BENZO(B)FLUORANTHENE BENZO(A)PYRENE	04/08/95 10 U 10 U 10 U 10 U 25 U 25 U 10 U 10 U 10 U 10 U 10 U 10 U 10 U 10	04/10/95 10 U 10 U 10 U 10 U 25 U 25 U 10 U 10 U 10 U 10 U 10 U 10 U 10 U 10	05/16/95 10 U 10 U 10 U 25 U 25 U 10 U 10 U 10 U 10 U 10 U 10 U 10 U 10
INDENO(1,2,3-CD)PYRENE DIBENZO(A,H)ANTHRACENE BENZO(G,H,I)PERYLENE	10 U	10 U	10 U
	10 U	10 U	10 U
	10 U	10 U	10 U

FREQUENCY OF DETECTION SUMMARY QA/QC SAMPLES

SITE 65 - ENGINEER AREA DUMP

REMEDIAL INVESTIGATION, CTO-0312 MCB, CAMP LEJUENE, NORTH CAROLINA

TCL ORGANICS

LOCATION MINIMUM MAXIMUM MINIMUM MAXIMUM CONTROL DETECTED	CTION
SEMIVOLATILES (ug/L)	
	/3
	/3
2-CHLOROPHENOL 10 U 10 U ND ND ND	/3
1,3-DICHLOROBENZENE 10 U 10 U ND ND ND	/3
	/3
1,2-DICHLOROBENZENE 10 U 10 U ND ND ND 0	/3
2-METHYLPHENOL 10 U 10 U ND ND 0	/3
2,2'-OXYBIS(1-CHLOROPROPANE) 10 U 10 U ND ND ND	/3
4-METHYLPHENOL 10 U 10 U ND ND 0	/3
N-NITROSO-DI-N-PROPYLAMINE 10 U 10 U ND ND ND	/3
	/3
NITROBENZENE 10 U 10 U ND ND 0	/3
ISOPHORONE 10 U 10 U ND ND 0	/3
	/3
2,4-DIMETHYLPHENOL 10 U 10 U ND ND 0	/3
BIS(2-CHLOROETHOXY)METHANE 10 U 10 U ND ND ND 0	/3
2,4-DICHLOROPHENOL 10 U 10 U ND ND ND 0	/3
1,2,4-TRICHLOROBENZENE 10 U 10 U ND ND ND 0	/3
NAPHTHALENE 10 U 10 U ND ND 0	/3
	/3
HEXACHLOROBUTADIENE 10 U 10 U ND ND ND 0	/3
	/3
2-METHYLNAPHTHALENE 10 U 10 U ND ND ND 0	/3
	2
	/3
	3
	3
2-NITROANILINE 25 U 25 U ND ND 0	3
DIMETHYL PHTHALATE 10 U 10 U ND ND 0	
ACENAPHTHYLENE 10 U 10 U ND ND 0	′ 3
2,6-DINITROTOLUENE 10 U 10 U ND ND 0.	3
3-NITROANILINE 25 U 25 U ND ND 0	3
ACENAPHTHENE 10 U 10 U ND ND 0	3
2,4-DINITROPHENOL 25 U 25 U ND ND 0	2
4-NITROPHENOL 25 U 25 U ND ND 0	3
DIBENZOFURAN 10 U 10 U ND ND 0.	3

3

FREQUENCY OF DETECTION SUMMARY QA/QC SAMPLES SITE 65 - ENGINEER AREA DUMP REMEDIAL INVESTIGATION, CTO-0312 MCB, CAMP LEJUENE, NORTH CAROLINA TCL ORGANICS

			I OE OITOMINO			
LOCATION DATE COLLECTED	MINIMUM NONDETECTED	MAXIMUM NONDETECTED	MINIMUM DETECTED	MAXIMUM DETECTED	LOCATION OF MAXIMUM DETECTED	FREQUENCY OF DETECTION
SEMIVOLATILES (ug/L) cont.						
2,4-DINITROTOLUENE	10 U	10 U	ND	ND		0/3
DIETHYL PHTHALATE	10 U	10 U	ND	ND		0/3
4-CHLOROPHENYLPHENYL ETHER	10 U	10 U	ND	ND		0/3
FLUORENE	10 U	10 U	ND	ND		0/3
4-NITROANILINE	25 U	25 U	ND	ND		0/3
4,6-DINITRO-2-METHYLPHENOL	25 U	25 U	ND	ND		0/3
N-NITROSODIPHENYLAMINE	10 U	10 U	ND	ND		0/3
4-BROMOPHENYL PHENYL ETHER	10 U	10 U	ND	ND		0/3
HEXACHLOROBENZENE	10 U	10 U	ND	ND		0/3
PENTACHLOROPHENOL	25 U	25 U	ND	ND		0/3
PHENANTHRENE	10 U	10 U	ND	ND		0/3
ANTHRACENE	10 U	10 U	ND	ND		0/3
CARBAZOLE	10 U	10 U	ND	ND		0/3
DI-N-BUTYL PHTHALATE	10 U	10 U	ND	ND		0/3
FLUORANTHENE	10 U	10 U	ND	ND		0/3
PYRENE	10 U	10 U	ND	ND		0/3
BUTYL BENZYL PHTHALATE	10 U	10 U	ND	ND		0/3
3,3'-DICHLOROBENZIDINE	10 U	10 U	ND	. ND		0/3
BENZO(A)ANTHRACENE	10 U	10 U	ND	ND		0/3
CHRYSENE	10 U	10 U	ND	ND		0/3
BIS(2-ETHYLHEXYL)PHTHALATE	10 U	10 U	ND	ND		0/3
DI-N-OCTYL PHTHALATE	10 U	10 U	ND	ND		0/3
BENZO(B)FLUORANTHENE	10 U	10 U	ND	ND		0/3
BENZO(K)FLUORANTHENE	10 U	10 U	ND	ND		0/3
BENZO(A)PYRENE	10 U	10 U	ND	ND		0/3
INDENO(1,2,3-CD)PYRENE	10 U	10 U	ND	ND		0/3
DIBENZO(A,H)ANTHRACENE	10 U	10 U	ND	ND		0/3
BENZO(G,H,I)PERYLENE	10 U	10 U	ND	ND		0/3

FREQUENCY OF DETECTION SUMMARY QA/QC SAMPLES SITE 65 - ENGINEER AREA DUMP REMEDIAL INVESTIGATION, CTO-0312 MCB, CAMP LEJUENE, NORTH CAROLINA TCL ORGANICS

	•		
LOCATION	65-RB-01	65-RB-03	65-RB-23
DATE COLLECTED	04/08/95	04/10/95	05/16/95
PESTICIDE/PCB (ug/L)			
ALPHA-BHC	0.05 U	0.05 U	0.05 U
BETA-BHC	0.05 U	0.05 U	0.05 U
DELTA-BHC	0.05 U	0.05 U	0.05 U
GAMMA-BHC(LINDANE)	0.05 U	0.05 U	0.05 U
HEPTACHLOR	0.05 U	0.05 U	0.05 U
ALDRIN	0.05 U	0.05 U	0.05 U
HEPTACHLOR EPOXIDE	0.05 U	0.05 U	0.05 U
ENDOSULFAN I	0.05 U	0.05 U	0.05 U
DIELDRIN	0.1 U	0.1 U	0.1 U
4,4'-DDE	0.1 U	0.1 U	0,1 U
ENDRIN	0.1 U	0.1 U	0.1 U
ENDOSULFAN II	0.1 U	0.1 U	0.1 U
4,4'-DDD	0.1 UJ	0.1 UJ	0.1 U
ENDOSULFAN SULFATE	0.1 U	0.1 U	0.1 U
4,4'-DDT	0.24	0.3	0.1 U
METHOXYCHLOR	0.5 U	0.5 U	0.5 UJ
ENDRIN KETONE	0.1 U	0.1 U	0.1 U
ENDRIN ALDEHYDE	0.1 U	0.1 U	0.1 U
ALPHA CHLORDANE	0.05 U	0.05 U	0.05 U
GAMMA CHLORDANE	0.05 U	0.05 U	0.05 U
TOXAPHENE	5 U	5 U	5 U
PCB-1016	1 U	1 U	1 ป
PCB-1221	2 U	2 U	2 U
PCB-1232	1 U	1 U	1 U
PCB-1242	1 U	1 U	1 U
PCB-1248	1 U	1 U	1 U
PCB-1254	1 U	1 Ū	1 Ü
PCB-1260	1 Ü	1 U	1 U

LOCATION DATE COLLECTED	MINIMUM NONDETECTED	MAXIMUM NONDETECTED	MINIMUM DETECTED	MAXIMUM DETECTED	LOCATION OF MAXIMUM DETECTED	FREQUENCY OF DETECTION
PESTICIDE/PCB (ug/L)						
ALPHA-BHC	0.05 U	0.05 U	ND	ND		0/3
BETA-BHC	0.05 U	0.05 U	ND	ND		0/3
DELTA-BHC	0.05 U	0.05 U	ND	ND		0/3
GAMMA-BHC(LINDANE)	0.05 U	0.05 U	ND	ND		0/3
HEPTACHLOR	0.05 U	0.05 U	ND	ND		0/3
ALDRIN	0.05 U	0.05 U	ND	ND		0/3
HEPTACHLOR EPOXIDE	0.05 U	0.05 U	ND	ND		0/3
ENDOSULFAN I	0.05 U	0.05 U	ND	ND		0/3
DIELDRIN	0.1 U	0.1 U	ND	ND		0/3
4,4'-DDE	0.1 U	0.1 U	ND	ND		0/3
ENDRIN	0.1 U	0.1 U	ND	ND	•	0/3
ENDOSULFAN II	0.1 U	0.1 U	ND	ND		0/3
4,4'-DDD	0.1 UJ	0.1 UJ	ND	ND		0/3
ENDOSULFAN SULFATE	0.1 U	0.1 U	ND	ND		0/3
4,4'-DDT	0.1 U	0.1 U	0.24	0.3	65-RB-03	2/3
METHOXYCHLOR	0.5 U	0.5 U	ND	ND		0/3
ENDRIN KETONE	0.1 U	0.1 U	ND	ND		0/3
ENDRIN ALDEHYDE	0.1 U	0.1 U	ND	ND		0/3
ALPHA CHLORDANE	0.05 U	0.05 U	ND	ND		0/3
GAMMA CHLORDANE	0.05 U	0.05 U	ND	ND		0/3
TOXAPHENE	5 U	5 U	ND	ND		0/3
PCB-1016	1 U	1 U	ND	ND		0/3
PCB-1221	2 U	2 U	ND	ND		0/3
PCB-1232	1 U	1 U	ND	ND		0/3
PCB-1242	1 U	. 1 U	ND	ND		0/3
PCB-1248	1 U	1 U	ND	ND		0/3
PCB-1254	1 U	1 U	ND	ND		0/3
PCB-1260	1 U	1 U	ND	ND		0/3

FREQUENCY OF DETECTION SUMMARY QA/QC SAMPLES SITE 65 - ENGINEER AREA DUMP REMEDIAL INVESTIGATION, CTO-0312

MCB, CAMP LEJUENE, NORTH CAROLINA
TAL METALS

LOCATION	65-RB-01 04/08/95	65-RB-03 04/10/95	65-RB-23 05/16/95
DATE COLLECTED	04/06/93	04/10/93	03/10/83
ANALYTES (ug/L)			
ALUMINUM	40 U	40 U	65.2
ANTIMONY	50 U	50 U	50 U
ARSENIC	10 U	10 U	10 U
BARIUM	2.5	2.5	2 U
BERYLLIUM	1 U	1 U	1 U
CADMIUM	5 U	5 U	5 U
CALCIUM	98.8	110	598
CHROMIUM	10 U	10 U	10 U
COBALT	20 UJ	20 UJ	20 U
COPPER	10 U	10 U	10 U
IRON	10 U	10 U	58.9 U
LEAD	3 U	3 U	3 U
MAGNESIUM	50 U	50 U	120
MANGANESE	2 U	2 U	2 U
MERCURY	0.2 U	0.2 U	0.2 U
NICKEL	20 U	20 U	20 U
POTASSIUM	1000 U	1000 U	1000 U
SELENIUM	5 U	5 U	5 U
SILVER	5 U	5 U	5 U
SODIUM	200 U	200 U	290
THALLIUM	10 U	10 U	10 U
VANADIUM	10 U	10 U	10 U
ZINC	13.8	13	11.7 U

LOCATION DATE COLLECTED	MINIMUM NONDETECTED	MAXIMUM NONDETECTED	MINIMUM DETECTED	MAXIMUM DETECTED	LOCATION OF MAXIMUM DETECTED	FREQUENCY OF DETECTION
ANALYTES (ug/L)	•					
ALUMINUM	40 U	40 U	65.2	65.2	65-RB-23	1/3
ANTIMONY	50 U	50 U	ND	ND		0/3
ARSENIC	10 U	10 U	ND	ND		0/3
BARIUM	2 U	2 U	2.5	2.5	65-RB-03	2/3
BERYLLIUM	1 U	1 U	ND	ND		0/3
CADMIUM	5 U	5 U	ND	ND		0/3
CALCIUM	NA	NA	98.8	598	65-RB-23	3/3
CHROMIUM	10 U	10 U	ND	ND		0/3
COBALT	20 UJ	20 UJ	ND	ND		0/3
COPPER	10 U	10 U	ND	ND		0/3
IRON	10 U	58.9 U	ND	ND		0/3
LEAD	3 U	3 U	ND	ND		0/3
MAGNESIUM	50 U	50 U	120	120	65-RB-23	1/3
MANGANESE	2 U	2 U	ND	ND:		0/3
MERCURY	0.2 U	0.2 U	ND	ND		0/3
NICKEL	20 U	20 U	ND	ND		0/3
POTASSIUM	1000 U	1000 U	ND	ND		0/3
SELENIUM	5 U	5 U	ND	ND		0/3
SILVER	5 U	5 U	ND	ND		0/3
SODIUM	200 U	200 U	290	290	65-RB-23	1/3
THALLIUM	10 U	10 U	ND	ND		0/3
VANADIUM	10 U	10 U	ND	ND		0/3
ZINC	11.7 U	11.7 U	13	13.8	65-RB-01	2/3

LOCATION	73-FB-01	73-FB-02	73-FB-03
DATE COLLECTED	04/20/95	04/20/95	04/20/95
	0-1/20/00	0-1/20/00	04/20/30
VOLATILES (ug/L)			
CHLOROMETHANE	10 U	10 U	10 U
BROMOMETHANE	10 U	10 U	10 U
VINYL CHLORIDE	10 U	10 U	10 U
CHLOROETHANE	10 U	10 U	10 U
METHYLENE CHLORIDE	10 U	16	10 U
ACETONE	12	56	7 J
CARBON DISULFIDE	10 U	10 U	10 U
1,1-DICHLOROETHENE	10 U	10 U	10 U
1,1-DICHLOROETHANE	10 U	10 U	10 U
1,2-DICHLOROETHENE	10 U	10 U	10 U
CHLOROFORM	10 U	10 U	30
1,2-DICHLOROETHANE	10 U	10 U	10 U
2-BUTANONE	10 U	10 U	10 U
1,1,1-TRICHLOROETHANE	10 U	10 U	10 U
CARBON TETRACHLORIDE	10 U	10 U	10 U
BROMODICHLOROMETHANE	10 U	10 U	18
1,2-DICHLOROPROPANE	10 U	10 U	10 U
CIS-1,3-DICHLOROPROPENE	10 U	10 U	10 U
TRICHLOROETHENE	10 U	10 U	10 U
DIBROMOCHLOROMETHANE	10 U	10 U	6 J
1,1,2-TRICHLOROETHANE	10 U	10 U	10 U
BENZENE	10 U	10 U	10 U
TRANS-1,3-DICHLOROPROPENE	10 U	10 U	10 U
BROMOFORM	10 U	10 U	10 U
4-METHYL-2-PENTANONE	10 U	. 10 U	10 U
2-HEXANONE	10 U	10 U	10 U
TETRACHLOROETHENE	10 U	10 U	10 U
1,1,2,2-TETRACHLOROETHANE	10 U	10 U	10 U
TOLUENE	10 U	10 U	10 U
CHLOROBENZENE	10 U	10 U	10 U
ETHYLBENZENE	10 U	10 U	10 U
STYRENE	- 10 U	10 U	10 U
TOTAL XYLENES	10 U	10 U	10 U

LOCATION DATE COLLECTED	MINIMUM NONDETECTED	MAXIMUM NONDETECTED	MINIMUM DETECTED	MAXIMUM DETECTED	LOCATION OF MAXIMUM DETECTED	FREQUENCY OF DETECTION
VOLATILES (ug/L)						
CHLOROMETHANE	10 U	10 U	ND	ND		0/3
BROMOMETHANE	10 U	10 U	ND	ND		0/3
VINYL CHLORIDE	10 U	10 U	ND	ND		0/3
CHLOROETHANE	10 U	10 U	ND	ND		0/3
METHYLENE CHLORIDE	10 U	10 U	16	16	73-FB-02	1/3
ACETONE	NA	NA	7 J	56	73-FB-02	3/3
CARBON DISULFIDE	10 U	10 U	ND	ND		0/3
1,1-DICHLOROETHENE	10 U	10 U	ND	ND		0/3
1,1-DICHLOROETHANE	10 U	10 U	ND	ND		0/3
1,2-DICHLOROETHENE	10 U	10 U	ND	ND		0/3
CHLOROFORM	10 U	10 U	30	30	73-FB-03	1/3
1,2-DICHLOROETHANE	10 U	10 U	ND	ND		0/3
2-BUTANONE	10 U	10 U	ND	ND		0/3
1,1,1-TRICHLOROETHANE	10 U	10 U	ND	ND		0/3
CARBON TETRACHLORIDE	10 U	10 U	ND	ND		0/3
BROMODICHLOROMETHANE	10 U	10 U	18	18	73-FB-03	1/3
1,2-DICHLOROPROPANE	10 U	10 U	ND	ND		0/3
CIS-1,3-DICHLOROPROPENE	10 U	10 U	ND	ND		0/3
TRICHLOROETHENE	10 U	10 U	ND	ND		0/3
DIBROMOCHLOROMETHANE	10 U	10 U	6 J	6 J	73-FB-03	1/3
1,1,2-TRICHLOROETHANE	10 U	10 U	ND	ND		0/3
BENZENE	10 U	10 U	ND	ND		0/3
TRANS-1,3-DICHLOROPROPENE	10 U	10 U	ND	ND		0/3
BROMOFORM	10 U 🛴	10 U	ND	ND	•	0/3
4-METHYL-2-PENTANONE	10 U	10 U	ND	ND		0/3
2-HEXANONE	10 U	10 U	ND	ND		0/3
TETRACHLOROETHENE	10 U	10 U	ND	ND		0/3
1,1,2,2-TETRACHLOROETHANE	10 U	10 U	ND	ND		0/3
TOLUENE	10 U	10 U	ND	ND		0/3
CHLOROBENZENE	10 U	10 U	ND	ND		0/3
ETHYLBENZENE	10 U	10 U	ND	ND		0/3
STYRENE	10 U	10 U	ND	ND		0/3
TOTAL XYLENES	10 U	10 U	ND	ND		0/3

10/23/95 FT WK4

٦.

LOCATION	73-FB-01	73-FB-02	73-FB-03
DATE COLLECTED	04/20/95	04/20/95	04/20/95
DATE COLLECTED	0 1120100	·	
SEMIVOLATILES (ug/L)			
PHENOL	10 U	10 U	10 U
BIS(2-CHLOROETHYL)ETHER	10 U	10 U	10 U
2-CHLOROPHENOL	10 U	10 U	10 U
1,3-DICHLOROBENZENE	10 U	10 U	10 U
1,4-DICHLOROBENZENE	10 U	10 U	10 U
1,2-DICHLOROBENZENE	10 U	10 U	10 U
2-METHYLPHENOL	10 U	10 U	10 U
2,2'-OXYBIS(1-CHLOROPROPANE)	10 U	10 U	10 U
4-METHYLPHENOL	10 U	10 U	10 U
N-NITROSO-DI-N-PROPYLAMINE	10 U	10 U	10 U
HEXACHLOROETHANE	10 U	10 U	10 U
NITROBENZENE	10 U	10 U	10 U
ISOPHORONE	10 U	10 U	10 U
2-NITROPHENOL	10 U	10 U	10 U
2,4-DIMETHYLPHENOL	10 U	10 U	10 U
BIS(2-CHLOROETHOXY)METHANE	10 U	10 U	10 U
2,4-DICHLOROPHENOL	10 U	10 U	10 U
1,2,4-TRICHLOROBENZENE	10 U	10 U	10 U
NAPHTHALENE	10 U	10 U	10 U
4-CHLOROANILINE	10 U	10 U	10 U
HEXACHLOROBUTADIENE	· 10 U	10 U	10 U
4-CHLORO-3-METHYLPHENOL	10 U	10 U	10 U
2-METHYLNAPHTHALENE	10 U	10 U	10 U
HEXACHLOROCYCLOPENTADIENE	10 U	10 U	10 U
2,4,6-TRICHLOROPHENOL	10 U	10 U	10 U
2,4,5-TRICHLOROPHENOL	25 U	25 U	25 U
2-CHLORONAPHTHALENE	10 U	10 Ú	10 U
2-NITROANILINE	25 U	25 U	25 U
DIMETHYL PHTHALATE	10 U	10 U	10 U
ACENAPHTHYLENE	10 U	10 U	10 U
2,6-DINITROTOLUENE	10 U	10 U	10 U
3-NITROANILINE	25 U	25 U	25 U
ACENAPHTHENE	10 U	10 U	10 U
2,4-DINITROPHENOL	25 U	25 U	25 U
4-NITROPHENOL	25 U	25 U	25 U

LOCATION	73-FB-01	73-FB-02	73-FB-03
DATE COLLECTED	04/20/95	04/20/95	04/20/95
SEMIVOLATILES (ug/L) cont.			
DIBENZOFURAN	10 U	10 U	10 U
2,4-DINITROTOLUENE	10 U	10 U	10 U
DIETHYL PHTHALATE	10 U	10 U	10 U
4-CHLOROPHENYLPHENYL ETHER	10 U	10 U	10 U
FLUORENE	10 U	10 U	10 U
4-NITROANILINE	25 U	25 U	25 U
4,6-DINITRO-2-METHYLPHENOL	25 U	25 U	25 U
N-NITROSODIPHENYLAMINE	10 U	10 U	10 U
4-BROMOPHENYL PHENYL ETHER	10 U	10 U	10 U
HEXACHLOROBENZENE	10 U	10 U	10 U
PENTACHLOROPHENOL	25 U	25 U	25 U
PHENANTHRENE	10 U	10 U	10 U
ANTHRACENE	10 U	10 U	10 U
CARBAZOLE	10 U	10 U	10 U
DI-N-BUTYL PHTHALATE	1 J	10 U	10 U
FLUORANTHENE	10 U	10 U	10 U
PYRENE	10 U	10 U	10 U
BUTYL BENZYL PHTHALATE	10 U	10 U	10 U
3,3'-DICHLOROBENZIDINE	10 U	10 U	10 U
BENZO(A)ANTHRACENE	10 U	10 U	10 U
CHRYSENE	10 U	10 U	10 U
BIS(2-ETHYLHEXYL)PHTHALATE	2 J	10 U	10 U
DI-N-OCTYL PHTHALATE	10 U	10 U	10 U
BENZO(B)FLUORANTHENE	10 U	10 U	10 U
BENZO(K)FLUORANTHENE	10 U	10 U	10 U
BENZO(A)PYRENE	10 U	10 U	10 U
INDENO(1,2,3-CD)PYRENE	10 U	10 U	10 U
DIBENZO(A,H)ANTHRACENE	10 U	10 U	10 U
BENZO(G,H,I)PERYLENE	10 U	10 U	10 U
	·		

					LOCATION OF	FREQUENCY
LOCATION	MINIMUM	MAXIMUM	MINIMUM	MAXIMUM	MAXIMUM	OF
DATE COLLECTED	NONDETECTED	NONDETECTED	DETECTED	DETECTED	DETECTED	DETECTION
05110101 171 F0 / // /						
SEMIVOLATILES (ug/L)	40.11	40.11				
PHENOL	10 U	10 U	ND	ND		0/3
BIS(2-CHLOROETHYL)ETHER	10 U	10 U	ND	ND		0/3
2-CHLOROPHENOL	10 U	10 U	ND	ND		0/3
1,3-DICHLOROBENZENE	10 U	10 U	ND	ND		0/3
1,4-DICHLOROBENZENE	10 U	10 U	ND	ND		0/3
1,2-DICHLOROBENZENE	10 U	10 U	ND	ND		0/3
2-METHYLPHENOL	10 U	10 U	ND	ND		0/3
2,2'-OXYBIS(1-CHLOROPROPANE)	10 U	10 U	ND	ND		0/3
4-METHYLPHENOL	10 U	10 U	ND	ND		0/3
N-NITROSO-DI-N-PROPYLAMINE	10 U	10 U	ND	ND		0/3
HEXACHLOROETHANE	10 U	10 U	ND	ND		0/3
NITROBENZENE	10 U	10 U	ND	ND		0/3
ISOPHORONE	10 U	10 U	ND	ND		0/3
2-NITROPHENOL	10 U	10 U	ND	ND		0/3
2,4-DIMETHYLPHENOL	10 U	10 U	ND	ND		0/3
BIS(2-CHLOROETHOXY)METHANE	10 U	10 U	ND	ND		0/3
2,4-DICHLOROPHENOL	10 U	10 U	ND	ND		0/3
1,2,4-TRICHLOROBENZENE	10 U	10 U	ND	ND		0/3
NAPHTHALENE	10 U	10 U	ND	ND		0/3
4-CHLOROANILINE	10 U	10 U	ND	ND		0/3
HEXACHLOROBUTADIENE	10 U	10 U	ND	ND		0/3
4-CHLORO-3-METHYLPHENOL	10 U	10 U	ND	ND	•	0/3
2-METHYLNAPHTHALENE	10 U	10 U	ND	ND		0/3
HEXACHLOROCYCLOPENTADIENE	10 U	10 U	ND	ND		0/3
2,4,6-TRICHLOROPHENOL	10 U	10 U	ND	ND		0/3
2,4,5-TRICHLOROPHENOL	25 U	25 U	ND	ND		0/3
2-CHLORONAPHTHALENE	10 U	10 U	ND	ND		0/3
2-NITROANILINE	25 U	25 U	ND	ND		0/3
DIMETHYL PHTHALATE	10 U	10 U	ND	ND		0/3
ACENAPHTHYLENE	10 U	10 U	ND	ND		0/3
2,6-DINITROTOLUENE	10 U	10 U	ND	ND		0/3
3-NITROANILINE	25 U	25 U	ND	ND		0/3
ACENAPHTHENE	10 U	10 U	ND	ND		0/3
2,4-DINITROPHENOL	25 U	25 U	ND	ND		0/3
4-NITROPHENOL	25 U	25 U	ND	ND		0/3
	_	_				- , -

10/23/95 FBSV.WK4

LOCATION DATE COLLECTED	MINIMUM NONDETECTED	MAXIMUM NONDETECTED	MINIMUM DETECTED	MAXIMUM DETECTED	LOCATION OF MAXIMUM DETECTED	FREQUENCY OF DETECTION
05110/01 ATH F0 (m.//) 2 m4						
SEMIVOLATILES (ug/L) cont.	40.11	40.11				
DIBENZOFURAN	10 U	10 U	ND	ND		0/3
2,4-DINITROTOLUENE	10 U	10 U	ND	ND		0/3
DIETHYL PHTHALATE	10 U	10 U	ND	ND		0/3
4-CHLOROPHENYLPHENYL ETHER	10 U	10 U	ND	ND		0/3
FLUORENE	10 U	10 U	ND	ND		0/3
4-NITROANILINE	25 U	25 U	ND	ND		0/3
4,6-DINITRO-2-METHYLPHENOL	25 U	25 U	ND	ND		0/3
N-NITROSODIPHENYLAMINE	10 U	10 U	ND	ND		0/3
4-BROMOPHENYL PHENYL ETHER	10 U	10 U	ND	ND		0/3
HEXACHLOROBENZENE	10 U	10 U	ND	ND		0/3
PENTACHLOROPHENOL	25 U	25 U	ND	ND		0/3
PHENANTHRENE	10 U	10 U	ND	ND		0/3
ANTHRACENE	10 U	10 U	ND	ND		0/3
CARBAZOLE	10 U	10 U	ND	ND		0/3
DI-N-BUTYL PHTHALATE	10 U	10 U	1 J	1 J	73-FB-01	1/3
FLUORANTHENE	10 U	10 U	ND	ND		0/3
PYRENE	10 U	10 U	ND	ND		0/3
BUTYL BENZYL PHTHALATE	10 U	10 ປ	ND	ND		0/3
3,3'-DICHLOROBENZIDINE	10 U	10 U	ND	ND		0/3
BENZO(A)ANTHRACENE	10 U	10 U	ND	ND		0/3
CHRYSENE	10 U	10 U	ND	ND		0/3
BIS(2-ETHYLHEXYL)PHTHALATE	10 U	10 U	2 J	2 J	73-FB-01	1/3
DI-N-OCTYL PHTHALATE	10 U	10 U	ND	ND		0/3
BENZO(B)FLUORANTHENE	10 U	10 U	ND	ND		0/3
BENZO(K)FLUORANTHENE	10 U	10 U	ND	ND		0/3
BENZO(A)PYRENE	10 U	10 U	ND	ND		0/3
INDENO(1,2,3-CD)PYRENE	10 U	10 U	ND	ND		0/3
DIBENZO(A,H)ANTHRACENE	10 U	10 U	ND	ND		0/3
BENZO(G,H,I)PERYLENE	10 U	10 U	ND	ND		0/3

LOCATION DATE COLLECTED	73-FB-01 04/20/95	73-FB-02 04/20/95	73-FB-03 04/20/95
PESTICIDE/PCBS (ug/L)			
ALPHA-BHC	0.05 U	0.05 U	0.05 U
BETA-BHC	0.05 U	0.05 U	0.05 U
DELTA-BHC	0.05 U	0.05 U	0.05 U
HEPTACHLOR	0.05 U	0,05 U	0.05 U
ALDRIN	0.05 U	0.05 U	0.05 U
HEPTACHLOR EPOXIDE	0.05 U	0.05 U	0.05 U
ENDOSULFAN I	0.05 U	0.05 U	0.05 U
DIELDRIN	0.1 U	0.1 U	0.1 U
4,4'-DDE	0.1 U	0.1 U	0.1 U
ENDRIN	0.1 U	0.1 U	0.1 U
4,4'-DDD	0.1 U	0.1 U	0.1 U
ENDOSULFAN SULFATE	0.1 U	0.1 U	0.1 U
4,4'-DDT	0.1 U	0.1 U	0.1 U
METHOXYCHLOR	0.5 U	0.5 U	0,5 U
ENDRIN KETONE	0.1 U	0.1 U	0.1 U
ENDRIN ALDEHYDE	0.1 U	0.1 U	0.1 U
ALPHA CHLORDANE	0.05 U	0.05 U	0.05 U
GAMMA CHLORDANE	0.05 U	0.05 U	0.05 U
TOXAPHENE	5 U	5 U	5 U
PCB-1016	1 U	1 U	1 U
PCB-1221	2 U	2 U	2 U
PCB-1232	1 U	1 U	1 U
PCB-1242	1 U	1 U	1 U
PCB-1248	1 U	1 U	1 U
PCB-1254	1 U	1 U	1 U
PCB-1260	1 U	1 U	1 U

LOCATION DATE COLLECTED	MINIMUM NONDETECTED	MAXIMUM NONDETECTED	MINIMUM DETECTED	MAXIMUM DETECTED	LOCATION OF MAXIMUM DETECTED	FREQUENCY OF DETECTION
PESTICIDE/PCBS (ug/L) ALPHA-BHC	0.05 U	0.05 U	ND	ND		0/3
BETA-BHC	0.05 U	0.05 U	ND	ND		0/3
DELTA-BHC	0.05 U	0.05 U	ND	ND		0/3
HEPTACHLOR	0.05 U	0.05 U	ND	ND		0/3
ALDRIN	0.05 U	0.05 U	ND	ND		0/3
HEPTACHLOR EPOXIDE	0.05 U	0.05 U	ND	ND		0/3
ENDOSULFAN I	0.05 U	0.05 U	ND	ND		0/3
DIELDRIN	0.1 U	0.1 U	ND	ND		0/3
4,4'-DDE	0.1 U	0.1 U	ND	ND		0/3
ENDRIN	0.1 U	0.1 U	ND	ND		0/3
4,4'-DDD	0.1 U	0.1 U	ND	ND		0/3
ENDOSULFAN SULFATE	0.1 U	0.1 U	ND	ND		0/3
4,4'-DDT	0.1 U	0.1 U	ND	ND		0/3
METHOXYCHLOR	0.5 U	0.5 U	ND	ND		0/3
ENDRIN KETONE	0.1 U	0.1 U	ND	ND.		0/3
ENDRIN ALDEHYDE	0.1 U	0.1 U	ND	ND		0/3
ALPHA CHLORDANE	0.05 U	0.05 U	ND	ND		0/3
GAMMA CHLORDANE	0.05 U	0.05 U	ND	ND		0/3
TOXAPHENE	5 U	5 U	ND	ND		0/3
PCB-1016	1 U	1 U	ND	ND		0/3
PCB-1221	2 U	2 U	ND	ND		0/3
PCB-1232	1 U	1 U	ND	ND		0/3
PCB-1242	1 U	1 U	ND	ND		0/3
PCB-1248	1 U	1 U	ND	ND		0/3
PCB-1254	1 U	1 U	ND	ND	•	0/3
PCB-1260	1 U	1 U	ND	ND		0/3

LOCATION DATE COLLECTED	73-FB-01 04/20/95	73-FB-02 04/20/95	73-FB-03 04/20/95
ANALYTES (u.e./l.)			
ANALYTES (ug/L)	70.0	40.11	40.11
ALUMINUM	73.6	40 U	40 U
ANTIMONY	50 U	50 U	50 U
ARSENIC	10 U	10 U	10 U
BARIUM	2.7	2.1	3
BERYLLIUM	1 U	1 U	1 U
CADMIUM	5 U	5 U	5 U
CALCIUM	138	102	21400
CHROMIUM	10 U	10 U	10 U
COBALT	20 U	20 U	20 U
COPPER	16.1	10 U	10 U
IRON	20.4	73.1	13.6
LEAD	3 U	3 U	6.2
MAGNESIUM	50 U	69.1	855
MANGANESE	2 U	2 U	2 U
MERCURY	0.2 U	0.2 U	0.2 U
NICKEL	20 U	20 U	20 U
POTASSIUM	1000 U	2410	1020
SELENIUM	5 U	2410 5 U	1020 5 U
SILVER	5 U		
		5 U	5 U
SODIUM	200 U	246	60700
THALLIUM	10 U	10 U	10 U
VANADIUM	10 U	10 U	10 U
ZINC	20.3	13.4	28

LOCATION DATE COLLECTED	MINIMUM NONDETECTED	MAXIMUM NONDETECTED	MINIMUM DETECTED	MAXIMUM DETECTED	LOCATION OF MAXIMUM DETECTED	FREQUENCY OF DETECTION
ANALYTES (ug/L)						
ALUMINUM	40 U	40 U	73.6	73.6	73-FB-01	1/3
ANTIMONY	50 U	50 U	ND	ND		0/3
ARSENIC	10 U	10 U	ND	ND		0/3
BARIUM	NA NA	NA	2.1	3	73-FB-03	3/3
BERYLLIUM	1 U	1 U	ND	ND		0/3
CADMIUM	5 U	5 U	ND	ND		0/3
CALCIUM	NA	NA	102	21400	73-FB-03	3/3
CHROMIUM	10 U	10 U	ND	ND		0/3
COBALT	20 U	20 U	ND	ND		0/3
COPPER	10 U	10 U	16.1	16.1	73-FB-01	1/3
IRON	NA	NA	13.6	73.1	73-FB-02	3/3
LEAD	3 U	. 3 U	6.2	6.2	73-FB-03	1/3
MAGNESIUM	50 U	50 U	69.1	855	73-FB-03	2/3
MANGANESE	2 U	2 U	ND	ND		0/3
MERCURY	0.2 U	0.2 U	ND	ND		0/3
NICKEL	20 U	20 U	ND	ND		0/3
POTASSIUM	1000 U	1000 U	1020	2410	73-FB-02	2/3
SELENIUM	5 U	5 U	ND	ND		0/3
SILVER	5 U	5 U	ND	ND		0/3
SODIUM	200 U	200 U	246	60700	73-FB-03	2/3
THALLIUM	10 U	10 U	ND	ND		0/3
VANADIUM	10 U	10 U	ND	ND		0/3
ZINC	NA	NA	13.4	28	73-FB-03	3/3

APPENDIX R STATISTICAL SUMMARIES

APPENDIX R.1 SURFACE SOIL ORGANICS

STATISTICAL SUMMARY SURFACE SOIL SITE 65 - ENGINEER AREA DUMP REMEDIAL INVESTIGATION, CTO-0312 MCB, CAMP LEJUENE, NORTH CAROLINA TCL ORGANICS

			NORMAL			LOG
LOCATION	NORMAL	NORMAL	UPPER 95%	LOG	LOG	UPPER 95%
DATE COLLECTED	ARITHMETIC	STANDARD	CONFIDENCE	ARITHMETIC	STANDARD	CONFIDENCE
DEPTH	MEAN	DEVIATION	INTERVAL	MEAN	DEVIATION	INTERVAL
VOLATILES (ug/kg)						
METHYLENE CHLORIDE	4.85	1.85	5.76	1.46	0.59	7.51
ACETONE	6.15	1.21	6.75	1.80	0.16	6.70
TRICHLOROETHENE	5.35	1.34	6.01	1.61	0.49	7.55
TOLUENE	4.85	1.85	5.76	1.46	0.59	7.51
ETHYLBENZENE	5.31	1.32	5.96	1.60	0.48	7.48
TOTAL XYLENES	5.42	0.79	5.81	1.68	0.18	5.99
SEMIVOLATILES (ug/kg)						
ACENAPHTHENE	183.85	19.27	193.37	5.21	0.12	195.66
2,4-DINITROPHENOL	431.92	88.31	475.57	6.03	0.31	525.39
DIBENZOFURAN	178.31	37.64	196.91	5.15	0.33	219.77
FLUORENE	181.54	26.64	194.71	5.19	0.18	200.73
PHENANTHRENE	220.62	197.56	318.26	5.19	0.61	330.06
ANTHRACENE	188.46	10.49	193.64	5.24	0.05	193.81
CARBAZOLE	187.69	10.73	192.99	5.23	0.06	193.14
DI-N-BUTYL PHTHALATE	208.46	58.79	237.52	5.31	0.22	235.01
FLUORANTHENE	234.23	180.09	323.24	5.33	0.44	295.38
PYRENE	241.15	184.64	332.41	5.36	0.43	304.11
BENZO(A)ANTHRACENE	197.77	100.84	247.61	5.20	0.42	255.60
CHRYSENE	194.23	91.28	239.35	5.19	0.42	252.01
BIS(2-ETHYLHEXYL)PHTHALATE	100.08	55.55	127.53	4.48	0.52	140.37
BENZO(B)FLUORANTHENE	186.15	63.75	217.66	5.17	0.34	228.46
BENZO(K)FLUORANTHENE	206.54	93.48	252.74	5.27	0.32	246,30
BENZO(A)PYRENE	196.54	66.31	229.31	5.24	0.29	230.48
INDENO(1,2,3-CD)PYRENE	188.69	46.46	211.66	5.21	0.27	219.61
DIBENZO(A,H)ANTHRACENE	173.08	40.85	193.27	5.10	0.40	223.95
BENZO(G,H,I)PERYLENE	182.69	39.19	202,06	5.18	0.29	217.36
PESTICIDE/PCBS (ug/kg)						
HEPTACHLOR EPOXIDE	1.07	0.38	1.25	0.03	0.25	1.22
4,4'-DDE	25.08	33.23	41.50	1.99	1.73	280.72
ENDOSULFAN II	2.19	0.74	2.56	0.74	0.27	2.54
4,4'-DDD	12.53	16.85	20.86	1.75	1.29	54.52
4,4'-DDT	13.38	20.07	23.30	1.63	1.38	60.59
PCB-1260	21.27	9.30	25.86			

APPENDIX R.2 SURFACE SOIL METALS

STATISTICAL SUMMARY SURFACE SOIL SITE 65 - ENGINEER AREA DUMP REMEDIAL INVESTIGATION, CTO-0312 MCB, CAMP LEJUENE, NORTH CAROLINA TAL METALS

LOCATION DATE_STAMP DEPTH MOISTURE	NORMAL ARITHMETIC MEAN	NORMAL STANDARD DEVIATION	NORMAL UPPER 95% CONFIDENCE INTERVAL	LOG ARITHMETIC MEAN	LOG STANDARD DEVIATION	LOG UPPER 95% CONFIDENCE INTERVAL
ALUMINUM	2445.31	1487.21	3180.34	7.61	0.68	4022.67
BARIUM	11.75	8.76	16.08	2.26	0.66	18.66
CALCIUM	633.02	880.48	1068.19	5.95	0.98	1384.31
CHROMIUM	4.00	2.27	5.12	1.21	0.65	6.48
COPPER	15.32	20.20	25.30	1.79	1.50	119.72
IRON	3031.77	4435.91	5224.17	7.41	1.03	7567.30
LEAD	38.98	55.65	66.49	2.71	1.46	217.05
MAGNESIUM	81.73	53.60	108.22	4.21	0.64	129.09
MANGANESE	35.69	51.07	60.93	2.80	1.22	111.48
NICKEL	2.76	1.09	3.30	0.96	0.31	3.28
POTASSIUM	125.12	37.42	143,61	4.80	0.22	140.80
SODIUM	27.90	11.61	33.64	3.27	0.32	33.43
THALLIUM	1.24	0.32	1.40	0.19	0.20	1.38
VANADIUM	3.92	3.09	5.44	1.09	0.79	7.21
ZINC	63.57	108.61	117.24	3.03	1.52	439.65

APPENDIX R.3 SUBSURFACE SOIL ORGANICS

STATISTICAL SUMMARY SUBSURFACE SOIL SITE 65 - ENGINEER AREA DUMP REMEDIAL INVESTIGATION, CTO-0312 MCB, CAMP LEJUENE, NORTH CAROLINA TCL ORGANICS

			NORMAL			LOG
LOCATION	NORMAL	NORMAL	UPPER 95%	LOG	LOG	UPPER 95%
DATE COLLECTED	ARITHMETIC	STANDARD	CONFIDENCE	ARITHMETIC	STANDARD	CONFIDENCE
DEPTH	MEAN	DEVIATION	INTERVAL	MEAN	DEVIATION	INTERVAL
VOLATILES (ug/kg)						
ACETONE	57.61	97.34	96.33	3.09	1,33	165.26
CARBON DISULFIDE	5.66	1.00	6.06	1.71	0.26	6.40
2-BUTANONE	6.74	5.49	8.92	1.77	0.47	8.20
TRICHLOROETHENE	5.58	0.95	5.96	1.70	0.25	6.29
TOLUENE	5.58	1.20	6.06	1.67	0.41	7.05
TOTAL XYLENES	4.89	1.89	5.65	1.46	0.61	7.20
SEMIVOLATILES (ug/kg)						
NAPHTHALENE	183.68	34.39	197.37	5.18	0.29	212.08
2-METHYLNAPHTHALENE	183.95	33.36	197.22	5.19	0.27	210.08
ACENAPHTHENE	180.05	32.99	193.17	5.17	0.23	200.12
DIBENZOFURAN	183.00	37.12	197.77	5.17	0.35	220.57
FLUORENE	185.26	23.18	194.49	5.21	0.14	197.23
PHENANTHRENE	241.05	232.83	333.67	5.33	0.44	280.43
ANTHRACENE	194.74	27.16	205.54	5.26	0.12	205.06
CARBAZOLE	185.79	21.43	194.31	5.22	0.13	196,27
DI-N-BUTYL PHTHALATE	211.32	45.58	229.45	5.33	0.19	229.53
FLUORANTHENE	282.11	392,15	438.11	5.38	0.53	327.62
PYRENE	253.68	277.95	364.26	5.35	0.46	294.04
BENZO(A)ANTHRACENE	222,63	165.93	288.64	5.29	0.40	261.85
CHRYSENE	217.89	142.85	274.72	5.29	0.37	251.81
BIS(2-ETHYLHEXYL)PHTHALATE	121.58	83.57	154.82	4.60	0.64	173.03
BENZO(B)FLUORANTHENE	212.42	123,22	261.44	5.28	0.36	246.21
BENZO(K)FLUORANTHENE	208.42	102.32	249.13	5.28	0.31	238.09
BENZO(A)PYRENE	209.42	118.13	256,41	5.26	0.39	248.50
INDENO(1,2,3-CD)PYRENE	204.74	68.18	231.86	5.29	0.23	224.99
BENZO(G,H,I)PERYLENE	192.47	51.38	212.91	5.22	0.30	221.03
PESTICIDE/PCBS (ug/kg)						
ENDOSULFAN I	1.08	0.49	1.28	0.03	0,27	1,21
4,4'-DDE	12.75	16.67	19.38	1.66	1.35	40.93
4.4'-DDD	40.82	83.74	74.13	1.93	1.85	280.81
4,4'-DDT	7.46	11.10	11.88	1.28	1.10	14.91
ENDRIN ALDEHYDE	2.29	1.73	2.98	0.72	0.38	2.63
ALPHA CHLORDANE	1.37	1.68	2.93	0.09	0.50	1.58
GAMMA CHLORDANE	1.54	1.58	2.03	0.09	0.50 0.57	1.94
GAIMINA CHLORDAINE	1.34	1.30	2.17	0.21	0.57	1.54

APPENDIX R.4 SUBSURFACE SOIL METALS

STATISTICAL SUMMARY SUBSURFACE SOIL SITE 65 - ENGINEER AREA DUMP REMEDIAL INVESTIGATION, CTO-0312 MCB, CAMP LEJUENE, NORTH CAROLINA TAL METALS

LOCATION DATE COLLECTED DEPTH MOISTURE	NORMAL ARITHMETIC MEAN	NORMAL STANDARD DEVIATION	NORMAL UPPER 95% CONFIDENCE INTERVAL	LOG ARITHMETIC MEAN	LOG STANDARD DEVIATION	LOG UPPER 95% CONFIDENCE INTERVAL
ANALYTES (mg/kg)						
ALUMINUM	4282.63	2204.29	5159.51	8.21	0.61	6197.29
ANTIMONY	6.20	1.44	6.77	1,81	0.18	6.67
ARSENIC	1.43	0.67	1.70	0.29	0.35	1.67
BARIUM	14.73	11.94	19.48	2.37	0.85	25,60
CADMIUM	0.66	0.23	0.75	-0.45	0.27	0.74
CALCIUM	495.85	446.01	673.28	5.70	1.15	1356.48
CHROMIUM	6.21	4.03	7.82	1.58	0.78	10.41
COBALT	3.07	2.12	3.91	1.01	0.39	3.58
COPPER	70.57	181.59	142.81	1.73	2.17	1022.74
IRON	4630.63	7201.83	7495.57	7.65	1.28	14060.35
LEAD	62.56	130.59	114.51	2.45	1.84	452.54
MAGNESIUM	159.34	93.88	196.69	4.89	0.67	238.87
MANGANESE	58.82	116.48	105.16	2.62	1.67	278.09
NICKEL	15.49	55.12	37.41	1.20	1.10	13.72
POTASSIUM	158.87	93.63	196.11	4.96	0.43	193,35
SELENIUM	0.63	0.22	0.72	-0.49	0.23	0.70
SILVER	0.78	0.83	1.11	-0.43	0.46	0.90
SODIUM	39.13	32.25	51.96	3.46	0.60	51.48
THALLIUM	1.33	0.70	1.61	0.22	0.30	1.50
VANADIUM	6.38	6.02	8.78	1.50	0.89	11.45
ZINC	121.50	214.71	206.92	3.08	1.99	1319.18

APPENDIX R.5 GROUNDWATER ORGANICS

STATISTICAL SUMMARY GROUNDWATER SITE 65 - ENGINEER AREA DUMP REMEDIAL INVESTIGATION, CTO-0312 MCB, CAMP LEJUENE, NORTH CAROLINA TCL ORGANICS

LOCATION DATE COLLECTED	NORMAL ARITHMETIC MEAN	NORMAL STANDARD DEVIATION	NORMAL UPPER 95% CONFIDENCE INTERVAL	LOG ARITHMETIC MEAN	LOG STANDARD DEVIATION	LOG UPPER 95% CONFIDENCE INTERVAL
VOLATILES (ug/L)						
METHYLENE CHLORIDE	2.91	2.02	4.01	0.79	0.81	6.28
ACETONE	5.55	0.93	6.06	1.70	0.16	6.09
CARBON DISULFIDE	5.00	0.00	5.00	1.61	0.00	5.00
1,2-DICHLOROETHANE	2.82	1.40	3.58	0.94	0.43	3.78
2-BUTANONE	3.91	1.87	4.93	1.17	0.75	8.01
SEMIVOLATILES (ug/L)						
NAPHTHALENE	4.82	0.60	5.15	1.56	0.15	5.29
DI-N-BUTYL PHTHALATE	4.64	1.12	5.25	1,50	0.32	5.76
BIS(2-ETHYLHEXYL)PHTHALATE	4.00	1.79	4.98	1.23	0.67	7.25

APPENDIX R.6 GROUNDWATER METALS

STATISTICAL SUMMARY GROUNDWATER SITE 65 - ENGINEER AREA DUMP REMEDIAL INVESTIGATION, CTO-0312 MCB, CAMP LEJUENE, NORTH CAROLINA TAL METALS

LOCATION DATE COLLECTED	NORMAL ARITHMETIC MEAN	NORMAL STANDARD DEVIATION	NORMAL UPPER 95% CONFIDENCE INTERVAL	LOG ARITHMETIC MEAN	LOG STANDARD DEVIATION	LOG UPPER 95% CONFIDENCE INTERVAL
ANALYTES (ug/L)						
ALUMINUM	129.44	138.75	205.24	4.26	1.20	550.36
BARIUM	41.05	38.60	62.14	3.45	0.73	75.90
CALCIUM	56392.73	47322.85	82247.03	10.39	1.36	466625.67
CHROMIUM	5.93	2.06	7.05	1.74	0.28	7.05
COBALT	18.53	1,4.71	26.56	2.71	0.62	29.76
IRON	1269.70	1963.09	2342.21	5.91	1.81	36460.00
LEAD	1.67	0.57	1.99	0.48	0.25	1.94
MAGNESIUM	5544.55	4282.71	7884.36	8.37	0.76	10817.02
MANGANESE	68.63	74.90	109.55	3.41	1.52	878.28
NICKEL	18.43	18.81	28.70	2.62	0.70	30,20
POTASSIUM	3148.18	2153,59	4324.77	7.82	0.76	6312.14
SODIUM	9381.82	3258.31	11161.96	9.09	0.34	11772.95
ZINC	22.76	13.82	30.32	2.99	0.55	34.34

APPENDIX R.7 SEDIMENT ORGANICS

STATISTICAL SUMMARY SEDIMENT

SITE 65 - ENGINEER AREA DUMP REMEDIAL INVESTIGATION, CTO-0312 MCB, CAMP LEJUENE, NORTH CAROLINA TCL ORGANICS

LOCATION DATE COLLECTED DEPTH	NORMAL ARITHMETIC MEAN	NORMAL STANDARD DEVIATION	NORMAL UPPER 95% CONFIDENCE INTERVAL	LOG ARITHMETIC MEAN	LOG STANDARD DEVIATION	LOG UPPER 95% CONFIDENCE INTERVAL
VOLATILES (ug/kg)						
ACETONE	280.00	116.90	417.54	5.58	0.38	668.43
CHLOROFORM	32.75	30.98	69.20	3.22	0.78	903.82
2-BUTANONE	83.25	9.71	94.67	4.42	0.12	100.51
CARBON TETRACHLORIDE	15.38	2.14	17.89	2.73	0.14	19.21
TETRACHLOROETHENE	12.88	4.63	18.32	2.49	0.47	47.58
TOLUENE	9.38	8.26	19.09	1.98	0.82	458.95
SEMIVOLATILES (ug/kg)						
DI-N-BUTYL PHTHALATE	1285.00	282.08	1616.86	7.14	0.23	1987.62
PESTICIDE/PCBS (ug/kg)						
BETA-BHC	4.16	2.78	7.43	1.29	0.56	25.97
4,4'-DDE	12.18	7.37	20.85	2.33	0.70	170.77
4,4'-DDD	42.93	42.95	93.45	3.06	1.53	64285790.52

APPENDIX R.8 SEDIMENT METALS

FREQUENCY OF DETECTION SUMMARY SEDIMENT

SITE 65 - ENGINEER AREA DUMP REMEDIAL INVESTIGATION, CTO-0312 MCB, CAMP LEJUENE, NORTH CAROLINA TAL METALS

LOCATION DATE COLLECTED DEPTH	NORMAL ARITHMETIC MEAN	NORMAL STANDARD DEVIATION	NORMAL UPPER 95% CONFIDENCE INTERVAL	LOG ARITHMETIC MEAN	LOG STANDARD DEVIATION	LOG UPPER 95% CONFIDENCE INTERVAL
ANALYTES (mg/kg)						
ALUMINUM	12846.00	16707.63	32502.52	8.46	1.94	1.35E+13
ANTIMONY	24.79	14.91	42.33	3.09	0.53	138.92
BARIUM	75.98	42.75	126.27	4.08	0.98	15688.63
CALCIUM	2975.50	2024.90	5357.80	7.61	1.26	7.17E+07
CHROMIUM	14.88	19.41	37.71	2.07	1.26	302239.18
COBALT	14.33	14.71	31.63	2.34	0.85	805.37
COPPER	33.11	45.27	86.37	2.71	1.51	3.67E+07
IRON	4812.25	6639.10	12623,16	7.65	1.54	7.37E+09
LEAD	59.81	78.99	152.75	2.96	2.25	7.65E+14
MAGNESIUM	535.95	472.27	1091,58	5.89	1.11	846361.48
MANGANESE	56.93	46.43	111.54	3,84	0.69	754.50
POTASSIUM	615.00	534.09	1243.36	6.19	0.73	13444.80
SODIUM	144.00	63.68	218.92	4.87	0.57	951.84
VANADIUM	12.75	18.51	34.53	1.85	1.25	42666.91
ZINC	95.18	124.81	242.01	3.83	1.47	11164392.69

APPENDIX R.9 FISH FILLET

STATISTICAL SUMMARY FISH TISSUE - FILLET SITE 65 - ENGINEER AREA DUMP REMEDIAL INVESTIGATION, CTO-0312 MCB, CAMP LEJEUNE, NORTH CAROLINA TCL ORGANICS

	NORMAL ARITHMETIC MEAN	NORMAL STANDARD DEVIATION	NORMAL UPPER 95% CONFIDENCE INTERVAL	LOG ARITHMETIC MEAN	LOG STANDARD DEVIATION	LOG UPPER 95% CONFIDENCE INTERVAL
VOLATILES (ug/kg) ACETONE PESTICIDE/PCBs (ug/kg) 4,4'-DDD	4912.50	2384.80	7718.22	8.40	0.51	26445.71
	5.14	0.38	5.58	1.63	0.07	5.67

STATISTICAL SUMMARY FISH TISSUE - FILLET SITE 65 - ENGINEER AREA DUMP REMEDIAL INVESTIGATION, CTO-0312 MCB, CAMP LEJEUNE, NORTH CAROLINA TAL METALS

	NORMAL ARITHMETIC MEAN	NORMAL STANDARD DEVIATION	NORMAL UPPER 95% CONFIDENCE INTERVAL	LOG ARITHMETIC MEAN	LOG STANDARD DEVIATION	LOG UPPER 95% CONFIDENCE INTERVAL
ANALYTES (mg/kg)						
ALUMINUM	1.02	0.53	1.64	-0.08	0.52	5.51
BARIUM	0.08	0.09	0.18	-2.97	0.99	14.15
CALCIUM	861.00	829.81	1837.27	6.48	0.80	25241,39
COPPER	0.33	0.18	0.54	-1.25	0.67	4.28
MAGNESIUM	295.00	4.24	299.99	5.69	0.01	300.94
MANGANESE	0.23	0.16	0.41	-1.67	0.68	2.92
MERCURY	0.16	0.12	0.30	-2.09	0.86	10.13
POTASSIUM	3245.00	391.71	3705.84	8.08	0.13	3973.70
SELENIUM	0.17	0.04	0.21	-1.80	0.20	0.23
SODIUM	659.50	178.46	869.46	6.46	0.28	1139.28
THALLIUM	0.10	0.03	0.13	-2.38	0.35	0.22
ZINC	7.63	1.22	9.06	2.02	0.18	10.12

APPENDIX R.10 FISH WHOLE BODY

STATISTICAL SUMMARY FISH TISSUE - WHOLE BODY SITE 65 - ENGINEER AREA DUMP REMEDIAL INVESTIGATION, CTO-0312 MCB, CAMP LEJUENE, NORTH CAROLINA TCL ORGANICS

	NORMAL ARITHMETIC MEAN	NORMAL STANDARD DEVIATION	NORMAL UPPER 95% CONFIDENCE INTERVAL	LOG ARITHMETIC MEAN	LOG STANDARD DEVIATION	LOG UPPER 95% CONFIDENCE INTERVAL
VOLATILES (ug/kg) METHYLENE CHLORIDE ACETONE	15560.00 424360.00	20505.80 619764.77	35111.45 1015280.54	8.67 10.67	1.67 3.03	2.27E+07 2.14E+17
2-BUTANONE (MEK) TOLUENE PESTICIDE/PCBs (ug/kg)	15472.00	20584.70	35098.68	8.55	1.83	1.51E+08
	12040.00	20133.75	31236.72	8.53	1.30	1.19E+06
4,4-DDE	6.95	4.50	11.24	1.82	0.50	14.51
4,4-DDD	12.34	15.49	27.11	2.08	0.91	113.06

STATISTICAL SUMMARY FISH TISSUE - WHOLE BODY SITE 65 - ENGINEER AREA DUMP REMEDIAL INVESTIGATION, CTO-0312 MCB, CAMP LEJEUNE, NORTH CAROLINA TAL METALS

	NORMAL ARITHMETIC MEAN	NORMAL STANDARD DEVIATION	NORMAL UPPER 95% CONFIDENCE INTERVAL	LOG ARITHMETIC MEAN	LOG STANDARD DEVIATION	LOG UPPER 95% CONFIDENCE INTERVAL
ANALYTES (mg/kg)						
ALUMINUM	9.82	8.53	17.96	1.73	1.36	1810.63
ANTIMONY	1.12	0.39	1.49	0.05	0.44	2.20
ARSENIC	0.06	0.05	0.11	-2.95	0.59	0.16
BARIUM	1.65	0.89	2.50	0.34	0.71	7.56
BERYLLIUM	0.01	0.01	0.02	-4.57	0.57	0.03
CALCIUM	23188.00	12172.29	34793.79	9.93	0.56	60663.04
COPPER	2.12	3.64	5.59	-0.29	1.49	447.31
IRON	18.60	8.23	26.45	2.82	0.53	46.68
LEAD	0.21	0.20	0.40	-2.16	1.37	38.77
MAGNESIUM	601.80	213.21	805.08	6.35	0.34	950.10
MANGANESE	3,18	1.54	4.65	1.02	0.64	10.92
MERCURY	0.06	0.05	0.10	-3.23	0.93	0.60
POTASSIUM	2564.00	412.23	2957.04	7.84	0.18	3137.21
SELENIUM	0.28	0.11	0.39	-1.34	0.43	0.54
SODIUM	1412.40	562.45	1948.67	7.20	0.34	2227.13
THALLIUM	0.11	0.00	0.12	- 2.19	0.04	0.12
ZINC	24.48	6.16	30.35	3.17	0.29	34.87

APPENDIX S COPC SELECTION WORKSHEETS

		·	·		X	HISTORY	OGENIC	L				
CONTAMINANT	RANGE		FREQUENCY	(vg/L) BLANK	2 X De. BACKGROUND	HISTORY	ANTHRO	NUTRIEN	FOXICITY	RBC	ARAR	COPC
Volatiles:	(worlder)									ualka)		
Methodene Chloride	57-27		2/13	10	NΑ				<u>C</u>	19/19)	V	
Acetone	10.7		1/13	93	N/A						480, EX	4
trichloroethene	IJ		1/13	ND	M			\Box	C	58,000	\u00e4	Ļ
Toluene	15-25		3/13	<u>4</u> J	NA					6,000,000	4,600,0	X
Ethylphyene	IJ		1'//3	N.D.	NA			\square	•	7,600,00	780,00	
Lylenes (Hotal)	3J-5J		2/13	NO		-	`	\vdash		160,000,0	W6407	
Semirolatiles:					A /A	\vdash		\vdash		1/2000	V// 200	$\vdash\vdash$
214 - Dinitraphenol	150.T		1/13	ND	NA	-	-			1 242	16,00 0047000	
Acenaphthene	1305		1/13	<u> </u>	NA						~31,000	1
Dibenzofuran	58J		1/13		NA NA	-	_			20000	319,000	,
Fluorene	100J 59J-860	223,38	1/13 2/13		NA NA			\vdash	/-	230,00	0	M
Phenanthrene (6)	190J	403,36	1/13		NA					23.000 DO	3230,000	
Anthracene Carbazole	1807		1/13		NA	Г			C	32,000	~	
Di-n-butylphalate	2605-390	7	2/13	ΙJ	NA			П		7,800,000	1780a	20
Fluoranthene	130T- X30		3/13	NO	· NA					Z (20.04)	3/15/200	
Pyrene	150J-850		3/13	2	NA					2,300,000	230,000	<u> </u>
Benzola anthracene	76J-510		3/13		NA				<u>C</u>	880	<u> </u>	<u> </u>
Chrisins	705-470		3/13	V	NA	_	_		<u>c</u>	88,000		_
Psis (2-otherhoxyl) dothala	le 48T-87	T :	9/13	QJ	NA	L	_	_	C	46,000	 	
Benzo (6) fluoranthene	84J- 360.	Γ ,	3/13	W		_	_	\square	C	880	1	—
Benjo (R) Hworashere	1201-510	230.48	2/13		NA	-	_	$\left \cdot \cdot \right $	<u>Ç</u>	8,800	}	W
Beneo(a) pyrene	1007-400	199.98	2/3		NA	-	_	$\left - \right $	7	88		$+$ Δ
Ideno (1,2,3 cd) accent	88J-310J		2/13	V_{\perp}	NA_				C	889		

(SEPA Region III RBC for pyrene used as a surrogate.

Pest PCRs: Hostallin toxide 2.3 Hostallin toxide 2.3 Hostallin toxide 2.3 Hostallin toxide 2.3 Hostallin toxide 2.3 Hold Ad-DDE 43-835 6/13 ND NA C 1.90 Endocultan II(1) 38NP37NT 2/13 ND NA C 1.90 4.4'-DDD 3.8NT-578T 7/13 ND NA C 1.90 4.4'-DDT 25-56T 3/13 ND NA C 1.90 Hold Hold DDT 1/25-56T 3/13 ND NA C 1.90 Hold Hold DDT 1/25-56T 3/13 ND NA C 1.90 Hold Hold DDT 1/25-56T 3/13 ND NA C 1.90 Hold DDT 1/25-56T 3/13 ND NA C 1.90 Hold DDT 1/25-56T 3/13 ND NA C 1.90 Hold DDT 1/25-56T 1/13 ND NA C 1.90 Hold DDT 1/25-56T 1/13 ND NA C 1.90 Hold DDT 1/25-56T 1/13 ND 1/25-56T 1/25 Hold DDT 1/25-56T 1/13 ND 1/2 1/25 Hold DDT 1/25-56T 1/13 ND 1/2 1/2 Hold DDT 1/25-56T 1/13 ND 1/2 1/2 Hold DDT 1/25-56T 1/13 ND 1/2 1/2 Hold DDT 1/25-56T 1/13 ND 1/2 1/2 Hold DDT 1/25-56T 1/13 ND 1/2 1/2 Hold DDT 1/25-56T 1/13 ND 1/2 1/2 Hold DDT 1/25-56T 1/13 ND 1/25 1/25 ND 1/25 No No No No No No No No No No No No No N			·	ITY	IENT	ROPOGENIC)RY		·				
Dibumpla Nanthrocene 45T-600 235577 2/13 NO NA 230 A banzaghyi) penylene 70T-2507 2/11.76 2/13 NO NA 230 A Pest PCR 5: Histoclific traxicle 3.3 1/13 NO NA C 70 A 4.4'-DDE 4.3-830 6/13 ND NA C 1/90 Endosulfau II (1) 38NF-39NT 2/13 ND NA C 1/90 Endosulfau II (1) 38NF-39NT 3/13 ND NA C 1/90 4.4'-DDD 58NT-590T 7/13 ND NA C 1/90 7.6-1260 (2) 52J 1/13 ND NA C 1/90 PCR-1260 (2) 52J 1/13 ND NA C 1/90 PCR-1260 (2) 52J 1/13 ND NA C 1/90 PCR-1260 (3) 52J 1/13 ND NA C 1/90 PCR-1260 (3) 52J 1/13 ND NA C 1/90 PCR-1260 (3) 52J 1/13 ND NA C 1/90 PCR-1260 (3) 52J 1/13 ND NA C 1/90 PCR-1260 (3) 52J 1/13 ND NA C 1/90 PCR-1260 (3) 52J 1/13 ND NA C 1/90 PCR-1260 (3) 52J 1/13 ND NA C 1/90 PCR-1260 (3) 52J 1/13 ND NA C 1/90 PCR-1260 (3) 52J 1/13 ND NA C 1/90 PCR-1260 (3) 52J 1/13 ND NA C 1/90 PCR-1260 (3) 52J 1/13 ND NA C 1/90 PCR-1260 (3) 52J 1/13 ND NA C 1/90 PCR-1260 (3) 52J 1/13 ND NA C 1/90 PCR-1260 (3) 52J 1/13 ND NA C 1/90 PCR-1260 (3) 52J 1/13 ND NA C 1/90 PCR-1260 (3) 1/11 ND NA C 1/90 PCR-1260 (3) 1/13 ND NA C 1/90 PCR-1260 (3) 1/13 ND NA C 1/90 PCR-1260 (3) 1/13 ND NA C 1/90 PCR-1260 (3) 1/13 ND NA C 1/90 PCR-1260 (3) 1/13 ND NA C 1/90 PCR-1260 (3) 1/13 ND NA C 1/90 PCR-1260 (3) 1/13 ND NA C 1/90 PCR-1260 (3) 1/13 ND NA C 1/90 PCR-1260 (3) 1/13 ND NA C 1/90 PCR-1260 (3)	ARAR	a	RBC	OXIC.	FILE	E	HSTC	BACKGROUND	RI.ANK	FREQUENCY		RANGE	CONTAMINANT
Benzidginj) peryler (b) 705-2505 211.76 2/13 MI NA 130,00 Pest PCR 5:		-				7		AA					
Pest PES	o l	20	230,000		H							サバーンジ	here da la i) revade de
Hestallic Excise 3.3 1/13 NO NA C 70 4.4'-DDE 4.3-837 6/13 NN NA C 1.90 Endocultar II 38NF39NT 2/13 ND NA C 1.70 4.4'-DDD 58NF39NT 7/13 ND NA C 1.70 4.4'-DDT 25-567 3/13 D.3 NA C 1.70 FCB-1260(3) 52J 1/13 ND C 83 Inorganics Ing/tg) Aluminum 676-5440 13/13 73.6 5,940,594 766 Barium 2.7-36,8 13/13 3 17.36 5,940,594 766 Calcium 79.3-360 13/13 3 17.36 5,940,748 NA Carmium (3) 2.3-8.6 11/13 (2.693) 3.4 Carmium (3) 2.3-8.6 11/13 (2.693) 3.4 Lead 2.1787 13/13 73.1 3,755.063 NA Lead 2.1787 13/13 73.1 3,755.063 NA Hagnesium 26.5-187 13/13 855 205.7571 NA Manganise 29-1637 11/148 13/13 855 205.7571 NA Manganise 29-1637 11/148 13/13 855 205.7571 NA Manganise 29-1637 11/148 13/13 855 205.7571 NA Manganise 29-1637 11/148 13/13 855 205.7571 NA Manganise 29-1637 11/148 13/13 855 205.7571 NA Manganise 29-1637 11/148 13/13 8497 344 Nickel 4.6-5-7 1/13 8140 199.61 NA Sodium 57.3-56,3 2-1/13 60,706 57.298 NA Thallium (6) 2.3 1.38 1/13 0.879			1		П					~ / · · · ·	6211119	101 200	Post DCZ =:
4.4'-DDE 4.3-835 6/13 NA NA C 1.90 Endosulfan II(1) 38NF39NT 2/13 ND NA (4-DD) 58NT-598T 7/13 ND NA (2.4-DD) (2.4-DD) 58NT-598T 7/13 ND NA (2.4-DD)	Y	N	70	C	П			NA	NO	1/13			
Endosulfan II (1) \$\$NJ-39NJ			1,900					NA	M	6/13		4.3-835	4.4'-DDE
4.4'-DDD 3.8NJ-590J 7/13 ND NA C 3.40 4.4'-DDT 25-56J 3/13 0.3 NA C 1,94 7°B-1260(2) 52J 1/13 ND C 83 Inorganics Img/tg) Aluminum 450-5040 13/13 73.6 5,940,594 765 Barium 2.7-36,3 13/13 2 17.36 Caleium 79.3-3460 13/13 2 17.36 Chromium (3) 2.3-8.6 11/13 16.69.3 Copper 2.5-55.6 9/13 16.1 7.2 Iron 509-1640 13/13 73.1 3,755.06.3 X MA Lear 2-1787 13/13 855 205.751 & NA Manganesium 28.5-187 13/13 855 205.751 & NA Manganese 29-1637 111.48 13/13 855 205.752 & NA Manganese 29-1637 111.48 13/13 855 205.752 & NA Manganese 29-1637 111.48 13/13 855 205.752 & NA Manganese 29-1637 111.48 13/13 855 205.752 & NA Manganese 29-1637 111.48 13/13 855 205.752 & NA Manganese 29-1637 111.48 13/13 855 205.752 & NA Manganese 29-1637 111.48 13/13 855 205.752 & NA Manganese 29-1637 111.48 13/13 855 205.752 & NA Manganese 29-1637 111.48 13/13 85 205.752 & NA Manganese 29-1637 111.48 13/13 85 205.752 & NA Manganese 2	47,000			-				NA		2/13	σ	3.8NJ-3.9N	
Troganics (mg/lg) Aluminum (56-5046 13/13 73.6 5,940,594 7566 Barium 2,7-36,3 13/13 3 17.36 5,50 (aluminum 79.3-3460 13/13 21,400 1,396.788 NA (hromium 3) 2,3-8,6 11/13 16,11 7.2 5,75 Tron 509-16,400 13/13 73.1 0,755.063 NA Lead 2-178,7 13/13 855 205,757 NA Manganese 29-1637 111.48 13/13 855 205,757 NA Nicle 46-5.7 2/13 3,13 18.497 36 Fotassium 285-76,7 2/13 3,140 199.61 NA Fotassium 51,3-56,3 2/13 60,766 57,298 NA Thallium 19 213 1/13 0.899			2,700	0		•			ND	7/13			4,4'-DDB
Inorganics (mg/kg) Aluminum (250-5040 13/13 73.6, 5,940,594 7460 Parium 2.7-36,3 13/13 3 17.36 550 (alum 79.3-360 13/13 21,400 1,396,788 × NA (hormium 3) 2.3-8.6 11/13 6.69.3 550 Paper 2.5-55.6 9/13 16.1 7.2 557 Itom 509-16,40 13/13 73.1 3,755.06.3 × NA Lead 2-1787 13/13 16.2 23,749 400 Manesium 28.5-187 13/13 855 205.751 × NA Manganese 29-16,37 111.48 13/13 855 205.751 × NA Nickel 4.6-5.7 2/13 3,434 1600 Fotassium 248* 1/13 2,410 199.61 × NA Thallium (3) 2.3 1.3 1/13 0.899	<u>} </u>	20} <u>\</u>	1,900	<u>C</u>			_	NA .				25-56J	4,4'-DDT
Aluminum 656-5040 13/13 73.6 51940,594 78.6 Barium 2.7-36.3 13/13 3 17.36 558 (alumn 79.3-360 13/13 21,400 1,396.788 NA NA Chromium (3) 2.3-8.6 11/13 6.69.3 31.0 17.2 17.0 509-16,40 13/13 73.1 3,755.00.3 NA HAD Lead 2-1727 13/13 10.1 7.2 13.749 400 Magnesium 28.5-187 13/13 855 205.751 NA NA Manganese 29-1637 111.48 13/13 855 205.751 NA NA NICLE 4.6-5.7 2/13 3.434 1600 Total and 13/13 2,410 199.61 X NA Totalium 51.3-56.3 2/13 60,706 59.298 X NA Thallium 51.3-56.3 1/13 0.899		斗	83\	_C		<u> </u>	_		ND	1713		52J	PCB-1260(2)
Aluminum 656-5040 13/13 73.6 51940,594 78.6 Barium 2.7-36.3 13/13 3 17.36 558 (alumn 79.3-360 13/13 21,400 1,396.788 NA NA Chromium (3) 2.3-8.6 11/13 6.69.3 31.0 17.2 17.0 509-16,40 13/13 73.1 3,755.00.3 NA HAD Lead 2-1727 13/13 10.1 7.2 13.749 400 Magnesium 28.5-187 13/13 855 205.751 NA NA Manganese 29-1637 111.48 13/13 855 205.751 NA NA NICLE 4.6-5.7 2/13 3.434 1600 Total and 13/13 2,410 199.61 X NA Totalium 51.3-56.3 2/13 60,706 59.298 X NA Thallium 51.3-56.3 1/13 0.899		ا(یو	malba)	(H	-						(malka)	TANGOLICE
Barium 2.7-36.3 13/13 3 17.36 550 (alrum 79.3-3460 13/13 2),400 1,396.788 X NA (hromium 3) 2.3-8.6 11/13 6.69.3 530 (opper 2.5-55.6 9/13 10,1 7.2 530 13/13 73.1 3,755.06.3 X HA Lead 2-1787 13/13 73.1 3,755.06.3 X HA Lead 2-1787 13/13 855 205.751 X NA Manganese 2.9-1637 111.48 13/13 855 205.751 X NA NICKEL 4.6-5.7 2/13 3.434 1500 78.50 10.1 78.6 59.298 X NA Sodium 51.3-56.3 2/13 60,766 59.298 X NA Thallium (5) 2.3 × 1.38 1/13 0.899	7.800	***	78 000					5,940,594	73.1.	13/13			
(alcium 79.3-3460 13/13 21,400 1,396.788 X MA (hromium 3) 2.3-8.6 11/13 6.69.3 -39.6 Corper 2.5-55.6 9/13 10.1 7.2 -39.6 Itom 509-16,400 13/13 73.1 3,755.06.3 X MA Lead 2-1727 13/13 855 205.751 X M Manganesium 28.5-187 13/13 855 205.751 X M Manganese 2.9-1637 111.48 13/13 855 205.751 X M Manganese 12.9-1637 111.48 13/13 3.434 1600 Foliam 57.3-56,3 2/13 60,706 59.298 X M Thallium 5 2.3 1.38 1/13 0.899			5,500						3	13/13			Berium
Corper 2.5-55.6 9/13 10.1 7.2 5.74 Lead 509-16,400 13/13 73.1 3,755.06.3 × 144 Lead 2-1727 13/13 10.2 23.749 400 Magnesium 28.5-187 13/13 855 205.751 × N.E. Manganese 2.9-1637 111.48 13/13 18.497 344 Nickel 4.6-5.7 2/13 3.434 160 Fotassium 51.3-56.3 2/13 60.706 59.298 × N.E. Thallium 52.3 1.38 1/13 0.899			MA		X						>	79.3-3460	Calcium
Tron 509-16,400 13/13 73.1 3,755.06.3 X HA Lead 2-1727 13/13 10.2 23,749 400 Magnesium 28.5-187 13/13 855 205.751 X NI Manganese 29-1637 111.48 13/13 18.497 348 Nickel 4.6-5.7 2/13 3,434 160 Foliasium 51,3-56,3 2/13 60,700 59.298 X NI Thallium 5 2,3 1.38 1/13 0.899			-390					6.693		11/13		23-8.6	Chromium (3)
Lear 2-1787 13/13 10.2 23,749 400 Magnesium 28.5-187 13/13 855 205,751 & M. Manganese 29-1637 111.48 13/13 18.497 334 Nickel 4.6-5.7 2/13 3.434 160 Fotassium 248* 1/13 21,410 199.61 X NA Sodium 51,3-56,3 2/13 60,706 59,298 X NA Thallium 10 2.3 1.38 1/13 0.899	290	<i>6</i> 0 v	E,900		_				16,1	9/13		2,5-55.6	Cosper
Lear 2-1787 13/13 10.2 23,749 400 Magnesium 28.5-187 13/13 855 205,751 & M. Manganese 29-1637 111.48 13/13 18.497 334 Nickel 4.6-5.7 2/13 3.434 160 Fotassium 248* 1/13 21,410 199.61 X NA Sodium 51,3-56,3 2/13 60,706 59,298 X NA Thallium 10 2.3 1.38 1/13 0.899	2300	3	/√/		N	L		3,755,063)	509-16,40	Iron
Magnesium 28.5-187 13/13 855 205.751 N. N. Manganese 2.9-163T v 111.48 13/13 18.497 394 Nickel 4.6-5.7 2/13 3.434 400 Fotassium 248* 1/13 2/13 60,700 59.298 N. Thallium 2.3 1/13 0.899 800			400 H				<u> </u>	23,749					
Manganese 29-1637 VIII.48 13/13 18.497 343 Nickel 4.6-5.7 2/13 3.434 160 Abtassium 248* 1/13 2,410 199.61 X NA Sodium 51,3-56,3 2/13 60,700 59.298 X NA Thallium 10 2,3 1.38 1/13 0.899	180	1	MA		8			205,751	855				Magnesium
Nickel 4.6-5.7 213 3,434 (60) Abtassium 248+ 1/13 2,410 199.61 X NA Sextium 51,3-56,3 2/13 60,706 59,298 X NA Thallium (3) 2,3 1.38 1/13 0.899			390			_	_				v 111.48		Manganese
Sexium 51.3-56,3 2/13 60,700 59.298 X NA Thallium (3) 2.3 1.38 1/13 0.899	160	Đ¥.	4600					1			•		Nickel
Thallium 13 2.3 1.38 1/13 0.899		+	NA		X	,	_						F8tassium
Thallium (5) 2.3 1.38 1/13 0.879	A/5	<u></u>	MA		M		_		60,700			57,3-56,3	Sodium
	0.63	7	AND THE			_	_				<u> </u>		Thalliamis
100 Q(100 V V)	55 L	_	550					11.628		in the second second second second second second second second second second second second second second second		24-12	Vanadium

(1) USEPA Region III RBC for endosulfan used as a surrogate.
(2) USEPA Legion III RBC for PCBS used as a surrogate.
(3) Chromiu evaluated as hexatolent state.
(4) Load in non Level for residential soil.

Substrace Soil (verised)

				·			NIC NIC				*	
				!	_		ANTHROPOGENIC	Ę				
	,	· Le ()	•	Coalis	RACKGROUND	HISTORY	HEO	NUTRIENT	FOXICITY			ွ
CONTAMINANT	RANGE	95% UCL	FREQUENCY	BLANK	BACKGROUND	HIS	W			RBC	ARAR	COPC
Volatiles:				,						140,000		
Acetone	(ug/kg) 75-380		13/19	93	ΑΛ				V	780,000)	igsqcup
Carbon Disuffice	25		1/19		ı					780,000)	
2-Butanone	25-29		3/19	サエ				\perp		4,700,00	<u> </u>	
Trichloroethene	25		1/19					\perp	<u>C</u>	<i>58,∞</i> ∞		
Toluene	2J 1J		1/19	4 7						1600,00	<u> </u>	<u> </u>
Hotal Xulenes	15-35		5/19	•						1.6 X10 =		<u> </u>
Semirolatiles:						<u></u>		_		<u> </u>		
Semirolatiles: Naphthalene	55 J		1/19					_	\	310,000	·	ļ.—
2-Methylnaphthalene Acenaphthene	605		1/19			┞		-		31900		-
Acenaphthene	945-975		2/19			—		\vdash	~~~	470,000		-
Fluorene	1 - 1 - 1 ((J	1/19			_		\vdash		310,000		+-
Dilment offers	42T		1/19			-		\vdash		31,00)	\vdash
Pherasothrene (2)	1505-120	2	2/19			┼-		\vdash		230,000		+-
Anthacene	Z90J		1/19			 	-	\vdash		2,300,08 32,000	>	+-
larba tole	1205		1/19			╄	-		<u>ت</u>	780,00		+-
Di-n-buty/phthalate	160J-340.		8/19	17		├-		\vdash		30,00		+-
Augranthène	230J-190		2/19	ļ	·	┼	-	╌┼		230,000		+
Direne	170J-140	0	2/19			├-	-	\vdash	0	880		TX
Benzdabuthracene	100J-960	~ 241.45	W 2/19		<u> </u>	╀	┢╾	$\left \cdot \cdot \right $	$\frac{\mathcal{L}}{\mathcal{L}}$	88,000		40
Chrysene	1101-800		2/19	 	 	╀	-		بر			+
BsQ-ethylhexylighthalate	37J-370		15/19	37	1,00	╀	┢		$\frac{\mathcal{C}}{h}$	46,000 \$80		+
Benzo Wyfuoranthere	96J-710	<u> </u>	2/19	ļ	1 14	╀	\vdash	H	<u>ي</u>	8,800		+-
Bento(K) Muoranthene	110J-620		2/19	 	· V	+	+	\vdash	/	88		X
Bento (a) swere	695-680	N 2 18.5	the 2/19				<u></u>		<u> </u>	1 80		

(1) USEPA Region III RBC for praphthaline used as a surrogate.
(2) USEPA Region III RBC for pyren used as a surrogate.

Subsurface Soil

HUSERA Region III NOC for convocane used as a surrogaic.

15 Chromium evaluated as hexavalent state.

(6) Lead Action Level for regidential Svil.

(7) 116FBA Region TH RBC for endosulfan used as a surrogate.

_	(7)	USEPA	Algion	UB ROC	jor send	W JULY JULY 1	<i>-</i>	<u> </u>		· Jun	70500	
	•				·		HISTORY	NT				
1	-4'4-DDT	9.6-40		4/19			STOR	A HE	X CII	1,700 RBC		COPC
Į	CONTAMINANT	RANGE	95% UCL	FREQUENCY	BLANK	BACKGROUND	围	4 E	5		ARAR	18
ſ	Idenal, 23-cd) pyrene	180J		1/19		M			C	<u>∕88∂</u>		
	Benzo(a hi) perviene(2	省75-360 万	•	2/19						250,00	<u> </u>	
	Pest/PCBs:	(ug/kg) 3.1NJ										
[Endosulfan It	3:105		1/19			$oxed{oxed}$			47,000		_
Į	4,4' - DDE	4.6-450	-	8/19					Ç	7900		
k	4,4'-DDD (3)	4.4 J-340T	-	8/19				_ _	<u>C</u>	2,700		
` [Endrin Aldehyde (3) Alpha Chlordane (3)	9,45		1/19			<u> </u>			2,300		
	Alpha Chlordane (3)	<u> ১.3</u> ፓ		1/19					C	490		
	_ gamma (Wardane"	35-7.55	•	3/19		V	$\sqcup \bot$	_	C	490		↓_
Ī	Lnorganics:	(mg/kg)	· /// • / · ·				\vdash			(mg/kg) 7,800		
	Aluminum		N 6197.2°		73.6	7375.302	-			7,800		长
ļ	Andinon	11.8	6.67	1/19		6.409	- -			3,/		X
ļ	Assenic	26-3.3	1.67	3/19		1.948			0	0.37		14
	Parium	27-58.3		14/19	3	14.204	$\vdash \vdash$	_	`	1530		-
1	Cadmium	1.3		2/19		0.712	\vdash		ļ	3.9		┼
Į	Cadmium Calcium Chromium (5)	49.8-1350		18/19	21,400	391.509	-	×	<u> </u>	AM		-
	(hromium	2.6-17.3		16/19		12.562	\vdash			139		┼
	Cobalt	11.5		1/19		1.504	-			470		₩
	Copper Iron	7.7 - 672		8/19	161	2.416	-		ļ	290	7 -00	仑
1	Iron	23/21-3/30	0	17/19	73,1	7252.076	\vdash	K	 	14.3(4)	2,300	₩
	Lead	1.6 -539	452.54	19/19	(6, 2-	8:327 260.718	-	1	ļ	4000		₩
	Magnesium Manganese Nickel	3.8-410	700 550	19/19	855	Mar. +18		义	<u> </u>	WA	1847	+
.	Manganese	2-471	278.07	19/19		7.919			<u> </u>		180	K
	Nickel	4.8-243 53-453	13.42	3/19		3.714	-		ļ	160		X
	totassium		·····	4/19	2410	347. 284	<u> </u>	ŢΧ	<u> </u>	NA		
	e - 13	508 -12A		+119	(A) 200	57.676		λì		Λ./ Δ		

Sodium Thallium Vanadium

Zinc Selevium

50.8 -130 4.2 1.5 3.1 -27.2

2.5-764

1.5

5/19 1/19 15/19

16/19

,/19

52.676 0.955

Grown Water

				. ,			•						
		RANGE	95% UCL	FREQUENCY	ug L BLANK	BACKGROUND	HISTORY ANTHROPOGENIC	NUTRIENT	roxicity	Tap H20 (µg)L) (RBC	ARAR	COPC	
•	CONTAMINANT	(49/G)	9376 UCL	TREQUERTED						,			1
	Methylene Chloride	1J-2J		6/11	16				C	4.1	277)		l
	Acetone	51-41 51		7/11	56			-		3480	370	X	l
	Carbon Disulfide	57	0 40	(/II 8 / II	150				C.	0.12		X Se	detected
	1,2-Dichlosethere 2-Butanone	11-11	3,78	3/11	10			十		1900	- 190		detected
	Semiyolatiles:	13 - 10		978									·
	Naphthalene	<i>3T</i>		(/11				<u> </u>		130	150	\vdash	Í
	Di-n-but u dothalate	2J-6J	IV -7 5 6	3/11	15 25 1	field blank)		-	0	3,700 4.8	370		idotected in
	bis(2-Ethylheid))dichalat	+ 11-61	7,25	5/11	d u (Tield black		\dagger		7.0		3/1	detected in
	Trorganics:	(Aq (L)								- 50	5 3.5		
	Atuminiam	40.3-424		7/11	73,6				<u> </u>	39000	3,700		
	Bariam	17.7-151		10/11	3		$\vdash\vdash$	K	<u> </u>	MA	260	-	
	Calcium (1) (VI)	7700-146.0	00	2/11	21/100			十		1880	18	- x	K
	Chromium (VE)	10-10.2 20.1.52A	<i>w</i>	4/11			11	1		2200	1220	W	ا ا
	Tron	41.9-6580		10/11.	731			X	<u> </u>		1,100	X	
reinclud	2 Lead	3.4	1.94	1/11_				1.) A /N	10 1X	N.	1
	Magnesium	1200-1620	2 70 20	11)11	855		┼┼	K	 	NA		\mathbf{V}	
_	Monganese	3-186	878.28		60,700		++	K		NA	V 70		
	Sedium .	5020-1600 11 -58,0		10/11	. 001100	i tu				11.000	1/00		
	S Nickel	53.1-59.	b	2/11						-730	43	1	
_	Potassiam	1200-794	ф	10/11	2,410			X	1	NA	<u> </u>		1

(1) Chronium exaluated as hexafalent state.

	<u> </u>					_					
•		UE			(1, not can)	ר ועו ו	- - -				
CONTAMINANT	RANGE	MAX 95% UCL	FREQUENCY	(ugl) BLANK	(upstream) Ave. BACKGROUND	HISTORY ANTHROF	NUTRIEN	RBC	NC WQS ARAR	COPC	ī
Volatiles:	(mg/L)			<u> </u>							1
Acetonie		-	1/2	562							
1,2 - Dichlorotthane	15-15	· · · · · · · · · · · · · · · · · · ·	2/2	115							
	 								ļ	<u> </u>	1
Lnorganics:	25, 400.		1/2	73.6 XXX	333.17	-				V	1
Huminum Barium	36.7-69.		3/2	3	25.67			 			ł
Calcium	12,000-2680		2/2	186	14,566.67	\vdash	$\frac{x}{x}$	 	<u> </u>	2	
Chromium	27.6		1/2	2,800	11,000.67		^ }	 	50	32	
Coaser	41.1	4	1/2	MANION				<u> </u>	50 7 X	W	de to to
Tron	348-7,892		2/2	73.1	575.67		X			文	44
Lead	45.8		1/2	612	,				1,000	X	386
Magnesium	2060-252	?	2/2	138 BOOK	1744.67		X				
Manganese	57.3-88.4	٢\	2/2							X	
Potassium	2970-		1/2	2,410			X				
Sodium	3330-632	0	2/2	X140 6	1700 9,830.00		X.I	<u> </u>		·	
Vanadium	26.2	· · · · · · · · · · · · · · · · · · ·	1/2						<u> </u>	X	
Zinc	33.6-44	· ·	21/2	31				ļ	50	X	
											•
	-						_	<u> </u>			ļ
						- -		<u> </u>			
	1				1,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		_	<u> </u>			.
					I N			 			
								 		-	
								l			

1)

, Sedimen)

	,				,	,	,				, .	•
						HISTORY ANTHROPOGENIC						
						뜅						1
j ·				1		7 8	Ę	_	resid.	• •		
]	L06		ugil		※ ※		TOXICITY	5011			
				101	(mean)	ES E	E	× ×			COPC	
CONTAMINANT	RANGE	95% UCL	FREQUENCY	BLANK	BACKGRÓUND	田石	퇸	<u>8 4</u>	RBC	ARAR	ŭ	į
Volatiles:	kg/6)				·		-				-	•
		-1 11811	10/1/2	CAN 12	(-1:14/-/)	- -			201 A 30	1190		1-4. d. d.)
Aretone	1907-490		1/4	180V	(distilled)		-		4200	10/2		3 detected in blank
2- Butanone	725-945		4/4	10/m			\vdash	4	700,000	5		3 in blank
Carbon Totrachloride	131-181	19,21	2/4				\vdash		4,900		数	
Totach broothers	GJ-15.7	47.58	2/4	, ,		,	\Box		2,000			
Toluene	37-77	458.95	3/4	25					00,00	0	*	
Semivolatiles:			,								N	
Di-p-but of detholate	9405-160	05 1987.6.	2 9/4	5				7	80,000			
Post/PCBs:01											areta .	
beta-BHC	8.3M		1/4		2,51				350			
4,4'- DDE.	185-1910		2/4		2.42				2,700			į.
4,4'-DDD		6.4E+7	2/4		1.57				1,900	<u>د</u>	A	
	mg/eg	J 1.35E+1	3 9/4	73.6			-		7,800	ms/kg	X	1
Artimony 3	46.6T	138.92	1/4	75:0			\vdash		3.1	mgi ug	V	
Barium	13.6-110			3					550	·····		
Calcium	322-46A		4/4	21400			X	-			724	
Chronium		J 302251.1		· · ·					39		X	
	36.3	805 37	114		·				470	5	N/A	Ì
Copper		3.67F.+7	.3/4	16.1					290			į
I/on /	44-14.60	2	4/4	73.1	l _{se}		X	e	2,300	•	,	X
	23.9-176	7.65E1	-3/4	6,2			\bigcup		700*		X	8
Magnisium	24.8-1146)	3/4	858								; •

^{*} Action level for soils.

- CTOBIZ, Site 65 Sediment

											
•		,		,			ANTHROPOGENIC		residi.		
CONTAMINANT	RANGE	95% UCL	FREQUENCY	BLANK	BACKGROUND	HISTORY	ANTHRO	TOXICITY	SON	ARAR	COPC
Manganese	25,6-126	754,5	4/4-		<i>i</i>		-		180	(mg/kg)	S
Potassium	410	· · · · · · · · · · · · · · · · · · ·	1/4 -	2410			_}	$\leq $			
Hangapese Pot assium Socium Yonadium	139-203		3/4	60,700			_	4			
Vanadium	40.5	42666.91 17.12Et 7	1/4	~					2,300	<u> </u>	S
Fine	7.9-280	1.12677	4/4	24		\vdash	-	-	12,300	`	8
							+		<u> </u>	 	-
						\vdash	-		<u> </u>		-
						┝╌┼	-	<u> </u>	<u> </u>		-
						Н	\dashv				┼
			·	<u> </u>			十		-		
		· · · · · · · · · · · · · · · · · · ·	<u> </u>				\dashv		<u> </u>		
							-+	_			
							\dashv		 		
							十	- 	 		
{ -							_				T
					•				1		
							_		1		
							\dashv				
						\Box					
						П					
					1 29						

CIO 31" DITE 65 Tish-fillet

						HISTORY	OPOGENIC	ĮN.	. *			
CONTAMINANT	RANGE	95% UCL	FREQUENCY	BLANK	BACKGROUND	HISTOR	ANTHR	NUTRIE	roxicity	Mg/kg RBC	ARAR	COPC
Volatiles:	(ug/kg)	(19/kg/ -26,445.7			<u> </u>							
Pesticide PCBs:	2007-79CO	-241445.7	1 2/4					_		4,000		—
Restricte (PCBs:	5.7丁	5.6 7	1/4			_		\dashv	1	V/3		+
#14 - DDD	3.7J). 67	47			_	\dashv		_ن_	V/3		+
Inorganics:	(mg/kg)	(ma/kg)						\dashv	\			
Huminum	0.99	(mg/kg)	1/4							140		
Rarium	0.215	14.15	V4				,			9.5		
Malcium:	\$\$5J-2100	T 25,241.39	4/4 2/4					*		NA		
Copper	0.46-0.49	4.28	2/4					1	·	· 5		
Magnesium	2907-299		4/4					X		NA		<u> </u>
Harquese.	1992J-04	552,92	4/4							-0.68	4 - 4	1
Meroury	0.05/J-0.3	N10.13	4/4		ļ						0.014	
Potassium	27025 - 357	at 3973.7	4/4			_		X	\	NA		┼
'Selenium	0.14-0.2	2 0.23	4/4				-	×		VO.68	 	
Sodium	441-869	1139.28	4/4			<u> </u>		~		NA	0 6	X
Thallium	5.8T-R.4	1 0.22	3/4 4/4							41	0.011	P
Zinc	p. w -8.43	- 10.12	4/7			-		$\vdash \mid$		~ 4 1		+
								\dashv		i		
		,		- <u></u>	·							\Box
					L st							
										·		

APPENDIX T CDI HUMAN HEALTH RISK SPREADSHEETS

Date: 10/95

EXAMPLE SOIL INGESTION CALCULATIONS SITE 65 - ENGINEER AREA DUMP CONTRACT TASK ORDER 0312

Purpose: Estimate intake/risk from ingestion of soil

Intake (mg/kg·day) =
$$\frac{C \times CF \times EF \times ED \times IR}{BW \times AT}$$

Where: C = Contaminant concentration in soil (mg/kg)

CF = Conversion factor (kg/mg)
EF = Exposure frequency (days/year)
ED = Exposure duration (years)
IR = Ingestion rate (mg/day)

BW = Body weight (kg)

 AT_c = Averaging time carcinogen (days) AT_{nc} = Averaging time noncarcinogen (days)

Risks:

Carcinogens = Intake (mg/kg·day) x CSF (mg/kg·day)⁻¹ Noncarcinogens = Intake (mg/kg·day)/RfD (mg/kg·day)

Example Carcinogen: Benzo(a)pyrene

Intake
$$(mg/kg \cdot day) = \frac{0.230 \ mg/kg \ x \ 100 \ mg/day \ x \ 350 \ days/yr \ x \ 24 \ yrs \ x \ 1.0E-6 \ kg/mg}{70 \ kg \ x \ 25,550 \ days}$$

$$= 1.1E-07$$

Risk = $1.1E-07 \text{ mg/kg}\cdot\text{day} \times 7.3 \text{ mg/kg}\cdot\text{day}^{-1} = 7.9E-07$

Example Noncarcinogen: Thallium

$$Intake (mg/kg \cdot day) = \frac{1.38 \ mg/kg \ x \ 100 \ mg/day \ x \ 350 \ days/yr \ x \ 24 \ yrs \ x \ 1.0E-6 \ kg/mg}{70 \ kg \ x \ 8,760 \ days}$$

$$= 1.9E-06$$

$$Risk = \frac{1.9E - 06 \ mg/kg \cdot day}{8.0E - 05 \ mg/kg \cdot day} = 2.4E - 02$$

^{*} This example calculation also is applicable for sediment ingestion.

SURFACE SOIL INGESTION EXPOSURE ASSESSMENT SITE 65 - ENGINEER AREA DUMP REMEDIAL INVESTIGATION CTO-0312 MCB CAMP LEJEUNE, NORTH CAROLINA FUTURE RESIDENTIAL ADULT

Intake from ingestion of soil is calculated as follows:

Intake (mg/kg-day) = C * CF * EF * ED * IR/BW * ATc or ATnc * DY

Where:	INPUTS
C = contaminant concentration in soil (mg/kg)	specific
CF = conversion for kg to mg	1E-06
EF = adult exposure frequency (days/yr)	350
ED = adult exposure duration (yr)	24
IR = adult soil ingestion rate (mg/day)	100
BW = adult body weight (kg)	70
ATc = averaging time for carcinogen (yr)	70
ATnc = averaging time for noncarcinogen (yr)	24
DY = days per year (days/year)	365
CSF = cancer slope factor (mg/kg-day)-1	specific
RfD = reference dose (mg/kg-day)	specific

COPC	Concentration	Exposure	Exposure	Conversion	Ingestion	Body	Average	Carc	Slope	Carcinogenic	Percent	Average	Noncarc	Reference	Noncarcinogenic	Percent
	(mg/kg)	Frequency	Duration	Factor	Rate	Weight	Carc Time	Dose	Factor	Risk	Carcinogenic	Noncarc Time	Dose	Dose	Risk	Noncarcinogenic
		(days/yr)	(yr)	(kg/mg)	(mg/day)	(kg)	(days)	(mg/kg/day)	(mg/kg/day)-1	Adult	Risk	(days)	(mg/kg/day)	(mg/kg/day)	Adult	Risk
		Adult	Adult		Adult	Adult		Adult			Adult		Adult			Adult
Benzo(a)pyrene	0.230	350	24	1E-06	100	70	25550	1.1E-07	7.3E+00	7.9E-07	61%	8760	3.2E-07	0.0E+00	0.0E+00	0%
Dibenzo(a,h)anthracene	0.150	350	24	1E-06	100	70	25550	7.0E-08	7.3E+00	5.1E-07	39%	8760	2.1E-07	0.0E+00	0.0E+00	0%
iron	7567.300	350	24	1E-06	100	70	25550	3.6E-03	0.0E+00	0.0E+00	0%	8760	1.0E-02	3.0E-01	3.5E-02	59%
Thallium	1.380	350	24	1E-06	100	70	25550	6.5E-07	0.0E+00	0.0E+00	0%	8760	1.9E-06	8.0E-05	2.4E-02	· 41%
TOTAL				A PART NEW PORCE STATE	Colored by mindred and		Services and the property of the party of th		THE PARTY OF THE P	1.3E-06	CANADAM NO CAMPAGE AND ACTION OF	THE PARTY OF THE P			5.8E-02	

SURFACE SOIL INGESTION EXPOSURE ASSESSMENT SITE 65 - ENGINEER AREA DUMP REMEDIAL INVESTIGATION CTO-0312 MCB CAMP LEJEUNE, NORTH CAROLINA FUTURE RESIDENTIAL CHILD

Intake from ingestion of soil is calculated as follows:

Intake (mg/kg-day) = C * CF * EF * ED * IR/BW * ATc or ATnc * DY

Vhere:	INPUTS
C = contaminant concentration in soil (mg/kg)	specific
CF = conversion for kg to mg	1E-06
EF = child exposure frequency (days/yr)	350
ED = child exposure duration (yr)	6
IR = child soil ingestion rate (mg/day)	200
BW = child body weight (kg)	15
ATc = averaging time for carcinogen (yr)	70
ATnc = averaging time for noncarcinogen (yr)	€
DY = days per year (days/year)	365
CSF = cancer slope factor (mg/kg-day)-1	specific
RfD = reference dose (mg/kg-day)	specific

COPC	Concentration	Exposure	Exposure	Conversion	Ingestion	Body	Average	Care	Slope	Carcinogenic	Percent	Average	Noncare	Reference	Noncarcinogenic	Percent
	(mg/kg)	Frequency	Duration	Factor	Rate	Weight	Carc Time	Dose	Factor	Risk	Carcinogenic			Dose		Noncarcinogenic
) i	(days/yr)	(yr)	(kg/mg)	(mg/day)	(kg)	(days)	(mg/kg/day)	(mg/kg/day)-1	Child	Risk	(days)	(mg/kg/day)	(mg/kg/day)	Child	Risk
	LI	Child	Child		_Child_	Child	1	Child			Child		Child			Child
Benzo(a)pyrene	0.230	350	6	1E-06	200	15	25550	2.5E-07	7.30E+00	1.8E-06	61%	2190	2.9E-06	0.00E+00	0.0E+00	0%
Dibenzo(a,h)anthracene		350	6	1E-06	200	15	25550	1.6E-07	7.30E+00	1.2E-06	39%	2190	1.9E-06	0.00E+00	0.0E+00	0%
Iron	7567.300	350	6	1E-06	200	15	25550	8.3E-03	0.00E+00	0.0E+00	0%	2190	9.7E-02	3.00E-01	3.2E-01	59%
Thallium	1.380	350	6	1E-06	200	15	25550	1.5E-06	0.00E+00	0.0E+00	0%	2190	1.8E-05	8.00E-05	2.2E-01	41%
TOTAL										3.0E-06					5.4E-01	

SURFACE SOIL INGESTION EXPOSURE ASSESSMENT - CT SITE 65 - ENGINEER AREA DUMP REMEDIAL INVESTIGATION CTO-0312 MCB CAMP LEJEUNE, NORTH CAROLINA FUTURE RESIDENTIAL CHILD

Intake from ingestion of soil is calculated as follows:

Intake (mg/kg-day) = C * CF * EF * ED * IR/BW * ATc or ATnc * DY

Where:	INPUT
C = contaminant concentration in soil (mg/kg)	specific
CF = conversion for kg to mg	1E-06
EF = child exposure frequency (days/yr)	234
ED = child exposure duration (yr)	
IR = child soil ingestion rate (mg/day)	10
BW = child body weight (kg)	1:
ATc = averaging time for carcinogen (yr)	7
ATnc = averaging time for noncarcinogen (yr)	
DY = days per year (days/year)	36
CSF = cancer slope factor (mg/kg-day)-1	specific
RfD = reference dose (mg/kg-day)	specific

COPC	Concentration	Exposure	Exposure	Conversion	Ingestion	Body	Average	Carc	Slope	Carcinogenic	Percent	Average	Noncarc	Reference	Noncarcinogenic	Percent
	(mg/kg)	Frequency	Duration	Factor	Rate	Weight	Carc Time	Dose	Factor	Risk	Carcinogenic	Noncarc Time	Dose	Dose	Risk	Noncarcinogenic
	1	(days/yr)	(yr)	(kg/mg)	(mg/day)	(kg)	(days)	(mg/kg/day)	(mg/kg/day)-1	Child	Risk	(days)	(mg/kg/day)	(mg/kg/day)	Child	Risk
		Çhild	Child		Child	Child		Child			Child		Child			Child
Benzo(a)pyrene	0.230	234	6	1E-06	100	15	25550	8.4E-08	7.30E+00	6.2E-07	61%	2190	9.9E-07	0.00E+00	0.0E+00	. 0%
Dibenzo(a,h)anthracene	0.150	234	6	1E-06	100	15	25550	5.5E-08	7.30E+00	4.0E-07	39%	2190	6.4E-07	0.00E+00	0.0E+00	0%
Iron	7567.300	234	6	1E-06	100	15	25550	2.8E-03	0.00E+00	0.0E+00	0%	2190	3.2E-02	3.00E-01	1.1E-01	59%
Thallium	1.380	234	6	1E-06	100	15	25550	5.1E-07	0.00E+00	0.0E+00	0%	2190	5.9E-06	8.00E-05	7.4E-02	41%
TOTAL										1.0E-06					1.8E-01	

SURFACE SOIL INGESTION EXPOSURE ASSESSMENT SITE 65 - ENGINEER AREA DUMP REMEDIAL INVESTIGATION CTO-0312 MCB CAMP LEJEUNE, NORTH CAROLINA CURRENT MILITARY PERSONNEL - TRAINEE

Intake from Ingestion of soil is calculated as follows:

intake (mg/kg-day) = C * CF * EF * ED * IR/BW * ATc or ATnc * DY

Where:	INPUT
C = contaminant concentration in soil (mg/kg)	specific
CF = conversion for kg to mg	1E-0
EF = adult exposure frequency (days/yr)	26
ED = adult exposure duration (yr)	
IR = adult soil ingestion rate (mg/day)	10
BW = adult body weight (kg)	7
ATc = averaging time for carcinogen (yr)	7
ATnc = averaging time for noncarcinogen (yr)	
DY = days per year (days/year)	36
CSF = cancer slope factor (mg/kg-day)-1	specific
RfD = reference dose (mg/kg-day)	specific

COPC	Concentration	Exposure	Exposure	Conversion	Ingestion	Body	Average	Carc	Slope	Carcinogenic	Percent	Average	Noncarc	Reference	Noncarcinogenic	Percent
		Frequency	Duration	Factor	Rate	Weight	Carc Time	Dose	Factor	Risk	Carcinogenic	Noncarc Time	Dose	Dose	Risk	Noncarcinogenic
i	(mg/kg)	(days/yr)	(ут)	(kg/mg)	(mg/day)	(kg)	(days)	(mg/kg/day)	(mg/kg/day)-1	Adult	Risk	(days)	(mg/kg/day)	(mg/kg/day)	Adult	Risk
		Adult	Adult		Adult	Adult		Adult			Adult		Adult			Adult
Benzo(a)pyrene	0.230	260	4	1E-06	100	70	25550	1.3E-08	7.3E+00	9.8E-08	61%	1460	2.3E-07	0.0E+00	0.0E+00	0%
Dibenzo(a,h)anthracene	0.150	260	4	1E-06	100	70	25550	8.7E-09	7.3E+00	6.4E-08	39%	1460	1.5E-07	0.0E+00	0.0E+00	0%
Iron	7567.300	260	4	1E-06	100	70	25550	4.4E-04	0.0E+00	0.0E+00	0%	1460	7.7E-03	3,0E-01	2.6E-02	59%
Thallium	1,380	260	4	1E-06	100	70	25550	8.0E-08	0.0E+00	0.0E+00	0%	1460	1.4E-06	8.0E-05	1.8E-02	41%
TOTAL										1.6E-07	***************************************				4.3E-02	

SUBSURFACE SOIL INGESTION EXPOSURE ASSESSMENT SITE 65 - ENGINEER AREA DUMP REMEDIAL INVESTIGATION CTO-0312 MCB CAMP LEJEUNE, NORTH CAROLINA CURRENT MILITARY PERSONNEL - TRAINEE

intake from ingestion of soil is calculated as follows:

Intake (mg/kg-day) = C * CF * EF * ED * IR/BW * ATc or ATnc * DY

Where:	INPUTS
C = contaminant concentration in soil (mg/kg)	specific
CF ≈ conversion for kg to mg	1E-06
EF ≈ adult exposure frequency (days/yr)	260
ED = adult exposure duration (yr)	4
IR = adult soil ingestion rate (mg/day)	100
BW = adult body weight (kg)	70
ATc = averaging time for carcinogen (yr)	70
ATnc = averaging time for noncarcinogen (yr)	4
DY ≈ days per year (days/year)	365
CSF = cancer slope factor (mg/kg-day)-1	specific
RfD = reference dose (mg/kg-day)	specific

COPC	Concentration	Exposure	Exposure	Conversion	Ingestion	Body	Average	Carc	Slope	Carcinogenic	Percent	Average	Noncarc	Reference	Noncarcinogenic	Percent
		Frequency	Duration	Factor	Rate	Weight	Carc Time	Dose	Factor	Risk	Carcinogenic	Noncarc Time	Dose	Dose	Risk	Noncarcinogenic
•	(mg/kg)	(days/yr)	(yr)	(kg/mg)	(mg/day)	(kg)	(days)	(mg/kg/day)	(mg/kg/day)-1	Adult	Risk	(days)	(mg/kg/day)	(mg/kg/day)	Adult	Risk
		Adult	Adult		Adult	Adult		Adult			Adult		Adult			Adult
Benzo(a)anthracene	0.262	260	4	1E-06	100	70	25550	1.5E-08	7,3E-01	1.1E-08	4%	1460	2.7E-07	0.0E+00	0.0E+00	0%
Benzo(a)pyrene	0.249	260	4	1E-06	100	70	25550	1.4E-08	7.3E+00	1.1E-07	37%	1460	2.5E-07	0.0E+00	0.0E+00	0%
Aluminum	6197.290	260	4	1E-06	100	70	25550	3.6E-04	0.0E+00	0.0E+00	0%	1460	6.3E-03	1.0E+00	6.3E-03	5%
Antimony	6.670	260	4	1E-06	100	70	25550	3.9E-07	0.0E+00	0.0E+00	0%	1460	6.8E-06	4.0E-04	1.7E-02	13%
Arsenic	1.670	260	4	1E-06	100	70	25550	9.7E-08	1.8E+00	1.7E-07	59%	1460	1.7E-06	3.0E-04	5.7E-03	4%
Copper	672.000	260	4	1E-06	100	70	25550	3.9E-05	0.0E+00	0.0E+00	0%	1460	6.8E-04	3.7E-02	1.8E-02	14%
Iron	14060.350	260	4	1E-06	100	70	25550	8.2E-04	0.0E+00	0.0E+00	0%	1460	1.4E-02	3.0E-01	4.8E-02	38%
Lead	452.540	260	4	1E-06	100	70	25550	2.6E-05	0.0E+00	0.0E+00	0%	1460	4.6E-04	0.0E+00	0.0E+00	0%
Manganese (soil)	278.090	260	4	1E-06	100	70	25550	1.6E-05	0.0E+00	0.0E+00	0%	1460	2.8E-04	2.3E-02	1.2E-02	10%
Nickel	13.720	260	4	1E-06	100	70	25550	8.0E-07	0.0E+00	0.0E+00	0%	1460	1.4E-05	2.0E-02	7.0E-04	1%
Thallium	1.500	260	4	1E-06	100	70	25550	8.7E-08	0.0E+00	0.0E+00	0%	1460	1.5E-06	8.0E-05	1.9E-02	15%
TOTAL				<u> </u>						2.9E-07	250.404.			T	1.3E-01	1

SURFACE SOIL INGESTION EXPOSURE ASSESSMENT SITE 65 - ENGINEER AREA DUMP REMEDIAL INVESTIGATION CTO-0312 MCB CAMP LEJEUNE, NORTH CAROLINA CURRENT MILITARY PERSONNEL - RECREATIONAL USER

Intake from ingestion of soil is calculated as follows:

Intake (mg/kg-day) = C * CF * EF * ED * IR/BW * ATc or ATnc * DY

Where:	INPUTS
C = contaminant concentration in soil (mg/kg)	
CF = conversion for kg to mg	1E-06
EF = adult exposure frequency (days/yr)	260
ED = adult exposure duration (yr)	4
IR = adult soil ingestion rate (mg/day)	100
BW = adult body weight (kg)	70
ATc = averaging time for carcinogen (yr)	70
ATnc = averaging time for noncarcinogen (yr)	4
DY = days per year (days/year)	365
CSF = cancer slope factor (mg/kg-day)-1	specific
RfD ≃ reference dose (mg/kg-day)	specific

COPC	Concentration	Exposure	Exposure	Conversion	Ingestion	Body	Average	Carc	Slope	Carcinogenic	Percent	Average	Noncarc	Reference	Noncarcinogenic	Percent
1	(mg/kg)	Frequency	Duration	Factor	Rate	Weight	Carc Time	Dose	Factor	Risk	Carcinogenic	Noncarc Time	Dose	Dose	Risk	Noncarcinogenic
		(days/yr)	(yr)	(kg/mg)	(mg/day)	(kg)	(days)	(mg/kg/day)	(mg/kg/day)-1	Adult	Risk	(days)	(mg/kg/day)	(mg/kg/day)	Adult	Risk
		Adult	Adult		Adult	Adult		Adult			Adult	_	Adult			Adult
Benzo(a)pyrene	0.23	260	4	1E-06	100	70	25550	1.3E-08	7.3E+00	9.8E-08	61%	1460	2.3E-07	0.0E+00	0.0E+00	0%
Dibenzo(a,h)anthracene	0.15	260	4	1E-06	100	70	25550	8.7E-09	7.3E+00	6.4E-08	39%	1460	1.5E-07	0.0E+00	0.0E+00	0%
lron	7567.30	260	4	1E-06	100	70	25550	4.4E-04	0.0E+00	0.0E+00	0%	1460	7.7E-03	3.0E-01	2.6E-02	59%
Thallium	1.38	260	4	1E-06	100	70	25550	8.0E-08	0.0E+00	0.0E+00	0%	1460	1.4E-06	8.0E-05	1.8E-02	. 41%
TOTAL										1.6E-07					4.3E-02	

SUBSURFACE SOIL INGESTION EXPOSURE ASSESSMENT SITE 65 - ENGINEER AREA DUMP REMEDIAL INVESTIGATION CTO-0312 MCB CAMP LEJEUNE, NORTH CAROLINA FUTURE CONSTRUCTION WORKER

Intake from ingestion of soil is calculated as follows:

Intake (mg/kg-day) = C * CF * EF * ED * IR/BW * ATc or ATnc * DY

vnere:	INPUIS
C = contaminant concentration in soil (mg/kg)	
CF = conversion for kg to mg	1E-06
EF = adult exposure frequency (days/yτ)	90
ED = adult exposure duration (yr)	1
iR = adult soil ingestion rate (mg/day)	480
BW = adult body weight (kg)	70
ATc = averaging time for carcinogen (yr)	70
ATnc = averaging time for noncarcinogen (yr)	1
DY = days per year (days/year)	365
CSF = cancer slope factor (mg/kg-day)-1	specific
RfD = reference dose (mg/kg-day)	specific

COPC	Concentration Carcinogen (mg/kg)	Exposure Frequency (days/yr) Adult	Exposure Duration (yr) Adult	Conversion Factor (kg/mg)	Ingestion Rate (mg/day) Adult	Body Weight (kg) Adult	Average Carc Time (days)	Carc Dose (mg/kg/day) Adult	Slope Factor (mg/kg/day)-1	Carcinogenic Risk Adult	Percent Carcinogenic Risk Adult	Average Noncarc Time (days)	Noncare Dose (mg/kg/day) Adult	Reference Dose (mg/kg/day)	Noncarcinogenic Risk Adult	Percent Noncarcînogenic Risk Adult
Benzo(a)anthracene	0.262	90	1	1E-06	480	70	25550	6.3E-09	7.3E-01	4.6E-09	4%	365	4.4E-07	0.0E+00	0.0E+00	0%
Benzo(a)pyrene	0.249	90	l i	1E-06	480	70	25550	6.0E-09	7.3E+00	4.4E-08	37%	365	4.2E-07	0.0E+00	0.0E+00	0%
Aluminum	6197.290	90	1	1E-06	480	70	25550	1.5E-04	0.0E+00	0.0E+00	0%	365	1.0E-02	1.0E+00	1.0E-02	5%
Antimony	6.670	90	1	1E-06	480	70	25550	1.6E-07	0.0E+00	0.0E+00	0%	365	1.1E-05	4.0E-04	2.8E-02	13%
Arsenic	1.670	90	1 1	1E-06	480	70	25550	4.0E-08	1.8E+00	7.1E-08	59%	365	2.8E-06	3.0E-04	9.4E-03	4%
Copper	672.000	90	1	1E-06	480	70	25550	1.6E-05	0.0E+00	0.0E+00	0%	365	1.1E-03	3.7E-02	3.1E-02	14%
Iron	14060.350	90	1	1E-06	480	70	25550	3.4E-04	0.0E+00	0.0E+00	0%	365	2.4E-02	3.0E-01	7.9E-02	38%
Lead	452.540	90	1	1E-06	480	70	25550	1.1E-05	0.0E+00	0.0E+00	0%	365	7.7E-04	0.0E+00	0.0E+00	0%
Manganese (soil)	278.090	90	1	1E-06	480	70	25550	6.7E-06	0.0E+00	0.0E+00	0%	365	4.7E-04	2.3E-02	2.0E-02	10%
Nickel	13.720	90	1	1E-06	480	70	25550	3.3E-07	0.0E+00	0.0E+00	0%	365	2.3E-05	2.0E-02	1.2E-03	1%
Thallium	1.500	90	1	1E-06	480	70	25550	3.6E-08	0.0E+00	0.0E+00	0%	365	2.5E-06	8.0E-05	3.2E-02	15%
TOTAL									*********	1.2E-07					2.1E-01	

SEDIMENT INGESTION EXPOSURE ASSESSMENT SITE 65 - ENGINEER AREA DUMP REMEDIAL INVESTIGATION CTO-0312 MGB CAMP LEJEULE, NORTH CAROLINA FUTURE RESIDENTIAL ADULT

Intake from ingestion of sediment is calculated as follows:

Intake (mg/kg-day) = C * IR * CF * EF * ED/ BW * ATC or ATnc * DY

where:	INPUTS
C = contaminant concentration in sediment (mg/kg)	Specific
CF = conversion for kg to mg	1E-06
EF = exposure frequency (days/yr)	48
ED = exposure duration (yr)	30
iR = soil ingestion rate (mg/day)	100
BW = body weight (kg)	70
ATc = averaging time for carcinogen (yr)	70
ATnc = averaging time for noncarcinogen (yr)	30
DY = days per year (days/year)	365
CSF = cancer slope factor (mg/kg-day)-1	Specific
RfD = reference dose (mg/kg-day)	Specific

COPC	Concentration (mg/kg)	Exposure Frequency (days/yr)	Exposure Duration (yr)	Ingestion Rate (mg/day)	Conversion Factor (kg/mg)	Body Weight (kg)	Average Carc Time (days)	Carc Dose (mg/kg/day)	Slope Factor (mg/kg/day)-1	Carcinogenic Risk	Percent Carcinogenic Risk	Average Noncarc Time (days)	Noncarc Dose (mg/kg/day)	Reference Dose (mg/kg/day)	Noncarcinogenic Risk	Percent Noncarcinogenic Risk
Aluminum	37000.000	48	30	100	1E-06	70	25550	3.0E-03	0.0E+00	0.0E+00	0%	10950	7.0E-03	1.0E+00	7.0E-03	18%
Antimony	46.600	48	30	100	1E-06	70	25550	3.8E-06	0.0E+00	0.0E+00	0%	10950	8.8E-06	4.0E-04	2.2E-02	58%
Chromium	43.600	48	30	100	1E-06	70	25550	3.5E-06	0.0E+00	0.0E+00	0%	10950	8.2E-06	1.0E+00	8.2E-06	0%
iron	14600.000	48	30	100	1E-06	70	25550	1.2E-03	0.0E+00	0.0E+00	0%	10950	2.7E-03	3.0E-01	9.1E-03	24%
TOTAL						311 5 ×27				0.0E+00					3.8E-02	

SEDIMENT INGESTION EXPOSURE ASSESSMENT SITE 65 - ENGINEER AREA DUMP REMEDIAL INVESTIGATION CTO-0312 MCB CAMP LEJEUNE, NORTH CAROLINA FUTURE RESIDENTIAL CHILD

Intake from ingestion of sediment is calculated as follows:

Intake (mg/kg-day) = C * IR * CF * EF * ED/ BW * ATC or ATnc * DY

√here:	INPUT
C = contaminant concentration in sediment (mg/kg)	Specifi
CF = conversion for kg to mg	1E-0
EF = exposure frequency for child (days/yr)	4
ED = exposure duration for child (yr)	
IR = soil ingestion rate for child (mg/day)	20
BW = body weight for child (kg)	1
ATc = averaging time for carcinogen (yr)	7
ATric = averaging time for noncarcinogen (yr)	
DY = days per year (days/year)	36
CSF = cancer slope factor (mg/kg-day)-1	Specif.
RfD = reference dose (mg/kg-day)	Specifi

COPC	Concentration (mg/kg)	Exposure Frequency (days/yr) Child	Exposure Duration (yr) Child	Ingestion Rate (mg/day) Child	Conversion Factor (kg/mg)	Body Weight (kg) Child	Average Carc Time (days)	Carc Dose (mg/kg/day) Child	Slope Factor (mg/kg/day)-1	Carcinogenic Risk Child	Percent Carcinogenic Risk Child	Average Noncarc Time (days)	Noncarc Dose (mg/kg/day) Child	Reference Dose (mg/kg/day)	Noncarcinogenic Risk Child	Percent Noncarcinogenic Risk Child
Aluminum	37000.000	48	6	200	1E-06	15	25550	5.6E-03	0.0E+00	0.0E+00	0%	2190	6.5E-02	1.0E+00	6.5E-02	18%
Antimony	46.600	48	6	200	1E-06	15	25550	7.0E-06	0.0E+00	0.0E+00	0%	2190	8.2E-05	4.0E-04	2.0E-01	58%
Chromium	43.600	48	6	200	1E-06	15	25550	6.6E-06	0.0E+00	0.0E+00	0%	2190	7.6E-05	1.0E+00	7.6E-05	0%
Iron	14600.000	48	6	200	1E-06	15	25550	2.2E-03	0.0E+00	0.0E+00	0%	2190	2.6E-02	3.0E-01	8.5E-02	24%
TOTAL										0.0E+00					3.5E-01	

SEDIMENT INGESTION EXPOSURE ASSESSMENT - CT SITE 65 - ENGINEER AREA DUMP REMEDIAL INVESTIGATION CTO-0312 MCB CAMP LEJEUNE, NORTH CAROLINA FUTURE RESIDENTIAL CHILD

Intake from ingestion of sediment is calculated as follows:

Intake (mg/kg-day) = C * IR * CF * EF * ED/ BW * ATC or ATnc * DY

Risk = Intake * CSF or /RfD

Where:	INPUTS
C = contaminant concentration in sediment (mg/kg)	Specific
CF = conversion for kg to mg	1E-0
EF = exposure frequency for child (days/yr)	48
ED = exposure duration for child (yr)	
IR = soil ingestion rate for child (mg/day)	100
BW = body weight for child (kg)	15
ATc = averaging time for carcinogen (yr)	70
ATnc = averaging time for noncarcinogen (yr)	
DY = days per year (days/year)	365
CSF = cancer slope factor (mg/kg-day)-1	Specific
RfD = reference dose (mg/kg-day)	Specific

COPC	Concentration	Exposure	Exposure	Ingestion	Conversion	Body	Average	Cara	Sione	Corelna conta I						THE RESERVE OF THE PARTY OF THE
				-				Carc	alohe	Carcinogenic	Percent	Average	Noncarc	Reference	Noncarcinogenic	Percent
	(mg/kg)	Frequency	Duration	Rate	Factor	Weight	Carc Time	Dose	Factor	Risk	Carcinogenic	Noncarc Time	Dose	Dose	Risk	Noncarcinogenic
		(days/yr)	(yr)	(mg/day)	(kg/mg)	(kg)	(days)	(mg/kg/day)	(mg/kg/day)-1	Child	Risk	(days)	(mg/kg/day)	(mg/kg/day)	Child	Risk
		Child	Child	Child		Child		Child	, , , , , , , , , , , , , , , , , , , ,		Child	(,,,	Child	(Child
Aluminum	12846.000	48	6	100	1E-06	15	25550	9.7E-04	0.0E+00	0.0E+00	0%	2190	1.1E-02	1.0E+00	1.1E-02	14%
Antimony	24.790	48	6	100	1E-06	15	25550	1.9E-06	0.0E+00	0.0E+00	0%	2190	2.2E-05	4.0E-04	5.4E-02	68%
Chromium	14.880	48	6	100	1E-06	15	25550	1.1E-06	0.0E+00	0.0E+00	0%	2190	1.3E-05	1.0E+00	1.3E-05	0%
iron	4812.250	48	6	100	1E-06	15	25550	3.6E-04	0.0E+00	0.0E+00	0%	2190	4.2E-03	3.0E-01	1.4E-02	18%
TOTAL			*****	·			harani.			0.0E+00			7,62,03	3.00-01	8.0E-02	1370

)

SEDIMENT INGESTION EXPOSURE ASSESSMENT SITE 65 - ENGINEER AREA DUMP REMEDIAL INVESTIGATION CTO-0312 MCB CAMP LEJEUNE, NORTH CAROLINA FISHERMAN - ADULT RECEPTOR

Intake from Ingestion of sediment is calculated as follows:

Intake (mg/kg-day) = C * IR * CF * EF * ED/ BW * ATC or ATnc * DY

Where:	INPUTS
C = contaminant concentration in sediment (mg/kg)	
CF = conversion for kg to mg	1E-0
EF = exposure frequency (days/yr)	4
ED = exposure duration (yr)	30
IR = soil ingestion rate (mg/day)	104
BW = body weight (kg)	7
ATc = averaging time for carcinogen (yr)	70
ATnc = averaging time for noncarcinogen (yr)	30
DY = days per year (days/year)	369
CSF = cancer slope factor (mg/kg-day)-1	Specifi
RfD ≃ reference dose (mg/kg-day)	Specifi

COPC	Concentration (mg/kg)	Exposure Frequency (days/yr)	Exposure Duration (yr)	ingestion Rate (mg/day)	Conversion Factor (kg/mg)	Body Weight (kg)	Average Carc Time (days)	Carc Dose (mg/kg/day)	Slope Factor (mg/kg/day)-1	Carcinogenic Risk	Percent Carcinogenic Risk	Average Noncarc Time (days)	Noncarc Dose (mg/kg/day)	Reference Dose (mg/kg/day)	Noncarcinogenic Risk	Percent Noncarcinogenic Risk
Aluminum	37000.000	48	30	100	1E-06	70	25550	3.0E+03	0.00E+00	0.0E+00	0%	10950	7.0E-03	1.00E+00	7.0E-03	18%
Antimony	46.600	48	30	100	1E-06	70	25550	3.8E-06	0.00E+00	0.0E+00	0%	10950	8.8E-06	4.00E-04	2.2E-02	58%
Chromium	43.600	48	30	100	1E-06	70	25550	3.5E-06	0.00E+00	0.0E+00	0%	10950	8.2E-06	1.00E+00	8.2E-06	0%
iron	14600.000	48	30	100	1E-06	70	25550	1.2E-03	0.00E+00	0.0E+00	0%	10950	2.7E-03	3.00E-01	9.1E-03	24%
TOTAL										0.0E+00		A STATE OF THE PARTY OF THE PAR			3.8E-02	

SEDIMENT INGESTION EXPOSURE ASSESSMENT SITE 65 - ENGINEER AREA DUMP REMEDIAL INVESTIGATION CTO-0312 MCB CAMP LEJEUNE, NORTH CAROLINA FISHERMAN - CHILD RECEPTOR

Intake from ingestion of sediment is calculated as follows:

Intake (mg/kg-day) = C * IR * CF * EF * ED/ BW * ATC or ATnc * DY

Risk = Intake * CSF or /RfD

Where:	INPUTS
C = contaminant concentration in sediment (mg/kg)	Specific
CF = conversion for kg to mg	1E-06
EF = exposure frequency for child (days/yr)	48
ED = exposure duration for child (yr)	6
IR = soil ingestion rate for child (mg/day)	200
BW = body weight for child (kg)	15
ATc = averaging time for carcinogen (yr)	70
ATnc = averaging time for noncarcinogen (yr)	6
DY = days per year (days/year)	365
CSF = cancer slope factor (mg/kg-day)-1	Specific
RfD = reference dose (mg/kg-day)	Specific

COPC	Concentration	Exposure	Exposure	Ingestion	Conversion	Body	Average	Carc	Slope	Carcinogenic	Percent	Average	Noncarc	Reference	Noncarcinogenic	Percent
	(mg/kg)	Frequency	Duration	Rate	Factor	Weight	Carc Time	Dose	Factor	Risk	Carcinogenic	Noncarc Time	Dose	Dose	Risk	Noncarcinogenic
	l	(days/yr)	(yī)	(mg/day)	(kg/mg)	(kg)	(days)	(mg/kg/day)	(mg/kg/day)-1	Child	Risk	(days)	(mg/kg/day)	(mg/kg/day)	Child	Risk
		Child	Child	Child		Child	1.	Child			Child	' '	Child			Child
Aluminum	37000.000	48	6	200	1E-06	15	25550	5.6E-03	0.0E+00	0.0E+00	0%	2190	6.5E-02	1.0E+00	6.5E-02	18%
Antimony	46.600	48	6	200	1E-06	15	25550	7.0E-06	0.0E+00	0.0E+00	0%	2190	8.2E-05	4.0E-04	2.0E-01	58%
Chromium	43.600	48	6	200	1E-06	15	25550	6.6E-06	0.0E+00	0.0E+00	0%	2190	7.6E-05	1.0E+00	7.6E-05	0%
iron	14600.000	48	6	200	1E-06	15	25550	2.2E-03	0.0E+00	0.0E+00	0%	2190	2.6E-02	3.0E-01	8.5E-02	24%
TOTAL							•			0.0E+00					3.5E-01	-1/0

06-Nov-9

EXAMPLE DERMAL CONTACT WITH SOIL CALCULATIONS SITE 65 - ENGINEER AREA DUMP CONTRACT TASK ORDER 0312

Purpose: Estimate intake/risk from dermal contact with soil

Intake (mg/kg·day) =
$$\frac{C \times CF \times SA \times AF \times Abs \times EF \times ED}{BW \times AT}$$

Where:	C	=	Contaminant concentration in soil (mg/kg)
	CF	=	Conversion factor (kg/mg)
	SA	==	Surface available for contact (cm²/event)
	AF	=	Soil to skin adherence factor (mg/cm²)
	Abs	=	Fraction absorbed (percent)
	EF	=	Exposure frequency (days/year)
	ED	=	Exposure duration (years)
	IR	=	Ingestion rate (mg/day)
	BW	=	Body weight (kg)
	AT_{c}	=	Averaging time carcinogen (days)
	AT_{nc}	=	Averaging time noncarcinogen (days)

Risks:

Carcinogens = Intake (mg/kg·day) x CSF (mg/kg·day)⁻¹ Noncarcinogens = Intake (mg/kg·day)/RfD (mg/kg·day)

Example Carcinogen: Benzo(a)pyrene

Intake
$$(mg/kg \cdot day) = \frac{0.23 \ mg/kg \ x \ 1.0E - 06 \ kg/mg \ x \ 5,800 \ cm^2/event \ x \ 1\% \ x \ 1 \ mg/cm^2 \ x \ 350 \ event/yr \ x \ 24 \ yrs}{70 \ kg \ x \ 25,550 \ days}$$

$$= 6.3E-08$$

Risk = $6.3E-08 \text{ mg/kg} \cdot \text{day} \times 1.5E-01 \text{ mg/kg} \cdot \text{day}^{-1} = 9.2E-07$

Example Noncarcinogen: Thallium

Intake (mg/kg·day) =
$$\frac{1.38 \text{ mg/kg x } 1.0E-06 \text{ kg/mg x } 5,800 \text{ cm}^2/\text{event x } 1 \text{ mg/cm}^2 \text{ x } 0.1\% \text{ x } 350 \text{ event/yr x } 24 \text{ yrs}}{70 \text{ kg x } 8,760 \text{ days}}$$

$$= 1.1E-07$$

$$Risk = \frac{1.1E - 07 \ mg/kg \cdot day}{1.6E - 05 \ mg/kg \cdot day} = 1.0E - 02$$

Re: Site 65 Future Residential Adult

^{*} This example calculation also is applicable for sediment dermal contact.

SURFACE SOIL DERMAL CONTACT EXPOSURE ASSESSMENT SITE 65 - ENGINEER AREA DUMP REMEDIAL INVESTIGATION CTO-0312 MCB CAMP LEJEUNE, NORTH CAROLINA FUTURE RESIDENTIAL ADULT

Dermal contact with soil is calculated as follows:

Intake (mg/kg-day) = C * CF * SA * AF * Abs * EF * ED/(BW * ATc or ATnc * DY)

Where:	INPUTS
C = contaminant concentration in soil (mg/kg)	Specific
CF = conversion factor (kg/mg)	1E-06
SA = adult exposed skin surface area (cm2)	5800
AF = soil to skin adherence factor (mg/cm2)	1
Abs = fraction absorbed (unitless)	Specific
EF = adult exposure frequency (events/yr)	350
ED = adult exposure duration (years)	24
BW = adult body weight (kg)	70
ATc = averaging time for carcinogen (yr)	70
ATnc = averaging time for noncarcinogen (yr)	24
DY = day per year (day/yr)	365
CSF = cancer slope factor (mg/kg-day)-1	specific
RfD = reference dose (mg/kg-day)	specific

COPC	Concentration	Conversion	Surface	Adherence	Fraction	Exposure	Exposure	Body	Average	Carc	Dermal Adjust.	Carcinogenic	Percent	Average	Noncarc	Dermal Adjust.	Noncarcinogenic	Percent
l	(mg/kg)	Factor	Area	Factor	Absorbed	Frequency	Duration	Weight	Carc Time	Dose	Slope	Risk	Carcinogenic	Noncarc Time	Dose	Reference	Risk	Noncarcinogenic
		(kg/mg)	(cm2)	(mg/cm2)	(%)	(events/yr)	(yrs)	(kg)	(days)	(mg/kg/day)	Factor	Adult	Risk	(days)	(mg/kg/day)	Dose	Adult	Risk
***************************************			Adult			Adult	Aduk	Adult		Adult	(mg/kg-day)-1		Adult		Adult	(mg/kg-day)		Adult
Benzo(a)pyrene	0.230	1E-06	5800	1	0.01	350	24	70	25550	6.3E-08	1.5E+01	9.2E-07	61%	8760	1.8E-07	0.0E+00	0.0E+00	0%
Dibenzo(a,h)anthracene	0.150	1E-06	5800	1 1	0.01	350	24	70	25550	4.1E-08	1.5E+01	6.0E-07	39%	8760	1.2E-07	0.0E+00	0.0E+00	0%
Iron	7567.300	1E-06	5800	1	0.001	350	24	70	25550	2.1E-04	0.0E+00	0.0E+00	0%	8760	6.0E-04	6.0E-02	1.0E-02	59%
Thallium	1.380	1E-06	5800	1	0.001	350	24	70	25550	3.8E-08	0.0E+00	0.0E+00	0%	8760	1.1E-07	1.6E-05	6.9E-03	41%
TOTAL										* W. A. 39 (COLUMN	N. VIII.	1.5E-06					1.7E-02	

SURFACE SOIL DERMAL CONTACT EXPOSURE ASSESSMENT SITE 65 - ENGINEER AREA DUMP REMEDIAL INVESTIGATION CTO-0312 MCB CAMP LEJEUNE, NORTH CAROLINA FUTURE RESIDENTIAL CHILD

Dermal contact with soil is calculated as follows:

Intake (mg/kg-day) = C * CF * SA * AF * Abs * EF * ED/BW * ATc or ATnc * DY

Where:	INPUTS
C = contaminant concentration in soil (mg/kg)	specific
CF = conversion factor (kg/mg)	1E-06
SA = child exposed skin surface area (cm2)	2300
AF = soil to skin adherence factor (mg/cm2)	
Abs = fraction absorbed (unitless)	specific
EF = child exposure frequency (events/yr)	350
ED = child exposure duration (years)	
BW = child body weight (kg)	16
ATc = averaging time for carcinogen (yr)	70
ATnc = averaging time for noncarcinogen (yr)	
DY = day per year (day/yr)	365
CSF = cancer slope factor (mg/kg-day)-1	specific
RfD = reference dose (mg/kg-day)	specific

COPC	Concentration	Conversion	Surface		Fraction		Exposure	Body	Average	Carc	Dermal Adjust.		Percent	Average	Noncarc	Dermal Adjust.	Noncarcinogeni	Percent
	(mg/kg)	Factor	Area			Frequency	Duration	Weight	Carc Time	Dose	Slope		Carcinogenic	Noncarc Time	Dose	Reference	Risk	Noncarcinoge
		(kg/mg)	(cm2) Child	(mg/cm2)	(%)	(events/yr)	(yrs)	(kg)	(days)	(mg/kg/day)		Child	Risk	(days)	(mg/kg/day)	Dose	Child	Risk
5				ļ	ļ	Child	Child	Child		Child	(mg/kg-day)-1		Child		Child	(mg/kg-day)		Child
Benzo(a)pyrene	0.230	1E-06	2300	1	0.01	350	6	15	25550	2.9E-08	1.5E+01	4.2E-07	61%	2190	3.4E-07	0.0E+00	0.0E+00	0%
Dibenzo(a,h)anthracene	0.150	1E-06	2300	1	0.01	350	6	15	25550	1.9E-08	1.5E+01	2.8E-07	39%	2190	2.2E-07	0.0E+00	0.0E+00	0%
ron	7567.300	1E-06	2300	1	0.001	350	6	15	25550	9.5E-05	0.0E+00	0.0E+00	0%	2190	1.1E-03	6.0E-02	1.9E-02	59%
Thallium	1.380	1E-06	2300	1	0.001	350	6	15	25550	1.7E-08	0.0E+00	0.0E+00	0%	2190	2.0E-07	1.6E-05	1.3E-02	41%
TOTAL												7.0E-07		2100	2.00-01	1.02-00	3.1E-02	4170

SURFACE SOIL DERMAL CONTACT EXPOSURE ASSESSMENT - CT SITE 65 - ENGINEER AREA DUMP REMEDIAL INVESTIGATION CTO-0312 MCB CAMP LEJEUNE, NORTH CAROLINA FUTURE RESIDENTIAL CHILD

Dermal contact with soil is calculated as follows:

Intake (mg/kg-day) = C * CF * SA * AF * Abs * EF * ED/BW * ATc or ATnc * DY

Where:	INPUT
C = contaminant concentration in soil (mg/kg)	specific
CF = conversion factor (kg/mg)	1E-06
SA = child exposed skin surface area (cm2)	1745
AF = soil to skin adherence factor (mg/cm2)	0.3
Abs = fraction absorbed (unitless)	specific
EF = child exposure frequency (events/yr)	234
ED = child exposure duration (years)	
BW = child body weight (kg)	1:
ATc = averaging time for carcinogen (yr)	7
ATnc = averaging time for noncarcinogen (yr)	
DY = day per year (day/yr)	36
CSF = cancer slope factor (mg/kg-day)-1	specific
RfD = reference dose (mg/kg-day)	specific

COPC	Concentration (mg/kg)	Conversion Factor	Surface Area	Adherence Factor	Fraction Absorbed	Exposure Frequency	Exposure Duration	Body Weight	Average Carc Time	Carc Dose	Dermal Adjust. Slope	Carcinogenic Risk	Percent Carcinogenic	Average Noncarc Time	Noncarc Dose	Dermal Adjust, Reference	Noncarcinogenic Risk	Percent Noncarcinogenic
	((kg/mg)	(cm2) Child	(mg/cm2)	(%)	(events/yr) Child	(yrs) Child	(kg) Child	(days)	(mg/kg/day) Child	Factor (mg/kg-day)-1	Child	Risk Child	(days)	(mg/kg/day) Child	Dose (mg/kg-day)	Child	Risk Child
Benzo(a)pyrene	0.230	1E-06	1745	0.2	0.01	234	6	15	25550	2.9E-09	1.5E+01	4.3E-08 2.8E-08	61% 39%	2190 2190	3,4E-08 2,2E-08	0.0E+00 0.0E+00	0.0E+00 0.0E+00	0% 0%
Dibenzo(a,h)anthracene Iron	0.150 7567.300	1E-06 1E-06	1745 1745	0.2	0.01 0.001	234 234	6	15 15	25550 25550	1.9E-09 9.7E-06	1.5E+01 0.0E+00	0.0E+00	0%	2190	1.1E-04	6.0E-02	1.9E-03	59%
Thallium TOTAL	1.380	1E-06	1745	0.2	0.001	234	6	15	25550	1.8E-09	0.0E+00	0.0E+00 7.1E-08	0%	2190	2.1E-08	1.6E-05	1.3E-03 3.2E-03	41%

SURFACE SOIL DERMAL CONTACT EXPOSURE ASSESSMENT SITE 65 - ENGINEER AREA DUMP REMEDIAL INVESTIGATION CTO-0312 MCB CAMP LEJEUNE, NORTH CAROLINA CURRENT MILITARY PERSONNEL - TRAINEE

Dermal contact with soil is calculated as follows:

Intake (mg/kg-day) = C * CF * SA * AF * Abs * EF * ED/BW * ATc or ATnc * DY

Risk = Intake * CSF or /RfD

Vhere:	INPUTS
C = contaminant concentration in soil (mg/kg)	specific
CF = conversion factor (kg/mg)	1E-06
SA = adult exposed skin surface area (cm2)	4300
AF = soil to skin adherence factor (mg/cm2)	1
Abs = fraction absorbed (unitless)	specific
EF = adult exposure frequency (events/yr)	260
ED = adult exposure duration (years)	4
BW = adult body weight (kg)	70
ATc = averaging time for carcinogen (yr)	70
ATnc = averaging time for noncarcinogen (yr)	4
DY = day per year (day/yr)	365
CSF = cancer slope factor (mg/kg-day)-1	specific
RfD = reference dose (mg/kg-day)	specific

Note: Inputs are scenario and site specific

COPC	Concentration		Surface	Adherence	Fraction	Exposur	Exposure	Body	Average	Carc	Dermal Adjust.	Carcinogenic	Percent	Average	Noncarc	Dermal Adjust.	Noncarcinogenic	Percent
		Factor	Area	Factor	Absorbed	Frequen	Duration	Weight	Carc Time	Dose	Slope	Risk	Carcinogeni	Noncarc Time	Dose	Reference	Risk	Noncarcinogenic
	(mg/kg)	(kg/mg)	(cm2)	(mg/cm2)	(%)	(events/y	(yrs)	(kg)	(days)	(mg/kg/day)	Factor	Adult	Risk	(days)	(mg/kg/day)	Dose	Adult	Risk
			Adult	<u> </u>		Adult	Adult	Adult		Adult	(mg/kg-day)-1		Adult		Adult	(mg/kg-day)		Adult
Benzo(a)pyrene	0.230	1E-06	4300	1	0.01	260	4	70	25550	5.8E-09	1.46E+01	8.4E-08	61%	1460	1.0E-07	0.00E+00	0.0E+00	0%
Dibenzo(a.h)anthracene	0.150	1E-06	4300	1	0.01	260	4	70	25550	3.8E-09	1.46E+01	5.5E-08	39%	1460	6.6E-08	0.00E+00	0.0E+00	0%
Iron	7567.300	1E-06	4300	1	0.001	260	4	70	25550	1.9E-05	0.00E+00	0.0E+00	0%	1460	3.3E-04	6.00E-02	5.5E-03	59%
Thallium	1.380	1E-06	4300	1	0.001	260	4	70	25550	3.5E-09	0.00E+00	0.0E+00	0%	1460	6.0E-08	1.60E-05	3.8E-03	41%
TOTAL										****		1.4E-07					9.3E-03	

SUBSURFACE SOIL DERMAL CONTACT EXPOSURE ASSESSMENT SITE 65 - ENGINEER AREA DUMP REMEDIAL INVESTIGATION CTO-0312 MCB CAMP LEJEUNE, NORTH CAROLINA CURRENT MILITARY PERSONNEL - TRAINEE

Dermal contact with soil is calculated as follows:

Intake (mg/kg-day) = C * CF * SA * AF * Abs * EF * ED/BW * ATc or ATnc * DY

Risk = Intake * CSF or /RfD

Where:	INPUTS
C = contaminant concentration in soil (mg/kg)	specific
CF = conversion factor (kg/mg)	1E-06
SA = adult exposed skin surface area (cm2)	4300
AF = soil to skin adherence factor (mg/cm2)	1
Abs = fraction absorbed (unitless)	specific
EF = adult exposure frequency (events/yr)	260
ED = adult exposure duration (years)	. 4
BW = adult body weight (kg)	70
ATc = averaging time for carcinogen (yr)	70
ATnc = averaging time for noncarcinogen (yr)	4
DY = day per year (day/yr)	365
CSF = cancer slope factor (mg/kg-day)-1	specific
RfD = reference dose (mg/kg-day)	specific

Note: Inputs are scenario and site specific

COPC	Concentration (mg/kg)	Conversion Factor (kg/mg)	Surface Area (cm2) Adult	Adherence Factor (mg/cm2)	Fraction Absorbed (%)	Exposure Frequency (events/yr) Adult	Exposure Duration (yrs) Adult	Body Weight (kg) Adult	Average Carc Time (days)	Carc Dose (mg/kg/day) Adult	Dermal Adjust Slope Factor (mg/kg-day)-1	Carcinogenic Risk Adult	Percent Carcinogenic Risk Adult	Average Noncarc Tim (days)	Noncarc Dose (mg/kg/day) Adult	Dermal Adjust. Reference Dose (mg/kg-day)	Noncarcino Risk Adult	Percent Noncarcinogenic Risk Adult
Benzo(a)anthracene	0.262	1E-06	4300	1	0.01	260	4	70	25550	6.5E-09	1.46E+00	9.6E-09	7%	1460	1.1E-07	0.00E+00	0.0E+00	0%
Benzo(a)pyrene	0.249	1E-06	4300	1	0.01	260	4	70	25550	6.2E-09	1.46E+01	9.1E-08	66%	1460	1.1E-07	0.00E+00	0.0E+00	0%
Aluminum	6197.290	1E-06	4300	1	0.001	260	4	70	25550	1.5E-05	0.00E+00	0.0E+00	0%	1460	2.7E-04	2.00E-01	1.4E-03	5%
Antimony	6.670	1E-06	4300	1	0.001	260	4	70	25550	1.7E-08	0.00E+00	0.0E+00	0%	1460	2.9E-07	8.00E-05	3.6E-03	13%
Arsenic	1.670	1E-06	4300	1	0.001	260	4	70	25550	4.2E-09	8.75E+00	3.7E-08	27%	1460	7.3E-08	6.00E-05	1.2E-03	4%
Copper	672.000	1E-06	4300	1	0.001	260	4	70	25550	1.7E-06	0.00E+00	0.0E+00	0%	1460	2.9E-05	7.42E-03	4.0E-03	14%
Iron	14060.350	1E-06	4300	1	0.001	260	4	70	25550	3.5E-05	0.00E+00	0.0E+00	0%	1460	6.2E-04	6.00E-02	1.0E-02	38%
Lead	452.540	1E-06	4300	1	0.001	260	4	70	25550	1.1E-06	0.00E+00	0.0E+00	0%	1460	2.0E-05	0.00E+00	0.0E+00	0%
Manganese (soil)	278.090	1E-06	4300	1	0.001	260	4	70	25550	7.0E-07	0.00E+00	0.0E+00	0%	1460	1.2E-05	4.60E-03	2.6E-03	10%
Nickel	13.720	1E-06	4300	1	0.001	260	4	70	25550	3.4E-08	0.00E+00	0.0E+00	0%	1460	6.0E-07	4.00E-03	1.5E-04	1%
Thallium	1.500	1E-06	4300	1	0.001	260	4	70	25550	3.8E-09	0.00E+00	0.0E+00	0%	1460	6.6E-08	1.60E-05	4.1E-03	15%
TOTAL												1.4E-07					2.7E-02	

SURFACE SOIL DERMAL CONTACT EXPOSURE ASSESSMENT SITE 65 - ENGINEER AREA DUMP REMEDIAL INVESTIGATION CTO-0312 MCB CAMP LEJEUNE, NORTH CAROLINA CURRENT MILITARY PERSONNEL - RECREATIONAL USER

Dermal contact with soil is calculated as follows:

Intake (mg/kg-day) = C * CF * SA * AF * Abs * EF * ED/BW * ATc or ATnc * DY

Where:	INPUTS
C = contaminant concentration in soil (mg/kg)	specific
CF = conversion factor (kg/mg)	1E-06
SA = adult exposed skin surface area (cm2)	5800
AF = soil to skin adherence factor (mg/cm2)	1
Abs = fraction absorbed (unitless)	specific
EF = adult exposure frequency (events/yr)	260
ED = adult exposure duration (years)	4
BW = adult body weight (kg)	70
ATc = averaging time for carcinogen (yr)	70
ATnc = averaging time for noncarcinogen (yr)	4
DY = day per year (day/yr)	365
CSF = cancer slope factor (mg/kg-day)-1	specific
RfD = reference dose (mg/kg-day)	specific

COPC	Concentration	Conversion	Surface	Adherence	Fraction	Exposure	Exposure	Body	Average	Carc	Dermal Adjust.	Carcinogenic	Percent	Average	Noncarc	Dermal Adjust.	Noncarcinogenic	Percent
	(mg/kg)	Factor	Area	Factor	Absorbed	Frequency	Duration	Weight	Carc Time	Dose	Slope	Risk	Carcinogenic		Dose	Reference	Risk	Noncarcinogenic
	1	(kg/mg)	(cm2)	(mg/cm2)	(%)	(events/yr)	(yrs)	(kg)	(days)	(mg/kg/day)	Factor	Adult	Risk	(days)	(mg/kg/day)	Dose	Adult	Risk
			Adult			Adult	Adult	Adult		Adult	(mg/kg-day)-1		Adult		Adult	(mg/kg-day)		Adult
Benzo(a)pyrene	0.23	1E-06	5800	1	0.01	260	4	70	25550	7.8E-09	1.5E+01	1.1E-07	61%	1460	1.4E-07	0.0E+00	0.0E+00	0%
Dibenzo(a,h)anthracene	0.15	1E-06	5800	1 1	0.01	260	4	70	25550	5.1E-09	1.5E+01	7.4E-08	39%	1460	8.9E-08	0.0E+00	0.0E+00	0%
Iron	7567.30	1E-06	5800	1	0.001	260	4	70	25550	2.6E-05	0.0E+00	0.0E+00	0%	1460	4.5E-04	6.0E-02	7.4E-03	59%
Thallium	1.38	1E-06	5800	11	0.001	260	4	70	25550	4.7E-09	0.0E+00	0.0E+00	0%	1460	8.1E-08	1.6E-05	5.1E-03	41%
TOTAL												1.9E-07					1.3E-02	

SUBSURFACE SOIL DERMAL CONTACT EXPOSURE ASSESSMENT SITE 65 - ENGINEER AREA DUMP REMEDIAL INVESTIGATION OTO-0312 MCB CAMP LEJEUNE, NORTH CAROLINA FUTURE CONSTRUCTION WORKER

Dermal contact with soil is calculated as follows:

Intake (mg/kg-day) = C *CF *SA *AF *Abs *EF *ED/BW *ATc or ATnc *DY

Mere:	INPUTS
C = contaminant concentration in soil (mg/kg)	
CF = conversion factor (kg/mg)	1E-06
SA = adult exposed skin surface area (cm2)	4300
AF = soil to skin adherence factor (mg/cm2)	1
Abs = fraction absorbed (unitless)	Specific
EF = adult exposure frequency (events/yr)	90
ED = adult exposure duration (years)	1
BW = adult body weight (kg)	70
ATc = averaging time for carcinogen (yr)	70
ATnc = averaging time for noncarcinogen (yr)	1
DY = day per year (day/yr)	365
CSF = cancer slope factor (mg/kg-day)-1	specific
RfD = reference dose (mg/kg-day)	specific

COPC	Concentration Carcinogen (mg/kg)	Conversion Factor (kg/mg)	Surface Area (cm2) Adult	Adherence Factor (mg/cm2)	Fraction Absorbed (%)	Exposure Frequency (events/yr) Adult	Exposure Duration (yrs) Adult	Body Weight (kg) Adult	Average Carc Time (days)	Carc Dose (mg/kg/day) Adult	Dermal Adjust. Slope Factor (mg/kg-day)-1	Carcinogenic Risk Adult	Percent Carcinogenic Risk Adult	(days)	Noncarc Dose (mg/kg/day) Adult	Dermally-Adjusted Reference Dose (mg/kg-day)	Noncarcinogenic Risk Adult	Noncarcinogenic Risk Adult
Benzo(a)anthracene	0.262	1E-06	4300	1	0.01	90	1	70	25550	5.7E-10	1.5E+00	8.3E-10	7%	365	4.0E-08	0.0E+00	0.0E+00	0%
Вепло(а)рутеле	0.249	1E-06	4300	1	0.01	90	1	70	25550	5.4E-10	1.5E+01	7.9E-09	66%	365	3.8E-08	0.0E+00	0.0E+00	0%
Aluminum	6197.290	1E-06	4300	1	0.001	90	1	70	25550	1.3E-06	0.0E+00	0.0E+00	0%	365	9.4E-05	2.0E-01	4.7E-04	5%
Antimony	6.670	1E-06	4300	1	0.001	90	1	70	25550	1.4E-09	0.0E+00	0.0E+00	0%	365	1.0E-07	8.0E-05	1.3E-03	13%
Arsenic	1.670	1E-06	4300	1	0.001	90	1	70	25550	3.6E-10	8.8E+00	3.2E-09	27%	365	2.5E-08	6.0E-05	4.2E-04	4%
Copper	672.000	1E-06	4300	1	0.001	90	1	70	25550	1,5E-07	0.0E+00	0.0E+00	0%	365	1.0E-05	7.4E-03	1.4E-03	14%
Iron	14060,350	1E-06	4300	1	0.001	90	1 1	70	25550	3.0E-06	0.0E+00	0.0E+00	0%	365	2.1E-04	6.0E-02	3.5E-03	38%
Lead	452.540	1E-06	4300	1	0.001	90	1	70	25550	9.8E-08	0.0E+00	0.0E+00	0%	365	6.9E-06	0.0E+00	0.0E+00	0%
Manganese (soil)	278.090	1E-06	4300	1	0.001	90	1 1	70	25550	6.0E-08	0.0E+00	0.0E+00	0%	365	4.2E-06	4.6E-03	9.2E-04	10%
Nickel	13.720	1E-06	4300	1	0.001	90	1 1	70	25550	3.0E-09	0.0E+00	0.0E+00	0%	365	2.1E-07	4.0E-03	5.2E-05	1%
Thallium	1.500	1E-06	4300	1	0.001	90	1	70	25550	3.2E-10	0.0E+00	0.0E+00	0%	365	2.3E-08	1.6E-05	1.4E-03	15%
TOTAL					dans. came. rec	R. O. ORGONIAN INC.	****					1.2E-08					9.5E-03	

SEDIMENT DERMAL CONTACT EXPOSURE ASSESSMENT SITE 65 - ENGINEER AREA DUMP REMEDIAL INVESTIGATION CTO-0312 MCB CAMP LEJEUNE, NORTH CAROLINA FUTURE RESIDENTIAL ADULT

The intake from dermal contact to sediment is calculated as follows:

Intake (mg/kg-day) = C * CF * SA * AF * Abs * EF * ED/BW * ATc or ATnc * DY

Where:	INPUT
C = contaminant concentration in sediment (mg/kg)	Specifi
CF = conversion factor (kg/mg)	1.00E-0
SA = exposed skin surface area (cm2)	830
AF = sediment to skin adherence factor (mg/cm2)	
Abs = fraction absorbed (unitless) (contaminant specific)	Specifi
EF = exposure frequency (events/yr)	. 4
ED = exposure duration (years)	3
BW = body weight (kg)	7
ATc = averaging time for carcinogen (yr)	7
ATnc = averaging time for noncarcinogen (yr)	3
DY = day per year (day/yr)	36
CSF = cancer slope factor (mg/kg-day)-1	Specifi
RfD = reference dose (mg/kg-day)	Specifi

COPC	Concentration (mg/kg)	Conversion Factor (kg/mg)	Surface Area (cm2)	Adherence Factor (mg/cm2)	ABS Factor (%)	Exposure Frequency (events/yr)	Exposure Duration (yrs)	Body Weight (kg)	Average Carc Time (days)	Carc Dose (mg/kg/day)	Dermal Adjust. Slope Factor (mg/kg-day)-1	Carcinogenic Risk	Percent Carcinogenic Risk	Average Noncarc Time (days)	Noncarc Dose (mg/kg/day)	Dermal Adjust. Reference Dose (mg/kg-day)	Noncarcinogenic Risk	Percent Noncarcinogenic Risk
Aluminum	37000.000	1E-06	8300	1	0.001	48	30	70	25550	2.5E-04	0.0E+00	0.0E+00	. 0%	10950	5.8E-04	2.0E-01	2.9E-03	18%
Antimony	46,600	1E-06	8300	1 1	0,001	48	30	70	25550	3.1E-07	0.0E+00	0.0E+00	0%	10950	7.3E-07	8.0E-05	9.1E-03	58%
Chromium	43,600	1E-06	8300	1 1	0.001	48	30	70	25550	2.9E-07	0.0E+00	0.0E+00	0%	10950	6.8E-07	2.0E-01	3.4E-06	0%
Iron	14600.000	1E-06	8300	1 1	0.001	48	30	70	25550	9.8E-05	0.0E+00	0.0E+00	0%	10950	2.3E-04	6.0E-02	3.8E-03	24%
TOTAL												0.0E+00					1.6E-02	

SEDIMENT DERMAL CONTACT EXPOSURE ASSESSMENT SITE 65 - ENGINEER AREA DUMP REMEDIAL INVESTIGATION CTO-0312 MCB CAMP LEJEUNE, NORTH CAROLINA FUTURE RESIDENTIAL CHILD

The intake from dermal contact to sediment is calculated as follows:

intake (mg/kg-day) = C * CF * SA * AF * Abs * EF * ED/BW * ATc or ATnc * DY

Where:	INPUTS
C = contaminant concentration in soil (mg/kg)	Specific
CF = conversion factor (kg/mg)	1.00E-06
SA = child exposed skin surface area (cm2)	2100
AF = sediment to skin adherence factor (mg/cm2)	1
Abs = fraction absorbed (unitless) (contaminant specific)	Specific
EF = child exposure frequency (events/yr)	48
ED = child expsosure duration (years)	6
BW = child body weight (kg)	15
ATc = averaging time for carcinogen (yr)	70
ATnc = averaging time for noncarcinogen (yr)	6
DY = day per year (day/yr)	365
CSF = cancer slope factor (mg/kg-day)-1	Specific
RfD = reference dose (mg/kg-day)	Specific

COPC	Concentration	Conversion	Surface	Adherence	ABS	Exposure	Exposure	Body	Average	Carc	Dermal Adjust.	Carcinogenic	Percent	Average	Noncarc	Dermal Adjust.	Noncarcinogenic	Percent
	Carcinogen	Factor	Агеа	Factor	Factor	Frequency	Duration	Weight	Carc Time	Dose	Slope	Risk	Carcinogenic	Noncarc Time	Dose	Reference	Risk	Noncarcinogenic
	(mg/kg)	(kg/mg)	(cm2)	(mg/cm2)	(%)	(events/yr)	(yrs)	(kg)	(days)	(mg/kg/day)	Factor	Child	Risk	(days)	(mg/kg/day)	Dose	Child	Risk
			Child			Child	Child	Child	l	Child	(mg/kg-day)-1		Child	1	Child	(mg/kg-day)		Child
Aluminum	37000.000	1E-06	2100	1	0.001	48	6	15	25550	5.8E-05	0.0E+00	0.0E+00	0%	2190	6.8E-04	2.0E-01	3.4E-03	18%
Antimony	46.600	1E-06	2100	1 1	0.001	48	6	15	25550	7.4E-08	0.0E+00	0.0E+00	0%	2190	8.6E-07	8.0E-05	1.1E-02	58%
Chromium	43,600	1E-06	2100	1 1	0.001	48	6	15	25550	6.9E-08	0.0E+00	0.0E+00	0%	2190	8.0E-07	2.0E-01	4.0E-06	0%
Iron	14600,000	1E-06	2100	1 1	0.001	48	6	15	25550	2.3E-05	0.0E+00	0.0E+00	0%	2190	2.7E-04	6.0E-02	4.5E-03	24%
TOTAL	description in the land to the			·						.,,		0.0E+00					1.9E-02	

SEDIMENT DERMAL CONTACT EXPOSURE ASSESSMENT - CT SITE 85 - ENGINEER AREA DUMP REMEDIAL INVESTIGATION CTO-0312 MGB CAMP LEJEUNE, NORTH CAROLINA FUTURE RESIDENTIAL CHILD

The intake from dermal contact to sediment is calculated as follows:

Intake (mg/kg-day) = C * CF * SA * AF * Abs * EF * ED/BW * ATc or ATnc * DY

Where:	INPUTS
C = contaminant concentration in soil (mg/kg)	Specific
CF = conversion factor (kg/mg)	1.00E-06
SA = child exposed skin surface area (cm2)	1745
AF = sediment to skin adherence factor (mg/cm2)	0.2
Abs = fraction absorbed (unitless) (contaminant specific)	Specific
EF = child exposure frequency (events/yr)	48
ED = child expsosure duration (years)	6
BW = child body weight (kg)	15
ATc = averaging time for carcinogen (yr)	70
ATnc = averaging time for noncarcinogen (yr)	6
DY = day per year (day/yr)	365
CSF = cancer slope factor (mg/kg-day)-1	Specific
RfD = reference dose (mg/kg-day)	Specific

COPC	Concentration	Conversion	Surface	Adherence	ABS	Exposure	Exposure	Body	Average	Carc	Dermal Adjust.	Carcinogenic	Percent	Average	Noncarc	Dermal Adjust.	Noncarcinogenic	Percent
	Carcinogen	Factor	Area	Factor	Factor	Frequency	Duration	Weight	Carc Time	Dose	Slope	Risk	Carcinogenic	Noncarc Time	Dose	Reference	Risk	Noncarcinogenic
l	(mg/kg)	(kg/mg)	(cm2)	(mg/cm2)	(%)	(events/yr)	(yrs)	(kg)	(days)	(mg/kg/day)	Factor	Child	Risk	(days)	(mg/kg/day)	Dose	Child	Risk
			Child			Child	Child	Child		Child	(mg/kg-day)-1		Child		Child	(mg/kg-day)		Child
Aluminum	12846.000	1E-06	1745	0.2	0.001	48	6	15	25550	3.4E-06	0.0E+00	0.0E+00	0%	2190	3.9E-05	2.0E-01	2.0E-04	14%
Antimony	24.790	1E-06	1745	0.2	0.001	48	6	15	25550	6.5E-09	0.0€+00	0.0E+00	0%	2190	7.6E-08	8.0E-05	9.5E-04	68%
Chromium	14.880	1E-06	1745	0.2	0.001	48	6	15	25550	3.9E-09	0.0E+00	0.0E+00	0%	2190	4.6E-08	2.0E-01	2.3E-07	0%
Iron	4812.250	1E-06	1745	0.2	0.001	48	6	15	25550	_1.3E-06	0.0E+00	0.0E+00_	0%	2190	1.5E-05	6.0E-02	2.5E-04	18%
TOTAL												0.0E+00					1.4E-03	

SEDIMENT DERMAL CONTACT EXPOSURE ASSESSMENT SITE 65 - ENGINEER AREA DUMP REMEDIAL INVESTIGATION CTO-0312 MCB CAMP LEJEUNE, NORTH CAROLINA FISHERMAN - ADULT RECEPTOR

The intake from dermal contact to sediment is calculted as follows:

Intake (mg/kg-day) = C * CF * SA * AF * Abs * EF * ED/BW * ATc or ATnc * DY

Risk = Intake * CSF or /RfD

Where:	INPUTS
C = contaminant concentration in soil (mg/kg)	
CF = conversion factor (kg/mg)	1.00E-06
SA = exposed skin surface area (cm2)	8300
AF = sediment to skin adherence factor (mg/cm2)	1
Abs = fraction absorbed (unitless) (contaminant specific)	Specific
EF = exposure frequency (events/yr)	48
ED = expsosure duration (years)	30
BW = body weight (kg)	70
ATc = averaging time for carcinogen (yr)	70
ATnc = averaging time for noncarcinogen (yr)	30
DY = day per year (day/yr)	365
CSF = cancer slope factor (mg/kg-day)-1	Specific
RfD = reference dose (mg/kg-day)	Specific

COPC	Concentration (mg/kg)	Conversion Factor (kg/mg)	Surface Area (cm2)	Adherence Factor (mg/cm2)	ABS Factor (%)	Exposure Frequency (events/yr)	Exposure Duration (yrs)	Body Weight (kg)	Average Carc Time (days)	Carc Dose (mg/kg/day)	Dermal Adjusted Slope Factor	Carcinogenic Risk	Percent Carcinogenic Risk	Average Noncarc Time (days)	Noncarc Dose (mg/kg/day)	Dermally-Adjusted Reference Dose	Noncarcinogenic Risk	Percent Noncarcinogenic Risk
		15.00	*****		0.004	- 10	- 00	70	25550	2.5E-04	(mg/kg-day)-1 0.00E+00	0.05+00	004	10950	5.8E-04	(mg/kg-day) 2.00E-01	2.9E-03	18%
Aluminum Antimony	37000.000 46.600	1E-06 1E-06	8300 8300		0.001 0.001	48 48	30	70 70	25550	2.5E-04 3.1E-07	0.00E+00	0.0E+00 0.0E+00	0%	10950	7.3E-07	8.00E-05	9.1E-03	58%
Chromium	43.600	1E-06	8300	1	0.001	48	30	70	25550	2.9E-07	0.00E+00	0.0E+00	0%	10950	6.8E-07	2.00E-01	3.4E-06	0% 24%
Iron	14600.000	1E-06	8300	1 1	0.001	48	30	70	25550	9.8E-05	0.00E+00	0.0E+00 0.0E+00	0%	10950	2.3E-04	6.00E-02	3.8E-03 1.6E-02	24%
TOTAL											***** ********************************	0.02+00	1				1.00-02	

06-Nov-

SEDIMENT DERMAL CONTACT EXPOSURE ASSESSMENT SITE 65 - ENGINEER AREA DUMP REMEDIAL INVESTIGATION CTO-0312 MCB CAMP LEJEUNE, NORTH CAROLINA FISHERMAN - CHILD RECEPTOR

The intake from dermal contact to sediment is calculated as follows:

Intake (mg/kg-day) = C * CF * SA * AF * Abs * EF * ED/BW * ATc or ATnc * DY

Risk = Intake * CSF or /RfD

Where;	INPUTS
C = contaminant concentration in soil (mg/kg)	Specifi
CF = conversion factor (kg/mg)	1.00E-0
SA = child exposed skin surface area (cm2)	210
AF = sediment to skin adherence factor (mg/cm2)	
Abs = fraction absorbed (unitless) (contaminant specific)	Specific
EF = child exposure frequency (events/yr)	4
ED = child expsosure duration (years)	
BW = child body weight (kg)	1:
ATc = averaging time for carcinogen (vr)	7
ATnc = averaging time for noncarcinogen (yr)	
DY = day per year (day/yr)	369
CSF = cancer slope factor (mg/kg-day)-1	Specifi
RfD = reference dose (mg/kg-day)	Specifi

COPC	Concentration Carcinogen (mg/kg)	Conversion Factor (kg/mg)	Area (cm2) Child	Adherence Factor (mg/cm2)	ABS Factor (%)	Exposure Frequency (events/yr) Child	Exposure Duration (yrs) Child	Body Weight (kg) Child	Average Carc Time (days)	Carc Dose (mg/kg/day) Child	Dermal Adjust. Slope Factor (mg/kg-day)-1	Carcinogenic Risk Child	Percent Carcinogenic Risk Child	Average Noncarc Time (days)	Noncarc Dose (mg/kg/day) Child	Dermal Adjust. Reference Dose (mg/kg-day)	Noncarcinogenic Risk Child	Percent Noncarcinogenic Risk Child
Aluminum	37000.000	1E-06	2100	1	0.001	48	6	15	25550	5.8E-05	0.0E+00	0.0E+00	0%	2190	6.8E-04	2.0E-01	3.4E-03	18%
Antimony	46,600	1E-06	2100	1	0.001	48	6	15	25550	7.4E-08	0.0E+00	0.0E+00	0%	2190	8.6E-07	8.0E-05	1.1E-02	58%
Chromium	43.600	1E-06	2100	1	0.001	48	6	15	25550	6.9E-08	0.0E+00	0.0E+00	0%	2190	8.0E-07	2.0E-01	4.0E-06	0%
Iron	14600.000	1E-06	2100	1	0.001	48	6	15	25550	2.3E-05	0.0E+00	0.0E+00	0%	2190	2.7E-04	6.0E-02	4.5E-03	24%
TOTAL												0.0E+00					1.9E-02	2170

08-Nov-87

Date: 10/95

EXAMPLE INHALATION OF PARTICULATES CALCULATIONS SITE 65 - ENGINEER AREA DUMP CONTRACT TASK ORDER 0312

Purpose: Estimate intake/risk from the inhalation of soil particulates

Intake
$$(mg/kg \cdot day) = \frac{C \times IR \times EF \times ED \times 1/PEF}{BW \times AT}$$

Where: C = Contaminant concentration in soil (mg/kg)

IR = Inhalation rate (m^3/day)

EF = Exposure frequency (days/year) ED = Exposure duration (years)

PEF = Particulate Emission Factor (m³/kg)

BW = Body weight (kg)

 AT_c = Averaging time carcinogen (days) AT_{nc} = Averaging time noncarcinogen (days)

Risks:

Carcinogens = Intake (mg/kg·day) x CSF (mg/kg·day)⁻¹ Noncarcinogens = Intake (mg/kg·day)/RfD (mg/kg·day)

Example Carcinogen: Benzo(a)pyrene

Intake
$$(mg/kg \cdot day) = \frac{0.23 \ mg/kg \ x \ 20 \ m^3/day \ x \ 350 \ days/yr \ x \ 24 \ yrs \ x \ 1/4.6E + 09 \ m^3/kg}{70 \ kg \ x \ 25,550 \ days}$$

$$=4.7E-12$$

Risk = $4.7E-12 \text{ mg/kg}\cdot\text{day} \times 6.1 \text{ mg/kg}\cdot\text{day}^{-1} = 2.9E-11$

Example Noncarcinogen: There were no noncarcinogenic COPCs with inhalation RfDs selected as COPCs.

SURFACE SOIL PARTICULATE INHALATION EXPOSURE ASSESSMENT SITE 65 - ENGINEER AREA DUMP REMEDIAL INVESTIGATION CTO-0312 MCB CAMP LEJEUNE. NORTH CAROLINA FUTURE RESIDENTIAL ADULT

intake from the inhalation of particulates is calculated as follows:

intake (mg/kg-day) = (C * EF * ED * IR * 1/PEF)/(BW * ATc or ATnc * DY)

Where:	INPUTS
C = contaminant concentration in soil (mg/kg)	Calculated
CSF = carcinogenic slope factor	Specific
RfD = reference dose for noncarcinogen	Specific
IR = inhalation rate (m3)	20
EF = adult exposure frequency (days)	350
ED = adult exposure duration (years)	24
BW = adult body weight (kg)	70
ATc = averaging time for carcinogen (yr)	70
ATnc = averaging time for noncarcinogen (yr)	24
DY = day per year (day/yr)	365
PEF = particulate emission factor (m3/kg)	4.63E+09

COPC	Concentration (mg/kg)	Particulate Emission Factor (m3/kg)	Exposure Frequency (events/yr)	Inhalation Rate (m3/day)	Exposure Duration (yrs)	Body Weight (kg)	Average Carc Time (days)	Carc Dose (mg/kg/day)	Slope Factor (mg/kg-day)-1	Carcinogenic Risk	Percent Conrtribution to Risk	Average Noncarc Time (days)	Noncarc Dose (mg/kg/day)	Reference Dose (mg/kg-day)	Noncarcinogenic Risk	Percent Noncarcinogenic Risk
Benzo(a)pyrene	0.230	4.63E+09	350	20	24	70	25550	4.7E-12	6.1E+00	2.9E-11	61%	8760	1.4E-11	0.0E+00	0.0E+00	0%
Dibenzo(a,h)anthracene	0.150	4.63E+09	350	20	24	70	25550	3.0E-12	6.1E+00	1.9E-11	39%	8760	8.9E-12	0.0E+00	0.0E+00	0%
Iron	7567.300	4.63E+09	350	20	24	70	25550	1.5E-07	0.0E+00	0.0E+00	0%	8760	4.5E-07	0.0E+00	0.0E+00	0%
Thallium	1.380	4.63E+09	350	20	24	70	25550	2.8E-11	0.0E+00	0.0E+00	0%	8760	8.2E-11	0.0E+00	0.0E+00	0%
TOTAL										4.7E-11					0.0E+00	

SURFACE SOIL PARTICULATE INHALATION EXPOSURE ASSESSMENT SITE 65 - ENGINEER AREA DUMP REMEDIAL INVESTIGATION CTO-0312 MCB CAMP LEJEUNE, NORTH CAROLINA FUTURE RESIDENTIAL CHILD

Intake from the inhalation of particulates is calculated as follows:

intake (mg/kg-day) = (C * EF * ED * IR * 1/PEF)/(BW * ATc or ATnc * DY)

Where:	INPUTS
C = contaminant concentration in soil (mg/kg)	Calculated
CSF ≃ carcinogenic slope factor	Specific
RfD = reference dose for noncarcinogen	Specific
IR = inhalation rate (m3)	11
EF = child exposure frequency (days)	350
ED = child exposure duration (years)	•
BW = child body weight (kg)	15
ATc = averaging time for carcinogen (yr)	70
ATnc = averaging time for noncarcinogen (yr)	
DY = day per year (day/yr)	369
PEF = particulate emission factor (m3/kg)	4.63E+09

COPC	Concentration	Particulate	Exposure	Inhalation	Exposure	Body	Average	Carc	Slope	Carcinogenic	Percent	Average	Noncarc	Reference	Noncarcinogenic	Percent
	(mg/kg)	Emission	Frequency	Rate	Duration	Weight	Carc Time	Dose	Factor	Risk	Conrtribution	Noncarc Time	Dose	Dose	Risk	Noncarcinogen
		Factor	(events/yr)	(m3/day)	(yrs)	(kg)	(days)	(mg/kg/day)	(mg/kg-day)-1		to	(days)	(mg/kg/day)	(mg/kg-day)		Risk
		(m3/kg)									Risk					
Benzo(a)pyrene	0.230	4.63E+09	350	15	6	15	25550	4.1E-12	6.1E+00	2.5E-11	61%	2190	4.8E-11	0.0E+00	0.0E+00	0%
Dibenzo(a,h)anthracene		4.63E+09	350	15	6 1	15	25550	2.7E-12	6.1E+00	1.6E-11	39%	2190	3.1E-11	0.0E+00	0.0E+00	0%
ron	7567.300	4.63E+09	350	15	6	15	25550	1.3E-07	0.0E+00	0.0E+00	0%	2190	1.6E-06	0.0E+00	0.0E+00	0%
Thallium	1.380	4.63E+09	350	15	6	15	25550	2.4E-11	0.0E+00	0.0E+00	- 0%	2190	2.9E-10	0.0E+00	0.0E+00	0%
TOTAL					·					4.1E-11					0.0E+00	

SURFACE SOIL PARTICULATE INHALATION EXPOSURE ASSESSMENT - CT SITE 55 - ENGINEER AREA DUMP REMEDIAL INVESTIGATION CTO-0312 MCB CAMP LEJEUNE, NORTH CAROLINA FUTURE RESIDENTIAL CHILD

Intake from the inhalation of particulates is calculated as follows:

intake (mg/kg-day) = (C * EF * ED * IR * 1/PEF)/(BW * ATc or ATnc * DY)

Vhere:	INPUTS
C = contaminant concentration in soil (mg/kg)	Calculated
CSF = carcinogenic slope factor	Specific
RfD = reference dose for noncarcinogen	Specific
IR = inhalation rate (m3)	15
EF = child exposure frequency (days)	234
ED = child exposure duration (years)	6
BW = child body weight (kg)	15
ATc = averaging time for carcinogen (yr)	70
ATnc = averaging time for noncarcinogen (yr)	6
DY = day per year (day/yr)	365
PEF = particulate emission factor (m3/kg)	4.63E+09

COPC	Concentration	Particulate	Exposure	Inhalation	Exposure	Body	Average	Carc	Slope	Carcinogenic	Percent	Average	Noncarc	Reference	Noncarcinogenic	Percent
	(mg/kg)	Emission	Frequency	Rate	Duration	Weight	Carc Time	Dose	Factor	Risk	Contribution	Noncarc Time	Dose	Dose	Risk	Noncarcinogenic
		Factor	(events/yr)	(m3/day)	(yrs)	(kg)	(days)	(mg/kg/day)	(mg/kg-day)-1	İ	to	(days)	(mg/kg/day)	(mg/kg-day)		Risk
		(m3/kg)									Risk					1
Benzo(a)pyrene	0.230	4.63E+09	234	15	6	15	25550	2.7E-12	6.1E+00	1.7E-11	61%	2190	3.2E-11	0.0E+00	0.0E+00	0%
Dibenzo(a,h)anthracene	0.150	4.63E+09	234	15	6	15	25550	1.8E-12	6.1E+00	1.1E-11	39%	2190	2.1E-11	0.0E+00	0.0E+00	0%
Iron	7567.300	4.63E+09	234	15	6	15	25550	9.0E-08	0.0E+00	0.0E+00	0%	2190	1.0E-06	0.0E+00	0.0€+00	0%
Thallium	1.380	4.63E+09	234	15	6	15	25550	1.6E-11	0.0E+00	0.0E+00	0%	2190	1.9E-10	0.0E+00	0.0E+00	0%
TOTAL										2.8E-11					0.0E+00	

SURFACE SOIL PARTICULATE INHALATION EXPOSURE ASSESSMENT SITE 65 - ENGINEER AREA DUMP REMEDIAL INVESTIGATION CTO-0312 MCB CAMP LEJEUNE, NORTH CAROLINA CURRENT MILITARY PERSONNEL - TRAINEE

Intake from the inhalation of particulates is calculated as follows:

Intake (mg/kg-day) = (C * EF * ED * IR * 1/PEF)/(BW * ATc or ATnc * DY)

Where:	INPUTS
C = contaminant concentration in soil (mg/kg)	Calculated
CSF = carcinogenic slope factor	Specific
RfD = reference dose for noncarcinogen	Specific
IR = inhalation rate (m3)	20
EF = adult exposure frequency (days)	260
ED = adult exposure duration (years)	4
BW = adult body weight (kg)	70
ATc = averaging time for carcinogen (yr)	70
ATnc = averaging time for noncarcinogen (yr)	4
DY = day per year (day/yr)	365
PEF = particulate emission factor (m3/kg)	4.63E+09

COPC	Concentration	Particulate	Exposure	Inhalation	Exposure	Body	Average	Carc	Slope	Carcinogenic	Percent	Average	Noncarc	Reference	Noncarcinogenic	Percent
i		Emission	Frequency	Rate	Duration	Weight	Carc Time	Dose	Factor	Risk	Contribution	Noncarc Time	Dose	Dose	Risk	Noncarcinogenic
	(mg/kg)	Factor	(events/yr)	(m3/day)	(yrs)	(kg)	(days)	(mg/kg/day)	(mg/kg-day)-1		to	(days)	(mg/kg/day)	(mg/kg-day)		Risk
		(m3/kg)									Risk					
Benzo(a)pyrene	0.230	4.63E+09	260	20	4	70	25550	5.8E-13	6.10E+00	3.5E-12	61%	1460	1.0E-11	0.00E+00	0.0E+00	0%
Dibenzo(a,h)anthracene	0.150	4.63E+09	260	20	4	70	25550	3.8E-13	6.10E+00	2.3E-12	39%	1460	6.6E-12	0.00E+00	0.0E+00	0%
iron	7567.300	4.63E+09	260	20	4	70	25550	1.9E-08	0.00E+00	0.0E+00	0%	1460	3.3E-07	0.00E+00	0.0E+00	0%
Thallium	1.380	4.63E+09	260	20	4	70 _	25550	3.5E-12	0.00E+00	0.0E+00	0%	1460	6,1E-11	0.00E+00	0.0E+00	0%
TOTAL										5.8E-12					0.0E+00	

SUBSURFACE SOIL PARTICULATE INHALATION EXPOSURE ASSESSMENT SITE 65 - ENGINEER AREA DUMP REMEDIAL INVESTIGATION CTO-0312 MCB CAMP LEJEUNE, NORTH CAROLINA CURRENT MILITARY PERSONNEL - TRAINEE

Intake from the inhalation of particulates is calculated as follows:

Intake (mg/kg-day) = (C * EF * ED * IR * 1/PEF)/(BW * ATc or ATnc * DY)

Where:	INPUTS
C = contaminant concentration in soil (mg/kg)	Calculated
CSF = carcinogenic slope factor	Specific
RfD = reference dose for noncarcinogen	Specific
IR = inhalation rate (m3)	20
EF = adult exposure frequency (days)	260
ED = adult exposure duration (years)	4
BW = adult body weight (kg)	70
ATc = averaging time for carcinogen (yr)	70
ATnc = averaging time for noncarcinogen (yr)	4
DY = day per year (day/yr)	365
PEF = particulate emission factor (m3/kg)	4.63E+09

COPC	Concentration (mg/kg)	Particulate Emission Factor (m3/kg)	Exposure Frequency (events/yr)	Inhalation Rate (m3/day)	Exposure Duration (yrs)	Body Weight (kg)	Average Carc Time (days)	Carc Dose (mg/kg/day)	Slope Factor (mg/kg-day)-1	Carcinogenic Risk	Percent Contribution to Risk	Average Noncarc Time (days)	Noncarc Dose (mg/kg/day)	Reference Dose (mg/kg-day)	Noncarcinogenic Risk	Percent Noncarcinogenic Risk
Benzo(a)anthracene	0,262	4.63E+09	260	20	4	70	25550	6.6E-13	6.10E-01	4.0E-13	1%	1460	1.2E-11	0.00E+00	0.0E+00	0%
Benzo(a)pyrene	0.249	4.63E+09	260	20	4	70	25550	6.2E-13	6.10E+00	3.8E-12	6%	1460	1.1E-11	0.00E+00	0.0E+00	0%
Aluminum	6197.290	4.63E+09	260	20	4	70	25550	1.6E-08	0.00E+00	0.0E+00	0%	1460	2.7E-07	0.00E+00	0.0E+00	0%
Antimony	6.670	4.63E+09	260	20	4	70	25550	1.7E-11	0.00E+00	0.0€+00	0%	1460	2,9E-10	0.00E+00	0.0E+00	0%
Arsenic	1.670	4.63E+09	260	20	4	70	25550	4.2E-12	1.51E+01	6.3E-11	94%	1460	7.3E-11	0.00E+00	0.0E+00	0%
Copper	672.000	4.63E+09	260	20	4	70	25550	1.7E-09	0.00E+00	0.0E+00	0%	1460	3.0E-08	0.00E+00	0.0E+00	0%
Iron	14060.350	4.63E+09	260	20	4	70	25550	3.5E-08	0.00E+00	0.0E+00	0%	1460	6.2E-07	0.00E+00	0.0E+00	0%
Lead	452.540	4.63E+09	260	20	4	70	25550	1.1E-09	0.00E+00	0.0E+00	0%	1460	2.0E-08	0.00E+00	0.0E+00	0%
Manganese (soil)	278.090	4.63E+09	260	20	4	70	25550	7.0E-10	0.00E+00	0.0E+00	0%	1460	1.2E-08	1.43E-05	8.5E-04	100%
Nickel	13.720	4.63E+09	260	20	4	70	25550	3.4E-11	0.00E+00	0.0E+00	0%	1460	6,0E-10	0.00E+00	0.0E+00	0%
Thallium	1.500	4.63E+09	260	20	4	70	25550	3.8E-12	0.00E+00	0.0E+00	0%	1460	6.6E-11	0.00E+00	0.0E+00	0%
TOTAL			·							6.8E-11					8.5E-04	

SURFACE SOIL PARTICULATE INHALATION EXPOSURE ASSESSMENT SITE 65 - ENGINEER AREA DUMP REMEDIAL INVESTIGATION CTO-0312 MCB CAMP LEJEUNE, NORTH CAROLINA CURRENT MILITARY PERSONNEL - RECREATIONAL USER

Intake from the inhalation of particulates is calculated as follows:

Intake (mg/kg-day) = (C * EF * ED * IR * 1/PEF)/(BW * ATc or ATnc * DY)

Where:	INPUTS
C = contaminant concentration in soil (mg/kg)	Specific
CSF = carcinogenic slope factor	Specific
RfD = reference dose for noncarcinogen	Specific
IR = inhalation rate (m3)	. 20
EF = adult exposure frequency (days)	260
ED = adult exposure duration (years)	. 4
BW = adult body weight (kg)	70
ATc = averaging time for carcinogen (yr)	70
ATnc = averaging time for noncarcinogen (yr)	4
DY = day per year (day/yr)	365
PEF = particulate emission factor (m3/kg)	4.63E+09

COPC	Concentration Carcinogen (mg/kg)	Particulate Emission Factor (m3/kg)	Exposure Frequency (events/yr)	Inhalation Rate (m3/day)	Exposure Duration (yrs)	Body Weight (kg)	Average Carc Time (days)	(mg/kg/day)		Carcinogenic Risk	Percent Constribution to Risk	Average Noncarc Time (days)	Noncarc Dose (mg/kg/day)	Reference Dose (mg/kg-day)	Noncarcinogenic Risk	Percent Noncarcinogenic Risk
Benzo(a)pyrene	0.23	4.63E+09	260	20	4	70	25550	5.8E-13	6.1E+00	3.5E-12	61%	1460	1.0E-11	0.0E+00	0.0E+00	0%
Dibenzo(a,h)anthracene	0.15	4.63E+09	260	20	4	70	25550	3.8E-13	6.1E+00	2.3E-12	39%	1460	6.6E-12	0.0E+00	0.0E+00	0%
iron	7567.30	4.63E+09	260	20	4	70	25550	1.9E-08	0.0E+00	0.0E+00	0%	1460	3.3E-07	0.0E+00	0.0E+00	0%
Thallium	1.38	4.63E+09	260	20	4	70	25550	3.5E-12	0.0E+00	0.0E+00	0%	1460	6.1E-11	0.0E+00	0.0E+00	0%
TOTAL										5.8E-12					0.0E+00	

SUBSURFACE SOIL PARTICULATE INHALATION EXPOSURE ASSESSMENT SITE 65 - ENGINEER AREA DUMP REMEDIAL INVESTIGATION CTO-0312 MCB CAMP LEJEUNE, NORTH CAROLINA FUTURE CONSTRUCTION WORKER

Intake from the inhalation of particulates is calculated as follows:

Intake (mg/kg-day) = (C * EF * ED * IR * 1/PEF)/(BW * ATc or ATnc * DY)

Risk = Intake * CSF or /RfD

Where:	INPUTS
C = contaminant concentration in soil (mg/kg)	Specific
CSF = carcinogenic slope factor	Specific
RfD = reference dose for noncarcinogen	Specific
IR = inhalation rate (m3)	20
EF = adult exposure frequency (days)	90
ED = adult exposure duration (years)	1
BW ≂ adult body weight (kg)	70
ATc = averaging time for carcinogen (yr)	70
ATnc = averaging time for noncarcinogen (yr)	1
DY = day per year (day/yr)	365
PEF = particulate emission factor (m3/kg)	4.63E+09

COPC	Concentration Carcinogen (mg/kg)	Particulate Emission Factor (m3/kg)	Exposure Frequency (events/yr)	Inhalation Rate (m3/day)	Exposure Duration (yrs)	Body Weight (kg)	Average Carc Time (days)	Carc Dose (mg/kg/day)	Slope Factor (mg/kg-day)-1	Carcinogenic Risk	Percent Constribution to Risk	Average Noncarc Time (days)	Noncarc Dose (mg/kg/day)	Reference Dose (mg/kg-day)	Noncarcinogenic Risk	Percent Noncarcinogenic Risk
Benzo(a)anthracene	0.262	4.63E+09	90	20	1	70	25550	5.7E-14	6.1E-01	3.5E-14	1%	365	4.0E-12	0.0E+00	0.0E+00	. 0%
Benzo(a)pyrene	0.249	4.63E+09	90	20	1 1	70	25550	5.4E-14	6.1E+00	3.3E-13	6%	365	3.8E-12	0.0E+00	0.0E+00	0%
Aluminum	6197.290	4.63E+09	90	20	1 1	70	25550	1.3E-09	0.0E+00	0.0E+00	0%	365	9.4E-08	0.0E+00	0.0E+00	0%
Antimony	6.670	4.63E+09	90	20	1 1	70	25550	1.4E-12	0.0E+00	0.0E+00	0%	365	1.0E-10	0.0E+00	0.0E+00	0%
Arsenic	1.670	4.63E+09	90	20	1	70	25550	3.6E-13	1.5E+01	5.5E-12	94%	365	2.5E-11	0.0E+00	0.0E+00	0%
Copper	672.000	4.63E+09	90	20	1 1	70	25550	1.5E-10	0.0E+00	0.0E+00	0%	365	1.0E-08	0.0E+00	0.0E+00	0%
Iron	14060.350	4.63E+09	90	20	1 1	70	25550	3.1E-09	0.0E+00	0.0E+00	0%	365	2.1E-07	0.0E+00	0.0E+00	0%
Lead	452.540	4.63E+09	90	20	1 1	70	25550	9.8E-11	0.0E+00	0.0E+00	0%	365	6.9E-09	0.0E+00	0.0E+00	0%
Manganese (soil)	278.090	4.63E+09	90	20	1 1	70	25550	6.0E-11	0.0E+00	0.0E+00	0%	365	4.2E-09	1.4E-05	3.0E-04	100%
Nickel	13.720	4.63E+09	90	20	1 1 1	70	25550	3.0E-12	0.0E+00	0.0E+00	0%	365	2.1E-10	0.0E+00	0.0E+00	0%
Thallium	1.500	4.63E+09	90	20	1 1	70	25550	3.3E-13	0.0E+00	0.0E+00	0%	365	2.3E-11	0.0E+00	0.0E+00	0%
TOTAL							·			5.8E-12		•			3.0E-04	

0.07.07

Date: 10/95

EXAMPLE GROUNDWATER INGESTION CALCULATIONS SITE 65 - ENGINEER AREA DUMP CONTRACT TASK ORDER 0312

Purpose: Estimate intake/risk from ingestion of groundwater

Intake (mg/kg·day) =
$$\frac{C \times IR \times EF \times ED}{BW \times AT}$$

Where: C = Contaminant concentration in groundwater (mg/L)

IR = Daily intake ingestion rate (L/day)
EF = Exposure frequency (days/year)
ED = Exposure duration (years)

BW = Body weight (kg)

AT_c = Averaging time carcinogen (days)

 AT_{nc} = Averaging time noncarcinogen (days)

Risks:

Carcinogens = Intake (mg/kg·day) x CSF (mg/kg·day)⁻¹ Noncarcinogens = Intake (mg/kg·day)/RfD (mg/kg·day)

Example Carcinogen: No carcinogenic COPCs in groundwater.

Example Noncarcinogen: Manganese

$$Intake (mg/kg\cdot day) = \frac{0.186 \ mg/L \ x \ 2 \ L/day \ x \ 350 \ days/yr \ x \ 30 \ yrs}{70 \ kg \ x \ 10,950 \ days}$$

= 5.1E-03

$$Risk = \frac{5.1E - 03 \ mg/kg \cdot day}{2.3E - 02 \ mg/kg \cdot day} = 2.2E - 01$$

GROUNDWATER INGESTION EXPOSURE ASSESSMENT SITE 85 - ENGINEER AREA DUMP REMEDIAL INVESTIGATION CTO-0312 MGB CAMP LEJEUNE, NORTH CAROLINA FUTURE RESIDENTIAL ADULT

Intake from drinking water is calculated as follows:

Intake (mg/kg-day) = C * IRw * EF * ED/BW * AT or ATnc * DY

Where:		INPUTS
C = contaminant concentration in water (mg/l)	specific	
IRw = adult daily water ingestion rate (L/Day)		2
EF ≅ adult exposure frequency (days/yr)		350
ED = adult exposure duration (yr)		30
BW = adult body weight (kg)		70
ATc = averaging time for carcinogen (yr)		70
ATnc = averaging time for noncarcinogen (yr)		30
DY = days per year (day/year)		365
CSF = cancer slope factor (mg/kg-day)-1	specific	
RfD = reference dose (mg/kg-day)	specific	

COPC	Concentration	Ingestion	Exposure	Exposure	Body	Average	Carc	Slope	Carcinogenic	Percent	Average	Noncarc	Reference	Noncarcinogenic	Percent
	(mg/l)	Rate	Frequency	Duration	Weight	Carc Time	Dose	Factor	Risk	Carcinogenic	Noncarc Time	Dose	Dose	Risk	Noncarcionogenic
		(L/day)	(day/year)	(year)	(kg)	(days)	(mg/kg-day)	(mg/kg-day)-1	Adult	Risk	(days)	(mg/kg-day)	(mg/kg-day)	Adult	Risk
		Adult	Adult	Adult	Adult		Adult			Adult		Adult			Adult
Carbon Disulfide	0.005	2	350	30	70	25550	5.9E-05	0.0E+00	0.0E+00	0%	10950	1.4E-04	1.0E-01	1.4E-03	0%
iron	6.58	2	350	30	70	25550	7.7E-02	0.0E+00	0.0E+00	0%	10950	1.8E-01	3.0E-01	6.0E-01	73%
Manganese (water)	0.186	2	350	30	70	25550	2.2E-03	0.0E+00	0.0E+00	0%	10950	5.1E-03	2.3E-02	2.2E-01	27%
TOTAL	·····								0.0E+00					8.2E-01	

GROUNDWATER INGESTION EXPOSURE ASSESSMENT SITE 65 - ENGINEER AREA DUMP REMEDIAL INVESTIGATION CTO-0312 MCB CAMP LEJEUNE, NORTH CAROLINA FUTURE RESIDENTIAL CHILD

Intake from drinking water is calculated as follows:

Intake (mg/kg-day) = C * IRw * EF * ED/BW * AT or ATnc * DY

Where:	INPUTS
C = contaminant concentration in water (mg/l)	specific
IRw = child daily water ingestion rate (L/Day)	1
EF = child exposure frequency (days/yr)	350
ED ≃ child exposure duration (yr)	6
BW = child body weight (kg)	15
ATc = averaging time for carcinogen (yr)	70
ATnc = averaging time for noncarcinogen (yr)	6
DY = days per year (day/year)	365
CSF = cancer slope factor (mg/kg-day)-1	specific
RfD = reference dose (mg/kg-day)	specific

COPC	Concentration	Ingestion	Exposure	Exposure	Body	Average	Carc	Slope	Carcinogenic	Percent	Average	Noncarc	Reference	Noncarcinogenic	Percent
1		Rate	Frequency	Duration	Weight	Carc Time	Dose	Factor	Risk	Carcinogenic	Noncarc Time	Dose	Dose	Risk	Noncarcinogenic
	(mg/l)	(L/day)	(day/year)	(year)	(kg)	(days)	(mg/kg-day)	(mg/kg-day)-1	Child	Risk	(days)	(mg/kg-day)	(mg/kg-day)	Child	Risk
		Child	Child	Child	Child		Child			Child		Child			Child
Carbon Disulfide	0.005	1	350	6	15	25550	2.7E-05	0.0E+00	0.0E+00	0%	2190	3.2E-04	1.0E-01	3.2E-03	0%
Iron	6.580	1	350	6	15	25550	3.6E-02	0.0E+00	0.0E+00	0%	2190	4.2E-01	3.0E-01	1.4E+00	73%
Manganese (water)	0.186	11	350	6	15	25550	1.0E-03	0.0E+00	0.0E+00	0%	2190	1.2E-02	2.3E-02	5.2E-01	27%
TOTAL									0.0E+00			· · · · · · · · · · · · · · · · · · ·		1.9E+00	

GROUNDWATER INGESTION EXPOSURE ASSESSMENT - CT SITE 65 - ENGINEER AREA DUMP REMEDIAL INVESTIGATION CTO-0312 MCB CAMP LEJEUNE, NORTH CAROLINA FUTURE RESIDENTIAL CHILD

Intake from drinking water is calculated as follows:

Intake (mg/kg-day) = C * IRw * EF * ED/BW * AT or ATnc * DY

vvnere.	INPUIS
C = contaminant concentration in water (mg/l)	specific
IRw = child daily water ingestion rate (L/Day)	1
EF = child exposure frequency (days/yr)	234
ED = child exposure duration (yr)	6
BW = child body weight (kg)	· 15
ATc = averaging time for carcinogen (yr)	70
ATnc = averaging time for noncarcinogen (yr)	6
DY = days per year (day/year)	365
CSF = cancer slope factor (mg/kg-day)-1	specific
RfD = reference dose (mg/kg-day)	specific

COPC	Concentration	Ingestion	Exposure	Exposure	Body	Average	Carc	Slope	Carcinogenic	Percent	Average	Noncarc	Reference	Noncarcinogenic	Percent
		Rate	Frequency	Duration	Weight	Carc Time	Dose	Factor	Risk	Carcinogenic	Noncarc Time	Dose	Dose	Risk	Noncarcinogenic
	(mg/l)	(L/day)	(day/year)	(year)	(kg)	(days)	(mg/kg-day)	(mg/kg-day)-1	Child	Risk	(days)	(mg/kg-day)	(mg/kg-day)	Child	Risk
		Child	Child	Child	Child		Child			Child		Child			Child
Carbon Disulfide	0.005	1	234	6	15	25550	1.8E-05	0.0E+00	0.0E+00	0%	2190	2.1E-04	1.0E-01	2.1E-03	1%
Iron	1.270	1	234	6	15	25550	4.7E-03	0.0E+00	0.0E+00	0%	2190	5.4E-02	3.0E-01	1.8E-01	58%
Manganese (water)	0.069	1 1	234	6	15	25550	2.5E-04	0.0E+00	0.0E+00	0%	2190	2.9E-03	2.3E-02	1.3E-01	41%
TOTAL									0.0E+00					3.1E-01	

Date: 10/95

EXAMPLE DERMAL CONTACT WITH GROUNDWATER CALCULATIONS SITE 65 - ENGINEER AREA DUMP CONTRACT TASK ORDER 0312

Purpose: Estimate intake/risk from dermal contact with groundwater

Intake (mg/kg·day) =
$$\frac{C \times SA \times PC \times ET \times EF \times ED \times CF}{BW \times AT}$$

C Contaminant concentration in groundwater (mg/L) Where: SA Exposed skin surface available for contact (cm²) PC = Permeability constant (cm/hr) ET Exposure time (hr/day) EF Exposure frequency (days/year) ED Exposure duration (years) Conversion factor (1 L/1,000 cm³) CF BWBody weight (kg) AT_c Averaging time carcinogen (days) Averaging time noncarcinogen (days) AT_{nc}

Risks:

Carcinogens = Intake (mg/kg·day) x CSF (mg/kg·day)⁻¹ Noncarcinogens = Intake (mg/kg·day)/RfD (mg/kg·day)

Example Carcinogen: No carcinogenic COPCs in groundwater.

Example Noncarcinogen: Manganese

Intake
$$(mg/kg\cdot day) = \frac{0.186 \ mg/L \ x \ 23,000 \ cm^2/hr \ x \ 1.0E-03 \ cm/hr \ x \ 0.25 \ hr/day \ x \ 350 \ days/yr \ x \ 30 \ yrs \ x \ 1 \ L/1,000 \ cm^3}{70 \ kg \ x \ 10,950 \ days}$$

= 1.5E-05

$$Risk = \frac{1.5E - 05 \ mg/kg \cdot day}{4.6E - 03 \ mg/kg \cdot day} = 3.2E - 03$$

GROUNDWATER DERMAL CONTACT EXPOSURE ASSESSMENT SITE 65 - ENGINEER AREA DUMP REMEDIAL INVESTIGATION CTO-0312 MCB CAMP LEJEUNE, NORTH CAROLINA FUTURE RESIDENTIAL ADULT

Dermai Contact from groundwater is calcuated as follows:

Intake (mg/kg-day) = CW * SA * PC * ET * EF * ED * CF/BW * ATc or ATnc * DY

Risk = Intake * CSF or /RfD	
Where:	INPUTS
CW = contaminant concentration in water (mg/l)	
SA = adult skin surface available for contact (cm2)	23000
PC = contaminant specific dermal permability (cm/hr)	Specific
ET ≈ adult exposure time (hours/day)	0.25
EF = adult exposure frequency (days/yr)	350
ED = adult exposure duration (years)	30
CF = volumetric conversion factor for water (1liter/1000 cm3)	0.001
BW = adult body weight (kg)	70
ATc ≃ averaging time for carcinogen (yr)	70
ATnc = a∨eraging time for noncarcinogen (yr)	30
DY = days per year (days)	365

Note: Inputs are site and scenario specific

COPC	Concentration	Surface	Dermal	Exposure	Exposure	Exposure	Volumetric	Body	Averaging	Carc	Derm. Adj.	Carcinogenic	Percent	Average	Noncarc	Dermal Adjust.	Noncarc	Percent
İ		Area	Permeability	Time	Frequency	Duration	Conversion	Weight	Carc Time	Dose	Slope	Risk	Carcinogenic	Noncarc Time	Dose	Reference	Risk	Noncarcinogenic
1	(mg/l)	(cm2)	(cm/hr)	(hours/day)	(days/yr)	(years)	(L/m3)	(kg)	(years)	(mg/kg-day)	Factor	Adult	Risk	(years)	(mg/kg-day)	Dose	Adult	Risk
		Adult		Adult	Adult	Adult		Adult		Adult	(mg/kg-day)-1		Adult		Adult	(mg/kg-day)		Adult
Carbon Disulfide	0.005	23000	5.30E-01	0.25	350	30	0.001	70	25550	8.9E-05	0.0E+00	0.0E+00	0%	10950	2.1E-04	8.0E-02	2.6E-03	18%
Iron	6.58	23000	1.00E-03	0.25	350	30	0.001	70	25550	2.2E-04	0.0E+00	0.0E+00	0%	10950	5.2E-04	6.0E-02	8.6E-03	60%
Manganese (water)	0.186	23000	1.00E-03	0.25	350	. 30	0.001	70	25550	6.3E-06	0.0E+00	0.0E+00	0%	10950	1.5E-05	4.6E-03	3.2E-03	22%
TOTAL												0.0E+00					1.4E-02	

GROUNDWATER DERMAL CONTACT EXPOSURE ASSESSMENT SITE 65 - ENGINEER AREA DUMP REMEDIAL INVESTIGATION CTO-0312 MCD CAMP LEJEUNE, NORTH CAROLINA FUTURE RESIDENTIAL CHILD

Dermai Contact from groundwater is calcuated as follows:

Intake (mg/kg-day) = CW * SA * PC * ET * EF * ED * CF/BW * ATc or ATnc * DY

Risk = Intake * CSF or /RfD River Where: INPUTS CW = contaminant concentration in water (mg/l) 10000 SA = child skin surface available for contact (cm2) 10000 PC = contaminant specific dermal permability (cm/hr) Specific ET = child exposure time (hours/day) 0.25 EF = child exposure frequency (days/yr) 350 ED = child exposure duration (years) 6 CF = volumetric conversion factor for water (fliter/1000 cm3) 0.001 BW = child body weight (kg) 15 ATc = averaging time for carcinogen (yr) 70 ATnc = averaging time for noncarcinogen (yr) 6 DY = days per year (days) 365

Concentration	Surface	Dermal	Exposure	Exposure	Exposure	Volumetric	Body	Averaging	Carc	Dermal Adjust.	Carcinogenic	Percent	Average	Noncarc	Dermal. Adjust.	Noncarc	Percent
	Area	Permeability	Time	Frequency	Duration	Conversion	Weight	Carc Time	Dose	Slope	Risk	Carcinogenic	Noncarc Time	Dose	Reference	Risk	Noncarcinogenic
(mg/l)	(cm2)	(cm/hr)	(hours/day)	(days/yr)	(years)	(L/m3)	(kg)	(days)	(mg/kg-day)	Factor	Child	Risk	(days)	(mg/kg-day)	Dose	Child	Risk
	Child		Child	Child	Child		Child		Child	(mg/kg-day)-1		Child		Child	(mg/kg-day)		Child
0.005	10000	5.30E-01	0.25	350	6	0.001	15	25550	3.6E-05	0.0E+00	0.0E+00	0%	2190	4.2E-04	8.0E-02	5.3E-03	18%
6.580	10000	1.00E-03	0.25	350	6	0.001	15	25550	9.0E-05	0.0E+00	0.0E+00	0%	2190	1.1E-03	6.0E-02	1.8E-02	60%
0.186	10000	1.00E-03	0.25	350	6	0.001	15	25550	2.5E-06	0.0E+00	0.0E+00	0%	2190	3.0E-05	4.6E-03	6.5E-03	22%
											0.0E+00					2.9E-02	
	(mg/l) 0.005 6.580	(mg/l) Area (cm2) (cm2) Child 0.005 10000 6.580 10000	(mg/l) Area (cm/2) (cm/hr) (cm/hr) (child) 0.005 10000 5.30E-01 6.580 10000 1.00E-03	Area (cm2) Permeability (cm/hr) (hours/day) Child 0.005 10000 5.30E-01 0.25 6.580 10000 1.00E-03 0.25	(mg/l) Area (mn2) Permeability (cm/hr) Time (hours/day) Frequency (days/yr) Child 0.005 10000 5.30E-01 0.25 350 6.580 10000 1.00E-03 0.25 350	(mg/l) Area (cm2) Permeability (cm/hr) Time (hours/day) Frequency (days/r) (years) Duration (years) Child 0.005 10000 5.30E-01 0.25 350 6 6.580 10000 1.00E-03 0.25 350 6	Area (mg/l)	Area (mg/l)	Area (mg/l)	Area (cm2) Permeability (cm/hr) Time (hours/day) Frequency (days/hr) (vears) (L/m3) (kg) (days) (mg/kg-day) Child	Area (mg/l)	Area (mg/l)	Area Permeability Time Frequency Duration Conversion (L/m3)	Area Permeability Time Frequency Duration Conversion (L/m3)	Area Permeability Time Frequency Conversion C	Area Permeability Time Frequency Compt Conversion Conver	Area Permeability Time Frequency Compt Conversion Conver

GROUNDWATER DERMAL CONTACT EXPOSURE ASSESSMENT - CT SITE 65 - ENGINEER AREA DUMP REMEDIAL INVESTIGATION CTO-0312 MCB CAMP LEJEUNE, NORTH CAROLINA FUTURE RESIDENTIAL CHILD

Dermai Contact from groundwater is calcuated as follows:

Intake (mg/kg-day) = CW * SA * PC * ET * EF * ED * CF/BW * ATc or ATnc * DY

Risk = Intake * CSF or /RfD	
Where:	INPUTS
CW = contaminant concentration in water (mg/l)	
SA = child skin surface available for contact (cm2)	6978
PC = contaminant specific dermal permability (cm/hr)	Specific
ET = child exposure time (hours/day)	0.25
EF = child exposure frequency (days/yr)	234
ED = child exposure duration (years)	6
CF = volumetric conversion factor for water (1liter/1000 cm3)	0.001
BW = child body weight (kg)	15
ATc = averaging time for carcinogen (yr)	70
ATnc = averaging time for noncarcinogen (yr)	6
DY = days per year (days)	365

COPC	Concentration	Surface	Dermal	Exposure	Exposure	Exposure	Volumetric	Body	Averaging	Carc	Dermal Adjust.	Carcinogenic	Percent	Average	Noncarc	Dermal. Adjust.	Noncarc	Percent
	(mat)	Area	Permeability	(hours/day)	Frequency	Duration (years)	Conversion (L/m3)	Weight	Carc Time (days)	Dose (mg/kg-day)	Slope Factor	Risk Child	Carcinogenic Risk	Noncarc Time (days)	Dose (mg/kg-day)	Reference Dose	Risk Child	Noncarcinogenic Risk
	(mg/l)	(cm2) Child	(CITVIII)	(nours/day) Child	(days/yr) Child	(years) Child	(0/113)	(kg) Child	(uays)	(mg/kg-day) Child	(mg/kg-day)-1	Cind	Child	(days)	Child	(mg/kg-day)	Office	Child
Carbon Disulfide	0.005	6978	5.30E-01	0.25	234	6	0.001	15	25550	1.7E-05	0.0E+00	0.0E+00	0%	2190	2.0E-04	8.0E-02	2.5E-03	48%
Iron	1.270	6978	1.00E-03	0.25	234	6	0.001	15	25550	8.1E-06	0.0E+00	0.0E+00	0%	2190	9.5E-05	6.0E-02	1.6E-03	31%
Manganese (water)	0.069	6978	1.00E-03	0,25	234	6	0.001	15	25550	4.4E-07	0.0E+00	0.0E+00	0%	2190	5.1E-06	4.6E-03	1.1E-03	22%
TOTAL												0.0E+00					5.2E-03	

Date: 10/95

EXAMPLE INHALATION OF VOLATILE ORGANICS CALCULATIONS SITE 65 - ENGINEER AREA DUMP CONTRACT TASK ORDER 0312

Purpose: Estimate intake/risk from the inhalation of volatile organics

Intake (mg/kg·day) =
$$\frac{Cs \times IR \times ET \times EF \times ED \times 1.0}{BW \times AT}$$

Where: Cs = Shower air concentration (mg/m^3)

IR = Inhalation rate (m³/hr)
ET = Exposure time (hrs/day)
EF = Exposure frequency (day)

EF = Exposure frequency (days/year)

ED = Exposure duration (years)

1.0 = Absorbed fraction
BW = Body weight (kg)
AT = Averaging time (days)

Risks:

Carcinogens = Intake (mg/kg·day) x CSF (mg/kg·day)⁻¹ Noncarcinogens = Intake (mg/kg·day)/RfD (mg/kg·day)

Example Carcinogen: No carcinogenic COPCs in groundwater.

Example Noncarcinogen: Carbon Disulfide

Intake
$$(mg/kg \cdot day) = \frac{0.01 \ mg/m^3 \ x \ 0.6 \ m^3/hr \ x \ 0.25 \ hrs/d \ x \ 350 \ days/yr \ x \ 30 \ yrs \ x \ 1.0}{70 \ kg \ x \ 10,950 \ days}$$

= 2.1E-05

$$Risk = \frac{2.1E-05 \ mg/kg \cdot day}{1.0E-01 \ mg/kg \cdot day} = 2.1E-04$$

VOLITILZATION OF COPCS FROM WATER DURING SHOWERING SITE 65 - ENGINEER AREA DUMP GROUNDWATER CONTRACT TASK ORDER 0312

This spreadsheet calculates the average concentration of a volatile organic compound in shower air (mg/m3) over the duration of the shower. The air concentration is estimated by a balance between the rate of chemical release from the shower and the rate of air exchange between the shower and the bathroom and the rest of the house. The calculations are based on the efficiency of the volatilization of trichloroethene from shower water as observed in model showers, as well as in several homes. The model was developed by Dr. Julian B. Andelman at the Graduate School of Public Health, University of Pittsburgh.

Ca = Cinf[1+((1/kts))(exp(-kts)-1))]

Where:

Cinf = [(E)(Fw)(Ct/1000)]/Fa

k = Fa/Vb

E = (ETCE)(H)/(HTCE)

The following defines the parameters used in the Andelman Shower Model:

<u>Parameter</u> Ca Cinf	Constant Chem. Specific Chem. Specific	<u>Units</u> mg/m3 mg/m3	<u>Description</u> Avg. Air Conc. over Shower Duration Asymptotic Conc. in Air
E	Chem. Specific	unitless	Efficiency of Release-Water to Air
Н	Chem. Specific	m3-atm/mol	Henry's Constant for Chemical (i)
Ct	Chem. Specific	ug/L	Conc. of Chemical (i) in Shower Water
ETCE	0.6	unitless	Efficiency of Release of TCE
HTCE	9.1E-03	m3-atm/mol	Henry's Constant for TCE
Fa	2.4	m3/min	Flow Rate of Air in the Shower
Vb	12	m3	Volume of Average Bathroom
k	0.2	1/min	Rate Constant
Fw	8	L/min	Flow Rate of Water in Shower
ts	12	min	Showering Time

Volatile Organic	H	E	Ct	Cinf	Ca
COPCs	(atm-m3/mol)		(ug/L)	(mg/m3)	(mg/m3)
Carbon Disulfide	1.23E-02	8.1E-01	5	1.4E - 02	0.01

GROUNDWATER INHALATION EXPOSURE ASSESSMENT SITE 65 - ENGINEER AREA DUMP REMEDIAL INVESTIGATION CTO-0312 MCB CAMP LEJEUNE. NORTH CAROLINA FUTURE RESIDENTIAL ADULT

CDI (mg/kg/d)= (CA*IR*ET*EF*ED)/(BW*AT)

ILCR = CDI*CSFi HQ = CDI/RfDi

<u>Parameter</u>	Description	<u>Adult</u>	
CDI	Chronic daily intake (mg/kg/d)	CS	(Chemical Specific)
ILCR	Incremental lifetime cancer risk	CS	
CSFi	Oral cancer slope factor (1/(mg/kg/d))	CS	
HQ	Hazard quotient	cs	
RfDi	Oral reference dose (mg/kg/d)	CS	
С	Concentration of volatilized chemical in		
	shower air, Andelman Model (mg/m3)	CS	•
IR	Inhalation rate (m3/hr)	0.6	
ET	Exposure time (hrs/d)	0.25	
EF	Exposure Frequency (d/yr)	350	
ED	Exposure Duration (yrs)	30	
BW	Body weight (kg)	70	
ATc	Averaging time, carcinogens (d)	25550	
ATn	Averaging time, noncarcinogens (d)	10950	

						Adult Resid	lents	······································	
			ļ		Carcinogens	.	No	ncarcinoge	ens
	C	CSFi	RfDi	CDI		% Contrib.	CDI		% Contrib.
Parameter	(mg/m3)	1/(mg/kg/d)	(mg/kg/d)	(mg/kg/d)	ILCR	Total ILCR	(mg/kg/d)	HQ	HI
Carbon Disulfide	0.01	NA	0.1	8.8E-06			2.1E-05	2.1E-04	100.0%
		1		LTotal ILCR:	0.0E+00	0.0%	HI:	2.1E-04	100.0%

NOTES:

NA - Toxicity criterion not available.
-- Not applicable.

GROUNDWATER INHALATION EXPOSURE ASSESSMENT SITE 65 - ENGINEER AREA DUMP REMEDIAL INVESTIGATION CTO-0312 MCB CAMP LEJEUNE, NORTH CAROLINA FUTURE RESIDENTIAL CHILD

CDI (mg/kg/d)= (CA*RR*ET*EF*ED)/(BW*AT)

ILCR = CDI*CSFi HQ = CDI/RfDi

			Young Child	
Parameter	Description		(1-6 Yrs Old)	
CDI	Chronic daily intake (mg/kg/d)		CS	(Chemical Specific)
ILCR	Incremental lifetime cancer risk		CS	
CSFi	Oral cancer slope factor (1/(mg/kg/d))		CS	
HQ	Hazard quotient		CS	
RfDi	Oral reference dose (mg/kg/d)		CS	
С	Concentration of volatilized chemical in			
	shower air, Andelman Model (mg/m3)		CS	
IR	Inhalation rate (m3/hr)		0.6	
ET	Exposure time (hrs/d)		0.25	
EF	Exposure Frequency (d/yr)		350	
ED	Exposure Duration (yrs)		6	
BW	Body weight (kg)		15	
ATc	Averaging time, carcinogens (d)	*	25550	
ATn	Averaging time, noncarcinogens (d)		2190	

				Young Child (ages 1-6 Yrs.)										
				C	arcinogens	No	loncarcinogens							
	C	CSFi	RfDi	CDI		% Contrib.	CDI		% Contrib.					
Parameter	(mg/m3)	1/(mg/kg/d)	(mg/kg/d)	(mg/kg/d)	ILCR	Total ILCR	(mg/kg/d)	HQ	HI					
Carbon Disulfide	0.01	NA	0.1	8.2E-06			9.6E-05	9.6E-04	100.0%					
		<u> </u>	<u></u>	Total ILCR:	0.0E+00	0.0%	HI:	9.6E-04	100.0%					

NOTES:

NA - Toxicity criterion not available.

- Not applicable.

Checked by: MDB

Date: 10/95

EXAMPLE INGESTION OF SURFACE WATER CALCULATIONS SITE 65 - ENGINEER AREA DUMP CONTRACT TASK ORDER 0312

Purpose: Estimate intake/risk from ingestion of surface water

Intake (mg/kg·day) =
$$\frac{C \times IR \times ET \times EF \times ED}{BW \times AT}$$

Where:	C	=	Contaminant concentration in surface water (mg/L)
	CR	=	Contact rate (L/hr)
	ET	=	Exposure time (hrs/event)
	EF	=	Exposure frequency (events/year)
	ED	==	Exposure duration (years)
	BW	=	Body weight (kg)
	AT		Averaging time (years)
	DY	===	Days per year (days)

Risks:

Carcinogens = Intake (mg/kg·day) x CSF (mg/kg·day)⁻¹ Noncarcinogens = Intake (mg/kg·day)/RfD (mg/kg·day)

Example Carcinogen: No carcinogenic COPCs in surface water

Example Noncarcinogen: Aluminum

Intake
$$(mg/kg \cdot day) = \frac{25.8 \ mg/L \ x \ 0.05 \ L/hr \ x \ 2.6 \ hrs/event \ x \ 48 \ events/yr \ x \ 30 \ years}{70 \ kg \ x \ 10,950 \ days}$$

$$= 6.3E-03$$

$$Risk = \frac{6.3E - 03 \ mg/kg \cdot day}{1.0 \ mg/kg \cdot day} = 6.3E - 03$$

SURFACE WATER INGESTION EXPOSURE ASSESSMENT SITE 65 - ENGINEER AREA DUMP REMEDIAL INVESTIGATION CTO-0312 MCB CAMP LEJEUNE, NORTH CAROLINA FUTURE ADULT RESIDENT

The intake from the ingestion of surface water is calculated as follows:

Intake (mg/kg-day) = Cw * CR * ET * EF * ED/BW * ATc or ATnc * DY

Where:	INPU'
Cw = contaminant concentration in surface water (mg/l)	specific
CR = ingestion rate (Liter/hour)	0.0
ET = exposure time (hours/event)	2.0
EF = exposure frequency (events/yr)	4
ED = exposure duration (yrs)	3
BW = body weight (kg)	7
ATc = averaging time for carcinogen (yr)	7
ATnc = averaging time for noncarcinogen (yr)	3
DY = days per year (days)	36
CSF = cancer slope factor (mg/kg-day)-1	specific
RfD = reference dose (mg/kg-day)	specific

COPC	Concentration	Contact	Exposure	Exposure	Exposure	Body	Average	Carc	Cancer Slope	Carcinogenic	Percent	Averaging Time	Noncarc	Reference	Noncarcinogenic	Percent
ĺ	1 1	Rate	Time	Frequency	Duration	Weight	Carc Time	Doşe	Factor	Risk	Carcinogenic	Noncarc.	Dose	Dose	Risk	Noncarcinogenic
	(mg/l)	(l/hour)	(hrs/event)	(events/yr)	(years)	(kg)	(days)	(mg/kg-day)	(mg/kg-day)-1		Risk	(days)	(mg/kg-day)	(mg/kg-day)		Risk
Aluminum	25.800	0.05	2.6	48	30	70	25550	2.7E-03	0.0E+00	0.0E+00	0%	10950	6.3E-03	1.0E+00	6.3E-03	41%
Barium	0.069	0.05	2.6	48	30	70	25550	7.3E-06	0.0E+00	0.0E+00	0%	10950	1.7E-05	7.0E-02	2.4E-04	2%
Copper	0.041	0.05	2.6	48	30	70	25550	4.3E-06	0.0E+00	0.0E+00	0%	10950	1.0E-05	3.7E-02	2.7E-04	2%
Iron	7.890	0.05	2.6	48	30	70	25550	8.3E-04	0.0E+00	0.0E+00	0%	10950	1.9E-03	3.0E-01	6.4E-03	42%
Lead	0.046	0.05	2.6	48	30	70	25550	4.8E-06	0.0E+00	0.0E+00	0%	10950	1.1E-05	0.0E+00	0.0E+00	0%
Manganese (water)		0.05	2.6	48	30	70	25550	9.3E-06	0.0E+00	0.0E+00	0%	10950	2.2E-05	2.3E-02	9.4E-04	6%
Vanadium	0.026	0.05	2.6	48	30	70	25550	2.7E-06	0.0E+00	0.0E+00	0%	10950	6.4E-06	7.0E-03	9.1E-04	6%
Zinc	0.144	0.05	2.6	48	30	70	25550	1.5E-05	0.0E+00	0.0E+00	0%	10950	3,5E-05	3.0E-01	1.2E-04	1%
TOTAL										0.0E+00					1.5E-02	

SURFACE WATER INGESTION EXPOSURE ASSESSMENT SITE 65 - ENGINEER AREA DUMP REMEDIAL INVESTIGATION CTO-0312 MCB CAMP LEJEUNE, NORTH CAROLINA FUTURE CHILD RESIDENT

The intake from the ingestion of surface water is calculated as follows:

Intake (mg/kg-day) = Cw * CR * ET * EF * ED/BW * ATc or ATnc * DY

Risk = Intake * CSF or /RfD

Vhere:	INPUT
Cw = contaminant concentration in surface water (mg/l)	
CR = contact rate (Liter/hour)	0.08
ET = child exposure time (hours/event)	2.6
EF = child exposure frequency (events/yr)	48
ED = child exposure duration (yrs)	6
BW = child body weight (kg)	16
ATc = averaging time for carcinogen (yr)	70
ATnc = averaging time for noncarcinogen (yr)	6
DY = days per year (days)	365
CSF = cancer slope factor (mg/kg-day)-1 spec	ific
RfD = reference dose (mg/kg-day) spec	ific

COPC	Concentration	Contact	Exposure	Exposure	Exposure	Body	Averaging	Carc	Cancer Slop	Carcinogenic	Percent	Averaging Time	Noncarc	Reference	Noncarcinoger	Percent
	Carcinogen	Rate	Time	Frequency	Duration	Weight	Carc. Time	Dose	Factor	Risk	Carcinogenic	Noncarc	Dose	Dose	Risk	Noncarcinogeni
	(mg/l)	(l/hour)	(hrs/event)	(events/yr)	(years)	(kg)	(days)	(mg/kg-da	(mg/kg-day)-	Child	Risk	(days)	(mg/kg-day)	(mg/kg-day)	Child	Risk
			Child	Child	Child	Child		Child			Child	' ' '	Child	,		Child
Aluminum	25.800	0.05	2.6	48	6	15	25550	2.5E-03	0.0E+00	0.0E+00	0%	2190	2.9E-02	1.0E+00	2.9E-02	41%
Barium	0.069	0.05	2.6	48	6	15	25550	6.8E-06	0.0E+00	0.0E+00	0%	2190	7.9E-05	7.0E-02	1.1E-03	2%
Copper	0.041	0.05	2.6	48	6	15	25550	4.0E-06	0.0E+00	0.0E+00	0%	2190	4.7E-05	3.7E-02	1.3E-03	2%
Iron	7.890	0,05	2.6	48	6	15	25550	7.7E-04	0.0E+00	0.0E+00	0%	2190	9.0E-03	3.0E-01	3.0E-02	42%
Lead	0.046	0.05	2.6	48	6	15	25550	4.5E-06	0.0E+00	0.0E+00	0%	2190	5.2E-05	0.0E+00	0.0E+00	0%
Manganese (water)	0.088	0.05	2.6	48	6	15	25550	8.6E-06	0.0E+00	0.0E+00	0%	2190	1.0E-04	2.3E-02	4.4E-03	6%
Vanadium	0.026	0.05	2.6	48	6	15	25550	2.6E-06	0.0E+00	0.0E+00	0%	2190	3.0E-05	7.0E-03	4.3E-03	6%
Zinc	0.144	0.05	2.6	48	6	15	25550	1.4E-05	0.0E+00	0.0E+00	0%	2190	1.6E-04	3.0E-01	5.5E-04	1%
TOTAL									T	0.0E+00					7.1E-02	

1

SURFACE WATER INGESTION EXPOSURE ASSESSMENT - CT SITE 65 - ENGINEER AREA DUMP REMEDIAL INVESTIGATION CTO-0312 MGB CAMP LEJEUNE, NORTH CAROLINA FUTURE CHILD RESIDENT

The intake from the ingestion of surface water is calculated as follows:

Intake (mg/kg-day) = Cw * CR * ET * EF * ED/BW * ATc or ATnc * DY

Vhere:	INPUT
Cw = contaminant concentration in surface water (mg/l)	
CR = contact rate (Liter/hour)	0.05
ET = child exposure time (hours/event)	2.6
EF = child exposure frequency (events/yr)	48
ED = child exposure duration (yrs)	6
BW = child body weight (kg)	18
ATc = averaging time for carcinogen (yr)	70
ATnc = averaging time for noncarcinogen (yr)	6
DY = days per year (days)	365
CSF = cancer slope factor (mg/kg-day)-1	specific
RfD = reference dose (mg/kg-day)	specific

COPC	Concentration Carcinogen	Contact Rate	Exposure Time	Exposure Frequency	Exposure Duration	Body Weight	Averaging Carc, Time	Carc Dose	Cancer Slope Factor	Carcinogenic Risk	Percent Carcinogenic	Averaging Time Noncarc	Noncarc Dose	Reference Dose	Noncarcinogenic Risk	Percent Noncarcinogenic
	(mg/l)	(Vhour)	(hrs/event)	(events/yr)	(years)	(kg)	(days)	(mg/kg-day)	(mg/kg-day)-1	Child	Risk	(days)	(mg/kg-day)	(mg/kg-day)	Child	Risk
			Child	Child	Child	Child		Child			Child		Child			Child
Aluminum	25,800	0.05	2.6	48	6	15	25550	2.5E-03	0.0E+00	0.0E+00	0%	2190	2.9E-02	1.0E+00	2.9E-02	41%
Barium	0.069	0.05	2.6	48	6	15	25550	6.8E-08	0.0E+00	0.0E+00	0%	2190	7.9E-05	7.0E-02	1.1E-03	2%
Copper	0.041	0.05	2.6	48	6	15	25550	4.0E-06	0.0E+00	0.0E+00	0%	2190	4.7E-05	3.7E-02	1.3E-03	2%
Iron	7.890	0.05	2.6	48	6	15	25550	7.7E-04	0.0E+00	0.0E+00	0%	2190	9.0E-03	3.0E-01	3.0E-02	42%
Lead	0.046	0.05	2.6	48	8	15	25550	4.5E-06	0.0E+00	0.0E+00	0%	2190	5.2E-05	0.0E+00	0.0E+00	0%
Manganese (water)	0.088	0.05	2.6	48	6	15	25550	8.6E-06	0.0E+00	0.0E+00	- 0%	2190	1.0E-04	2.3E-02	4.4E-03	6%
Vanadium	0.026	0.05	2.6	48	- 6	15	25550	2.6E-06	0.0E+00	0.0E+00	0%	2190	3.0E-05	7.0E-03	4.3E-03	6%
Zinc	0.144	0.05	2.6	48	6	15	25550	1.4E-05	0.0E+00	0.0E+00	0%	2190	1.6E-04	3.0E-01	5.5E-04	1%
TOTAL			1							0.0E+00					7.1E-02	l

SURFACE WATER INGESTION EXPOSURE ASSESSMENT SITE 65 - ENGINEER AREA DUMP REMEDIAL INVESTIGATION CTO-0312 MCB CAMP LEJEUNE, NORTH CAROLINA FISHERMAN - ADULT RECEPTOR

The intake from the ingestion of surface water is calculated as follows:

Intake (mg/kg-day) = Cw * CR * ET * EF * ED/BW * ATc or ATnc * DY

Where:	INPUT
Cw = contaminant concentration in surface water (mg/l)	• .
IR = ingestion rate (Liter/hour)	0.05
ET = exposure time (hours/event)	2.6
EF = exposure frequency (events/yr)	48
ED = exposure duration (yrs)	30
BW = body weight (kg)	70
ATc = averaging time for carcinogen (yr)	70
ATnc = averaging time for noncarcinogen (yr)	30
DY = days per year (days)	365
CSF = cancer slope factor (mg/kg-day)-1 spec	ific
RfD = reference dose (mg/kg-day) spec	

COPC	Concentration	Contact	Exposure	Exposure	Exposure	Body	Average	Carc	Cancer Slope	Carcinogenic	Percent	Averaging Time	Noncarc	Reference	Noncarcinogenic	Percent
	(mg/l)	Rate	Time	Frequency	Duration	Weight	Carc Time	Dose	Factor	Risk	Carcinogenic	Noncarc.	Dose	Dose	Risk	Noncarcinogenic
		(l/hour)	(hrs/event)	(events/yr)	(years)	(kg)	(days)	(mg/kg-day)	(mg/kg-day)-1		Risk	(years)	(mg/kg-day)	(mg/kg-day)		Risk
Aluminum	25.800	0.05	2.6	48	30	70	25550	2.7E-03	0.00E+00	0.0E+00	0%	10950	6.3E-03	1.00E+00	6.3E-03	41%
Barium	0.069	0.05	2.6	48	30	70	25550	7.3E-06	0.00E+00	0.0E+00	0%	10950	1.7E-05	7.00E-02	2.4E-04	2%
Copper	0.041	0.05	2.6	48	30	70	25550	4.3E-06	0.00E+00	0.0E+00	0%	10950	1.0E-05	3.71E-02	2.7E-04	2%
iron	7.890	0.05	2.6	48	30	70	25550	8.3E-04	0.00E+00	0.0E+00	0%	10950	1.9E-03	3.00E-01	6.4E-03	42%
Lead	0.046	0.05	2.6	48	30	70	25550	4.8E-06	0.00E+00	0.0E+00	0%	10950	1.1E-05	0.00E+00	0.0E+00	0%
Manganese (water)	0.088	0.05	2.6	48	30	70	25550	9.3E-06	0.00E+00	0.0E+00	0%	10950	2.2E-05	2.30E-02	9.4E-04	6%
Vanadium	0.026	0.05	2.6	48	30	70	25550	2.7E-06	0.00E+00	0.0E+00	0%	10950	6.4E-06	7.00E-03	9.1E-04	6%
Zinc	0.144	0.05	2.6	48	30	70	25550	1.5E-05	0.00E+00	0.0E+00	0%	10950	3.5E-05	3.00E-01	1.2E-04	1%
TOTAL										0.0E+00		10000	0.00.00	0.00L-01	1.5E-02	170

SURFACE WATER INGESTION EXPOSURE ASSESSMENT SITE 65 - ENGINEER AREA DUMP REMEDIAL INVESTIGATION CTO-0312 MCB CAMP LEJEUNE, NORTH CAROLINA FISHERMAN - CHILD RECEPTOR

The intake from the ingestion of surface water is calculated as follows:

Intake (mg/kg-day) = Cw * CR * ET * EF * ED/BW * ATc or ATnc * DY

Risk = Intake * CSF or /RfD

Where:	INPUT
Cw = contaminant concentration in surface water (mg/l)	
CR = contact rate (Liter/hour)	0.05
ET = child exposure time (hours/event)	2.6
EF = child exposure frequency (events/yr)	48
ED = child exposure duration (yrs)	6
BW = child body weight (kg)	15
ATc = averaging time for carcinogen (yr)	70
ATnc = averaging time for noncarcinogen (yr)	
DY = days per year (days)	369
CSF = cancer slope factor (mg/kg-day)-1	specific
RfD = reference dose (mg/kg-day)	specific

COPC	Concentration	Contact	Exposure	Exposure	Exposure	Body	Averaging	Carc	Cancer Slope	Carcinogenic	Percent	Averaging Time	Noncarc	Reference	Noncarcinogenic	Percent
	Carcinogen	Rate	Time	Frequency	Duration	Weight	Carc. Time	Dose	Factor	Risk	Carcinogenic	Noncarc	Dose	Dose	Risk	Noncarcinogenic
	(mg/l)	(l/hour)	(hrs/event)	(events/yr)	(years)	(kg)	(days)	(mg/kg-day)	(mg/kg-day)-1	Child	Risk	(days)	(mg/kg-day)	(mg/kg-day)	Child	Risk
			Child	Child	Child	Child		Child			Child		Child	l		Child
Aluminum	25.800	0.05	2.6	48	6	15	25550	2.5E-03	0.0E+00	0.0E+00	0%	2190	2.9E-02	1.0E+00	2.9E-02	41%
Barium	0.069	0.05	2.6	48	6	15	25550	8.8E-06	0.0E+00	0.0E+00	0%	2190	7.9E-05	7.0E-02	1.1E-03	2%
Copper	0.041	0.05	2.6	48	6	15	25550	4.0E-06	0.0E+00	0.0E+00	0%	2190	4.7E-05	3.7E-02	1.3E-03	2%
Iron	7.890	0.05	2.6	48	6	15	25550	7.7E-04	0.0E+00	0.0E+00	0%	2190	9.0E-03	3.0E-01	3.0E-02	42%
Lead	0.046	0.05	2.6	48	6	15	25550	4.5E-06	0.0E+00	0.0E+00	0%	2190	5.2E-05	0.0E+00	0.0E+00	0%
Manganese (water)	0.088	0.05	2.6	48	6	15	25550	8.6E-06	0.0E+00	0.0E+00	0%	2190	1.0E-04	2.3E-02	4.4E-03	6%
Vanadium	0.026	0.05	2.6	48	6	15	25550	2.6E-06	0.0E+00	0.0E+00	0%	2190	3.0E-05	7.0E-03	4.3E-03	6%
Zine	0.144	0.05	2.6	48	6	15	25550	1.4E-05	0.0E+00	0.0E+00	0%	2190	1.6E-04	3.0E-01	5.5E-04	1%
TOTAL		W. W. W. W. W. W. W. W. W. W. W. W. W. W	1	, , , , , , , , , , , , , , , , , , , ,				1		0.0E+00					7.1E-02	

20.0

Date: 10/95

EXAMPLE DERMAL CONTACT WITH SURFACE WATER CALCULATIONS SITE 65 - ENGINEER AREA DUMP CONTRACT TASK ORDER 0312

Purpose: Estimate intake/risk from dermal contact with surface water

Intake (mg/kg·day) =
$$\frac{C \times SA \times PC \times ET \times EF \times ED \times CF}{BW \times AT}$$

Where:	С	=	Contaminant concentration in groundwater (mg/L)
	SA	=	Exposed skin surface available for contact (cm ²)
	PC	==	Permeability constant (cm/hr)
	ET	=	Exposure time (hr/day)
	EF	=	Exposure frequency (days/year)
	ED	=	Exposure duration (years)
	CF	=	Conversion factor (1 L/1,000 cm ³)
	BW	=	Body weight (kg)
	AT_c	=	Averaging time carcinogen (days)
	AT_{ne}	==	Averaging time noncarcinogen (days)

Risks:

Carcinogens = Intake (mg/kg·day) x CSF (mg/kg·day)⁻¹ Noncarcinogens = Intake (mg/kg·day)/RfD (mg/kg·day)

Example Carcinogen: No Carcinogenic COPCs in Surface Water

Example Noncarcinogen: Aluminum

$$Intake (mg/kg \cdot day) = \frac{25.8 \, mg/L \, x \, 8.300 \, cm^2 x \, 1.0E - 03 \, cmhr \, x \, 2.6 \, hr/day \, x \, 48 \, days/yr \, x \, 30 \, yr \, s \, x \, 1 \, L/1,000 \, cm^3}{70 \, kg \, x \, 10,950 \, days}$$

= 1.0E-03

$$Risk = \frac{1.0E - 03 \ mg/kg \cdot day}{2.0E - 01 \ mg/kg \cdot day} = 5.2E - 03$$

SURFACE WATER DERMAL CONTACT EXPOSURE ASSESSMENT SITE 65 - ENGINEER AREA DUMP REMEDIAL INVESTIGATION CTO-0312 MCB CAMP LEJEUNE, NORTH CAROLINA FUTURE ADULT RESIDENT

The intake from dermal contact with surface water is calculated as follows:

Intake (mg/kg-day) = Cw * SA * PC * ET * EF * ED * CF/BW * ATc or ATnc * DY

Where:	INPUTS
CW = contaminant concentration in water (mg/l)	
SA = skin surface available for contact (cm2)	8300
PC = contaminant specific dermal permability (cm/hr)	Specific
ET = exposure time (hours/day)	2.6
EF = exposure frequency (days/yr)	48
ED = exposure duration (years)	30
CF = volumetric conversion factor for water (1liter/1000 cm3)	0.001
BW = body weight (kg)	70
ATc = averaging time for carcinogen (yr)	70
ATnc = averaging time for noncarcinogen (yr)	30
DY = days per year (days)	365
CSF = cancer slope factor (mg/kg-day)-1	Specific
RfD = reference dose (mg/kg-day)	Specific

COPC	Concentration (mg/l)	Surface Area (cm2)	Dermal Permeability (cm/hr)	Exposure Time (hours/day)	Exposure Frequency (days/yr)	Exposure Duration (years)	Volumetric Conversion (L/m3)	Body Weight (kg)	Averaging Carc Time (days)	Carc Dose (mg/kg-day)	Dermal Adjust. Slope Factor (mg/kg-day)-1	Carcinogenic Risk	Percent Carcinogenic Risk	Average Noncarc Time (days)	Noncarc Dose (mg/kg-day)	Dermal Adjust. Reference Dose (mg/kg-day)	Noncare Risk	Percent Noncarcinogenic Risk
Aluminum	25.800	8300	1.0E-03	2.6	48	30	0.001	70	25550	4.5E-04	0.0E+00	0.0E+00	0%	10950	1.0E-03	2.0E-01	5.2E-03	42%
Barium	0.069	8300	1.0E-03	2.6	48	30	0.001	70	25550	1.2E-06	0.0E+00	0.0E+00	0%	10950	2.8E-06	1,4E-02	2.0E-04	2%
Copper	0.041	8300	1.0E-03	2.6	48	30	0.001	70	25550	7.1E-07	0.0E+00	0.0E+00	0%	10950	1.7E-06	7.4E-03	2.2E-04	2%
Iron	7.890	8300	1.0E-03	2.6	48	30	0.001	70	25550	1.4E-04	0.0E+00	0.0E+00	0%	10950	3.2E-04	6.0E-02	5.3E-03	42%
Lead	0.046	8300	4.0E-06	2.6	48	30	0.001	70	25550	3.2E-09	0.0E+00	0.0E+00	0%	10950	7.4E-09	0.0E+00	0.0E+00	0%
Manganese (water)	0.088	8300	1.0E-03	2.6	48	30	0.001	70	25550	1.5E-06	0.0E+00	0.0E+00	0%	10950	3.6E-06	4.6E-03	7.8E-04	6%
Vanadium	0.026	8300	1.0E-03	2.6	48	30	0.001	70	25550	4.6E-07	0.0E+00	0.0E+00	0%	10950	1.1E-06	1.4E-03	7.6E-04	6%
Zinc	0.144	8300	6.0E-04	2.6	48	30	0.001	70	25550	1.5E-06	0.0E+00	0.0E+00	0%	10950	3.5E-06	6.0E-02	5.8E-05	0%
TOTAL	**************************************			•			•		*	• • • • • • • • • • • • • • • • • • • •		0.0E+00	1				1.3E-02	

SURFACE WATER DERMAL CONTACT EXPOSURE ASSESSMENT SITE 65 - ENGINEER AREA DUMP REMEDIAL INVESTIGATION CTO-0312 MCB CAMP LEJEUNE, NORTH CAROLINA FISHERMAN - ADULT RECEPTOR

The intake from dermal contact with surface water is calculated as follows:

Intake (mg/kg-day) = Cw * SA * PC * ET * EF * ED * CF/BW * ATc or ATnc * DY

Where:	INPUTS
CW = contaminant concentration in water (mg/l)	
SA = skin surface available for contact (cm2)	8300
PC = contaminant specific dermal permability (cm/hr	Specific
ET = exposure time (hours/day)	2.6
EF = exposure frequency (days/yr)	48
ED = exposure duration (years)	30
CF = volumetric conversion factor for water (1liter/1	0.001
BW = body weight (kg)	70
ATc = averaging time for carcinogen (yr)	70
ATnc = averaging time for noncarcinogen (yr)	30
DY ≈ days per year (days)	365
CSF = cancer slope factor (mg/kg-day)-1	Specific
RfD = reference dose (mg/kg-day)	Specific

COPC	Concentration Carcinogen (mg/l)	Surface Area (cm2)	Dermal Permeability (cm/hr)	Exposure Time (hours/day)	Exposure Frequency (days/yr)	Exposure Duration (years)	Volumetric Conversion (L/m3)	Body Weight (kg)	Averaging Carc Time (days)	Carc Dose (mg/kg-day)	Dermal Adjust. Slope Factor (mg/kg-day)-1	Carcinogenic Risk	Percent Carcinogenic Risk	Average Noncarc Time (days)	Noncarc Dose (mg/kg-day)	Dermal Adjust. Reference Dose (mg/kg-day)	Noncarc. Risk	Percent Noncarcinogenic Risk
Aluminum	25.800	8300	1.0E-03	2.6	48	30	0.001	70	25550	4.5E-04	0.00E+00	0.0E+00	0%	10950	1.0E-03	2.00E-01	5.2E-03	42%
Barium	0.069	8300	1.0E-03	2.6	48	30	0.001	70	25550	1.2E-06	0.00E+00	0.0E+00	0%	10950	2.8E-06	1.40E-02	2.0E-04	2%
Copper	0.041	8300	1.0E-03	2.6	48	30	0.001	70	25550	7.1E-07	0.00E+00	0.0E+00	0%	10950	1.7E-06	7.42E-03	2.2E-04	2%
fron	7.890	8300	1.0E-03	2.6	48	30	0.001	70	25550	1.4E-04	0.00E+00	0.0E+00	0%	10950	3.2E-04	6.00E-02	5.3E-03	42%
Lead	0.046	8300	4.0E-06	2.6	48	30	0.001	70	25550	3.2E-09	0.00E+00	0.0E+00	0%	10950	7.4E-09	0.00E+00	0.0E+00	0%
Manganese (water)	0.088	8300	1.0E-03	2.6	48	30	0.001	70	25550	1.5E-06	0.00E+00	0.0E+00	0%	10950	3.6E-06	4.60E-03	7.8E-04	6%
Vanadium	0.026	8300	1.0E-03	2.6	48	30	0.001	70	25550	4.6E-07	0.00E+00	0.0E+00	0%	10950	1.1E-06	1.40E-03	7.6E-04	6%
Zinc	0.144	8300	6.0E-04	2.6	48	30	0.001	70	25550	1.5E-06	0.00E+00	0.0E+00	0%	10950	3.5E-06	6.00E-02	5.8E-05	0%
TOTAL					·				·			0.0E+00	·	<u></u>			1.3E-02	

SURFACE WATER DERMAL CONTACT EXPOSURE ASSESSMENT SITE 65 - ENGINEER AREA DUMP REMEDIAL INVESTIGATION CTO-0312 MCB CAMP LEJEUNE, NORTH CAROLINA FISHERMAN - CHILD RECEPTOR

The intake from dermal contact with surface water is calculated as follows:

intake (mg/kg-day) = Cw * SA * PC * ET * EF * ED * CF/BW * ATc or ATnc * DY

Risk = Intake * CSF or /RfD

Where:	INPUT
CW = contaminant concentration in water (mg/l)	Specific
SA = child skin surface available for contact (cm2)	2100
PC = contaminant specific dermal permability (cm/hr)	Specific
ET = child exposure time (hours/day)	2.6
EF = child exposure frequency (days/yr)	48
ED = child exposure duration (years)	
CF = volumetric conversion factor for water (1liter/1000 cm3)	0.00
BW ≃ child body weight (kg)	15
ATc = averaging time for carcinogen (yr)	70
ATnc = averaging time for noncarcinogen (yr)	(
DY = days per year (days)	36
CSF = cancer slope factor (mg/kg-day)-1	Specific
RfD = reference dose (mg/kg-day)	Specifi

COPC	Concentration	Surface	Dermal	Exposure	Exposure	Exposure	Volumetric	Body	Averaging	Carc	Dermal Adjust.	Carcinogenic	Percent	Average	Noncarc	Dermal Adjust.	Noncarc.	Percent
		Area	Permeability	Time	Frequency	Duration	Conversion	Weight	Carc Time	Dose	Slope	Risk	Carcinogenic	Noncarc Time	Dose	Reference	Risk	Noncarcinogenic
	(mg/l)	(cm2)	(cm/hr)	(hours/day)	(days/yr)	(years)	(L/m3)	(kg)	(days)	(mg/kg-day)	Factor	Child	Risk	(days)	(mg/kg-day)	Dose	Child	Risk
		Child		Child	Child	Child		Child		Child	(mg/kg-day)-1		Child		Child	(mg/kg-day)	l	Child
Aluminum	25.800	2100	1.0E-03	2.6	48	6	0.001	15	25550	1.1E-04	0.0E+00	0.0E+00	0%	2190	1.2E-03	2.0E-01	6.2E-03	42%
Barium	0.069	2100	1.0E-03	2.6	48	6	0.001	15	25550	2.8E-07	0.0£+00	0.0E+00	0%	2190	3.3E-06	1.4E-02	2.4E-04	2%
Copper	0.041	2100	1.0E-03	2.6	48	6	0.001	15	25550	1.7E-07	0.0E+00	0.0E+00	0%	2190	2.0E-06	7.4E-03	2.7E-04	2%
iron	7.890	2100	1.0E-03	2.6	48	6	0.001	15	25550	3.2E-05	0.0E+00	0.0E+00	0%	2190	3.8E-04	6.0E-02	6.3E-03	42%
Lead	0.046	2100	4.0E-06	. 2.6	48	8	0.001	15	25550	7.5E-10	0.0E+00	0.0E+00	0%	2190	8.8E-09	0.0E+00	0.0≝+00	0%
Manganese (water)	0.088	2100	1.0E-03	2.6	48	6	0.001	15	25550	3.6E-07	0.0E+00	0.0E+00	0%	2190	4.2E-06	4.6E-03	9.2E-04	6%
Vanadium	0.026	2100	1.0E-03	2.6	48	6	0.001	15	25550	1.1E-07	0.0E+00	0.0E+00	0%	2190	1.3E-06	1.4E-03	9.0E-04	6%
Zinc	0.144	2100	6.0E-04	2.6	48	8	0.001	15	25550	3.5E-07	0.0E+00	0.0E+00	0%	2190	4.1E-06	6.0E-02	6.9E-05	0%
TOTAL												0.0E+00					1.5E-02	

29-0

SURFACE WATER DERMAL CONTACT EXPOSURE ASSESSMENT SITE 65 - ENGINEER AREA DUMP REMEDIAL INVESTIGATION CTO-0312 MCB CAMP LEJEUNE, NORTH CAROLINA FUTURE CHILD RESIDENT

The intake from dermal contact with surface water is calculated as follows:

Intake (mg/kg-day) = Cw * SA * PC * ET * EF * ED * CF/BW * ATc or ATnc * DY

Vhere:	INPUTS
CW = contaminant concentration in water (mg/l)	Specific
SA = child skin surface available for contact (cm2)	2100
PC = contaminant specific dermal permability (cm/	Specific
ET = child exposure time (hours/day)	2.6
EF = child exposure frequency (days/yr)	48
ED = child exposure duration (years)	6
CF = volumetric conversion factor for water (1iiter/1	0.001
BW = child body weight (kg)	15
ATc = averaging time for carcinogen (yr)	70
ATnc = averaging time for noncarcinogen (yr)	6
DY = days per year (days)	365
CSF = cancer slope factor (mg/kg-day)-1	Specific
RfD = reference dose (mg/kg-day)	Specific

COPC	Concentration	Surface	Dermal	Exposure	Exposure	Exposure	Volumetric	Body	Averaging	Carc	Dermal Adjust.	Carcinogenic	Percent	Average	Noncarc	Dermal Adjust.	Noncarc.	Percent
		Area	Permeability	Time	Frequency	Duration	Conversion	Weight	Carc Time	Dose	Slope	Risk	Carcinogenic	Noncarc Time	Dose	Reference	Risk	Noncarcinogenic
	(mg/l)	(cm2)	(cm/hr)	(hours/day)	(days/yr)	(years)	(L/m3)	(kg)	(days)	(mg/kg-day)	Factor	Child	Risk	(days)	(mg/kg-day)	Dose	Child	Risk
		Child		Child	Child	Child		Child		Child	(mg/kg-day)-1		Child		Child	(mg/kg-day)		Child
Aluminum	25,800	2100	1.0E-03	2.6	48	6	0.001	15	25550	1.1E-04	0.0E+00	0.0E+00	0%	2190	1.2E-03	2.0E-01	6.2E-03	42%
Barium	0.069	2100	1.0E-03	2.6	48	6	0.001	15	25550	2.8E-07	0.0E+00	0.0E+00	0%	2190	3.3E-06	1.4E-02	2.4E-04	2%
Copper	0.041	2100	1.0E-03	2.6	48	6	0.001	15	25550	1.7E-07	0.0E+00	0.0E+00	0%	2190	2.0E-06	7.4E-03	2.7E-04	2%
Iron	7.890	2100	1.0E-03	2.6	48	6	0.001	15	25550	3.2E-05	0.0E+00	0.0E+00	0%	2190	3.8E-04	6.0E-02	6.3E-03	42%
Lead	0.046	2100	4.0E-06	2.6	48	6	0.001	15	25550	7.5E-10	0.0E+00	0.0E+00	0%	2190	8.8E-09	0.0E+00	0.0E+00	0%
Manganese (water)	0.088	2100	1.0E-03	2.6	48	6	0.001	15	25550	3.6E-07	0.0E+00	0.0E+00	0%	2190	4.2E-06	4.6E-03	9.2E-04	5%
Vanadium	0.026	. 2100	1.0E-03	2.6	48	6	0.001	15	25550	1.1E-07	0.0E+00	0.0E+00	0%	2190	1.3E-06	1.4E-03	9.0E-04	6%
Zinc	0.144	2100	6.0E-04	2.6	48	6	0.001	15	25550	3.5E-07	0.0E+00	0.0E+00	0%	2190 _	4.1E-06	6.0E-02	6.9E-05	0%
TOTAL												0.0E+00					1.5E-02	

SURFACE WATER DERMAL CONTACT EXPOSURE ASSESSMENT - CT SITE 65 - ENGINEER AREA DUMP REMEDIAL INVESTIGATION CTO-0312 MCB CAMP LEJEUNE, NORTH CAROLINA FUTURE CHILD RESIDENT

The intake from dermal contact with surface water is calculated as follows:

Intake (mg/kg-day) = Cw * SA * PC * ET * EF * ED * CF/BW * ATc or ATnc * DY

Where:	INPUT
CW = contaminant concentration in water (mg/l)	Specifi
SA = child skin surface available for contact (cm2)	174
PC = contaminant specific dermal permability (cm/hr)	Specifi
ET = child exposure time (hours/day)	2.
EF = child exposure frequency (days/yr)	4
ED = child exposure duration (years)	4
CF = volumetric conversion factor for water (1liter/1000 c	0.00
BW = child body weight (kg)	1
ATc = averaging time for carcinogen (yr)	7
ATnc = averaging time for noncarcinogen (yr)	1
DY = days per year (days)	36
CSF = cancer slope factor (mg/kg-day)-1	Specifi
RfD = reference dose (mg/kg-day)	Specifi

COPC	Concentration	Surface Area	Dermal Permeability	Exposure Time	Exposure Frequency	Exposure Duration	Volumetric Conversion	Body Weight	Averaging Carc Time	Carc Dose	Dermal Adjust. Slope	Carcinogenic Risk	Percent Carcinogenic		Noncarc Dose	Dermal Adjust. Reference	Noncarc. Risk	Percent Noncarcinogenic
	(mg/l)	(cm2)	(cm/hr)	(hours/day)	(days/yr)	(years)	(L/m3)	(kg)	(days)	(mg/kg-day)	Factor	Child	Risk Child	(days)	(mg/kg-day)	Dose	Child	Risk Child
	1	Child		Child	Child	Child		Child_	l	Child	(mg/kg-day)-1		Child		Child	(mg/kg-day)		
Aluminum	25.800	1745	1.0E-03	2.6	48	6	0.001	15	25550	8.8E-05	0.0E+00	0.0E+00	0%	2190	1.0E-03	2.0E-01	5.1E-03	42%
Barium	0.069	1745	1.0E-03	2.6	48	6	0.001	15	25550	2.4E-07	0.0E+00	0.0E+00	0%	2190	2.8E-06	1.4E-02	2.0E-04	2%
Copper	0.041	1745	1.0E-03	2.6	48	6	0.001	15	25550	1.4E-07	0.0E+00	0.0E+00	0%	2190	1.6E-06	7.4E-03	2.2E-04	2%
Iron	7.890	1745	1.0E-03	2.6	48	6	0.001	15	25550	2.7E-05	0.0E+00	0.0E+00	0%	2190	3.1E-04	6.0E-02	5.2E-03	42%
Lead	0.046	1745	4.0E-06	2.6	48	6	0.001	15	25550	6.2E-10	0.0E+00	0.0E+00	0%	2190	7.3E-09	0.0E+00	0.0E+00	0%
Manganese (water)	0.088	1745	1.0E-03	2.6	48	6	0.001	15	25550	3.0E-07	0.0E+00	0.0E+00	0%	2190	3.5E-06	4,6E-03	7.8E-04	6%
Vanadium	0.026	1745	1.0E-03	2.6	48	6	0.001	15	25550	8.9E-08	0.0E+00	0.0E+00	0%	2190	1.0E-06	1.4E-03	7.4E-04	6%
Zinc	0.144	1745	6.0E-04	2.6	48	6	0.001	15	25550	2.9E-07	0.0E+00	0.0E+00	0%	2190	3.4E-06	6.0E-02	5.7E-05	0%
TOTAL				·			···········					0.0E+00					1.2E-02	

Date: 10/95

EXAMPLE FISH INGESTION CALCULATIONS SITE 65 - ENGINEER AREA DUMP CONTRACT TASK ORDER 0312

Purpose: Estimate intake/risk from ingestion of fish

Intake (mg/kg·day) =
$$\frac{C \times CF \times EF \times ED \times IR}{BW \times AT}$$

 \mathbf{C} Where: Contaminant concentration in fish (mg/kg) FI Fraction ingested (unitless) EF Exposure frequency (meals/year) ED Exposure duration (years) IR Ingestion rate (kg/meal) BWBody weight (kg) AT_{c} Averaging time carcinogen (days) Averaging time noncarcinogen (days) AT_{nc}

Risks:

Carcinogens = Intake (mg/kg·day) x CSF (mg/kg·day)⁻¹ Noncarcinogens = Intake (mg/kg·day)/RfD (mg/kg·day)

Example Carcinogen: No carcinogenic COPCs in fish tissue

Example Noncarcinogen: Mercury

Intake
$$(mg/kg \cdot day) = \frac{0.3 \ mg/kg \ x \ 0.145 \ kg/meal \ x \ 48 \ meals/yr \ x \ 30 \ yrs \ x \ 1.0}{70 \ kg \ x \ 10,950 \ days}$$

$$= 8.2E-05$$

$$Risk = \frac{8.2E-05 \ mg/kg \cdot day}{1.0E-04 \ mg/kg \cdot day} = 8.2E-01$$

FISH INGESTION EXPOSURE ASSESSMENT SITE 65 - ENGINEER AREA DUMP REMEDIAL INVESTIGATION CTO-0312 MCB CAMP LEJEUNE, NORTH CAROLINA FISHERMAN - ADULT RECEPTOR

Intake (mg/kg-day) = CF * IR * FI * EF * ED/BW * ATc or ATnc * DY

Where:	INPUTS
CF = contaminant concentration in fish (mg/kg)	
IR = adult ingestion rate (kg/meal)	0.145
FI = fraction ingested from contaminated source (unitless)	1
EF = adult exposure frequency (meals/yr)	48
ED = adult exposure duration (years)	30
BW = adult body weight (kg)	70
ATc = averaging time for carcinogen (years)	70
ATnc = averaging time for noncarcinogen (years)	30
DY = days per year (days/yr)	365

COPC	Concentration	Ingestion	Fraction	Exposure	Exposure	Body	Average	Carc	Slope	Carcinogenic	Percent	Average	Noncarc	Reference	Noncarcinogenic	Percent
ļ	Carcinogen	Rate	Ingestion	Frequency	Duration	Weight	Carc Time	Dose	Factor	Risk	Carcinogenic	Noncarc Time	Dose	Dose	Risk	Noncarcinogenic
ļ	(mg/kg)	(kg/meal)	(%)	(meals/yr)	(years)	(kg)	(days)	(mg/kg-day)	(mg/kg-day)-1	Adult	Risk	(days)	(mg/kg-day)	(mg/kg-day)	Adult	Risk
	, , , ,	Adult	' ′	Adult	Adult	Adult		Adult			Adult		Adult			Adult
Mercury	0.300	0.145	1	48	30	70	25550	3.5E-05	0.0E+00	0.0E+00	0%	10950	8.2E-05	1.0E-04	8.2E-01	69%
Thallium	0.11	0.145	1	48	30	70	25550	1.3E-05	0.0E+00	0.0E+00	0%	10950	3.0E-05	8.0E-05	3.7E-01	31%
TOTAL										0.0E+00		·	l		1.2E+00	

FISH INGESTION EXPOSURE ASSESSMENT SITE 65 - ENGINEER AREA DUMP REMEDIAL INVESTIGATION CTO-0312 MCB CAMP LEJEUNE, NORTH CAROLINA FISHERMAN - CHILD RECEPTOR

Intake (mg/kg-day) = CF * IR * FI * EF * ED/BW * ATc or ATnc * DY

Where:	INPUTS
CF = contaminant concentration in fish (mg/kg)	
IR = child ingestion rate (kg/meal)	0.145
FI = fraction ingested from contaminated source (unitless)	1
EF = child exposure frequency (meals/yr)	48
ED = child exposure duration (years)	6
BW = child body weight (kg)	15
ATc = averaging time for carcinogen (years)	70
ATnc = averaging time for noncarcinogen (years)	6
DY = days per year (days/yr)	365

COPC	Concentration	Ingestion	Fraction	Exposure	Exposure	Body	Average	Carc	Slope	Carcinogenic	Percent	Average	Noncarc	Reference	Noncarcinogenic	Percent
		Rate	Ingestion	Frequency	Duration	Weight	Carc Time	Dose	Factor	Risk	Carcinogenic	Noncarc Time	Dose	Dose	Risk	Noncarcinogenic
	(mg/kg)	(kg/meal)	(%)	(days/yr)	(years)	(kg)	(days)		(mg/kg-day)-1	Adult	Risk	(days)		(mg/kg-day)	Child	Risk
		Child		Child	Child	Child		Child			Child		Child			Child
Mercury	0.300	0.145	1	48	6	15	25550	3.3E-05	0.0E+00	0.0E+00	0%	2190	3.8E-04	1.0E-04	3.8E+00	69%
Thallium	0.11	0.145	11	48	6	15	25550	1.2E-05	0.0E+00	0.0E+00	0%	2190	1.4E-04	8.0E-05	1.7E+00	31%
TOTAL										0.0E+00					5.6E+00	

APPENDIX U TERRESTRIAL REFERENCE VALUES AND CDI ECOLOGICAL RISK SPREADSHEETS

TOXICITY DATA USED TO CALCULATE TERRESTRIAL REFERENCE VALUES SITE 65 - ENGINEER AREA DUMP REMEDIAL INVESTIGATION, CTO-0312 MCB, CAMP LEJEUNE, NORTH CAROLINA

Alaminum	Chemical	Substitute Chemical Used	Cattle (mg/kg/day)		Poultry (mg/kg/day)	Rabbit (mg/kg/day)		Dog (mg/kg/day)	Rat (mg/kg/day)		Mouse (mg/kg/day)		Guinea Pig (mg/kg/day)	Mink (mg/kg/day)
Anterinory Anteri	Aluminum		5	(1)			(1)					(60)		
Barlium	Antimony				NA	4.06	(1)		0.035	(12)	NA	` .	NA	NA
Benfillum					5.135 (61) Mallard	2.90	(1)	NA	NA		0.1261	(13)	NA	NA
Cadmium				(1)			(1)			(4)	NA			
Chromium											NA			NA
Cobat														
Copper			•							(5)				
Inch														
Liesd C.15	• •													
Manganese			-							(0)				
Marcury														
Molydenum														
Nicke 0.25				(1)			(1)							
Solerium				(1)			(1)							
Silver														
Thaillum				,			(.,			(,		(20)		
Vanadium	Thallium		NA							(54)		(==)		
Zinc	Vanadium		0.25	(1)	11.38 (68) Mallard	0.06	(1)	NA						
Cyanide	Zinc		2.5		50 (1) [*]	29.02		1 (3)	160				NA	
Acenaphthylene	Cyanide		NA		4.5 (21)	NA	• •							
Acetaphthylene	Acenaphthene		· NA		NA	NA		NA	17.5	(56)	NA		NA	NA
Benzo(a)ptrene Benzo(a)pyrene NA								NA	17.5	Acen.	NA		NA	
Benzo(b)fluoranthene Benzo(a)pyrene NA											100	(33)		
Benzo(ghi)perylene (Benzo(a)pyrene NA NA NA NA NA NA NA N											•			
Benzo(ghi)perylene (Benzo(a)pyrene NA NA NA NA NA NA NA N											•			
Benzo(g),h,jperylene Benzo(a)pyrene NA NA NA NA NA NA NA N											•			
Benzo(a)pyrene														
beta-BHC NA <		(Denzo(a)pyrene										~		
gamma-BHC (beta-BHC) NA										(51)		(1)		
Bis(2-ethylhexyl)phthalate		(beta-BHC)												
Butylbenzylphthalate NA > <td>(</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>(0.7</td> <td></td> <td></td> <td></td> <td></td>		((0.7				
Carbazole (Benzo(a)pyrene NA	Butylbenzylphthalate		NA		NA .	NA		NA	15.9	(52)	NA			
Dibenzofuran (Benzo(a)pyrene NA	Carbazole	(Benzo(a)pyrene	NA		NA	NA		NA	NA	٠.				
Dibenzo(a,h)anthracene (Benzo(a)pyrene NA NA NA NA NA NA NA N		(Benzo(a)pyrene									1		NA	NA
Dibenz(a, h)anthracene (Benzo(a)pyrene NA											1		NA	NA
Diethylphthalate NA											•			
2,4-Dimethylphenol NA		(Benzo(a)pyrene									•			
Di-n-buty/phthalate NA 0.11 (16) Ringed NA NA 125 (63) NA NA NA Di-n-octy/phthalate NA NA NA NA 17.5 (79) NA NA NA 2,4-Dinitrophenol NA NA NA 1 (86) 20 (87) NA NA NA 2,6-Dinitrotoluene NA > <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>														
Di-n-octylphthalate NA NA NA NA 17.5 (79) NA NA NA 2,4-Dinitrophenol NA NA NA NA 1 (86) 20 (87) NA NA NA 2,6-Dinitrotoluene NA N										(62)		(85)		
2,4-Dinitrophenol NA NA NA 1 (86) 20 (87) NA NA NA 2,6-Dinitrofolluene NA														
2,6-Dinitrotoluene NA														
Fluoranthene NA NA NA NA 12.5 (8) NA NA Fluorene NA NA NA NA 12.5 (56) NA NA NA										(01)				
Fluorene NA NA NA NA 12.5 (56) NA NA NA												(8)		
										(56)		(-)		
Indeno(1,2,3-cd)pyrene (benzo(a)pyrene NA NA NA NA NA NA NA NA NA NA NA	Indeno(1,2,3-cd)pyrene	(Benzo(a)pyrene	NA		NA	NA		NA.	NA NA	(/	1		NA NA	NA
2-Methylnaphthalene (Naphthalene) NA NA NA NA NA 41 NA NA NA NA														
Naphthalene NA NA NA NA 41 (9) NA NA NA										(9)				
Nitrobenzene NA NA NA 0.25 (80) NA NA NA	Nitrobenzene									(80)			NA	
n-Nitrosodiphenylamine NA NA NA NA 50 (81) NA NA NA NA	n-Nitrosodiphenylamine									(81)			NA	NA NA
Phenanthrene (Naphthalene) NA NA NA NA 41 NA NA NA NA		(Naphthalene)							41				NA	NA
Phenol NA NA NA NA NA NA NA NA NA NA NA										(57)				
Pyrene NA NA NA NA NA NA NA NA NA NA NA NA NA	Pyrene		NA		NA	NA		NA	NA		7.5	(10)	NA	NA

1

TOXICITY DATA USED TO CALCULATE TERRESTRIAL REFERENCE VALUES SITE 65 - ENGINEER AREA DUMP REMEDIAL INVESTIGATION, CTO-0312 MCB, CAMP LEJEUNE, NORTH CAROLINA

	Cattle		Poultry	Rabbit		Dog	Rat		Mouse		Guinea Pig	Mink
Chemical	(mg/kg/day)	45. (1)	(mg/kg/day)	(mg/kg/day)		(mg/kg/day)	(mg/kg/day)		(mg/kg/day)		(mg/kg/day)	(mg/kg/day)
Aldrin	0.5	(24)	NA	NA		0.025 (77)	0.025	(77)	NA		NA	NA
Alpha-chiordane	1	(24)	2.14 (70) Blackbi	NA		0.075 (48)	0.055	(49)	NA		NA	NA
Gamma-chlordane	. 1	(24)	2.14 (70) Blackbi	NA		0.075 (48)	0.055	(49)	NA		NA	NA
Dieldrin	0.5	(24)	0.03 (71) Mallard	NA		0.005 (25)	0.005	(25)	NA		NA	NA
4,4'-DDD	NA		0.088 (DDT)	NA		NA	0.8	DDT	NA		NA	NA
4,4'-DDE	NA		0.088 (24) Quail	NA		NA NA	0.8	(47)	NA		NA	NA
4,4'-DDT	NA		0.088 (24) Quail	NA		NA	0.8	(47)	NA		NA	NA
Endosulfan	NA		10 (72) Partridg	NA		0.57 (26)	0.6	(26)	NA		NA	NA
Endosulfan II	NA		10 (72) Partridg	NA		0.57 (26)	0.6	(26)	NA		NA	NA
Endosulfan sulfate	NA		10 (72) Partridg	NA		0.57 (26)	0.6	(26)	NA		NA	NA
Endrin	NA		0.3 (73) Mallard	NA		0.025 (27)	0.25	(28)	NA		NA	NA
Endrin aldehyde	NA		0.3 (73) Mallard	NA		0.025 (27)	0.25	(28)	NA		NA	NA
Endrin ketone	NA		0.3 (73) Mallard	NA		0.025 (27)	0.25	(28)	NA		NA	NA
Heptachlor	NA		NA	NA		NA .	0.15	(45)	NA		NA	0.057 (29)
Heptachlor Epoxide	NA		NA	NA		0.000125 (24)	NA NA		NA		NA	NA (20)
Aroclor-1221	NA		NA	NA		NA .	3.5	(30)	NA		NA	NA
Aroclor-1232	NA		0.41 (78) Owl	NA		NA	0.15	(31)	NA		NA	NA NA
Aroclor-1260	NA		NA	NA		NA	0.005	(32)	NA		NA	NA
Aroclor-1254	NA		0.18 (76) Pheasa	1	(75)	NA	NA	• •	NA		NA	0.1 (50)
Arocior-1248	NA		NA	0.28	(77)	NA	NA		0.13	(62)	NA	NA NA
Methylene chloride	NA		NA	NA		NA	5.85	(34)	NA		NA	NA
Carbon disulfide	NA		NA	1.1	(35)	NA	NA	` '	NA		NA	NA
1,1-Dichloroethene	NA		NA	NA		NA .	28	(59)	NA		NA	NA
1,2-Dichloroethene (total)	NA		NA	NA		NA	5	(44)	NA		NA	NA
Chloroform	NA		NA	NA		30 (36)	38	(37)	NA		NA	NA
2-Butanone	NA		NA	NA		NA	NA		NA		NA	NA
1,1,1-Trichloroethane	NA NA		NA	NA		NA	NA		1000	(38)	NA	NA
Trichloroethene	NA		NA	NA ,		NA	100	(39)	NA		NA	NA
1,1,2-Trichloroethane	NA		NA	NA		NA	NA		0.39	(40)	NA	NA
Benzene	NA		NA 	NA		NA	0.1	(41)	NA		NA	NA
1,1,2,2-Tetrachloroethane	NA		NA	NA		NA	76	(85)	NA		NA	NA
Tetrachloroethene	NA		NA	NA		NA	1.4	(42)	NA		NA	NA
Toluene	NA		NA	NA		NA	. 22.3	(38)	NA		NA	NA
Ethylbenzene	NA		NA	NA		NA	9.71	(41)	NA		NA	NA
Xylenes	NA		NA	NA		NA	179	(43)	NA		NA	NA
Xylenes (total)	NA		NA	NA		NA	179	(43)	NA		NA	- NA
Vinyl chloride	NA		NA	NA		NA	0.17	(83)	NA		NA	NA
Acetone	NA		NA	NA		NA	10	(46)	NA		NA	NA

(37) Jorgenson et.al., 1985 (38) Lane, et.al., 1982 (39) NTP, 1985a (40) White et.al., 1985 (41) Wolf et.al., 1956 (42) Buban, 1985 (43) NTP, 1986a (44) Quast et.al., 1983 (45) Vesicol, 1955 (46) USEPA, 1986a (47) Fitzhugh, 1948 (48) WHO, 1984 and NRCC, 1975 (49) Vesicol, 1983 (50) Ringer, 1983 (51) Ito et.al., 1975 (52) NTP, 1985b	(67) Heinz, et.al., 1987 (68) White and Dieter, 1978 (69) Schlicker and Cox, 1968 (70) Stickel, e.al., 1983
(52) NTP, 1985b (53) McClane and Hughs, 1980 (54) USEPA, 1986b	(70) Stickel, e.al., 1983 (71) Nebeker et.al., 1992 (72) Abiola, 1992

(73) Spann, et.al., 1986 (74) Dow, 1958 (75) Villeneuve, et.al., 1972 (76) Dahlgren, et.al., 1972 (77) FAO/WHO, 1978 (78) McLane and Hughes, 1980 (79) Piekacz, 1971 (80) CHT, 1984 (81) NCI, 1979 (82) Jeter et.al., 1954 (83) Til et.al., 1983 (84) Lee et.al., 1976 (85) USEPA, 1989c (86) Tainter et.al., 1934 (87) Tainter et.al., 1938

BODY WEIGHTS FOR TERRESTRIAL REFERENCE VALUE CALCULATION SITE 65 - ENGINEER AREA DUMP REMEDIAL INVESTIGATION, CTO-0312 MCB, CAMP LEJEUNE, NORTH CAROLINA

Body Weight (kg)		
Cattle	100	(IT Corp, 1992)
Whitetailed Deer	45.4	(Dee, 1991)
Bobwhite Quail	0.0174	(USEPA, 1993b)
Eastern Cottontail	1.2285	(USEPA, 1993b)
Lab Rat	0.35	(USEPA, 1988)
Lab Dog	10	(USEPA, 1988)
Poultry	0.5	(IT Corp, 1992)
Red Fox	4.535	(Storm et.al., 1976)
Racoon	5.12	(USEPA, 1993b)
Lab Mouse	0.03	(USEPA, 1988)
Guinea pig	0.86	(USEPA, 1988)
Mink	1	(USEPA, 1993b)
Mallard Duck	1	(Heinze et.al., 1989)
Short-tailed Shrew	0.017	(Schlesinger and Potter, 1974)
Americal Kestral	0.13	(Pattee, 1984)
Blackbird	0.064	(Stickel, 1983)
Pheasant	1	(USEPA, 1993b)
Ringed Dove	0.155	(Terres, 1980)
Screech Owl	0.181	(Dunning, 1984)
Partridge	0.4	(Abiola, 1992)

REGION IV TERRESTRIAL REFERENCE VALUES SITE 65 - ENGINEER AREA DUMP REMEDIAL INVESTIGATION, CTO-0312 MCB, CAMP LEJEUNE, NORTH CAROLINA

	Whitetailed Deer	Bobwhite Quail	Eastern Cottontail	Red Fox	Racoon
Chemical	(mg/kg/day)	(mg/kg/day)	(mg/kg/day)	(mg/kg/day)	(mg/kg/day)
Aluminum	6.51E+00 (ct)	3.06E+01 (bi)	· · · · · · · · · · · · · · · · · · ·	1.95E+01 (dg)	3.48E-01 (mo)
Antimony	6.91E-03 (rt)	9.52E-02 (rt)	4.06E+00 (rb)	1.49E-02 (rt)	1.43E-02 (rt)
Arsenic	3.25E-01 (ct)	1.98E+01 (bi)	` '	2.37E-02 (mo)	2.27E-02 (mo)
Barium	1.30E-01 (ct)	3.06E+00 (bi)		1.07E-01 (rt)	1.02E-01 (rt)
Bervilium	1.07E-01 (rt)	1.47E+00 (rt)	3.55E-01 (rt)	2.30E-01 (it)	2.21E-01 (rt)
Cadmium	3.25E-03 (ct)				
Chromium				9.76E-02 (dg)	1.64E-03 (rt)
	6.51E+00 (ct)			1.03E+00 (rt)	9.86E-01 (rt)
Cobalt	6.51E-02 (ct)	1.53E+00 (bi)		3.75E-01 (rb)	3.61E-01 (rb)
Copper	6.51E-01 (ct)	4.59E+01 (bi)		7.80E+00 (mk)	7.49E+00 (mk)
Iron	6.51E+00 (ct)	1.53E+02 (bi)		1.88E+01 (rb)	1.80E+01 (rb)
Lead	1.95E-01 (ct)	7.52E+00 (bi)		3.41E+00 (rl)	3.27E+00 (rt)
Manganese	1.30E+00 (ct)	3.06E+02 (bi)		3.75E+00 (rt)	3,60E+00 (rt)
Mercury	1.30E-02 (ct)	3.06E-01 (bi)		1.36E-01 (rt)	1.31E-01 (rt)
Molybdenum	3.95E-03 (rt)	5.44E-02 (rt)	1.32E-02 (rt)	8.52E-03 (rt)	8.18E-03 (rt)
Nickel	3.25E-01 (ct)	4.59E+01 (bi)	·	3.25E+01 (dg)	2.05E+00 (rt)
Selenium	1.30E-02 (ct)	1.93E+00 (bi)		1.70E-02 (n)	1.64E-02 (n)
Silver	1.58E-02 (mo)	1.53E+01 (bi)		3.40E-02 (mo)	3.26E-02 (mo)
Thailium	4.54E-03 (rt)	6.26E-02 (rt)	1.51E-02 (rt)	9.79E-03 (rt)	9.40E-03 (rt)
Vanadium	3.25E-01 (ct)	4.39E+01 (bi)	5.80E-02 (rb)	2.77E-01 (rt)	2.66E-01 (rt)
Zinc	3.25E+00 (ct)	1.53E+02 (bi)	2.90E+01 (rb)	1.30E+00 (dg)	6,54E+01 (rt)
Cyanide	2.13E+00 (rt)	1.38E+01 (bi)	7.11E+00 (rt)	4.88E-01 (dg)	4.42E+00 (rt)
Acenaphthene	3.46E+00 (rt)	4.76E+01 (rt)	1.15E+01 (rt)	7.45E+00 (rt)	7.16E+00 (rt)
Acenaphthylene	3.46E+00 (rt)	4.76E+01 (rt)	1.15E+01 (rt)	7.45E+00 (rt)	7.16E+00 (rt)
Anthracene	8.71E+00 (mo)	1.20E+02 (mo)	2.90E+01 (mo)	1.88E+01 (mo)	1.80E+01 (mo)
Benzo(a)anthracene	8.71E-02 (mo)	1.20E+00 (mo)	2.90E-01 (mo)	1.88E-01 (mo)	1.80E-01 (mo)
Benzo(b)fluoranthene	8.71E-02 (mo)	1.20E+00 (mo)	2.90E-01 (mo)	1.88E-01 (mo)	1.80E-01 (mo)
Benzo(k)fluoranthene	8.71E-02 (mo)	1.20E+00 (mo)	2.90E-01 (mo)	1.88E-01 (mo)	1.80E-01 (mo)
Benzo(ghi)perylene	8.71E-02 (mo)	1.20E+00 (mo)	2.90E-01 (mo)	1.88E-01 (mo)	1.80E-01 (mo)
Benzo(g,h,i)perylene	8.71E-02 (mo)	1.20E+00 (mo)	2.90E-01 (mo)	1.88E-01 (mo)	1.80E-01 (mo)
Benzo(a)pyrene	8.71E-02 (mo)	1.20E+00 (mo)	2.90E-01 (mo)	1.88E-01 (mo)	1.80E-01 (mo)
beta-BHC	9.88E-01 (rt)	1.36E+01 (rt)	3.29E+00 (rt)	2.13E+00 (rt)	2,04E+00 (rt)
gamma-BHC	9.88E-01 (rt)	1.36E+01 (rt)	3.29E+00 (rt)	2.13E+00 (rt)	2.04E+00 (rt)
Bis(2-ethylhexyl)phthalate	4.89E-02 (gp)	2.30E+00 (bi)	1.63E-01 (gp)	1.05E-01 (gp)	1.01E-01 (gp)
Bis(2-chloroethyl)ether	1.03C-02 (gp)	NA NA	NA	NA NA	NA NA
Butylbenzylphthalate	3.14E+00 (rt)	4.32E+01 (rt)	1.05E+01 (rt)	6.77E+00 (rt)	6,50E+00 (rt)
Carbazole	8.71E-02 (mo)	1.20E+00 (mo)	2.90E-01 (mo)	1.88E-01 (mo)	1.80E-01 (mo)
Chrysene	8.71E-02 (mo)	1.20E+00 (mo)	2.90E-01 (mo)		1.80E-01 (mo)
Dibenzofuran	8.71E-02 (mo)	1.20E+00 (mo)	2.90E-01 (mo)	1.88E-01 (mo) 1.88E-01 (mo)	1.80E-01 (mo)
Dibenzo(a,h)anthracene	8.71E-02 (mo)	1.20E+00 (mo)		1.88E-01 (mo)	
			2.90E-01 (mo)		1.80E-01 (mo)
Dibenz(a,h)anthracene	8.71E-02 (mo)	1.20E+00 (mo)	2.90E-01 (mo)	1.88E-01 (mo)	1.80E-01 (mo)
Diethylphthalate	3.99E+02 (mo)	5.50E+03 (mo)	1.33E+03 (mo)	8.60E+02 (mo)	8.26E+02 (mo)
2,4-Dimethylphenol	4.36E-01 (mo)	6.00E+00 (mo)	1,45E+00 (mo)	9.39E-01 (mo)	9,01E-01 (mo)
Di-n-butylphthalate	2.47E+01 (rt)	2.28E-01 (bi)	8.23E+01 (rt)	5.32E+01 (rt)	5.11E+01 (rt)
Di-n-octylphthalate	3.46E+00 (rt)	4.76E+01 (bi)	1.15E+01 (rt)	7.45E+00 (rt)	7.16E+00 (rt)
2,4-Dinitrophenol	3.95E+00 (rt)	5.44E+01 (bi)	1.32E+01 (rt)	1.30E+00 (dg)	8.18E+00 (rt)
2,6-Dinitrotoluene	2.42E-01 (dg)	3.33E+00 (dg)	8.05E-01 (dg)	5.20E-01 (dg)	5.00E-01 (dg)
Fluoranthene	1.09E+00 (mo)	1.50E+01 (mo)	3.63E+00 (mo)	2.35E+00 (mo)	2.25E+00 (mo)
Fluorene	2.47E+00 (rt)	3.40E+01 (rt)	8.23E+00 (rt)	5.32E+00 (rt)	5.11E+00 (rt)
Indeno(1,2,3-cd)pyrene	8.71E-02 (mo)	1.20E+00 (mo)	2.90E-01 (mo)	1.88E-01 (mo)	1.80E-01 (mo)
2-Methylnaphthalene	8.10E+00 (rt)	1.12E+02 (rt)	2.70E+01 (rt)	1.75E+01 (rt)	1.68E+01 (rt)
Naphthalene	8.10E+00 (rt)	1.12E+02 (rt)	2.70E+01 (rt)	1.75E+01 (rt)	1.68E+01 (n)
Nitrobenzene	4.94E-02 (rt)	6.80E-01 (rt)	1.65E-01 (rt)	1.06E-01 (rt)	1.02E-01 (rt)
N-Nitrosodiphenylamine	9.88E+00 (rt)	1.36E+02 (rt)	3.29E+01 (rt)	2.13E+01 (rt)	2.04E+01 (rt)
Phenanthrene	8.10E+00 (rt)	1.12E+02 (rt)	2.70E+01 (rt)	1.75E+01 (n)	1.68E+01 (n)
Phenoi	1.19E+00 (rt)	1.63E+01 (rt)	3.95E+00 (rt)	2.55E+00 (rt)	2.45E+00 (rt)
P	6.53E-01 (mo)	8.99E+00 (mo)	2.18E+00 (mo)	/E+00 (mo)	1.35E+00 (mo)
1				1	• •

REGION IV TERRESTRIAL REFERENCE VALUES SITE 65 - ENGINEER AREA DUMP REMEDIAL INVESTIGATION, CTO-0312 MCB, CAMP LEJEUNE, NORTH CAROLINA

	Whitetailed Deer	Bobwhite Quail	Eastern Cottontail	Red Fox	Racoon
Chemical	(mg/kg/day)	(mg/kg/day)	(mg/kg/day)	(mg/kg/day)	(mg/kg/day)
Aldrin	6.51E-01 (ct)	6.80E-02 (rt)	1.65E-02 (rt)	3.25E-02 (dg)	1.02E-02 (rt)
Alpha-chiordane	1.30E+00 (ct)	3.30E+00 (bi)	3.62E-02 (rt)	9.76E-02 (dg)	2.25E-02 (rt)
Gamma-chlordane	1.30E+00 (ct)	3.30E+00 (bi)	3.62E-02 (rt)	9.76E-02 (dg)	2.25E-02 (rt)
Dieldrin	6.51E-01 (ct)	1.16E-01 (bi)	3.29E-03 (rt)	6,51E-03 (dg)	2.04E-03 (rt)
4,4'-DDD	1.58E-01 (rt)	8.80E-02 (bi)	5.26E-01 (rt)	3.41E-01 (rt)	3.27E-01 (rt)
4,4'-DDE	1.58E-01 (rt)	8.80E-02 (bi)	5.26E-01 (rt)	3.41E-01 (rt)	3.27E-01 (rt)
4,4'-DDT	1.58E-01 (rt)	8.80E-02 (bi)	5.26E-01 (rt)	3.41E-01 (rt)	3,27E-01 (rt)
Endosulfan	1.19E-01 (rt)	2.84E+01 (bi)	3.95E-01 (rt)	7.42E-01 (dg)	2.45E-01 (rt)
Endosulfan II	1.19E-01 (rt)	2.84E+01 (bi)	3.95E-01 (rt)	7.42E-01 (dg)	2.45E-01 (rt)
Endosulfan sulfate	1.19E-01 (rt)	2.84E+01 (bi)	3.95E-01 (rt)	7.42E-01 (dg)	2.45E-01 (rt)
Endrin	4.94E-02 (rt)	1.16E+00 (bi)	1.65E-01 (rt)	3.25E-02 (dg)	1.02E-01 (rt)
Endrin aldehyde	4.94E-02 (rt)	1.16E+00 (bi)	1.65E-01 (rt)	3.25E-02 (dg)	1.02E-01 (rt)
Endrin ketone	4.94E-02 (rt)	1.16E+00 (bi)	1.65E-01 (rt)	3.25E-02 (dg)	1.02E-01 (rt)
Heptachlor	2.96E-02 (rt)	4.08E-01 (rt)	9.87E-02 (rt)	6,39E-02 (rt)	6.13E-02 (rt)
Heptachlor epoxide	7.55E-05 (dg)	1.04E-03 (dg)	2.51E-04 (dg)	1.63E-04 (dg)	1.56E-04 (dg)
Aroclor-1221	6.91E-01 (rt)	9.52E+00 (rt)	2.30E+00 (rt)	1,49E+00 (rt)	1.43E+00 (rt)
Aroclor-1232	2.96E-02 (rt)	8.95E-01 (bí)	9.87E-02 (rt)	6.39E-02 (rt)	6.13E-02 (rt)
Aroclor-1260	9.88E-04 (rt)	1.36E-02 (rt)	3.29E-03 (rt)	2.13E-03 (rt)	2.04E-03 (rt)
Aroclor-1254	2.80E-02 (mk)	6.95E-01 (bi)	1.00E+00 (rb)	6.47E-01 (rb)	6.21E-01 (rb)
Aroclor-1248	1.13E-02 (mo)	1.56E-01 (mo)	2.80E-01 (rb)	1.81E-01 (rb)	2.34E-02 (mo)
Methylene chloride	1.16E+00 (rt)	1.59E+01 (rt)	3.85E+00 (rt)	2,49E+00 (rt)	2.39E+00 (rt)
Carbon disulfide	3.30E-01 (rb)	4.55E+00 (rb)	1.10E+00 (rb)	7.12E-01 (rb)	6.84E-01 (rb)
1.1-Dichloroethene	5.53E+00 (rt)	7.61E+01 (rt)	1.84E+01 (rt)	1.19E+01 (rt)	1.14E+01 (rt)
1,2-Dichloroethene (total)	9.88E-01 (rt)	1.36E+01 (rt)	3.29E+00 (rt)	2.13E+00 (rt)	2.04E+00 (rt)
Chloroform	7.51E+00 (rt)	1.03E+02 (rt)	2.50E+01 (rt)	3.90E+01 (dg)	1.55E+01 (rt)
2-Butanone	NA NA	NA NA	NA NA	NA NA	NA NA
1,1,1-Trichloroethane	8.71E+01 (rt)	1.20E+03 (rt)	2.90E+02 (rt)	1.88E+02 (rt)	1.80E+02 (rt)
Trichloroethene	1.98E+01 (rt)	2.72E+02 (rt)	6.58E+01 (rt)	4.26E+01 (rt)	4.09E+01 (rt)
1,1,2-Trichloroethane	3.40E-02 (mo)	4.68E-01 (mo)	1.13E-01 (mo)	7.32E-02 (mo)	7.03E-02 (mo)
Benzene	1.98E-02 (rt)	2.72E-01 (rt)	6.58E-02 (rt)	4.26E-02 (rt)	4.09E-02 (rt)
1,1,2,2-Tetrachloroethane	1.50E+01 (rt)	2.07E+02 (rt)	5.00E+01 (rt)	3.24E+01 (rt)	3.11E+01 (rt)
Tetrachloroethene	2.77E-01 (rt)	3.81E+00 (rt)	9.21E-01 (rt)	5.96E-01 (rt)	5.72E-01 (rt)
Toluene	4.41E+00 (rt)	6.06E+01 (rt)	1.47E+01 (rt)	9.49E+00 (rt)	9.12E+00 (rt)
Ethylbenzene	1.92E+00 (rt)	2.64E+01 (rt)	6.39E+00 (rt)	4.13E+00 (rt)	3.97E+00 (rt)
Xylenes	3.54E+01 (rt)	4.87E+02 (rt)	1.18E+02 (rt)	7.62E+01 (rt)	7.32E+01 (rt)
Xylenes (total)	3.54E+01 (rt)	4.87E+02 (rt)	1.18E+02 (rt)	7.62E+01 (rt)	7.32E+01 (rt)
Vinyl chloride	3.36E-02 (rt)	4.62E-01 (rt)	1.12E-01 (rt)	7.24E-02 (rt)	6.95E-02 (rt)
Acetone	1.98E+00 (rt)	2.72E+01 (rt)	6.58E+00 (rt)	4.26E+00 (rt)	4.09E+00 (rt)
2-Hexanone	NA `	NA `	NA `	NA	NA NA

Note: The following abbreviations indicate which species was used to develop the Terrestrial Reference Value (ct) = cattle (rb) = rabbit

(rt) = rat

(dg) = dog

(bi) = bird (gp) = guinea pig

(mo) = mouse (mk) = mink

NA - No Data Available

Food Source ingestion of: Vegetation (Iv) = 20 percent Small mammals (Im) = 80 percent	Feeding Rate (I in kg/d)	Incidental Soil Ingestion (Is in kg/d)	Rate of Drinking Water Ingestion (Iw in l/d)	Rate of Worm Ingestion (Iwo in kg/d)	Rate of Fruit Ingestion (Ifr in kg/d)	Rate of Mammal Ingestion (Im in kg/d)	Rate of Vegetation Ingestion (Iv in kg/d)	Body Weight (BW) (kg)	Home Range Size (acres)	Contaminated Area (acres)		Equation Used to Calculate Total Exposure E=total exposure Cw = Constituent concentration in water lw = Ingestion of water Cm = Constituent concentration in small mammal Im = Ingestion of small mammal Cs = Constituent concentration in soil Bv = Vegetation biotransfer factor lv = Ingestion of vegetation ls = Incidential ingestion of soil H = Ratio of home range area to site area Bb = Tissue biotransfer factor BW = Body weight
Parameters (Red Fox)	6.009E-01	1.682E-02	3.855E-01	NA	NA	4.807E-01	1.202E-01	4.535E+00	1.245E+03	2.600E+01	2.088E-02	E=(Cw)(lw)+[(cm)(lm)+(Cs)(Bv)(lv)+(Cs)(ls)][H] BW
Parameters (Small Mammal)	1.120E-01	2.690E-03	6.520E-02	NA	NA	NA	1.120E-01	3.725E-01	3.200E-02	1.000E+00	1.000E+00	Cm=[(Cw)(lw)+((Cs)(Bv)(lv)+(Cs)(ls))(H)][Bb] BW

Constituent of Concern	Soil to Plant Transfer Coefficient (Bv)	Constituent Concentration in Water (mg/L) (Cw)	Constituent Concentration in Soil (mg/kg) (Cs)	Constituent Concentration in Worms (mg/kg) (Cwo)	Ingestion-to-tissue Biotransfer Factor (Bb)	Constituent Concentration in Mammals (mg/kg) (Cm)	Total Exposure (mg/kg/d) (E)	Terrestrial Reference Value (mg/kg/day) (TRV)	Quotient Ratio (= E/TRV
cetone	5.330E+01	0.005	6.70E-03	NA.	1.45E-08	1.57E-09	6.23E-04	4.26E+00	1.46E-04
-Butanone	3.731E+01	ND	ND	NA.	2.68E-08	0.00E+00	0.00E+00	NA NA	NA
thylbenzene	6.255E-01	ND	1.00E-03	NA.	3.16E-05	6.18E-09	4.23E-07	4.13E+00	1.02E-0
lethylene Chloride	6.864E+00	ND	2.00E-03	NA.	5.01E-07	2.08E-09	7.75E-06	2.49E+00	NA NA
oluene	9.324E-01	ND	2.00E-03	NA.	1.58E-05	9.12E-09	1.19E-06	9.49E+00	1.25E-0
richloroethene	1.065E+00	ND I	1.00E-03	NA.	1.26E-05	4.12E-09	6.67E-07	4.26E+01	1.57E-0
vienes (total)	5.475E-01	ND	5.00E-03	NA.	3.98E-05	3.42E-08	1.90E-06	7.62E+01	2.50E-0
cenaphthene	2.464E-01	ND	1.30E-01	NA.	1.58E-04	1.68E-06	2.78E-05	7.45E+00	3.73E-0
nthracene	8,496E-02	ND I	1.90E-01	NA NA	1.00E-03	6.23E-06	2.37E-05	1.88E+01	1.26E-0
enzo(a)anthracene	1.965E-02	ND	2.56E-01	NA	1.26E-02	4.23E-05	2.27E-05	1.88E-01	1.21E-0
enzo(a)pyrene	1.154E-02	ND ND	2.30E-01	NA.	3.16E-02	7.79E-05	1.95E-05	1.88E-01	1.04E-0
enzo(b)fluoranthene	5.932E-03	ND	2.28E-01	NA	1.00E-01	2.06E-04	1.89E-05	1.88E-01	1.01E-0
enzo(g,h,i)perylene	5.193E-03	ND	2.17E-01	NA NA	1,26E-01	2.40E-04	1.80E-05	1.88E-01	9.58E-0
enzo(k)fluoranthene	1.010E-02	ND	2.46E-01	NA NA	3.98E-02	1.01E-04	2.07E-05	1.88E-01	1.10E-0
is(2-ethylhexyl)phthalate	2.337E-03	ND	8.70E-02	NA !	5.01E-01	3.46E-04	7.62E-06	1.05E-01	7.23E-0
arbazole	5.500E-01	ND	1.80E-01	NA	1.00E-04	3.11E-06	6.87E-05	1.88E-01	3,66E-0
hrvsene	1,965E-02	ם א	2.52E-01	NA NA	1.26E-02	4.17E-05	2.24E-05	1.88E-01	1.19E-0
libenz(a,h)anthracene	5.193E-03	ND	1.50E-01	NA NA	1.26E-01	1.66E-04	1.24E-05	1.88E-01	6.61E-0
ibenzofuran	5.500E-01	ND	5.80E-02	NA	3.98E-04	3.99E-06	2.21E-05	1.88E-01	1.18E-0
i-n-butvlohthalate	8.496E-02	ND	2.35E-01	NA NA	1.00E-03	7.70E-06	2.93E-05	5.32E+01	5,50E-0
4-Dinitrophenol	4.605E+00	ND	1.50E-01	NA.	1.00E-06	2.09E-07	3.94E-04	8.52E+00	4.62E-0
luoranthene	4.426E-02	ND	2.95E-01	NA.	3.09E-03	1.87E-05	3.02E-05	2.35E+00	1.28E-0
luorene	1,447E-01	ND ND	1.00E-01	NA.	3.98E-04	2.02E-06	1.58E-05	5.32E+00	2.96E-0
ndeno(1,2,3-cd)pyrene	5,193E-03	ם א	2,20E-01	l na	1.26E-01	2.43E-04	1.82E-05	1.88E-01	9.68E-0
henanthrene	8.496E-02	l ND	3.30E-01	l na	1.00E-03	1.08E-05	4.11E-05	1.75E+01	2.35E-0
yrene	4.367E-02	ND	3.04E-01	NA.	3.16E-03	1.96E-05	3.09E-05	1.41E+00	2.20E-0
4'-DDD	1.154E-02	ם א	5.45E-02	l NA	3.16E-02	1.84E-05	4.61E-06	3.41E-01	1.35E-0
.4'-DDE	4.546E-03	ND	8.30E-02	l NA	1.58E-01	1.13E-04	6.89E-06	3.41E-01	2.02E-0
,4'-DDT	6.776E-03	ND I	5.60E-02	NA.	7.94E-02	4.12E-05	4.64E-06	3.41E-01	1.36E-0
ndosulfan II	1,653E-01	ND	2.54E-03	NA.	3.16E-04	4,57E-08	4.29E-07	7.42E-01	5.79E-0
leptachlor epoxide	4.989E-02	ND	1.22E-03	NA.	2.51E-03	6.81E-08	1.28E-07	1.63E-04	7.89E-0
roctor-1260	1,318E-02	ND	2.47E-02	NA.	2.51E-02	6.95E-06	2.11E-06	2.13E-03	9.91E-0
Juminum	4.000E-03	25.8	4.02E+03	NA.	1.50E-03	5.76E-02	2.51E+00	1.95E+01	1.29E-0
ntimony	2.000E-01	ND	ND	NA .	1.00E-03	0.00E+00	0.00E+00	1.49E-02	0.00E+0
rsenic	4.000E-02	ND	ND -	NA .	2.00E-03	0.00E+00	0.00E+00	2.37E-02	0.00E+0
arium	1,500E-01	0.0693	1.87E+01	NA NA	1.50E-04	1.48E-04	8.88E-03	1.07E-01	8.34E-0
eryllium	1.000E-02	ND ND	ND	NA NA	1.00E-03	0.00E+00	0.00E+00	2.30E-01	0.00E+0
erymum Shromium	7.500E-02	0.0276	6.48E+00	NA NA	5.50E-03	3.64E-04	2.88E-03	2.30E-01	2.80E-0
Copper	4.000E-01	0.0270	5.56E+01	NA NA	1.00E-02	7.10E-02	2.03E-03	7.80E+00	2.60E-0
opper	4.000E-01	7.89	7.57E+03	NA NA	2.00E-02	1.30E+00	1.28E+00	1.88E+01	6.79E-0
ead .	4.000E-03 4.500E-02	0.0458	1.78E+02	NA NA	3.00E-02	1.30E+00 1.11E-03	1.28E+00 2.21E-02	3.41E+00	6.49E-0
	2.500E-01	0.0458	1.11E+02	NA NA	4.00E-04	3.68E-03	2.21E-02 3.16E-02	3.41E+00 3.75E+00	8.42E-0
langanese lercurv		ND ND	ND	NA NA	2.50E-01				0.42E-0
	9.000E-01	ND ND	3.28E+00	NA NA	2.50E-01 6.00E-03	0.00E+00	0.00E+00	1.36E-01	1.12E-0
lickel	6.000E-02	ND ND	3.28E+00	NA NA	1.50E-02	4.97E-04	3.64E-04	3.25E+01	
elenium	2.500E-02	ND I	1.38E+00	NA NA		0.00E+00	0.00E+00	1.70E-02	0.00E+0
hallium	4.000E-03	0.0262	7.21E+00	NA NA	4.00E-02	4.65E-04	1.11E-04	9.79E-03	1.13E-0
anadium	5.500E-03	0.0262	3.77E+02	NA NA	2.50E-03	1.71E-04	2.81E-03	2.77E-01	1.01E-0
inc	1.500E+00	U.144	3.11E+UZ	NA.	1.00E-01	1.73E+01	3.93E-01	1.30E+00	3.02E-0 6.27E-0

Food Source ingestion of: Fruit (ifr) = 40 percent Fish (if) = 60 percent	Feeding Rate (t in kg/d)	Incidental Soil Ingestion (Is in kg/d)	Rate of Drinking Water Ingestion (Iw in I/d)	Rate of Worm Ingestion (Iwo in kg/d)	Rate of Fruit Ingestion (Ifr in kg/d)	Rate of Fish Ingestion (If in kg/d)	Rate of Vegetation Ingestion (Iv in kg/d)	Body Weight (BW) (kg)	Home Range Size (acres)	Contaminated Area (acres)		Equation Used to Calculate Total Exposure E=total exposure Cw = Constituent concentration in water w = Ingestion of water Cf = Constituent concentration in fish If = Ingestion of fish Cs = Constituent concentration in soil Br = Vegetation biotransfer factor (fruit) Iff = Ingestion of fruit Is = Incidential ingestion of soil H = Ratio of home range area to site area BW = Body weight
Parameters	2.143E-01	2.014E-02	4.224E-01	NA	8.571E-02	1.286E-01	NA	5.120E+00	2.570E+02	2.600E+01	1.012E-01	$\frac{E=(Cw)(lw)+(Cf)(lf)+[(Cs)(Br)(lfr)+(Cs)(ls)][}{BW}$

Constituent of Concern	Soil to Plant Transfer Coefficient (fruit) (Br)	Constituent Concentration in Water (mg/L) (Cw)	Constituent Concentration in Soil (mg/kg) (Cs)	Constituent Concentration in Worms (mg/kg) (Cwo)	Fish Bioconcentration Factor (BCF)	Constituent Concentration in Fishes (mg/kg) (Cf)	Total Exposure (mg/kg/d) (E)	Terrestrial Reference Value (mg/kg/day) (TRV)	Quotient Ratio (= E/TRV)
Acetone	5.330E+01	0.005	6.70E-03	NA.	0.690	1.40E+03	3.52E+01	4.09E+00	8.60E+00
2-Butanone	3.731E+01	ND ND	ND ND	NA NA	ND	5.60E-01	1.41E-02	NA NA	NA.
Ethylbenzene	6.255E-01	ND I	1.00E-03	NA NA	37.500	ND ND	1.46E-06	3.97E+00	3.67E-07
Methylene Chloride	6.864E+00	ND ND	2.00E-03	NA NA	0.900	ND	2.40E-05	2.39E+00	NA NA
Toluene	9.324E-01	ND	2.00E-03	NA NA	10.700	5.00E+00	1.26E-01	9.12E+00	1.38E-02
Trichloroethene	1.065E+00	ND	1.00E-03	NA.	10,600	ND	2.20E-06	4.09E+01	5.39E-08
Xylenes (total)	5.475E-01	ND	5.00E-03	NA NA	2.200	ND	6.63E-06	7.32E+01	9.05E-08
Acenaphthene	2.464E-01	ND	1.30E-01	NA.	242.000	ND	1.06E-04	7.16E+00	1.48E-05
Anthracene	8.496E-02	ND	1.90E-01	NA.	30.000	ND	1.03E-04	1.80E+01	5.71E-06
Benzo(a)anthracene	1.965E-02	ND	2.56E-01	NA NA	30.000	ND	1.10E-04	1.80E-01	6.11E-04
Benzo(a)pyrene	1.154E-02	ND	2.30E-01	NA	30.000	ND	9.62E-05	1.80E-01	5.34E-04
Benzo(b)fluoranthene	5.932E-03	ND	2.28E-01	NA	30.000	ND	9.32E-05	1.80E-01	5.17E-04
Benzo(g,h,i)perylene	5.193E-03	ND	2.17E-01	NA	30.000	ND	8.84E-05	1.80E-01	4.90E-04
Benzo(k)fluoranthene	1.010E-02	ND	2.46E-01	NA	30.000	ND	1.02E-04	1.80E-01	5.67E-04
Bis(2-ethylnexyl)phthalate	2.337E-03	ND	8.70E-02	NA	130,000	ND	3.50E-05	1.01E-01	3.46E-04
Carbazole	5.500E-01	ND	1.80E-01	NA	ND	ND	2.39E-04	1.80E-01	1.33E-03
Chrysene	1.965E-02	ND	2.52E-01	NA	30.000	ND	1.09E-04	1.80E-01	6.03E-04
Dibenz(a,h)anthracene	5.193E-03	ND	1.50E-01	NA NA	30.000	ND	6.10E-05	1.80E-01	3.38E-04
Dibenzofuran	5.500E-01	ND	5.80E-02	NA NA	ND	ND	7.71E-05	1.80E-01	4.28E-04
Di-n-butylphthalate	8.496E-02	ND	2.35E-01	NA NA	89.000	ND	1.27E-04	5.11E+01	2.49E-06
2,4-Dinitrophenol	4.605E+00	ND	1.50E-01	NA	1.500	ND	1.23E-03	8.18E+00	1.50E-04
Fluoranthene	4.426E-02	ND	2.95E-01	NA NA	1150.000	ND	1.40E-04	2.25E+00	6.20E-05
Fluorene	1.447E-01	ND	1.00E-01	NA NA	30.000	ND	6.43E-05	5.11E+00	1.26E-05
Indeno(1,2,3-cd)pyrene	5.193E-03	ND	2.20E-01	NA NA	30.000	ND	8.93E-05	1.80E-01	4.96E-04
Phenanthrene	8.496E-02	ND	3.30E-01	NA NA	30.000	ND	1.79E-04	1.68E+01	1.07E-05
Pyrene	4.367E-02	ND .	3.04E-01	NA NA	30.000	ND	1.44E-04	1.35E+00	1.06E-04
4.4'-DDD	1.154E-02	ND	5.45E-02	NA NA	53600.000	4.00E-02	1.03E-03	3.27E-01	3.14E-03
4.4'-DDE	4.546E-03	ND	8.30E-02	NA NA	53600.000	1.45E-02	3.98E-04	3.27E-01	1.22E-03
4.4-DDT	6.776E-03	ND	5.60E-02	NA.	53600.000	ND	2.29E-05	3.27E-01	7.01E-05
Endosulfan II	1.653E-01	ND	2.54E-03	NA NA	270.000	ND	1.72E-06	2.45E-01	7.02E-06
Heptachlor epoxide	4.989E-02	ND	1.22E-03	NA NA	11200.000	ND	5.89E-07	1.56E-04	3.77E-03
Aroclor-1260	1.318E-02	ND	2.47E-02	NA NA	31200.000	ND	1.04E-05	2.04E-03	5.08E-03
Aluminum	6.500E-04	25.8	4.02E+03	NA.	231.000	1.88E+01	4.21E+00	3.48E-01	1.21E+01
Antimony	3.000E-02	ND	ND	NA NA	1.000	1.50E+00	3.77E-02	1.43E-02	2.63E+00
Arsenic	6.000E-03	ND	ND	NA NA	44.000	1.50E-01	3.77E-03	2.27E-02	1.66E-01
Barium	1.500E-02	0.0693	1.87E+01	NA	8.000	2.90E+00	8.64E-02	1.02E-01	8.45E-01
Beryllium	1.500E-03	ND ND	ND	NA NA	19.000	2.80E-02	7.03E-04	2.21E-01	3.18E-03
Chromium	4.500E-03	0.0276	6.48E+00	NA NA	16,000	ПD	4.91E-03	9.86E-01	4.97E-03
Copper	2.500E-01	0.0411	5.56E+01	NA NA	36.000	8.60E+00	2.65E-01	7.49E+00	3.54E-02
Iron	1.000E-03	7.89	7.57E+03	NA NA	ND	2.61E+01	4.33E+00	1.80E+01	2.40E-01
Lead	9.000E-03	0.0458	1.78E+02	NA	49.000	4.90E-01	8.96E-02	3.27E+00	2.74E-02
Manganese	5.000E-02	0.0884	1.11E+02	NA	35.000	4.90E+00	1.84E-01	3.60E+00	5.11E-02
Mercury	2,000E-01	ND	ND	NA	5500.000	1.10E-01	2.76E-03	1.31E-01	2.11E-02
Nickel	6.000E-02	ND	3.28E+00	NA	47.000	ND	1.64E-03	2.05E+00	8.01E-04
Selenium	2.500E-02	ND	ND	NA.	6.000	4.20E-01	1.05E-02	1.64E-02	6.44E-01
Thallium	4.000E-04	ND	1,38E+00	NA NA	119.000	4.00E-02	1.55E-03	9.40E-03	1.65E-01
Vanadium	3,000E-03	0.0262	7.21E+00	NA NA	ND	ND	5.07E-03	2.66E-01	1.91E-02
Zinc	9.000E-01	0.144	3.77E+02	NA NA	47.000	2.90E-01	7.44E-01	6.54E+01	1.14E-02
				1			1		0.505.51
	l	L	<u> </u>	<u> </u>	l	L	1		2.56E+01

Food Source ingestion of: Vegetation(iv) = 100 percent	Feeding Rate (I in kg/d)	Incidental Soil Ingestion (Is in kg/d)	Rate of Drinking Water Ingestion (Iw in I/d)	Rate of Worm Ingestion (Iwo in kg/d)	Rate of Fruit Ingestion (Ifr in kg/d)	Rate of Mammal Ingestion (Im in kg/d)	Rate of Vegetation Ingestion (Iv in kg/d)	Body Weight (BW) (kg)	Home Range Size (acres)	Contaminated Area (acres)		Equation Used to Calculate Total Exposur E=total exposure Cw=constituent conc. in water Cs=constituent conc. in soil Cwo=constituent conc. in worms Cfr=constituent conc. in fruit H≍ratio of home range area to site area
Parameters	1.350E-02	1.107E-03	1.910E-02	NA	NA	NA	1.350E-02	1.736E-01	2.624E+01	2.600E+01	9.908E-01	E=(Cw)(lw) + [(Cs)(Bv)(lv)+(Cs)(ls)][H] BW

Acetone 5.330E+ 2-Buttanone 6.25E- Hethylbenzene 6.25E- Methylene Chloride 7.01cm 9.324E- Trichloroethene 1.065E- Xylenes (total) 5.475E- Acenaphthene 2.464E- Anthracene 8.498E- Benzo(a)pyrene 1.154E- Benzo(a)pyrene 1.154E- Benzo(b)fluoranthene 8.92E- Benzo(b)fluoranthene 8.92E- Benzo(b)fluoranthene 8.92E- Benzo(b)fluoranthene 1.010E- Bis(2-ethylhexyl)phthalate 2.337E- Carbazole 5.50E- Chrysene 1.95E- Dibenzótran 5.50E- Dibenzótran 5.50E- Fluoranthene 4.426E- Fluorene 1.447E- Fluorene 1.447E- Fluorene 1.447E- Fluorene 1.458E- Fluorene 4.450E- Fluorene 1.458E- F	ND ND ND ND ND ND ND ND ND ND ND ND ND N	6.70E-03 ND 1.00E-03 2.00E-03 2.00E-03 1.00E-03 5.00E-03 1.30E-01 2.56E-01 2.30E-01 2.28E-01 2.17E-01 2.46E-01 8.70E-02 1.80E-01 2.52E-01 1.50E-01 1.50E-01 2.35E-01	NA NA NA NA NA NA NA NA NA NA NA NA NA N	NA A A A A A A A A A A A A A A A A A A	NA A A A A A A A A A A A A A A A A A A	0.028 0.000 0.000 0.001 0.000 0.000 0.000 0.002 0.002 0.002 0.002 0.001 0.002 0.001 0.002 0.001 0.002	1.26E+01 NA 1.23E+01 7.38E+00 2.81E+01 1.26E+02 2.26E+02 2.21E+01 5.57E-01 5.57E-01 5.57E-01 5.57E-01 5.57E-01 5.57E-01 5.57E-01 5.57E-01 5.57E-01 5.57E-01 1.07E+00 5.57E-01	2.23E-03 NA 4.45E-06 NA 5.55E-06 7.00E-07 1.07E-06 1.49E-04 4.39E-03 2.98E-03 2.78E-03 2.2E-03 3.14E-03 5.29E-04 1.57E-02 3.55E-03 1.81E-03 5.07E-03
2-Butanone 3.731E+ Ethylbenzene 6.255E- Methylene Chloride 9.324E- Trichloroethene 1.065E+ Xylenes (total) 5.475E- Acenaphthene 2.464E- Anthracene 8.496E- Benzo(a)anthracene 1.985E- Benzo(a)mitoranthene 5.932E- Benzo(a)mitoranthene 5.932E- Benzo(b)fluoranthene 1.010E- Bis(2-ethylhexyl)phthalate 2.337E- Carbazole Chrysene 1.985E- Dibenz(a,h)anthracene 1.985E- Diben	ND ND ND ND ND ND ND ND ND ND ND ND ND N	ND 1.00E-03 2.00E-03 2.00E-03 1.00E-03 1.00E-03 1.30E-01 1.90E-01 2.56E-01 2.30E-01 2.46E-01 2.46E-01 2.46E-01 2.76E-01 1.50E-01 1.50E-01 1.50E-01 1.50E-01 1.50E-01	NA NA NA NA NA NA NA NA NA NA NA NA NA N	NA A A A A A A A A A A A A A A A A A A	NA A A A A A A A A A A A A A A A A A A	0.000 0.000 0.001 0.000 0.000 0.000 0.003 0.002 0.002 0.002 0.002 0.001 0.002 0.001 0.009 0.009 0.009	NA 1.23E+01 7.38E+01 2.81E+01 1.26E+02 2.26E+02 2.21E+01 5.57E-01 5.57E-01 5.57E-01 5.57E-01 5.57E-01 5.57E-01 5.57E-01 5.57E-01 5.57E-01 5.57E-01 5.57E-01 5.57E-01 5.57E-01 5.57E-01	NA 4.45E-06 NA 5.55E-06 7.00E-07 1.07E-06 1.49E-04 4.39E-03 2.98E-03 2.78E-03 2.2E-03 3.14E-03 5.29E-04 1.57E-02 3.55E-03 3.181E-03 5.07E-03
Ethylbenzene	1 ND ND ND ND ND ND ND ND ND ND ND ND ND	1.00E-03 2.00E-03 1.00E-03 1.00E-03 5.00E-03 1.30E-01 1.90E-01 2.56E-01 2.30E-01 2.17E-01 2.46E-01 8.70E-02 1.80E-01 2.52E-01 1.50E-01 6.80E-02 2.35E-01 1.50E-01	NA NA NA NA NA NA NA NA NA NA NA NA NA	NA A A A A A A A A A A A A A A A A A A	NA A A A A A A A A A A A A A A A A A A	0.000 0.001 0.000 0.000 0.000 0.003 0.002 0.002 0.002 0.002 0.002 0.001 0.002 0.001 0.002 0.001	1.23E+01 7.38E+00 2.81E+01 1.26E+02 2.26E+02 2.21E+01 5.57E-01 5.57E-01 5.57E-01 5.57E-01 5.57E-01 5.57E-01 5.57E-01 5.57E-01 5.57E-01 5.57E-01 5.57E-01 5.57E-01 5.57E-01	4.45E-06 NA 5.55E-06 7.00E-07 1.07E-06 1.49E-04 4.39E-05 3.60E-03 2.98E-03 2.98E-03 3.14E-03 5.29E-04 1.57E-02 3.55E-03 1.81E-03 5.07E-03 2.86E-02
Toluene 1.065E+ Trichloroethene Xylenes (total) 5.475E-1 Acenaphthene 2.464E-1 Anthracene 8.496E-1 Benzo(a)anthracene 1.965E-1 Benzo(a)pyrene 5.193E-1 Benzo(a)pyrene 5.193E-1 Benzo(b)fluoranthene 5.93E-1 Benzo(b)fluoranthene 1.010E-1 Bis(2-6thylhexyl)phthalate 2.337E-1 Carbazole 5.500E-1 Chrysene 1.965E-1 Dibenz(a,h)anthracene 1.965E-1 Dibenz(a,h)anthracene 1.965E-1 Dibenz(a,h)anthracene 1.965E-1 Dibenz(a,h)anthracene 1.965E-1 Dibenz(a,h)anthracene 1.447E-1 Fluoranthene 1.447E-1 Fluoranthene 1.447E-1 Indeno(1,2,3-cd)pyrene 1.976E-1 Indeno(1,2,3-cd)pyrene 1.985E-1 Indeno(1,2,3-cd)pyrene 1.437E-1 Indeno(1,2,3-cd)pyrene 1.456E-1 Fluoranthene 4.96E-1 Indeno(1,2,3-cd)pyrene 1.154E-1 Indeno(1,2,3-cd	1 ND ND ND 1 ND ND 1 ND 2 ND ND ND ND ND ND ND ND ND ND ND ND ND	2.00E-03 1.00E-03 1.00E-03 1.30E-01 1.90E-01 2.30E-01 2.28E-01 2.17E-01 2.46E-01 2.70E-02 1.80E-01 1.50E-01 6.80E-02 2.35E-01 1.50E-01	NA NA NA NA NA NA NA NA NA NA NA NA NA N	NA A A A A A A A A A A A A A A A A A A	24 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	0.001 0.000 0.000 0.000 0.002 0.002 0.002 0.002 0.001 0.002 0.001 0.002 0.001 0.002	7.38E+00 2.81E+01 1.26E+02 2.26E+02 2.21E+01 5.57E+01 5.57E-01 5.57E-01 5.57E-01 1.07E+00 5.57E-01 5.57E-01 5.57E-01 5.57E-01 5.57E-01 5.57E-01 5.57E-01	NA 5.55E-06 7.00E-07 1.07E-06 1.49E-04 4.39E-05 3.60E-03 2.98E-03 2.92E-03 3.14E-03 5.29E-04 1.57E-02 3.55E-03 1.81E-03 5.29E-04 2.62E-02 2.62E-03
Trichloroethene	00 ND 1 ND 1 ND 2 ND 2 ND 2 ND 3 ND 3 ND 3 ND 3 ND 1 ND 1 ND 1 ND 1 ND 1 ND 1 ND 1 ND 1	1.00E-03 5.00E-03 1.30E-01 1.90E-01 2.56E-01 2.30E-01 2.17E-01 2.46E-01 8.70E-02 1.80E-01 2.52E-01 1.50E-01 6.80E-02 2.35E-01 1.50E-01	NA NA NA NA NA NA NA NA NA NA NA NA NA N	NA A A A A A A A A A A A A A A A A A A	NA A A A A A A A A A A A A A A A A A A	0.000 0.000 0.003 0.002 0.002 0.002 0.002 0.001 0.002 0.001 0.002 0.001 0.002	1.26E+02 2.26E+02 2.21E+01 5.57E+01 5.57E-01 5.57E-01 5.57E-01 5.57E-01 1.07E+00 5.57E-01 5.57E-01 5.57E-01 5.57E-01 5.57E-01 5.57E-01	7.00E-07 1.07E-06 1.49E-04 4.39E-05 3.60E-03 2.98E-03 2.78E-03 2.62E-03 3.14E-03 5.29E-04 1.57E-02 3.55E-03 1.81E-03 5.07E-03 2.66E-02
Xylenes (total)	1 ND ND 2 ND ND ND ND ND ND ND ND ND ND ND ND ND	5.00E-03 1.30E-01 1.90E-01 2.56E-01 2.30E-01 2.17E-01 2.46E-01 8.70E-02 1.80E-01 1.50E-01 6.80E-02 2.35E-01 1.50E-01	NA NA NA NA NA NA NA NA NA NA NA NA NA N	NA A A A A A A A A A A A A A A A A A A	NA A A A A A A A A A A A A A A A A A A	0.000 0.003 0.002 0.002 0.002 0.002 0.001 0.002 0.001 0.009 0.009 0.002 0.001	2.26E+02 2.21E+01 5.57E-01 5.57E-01 5.57E-01 5.57E-01 5.57E-01 5.57E-01 5.57E-01 5.57E-01 5.57E-01 5.57E-01 5.57E-01	1.07E-06 1.49E-04 4.39E-05 3.60E-03 2.98E-03 2.78E-03 3.14E-03 5.29E-04 1.57E-02 3.55E-03 1.81E-03 2.86E-02
Acenaphthene 2.464E-f. Anthracene 8.498E-f. Benzo(a)anthracene 1.955E-f. Benzo(a)pyrene 5.193E-f. Benzo(b)fluoranthene 5.932E-f. Benzo(b)fluoranthene 1.010E-f. Bis(2-ethylkeyt)phthalate 2.337E-f. Carbazole Chrysene 5.193E-f. Dibenz(a,h)anthracene 5.193E-f. Dibenz(a,h)anthracene 5.193E-f. Dibenz(a,h)anthracene 6.193E-f. Dibenzofuran 5.500E-f. Dibr-butylphthalate 8.496E-f. 2,4-Dinitrophenol 4.605E-f. Fluoranthene 1.447E-f. Fluoranthene 1.447E-f. Fluoranthrene 9.436F-f. Hoenanthrene 4.456E-f. Fluoranthrene 1.447E-f. Benzond 1.154E-f. 4,4-DDD 1.154E-f. 4,4-DDD 1.154E-f. 4,4-DDE 4.546E-f. Heptachlor epoxide 4.989E-f. Artimony 2.000E-f. Artimony 2.000E-f. Artimony 2.000E-f. Barium 1.500E-f. Beryllium 1.000E-f.	1	1.30E-01 1.90E-01 2.56E-01 2.30E-01 2.28E-01 2.17E-01 2.46E-01 8.70E-02 1.80E-01 2.52E-01 1.50E-01 6.80E-02 2.35E-01 1.50E-01	NA NA NA NA NA NA NA NA NA NA	NA A A A A A A A A A A A A A A A A A A	2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	0.003 0.002 0.002 0.002 0.002 0.001 0.002 0.001 0.009 0.002 0.001 0.002	2.21E+01 5.57E+01 5.57E-01 5.57E-01 5.57E-01 5.57E-01 5.57E-01 5.57E-01 5.57E-01 5.57E-01 5.57E-01 1.06E-01	1.49E-04 4.39E-05 3.60E-03 2.98E-03 2.78E-03 3.14E-03 5.29E-04 1.57E-02 3.55E-03 1.81E-03 2.66E-02
Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(b)fluoranthene Bis(2-ethylhexyl)phthalate Carbazole Chrysene Dibenz(a,h.)panthracene Dibenzo(a,h.)phthalate Carbazole Chrysene Chrysene Dibenz(a,h)anthracene Dibenzo(a,h.)phthalate 2,4-Dinitrophenol Fluoranthene 4,426EF Fluorene Indeno(1,2,3-cd)pyrene Phenanthrene Pyrene 4,4-DDD 4,5-46E 4,4-DDT 5,776E Endosulfan II Heptachlor epoxide Aroclor-1260 Aluminum Antumum Antumum Antumum Antumum Antumum Antumum Antumum Antumum Antumum Antumum Antumum Antumum Antumum Antumum Antumum Antumum Antumum Antumum Antumum Berylitum L500E Berylitum L500E Berylitum L500E Berylitum L500E Berylitum L500E Berylitum L500E Berylitum L500E Berylitum L500E Berylitum L500E	2 ND ND 2 ND ND ND ND ND ND ND ND ND ND ND ND ND	1.90E-01 2.56E-01 2.30E-01 2.28E-01 2.17E-01 2.46E-01 8.70E-02 1.80E-01 2.52E-01 1.50E-01 6.80E-02 2.35E-01 1.50E-01	NA NA NA NA NA NA NA NA NA	NA	. A A A A A A A A A A A A A A A A A A A	0.002 0.002 0.002 0.002 0.001 0.002 0.001 0.009 0.002 0.001 0.003	5.57E-01 5.57E-01 5.57E-01 5.57E-01 5.57E-01 5.57E-01 1.07E+00 5.57E-01 5.57E-01 5.57E-01 1.08E-01	4.39E-05 3.60E-03 2.98E-03 2.62E-03 3.14E-03 5.29E-04 1.57E-02 3.55E-03 1.81E-03 5.07E-03 2.86E-02
Senzo(a)anthracene	2 ND ND ND ND ND ND ND ND ND ND ND ND ND	2.56E-01 2.30E-01 2.28E-01 2.17E-01 2.46E-01 8.70E-02 1.80E-01 1.50E-01 5.80E-02 2.35E-01 1.50E-01	NA NA NA NA NA NA NA NA NA	NA	NA A A A A A A A A A A A A A A A A A A	0.002 0.002 0.002 0.001 0.002 0.001 0.009 0.002 0.001 0.003	5.57E-01 5.57E-01 5.57E-01 5.57E-01 5.57E-01 1.07E+00 5.57E-01 5.57E-01 5.57E-01 5.57E-01 1.08E-01	3.60E-03 2.98E-03 2.78E-03 2.62E-03 3.14E-03 5.29E-04 1.57E-02 3.55E-03 1.81E-03 5.07E-03 2.86E-02
Benzo(a)pyrene	2 ND ND ND ND ND ND ND ND ND ND ND ND ND	2.30E-01 2.28E-01 2.17E-01 2.46E-01 8.70E-02 1.80E-01 2.52E-01 1.50E-01 5.80E-02 2.35E-01 1.50E-01	NA NA NA NA NA NA NA NA	NA NA NA NA NA NA NA NA	NA A A A A A A A A A A A A A A A A A A	0.002 0.002 0.001 0.002 0.001 0.009 0.002 0.001 0.003 0.003	5.57E-01 5.57E-01 5.57E-01 5.57E-01 1.07E+00 5.57E-01 5.57E-01 5.57E-01 1.06E-01	2.98E-03 2.78E-03 2.62E-03 3.14E-03 5.29E-04 1.57E-02 3.55E-03 1.81E-03 5.07E-03 2.86E-02
Senzo(b)fluoranthene	3 ND 3 ND 2 ND 3 ND 1 ND 2 ND 3 ND 1 ND 2 ND 3 ND 1 ND	2.28E-01 2.17E-01 2.46E-01 8.70E-02 1.80E-01 2.52E-01 1.50E-01 5.80E-02 2.35E-01 1.50E-01	NA NA NA NA NA NA NA	NA NA NA NA NA NA NA	NA NA NA NA NA NA NA NA	0.002 0.001 0.002 0.001 0.009 0.002 0.001 0.003 0.003	5.57E-01 5.57E-01 5.57E-01 1.07E+00 5.57E-01 5.57E-01 5.57E-01 1.06E-01	2.78E-03 2.62E-03 3.14E-03 5.29E-04 1.57E-02 3.55E-03 1.81E-03 5.07E-03 2.86E-02
Benzo(kj,h,i)perylene 5.193E-1	3 ND 2 ND 3 ND 1 ND 2 ND 3 ND 1 ND 2 ND 3 ND 1 ND 1 ND	2.46E-01 8.70E-02 1.80E-01 2.52E-01 1.50E-01 5.80E-02 2.35E-01 1.50E-01	NA NA NA NA NA NA NA	NA NA NA NA NA NA	NA NA NA NA NA NA NA NA	0.001 0.002 0.001 0.009 0.002 0.001 0.003 0.003	5.57E-01 5.57E-01 1.07E+00 5.57E-01 5.57E-01 5.57E-01 1.06E-01	2.62E-03 3.14E-03 5.29E-04 1.57E-02 3.55E-03 1.81E-03 5.07E-03 2.86E-02
Bis(2-ethylihexyl)phthalate Carbazole Chrysene Dibenz(a,h)anthracene Dibenz(a,h)anthracene Dibenzofuran Di-n-butylphthalate 2,4-Dinitrophenol Fluoranthene Fluoranthene Fluoranthene Pyrene 4,42-DE 4,4'-DDD 4,4'-DDE 4,4'-DDE 4,4'-DDE 4,4'-DDE 4,4'-DDE 4,4'-DDE 4,4'-DDE 4,4'-DDE 4,4'-DB 4	3 ND 1 ND 2 ND 3 ND 1 ND 2 ND	8.70E-02 1.80E-01 2.52E-01 1.50E-01 5.80E-02 2.35E-01 1.50E-01	NA NA NA NA NA NA	NA NA NA NA NA	NA NA NA NA NA	0.001 0.009 0.002 0.001 0.003 0.003	1.07E+00 5.57E-01 5.57E-01 5.57E-01 5.57E-01 1.06E-01	5.29E-04 1.57E-02 3.55E-03 1.81E-03 5.07E-03 2.86E-02
Carbazole 5.500E-Chrysene 1.965E-Chrysene 1.96	1 ND 2 ND 3 ND 1 ND 2 ND	1.80E-01 2.52E-01 1.50E-01 5.80E-02 2.35E-01 1.50E-01	NA NA NA NA NA	NA NA NA NA NA	NA NA NA NA	0.009 0.002 0.001 0.003 0.003	5.57E-01 5.57E-01 5.57E-01 5.57E-01 1.06E-01	1.57E-02 3.55E-03 1.81E-03 5.07E-03 2.86E-02
Chrysene 1.965E-1 Dibenz(a,h)anthracene 5.193E-1 Dibenzofuran 5.50SE-1 Di-n-butylphthalate 8.496E-4 2,4-Dinitrophenol 4.405E-4 Fluoranthene 4.426E-4 Fluoranthene 1.447E-1 Indeno(1,2,3-cd)pyrene 8.496E-4 Pyrene 4.367E-4 4,4-DDD 4.546E-4 4,4-DDT 6.776E-1 Endosulfan II 1.653E-1 Heptachlor epoxide 4.999E-1 Arcolor-1260 1.318E-1 Aluminum 4.000E-1 Arsenic 4.000E-1 Barium 1.500E-1 Beryllium 1.000E-2	2 ND 3 ND 1 ND 2 ND	2.52E-01 1.50E-01 5.80E-02 2.35E-01 1.50E-01	NA NA NA NA	NA NA NA NA	NA NA NA NA	0.002 0.001 0.003 0.003	5.57E-01 5.57E-01 5.57E-01 1.06E-01	3.55E-03 1.81E-03 5.07E-03 2.86E-02
Dibenz(a,h)anthracene 5.193E-1 Dibenzofuran 5.500E-1 Dibenzofuran 8.496E-2 2,4-Dinitrophenol 4.605E+1 Fluoranthene 4.426E-1 Fluoranthene 1.447E-1 Indeno(1,2,3-cd)pyrene 5.193E-1 Phenanthrene 4.96E-1 Pyrene 4.367E-1 4,4'-DDD 1.154E-1 4,4'-DDE 4.56E-1 4,4'-DDT 6.776E-1 Endosulfan II 1.653E-1 Heptachlor epoxide 4.999E-1 Arcolo-1260 1.318E-1 Aluminum 4.000E-1 Arsenic 4.000E-1 Barium 1.500E-1 Beryllium 1.000E-1	3 ND 1 ND 2 ND 10 ND	1.50E-01 5.80E-02 2.35E-01 1.50E-01	NA NA NA NA	NA NA NA	NA NA NA	0.001 0.003 0.003	5.57E-01 5.57E-01 1.06E-01	1.81E-03 5.07E-03 2.86E-02
Dibenzofuran 5.50E-I Dibra-butylphthalate 8.496E-I 2,4-Dinitrophenol 4.605E+I Fluoranthene 4.426E-I Fluoranthene 1.447E-I Indeno(1,2,3-cd)pyrene 5.193E-I Phenanthrene 8.496E-I Pyrene 4.367E-I 4,4-DDD 1.154E-I 4,4-DDE 4.546E-I 4,4-DT 6.776E-I Endosulfan II 1.653E-I Heptachlor epoxide 4.999E-I Arcelor-1260 1.318E-I Aluminum 4.000E-I Artimony 2.000E-I Arsenic 4.000E-I Berjullium 1.500E-I	1 ND 2 ND 10 ND	5.80E-02 2.35E-01 1.50E-01	NA NA NA	NA NA	NA NA	0.003 0.003	5.57E-01 1.06E-01	5.07E-03 2.86E-02
Di-n-butylphthalate 2,4-Dinitrophenol 2,4-Dinitrophenol 4,405E-1 Fluoranthene 4,426E-1 Fluoranthene 4,426E-1 Fluoranthene 4,426E-1 Fluoranthene 9,496E-1 1,447E-1 1,447E-1 1,447E-1 1,548E-1 1,447E-1 1,548E-1 1,447E-1 1,548E-1 1,447E-1 1,548E-1 1,447E-1 1,548E-1 1,447E-1 1,548E-1 1,5	2 ND 0 ND	2.35E-01 1.50E-01	NA NA	NA NA	NA	0.003	1.06E-01	2.86E-02
2,4-Dinitrophenol 4.605E+ Fluoranthene 1.447E- Indeno(1,2,3-cd)pyrene 5.193E- Phenanthrene 8.496E- Pyrene 4.367E- 4,4-DDD 1.154E- 4,4-DDE 4.56E- 4,4-DDT 6.776E- Endosulfan II 1.653E- Heptachlor epoxide 4.999E- Arcolor-1260 1.318E- Aluminum 4.000E- Artimony 2.000E- Arsenic 4.00E- Barium 1.500E- Beryllium 1.000E-	O ND	1.50E-01	NA					
Fluoranthene 4.426E-f Fluorene 1.447E-f Indeno(1,2,3-cd)pyrene 5.193E-f Phenanthrene 8.496E-f Pyrene 4.367E-f 4,4'-DDD 1.154E-f 4,4'-DDT 6.776E-f Endosulfan II 1.653E-f Heptachlor epoxide 4.989E-f Aroclor-1260 1.316E-f Aluminum 4.000E-f Aluminum 2.000E-f Arsenic 4.000E-f Barium 1.500E-f Beryllium 1.000E-f					NA	0.054	1.44E+01	3.75E-03
Fluorene 1.447E- Indeno(1,2,3-cd)pyrene Phenanthrene 8.496E- Pyrene 4.387E- 4,4'-DDD 1.154E- 4,4'-DDT 6.776E- Endosulfan II 1.653E- Heptachlor epoxide 4.999E- Aroclor-1260 1.318E- Aluminum 4.000E- Arsenic 4.000E- Barium 1.500E- Beryllium 1.000E-4	2 ND			NA NA	NA.	0.003	6.96E+00	4.13E-04
Phenanthrene 8.496E-Pyrene Pyrene 4.36TE-I 4,4*-DDD 1.154E-I 4,4*-DDT 4.546E-I 6.776E-I Endosulfan II Heptachlor epoxide 4.989E-I Aroclor-1260 1.318E-I Aluminum 4.000E-I Antimony 2.000E-I Arsenic 4.000E-I Barium 1.500E-I Beryllium 1.000E-I		1.00E-01	NA	NA	NA	0.002	1.58E+01	1.11E-04
Pyrene 4.367E-4 4,4*-DDD 1.154E-4 4,4*-DDE 4.546E-4 4,4*-DDT 6.776E-1 Endosulfan II 1.653E-1 Heptachlor epoxide 4.999E-4 Arcolor-1260 1.318E-1 Aluminum 4.000E-1 Arsenic 4.000E-1 Barium 1.500E-1 Beryllium 1.000E-2	3 ND	2.20E-01	NA	NA NA	NA	0.001	5.57E-01	2.65E-03
4,4*-DDD 1.154E-4 4,4*-DDE 4.546E-4 4,4*-DDT 6.776E-1 Endosulfan II 1.653E-1 Heptachlor epoxide 4.989E-Arcolor-1260 1.318E-1 Aluminum 4.000E-4 Artimony 2.000E-4 Arsenic 4.000E-8 Barium 1.500E-6 Beryllium 1.000E-6		3.30E-01	NA	NA	NA	0.004	5.18E+01	8.20E-05
4,4-DDE 4,546E-4 4,4-DDT 6,776E-1 Endosulfan II 1,653E- Heptachlor epoxide 4,989E- Aroclor-1260 1,318E-4 Aluminum 4,000E- Antimony 2,000E- Arsenic 4,000E- Barium 1,500E- Beryllium 1,000E-4		3.04E-01	NA	NA	NA	0.003	4.17E+00	7.05E-04
4,4-DDT 6.776E-1 Endosulfan II 1.553E-1 Heptachlor epoxide 4.999E-2 Aroclor-1260 1.318E-1 Aluminum 4.000E-1 Artimony 2.000E-1 Arsenic 4.000E-1 Berlum 1.500E-1 Berlyllium 1.000E-2		5.45E-02	NA	NA	NA	0.000	8.80E-02	4.46E-03
Endosulfan II 1.653E-I Heptachlor epoxide 4.989E-I Aroclor-1260 1.318E-I Aluminum 4.000E-I Antimony 2.000E-I Arsenic 4.000E-I Barium 1.500E-I Beryllium 1.000E-I		8.30E-02 5.60E-02	NA NA	NA NA	NA	0.001	8.80E-02	6.29E-03
Heptachlor epoxide		2.54E-03	NA NA	NA NA	NA NA	0.000	8.80E-02	4.35E-03
Aroclor-1280 1.318E-1 Aluminum 4.000E-1 Antimony 2.000E-1 Arsenic 4.000E-1 Barium 1.500E-1 Beryllium 1.000E-2		1.22E-03	NA NA	NA I	NA NA	0,000	1.32E+01 4.82E-04	3.67E-06 2.57E-02
Aluminum 4.000E- Antimony 2.000E- Arsenic 4.000E- Barium 1.500E- Beryllium 1.000E-		2.47E-02	NA NA	NA I	NA NA	0.000	6.31E-03	2.87E-02
Antimony 2.000E- Arsenic 4.000E- Barium 1.500E- Beryllium 1.000E-0		4.02E+03	NA.	NA NA	NA NA	29,488	1.42E+01	2.07E+00
Barium 1.500E-0 Beryllium 1.000E-0		ND	NA	NA NA	NA.	0.000	4.42E-02	0.00E+00
Beryllium 1.000E-0	2 ND	ND	NA NA	NA NA	NA	0.000	9.19E+00	0.00E+00
		1.87E+01	NA NA	NA	NA	0.341	1.42E+00	2.40E-01
Chromium 1 7 500F-0		ND	NA NA	NA	NA	0.000	6.82E-01	0.00E+00
		6.48E+00	NA .	NA	NA	0.048	7.11E+01	6.71E-04
Copper 4.000E-0		5.56E+01	NA NA	NA I	NA	2.069	2.13E+01	9.71E-02
Iron 4.000E-0		7.57E+03 1.78E+02	NA NA	NA NA	NA I	51.000	7.11E+01	7.18E-01
Lead 4.500E-0 Manganese 2.500E-0		1.78E+02 1.11E+02	NA NA	NA	NA NA	1.746	3.49E+00	5.00E-01
Mercury 9.000E-0		1.11E+02	NA NA	NA NA	NA NA	2.861 0.000	1.42E+02 1.42E-01	2.01E-02 0.00E+00
Nickel 9.000E-0		3.28E+00	NA NA	NA NA	NA NA	0.000	1.42E-01 2.13E+01	1.68E-03
Selenium 2.500E-0		ND ND	NA NA	NA NA	NA NA	0,000	8.95E-01	0.00E+00
Thallium 4.000E-0		1.38E+00	NA.	NA NA	NA NA	0.009	2.90E-02	3.15E-01
Vanadium 5,500E-0	2 ND	7.21E+00	NA.	NA.	NA.	0.051	2.04E+01	2.53E-03
Zinc 1.500E+	ND ND		NA.	NA.	NA.	45,959	7.11E+01	6.47E-01

ND - Not Dete NA - Not Appli

EQUATION TO CALCULATE EXPOSURE FOR THE EASTERN COTTONTAIL RABBIT SITE 65, EI INST DUMP AREA REMEDIAL I. IGATION, CTO-312 MCB, CAMP LEJEUNE, NORTH CAROLINA

Food Source ingestion of: Vegetation(iv) = 100 percent	Feeding Rate (I in kg/d)	Incidental Soil Ingestion (Is in kg/d)	Rate of Drinking Water Ingestion (Iw in I/d)	Rate of Worm Ingestion (Iwo in kg/d)	Rate of Fruit Ingestion (Ifr in kg/d)	Rate of Mammal Ingestion (Im in kg/d)	Rate of Vegetation Ingestion (Iv in kg/d)	Body Weight (BW) (kg)	Home Range Size (acres)	Contaminated Area (acres)		Equation Used to Calculate Total Exposure E = Total exposure Cw = Constituent concentration in water iw = Ingestion of water Cs = Constituent concentration in soil Bv = Vegetation biotransfer factor Iv = Ingestion of vegetation Is = Incidential ingestion of soil H = Ratio of home range area to site area BW = Body weight
Parameters	2.370E-01	5.688E-03	1.192E-01	NA	NA	NA	2.370E-01	1.229E+00	9.297E+00	2.600E+01	1.000E+00	E=(Cw)(lw) + [(Cs)(Bv)(lv) + (Cs)(ls)] [H]

Constituent of Concern	Soil to Plant Transfer Coefficient (BV)	Constituent Concentration in Water (mg/L) (Cw)	Constituent Concentration in Soil (mg/kg) (Cs)	Constituent Concentration in Worms (mg/kg) (Cwo)	Constituent Concentration in Fruit (mg/kg) (Cfr)	Constituent Concentration in Mammals (mg/kg) (Cm)	Total Exposure (mg/kg/d) (E)	Terrestrial Reference Value (mg/kg/day) (TRV)	Quotient Ratio (= E/TRV)
Acetone	5.330E+01	0.005	6.70E-03	NA.	NA	NA	6.94E-02	6.58E+00	1.05E-02
2-Butanone	3.731E+01	ND	ND	NA NA	NA	NA.	0.00E+00	NA NA	NA
Ethylbenzene	6.255E-01	ND	1.00E-03	NA NA	NA	NA	1.25E-04	6.39E+00	1.96E-05
Methylene Chloride	6.864E+00	ND	2.00E-03	NA NA	NA	NA	2.66E-03	3.85E+00	NA
Foluene	9.324E-01	ND	2.00E-03	NA	NA NA	NA	3.69E-04	1.47E+01	2.51E-05
Trichloroethene	1.065E+00	ND ND	1.00E-03	NA NA	NA	NA	2.10E-04	6.58E+01	3.19E-06
Kylenes (total)	5.475E-01	ND	5.00E-03	NA NA	NA	NA	5.51E-04	1.18E+02	4.68E-06
Acenaphthene	2.464E-01	ND 1	1.30E-01	NA NA	NA	NA	6.78E-03	1.15E+01	5.89E-04
Anthracene	8.496E-02	ND I	1.90E-01	NA NA	NA NA	NA	3.99E-03	2.90E+01	1.38E-04
Benzo(a)anthracene	1.965E-02	ND I	2.56E-01 2.30E-01	NA NA	NA NA	NA	2.15E-03	2.90E-01	7.42E-03
Benzo(a)pyrene Benzo(b)fluoranthene	1.154E-02 5.932E-03	ND ND	2.30E-01 2.28E-01	NA NA	NA NA	NA NA	1.58E-03 1.32E-03	2.90E-01 2.90E-01	5.45E-03 4.55E-03
Benzo(g,h,i)perylene	5.193E-03	ND I	2.17E-01	NA I	NA NA	NA.	1.32E-03 1.22E-03	2.90E-01	4.35E-03 4.22E-03
Benzo(k)fluoranthene	1.010E-02	ND I	2.46E-01	NA I	NA NA	NA NA	1.62E-03	2.90E-01	4.22E-03 5.59E-03
Bis(2-ethylhexyl)phthalate	2.337E-03	ND	8.70E-02	l NA	NA NA	NA :	4.42E-04	1.63E-01	2.72E-03
Carbazole	5.500E-01	ND I	1.80E-01	NA I	NA.	NA NA	1.99E-02	2.90E-01	6.87E-02
Chrysene	1.965E-02	ND I	2.52E-01	NA I	NA.	NA	2.12E-03	2.90E-01	7.31E-03
Dibenz(a,h)anthracene	5,193E-03	ND	1.50E-01	NA NA	NA.	NA I	8.45E-04	2.90E-01	2.91E-03
Dibenzofuran	5.500E-01	ND	5.80E-02	NA	NA	NA	6.42E-03	2.90E-01	2.21E-02
Di-n-butylphthalate	8.496E-02	l nd l	2.35E-01	NA NA	NA	NA	4.94E-03	8.23E+01	6.01E-05
2,4-Dinitrophenol	4.605E+00	ND	1.50E-01	NA NA	NA	NA	1.34E-01	1.32E+01	1.02E-02
Fluoranthene	4.426E-02	ND	2.95E-01	NA NA	NA	. NA	3.89E-03	3.63E+00	1.07E-03
Fluorene	1.447E-01	ND	1.00E-01	NA NA	NA	NA	3.25E-03	8.23E+00	3.96E-04
ndeno(1,2,3-cd)pyrene	5.193E-03	ND	2.20E-01	NA NA	NA	NA	1.24E-03	2.90E-01	4.26E-03
Phenanthrene	8.496E-02	ND	3.30E-01	NA	NA	NA	6.94E-03	2.70E+01	2.57E-04
Pyrene	4.367E-02	ND	3.04E-01	NA NA	NA	NA	3.97E-03	2.18E+00	1.82E-03
4,4'-DDD	1.154E-02	ND	5.45E-02	NA NA	NA .	NA .	3.74E-04	5.26E-01	7.10E-04
4,4'-DDE	4.546E-03	ND	8.30E-02	NA III	NA	NA	4.57E-04	5.26E-01	8.68E-04
4.4'-DDT Endosulfan II	6.776E-03	ND ND	5.60E-02 2.54E-03	NA NA	NA NA	NA NA	3.32E-04	5.26E-01	6.32E-04
Endosultan II Heptachlor epoxide	1.653E-01	ND ND	2.54E-03 1.22E-03	NA NA	NA NA	NA NA	9.27E-05	3.95E-01	2.35E-04
neptacritor epoxice Aroclor-1260	4.989E-02 1.318E-02	ND ND	2.47E-02	NA NA	NA NA	NA NA	1.74E-05 1.77E-04	2.51E-04	6.92E-02 5.39E-02
Aluminum	4.000E-03	25.8	4.02E+03	NA I	NA NA	NA NA	2.42E+01	3.29E-03 1.16E+01	2.09E+00
Antimony	2.000E-03	ND I	ND	NA NA	NA.	NA NA	0.00E+00	4.06E+00	0.00E+00
Arsenic	4.000E-01	ND I	ND	NA NA	NA NA	NA .	0.00E+00	2.90E+00	0.00E+00
Barium	1.500E-01	0.0693	1.87E+01	NA NA	NA.	NA.	6.33E-01	1.16E+00	5.46E-01
Beryllium	1,000E-02	ND ND	ND	NA.	NA.	NA.	0.00E+00	3.55E-01	0.00E+00
Chromium	7.500E-02	0.0276	6.48E+00	NA	NA.	NA.	4.21E-02	5.80E+01	7.25E-04
Copper	4.000E-01	0.0411	5.56E+01	NA	NA	NA	4,55E+00	1.16E+01	3.92E-01
ron	4.000E-03	7.89	7.57E+03	NA NA	NA	NA.	4.16E+01	2.90E+01	1.43E+00
_ead	4.500E-02	0.0458	1.78E+02	NA NA	NA	NA.	2.37E+00	1.74E+00	1.36E+00
Vanganese	2.500E-01	0.0884	1.11E+02	NA NA	NA	NA	5.90E+00	2.32E+01	2.54E-01
Mercury	9.000E-01	ND	ND	NA	NA	NA	0.00E+00	1.20E-01	0.00E+00
Vickel	6.000E-02	ND	3.28E+00	NA NA	NA	NA	5.32E-02	2,90E+00	1.83E-02
Selenium	2,500E-02	ND	ND	NA	NA	NA	0.00E+00	1.20E-01	0.00E+00
Thallium	4.000E-03	ND	1.38E+00	NA	NA	NA	7.45E-03	1.51E-02	4.93E-01
/anadium	5.500E-03	0.0262	7.21E+00	NA	NA	NA	4.36E-02	5.80E-02	7.51E-01
Zinc	1.500E+00	0,144	3.77E+02	NA	NA	NA	1.11E+02	2.90E+01	3.82E+00
	ľ	· I		. 3					1.14E+01

ND - Not Detected NA - Not Applicable

Food Source ingestion of: Vegetation(Iv) = 100 percent	Feeding Rate (I in kg/d)	Incidental Soil Ingestion (Is in kg/d)	Rate of Drinking Water Ingestion (Iw in I/d)	Rate of Worm Ingestion (Iwo in kg/d)	Rate of Fruit Ingestion (ifr in kg/d)	Rate of Mammal Ingestion (Im in kg/d)	Rate of Vegetation Ingestion (Iv in kg/d)	Body Weight (BW) (kg)	Home Range Size (acres)	Contaminated Area (acres)		Equation Used to Calculate Total Exposure E = Total exposure Cw = Constituent concentration in water lw = Ingestion of water Cs = Constituent concentration in soil Bv = Vegetation biotransfer factor lv = Ingestion of vegetation Is = Incidential ingestion of soil H = Ratio of home range area to site area BW = Body weight
Parameters	1.600E+00	1.850E-02	1.100E+00	NA	NA	NA	1.600E+00	4.540E+01	4.540E+02	2.600E+01	5.727E-02	E≃(Cw)(lw) + [(Cs)(Bv)(lv) + (Cs)(ls)] [H] BW

Constituent of Concern	Soil to Plant Transfer Coefficient (Bv)	Constituent Concentration in Water (mg/L) (Cw)	Constituent Concentration in Soil (mg/kg) (Cs)	Constituent Concentration in Worms (mg/kg) (Cwo)	Constituent Concentration in Fruit (mg/kg) (Cfr)	Constituent Concentration in Mammals (mg/kg) (Cm)	Total Exposure (mg/kg/d) (E)	Terrestrial Reference Value (mg/kg/day) (TRV)	Quotient Ratio (= E/TRV)
Acetone	5.330E+01	0.005	6.70E-03	NA.	NA	NA	8.42E-04	1.98E+00	4.26E-04
2-Butanone	3.731E+01	ND	ND	NA.	NA	NA	0.00E+00	NA NA	NA
Ethylbenzene	6.255E-01	ND	1.00E-03	NA	NA	NA	1.29E-06	1.92E+00	6,70E-07
Methylene Chloride	6.864E+00	ND	2.00E-03	NA NA	NA	NA	2.78E-05	1.16E+00	NA
Foluene	9.324E-01	ND	2.00E-03	NA	NA	NA	3.81E-06	4.41E+00	8.65E-07
Frichloroethene	1.065E+00	ND	1.00E-03	NA	· NA	NA	2.17E-06	1.98E+01	1.10E-07
Kylenes (total)	5.475E-01	ND	5.00E-03	NA NA	NA	NA	5.64E-06	3.54E+01	1.60E-07
Acenaphthene	2.464E-01	ND	1.30E-01	NA NA	NA	NA	6.77E-05	3.46E+00	1.96E-05
Anthracene	8.496E-02	ND	1.90E-01	NA	NA	NA	3.70E-05	8.71E+00	4.25E-06
Benzo(a)anthracene	1.965E-02	ND	2.56E-01	NA	NA	NA	1.61E-05	8.71E-02	1.85E-04
Benzo(a)pyrene	1.154E-02	ND	2.30E-01	NA.	NA	NA	1.07E-05	8.71E-02	1.23E-04
Benzo(b)fluoranthene	5.932E-03	ND	2.28E-01	NA.	NA	NA	8.07E-06	8.71E-02	9.26E-05
Benzo(g,h,i)perylene	5.193E-03	ND	2.17E-01	NA	NA NA	NA	7.35E-06	8.71E-02	8.44E-05
Benzo(k)fluoranthene	1.010E-02	ND	2.46E-01	NA	NA NA	NA	1.08E-05	8.71E-02	1.24E-04
Bis(2-ethylhexyl)phthalate	2.337E-03	ND	8.70E-02	NA	NA .	NA NA	2.44E-06	4.89E-02	4.99E-05
Carbazole	5.500E-01	ND	1.80E-01	NA	NA NA	NA	2.04E-04	8.71E-02	2.34E-03
Chrysene	1.965E-02	ND	2.52E-01	NA .	NA NA	NA	1.59E-05	8.71E-02	1.82E-04
Dibenz(a,h)anthracene	5.193E-03	ND	1.50E-01	NA	NA	NA .	5.07E-06	8.71E-02	5.82E-05
Dibenzofuran	5.500E-01	ND	5.80E-02	NA	NA	NA	6.57E-05	8.71E-02	7.55E-04
Di-n-butylphthalate	8.496E-02	ND ND	2.35E-01 1.50E-01	NA NA	NA	NA	4.58E-05	2.47E+01	1.85E-06
2,4-Dinitrophenol	4.605E+00	D D	1.50E-01 2.95E-01		NA NA	NA	1.40E-03	3.95E+00	3.54E-04
Fluoranthene	4.426E-02	I ND	1.00E-01	NA NA	NA	NA 	3.33E-05	1.09E+00	3.06E-05
Fluorene	1.447E-01	ND ND	1.00E-01 2.20E-01	NA NA	NA	NA	3.15E-05	2.47E+00	1.28E-05
ndeno(1,2,3-cd)pyrene	5.193E-03 8.496E-02	ND	3.30E-01	I NA	NA NA	NA	7.43E-06 6.43E-05	8.71E-02 8.10E+00	8.53E-05 7.94E-06
Phenanthrene		ND ND	3.04E-01	NA NA	NA NA	NA		-,	7.94E-00 5.19E-05
Pyrene	4.367E-02 1.154E-02	ND	5.45E-02	NA NA	NA NA	NA NA	3.39E-05 2.54E-06	6.53E-01 1.58E-01	1.61E-05
4,4'-DDD	4.546E-03	ND	8.30E-02	NA NA	NA NA	NA NA	2.70E-06	1.58E-01	1.71E-05
4,4'-DDE 4,4'-DDT	6.776E-03	ND	5.60E-02	NA NA	NA NA	NA NA	2.70E-06 2.07E-06	1.58E-01	1.71E-05
4,4°-001 Endosulfan II	1.653E-01	ND	2.54E-03	I NA	NA NA	NA NA	9.07E-07	1.19E-01	7.65E-06
Heptachlor epoxide	4.989E-02	ND	1.22E-03	I NA	NA NA	NA NA	1.51E-07	7.55E-05	2.00E-03
Reptacritor epoxide Aroclor-1260	1.318E-02	ND	2.47E-02	NA NA	NA NA	NA NA	1.23E-06	9.88E-04	1.25E-03
Arocior-1200 Aluminum	4.000E-03	25.8	4.02E+03	NA NA	NA NA	NA NA	7.51E-01	6.51E+00	1.16E-01
	2.000E-01	ND	ND	l NA	NA NA	NA NA	0.00E+00	6.91E-03	0.00E+00
Antimony	4.000E-02	ND	ND	NA NA	NA NA		0.00E+00	3.25E-01	0.00E+00
Arsenic	1.500E-01	0.0693	1.87E+01	NA NA	NA NA	NA NA	7.76E-03	1.30E-01	5.97E-02
Barium	1.000E-02	ND	ND	NA NA	NA NA	NA NA	7.76E-03 0.00E+00	1.07E-01	0.00E+00
Beryllium	7.500E-02	0.0276	6.48E+00	NA NA					1.41E-04
Chromium	4.000E-03	0.0276	5.56E+01	NA NA	NA NA	NA NA	9.18E-04 4.72E-02	6.51E+00 6.51E-01	7.25E-02
Copper	4.000E-01	7.89	7.57E+03	NA NA	NA NA	NA .	4.72E-02 4.29E-01	6.51E+00	6.59E-02
ron Lead	4.500E-02	0.0458	1.78E+02	NA NA	NA NA	NA NA	4.29E-01 2.14E-02	1.95E-01	1.10E-01
	2.500E-02	0.0884	1.11E+02	NA NA	NA NA			1.30E+00	4.69E-02
Manganese	9,000E-01	0.0664 ND	ND	NA NA	NA NA	NA NA	6.10E-02 0.00E+00	1.30E+00 1.30E+02	0.00E+00
Mercury	6.000E-02	ND ND	3.28E+00	NA NA	NA NA	NA NA	4.74E-04	3.25E-01	1.46E-03
Nickel	2.500E-02	ND ND	3.20E700 ND	NA NA	NA NA			3.25E-01 1.30E-02	0.00E+00
Selenium The Wisser	4.000E-03	ND ND	1.38E+00	NA NA		NA NA	0.00E+00		9.54E-03
Thallium		0.0262	7.21E+00	NA NA	NA.	NA NA	4.33E-05	4.54E-03	9.54E-03 2.71E-03
Vanadium	5.500E-03		7.21E+00 3.77E+02	NA NA	NA NA	NA NA	8.83E-04	3.25E-01	
Zinc	1.500E+00	0.144	3.775702	INA.	NA	NA	1.15E+00	3.25E+00	3.55E-01

ND - Not De

Abiola, F.A. 1992. "Ecotoxicity of Organochloride Insecticides: Effects of Endosulfan on Birds Reproduction and Evaluation of its Induction Effects in Partridge, *Perdix perdix*". L. Rev. Vet. Med. 143:443-450.

Agency for Toxic Substances and Disease Registry (ASTDR). 1994. Toxicological Profile for Selenium. Prepared by Clement Associates for the US Department of Health and Human Services.

Agency for Toxic Substances and Disease Registry (ASTDR). 1993. Toxicological Profile for Endosulfan. Prepared by Clement Associates for the US Department of Health and Human Services.

Agency for Toxic Substances and Disease Registry (ASTDR). 1993. Toxicological Profile for Total Xylenes - Draft. Prepared by Clement Associates for the US Department of Health and Human Services.

Agency for Toxic Substances and Disease Registry (ASTDR). 1993. Toxicological Profile for Total Nitrophenols - Draft. Prepared by Clement Associates for the US Department of Health and Human Services.

Agency for Toxic Substances and Disease Registry (ASTDR). 1991. Toxicological Profile for Arsenic - Draft. Prepared by Life Systems, Inc, for the US Department of Health and Human Services.

Agency for Toxic Substances and Disease Registry (ASTDR). 1991. Toxicological Profile for Polychlorinated Biphenyls - Draft. Prepared by Syracuse Research Corporation for the US Department of Health and Human Services.

Agency for Toxic Substances and Disease Registry (ASTDR). 1991. Toxicological Profile for Tetrachloroethylene- Draft. Prepared by Syracuse Research Corporation for the US Department of Health and Human Services.

Agency for Toxic Substances and Disease Registry (ASTDR). 1991. Toxicological Profile for Benzene - Draft. Prepared by Clement Associates for the US Department of Health and Human Services.

Agency for Toxic Substances and Disease Registry (ASTDR). 1991. Toxicological Profile for Beryllium - Draft. Prepared by Syracuse Research Corporation for the US Department of Health and Human Services.

Agency for Toxic Substances and Disease Registry (ASTDR). 1991. Toxicological Profile for Cadmium - Draft. Prepared by Life Systems, Inc., for the US Department of Health and Human Services.

Agency for Toxic Substances and Disease Registry (ASTDR). 1991. Toxicological Profile for Chromium - Draft. Prepared by Syracuse Research Corporation for the US Department of Health and Human Services.

Agency for Toxic Substances and Disease Registry (ASTDR). 1991. Toxicological Profile for N-Nitrosodiphenylamine, Draft. Prepared by Clement Associates for the US Department of Health and Human Services.

Agency for Toxic Substances and Disease Registry (ASTDR). 1991. Toxicological Profile for Cyanide - Draft. Prepared by Syracuse Research Corporation for the US Department of Health and Human Services.

Agency for Toxic Substances and Disease Registry (ASTDR). 1991. Toxicological Profile for Chloroform - Draft. Prepared by Clement Associates for the US Department of Health and Human Services.

Agency for Toxic Substances and Disease Registry (ASTDR). 1991. Toxicological Profile for Diethylphthalate - Draft. Prepared by Clement Associates for the US Department of Health and Human Services.

Agency for Toxic Substances and Disease Registry (ASTDR). 1991. Toxicological Profile for Heptachlor/Heptachlor Epoxide - Draft. Prepared by Clement Associates for the US Department of Health and Human Services.

Agency for Toxic Substances and Disease Registry (ASTDR). 1991. Toxicological Profile for Methylene Chloride - Draft. Prepared by Life Systems, Inc, for the US Department of Health and Human Services.

Agency for Toxic Substances and Disease Registry (ASTDR). 1991. Toxicological Profile for Vinyl Chloride - Draft. Prepared by Clement Associates for the US Department of Health and Human Services.

Agency for Toxic Substances and Disease Registry (ASTDR). 1989. Toxicological Profile for Copper - Draft. Prepared by Syracuse Research Corporation for the US Department of Health and Human Services.

Agency for Toxic Substances and Disease Registry (ASTDR). 1989. Toxicological Profile for 1,1-Dichloroethene - Draft. Prepared by Clement Associates for the US Department of Health and Human Services.

Agency for Toxic Substances and Disease Registry (ASTDR). 1989. Toxicological Profile for Endrin/Endrin Aldehyde - Draft. Prepared by Life Systems, Inc, for the US Department of Health and Human Services.

Agency for Toxic Substances and Disease Registry (ASTDR). 1989. Toxicological Profile for Ethylbenzene - Draft. Prepared by Clement Associates for the US Department of Health and Human Services.

Agency for Toxic Substances and Disease Registry (ASTDR). 1989. Toxicological Profile for Naphthalene/2-methynaphthalene - Draft. Prepared by Life Systems, Inc, for the US Department of Health and Human Services.

Agency for Toxic Substances and Disease Registry (ASTDR). 1989. Toxicological Profile for Polycyclic Aromatic Hydrocarbons - Draft. Prepared by Clement Associates for the US Department of Health and Human Services.

Agency for Toxic Substances and Disease Registry (ASTDR). 1989. Toxicological Profile for Silver - Draft. Prepared by Clement Associates for the US Department of Health and Human Services.

Agency for Toxic Substances and Disease Registry (ASTDR). 1989. Toxicological Profile for 1,1-Dichloroethane - Draft. Prepared by Clement Associates for the US Department of Health and Human Services.

Agency for Toxic Substances and Disease Registry (ASTDR). 1989. Toxicological Profile for 1,2-Dichloroethane. Prepared by Clement Associates for the US Department of Health and Human Services.

Agency for Toxic Substances and Disease Registry (ASTDR). 1989. Toxicological Profile for 1,1-Dichloroethene. Prepared by Clement Associates for the US Department of Health and Human Services.

Agency for Toxic Substances and Disease Registry (ASTDR). 1989. Toxicological Profile for Trichloroethylene. Prepared by Syracuse Research Corporation for the US Department of Health and Human Services.

Agency for Toxic Substances and Disease Registry (ASTDR). 1988. Toxicological Profile for Mercury - Draft. Prepared by Clement Associates for the US Department of Health and Human Services

Agency for Toxic Substances and Disease Registry (ASTDR). 1988. Toxicological Profile for 1,1,2-Trichloroethane - Draft. Prepared by Clement Associates for the US Department of Health and Human Services.

Agency for Toxic Substances and Disease Registry (ASTDR). 1988. Toxicological Profile for 1,1,1-Trichloroethane - Draft. Prepared by Syracuse Research Corporation for the US Department of Health and Human Services.

Agency for Toxic Substances and Disease Registry (ASTDR). 1988. Toxicological Profile for Alpha, Beta, and gamma Isomers of Hexachlorocyclohexane - Draft. Prepared by Clement Associates for the US Department of Health and Human Services.

Alumot, E., E. Nachtomi, E. Mandel, et.al., 1976. "Tolerance and Acceptable Daily Intake of Chlorinated Fumigants in the Rat Diet". Food Cosmet. Toxicol. 14:105-110. Cited in ASTDR, 1989 (1,2-Dichloroethane).

Ambrose, A.M., D.S. Larson, J.R. Borzelleca and G.R. Hennigar, Jr. 1976. "Long-Term Toxologic Assessment of Nickel in Rats and Dogs". J. Food Science Technology. 13:181-187. Cited in IRIS, Accessed January 1995 (Nickel).

Aulerich, R.J., G.J. Bursian, and A.C. Napolitano. 1990. "Subacute Toxicity of Dietary Heptachlor to Mink (Mustela vison)". Arch. Environ. Contam. Toxicol 19(6):913-916. Cited in ASTDR, 1991

(Heptachlor).

Aulerich, R.J., R.K., Ringer, M.R., Bleavins, et. al. 1982. "Effects of Supplemental Dietary Copper on Growth, Reproductive Performance and Kit Survival of Standard Dark Mink and the Acute Toxicity of Copper to Mink". J. Animal Sci. 55:337-343. Cited in ASDTR, 1989 (Copper).

Aulerich, R.J., and R.K., Ringer. 1980. "Toxicity of the Polychlorinated Biphenyl Aroclor-1016 to Mink". Environmental Research Laboratory, Office of Research and Development. Cited in Opresko, et.al., 1994.

Azar, A., H.J. Trochimowicz and M.E. Maxfield. 1973. "Review of Lead Studies in Animals Carried out at Haskell Laboratory - Two Year Feeding Study and Response to Hemorrhage Study". In Barth D., A. Berlin, R. Engel, P. Recht and J. Smeets, Ed. Environmental Health Aspects of Lead: Proceedings International Symposium; October 1972; Amsterdam, The Netherlands. Commission of the European Communities, Luxemberg. p. 199-208. Cited in IRIS, Accessed January 1995 (Lead).

Barnes, D.W., V.M. Sanders, K.L. White Jr., et.al. 1985. "Toxicology of Trans-1,2-Dichloroethylene in the Mouse". Drug. Chem. Toxicol. 8:373-392. Cited in IRIS Accessed After Jan. 1992 (Trans-1,2-Dichloroethylene).

Bleavins, M.R., C.S. Sisodia, and T.K. Mukkur. 1980. "The Effects of Methyl Mercury, Tetrethyl Lead, and Sodium Arsenite on the Humoral Immune Response in Mice". Toxicol. Appl. Pharmacol. 52:245-254. Cited in Opresko et.al., 1994.

Bornhauses, M. M.R. Nusch, and H. Greim. 1980. "Operant Behavior Performance Changes in Rats After Prenatal Methylmercury Exposure". Toxicol. Appl. Pharmacol. Cited in ASTDR, 1988 (Mercury).

Brown, D., K.R. Butterworth, I.F. Gaunt, P. Grasso, S.D. Gangolli. 1978. "Short-Term Oral Toxicity Study of Diethyl Phthalate in the Rat". Food Cosmet. Toxicol. 16:415-422. Cited in IRIS, Oct, 1992.

Bruckner, J.V., K.L. Khanna, and H.H. Cornish. 1974. Effect of Prolonged Ingestion of Polychlorinated Biphenyls on the Rat. Food Cosmet. Toxicol. 12:323. Cited in ASTDR, 1991 (PCBs).

Bruckner, J.V., W.F. MacKenzie, S. Muralidhara, R. Luthra, G.M. Kyle, and D. Acosta. 1986. "Oral Toxicity of Carbon Tetrachloride: Acute, Subacute, and Subchronic Studies in Rats". Fund. Appl. Toxicol. 6(1):16-34.

Buben, J.A., and E.J. O'Flaherty. 1985. "Delineation of the Role of Metabolism in the Hepatotoxicity of Trichloroethylene and Perchloroethylene: A Dose-Effect Study". Toxicol. Appl. Pharmacol. 78:105-122. Cited in ASTDR, 1991 (Tetrachloroethylene).

Byrne, J.J., J.P. Carbone, and M.G. Pepe. 1988. "Supression of Serum Adrenal Cortex Hormones by Chronic Low-Dose Polychlorobyphenyl of Polybromobiphenyl Treatments". Arch. Environ. Contam. Toxicol. 17:47-53. Cited in ASTDR, 1991 (PCBs).

- Cardy, R.H., W. Lijinski, and P.K. Hildebrant. 1979. "Neoplastic and Nonneoplastic Urinary Bladder Lesions Induced in Fischer 344 rats and B6C3F Hybrid Mice by N-Nitrosodiphenylamine." Ecotoxocol. Environ. Safety 3:29-37.
- Carpenter, C.P., C.S. Weil, and H.F. Smyth, 1953. "Chronic Oral Toxicity of Di(2-ethylhexyl)phthalate for Rats and Guinea Pigs". Arch. Indust. Hyg. Occup. Med. 8:21 9-226. Cited in IRIS, Accessed Oct. 1994 (DEHP).
- Chang, L.W., S. Yamaguchi, and J.A.W. Dudley. 1974. "Neurological Changes in Cats Following Long-Term Diet of Mercury Contaminated Tuna". Acta. Neuropathol. (Berlin) 27:171-176. Cited in ASTDR, 1988 (Mercury).
- Chang, L.W., and H.A. Hartman. 1972. "Ultrastructural Studies of the Nervious System After Mercury Intoxication". Acta. Neuropathol. (Berlin) 20:122-138. Cited in ASTDR, 1988 (Mercury).
- CIIT (Chemical Industry Institute of Toxicology). 1984. Ninty-day Inhalation Toxicity Study of Nitrobenzene in F344 Rats and B6C3F1 Mice. Research Triangle Park, NC. FYI-OTS-0874-0333.
- Cody, T.E., S. Witherup, L. Hastings, K. Stemmes, and R.T. Christian. 1981. "1,3-Dinitrobenzene: Toxic Effects in Vivo and in Vitro". J. Toxicol. Environ. Health. 7(5): 829-847. Cited in IRIS, March 1995
- Cox, G.E., D.E. Bailey, and K. Morgareidge. 1975. "Toxicity Studies in Rats with 2-Butanol Including Growth, Reproduction and Teratologic Observations". Food and Drug Research Laboratories, Inc., Waverly, NY, Report No. 91MR R 1673.
- Dahlgren, R.B., R.L. Linder, and C.W. Carlson. 1972. "Polychlorinated Biphenyls: Their Effects on Penned Pheasants". Environ. Health Perspect. 1:89-101. Cited in Opresko et.al., 1994.
- Dee, J.C. November, 1991. "Methodology For Assessing Potential Risks To Deer Populations: A Case Study at a Superfund Site". Paper presented at the 1991 Annual Meeting of the Society of Environmental Toxicology and Chemistry. Abstract No. 426.
- Dikshith, T.S.S., R.B. Raizada, M.K. Srivastava, and B.S. Kaphalia. 1984. "Response of Rats to Repeated Oral Administration of Endosulfan". Ind. Health. 22:295-304. Cited in ASTDR 1993 (Endosulfan).
- Domingo, J.L., J.L. Paternaia, J.M. Llobet, and J. Corbella. 1986. "Effects of Vanadium on Reproduction, Gestation, Parturition and Lactation in Rats upon Oral Administration". Life Sci. 39:819-824. Cited on Opresko et.al., 1994.
- Dow Chemical Company. 1958. MRID No. 00061912. Available from USEPA, Write to FOI, USEPA, Washington, DC 20460 (Heptachlor Epoxide)
- Drinker, K.P., P.K. Thompson, and M. Marsh. 1927. "An Investigation of the Effects of the Long-

Continued Ingestion of Zinc, in the Form of Zinc Oxide, by Cats and Dogs, Together with Observations Upon the Excretion and the Storage of Zinc". Am. J. Physiol. 80:31. Cited in NAS, 1980.

Dunning, J.B., 1984. Body Weights of 686 Species of North American Birds. West. Bird Banding Assoc. Monogr. No. 1. Eldon Publ. Co. Cave Crk, AZ. Cited in Opresko, et.al., 1984.

Duer, R.S., M.S. Bercegeay, and L.M. Mayo. 1988. "Acute Exposures to p-Xylene and Toluene Alter Visual Information Processing". Neurotoxicol Teratol 10:147-153. Cited in ASTDR, 1990 (Total Xylenes).

Eisler, R. 1990. Chlordane Hazards to Fish, Wildlife, and Invertebrates: A Synoptic Review. U.S. Department of the Interior, Fish and Wildlife Service. Biological Report 85(1.21), July 1990.

Eisler, R. 1990. Cyanide Hazards to Fish, Wildlife, and Invertebrates: A Synoptic Review. U.S. Department of the Interior, Fish and Wildlife Service. Biological Report 85(1.23), July 1991.

FAO/WHO (Food Agriculture Organization/World Health Organization). 1978. "Evaluation of Some Pesticides in Food." Food and Agric, Organ. Plant Production and Protection Paper. Suppl. 10, Rome. Cited in Newell et.al., 1987.

Fitzhugh, O.G., A.A. Nelson, and E.P. Laug et.al. 1950 "Chronic Oral Toxicies of Mercuri-Phenyl and Mercuric Salts". Arch. Ind. Hyg. Med. 2:433-442. Cited in ASTDR, 1989 (Mercury).

Fitzhugh, O.G., 1948. "Use of DDT Insecticides on Food Products". Ind. Eng. Chem. 40:704-705.

Formigli, L., R. Scelsi, P. Poggi, C. Gregotti, A. DiNucci, E. Sabbioni, L. Gottardi, and L. Manzo. 1986. "Thallium-Induced Testicular Toxicity in the Rat". Environ. Res. 40:531-539.

Ford, K.L., F.M. Applehans, and R. Ober. 1991. "Development of Toxicity Reference Values for Terrestrial Wildlife". In HMC-Northeast '91 Conference Proceedings, Sponserec by the Hazardous Materials Control Research Institute. July 10-12, 1991.

Fucik, K.W., H.W. Armstrong, and J.M. Neff. 1977. "The Uptake of Napthalenes by the Clam Rangia cuneata, in the Vicinity of an Oil-Separator Platform in Trinity Bay, Texas". Proc. 1977 Oil Spill Conference. Washington DC: American Petroleum Institute. Cited in USEPA, 1981.

Gasaway, W.C., and I.O. Buss. 1972. "Zinc Toxicity in the Mallard". J. Widl. Manage. 36: 1107-1117.

Gerhart, J.M. 1986. "Ninety-day Oral Toxicity Study of Copoper Cyanide (CuCN) in Sprague-Dawley Rats". Prepared for the Dynamac Coporation, Rockville, MD by IIT Research Institute, Chicago, IL. IITRI Project No. LO6183, Study No. 3. Cited in ASTDR, 1991 (Cyanide).

Gomez, G., M.A. Aparicio, and C.C. Willhite. 1988. "Relationship Between Dietary Cassave Cyanide Levels and Broiler Performance". Nutr. Rep. Int. 37:63-75. Cited in Eisler, 1991 (Cyanide).

Gomez, G., M. Valdivieso, J. Santos, and C. Hoyos. 1983. "Evaluation of Cassava Root Meal Prepared

from Low- or High-Cyanide Containing Cultivars in Pig and Broiler Diets." Nutr. Rep. Int. 28:693-704. Cited in Eisler, 1991 (Cyanide).

Good, E.E., and G.W. Ware. 1969. "Effects of Insecticides on Reproduction in the Laboratory Mouse, IV. Endrin and Dieldrin". Toxicol. Appl. Pharmacol. 14:201-203.

Gross, W.G., and V.G. Heller. 1946. "Chromates in Animal Nutrition". J. Ind. Hyg. Toxicol. 28:52-56. Cited in IRIS, Accessed January 1995 (Chromium).

Halverson, A.W., I.S. Palmer and P.L. Guss. 1966. "Toxicity of Selenium to Post-Weanling Rats." Toxicol. Appl. Pharmacol". 9:477-484. Cited in IRIS, Accessed January 1995 (Selenium).

Hardin B.D., G.P. Bond, M.R. Sikor, F.D. Andrew, R.P. Beliles, and R.W. Niemeir. 1981. "Testing of Selected Worlplace Chemicals for Teratogenic Potential". Scand J. Work Environ. Health. 7(Suppl 4):66-75. Cited in HEAST, March 1994.

Harr, J.R., J.F. Bone, Tinsley, I.J., et. al. 1967. "Selenium Toxicity in Rats. II. Histopathology". In; Muth OH, Oldfield J.E., P.H., Weswig, ed. Selenium Biomed Proc 1st Int. Symp. Oregon State Univ. 1966. Vol. II, Westport, Conn: AVI Publishing Co. 153-178. Cited in ASTDR, 1989 (Selenium).

Hazelton Labs. 1988. Subchronic Toxicity Study in Rats with m-Xylene. Report by Hazelton Laboratories America, Inc., Rockville MD for Dyanamic Corporation, Rockville, MD. Unpublished. Cited in ASTDR, 1993 (Total Xylenes).

Health Effects Assessment Summary Tables (HEAST). 1994. USEPA, Office of Solid Waste and Emergency Response. EPA 540/R-94/020.

Heath, R., J. Spann, and J. Kreitzer. 1969. "Marked DDE Impairment of Mallard Reproduction in Controlled Studies". Nature 224:47-48. Cited in Newell, 1987.

Heinz, G.H., D.J. Hoffman, and L.G. Gold. 1989. "Impaired Reproduction of Mallards Fed and Organic Form of Selenium". J. Wildl. Mgmt. 53: 418-428. Cited in Opresko, et.al., 1994.

Heinz, G.H., D.J. Hoffman, A.J. Krynitsky, and D.M.G. Weller. 1987. "Reproduction in Mallards Fed Selenium". Environ. Toxicol. Chem. 6:423-433.

Heywood, R., R.J. Sortwell, PRB Noel, et. al. 1979. "Safety Evaluation of Toothpaste Containing Chloroform, III. Long-term Study on Beagle Dogs". J. Environ Pathol Toxicol 2:835-851. Cited in ASTDR, 1991 (Chloroform).

Hoechst. 1989. "Endosulfan-Beta - Substance Technical (code HOE 02671 00 ZD96 0002): Testing for Toxicity by Repeated Oral Administration (1-year feeding study) to Beagle Dogs". Conducted by Hoechst Aktiengesellschaft, Frankfurt, Germany. Project No. 87.0643. Cited in ASTDR, 1993 (Endosulfan).

Howard, J.W., and R.F. Hanzal. 1955. "Chronic Toxicity for Rats of Food Treated with Hydrogen Cyanide". J. Agric. Food. Chem. 3:325-329.

Huff, J.E., J.K. Haseman, and D.M. DeMarini, et.al. 1989. "Multiple-Site Carcinogenicity of Benzene in

Fischer 344 Rats and B6C3F1 Mice". Environ. Health. Perspect. 82:125-163. Cited in ASTDR, 1991 (Benzene).

Hulzebos, E.M., D.M.M. Adema, E.M. Dirven-van Breemen, L. Henzen, W.A. van Dis, H.A. Herbold, J.A. Hoekstra, R. Baerselman, and C.A.M van Genstel. 1993. "Phytotoxicity Studies with Lactuca sative in Soil and Nutrient Solution". Environmental Toxicology and Chemistry, 12:1079-1094.

IT Corporation. November, 1992. Baseline Risk Assessment, Weldon Springs Ordanance Works, Weldon Spring, Missouri. Prepared for the Department of Army Corps of Engineers, Kansas City District.

Ito N., H. Nagasaki, H. Aoe, et.al. 1975. "Development of Heptocellular Carcinomas in Rats Treated with Benzene Hexachloride". JNCI 54:801-805. Cited in ASTDR, 1988 (BHC).

Izushi F., and M. Ogata. 1990. "Hepatic and Muscle Injuries in Mice Treated with Heptachlor". Toxicol. Lett. 54:47-54.

Jeter, M.A., and G.K. Davis. 1954. "The Effects of Dietary Molybdenum Upon Growth, Hemoglibin, Reproduction, and Lactation in Rats." J. Nutr. 54:215-220. Cited in IRIS, August 1995

Jorgenson, T.A., E.F. Meierhenry, and C.J. Rushbrook, et.al. 1985. "Carcinogenicity of Chloroform in Drinking Water to Male Osborne-Mendel Rats and Female B6C3F, Mice". Fundam. Appl. Toxicol 5:760-769. Cited in ASTDR 1991 (Chloroform).

Kopp S.J., T. Glonek, H.M. Perry Jr. et.al., 1982. "Cardiovascular Actions of Cadmium at Environmental Exposure Levels." Science 217:837-839. Cited in ASTDR, 1991 (Cadmium).

Lamb, J.C., IV, R.E. Chapin, J. Teague, A.D. Lawton, and J.R. Reel. 1987. "Reproductive Effects of Four Phthalic Acid Esters in the Mouse". Toxicol. Appl. Pharmacol. 88:255-269.

Lane, R.W., B.L. Riddle, and J.F. Borzelleca. 1982. "Effects of 1,2-Dichloroethane and 1,1,1-Trichloroethane in Drinking Water on Reproduction and Development in Mice". Toxicol. Appl. Pharmacol. 63:409-421.

Lang, E.P., A.A. Nelson, O.G. Fitzhugh, and F.M. Kunze. 1950. "Liver Cell Alteration and DDT Storage in the Fat of the Rat Induced by Dietary Levels of 1-50 ppm DDT". J. Pharmacol. Exp. Thearp. 98:268-273. Cited in IRIS, Oct. 1994.

Laskey, J.W., G.L. Rehnberg, J.F. Hein, and S.D. Carter. 1982. "Effects of Chronic Manganese (MN₃O₄) Exposure on Selected Reproductive Parameters in Rats.: J. Toxicol. Environ. Health. 9:677-687. Cited in Opresko et.al., 1994.

Lee, C.C. et.al., 1976. Mammalian Toxicity of Munition Compounds, Phase II. Effects of Multiple Doses. Part III: 2,6-Dinitrotoluene." U.S. Army Medical Research and Development Command, Fort Detric, MD. Cited in HEAST, March 1994

Linder, R.E., T.B. Gaines, and R.D. Kimbrough. 1974. "The Effect of Polychlorinated Biphenyls on Rat

Reproduction". Food Cosmet. Toxicol. 12:63-77. Cited in ASTDR, 1991 (PCBs).

Loser E and D. Lorke. 1977. "Semichronic Oral Toxicity of Cadmium. I. Studies on Rats". Toxicology 7:215-224. Cited in ASTDR, 1992 (Cadmium).

MacKenzie, R.D., R.U. Byerrum, C.F. Decker, C.A. Hoppert and R.F. Langham. 1958. "Chronic Toxicity Studies. II. Hexavalent and Trivalent Chromium Administered in Drinking Water to Rats". Am. Med. Assoc. Arch. Ind. Health. 18:232-234. Cited in Chromium IRIS, Accessed January 1995.

MacKenzie, K.M., and D.M. Angevine. 1981. "Infertility in Mice Exposed in Utero to Benzo(a)pyrene. Biol". Reprod. 24:183-191. Cited in ASTDR, 1989 (PAHs).

McCauley, P.T., M. Robinson, L.W. Condie, et.al. Undated. "The Effects of Subacute and Subchronic Oral Exposure To Cis-1,2-Dichloroethylene in Rats. Health Effects Research Laboratory, USEPA, Cincinnati, Ohio. Cited in HEAST, March 1994.

McLane, M.A.R., and D.L. Hughes. 1980. "Reproductive Success of Screech Owls Fed Aroclor-1248". Arch Environ. Contam. Toxicol. 9:661-665. Cited in Opresko et.al., 1994.

Massie H.R., and V.R. Aiello. 1984. "Excessive Intake of Copper: Influence on Longevity and Cadmium Accumulation in Mice". Mech. Ageing. Dev. 26:195-203. Cited in ASTDR, 1989 (Copper).

National Academy of Sciences (NAS). 1980. Mineral Tolerance of Domestic Animals. National Research Council, Commission on Natural Resources, Committee on Animan Nutrition.

National Coffee Association (NCA). 1982. "24-Month Chronic Toxicity and Oncogenecity Study of Methylene Chloride in Rats". Final report. Prepared by Hazelton Labs. America, Inc., Vienna, VA (Unpublished), Cited in IRIS, Oct. 1994.

National Research Council of Canada (NRCC). 1975. Chlordane: its Effects on Canadian Ecosystems and its Chemistry. Nat. Res. Counc. Can. Publ. NRCC 14094. Cited in Eisler, 1990 (Chlordane).

Nawrot, P.S. and R.E. Staples. 1979. "Embryofetal Toxicity and Teratogenecity of Benzene and Toluene in the Mouse". Teratology, 19:41A

NCI. 1979. Bioassay of N-Nitrosodiphenylamine for Possible Carcinogenicity. Betheseda, MD: US Dept. of Health, Education, and Welfare, Public Health Service, National Institute of Health, National Cancer Institute. Division of Cancer Cause and Prevention. DHEW Publ (NIH) 79-1720. Cited in ASTDR, 1991 (N-Nitrosodiphenylamine).

NCI. 1978a. Bioassay of Technical-Grade Endrin for Possible Carcinogenicity. Betheseda, MD: National Cancer Institute. Division of Cancer Cause and Prevention. NCI-CG-TR 12. Cited in ASTDR, 1990 (Endrin).

NCI. 1978b. Bioassay of 1,1,2,2-Tetrachloroethane for Possible Carcinogenicity. Betheseda, MD: National Cancer Institute. Division of Cancer Cause and Prevention. NTIS PB277, 4537GA, DHEW/PUB/NIH-78-827. Cited in ASTDR, 1994 (Endrin).

NCI. 1977. Bioassay of Heptachlor of Possible Carcinogenicity. CAS No. 76-44-8. Technical Report Series 9. Betheseda, MD: U.S. Department of Health, Education, and Welfare, National Institute of Health, National Cancer Institute. DHEW Publication (NIH) 77-809. Cited in ASTDR, 1991 (Heptachlor).

Nebeker, A.V., W.L. Griffis, T.W. Stutzman, G.S. Schuytema, L.A. Carey, and S.M. Scherer. 1992. "Effects of Aqueous and Dietary Exposure of Dieldrin on Survival, Growth and Bioconcentration in Mallard Ducklings". USEPA, Corvallis Environmental Research Laboratory. Environ. Chem. and Toxicol. 11:987-699.

Newell, A.J., D.W. Johnson, and L.A. Allen. 1987. Niagara River Biota Contamination Project: Fish Flesh Criteria for Piscivorous Wildlife. Division of Fish and Wildlife, Burear of Environmental Protection, NY Department of Environmental Conservation. Technical Report 87-3.

NTP. 1989. Toxicology and Carcinogenesis Studies of Toluene in F344/N Rats and B6C3F1 Mice. Technical Report Series No. 371. Research Triangle Park, NC. Cited in IRIS Accessed Oct. 1994. (Toluene).

NTP. 1988. Developmental Toxicity Evaluation of 1,1,1-Trichloroethane (CAS No. 71-55-6) Administered to CD Rats. Final report Part 1. National Toxicology Program, Research Triangle Park, NC. Cited in ASTDR, 1988 (1,1,1-Trichloroethane).

NTP. 1986a. NTP Technical Report on the Toxicological and Carcinogenesis of Xylenes (mixed) (60.2% m-Xylene, 13.6% p-Xylene, 17.0% Ethylbenzene, and 9.1% o-Xylene) in F344/N Rats and B6C3F1 Mice (Gavage Studies). US Department of Health and Human Services, National Institutes of Health, National Toxicology Program, Research Triangle Park, NC., NTP TR 327, NIH Publ. No 86-2583. Cited in IRIS Accessed Oct. 1994.

NTP. 1986b. NTP Technical Report Series No. 289. Toxicology and Carcinogenesis Studies of Benzene in F344/N Rats and B6C3F1 Mice (Gavage Studies). US Department of Health and Human Services, National Institutes of Health, National Toxicology Program, Research Triangle Park, NC., NIH Publ. No 86-2545. Cited in ASTDR, 1991 (Benzene).

NTP. 1985a. Trichloroethylene Reproduction and Fertility Assessment in CD-1 Mice when Administered in the Feed. National Toxicology Program, Department of Health and Human Services, National Institutes of Health, Bethesada, MD. Cited in ASTDR, 1989 (Trichloroethylene).

NTP. 1985b. Twenty-Six Week Subchronic Study and Modified Mating Trial in F344 Rats. Butyl Benzyl Phthalate. Final Report. Project No. 12307-02, -03. Hazelton Laboratories America, Inc. Unpublished Study. Cited in IRIS, Oct. 1992.

NTP. 1983a. Teratologic Evaluation of Phenol in CD Rats. Report Prepared by Research Triangle Institute, Research Triangle Park, NC. NTIS PB83-247726. Govt. Rep. Announce Index. 83(25):6247. Cited in HEAST, March 1994.

NTP. 1983b. Carcinogenic Studies of 1,1,1,2-Tetrachloroethane in F344/N Rats and B6C3F1 Mice.

National Toxicology Program, Cited in HEAST, March 1994.

O'Dell, G.O., W.J. Miller, S.L. Moore, W.A. King, J.C. Ellers, and H. Jurecek. 1971. "Effect of Dietary Nickel Level on Excretion and Nickel Content of Tissues in Male Calves." Journal of Animal Science, 32:769-733. Cited in IT, 1992.

Ondreicka, R.E., E. Ginter, and J. Kortus. 1966. Chronic Toxicity of Aluminum in rats and Mice and its Effects on Phosphorus Metabolism." Brit. J. Indust. Med. 23:305-313. Cited in Opresko et.al., 1994.

Opresko, D.M., B.E. Sample, and G.W. Suter II. 1994. Toxicological Benchmarks for Wildlife, 1994 Revisions. Prepared for the US Department of Energy, Office of Environmental Restoration and Waste Management. September, 1994. ES/ER/TM-86/R1.

Pattee, O.H., 1984. "Eggshell Thickness and Reproduction in American Kestrals Exposed to Chronic Dietary Lead". Arch. Environ. Contam. Toxicol. 13:29-34.

Peakall, D.B., 1974. "Effects of di-N-butylphthalate and di-2-ethylhexylphthalate on the Eggs of Ring Doves". Bull. Environ. Contam. Toxicol. 12:698-702.

Piekacz, H. 1971. Effect of Dioctyl and Dibutyl Phthalates on the Organism of Rats after Oral Administration in Prolonged Experiment. II. Subacute and Chronic Toxicity. Rocz Panstw Zakl HIG 22(3):295-307. Cited in HEAST, November 1994.

Quast J.F., C.G. Humiston, C.E. Wade, et.al. 1983. "A Chronic Toxicity and Oncogenecity Study in Rats and Subchronic Toxicity Study in Dogs on Ingested Vinylidene Chloride". Fundam Appl. Toxicol 3(1):55-62. Cited in ASTDR, 1989 (1,1-Dichloroethene).

Ringer, R. 1983. "Toxicology of PCBs in Mink and Ferrets". In. F. D'Itri and M Kamrin (eds.), PCBs: Human and Environmental Hazards. Butterworth Pul., Woburn, MA. pp. 227-240. Cited in Newell et. al. 1987.

Roesijadi, G., J.W. Anderson, and J.W. Blaylock. "Uptake of Hydrocarbons from Marine Sediments Contaminated with Prudhoe Bay Crude Oil: Influence of Feeding Type of Test Species and Availability of Polycyclic Aromatic Hydrocarbons." J. Fish. Res. Board. Can. 35:608-614. Cited in USEPA, 1981.

Rogers, A.E. 1979. Nutrition. In:The Laboratory Rat, Volume I: Biology and Diseases, H.J. Baker, J.R. Lindsey and S.H. Weisbroth, Ed. Academic Press, New York. Cited in Manganese IRIS, Accessed January 1995.

Rosenfeld, I., and O.A. Beath. 1964. Selenium: Geobotany, Biochemistry, Toxicity and Nutrition. Academic Press, New York. p. 198-208.

Rungby, J., and G. Danscher. 1984. "Hypoactivity in Silver Exposed Mice." Acta. Pharmacol. et Toxicol. 55:398-401. Cited in ASTDR, 1989 (Silver).

Sanders, V.M., K.L. White Jr, G.M. Shopp Jr., and A.E. Munson. 1985. "Humoral and Cell-Mediated Immune Status of Mice Exposed to 1,1,2-Trichloroethane". Drug Chem Toxicol 8:357-372. Cited in IRIS Accessed Oct, 1988 (1,1,2-Trichloroethane).

Schlicker, S.A. and D.H. Cox. 1968. "Maternal Dietary Zinc, and Development and Zinc, Iron, and Copper Contant of the Rat Fetus". J. Nutr. 95:287-294. Cited in Opresko et.al., 1994.

Schlesinger, W.H., and G.L. Potter. 1974. "Lead, Copper, and cadmium Concentrations in Small Mammals in the Hubbard Brook Experimental Forest". OKIOS. 25:148-152. Cited in Opresko et.al., 1994.

Schmal, D. 1955. "The Testing of Naphthalene and Anthracene for Carcinogenic Effects on Rats". Z. Krebsforsch 60:697-710. Cited in ASTDR, 1989 (Naphthalene)

Schroder, H.A. M. Mitchener, and A.P. Nasur. 1976. "Zirconium, Niobium, Antimony, Vanadium, and Lead in Rats". J. Nutr. 100:59-66. Cited in IRIS, Accessed Oct. 1994 (Antimony).

Schroder, H.A. and M. Mitchener. 1975a. "Life-term Effects of Mercury, Methyl Mercury and Nine Other Trace Metals on Mice." J. Nutr. 105:452-458. Cited in IRIS, Accessed January 1995 (Barium).

Schroder, H.A. and M. Mitchener. 1975b. "Life-term Studies in Rats: Effects of Aluminum, Barium, Beryllium and Tungsten." J. Nutr. 105:421-427. Cited in IRIS, Accessed January 1995 (Barium).

Schroder, H.A. and M. Mitchener. 1971. "Toxic Effects of Trace Elements on the Reproduction of Mice and Rats". Arch. Environ. Health 23:102-106. Cited in ASTDR, 1991 (Arsenic).

Schroder, H.A., M. Mitchener, and A.P. Nason. 1970. "Zirconium, Niobium, Antimony, and Lead in Rats: Life-Term Studies." J. Nutr. 100:59-69. Cited in HEAST, March 1994.

Smith, C.C. 1953. "Toxicity of Butyl Sterate, Bibutyl Sebacate, Dubutyl Phthalate, and Methoxyethyl Oleate". Arch. Hyg. Occup. Med. 7:310-318.

Smyth, H. Jr, C.P. Carpenter, C.S. Weil, et.al. 1962. "Range Finding Toxicity Data: List VI". Am. Indust. Hyg. Assoc. J. 23:95-107. Cited in ASTDR, 1989 (Ethylbenzene).

Spann, J.W., G.H. Heinz, and C.S. Hulse. 1986. "Reproduction and Health in Mallards Fed Endrin". Environ. Toxicol. Chem. 5:755-759.

Stickel, L.F., W.H. Stickel, R.A. Dryland, and D.L. Hughes. 1983. "Oxychlordane, HCS-3260, and Nonachlor in Birds: Lethal Residues and Loss Rates". J. Toxicol. Environ. Health. 12:611-622.

Storm, G.L., R.D. Andrews, R.L. Phillips, R.A. Bishop, D.B. Siniff, and J.R. Tester. 1976. "Morphology, Reproduction, Dispersal, and Mortality of Midwestern Red Fox Populations". Wildl. Monogr. Cited in Opresko et.al., 1994.

Street J.C., and R.P. Sharma. 1975. "Alteration of Induced Cellular and Humoral Immune responses by Pesticides and Chemicals of Environmental Concern: Quantitative Studies of Immunosuppression by DDT, Aroclor 1254, Carbaryl, Carbofuran, and Methylparathion". Toxicol. Appl. Pharmacol. 32:587-602. Cited in ASTDR, 1991 (PCBs).

Tainter, M.L., and W.E. Borley. 1938. "Influence of Vitamins and Dinitrophenol on the Production of Experimental Cataract". Arch. Ophthalmol 20:30-36. Cited in ASTDR, 1993 (Nitrophenols).

Tainter, M.L., and D.A. Wood. 1934. "A Case of Fatal Dinitrophenol Poisoning". JAMA 102:1147. Cited in ASTDR, 1993 (Nitrophenols).

Tewe, O.O., and E. Pessu. 1982. "Performance and Nutrient Utilization in Growing Pigs Fed Cassava Peel Rations." Cited in Eisler,

Tewe, O.O., and J.H. Maner. 1981. "Long-Term and Carry-Over Effect of Dietary Inorganic Cyanide (KCN) in the Life Cycle Performance and Metabolism of Rats". Toxicol. Appl. Pharmacol. 58:1-7.

Thomas, P.T., and R.D. Hinsdill. 1980. Perinatal PCB Exposure and ite Effects on the Immune System of Young Rabbits". Drug Chem. Toxicol. 3:173-184. Cited in ASTDR, 1991 (PCBs).

Til, H.P., H.R. Immel, and V.J. Feron. 1983. Lifespan Oral Carcinogenicity Study of Vinyl Chloride in Rats. Final Report. Civo Institutes, TNO, Report No. V-93.285/291099. Cited in ASTDR, 1991 (Vinyl Chloride)

Tinsley, I.J, J.R. Harr, J.F. Bone et.al. 1967. "Selenium Toxicity in Rats. I. Growth and Longetivity". In: Muth OH, Oldfield J.E., P.H., Weswig, ed. Selenium Biomed Proc 1st Int. Symp. Oregon State Univ. 1966. Vol, II, Westport, Conn. AVI Publishing Co. 141-152. Cited in ASTDR, 1994 (Selenium).

Treon, J.F., F.P. Cleveland, and L. Cappel. 1955. "Toxicity of Endrin for Laboratory Animals." Agricultural and Food Chemistry 3:842-848. Cited in ASTDR, 1989 (Endrin)

USDOD. 1985. AD-A171-601. Department of Defense. Available form Defense Technical Center. Write to Documents, Cameron Station, Alexandria, VA, 22314. Cited in IRIS, March, 1995. (HMX)

USDOD. 1983a. AD-A168-637. Department of Defense. Available form Defense Technical Center. Write to Documents, Cameron Station, Alexandria, VA, 22314. Cited in IRIS, March, 1995. (TNT)

USDOD. 1983a. AD-A160-774. Department of Defense. Available form Defense Technical Center. Write to Documents, Cameron Station, Alexandria, VA, 22314. Cited in IRIS, March, 1995. (RDX)

USDOD. 1983b. AD-A157-002. Department of Defense. Available form Defense Technical Center. Write to Documents, Cameron Station, Alexandria, VA, 22314. Cited in IRIS, March, 1995. (TNT)

USEPA, 1993a. Great Lakes Water Quality Initiatives Criteria Documents for the Protection of Wildlife (Proposed). DDT, Mercury, 2,3,7,8-TCDD, PCBs. EPA/822/R-93-007. Office of Science and Technology, Washington, D.C. Cited in Opresko, et.al., 1994.

USEPA, U.S. Environmental Protection Agency. December 1993b. Wildlife Exposure Factors Handbook. Office of Research and Development. Washington, D.C. EPA/600/R-93/187a.

USEPA, 1989a. Mouse Oral Subchronic Study. Conducted by Toxicity Research Labs, LTD. Muskegon, MI. for the Office of Solid Waste. Cited in IRIS, After Jan. 1992.

USEPA, 1989b. Mouse Oral Subchronic Study with Acenaphthene. Conducted by Hazelton Laboratory Inc., for the Office of Solid Waste. Cited in IRIS, Sept. 1993.

USEPA, 1989c. Ninty-Day Gavage Study in Albino Mice Using 2,4-Dimethylphenol. Study No. 410-2831. Prepared by Dynamac Corporation, Rockville, MD, for the Office of Solid Waste and Emergency responce, Washington, DC.

USEPA, 1988a. 13-Week Mouse Oral Subchronic Study. Prepared by Toxicity Research Labs, LTD. Muskegon, MI. for the Office of Solid Waste. Cited in IRIS, Jan. 1995.

USEPA, 1988b. Recommendations for and Documentation of Biological Values for Use in Risk Assessment. Environmental Criteria and Assessment Office, Cincinnati, OH. EPA/600/6-87/008. Cited in Opresko, et.al., 1994.

USEPA, 1987. Health and Environmental Effects Document for Chlorinated Cyclopentadienes. Prepared for the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH, for the Office of Solid Waste. Cited in HEAST, March 1994.

USEPA, 1986a. Ninty-day Gavage Study with Albino Rats using Acetone. Office of Solid Waste. Cited in HEAST, March 1994.

USEPA, 1986b. Subchronic (90 day) Toxicity of Thallium(I) Sulfate in Spragu-Dawley Rats. Final Report. Environmental Criteria and Assessment Office, Cincinnati, OH, for the Office of Solid Waste. Cited in HEAST, March 1994.

USEPA, 1981. An Exposure and Risk Assessment for Benzo(a)pyrene and Other Polycyclic Aromatic Hydrocarbons, Volume IV.

USEPA, 1980. Ambient Water Quality Criteria for Cyanides. USEPA. 440/5-80-037. Cited in Eisler, 1991.

U.S. Fish and Wildlife Service. 1964. Pesticide-Wildlife Studies, 1963: A Review of Fish and Wildlife Service Investigations During the Calander Year. FWS Circular 199.

Velsicol Chemical Company. 1969. MRID No. 00030198. Available from USEPA. Write to FOI, USEPA, Washington, DC, 20460. Cited in IRIS, Oct. 1992 (Endrin).

Velsicol Chemical Company. 1955. MRID No. 00062599. Available from USEPA. Write to FOI, USEPA, Washington, DC, 20460. Cited in IRIS, Oct. 1992 (Heptachlor).

Velsicol Chemical Company. 1983. MRID No. 00138591, 00144313. Available from USEPA. Write to FOI, USEPA, Washington, DC, 20460. Cited in IRIS, Oct. 1994 (Chlordane).

Villeneuve D.C., D.L. grant, and W.E.J. Phillips. 1972. "Modification of Pentobarbital Sleeping Times in Rats Following Chronic PCB Ingestion". Bull. Environ. Contam. Toxicol. 7:264-269. Cited in ASTDR, 1991 (PCBs).

Vreman, K., N.G. van der Veen, E.J. van der Molen, and W.G. de Ruig. 1986. "Transfer of Cadmium, Lead, Mercury and Arsenic form Feed into Milk and Various Tissues of Dairy Cows: Chemical and

Pathological Data". Neth. J. Agricu. Sci. 34:129-144. Cited in Eisler, 1991 (Arsenic).

Walker, A.I.T., D.E. Stevenson, J. Robinson, R. Thorpe, and M. Roberts. 1969. "The Toxicology and Pharmacodynamics of Dieldrin (HEOD): Two-Year Oral Exposure to Rabbits and Dogs". Toxicol. Appl. Pharmacol. 15:345-373.

Wasserman, D. M., M. Cucos, et.al. 1973. "Function of Adrenal Gland-Zona Fasciculata in rats Receiving Polychlorinated Biphenyls". Environ Res. 6:334-338. Cited in ASTDR, 1991 (PCBs).

Wentink, G.H., T.J. Spierenburg, G.J. de Graaf, and A.C.A. van Exsel. 1985. A Case of Chronic Zinc Poisoning in Calves Fed with Zinc-Contaminated Rouphage. Veterinary Quarterly 7:153-157. Cited in Eisler, Ronald. 1990. Zinc Hazards to Fish, Wildlife, and Invertebrates: A Synoptic Review. U.S. Department of the Interior, Fish and Wildlife Service. Biological Report 85(1.23), July 1991.

Will, M.E., and G.W. Suter. 1994. Toxicological Benchmarks for Screening Potential Contaminants of Concern for Effects on Soil and Litter Invertebrates and Heterotrophic Process. Environmental Sciences Division, Oak Ridge National Laboratory. ES/ER/TM-126.

Will, M.E., and G.W. Suter. 1994. Toxicological Benchmarks for Screening Potential Contaminants of Concern for Effects on Terrestrial Plants. Environmental Sciences Division, Oak Ridge National Laboratory. ES/ER/TM-85/RI.

White, D.H., and M.P. Dieter. 1978. "Effects of Dietary Vanadium in Mallard Ducks". J. Toxicol. Environ. Health 4:43-50. Cited in Opresko et.al., 1994.

White K.L. Jr, and V.M. Sanders, D.W. Barnes, et.al. 1985. "Toxicology of 1,1,2-Trichloroethane in the Mouse". Drug Chem Toxicol 8:333-356. Cited in ASTDR, 1988 (1,1,2-Trichloroethane).

White, D.H., and M.T. Finley. 1978. "Uptake and Retention of Dietary Cadmium in Mallard Ducks". Environ. Res. 17:53-59

Wolf, M.A., V.K. Rowe, D.D. McCollister, et.al., 1956. "Toxicological Studies of Certain Alkylated Benzenes and Benzene." AMA Arch. Ind. Health. Cited in IRIS, Accessed Oct. 1992.

World Health Orginization (WHO). 1984. Chlordane. Environmental Health Criteria 34. World Health Orginization, Geneva, Switzerland. Cited in Eisler, Ronald. 1990.

NOTE: Some of the references in this list are not specifically referenced in the proceeding table. This reference list also includes other toxicity values not used in the development of the terrestrial reference values.

APPENDIX V SAMPLING STATION CHARACTERIZATION DATA SHEETS

SAMPLING STATION CHARACTERIZATION DATA SHEET

Statio	on Number: <u>65</u>	- SD/SWOY	Date: _	7	Time:		/ -
Samp	lers: AMB, P	HUTC, ME	Date:	May 18, 95	(SD/BV) Time:	9:15 (06)	_7;10(6
Wate	r Body: Courth	ouse Pond	State: _	N.C.	County:	ONSTOR	-
Samp	le Type: Fis	h Bent	thic Macroinverte	ebrate	ediment	Surface Water	>
SAMI	PLING EQUIPMEN	T: Seine Gill N	et Ponar Ke	mmerer Sediment	Corer SpoonO	ther: SUBSURF	ACE.
Ripar	ian Zone/Instream l	Peatures			. ***		
	ominant Surroundin	_				ING TRAININ	
Shore	e Vegetation: _ B U						
	PINE , WAX	MYRTLE ,	Sweet BA	Y AMERICA	IN HOLLY,	FETTERBUS	<u>+</u>
Aqua	tic Vegetation: 🗘	ONE WAS	TERSHIELD	Braseni	a_Schrebe	á)	
-	•						
Estin	nated Stream Width	:ft Est. S	tream Depth:	3_ft Riffle: _	ft Run:	ft Pool;	_ft
Strea	ım Type: Cold Wa	ter Warm Wat	er Velo	city: NONE	Channelized:	Yes_ No_	_
Cano	py Cover: Ope	n P	artly Open	Partly Sl	haded	Shaded	
Sedir	ment/Substrate:				•		CARILE S
Sedir	nent Odors: Norm	al Sewage	Petroleum	Chemical Anaer	obic Other:	ecaying ord	
Sedir	nent Oils: Abser	nt Slig			Profuse	HNu	
	r Grab: Number of		-	licate: #1: <u>4</u> F			7
Sedir	ment Description:	SILT UIT	H SOME	SAND. BE	<u> </u>	RGANIC	
	MATERIAL !	DECOMPOSI	NG PEAT				
Wate	<u>or</u> :		·				
	Depth	Temp.	pH (s.u.)	Dissolved Oxygen (mg/L)	Conductivity (micromhos/cm)	Salinity (ppt)	
215	SURFACE	30,4	7.2.	10.6	14		
A12/12	<u> </u>						
į	~4' (8070M	17.3	6.81	2.9	₽21.5	·	
5/16/95	SURFACE	20.9	6.88	7.2	12		
' ' ' '	BOTTOM	17.4	6.7	2.0	18./		
				a			
	er Odors: Norm	-	Petroleum	~	ther:	^	
	er Surface Oils:			~			
ጥ።	idity: Clear	Slightly Tur	bid (Tur	hid I Onsone	. Watan Dal	··· CIKAV	
	-				e Water Colo	9 (
	her Conditions: _\$					In Out	
Weat	-					9 (
Weat	her Conditions: _\$					9 (

SAMPLING STATION CHARACTERIZATION DATA SHEET

•	1 -				
Station Number: 65	<u>-SD/SW05</u>			5 Time: _	13:35 (sw
Samplers: AMB, J	LH, PAPA	Date:	MY 17, 19	5(50) ime: _	11:40
Water Body: Power	LINE POND	State:	N.C.	County:	ONSLOW
Sample Type: Fig	sh Ben	thic Macroinverte	brate	Sediment	Surface Water
SAMPLING EQUIPMEN	VT: Seine Gill I	Vet Ponar Ker	mmerer Sediment	Corer Spoon O	ther: ELECTROFISH,
		· 57D		•	HOOP NETS
Riparian Zone/Instream		5			
Predominant Surroundin					SACENT DIRT RI
Shore Vegetation:			, , wax myrt	LE, SMOORTS	uma-c.
(1) WATER OAK	C , SPARTINA	+ sp.	WATER		
Aquatic Vegetation:	AGRANT POR	D LILY ,	PENNYWOR	T, GREEI	N ALGAE (UNR.
SPARTINA S	ρ.		· ·	w	
Estimated Stream Width	Est. E	tream Depth:	<u> </u>	ft Run:	ft Pool:ft
Stream Type: Cold Wa	ater (Warm Wat	ter Velo	city: <u>Von</u>	_ Channelized:	Yes No
Canopy Cover: Ope	n P	artly Open	Partly S	haded	Shaded
Sediment/Substrate:					
Sediment Odors: Norm	nal Sewage	Petroleum (Chemical Anaer	obic Other: _	
Sediment Oils: Abser	nt Slig	ht M	oderate	Profuse	HNu
Ponar Grab: Number of		diments Repl	icate: #1: <u>5</u> 1	Replicate #2.	Replicate #3: 4
Sediment Description: _	Silt 4	Some sande	2009 0-99-	in material	
		•			
Water:					
	₁			1	
Depth	Temp. °C,	pH (s.u.)	Dissolved Oxygen (mg/L)	Conductivity (micromhos/cm)	Salinity (ppt)
					· · · · · · · · · · · · · · · · · · ·
SURFACE	27-8	7.62	9.0	196	
BOLLOW (49,)	24.1	6.32	3.0	214	
	·	• .		•	
	•			·	
		•			
With Or	· · ·	70 . 1			
	Sewage	_	~	ther:	
Water Surface Oils:		heen No			
	Slightly Tur			e Water Colo	r:
Weather Conditions:	greezy, s	SUNNY		Tide:	In Out
Community		l			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
Comments:		· · · · · · · · · · · · · · · · · · ·			
				•	

APPENDIX W FISH SAMPLING RESULTS FISH COLLECTION LOG SITE 65 - ENGINEER AREA DUMP REMEDIAL INVESTIGATION, CTO-0312 MCB, CAMP LEJEUNE, NORTH CAROLINA

•	•			Length	Weight	
Station	Fish Species	<u>Date</u>	<u>Time</u>	(cm)	(grams	
FS04	Bluegill	5-17-95	900	12.6	30	
FS04	Bluegill	5-17-95	900	17	65	
FS04	Bluegill	5-17-95	900	11.5	105	
FS04	Bluegill	5-17-95	900	11.6	*	
FS04	Bluegill	5-17-95	900	11.5	*	
FS04	Bluegill	5-17-95	900	10.5	*	
FS04	Bluegill	5-18-95	1600	14	50	
FS04	Bluegill	5-19-95	1130	12.7	210	
FS04	Bluegill	5-19-95	1130	12.2	*	
FS04	Bluegill	5-19-95	1130	12.4	*	
FS04	Bluegill	5-19-95	1130	12	*	
FS04	Bluegill	5-19-95	1130	12	*	
FS04	Bluegill	5-19-95	1130	12.3	*	
FS04	Bluegill	5-19-95	1130	11	*	
FS04	Bluegill	5-19-95	1130	12	*	
FS04	Bluegill	5-22-95	1500	14	80	(Possible hybrid, enlarged
FS04	Bluegill	5-22-95	1500	18	60	dorsal end in front of dorsal
FS04	Bluegill	5-22 - 95	1500	14	50	fin)
FS04	Bluegill	5-22-95	1500	15	50	
FS04	Bluegill	5-22-95	1500	13	150	
FS04	Bluegill	5-22-95	1500	12	*	
FS04	Bluegill	5-22-95	1500	12.5	*	
FS04	Bluegill	5-22-95	1500	12.5	*	
FS04	Bluegill	5-22-95	1500	11	*	
FS04	Bluegill	5-22-95	1500	12	120	
FS04	Bluegill	5-22-95	1500	12.3	*	
FS04	Bluegill	5-22-95	1500	12	*	
FS04	Bluegill	5-22-95	1500	12.8	*	
FS04	Bluegill	5-22-95	1500	12	120	

FISH COLLECTION LOG SITE 65 - ENGINEER AREA DUMP REMEDIAL INVESTIGATION, CTO-0312 MCB, CAMP LEJEUNE, NORTH CAROLINA

Station FS04 FS04 FS04	Fish Species Bluegill Bluegill Bluegill	<u>Date</u> 5-22-95 5-22-95 5-22-95	Time 1500 1500 1500 Minimum Maximum Average Count	Length (cm) 12 12.5 11 10.5 18 12.6 32	Weight (grams * * * * NA 210 34	<u>Comments</u>
FS04 FS04 FS04 FS04 FS04 FS04 FS04	Redear Sunfish Redear Sunfish Redear Sunfish Redear Sunfish Redear Sunfish Redear Sunfish Redear Sunfish	5-17-95 5-17-95 5-17-95 5-17-95 5-22-95 5-22-95 5-22-95	900 900 900 900 1500 1500 1500 Minimum Maximum Average Count	12.5 12.3 17.5 17 12 12 13 12.5 12 17.5 13.6 8	60 25 70 65 25 80 * * 0 80 40.625	
FS05 FS05 FS05 FS05 FS05 FS05	Largemouth Bass Largemouth Bass Largemouth Bass Largemouth Bass Largemouth Bass Largemouth Bass	5-16-95 5-16-95 5-16-95 5-16-95 5-16-95	1600 1600 1600 1600 1600	10.4 14 11.7 14.2 3.9 22	15 35 20 35 NM 150	

FISH COLLECTION LOG SITE 65 - ENGINEER AREA DUMP REMEDIAL INVESTIGATION, CTO-0312 MCB, CAMP LEJEUNE, NORTH CAROLINA

Station FS05 FS05 FS05	Fish Species Largemouth Bass Largemouth Bass Largemouth Bass	<u>Date</u> 5-17-95 5-17-95 5-17-95	Time 1000 1000 1000 Minimum Maximum Average Count	Length (cm) 41 28.5 27 3.9 41 19.2	Weight (grams 1200 300 225 NA 1200 220	Comments
FS05	Redear Sunfish	5-16-95	1600	11.3	25	
FS05	Redear Sunfish	5-16-95	1600	10.3	20	
FS05	Redear Sunfish	5-16-95	1600	8	10	
FS05	Redear Sunfish	5-16-95	1600	7.9	12	
FS05	Redear Sunfish	5-16-95	1600	11	20	
FS05	Redear Sunfish	5-16-95	1600	11	25	
FS05	Redear Sunfish	5-16-95	1600	10.9	25	
FS05	Redear Sunfish	5-16 - 95	1600	10.5	25	
FS05	Redear Sunfish	5-16-95	1600	7.4	10	
FS05	Redear Sunfish	5-16-95	1600	10.5	15	
FS05	Redear Sunfish	5-16-95	1600	11.3	20	
FS05	Redear Sunfish	5-16-95	1600	10.5	15	
F S 05	Redear Sunfish	5-16-95	1600	7.3	5	
FS05	Redear Sunfish	5-16-95	1600	12.2	18	
FS05	Redear Sunfish	5-16-95	1600	10.5	15	
F S 05	Redear Sunfish	5-16-95	1600	11	15	
FS05	Redear Sunfish	5-16-95	1600	12	30	
FS05	Redear Sunfish	5-16-95	1600	7.4	5	
FS05	Redear Sunfish	5-16-95	1600	7.2	5	
FS05	Redear Sunfish	5-16-95	1600	11.7	25	

FISH COLLECTION LOG SITE 65 - ENGINEER AREA DUMP REMEDIAL INVESTIGATION, CTO-0312 MCB, CAMP LEJEUNE, NORTH CAROLINA

				Length	Weight	
Station	Fish Species	<u>Date</u>	Time	(cm)	(grams	Comments
FS05	Redear Sunfish	5-16-95	1600	14.7	95	
FS05	Redear Sunfish	5-16-95	1600	14.2	55	
FS05	Redear Sunfish	5-16-95	1600	15	70	
FS05	Redear Sunfish	5-17-95	1000	20.5	200	
FS05	Redear Sunfish	5-17-95	1000	20	140	
FS05	Redear Sunfish	5-18-95	1500	25	300	
FS05	Redear Sunfish	5-18-95	1500	22.5	220	
FS05	Redear Sunfish	5-18-95	1500	17	100	
FS05	Redear Sunfish	5-18-95	1500	19	120	
FS05	Redear Sunfish	5-18-95	1500	19	130	
FS05	Redear Sunfish	5-18-95	1500	16.5	70	
			Minimum	7.2	5	
			Maximum	25	300	
			Average	13.0	59	
			Count	31		
FCOE	Diversill	E 40 0E	4000	. 40.4	00	
FS05	Bluegill	5-16-95	1600	12.1	20	
FS05	Bluegill	5-16-95	1600	11.7	25	
FS05	Bluegill	5-16-95	1600	9.2	10	
FS05	Bluegill	5-17-95	1000	13.6	40	
FS05	Bluegill	5-17-95	1000	11.6	35	
FS05	Bluegill	5-17-95	1000	13	35	
FS05	Bluegill	5-17-95	1000	11.4	25	
FS05	Bluegill	5-17-95	1000	11.5	25	
FS05	Bluegill	5-17-95	1000	12.6	35	
FS05	Bluegill	5-17-95	1000	11.7	30	
F\$05	Bluegill	5-17-95	1000	11.5	25	
FS05	Bluegill	5-17-95	1000	11.4	25	

FISH COLLECTION LOG SITE 65 - ENGINEER AREA DUMP REMEDIAL INVESTIGATION, CTO-0312 MCB, CAMP LEJEUNE, NORTH CAROLINA

				Length	Weight	
Station	Fish Species	<u>Date</u>	<u>Time</u>	<u>(cm)</u>	<u>(grams</u>	Comments
FS05	Bluegill	5-18-95	1500	15	60	
FS05	Bluegill	5-18-95	1500	14.1	70	
FS05	Bluegill	5-18-95	1500	13.5	75	
FS05	Bluegill	5-18-95	1500	16.2	100	
FS05	Bluegill	5-18-95	1500	13.4	80	
FS05	Bluegill	5-18 - 95	1500	12	70	
FS05	Bluegill	5-18 - 95	1500	17.7	140	
FS05	Bluegill	5-16-95	1600	15.5	65	
FS05	Bluegill	5-17-9 5	1000	16.5	100	
FS05	Bluegill	5-17-95	1000	14.5	65	
FS05	Bluegill	5-17-95	1000	17	120	
FS05	Bluegill	5-17-95	1000	13.5	55	
FS05	Bluegill	5-18-95	1500	18.1	125	
FS05	Bluegill	5-18-95	1500	20	120	
FS05	Bluegill	5-18-95	1500	19.3	145	
FS05	Bluegill	5-18-95	1500	17	110	
FS05	Bluegill	5-18-95	1500	15	60	
FS05	Bluegill	5-18-95	1500	14.5	60	
			Minimum	9.2	10	
			Maximum	20	145	
			Average	14.1	65	
			Count	30		

FISH TISSUE SAMPLE LOG SITE 65 - ENGINEER AREA DUMP REMEDIAL INVESTIGATION, CTO-0312 MCB, CAMP LEJEUNE, NORTH CAROLINA

	Collection		Length	Weight		Sample
Date	<u>Time</u>	Sample Number	<u>(cm)</u>	(grams)	New Sample Numb	Analysis
5-17-95	900	65-FS04-BG02	11.5	105	65-FS04-BG01W	Whole Body
5-17-95	900	*	11.6	*		•
5-17-95	900	*	11.5	*		
5-17-95	900	*	10.5	*		
5-19-95	1130	65-FS04-BG04	12.7	210		
5-19-95	1130	*	12.2	*		
5-19-95	1130	*	12.4	*		
5-19-95	1130	*	12	*		
5-19-95	1130	*	12	*		
5-19-95	1130	*	12.3	*		
5-19-95	1130	*	11	*		
5-19-95	1130	*	12	*		
5-22-95	1500	65-FS04-BG09	13	150		
5-22-95	1500	*	12	*		
5-22-95	1500	*	12.5	*		
5-22-95	1500	*	12.5	*		
5-22-95	1500	*	11	*		
5-22-95	1500	65-FS04-BG11	12	120		
5-22-95	1500	*	12	*		
5-22-95	1500	*	12.5	*		
5-22-95	1500	*	11	*		

FISH TISSUE SAMPLE LOG SITE 65 - ENGINEER AREA DUMP REMEDIAL INVESTIGATION, CTO-0312 MCB, CAMP LEJEUNE, NORTH CAROLINA

Date 5-17-95 5-18-95 5-22-95 5-22-95 5-22-95 5-22-95 5-22-95 5-22-95 5-22-95	Collection Time 900 1600 1500 1500 1500 1500 1500 1500 15	Sample Number 65-FS04-BG01 65-FS04-BG03 65-FS04-BG06 65-FS04-BG08 65-FS04-BG10 *	Length (cm) 17 14 18 14 15 12 12.3 12 12.8	Weight (grams) 65 50 60 50 50 120 *	New Sample Numb 65-FS04-BG01F	Sample <u>Analysis</u> Fillet
	Collection		Length	Weight		Sample
Date	Time	Sample Number	(cm)	(grams)	New Sample Numb	Analysis
5-17-95	900	65-FS04-RS01	17.5	70	65-FS04-RS01W	Whole Body
5-17-95	900	65-FS04-RS02	17	65		·
5-17-95	900	65-FS04-RS03	12	25		,-
5-22-95	1500	65-FS04-RS04	12	80		
5-22-95	1500	*	13	*		
5-22-95	1500	*	12.5	*		
	Collection		Length	Weight		Sample
<u>Date</u>	<u>Time</u>	Sample Number	<u>(cm)</u>	(grams)	New Sample Numb	Analysis
5-16-95	1600	65-FS05-LB01	22	150	65-FS05-LB01W	Whole Body
5-17-95	1000	65-FS05-LB03	28.5	300		
5-17-95	1000	65-FS05-LB04	27	225		
_	Collection		Length	Weight		Sample
<u>Date</u>	<u>Time</u>	Sample Number	<u>(cm)</u>	(grams)	New Sample Numb	<u>Analysis</u>
5-17-95	1000	65-FS05-LB02	41	1200	65-FS05-LB01F	Fillet
	Collection		Length	Weight		Sample
Date	Time	Sample Number	(cm)	(grams)	New Sample Numb	Analysis
5-16-95	1600	65-FS05-RS01	14.2	55	65-FS05-RS01W	Whole Body
5-16-95	1600	65-FS05-RS02	15	70		
5-18-95	1500	65-FS05-RS07	17	100		
5-18-95	1500	65-FS05-RS10	16.5	70		

FISH TISSUE SAMPLE LOG SITE 65 - ENGINEER AREA DUMP REMEDIAL INVESTIGATION, CTO-0312 MCB, CAMP LEJEUNE, NORTH CAROLINA

Date 5-17-95 5-17-95 5-18-95 5-18-95 5-18-95	Collection Time 1000 1000 1500 1500 1500 1500	Sample Number 65-FS05-RS03 65-FS05-RS04 65-FS05-RS05 65-FS05-RS08 65-FS05-RS09	Length (cm) 20.5 20 25 22.5 19	Weight (grams) 200 140 300 220 120 130	New Sample Numb 65-FS05-RS01F	Sample <u>Analysis</u> Fillet
<u>Date</u>	Collection <u>Time</u>	Sample Number	Length (cm)	Weight (grams)	New Sample Numb	Sample Analysis

	Collection		Length	vveignt		Sample
<u>Date</u>	<u>Time</u>	Sample Number	<u>(cm)</u>	(grams)	New Sample Numb	<u>Analysis</u>
5-16-95	1600	65-FS05-BG01	15.5	65	65-FS05-BG01W	Whole Body
5-17-95	1000	65-FS05-BG03	14.5	65		
5-17-95	1000	65-FS05-BG05	13.5	55		
5-18-95	5 1500	65-FS05-BG10	15	60		
5-18-95	5 1500	65-FS05-BG11	14.5	60		

	Collection		Length	Weight		Sample
<u>Date</u>	<u>Time</u>	Sample Number	<u>(cm)</u>	(grams)	New Sample Numb	<u>Analysis</u>
5-17-95	1000	65-FS05-BG04	17	120	65-FS05-BG01F	Fillet
5-17-95	1000	65-FS05-BG02	16.5	100		
5-18-95	1500	65-FS05-BG06	18.1	125		
5-18-95	1500	65-FS05-BG07	20	120		
5-18-95	1500	65-FS05-BG08	19.3	145		
5-18-95	1500	65-FS05-BG09	17	110		

^{*} Fish were measured individually but weighed as a group

APPENDIX X BENTHIC MACROINVERTEBRATE LABORATORY BENCH SHEETS

Clien	t: RAKER	ENVIRON		J	ob Number/Task	: 15825.001
ocation	1: SITE 65	CAMP LESEUNS, NC			Sample ID	:65-BN04-01
Coll Date	3/95 ′	Prelim. Sorter: MTG	Split Sorter:			
	impled Taxa: _	<u> </u>	Description Times	15	Data Islandidi.	- dalla-
	Time Budget:_		Presort ID Time: _ d worm ID Time: _	0.3	Date-Identifier Date-Identifier	6/26/95 NJ
a i mile			QA/QC Time:		Date-Identine	
	entre a service register and	Company of Section 2	dado time.		•	* * * * * * * * * * * * * * * * * * * *
QC Check	Taxonomic Order		Total	Presort	Split/QA/QC	
Cneck	Order	Taxon	Number =	Number	+ Number	Comments
	·	· · · · · · · · · · · · · · · · · · ·	-			(
	1	0 000	11/Ma			
	-///	()		· <u>`</u>		
					· · · · · · · · · · · · · · · · · · ·	
	· ·					
<u> </u>			•	·		
						
			-			
			•			
·					-	
			•		<u> </u>	
			•			
					_	
	:					
				,		
				<u> </u>	-	
· į	- ; · · · · · · · · · · · · · · · · · · 			. ,		
A1. 1					· _	_
Notes:					Page	of
7/26 7.	:00-7:30					

Location: $\frac{S_{ITF} 65}{5/95}$ Coll Date: $\frac{5/95}{5}$ Subsampled Taxa:		ENVIRON, INC CAMP LETEUNE NO Prelim. Sorter: MJG	Split Sorter:	Sample ID:	Job Number/Task: <u> 15 8 25,00 </u> Sample ID: <u>65 BN0U -</u>		
	Fime Budget:	Split/Midge an	Presort ID Time: 0,5 nd worm ID Time: QA/QC Time:	Date-Identifier: Date-Identifier:	6/26/95m		
QC Check	Taxonomic Order	Taxon	Total Preso		Comments		
	DIPTERA	Chapporus sp.					
otes:	·			Page	of		

Clie	nt: BAKER	ENVIRON. INC		J	ob Number/Task:	15825.001
ocatio	on: SITE 65	ENVIRON, INC CAMP LETEUNE, NC				65 BN04-03
Coli Da	te: <u>5/95</u>	Prelim. Sorter: MJG	Split Sorter:			
	sampled Taxa:		•		•	
	Time Budget:	1.5	Presort ID Time:	25	Date-Identifier:	6/26/95mm
	, mio Baagon_		and worm ID Time:		Date-Identifier:	-/- /1375
		opnamage a	QA/QC Time:		Dute identification.	
	**************************************	A Company of the Comp	GAVGO TIME.	·	and the second of the second o	•
00	·		T -4-1	Dunn and	0-1140 100	
QC	Taxonomic	T	Total	Presort	Split/QA/QC	0
Check	Order	Taxon	Number =	Number	+ Number	Comments
	7 - 4 4	0/ /				
	DIPTERA	Chaphorus sp.				
				····		
			t van		•	
	•				<u> </u>	
						·
		. P			<u> </u>	
					*	
						7.4
			<u> </u>			
	"					
	-		_			
		•				
					·	

	 			,		
						
<u> </u>	<u> </u>					
· · · · ·	-			,		
			-			
						. •
Notes:		to the second se			Page _	of
6/26	8:00-8:30					

Location:	SITE 65	CAMP LETEUNE, NC			Sample ID:	65 BNO5-1
Coll Date:	5/95	Prelim. Sorter: TUB	Split Sorter:			<u> </u>
	npled Taxa:			ar .	•	
ID Ti	me Budget: _	1,5 Pi	resort ID Time:	0.5	Date-Identifier:	6/26/55 MON
		Split/Midge and			Date-Identifier:	
			QA/QC Time:		•	
					• • • • • • • • • • • • • • • • • • • •	
QC	Taxonomic	er var er en skriver en skriver en skriver en skriver († 1921). Verden en skriver en skriver en skriver († 192 De skriver en skriver en skriver en skriver en skriver en skriver en skriver en skriver en skriver en skriver	Total	Presort	Split/QA/QC	
Check	Order	Taxon	Number =	Number	+ Number	Comments
					:	
neg D	PTERA	Ablabes mujia ramphe y.	4			
MEG_	11	Cricotopus pleggas	7	<u> </u>		NEW
MEG	1 Poop	Psectrocladius elatus			*****	NEW
MEG	,	Tanutarsus SM.	2			
		1 3/1/100				
				·	· · · · · · · · · · · · · · · · · · ·	
						
					~	
	<u></u>					
						
						
			-			
						
			·		· ·	
						
					· · · · · · · · · · · · · · · · · · ·	
						
Notes:					Page _	_

Client: BAKER E	AMPLEDEUNE NC		· J	ob Number/Task:	
ocation: SITE 65	AMPLEDEUNE NC		•	Sample ID:	65 BN05-0
Coll Date:	Prelim. Sorter: JJ)	Split Sorter:		•	
Subsampled Taxa:		·			- / /
ID Time Budget:		Presort ID Time:	1.0	Date-Identifier:	6/26/95NO
en een de la bangin seup.	Split/Midge ar	nd worm ID Time:		Date-Identifier:	
K. Gertfild - Her e pipelike wikis - E	and the second of the control of the	QA/QC Time:		•	•
		The state of the s			"
QC Taxonomic	- Law	Total	Presort	Split/QA/QC	
Check Order	Taxon	Number =	Number	+ Number	Comments
EDHEMEROPTELA	Caenis punctata				
					•
		,			
DIPTERA	Chrysops sp.	3			
· · · · · · · · · · · · · · · · · · ·					
		,			
:		· · · · · · · · · · · · · · · · · · ·	·		
					
					
	<u></u>		· · · · · · · · · · · · · · · · · · ·		
			*		

		•			
		•			
· · · · · · · · · · · · · · · · · · ·					
				-	<u> </u>
Notes:				Dane	of
6/26 9:00-10:00					

Client: BAKER ENVIRON, INC.		·	Jo	b Number/Task	Number/Task: <u>158-35,00/</u>		
Location	SITE 65	CAMP LEJEUNE	· ·		Sample ID: 65 BN05-		
Coll Date:	5/95	Prelim. Sorter: JJD	Split Sorter:				
Subsar	mpled Taxa:_					_ ,	
ID Ti	ime Budget: _	and the second of the second o	Presort ID Time:	0.5	Date-Identifier	6/26/9510	
	ent to with	Split/Midge	and worm ID Time:	. ·	Date-Identifier	:	
		and the second of the second o	QA/QC Time:	· · · · · · · · · · · · · · · · · · ·	erre e e e e e e e e e e e e e e e e e		
	en en en en en en en en en en en en en e		a service of		en en en en en en en en en en en en en e		
QC	Taxonomic		Total	Presort	Split/QA/QC		
Check	Order	Taxon	Number =	Number	+ Number	Comments	
							
EP	HEMEROPTE	ed Caenis punctat					
				···-			
	DIPTERA	Abla pesmyia ramphe	5/-				
						-	
						,	
	. 3						
	-						
				· · · · · · · · · · · · · · · · · · ·			
				*	-		
	-						
otes:					Page	of	