01.04-11/27/96-01748

PHASE I INVESTIGATION OPERABLE UNIT NO. 16 (Sites 89 and 93)

MCB CAMP LEJEUNE, NORTH CAROLINA

CONTRACT TASK ORDER 0356

NOVEMBER 27, 1996

Prepared for:

DEPARTMENT OF THE NAVY ATLANTIC DIVISION NAVAL FACILITIES ENGINEERING COMMAND

Norfolk, Virginia

Under:

LANTDIV CLEAN Program Contract N62470-89-D-4814

Prepared by:

BAKER ENVIRONMENTAL, INC. Coraopolis, Pennsylvania

TABLE OF CONTENTS

Page

1.0	INTRO	DDUCTION 1-1
	1.1	Scope and Objectives 1-1
	1.2	Report Organization 1-1
	1.3	Site Description and History 1-1
		1.3.1 Site 89 1-2
		1.3.2 Site 93 1-2
	1.4	Previous Investigations and Findings 1-2
		1.4.1 Site 89 1-3
		1.4.2 Site 93 1-3
2.0	SITE	CHARACTERISTICS
	2.1	Topography and Surface Features
	2.2	Surface Water Hydrology 2-1
	2.3	Site Geology
	2.4	Site Hydrogeology 2-3
	2.5	Identification of Water Supply Wells 2-4
3.0		DINVESTIGATION
	3.1	Field Activities
		3.1.1 Subsurface Soil Sampling
		3.1.2 Temporary Monitoring Well Installation
		3.1.3 Groundwater Sampling
		3.1.4 Surface Water and Sediment Sampling
		3.1.5 Land Survey 3-5 3.1.6 Well Abandonment 3-5
		3.1.8 Investigation Derived Waste Management
	3.2	Sample Acquisition and Analytical Program
		3.2.1 Subsurface Soil Sample Acquisition and Analyses
		3.2.2 Groundwater Sample Acquisition and Analyses
		3.2.3 Surface Water and Sediment Sample Acquisition and Analyses 3-6
		3.2.4 Quality Assurance Quality Control
		3.2.5 Data Management and Tracking 3-8
4.0		INGS OF THE PHASE I INVESTIGATION STUDY
	4.1	Screening Standard Comparisons 4-1
		4.1.1 Groundwater
	-	4.1.2 Surface Water
		4.1.3 Sediment
	4.2	Non-Site Related Analytical Results
	4.3	Laboratory Contaminants
	4.4	Site Analytical Sample Results4-24.4.1Site 894.3
		4.4.1 Site 89 4-3
		4.4.2 Site 93 4-6

TABLE OF CONTENTS (Continued)

••••		CLUSIONS AND RECOMMENDATIONS	
	• • •	5.1.1 Surface Water 5-3	l
		5.1.2 Sediment 5-3	l
		5.1.3 Groundwater 5-3	l
	5.2	Recommendations 5-2	2
6.0	REF	ERENCES	6-3

APPENDICES

- A Test Boring and Well Construction Records
- B Chain-of-Custody Records
- C Laboratory Data

LIST OF TABLES

- 2-1 Geologic and Hydrogeologic Units of North Carolina's Coastal Plain
- 2-2 Water Supply Well Information
- 3-1 Summary of Well Construction Details, Site 89
- 3-2 Summary of Well Construction Details, Site 93
- 3-3 Summary of Field Parameters for Groundwater Sampling, Site 89
- 3-4 Summary of Field Parameters for Groundwater Sampling, Site 93
- 3-5 Summary of Field Parameters for Surface Water Sampling, Site 89
- 3-6 Groundwater Sampling Summary, Site 89
- 3-7 Groundwater Sampling Summary, Site 93
- 3-8 Surface Water Sampling Summary, Site 89
- 3-9 Surface Water Sampling Summary, Site 93
- 4-1 Onsite Laboratory Positive Detection Summary, Surface Water, Volatile Organic Compounds, Operable Unit No. 16, Site 89
- 4-2 Fixed Base Detection Summary, Surface Water, Organic Compounds, Operable Unit No. 16, Site 89
- 4-3 Summary of Site Surface Water Contamination, Operable Unit No. 16, Site 89
- 4-4 Fixed Base Detection Summary, Sediment, Organic Compounds, Operable Unit No. 16, Site 89
- 4-5 Summary of Site Sediment Contamination, Operable Unit No. 16, Site 89
- 4-6 Onsite Laboratory Positive Detection Summary, Groundwater, Volatile Organic Compounds, Operable Unit No. 16, Site 89

LIST OF TABLES (Continued)

- 4-7 Fixed Base Detection Summary, Groundwater, Volatile Organic Compounds, Operable Unit No. 16, Site 89
- 4-8 Summary of Site Groundwater Contamination, Operable Unit No. 16, Site 89
- 4-9 Onsite Laboratory Positive Detection Summary, Groundwater, Volatile Organic Compounds, Operable Unit No. 16, Site 93
- 4-10 Fixed Base Detection Summary, Groundwater, Volatile Organic Compounds, Operable Unit No. 16, Site 93
- 4-11 Summary of Site Groundwater Contamination, Operable Unit No. 16, Site 93

LIST OF FIGURES

- 1-1 Operable Units and Site Locations at Marine Corps Base, Camp Lejeune
- 1-2 Site Location Map, Site 89
- 1-3 UST STC-868 Location, Site 89
- 1-4 Site Location Map, Site 93
- 2-1 Surface Topography, Sites 89 and 93
- 2-2 Cross-Section Location Map, Sites 89 and 93
- 2-3 Hydrogeologic Cross-Section A-A' Site 89 and Site 93
- 2-4 Hydrogeologic Cross-Section B-B' Site 89 and Site 93
- 2-5 Hydrogeologic Cross-Section C-C' Site 89 and Site 93
- 2-6 Hydrogeologic Cross-Section D-D' Site 89 and Site 93
- 2-7 Groundwater Elevations (Shallow Wells) Site 89
- 2-8 Groundwater Elevations (Intermediate Wells) Site 89
- 2-9 Active Water Supply Well Locations
- 3-1 Typical Temporary Monitoring Well Construction Diagram
- 3-2 Temporary Monitoring Well Locations, Site 89
- 3-3 Temporary Monitoring Well Locations, Site 93
- 3-4 Surface Water and Sediment Sample Locations, Site 89
- 4-1 Volatile Organic Compounds in Surface Water Samples, Site 89
- 4-2 Volatile Organic Compounds in Sediment, Fixed Based Analysis, Site 89
- 4-3 Semivolatile Organic Compounds in Sediment, Fixed Based Analysis, Site 89
- 4-4 Pesticides/PCBs in Sediment, Fixed Based Analysis, Site 89
- 4-5 Metals in Sediment, Fixed Based Analysis, Site 89
- 4-6 Volatile Organic Compounds in Groundwater (Shallow Wells), On Site Analysis, Site 89
- 4-7 Volatile Organic Compounds in Groundwater (Intermediate Wells), On Site Analysis, Site 89
- 4-8 Volatile Organic Compounds in Groundwater (Shallow Wells), On Site Analysis, Site 93
- 4-9 Volatile Organic Compounds in Groundwater (Intermediate Wells), On Site Analysis, Site 93

LIST OF ACRONYMS AND ABBREVIATIONS

ASTM	American Society for Testing and Materials
bgs	below ground surface
CERCLA	Comprehensive Environmental Response, Compensation and Liability Act
CLP	Contract Laboratory Program
COC	Chain-of-Custody
CTO	Contract Task Order
cis-DCE	cis-1,2-Dichloroethene
trans-DCE	trans-1,2-Dichloroethene
DoN	Department of the Navy
DQO	Data Quality Objective
DRMO	Defense Reauthorization and Marketing Office
°F	degrees Fahrenheit
FFA	Federal Facilities Agreement
ft	feet
IDW	investigation derived waste
IRP	Installation Restoration Program
LANTDIV	Naval Facilities Engineering Command, Atlantic Division
µg/L	micrograms per liter
µg/kg	micrograms per kilogram
MCB	Marine Corps Base
MCL	maximum contaminant level
MS/MSDs	matrix spike/matrix spike duplicates
NC DEHNR	North Carolina Department of Environment, Health, and Natural Resources
NCWQS	North Carolina Water Quality Standard
NEESA	Navy Energy and Environmental Support Activity
NFESC	Naval Facilities Engineering Service Center
No.	Number
NPL	National Priorities List
OU	operable unit
PCB	polychlorinated biphenyl
PCE	Tetrachloroethene
PID	photoionization detector
ppb	parts per billion
ppm	parts per million
pvc	polyvinyl chloride

LIST OF ACRONYMS (Continued)

QA/QC	quality assurance/quality control
RBC	Risk Based Concentration
RCRA	Resource Conservation and Recovery Act
RI/FS	Remediation Investigation/Feasibility Study
SOPs	standard operating procedures
SPT	standard penetration test
SVOA	semivolatile organic analysis
SVOC	semivolatile organic compounds
TAL	Target Analyte List
TCA	1,1,2,2-tetrachloroethane
TCE	trichloroethene
TCL	Target Compound List
TCLP	Toxicity Characteristics Leaching Procedure
ТРН	total petroleum hydrocarbon
USCS	Unified Soil Classification System
USEPA	United States Environmental Protection Agency
USGS	United States Geological Survey
UST	Underground Storage Tank
VOA	volatile organic analysis
VOC	volatile organic compound

1.0 INTRODUCTION

Marine Corps Base (MCB) Camp Lejeune was place on the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA) National Priorities List (NPL) effective November 4, 1989 (54 Federal Register 41015, October 4, 1989). Subsequent to this listing, the United States Environmental Protection Agency (USEPA) Region IV, the North Carolina Department of Environment, Health and Natural Resources (NC DEHNR), the United States Department of the Navy (DoN) and the Marine Corps entered into a Federal Facilities Agreement (FFA) for MCB Camp Lejeune in 1991. The primary purpose of the FFA was to ensure that environmental impacts associated with past and present activities at the MCB are throughly investigated, and that appropriate CERCLA response and Resource Conservation Recovery Act (RCRA) corrective action alternatives are developed and implemented as necessary to protect public health and welfare, and the environment (MCB Camp Lejeune FFA, 1989).

The fiscal year 1997 Site Management Plan for MCB, Camp Lejeune, a primary document referenced in the FFA, identifies 42 sites that require Remedial Investigation/Feasibility Study (RI/FS) activities. These 42 sites have been divided into 18 Operable Units (OUs). This report describes the Phase I investigation conducted at OU No. 16, which is comprised of Sites 89 and 93. The location of OU No. 16 is provided on Figure 1-1.

1.1 <u>Scope and Objectives</u>

The scope of the Phase I field investigation was to evaluate the nature and extent of the threat to public health and the environment caused by the release or threatened release of hazardous substances, pollutants, or contaminants. The Phase I investigation was conducted through the sampling of groundwater, surface water, and sediment, evaluating the resultant analytical and geologic data, and performing a qualitative assessment of the findings.

The objective of the Phase I investigation was to gather data and to delineate the extent of groundwater contamination and the impact to Edwards Creek. This data is to be used to provide recommendations for Phase II of the investigation.

1.2 <u>Report Organization</u>

This report is divided into six sections, including Section 1.0 Introduction. Section 2.0 presents the site characteristics. The field investigation which details procedures and sampling strategies is presented in Section 3.0. Section 4.0 presents the findings of the Phase I investigation. The conclusions and recommendations for this document are contained in Section 5.0, and references are provided in Section 6.0. The appendices referenced throughout the document are included at the end of the report and include Appendices A through C.

1.3 Site Description and History

The sections below summarizes information concerning the site description and history. Further information of this type can be found in the final Project Plans (Baker, 1996).

1.3.1 Site 89

Site 89 is located near the intersection of "G" and Eighth Streets within the Defense Reauthorization and Marketing Office (DRMO) area of Camp Geiger (Figure 1-2). The site originally contained an underground storage tank (STC-868) which was a steel 550-gallon waste oil tank located between building STC-867 (a soil storage facility) and an elevated wash rack. The orientation of the former underground storage tank (UST) in relation to these buildings is shown on Figure 1-3. Edwards Creek is the nearest surface water body, located approximately 525 feet south of the former UST basin.

UST STC-868 was installed in 1983 and was reportedly used until 1993 for the storage of waste oil. The tank was removed in 1993 and an initial investigation was conducted. Details of the investigation are included in Section 1.4. The major finding of this initial investigation at Site 89 was the detection several chlorinated solvents in the groundwater. The presence of chlorinated compounds during the initial investigation demonstrated that impact to the groundwater involved compounds not normally associated with a petroleum UST site. Historical records research of the area which is now occupied by the DRMO show that the site operated as a base motor pool until approximately 1988. These findings led to the inclusion of Site 89 into MCB Camp Lejeune's Installation Restoration (IR) Program. The IR Program focuses on non UST sites and provides the framework for more complex and detailed environmental investigations at the base. The current area of Site 89 has been expanded to include more area than only the former UST site. The site presently includes the entire DRMO and additional area outside the DRMO fence, including the wooded areas to the south and east.

1.3.2 Site 93

Site 93 is located near the intersection of Ninth and "E" Streets within Camp Gieger. The buildings in this area were constructed during the Korean War. Building TC-942 currently functions as a supply room for the Marine Infantry School. Items such as field jackets, ponchos, and canteens are stored in the building. Other buildings in the area serve as classrooms for the school and barracks. Site 93 originally had a 550-gallon oil storage UST associated with it. The tank was located at the southwest corner of Building TC-942 (See Figure 1-4).

The UST at Site 93 was permanently closed by removal in December 1993. There is no documentation available concerning the installation date or usage of the UST. Based on the elevated concentrations of oil and grease at the time of tank removal, a release is suspected to have occurred. After the removal of the tank, a subsequent investigation was conducted in June 1995 by R.E. Wright Associates, Inc.. The investigation included the installation of five monitoring wells around the former UST excavation and the collection of soil and groundwater samples. The results of the sampling are included in Section 1.5. Since the time of the UST investigation, the area has been expanded to determine if there are any other sources for the observed contamination. The site now includes the area north, south, east, and west of Buildings TC-940 and TC-942, and the area where the UST was located.

1.4 <u>Previous Investigations and Findings</u>

The following sections provide information on the previous investigations carried out at each of the two sites. The information is summarized in this document for the purpose of providing relevant

background information which has been used to assess the sites. For further details, concerning previous investigative work, the reader is referred to the Final Project Plans.

1.4.1 Site 89

UST STC-868 was installed in 1983 and was reportedly used until 1993 for the storage of waste oil. The tank was removed in 1993 and an initial investigation was conducted by installing two monitoring wells. Based on elevated levels of both total petroleum hydrocarbons (TPH) and oil and grease at the time of tank removal, a release was suspected to have occurred.

An additional one well site check was conducted in June 1994 by R.E. Wright Associates, Inc. to determine if a release had occurred. This investigation included one soil boring southeast of the tank excavation area which was converted to a monitoring well. One soil sample was analyzed for oil and grease and halogenated solvents. Groundwater samples were collected from the new and existing monitoring wells and analyzed for volatile organic compounds (VOCs), semivolatile organic compounds (SVOCs), and Toxicity Characteristic Leaching Procedure (TCLP) metals. The results from this sampling effort is summarized below:

- The soil sample detected 1,400,000 micrograms per kilogram of oil and grease, however, halogentated solvents were below the detection limits for all parameters.
- Three groundwater samples indicated concentrations of several chlorinated solvents. The maximum concentrations were as follows:

•	cis-1,2-dichloroethene	2,130 μg/L
►	trans-1,2-dichloroethene	1,580 μg/L
►	1,1,2,2-tetrachloroethane	8,600 μg/L
•	trichloroethene	1,500 μg/L

• SVOCs and TCLP metals were below the method detection limits in all samples.

1.4.2 Site 93

One 550-gallon UST was removed from this site in December 1993. Based on elevated levels of oil and grease at the time of the tank removal, a release was suspected to have occurred.

A subsequent investigation was conducted in June 1995 by R.E. Wright Associates, Inc. which included the installation of five monitoring wells around the former UST excavation and the collection of soil and groundwater samples. Soil samples were analyzed for oil and grease and halogenated solvents. Groundwater samples were analyzed for VOCs, SVOCs, and TCLP metals. The results of the sampling are summarized below:

- Oil and grease results from the soil samples ranged from 56,100 to 8,126,000 μ g/kg.
- Napthalene and tetrachloroethene were detected in the soil samples at 0.049 and 20 $\mu g/kg$, respectively.
- Groundwater samples detected cis-1,2-dichloroethene and chlorobenze at 250 μ g/L and 90 μ g/L, respectively. Tetrachloroethene and trichloroethene were detected at

 $90 \mu g/L$ and $30 \mu g/L$, respectively. Several SVOCs were detected at concentrations below regulatory limits. Total cadmium concentrations in each well and lead concentrations in one well exceeded regulatory levels. The presence of these metals are suspected to be a result of existing natural conditions, and not site operations.

The results of these initial investigations at Sites 89 and 93 indicated that soil and groundwater had been impacted due to previous operations. These findings then required that further investigative activities be initiated. The Phase I investigation has been completed to collect additional data, summarize the information, and provide recommendations as to what additional activities, if any, are required at each of these sites.

2.0 SITE CHARACTERISTICS

This section of the report describes the physical setting of OU No. 16 including the topography, drainage characteristics, geology, hydrogeology, and general groundwater flow patterns. The sections which follow describe the site characteristics of OU No. 16 in its entirety, including both Sites 89 and 93 because of their close proximity to one another.

2.1 <u>Topography and Surface Features</u>

Sites 89 and 93 are located within the Camp Geiger area of MCB Camp Lejeune. Site 89 is located near the intersection of "G" and Eighth Streets within the DRMO while Site 93 is located near the intersection of "E" and Ninth Streets. The majority of the area in and around Sites 89 and 93 is flat and covered by buildings, streets, parking areas, and some grass. Ground surface elevations are approximately 5 to 20 feet above mean sea level (msl). In general, the ground surface is higher in the northern and western portions of the site and gently slopes to the south and the east. Figure 2-1, provides an illustration of the area with contour lines depicting the approximate elevation of the land surface. As shown on the figure, the area within the sites is relatively flat with topography in the central portion of the OU influenced by Edwards Creek.

2.2 Surface Water Hydrology

Surface water features at the sites consist of a series of drainage swales and Edwards Creek which is located in the central and southern portions of OU No. 16. The majority of the drainage swales parallel the streets and capture storm water run off from the sites. These swales direct surface runoff towards Edwards Creek and only flow during storm events. During heavy storm events, water ponds in some low lying areas. As shown on Figure 2-1, topography at the site directs the majority of surface drainage towards Edwards Creek. The NC DEHNR stream classifications for Edwards Creek are SC (aquatic life propagation and survival, fishing, wildlife, and secondary recreation), HQW (high quality water), and NSW (nutrient sensitive water).

2.3 <u>Site Geology</u>

The sections which follow describe the site specific geology based on the Phase I Investigation. The site geology is also placed in context of the regional geology, as described in the "Hydrogeologic Framework of U.S. Marine Corps Base at Camp Lejeune, North Carolina", Cardinell, et al., 1993. The geology at Sites 89 and 93 is described together because of their close proximity to each other.

A fairly consistent depositional sequence was observed in the borings throughout Sites 89 and 93. This observed sequence is similar to the generalized North Carolina coastal plain sequence shown in Table 2-1. Table 2-1 shows that the Yorktown, Eastover, and Pungo River Formations lie between the Undifferentiated and Belgrade Formations. The Yorktown, Eastover, and Pungo River Formations, however, have not been identified at Camp Lejeune.

During this study, the Undifferentiated and River Bend Formations were encountered. The Belgrade Formation did not appear to be consistent at OU No. 16, however, a description of this unit has been included in this report. Based upon the regional geology and the soil borings completed at Sites 89 and 93, it appears that the shallow temporary wells installed during this investigation are screened in the Undifferentiated Formation (surficial aquifer) and the intermediate wells are screen in the

upper portions of the River Bend Formation (Castle Hayne aquifer). The sections below provide a description of each of these units.

The Undifferentiated Formation is comprised of loose to medium dense sands and soft to medium stiff clay. This formation is comprised of several units of Holocene and Pleistocene ages and can consist of a fine to coarse sand, with lesser amounts of silt and clay. At Sites 89 and 93, this formation typically extends to a depth between 20 and 30 feet below ground surface (bgs). The silt and clay lenses present within this formation may be correlated to the regional geology as the Belgrade Formation, or Castle Hayne confining unit. This unit, however, did not appear consistent at Sites 89 and 93.

The Belgrade Formation is comprised of fine sand with some shell fragments, silt, and clay of the Miocene age. Identifying this formation at OU No. 16 was difficult due to its inconsistency. Overall, the Undifferentiated Formation (surficial aquifer) appears to lie immediately above the River Bend Formation (upper portion of the Castle Hayne aquifer), with little to no presence of the Belgrade Formation (Castle Hayne confining unit). The inconsistent nature of the Belgrade Formation (surficial aquifer) and the upper portions of the River Bend Formation (Castle Hayne confining unit). The inconsistent nature of the Belgrade Formation (surficial aquifer) and the upper portions of the River Bend Formation (Castle Hayne aquifer). At best, the Belgrade Formation at OU No. 16 can be classified as a semi-confining unit or a "retarding layer", as it is laterally discontinuous and does not exhibit completely confining conditions on the River Bend Formation below (Castle Hayne aquifer).

Beneath the Undifferentiated Formation and the limited Belgrade Formation lies the River Bend Formation (upper potion of the Castle Hayne aquifer). This unit, which is predominantly composed of dense to very dense shell and fossil fragments interbedded with calcareous sands is present at OU No. 16 approximately 25 to 50 feet bgs.

Figure 2-2 provides the locations of four geologic cross-sections that have been prepared to illustrate the subsurface conditions at Sites 89 and 93. Cross-sections B-B' and C-C' traverse the sites from north to south and cross-sections A-A' and D-D' traverse east to west. The following paragraphs summarize the information displayed by each of the cross-sections.

Figure 2-3 displays the subsurface conditions along section A-A'. The subsurface soil is comprised of two distinct layers. The near surface soils are comprised of mostly fine to medium sand with some silt and clay. This is considered to be the Undifferentiated Formation (surficial aquifer). A layer of clay, fine sand, and silt is present in borings TW06, TW01, TW04, and TW13 near the surface to approximately 10 feet below ground surface. Although inconsistent across the sites, this unit may be the Belgrade Formation (Castle Hayne confining unit). The second distinct layer observed in this cross-section begins approximately 20 feet below ground surface and is considered to be the River Bend Formation (upper portion of the Castle Hayne aquifer). The material at this depth is comprised of shell and fossil fragments with a little silt and clay. At borings TW13IW and TW18IW, a green to dark green fine sand with little silt and trace clay was encountered in the bottom of the borings at approximately 45 feet below ground surface.

Figure 2-4 represents cross-section B-B' which runs north to south across the sites. In general, the subsurface soils along cross-section B-B' are comprised of fine to coarse sands with lesser amounts of silt and clay. Lenses of finer and coarser textured soils are occasionally present over the length of the cross-section. This variability in gradation is evident in borings TW01 and TW14 where

lenses of fine sand and silt were encountered, and again at TW05 where a lens of medium to coarse sand is present in the boring at approximately 8 feet below ground surface.

Cross-section C-C' is displayed on Figure 2-5. This cross-section runs north to south in the wooded area east of Site 89. The cross-section includes well clusters TW11, TW20, and TW18. Two distinct layers are present in the cross-section: a near surface layer, representing the Undifferentiated Formation (surficial aquifer) and a second layer representing the River Bend Formation (upper portion of the Castle Hayne aquifer). The near surface material is comprised of fine sand with a little silt and clay and the second layer comprised of shell and fossil fragments.

Figure 2-6 displays the subsurface information along cross-section D-D'. This cross-section begins at Site 93 and runs east through Site 89 and into the wooded area east of the railroad tracks. Again, two distinct layers are present in the subsurface material representing the Undifferentiated Formation (surficial aquifer) and the River Bend Formation (upper portion of the Castle Hayne aquifer). The near surface material is generally comprised of fine sand with little to some silt and clay. At approximately 20 to 25 feet bgs the second layer is encountered. This unit contains shell and fossil fragments with trace to little silt and clay interbedded with calcareous sand. This unit extends to approximately 40 to 45 feet below ground surface where a fine sand with little to some silt and trace clay is encountered.

In the near surface material a thin layer of fine to coarse sand with trace gravel and silt was encountered in the majority of the borings. However, this material is absent in the eastern portion of the cross section being replaced by a mostly clay soil.

2.4 <u>Site Hydrogeology</u>

As shown on Table 2-1, the surficial aquifer resides within the Undifferentiated Formation, the Belgrade Formation resides within the Castle Hayne confining unit, and the Castle Hayne aquifer resides within the River Bend Formation. The 1993 USGS document referenced above reports that the thickness of the surficial aquifer to be 18 to 23 feet and the thickness of the Castle Hayne confining layer as 4 to 7 feet in the vicinity of OU No. 16 (based on supply well boring logs). This places the elevation of the Castle Hayne confining unit from 0 to 8 feet above msl. These thicknesses and elevations are comparable to what has been observed at OU No. 16.

At the time of drilling, groundwater was generally encountered from 5 to 10 feet bgs. A complete picture of the groundwater flow regime in the form of a potentiometric map has not been presented in this report. Instead, only relative groundwater elevations are shown on Figures 2-7 and 2-8 for the surficial (shallow wells) and the Castle Hayne aquifers (intermediate wells), respectively. Groundwater elevations collected from the temporary monitoring wells were not used for an accurate presentation of groundwater flow due to the fact that measurements were recorded on different days depending on the progress of temporary well installation and sampling efforts. It is reasonable to consider the elevations presented on the figures as a guide depicting the local groundwater flow regime.

The groundwater elevation data suggest that the flow patterns observed for the surficial and Castle Hayne aquifers display a similar trend. Overall, elevations are higher in the northern portion of the OU, with decreasing values in the direction of Edwards Creek and in the wooded area east. This suggests a groundwater flow direction to the east with pronounced localized flow to the south as Edwards Creek serves as a groundwater discharge boundary. Edwards Creek appears to effect flow

within the surficial aquifer more so than the Castle Hayne aquifer. It is reasonable to assume that the New River, located east of the OU, will effect the groundwater flow of the Castle Hayne aquifer, causing groundwater at depth to move east, toward the river.

Groundwater head differentials between the shallow and intermediate wells were evaluated to determine if a vertical component of flow underlies the OU. Elevations in shallow temporary wells are greater than the associated elevation in the intermediate temporary wells in those wells located north of Edwards Creek. This data demonstrate a downward component of groundwater movement from the surficial aquifer to the Castle Hayne aquifer north of Edwards Creek. This information supports the assumption that complete confining conditions of the Castle Hayne aquifer in this area are not likely. The geologic and hydrogeologic information collected thus far further suggest that there is a definite, and in some places a significant, hydraulic connection between the surficial aquifer and the underlying Castle Hayne aquifer. Accordingly, this system produces suitable conditions for the vertical migration of contaminants.

Another generalization that can be made concerning the groundwater flow pattern involves the temporary wells installed within the DRMO area (TW15, TW15IW, TW16, and TW16IW). These wells all exhibit slightly lower groundwater elevations than nearby points, suggesting a depression of the potentiometric surface in this area. Lower groundwater elevations in this region of OU 16 may be a result of reduced amounts of infiltration as this portion of the site is mostly covered by asphalt and concrete.

2.5 Identification of Water Supply Wells

Water supply wells within a one-mile radius of the sites were identified by reviewing base information. A total of 12 supply wells were identified to be within a one-mile radius of Sites 89 and 93. The location of the wells relative to the sites are shown on Figure 2-9. Table 2-2 provides detailed information concerning each of these wells including total depth, well screen interval, and whether the well is active or inactive. The supply wells near OU No. 16 range in depths from 70 feet bgs to 250 feet bgs. Two of the supply wells, TC-1000 and TC-1001, fall just beyond the boundary of the 1-mile radius shown on Figure 2-9. These wells are included in the figure and on Table 2-2 as additional information.

3.0 FIELD INVESTIGATION

Section 3.0 provides a description of the field activities and sample analysis associated with the investigation at Sites 89 and 93. General activities and standard operating procedures followed the guidelines set forth in the Final Project Plans. This section discusses the specific field activities and graphically depicts or tabulates appropriate investigative points.

3.1 Field Activities

The investigative activities completed at sites 89 and 93 varied depending upon the individual site histories and previous investigative work. However, the objective of estimating the impact to groundwater remained consistent for both sites. The Phase I field investigation provided the necessary data to estimate the effects of previous site activities on the groundwater at OU No. 16. This was accomplished through the acquisition of environmental samples which were analyzed onsite and by a fixed based laboratory. The following explains which tasks were completed at the sites. Further discussion of the field activities presented on a site by site basis follow.

Site 89

- Temporary Well Installation
- Groundwater Sampling
- Surface Water and Sediment Sampling
- Land Survey
- Well Abandonment
- Decon Procedures
- Investigative Derived Waste Management

Site 93

- Temporary Well Installation
- Groundwater Sampling
- Land Survey
- Well Abandonment
- Decon Procedures
- Investigative Derived Waste Management

3.1.1 Subsurface Soil Sampling

Standard drilling methods were employed at both sites to complete soil borings for temporary monitoring well installation. Soil samples were collected via split-spoon sampling methods in general accordance with the procedures outlined in the American Society for Testing and Materials (ASTM) Standard Method for Penetration Test and Split-Barrel Sampling of Soils (Designation D 1586). Split-spoons of 24-inch (nominal) length were used throughout the investigation. In most cases, samples were collected continuously from the surface (i.e., ground surface to a depth of twelve inches) at two-foot intervals starting at one foot below ground surface. Continuous sample collection proceeded until the water table. Below this depth, samples were collected at various intervals depending upon site conditions.

Each sample was classified in the field by a geologist using the Unified Soil Classification System (USCS) in accordance with the visual-manual methods described by the American Society for Testing and Materials (ASTM, 1993a). The field descriptions were recorded in a field logbook and later transposed onto boring log records. Soil classification included characterization of soil type, grain size, color, moisture content, relative density, plasticity, and other pertinent information such as any indication of contamination. The Standard Penetration Test (SPT) blow counts were also recorded. In addition, a photoionization detector (PID) was used to screen the samples to detect the presence of any VOCs. The test boring records and well construction records are presented in Appendix A. Sample information such as boring number, sample identification, time and date of sample collection, field sampling team, and analytical parameters were recorded for each of the soil samples.

All drilling and soil sampling activities were performed in Level D personnel protective equipment. Soil cuttings generated during the investigation were collected, handled, and stored according to the procedures outlined in Section 3.1.8.

3.1.1.1 Site 89

Thirty soil borings were advanced at Site 89. The soil samples were collected from these borings for lithologic classification only. There were no environmental soil samples collected at Site 89. Fourteen of the borings were shallow depth borings used for the installation of the shallow temporary monitoring wells. These borings ranged in depth from 10 to 20 feet bgs. Sixteen of the borings were drilled to depths ranging from 37 to 47 feet bgs. These borings were used to install the intermediate wells at Site 89.

3.1.1.2 Site 93

A total of fifteen soil borings were drilled at Site 93. The soil samples collected from these borings were used for lithologic classification only. Of the fifteen borings drilled at Site 93, eight were considered shallow depth and seven were considered intermediate depth. The shallow borings ranged in depths from 15 to 25 feet bgs. The intermediate depths ranged from 50 to 54 feet bgs.

3.1.2 Temporary Monitoring Well Installation

A total of 44 temporary monitoring wells were installed at Sites 89 and 93 as part of the Phase I investigation. This included 14 shallow and 16 intermediate wells at Site 89 and 7 shallow and 7 intermediate wells at Site 93. The wells were installed using a standard truck or track mounted drill rig, depending upon site access. Use of a standard drill rig enabled the field crew to install intermediate wells which were approximately 50 feet below ground surface. The wells were situated spatially across the sites to provide samples from potentially impacted groundwater, and to characterize the nature and extent of possible contamination. Occasionally, existing permanent monitoring wells were used in conjunction with the newly installed temporary wells to collect groundwater samples and to evaluate groundwater flow patterns. Placement of the temporary wells was based on review of aerial photographs, previous investigations, site conditions, locations of underground utilities, the location of existing monitoring wells, and the overall scope and objectives of the project. Locations of the temporary monitoring wells presented in the Final Project Plans provided initial guidance, however, results of on-site laboratory data were used on a daily bases for decisions on final well locations. These decisions were a cooperative effort involving the Baker Site

Manger, the Baker Project Manger, Naval Facilities Engineering Command, Atlantic Division (LANTDIV), and MCB Camp Lejeune personnel.

All of the monitoring wells were constructed of one-inch diameter, Schedule 40, flush-joint and threaded, polyvinyl chloride (PVC) casing. The wells utilized either a 10-foot or a 15-foot screened interval of No. 10 (i.e., 0.0010 inch) slot screen sections. The screened sections of the wells were covered with a piece of cloth material known as a "well sock", which reduces the amount of fine grained material that moves through the screen and into the monitoring well. The boreholes were backfilled to the surface with natural material and left as "stick-up" for subsequent groundwater sampling. The well identification of each temporary well was written with a permanent marker to identify the location during sampling and surveying activities. Typical temporary monitoring well construction details are shown on Figure 3-1. Well construction records are provided on the Test Boring and Well Construction Records in Appendix A.

The following sections discuss the installation of the temporary wells on a site by site basis, providing information concerning the total number of shallow and intermediate wells, their associated depths and their locations.

3.1.2.1 Site 89

At Site 89, 30 temporary wells were installed between August 2, 1996 and August 19, 1996. The wells were installed after completing a soil boring to the appropriate depth as discussed in Section 3.1.1. Thirteen shallow wells ranged in depths of 10 to 19 feet bgs. In general, the shallow wells were installed approximately 10 feet below the water table encountered during drilling. The intermediate wells were installed to identify the absence or presence of a semi-confining layer (known as the "Castle Hayne confining unit") at the site and to characterize the groundwater at this depth. Fifteen intermediate wells were installed ranging in depths from 35 to 47 feet bgs. Screened intervals for these wells ranged from 30 to 47 feet bgs (refer to Appendix A and Table 3-1 for test boring and well construction records). Figure 3-2 shows the locations of the temporary wells installed at Site 89.

3.1.2.2 Site 93

Fourteen temporary wells were installed at Site 93. This included seven shallow and seven intermediate wells. The wells at Site 93 were installed between July 29, 1996 and August 5, 1996. The wells were installed after completing a soil boring to the appropriate depth as discussed in Section 3.1.1. Shallow wells at Site 93 ranged in depth from 14.5 to 24.5 feet bgs. In general, the shallow wells were installed approximately 10 feet below the water table encountered during drilling. The intermediate wells were installed to identify the absence or presence of a the Castle Hayne Confining Unit and to characterized the groundwater at this depth. The intermediate wells ranged in depths from 50 to 53.5 feet below ground surface. Screened intervals for these wells ranged from 45 to 53.5 feet bgs (refer to Appendix A and Table 3-2 for test boring and well construction records). Figure 3-3 shows the locations of the temporary wells installed at Site 93.

3.1.3 Groundwater Sampling

Groundwater samples were collected to assess whether contamination, that may have resulted from previous activities at Sites 89 and 93 was present in the aquifer below. Based upon previous investigative results and historical records, the contaminants of potential concern were primarily

volatile organic compounds. Prior to groundwater purging, a water level measurement from each well was obtained. The total well depth was also recorded from each well to the nearest 0.1-foot. Water level and well depth measurements were used to calculate the volume of water in each well and the volume of water necessary to purge the well.

A minimum of three to five well volumes were purged from each well prior to sampling. Measurements of pH, specific conductance, temperature, turbidity, and dissolved oxygen (D.O.) were taken after each well volume was purged to ensure that the groundwater characteristics had stabilized before sampling These measurements were recorded in a field logbook and are provided on a site by site basis on Tables 3-3 and 3-4. Purge water was contained and handled as described in Section 3.1.8.

During the groundwater sampling event, a low flow well purging and sampling technique was employed. The sampling methodology was developed in response to conversations with USEPA Region IV personnel in Athens, Georgia. A peristaltic pump (GeoPump), with the intake set two to three feet into the static water column, was used to purge each of the wells. While purging groundwater from each of the monitoring wells, a flow rate of less than 0.25 gallons per minute (gpm) was maintained. The groundwater samples were collected directly from the pump discharge. Dedicated sections of polyethylene and silicon pump-head tubing were used during purging and sampling activities at each well. Rinsate blanks were collected from the polyethylene and silicon tubing to verify that proper procedures had been followed.

The collection of groundwater samples included specific sample information such as well number, sample identification, time and date of sample collection, sampling team, and analytical parameters. These items were recorded in a field logbook and on the sample labels. Chain-of-custody documentation (provided in Appendix B) accompanied the samples to the laboratory.

3.1.4 Surface Water and Sediment Sampling

Surface water and sediment samples were collected from Edwards Creek at Site 89. The samples were collected from various reaches of the stream, considering both the upstream and downstream effects of Site 89. Figure 3-4 shows the locations of the surface water and sediment sample locations within Edwards Creek. The following sections describe the sampling locations, sampling procedures, analytical program and quality assurance and quality control program.

3.1.4.1 Surface Water Sampling Procedures

Sampling of the surface water and sediments was completed at the downstream sample locations first and then proceeded upstream. Each of the sampling stations were demarcated along the shoreline with wooden stakes with the sample identification.

At each of the surface water sampling stations, samples were collected by dipping the laboratory prepared containers directly into the water. Samples analyzed for volatiles were obtained first, and samples for the additional analytical fractions were collected immediately following. During sample collection care was taken to avoid excessive agitation that may result in loss of the VOCs. Water quality readings (i.e., pH, dissolved oxygen, salinity, specific conductance, temperature, and turbidity) were taken at sampling stations 89-EC-SW01 through 89-EC-SW05. The results of these readings are provided on Table 3-5. Surface water samples 89-EC-SW01 through 89-EC-SW05 were analyzed by both the fixed based laboratory and the on-site laboratory. The on-site laboratory

performed only EPA Method 8240 for VOCs. The samples shipped to the fixed based laboratory were analyzed for target compound list (TCL) volatile organic analysis (VOAs), semivolatile organic analysis (SVOAs) and target analyte list (TAL) metals according to contract laboratory (CLP) protocol. Surface water sample 89-EC-SW05 was sampled for the same parameters but also included analyses for pesticides/polychlorinated biphenyls (PCBs). Samples 89-EC-SW06 through 89-EC-SW11 were analyzed by the on-site laboratory for VOCs only.

3.1.4.2 Sediment Sampling Procedures

Ten sediment samples were collected subsequent to the surface water samples to minimize sediment suspension that might falsely contaminate the samples. The sediment samples were collected from stations 89-EC-SD01 through 89-EC-SD05. Two sediment samples were collected at each of these locations for a total of ten samples. The first sample was collected below the water surface from the stream bed to approximately six inches below ground and the second sample was collected from six inches to 12 inches below ground. The samples were collected by manually pushing a sediment corer, equipped with a disposable acetate sleeve into the streambed. The sediment was extruded from the disposable sampling tube and placed into the appropriate sample containers. The sediment samples were analyzed for TCL VOAs, SVOAs, and TAL metals according to CLP protocol. Sediment sample 89-EC-SD05 was analyzed for the same parameters but also included analyses for pesticides/PCBs.

3.1.5 Land Survey

A land survey was conducted by Lanier Surveying, a licensed professional surveyor in the State of North Carolina. The surveying was completed under the direction of the Baker Site Manager. Both Sites 89 and 93 were surveyed as part of this investigation. The survey of the sites included the temporary monitoring wells, surface water/sediment sample locations, buildings, and other relevant features such as trees, drainage swales, utilities, and parking areas. All of the points were surveyed for vertical and horizontal control using North Carolina State Plane Coordinates.

3.1.6 Well Abandonment

Upon completion of the groundwater sampling and surveying activities, all of the temporary monitoring wells were abandon. The PVC pipe was removed from the ground manually by pulling it to the surface using pipe wrenches for leverage. The boreholes were then backfilled to the surface with soil cuttings.

3.1.7 Decontamination Procedures

All of the equipment used during the field activities was decontaminated before and after each use to prevent cross-contamination of samples, with the exception of disposable sampling equipment. The disposable sampling equipment was appropriately discarded subsequent to its initial use. Disposable equipment included polyethylene and silicon tubing used for groundwater sampling. The drill rig and all associated drilling and sampling tools were steam cleaned prior to initiating drilling activities and between borings. Meters and instruments used for measuring dissolved oxygen, pH, temperature, specific conductivity, and turbidity were rinsed with distilled water after each use.

3.1.8 Investigation Derived Waste Management

Field investigation activities associated with CTO-0356 resulted in the generation of various investigation derived waste (IDW). The IDW included soil cuttings, purge water, and solutions used to decontaminate non-disposable sampling equipment. The general management techniques utilized for the IDW were:

- Collection and containerization of IDW material
- Temporary storage of IDW while awaiting confirmatory analytical data
- Final disposal of aqueous and solid IDW material

The management of the IDW was performed in accordance with guidelines developed by the USEPA Office of Emergency and Remedial Response, Hazardous Site Control Division (USEPA, 1992). Both the IDW soils and water at Sites 89 and 93 were determined to be nonhazardous and were returned to the site.

3.2 Sample Acquisition and Analytical Program

The following sections provide information on the numbers of samples collected at each of the sites, the type of media sampled and the requested analytical procedures. Tables have been prepared which detail the analytical tests and figures are provided which show the sample locations relative to the sites.

3.2.1 Subsurface Soil Sample Acquisition and Analyses

Soil samples were not collected from Sites 89 and 93 for environmental testing. The samples were collected for lithologic classification of the soils only. Soils were examined and classified in the field by the geologist on-site. The locations of the borings were positioned across the sites in an effort to provide complete coverage while taking account for numerous underground utilities. The locations of the borings are represented by the temporary monitoring well locations presented on Figures 3-2 and 3-3.

3.2.2 Groundwater Sample Acquisition and Analyses

Groundwater samples were collected from Sites 89 and 93 from the temporary wells. These samples were analyzed in the field with a mobile laboratory for VOCs according to EPA Method 8240. In addition, select samples were collected and analyzed for TCL VOAs according to CLP procedures at a fixed based laboratory. Table 3-6 and 3-7 provide information on the groundwater sample analysis for both sites 89 and 93.

3.2.3 Surface Water and Sediment Sample Acquisition and Analyses

A total of 11 surface water and ten sediment samples were collected from Edwards Creek at Site 89. Figure 3-4 depicts the locations of the surface water and sediment sampling locations. Surface water samples were assigned the pre-fix "SW" and sediment sample locations were assigned the pre-fix "SD" in the sample identification number.

Surface water and sediment samples 89-EC-SW/SD01 to 89-EC-SW/SD04 were sampled for TCL VOAs, SVOAs, and TAL metals according to CLP protocol. Surface water and sediment sample

89-EC-SW/SD05 was sampled for the same parameters and but also included analyses for pesticides/PCBs. Surface water samples 89-EC-SW06 through 89-EC-SW11 were additional samples collected and analyzed on-site for VOCs according to EPA Method 8240. The requested sample analyses are presented on Tables 3-8 and 3-9. During collection of surface water samples 89-EC-SW01 through 89-EC-SW05, water quality parameters including temperature, pH, dissolved oxygen, conductivity, and salinity were recorded at each sample station. The results of these measurements are discussed in Section 3.1.4 and shown on Table 3-5.

3.2.4 Quality Assurance Quality Control

Quality Assurance/Quality Control (QA/QC) samples were collected during the Phase I Investigation. Field QA/QC samples were collected at each of the sites according to the procedures outlined in the USEPA Region IV standard operating procedures (SOPs). These samples were obtained to 1) ensure that decontamination procedures were effective (equipment rinsate samples); 2) evaluate field methodologies (duplicate samples); 3) establish field background conditions (field blanks); 4) evaluate whether cross-contamination occurred during sampling and shipping (trip blanks); and 5) evaluate laboratory analysis (matrix spike/matrix spike duplicates).

Data Quality Objectives (DQOs) for the QA/QC samples were implemented in accordance with DQO Level IV as defined in the Environmental Compliance Branch SOPs and Quality Assurance Manual, USEPA Region IV (USEPA, 1991). This DQO level is equivalent to the Naval Facilities Engineering Service Center (NFESC) DQO Level D, as specified in the "Sampling and Chemical Analysis Quality Assurance Requirements for the Navy Installation Restoration Programs" document (NEESA, 1988). Five types of QA/QC samples were collected and analyzed at Site 89 including: duplicate samples, equipment rinsate samples, field blanks, trip blanks, and matrix spike/matrix spike duplicates. These QA/QC samples were primarily related to the surface water and sediment samples collected from Edwards Creek at Site 89 which were analyzed for TCL VOAs, TCL SVOAs, TCL pesticides/PCBs, and TAL Metals. At Site 93 only trip blanks were collected for the groundwater samples analyzed by the fixed based laboratory.

The definition of each type of QA/QC sample is provided in the Environmental Compliance Branch SOPs and Quality Assurance Manual, USEPA Region IV (USEPA, 1991). A brief summary of the QA/QC samples collected during this investigation is provided below.

- Duplicate Sample: Duplicates were collected in quantities equal to or greater than ten percent of the total number of samples collected. The duplicate samples were collected at the same time, using the same techniques as the planned original environmental samples. Further details can be found in Appendix C.
- Equipment Blanks: Rinsate blanks were prepared for manual sampling equipment utilized to collect environmental samples. Rinsate samples were analyzed for parameters associated with the sampling event.
- Field Blanks: Field blanks were collected to provide analytical data on the water used in the field for decontamination purposes.
- Trip Blanks: Trip blanks are prepared prior to the sampling event, placed in the actual sample container, and kept with the investigative samples throughout the sampling event. Results of the trip blanks analyses can be found in Appendix C.

• Matrix Spike/Matrix Spike Duplicates: Matrix spike/matrix spike duplicates (MS/MSDs) were collected during the surface water and sediment sampling events at a number equal to or greater than five percent of the total number of environmental samples collected during the study.

3.2.5 Data Management and Tracking

The management and tracking of data, from time of field collection to receipt of validation report, is of primary importance to the overall quality of laboratory analytical results. Sample identification of samples collected for on-site analysis were recorded in a field log book and on the sample container. These samples were immediately transported to the on-site laboratory and logged into a data base prior to analysis. Sample identification of those samples analyzed at the fixed based lab were recorded on chain-of-custody (COC) forms, provided in Appendix B. Chain-of-custody forms were reviewed by data management personnel to verify that appropriate laboratory analyses had been requested. Upon receipt of laboratory analytical results, a further comparison was performed to verify that each sample received by the laboratory was analyzed for the correct parameters.

The management and tracking of data from the time of sample collection until receipt of the analytical results was completed to determine the following items:

- Identify and correct chain-of-custody discrepancies prior to laboratory analysis
- Verify the receipt of all samples by the laboratory
- Confirm that requested sample analyses were performed
- Ensure the delivery of a complete data set

4.0 FINDINGS OF THE PHASE I INVESTIGATION STUDY

This section of the report presents the findings of the Phase I investigation Study at OU 16. It includes results of the groundwater sampling at Sites 89 and 93 and surface water/sediment sampling at Site 89. The analytical results for QA/QC samples also are presented in this section.

Presentation of the analytical data in this section includes a comparison of the site data to established standards and/or criteria. The standards and criteria chosen for evaluation are media specific and help to provide a reasonable assessment of site conditions. An explanation and justification for using each of the standards and criteria are presented in Section 4.1.

4.1 <u>Screening Standard Comparisons</u>

The qualitative assessment for the media sampled at the site was completed using state and federal standards and criteria to evaluate the contaminant levels detected. The sections below are presented to define the screening standards applied to each of the media.

4.1.1 Groundwater

The screening standard applied to groundwater is based on the following sources:

- North Carolina Water Quality Standards (NC WQS, 1994) NC WQSs are the maximum allowable concentrations, resulting from any discharge of contaminants to the lands or waters of the state, that may be tolerated without threatening human health or otherwise rendering the groundwater unsuitable for its intended purposes.
- USEPA Maximum Contaminant Levels (MCLs), February, 1996 MCLs are enforceable standards for public water supplies, designed to protect human health and promulgated under the Safe Drinking Water Act. MCLs also account for the technical feasibility of removing contamination from a public water supply. MCLs are based on laboratory or epidemiological studies and are applied to analyses of drinking water supplies consumed by a minimum of 25 persons. MCLs establish limits under which 70 kg adults, drinking 2 liters of water a day for 70 years, can avoid detrimental health effects.

4.1.2 Surface Water

The surface standard applied to surface water is based on the following sources:

• NC WQS for surface water, June 1, 1994 (human health standard) - The NC WQS for surface water are the standard concentrations that, either alone or in conjunction with other wastes in surface waters, will neither render waters injurious to aquatic life, wildlife, or public health, nor impair the waters for any designated use.

4.1.3 Sediment

The screening standard applied to sediment samples is based on the following source:

• Literature source titled, "Incidence of Adverse Biological Effects Within Ranges of Chemical Concentrations and Estuarine Sediments." Long et. al., 1995

4.2 <u>Non-Site Related Analytical Results</u>

Some of the organic compounds detected in the environmental media may be attributable to non-site related conditions. Two primary sources of non-site related analytical results include laboratory contaminants introduced during analysis and field activities such as sampling. A brief discussion of non-site related analytical results is provided in the section which follows.

4.3 Laboratory Contaminants

Field blank and trip blank samples provide a measure of contamination that has been introduced into a sample set during the collection, transportation, preparation, or analysis of samples. To remove non-site related constituents from further consideration, the concentrations of chemicals detected in blanks were compared with concentrations of the same chemicals detected in environmental samples.

As the scope of the Phase I investigation was limited to estimating the extent of contamination through on-site screening, limited QA/QC samples were collected. The QA/QC for the groundwater samples included trip blanks that accompanied confirmatory samples to the fixed based laboratory and field blanks of the potable water source used during drilling operations. The trip blank samples did not detect any contaminants. The field blank samples collected from the potable water source used during drilling operations. This compound was common in all the groundwater samples collected from borings in which water was used while drilling. As the chloroform was present in the potable water source used for drilling, its detection in the environmental samples was not considered to be site related. The results of the chloroform detections were not reported on the analytical tables or figures which depict the results of the sampling program at OU 16.

A duplicate sample and a matrix spike/matrix spike duplicate (MS/MSD) sample was collected from one station at the surface water and sediment sampling points in Edwards Creek. These QA/QC samples were analyzed by the fixed base laboratory. The duplicate sample results were in general agreement with the associated environmental sample and the MS/MSD sample results were within the acceptable ranges. In summary, the QA/QC samples collected as part of the Phase I investigation demonstrate that the data is reliable and useful for assessing the site's conditions.

4.4 Site Analytical Sample Results

This section presents the results of the groundwater, surface water, and sediment investigations performed as part of the Phase I investigation. The data are presented for both sites by media: groundwater, surface water, and sediment. The results are discussed and presented in corresponding tables which show all of the positive detections and a summary table which includes comparison to

the appropriate "screening standard". The positive detections are also included on figures in this section to illustrate the spatial relationships of the data.

4.4.1 Site 89

Investigative activities at Site 89 included surface water and sediment samples collected from Edwards Creek, and groundwater sampling in the area in and around the DRMO and east into the wooded area. Each of the media sampled are presented separately, beginning with the surface water samples from Edwards Creek.

4.4.1.1 Surface Water

A total of eleven surface water samples were collected at Site 89. Samples 89-EC-SW01 through 89-EC-SW04 were analyzed according the CLP protocol for TCL VOAs, TCL SVOAs, and TAL metals. Sample 89-EC-SW05 was analyzed for all fractions including TCL Pesticides/PCBs. In addition, each of these five samples were analyzed for VOCs by the on-site laboratory according to EPA Method 8240. Samples 89-EC-SW05 through 89-EC-SW11 were analyzed by the on-site laboratory for VOCs only, these sample locations were not sent to the fixed based laboratory.

The analytical results for the volatile fraction of the surface water samples from the on-site analysis is presented on Table 4-1. Table 4-2 presents the analytical results obtained by the fixed based laboratory. The fixed based results include TCL VOAs, TCL SVOAs, and TAL metals. All of the results are summarized on Table 4-3.

The data demonstrate consistent concentrations of VOCs in Edwards Creek south of Site 89. Six separate VOCs were detected in the surface water samples including, trans-1,2-dichloroethene (trans-1,2-DCE), cis-1,2-dichloroethene (cis-1,2-DCE), trichloroethene (TCE), tetrachloroethene (PCE), 1,1,2,2-tetrachloroethane (TCA), and vinyl chloride. Concentrations of the VOCs ranged from a low of 0.1 μ g/L of PCE to a high of 150J μ g/L of 1,1,2,2-TCA. The most frequently detected compound was TCE which was detected in 9 of the 11 surface water samples analyzed on-site and all 5 of the surface water samples analyzed by the fixed based laboratory. The sample stations recording the highest number of maximum detections were sample stations 89-EC-SW02 and 89-EC-SW04. These stations are located south and downgradient of the DRMO area. Sample station 89-EC-SW06, located to the west of the DRMO area and at the headwaters of Edwards Creek, was the only station that did not detect any VOCs in the surface water. In general, sample results were consistent throughout Edward's Creek, showing little to no decrease of concentrations in the downstream direction.

Sample station 89-EC-SW08 located just south of Edwards Creek in a surface water drainage swale (See Figure 4-1) detected PCE at 0.4 μ g/L. The low concentration of only one VOC at this sampling point suggests that the surface water discharging into Edwards Creek from the south is not contributing contaminants to the stream.

It should be noted that surface water samples were obtained from Edwards Creek as part of a SI study performed by Baker in 1991 (Baker, 1991). The surface water samples collected as part of this investigation detected only one VOC at a very low concentration some distance downstream of the DRMO area near Site 44. The RI/FS investigation for Site 44 in 1995 involved further surface water sampling along Edwards Creek and identified several VOCs in the stream (Baker, 1995). In addition to the previous sampling of Edwards Creek, surface water samples were collected from the

drainage swale located on the east side of the DRMO (see Figure 4-1) in May 1996. This swale was constructed to alleviate drainage problems within the DRMO. The swale usually contains some standing water and appears to continually discharge small volumes of groundwater. During storm events this swale discharges significant amounts of surface water to Edwards Creek. The surface water samples collected from this drainage swale and at its discharge point into Edwards Creek, have detected similar concentrations of VOCs as those currently observed in Edwards Creek.

The detection of VOCs in Edwards Creek and the drainage swale which borders the eastern edge of the DRMO, coupled with the detection of a low concentration of PCE in the water discharging into Edwards Creek from the south, suggest that the source of the VOC contamination impacting Edwards Creek is located in the vicinity of the DRMO.

There were no SVOAs or pesticides/PCBs detected in the surface water samples collected from Edwards Creek. Some metals were detected in the samples, however, at the detected concentrations, their presence is most likely attributed to natural conditions. The presence of metals in the surface water is not considered to be a result of site operations, and therefore these results have not been included on a figure. As mentioned above they are presented on Table 4-2 and summarized on Table 4-3.

4.4.1.2 Sediment

A total of 10 sediment samples were collected at five sample locations within Edwards Creek. Two samples were taken at each station, one from zero to six inches and a second from six to twelve inches. Samples 89-EC-SD01 through 89-EC-SD04 were analyzed at the fixed based laboratory for TCL VOAs, TCL SVOAs, and TAL metals. Sample number 89-EC-SD05 was analyzed for these same fractions, but also included an analysis for TCL pesticides/PCBs. Table 4-4 presents the results of the analytical data for the sediment samples. The results are summarized on Table 4-5 and presented on Figures 4-2 through 4-5.

VOCs were only detected at sample station 89-EC-SD03. Six separate VOCs were detected at this point in both the zero to six inch sample depth and the six inch to twelve inch sample depth. The compounds included vinyl chloride, DCE (total), TCA, 1,1,2-TCA, 1,1,2,2-TCA, and toluene. Concentrations of the VOCs ranged from 13 μ g/kg of 1,1,2-TCA to 2,400 μ g/kg of TCA. The majority of the maximum detections were found at the zero to six inch sample depth.

Semivolatile organic compounds (SVOCs) were detected at each of the five sediment sample stations in Edwards Creek. The type of compounds detected are ubiquitous in forested environments due to decomposition of organic material. Further, the concentrations detected are similar to what is normally expected in environments where soil has a high organic content. The results of the SVOCs shown on Figure 4-3 are not considered to be related to site operations at OU No. 16.

Analysis for pesticide/PCBs was performed at station 89-EC-SD05. There were no PCBs detected in the sample, however, several pesticide compounds were detected. The compounds detected at this sampling station were commonly used in the past at MCB, Camp Lejeune. Their presence in the sediment samples are most likely due to overland runoff and to organic matter present in the sediment samples. Pesticides tend to be very stable in the environment with little degradation occurring, therefore they are commonly detected in soil and sediment samples throughout the base at concentrations similar to what was observed at Site 89. The reported concentrations of pesticides are not assumed to be related to previous site operations. The results of the pesticide analyses are shown on Figure 4-4.

Each of the five sediment sample stations were analyzed for TAL metals. As shown on Figure 4-5, each of the sample stations detected the presence of metals in the samples. Metals are naturally occurring in soil. The detected concentrations of the metals observed in the sediment samples are similar to concentrations observed in other samples throughout the base. Their presence is most likely a result of natural conditions and are not considered to be related to site activities.

4.4.1.3 Groundwater

The groundwater investigation at Site 89 entailed the collection of groundwater samples from three permanent monitoring wells and 30 temporary monitoring wells. Each of the groundwater samples collected were analyzed by an on-site laboratory according the EPA Method 8240. In addition, four samples were analyzed by the fixed based laboratory for full TCL VOAs using CLP protocols. The positive detections for the on-site analyses are included on Table 4-6. Four groundwater samples were split and sent to the fixed based laboratory for comparison purposes. These results are provided on Table 4-7. All of the groundwater analytical results for Site 89 are summarized on Table 4-8.

Six separate VOCs were detected in the groundwater samples collected at Site 89 including, vinyl chloride, trans-1,2-DCE, cis-1,2-DCE, 1,1,1-TCA, TCE, and PCE. Concentrations ranged from 0.2 μ g/L of 1,1,1-TCA to 818 μ g/L of cis-1,2-DCE. The most frequently detected compound was TCE, which was detected in 22 of the 34 samples. The highest concentration of TCE was 744.3 μ g/L, detected in monitoring well 89-MW02.

Two groundwater samples taken from temporary wells TW08 and TW09 were split and sent to the fixed based laboratory for confirmation analysis. Results of these analysis were similar to the results obtained from the fixed based laboratory, indicating that the data used to assess OU No. 16 is reliable. VOCs were detected in temporary monitoring well TW08 at concentrations similar to what was detected by the on-site laboratory. Temporary well TW09 did not detect any VOCs in the analysis performed by either of the labs.

Figure 4-6 presents the results of the VOCs detected in the groundwater samples collected from the shallow temporary wells and Figure 4-7 presents results for the intermediate wells at Site 89. Both figures present the results of the analysis as performed by the on-site laboratory. As shown on Figure 4-6, the majority of the shallow groundwater contamination at Site 89 is concentrated in the area of the DRMO. Contamination of the shallow groundwater appears highest in the area of the DRMO and to the south in the direction of Edwards Creek. Areas to the west and north (upgradient) of the DRMO also appear to be impacted, but at lower concentrations compared to down gradient locations. Shallow groundwater in the wooded area east of the DRMO does not appear to be impacted.

Figure 4-7 presents the results of the groundwater samples collected from the intermediate wells at Site 89. As shown on the figure, VOCs at the intermediate depth exist in the area of the DRMO as was the case for the shallow samples; however, groundwater contamination in this zone appears to have migrated east and downgradient of the site into the wooded area, affecting a larger area (see Figure 4-7). The furthest sample point east of Site 89 is TW23IW which is approximately 1,100 feet from the assumed source area (the DRMO). Four VOCs were detected in the sample from TW23IW,

two of which exceeded both the Federal MCLs and the NC WQSs. In this sample, cis-1,2-DCE was detected at 84 μ g/L, slightly greater that the state and federal standard of 70 μ g/L. TCE also was detected at TW23IW at a concentration of 123.9 μ g/L. This concentration is approximately two orders of magnitude greater than the federal and state groundwater standards. The presence of TCE at this concentration suggest that further definition of groundwater contamination east of the site is necessary.

The boundary of the effected area in the intermediate wells appears to have been defined to the north and west of the DRMO. VOCs in wells TW11IW to the north, and TW08IW, TW15IW, and TW16IW to the west all show decreased contaminant concentrations. The boundary of groundwater contamination to the south appears to be largely effected by Edwards Creek. As was discussed in Section 2.0, Edwards Creek seems to be a groundwater discharge boundary for upper portions of the surficial aquifer. This assumption is supported by the estimated groundwater elevations obtained during the installation of the temporary monitoring wells, and the existence of VOCs in Edwards Creek. Contaminant concentrations in the groundwater samples decrease significantly at Edwards Creek. Samples collected from temporary well TW18, located south of Edwards Creek exhibited low concentrations of VOCs in the shallow sample with no detections in the associated intermediate groundwater sample. Samples collected at well TW13 located just north of Edwards Creek detected significant concentrations of VOCs in the shallow samples with a decreased concentration in the intermediate groundwater sample. As VOCs exist in the intermediate wells immediately north of Edwards creek and are present at low concentrations in the shallow wells south of the stream, it is likely that the stream has a significant impact on contaminant migration to the south, especially in the surficial aquifer. An understanding of the relationship of the surface water feature with the groundwater is important in developing a conceptual hydrogeologic model of the site as it is effecting both groundwater flow and contaminant migration. At the present time it seems that Edwards Creek is retarding the migration of contaminants to the south.

In summary, the data collected during the Phase I investigation provides a reasonable estimate of the areal extent of groundwater contamination north and west of the site. The migration of the plume east of the site is evident by the data collected and has not been completely defined. Therefore, further investigative work is necessary to establish the eastern boundary of groundwater contamination. In addition, impact in the area of Edwards Creek may require limited investigation to establish the relationship between the stream and contaminant migration to the south.

4.4.2 Site 93

The investigation at Site 93 involved the installation temporary monitoring wells and associated groundwater sampling. The area investigation centered around Building TC-942, with wells being placed in all four directions from the site.

4.4.2.1 Groundwater

The groundwater investigation at Site 93 involved the collection of groundwater samples from one existing permanent monitoring well and 14 temporary monitoring wells. Each of the groundwater samples collected were analyzed according the EPA Method 8240. In addition, four samples were analyzed by the fixed based laboratory for full TCL VOAs using CLP protocols. The positive detections for the on-site analyses are included on Table 4-9. Results of the fixed based laboratory results are shown on Table 4-10. All of the analytical results are summarized on Table 4-11.

Figure 4-8 presents the results of the volatile organic compounds detected in the shallow groundwater samples.

Five VOCs were detected in the shallow groundwater samples collected at Site 93 including trans-1,2-DCE, cis-1,2-DCE, 1,1,1-TCA, TCE, and PCE. Concentrations ranged from 0.1 μ g/L of TCE and PCE to 175 μ g/L of cis-1,2-DCE at temporary well TW01. The most frequently detected compound was TCE which was detected in 10 of the 20 samples collected from Site 93.

Figure 4-9 presents the analytical results of the intermediate wells at Site 93. Only three VOCs were detected in the intermediate wells including cis-1,2-DCE, TCE, and PCE. The concentrations of the compounds ranged from 0.1 μ g/L of TCE and PCE to 4 μ g/L of cis-1,2-DCE.

The majority of the groundwater contamination at Site 93 appears to be concentrated in the shallow groundwater in the area near the former UST. This is supported by the fact that the highest concentrations of VOCs were located at the permanent monitoring well 93-MW05 and directly south at temporary well TW01. Groundwater contamination was not present north or east of the former UST. In addition, the intermediate groundwater samples detected only low concentrations of VOCs. Contamination of the shallow groundwater was evident to the south and west of the site, but decreased readily in these directions. Figure 4-8 provides an estimate of the area that has been impacted by groundwater contamination at Site 93. The estimated area of shallow groundwater contamination is local to the former UST site and extends approximately 650 feet west of the site to TW07.

5.0 CONCLUSIONS AND RECOMMENDATIONS

This section summarizes the findings of the Phase I Investigation at OU 16, Sites 89 and 93. The conclusions and recommendations developed from the data collected at the sites are presented separately. The conclusions consider each of the media involved at the sites while recommendations focus on the next phase of investigative work.

5.1 <u>Conclusions</u>

The Phase I investigation has confirmed the presence of VOCs in the surface water, sediment, and groundwater at Site 89 and the presence of VOCs in the groundwater Site 93. Exact sources of the contamination are unknown but are assumed to be former site operations in the area of the DRMO for Site 89 and the former UST for Site 93.

5.1.1 Surface Water

VOCs are present in the portion of Edwards Creek downgradient of the DRMO facility. Six individual VOCs were detected in the surface water samples. Contaminant concentrations were relatively consistent in each of the samples obtained, showing little to no decrease in concentrations in the downstream direction. The concentrations ranged from 0.1 μ g/L of PCE to 150J μ g/L of TCA. TCE was the compound most frequently detected in the surface water samples.

5.1.2 Sediment

A total of five sediment sample stations were positioned within the bed of Edwards Creek. Of these, only one station (89-EC-SD03) detected VOCs. The sample detected six separate VOCs including vinyl chloride, DCE, TCA, 1,1,2-TCA, 1,1,2,2-TCA and toluene. The maximum detections of these compounds were found at depths ranging from zero to six inches below grade.

SVOCs, pesticides, and metals were also detected in the sediments of Edwards Creek. The detected concentrations of the SVOCs and metals do not appear to be related to site operations and are most likely due to natural processes. Detections of pesticides are attributed to the routine application of these compounds at MCB Camp Lejeune in the past. Based upon the historical evidence of pesticide application and the detected concentrations, their presence is not attributed to any local source, but instead to general basewide application.

5.1.3 Groundwater

Groundwater contamination at Site 89 is present in the surficial aquifer and the upper portions of the Castle Hayne aquifer. Concentrations of VOCs in the groundwater are significantly higher than allowable state and federal standards. Contaminants detected include vinyl chloride, trans-1,2-DCE, cis-1,2-DCE, 1,1,1-TCA, TCE, and PCE. The highest concentrations of VOCs occurred within the DRMO area at permanent monitoring well 89-MW02. Complete definition of the horizontal and vertical extent of VOC contamination in groundwater at Site 89 has not been completed.

Groundwater contamination at Site 93 appears to be limited to the surficial aquifer and centered around Building TC-942. The horizontal extent of contamination at Site 93 has been reasonably estimated through the Phase I Investigation. VOCs in the groundwater are present in the area of the former UST at Building TC-942 and extend approximately 650 feet to the west. Concentrations of

VOCs in the intermediate wells at Site 93 were relatively low, and did not exceed the state or federal standards.

In summary, the areal extent of groundwater contamination at Site 89 is more extensive, both horizontally and vertically as compared to Site 93. At Site 89, the concentrations of VOCs which exceed state and federal standards extend well east of the site and south into Edwards Creek. Concentrations greater than state and federal standards were detected in wells screened in both the shallow and intermediate zones. The extent of contamination north and west of the DRMO facility has been roughly estimated, however, further work will be required to delineate extent of the contamination. The area east and south of the DRMO facility will require significant investigative efforts to establish the horizontal and vertical extent of the groundwater contamination. The majority of the future work at OU No. 16 will occur in this area of the site.

5.2 <u>Recommendations</u>

The recommendations for OU No. 16 (Sites 89 and 93) are presented below. The recommendations are general in nature and do not include specific design considerations or sampling strategy. These items are beyond the current scope of work for this CTO. Details concerning future investigative work at the site must be presented in formal work plans submitted to LANTDIV and MCB Camp Lejeune.

The contamination at OU 16 appears to be concentrated in two areas. One being in the area of Building TC-942, and the other at the DRMO; however, the vertical and horizontal extent of groundwater contamination has not been thoroughly defined at Site 89. The extent of contamination at Site 89 must be confirmed through further investigative work and sampling efforts. This may be accomplished by completing the following items:

- Installation of permanent shallow (Type II) monitoring wells around the perimeter of the estimated contaminant plume, and into the wooded area east of the DRMO facility. Permanent shallow monitoring wells will also be required northwest and west beyond 89-MW42B and 89-TW08 to further evaluate upgradient conditions.
- Installation of both intermediate and deep (Type III) wells at points within the estimated contaminant plume boundary and in the direction of contaminant migration. The wells should be installed east and southeast of the site. Some wells will be necessary south of Edwards Creek to verify contaminants have not migrated beyond the stream. Intermediate wells will extend to approximately 50 feet bgs, while deep wells may extend another 40 to 50 feet into the aquifer.
- Collection of soil samples during shallow, intermediate, and deep monitoring well installation. In addition to environmental testing, geotechnical analyses should be conducted on these samples to assist in the preparation of groundwater migration and transport models and in the selection and design of a remedial alternative.
- Groundwater sampling from shallow, intermediate, and deep permanent monitoring wells for the contaminants of concern (i.e., VOCs).
- Measurement of groundwater elevations to establish the local groundwater flow regime in the shallow aquifer and an examination of potential head differences

between shallow and deeper monitoring wells. In addition, the relationship between Edwards Creek and groundwater flow must be clearly defined. Installation of staff gauges in Edwards Creek will be required to establish relationships between the hydrogeologic framework and the influence of the New River to the east.

- Completion of aquifer tests (slug tests) to establish the hydraulic conductivity of the both the surficial and Castle Hayne aquifers. A comparison of vertical and horizontal conductivity values should be made.
- Upon completion of aquifer tests and the establishment of local groundwater flow patterns, estimates of groundwater flow velocity can be made and corresponding contaminant transport.
- Installation of permanent wells at Site 93 should only involve shallow (Type II) monitoring wells, as VOCs were not detected above relevant water quality standards in the intermediate zone. The shallow wells should be positioned around the estimated area of groundwater contamination discussed is Section 4.0 to confirm the boundary of the impacted area.

Although additional work will be required at Site 93 to confirm the boundary of shallow groundwater contamination, the majority of the investigative work at OU No. 16 will involve Site 89. It is estimated that a total of approximately 6 shallow and 10 intermediate/deep wells will be necessary to establish the vertical and horizontal extent of groundwater contamination at Site 89. Once the plume geometry has been established both horizontally and vertically at each site, preparation of a remedial action plan can commence. The plan should focus on groundwater contamination involving VOCs, as this appears to be the contaminant of concern at both sites.

Prior to initiating the Phase II investigation, specific remedial alternatives applicable to OU No. 16 should be defined. Once these alternatives are selected, specific data requirements used in evaluating each of the alternatives should be identified. These data requirements will then be incorporated as an integral part of the Phase II field investigation. Work plans can be prepared, and the field work structured to ensure that all of the necessary information be obtained. Therefore, the Phase II investigation should be implemented and completed with two main objectives in mind: 1) Complete definition of the vertical and horizontal extent of VOC contamination at OU No. 16. This would include defining affected surface water, sediment, and groundwater. 2) Obtain the necessary field data to execute a thorough evaluation of applicable remedial alternatives. This would include acquiring site specific field data that will be used for remedial design, in addition to the information necessary for preparing an accurate and useful model of the geologic and hydrogeologic system at OU No. 16.

6.0 **REFERENCES**

American Society for Testing and Materials (ASTM). 1993. <u>Standard Test Method for Description</u> and Identification of Soils (Visual Manual Procedure). ASTM D-2488-93. American Society for Testing and Materials, Philadelphia, Pennsylvania.

Atlantic Division, Naval Facilities Engineering Command. January 1988. <u>Camp Lejeune Complex</u> <u>Master Plan and Capital Improvements Plan Upgrade</u>. Prepared for the Commanding General, Marine Corps Base, Camp Lejeune, North Carolina.

Baker 1996. Draft Final Project Plans OU No. 16 Sites 89 and 93 Marine Corps Base Camp Lejeune North Carolina.

Baker 1995. Final Remedial Investigation/Feasibility Study Site 44 Jones Street Dump. Marine Corps Base Camp Lejeune North Carolina.

Baker 1991. Final Site Inspection Report Site 44 Jones Street Dump. Marine Corps Base Camp Lejeune North Carolina.

Cardinell, A.P., Berg, S.A., and Lloyd, O.B. 1993. <u>Hydrogeologic Framework of U.S. Marine</u> <u>Corps Base at Camp Lejeune</u>, North Carolina: U.S. Geological Survey Water Resources <u>Investigation Report</u>. Report No. 93-4049.

Federal Facilities Agreement (FFA) Between United States Environmental Protection Agency, Region IV: The North Carolina Department of Environment, Health and Natural Resources and North Carolina. North Carolina Natural Heritage Program, Division of Parks and Recreation, Department of Environment, Health, and Natural Resources, Raleigh, North Carolina.

Naval Energy and Environmental Support Activity (NEESA). 1988. <u>Sampling and Chemical Analysis Quality Assurance Requirements for the Navy Installation Restoration Program</u>. Department of the Navy, Naval Energy and Environmetnal Support Activity, Port Hueneme, California. NEESA 20.2-047B.

USEPA. May 1996a. USEPA Region III Risk-Based Concentrations. Complied by: R.L. Smith. Soil Screening Levels - Transfer from Soil to Groundwater.

USEPA. May 1996b. Drinking Water Regulations and Health Advisories. Office of Water. EPA 822-R-96-001.

United States Environmental Protection Agency (USEPA). 1992. <u>Guide to Management of Investigation-Derived Wastes</u>. "Standard Default Exposure Factors" Interim Final. Office of Emergency and Remedial Response Hazardous Site Control Division. Washington, D.C. os-22OW. April 1992.

USEPA, U.S. Environmental Protection Agency. May 1, 1991. "Water Quality Criteria Summary" (Wall Chart). Office of Science and Technology. Health and Ecological Criteria Section. Washington, D.C.

United States Department of Navy for Marine Corps Base, Camp Lejeune and Marine Corps Air Station, New River, North Carolina. December 1989.

TABLE 2-1

GEOLOGIC AND HYDROGEOLOGIC UNITS OF NORTH CAROLINA'S COASTAL PLAIN OPERABLE UNIT 16 (SITES 89 AND 93) PHASE I INVESTIGATION STUDY, CTO-0356 MCB, CAMP LEJEUNE, NORTH CAROLINA

	Geologic Units		Hydrogeologic Units		
System	Series	Formation	Aquifer and Confining Unit		
Quaternary	Holocene/Pleistocene	Undifferentiated	Surficial aquifer		
	Pliocene	Yorktown Formation ⁽¹⁾	Yorktown confining unit		
	Miocene	Eastover Formation ⁽¹⁾	Yorktown Aquifer		
		Pungo River Formation ⁽¹⁾	Pungo River confining unit		
		Fungo River Formation.	Pungo River Aquifer		
Tertiary		Belgrade Formation ⁽²⁾	Castle Hayne confining unit		
	Oligocene	River Bend Formation	Castle Hayne Aquifer		
	Eocene	Castle Hayne Formation	Beaufort confining unit ⁽³⁾		
	Paleocene	Beaufort Formation	Beaufort Aquifer		
	Upper Cretaceous	Peedee Formation	Peedee confining unit Peedee Aquifer		
		Black Creek and Middendorf	Black Creek confining unit		
		Formations	Black Creek Aquifer		
Cretaceous		Cape Fear Formation	Upper Cape Fear confining unit		
			Upper Cape Fear Aquifer		
			Lower Cape Fear confining unit		
			Lower Cape Fear Aquifer		
	Lower Cretaceous ⁽¹⁾	Unnamed deposits ⁽¹⁾	Lower Cretaceous confining uni		
			Lower Cretaceous Aquifer ⁽¹⁾		
Pre-Cretaceo	us basement rocks				

Notes:

⁽¹⁾ Geologic and hydrologic units probably not present beneath MCB Camp Lejeune.

⁽²⁾ Constitutes part of the surficial aquifer and Castle Hayne confining unit in the study area.

⁽³⁾ Estimated to be confined to deposits of Paleocene age in the study area.

Source: Harned et al., 1989.

TABLE 2-2

WATER SUPPLY WELL INFORMATION OPERABLE UNIT 16 (SITES 89 AND 93) PHASE I INVESTIGATION STUDY, CTO-0356 MCB, CAMP LEJEUNE, NORTH CAROLINA

Well Number	Well Diameter (inches)	Casing Material	Date Installed (year)	Status (on/off/closed)	Date Closed	Depth (bgs)	Screen Top Depth	Screen Bottom Depth	Pump Depth	Airline Depth	Approx. Direction and Distance							
AS-131				On	NA	200			50	50	SE 3,960 ft							
AS-203				On	NA	173			77	60	SE 3,168 ft							
AS-190				On	NA	180			60	123	SW 3,960 ft							
AS-191			••	On	NA	180			60	117	SSW 4,752 ft							
AS-4140				On	NA	193		++	••	110	S 4,752 ft							
TC-502	10	Steel	194	On	NA	184	110	184	50	50	NNW 3,960 ft							
TC-600	8	Steel	1941	On		70	48	70	50	50	NNW 3,168 ft							
TC-604	8	8	8	Steel	1942	On	NA	113	45	50	50	50	NW 4,752 ft					
							60	65										
							82	87										
							97	102										
							109	113										
TC-700	18	Steel	1941	On	NA	76	27.5	76	50	50	NNW 2,376 ft							
TC-1000	8	Steel	Steel	Steel	Steel	Steel	Steel	Steel	Steel	1942	On		153	86	96	60	60	W 5,544 ft
			1				116	136	1									
TC-1001	8	Steel	1942	On	NA	100	70	100	60	60	WSW 6,336 ft							
TC-1251		Steel	1975	On	NA	155	95	140	70	80	SSE 1,188 ft							
							160	170(1)										

TABLE 2-2 (Continued)

WATER SUPPLY WELL INFORMATION OPERABLE UNIT 16 (SITES 89 AND 93) PHASE I INVESTIGATION STUDY, CTO-0356 MCB, CAMP LEJEUNE, NORTH CAROLINA

Well Number	Well Diameter (inches)	Casing Material	Date Installed (year)	Status (on/off/closed)	Date Closed	Depth (bgs)	Screen Top Depth	Screen Bottom Depth	Pump Depth	Airline Depth	Approx. Direction and Distance
TC-1253		Steel	1975	On	NA	250	120	140	82	81	W 1,584 ft
							160	170			
TC-1256		Steel		On	NA	204	124	134	70	80	W 3,960 ft
							154	164			
							182	192			

Notes:

⁽¹⁾ Discrepancy between total depth and screen interval

NA = Not applicable -- = Data unavailable

SUMMARY OF WELL CONSTRUCTION DETAILS OPERABLE UNIT 16 (SITE 89) PHASE I INVESTIGATION STUDY, CTO-0356 MCB, CAMP LEJEUNE, NORTH CAROLINA

Well Number	Date Installed	Top of Casing Elevation (ft. above msl) ⁽¹⁾	Ground Surface Elevation (ft. above msl)	Boring Depth (ft, bgs) ⁽²⁾	Well Depth (ft, bgs)	Screen Interval Depth (ft, bgs)
89-TW04	7/31/96	13.92	11.84	15.0	15.0	5.0-15.0
89-TW04IW	7/31/96	14.2	11.84	50.0	47.0	42.0-47.0
89-TW08	8/2/96	15.38	13.26	15.0	15.0	5.0-15.0
89-TW08IW	8/2/96	15.19	13.36	42.0	42.0	37.0-42.0
89-TW09	8/3/96	16.94	14.45	15.0	15.0	5.0-15.0
89-TW09IW	8/3/96	17.12	14.45	40.0	38.0	33.0-38.0
89-TW10	8/3/96	16.14	13.78	15.0	15.0	5.0-15.0
89-TW10IW	8/3/96	14.81	13.78	44.0	44.0	39.0-44.0
89-TW11	8/4/96	17.72	15.15	15.0	15.0	5.0-15.0
89-TW11IW	8/4/96	17.63	15.25	42.0	38.0	33.0-38.0
89-TW12	8/4/96	13.62	11.98	10.0	10.0	5.0-10.0
89-TW12IW	8/4/96	13.35	11.68	47.0	47.0	42.0-47.0
89-TW13	8/5/96	14.00	13.28	20.0	19.0	9.0-19.0
89-TW13IW	8/4/96	14.29	13.18	47.0	44.0	39.0-44.0
89-TW15	8/6/96	17.47	16.21	15.0	15.0	5.0-15.0
89-TW15IW	8/6/96	16.70	16.25	47.0	44.5	39.5-44.5
89-TW16	8/6/96	17.02	15.02	15.0	15.0	5.0-15.0
89-TW16IW	8/6/96	15.46	15.46	47.0	45.0	40.0-45.0
89-TW17IW	8/7/96			42.0	40.0	35.0-40.0
89-TW18	8/12/96	17.11	15.19	15.0	15.0	5.0-15.0
89-TW18IW	8/12/96	15.04	14.89	47.0	45.0	40.0-45.0
89-TW19	8/13/96	17.59	15.67	15.0	15.0	5.0-15.0
89-TW19IW	8/13/96	17.71	15.47	42.0	40.0	35.0-40.0
89-TW20	8/13/96	20.34	17.92	15.0	15.0	5.0-15.0
89-TW201W	8/13/96	20.84	17.56	47.0	45.0	40.0-45.0
89-TW21	8/14/96	18.36	16.17	15.0	14.0	4.0-14.0
89-TW21IW	· 8/14/96	18.49	16.27	42.0	40.0	35.0-40.0
89-TW22	8/14/96	20.97	18.12	15.0	15.0	5.0-15.0
89-TW22IW	8/15/96	20.69	18.12	47.0	45.0	40.0-45.0
89-TW23IW	8/19/96	15.39	12.10	37.0	35.0	30.0-35.0

Notes:

⁽ⁱ⁾ msl = mean sea level

 $^{(2)}$ ft, bgs = feet, below ground surface

SUMMARY OF WELL CONSTRUCTION DETAILS OPERABLE UNIT 16 (SITE 93) PHASE I INVESTIGATION STUDY, CTO-0356 MCB, CAMP LEJEUNE, NORTH CAROLINA

Well Number	Date Installed	Top of Casing Elevation (ft. above msl) ⁽¹⁾	Ground Surface Elevation (ft. above msl)	Boring Depth (ft, bgs) ⁽²⁾	Well Depth (ft, bgs)	Screen Interval Depth (ft, bgs)
93-TW01	7/29/96	16.48	14.44	15.0	15.0	5.0-15.0
93-TW01IW	7/29/96	16.70	14.54	54.0	53.5	48.5-53.5
93-TW02	7/30/96	18.74	16.59	15.0	15.0	5.0-15.0
93-TW02IW	7/30/96	18.72	16.69	52.0	50.0	45.0-50.0
93-TW03	7/30/96	15.93	13.08	15.0	14.5	4.5-14.5
93-TW03IW	7/30/96	14.74	12.98	54.0	50.0	45.0-50.0
93-TW05	7/31/96	19.72	16.58	15.0	15.0	5.0-15.0
93-TW05IW	7/31/96	18.88	16.68	52.0	50.0	45.0-50.0
93-TW06	8/1/96	19.45	17.72	15.0	14.5	4.5-14.5
93-TW06IW	8/1/96	19.08	17.72	52.0	50.0	45.0-50.0
93-TW07	8/2/96	20.08	17.82	15.0	15.0	5.0-15.0
93-TW07IW	8/2/96	19.87	17.52	52.0	50.0	45.0-50.0
93-TW14	8/5/96	17.69	15.58	25.0	24.5	14.5-24.5
93-TW14IW	8/5/96	17.73	15.58	50.0	50.0	45.0-50.0

Notes:

(1) msl = mean sea level

 $^{(2)}$ ft, bgs = feet, below ground surface

SUMMARY OF FIELD PARAMETERS FOR GROUNDWATER SAMPLING OPERABLE UNIT 16 (SITE 89) PHASE I INVESTIGATION, CTO-0356 MCB CAMP LEJEUNE, NORTH CAROLINA

Well Number					Field	Parameters	5	
Date of Measurement	Measuring Time	Well Volume	Purge Volume (gals.)	Specific Conductance at 25°C (µmhos/cm)	Temperature at 25°C (°C)	рН (S.U.)	Turbidity (T.U.)	Dissolved Oxygen (mL/L)
89-TW18	1331	1	0.5	0.5	329	6.36	106	3.95
08/13/96	1400	2	1	1	313	6.19	34.5	3.6
	1435	3	1.5	1.5	303	6.17	12.2	2.5
89-TW18IW	1215	1	3	404	19	7.64	>200	1.6
08/13/96	1235	2	6	425	19	7.63	28	1.2
	1300	3	9	430	19.5	7.64	13	1.6
89-TW19	1720	1	.7	660	22.2	6.70	77	
08/13/96	1725	2	1.4				48	
	1730	3	2.8	650	22.2	6.70	40	
	1740	N/A	N/A	645	22.2	6.53	27.5	
	1745	N/A	N/A				19.5	
	1750	N/A	N/A	655	22.4	6.81	21.5	
89-TW19IW ⁽¹⁾	1650	1	2.5	555	21.4	9.29	>200	5.2
08/13/96								
89-TW20	0950	1	.5	105	19.8	5.47	>200	3.0
08/14/96	1005	2	1	105	19.9	5.30	>200	3.0
	1015	3	1.5	96	19.8	5.31	>200	3.2
	1025	4	2	93	19.9	5.30	>200	3.4
	1035	N/A	N/A			-	170	
	1040	N/A	N/A			+	>200	
	1050	N/A	N/A				>200	
	1100	N/A	N/A				170	
	1105	N/A	N/A				79	
	1110	N/A	N/A				76	
	1115	N/A	N/A				48	
89-TW20IW	0840	1	.2	583	19.4	7.36	47	2.6
08/14/96	0850	N/A	N/A	531	19.4	7.18	71	2.6
	0900	N/A	N/A	505	19.3	7.14	135	2.8
	0910	N/A	N/A	507	19.4	7.11	115	2.5
	0920	N/A	N/A	500	20.2	7.55	67	2.6
	0925	N/A	N/A				100	
89-TW21	1015	1	.7	79	20.7	5.73	34	3.0
08/15/96	1025	2	1.5	76	20.6	5.47	7	3.0
	1037	3	2.5	72	20.4	5.36	4	3.0

TABLE 3-3 (Continued)

SUMMARY OF FIELD PARAMETERS FOR GROUNDWATER SAMPLING OPERABLE UNIT 16 (SITE 89) PHASE I INVESTIGATION, CTO-0356 MCB CAMP LEJEUNE, NORTH CAROLINA

Well Number				Field Parameters				
Date of Measurement	Measuring Time	Well Volume	Purge Volume (gals.)	Specific Conductance at 25°C (µmhos/cm)	Temperature at 25°C (°C)	рН (S.U.)	Turbidity (T.U.)	Dissolved Oxygen (mL/L)
89-TW211W	0820	1	2.5	500	18	703	>200	2.0
	0840	2	5	484	18.1	7.10	>200	1.8
	0900	3	7.6	485	18.2	7.20	>200	2.0
	0907	4	9	482	18.3	7.18	133	1.8
	0920	5	11	494	18.2	7.24	135	2.0
	0938	6	13				6.3	
89-TW22	0955	1	3.5	81	20.9	6.31	20	1.85
	1004	2	1	80	20.9	6.11	9.5	5.0
	1015	3	1.5	80	21.2	5.52	8	5.2
89-TW22IW	0820	2	2.5	462	18.2	7.36	>200	1.4
08/16/96	0847	2	5	448	18.4	7.43	50	1.6
	0911	3	8.5	450	18.2	7.44	23	1.8
	0930	N/A	10	452	18.6	7.42	13	1.8
	0940	N/A	NA				10	
89-TW23IW	0900	1	2.5	350	18.2	6.83	>200	0.6
08/21/96	0913	2	0.5	334	18.0	7.14	93	1
	0924	3	7.5	334	18.0	7.31	52	1.2
	0930	N/A	N/A	**			35	**
	0935	N/A	N/A				53	
	0940	N/A	N/A				83	

Notes:

(I) Insufficient amount of water for readings = °C Degrees Centigrade = Standard Units S.U. = = Micro ohms per centimeters µmhos/cm Neophelometric Turbidity Units N.T.U. = Not measured = --N/A = Not applicable

SUMMARY OF FIELD PARAMETERS FOR GROUNDWATER SAMPLING OPERABLE UNIT 16 (SITE 93) PHASE I INVESTIGATION, CTO-0356 MCB CAMP LEJEUNE, NORTH CAROLINA

Well Number				Field Parameters				
Date of Measurement	Measuring Time	Well Volume	Purge Volume (gals.)	Specific Conductance at 25°C (µmhos/cm)	Temperature at 25°C (°C)	рН (S.U.)	Turbidity (T.U.)	Dissolved Oxygen (mL/L)
93-TW01	0825	1	1	740	22.0	6.00	166.9	1.25
07/30/96	0835	2	2	556	22.1	6.15	50.9	1.25
	0843	3	3	488.1	21.8	6.13	28.4	1.5
	0852	4	4	462.5	21.8	6.14	16.8	1.5
	0859	5	5	464.3	22.7	6.07	19.4	1.25
	0903	6	6	456.0	22.1	6.12	12.0	1.25
93-TW01IW	0829	1	4	446.1	21.3	6.81	168.0	1.0
07/30/96	0849	2	8	422.6	21.4	6.89	102.6	1.6
	0915	3	12	415.0	22.3	7.15	64.0	1.0
	0933	4	16	417.0	22.0	7.46	43.7	1.2
	0955	5	20	416.3	22.0	7.55	39.5	1.0
	1016	6	24	416.5	22.5	7.61	14.4	1.0
93-TW02	·1338	1	1	269.4	25.0	5.23	161.0	1.25
07/30/96	1343	2	2	265.8	24.8	5.05	26.4	1.20
	1348	3	3	268.7	23.8	5.10	15.8	1.25
93-TW02IW ⁽¹⁾ 07/30/96	1330	0.5	2					
93-TW03	0852	1	1	449.7	24.4	6.50	>200	3.5
07/31/96	0908	2	2	446.4	24.1	7.20	·20.8	3.5
93-TW03IW	0902	1	4	482.3	21.8	7.31	>200	1.1
07/31/96	0920	2	8	438.3	21.7	7.40	173.8	1.2
	0933	3	12	448.7	22.5	7.55	170.5	1.25
93-TW05	0812	1	1	719	25.8	6.24	99.1	1.3
08/01/96	0816	2	2 .	711	25.0	6.51	172.5	1.0
	0822	3	3	720	24.7	6.81	39.8	
	0829	4	4	726	25.0	6.85	13.2	
93-TW05IW 08/01/96	0841	1	3.6	483.5	22.4	7.32	4.8	1.75
93-TW06	1707	1	0.75	144.3	24.8	5.62	98.0	1.25
08/01/96	1709	2	1.50	135.2	24.5	5.58	41.5	1.25
1	1715	3	2.25			5.89	25.7	1.25

TABLE 3-4 (Continued)

SUMMARY OF FIELD PARAMETERS FOR GROUNDWATER SAMPLING OPERABLE UNIT 16 (SITE 93) PHASE I INVESTIGATION, CTO-0356 MCB CAMP LEJEUNE, NORTH CAROLINA

Well Number				Field Parameters				
Date of Measurement	Measuring Time	Well Volume	Purge Volume (gals.)	Specific Conductance at 25°C (µmhos/cm)	Temperature at 25°C (°C)	рН (S.U.)	Turbidity (T.U.)	Dissolved Oxygen (mL/L)
93TW06IW	1712	1	3.5	425	23.2	6.56	170.2	1.0
08/01/96	1726	2	7.0	437.1	23.2	6.84	172.2	1.2
	1740	3	10.5	448.4	23.2	7.29	170.0	1.2
93-TW07	0823	1	1	132.6	23.9	5.60	165.4	1.2
08/03/96	0829	2	2	132.5	23.9	5.51	163.4	1.2
	0840	3	3	124.1	23.8	6.07	40.5	1.2
	0847	4	4	124.0	23.9	5.70	9.7	1.5
93-TW07IW	0835	1	3.5	461.1	21.7	6.60	26.7	1.5
08/03/96	0857	2	7.0	445.7	21.5	6.67	18.8	1.5
	0924	3	10.5	439.0	21.8	7.09	14.8	1.3
93-TW14	1538	1	1.2	519	36.7	7.39	172.2	1.25
08/05/96	1544	2	2.4	533	28.8	7.51	170.4	1.25
	1552	3	3.6	525	27.5	7.50	169.8	1.30
	1558	4	4.8					
93-TW14IW	1548	1	3.6	479.6	22.2	7.68	25.5	1.75
	1608	2	7.20	477.1	22.4	7.51	35.0	2.10
	1624	3	10.8	490.1	21.9	7.70	39.3	1.25

Notes:

(1) = Insufficient amount of water for readings

°C = Degrees Centigrade

S.U. = Standard Units

µmhos/cm = Micro ohms per centimeters

N.T.U. = Neophelometric Turbidity Units

-- = Not measured

N/A = Not applicable

SUMMARY OF FIELD PARAMETERS FOR SURFACE WATER SAMPLING **OPERABLE UNIT 16 (SITE 89, EDWARDS CREEK)** PHASE I INVESTIGATION, CTO-0356 MCB CAMP LEJEUNE, NORTH CAROLINA

Sample Identification		Field Parameters					
Date of Measurement	Measuring Time	Specific Conductance at 25°C (µmhos/cm)	Temperature at 25°C (°C)	рН (S.U.)	Salinity (ppt)	Dissolved Oxygen (mL/L)	
89-EC-SW01 07/27/96	0945	440	28.1	6.70	0.2	3.3	
89-EC-SW02 07/27/96	0845	327	25.2	6.86	0.2	4.5	
89-EC-SW03 07/27/96	0815	243	25.4	6.78	0.2	5.2	
89-EC-SW04 07/26/96	1240	229	29.0	6.03	0.10	5.0	
89-EC-SW05 07/26/96	1133	291	26.8	7.13	0.10	4.2	

Notes:

°C	=	Degrees Centigrade
S.U.	=	Standard Units
µmhos/cm	=	micro ohms per Centimeters
ppt	=	parts per thousand
mL/L	=	milliliters per liter

GROUNDWATER SAMPLING SUMMARY OPERABLE UNIT 16 (SITE 89) PHASE I INVESTIGATION, CTO-0356 MCB, CAMP LEJEUNE, NORTH CAROLINA

	Analytical P	arameters
Sample Location	EPA 8240 ⁽¹⁾	TCL VOA ⁽²⁾
89-MW01	•	
89-MW02	•	
89-MW03	•	
89-TW04	•	
89-TW04IW	•	•
89-TW08	•	
89-TW08IW	•	
89-TW09	•	•
89-TW09IW	•	٠
89-TW10	•	
89-TW10IW	•	
89-TW11	•	
89-TW11IW	•	
89-TW12	•	
89-TW12IW	•	
89-TW13	•	
89-TW13IW	•	
89-TW15	•	
89-TW15IW	•	
89-TW16	•	
89-TW16IW	•	
89-TW17IW	•	•
89-TW18	•	
89-TW18IW	•	
89-TW19	•	
89-TW19IW	•	
89-TW20	•	
89-TW20IW	•	
89-TW21	•	

TABLE 3-6 (Continued)

GROUNDWATER SAMPLING SUMMARY OPERABLE UNIT 16 (SITE 89) PHASE I INVESTIGATION, CTO-0356 MCB, CAMP LEJEUNE, NORTH CAROLINA

	Analytical Parameters				
Sample Location	EPA 8240 ⁽¹⁾	TCL VOA ⁽²⁾			
89-MW42B	•				
89-TW21IW	•				
89-TW22	•				
89-TW22IW	•				
89-TW23IW	•				

Notes:

(1) On-site laboratory

(2) Fixed based laboratory

TCL = Target Compound List VOA = Volatile Organic Analysis

• = Sample analyzed for indicated parameter

GROUNDWATER SAMPLING SUMMARY OPERABLE UNIT 16 (SITE 93) PHASE I INVESTIGATION, CTO-0356 MCB CAMP LEJEUNE, NORTH CAROLINA

	Analytical Parameters			
Sample Location	EPA 8240 ⁽¹⁾	TCL VOA ⁽²⁾		
93-MW05	•			
93-TW01	•	•		
93-TW01IW	•			
93-TW02	•			
93-TW02IW	•	٠		
93-TW03	•			
93-TW03IW	•			
93-TW05	•			
93-TW05IW	•			
93-TW06	٠			
93-TW06IW	•			
93-TW07	•			
93-TW07IW	•			
93-TW14	•			
93-TW14IW	•			

Notes:

On-site laboratory
 Fixed based laboratory

TCL	=	Target Compound List
VOA	=	Volatile Organic Analysis
•	=	Sample analyzed for indicated parameter

SURFACE WATER SAMPLING SUMMARY **OPERABLE UNIT 16 (SITE 89)** PHASE 1 INVESTIGATION, CTO-0356 MCB, CAMP LEJEUNE, NORTH CAROLINA

	Analytical Parameters						
Sample Location	TCL VOA	TCL SVOA	TCL Pesticide/PCB	TAL Metals	EPA 8240		
89-EC-SW01	•	•		•	•		
89-EC-SW02	•	•		•	•		
89-EC-SW03	•	•		٠	•		
89-EC-SW04	•	•		•	•		
89-EC-SW05	•	•	•	٠	•		
89-EC-SW06					•		
89-EC-SW07					•		
89-EC-SW08					•		
89-EC-SW09					•		
89-EC-SW10					•		
89-EC-SW11					•		

Notes:

TCL	=	Target Compound List
VOA	=	Volatile Organic Analysis

Semivolatile Organic Analysis Target Analyte List SVOA =

TAL =

Sample analyzed for indicated parameter _ •

SEDIMENT SAMPLING SUMMARY **OPERABLE UNIT 16 (SITE 89)** PHASE 1 INVESTIGATION, CTO-0356 MCB, CAMP LEJEUNE, NORTH CAROLINA

	Analytical Parameters						
Sample Location	Depth (ft)	TCL VOA	TCL SVOA	TCL Pesticide/PCB	TAL Metals		
89-EC-SD01-06	0-0.5	٠	•		•		
89-EC-SD01-612	0.5-1.0	٠	•		•		
89-EC-SD02-06	0-0.5	٠	•		٠		
89-EC-SD02-612	0.5-1.0	•	•		٠		
89-EC-SD03-06	005	•	•		•		
89-EC-SD03-612	0.5-1.0	٠	•		•		
89-EC-SD040-06	0-0.5	•	•		•		
89-EC-SD04-612	0.5-1.0	٠	•		٠		
89-EC-SD05-06	0-0.5	•	•	•	•		
89-EC-SD05-612	0.5-1.0	•	•	•	٠		

Notes:

TCL =

VOA =

Target Compound List Volatile Organic Analysis Semivolatile Organic Analysis SVOA =

Target Analyte List TAL =

Sample analyzed for indicated parameter = .

TABLE 4-1 ONSITE LABORATORY POSITIVE DETECTION SUMMARY SURFACE WATER VOLATILE ORGANIC COMPOUNDS OPERABLE UNIT NO. 16 (SITE 89) MCB, CAMP LEJEUNE NORTH CAROLINA CTO-0356

SAMPLE ID	89-EC-SW01	89-EC-SW02	89-EC-SW03	89-EC-SW04	89-EC-SW05	89-EC-SW06
SAMPLE DATE	08/15/96	08/15/96	08/15/96	08/15/96	08/15/96	08/01/96
UNITS	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)
VOLATILES TRANS-1,2-DICHLOROETHENE CIS-1,2-DICHLOROETHENE TRICHLOROETHENE TETRACHLOROETHENE	ND 2 3.8 0.2	37 48 7.3 0.2	31 44 6.4 0.2	19 52 32.9 0.2	15 44 27.3 0.1	ND ND ND ND

NOTES ug/L = micrograms per liter. ND = Not Detected.

,

TABLE 4-1 (continued) ONSITE LABORATORY POSITIVE DETECTION SUMMARY SURFACE WATER VOLATILE ORGANIC COMPOUNDS OPERABLE UNIT NO. 16 (SITE 89) MCB, CAMP LEJEUNE NORTH CAROLINA CTO-0356

SAMPLE ID SAMPLE DATE UNITS	89-EC-SW07 08/01/96 (ug/L)	89-EC-SW08 08/01/96 (ug/L)	89-EC-SW09 08/15/96 (ug/L)	89-EC-SW10 08/15/96 (ug/L)	89-EC-SW11 08/15/96 (ug/L)
VOLATILES			,		
TRANS-1,2-DICHLOROETHENE	21	ND	16	15	14
CIS-1,2-DICHLOROETHENE	27	ND	44	43	43
TRICHLOROETHENE	14.8	ND	28.5	27.9	27.6
TETRACHLOROETHENE	1.2	0.4	0.2	0.1	0.2

.

SAMPLE_NO LAB_ID DATE SAMPLED UNITS	89-EC-SW01 9607G440-013 07/27/96 UG/L	89-EC-SW02 9607G440-014 07/27/96 UG/L	89-EC-SW03 9607G440-015 07/27/96 UG/L	89-EC-SW04 9607G440-009 07/26/96 UG/L	89-EC-SW05 9607G440-007 07/26/96 UG/L
VOLATILES					
CHLOROMETHANE	10 U				
BROMOMETHANE	10 U				
VINYL CHLORIDE	10 U	25	21	10 U	10 U
CHLOROETHANE	10 U				
METHYLENE CHLORIDE	10 U				
ACETONE	10 UJ				
CARBON DISULFIDE	10 U				
1,1-DICHLOROETHENE	10 U				
1,1-DICHLOROETHANE	10 U				
1,2-DICHLOROETHENE (TOTAL)	10 U	120	100	80	78
CHLOROFORM	10 U				
1,2-DICHLOROETHANE	10 U				
2-BUTANONE	10 UJ				
1,1,1-TRICHLOROETHANE	10 U				
CARBON TETRACHLORIDE	10 U				
BROMODICHLOROMETHANE	10 U				
1,2-DICHLOROPROPANE	10 U				
CIS-1,3-DICHLOROPROPENE	10 U				
TRICHLOROETHENE	3 J	18	16	26	24
DIBROMOCHLOROMETHANE	10 U				
1,1,2-TRICHLOROETHANE	10 U				
BENZENE	10 U				
TRANS-1,3-DICHLOROPROPENE	10 U				

QUALIFIER DEFINITIONS U = Not detected at reported quantitation limit. UJ = Reported quantitation limit is estimated.

NOTES ug/L = micrograms per liter.

SAMPLE_NO LAB_ID DATE SAMPLED UNITS	89-EC-SW01 9607G440-013 07/27/96 UG/L	89-EC-SW02 9607G440-014 07/27/96 UG/L	89-EC-SW03 9607G440-015 07/27/96 UG/L	89-EC-SW04 9607G440-009 07/26/96 UG/L	89-EC-SW05 9607G440-007 07/26/96 UG/L
VOLATILES (cont)					
BROMOFORM	10 U				
4-METHYL-2-PENTANONE	10 UJ				
2-HEXANONE	10 UJ				
TETRACHLOROETHENE	10 U				
1,1,2,2-TETRACHLOROETHANE	10 UJ	150 J	130 J	72	80
TOLUENE	10 U				
CHLOROBENZENE	10 U				
ETHYLBENZENE	10 U				
STYRENE	10 U				
XYLENE (TOTAL)	10 U				

QUALIFIER DEFINITIONS U = Not detected at reported quantitation limit. UJ = Reported quantitation limit is estimated.

> NOTES ug/L = micrograms per liter.

SAMPLE_NO LAB_ID DATE SAMPLED UNITS	89-EC-SW01 9607G440-013 07/27/96 UG/L	89-EC-SW02 9607G440-014 07/27/96 UG/L	89-EC-SW03 9607G440-015 07/27/96 UG/L	89-EC-SW04 9607G440-009 07/26/96 UG/L	89-EC-SW05 9607G440-007 07/26/96 UG/L
SEMIVOLATILES					
PHENOL	10 U	10 U	10 U	10 U	11 U
BIS(2-CHLOROETHYL)ETHER	10 U	10 U	10 U	10 U	11 U
2-CHLOROPHENOL	10 U	10 U	10 U	10 U	11 U
1,3-DICHLOROBENZENE	10 U	10 U	10 U	10 U	11 U
1,4-DICHLOROBENZENE	10 U	10 U	10 U	10 U	11 U
1,2-DICHLOROBENZENE	10 U	10 U	10 U	10 U	11 U
2-METHYLPHENOL	10 U	10 U	10 U	10 U	11 U
2,2-OXYBIS(1-CHLOROPROPANE)	10 U	10 U	10 U	10 U	11 U
4-METHYLPHENOL	10 U	10 U	10 U	10 U	11 U
N-NITROSO-DI-N-PROPYLAMINE	10 U	10 U	10 U	10 U	11 U
HEXACHLOROETHANE	10 U	10 U	10 U	10 U	11 U
NITROBENZENE	10 U	10 U	10 U	10 U	11 U
ISOPHORONE	10 U	10 U	10 U	10 U	11 U
2-NITROPHENOL	10 U	10 U	10 U	10 U	11 U
2,4-DIMETHYLPHENOL	10 UJ	10 UJ	10 UJ	10 UJ	11 UJ
BIS(2-CHLOROETHOXY)METHANE	10 U	10 U	10 U	10 U	11 U
2,4-DICHLOROPHENOL	10 U	10 U	10 U	10 U	11 U
1,2,4-TRICHLOROBENZENE	10 U	10 U	10 U	10 U	11 U
NAPHTHALENE	10 U	10 U	10 U	10 U	11 U
4-CHLOROANILINE	10 U	10 U	10 U	10 U	11 U
HEXACHLOROBUTADIENE	10 U	10 U	10 U	10 U	· 11 U
4-CHLORO-3-METHYLPHENOL	10 U	10 U	10 U	10 U	11 U

QUALIFIER DEFINITIONS J = Estimated value. U = Not detected at reported quantitation limit. UJ = Reported quantitation limit is estimated.

NOTES ug/L = micrograms per liter.

1

SAMPLE_NO LAB_ID DATE SAMPLED UNITS	89-EC-SW01 9607G440-013 07/27/96 UG/L	89-EC-SW02 9607G440-014 07/27/96 UG/L	89-EC-SW03 9607G440-015 07/27/96 UG/L	89-EC-SW04 9607G440-009 07/26/96 UG/L	89-EC-SW05 9607G440-007 07/26/96 UG/L
SEMIVOLATILES (cont)					
2-METHYLNAPHTHALENE	10 U	10 U	10 U	10 U	11 U
HEXACHLOROCYCLOPENTADIENE	10 U	10 U	10 U	10 U	11 U
2,4,6-TRICHLOROPHENOL	10 U	10 U	10 U	10 U	11 U
2,4,5-TRICHLOROPHENOL	25 U	26 U	25 U	26 U	28 U
2-CHLORONAPHTHALENE	10 U	10 U	10 U	10 U	11 U
2-NITROANILINE	25 U	26 U	25 U	26 U	28 U
DIMETHYLPHTHALATE	10 U	10 U	10 U	10 U	11 U
ACENAPHTHYLĖNE	10 U	10 U	10 U	10 U	11 U
2,6-DINITROTOLUENE	10 U	10 U	10 U	10 U	11 U
3-NITROANILINE	25 U	26 U	25 U	26 U	28 U
ACENAPHTHENE	10 U	10 U	10 U	10 U	11 U
2,4-DINITROPHENOL	25 U	26 U	25 U	26 U	28 U
4-NITROPHENOL	25 U	26 U	25 U	26 U	28 U
DIBENZOFURAN	10 U	10 U	10 U	10 U	11 U
2,4-DINITROTOLUENE	10 U	10 U	10 U	10 U	11 U
DIETHYLPHTHALATE	10 U	10 U	10 U	10 U	11 U
4-CHLOROPHENYL-PHENYLETHER	10 U	10 U	10 U	10 U	11 U
FLUORENE	10 U	10 U	10 U	10 U	11 U
4-NITROANILINE	25 UJ	26 UJ	25 UJ	26 UJ	28 UJ
4,6-DINITRO-2-METHYLPHENOL	25 UJ	26 UJ	25 UJ	26 UJ	28 UJ
N-NITROSODIPHENYLAMINE (1)	10 U	10 U	10 U	10 U	11 U
4-BROMOPHENYL-PHENYLETHER	10 U	10 U	10 U	10 U	11 U
HEXACHLOROBENZENE	10 U	10 U	10 U	10 U	11 U

QUALIFIER DEFINITIONS J = Estimated value. U = Not detected at reported quantitation limit. UJ = Reported quantitation limit is estimated.

NOTES ug/L = micrograms per liter.

SAMPLE_NO LAB_ID DATE SAMPLED UNITS	89-EC-SW01 9607G440-013 07/27/96 UG/L	89-EC-SW02 9607G440-014 07/27/96 UG/L	89-EC-SW03 9607G440-015 07/27/96 UG/L	89-EC-SW04 9607G440-009 07/26/96 UG/L	89-EC-SW05 9607G440-007 07/26/96 UG/L
SEMIVOLATILES (cont)					
PENTACHLOROPHENOL	25 UJ	26 UJ	25 UJ	26 UJ	28 UJ
PHENANTHRENE	10 U	10 U	10 U	10 U	11 U
ANTHRACENE	10 U	10 U	10 U	10 U	11 U
CARBAZOLE	10 U	10 U	10 U	10 U	11 U
DI-N-BUTYLPHTHALATE	10 U	10 U	10 U	10 U	11 U
FLUORANTHENE	10 U	10 U	10 U	10 U	11 U
PYRENE	10 U	10 U	10 U	10 U	11 U
BUTYLBENZYLPHTHALATE	10 U	10 U	10 U	10 U	11 U
3,3'-DICHLOROBENZIDINE	10 UJ	10 UJ	10 UJ	10 UJ	11 UJ
BENZO(A)ANTHRACENE	10 U	10 U	10 U	10 U	11 U
CHRYSÈŃE	10 U	10 U	10 U	10 U	11 U
BIS(2-ETHYLHEXYL)PHTHALATE	10 U	13 U	10 U	10 U	11 U
DI-N-OCTYLPHTHALATE	10 U	10 U	10 U	10 U	11 U
BENZO(B)FLUORANTHENE	10 U	10 U	10 U	10 U	11 U
BENZO(K)FLUORANTHENE	10 U	10 U	10 U	10 U	11 U
BENZO(A)PYRENE	10 U	10 U	10 U	10 U	11 U
INDENO(1,2,3-CD)PYRENE	10 U	10 U	10 U	10 U	11 U
DIBENZO(A,H)ANTHRACENE	10 U	10 U	10 U	10 U	11 U
BENZO(G,H,I)PERYLENE	10 U	10 U	10 U	10 U	11 U

QUALIFIER DEFINITIONS J = Estimated value. U = Not detected at reported quantitation limit. UJ = Reported quantitation limit is estimated.

NOTES ug/L = micrograms per liter.

.

SAMPLE_NO LAB_ID DATE SAMPLED UNITS	89-EC-SW01 9607G440-013 07/27/96 UG/L	89-EC-SW02 9607G440-014 07/27/96 UG/L	89-EC-SW03 9607G440-015 07/27/96 UG/L	89-EC-SW04 9607G440-009 07/26/96 UG/L	89-EC-SW05 9607G440-007 07/26/96 UG/L
PESTICIDES/PCBS					
ALPHA-BHC	NA	NA	NA	NA	0.054 UJ
BETA-BHC	NA	NA	NA	NA	0.054 UJ
DELTA-BHC	NA	NA	NA	NA	0.054 UJ
GAMMA-BHC (LINDANE)	NA	NA	NA	NA	0.054 UJ
HEPTACHLOR	NA	NA	NA	NA	0.054 UJ
ALDRIN	NA	NA	NA	NA	0.054 UJ
HEPTACHLOR EPOXIDE	NA	NA	NA	NA	0.054 UJ
ENDOSULFAN I	NA	NA	NA	NA	0.054 UJ
DIELDRIN	NA	NA	NA	NA	0.11 UJ
4,4'-DDE	NA	NA	NA	NA	0.11 UJ
ENDRIN	NA	NA	NA	NA	0.11 UJ
ENDOSULFAN II	NA	NA	NA	NA	0.11 UJ
4,4'-DDD	NA	NA	NA	NA	0.11 UJ
ENDOSULFAN SULFATE	NA	NA	NA	NA	0.11 UJ
4,4'-DDT	NA	NA	NA	NA	0.11 UJ
METHOXYCHLOR	NA	NA	NA	NA	0.54 UJ
ENDRIN KETONE	NA	NA	NA	NA	0.11 UJ
ENDRIN ALDEHYDE	NA	NA	NA	NA	0.11 UJ
ALPHA-CHLORDANE	NA	NA	NA	NA	0.054 UJ
GAMMA-CHLORDANE	NA	NA	NA	NA	0.054 UJ
TOXAPHENE	NA	NA	NA	NA	5.4 UJ

QUALIFIER DEFINITIONS UJ = Reported quantitation limit is estimated.

NOTES ug/L = micrograms per liter. NA = Not analyzed.

SAMPLE_NO LAB_ID DATE SAMPLED UNITS	89-EC-SW01 9607G440-013 07/27/96 UG/L	89-EC-SW02 9607G440-014 07/27/96 UG/L	89-EC-SW03 9607G440-015 07/27/96 UG/L	89-EC-SW04 9607G440-009 07/26/96 UG/L	89-EC-SW05 9607G440-007 07/26/96 UG/L
PESTICIDES/PCBS (cont)					
AROCLOR-1016	NA	NA	NA	NA	1.1 UJ
AROCLOR-1221	NA	NA	NA	NA	2.2 UJ
AROCLOR-1232	NA	NA	NA	NA	1.1 UJ
AROCLOR-1242	NA	NA	NA	NA	1.1 UJ
AROCLOR-1248	NA	NA	NA	NA	1.1 UJ
AROCLOR-1254	NA	NA	NA	NA	1.1 UJ
AROCLOR-1260	NA	NA	NA	NA	1.1 UJ

QUALIFIER DEFINITIONS UJ = Reported quantitation limit is estimated.

> NOTES ug/L = micrograms per liter. NA = Not analyzed.

.

SAMPLE_NO LAB_ID DATE SAMPLED UNITS	89-EC-SW01 9607G440-013 07/27/96 UG/L	89-EC-SW02 9607G440-014 07/27/96 UG/L	89-EC-SW03 9607G440-015 07/27/96 UG/L	89-EC-SW04 9607G440-009 07/26/96 UG/L	89-EC-SW05 9607G440-007 07/26/96 UG/L
TOTAL METALS					
ALUMINUM, TOTAL	41.8	189	201	554	275
ANTIMONY, TOTAL	14.4 U	14.4 U	14.4 U	18.5	14.4 U
ARSENIC, TOTAL	1.4 U				
BARIUM, TOTAL	17.9	23.6	25	22.4	20.6
BERYLLIUM, TOTAL	0.7 U				
CADMIUM, TOTAL	2.6 U				
CALCIUM, TOTAL	42500	46300	46900	41800	37300
CHROMIUM, TOTAL	3.3 U	3.3 U	3.3 U	3.6	3.3 U
COBALT, TOTAL	3.6 U				
COPPER, TOTAL	2.6	3.9	2 U	4.7	5.7 U
IRON, TOTAL	803	1500	1510	1570	1220
LEAD, TOTAL	1.2 U	1.2 U	5.4	3.8	1.3 J
MAGNESIUM, TOTAL	3560	2560	2480	2450	2200
MANGANESE, TOTAL	28.2	50.4	47.9	31.9	25.7
MERCURY, TOTAL	0.1 U				
NICKEL, TOTAL	8.7 UJ	8.7 UJ	8.7 UJ	8.7 UJ	8.7 U
POTASSIUM, TOTAL	4270	2530	2300	2890	2240
SELENIUM, TOTAL	1.8 U				
SILVER, TOTAL	3.1 U				
SODIUM, TOTAL	38500	16600	15900	13400	11500
THALLIUM, TOTAL	1.5 U				
VANADIUM, TOTAL	2.5 U	2.8	2.5 U	4.2	2.5 U
ZINC, TOTAL	17.2	13.3	9.2	17.7	9.3

QUALIFIER DEFINITIONS J = Estimated value. U = Not detected at reported quantitation limit.

UJ = Reported quantitation limit is estimated.

NOTES

ug/L = micrograms per liter.

TABLE 4-3

SUMMARY OF SITE SURFACE WATER CONTAMINATION OPERABLE UNIT NO. 16 (SITE 89) MCB, CAMP LEJEUNE, NORTH CAROLINA CTO-0356

	Detected		Compariso	n Criteria ⁽¹⁾			Location of	Detection	Detections Comparison	Above Criteria
Media	Fraction	Contaminants or Analytes	NC WQS ⁽¹⁾	Region IV WQS ⁽²⁾	Min.	Max.	Maximum Detection	Frequency	NC WQS ⁽¹⁾	Region IV WQS ⁽²⁾
Surface water	Volatiles	Trans-1,2-Dichloroethene	NE	NE	14	37	89-EC-SW02	8/11	NA	NA
(on-site lab)		Cis-1,2-Dichloroethene	NE	NE	2	52	89-EC-SW04	9/11	NA	NA
		Trichloroethene	NE	NE	3.8	32.9	89-EC-SW04	9/11	NA	NA
		Tetrachloroethene	NE	NE	0.1	1.2	89-EC-SW07	10/11	NA	NA
Surface water	Volatiles	Vinyl Chloride	NE	NE	21	25	89-EC-SW02	2/5	NA	NA
(fixed based lab)		1,2-Dichloroethene (total)	NE	NE	78	120	89-EC-SW02	4/5	NA	NA
		Trichloroethene	NE	NE	35	26	89-EC-SW04	5/5	NA	NA
		1,1,2,2-Tetrachloroethane	NE	NE	72	150J	89-EC-SW02	4/5	NA	NA
Surface water	Semivolatiles	ND	NA	NA	NA	NA	NA	NA	NA	NA
(fixed based lab)										
	Pesticides	ND	NA	NA	NA	NA	NA	NA	NA	NA
(fixed based lab)										
Surface water	Metals	Aluminum	NE	NE	41.8	554	89-EC-SW04	5/5	NA	NA
(fixed based lab)		Barium	NE	NE	17.9	25	89-EC-SW03	5/5	NA	NA
		Chromium	20	NE	3.6	3.6	89-EC-SW04	1/5	0	NA
		Copper	NE	NE	2.6	5.7	89-EC-SW05	3/5	NA	NA
		Lead	25	NE	1.3J	5.4	89-EC-SW03	3/5	0	NA
		Manganese	NE	NE	25.7	50.4	89-EC-SW02	5/5	NA	NA
		Vanadium	NE	NE	2.8	4.2	89-EC-SW04	2/5	NA	NA
		Zinc	NE	NE	9.2	17.7	89-EC-SW04	5/5	NA	NA

(1) - Surface water concentrations compared to North Carolina Water Quality Standards for Surface water.

(2) - Surface water conentrations compared to USEPA Region IV Water Quality Standards.

Concentrations in ug/L

NA - Not Applicable

NE - None Established

ND - Not Detected

SAMPLE_NO LAB_ID DATE SAMPLED UNITS	89-EC-SD01-06 9607G440-016 07/27/96 UG/KG	89-EC-SD02-06 9607G440-018 07/27/96 UG/KG	89-EC-SD03-06 9607G440-020 07/27/96 UG/KG	89-EC-SD04-06 9607G440-005 07/26/96 UG/KG	89-EC-SD05-06 9607G440-001 07/26/96 UG/KG	89-EC-SD01-612 9607G440-017 07/27/96 UG/KG
VOLATILES						
CHLOROMETHANE	13 U	13 U	12 U	12 U	12 U	14 U
BROMOMETHANE	13 U	13 U	12 U	12 U	12 U	14 U
VINYL CHLORIDE	13 U	13 U	35	12 U	12 U	14 U
CHLOROETHANE	13 U	13 U	12 U	12 U	12 U	14 U
METHYLENE CHLORIDE	13 U	13 U	12 U	12 U	12 U	14 U
ACETONE	13 UJ	13 UJ	12 UJ	12 UJ	12 UJ	14 UJ
CARBON DISULFIDE	13 UJ	13 UJ	12 UJ	12 UJ	12 UJ	14 UJ
1,1-DICHLOROETHENE	13 UJ	13 UJ	12 UJ	12 UJ	12 UJ	14 UJ
1,1-DICHLOROETHANE	13 U	13 U	12 U	12 U	12 U	14 U
1,2-DICHLOROETHENE (TOTAL)	13 U	13 U	1600	12 U	12 U	14 U
CHLOROFORM	13 U	13 U	12 U	12 U	12 U	14 U
1,2-DICHLOROETHANE	13 U	13 U	12 U	12 U	12 U	14 U
2-BUTANONE	13 UJ	13 UJ	12 UJ	12 UJ	12 UJ	14 UJ
1,1,1-TRICHLOROETHANE	13 U	13 U	12 U	12 U	12 U	14 U
CARBON TETRACHLORIDE	13 U	13 U	12 U	12 U	12 U	14 U
BROMODICHLOROMETHANE	13 U	13 U	12 U	12 U	12 U	14 U
1,2-DICHLOROPROPANE	13 U	13 U	12 U	12 U	12 U	14 U
CIS-1,3-DICHLOROPROPENE	13 U	13 U	12 U	12 U	12 U	14 U
TRICHLOROETHENE	13 U	13 U	2400	12 U	12 U	14 U
DIBROMOCHLOROMETHANE	13 U	13 U	12 U	12 U	12 U	14 U
1,1,2-TRICHLOROETHANE	13 U	13 U	19	12 U	12 U	14 U
BENZENE	13 U	13 U	12 U	12 U	12 U	14 U
TRANS-1,3-DICHLOROPROPENE	13 U	13 U	12 U	12 U	12 U	14 U
BROMOFORM	13 UJ	13 UJ	12 UJ	12 UJ	12 UJ	14 UJ

QUALIFIER DEFINITIONS U = Not detected at reported quantitation limit. UJ = Reported quantitation limit is estimated.

NOTES ug/kg = micrograms per kilogram.

SAMPLE_NO LAB_ID DATE SAMPLED UNITS	89-EC-SD01-06 9607G440-016 07/27/96 UG/KG	89-EC-SD02-06 9607G440-018 07/27/96 UG/KG	89-EC-SD03-06 9607G440-020 07/27/96 UG/KG	89-EC-SD04-06 9607G440-005 07/26/96 UG/KG	89-EC-SD05-06 9607G440-001 07/26/96 UG/KG	89-EC-SD01-612 9607G440-017 07/27/96 UG/KG
VOLATILES (cont)						
4-METHYL-2-PENTANONE	13 U	13 U	12 U	12 U	12 U	14 U
2-HEXANONE	13 U	13 U	12 U	12 U	12 U	14 U
TETRACHLOROETHENE	13 U	13 U	12 U	12 U	12 U	14 U
1,1,2,2-TETRACHLOROETHANE	13 U	13 U	1700	12 U	12 U	14 U
TOLUENE	13 U	13 U	7 J	12 U	12 U	14 U
CHLOROBENZENE	13 U	13 U	12 U	12 U	12 U	14 U
ETHYLBENZENE	13 U	13 U	12 U	12 U	12 U	14 U
STYRENE	13 U	13 U	12 U	12 U	12 U	14 U
XYLENE (TOTAL)	13 U	13 U	12 U	12 U	12 U	14 U

QUALIFIER DEFINITIONS U = Not detected at reported quantitation limit. UJ = Reported quantitation limit is estimated.

> NOTES ug/kg = micrograms per kilogram.

.

SAMPLE_NO LAB_ID DATE SAMPLED UNITS	89-EC-SD01-06 9607G440-016 07/27/96 UG/KG	89-EC-SD02-06 9607G440-018 07/27/96 UG/KG	89-EC-SD03-06 9607G440-020 07/27/96 UG/KG	89-EC-SD04-06 9607G440-005 07/26/96 UG/KG	89-EC-SD05-06 9607G440-001 07/26/96 UG/KG	89-EC-SD01-612 9607G440-017 07/27/96 UG/KG
SEMIVOLATILES						
PHENOL	410 U	430 U	410 U	410 U	390 U	440 U
BIS(2-CHLOROETHYL)ETHER	410 U	430 U	410 U	410 U	390 U	440 U
2-CHLOROPHENOL	410 U	430 U	410 U	410 U	390 U	440 U
1,3-DICHLOROBENZENE	410 U	430 U	410 U	410 U	390 U	440 U
1,4-DICHLOROBENZENE	410 U	430 U	410 U	410 U	390 U	440 U
1,2-DICHLOROBENZENE	410 U	430 U	410 U	410 U	390 U	440 U
2-METHYLPHENOL	410 U	430 U	410 U	410 U	390 U	440 U
2,2-OXYBIS(1-CHLOROPROPANE)	410 U	430 U	410 U	410 U	390 U	440 U
4-METHYLPHENOL	410 U	430 U	410 U	410 U	390 U	440 U
N-NITROSO-DI-N-PROPYLAMINE	410 U	430 U	410 U	410 U	390 U	440 U
HEXACHLOROETHANE	410 U	430 U	410 U	410 U	390 U	440 U
NITROBENZENE	410 U	430 UJ	410 UJ	410 U	390 UJ	440 UJ
ISOPHORONE	410 U	430 U	410 U	410 U	390 U	440 U
2-NITROPHENOL	410 U	430 U	410 U	410 U	390 U	440 U
2.4-DIMETHYLPHENOL	410 U	430 U	410 U	410 U	390 U	440 U
BIS(2-CHLOROETHOXY)METHANE	410 U	430 U	410 U	410 U	390 U	440 U
2,4-DICHLOROPHENOL	410 U	430 U	410 U	410 U	390 U	440 U
1,2,4-TRICHLOROBENZENE	410 U	430 U	410 U	410 U	390 U	440 U
NAPHTHALENE	410 U	430 U	410 U	410 U	390 U	440 U
4-CHLOROANILINE	410 U	430 U	410 U	410 U	390 U	440 U
HEXACHLOROBUTADIENE	410 U	430 U	410 U	410 U	390 U	440 U
4-CHLORO-3-METHYLPHENOL	410 U	430 U	410 U	410 U	390 U	440 U
2-METHYLNAPHTHALENE	410 U	430 U	410 U	410 U	390 U	440 U
HEXACHLOROCYCLOPENTADIENE	410 U	430 U	410 U	410 U	390 U	440 U

QUALIFIER DEFINITIONS J = Estimated value. U = Not detected at reported quantitation limit. UJ = Reported quantitation limit is estimated.

NOTES ug/kg = micrograms per kilogram.

.

SAMPLE_NO LAB_ID DATE SAMPLED UNITS	89-EC-SD01-06 9607G440-016 07/27/96 UG/KG	89-EC-SD02-06 9607G440-018 07/27/96 UG/KG	89-EC-SD03-06 9607G440-020 07/27/96 UG/KG	89-EC-SD04-06 9607G440-005 07/26/96 UG/KG	89-EC-SD05-06 9607G440-001 07/26/96 UG/KG	89-EC-SD01-612 9607G440-017 07/27/96 UG/KG
SEMIVOLATILES (cont)						
2,4,6-TRICHLOROPHENOL	410 U	430 U	410 U	410 U	390 U	440 U
2,4,5-TRICHLOROPHENOL	1000 U	1100 U	1000 U	1000 U	970 U	1100 U
2-CHLORONAPHTHALENE	410 U	430 U	410 U	410 U	390 U	440 U
2-NITROANILINE	1000 U	1100 U	1000 U	1000 U	970 U	1100 U
DIMETHYLPHTHALATE	410 U	430 U	410 U	410 U	390 U	440 U
ACENAPHTHYLENE	410 U	430 U	410 U	410 U	390 U	440 U
2,6-DINITROTOLUENE	410 U	430 U	410 U	410 U	390 U	440 U
3-NITROANILINE	1000 UJ	1100 U	1000 UJ	1000 UJ	970 UJ	1100 UJ
ACENAPHTHENE	410 U	430 U	410 U	410 U	390 U	440 U
2,4-DINITROPHENOL	1000 UJ	1100 UJ	1000 UJ	1000 UJ	970 UJ	1100 UJ
4-NITROPHENOL	1000 U	1100 U	1000 U	1000 U	970 U	1100 U
DIBENZOFURAN	410 U	430 U	410 U	410 U	390 U	440 U
2,4-DINITROTOLUENE	410 U	430 U	470 UJ	410 U	390 U	440 U
DIETHYLPHTHALATE	410 U	430 U	410 U	410 U	390 U	440 U
4-CHLOROPHENYL-PHENYLETHER	410 U	430 U	410 U	410 U	390 U	440 U
FLUORENE	410 U	430 U	410 U	410 U	390 U	440 U
4-NITROANILINE	1000 UJ	1100 U	1000 U	1000 UJ	970 U	1100 U
4,6-DINITRO-2-METHYLPHENOL	1000 U	1100 U	1000 U	1000 U	970 U	1100 U
N-NITROSODIPHENYLAMINE (1)	410 U	430 U	410 U	410 U	390 U	440 U
4-BROMOPHENYL-PHENYLETHER	410 U	430 U	410 U	410 U	390 U	440 U
HEXACHLOROBENZENE	410 U	430 U	410 U	410 U	390 U	440 U
PENTACHLOROPHENOL	1000 U	1100 U	1000 U	1000 U	970 U	1100 U
PHENANTHRENE	50 J	430 U	42 J	100 J	390 U	440 U
ANTHRACENE	410 U	430 U	410 U	410 U	390 U	440 U

QUALIFIER DEFINITIONS J = Estimated value. U = Not detected at reported quantitation limit. UJ = Reported quantitation limit is estimated.

NOTES ug/kg = micrograms per kilogram.

SAMPLE_NO LAB_ID DATE SAMPLED UNITS	89-EC-SD01-06 9607G440-016 07/27/96 UG/KG	89-EC-SD02-06 9607G440-018 07/27/96 UG/KG	89-EC-SD03-06 9607G440-020 07/27/96 UG/KG	89-EC-SD04-06 9607G440-005 07/26/96 UG/KG	89-EC-SD05-06 9607G440-001 07/26/96 UG/KG	89-EC-SD01-612 9607G440-017 07/27/96 UG/KG
SEMIVOLATILES (cont) CARBAZOLE	410 UJ	430 U	410 U	410 UJ	390 U	440 U
DI-N-BUTYLPHTHALATE	410 U	430 U	410 U	410 U	390 U	440 U
FLUORANTHENE	68 J	59 J	410 U	180 J	51 J	440 U
PYRENE	50 J	85 J	410 U	130 J	63 J	440 U
BUTYLBENZYLPHTHALATE	410 U	430 U	410 U	410 U	390 U	440 U
3,3'-DICHLOROBENZIDINE	410 U	430 U	410 U	410 U	390 U	440 U
BENZO(A)ANTHRACENE	410 U	430 U	410 U	48 J	390 U	440 U
CHRYSENE	410 U	51 J	410 U	120 J	390 U	440 U
BIS(2-ETHYLHEXYL)PHTHALATE	360 J	150 J	140 J	240 J	110 J	97 J
DI-N-OCTYLPHTHALATE	410 U	430 U	410 U	410 U	390 U	440 U
BENZO(B)FLUORANTHENE	53 J	430 U	410 U	140 J	44 J	440 U
BENZO(K)FLUORANTHENE	410 U	430 U	410 U	51 J	390 U	440 U
BENZO(A)PYRENE	410 U	430 U	410 U	65 J	390 U	440 U
INDENO(1,2,3-CD)PYRENE	410 U	430 U	410 U	59 J	390 U	440 U
DIBENZO(A,H)ANTHRACENE	410 U	430 U	410 U	410 U	390 U	440 U
BENZO(G,H,I)PERYLENE	50 J	430 U	410 U	55 J	390 U	440 U

QUALIFIER DEFINITIONS J = Estimated value. U = Not detected at reported quantitation limit. UJ = Reported quantitation limit is estimated.

NOTES ug/kg = micrograms per kilogram.

SAMPLE_NO LAB_ID DATE SAMPLED UNITS	89-EC-SD01-06 9607G440-016 07/27/96 UG/KG	89-EC-SD02-06 9607G440-018 07/27/96 UG/KG	89-EC-SD03-06 9607G440-020 07/27/96 UG/KG	89-EC-SD04-06 9607G440-005 07/26/96 UG/KG	89-EC-SD05-06 9607G440-001 07/26/96 UG/KG	89-EC-SD01-612 9607G440-017 07/27/96 UG/KG
PESTICIDES/PCBS						
ALPHA-BHC	NA	NA	NA	NA	2 UJ	NA
BETA-BHC	NA	NA	NA	NA	2 UJ	NA
DELTA-BHC	NA	NA	NA	NA	2 UJ	NA
GAMMA-BHC (LINDANE)	NA	NA	NA	NA	2 UJ	NA
HEPTACHLOR	NA	NA	NA	NA	2 UJ	NA
ALDRIN	NA	NA	NA	NA	2 UJ	NA
HEPTACHLOR EPOXIDE	NA	NA	NA	NA	2 UJ	NA
ENDOSULFAN I	NA	NA	NA	NA	2 UJ	NA
DIELDRIN	NA	NA	NA	NA	3.9 UJ	NA
4,4'-DDE	NA	NA	NA	NA	33 J	NA
ENDRIN	NA	NA	NA	NA	3.9 UJ	NA
ENDOSULFAN II	NA	NA	NA	NA	3.9 UJ	NA
4,4'-DDD	NA	NA	NA	NA	42 J	NA
ENDOSULFAN SULFATE	NA	NA	NA	NA	3.9 UJ	NA
4,4'-DDT	NA	NA	NA	NA	23 J	NA
METHOXYCHLOR	NA	NA	NA	NA	20 UJ	NA
ENDRIN KETONE	NA	NA	NA	NA	3.9 UJ	NA
ENDRIN ALDEHYDE	NA	NA	NA	NA	3.9 UJ	NA
ALPHA-CHLORDANE	NA	NA	NA	NA	2 J	NA
GAMMA-CHLORDANE	NA	NA	NA	NA	1.6 J	NA
TOXAPHENE	NA	NA	NA	NA	200 UJ	NA

QUALIFIER DEFINITIONS J = Estimated value. U = Not detected at reported quantitation limit. UJ = Reported quantitation limit is estimated.

NOTES ug/kg = micrograms per kilogram. NA = Not analyzed.

.

SAMPLE_NO LAB_ID DATE SAMPLED UNITS	89-EC-SD01-06 9607G440-016 07/27/96 UG/KG	89-EC-SD02-06 9607G440-018 07/27/96 UG/KG	89-EC-SD03-06 9607G440-020 07/27/96 UG/KG	89-EC-SD04-06 9607G440-005 07/26/96 UG/KG	89-EC-SD05-06 9607G440-001 07/26/96 UG/KG	89-EC-SD01-612 9607G440-017 07/27/96 UG/KG
PESTICIDES/PCBS (cont)						
AROCLOR-1016	NA	NA	NA	NA	39 U	NA
AROCLOR-1221	NA	NA	NA	NA	78 U	NA
AROCLOR-1232	NA	NA	NA	NA	39 U	NA
AROCLOR-1242	NA	NA	NA	NA	39 U	NA
AROCLOR-1248	NA	NA	NA	NA	39 U	NA
AROCLOR-1254	NA	NA	NA	NA	39 U	NA
AROCLOR-1260	NA	NA	NA	NA	39 U	NA

QUALIFIER DEFINITIONS J = Estimated value. U = Not detected at reported quantitation limit. UJ = Reported quantitation limit is estimated.

NOTES ug/kg = micrograms per kilogram. NA = Not analyzed.

SAMPLE_NO LAB_ID DATE SAMPLED UNITS	89-EC-SD02-612 9607G440-019 07/27/96 UG/KG	89-EC-SD03-612 9607G440-021 07/27/96 UG/KG	89-EC-SD04-612 9607G440-006 07/26/96 UG/KG	89-EC-SD05-612 9607G440-002 07/26/96 UG/KG
VOLATILES				
CHLOROMETHANE	12 U	12 U	20 U	12 U
BROMOMETHANE	12 U	12 U	20 U	12 U
VINYL CHLORIDE	12 U	230	20 U	12 U
CHLOROETHANE	12 U	12 U	20 U	12 U
METHYLENE CHLORIDE	12 U	12 U	20 U	12 UJ
ACETONE	12 UJ	12 UJ	20 UJ	12 U
CARBON DISULFIDE	12 UJ	12 UJ	20 UJ	12 UJ
1,1-DICHLOROETHENE	12 UJ	37 J	20 UJ	12 U
1,1-DICHLOROETHANE	12 U	12 U	20 U	12 U
1,2-DICHLOROETHENE (TOTAL)	12 U	1500	20 U	12 U
CHLOROFORM	12 U	12 U	20 U	12 U
1,2-DICHLOROETHANE	12 U	12 U	20 U	12 U
2-BUTANONE	12 UJ	12 UJ	20 UJ	12 U
1,1,1-TRICHLOROETHANE	12 U	12 U	20 U	12 U
CARBON TETRACHLORIDE	12 U	12 U	20 U	12 U
BROMODICHLOROMETHANE	12 U	12 U	20 U	12 U
1,2-DICHLOROPROPANE	12 U	12 U	20 U	12 U
CIS-1,3-DICHLOROPROPENE	12 U	12 U	20 U	12 U
TRICHLOROETHENE	12 U	120	20 U	12 U
DIBROMOCHLOROMETHANE	12 U	12 U	20 U	12 U
1,1,2-TRICHLOROETHANE	12 U	13	20 U	12 U
BENZENE	12 U	12 U	20 U	12 U
TRANS-1,3-DICHLOROPROPENE	12 U	12 U	20 U	12 U
BROMOFORM	12 UJ	12 UJ	20 UJ	12 U

QUALIFIER DEFINITIONS

U = Not detected at reported quantitation limit.

UJ = Reported quantitation limit is estimated.

NOTES ug/kg = micrograms per kilogram.

SAMPLE_NO LAB_ID DATE SAMPLED UNITS	89-EC-SD02-612 9607G440-019 07/27/96 UG/KG	89-EC-SD03-612 9607G440-021 07/27/96 UG/KG	89-EC-SD04-612 9607G440-006 07/26/96 UG/KG	89-EC-SD05-612 9607G440-002 07/26/96 UG/KG
VOLATILES (cont) 4-METHYL-2-PENTANONE	12 U	12 U	20 U	12 U
2-HEXANONE	12 U	12 U 12 U	20 U 20 U	12 U 12 U
TETRACHLOROETHENE	12 U	12 U	20 U	12 U
1,1,2,2-TETRACHLOROETHANE	12 U	550	20 U	12 U
TOLUENE	· 12 U	12 U	20 U	12 U
CHLOROBENZENE	12 U	12 U	20 U	12 U
ETHYLBENZENE	12 U	12 U	20 U	12 U
STYRENE	12 U	12 U	20 U	12 U
XYLENE (TOTAL)	12 U	12 U	20 U	12 U

QUALIFIER DEFINITIONS U = Not detected at reported quantitation limit. UJ = Reported quantitation limit is estimated.

> NOTES ug/kg = micrograms per kilogram.

.

SAMPLE_NO LAB_ID DATE SAMPLED	89-EC-SD02-612 9607G440-019 07/27/96	89-EC-SD03-612 9607G440-021 07/27/96	89-EC-SD04-612 9607G440-006 07/26/96	89-EC-SD05-612 9607G440-002 07/26/96
UNITS	UG/KG	UG/KG	UG/KG	UG/KG
Shire	00/10	00.110		
SEMIVOLATILES				
PHENOL	410 U	380 U	650 U	420 U
BIS(2-CHLOROETHYL)ETHER	410 U	380 U	650 U	420 U
2-CHLOROPHENOL	410 U	380 U	650 U	420 U
1,3-DICHLOROBENZENE	410 U	380 U	650 U	420 U
1,4-DICHLOROBENZENE	410 U	380 U	650 U	420 U
1,2-DICHLOROBENZENE	410 U	380 U	650 U	420 U
2-METHYLPHENOL	410 U	380 U	650 U	420 U
2,2-OXYBIS(1-CHLOROPROPANE)	410 U	380 U	650 U	420 U
4-METHYLPHENOL	410 U	380 U	650 U	420 U
N-NITROSO-DI-N-PROPYLAMINE	410 U	380 U	650 U	420 U
HEXACHLOROETHANE	410 U	380 U	650 U	420 U
NITROBENZENE	410 UJ	380 UJ	650 U	420 UJ
ISOPHORONE	410 U	380 U	650 U	420 U
2-NITROPHENOL	410 U	380 U	650 U	420 U
2,4-DIMETHYLPHENOL	410 U	380 U	650 U	420 U
BIS(2-CHLOROETHOXY)METHANE	410 U	380 U	650 U	420 U
2,4-DICHLOROPHENOL	410 U	380 U	650 U	420 U
1,2,4-TRICHLOROBENZENE	410 U	380 U	650 U	420 U
NAPHTHALENE	410 U	380 U	650 U	420 U
4-CHLOROANILINE	410 U	380 U	650 U	420 U
HEXACHLOROBUTADIENE	410 U	380 U	650 U	420 U
4-CHLORO-3-METHYLPHENOL	410 U	380 U	650 U	420 U
2-METHYLNAPHTHALENE	410 U	380 U	650 U	420 U
HEXACHLOROCYCLOPENTADIENE	410 U	380 U	650 U	420 U

QUALIFIER DEFINITIONS J = Estimated value. U = Not detected at reported quantitation limit. UJ = Reported quantitation limit is estimated.

NOTES ug/kg = micrograms per kilogram.

1

SAMPLE_NO LAB_ID DATE SAMPLED UNITS	89-EC-SD02-612 9607G440-019 07/27/96 UG/KG	89-EC-SD03-612 9607G440-021 07/27/96 UG/KG	89-EC-SD04-612 9607G440-006 07/26/96 UG/KG	89-EC-SD05-612 9607G440-002 07/26/96 UG/KG
SEMIVOLATILES (cont)				
2,4,6-TRICHLOROPHENOL	410 U	380 U	650 U	420 U
2,4,5-TRICHLOROPHENOL	1000 U	960 U	1600 U	1000 U
2-CHLORONAPHTHALENE	410 U	380 U	650 U	420 U
2-NITROANILINE	1000 U	960 U	1600 U	1000 U
DIMETHYLPHTHALATE	410 U	380 U	650 U	420 U
ACENAPHTHYLENE	410 U	380 U	650 U	420 U
2,6-DINITROTOLUENE	410 U	380 U	650 U	420 U
3-NITROANILINE	1000 UJ	960 UJ	1600 UJ	1000 UJ
ACENAPHTHENE	410 U	380 U	650 U	420 U
2,4-DINITROPHENOL	1000 UJ	960 UJ	1600 UJ	1000 UJ
4-NITROPHENOL	1000 U	960 U	1600 U	1000 U
DIBENZOFURAN	410 U	380 U	650 U	420 U
2,4-DINITROTOLUENE	410 U	380 U	650 U	420 U
DIETHYLPHTHALATE	410 U	380 U	650 U	420 U
4-CHLOROPHENYL-PHENYLETHER	410 U	380 U	650 U	420 U
FLUORENE	410 U	380 U	650 U	420 U
4-NITROANILINE	1000 U	960 U	1600 UJ	1000 U
4,6-DINITRO-2-METHYLPHENOL	1000 U	960 U	1600 U	1000 U
N-NITROSODIPHENYLAMINE (1)	410 U	380 U	650 U	420 U
4-BROMOPHENYL-PHENYLETHER	410 U	380 U	650 U	420 U
HEXACHLOROBENZENE	410 U	380 U	650 U	420 U
PENTACHLOROPHENOL	1000 U	960 U	1600 U	1000 U
PHENANTHRENE	44 J	380 U	650 U	420 U
ANTHRACENE	410 U	380 U	650 U	420 U

QUALIFIER DEFINITIONS

J = Estimated value.

U = Not detected at reported quantitation limit. UJ = Reported quantitation limit is estimated.

NOTES

ug/kg = micrograms per kilogram.

÷

SAMPLE_NO LAB_ID DATE SAMPLED UNITS	89-EC-SD02-612 9607G440-019 07/27/96 UG/KG	89-EC-SD03-612 9607G440-021 07/27/96 UG/KG	89-EC-SD04-612 9607G440-006 07/26/96 UG/KG	89-EC-SD05-612 9607G440-002 07/26/96 UG/KG
SEMIVOLATILES (cont)				
CARBAZOLE	410 U	380 U	650 UJ	420 U
DI-N-BUTYLPHTHALATE	410 U	380 U	650 U	420 U
FLUORANTHENE	81 J	380 U	650 U	420 U
PYRENE	140 J	52 J	650 U	51 J
BUTYLBENZYLPHTHALATE	410 U	380 U	650 U	420 U
3,3'-DICHLOROBENZIDINE	410 U	380 U	650 U	420 U
BENZO(A)ANTHRACENE	58 J	380 U	650 U	420 U
CHRYSENE	95 J	380 U	650 U	420 U
BIS(2-ETHYLHEXYL)PHTHALATE	130 J	90 J	88 J	13000
DI-N-OCTYLPHTHALATE	410 U	380 U	650 U	420 U
BENZO(B)FLUORANTHENE	140 J	40 J	650 U	420 U
BENZO(K)FLUORANTHENE	50 J	380 U	650 U	420 U
BENZO(A)PYRENE	75 J	380 U	3100	420 U
INDENO(1,2,3-CD)PYRENE	410 U	380 U	650 U	420 U
DIBENZO(A,H)ANTHRACENE	410 U	380 U	650 U	420 U
BENZO(G,H,I)PERYLENE	410 U	380 U	650 U	420 U

QUALIFIER DEFINITIONS J = Estimated value. U = Not detected at reported quantitation limit. UJ = Reported quantitation limit is estimated.

NOTES ug/kg = micrograms per kilogram.

TABLE 4-4 (continued) FIXED BASE DETECTION SUMMARY SEDIMENT ORGANIC COMPOUNDS OPERABLE UNIT NO. 16 (SITE 89) MCB, CAMP LEJEUNE, NORTH CAROLINA CTO-0356

SAMPLE_NO LAB_ID DATE SAMPLED UNITS	89-EC-SD02-612 9607G440-019 07/27/96 UG/KG	89-EC-SD03-612 9607G440-021 07/27/96 UG/KG	89-EC-SD04-612 9607G440-006 07/26/96 UG/KG	89-EC-SD05-612 9607G440-002 07/26/96 UG/KG
PESTICIDES/PCBS				
ALPHA-BHC	NA	NA	NA	2.1 U
BETA-BHC	NA	NA	NA	2.1 U
DELTA-BHC	NA	NA	NA	2.1 UJ
GAMMA-BHC (LINDANE)	NA	NA	NA	2.1 U
HEPTACHLOR	NA	NA	NA	2.1 U
ALDRIN	NA	NA	NA	2.1 U
HEPTACHLOR EPOXIDE	NA	NA	NA	2.1 U
ENDOSULFAN I	NA	NA	NA	2.1 U
DIELDRIN	NA	NA	NA	4.2 U
4,4'-DDE	NA	NA	NA	44 J
ENDRIN	NA	NA	NA	4.2 U
ENDOSULFAN II	NA	NA	NA	4.2 U
4,4'-DDD	NA	NA	NA	79
ENDOSULFAN SULFATE	NA	NA	NA	4.2 U
4,4'-DDT	NA	NA	NA	34
METHOXYCHLOR	NA	NA	NA	21 UJ
ENDRIN KETONE	NA	NA	NA	4.2 U
ENDRIN ALDEHYDE	NA	NA	NA	Ý 4.2 U
ALPHA-CHLORDANE	NA	NA	NA	2.9
GAMMA-CHLORDANE	NA	NA	NA	4.6 J
TOXAPHENE	NA	NA	NA	210 U

QUALIFIER DEFINITIONS J = Estimated value. U = Not detected at reported quantitation limit. UJ = Reported quantitation limit is estimated.

NOTES ug/kg = micrograms per kilogram. NA = Not analyzed.

TABLE 4-4 (continued) FIXED BASE DETECTION SUMMARY SEDIMENT ORGANIC COMPOUNDS OPERABLE UNIT NO. 16 (SITE 89) MCB, CAMP LEJEUNE, NORTH CAROLINA CTO-0356

SAMPLE_NO LAB_ID DATE SAMPLED UNITS	89-EC-SD02-612 9607G440-019 07/27/96 UG/KG	89-EC-SD03-612 9607G440-021 07/27/96 UG/KG	89-EC-SD04-612 9607G440-006 07/26/96 UG/KG	89-EC-SD05-612 9607G440-002 07/26/96 UG/KG
PESTICIDES/PCBS (cont)				
AROCLOR-1016	NA	NA	NA	42 U
AROCLOR-1221	NA	NA	NA	84 U
AROCLOR-1232	NA	NA	NA	42 U
AROCLOR-1242	NA	NA	NA	42 U
AROCLOR-1248	NA	NA	NA	42 U
AROCLOR-1254	NA	NA	NA	42 U
AROCLOR-1260	NA	NA	NA	42 U

QUALIFIER DEFINITIONS J = Estimated value. U = Not detected at reported quantitation limit. UJ = Reported quantitation limit is estimated.

NOTES ug/kg = micrograms per kilogram. NA = Not analyzed.

TABLE 4-4 (continued) FIXED BASE DETECTION SUMMARY SEDIMENT METALS OPERABLE UNIT NO. 16 (SITE 89) MCB, CAMP LEJEUNE, NORTH CAROLINA CTO-0356

SAMPLE_NO LAB_ID DATE SAMPLED UNITS	89-EC-SD01-06 9607G440-016 07/27/96 MG/KG	89-EC-SD02-06 9607G440-018 07/27/96 MG/KG	89-EC-SD03-06 9607G440-020 07/27/96 MG/KG	89-EC-SD04-06 9607G440-005 07/26/96 MG/KG	89-EC-SD05-06 9607G440-001 07/26/96 MG/KG	89-EC-SD02-612 9607G440-017 07/27/96 MG/KG
TOTAL METALS						
ALUMINUM, TOTAL	1690 J	1980 J	2750 J	2040 J	1010 J	2800 J
ANTIMONY, TOTAL	2.9 U	3.2 U	3.1 U	3.1 U	2.9 U	3.3 U
ARSENIC, TOTAL	0.33 UJ	0.51	0.59	0.42	0.38	0.28 UJ
BARIUM, TOTAL	8.9	16.3	18.6	9.9	6	13.4
BERYLLIUM, TOTAL	0.14	0.16 U	0.15 U	0.15 U	0.14 U	0.36
CADMIUM, TOTAL	0.82	0.58 U	0.77	0.56 U	0.53 U	0.59 U
CALCIUM, TOTAL	21500 J	18800 J	47700 J	14000 J	42700 J	8020
CHROMIUM, TOTAL	4.1	5.2	4.5	4.4	2.4	3.6
COBALT, TOTAL	0.72 U	0.8 U	0.78 U	0.77 U	0.73 U	0.82 U
COPPER, TOTAL	5.5	38.7	5.9	4.3 U	1.8 U	2.9 U
IRON, TOTAL	1590 J	3220 J	2340 J	2150 J	1190 J	1630
LEAD, TOTAL	14.3 J	20.7 J	17.3 J	20.2 J	35.4 J	6.6
MAGNESIUM, TOTAL	413	369	768	303	603	219
MANGANESE, TOTAL	10.4	11.7	13.6	10.3	8.6	7.9
MERCURY, TOTAL	0.06 U	0.05 U	0.05 U	0.05 U	0.05 U	0.07 U
NICKEL, TOTAL	1.7 U	1.9 U	2.3	1.9 U	1.8 U	2 U
POTASSIUM, TOTAL	139 U	153 U	149 U	148 U	141 U	157 U
SELENIUM, TOTAL	0.42 UJ	0.44 U	0.34 U	0.41 U	0.33 UJ	0.36 U
SILVER, TOTAL	0.62 U	0.69 U	0.67 U	0.66 U	0.63 U	0.71 U
SODIUM, TOTAL	65.2	62.4	130	56.4	125	38.5
THALLIUM, TOTAL	0.35 UJ	0.36 U	0.29 U	0.34 UJ	0.27 UJ	0.3 UJ
VANADIUM, TOTAL	7.1	8.9	7.9	5.2	4	6.4
ZINC, TOTAL	53.1	34	27.6	29.7	29.2	24.9

QUALIFIER DEFINITIONS

J = Estimated value.

U = Not detected at reported quantitation limit.

UJ = Reported quantitation limit is estimated.

NOTES

mg/kg = milligrams per kilogram.

TABLE 4-4 (continued) FIXED BASE DETECTION SUMMARY SEDIMENT METALS OPERABLE UNIT NO. 16 (SITE 89) MCB, CAMP LEJEUNE, NORTH CAROLINA CTO-0356

SAMPLE_NO LAB_ID DATE SAMPLED UNITS	89-EC-SD02-612 9607G440-019 07/27/96 MG/KG	89-EC-SD03-612 9607G440-021 07/27/96 MG/KG	89-EC-SD04-612 9607G440-006 07/26/96 MG/KG	89-EC-SD05-612 9607G440-002 07/26/96 MG/KG
TOTAL METALS				
ALUMINUM, TOTAL	1990 J	1820 J	14000 J	1110 J
ANTIMONY, TOTAL	2.9 U	2.7 U	4.9 U	3.1 U
ARSENIC, TOTAL	0.39	0.28 UJ	0.55 UJ	0,85
BARIUM, TOTAL	13.2	15.5	30.1	10.7
BERYLLIUM, TOTAL	0.15	0.13 U	0.55	0.15 U
CADMIUM, TOTAL	0.53 U	0.78	0.89 U	0.55 U
CALCIUM, TOTAL	23000	48000	8900	26400
CHROMIUM, TOTAL	3.4	2.7	7.6	4.7
COBALT, TOTAL	0.73 U	0.68 U	1.2 U	0.77 U
COPPER, TOTAL	7.9	3.1 U	0.77 U	7.9
IRON, TOTAL	2930	1750	3860	1380
LEAD, TOTAL	15.7	12.3	13.5	14.6
MAGNESIUM, TOTAL	409	888	322	464
MANGANESE, TOTAL	11.1	13.5	16.3	7.3
MERCURY, TOTAL	0.05 U	0.05 U	0.1	0.06 U
NICKEL, TOTAL	3.7	1.6 U	3 U	1.9 U
POTASSIUM, TOTAL	141 U	130 U	236 U	147 U
SELENIUM, TOTAL	0.31 UJ	0.36 U	0.72 UJ	0.32 U
SILVER, TOTAL	0.63 U	0.59 U	1.1 U	0.66 U
SODIUM, TOTAL	74.1	131	88.6	92
THALLIUM, TOTAL	0.26 U	0.3 U	0.59 U	0.27 UJ
VANADIUM, TOTAL	19.7	5.2	11.2	5.5
ZINC, TOTAL	33.5	40.7	11.7	24.7

QUALIFIER DEFINITIONS J = Estimated value. U = Not detected at reported quantitation limit. UJ = Reported quantitation limit is estimated.

NOTES mg/kg = milligrams per kilogram.

SUMMARY OF SITE SEDIMENT CONTAMINATION OPERABLE UNIT NO. 16 (SITE 89) MCB, CAMP LEJEUNE, NORTH CAROLINA CTO-0356

Media	Fraction	Detected Contaminants or Analytes	Comparison Criteria ⁽¹⁾	Min.	Max	Location of Maximum Detection	Detection Frequency	Detections Above Comparison Criteria
Sediment (1)	Volatiles	Vinyl Chloride	NE	35	230	89-EC-SD03-612	2/10	NA
(fixed based lab)	1	1,1-Dichloroethene	NE	37J	37J	89-EC-SC03-612	1/10	NA
		1,2-Dichloroethene (total)	NE	1500	1600	89-EC-SD03-06	2/10	NA
		Trichloroethene	NE	120	2400	89-EC-SD03-06	2/10	NA
		1,1,2-Trichloroethane	NE	13	19	89-EC-SD03-06	2/10	NA
		1,1,2,2-Tetrachloroethane	NE	550	1700	89-EC-SD03-06	2/10	NA
	Semivolatiles	Phenanthrene	NE	44J	100J	89-EC-SD04-06	4/10	NA
		Flouranthene	NE	51J	180J	89-EC-SD04-06	5/10	NA
		Pyrene	665	50J	140J	89-EC-SD02-612	7/10	0
		Benzo(a)anthracene	261	48J	58J	89-EC-SD02-612	2/10	0
		Chrysene	384	51J	120J	89-EC-SD04-06	3/10	0
		Bis(2-ethylhexyl)phthalate	NE	88J	13000	89-EC-SD05-612	10/10	NA
		Benzo(b)flouranthene	NE	44J	140J	89-EC-SD02-612	5/10	NA
		Benzo(k)flouranthene	NE	50J	51J	89-EC-SD04-06	2/10	NA
		Benzo(a)pyrene	430	65J	3100	89-EC-SD04-612	3/10	1
		Indeno(1,2,3-cd)pyrene	NE	59J	59J	89-EC-SD04-06	1/10	NA
		Benzo(g,h,i)perylene	NE	50J	55J	89-EC-SD04-06	2/10	NA
	Pesticides/PCBs	4,4'-DDE	2.2	33J	44J	89-EC-SD05-612	2/10	2
		4,4'-DDD	NE	42J	79	89-EC-SD05-612	2/10	NA
-		4,4'-DDT	1.58	23J	34	89-EC-SD05-612	2/10	2
		Alpha-Chlordane	NE	2J	2.9	89-EC-SD05-612	2/10	NA
		Gamma-Chlordane	NE	1.6J	4.6J	89-EC-SD05-612	2/10	NA
	Metals	Aluminum	NE	1010J		89-EC-SD04-612	10/10	NA
		Arsenic	8.2	0.38		89-EC-SD05-612	6/10	0
		Barium	NE	6		89-EC-SD03-06	10/10	NA
		Beryllium	NE	0.14		89-EC-SD04-612	4/10	NA
		Cadmium	1.2	0.77	0.82	89-EC-SD01-06	3/10	0

SUMMARY OF SITE SEDIMENT CONTAMINATION OPERABLE UNIT NO. 16 (SITE 89) MCB, CAMP LEJEUNE, NORTH CAROLINA CTO-0356

Media	Fraction	Detected Contaminants or Analytes	Comparison Criteria ⁽¹⁾	Min.	Max	Location of Maximum Detection	Detection Frequency	Detections Above Comparison Criteria
Sediment (1)		Chromium	81	2.4	7.6	89-EC-SD04-612	10/10	0
(fixed based lab)		Copper	34	5.5	38.7	89-EC-SD02-06	5/10	1
		Iron	NE	1190	3860	89-EC-SD04-612	10/10	NA
		Lead	46.7	6.6	35.4J	89-EC-SD05-06	10/10	0
		Manganese	NE	7.3	16.3	89-EC-SD04-612	10/10	NA
		Nickel	20.9	2.3	3.7	89-EC-SD02-612	2/10	0
		Vanadium	NE	4	19.7	89-EC-SD02-612	10/10	NA
		Zinc	150	11.7	53.1	89-EC-SD01-06	10/10	0

(1) - Sediment concentrations compared to Long, E.R. et al., 1995 Environmental Management Vol. 19, No. 1, pp. 81-97.

NA - Not Applicable

NE - None Established

TABLE 4-6 ONSITE LABORATORY POSITIVE DETECTION SUMMARY GROUNDWATER VOLATILE ORGANIC COMPOUNDS OPERABLE UNIT NO. 16 (SITE 89) MCB, CAMP LEJEUNE NORTH CAROLINA CTO-0356

SAMPLE ID	89-MW01	89-MW02	89-MW03	89-MW42B	89-TW04	89-TW08	89-TW09	89-TW10
SAMPLE DATE	07/31/96	07/30/96	07/31/96	07/31/96	07/31/96	08/03/96	08/03/96	08/04/96
UNITS	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)
VOLATILES VINYL CHLORIDE TRANS-1,2-DICHLOROETHENE CIS-1,2-DICHLOROETHENE 1,1,1-TRICHLOROETHANE TRICHLOROETHENE TETRACHLOROETHENE	ND 177 261 ND 323.1 42.4	130 451 818 ND 744.3 9.4	ND 82 150 ND 131.0 13.1	ND 6 37 ND 85.8 ND	ND ND ND ND ND	ND 61 253 ND 638.4 27.0	ND ND ND ND ND	ND ND ND 0.2 ND

NOTES ug/L = micrograms per liter. ND = Not Detected.

.

.

TABLE 4-6 (continued) ONSITE LABORATORY POSITIVE DETECTION SUMMARY GROUNDWATER VOLATILE ORGANIC COMPOUNDS OPERABLE UNIT NO. 16 (SITE 89) MCB, CAMP LEJEUNE NORTH CAROLINA CTO-0356

SAMPLE ID SAMPLE DATE UNITS	89-TW11 08/04/96 (ug/L)	89-TW12 08/04/96 (ug/L)	89-TW13 08/05/96 (ug/L)	89-TW15 08/06/96 (ug/L)	89-TW16 08/06/96 (ug/L)	89-TW18 08/13/96 (ug/L)	89-TW19 08/13/96 (ug/L)	89-TW20 08/14/96 (ug/L)	89-TW21 08/15/96 (ug/L)
VOLATILES									
VINYL CHLORIDE	ND								
TRANS-1,2-DICHLOROETHENE	ND	ND	3	53	44	ND	ND	ND	ND
CIS-1,2-DICHLOROETHENE	ND	ND	18	162	102	ND	ND	ND	ND
1,1,1-TRICHLOROETHANE	ND	ND	ND	ND	ND	0.2	ND	ND	ND
TRICHLOROETHENE	ND	ND	136.9	355.9	562.9	ND	ND	ND	ND
TETRACHLOROETHENE	ND	ND	4.8	13.7	42.7	0.2	ND	ND	ND

TABLE 4-6 (continued) ONSITE LABORATORY POSITIVE DETECTION SUMMARY GROUNDWATER VOLATILE ORGANIC COMPOUNDS OPERABLE UNIT NO. 16 (SITE 89) MCB, CAMP LEJEUNE NORTH CAROLINA CTO-0356

SAMPLE ID	89-TW04IW	89-TW08IW	89-TW09IW	89-TW10!W	89-TW11IW	89-TW12IW
SAMPLE DATE	07/31/96	08/03/96	08/03/96	08/04/96	08/04/96	08/04/96
UNITS	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)
VOLATILES VINYL CHLORIDE TRANS-1,2-DICHLOROETHENE CIS-1,2-DICHLOROETHENE 1,1,1-TRICHLOROETHANE TRICHLOROETHENE TETRACHLOROETHENE	ND ND ND ND ND	ND ND ND 0.3 ND	ND 20 114 ND 233.4 8.8	ND 5 27 ND 36.3 ND	ND ND 14 ND 3.3 ND	ND ND ND ND ND

TABLE 4-6 (continued) ONSITE LABORATORY POSITIVE DETECTION SUMMARY GROUNDWATER VOLATILE ORGANIC COMPOUNDS OPERABLE UNIT NO. 16 (SITE 89) MCB, CAMP LEJEUNE NORTH CAROLINA CTO-0356

SAMPLE ID SAMPLE DATE UNITS	89-TW13IW 08/05/96 (ug/L)	89-TW15IW 08/06/96 (ug/L)	89-TW16IW 08/06/96 (ug/L)	89-TW17IW 08/07/96 (ug/L)	89-TW18IW 08/13/96 (ug/L)	89-TW19IW 08/13/96 (ug/L)
VOLATILES						
VINYL CHLORIDE	ND	ND	ND	ND	ND	ND
TRANS-1,2-DICHLOROETHENE	1	ND	ND	90	ND	ND
CIS-1,2-DICHLOROETHENE	21	3	ND	287	ND	11
1,1,1-TRICHLOROETHANE	ND	ND	ND	ND	ND	ND
TRICHLOROETHENE	57.9	6.0	0.6	425.7	ND	3.8
TETRACHLOROETHENE	7.4	0.1	ND	1.5	ND	ND

NOTES ug/L = micrograms per liter. ND = Not Detected. -

i

TABLE 4-6 (continued) ONSITE LABORATORY POSITIVE DETECTION SUMMARY GROUNDWATER VOLATILE ORGANIC COMPOUNDS OPERABLE UNIT NO. 16 (SITE 89) MCB, CAMP LEJEUNE NORTH CAROLINA CTO-0356

SAMPLE ID SAMPLE DATE UNITS	89-TW20IW 08/14/96 (ug/L)	89-TW21IW 08/15/96 (ug/L)	89-TW22IW 08/16/96 (ug/L)	89-TW23IW 08/21/96 (ug/L)
VOLATILES				
VINYL CHLORIDE	ND	ND	ND	ND
TRANS-1,2-DICHLOROETHENE	8	1	17	9
CIS-1,2-DICHLOROETHENE	57	9	106	84
1.1.1-TRICHLOROETHANE	ND	ND	ND	ND
TRICHLOROETHENE	59.1	10.4	293.9	123.9
TETRACHLOROETHENE	0.4	ND	13.0	0.1

NOTES ug/L = micrograms per liter. ND = Not Detected.

-

TABLE 4-7 FIXED BASE DETECTION SUMMARY GROUNDWATER VOLATILE ORGANIC COMPOUNDS OPERABLE UNIT NO. 16 (SITE 89) MCB, CAMP LEJEUNE, NORTH CAROLINA CTO-0356

SAMPLE_NO LAB_ID DATE SAMPLED UNITS	89-TW08-01 9608G686-004 08/06/96 UG/L	89-TW09-01 9608G686-006 08/07/96 UG/L	89-TW09IW-01 9608G686-007 08/07/96 UG/L	89-TW17lW-01 9608G686-009 08/07/96 UG/L
VOLATILES		40.11	40.11	
CHLOROMETHANE	10 U	10 U	10 U	10 U
BROMOMETHANE	10 U	10 U	10 U	10 U
VINYL CHLORIDE	10 U	10 U	10 U	10 U
CHLOROETHANE	10 U	10 U	10 U	10 U
METHYLENE CHLORIDE	10 U	10 U	10 U	10 U
ACETONE	10 U	10 U	10 U	10 U
CARBON DISULFIDE	10 U	10 U	10 U	10 U
1,1-DICHLOROETHENE	10 U	10 U	10 U	10 U
1,1-DICHLOROETHANE	10 U	10 U	10 U	10 U
1,2-DICHLOROETHENE (TOTAL)	370	10 U	150	360
CHLOROFORM	10 U	10 U	10 U	10 U
1,2-DICHLOROETHANE	10 U	10 U	10 U	10 U
2-BUTANONE	10 UJ	10 UJ	10 UJ	10 UJ
1,1,1-TRICHLOROETHANE	10 U	10 U	10 U	10 U
CARBON TETRACHLORIDE	10 U	10 U	10 U	10 U
BROMODICHLOROMETHANE	10 U	10 U	10 U	10 U
1,2-DICHLOROPROPANE	10 U	10 U	10 U	10 U
CIS-1,3-DICHLOROPROPENE	10 U	10 U	10 U	10 U
TRICHLOROETHENE	670	10 U	260	390
DIBROMOCHLOROMETHANE	10 U	10 U	10 U	10 U
1,1,2-TRICHLOROETHANE	10 U	10 U	10 U	10 U
BENZENE	10 U	10 U	10 U	10 U
TRANS-1,3-DICHLOROPROPENE	10 U	10 U	10 U	10 U
BROMOFORM	10 U	10 U	10 U	10 U
4-METHYL-2-PENTANONE	10 UJ	10 UJ	10 UJ	10 UJ

QUALIFIER DEFINITIONS

.

U = Not detected at reported quantitation limit.

UJ = Reported quantitation limit is estimated.

NOTES

TABLE 4-7 (continued) FIXED BASED DETECTION SUMMARY GROUNDWATER VOLATILE ORGANIC COMPOUNDS OPERABLE UNIT NO. 16 (SITE 89) MCB, CAMP LEJEUNE, NORTH CAROLINA CTO-0356

Å.

ł

SAMPLE_NO LAB_ID DATE SAMPLED UNITS	89-TW08-01 9608G686-004 08/06/96 UG/L	89-TW09-01 9608G686-006 08/07/96 UG/L	89-TW09!W-01 9608G686-007 08/07/96 UG/L	89-TW17IW-01 9608G686-009 08/07/96 UG/L
VOLATILES (cont)				
2-HEXANONE	10 UJ	10 UJ	10 UJ	10 UJ
TETRACHLOROETHENE	23	10 U	10 U	10 U
1,1,2,2-TETRACHLOROETHANE	10 UJ	10 U	10 U	10 U
TOLUENE	10 U	10 U	10 U	10 U
CHLOROBENZENE	10 U	10 U	10 U	10 U
ETHYLBENZENE	10 U	10 U	10 U	10 U
STYRENE	10 U	10 U	10 U	10 U
XYLENE (TOTAL)	10 U	10 U	10 U	10 U

QUALIFIER DEFINITIONS U = Not detected at reported quantitation limit. UJ = Reported quantitation limit is estimated.

> NOTES ug/L = micrograms per liter.

SUMMARY OF SITE GROUNDWATER CONTAMINATION OPERABLE UNIT NO. 16 (SITE 89) MCB, CAMP LEJEUNE, NORTH CAROLINA CTO-0356

		Comp: Detected		Comparison Criteria ⁽¹⁾			Location of	Detection	Detections Comparison	Above Criteria
Media	Fraction	Contaminants or Analytes	NC WQS	Federal MCL	Min.	Max.	Maximum Detection	Frequency	NC WQS	Federal MCL
Groundwater (1)	Volatiles	Vinyl Chloride	0.000015	2	130	130	89-MW02	1/36	1	1
(on-site lab)		Trans-1,2-Dichloroethene	70	100	1	451	89-MW02	16/33	4	2
		Cis-1,2-Dichloroethene	70	70	3	818	89-MW02	19/33	11	11
		1,1,1-Trichloroethane	NE	200	0.2	0.2	89-TW18	1/33	0	0
		Trichloroethene	2.8	5	0.2	744.3	89-MW02	22/33	19	17
		Tetrachloroethene	1	5	0.1	42.7	89-TW16	15/33	11	9
Groundwater ⁽¹⁾	Volatiles	1,2-Dichloroethene (total)	70	70	150	370	89-TW08	3/4	3	3
(fixed based lab)		Trichloroethene	2.8	5	260	670	89-TW08	3/4	3	3
		Tetrachloroethene	1	5	23	23	89-TW08	1/4	1	1

(1) - Groundwater concentrations compared to North Carolina Water Quality Standards for Groundwater/USEPA Maximum Contaminant Levels Concentrations in ug/L

.

NA - Not Applicable

NE - None Established

TABLE 4-9 ONSITE LABORATORY POSITIVE DETECTION SUMMARY GROUNDWATER VOLATILE ORGANIC COMPOUNDS OPERABLE UNIT NO. 16 (SITE 93) MCB, CAMP LEJEUNE, NORTH CAROLINA CTO-0356

SAMPLE ID SAMPLE DATE UNITS	93-MW05-01 07/30/96 (ug/L)	93-TW01 07/30/96 (ug/L)	93-TW02-01 07/30/96 (ug/L)	93-TW03-01 07/31/96 (ug/L)	93-TW05-01 08/01/96 (ug/L)	93-TW06-01 08/01/96 (ug/L)
VOLATILES						
TRANS-1,2-DICHLOROETHENE	5	57	ND	ND	ND	ND
CIS-1,2-DICHLOROETHENE	15	175	ND	ND	ND	ND
1,1,1-TRICHLOROETHANE	ND	0.2	ND	ND	ND	ND
TRICHLOROETHENE	24.3	39.4	ND	ND	ND	1.3
TETRACHLOROETHENE	65.1	16.2	ND	ND	ND	8.9

NOTES ug/L = micrograms per liter. ND = Not Detected.

.

TABLE 4-9 (continued) ONSITE LABORATORY POSITIVE DETECTION SUMMARY GROUNDWATER VOLATILE ORGANIC COMPOUNDS OPERABLE UNIT NO. 16 (SITE 93) MCB, CAMP LEJEUNE, NORTH CAROLINA CTO-0356

SAMPLE ID	93-TW07-01	93-TW14-01
SAMPLE DATE	08/03/96	08/05/96
UNITS	(ug/L)	(ug/L)
VOLATILES TRANS-1,2-DICHLOROETHENE CIS-1,2-DICHLOROETHENE 1,1,1-TRICHLOROETHANE TRICHLOROETHENE TETRACHLOROETHENE	ND ND ND 0.6 0.8	ND ND ND ND ND

TABLE 4-9 (continued) ONSITE LABORATORY POSITIVE DETECTION SUMMARY GROUNDWATER VOLATILE ORGANIC COMPOUNDS OPERABLE UNIT NO. 16 (SITE 93) MCB, CAMP LEJEUNE, NORTH CAROLINA CTO-0356

SAMPLE ID SAMPLE DATE UNITS	93-TW011W 07/30/96 (ug/L)	93-TW02IW-01 07/30/96 (ug/L)	93-TW03IW-01 07/31/96 (ug/L)	93-TW05IW-01 08/01/96 (ug/L)	93-TW06IW-01 08/01/96 (ug/L)	93-TW07IW-01 08/03/96 (ug/L)	93-TW14IW-01 08/05/96 (ug/L)
VOLATILES							
TRANS-1,2-DICHLOROETHENE	ND	ND	ND	ND	ND	ND	ND
CIS-1,2-DICHLOROETHENE	ND	4	ND	ND	ND	ND	ND
1.1.1-TRICHLOROETHANE	ND	ND	ND	ND	ND	ND	ND
TRICHLOROETHENE	0.1	0.1	ND	ND	0.1	ND	ND
TETRACHLOROETHENE	ND	ND	ND	ND	0.5	0.1	ND

~ .

TABLE 4-10 FIXED BASE DETECTION SUMMARY GROUNDWATER VOLATILE ORGANIC COMPOUNDS OPERABLE UNIT NO. 16 (SITE 93) MCB, CAMP LEJEUNE, NORTH CAROLINA CTO-0356

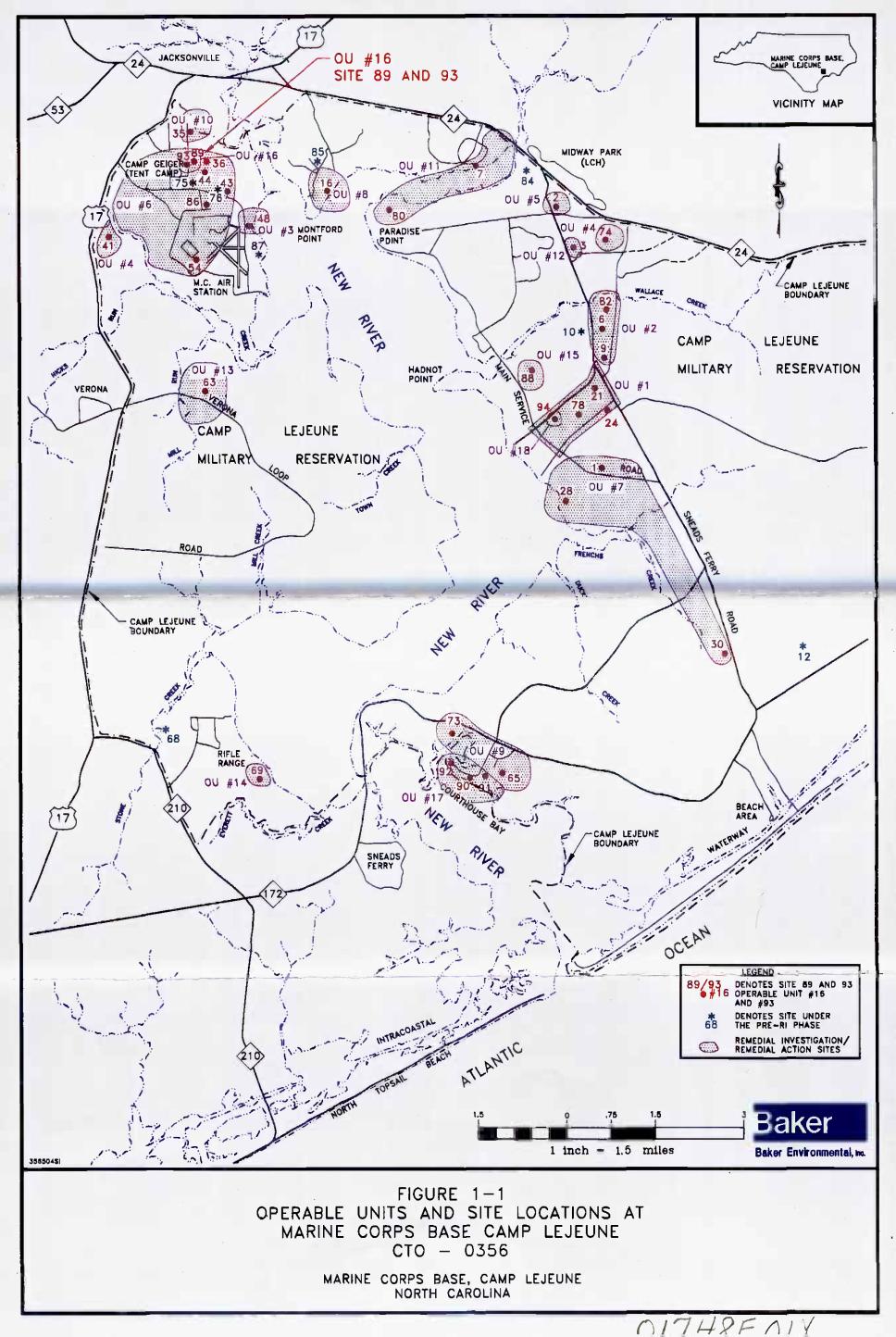
SAMPLE_NO LAB_ID DATE SAMPLED UNITS	93-TW01-01 9608G686-001 08/06/96 UG/L	93-TW07-01 9608G686-003 08/06/96 UG/L	93-TW02IW-01 9608G686-002 08/06/96 UG/L	93-TW07IW-01 9608G686-005 08/06/96 UG/L
VOLATILES				
CHLOROMETHANE	10 U	10 U	10 U	10 U
BROMOMETHANE	10 U	10 U	10 U	10 U
VINYL CHLORIDE	10 U	10 U	10 U	10 U
CHLOROETHANE	10 U	10 U	10 U	10 U
METHYLENE CHLORIDE	10 U	10 U	10 U	10 U
ACETONE	10 U	10 U	10 U	10 U
CARBON DISULFIDE	10 U	10 U	10 U	10 U
1,1-DICHLOROETHENE	10 U	10 U	10 U	10 U
1,1-DICHLOROETHANE	10 U	10 U	10 U	10 U
1,2-DICHLOROETHENE (TOTAL)	200	10 U	10 U	10 U
CHLOROFORM	10 U	10 U	10 U	10 U
1,2-DICHLOROETHANE	10 U	10 U	10 U	10 U
2-BUTANONE	10 UJ	10 UJ	10 UJ	10 UJ
1,1,1-TRICHLOROETHANE	10 U	10 U	10 U	10 U
CARBON TETRACHLORIDE	10 U	10 U	10 U	10 U
BROMODICHLOROMETHANE	10 U	10 U	10 U	10 U
1,2-DICHLOROPROPANE	10 U	10 U	10 U	10 U
CIS-1,3-DICHLOROPROPENE	10 U	10 U	10 U	10 U
TRICHLOROETHENE	26	10 U	10 U	10 U
DIBROMOCHLOROMETHANE	10 U	10 U	10 U	10 U
1,1,2-TRICHLOROETHANE	10 U	10 U	10 U	10 U
BENZENE	10 U	10 U	10 U	10 U
TRANS-1,3-DICHLOROPROPENE	10 U	10 U	10 U	10 U
BROMOFORM	10 U	10 U	10 U	10 U

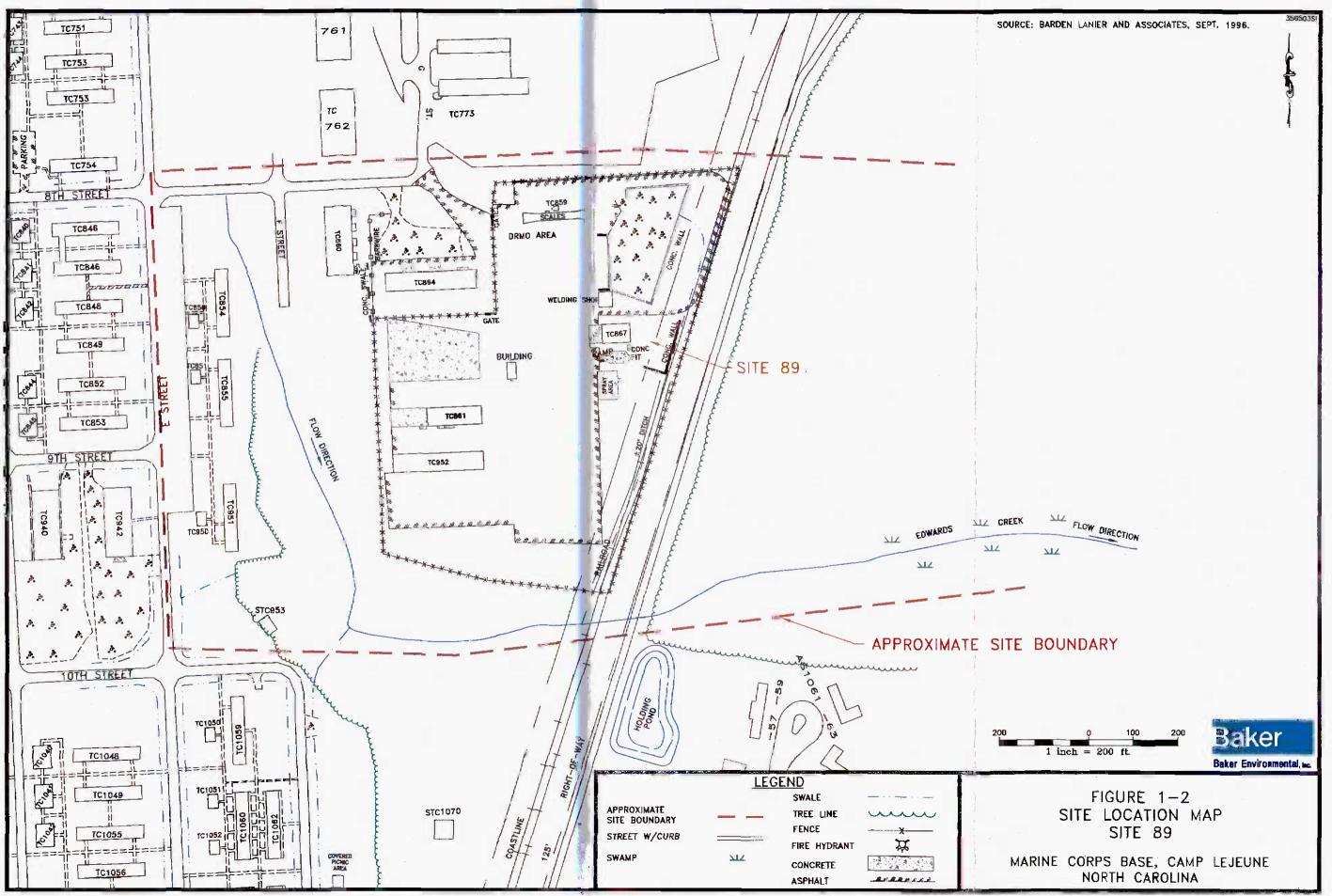
QUALIFIER DEFINITIONS U = Not detected at reported quantitation limit. UJ = Reported quantitation limit is estimated.

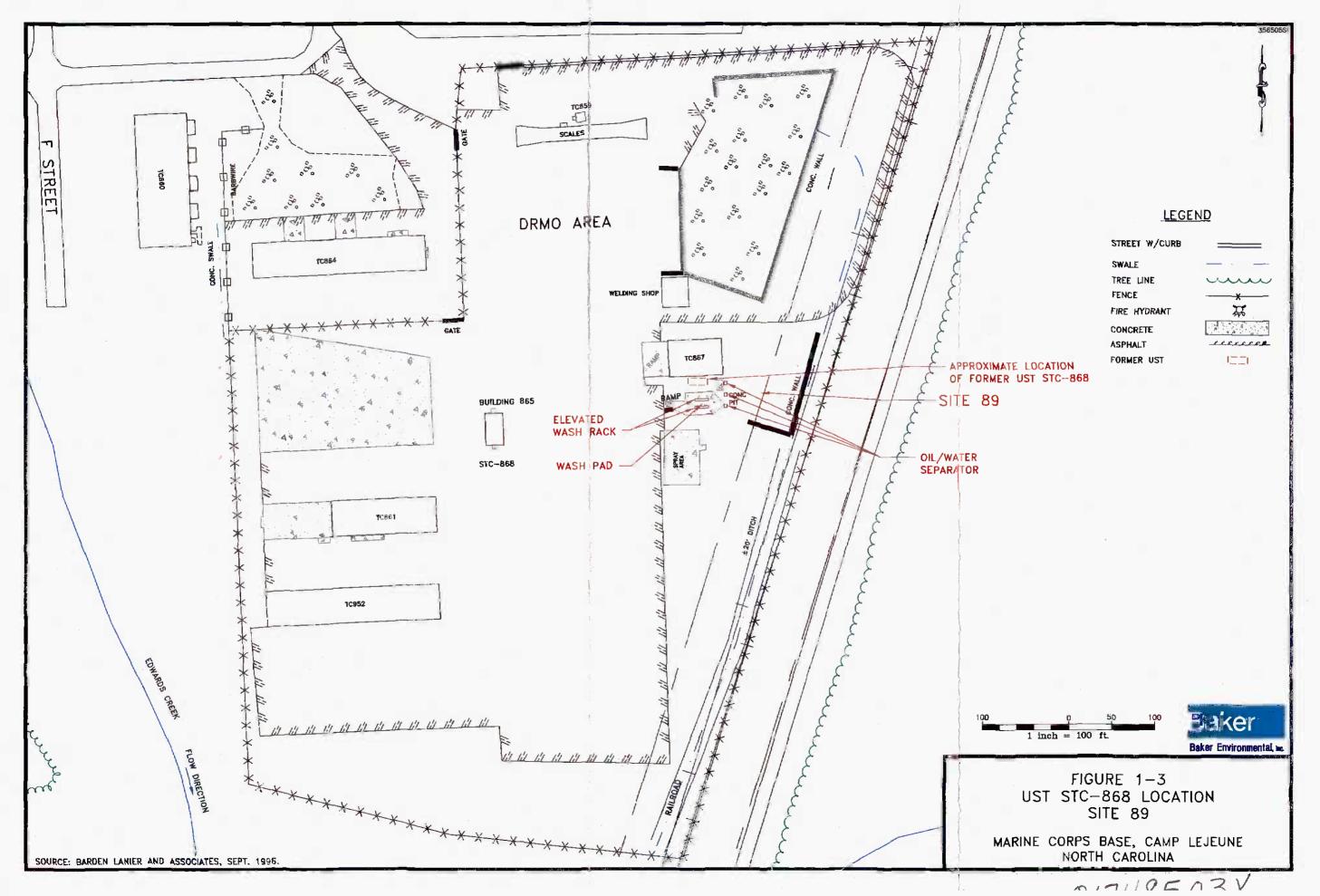
NOTES ug/L = micrograms per liter.

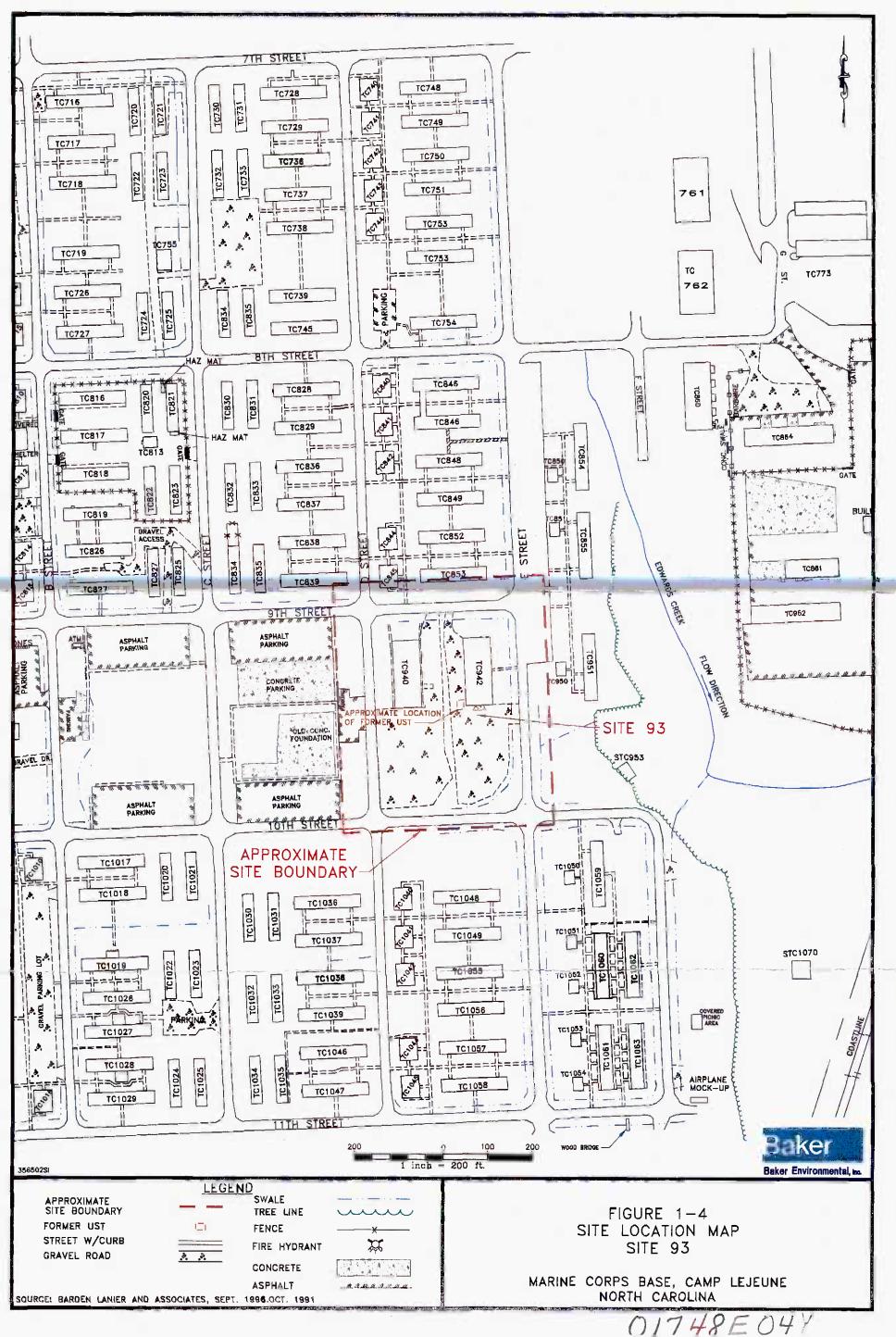
TABLE 4-10 (continued) FIXED BASE DETECTION SUMMARY GROUNDWATER VOLATILE ORGANIC COMPOUNDS OPERABLE UNIT NO. 16 (SITE 93) MCB, CAMP LEJEUNE, NORTH CAROLINA CTO-0356

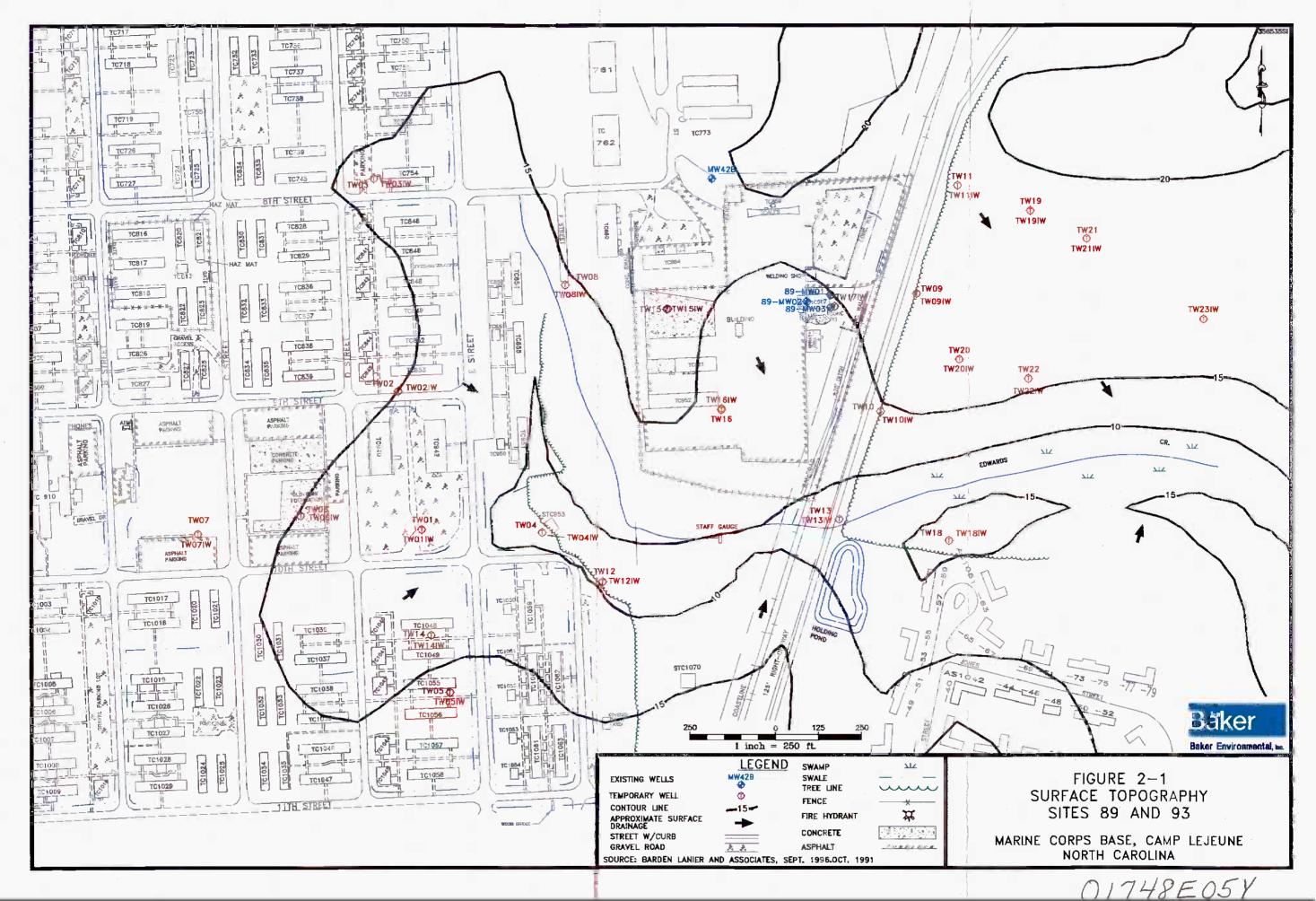
SAMPLE_NO LAB_ID DATE SAMPLED UNITS	93-TW01-01 9608G686-001 08/06/96 UG/L	93-TW07-01 9608G686-003 08/06/96 UG/L	93-TW02IW-01 9608G686-002 08/06/96 UG/L	93-TW07IW-01 9608G686-005 08/06/96 UG/L
VOLATILES (cont)				
4-METHYL-2-PENTANONE	10 UJ	10 UJ	10 UJ	10 UJ
2-HEXANONE	10 UJ	10 UJ	10 UJ	10 UJ
TETRACHLOROETHENE	12	10 U	10 U	10 U
1,1,2,2-TETRACHLOROETHANE	10 UJ	10 UJ	10 UJ	10 U
TOLUENE	10 U	10 U	10 U	10 U
CHLOROBENZENE	10 U	10 U	10 U	10 U
ETHYLBENZENE	10 U	10 U	10 U	10 U
STYRENE	10 U	10 U	10 U	10 U
XYLENE (TOTAL)	10 U	10 U	10 U	10 U

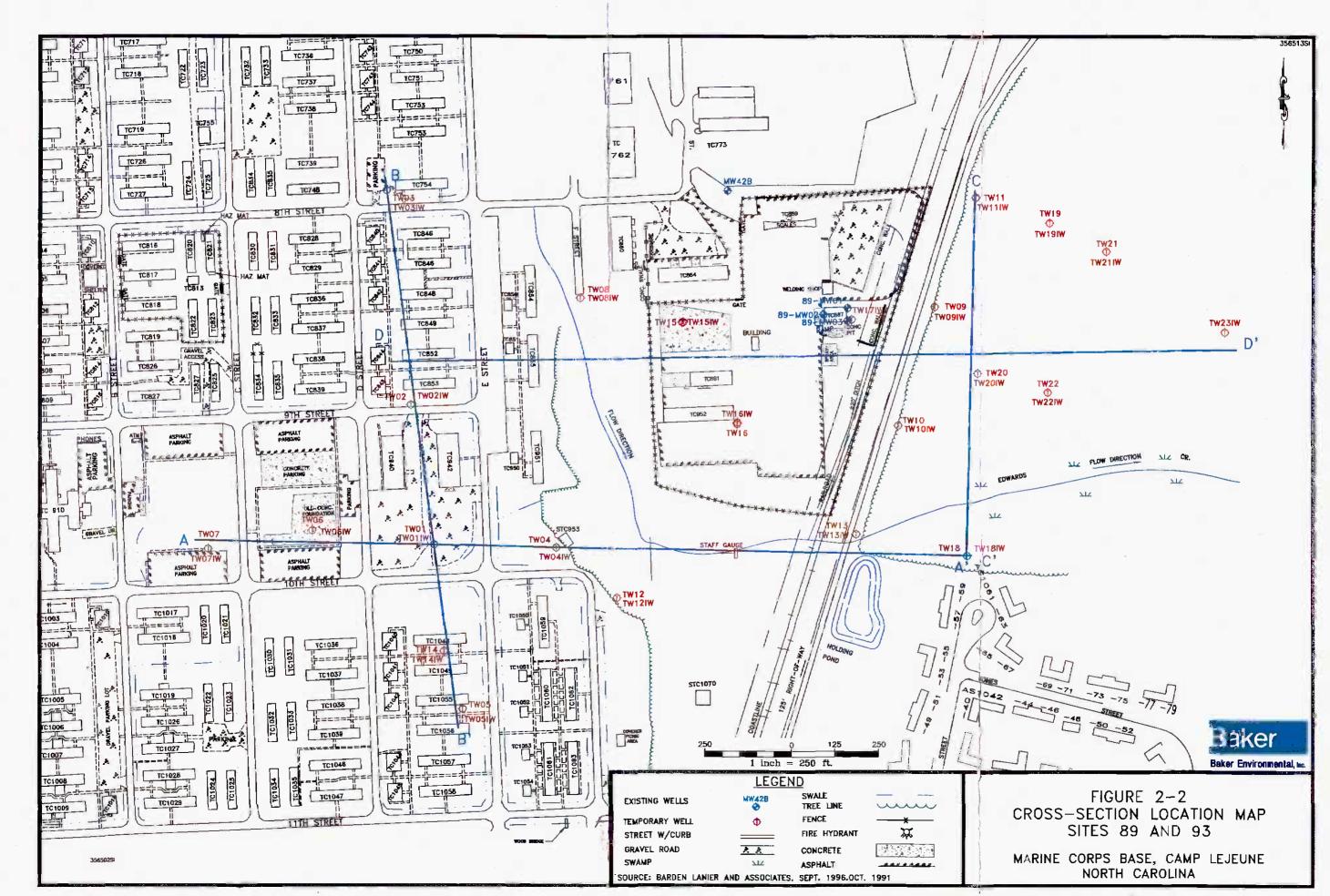

QUALIFIER DEFINITIONS U = Not detected at reported quantitation limit. UJ = Reported quantitation limit is estimated.

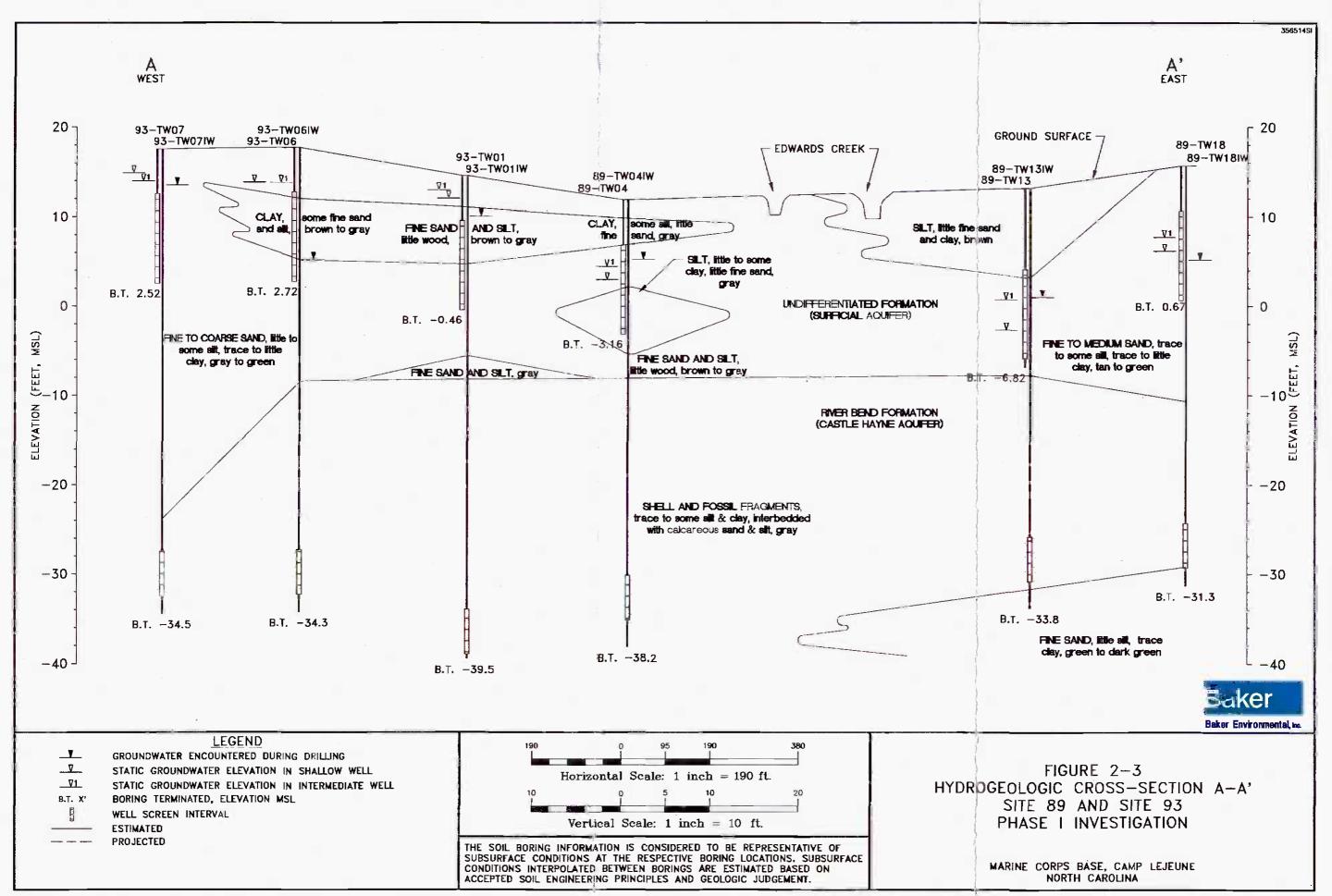

> NOTES ug/L = micrograms per liter.

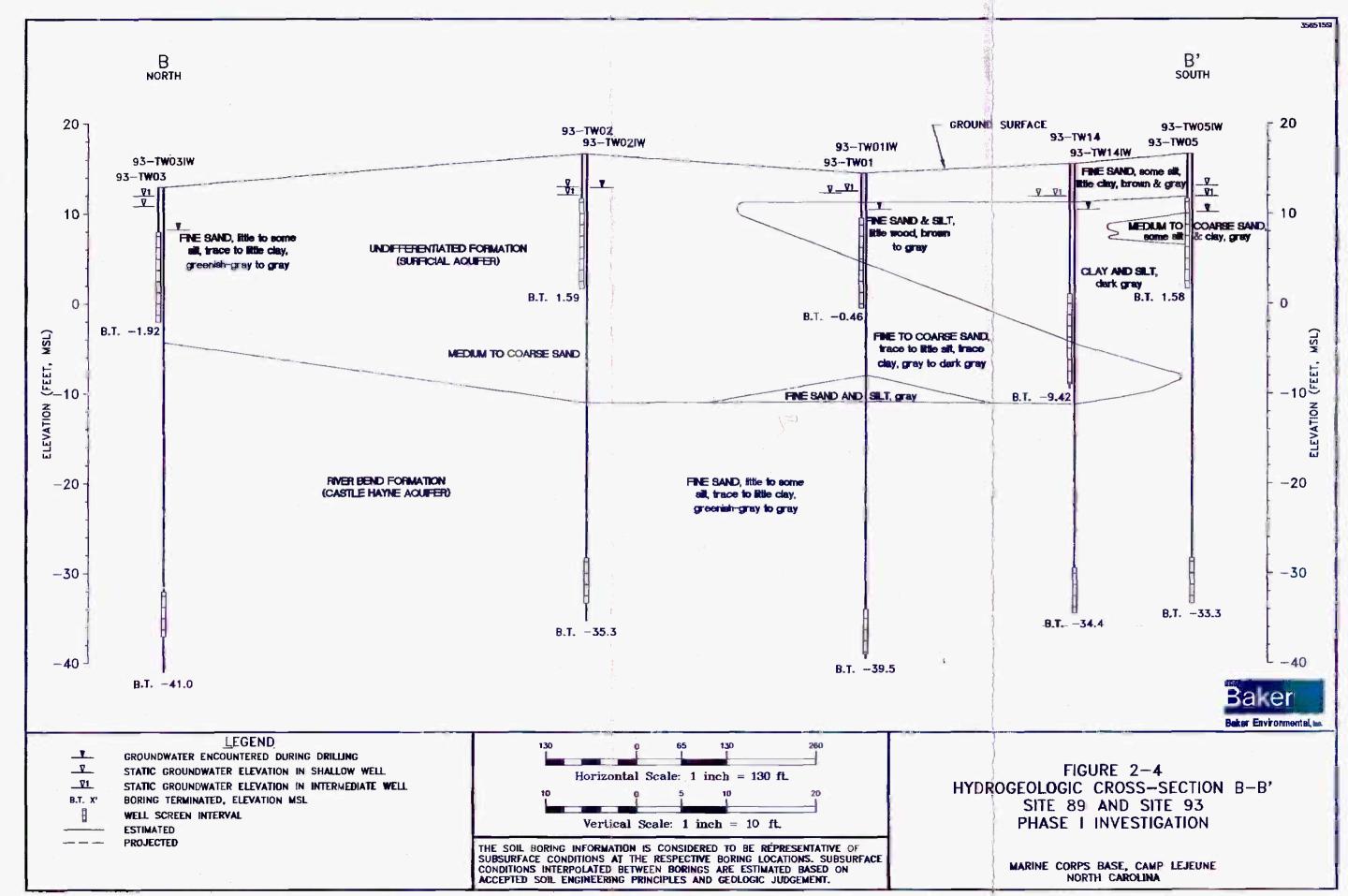

SUMMARY OF SITE GROUNDWATER CONTAMINATION **OPERABLE UNIT NO. 16 (SITE 93)** MCB, CAMP LEJEUNE, NORTH CAROLINA CTO-0356

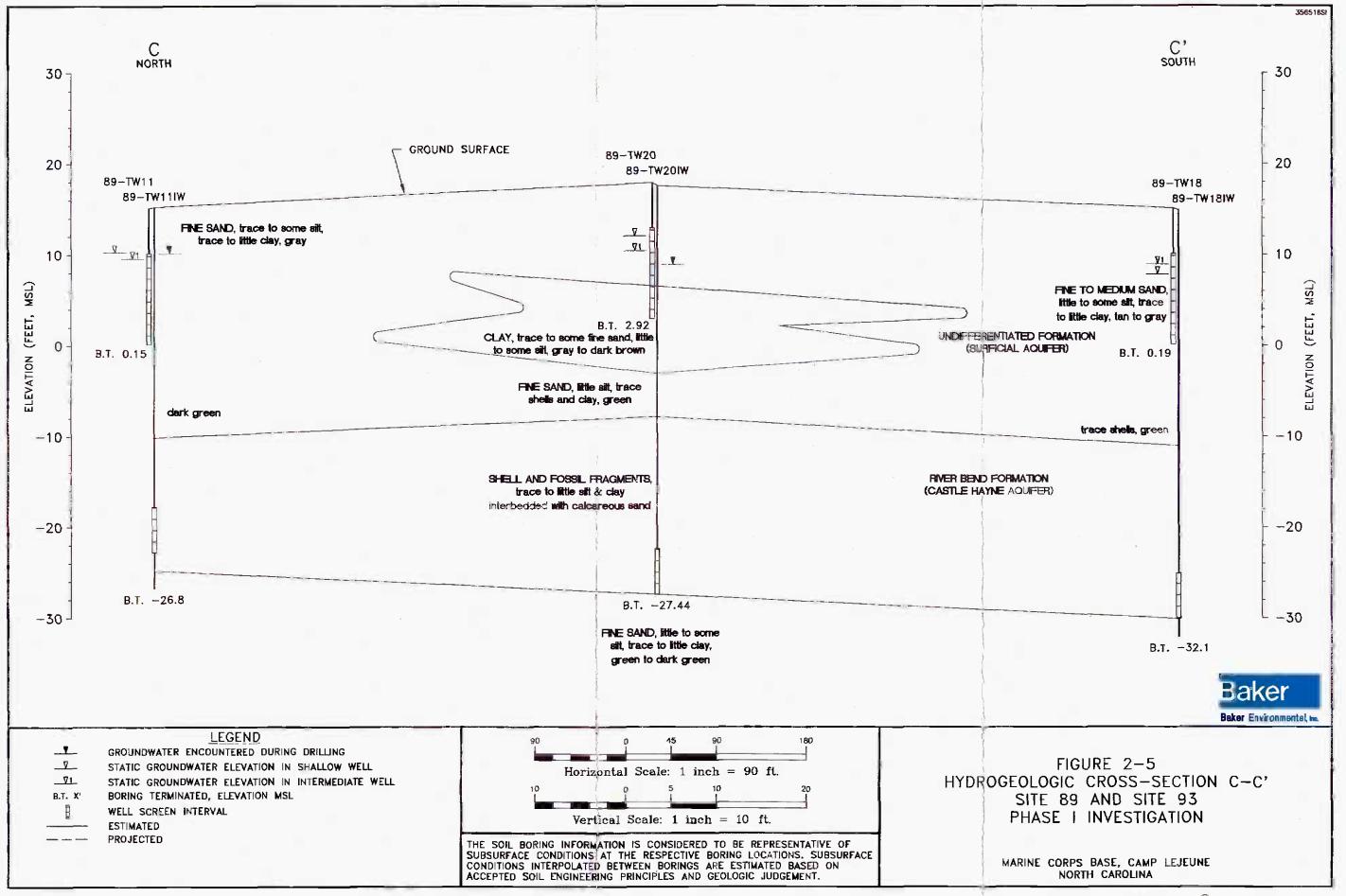

		Detected	Comparison Criteria ⁽¹⁾				Location of	Detection	Detections Comparison	Above Criteria
Media Fraction	Contaminants or Analytes	NC WQS	Federal MCL	Min.	Max.	Maximum Detection	Frequency	NC WQS Federal	Federal MCL	
Groundwater (1)	Volatiles	Trans-1,2-Dichloroethene	70	100	5	57	93-TW01	2/15	0	0
(on-site lab)		Cis-1,2-Dichloroethene	70	70	4	175	93-TW01	3/15	1	1
		1,1,1-Trichloroethane	NE	200	0.2	0.2	93-TW01	1/15	0	0
		Trichloroethene	2.8	5	0.1	39.4	93-TW01	7/15	2	2
		Tetrachloroethene	1	5	0.1	65.1	93-MW05	6/15	3	3
Groundwater (1)	Volatiles	1,2-Dichloroethene (total)	70	70	200	200	93-TW01	1/4	1	1
(fixed based lab)		Trichloroethene	2.8	5	26	26	93-TW01	1/4	1	1
	L	Tetrachloroethene	1	5	12	12	93-TW01	1/4	1	1

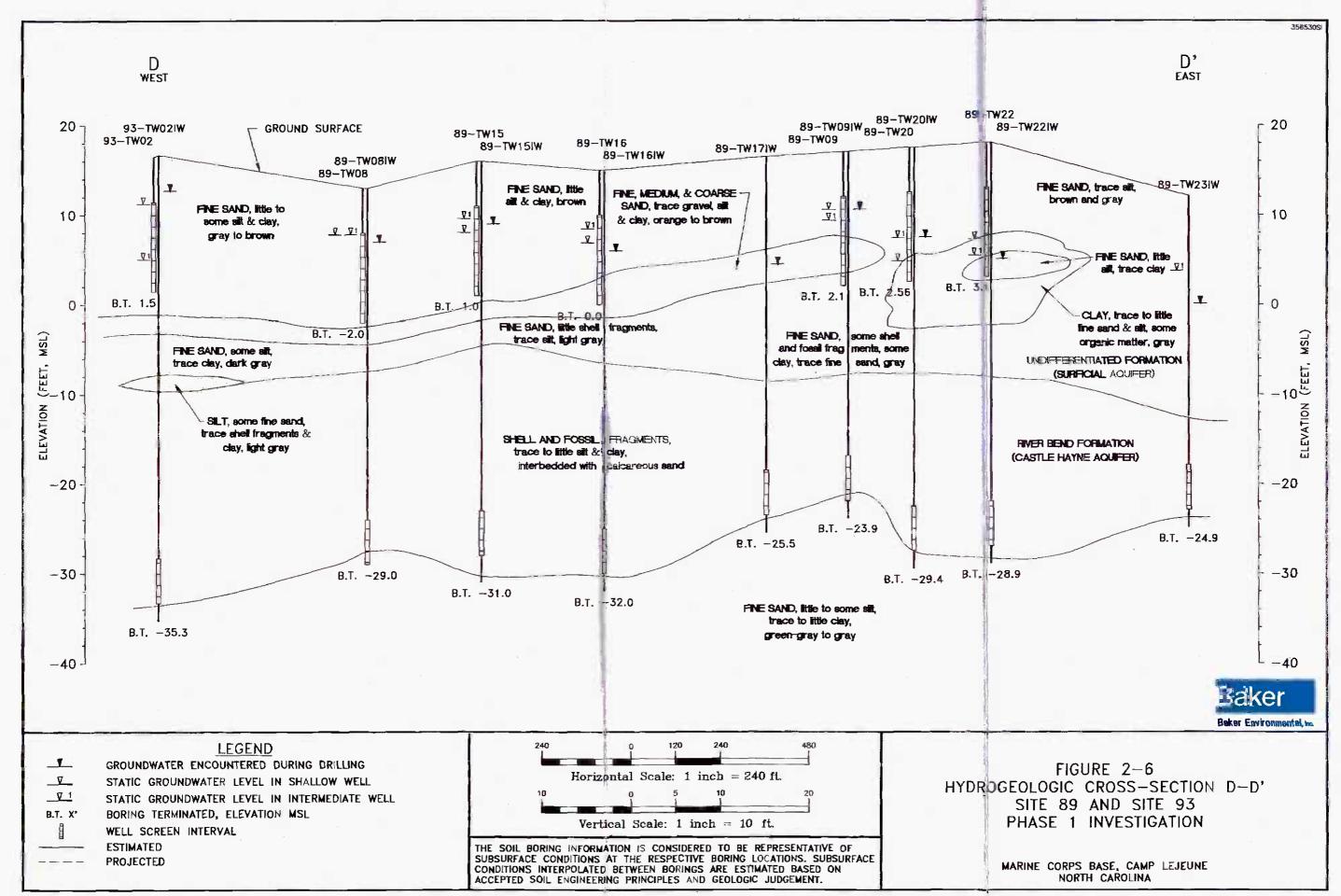

(1) - Groundwater concentrations compared to North Carolina Water Quality Standards for Groundwater/USEPA Maximum Contaminant Levels NE - None Established

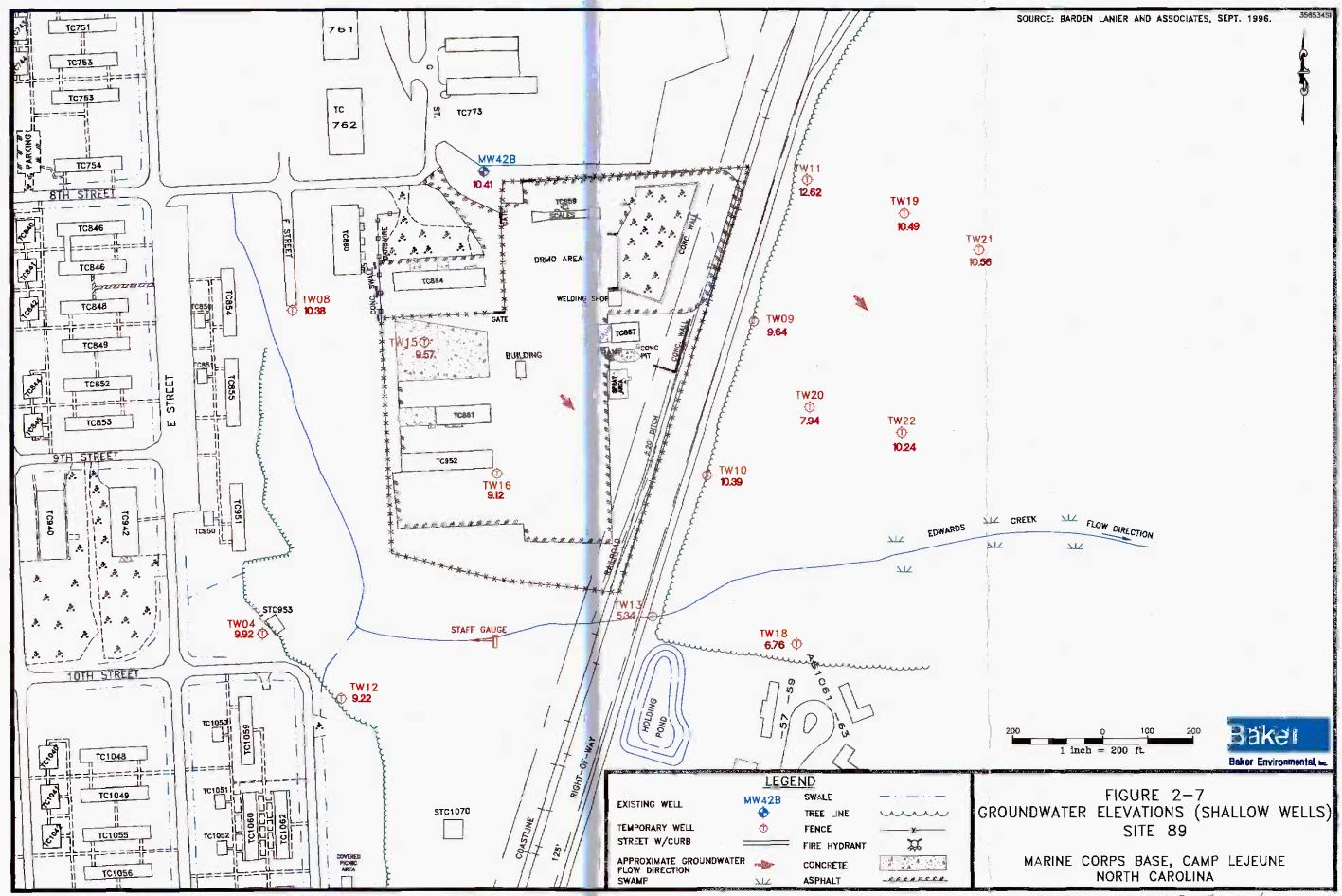


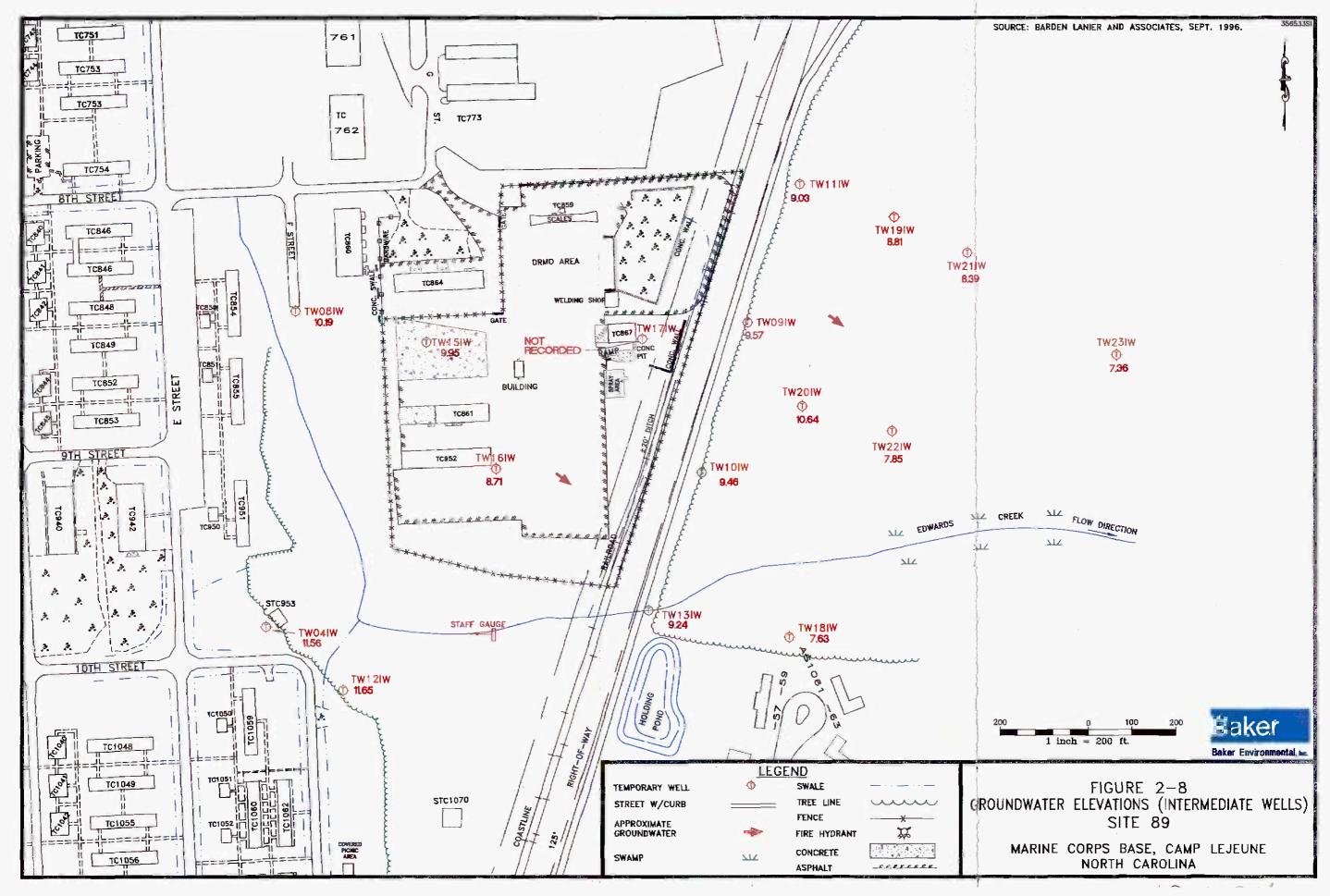


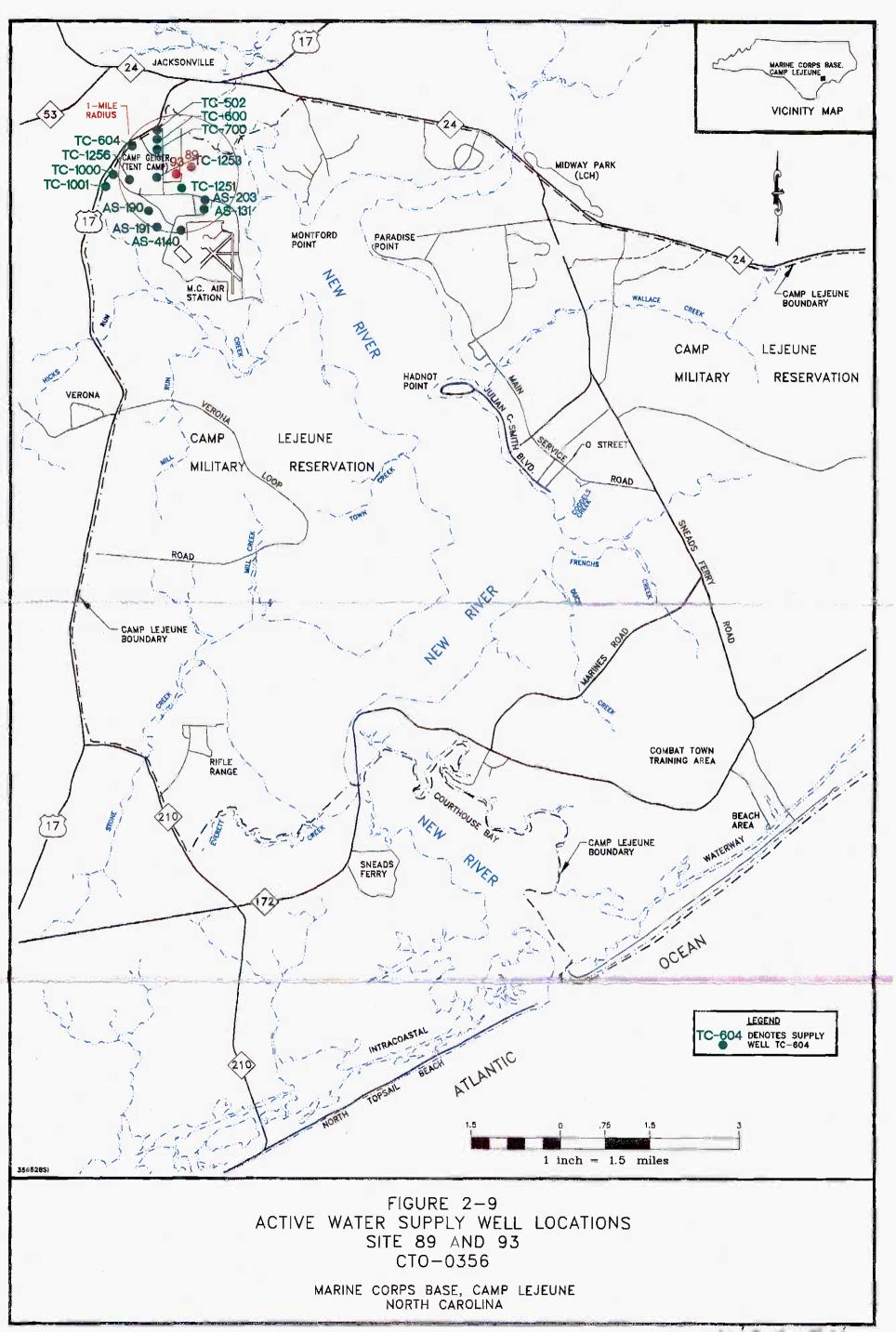


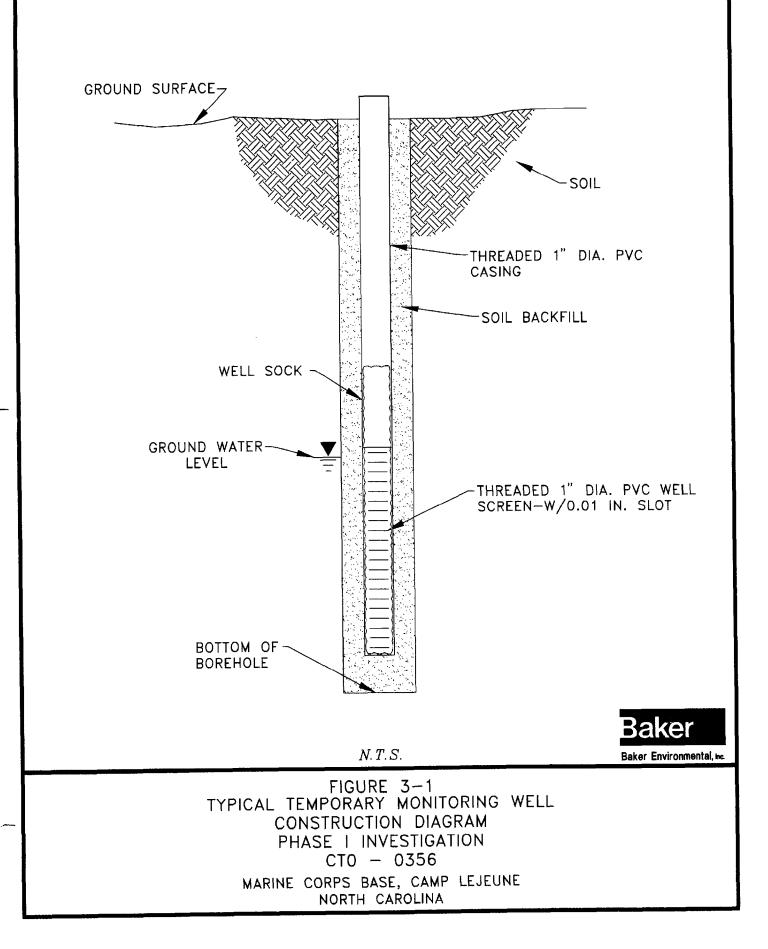


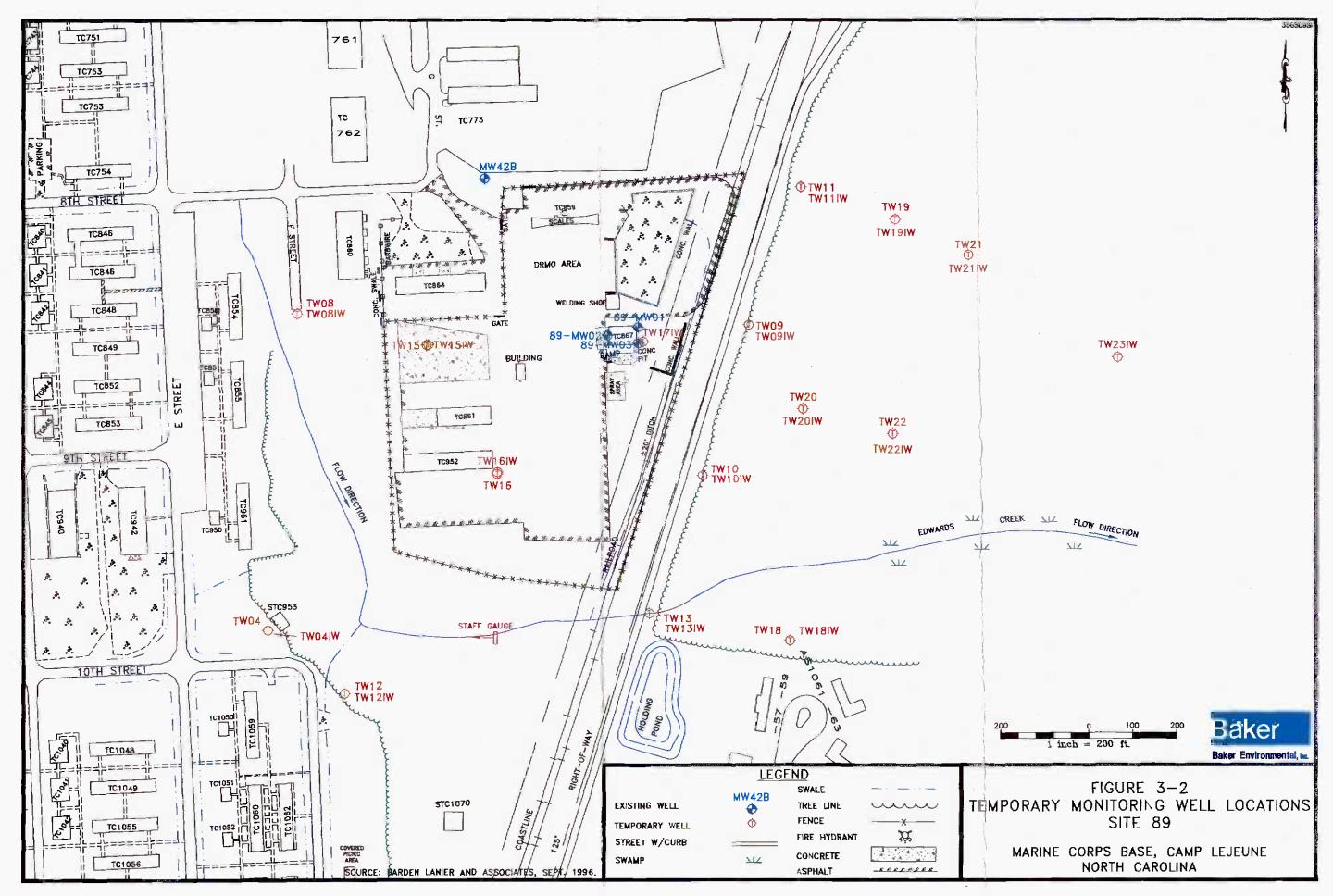


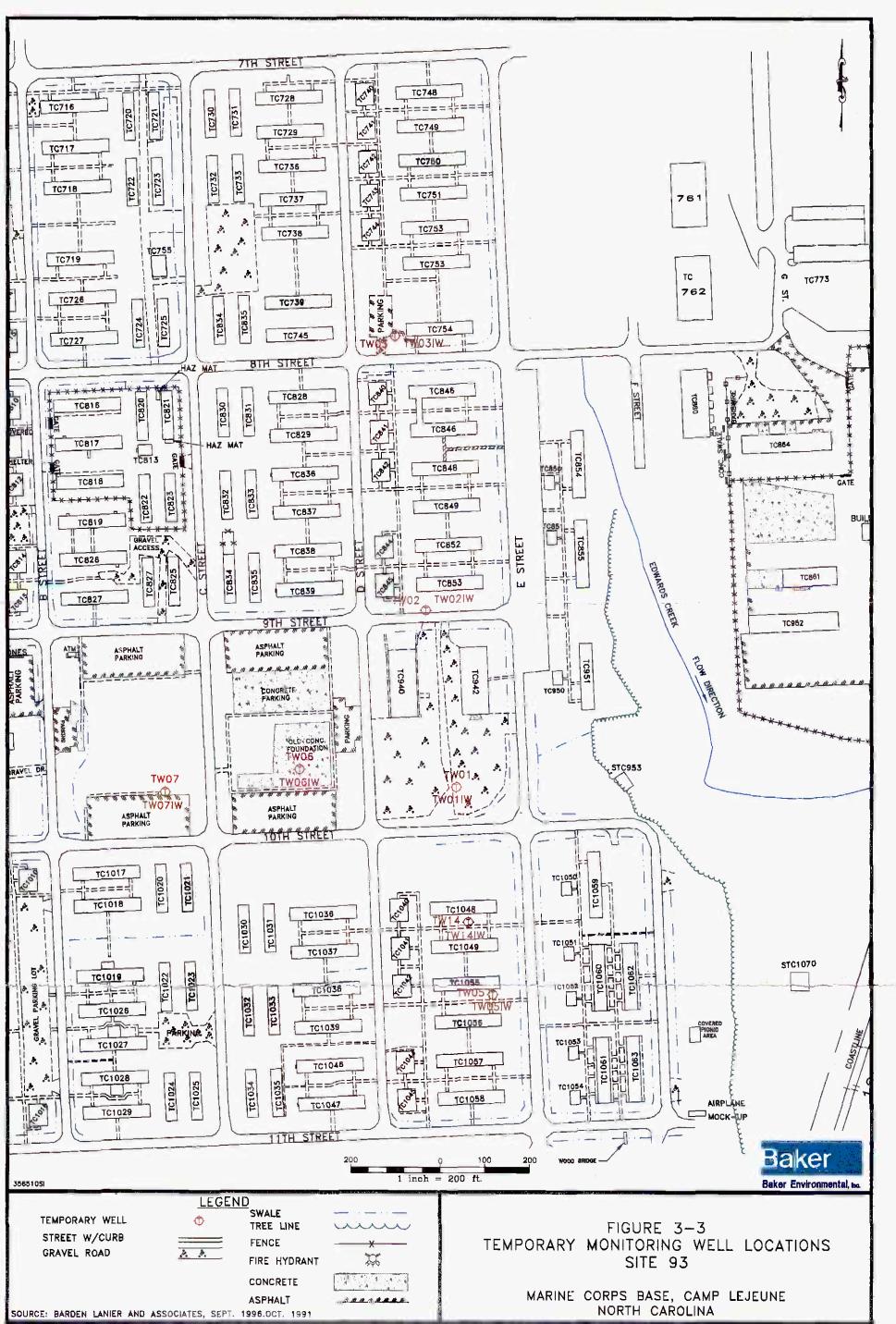


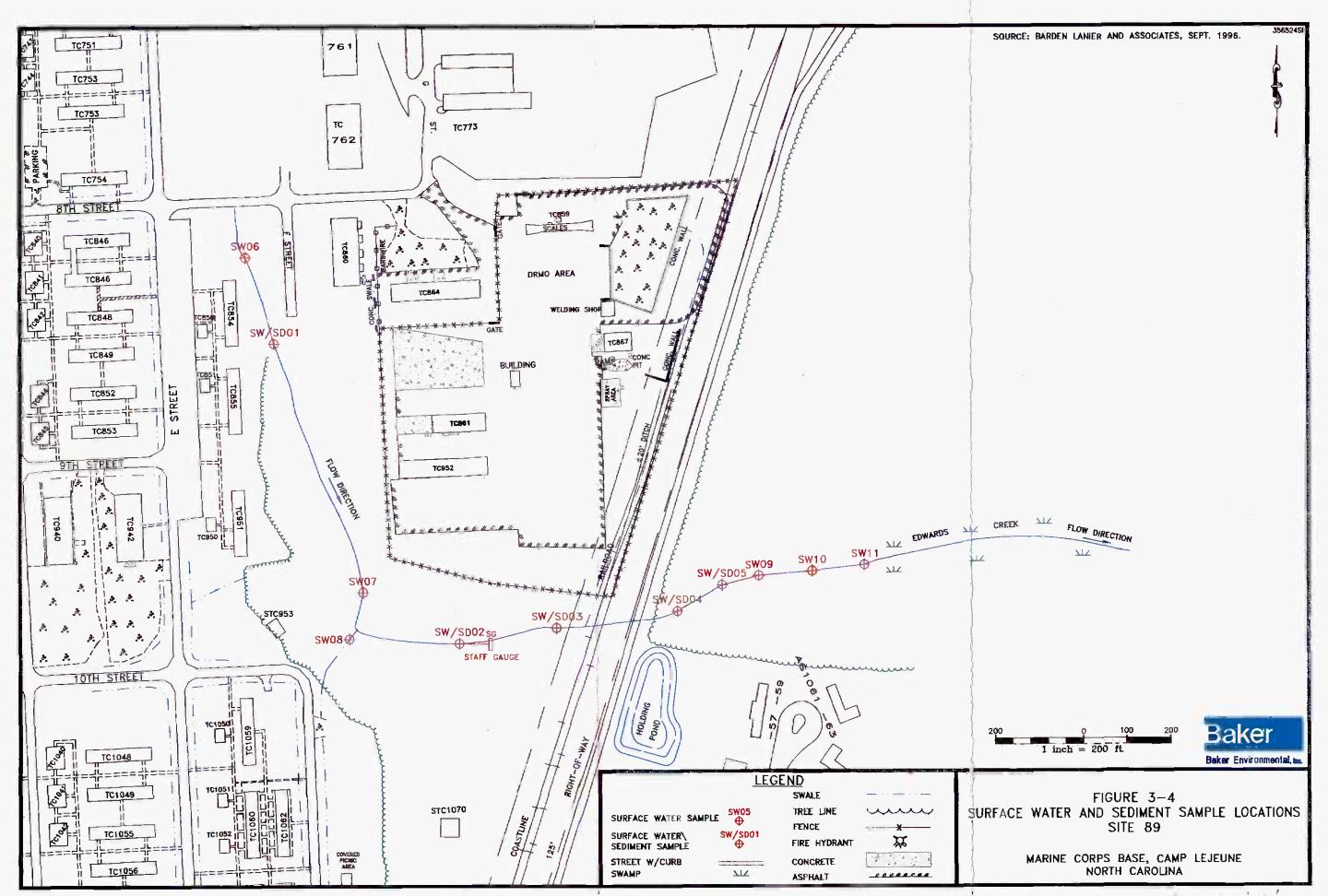


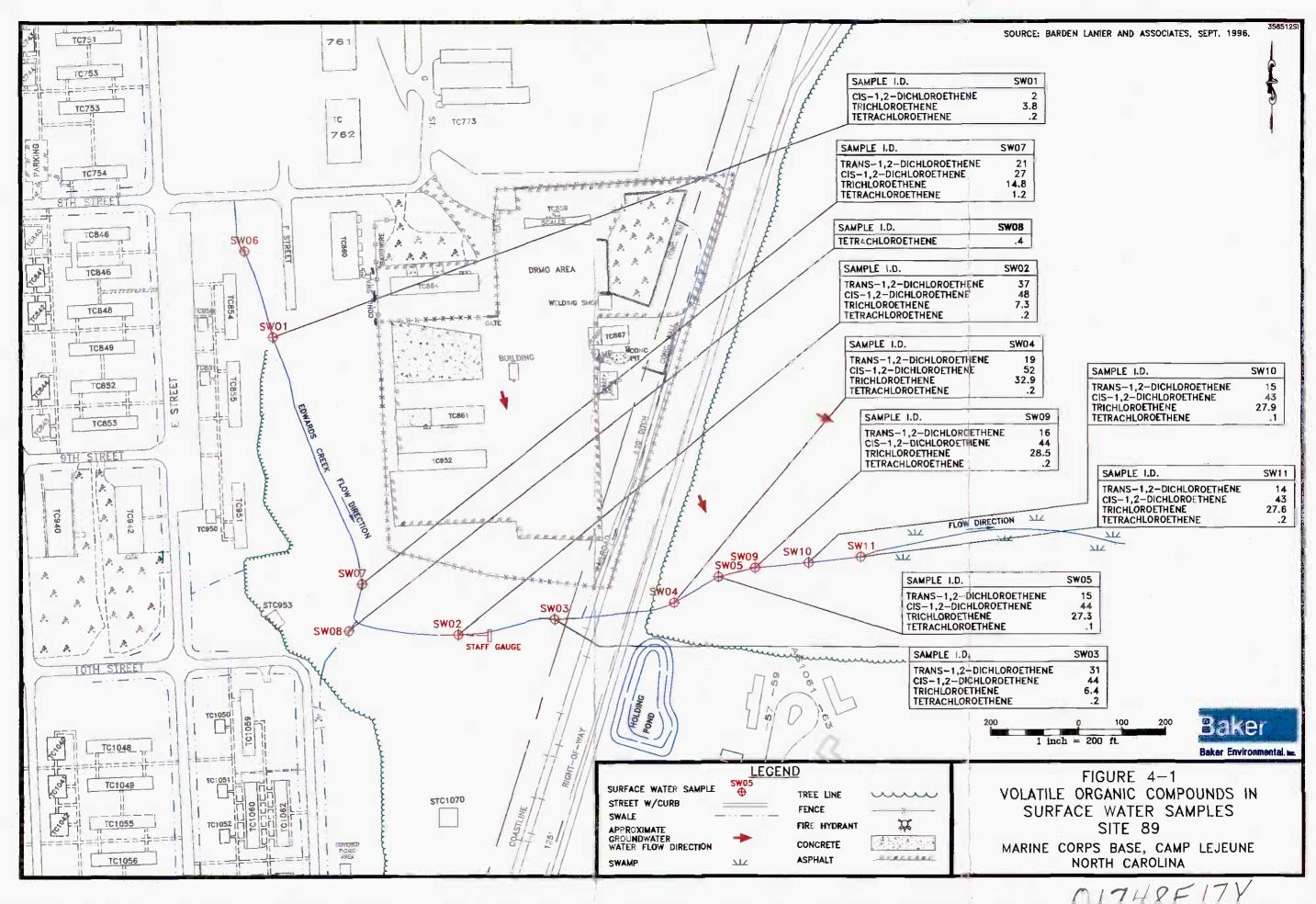


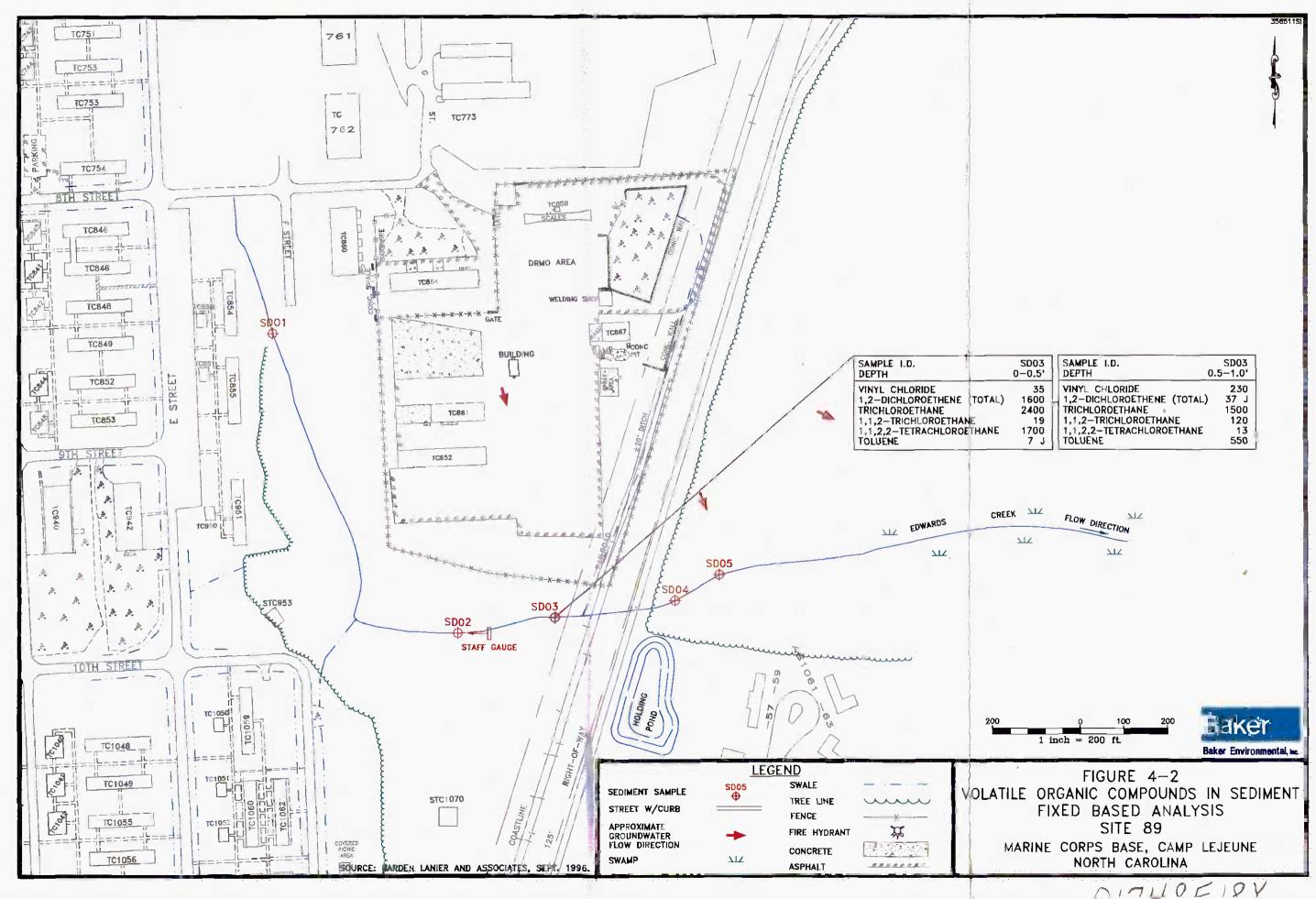


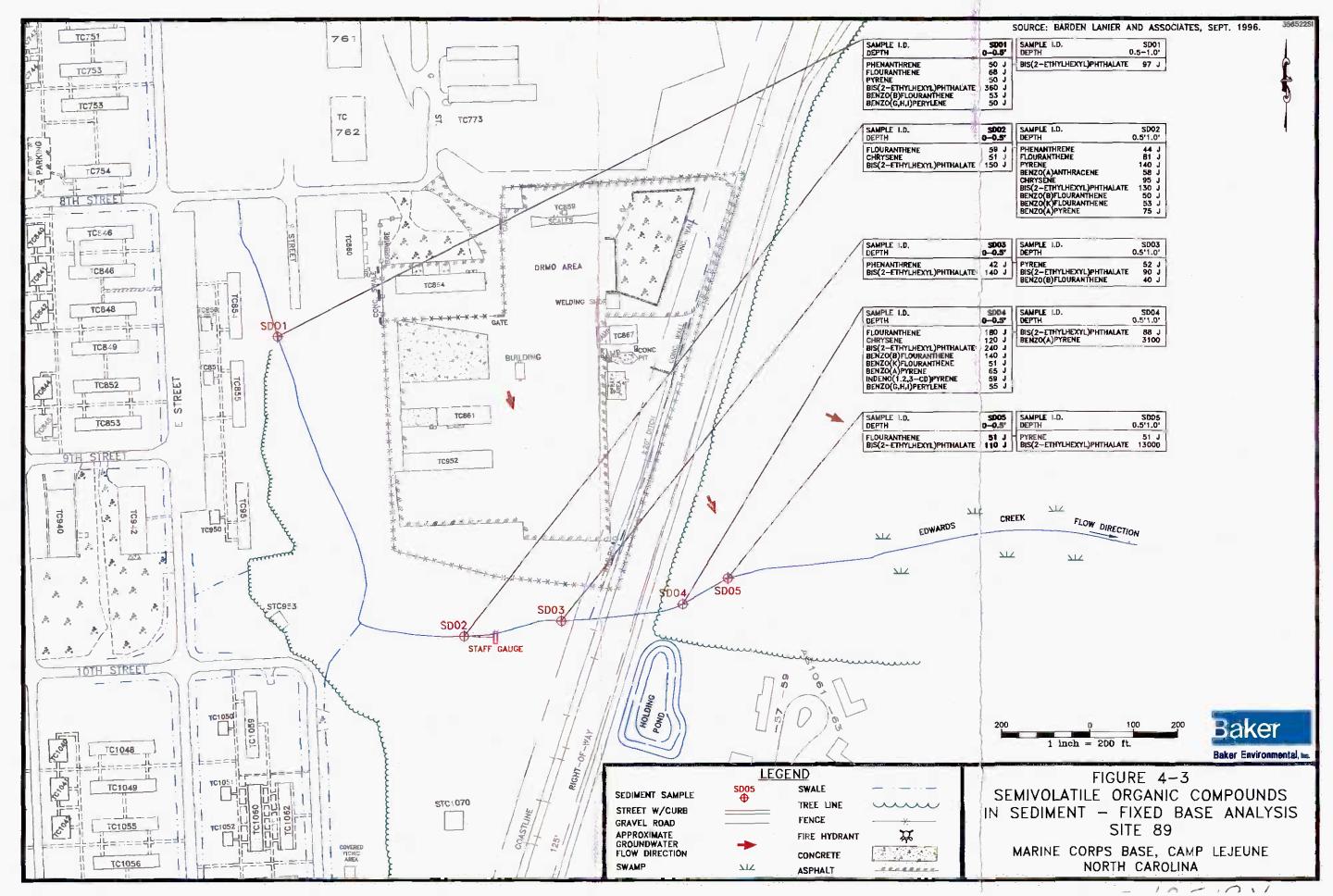


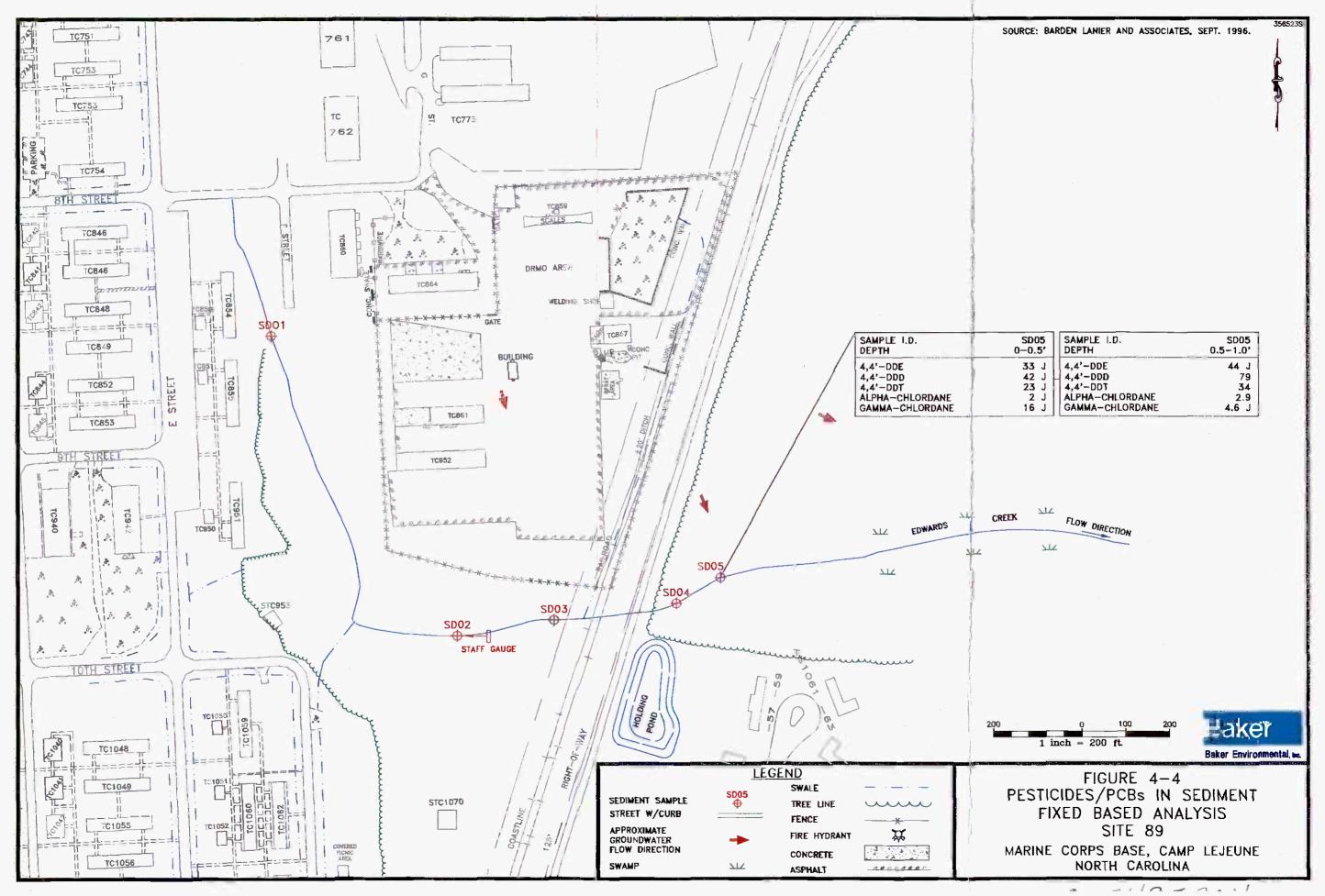


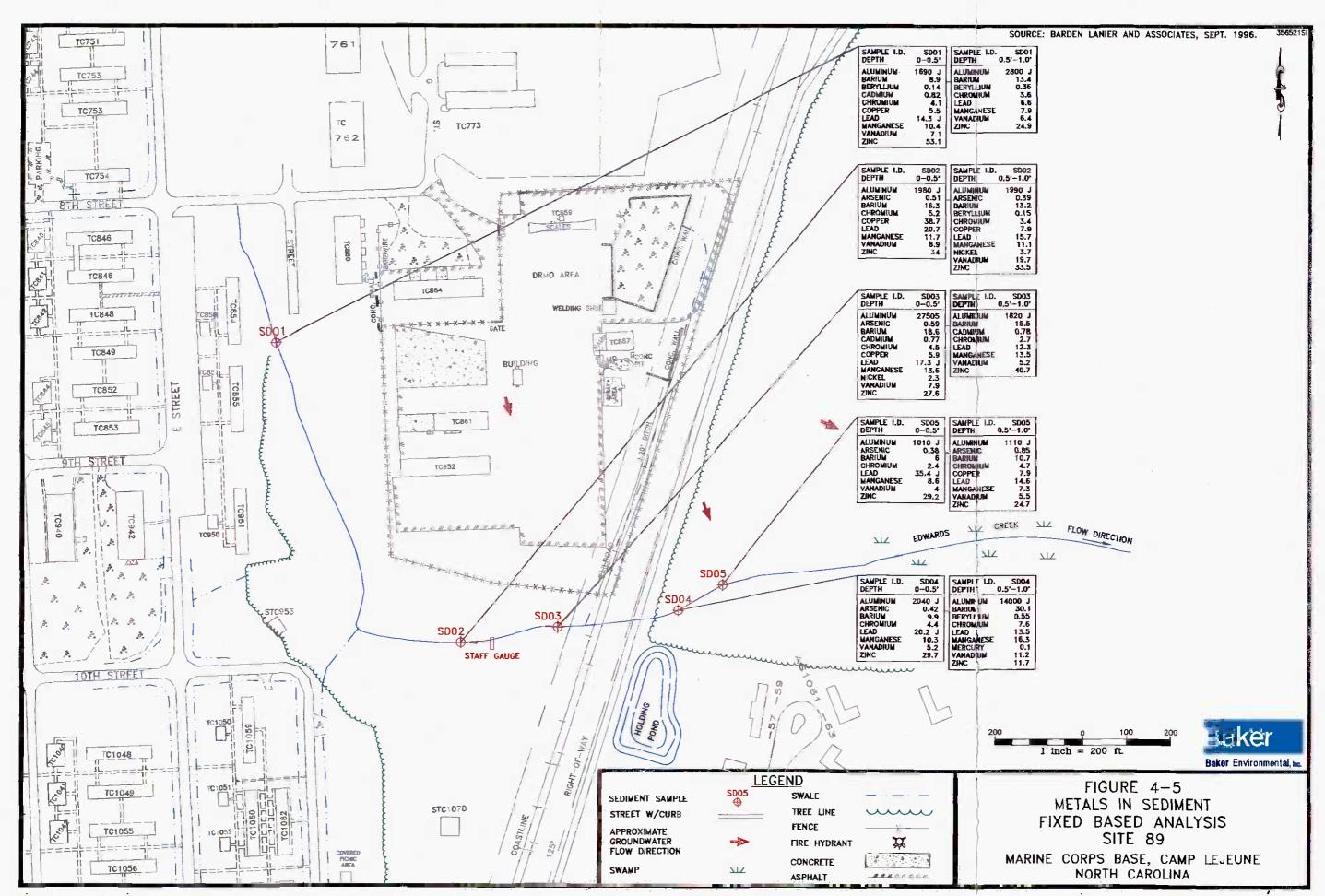


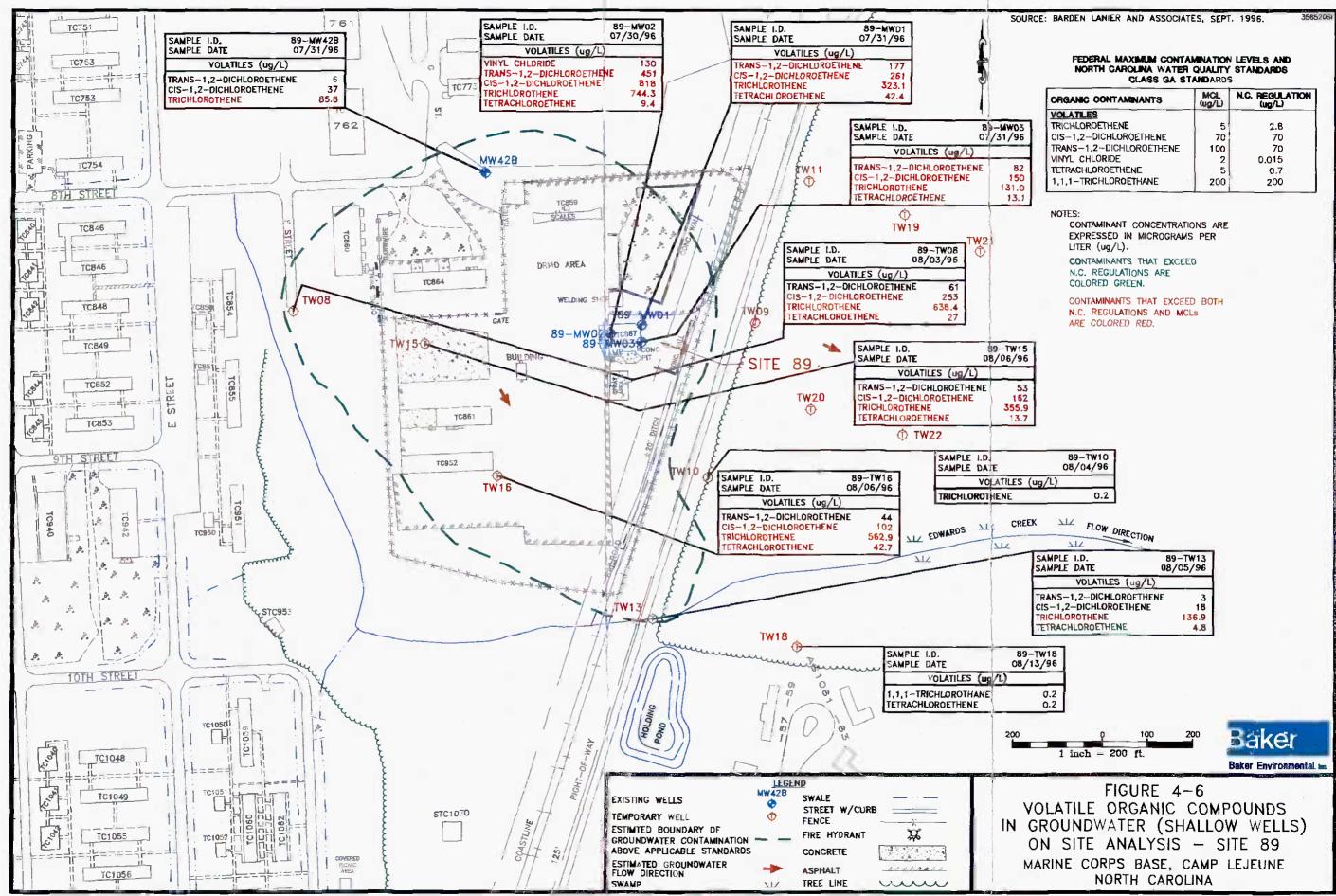


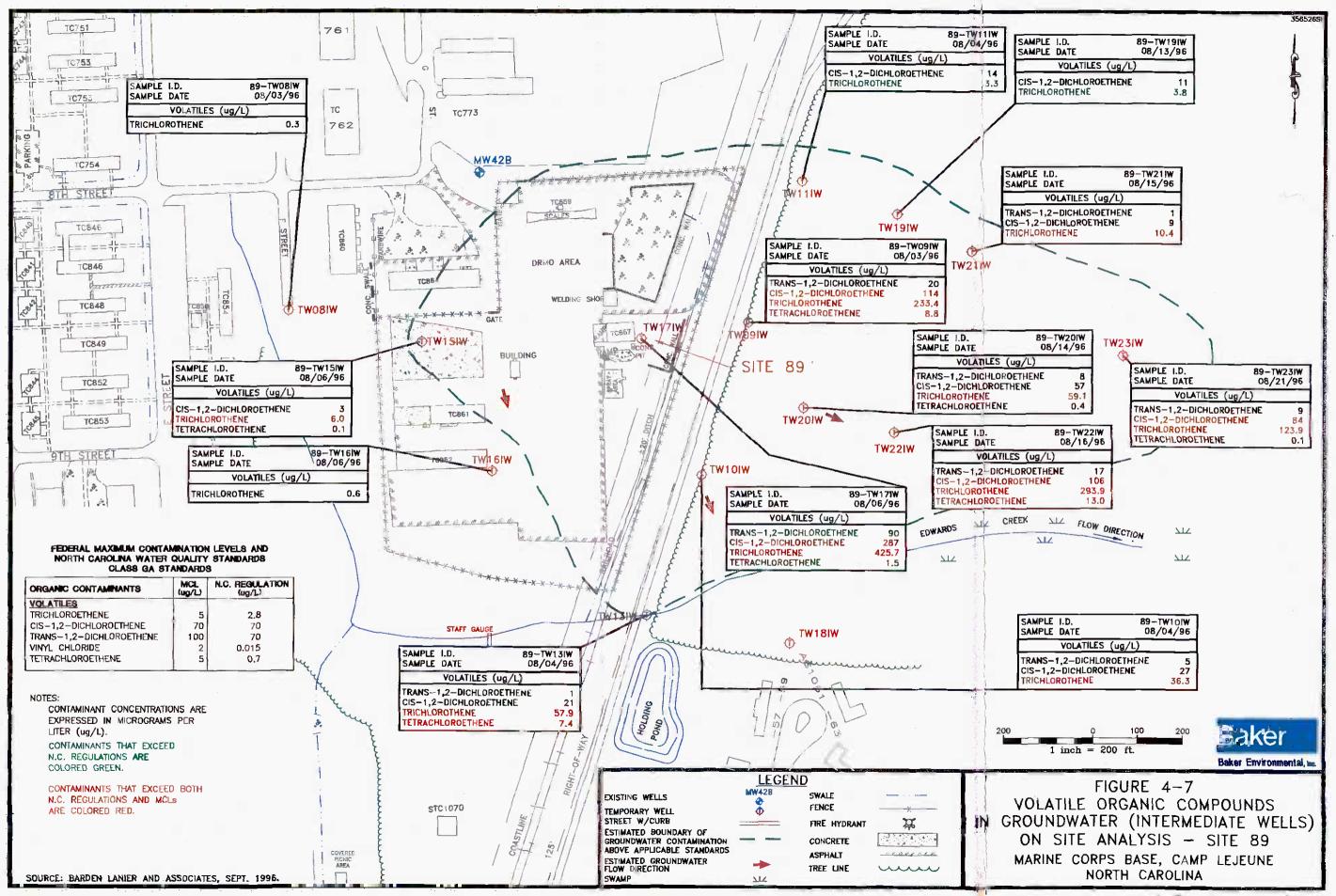


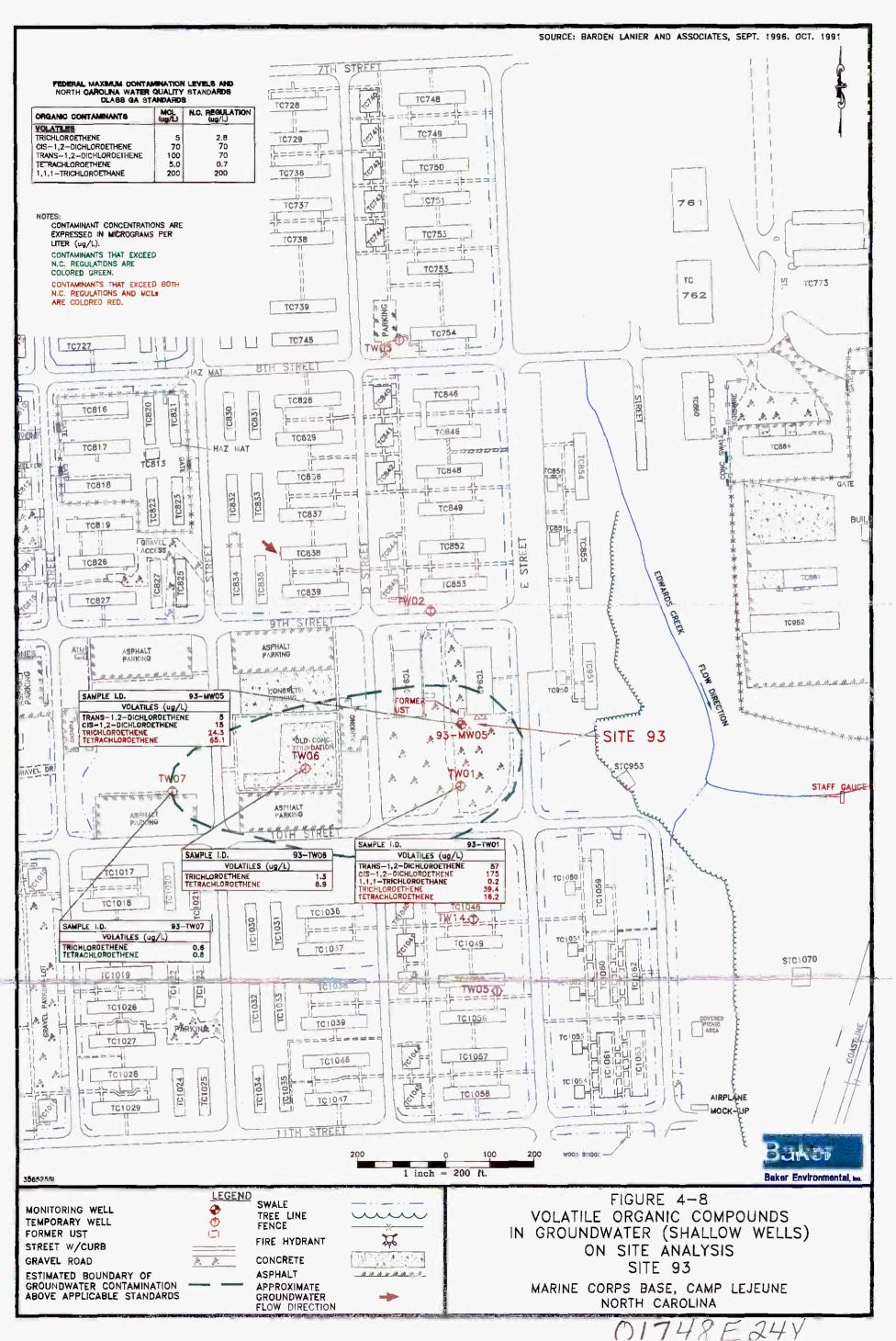


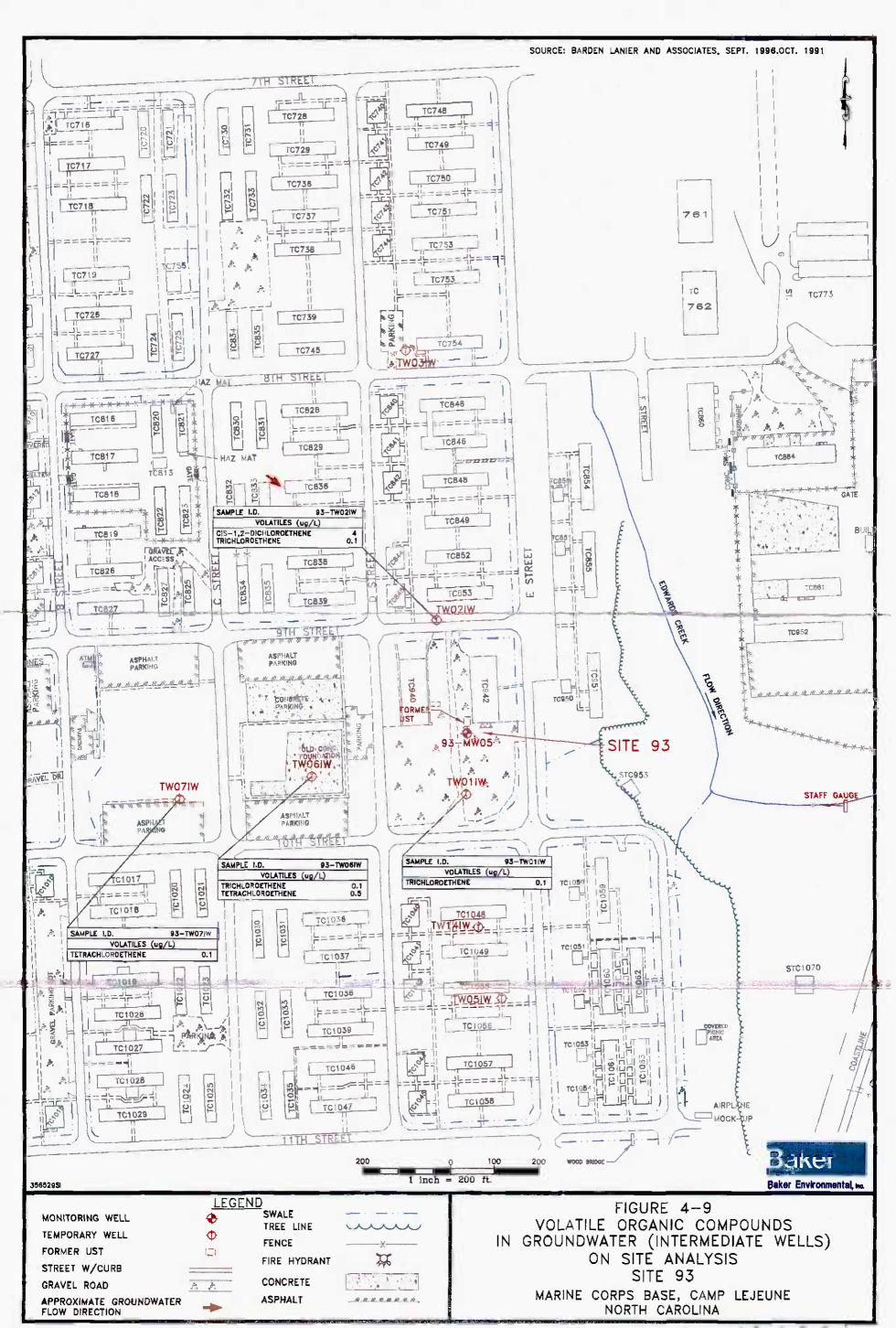












APPENDIX A TEST BORING AND WELL CONSTRUCTION RECORDS

3ekan

:

TEST BORING AND WELL CONSTRUCTION RECORD

PROJECT:	Phase	I Investiga	ation at Site	s 88, 89,	and 93	- MCB	Camp Lejeune	•			
CTO NO.:	62470	-356			_	BORIN	NG NO.:		89-TW)4	
COORDINAT	ES: EAST	:	2465170.0	996	_	NORT	H:		3601	86.3001	
ELEVATION:	SURF	ACE:	11.84		-	TOP C	F PVC CASIN	IG:	13.92		
Rig: Died	rich D-50							Τ		Depth to	
	Split	Casing	Augers	Core		Date	Progress	Wea	ather	Water	Time
	Spoon	_	-	Barro	el 📔		(Ft.)			(Ft.)	
Size (ID)	1-3/8"		2-3/4"		7.	/31/96	0.0 - 15.0	M.clou	ıdy, 90s		
Length	2'		5'								
Туре	Stainless		HSA								
Hammer Wt.	140 #										
Fall	30"									. <u>.</u>	
Stickup											
Remarks:					·						
		MPLE T				ļ	WEL	L INFO	DRMAT		
			A = Auger							Тор	Bottom
		-	W = Wash				Туре		Diam.	Depth	Depth
		Rotary				0.1.40	DI/G D			(Ft.)	(Ft.)
	D = Den		P = Piston				, PVC Riser	0	1" 1"	0	5
		= No Sam		Lab.	PID	Scn 40	, 10-Slot, PVC	Screen	_	5 Vell	15 Elevation
Domth (Et.)	Sample Type &	Sample Rec.	SPT	Class		۲ I	visual Descripti	on		allation	Elevation (Ft. MSL)
Depth (Ft.)	No.	(Ft.,%)	SF I	Class	(ppm)	`	Isual Descripti	011		etail	(rt. Mol)
	INU.	(11.,70)									
1											
2								-		_	
3								_		-	
4											
					ł			_			
5	A-N						to the log for w	ell		5.0	
							/04IW for	_		_	
6						descri	ptions			_	
										_	
7					1						
-								_		-	
8										_	
											1
9 –				1						-	4
10											
							Match to Shee	et 2		-	
	<u> </u>		I	1	<u> </u>				⊥_ F =ੋ	<u>I</u>	L
DRILLING CO		t - Wolff			-		ER REP.:		DeJohn	<u>OTIPP2</u>	
DRILLER:	Chip I	Lafever				BORI	NG NO.:	89-TV	VU4	SHEE	T 1 OF 2

Baker Environmental

		T T			1.00					
PROJECT: CTO NO.:	Phase 62470		auon at Site	<u>s 88, 89,</u>	and 93	- MCB Camp Lejeu BORING NO.:	ne	89-TW0	4	
D=	S = Split T = Shel	Rotary	A = Auger W = Wash C = Core	mnla	,	SPT = Standard Per PID = Photo Ionizat Lab Class = USCS (tion Detect	est (AST or meas)
	Sample	Sample		Lab	PID			w	/ell	Elevation
Depth (Ft.)	Type & No.	Rec. (Ft.,%)	SPT	Class	(ppm)	Visual Descrip	otion	Insta		(Ft. MSL)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	A-N					BOH @ 15.0'				
28 29										
30							_		_	
DRILLING CO		t - Wolff		-	-	BAKER REP.:	Mark D			
ORILLER:	Chip I	Lafever	· · · · · · · · · · · ·		-	BORING NO .:	89-TW	04	SHEET	2 OF 2

5akan

TEST BORING AND WELL CONSTRUCTION RECORD

PROJEC	T:	Phase	I Investiga	ation at Site	es <u>88</u> , 89,	and 93	- MCB	Camp Lejeun	e			
CTO NO) .:	62470				-		IG NO.:		89-TW	04IW	
COORD	INAT	ES: EAST	:	2465170.	4943	-	NORT	H:		36018	88.9924	
ELEVA'	TION:	SURF.	ACE:	11.84		-	TOP O	F PVC CASIN	IG:	14.12		
Rig:	Died	rich D-50							1		Depth to	
ng.	Dica	Split	Casing	Augers	Core	<u> </u>	Date	Progress	Wa	ather	Water	Time
		Spoon	Casing	Augers	Barro		Date	(Ft.)	wea	uner		Time
Size (ID)	1-3/8"		2-3/4"	Dalle 	_	/31/96	0.0 - 50.0	Malar	dry 00a	(Ft.)	
Length	,	2'		<u>- 2-3/4</u> 5'			131/90	0.0 - 30.0		ıdy, 90s		
Туре		Stainless		HSA							,	
Hamme	r Wt	140 #										
Fall	1 11 11	30"							-			
Stickup									-			
Remark												
		SA	MPLE T	YPE			T	WEI	LL INFC	RMAT	ION	
				A = Auger							Тор	Bottom
				W = Wash				Туре		Diam.	Depth	Depth
		$\mathbf{R} = \mathbf{Air}$	-	C = Core				- 7 8 -			(Ft.)	(Ft.)
		D = Den	ison I	P = Piston			Sch 40	, PVC Riser		1"	0	42
		N	= No Sam	ple				, 10-Slot, PVC	Screen	1"	42	47
		Sample	Sample		Lab	PID				V	Vell	Elevation
Depth	(Ft.)	Type &	Rec.	SPT	Class.	(ppm)	v	isual Descript	ion	Insta	allation	(Ft. MSL)
		No.	(Ft.,%)					_		D	etail	. ,
				5			F SAN	D, some silt, t	race			
1		S-1	1.0	6		(1)	clay; bi	rown; m. dens	e;			
			50%	9			moist					
2	2.0			6								
_				4					2.6		_	
3_		S-2	1.6	6		(1)						
-			80%	6				, some silt, litt	_		_	
4_	4.0			9		ļ		gray w/ iron s	tains;			
				4			stiff; m	oist	_		-	
5_		S-3	1.7	7		(1)						
			85%	11					5.4		-	
6	6.0			11				D come all				
7 -	-	C 4	0.0	5				D, some silt; §	gray;		-	
'-		S-4	0.0	10		(1)	wet	@ 7 #1			—	
8			0%	5			water	@ 7.5'	0 0		-	
° –	8.0			4			ECAN		8.0		-	
9 -	4	S-5	1.7	3		(1)	1	D, some silt & tiff; wet	. ciay;		-	
–	-	C-C	1.7 85%	3 4		"	gray, S	, wei	9.7			
10	10.0		0/0	7					<i></i>		-	
"-	10.0			2				Match to She	et 2			
		.		L	ł		A				I	
DRILLI			t - Wolff			-		R REP.:	A	DeJohn	OTTO	
DRILLE	AC:	Chip I	Lafever			-	DOKIN	IG NO.:	<u>89-TW</u>	041W	SHEET	C 1 OF 3

Balten

TEST BORING AND WELL CONSTRUCTION RECORD

ROJEC TO NO		62470		anon at SIR	<u>,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,</u>	anu 73	- MCB Camp Lejeune BORING NO.:	89-TW0	4IW	<u></u>
		•	MPLE TY	VPF		-		ITIONS		
			t Spoon A				SPT = Standard Penetration		M D 158	6)
		-	-	W = Wash			PID = Photo Ionization Dete	-		0)
			Rotary				Lab Class = USCS (ASTM)		nement	
	D ==	Denison H			mnle		Lab Class - 0505 (ASTMI)	02407)		
		Sample	Sample	11 - 110 54	Lab	PID		l u	ell	Elevation
Depth (Ft)	Type &	Rec.	SPT	Class.	(ppm)	Visual Description		llation	(Ft. MSL)
Deptil (r.,	No.	(Ft.,%)	511	C1255.	(ppm)	Visual Description		tail	
11		140.	1.4	3		(1)	Continued from Sheet 1	+11		
		S-6	70%	5						1
12	12.0	5-0	1070	7	1		SILT, little to some clay,			
12 —	12.0			6			little f sand; dk gray;	-	_	4
13		S-7	1.4	7		(1)	v. stiff; moist	-		-
13		3-7	70%	10			v. stiff, moist	-		-
14	14.0		/070	10		1		-		-
14	14.0			6			-			-
1.5		S-8	20					-		-
15 _		2-8	2.0	6		(1)	-		_	-
14	1.0		100%	8			15.			
16	16.0			<u>9</u> 8		<u> </u>	<u>15.</u>	뵉		-
17 -		G 0						_		-
17		S-9	2.0	10		(1)	M/C SAND, little silt w/	_	_	-
10 -	1.0.0		100%	7		1	zones of clay; dk gray;	_		4
18	18.0			10			m. dense; wet	_		-
				9						_
19		S-10	2.0	10		(1)	19.	3	-	_
			100%	28				-		
20	20.0			47		<u> </u>	F SAND & SHELL/FOSSI	<u>- </u>		-
_				13			FRAG, little silt, $/2$	0		
21		S-11	0.8	34		(1)	\setminus trace clay lt. gray; v. /			
			40%	48			dense; moist			
22 _	22.0			51						
				20			SILT, trace f sand & shell			
23		S-12	1.5	22		(1)	frag; lt gray; hard; damp			
			75%	34		ŀ	_			
24	24.0			41			clayey zones & wet zones]
_				11		1				1
25		S-13	2.0	34		(1)	F SAND, some shell/fossil			1
			100%	38			frag & silt; lt gray; hard	┓╽╽│	_	1
26 _	26.0			35			moist to wet	_		
				38		T	-	7		7
27		S-14	0.9	35		(1)	SHELL FRAG, trace f sand	;		1
			45%	38	ļ	`´	gray; v dense; wet $2\overline{7}$.			
28	28.0			50/2"	l		28.			1
_			 	20		1	F SAND, some silt, \int		_	1
29 ~		S-15	1.3	16		(1)	trace clay; green;	-		1
			65%	28		``'	v dense; damp		_	1
30 -	30.0			37				-		1
		•		20			Match to Sheet 3	-	_	-
			J	<u> </u>	I	1				_
ORILLIN			tt - Wolff			-		c DeJohn	_	
DRILLE	K:	Chip]	Lafever			_	BORING NO.: 89-T	<u>W04IW</u>	SHEE	T 2 OF 3

Sel(en

TEST BORING AND WELL CONSTRUCTION RECORD

-

TO NO).:	62470	-356			-	BORING NO .:	8	9-TW	04IW	
	D =	S = Split T = Shel	•	A = Auger V = Wash C = Core	omple		DE SPT = Standard Penetrati PID = Photo Ionization D Lab Class = USCS (AST)	ion Te etecto	or meas		5)
		Sample	Sample	<u>IN - INO Da</u>	Lab	PID			<u> </u>	Vell	Elevatio
Depth ((Ft.)	Type & No.	Rec. (Ft.,%)	SPT	Class.	(ppm)	Visual Description		Insta	allation etail	(Ft. MS
31		S-16	1.4	24		(1)	Continued from Sheet 2		ТТ		
			70%	21			SHELL/FOSSIL FRAG,				1
32	32.0			?			little silt; gray; dense;			_]
				32			wet	_		-	
33 _		S-17	1.0	24		(1)		_			
			50%	37			F SAND, little shell/fossi			-	
34	34.0			34			frag & silt; gray; v dense	·			
25 -		0 10		17			wet	_		_	
35		S-18	0.9 45%	21 22		(1)					
36	36.0		43%	22			SHELL/FOSSIL FRAG, little silt; gray; dense;			-	
³⁰ —	30.0			25			wet	—			
37		S-19	1.0	34		(1)	wei	-		-	
<i></i>		0-17	50%	35							-
38	38.0		5070	44				-		-	-
	30.0	-		38	1						-
39 -		S-20	1.1	21		(1)		-		-	•
	1		55%	20	ļ						
40	40.0			25				-		-	
		· · · · · · · · · · · · · · · · · · ·		28							
41	1	S-21	1.2	35		(1)		_		-	
	1		60%	22							
42	42.0			30				42.0		42.0	1
				29]
43		S-22	1.2	30		(1)	F/M SAND, little silt;			_	1
_			60%	31			gray; v dense; wet				
44	44.0			50							
_			· ·	14						_	1
45		S-23	0.9	15		(1)	little silt & clay				
			45%	20						_	1
46	46.0		1.0	30		(1)	······································	46.0			-
477 -		S-24	1.0	17		(1)		_		47.0	4
47	47.0	A NT	100%	47			F SAND, some silt, trace			47 <u>.0</u>	-
48	48.0	A-N					clay; greenish-gray; v dense; moist			-	4
40 <u></u>	40.0					-	iv dense, moist				1
49		S-25	<u> </u>		·	(1)				-	1
·		62-63									-
50 -	50.0							-		-	-
··							BOH @ 50.0 '			 	†
			·		L			L		ł	<u>.</u>
RILLIN	NG CC	J.: Parrat	t - Wolff			_	BAKER REP.: M	ark D	eJohn		Г 3 OF 3

TEST BORING AND WELL CONSTRUCTION RECORD

0700 110			ation at Site								
CTO NO.: COORDINAT	62470		2465226	2050	-		IG NO.:		89-TW		-
ELEVATION:			2465236. 13.26	3850	-	NORT	H: F PVC CASI			<u>98.3614</u>	
		ACE.	15.20		-	TOPU	F PVC CASI	NG:	15.:	38	
Rig: Died	rich D-50 Split	Casing	Augers	Core		Date	Progress	We	ather	Depth to Water	Time
Size (ID)	Spoon 1-3/8"		2 2/48	Barr		10/06	(Ft.)	Dein	- 00-	(Ft.)	
Length	<u>1-3/8</u> 2'		<u>2-3/4"</u> 5'		8	/2/96	0.0 - 15.0	Rain	y, 80s		
Туре	Stainless		HSA								
Hammer Wt.	140 #							_	-		
Fall	30"										
Stickup							······································				
Remarks:								<u> </u>		1	
	SA	MPLE T	VPE				WF	LL INFO	IRMAT	ION	
		Spoon A					V¥ IC			Тор	Bottom
		by Tube N					Туре		Diam.	Depth	Depth
		Rotary					r y po		Diam.	(Ft.)	(Ft.)
	D = Den		P = Piston			Sch 40	, PVC Riser		1"	0	5
		= No Sam					, 10-Slot, PV	C Screen	1"	5	15
	Sample	Sample		Lab.	PID		,			Well	Elevatio
Depth (Ft.)	Type &	Rec.	SPT	Class	(ppm)	l v	isual Descrip	tion		allation	(Ft. MSL
_	No.	(Ft.,%)					-		D	etail	`
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	A-N						o the log for v 08IW for tions	vell			
10		t - Wolff					Match to She		DeJohn		
DRILLING CO											

Bakar

Baker Environmental

TO NO.:	62470	-356			<u></u> _	- MCB Camp Lejeun BORING NO.:		89-TW	08	
D =	S = Split T = Shel	by Tube V Rotary	A = Auger $W = Wash$ $C = Core$	mple	-	SPT = Standard Pene PID = Photo Ionizatio Lab Class = USCS (A	on Detect	'est (AS tor mea	- 5TM D1586	5)
	Sample	Sample		Lab	PID			١	Well	Elevation
Depth (Ft.)	Type & No.	Rec. (Ft.,%)	SPT	Class	(ppm)	Visual Descript	ion		allation Detail	(Ft. MSL)
11										
12										
13	A-N								-	
14			-							
					1				·	
15 15.0						BOH @ 15.0'	15.0	- -	15.0	
16						BOH @ 13.0			-	
17							_		-	
18							_			
19									_	
20							_		_	
				5 2 2						
21										
22									-	
23							_		-	
24										
25							-		-	
26							_			
							_			
27									-	
28									-	
29							_		-	
30	-									
RILLING CO		- Wolff		I		BAKER REP.:	Mark D			
RILLER:	Chip L	afever			•	BORING NO.:	89-TW)8	SHEET	2 OF 2

Baker

Baker Environmental

TEST BORING AND WELL CONSTRUCTION RECORD

PROJECT: Phase I Investigation at Sites 88, 89, and 93 - MCB Camp Lejeune 89-TW08IW 62470-356 BORING NO .: CTO NO.: 2465236.9573 COORDINATES: EAST: NORTH: 360893.7663 SURFACE: TOP OF PVC CASING: 15.19 ELEVATION: 13.36 **Rig: Diedrich D-50** Depth to Split Casing Augers Core Date Progress Weather Water Time Spoon Barrel (Ft.) (Ft.) Size (ID) 1-3/8" 2-3/4" 8/2/96 0.0 - 42.0 Rainy, 80s ---------Length 2' --5' --Stainless HSA Туре -----Hammer Wt. 140 # --------Fall 30" ---------Stickup -----**Remarks:** SAMPLE TYPE WELL INFORMATION S = Split Spoon A = AugerTop Bottom T = Shelby Tube W = Wash Type Diam. Depth Depth R = Air RotaryC = Core(Ft.) (Ft.) 1" D = DenisonP = PistonSch 40, PVC Riser 0 37 N = No Sample Sch 40, 10-Slot, PVC Screen 1" 37 42 PID Sample Lab Well Elevation Sample Installation (Ft. MSL) Depth (Ft.) Rec. SPT Class. Visual Description Type & (ppm) No. (Ft.,%) Detail 10 S-1 15 F SAND, little silt, trace 1 1.2 (1) ---60% 13 gravel & clay; grayishbrown; m dense; damp 2.0 2 13 3 A-N ---4 5 5.0 3 S-2 2 some silt & clay, trace 6 1.5 ----(1) 2 wood; brown; soft; moist 75% 7 7.0 2 to wet Water @ 6.0' 8 A-N ___ -----9 10 10.0 Match to Sheet 2 5 DRILLING CO .: Parratt - Wolff BAKER REP .: Mark DeJohn BORING NO .: 89-TW08IW SHEET 1 OF 3 DRILLER: Chip Lafever

Baker Environmental

Depth (Ft.) Type & Rec. (Ft. %) SPT (Ft. %) Class. (ppm) (ppm) Visual Description (ptm) Installation (ptm) (Ft. MS) 11 5-3 1.1 5 - (1) Continued from Sheet 1 Little silt & clay, trace m/c sand; dk gray; m dense; wet -	CTO NO.:	62470				-	- MCB Camp Lejeune BORING NO.:	89-TW(08IW	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		S = Split T = Shel R = Air	t Spoon A by Tube V Rotary	A = Auger W = Wash C = Core			SPT = Standard Penetration T PID = Photo Ionization Detect	est (AS' or meas		6)
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $				IN - INO 52		PID		v	Vell	Elevation
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Depth (Ft.)	Type &	Rec.	SPT	1	1	Visual Description	Insta	llation	(Ft. MSL)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		S-3		6		(1)	Little silt & clay, trace		_	-
A-N <			· · · · · ·							-
15 15.0 15 - </td <td></td> <td>A-N</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>-</td>		A-N								-
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$										
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	16	S-4		16		(1)				-
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1717.0									
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	18	A-N								-
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$										-
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		S-5	2.0							-
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	22 22.0		100%				frag, silt & clay; gray;			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	23	A 31					-			-
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	24	A-N								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2525.0			14						
28		S-6		19 25		(1)	some silt & clay; gray;			-
29 A-N				31			dense; wet			-
		A-N								-
	²⁹ 30 30.0									-
15 Match to Sheet 3				15			Match to Sheet 3			-

Baker Environmental

PROJECT: Phase I Investigation at Sites 88, 89, and 93 - MCB Camp Lejeune BORING NO .: CTO NO .: 62470-356 89-TW08IW SAMPLE TYPE DEFINITIONS S = Split Spoon A = AugerSPT = Standard Penetration Test (ASTM D1586) T =Shelby Tube W =Wash PID = Photo Ionization Detector measurement Lab Class = USCS (ASTM D2487) R = Air RotaryC = CoreD = Denison P = Piston N = No SamplePID Sample Sample Lab Well Elevation Depth (Ft.) SPT (Ft. MSL) Type & Rec. Class. (ppm) Visual Description Installation (Ft.,%) No. Detail S-7 Continued from Sheet 2 31 1.5 30 (1) --75% 27 trace silt & clay; v dense 32.0 25 32 33 A-N 34 35 35.0 20 S-8 2.0 24 (1) smaller sized frag, trace silt 36 ___ 100% 30 37 37.0 34 37.0 38 A-N ------39 40 40.0 40.0 9 F SAND, some silt, trace shell frag & clay; olive 41 S-9 1.7 11 (1) --85% 18 drab; m dense; moist 42.0 42.0 21 42.0 42 43 44 45 46 47 48 49 50 DRILLING CO.: Parratt - Wolff BAKER REP .: Mark DeJohn BORING NO .: 89-TW08IW SHEET 3 OF 3 DRILLER: Chip Lafever

sa.ci

TEST BORING AND WELL CONSTRUCTION RECORD

PROJECT:	Phase	I Investiga	ation at Site	s 88, 89,	and 93	- MCB	Camp Lejeune				
CTO NO.:	62470		······································				NG NO.:		89-TW	09	
COORDINAT	ES: EAST	:	2466256.0	5689		NORT	H:	•	360	873.0072	
ELEVATION:			14.45			TOP C	F PVC CASIN	G:	16.94		
Rig: Died	rich D-50	······			<u> </u>		l	r		Depth to	
Ng. Dicu	Split	Casing	Augers	Core		Date	Progress	Wea	ther	Water	Time
	Spoon	Cabing	Berro	Barre	1		(Ft.)			(Ft.)	
Size (ID)	1-3/8"		2-3/4"			/3/96	0.0 - 15.0	Cloud	ty, 70s		
Length	2'		5'		-	13170	0.0 10.0		.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
Туре	 Stainless		HSA			·					
Hammer Wt.	140 #										
Fall	30 ⁿ							1			
Stickup											
Remarks:							•				
	SA	MPLE T	YPE				WEL	L INFC	ORMAT	FION	
	-	-	A = Auger							Тор	Bottom
	T = Shel	by Tube	W = Wash				Type		Diam.	Depth	Depth
	$\mathbf{R} = \mathbf{Air}$	•	C = Core							(Ft.)	(Ft.)
	$\mathbf{D} = \mathbf{Den}$		P = Piston), PVC Riser		1"	0	5
		= No San	ple			Sch 40), 10-Slot, PVC	Screen	1"	5	15
	Sample	Sample		Lab.	PID					Well	Elevation
Depth (Ft.)	Type &	Rec.	SPT	Class	(ppm)	\	/isual Descripti	on		allation	(Ft. MSL)
	No.	(Ft.,%)			l					Detail	
2										-	
										-	
3										-	
4								_		-	
5	A-N					Refer	to the log for w	ell –		5.0	
						89-TV	V09IW for]
6						descri	ptions				
	1			ĺ	1						
7											
								_		-	1
8						1					
	1							-		-	4
9		1									-
		1	1					_		-	4
10							Match to Shee	et 2			
	0. Dom	Walff				BAK	ER REP .:	Mark	DeJohn		
DRILLING C DRILLER:	the second s	tt - Wolff Lafever			-		NG NO.:	89-TV			Г 1 OF 2
DRILLER,	Ciup	Laitvei		<u></u>	-	DUID		07-11			

Beken

TEST BORING AND WELL CONSTRUCTION RECORD

PROJECT:	Phase	I Investig	ation at Site	es 88, 89,	, and 93	- MCB Camp Lejeune		
CTO NO.:	62470)-356				BORING NO.:	89-TW09	
	S = Spli T = She	lby Tube V Rotary	A = Auger $W = Wash$ $C = Core$	mple		DEFIN SPT = Standard Penetration 7 PID = Photo Ionization Detec Lab Class = USCS (ASTM D	tor measurement	36)
	Sample	Sample		Lab	PID		Well	Elevation
Depth (Ft.)		Rec. (Ft.,%)	SPT	Class	(ppm)	Visual Description	Installation Detail	(Ft. MSL)
11								
12						-		
13 _	A-N							
14								-
15 15	.0					15.0	15.0	5
						BOH @ 15.0'		
16								-
17 _								-
18								-
19						-		
20								
21								-
22						-		-
23 _								
24								
25 _								
26								
27 _								-
28 _						-		
29 _							_	
30								
DRILLING (DRILLER:		t - Wolff				BAKER REP.: Mark I		
DRILLER.	Cmp1	Lafever				BORING NO.: 89-TW	SHEE	Г 2 OF 2

Baker

TEST BORING AND WELL CONSTRUCTION RECORD

CTO NO		62470	-356			•	BORIN	Camp Lejeune IG NO.:		89-TW		
COORDI				2466257.	6724		NORT				7.2226	
ELEVAT	ION:	SURF	ACE:	14.45		-	TOP O	F PVC CASIN	G :	17.12		
Rig:	Died	rich D-50 Split	Casing	Augers	Core	.]	Date	Progress	Wea	ther	Depth to Water	Time
		Spoon			Barre			(Ft.)			(Ft.)	-
Size (ID)		1-3/8"		2-3/4"		8	/3/96	0.0 - 40.0	Cloud	ty, 70s		
Length		2'		5'								
Туре		Stainless		HSA								
Hammer	Wt.	140 #										
Fall		30"		-								
Stickup			-									
Remarks	8:	Note: (1) 7	The H-Nu	is not work	ing prope	erly.						
		SA	MPLE T	YPE				WEI	L INFC	RMAT	ION	
		S = Split	t Spoon A	A = Auger							Тор	Bottom
		T = Shel	by Tube V	W = Wash				Туре		Diam.	Depth	Depth
		R = Air	Rotary	C = Core							(Ft.)	(Ft.)
		D = Den	ison]	P = Piston			Sch 40	, PVC Riser		1"	0	33
		N	= No Sam	ple			Sch 40	, 10-Slot, PVC	Screen	1"	33	38
		Sample	Sample		Lab	PID	1			V	Well	Elevatio
Depth (Ft.)	Type &	Rec.	SPT	Class.	(ppm)	V	visual Descripti	on	Inst	allation	(Ft. MSI
• •		No.	(Ft.,%)					-		D	etail	
				5			F SAN	D, some silt, li	ttle			
1		S-1	1.1	5		(1)		rown; m. dense				
			55%	12			damp		·			
2 -	2.0			12					_		-	1
				9			1					
3 -		S-2	1.0	12		(1)	dense		-		-	
J		~ -	50%	20								
4 -	4.0			20					_		-	
• —				6		1		ILT & CLAY,	\			
5		S-3	1.7	6		(1)	1 /	e f sand; gray	\ -		-	1
·		0.5	85%	4			17	range stains;	5.4		·	1
6 -	6.0			8			stiff; d	•	6.0		-	
• <u> </u>	0.0			8				D, some silt, \overline{li}			-	
7 -		S-4	1.8	9		(1)		ray w/ orange			-	-
′			90%	12			1	se; moist to we				-
o –	0 1		9070	12				: @ 7.0'	د 8.0		-	
8	8.0			13		 		$\frac{10}{10}$ AND, some sil				-
9 -		0.6	0.0	15				AND, some sil prange; dense; v	-			-
У		S-5	0.9			(1)	leiay, 0	range, dense; v	vei			-
10 -	10.0		45%	19					-	<u> </u>	-	4
10	10.0			22 6			4	Motoh to She				4
	L	I	L	0	L	J	L	Match to She	a 2		I	1
DRILLIN	IG C	O.: Parrat	tt - Wolff			_	BAKE	R REP.:	Mark	DeJohn		
DRILLE	R:		Lafever			_	BORI	NG NO.:	89-TW	709IW	SHEET	Г 1 OF 3

Bakan

TEST BORING AND WELL CONSTRUCTION RECORD

PROJECT:	Phase	I Investig	ation at Site	es 88, 89,	, and 93	- MCB Camp Lejeune		
CTO NO .:	62470						89-TW09IW	
		MPLE T				DEFINI	TIONS	
			A = Auger			SPT = Standard Penetration T		36)
			W = Wash			PID = Photo Ionization Detect		
			C = Core			Lab Class = USCS (ASTM D2	2487)	
D=	Denison I		N = No Sa					
Donth (Et)	Sample	Sample	CDT	Lab	PID		Well	Elevation
Depth (Ft.)	Type & No.	Rec.	SPT	Class.	(ppm)	Visual Description	Installation	(Ft. MSL)
11	S-6	(Ft.,%) 1.3	6		(1)	Continued from Sheet 1	Detail	
	5-0	65%	12			Continued from sheet 1	-	-
12 12.0			15			-		-
			12					-
13	S-7	2.0	13		(1)	-		-
		100%	12			13.6		-
14 14.0			10					-
			2			F SAND, some silt, little		-
15	S-8	1.0	2		(1)	clay; gray w/ orange stains;		1
		50%	3			m dense; wet - becoming		
16 16.0			3			brown; loose		
			2			_		
17	S-9	1.8	3		(1)	faint rust-colored laminae		
		90%	3			_		
18 18.0			4		ļ		_	
19 -	S-10	14	WOH/12"					_
19	5-10	1.4	1		(1)	v loose		_
20 20.0		70%	1 2			-		-
20			2 WOH/18"				-	-
21	S-11	1.7	WO11/16		(1)	-		4
	5 11	85%						-
22 22.0			2			22.0		-
			WOH				-	-
23	S-12	1.8	14		(1)	SILT, some shell/fossil		
		90%	16			frag & clay, trace f sand;		
24 24.0			24			tan & gray; v stiff; wet		-
			7					1
25	S-13	1.4	17		(1)	F SAND, some silt, little]
		70%	30			shell frag, trace clay; gray;		1
26 26.0			26			dense; moist		4
27	S-14	1.4	4					-
<i>"</i> − −	5-14	1.4 70%	10 17		(1)	SHELL/FOSSIL FRAG, trace		-
28 28.0		7070	24			f sand & silt; gray;		4 1
			<u> </u>			m dense; wet		
29	S-15	0.3	12		(1)	dense		-
		15%	20					
30 30.0			26			-		1
			10			Match to Sheet 3		-1
DRILLING CC).: Parratt	- Wolff				BAKER REP.: Mark D	e John	
DRILLER:	Chip L					BORING NO.: 89-TWO		Г 2 OF 3
						<u> </u>	JII SHEE	1 2 OF 3

Beker

Baker Environmental

PROJEC				tion at Site	:s 88, 8 9,	and 93	- MCB Camp Lejeune BORING NO.:		9-TW09	11117	
CTO NO	.: 	62470								71 VV	
			MPLE TY				-	DEFINIT			
		-	Spoon A	-			SPT = Standard Penel)		
			by Tube V				PID = Photo Ionizatio			rement	
	Б			C = Core			Lab Class = USCS (A	STM D2	487)		
<u> </u>	<u>- U</u> =	Denison F		N = NO Sa		PID				ell	Elevation
Depth (- 	Sample	Sample Rec.	SPT	Lab Class.	(ppm)	Visual Description	~n		lation	(Ft. MSL)
Depui	(ri.)	Type & No.	(Ft.,%)	SF I	C1a55.	(ppm)	visual Descripti		De		
31	r	S-16	1.2	11		(1)	Continued from Sheet	2			
51 -		<u>D-10</u>	60%	21				~			
32 -	32.0		0070	20				-		-	
5 -	52.0			12				-			
33 -		S-17	1.4	17		(1)		-			
		·• - ·	70%	27						_	
34	34.0			32]		-1		-	
				12						_	
35	1	S-18	1.3	15		(1)					
	1		65%	20							
36	36.0			24						_	
				22]				
37		S-19	1.6	29		(1)	v dense				
	1		80%	42							
38	38.0			40				38.0			
				6			F SAND, some silt, li	ttle _		_	
39		S-20	1.3	11		(1)	clay, trace shell frag;	dk			
			65%	11			green; stiff; moist			-	
40	40.0			10				40.0		40.0	
							BOH @ 40.0	_		-	
41_											
-								_		-	
42								_			
								-		-	
43											
								-		-	
44 _	4										
45 -								-		-	
45_	-										
46	-[ļ			1					-	ł
40 -	1					1					
47	-				·			-		-	1
"'-	1										1
48	1							-		-	-
"-	1									-	1
49	1				1	1		-1		-	-
	1				1						1
50	1	Į		l	l		Į			-	1
	1										1
DRILLI		O · Darrow	tt - Wolff				BAKER REP.:	Mark I)e John		
DRILLI			Lafever			-	BORING NO.:	89-TW		SHEE	Г 3 OF 3
UNITER	41\ ,	Cinp				-		<u></u>		and the state of t	

TEST BORING AND WELL CONSTRUCTION RECORD

-

,

PROJECT:	Phase	I Investiga	ation at Site	s 88, 89,	and 93	- MCB	Camp Lejeune	;				
CTO NO.:	62470						NG NO.:		89-TW10			
COORDINAT			246615	2.5755		NORT				33.9638		
ELEVATION:	SURF	ACE:	13.78		-	TOP O	F PVC CASIN	G:	16.14			
Rig: Died	rich D-50					i		1		Depth to		
	Split	Casing	Augers	Core		Date	Progress	We	ather	Water	Time	
	Spoon		0	Barre			(Ft.)			(Ft.)		
Size (ID)	1-3/8"		2-3/4"		8	/3/96	0.0 - 15.0	M Clo	udy, 80s			
Length	2'		5'									
Туре	Stainless		HSA									
Hammer Wt.	140 #											
Fall	30"											
Stickup												
Remarks:							·					
		MPLE T			i		WEL	L INFO	DRMAT	ION		
			A = Auger				· · · · ·			Тор	Bottom	
		-	W = Wash				Type		Diam.	Depth	Depth	
		Rotary								(Ft.)	(Ft.)	
	D = Den		P = Piston				, PVC Riser		1"	0	5	
		= No Sam	ple			Sch 40	, 10-Slot, PVC	Screen	1"	5	15	
	Sample	Sample	CDC	Lab.	PID					Vell	Elevation	
Depth (Ft.)	Type &	Rec.	SPT	Class	(ppm)) Visual Description				allation	(Ft. MSL)	
	No.	(Ft.,%)								etail		
1												
2								_		-		
" —												
3								_		-		
4								_		-		
5	A-N					Refer (to the log for w	ell –		5.0		
						89-TW	/10IW for					
6						descrip	otions			-		
7												
								_		-		
8										_		
								-				
9										. –		
								_		-		
10							Match to OL	·· · · ···		-	-	
L	L	<u> </u>			<u> </u>		Match to Shee	a 2		I	L	
DRILLING CO	O.: Parrat	tt - Wolff			-		RREP.:		DeJohn			
DRILLER:	Chip 1	Lafever				BORI	NG NO.:	89-TV	/10	SHEET	[1 OF 2	

Selicii

Baker Environmental

PROJECT:	Phase	I Investig	ation at Site	es 88, 89,	, and 93	- MCB Camp Lejeur	ne						
CTO NO .:	62470	-356			-	BORING NO .:		89-TW	10	······			
D=	S = Split T = Shel R = Air	by Tube V Rotary	$\frac{\mathbf{YPE}}{\mathbf{A} = \mathbf{Auger}}$ $W = Wash$ $C = Core$ $N = No Sa$	mnle		PID = Photo Ionizati	DEFINITIONS SPT = Standard Penetration Test (ASTM D1586) PID = Photo Ionization Detector measurement Lab Class = USCS (ASTM D2487)						
	Sample	Sample		Lab	PID			1	Well	Elevation			
Depth (Ft.)	Type & No.	Rec. (Ft.,%)	SPT	Class	(ppm)	Visual Descript	tion	Inst	allation Detail	(Ft. MSL)			
11		<u> </u>			1								
	A-N						-						
									-				
						BOH @ 15.0'	15.0		15.0				
16						DOM @ 15.0							
17 _							-						
18 _							-		-				
19							-						
20									_				
21													
22									-				
23							-1		-				
24							-		-				
25							-						
26													
27													
28													
29													
30													
DRILLING CO DRILLER:	.: <u>Parratt</u> Chip L	t - Wolff Lafever				BAKER REP.: BORING NO.:	Mark D 89-TW		SHEET	2 OF 2			

CTO NO: 62470-355 BORING NO:: 89-TW101W COORDINATES: EAST: 2466154.1863 NORTH: 800RTH: 800RTH: 800RTH: 14.81 Size (ID) Size (ID) Depth to Size (ID) 13.78 Depth (FL) Depth 13.78 Depth 14.83 Depth 16 Size (ID) Size (ID) Size (ID) Depth 16 Depth 16 Size (ID) Size (ID) Size (ID) Size (ID) Size (ID) Top Colspan="2"Size (ID) <th cols<="" th=""><th>PROJECT:</th><th>Phase</th><th>• I Investig</th><th>ation at Site</th><th>es 88, 89,</th><th>and 93</th><th>3 - MCE</th><th>3 Camp Lej</th><th>eune</th><th></th><th></th><th></th></th>	<th>PROJECT:</th> <th>Phase</th> <th>• I Investig</th> <th>ation at Site</th> <th>es 88, 89,</th> <th>and 93</th> <th>3 - MCE</th> <th>3 Camp Lej</th> <th>eune</th> <th></th> <th></th> <th></th>	PROJECT:	Phase	• I Investig	ation at Site	es 88, 89,	and 93	3 - MCE	3 Camp Lej	eune				
SURFACE: 13.78 TOP OF PVC CASING: 14.81 Rig: Diedrich D-50 Depth to Spoon Depth to Barrel	CTO NO.:				* * *	_				89-TW	10IW	·········		
New constraint of the second	COORDINA	TES: EAST	`:	2466154.	1863		NORT	TH:		36	0537.733	8		
Split Casing Augers Core Barrel Date Progress (Pt.) Weather (Pt.) Water (Pt.) Time (Pt.) Size (ID) $1-3/8"$ $8/3/96$ $0.0 - 44.0$ M Cloudy, $80s$ Length $2'$ $5'$ Type Stainless HSA Fall $30"$	ELEVATIO	N: SURF	ACE:	13.78			TOP (OF PVC CA	SING:		14.81			
Split Casing Augers Core Barrel Date Progress (Pt.) Weather (Pt.) Water (Pt.) Time (Pt.) Size (ID) $1-3/8"$ $8/3/96$ $0.0 - 44.0$ M Cloudy, $80s$ Length $2'$ $5'$ Type Stainless HSA Fall $30"$	Rig: Die	edrich D-50									Depth to)		
Size (ID) Length $13/8"$ $ 2.3/4"$ $ 8/3/96$ $0.0 - 44.0$ M Cloudy, $80s$ $ -$ Type Stainless $-$ HSA $ -$ <t< td=""><td></td><td>Split</td><td>Casing</td><td>Augers</td><td>Core</td><td>;</td><td>Date</td><td>Progress</td><td>Wea</td><td>ather</td><td></td><td></td></t<>		Split	Casing	Augers	Core	;	Date	Progress	Wea	ather				
Length 2' - 5' -		Spoon		_	Barre	el		(Ft.)			(Ft.)			
Type Stainless HSA Hammer Wt. 140 # Fail 30" Remarks: S Split Spoon A = Anger T Self 40, PVC Riser 1" 0 39 44 Depth (Ft.) Sample Sample Rec. SPT Class (PD) Visual Description Installation Detail PU Detail	Size (ID)	1-3/8"		2-3/4"			8/3/96	0.0 - 44.0	M Clou	ıdy, 80s				
Hammer Wt 140 #	Length	2'		5'			_							
Fall 30" Sickup SAMPLE TYPE WELL INFORMATION SAMPLE TYPE WELL INFORMATION SIGH Spoon A = Auger T = Shelby Tube W = Wash T = Shelby Tube W = Wash R = Air Rotary C = Core D = Denison P = Piston Sch 40, IO-Slot, PVC S 1" 39 44 Depth (Ft.) Sample SPT Class. PID No. (Ft.%) Visual Description Installation (Ft. MSL 2 2.0 7 7 2.0 7 7 2 2.0 7 7 7 3 2 2.0 7 7 7 3 5.0 7 6 - - -	Туре	the second se		HSA										
Stickup - - - - Remarks: SAMPLE TYPE S Split Spoon A = Auger T = Shelby Tube W = Wash R = Air Rotary C = Core D = Denison P = Piston N = No Sample WELL INFORMATION (Ft.) Top Depth (Ft.) Bottom (Ft.) Depth (Ft.) Sample (Ft.) Sample Rec. SPT Lab Class. PID (ppm) Visual Description Installation Detail Vell Elevation (Ft. MSL 1 S-1 1.3 4 (1) F SAND, some silt, little clay, brown; loose; damp 3 - - - - 4 - S-2 1.5 6 (1) CLAY, some silt, little sand; gray w/ orange & red stains - mottled; stiff, damp											•			
SAMPLE TYPE S = Split Spoon A = Auger T = Shelby Tube W = Wash R = Air Rotary C = Core D = Denison P = Piston N = No Sample WELL INFORMATION Sample Type Top Diam. Bottom Depth (Ft.) Sample Sample Lab Type Diam. Depth (Ft.) Opth (Ft.) Bottom 1 Sample Sample Lab PID Class. Opth (pm) Well Installation Detail (Ft. MSL (Ft. %6) 1 S-1 1.3 4 (1) F SAND, some silt, little clay, brown; loose; damp 2 2.0 7	Fall													
SAMPLE TYPEWELL INFORMATIONS = Split SpoonA = AugerTTopBottomT = Shelby TubeW = WashRAnnot to the second											<u> </u>			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Remarks:			T Street, Sector										
$\begin{array}{c c c c c c c c c c c c c c c c c c c $								<u> </u>	LL INF	ORMA				
R = Air Rotary C = Core D = Denison P = Piston N = No Sample (Ft.) (Ft.) <th)<="" colspan="2" td=""><td></td><td>•</td><td>-</td><td>•</td><td></td><td></td><td>1</td><td>T</td><td></td><td>D:</td><td>-</td><td></td></th>	<td></td> <td>•</td> <td>-</td> <td>•</td> <td></td> <td></td> <td>1</td> <td>T</td> <td></td> <td>D:</td> <td>-</td> <td></td>			•	-	•			1	T		D:	-	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			•					Type		Diam.	+ -	-		
N = No Sample Sch 40, 10-Slot, PVC S 1" 39 44 Depth (Ft.) Sample No. SPT Lab PID Visual Description Installation Elevation 1 S-1 1.3 4 (1) F SAND, some silt, little Detail Elevation 2 2.0 7 - (1) F SAND, some silt, little - - 3 - 65% 4 - - - - - 4 - A-N - - - - - - - 5 5.0 -							Sch A	DVC Die	ar.	1"	1			
Depth (Ft.)Sample Type & No.Sample Rec. (Ft.%)Lab SPTPID Class.Visual DescriptionWell Installation DetailElevation (Ft. MSL)1S-11.34(1)F SAND, some silt, little clay; brown; loose; damp-22.07-(1)F SAND, some silt, little clay; brown; loose; damp-3-A-N4-S-21.5655.06S-21.56(1)CLAY, some silt, little fl sand; gray w/ orange & red stains - mottled; stiff; damp-891010.0-8DRILLLING CO:Parratt - WolffBAKER REP:Mark DeJohn							h							
Depth (Ft.) Type & Rcc. No. SPT Class. (ppm) Visual Description Installation Detail (Ft. MSL 1 S-1 1.3 4 (1) F SAND, some silt, little clay; brown; loose; damp 2 2.0 7 3			·		Lab	PID		, 10 010t, 1						
No. (Ft.,%) Detail 1 S-1 1.3 4 (1) F SAND, some silt, little clay, brown; loose; damp 2 2.0 7 (1) F SAND, some silt, little clay, brown; loose; damp 3	Depth (Ft.)		-	SPT		1	Vis	nal Descrit	otion					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	P ()					Q.L	1	I				(,		
2 2.0 65% 4 clay; brown; loose; damp 3 A-N 4 - 5 5.0 6 S-2 1.5 6 7 7.0 7 8 A-N 9 A-N 10 10.0 8 DRILLING CO.: Parratt - Wolff BAKER REP: Mark DeJohn				2										
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	S-1	1.3	4		(1)	F SAN	D, some s	ilt, little					
3 A-N <t< td=""><td></td><td></td><td>65%</td><td>4</td><td></td><td></td><td>clay; t</td><td>orown; loos</td><td>e; damp</td><td></td><td>-</td><td></td></t<>			65%	4			clay; t	orown; loos	e; damp		-			
4 $ -$	2 2.	0		7			_							
4 $ -$	_								_					
4 - - - - - - - - - - 5.0 - - 5.0 - - 5.0 - 5.0 - - 5.0 - - 5.0 - - 5.0 - - 5.0 - - 5.0 - - 5.0 - - 5.0 - - 5.0 - - 5.0 - - 5.0 - <t< td=""><td>3</td><td></td><td></td><td></td><td>ļ</td><td></td><td>1</td><td></td><td></td><td></td><td> </td><td>ļ</td></t<>	3				ļ		1					ļ		
5 5.0 5.0 6 S-2 1.5 6 (1) CLAY, some silt, little f 7 7.0 7 8 9 A-N 9 A-N 10 10.0 8 Match to Sheet 2 DRILLING CO.: Parratt - Wolff BAKER REP.: Mark DeJohn		A-N												
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	4										-	-		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	5 - 5	0							5 0					
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	3 _ 3.		+	4	<u> </u>			·				1		
7 7.0 75% 7 sand; gray w/ orange & red stains - mottled; stiff; damp 8	6	S-2	15			m	CLAN	/ some silt	little f					
7 7.0 7 stains - mottled; stiff; damp 8	l ° −	52									-			
8	7 7	0	1.570	1										
9 A-N 10 10.0 10 10.0 8 10.0 DRILLING CO.: Parratt - Wolff BAKER REP.: Mark DeJohn						†	1		<u></u>		-			
9	8					1			_					
10 10.0 10.0 10.0 10 8 Match to Sheet 2 10.0 DRILLING CO.: Parratt - Wolff BAKER REP.: Mark DeJohn		A-N									-			
8 Match to Sheet 2 DRILLING CO.: Parratt - Wolff BAKER REP.: Mark DeJohn	9										_			
8 Match to Sheet 2 DRILLING CO.: Parratt - Wolff BAKER REP.: Mark DeJohn									_					
DRILLING CO.: Parratt - Wolff BAKER REP.: Mark DeJohn	10 10	.0				<u> </u>					-			
				8	<u> </u>	<u> </u>		Match to	Sheet 2		<u> </u>	1		
	DRILLING	CO.: Parra	tt - Wolff			_	BAKI	ER REP.:	Mark I	DeJohn				
	DRILLER:	(international sector)				_	BORI	NG NO.:			SHEE	T 1 OF 3		

Baker

Baker Environmental

PROJECT:			ation at Site	es 88, 89,	and 93	- MCB Camp Lejeune	00 B IT		
CTO NO.:	62470				-	•	89-TW1		
D =	S = Split T = Shel		A = Auger W = Wash C = Core	mnle		DEFIN SPT = Standard Penetrat PID = Photo Ionization I Lab Class = USCS (AST)	Detector r	ASTM	
	Sample	Sample	11 110 04	Lab	PID		We	-11	Elevation
Depth (Ft.)	Type & No.	Rec. (Ft.,%)	SPT	Class.	(ppm)	Visual Description	Install Det	ation	(Ft. MSL)
11	S-3	1.7	9		(1)	Continued from Sheet 1	TŤ		
12 12.0		85%	8 6			M/C SAND, little silt; orangish- 11.3		-	
13						m dense; wet		-	
14	A-N					F SAND, some silt, trace clay; dk greenish-gray;		-	
15 15.0						m dense; wet 15.0		-	
16	S-4	1.5	5 6		(1)	SILT, trace coarse sand &	è	-	
1717.0		75%	17 38			clay; dk green; m dense; damp			
18 _						-		-	
19 _	A-N					-		-	
20 _ 20.0						-		-	
21	S-5	1.5	27 28		(1)	20.4 SHELL/FOSSIL FRAG,		-	
22 22.0		75%	27 17			trace silt & clay; gray; _ v dense; wet		-	
23								-	
24	A-N							-	
25 25.0					i			-	
26	S-6	1.4	16 17		(1)	little silt & clay; dense		-	
27 _ 27.0		70%	20 20			_		-	
28						-		_	
29	A-N							-	
3030.0						-		-	
			16			Match to Sheet 3			
ORILLING CO ORILLER:		t - Wolff Lafever	······			BAKER REP.: Mark D BORING NO.: 89-TW		SHEE	Г 2 OF 3

Exi(ci)

TEST BORING AND WELL CONSTRUCTION RECORD

PROJECT:			tion at Site	es 88, 89,		- MCB Camp Lejeu				
CTO NO.:	62470	-356			•	BORING NO.:	8	9-TW10	IW	
D=	S = Split T = Shel	MPLE TY t Spoon A by Tube V Rotary (P = Piston	V = Auger W = Wash C = Core	mple		<u>D</u> SPT = Standard Per PID = Photo Ioniza Lab Class = USCS	netratio tion De	tector n	ASTM neasurer	
	Sample	Sample	11 110 54	Lab	PID		Well			Elevation
Depth (Ft.)	Type &	Rec.	SPT	Class.	(ppm)	Visual Description	on	Install	ation	(Ft. MSL)
	No.	(Ft.,%)						Deta	ail	
31	S-7	1.8	18		(1)	Continued from Sh			-	
		90%	27		1	trace silt & clay; de	ense			
32 32.0			36		<u> </u>				-	
33										
	A-N									
34									-	
35 35.0										
35 _ 35.0			19						-	
36	S-8	1.5	24		(1)					
36.5	6	75%	23	ļ					-	
37			22			4			-	-
38 -										
	A-N								-	
39 _									-	-
							_			
40 40.0			25			-			-	_
41	S-9	1.4	23		(1)		-			
		70%	16						-	
42 42.0			8							
			12			- -			-	
43	S-10	1.8	19		(1)	F SAND, som	43.0			
		90%	28			silt, trace clay; dk				
44 44.0			30	<u> </u>		dense; moist	44.0	-╞╡-┤	44.0	
45						u -	_			
46							_			
40 -										1
47							_			-
48							_			
							_]
⁴⁹ —							_			4
50 _										-
		L				<u></u>				I
DRILLING C	O.: Parra	tt - Wolff			_	-	Mark D			
DRILLER:	Chip	Lafever			_	BORING NO.:	89-TW	10IW	SHEE	ET 3 OF 3

TEST BORING AND WELL CONSTRUCTION RECORD

	JECT:	Phase 1	I Investiga	tion at Site	s 88, 89,	and 93		Camp Lejeune				
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $									_			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	RDINATES	S: EAST:			568				-			
	VATION:	SURF	ACE:	15.15			TOP C	F PVC CASIN	G:	17.72	2	
	Diedric	ch D-50									Depth to	
			Casing	Augers	Core		Date	Progress	Wea	ther	Water	Time
Size (ID) 1-3/8" 2-3/4" 8/4/96 0.0 - 15.0 P Sunny, 70s Type Stainless HSA Stain		- 1	5	U	Barre	1		(Ft.)			(Ft.)	
Length 2' - 5' -				2-3/4"		8	/4/96	0.0 - 15.0	P Sun	ny, 70s	-	
Type Stainless HSA Sch 40, PVC Riser 1" 0 Depth PID No. Sch 40, PVC Riser 1" 0 Detail D Detail D Detail D Refer to the log for well Sch 40, PVC Riser 1"	• · ·			5'								
Fall 30" Image: Constraint of the strength of the streng of the strength of the strength of the st		Stainless		HSA								
Stickup Remarks: SAMPLE TYPE WELL INFORMATION S = Split Spoon A = Auger T Shelby Tube W = Wash Type Diam. Depth R = Air Rotary C = Core D = Denison P = Piston Sch 40, PVC Riser 1" 0 N = No Sample Lab. PID Visual Description Installation Detail Depth (Ft.) Type & Rec. SPT Class (ppm) Visual Description Installation 1	nmer Wt.	140 #										
SAMPLE TYPE WELL INFORMATION S = Split Spoon A = Auger Top T = Shelby Tube W = Wash Top Sch 40, PVC Riser 1" O N = No Sample Sch 40, PVC Riser 1" O Sch 40, PVC Riser 1" O N = No Sample Lab. PID Sch 40, PVC Riser 1" O Sch 40, PVC Riser 1" O Depth (Ft.) Type & Rec. SPT Class PID Image Sample Lab. PID Image Sample Lab. PID Image Sample Sample Image Sample Lab. PID Image Sample Lab. PID Image Sample Image Sample Image Sample Image Sample		30"										
SAMPLE TYPE WELL INFORMATION S = Split Spoon A = Auger Top Top T = Shelby Tube W = Wash Type Diam. Depth R = Air Rotary C = Core Sch 40, PVC Riser 1" 0 Depth (Ft.) Sample Sample Lab. PID Sch 40, 10-Slot, PVC Screen 1" 5 Depth (Ft.) Type & Rec. SPT Class (ppm) Visual Description Detail 1		~~										
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	arks:				_							
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $								WEI	L INFC	PRMAT	-	Detter
R = Air RotaryC = Core D = Denison(P1) $N = No Sample$ SampleSch 40, PVC Riser1"0N = No SampleSampleSampleSch 40, 10-Slot, PVC Screen1"5Depth (Ft.)Type & Rec.SPTLab. ClassPID (ppm)Visual DescriptionWell112346910								T		Diam		Bottom
$D = Denison P = Piston \\ N = No \ Sample \\ \hline Depth (Ft.) \\ \hline Type \& \\ No. \\ (Ft.,%) \\ \hline Pt. \\ No. \\ (Ft.,%) \\ \hline Pt. \\ No. \\ (Ft.,%) \\ \hline Pt. \\ Pic $			-					Type		Diam.		Depth
N = No Sample Sch 40, 10-Slot, PVC Screen 1* 5 Depth (Ft.) Type & Rec. No. SPT Lab. (Ft.,%) PID (ppm) Visual Description Well Installation 1			•				Sch AC	DVC Dicer		1"		(Ft.) 5
Sample Sample Rec. (Ft.,%) Sample Rec. (Ft.,%) Lab. Class PID (ppm) Visual Description Well Installation (Detail) 1									Screen			15
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			and the local data in		Lah	PID	DOM TO	, 10 5100, 1 10	Serven			Elevatior
No. (Ft.%) Detail 1				SPT		ł	v	/isual Descripti	on			(Ft. MSL
1								· •			Detail	
Match to Sheet 2	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	A-N					89-TV	V111W for ptions			5.0	
DRILLING CO.:Parratt - WolffBAKER REP.:Mark DeJohnDRILLER:Chip LafeverBORING NO.:89-TW11SHEET				L	<u> </u>	_		ER REP.:	Mark			Γ 1 OF 2

Baker Environmental

PROJECT:	Phase	I Investig	ation at Site	es 88, 89,	and 93	- MCB Camp Lejeune						
CTO NO.:	62470	-356			_	BORING NO .:	5	39 - TN	/11			
D = 1	S = Split T = Shel R = Air	by Tube V Rotary	$\frac{\mathbf{YPE}}{\mathbf{A} = \mathbf{Auger}}$ $W = Wash$ $C = Core$ $N = No Sa$	mple		DEFINITIONS SPT = Standard Penetration Test (ASTM D1586) PID = Photo Ionization Detector measurement Lab Class = USCS (ASTM D2487)						
	Sample	Sample		Lab	PID				Well	Elevation		
Depth (Ft.)	Type & No.	Rec. (Ft.,%)	SPT	Class	(ppm)	Visual Description		Inst	tallation	(Ft. MSL)		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	A-N					1. BOH @ 15.0'			Detail			
30												
DRILLING CO.:	Parratt	- Wolff				BAKER REP.: Mar	k De	John				
DRILLER:	Chip L					BORING NO.: 89-7			SHEET	2 OF 2		

TEST BORING AND WELL CONSTRUCTION RECORD

Baker Environmental

CTO NO.: COORDINAT ELEVATION	ES: <u>62470</u> ES: <u>EAST</u>								VA=1 AA 1			
	ES CASI	-	2466378.	8263	•	NORT	IG NO.: H·	-	89-TW1	2.2455		
			15.25	0205	•		F PVC CASIN	G: .		17.63		
Dia Dial		•			-					Danth to		
Rig: Died	rich D-50 Split Spoon	Casing	Augers	Core Barre		Date	Progress (Ft.)	Wea	ather	Depth to Water (Ft.)	Time	
Size (ID)	1-3/8"		2-3/4 ^H			/4/96	0.0 - 42.0	P Sun	ny, 70s			
Length	2'		5'									
Туре	Stainless		HSA									
Hammer Wt.	140 #											
Fall	30"											
Stickup				-								
Remarks: Note: (1) The H-Nu is not working properly.												
		MPLE T					WEL	L INFC	RMAT		Bottom	
		•					Type		Diam.	Depth	Depth	
		•	C = Core							<u>(Ft.)</u>	(Ft.)	
	D = Den		P = Piston				, PVC Riser	Samaan	<u>1"</u> 1"	0	39	
· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	= No Sam	ipie	Lab	PID	Scn 40	, 10-Slot, PVC	Screen	-	39 Vell	44 Elevatio	
Depth (Ft.)	Sample Type &	Sample Rec.	SPT	Class.	(ppm)		isual Description	nn -		allation	(Ft. MSL	
		(Ft.,%)	511	Class.	(ppm)	ľ	Isual Description			etail		
	110.	(1 1., 70)	15			1						
1	S-1	0.8	11		(1)	F SAN	D, little silt & d	clay:				
-		40%	7			1	n dense; damp	,			1	
2 2.0			7				, 1			-		
3								_		-		
	A-N											
4 _												
_										_		
5 5.0						1						
_			6				·•.			-	-	
6	S-2	2.0	9		(1)	1	ilt; gray w/ tan				-	
, - _,		100%	8		1		m dense; wet	_		-	-	
7 7.0		 	<u> </u>			water	·@ 5.0'			-	4	
8										-	1	
°	A-N		<u> </u>								1	
9										-	1	
í –												
10 10.0								10.0		-	1	
	1		10	1			Match to Shee		1		1	
	<u>.</u> 	Walff	•	-		BAVE	R REP.:	Morle	DeJohn			
DRILLING C DRILLER:	the second s	tt - Wolff Lafever			-		NG NO.:	89-TW		SHEE	Г 1 OF 3	

-

-

Baker

Baker Environmental

PROJECT: Phase I Investigation at Sites 88, 89, and 93 - MCB Camp Lejeune CTO NO .: 62470-356 BORING NO : 89-TW11IW SAMPLE TYPE DEFINITIONS S = Split Spoon A = AugerSPT = Standard Penetration Test (ASTM D1586) T =Shelby Tube W =Wash PID = Photo Ionization Detector measurement R = Air Rotary C = CoreLab Class = USCS (ASTM D2487) D = Denison P = Piston N = No SampleElevation Sample PID Sample Lab Well Depth (Ft.) Type & SPT Rec. Class. **Visual Description** Installation (Ft. MSL) (ppm) (Ft.,%) No. Detail 11 S-3 1.8 12 Continued from Sheet 1 (1)--90% 16 F/M SAND, little silt; gray 12.0 12 20 w/ tan streaks; m dense; wet 13 A-N 14 15.0 15 2 2 16 S-4 1.4 F SAND, little silt & clay; __ (1) 70% 2 gray; v loose; wet 17 17.0 2 18 A-N ---19 20.0 20 2 21 S-5 2 2.0 some silt, little clay; (1) 100% 2 dk green 22 22.0 2 23 A-N 24 25 25.0 9 26 S-6 2.0 7 F SAND, little shell/fossil (1) ---100% 20 frag & silt, trace clay; 27 27.0 31 gray; m dense; moist 28 A-N 29 30 30.0 17 Match to Sheet 3 DRILLING CO.: Parratt - Wolff BAKER REP .: Mark DeJohn DRILLER: Chip Lafever BORING NO .: 89-TW11IW SHEET 2 OF 3

l≊€lkai

TEST BORING AND WELL CONSTRUCTION RECORD

Baker Environmental

PROJECT:			tion at Site	s 88, 89,	and 93	- MCB Camp Lejeune		0 711111	Y 1 X 7	, · · ·
CTO NO.:	62470	-356			•	BORING NO.:		89-TW11	1 99	
D=	S = Split T = Shel	•	V = Auger V = Wash C = Core	mple		DE SPT = Standard Penetrat PID = Photo Ionization I Lab Class = USCS (AST	tion Te Detecto	or measur)
	Sample	Sample	11 110 54	Lab	PID			We	11	Elevation
Depth (Ft.)	Type &	Rec.	SPT	Class.	(ppm)	Visual Description		Install: Deta	ation	(Ft. MSL)
31	<u>No.</u> S-7	(Ft.,%) 2.0	20		(1)	Continued from Sheet 2				
31	5-1	2.0 100%	20 26			SHELL/FOSSIL FRAG,				
22 - 22 0		100%	33			little silt, trace clay; gray			-	
32 32.0						dense; wet	"⊢			
33 _	A 3.T					dense, wei				
34	A-N						_			
3535.0						-	_			
	C 0	1.2	20 22				_		_	
36	S-8	1.3 65%	23 26		(1)		-			
36.5		03%	20 30				-		-	
37						-	-			1
38										
39	A-N						-		-	-
40 40.0			6				40.0			
41	S-9	1.0	13		(1)	F SAND, some silt, littl	e		-	
42 42.0		50%	14 15	1		clay; dk green; m dense moist	; 42.0		42.0	
42 42.0		1	13		+	BOH @ 42.0'				
43									-	-
44							_		-	-
										1
45									_	-
46									_	
47							_			1
										-
48										-
49									_	-
50										-
			1		I	BAKER REP.:	Mark 1	DeJohn		
DRILLING C DRILLER:		tt - Wolff Lafever			-		89-TW		SHEE	T 3 OF 3
					<u> </u>					

-

TEST BORING AND WELL CONSTRUCTION RECORD

Baker Environmental

Daker Elivitolini	cintar										
PROJECT:	Phase	I Investiga	ation at S	ites 88,	89, and	93 - M	CB Camp L	ejeune			
CTO NO.:	62470	-356				BORIN	NG NO.:		89-TW	12	
COORDINAT	ES: EAST		2465	345.2237	;	NORT	H:	•	3	860043.820)9
ELEVATION:			11.98		•	TOP C	F PVC CA	SING:		13.62	· · · · · · · · · · · · · · · · · · ·
Rig: Died	rich D-50									Depth to	
	Split	Casing	Augers	Core		Date	Progress	Wea	ather	Water	Time
	Spoon			Barre			(Ft.)			(Ft.)	
Size (ID)	1-3/8"		2-3/4"		8	3/4/96	0.0 - 10.0	P Sun	ny <u>, 70</u> s		
Length	2'		5'								
Туре	Stainless		HSA								
Hammer Wt.	140 #										
Fall	30"										
Stickup								·			
Remarks:								1			
Асшаткз.		OLETW	DE			<u></u>	***		ODI	TION	
		<u>APLE TY</u>				┣────	WE	LL INI	FORMA		
1	S = Split					1	-			Тор	Bottom
	T = Shelb	*					Туре		Diam.	Depth	Depth
	R = Air F		C = Core			L				(Ft.)	(Ft.)
	D = Denis	son P	= Piston), PVC Rise		1"	0	5
	N =	• No Samp	ole			Sch 40), 10-Slot, P	VC Scr	1"	5	10
	Sample	Sample		Lab.	PID				V I	Vell	Elevation
Depth (Ft.)	Type &	Rec.	SPT	Class	(ppm)	Vis	sual Descrip	tion	Inst	allation	(Ft. MSL)
	No.	(Ft.,%)			·	ļ	-		D	etail	
1											
										-	
2								-		-	
								_		-	
3						1				-	
	1		1		1	1			{	-	
4		ļ								-	
5	A-N						to the log fo	r well		5 <u>.0</u>	
					[1	V12IW for			[
6						descrip	ptions				
								_			
]		1		1			_			
									1 🗐		1
8						1		_		-	
				ļ		1		_		-	1
9		1			1	1		_			1
'-						1				-	1
								10.0		10.0	
10 10.0	<u> </u>	<u> </u>		 -	+	DOLL	@ 10.0'	10.0	┟╴╞╡╌	10.0	1
L		<u> </u>	<u> </u>	1		IDOH	@ 10.0'			<u> </u>	L
DRILLING C	O.: Parra	tt - Wolff				BAKE	ER REP.:	Mark	DeJohn		
DRILLER:		Lafever		·····	-		NG NO.:	89-TV		SHEE	Г 1 OF 1
					-					-	

-

Baken

TEST BORING AND WELL CONSTRUCTION RECORD

Baker Environmental

CTO NO	T :	62470				-		Camp Lejeune		89-TW	I2IW	
COORDI	NAT	ES: EAST	•	2465346.	3291		NORT	H:	-	3600	47.0289	
ELEVAT	TION:	SURF.	ACE:	11.68			TOP C	F PVC CASIN	G:	13.35		•
Rig:	Died	rich D-50						<u>.</u>	I		Depth to	-
		Split Spoon	Casing	Augers	Core Barre		Date	Progress (Ft.)	Wea	ther	Water (Ft.)	Time
Size (ID))	1-3/8"		2-3/4"		- 8	3/4/96	0.0 - 47.0	P Sun	ny, 70s		
Length		2'		5'					1			
Туре		Stainless		HSA								
Hammer	r Wt.	140 #										
Fall		30"					· · · · · · · · · · · · · · · · · · ·		L			
Stickup						Ļ						
Remark	s:	Note: (1) 7			ing prope	erly.	1					
			MPLE T					WEL	L INFO	RMAI		Dettern
				A = Auger W = Wash				Туре		Diam.	Top Depth	Bottom Depth
				C = Core				Турс		Diam.	(Ft.)	(Ft.)
		D = Den	•	P = Piston			Sch 40	, PVC Riser		1"	0	42
			= No Sam					, 10-Slot, PVC	Screen	1"	42	47
		Sample	Sample		Lab	PID		· · · · · · ·		I	Vell	Elevation
Depth (Ft.)	Type &	Rec.	SPT	Class.	(ppm)	V	isual Descripti	on	Inst	allation	(Ft. MSL
		No.	(Ft.,%)							D	etail	
				4								
1		S-1	1.8	5		(1)		D, little silt, tra		·		
· -	20		90%	7 10				ag; brown & gr	ay _		_	
2	2.0			10				se; damp			_	
3 -									_		-	
		A-N										
4 -									_		-	
5	5.0							<u> </u>	5.0		-	
				3							-	
6		S-2	1.6	2		(1)		D, some silt, tr	ace			
7 -	7.0		80%	3 2			loose;	ray to dk gray;				
′ –	1.0			2		+		wet				
8 -	1			ĺ					-		-	
	1	A-N										
9 -	1											
	1	1]
10	10.0		ļ			<u> </u>			10.0			-
L	I]	5				Match to Shee	et 2		I	I
DRILLI	NG C	O.: Parrat	tt - Wolff			_	BAKE	R REP.:	Mark I	DeJohn		
DRILLE	R:	Chip]	Lafever			-	BORI	NG NO.:	89-TW	/12IW	SHEET	T 1 OF 3

-

Baker

Baker Environmental

Phase I Investigation at Sites 88, 89, and 93 - MCB Camp Lejeune PROJECT: BORING NO .: 89-TW12IW CTO NO .: 62470-356 SAMPLE TYPE DEFINITIONS S = Split Spoon A = AugerSPT = Standard Penetration Test (ASTM D1586) T = Shelby Tube W = Wash PID = Photo Ionization Detector measurement R = Air Rotary C = CoreLab Class = USCS (ASTM D2487) D = Denison P = Piston N = No SampleWell Elevation PID Sample Sample Lab Visual Description Installation (Ft. MSL) SPT Depth (Ft.) Type & Rec. Class. (ppm) Detail (Ft.,%) No. Continued from Sheet 1 1 (1) S-3 1.4 11 --CLAY, little silt, trace f 70% 1 sand; dk gray; v soft; moist 12.0 2 12 13 A-N 14 15.0 15 5 bluish-gray; v stiff; moist 16 S-4 1.8 8 (1) ----90% 9 8 17 17.0 18 A-N 19 20.0 20.0 20 S-5 LIMESTONE FRAG 0.1 23 (1) --13% 21 20.3 50/3" 22 23 A-N ----24 25 25.0 25 15 SHELL/FOSSIL FRAG, 26 S-6 1.7 (1) ---85% 19 little silt & clay; lt gray; dense; wet 27 27.0 31 28 A-N ---29 30 30.0 23 Match to Sheet 3 DRILLING CO .: Parratt - Wolff Mark DeJohn BAKER REP .: DRILLER: 89-TW12IW Chip Lafever BORING NO .: SHEET 2 OF 3

Belken

Baker Environmental

PROJECT:			ation at Site	es 88, 89,	and 93	- MCB Camp Lejeune				
CTO NO.:	<u>62470</u>	-356			-	BORING NO .:	<u>8</u>	89-TW1	2IW	
D =	S = Split T = Shel	by Tube N Rotary	A = Auger W = Wash C = Core	mple		D SPT = Standard Penetr PID = Photo Ionization Lab Class = USCS (AS	Detecto	est (AST)
Depth (Ft.)	Sample Type & No.	Sample Rec. (Ft.,%)	SPT	Lab Class.	PID (ppm)	Visual Description	n	Insta	/ell llation etail	Elevation (Ft. MSL)
$\begin{array}{c}31\\32\\32\end{array}$	S-7	1.3 65%	28 30 39		(1)	Continued from Sheet 2 little m/c sand, trace sil clay; v dense				
33 34 3535.0	A-N						-		-	
36 36.5 37	S-8	1.3 65%	23 30 31 30		(1)	trace silt & clay			-	
38 39 4040.0	A-N									
41 4242.0	S-9	1.4 70%	19 25 31 34		(1)	little silt & clay			-	
43 44 4545.0	A-N									
46 4747.0	S-10	1.0 50%	2 2 3 6		(1)	F/M SAND, little silt, trace clay; dk green; loose; wet	47.0		47.0	
48 49 50						BOH @ 47.0'				
DRILLING CO DRILLER:		t - Wolff Lafever		I	 - -		Mark D 89-TW		SHEET	3 OF 3

Bakan

TEST BORING AND WELL CONSTRUCTION RECORD

PROJECT:	Phase	I Investig	ation a	t Sites 8	8, 89, 2	ind 93 -	MCB Camp I	ejeune			
CTO NO.:	62470	-356					IG NO.:		89-TW13		
COORDINAT	ES: EAST	:	24660)32.323	8	NORT			360223.9	9067	
ELEVATION:	SURF	ACE:	13	.28		TOP O	F PVC CASI	1G:	14.00		
Rig: Died	rich D-50				T			Τ		Depth to	
nig. Dicu	Split Spoon	Casing	uger	Core Barr		Date	Progress (Ft.)	w	eather	Water (Ft.)	Time
Size (ID)	1-3/8"		2-3/4		8	/5/96	0.0 - 20.0	P Su	nny, 80s		
Length	2'		5'								
Туре	Stainless		HSA								
Hammer Wt.	140 #										
Fall	30"										
Stickup											
Remarks:						-					
		PLE TYP					W	ELL INI	ORMATI	Y	
	S = Split Sp		-							Тор	Bottom
ľ	T = Shelby						Type		Diam.	Depth	Depth
	$\mathbf{R} = \operatorname{Air} \mathbf{Ro}$		= Core							(Ft.)	(Ft.)
	D = Deniso		Piston	L			, PVC Riser		1"	0	9
		No Sample		.		Sch 40	, 10-Slot, PV0	Screen	1"	9	19 Election
	Sample	Sample		Lab.	PID	.		•		ell	Elevation
Depth (Ft.)	Type &	Rec.	SPT	Class	(ppm)		isual Descript	10 n		lation	(Ft. MSL)
	No.	(Ft.,%)								tail	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	A-N						to the log for v /13IW for ptions	vell			
DRILLING C		tt - Wolff			-		Match to She ER REP.: NG NO.:		DeJohn	SHEE"	Γ 1 OF 2 ⁻
DRILLER:		Lafever			-	DOID				_	•• •

Seker

Baker Environmental

PROJECT:	Phase	I Investig	ation a	t Sites 8	38, 89, a	and 93 - MCB Camp Lejeur	e	
CTO NO.:	62470					BORING NO .:	89-TW13	
		PLE TYP					FINITIONS	
	S = Split Sp					SPT = Standard Penetratio		
	$\Gamma = $ Shelby					PID = Photo Ionization De		it
	R = Air Ro					Lab Class = USCS (ASTM	D2487)	
D = D	enison P = Sample		= NO 2	Lab	PID		Well	Elevation
Depth (Ft.)	Type &	Sample Rec.	SPT	Class	(ppm)	Visual Description	Installatio	
Depui (Pt.)	No.	(Ft.,%)	SFI	Class	(ppm)	visual Description	Detail	
11		(1 (., 70)						·
12								1
13	A-N					·		
14								
								-
15								_
16								-
10								
17								-
· – 1								
18								-
19								19.5
20 20.0							0.0	20.0
						BOH @ 20.0'		
21							_	
aa -								_
22							_	
23								-
²³ —								
24							-	-
25								-
26								
27							_	
28							-	-
⁴⁰								
29							-	-
30							-	-
								-1 1
DRILLING CO) · Parrati	t - Wolff				BAKER REP.: Mar	k DeJohn	
DRILLER:		Lafever	•					SHEET 2 OF 2
	<u> </u>					<u></u>	k	$\frac{1}{2} O C C C C C C C C C C C C C C C C C C $

Baker

TEST BORING AND WELL CONSTRUCTION RECORD

PROJEC	T:	Phase	I Investig	ation at Site	es 88, 89,	and 93	- MCE	Camp Lejeune				
CTO NO		62470	-356					NG NO.:		89-TW	13IW	
COORDI	NAT	ES: EAST	•	2466029.	9917	-	NORT	H:		3602	219.0120	
ELEVAT	TON:	SURF.	ACE:	13.18		-	TOP C	F PVC CASIN	G:	14.29)	
Rig:	Died	rich D-50				<u> </u>					Depth to	
		Split	Casing	Augers	Core		Date	Progress	Wea	ather	Water	Time
		Spoon		-	Barre	el		(Ft.)			(Ft.)	
Size (ID)		1-3/8"		2-3/4"		8	/4/96	0.0 - 47.0	P Sun	ny, 80s		
Length		2'		5'								
Туре		Stainless		HSA								
Hammer	·Wt.	140 #										
Fall		30"									<u> </u>	
Stickup												
Remarks	8:	Note: (1) 1			ing prope	erly.						
			MPLE T					WEL	L INFC	RMAT		
				A = Auger				T		D .	Тор	Bottom
			Rotary	W = Wash				Туре		Diam.	Depth	Depth
		R = An D = Den	-	P = Piston			Sch 40	, PVC Riser		1"	(Ft.) 0	(Ft.) 39
			= No Sam					, 10-Slot, PVC	Screen	1 1"	39	44
		Sample	Sample		Lab	PID	DON TO	, 10-010, 1 VC	bereen	_	Well	Elevation
Depth (Ft.)	Type &	Rec.	SPT	Class.	(ppm)	Ιv	visual Description	on		allation	(Ft. MSL)
	,	No.	(Ft.,%)	~		(FF)					Detail	(1 (1 (1)102)
				9							[
1		S-1	1.3	11		(1)	SILT,	little f sand &				
			65%	11			clay; b	rown; m dense;				
2	2.0			14			damp					
									_		_	
3												
		A-N							_		_	
4											_	
	50								_			
5	5.0			11			4					
6		S-2	1.1	11								
Ŭ		5-2	55%	12		(1)					-	
7	7.0		5570	10					_			
·	7.0						1				-	
8									_			
		A-N									-	
9											-	
					1							
10	10.0							<u> </u>	10.0			
				2				Match to Shee	t 2			
DRILLIN	IG CO	D.: Parrat	t - Wolff				BAKE	R REP.:	Mark I	DeJohn		
DRILLE			Lafever			-		NG NO.:	89-TW		SHEET	T 1 OF 3

Baker

TEST BORING AND WELL CONSTRUCTION RECORD

V :

ROJECT: FO NO.:	62470			, ,	•	- MCB Camp Lejeune BORING NO.:	89-TW13IW	
D =	S = Split T = Shell	MPLE TY Spoon A by Tube V Rotary P = Piston	V = Auger V = Wash C = Core	mple		DEFINI SPT = Standard Penetration T PID = Photo Ionization Detect Lab Class = USCS (ASTM D2	est (ASTM D158 for measurement	
Depth (Ft.)	Sample Type & No.	Sample Rec. (Ft.,%)	SPT	Lab Class.	PID (ppm)	Visual Description	Well Installation Detail	Elevation (Ft. MSL)
11 12 12.0	S-3	1.3 65%	3 3 8		(1)	Continued from Sheet 1 F SAND, little silt, trace clay & gravel; dk gray to	-	
12 - 12.0 13 - 14 - 15.0	A-N					gray; loose; wet Water @ 11.5' 	-	
16 1717.0	S-4	1.5 75%	3 3 3 9		(1)	F/M SAND, little silt, layer of clay & organic matter; dk gray; loose; wet		-
18 19 2020.0	A-N					20.0		-
$\begin{array}{c} 20 \\ 20 \\ 21 \\ 21 \\ 21.4 \end{array}$	S-5	1.0 71%	26 31 50/4"		(1)	SHELL/FOSSIL FRAG,		
22 23 24 2525.0	A-N					v dense; moist to wet		
26 2727.0	S-6	1.7 85%	20 22 28 20		(1)	wet		
28 29	A-N							
3030.0		<u> </u>			<u> </u>	Match to Choot 2		
DRILLING C DRILLER:		 tt - Wolff Lafever	22		_l		DeJohn V13IW SHEI	ET 2 OF 3

Baken 👘

Baker Environmental

Phase I Investigation at Sites 88, 89, and 93 - MCB Camp Lejeune PROJECT: 62470-356 BORING NO .: 89-TW13IW CTO NO .: SAMPLE TYPE DEFINITIONS SPT = Standard Penetration Test (ASTM D1586)S = Split Spoon A = AugerPID = Photo Ionization Detector measurement T =Shelby Tube W =Wash Lab Class = USCS (ASTM D2487) R = Air Rotary C = CoreD = Denison P = Piston N = No SampleWell Elevation Sample Sample Lab PID Installation (Ft. MSL) SPT Class. Visual Description Type & Rec. (ppm) Depth (Ft.) Detail No. (Ft.,%) Continued from Sheet 2 S-7 1.5 24 ___ (1)31 25 smaller frag; dense 75% 32 32.0 23 33 A-N 34 35.0 35 31 F/M SAND, little silt, trace 23 (1) 36 S-8 2.0 --shell frag; gray; v dense; 100% 33 38 wet 37 37.0 38 A-N ---39 40 40.0 27 30 (1) SHELL/FOSSIL FRAG, S-9 1.1 41 -trace silt & clay; lt gray; 55% 30 v dense; wet 41 42 42.0 43 A-N --44 45.0 45.0 45 17 (1) F SAND, little silt, trace S-10 1.0 20 46 -clay; dk green; dense; 50% 24 47.0 47.0 25 moist to wet 47 47.0 BOH @ 47.0' 48 49 50 Parratt - Wolff BAKER REP .: Mark DeJohn DRILLING CO.: 89-TW13IW SHEET 3 OF 3 Chip Lafever BORING NO .: DRILLER:

Baker

TEST BORING AND WELL CONSTRUCTION RECORD

PROJECT:			ntion at Site	<u>s 88, 89,</u>			Camp Lejeune				
CTO NO.:	62470						NG NO.:	-	89-TW		
COORDINAT	ES: EAST	:	2465529.2	2568		NORT				7.5487	
ELEVATION:	SURF.	ACE:	16.21			TOP C	F PVC CASIN	i G :	17.47		
Rig: Died	rich D-50			<u></u>	ĺ			1		Depth to	
Ng. Dieu	Split	Casing	Augers	Core		Date	Progress	Wea	ther	Water	Time
	Spoon	Casing	meers	Barre		Juit	(Ft.)			(Ft.)	
Size (ID)	1-3/8"		2-3/4"			/6/96	0.0 - 15.0	P Sun	ny, 80s		
Length	2'		5'		-	10/20	0.0 10.0				
Type	Stainless		HSA					+			
Hammer Wt.											
Fall	<u>30"</u>							1			
Stickup								1			
Remarks:	l										
Kemarks:	C A	MDIFT	VDF				WFI	L INFC	IRMAT	ION	
		MPLE T	<u>IPE</u> A = Auger				VV CI			Тор	Bottom
			W = Wash				Туре		Diam.	Depth	Depth
			C = Core				Type		Diam.	(Ft.)	(Ft.)
	R = An D = Den	-	P = Piston			Sch 40), PVC Riser		1"	0	5
		= No San), 10-Slot, PVC	Screen	1"	5	15
	Sample	Sample		Lab.	PID	Den H	, 10-0101, 1 1 0		4	Well	Elevation
Domth (Et)	Type &	Rec.	SPT	Class	(ppm)	т	/isual Descript	ion		allation	(Ft. MSL)
Depth (Ft.)	No.	(Ft.,%)	511		(Whu)		isuai Deseripti			Detail	(1 0. 102)
	110.	(11.,70)									
1										1	
2								_		-	
2 <u> </u>										-	
3								-		-	1
						1					1
4								-		-	
-				1						_	
5	A-N					Refer	to the log for w	/ell –		5.0	
							W15IW for			-	1
6							ptions	-		-	
							F			_	
7								_			
									1 📕		
8								-	1 🗐	-	-
						1				_	
9								-			1
											1
10]
-1		1			1		Match to She	et 2			
					<u>.</u>	ישאם	ER REP.:	Mort	DeJohn		
DRILLING C		tt - Wolff					ING NO.:	89-TV			T 1 OF 2
DRILLER:	Chip	Lafever				DOKI		07-11	112	SHEE	1 I OF 2

30

Baker Environmental

PROJECT: Phase I Investigation at Sites 88, 89, and 93 - MCB Camp Lejeune BORING NO .: CTO NO .: 62470-356 89-TW15 SAMPLE TYPE DEFINITIONS S = Split Spoon A = AugerSPT = Standard Penetration Test (ASTM D1586) T = Shelby Tube W = Wash PID = Photo Ionization Detector measurement R = Air Rotary C = CoreLab Class = USCS (ASTM D2487) D = Denison P = Piston N = No SampleSample Sample PID Well Elevation Lab Depth (Ft.) SPT Installation (Ft. MSL) Type & Rec. Class (ppm) Visual Description No. (Ft.,%) Detail 11 12 13 A-N 14 15.0 15.0 15 15.0 BOH @ 15.0' 16 17 18 19 20 21 22 23 24 25 26 27 28 29

TEST BORING AND WELL CONSTRUCTION RECORD

DRILLING CO .: Parratt - Wolff BAKER REP .: Mark DeJohn DRILLER: Chip Lafever 89-TW15 BORING NO .:

SHEET 2 OF 2

TEST BORING AND WELL CONSTRUCTION RECORD

PROJECT: CTO NO.:	62470		tion at Site	····· · · · · · ·			IG NO.:		89-TW1	5IW	
COORDINAT			2465533.4	588		NORT	H:	-	36082	28.1723	
ELEVATION			16.25			TOP O	F PVC CASIN	G: [16.70		
								-		Depth to	
Rig: Died	rich D-50	Caring	Augong	Core	┥,	Date	Progress	Was	ther	Water	Time
	Split	Casing	Augers	Barre		Date	(Ft.)	WCa	unci	(Ft.)	TIME
	Spoon		0.0/11			16106		D Com			
Size (ID)	1-3/8"		2-3/4"		8	/6/96	0.0 - 47.0	P Sun	ny, 80s		
Length	2'		5'					<u> </u>			
Туре	Stainless		HSA								
Hammer Wt.											
Fall	30"										
Stickup											
Remarks:											
		MPLE T					WEL	L INFC	RMAT		
			A = Auger							Тор	Bottom
	T = Shel	by Tube N	W = Wash				Туре		Diam.	Depth	Depth
	$\mathbf{R} = \mathbf{Air}$	Rotary								(Ft.)	(Ft.)
	D = Der	uison 🛛	P = Piston				, PVC Riser		1"	0	39.5
	N	= No San	ple			Sch 40), 10-Slot, PVC	Screen	1"	39.5	44.5
	Sample	Sample		Lab	PID	1				Well	Elevatio
Depth (Ft.)	Type &	Rec.	SPT	Class.	(ppm)	1	isual Descripti	on		allation	(Ft. MS
•	No.	(Ft.,%)							D	etail	
1											
2		1									
	A-N										
3											
						1					
4						1				_	
5 5.0						F SAN	ND, little silt &	clay;			
		1	6	1	1	brown	; m dense; dan	ip			
6	S-1	2.0	8		0.4			6.1			
		100%	7		0.4						
7 7.0			7			F SAI	ND, trace silt; b	rown;	1		
	-	1			1	m der	se; damp to we	t	1		1
8						Wate	r @ 7.0'	_			
Ŭ	A-N					1	0		1	-	
9								-	1		1
1 -									1	-	1
10 10.	h							-	1		1
			4		-	-1	Match to She	et 2	1	-	1
					- I						
DRILLING (tt - Wolff			_		ER REP.:		DeJohn		TIOTO
DRILLER:	Chin	Lafever				BOR	NG NO.:	89-11	W15IW	_ SHEE	T 1 OF 3

Baker

Baker Environmental

PROJECT: Phase I Investigation at Sites 88, 89, and 93 - MCB Camp Lejeune CTO NO .: 62470-356 BORING NO .: 89-TW15IW SAMPLE TYPE DEFINITIONS S = Split Spoon A = AugerSPT = Standard Penetration Test (ASTM D1586) T = Shelby Tube W = Wash PID = Photo Ionization Detector measurement R = Air Rotary C = CoreLab Class = USCS (ASTM D2487) D = Denison P = Piston N = No SampleElevation Sample PID Well Sample Lab Type & Depth (Ft.) Rec. SPT Class. (ppm) Visual Description Installation (Ft. MSL) No. (Ft.,%) Detail 11 S-2 1.4 8 Continued from Sheet 1 0.4 ___ 70% 8 0.4 brown & gray layering 12 12.0 9 13 A-N _ 14 15.0 15 15.0 4 F/M SAND, trace silt & S-3 5 16 1.4 c sand; brown & gray <u>0.3</u> ---70% 6 0.3 layers; m dense; wet 16.6 17 17.0 7 SILT, some clay; dk gray; 18 stiff; moist A-N --19 20.0 20 20.0 3 21 S-4 1.5 4 M/C SAND & SHELL 0.2 --75% 5 0.2 FRAG, little silt & clay; 22 7 22.0 dk gray; loose; wet 23 A-N ---24 25 25.0 21 26 S-5 40 F SAND, little shell/fossil 1.6 <u>0.2</u> -----80% 32 0.2 frag & silt, trace clay; 27 27.0 37 It gray; v dense; moist 28 A-N 29 30 30.0 10 Match to Sheet 3 DRILLING CO .: Parratt - Wolff BAKER REP .: Mark DeJohn DRILLER: Chip Lafever BORING NO .: 89-TW15IW SHEET 2 OF 3

Bel(Gr

Baker Environmental

PROJECT: CTO NO.:	Phase 62470		ation at Site	<u>s 88, 89,</u>	and 93	- MCB Camp Lejeune BORING NO.:	89-TW151	W
D =	S = Split T = Shel		A = Auger W = Wash C = Core	mple	-	DEI SPT = Standard Penetrati PID = Photo Ionization D Lab Class = USCS (AST)	Detector measure	
Depth (Ft.)	Sample Type &	Sample Rec.	SPT	Lab Class.	PID (ppm)	Visual Description	Wel Installa Deta	tion (Ft. MSL)
31	No. S-6	(Ft.,%) 1.8 90%	17 32		0.2 0.2	Continued from Sheet 2 SHELL/FOSSIL FRAG,		ш
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	A-N		<u> </u>			little f sand & silt, trace clay; gray; dense; wet		
36 3737.0	S-7	1.3 65%	16 20 21 26		<u>0.2</u> 0.2	trace silt & clay		
38 39 4040.0	A-N							
$ \begin{array}{c} 40 \\ -40 \\ 41 \\ -42 \\ -42.0 \\ 42.0 \\ \end{array} $	S-8	1.3 65%	18 23 25 30		<u>0.2</u> 0.2	SHELL/FOSSIL FRAG, trace silt & clay; lt gray; v dense; wet		
43	A-N							
45 <u>45.0</u> 46 <u>47</u> 47 47.0	S-9	1.5 75%	8 9 10 12		<u>0.2</u> 0.2	m dense; moist	46.8	 47.0
48 49 50						BOH @ 47.0'	47.0 	
DRILLING C DRILLER:	in the second	tt - Wolff Lafever	L	L	<u> </u>		fark DeJohn 9-TW15IW	SHEET 3 OF 3

Bakan

TEST BORING AND WELL CONSTRUCTION RECORD

PROJECT: CTO NO.:	62470						Camp Lejeun G NO.:		89-TW	16	
COORDINAT			2465688.9	9912		NORTI		-		37.9058	
ELEVATION:			15.02				F PVC CASIN	JG: .	17.02		
		•			<u> </u>			<u> </u>		Depth to	
Rig: Died	rich D-50	Casing	Angono	Core	,	Date	Progress	Wee	ther	Water	Time
	Split Snoon	Casing	Augers	Barre		Date	(Ft.)	WC2	шег	(Ft.)	TIME
	Spoon		0.2/48			16106	<u> </u>	DC	800	(ru)	
Size (ID)	1-3/8"		<u>2-3/4"</u> 5'		- 8	/6/96	0.0 - 15.0	P Sun	ny, 80s		
Length	2'						<u></u>	·			
Туре	Stainless		HSA								
Hammer Wt.	140 #							·			
Fall Stielerer	30"										
Stickup	**									[
Remarks:							***	T THEFT		ION	
		MPLE T					WE	LL INFO	KMAI	T	D+44
		t Spoon A					-		D .	Тор	Bottom
			V = Wash				Туре		Diam.	Depth	Depth
			C = Core			0.1.40			1.00	(Ft.)	<u>(Ft.)</u>
	D = Den		P = Piston				, PVC Riser		1" 1"	0	5
		= No San	ple			Sch 40	, 10-Slot, PVC	Screen		5	15
	Sample	Sample	apa	Lab.	PID					Well	Elevation
Depth (Ft.)	Type &	Rec.	SPT	Samp.	(ppm)	`	isual Descript	10N		allation	(Ft. MSL
	No.	(Ft.,%)								Detail	
3 4 5	A) 1					Pofor	to the log for v	 		5.0	
⁵	A-N						/16IW for			-	
8 8 9								-			
							Match to She				
DRILLING C DRILLER:		tt - Wolff Lafever			-		ER REP.: NG NO.:	Mark 89-TV	DeJohn V16		Г 1 OF 2

Baken

Baker Environmental

TEST BORING AND WELL CONSTRUCTION RECORD

.

PROJECT:	Phase	I Investig	ation at Site	s 88, 89,	and 93	- MCB Camp Lejeun		00 00	11.6	
CTO NO.:	62470				-	BORING NO.:	-	89-TV		
D = 1	S = Split T = Shell R = Air	by Tube N Rotary	A = Auger W = Wash	mple		SPT = Standard Pene PID = Photo Ionizati Lab Class = USCS (2	on Detect	est (A or me	STM D158	5)
	Sample Type & No.	Sample Rec. (Ft.,%)	SPT	Lab Class	PID (ppm)	Visual Descript	tion		Well tallation Detail	Elevation (Ft. MSL)
11		(11.,70)								
12										
13	A-N						_			
14		·					-			
15 15.0						BOH @ 15.0'	15.0		15.0	
16						БОН @ 15.0			-	
17									-	
18 _							_		-	
19							_		-	
20 _							_		-	
21							-			
22										
23									-	
24										
25										
26									-	
27									-	
27									-	
28				1						
									-	
30										
DRILLING CO.: DRILLER:	Parratt Chip L	- Wolff afever		. ,		BAKER REP.: BORING NO.:	Mark D 89-TW			2 OF 2

5el(en

TEST BORING AND WELL CONSTRUCTION RECORD

PROJECT:	Phase	I Investiga	ation at Site	s 88, 89,			Camp Lejeune				
CTO NO.:	62470						NG NO.:		89-TW		
COORDINAT	ES: EAST	:	2465689	.5175		NORT		-	36054	2.2647	
ELEVATION	SURF.	ACE:	15.46			TOP C	OF PVC CASIN	G: .	15.46	,	
Rig: Died	rich D-50									Depth to	
105. 2100	Split	Casing	Augers	Core		Date	Progress	Wea	ther	Water	Time
	Spoon		8	Barre			(Ft.)			(Ft.)	
Size (ID)	1-3/8"		2-3/4"		8	/6/96	0.0 - 47.0	P Sun	ny, 80s		
Length	2'		5'								
Туре	Stainless		HSA								
Hammer Wt.	140 #										
Fall	30"										
Stickup											
Remarks:											
	SA	MPLE T	YPE				WEL	L INFC	RMAT	TION	
1	S = Split	t Spoon	A = Auger							Тор	Bottom
	T = Shel	by Tube	W = Wash				Туре		Diam.	Depth	Depth
	R = Air	-	C = Core							(Ft.)	(Ft.)
	D = Den	ison]	P = Piston), PVC Riser		1"	0	40
	N	= No San	ıple			Sch 40), 10-Slot, PVC	Screen	1"	40	45
	Sample	Sample		Lab	PID					Well	Elevation
Depth (Ft.)	Type &	Rec.	SPT	Class.	(ppm)	\	isual Description	on		allation	(Ft. MSL)
	No.	(Ft.,%)							L L	Detail	
1										_	
										-	
2								<u></u>		_	
	A-N							_		-	
3										_	
								_		-	
4											
							-	. –			
5 5.0	ļ			 			ND, little silt &			_	
			7			prown	; m dense; dam	р 6.2		-	
6	S-1	2.0	7		$\begin{array}{ c c } \underline{0.2} \\ 0.2 \end{array}$			0.2			
		100%	9		0.2	TAL		e		-	-
7 7.0		<u> </u>	12				AND, trace silt prown & gray la			-	
						1	se; moist	yeis, _			
8	A-N					In den	ise, moist			-	-
9	A-IN									-	-
"-										-	
10 10.0										-	-
	1	<u> </u>	10			1	Match to Shee	t 2 —	1	-	1
L	J	L	1 10	1							£
DRILLING C		tt - Wolff			-		ER REP.:		DeJohn		ELOE 2
DRILLER:	Chip	Lafever			-	ROKI	NG NO.:	<u>89-19</u>	V16IW	- SHEE	Г 1 OF 3

Beiker

Baker Environmental

ROJECT: TO NO.:	62470		ation at 510			- MCB Camp Lejeune BORING NO.:	89-TW1	6IW	
	·····	MPLE T	VPF	-	-		VITIONS		
		t Spoon A				SPT = Standard Penetration		CM D158	6)
			W = Wash			PID = Photo Ionization Dete			
		Rotary				Lab Class = USCS (ASTM)		urement	
D =			N = No Sa	mple			02407)		
	Sample	Sample		Lab	PID		v	/ell	Elevation
Depth (Ft.)	Type &	Rec.	SPT	Class.	(ppm)	Visual Description		llation	(Ft. MSL)
	No.	(Ft.,%)		Ciuss.				etail	
11	S-2	1.8	12		0.1	Continued from Sheet 1			
		90%	14		0.1	11.	4		1
12 12.0			17			M/C SAND, trace gravel		-	1.
				1		& silt; brown; m dense;			1
13						wet	-	-	1
	A-N						-		1
14							-	-	1
-1						-	-		1
15 15.0				·				-	-
			6		<u> </u>	-	-		1
16	S-3	2.0	9		<u>0.1</u>			-	
		100%	18		0.1	16.	5		-
17 17.0			34		0.1		-	-	
						F SAND, some silt, trace	-		-
18						clay; orange; m dense;	-	-	1
	A-N				l	wet	-		-
19						wet	-	-	1
-						-	-		-
20 20.0						20.		-	-
20			5			F SAND, some silt, little	4		-
21	S-4	1.8	2 7		<u>0.1</u>	clay; green; dense; moist		-	
	5.	90%	42		$\frac{0.1}{0.1}$	21.	5		-
22 21.9		2070	50/.4	-	0.1	21.	-	-	
			507.4			SHELL/FOSSIL FRAG,	-		-
23						trace silt & clay; gray;		-	
	A-N					v dense; wet			
24	A-11					v dense, wet	-1	-	
							-		-
25 25.0							-	-	~
23 23.0			8				-		-
26	S-5	1.2	9		<u>0.1</u>	some f sand & silt,	-	-	-
	~ -	60%	12		$\frac{0.1}{0.1}$	trace clay	-		1
27 27.0			25		V.1	Luce only	-	-	1
			20	····			-		1
28							-1	-	1
	A-N						-		1
29							-	-	1
-1				:			-		-
30 30.0							-	-	
			12			Match to Sheet 3	-	—	
L			~~						L
PRILLING CO	-	t - Wolff				BAKER REP .: Mark	DeJohn		

sekei

TEST BORING AND WELL CONSTRUCTION RECORD

PROJECT:			tion at Site	es 88, 89,	and 93	- MCB Camp Lejeune	00	TWILIN	
CTO NO.:	62470	-336			-	BORING NO.:		-TW16IW	
D=	S = Split T = Shell	MPLE TY t Spoon A by Tube W Rotary (P = Piston	= Auger V = Wash C = Core	mple		<u>D</u> SPT = Standard Penetr PID = Photo Ionization Lab Class = USCS (AS	n Detector	(ASTM D measureme	
	Sample	Sample	11 110 54	Lab	PID		<u> </u>	Well	Elevation
Depth (Ft.)	Type & No.	Rec. (Ft.,%)	SPT	Class.	(ppm)	Visual Description	on	Installatio Detail	
31	S-6	2.0	24		0.1	Continued from Sheet	2		
	50	100%	18		$\overline{0.1}$	trace silt & clay; dense			_
32 32.0			21				_		-
32		<u> </u>	<u></u>	<u> </u>		4			
33 _	A-N								
	A-IN	-					-		-
34							-		-
							-		-
35 35.0			10						_
		1.0	12				-		_
36	S-7	1.2	18		$\frac{0.1}{0.1}$		_		
		60%	17	1	0.1				_
37 37.0			22	L					
					1				4
38									
	A-N						_		-
39			:						
							_		_
40 40.0									
			15			1			
41	S-8	1.1	16		<u>0.1</u>	little silt & clay			
		55%	20		0.1				
42 42.0			18				-		1
					1				_
43	1						-		
43	A-N			i					-
	A-N								-
44									
15 - 150			1				45 .0		
45 45.0	<u> </u>			+	-				
			4			E CANTO little gilt to			-
46	S-9	2.0	5		$\frac{0.1}{0.1}$				
		100%	12		0.1				47.0
47 47.0)		13			moist	47.0		47.0
						BOH @ 47.0'	-		4
48			ļ						
							_		4
49	1								
							_		4
50									·
		11/~16		_		BAKER REP .:	Mark D	eJohn	
DRILLING (att - Wolff				BORING NO.:	89-TW1		HEET 3 OF 3
DRILLER:	Chip	Lafever				DOMING NO.	07 1 111	<u></u> 6	

5 e kan

TEST BORING AND WELL CONSTRUCTION RECORD

		l T Tana ati au					Come I alouna				
PROJECT: CTO NO.:	62470		ation at Site	\$ 88, 89,	and 95		Camp Lejeune		89-TW		
COORDINA			Not Recor	ded	-	NORT		-		Recorded	
ELEVATIO			Not Record		-		F PVC CASIN	с. [.]		lecorded	
ELEVATIO	N. SUKF	ACE.	Not Record	icu	-	IOFU	F FVC CASIN	U	NOUR	leconded	
Rig: Die	drich D-50									Depth to	
	Split	Casing	Augers	Core		Date	Progress	Wea	ather	Water	Time
	Spoon		_	Barre	el		(Ft.)			(Ft.)	
Size (ID)	1-3/8"		2-3/4"		8	/7/96	0.0 - 42.0	Cloud	ly, 70s		
Length	2'		5'					1			
Туре	Stainless		HSA					1			
Hammer W								1			
Fall	30"										
Stickup					····						
Remarks:				1							
	SA	MPLE T	YPE				WEI	L INFO	RMAT	TON	
		t Spoon								Тор	Bottom
	*	▲	W = Wash				Туре		Diam.	Depth	Depth
		•	C = Core				Type		Diam.	(Ft.)	(Ft.)
	D = Der	•	P = Piston			Sch 40	, PVC Riser		1"	0	40
		= No San					, 10-Slot, PVC	Screen	1"	40	45
	Sample	Sample		Lab	PID		, 10-5100, 1 40	Bereen		Well	Elevation
Depth (Ft.)		Rec.	SPT	Class.	E Contraction	,	visual Descripti	0.0		allation	(Ft. MSL)
Depui (rt.)	No.	1	SET	Class.	(ppm)		isuai Descripti	011		Detail	
	110.	(Ft.,%)									
1								<u> </u>			
						1		_			
2										_	
	A-N									-	
3	1							· .			
_								-		-	
4				:							
_								_		-	
5 5.	0			ļ		-				_	
			5					_		-	
6	S-1	1.5	7				D, little silt, tr			_	
		75%	11				rown & dk gra				
7 7.	0		13		ļ	layers;	m dense; mois	t		_	
										-	
8											
	A-N							_		-	
9										1 _	1
		1]
10 10	.0						Match to She	10.0			
		<u> </u>	4	I		1	Match to Shee	a 2		<u> </u>	1
DRILLING	CO.: Parra	tt - Wolff			_		R REP.:		DeJohn		
DRILLER:	Chip	Lafever			_	BORI	NG NO.:	89-TW	V17IW	SHEE	[1 OF 3
					-					-	

Bel (ch

Baker Environmental

PROJECT: Phase I Investigation at Sites 88, 89, and 93 - MCB Camp Lejeune CTO NO .: 62470-356 BORING NO .: 89-TW17IW SAMPLE TYPE DEFINITIONS S = Split Spoon A = AugerSPT = Standard Penetration Test (ASTM D1586) T =Shelby Tube W =Wash PID = Photo Ionization Detector measurement R = Air Rotary C = CoreLab Class = USCS (ASTM D2487) D = Denison P = Piston N = No SampleSample Sample Lab PID Well Elevation Depth (Ft.) Type & Rec. SPT Class. (ppm) Visual Description Installation (Ft. MSL) No. (Ft.,%) Detail 11 S-2 0.9 7 Continued from Sheet 1 --45% 8 12 12.0 11 F/M SAND, some silt, trace clay w/ gray clayey 13 laminae; orange; A-N m dense; wet 14 15 15.0 15.0 16 S-3 1.7 WOT/ SILT, trace clay; dk green; ___ ---85% 24" v soft; wet 17 17.0 18 A-N 19 20 20.0 20.0 WOH 21 S-4 2.0 WOH F SAND, some silt, trace --100% 1 clay; dk green; v loose; 22 21.9 2 wet; yellow stain @ 21' w/ a solvent odor 23 A-N ---24 25 25.0 25.0 7 26 S-5 2.0 14 SHELL/FOSSIL FRAG. 0.1 ----100% 19 0.1 little silt, trace clay; 27 27.0 31 It gray; dense; wet 28 A-N 29 30 30.0 32 Match to Sheet 3 DRILLING CO.: Parratt - Wolff BAKER REP .: Mark DeJohn DRILLER: Chip Lafever BORING NO .: 89-TW17IW SHEET 2 OF 3

Srike)

Baker Environmental

PROJECT: Phase I Investigation at Sites 88, 89, and 93 - MCB Camp Lejeune BORING NO .: CTO NO .: 62470-356 89-TW17IW SAMPLE TYPE DEFINITIONS S = Split Spoon A = AugerSPT = Standard Penetration Test (ASTM D1586) T = Shelby Tube W = Wash PID = Photo Ionization Detector measurement R = Air RotaryC = CoreLab Class = USCS (ASTM D2487) D = Denison P = Piston N = No SamplePID Well Elevation Lab Sample Sample SPT Class. **Visual Description** Installation (Ft. MSL) Depth (Ft.) Type & Rec. (ppm) (Ft.,%) Detail No. Continued from Sheet 2 31 S-6 1.4 34 ------70% 41 trace silt & clay; v dense 47 32 32.0 33 A-N 34 35 35.0 19 21 0.1 dense S-7 1.0 36 ----50% 0.1 18 37.0 29 37 38 A-N -----39 40.0 40 40.0 18 1.2 22 F SAND, little silt, trace S-8 41 ---clay; dk green; dense; 60% 21 moist 42.0 42.0 42.0 23 42 BOH @ 42.0' 43 44 45 46 47 48 49 50 Mark DeJohn Parratt - Wolff BAKER REP .: DRILLING CO.: 89-TW17IW SHEET 3 OF 3 BORING NO .: DRILLER: Chip Lafever

Baker

Baker Environmental

TEST BORING AND WELL CONSTRUCTION RECORD

Phase I Investigation at Sites 88, 89, and 93 - MCB Camp Lejeune **PROJECT:** CTO NO.: 62470-356 BORING NO .: 89-TW18 2466351.5606 COORDINATES: EAST: NORTH: 360162,9034 **ELEVATION:** SURFACE: 15.19 TOP OF PVC CASING: 17.11 **Diedrich D-50** Ríg: Depth to Split Casing Augers Core Date Progress Weather Water Time Spoon Barrel (Ft.) (Ft.) 1-3/8" Size (ID) 2-3/4" 8/12/96 0.0 - 15.0 ----M Cloudy, 80s -----Length 2' 5' ------Stainless Туре ---HSA ___ Hammer Wt. 140 # ------Fall 30" ------Stickup -----___ **Remarks:** SAMPLE TYPE WELL INFORMATION S = Split Spoon A = AugerTop Bottom T = Shelby Tube W = Wash Depth Type Diam. Depth R = Air RotaryC = Core(Ft.) (Ft.) P = PistonSch 40, PVC Riser D = Denison1" 0 5 Sch 40, 10-Slot, PVC Screen 1" N = No Sample5 15 PID Sample Sample Lab. Elevation Well Depth (Ft.) SPT Type & Rec. Class (ppm) Visual Description Installation (Ft. MSL) (Ft.,%) No. Detail 1 2 3 4 Refer to the log for well A-N 5 5.0 ------89-TW18IW for descriptions 6 7 8 9 10 Match to Sheet 2 DRILLING CO.: Parratt - Wolff BAKER REP .: Mark DeJohn BORING NO .: 89-TW18 SHEET 1 OF 2 DRILLER: Chip Lafever

Beken

Baker Environmental

PROJECT:			ation at Site	es 88, 89,	, and 93	- MCB Camp Lejer	une			
CTO NO.:	62470	-356			•	BORING NO.:		89-TW1	8	·····
	S = Split T = Shel	by Tube V Rotary	A = Auger W = Wash C = Core	mnla		SPT = Standard Pe PID = Photo Ioniza Lab Class = USCS	ation Detect	est (AST or measu)
	Sample	Sample	10 - 100 5a	Lab	PID			w	/ell	Elevation
Depth (Ft.)	Type & No.	Rec. (Ft.,%)	SPT	Class	(ppm)	Visual Descri	ption	Insta	llation tail	(Ft. MSL)
11										
12									-	
13	A-N						-		-	
14							_			
15 15.0							15.0		15.0	
						BOH @ 15.0'				
16										
17										
18			, e						-	
19							_			
20									-	
21 _							-		-	
22									-	
23 _									-	
24 _							-		-	
25 _										
26									_	
27									-	
28							_			
29							-		-	
30							_		-	
DRILLING CO	l O.: <u>Parra</u> t	t - <u>Wolff</u>	I		<u> </u>	BAKER REP.:	Mark I			
DRILLER:	Chip	Lafever			_	BORING NO .:	89-TW	18	SHEET	2 OF 2

PROJECT:			ation at Site	s 88, 89,	and 93		Camp Lejeune				
CTO NO.:	62470			700/	-		IG NO.:		89-TW		
COORDINA			2466350	7386	-	NORT				66.0466	·····
ELEVATION	: SURF	ACE:	14.89		-	TOPO	F PVC CASIN	IG:	15.04		
Rig: Die	Irich D-50							1		Depth to	
X	Split	Casing	Augers	Core		Date	Progress	Wea	ather	Water	Time
	Spoon		_	Barre	el 📔		(Ft.)			(Ft.)	
Size (ID)	1-3/8"		2-3/4"		8	/12/96	0.0 - 47.0	M Clou	ıdy, 80s		
Length	2'		5'					1			
Туре	Stainless		HSA								
Hammer Wt	. 140 #		-								
Fall	30"										
Stickup	**			1							
Remarks:	Note: (1) T	he H-Nu v	vas not used	due to r	ainy co	ondition	5.				
	SA	MPLE T	YPE				WEI	L INFC	ORMAT	ION	
	-	-	A = Auger							Тор	Bottom
		-	W = Wash				Туре		Diam.	Depth	Depth
	$\mathbf{R} = \mathbf{Air}$		C = Core							(Ft.)	(Ft.)
	D = Den		P = Piston				, PVC Riser		1"	0	40
	<u> </u>	= No Sam	ple			Sch 40	, 10-Slot, PVC	Screen	1"	40	45
	Sample	Sample		Lab	PID					Vell	Elevation
Depth (Ft.)	Type &	Rec.	SPT	Class.	(ppm) V	isual Descripti	ion		allation	(Ft. MSL)
	No.	(Ft.,%)							D	etail	
						i i					
1											
						Í				_	
2											
_	A-N									-	ļ
3				ļ	j –	1					ļ
		1						_		-	
4											_
										-	-
5 5.0		<u> </u>			<u> </u>	4					1
			6			-	-			_	
6	S-1	2.0	9		(1)		D, little silt &				
		100%	13				lay w/ depth);	gray _		-	
7 7.0	·		15	 	<u> </u>		nge laminae;	_			
						m den	se; damp				
8								 -		-	
	A-N									-	-
9	1			[1					-
				1				10 0		-	-
10 10.	<u></u>	<u> </u>	10				Match to She	10.0 et 2			
			10	1	<u> </u>					L	.I
DRILLING (tt - Wolff					R REP.:		DeJohn		
DRILLER:	Chip	Lafever				ROKI	NG NO.:	89-19	/18IW	SHEE	Г 1 OF 3

Bakan

Baker Environmental

CTO NO.:	62470	-356			_	BORING NO.:	89-TW18IW	
D =	S = Split T = Shel	by Tube N Rotary	A = Auger W = Wash C = Core	mple		DEFINIT SPT = Standard Penetration Te PID = Photo Ionization Detector Lab Class = USCS (ASTM D2)	est (ASTM D1580 or measurement	5)
Depth (Ft.)	Sample Type &	Sample Rec.	SPT	Lab Class.	PID	Vigual Description	Well	Elevation
	No.	(Ft.,%)		Class.	(ppm)		Installation Detail	(Ft. MSL)
$11 _ 12 - 12.0$	S-2	1.4 70%	14 17 22		(1)	Continued from Sheet 1 F SAND, trace silt; 11.5		
	A-N					tan; wet		
15 15.0						15.0	-	
16 1717.0	S-3	2.0 100%	5 12 17 23		(1)	F SAND, some silt, little clay; dk gray; m dense; moist		
18 19	A-N							
$ \begin{array}{c} 20 \\ 20 \\ 21 \\ 21 \\ 21.4 \end{array} $	S-4	1.4 100%	10 18 50.4		(1)	trace shell frag; v dense;		
22 23 24 2525.0	A-N							
26 = 27 = 27.0	S-5	2.0 100%	10 13 29 43			F SAND, some silt, little		
28 29	A-N							
3030.0						30. 0		
			9			Match to Sheet 3		
DRILLING CO DRILLER:	.: <u>Parratt</u> Chip L	- Wolff afever	·····			BAKER REP.: Mark De BORING NO.: 89-TW1		2 OF 2

Beken

TEST BORING AND WELL CONSTRUCTION RECORD

PROJEC				tion at Site	s 88, 89,	and 93	- MCB Camp Lejeune				
CTO NO.	.:	62470	-356			-	BORING NO .:	8	9-TW18	IW	
		S = Split T = Shel	MPLE TY Spoon A by Tube V Rotary	= Auger V = Wash C = Core	mple		DE SPT = Standard Penetral PID = Photo Ionization I Lab Class = USCS (AST	Detecto	st (ASTN or measur)
	<u> </u>	Sample	Sample	11 - 110 54	Lab	PID		<u> </u>	We	11	Elevation
Depth (Ft.)	Type & No.	Rec. (Ft.,%)	SPT	Class.	(ppm)	Visual Description		Install Det	ation	(Ft. MSL)
31		S-6	2.0 100%	18 46		(1)	Continued from Sheet 2 SHELL/FOSSIL FRAG,			_	
32	32.0		10070	39			little silt & clay; lt gray;			_	
33							v dense; wet	_		-	
		A-N						_		_	
34											
35	35.0			18							
36		S-7	1.4 70%	22 29		(1)	trace silt & clay				
37 _	37.0		,070	25			-				
38 _								_		_	
39		A-N						-		_	
	40.0							_			
40	40.0			12			-	_			
41		S-8	1.4 70%	18 29		(1)	dense	_			
42 _	42.0			28			-				
43 _	-									-	
44 _		A-N						_		-	
45	45.0							45.0		-	
46		S-9	1.0	12 13		(1)	F SAND, little silt, trac	e _		-	
47	47.0		50%	23 27			clay; green; dense; moist	47. 0		47.0	
48							BOH @ 47.0'	_		-	
49								-		-	
50										-	
DRILLI			l tt - Wolff	L	<u> </u>	l		Mark I			
DRILLE	ER:	Chip	Lafever				BORING NO.:	89-TW	181W	SHEE	Г 3 OF 3

Bakai

TEST BORING AND WELL CONSTRUCTION RECORD

-

PROJECT: CTO NO.:	62470			<u></u> ,,			Camp Lejeune		89-TW	19	
COORDINAT			2466593.	8840	•	NORT				11.0922	
ELEVATION:			15.67	<u>.</u>	•		F PVC CASIN	G:	17.59		
Rig: CME	- 850		,					T		Depth to	
Ng. Civit	Split Spoon	Casing	Augers	Core Barre		Date	Progress (Ft.)	Wea	ather	Water (Ft.)	Time
Size (ID)	1-3/8"		2-3/4"			/13/96	0.0 - 15.0	Rain	y, 70s		
Length	2'		5'				-				
Туре	Stainless		HSA	8							
Hammer Wt.	140 #	1									
Fall	30"										
Stickup											
Remarks:											
		MPLE T				L	WEL	L INFC	RMAT	Y	
	-	-	A = Auger				-		.	Тор	Bottom
			W = Wash				Type		Diam.	Depth	Depth
	$R = A_1 r$ D = Den	-	C = Core			0-1-40	DL/O Diana			<u>(Ft.)</u>	(Ft.)
			P = Piston				, PVC Riser	Caraan	<u>1"</u> 1"	0	5
		= No Sam Sample	pie	Lab.	PID	Scn 40	, 10-Slot, PVC	Screen		Vell	15 Elevatio
Depth (Ft.)	Sample Type &	Rec.	SPT	Class	(ppm)		isual Descripti	07		allation	(Ft. MS)
Depth (Pt.)	No.	(Ft.,%)	51 1	Class	l (bbu)	' `	Isual Descripti			etail	(1.1.1412)
	110.	(1 (., /0)		·							
1											
_										-	1
2										-	
3											
								_]
4										_	
_										-	
5	A-N						o the log for w	ell		5.0	
-		[1	19IW for	_		-	
6						descrip	buons				-
								_			4
7_		1			ļ					-	1
• -					1			-			1
8		1		1		1				-	1
9								_			1
				l	1						1
10											
							Match to Shee	et 2			1
			L	•	<u>.</u>	DAVE			De Icher		
DRILLING CO		t - Wolff			-		R REP.: NG NO.:	Mark 89-TW	DeJohn	CITEE	Г 1 OF 2
DRILLER:	Cnip	Lafever			-	DOM		07*1 W	17	- SHEE	

Baker

Baker Environmental

PROJECT:			ation at Site	es 88, 89,	and 93	- MCB Camp Lejeune			
CTO NO.:	62470				•	BORING NO.:	89-TW	19	
		MPLE T					ITIONS		
			A = Auger			SPT = Standard Penetration)
			W = Wash			PID = Photo Ionization Deter		surement	
~		Rotary				Lab Class = USCS (ASTM D	2487)		
D =	Denison F		N = No Sa	-	DID				T21.
Douth (Et.)	Sample	Sample	CIVIT	Lab	PID	Viewal Description		Vell	Elevation
Depth (Ft.)	Type &	Rec. (Ft.,%)	SPT	Class	(ppm)	Visual Description		allation etail	(Ft. MSL)
11	No.	(ГІ.,70)		 			┼╼┵		
···								-	
12						-			
12									
13	A-N				l	-		-	
¹³ –	N-1								
14						-		-	
								-	
15 15.0				ł	ļ	15.Č		15.0	
	·····		<u></u>	<u> </u>		BOH @ 15.0'	<u> </u>	15.0	
16						_	1	-	
							111		
17						-	1	-	
							111		
18				ł		-	111	-	
							111	-	
19						-			ľ
				1				-	
20						_	1		
21]		
_]		
22									
23									
_								_	
24									
						-			
25									
						-			
26						_			
27									
<i>4′</i> –						_		_	
28						-		_	
²⁰ —						_	$\left\{ \left \right \right\}$		
29						-	$\{$	_	
<i>"</i> –]									
30						-		-	
~~ <u> </u>						_	$\{$		
				l				L	
		117-144							
DRILLING CC DRILLER:	Chip L	- Wolff				BAKER REP.: Mark BORING NO.: 89-TV	DeJohn	SHEET	

Belicei

TEST BORING AND WELL CONSTRUCTION RECORD

89-TW19IW

Baker Environmental PROJECT: Phase I Investigation at Sites 88, 89, and 93 - MCB Camp Lejeune CTO NO.: 62470-356 COORDINATES FAST 2466502 2066

BORING NO .:

CIO NO.:	62470				-		NG NU.:		89-1 W		·
COORDINAT			2466592.	2966	-	NORT				09.1421	_
ELEVATION	SURF	ACE:	15.47		-	TOP C	F PVC CASIN	G:	17.7	1	
Rig: CME	E - 850 Split Spoon	Casing	Augers	Core Barre		Date	Progress (Ft.)	We	ather	Depth to Water (Ft.)	Time
Size (ID)	1-3/8"		2-3/4"		8	/13/96	0.0 - 42.0	Rain	y, 70s		
Length	2'		5'		-						[
Туре	Stainless		HSA								
Hammer Wt.	140 #										
Fall	30"		·								
Stickup									• -		
Remarks:	Note: (1) I	Due to wet	conditions	, the H-N	u was r	ot used	•				h=
	SA	MPLE T	YPE				WEL	L INFO	DRMA	TION	
	S = Spli	t Spoon	A = Auger							Тор	Bottom
	T = Shel	by Tube	W = Wash				Туре		Diam.	Depth	Depth
	R = Air	Rotary	C = Core							(Ft.)	(Ft.)
	D = Der	ison 🛛	P = Piston			Sch 40	, PVC Riser		1*	0	35
	N	= No San	nple			Sch 40	, 10-Slot, PVC	Screen	1"	35	40
	Sample	Sample		Lab	PID					Well	Elevation
Depth (Ft.)	Type &	Rec.	SPT	Class.	(ppm)	V	visual Descripti	on	Inst	allation	(Ft. MSL)
	No.	(Ft.,%)							I	Detail	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	A-N					gray; r	ID, little silt & n dense; damp				
6 77.0	S-1	2.0 100%	3 5 5 5		(1)	tan; lo	ID, little silt & ose; moist D, trace silt; ta	6.2		-	
8 9 1010.0	A-N					loose;	• •				
			WOH		1		Match to Shee		1	-	1
DRILLING C	O.: Parrat	it - Wolff		L		BAKE	R REP.:		DeJohn		I
DRILLER:		Lafever			-		NG NO.:		V19IW		Г 1 OF 3
					-						

sekei

.

Baker Environmental

CTO NO.:	62470	-356	•		-	BORING NO .:	89-TW19	DIW			
D=	S = Split T = Shell	by Tube N Rotary	A = Auger W = Wash C = Core	mple	DEFINITIONS SPT = Standard Penetration Test (ASTM D1586) PID = Photo Ionization Detector measurement Lab Class = USCS (ASTM D2487)						
Depth (Ft.)	Sample Type &	Sample Rec.	SPT	Lab Class.	PID (ppm)	Visual Description	We Instal	lation	Elevation (Ft. MSL)		
¹¹ 12 ⁻ 12.0	<u>No.</u> S-2	(Ft.,%) 1.2 60%	1 2 2		(1)	Continued from Sheet 1 CLAY, little f sand & silt; mottled, gray & ogange;					
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	A-N	-				soft; moist					
16 1717.0	S-3	2.0 100%	WOH/12" 1 1	••	(1)	15.4 F SAND, little silt & clay; gray w/ orange stains; v loose; wet		-			
$18 _ 19 _ 20.0$	A-N										
$\begin{array}{c} 21 \\ - \\ 22 \\ - \\ 22.0 \end{array}$	S-4	2.0 100%	WOH/12" 1 1		(1)	some silt, trace clay; green; v loose; wet					
23 24	A-N										
25 <u>25.0</u> 26 <u>27</u> 27 27.0	S-5	1.8 90% ·	6 12 8 13		(1)	25.0 F/M SAND, little silt, trace clay; brown; m dense; wet 26.4 F SAND, some shell/fossil					
28 29	A-N					frag,trace clay; It gray; m dense; moist to wet					
30 30.0			6			Match to Sheet 3					
DRILLING CO DRILLER:	D.: <u>Parrat</u> Chip I	t - Wolff			L	BAKER REP.: Mark I BORING NO.: 89-TW		1	2 OF 3		

Belken

Baker Environmental

TEST BORING AND WELL CONSTRUCTION RECORD

.

PROJEC	Τ·	Phase	I Investiga	tion at Site	s 88 89	and 93	- MCB Camp Lejeune			
CTO NO		62470			BORING NO.:	89-TW1	9IW			
		S = Split		V = Auger V = Wash C = Core	DEFINITIONS SPT = Standard Penetration Test (ASTM D1586) PID = Photo Ionization Detector measurement Lab Class = USCS (ASTM D2487)					
		Sample	Sample	N - NO 54		w w	ell Elevatio			
Depth ((Ft.)	Type & No.	Rec. (Ft.,%)	SPT	Lab Class.	PID (ppm)	Visual Description	n Instal	llation (Ft. MS)	
31		S-6	1.2	12		(1)	Continued from Sheet	2		
32 -	32.0		60%	27 33			dense		-	
33	52.0									
34		A-N							-	
35	35.0									
36		S-7	0.8	10 11		(1)	SHELL/FOSSIL FRAC			
37 _	36.5		40%	12 14			trace silt; lt gray; dense wet	e;	-	
38 _		-								
39		A-N							_	
40	40.0							40.0	-	
41	-	S-8	1.2	9 7		(1)	F SAND, little silt & c		-	
42 _	42.0		60%	9 12			green; m dense; danp	42.0	42.0	
43	-						BOH @ 42.0'			
44									-	
45									-	
46										
47									-	
48	-									
49										
50										
DRILLI			tt - Wolff	I	<u> </u>		BAKER REP.:	Mark DeJohn	L	
DRILLER: Chip Lafever BORING NO.: 89-TW19IW SHEET 3 OF 3										

3akar

TEST BORING AND WELL CONSTRUCTION RECORD

PROJECT:	Phase	I Investiga	ntion at Site	s 88, 89,	and 93	- MCB	Camp Lejeune	•				
CTO NO.:	TO NO.: 62470-356				_	BORING NO.: 89-TW20						
COORDINATES: EAST: 2466377.55			510		NORT	H:		360685.1148				
ELEVATION:	SURF	ACE:	17.92			TOP O	F PVC CASIN	G:	20.34			
Rig: CME	- 850					<u> </u>		1		Depth to		
Kig. Civila	Split	Casing	Augers	Core	·	Date	Progress	Wea	ther	Water	Time	
	Spoon	Casing	magers	Barre		Date	(Ft.)			(Ft.)		
Size (ID)	1-3/8"		2-3/4"			/13/96	0.0 - 15.0	M Clou	ıdy, 80s			
Length	2'		5'									
Туре	Stainless		HSA						·····			
Hammer Wt.	140 #	-										
Fall	30"											
Stickup												
Remarks:												
	SA	MPLE T	YPE				WEI	L INFC	RMA 1	TION		
	S = Split	t Spoon A	A = Auger							Тор	Bottom	
		•	W = Wash				Туре		Diam.	Depth	Depth	
	R = Air		C = Core							(Ft.)	(Ft.)	
D = Denison $P = Piston$), PVC Riser		1"	0	5	
		= No San	ple		[Sch 40), 10-Slot, PVC	Screen	1"	5	15	
	Sample	Sample	950	Lab.	PID	.				Well	Elevation	
		SPT	Class	(ppm)		isual Descripti	ion		allation	(Ft. MSL)		
	No.	(Ft.,%)								etail		
2								-		-		
3										-		
						-						
4					ļ			_		-		
				1								
5	A-N					Refer	to the log for w	ell		5.0		
						89-TV	V20IW for	_		-		
6						descri	ptions					
								-		-		
7								_				
								_		-		
8			<u> </u>					_				
								-		-		
9 _											1	
								-		-		
10							Match to She	et 2 —	日日	-	1	
	I		1	L	1							
DRILLING C		tt - Wolff			_		ER REP.:		DeJohn	QUEE	F1OF2	
DRILLER:	Chip	POKI	NG NO.:	<u>89-TV</u>	¥20	- SHEE	Г 1 OF 2					

Bfelken

Baker Environmental

PROJECT:	Phase	I Investig	ation at Site	es 88, 89,	and 93	- MCB Camp Lejeune		-TW20		<u>.</u>	
CTO NO.:	62470				-	BORING NO.:	20				
D =	S = Split T = Shel	by Tube N Rotary	A = Auger W = Wash C = Core	mple	DEFINITIONS SPT = Standard Penetration Test (ASTM D1586) PID = Photo Ionization Detector measurement Lab Class = USCS (ASTM D2487)						
	Sample	Sample		Lab	PID			W	ell	Elevation	
Depth (Ft.)	Type & No.	Rec. (Ft.,%)	SPT	Class	(ppm)	Visual Description	n	Install Def		(Ft. MSL)	
11						· · · · · · · · · · · · · · · · · · ·					
12	:						_				
13	A-N										
14				:					-		
1515.0							15.0		15.0		
16						BOH @ 15.0'	_		_		
17							_		_		
18							_		_		
19 _									-		
20							-				
21				•			_		-		
22									-		
23											
24											
25											
26											
27							_				
28									_		
29									_		
30							_				
DRILLING CC DRILLER:).: <u>Parratt</u> Chip L	- Wolff afever					Mark DeJo 39-TW20	ohn	SHEET	2 OF 2	

Baken

TEST BORING AND WELL CONSTRUCTION RECORD

Baker Environm							·				
PROJECT:			ation at Site	<u>s 88, 89,</u>			Camp Lejeune		00 70110		
CTO NO.:	62470	BORING NO.:			-	89-TW20IW					
COORDINAT			2466380.6	062 NORTH: TOP OF PVC CASI				360683.9715			
ELEVATION	SURF	ACE:	17.56		-	TOPO	F PVC CASIN	G: .	20.84		
Rig: CME	E - 850									Depth to	
	Split	Casing	Augers	Core	. 1	Date	Progress	Wea	ther	Water	Time
	Spoon		0	Barre			(Ft.)			(Ft.)	
Size (ID)	1-3/8"		2-3/4"			13/96	0.0 - 47.0	M Clou	ıdv. 80s		
Length	2'		5'						,		
Туре	Stainless		HSA			·····					
Hammer Wt.											
Fall	30"										
Stickup			****								
Remarks:	Note: (1) I		conditions	the H-N	iii was n	of used		I			
		MPLE T		, ind 11-11				L INFO	RMAT	ION	
		t Spoon A					•• EI.			Тор	Bottom
	-	-	-				Tranc		Diam.	-	
		•	W = Wash			Туре			Diam.	Depth	Depth
	R = Air Rotary C = Core $D = Denison P = Piston$				Sch 40, PVC Riser				1"	(Ft.)	(Ft.)
			P = Piston					C	1"	0	40
		= No San		Tab		5CH 40	, 10-Slot, PVC	Screen		40 Vell	45 Filosofico
	Sample	Sample	CIPT	Lab	PID		linnal Descripti				Elevation
Depth (Ft.)	Depth (Ft.) Type & Rec. SPT			Class.	(ppm)	`	isual Descripti	on		allation	(Ft. MSL)
	No.	(Ft.,%)								etail	
1					1	ł					
								_		_	
2										_	
	A-N					1		_		-	
3											
										-	
4											
								_		-	
5 5.0											
			5		1		D, trace silt; ta			-	
6	S-1	2.0	6		(1)		laminae; m de	nse;		_	
		100%	7			damp		_		-	
7 7.0			7			1					
								_		_	
8		1						<u> </u>			
	A-N										4
9										l _	
					1			_			
10 10.0						1					-
			4				Match to She	et 2			
	O · Dormo	tt - Wolff				BAKE	ER REP.:	Mark	DeJohn		
DRILLING C			· · · · · · · · · · · · · · · · · · ·				NG NO.:		V20IW	्रमम्	Г 1 OF 3
DRILLER:	Cnip	Lafever			_	DOK	UND INU	07-1 V	1 Z UI W	- SHEE	1 01.3

Baker Environmental

PROJECT: CTO NO.:	62470		ation at Site	s 88, 89,	and 93	- MCB Camp Lejeune BORING NO.:	89-TW20	IW	
	S = Split $T = Shel$ $R = Air$	MPLE T t Spoon A by Tube V Rotary	A = Auger W = Wash C = Core		-	DEFINI SPT = Standard Penetration T PID = Photo Ionization Detect Lab Class = USCS (ASTM D2	TIONS est (AST) or measu	M D1586	5)
D =	Denison F Sample	Sample	N = NO Sa	mple Lab	PID		We	-11	Elevation
Depth (Ft.)	Type & No.	Rec. (Ft.,%)	SPT	Class.	(ppm)	Visual Description	Install Det	lation	(Ft. MSL)
11	S-2	1.4 70%	4 2		(1)	Continued from Sheet 1 gray; wet 11.5			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	A-N		2			Water @ 10' CLAY, some f sand & silt; mottled, gray, orange & red; m stiff, damp 15.0			
16 1717.0	S-3	1.3 65%	1 1 2 2		(1)	CLAY, little silt, trace organic debris; dk brown; soft; moist			
$18 _ 19 _ 1200$	A-N								
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	S-4	1.5 75%	WOH/12" 3 6		(1)	F SAND, little silt, trace clay & shell frag; green; v loose; moist			
23 24	A-N							-	
25 <u>25.0</u> 26 <u>27</u> 27 <u>27.0</u>	S-5	1.5 75%	16 18 20 26		(1)	F SAND, little silt & shell/ fossil frag, trace clay; gray; dense; moist			
28 29	A-N								
30 30.0						-			
		L	18			Match to Sheet 3			
DRILLING CO DRILLER:	-	t - Wolff Lafever				BAKER REP.: Mark E BORING NO.: 89-TW		SHEET	2 OF 3

at kar

nergen webbenengen de Liter geleise

PROJECT:			tion at Site	es 88, 89,	, and 93	- MCB Camp Lejeune				
CTO NO.:	62470	-330			-	BORING NO.:		89-TW2	UIW	
D	S = Spli T = Shel	MPLE TY t Spoon A lby Tube V Rotary P = Piston	V = Auger V = Wash C = Core	mnle		<u>D</u> SPT = Standard Penetr PID = Photo Ionization Lab Class = USCS (AS	n Detect	est (AST or measu))
Depth (Ft.)	Sample Type & No.	Sample Rec. (Ft.,%)	SPT	Lab Class.	PID (ppm)	Visual Description	on	Instal	ell lation tail	Elevation (Ft. MSL)
31 3232.0	S-6	1.4 70%	22 26 38		(1)	Continued from Sheet lt brown	2			
33 34 3535.0	A-N									
36 37	S-7	1.7 85%	12 14 11 12		(1)	SHELL/FOSSIL FRAG trace silt; lt brown; m dense; wet	G,			
$ \begin{array}{c} 38 \\ 39 \\ 40 \\ 40 \\ 40. \end{array} $	5									
41 4242.0	S-8	1.4 70%	10 12 14 16		(1)					
43 44	A-N									
45 <u>45.0</u> 46 <u>47</u> 47 47.0	S-9	2.0 100%	3 4 8 12		(1)	F SAND, little silt, tra clay; green; m dense; moist	45.0 			
48 49 50						BOH @ 47.0'				
DRILLING (DRILLER:		tt - Wolff Lafever		<u> </u>	 - -	BAKER REP.: BORING NO.:	Mark E 89-TW		SHEET	C 3 OF 3

PROJECT:	Phase	I Investig	ation at Site	s 88, 89,	and 93	- MCB	Camp Lejeune				
CTO NO.:	62470						IG NO.:		89-TW2	21	
COORDINAT			2466756.7	352	-	NORT			36103	1.9153	
ELEVATION:	SURF	ACE:	16.17		-	TOP O	F PVC CASIN	G:	18.36		
Rig: CME	2 - 850							Γ		Depth to	
	Split Spoon	Casing	Augers	Core Barre		Date	Progress (Ft.)	Wea	ther	Water (Ft.)	Time
Size (ID)	1-3/8"		2-3/4"		8	/14/96	0.0 - 15.0	M Clou	ıdy, 70s		
Length	2'		5'								
Туре	Stainless		HSA								
Hammer Wt.	140 #										
Fall	30"										
Stickup											
Remarks:											
		MPLE T					WEI	L INFO	RMAT	ION	
			A = Auger							Тор	Bottom
		•	W = Wash				Type		Diam.	Depth	Depth
			C = Core							(Ft.)	(Ft.)
	D = Den		P = Piston				, PVC Riser		1"	0	4
		= No Sam	ple			Sch 40	, 10-Slot, PVC	Screen	1"	4	14
-	Sample	Sample	(TP)	Lab.	PID			:		Vell	Elevation
Depth (Ft.)	Type &	Rec.	SPT	Class	(ppm)		isual Descripti	on		illation	(Ft. MSL
	No.	(Ft.,%)			──					etail	
1 2 3 4 5 6 7 8 9	A-N						o the log for w /211W for otions	ell		4.0	
10		tt - Wolff	L				Match to Shee	Mark I	DeJohn		
DRILLER:	Chip.	Lafever			-	BORI	NG NO.:	89-TW	121	- SHEE	1 OF 2

Baker Environmental

PROJEC		Phase 62470	I Investiga	ation at Site	es 88, 89,	and 93	- MCB Camp Lejeune BORING NO.:		TW21		
CTO NO	•••								9-TW21		
			MPLE TY					DEFINIT			. [
			Spoon A				SPT = Standard Penet				
				V = Wash			PID = Photo Ionizatio			rement	
	р		Rotary				Lab Class = USCS (A	STM D24	87)		
	_ <u>_</u>	Denison F		N = NO Sa					We		Tilesetien
Donth (T4 \	Sample	Sample	ODT	Lab	PID	Minuel Decemination				Elevation
Depth (FL.)	Type &	Rec.	SPT	Class	(ppm)	Visual Description	on	Install		(Ft. MSL)
11	ł	No.	<u>(Ft.,%)</u>			<u> </u>			Det		
					ļ	ļ	ļ				
12	[[_		-	
12						Į					
13		A-N						-			
		N-11						_	目丨		
14										14.0	
**					ł	{				<u></u>	
15	15.0							15.0		15.0	
	10.0				f	f	BOH @ 15.0'				
16					\	}				-	
17						}		-		-	
						1					
18						1		-1			
										·	
19					1	1		-		-	
						ļ				_	
20								7		_	
]	}				
21											
					l	l					
22											
23					ļ	ļ	}]			
24											
					ļ					-	
25					1						
								_		_	
26					1	(
27										4	
2'											
28					}			-		-	
²⁰ –											
29										-	
30										-	
								\neg			
l			_		I	L		L_			J
RILLIN			t - Wolff				BAKER REP.:	Mark De			
DRILLEE	K:	Chip L	Lafever				BORING NO .:	89-TW2	L	SHEET	2 OF 2

Sfalken

TEST BORING AND WELL CONSTRUCTION RECORD

CTO NO.:	62470						Camp Lejeune		89-TW2	21IW	
COORDINAT	ES: EAST	`:	2466758.7	7395	•	NORT	H:		36102	8.4733	- <u>1. 18</u>
ELEVATION	: SURF	ACE:	16.27			TOP O	F PVC CASIN	G:	18.49		
Rig: CM	E - 850									Depth to	
	Split	Casing	Augers	Core		Date	Progress	Wes	ather	Water	Time
	Spoon	0.000		Barre		2	(Ft.)			(Ft.)	A HINC
Size (ID)	1-3/8"		2-3/4"			/14/96	0.0 - 42.0	M Clo	ıdy, 70s		
Length	2'		5'			11/20	0.0 12.0		uuy, 703		
Туре	Stainless		HSA					1			
Hammer Wt								1			· · · · · · · · · · · · · · · · · · ·
Fall	30"	-1	-								
Stickup			••								
Remarks:											
		MPLE T					WEL	L INFC	ORMAT	ION	
		t Spoon A								Тор	Bottom
		by Tube					Type	1	Diam.	Depth	Depth
		-	C = Core						- 11	(Ft.)	(Ft.)
	D = Den		P = Piston				, PVC Riser		1"	0	35
		= No Sam		T -1		Sch 40	, 10-Slot, PVC	Screen	<u>1</u> "	35	40
Denth (Et)	Sample	Sample Rec.	SPT	Lab	PID					Vell	Elevatio
Depth (Ft.)	Type & No.	(Ft.,%)	SPI	Class.	(ppm)	^v	isual Descripti	on		allation etail	(Ft. MSI
	140.	(11.,70)				<u> </u>					
1											
·											
2										-	
	A-N									_	
3								_		-	
4								_		-	
5 5.0										_	
			2			F SAN	D, trace silt; gi	ay; _		_	
6	S-1	1.0	3		(1)	loose; v	wet				
		50%	4							-	
7 7.0			6	 	 	4					
。-								-		-	
8 _	A-N									—	
9 -	A-IN							-			
10 10.0								10.0		-	
			1				Match to Shee				
	0 7				·	DATC:					
DRILLING C DRILLER:		tt - Wolff			-		R REP.: IG NO.:	Mark 1 89-TW	DeJohn	CHERT	C 1 OF 3
JAILLEK.	Cmp	Lafever			-	DOKIN		07-1 1	211 W	- SHEET	I OF 3

Baker Environmental

CTO NO.:	62470	-356			-	BORING NO .:	89-TW21IW	
D =	S = Split T = Shell	MPLE TY Spoon A by Tube V Rotary = Piston	A = Auger V = Wash C = Core	mnle		DEFINI SPT = Standard Penetration T PID = Photo Ionization Detect Lab Class = USCS (ASTM D2	est (ASTM D158 for measurement	36)
<u>P</u>	Sample	Sample	11 110 54	Lab	PID		Well	Elevation
Depth (Ft.)	Type & No.	Rec. (Ft.,%)	SPT	Class.	(ppm)		Installation Detail	(Ft. MSL)
	S-2	1.8 90%	1		(1)	Continued from Sheet 1	-	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	A-N					CLAY, little f sand & silt; grayish-brown; v soft wet 	-	
16 1717.0	S-3	1.5 75%	WOH/ 24'		(1)	gray 16.2 PEAT; dk brown; v soft;	-	-
18 19 2020.0	A-N					moist	-	
21 2222.0	S-4	2.0 100%	3 1 4 10		(1)	F SAND, some silt, little clay; gray; loose; wet	-	
$23 _$ $24 _$ $25 _$ 25.0	A-N						-	
$\begin{array}{c} 23 \\ 26 \\ 27 \\ 27 \\ 27 \\ 27 \\ 27 \\ 27 \\ 27$	S-5	0.9 45%	17 22 38 46		(1)	25.0 F SAND, little silt, trace shell frag; lt gray; v dense; damp	-	
28 29	A-N						-	-
3030.0								-
DRILLING CC DRILLER:		t - Wolff Lafever	4	I	<u> </u>	Match to Sheet 3 BAKER REP.: Mark I BORING NO.: 89-TW		ET 2 OF 3

₽eker

Baker Environmental

Phase I Investigation at Sites 88, 89, and 93 - MCB Camp Lejeune PROJECT: CTO NO .: 62470-356 BORING NO .: 89-TW21IW SAMPLE TYPE DEFINITIONS S = Split Spoon A = AugerSPT = Standard Penetration Test (ASTM D1586) T =Shelby Tube W =Wash PID = Photo Ionization Detector measurement R = Air Rotary C = CoreLab Class = USCS (ASTM D2487) D = Denison P = Piston N = No SamplePID Well Sample Sample Lab Elevation Installation (Ft. MSL) Depth (Ft.) Type & Rec. SPT Class. (ppm) **Visual Description** Detail (Ft.,%) No. Continued from Sheet 2 S-6 1.9 14 (1) 31 --95% 17 SHELL/FOSSIL FRAG. 32.0 24 some f sand & silt, trace 32 clay; lt gray; dense; moist 33 A-N ---__ 34 35.0 35 14 S-7 wet; petroleum odor noted 36 1.1 16 --(1) 36.5 55% 22 23 37 38 A-N 39 40.0 40 40.0 4 S F SAND, little silt & clay S-8 2.0 (1) 41 ----100% green; m dense; moist 6 7 42.0 42.0 42 42.0 43 44 45 46 47 48 49 50 Mark DeJohn DRILLING CO.: Parratt - Wolff BAKER REP .: BORING NO .: 89-TW21IW SHEET 3 OF 3 Chip Lafever DRILLER:

Beken

TEST BORING AND WELL CONSTRUCTION RECORD

Baker Environmental

.

PROJECT:	Phase	I Investig	ation at Site	s 88, 89	, and 93	- MCB	Camp Lejeun	e			
CTO NO.:	62470						IG NO.:		89-TW2	22	
COORDINAT	ES: EAST	•	2466581.2	895	-	NORT	H:			30.3235	
ELEVATION	SURF	ACE:	18.12		-	TOP O	F PVC CASIN	IG:	20.97	7	
Rig: CME	E - 850							1		Depth to	
	Split	Casing	Augers	Core	-	Date	Progress	Wea	ather	Water	Time
Size (ID)	Spoon 1-3/8"		2-3/4"	Barr		15/06	(Ft.)	DC		(Ft.)	
Length	2'		<u>2-3/4</u> 5'		- 8	/15/96	0.0 - 15.0	P Sun	ny, 70s		
Туре	Stainless		HSA								
Hammer Wt.											
Fall	30"										
Stickup								+			
Remarks:									1		
	<u>SA</u>	MPLE T	YPE				WEI	L INFC	ORMAT	ION	
	-	-	A = Auger							Тор	Bottom
		-	W = Wash				Туре		Diam.	Depth	Depth
			C = Core							(Ft.)	(Ft.)
	D = Den		P = Piston				, PVC Riser		1"	0	5
		= No Sam	ple		<u></u>	Sch 40	, 10-Slot, PVC	Screen	1"	5	15
	Sample	Sample		Lab.	PID					Vell	Elevation
Depth (Ft.)	Type &	Rec.	SPT	Class	(ppm)		isual Descript	on		allation	(Ft. MSL)
	No.	(Ft.,%)								etail	
1											
2						ł		_			
3										-	
4								-		-	
5	A-N					Refer t	o the log for w	ell		5.0	
			:				22IW for	_		-	
6						descrip	otions				
								_		_	
7											
								_		-	
8						ļ					
9 -										-	
10								-		-	
							Match to She	et 2 —			
DRILLING CO) · Parrat	t - Wolff				BAKE	R REP.:		DeJohn	•	•
DRILLER:		Lafever			-		NG NO.:	89-TW		SHEET	1 OF 2
	Cinpi				-	20101		<u>07 I V</u>			

341(04)

Baker Environmental

PROJECT:	Phase	I Investig	ation at Site	s 88, 89,	and 93	- MCB Camp Lejeune		00 TU	222	<u></u>
CTO NO.:	62470				•	BORING NO.:	-	89-TW		
D =	S = Split T = Shel	Rotary	A = Auger W = Wash C = Core	mple		<u>I</u> SPT = Standard Penet PID = Photo Ionizatio Lab Class = USCS (A	n Detect	est (AS or mea	STM D1586))
	Sample	Sample		Lab	PID				Well	Elevation
Depth (Ft.)	Type & No.	Rec. (Ft.,%)	SPT	Class	(ppm)	Visual Description	on		tallation Detail	(Ft. MSL)
11		(_ 0,, 0)					· .		Ι	
12									-	
13	A-N									
$14 _$ 15 15.0							15.0		15.0	
						BOH @ 15.0'				
16										
17			· · ·							
18							-			
19										
20										
21							_		_	
22										
23										
24									_	
25 _										
26 _										
27 _										
28 _							_			
29							_		-	
30 _										
DRILLING CO DRILLER:		t - Wolff Lafever		•	-	BAKER REP.: BORING NO.:	Mark I 89-TW			2 OF 2

Baker Environmental

TEST BORING AND WELL CONSTRUCTION RECORD

PROJECT: Phase I Investigation at Sites 88, 89, and 93 - MCB Camp Lejeune CTO NO .: 62470-356 BORING NO .: 89-TW22IW COORDINATES: EAST: 2466585.5999 NORTH: 360629.2373 **ELEVATION:** SURFACE: 18.12 TOP OF PVC CASING: 20.69 CME - 850 **Rig:** Depth to Split Casing Augers Core Date Progress Weather Water Time Spoon Barrel (Ft.) (Ft.) Size (ID) 1-3/8" 2-3/4" --8/15/96 0.0 - 47.0 P Sunny, 70s ---__ --Length 2' 5' ___ --Туре Stainless HSA ----Hammer Wt. 140 # --___ --Fall 30" -------Stickup -----------**Remarks:** WELL INFORMATION SAMPLE TYPE S = Split Spoon A = AugerТор Bottom T = Shelby Tube W = Wash Туре Diam. Depth Depth R = Air Rotary C = Core(Ft.) (Ft.) D = DenisonP = Piston1" Sch 40, PVC Riser 40 0 N = No SampleSch 40, 10-Slot, PVC Screen 1" 40 45 Sample Sample Lab PID Well Elevation Depth (Ft.) SPT Type & Rec. Class. (ppm) Visual Description Installation (Ft. MSL) No. (Ft.,%) Detail 1 2 A-N ---3 4 5.0 5 5 F SAND, trace silt; brown $\overline{\&}$ gray layers; m dense; 6 6 S-1 1.1 --(1)55% 8 damp 9 7 7.0 8 A-N ____ 9 10 10.0 10.0 2 Match to Sheet 2 DRILLING CO.: Parratt - Wolff BAKER REP .: Mark DeJohn DRILLER: Chip Lafever BORING NO .: 89-TW22IW SHEET 1 OF 3

Beker

Baker Environmental

SAMPLE TYPE DEFINITIONS S = Split Spoon A = Auger SPT = Standard Penetration Test (ASTM D1586) T = Shelby Tube W = Wash PID = Photo Ionization Detector measurement R = Air Rotary C = Core Lab Class = USCS (ASTM D2487) D = Denison P = Piston N = No Sample Well Sample Lab PID	PROJECT:			ation at Site	es 88, 89,	and 93	- MCB Camp Lejeune		
S = Split Spoon A = Auger T = Shelby Tube W = Wash Lab Crass = USCS (ASTM D2487) C = Core Lab Class = USCS (ASTM D2487) C = Core Lab	CTO NO.:					-	•	89-TW22IW	
Sample Sample Rec. SPT Lab PID Class Visual Description Well Installation (Ft. MSL) 11 S-2 1.0 6 (1) Continued from Sheet 1 12 12.0 4 (1) Continued from Sheet 1 13 - - 4 F SAND, little silt, trace il; gray; m dense; wet <	D =	S = Split T = Shel R = Air	t Spoon A by Tube V Rotary	A = Auger W = Wash C = Core	mple		SPT = Standard Penetration T PID = Photo Ionization Detect	est (ASTM D158 or measurement	6)
Depth (Ft.) Type & Rec. (Ft., %) SPT class. (ppm) Visual Description Installation Detail 11 S-2 10 6 - (1) Continued from Sheet 1 CLAY, trace sitt, 11.7 brown & gray, stift, 11.7 brown & gray, stift, 11.7 brown & gray, stift, 11.7 Interview of the sitt, trace clay & c sand, brown & class of the sitt, and the sitt, trace clay & c sand, brown & class of the sitt, and the sitt, trace clay & c sand, brown & class of the sitt, and the sitt, trace class & c sand, brown & class of the sitt, and the si				11 110 54		PID		Well	Elevation
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Depth (Ft.)	Type &	Rec.	SPT		1	Visual Description	Installation	(Ft. MSL)
13 A-N - - - - - - - F SAND, little silt, trace clay & c sand; brown & gray; m dense; wet 15.0 15 15.0 15.0 2 - (1) CLAY, little f sand & silt; gray; soft; wet 16.3 16 S-3 2.0 2 - (1) CLAY, little f sand & silt; gray; soft; wet 16.3 17 17.0 3 CLAY, some organic matter, trace silt; dk brown; soft; wet - - 18 A-N - - - - - 20 20.0 - - - - - - 21 S-4 0.5 4 - (1) F SAND, little silt; dk gray; loose; wet - 22 22.0 1 - - - - - 23 A-N - - - - - - - 24 25.0 - - - - - - - - - - - - - - - -		S-2	1	6		(1)	CLAY, trace silt; 11.7		-
14 A-N F SAND, little silt, trace 15 15.0 clay & c sand; brown & gray; m dense; wet 16 S-3 2.0 2 (1) CLAY, little f sand & silt; gray; soft; wet 16.3 17 17.0 3 18 A-N 19 - 20 20.0 21 S-4 0.5 4 (1) F SAND, little silt, dk gray; 22 22.0 - 1 23 - - - 24 A-N 25 25.0 <td></td> <td></td> <td></td> <td>4</td> <td></td> <td></td> <td></td> <td>-</td> <td></td>				4				-	
16 S-3 2.0 2 (1) CLAY, little f sand & silt; gray; soft; wet 16.3 17 17.0 3 (1) gray; soft; wet 16.3 18 A-N 19 A-N 20 20.0 20 20.0 21 S-4 0.5 4 (1) F SAND, little silt; dk gray; 22 22.0 1 24 A-N 25 25.0 26 S-5 1.8 27 (1) F SAND, some silt, trace 27 27.0<	14	A-N					clay & c sand; brown & gray; m dense; wet		-
18 A-N trace silt; dk brown; soft; wet 19 20 20.0 20 20.0 21 S-4 0.5 4 (1) F SAND, little silt; dk gray; 22 22.0 1 23 A-N 24 24 12 25 25.0 26 S-5 1.8 27 (1) clay; It greenish-gray; 26.1 27 27.0 50 <t< td=""><td>16</td><td>S-3</td><td></td><td>2 2</td><td></td><td>(1)</td><td>CLAY, little f sand & silt; gray; soft; wet 16.3</td><td></td><td></td></t<>	16	S-3		2 2		(1)	CLAY, little f sand & silt; gray; soft; wet 16.3		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				3		-	trace silt; dk brown; soft;		-
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		A-N							-
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		S-4	0.5					-	-
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		5-1		2					-
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		A-N						-	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	_								-
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		S-5		27 43		(1)	F SAND, some silt, trace clay; lt greenish-gray; 26.1 v dense; moist		
		A.N	· · · ·	50			trace silt; It gray; v dense;		-
		A-11					-	-	
	30 30.0			11			Match to Sheet 3	-	-
DRILLING CO.:Parratt - WolffBAKER REP.:Mark DeJohnDRILLER:Chip LafeverBORING NO.:89-TW22IWSHEET 2 OF 3				11	L	-	BAKER REP.: Mark I		L]

Baker Environmental

٠

PROJEC				ation at Site	x 88, 89,	and 93	- MCB Camp Lejeune				
CTO NO).:	62470	-356			-	BORING NO .:	8	9-TW2	2IW	
	D-	S = Split T = Shel	MPLE TY Spoon A by Tube V Rotary	A = Auger W = Wash C = Core			DI SPT = Standard Penetra PID = Photo Ionization Lab Class = USCS (AS)	Detecto	st (AS) or meas))
	<u>- ת</u>	Sample	Sample	N = NO Sa	Lab	PID		<u> </u>	ū	/ell	Elevation
Depth ((Ft.)	Type & No.	Rec. (Ft.,%)	SPT	Class.	(ppm)	Visual Description	1	Insta	llation etail	(Ft. MSL)
31		S-6	2.0	11		(1)	Continued from Sheet 2				
-			100%	23			F SAND, some shell/fos	ssil		_	
32	32.0			26			frag & silt, trace clay;	_			
33							lt gray; dense; moist	-		_	
55		A-N									
34								-			
35 _	35.0					L					
		0.7		12				4		-	
36 _		S-7	2.0 100%	12 13		(1)	SHELL/FOSSIL FRAG little silt, trace clay; lt	·		<u></u>	
37 -	37.0		10076	13 14			gray; m dense; wet				
38										-	
		A-N								_	
39											
								_			
40	40.0			13						<u></u>	
41		S-8	2.0	13		(1)		-		-	
-			100%	29							
42	42.0			41				-1		_	
43								_			
		A-N						_			
44											
45 -	45.0							45.0		-	
				1			<u></u>			_	
46		S-9	1.8	3		(1)	F SAND, little silt & cla	ay 🗌		_	
-			90%	5			green; loose; moist			_	
47	47.0			8				47.0		47.0	
48	-						BOH @ 47.0'	_		-	
40	-							_			
49	-									-	
-]
50											
			[]				I				
DRILLIN			t - Wolff			_	_	Mark D			
DRILLE	R.	Chip I	Lafever			_	BORING NO.:	89-TW2	22IW	SHEET	3 OF 3

,

PROJECT:	Phase	I Investiga	ation at Site	x 88, 89,	and 93	- MCB	Camp Lejeune	•			
CTO NO.:	62470	-356			_		IG NO.:		89-TW	23IW	
COORDINAT	ES: EAST	•	2467096.	3354	_	NORT	H:		3608	00.1531	
ELEVATION:	SURF	ACE:	12.10		_	TOP O	F PVC CASIN	G:	15.39)	
Rig: CME	850		·····	••• •••	T			T		Depth to	
	Split	Casing	Augers	Core		Date	Progress	Wea	ather	Water	Time
	Spoon			Barre			(Ft.)			(Ft.)	•
Size (ID)	1-3/8"		2-3/4"		8/	/19/96	0.0 - 37.0	M Sur	ny, 70s		
Length	2'		5'								
Туре	Stainless		HSA								
Hammer Wt.	140 #	~~	÷=								
Fall	30"		•-								
Stickup											
Remarks:											
		MPLE T					WEL	L INFC	PRMAT	TION	
	•	Spoon A	0			l				Тор	Bottom
-		•	W = Wash				Туре		Diam.	Depth	Depth
		Rotary								(Ft.)	(Ft.)
	D = Den		P = Piston				, PVC Riser	-	1"	0	30
ļ		= No Sam	iple	<u> </u>		Sch 40	, 10-Slot, PVC	Screen	1"	30	35
	Sample	Sample	0.50	Lab	PID					Well	Elevation
Depth (Ft.)	Type &	Rec.	SPT	Class.	(ppm)	`	visual Descripti	on		allation	(Ft. MSL)
	No.	(Ft.,%)		L	<u> </u>	 				etail	
2					[-	
2	A-N										
3	A-11							-		-	
4					1					-	
5 5.0								-		-	
			3		1	FSAN	D, trace silt; b	rown &			
6	S-1	1.1	4				minae; loose; o			-	
		55%	5					•			
7 7.0			8					-		-	
											1
8]		
	A-N							_			
9						1				_	
_		1						_			
10 10.0					<u> </u>	4					
		L	3				Match to Shee	et 2		<u> </u>	I
DRILLING C	O.: Parrat	t - Wolff				BAKE	R REP.:	Mark	DeJohn		
DRILLER:		Lafever					NG NO.:	*	V23IW	SHEET	T 1 OF 3

Baker Environmental

ROJECT: TO NO.:	62470				-	- MCB Camp Lejeune BORING NO.:	_8	9-TW2	3IW	
D =	S = Split T = Shell	Rotary	A = Auger W = Wash C = Core	mple		DE SPT = Standard Penetra PID = Photo Ionization Lab Class = USCS (AST	Detecto	st (AST r measi))
	Sample	Sample	14 - 140 54	Lab	PID			W	/ell	Elevation
Depth (Ft.)	Type & No.	Rec. (Ft.,%)	SPT	Class.	(ppm)	Visual Description		Insta	llation etail	(Ft. MSL)
11 12 12.0	S-2	1.8 90%	2 1 2			Continued from Sheet 1 gray w/ orange stains; v loose; wet				
$ \begin{array}{c} 13 \\ 14 \\ 15 \\ 15.0 \end{array} $	A-N									
16 1717.0	S-3	2.0 100%	WOH/ 12" 1 1			brown w/ orange stains				
$18 _ 19 _ 20.0$	A-N									
21 2222.0	S-4	1.7 85%	1 1 1 2			trace clay; brown & oran laminae	nge			
23 24	A-N					F SAND, little silt; dk green; v soft; wet				
25 <u>25.0</u> 26 <u>27</u> 27 27.0	S-5	2.0 100%	8 10 12 15			F SAND, little shell/fost frag, silt & clay; lt gray; m dense; moist				
28 29	A-N									
3030.0			15		<u> </u>	Match to Sheet 3	, –			
DRILLING CO DRILLER:		t - Wolff Lafever		I	_	BAKER REP.: <u>N</u>	, 1 Mark De 39-TW2		SHEET	2 OF 3

seken

Baker Environmental

196 (Sec.)

TEST BORING AND WELL CONSTRUCTION RECORD

PROJECT:			ation at Site	s 88, 89,	and 93	- MCB Camp Lejeune				
CTO NO.:	62470	-356				BORING NO .:	.8	9-TW23	BIW	
	SA	MPLE T	YPE			DE	FINIT	IONS		
		Spoon A				SPT = Standard Penetrat			M D1586)
			W = Wash			PID = Photo Ionization I				´
		Rotary				Lab Class = USCS (AST				
D=	= Denison F			mple				,		
	Sample	Sample		Lab	PID			W	ell	Elevation
Depth (Ft.)	Type &	Rec.	SPT	Class.	(ppm)	Visual Description		Instal	lation	(Ft. MSL)
	No.	(Ft.,%)				-		De		` 1
31	S-6	1.1	17			Continued from Sheet 2				
		55%	16							
32 32.0			15			SHELL/FOSSIL FRAG,	-		-	
					1	trace silt & clay; It gray;				
33						dense; wet	1		-	
	A-N									
34									-	
35 35.0									-	
			12							
36	S-7		12							
			13				36.8			
37 37.0			14			E SAND come cilt tr	37.0		37.0	
38 -		r				F SAND, some silt, tr. clay; lt greenish-	/ -{		-	
						\ gray; dense; damp /				
39						BOH @ 37.0'				
40									-	
41							_			
42									-	
							_			
43			1				_			
44									_	
45									-	
43										
46										
47									-	
* ′ —									<u> </u>	
48									_	
49							-		-	
50										
	1	1	L	<u>I</u>		J	L			
DRILLING C		tt - Wolff			_		Mark D			
DRILLER:	Chip 2	Lafever			_	BORING NO.:	39-TW	23IW	SHEET	Г 3 OF 3

ŧ

PROJECT:	Phase	I Investiga	ation at Site	s 88, 89,	and 93	- MCB	Camp Lejeun	e			
CTO NO.:	62470	-356				BORIN	IG NO.:		93-TW	01	
COORDINAT	ES: EAST	:	2464824.:	5095	•	NORT	H:		3601	93.8725	
ELEVATION:	SURF	ACE:	14.44			TOP C	F PVC CASI	NG:	16.48	3	
Dig Diad	rich D-50			······································						Danth to	
Rig: Died		Casing	Augone	Core		Date	Duccuses	Wa	ather	Depth to Water	Time
	Split Speen	Casing	Augers	Barre		Date	Progress	wea	amer		Time
<u>()</u>	Spoon		0.0/48			100/07	(Ft.)	D.C.		(Ft.)	
Size (ID)	1-3/8"		2-3/4"		- 1 '	/29/96	0.0 - 15.0	P Sun	ny, 80s		
Length	2'		5'					+			
Туре	Stainless		HSA								
Hammer Wt.	140 #										·
Fall	30"										
Stickup											
Remarks:											
		MPLE TY				<u> </u>	WE	LL INFO	ORMAT		
	-	-	A = Auger				_			Тор	Bottom
		-	W = Wash				Туре		Diam.	Depth	Depth
	R = Air	•	C = Core							(Ft.)	(Ft.)
	D = Den		P = Piston				, PVC Riser		1"	0	5
		= No Sam	ple			Sch 40	, 10-Slot, PV(Screen	1"	5	15
	Sample	Sample		Lab.	PID				E	Vell	Elevation
Depth (Ft.)	Type &	Rec.	SPT	Class	(ppm)	יוי	isual Descript	10N		allation	(Ft. MSL)
	No.	(Ft.,%)								etail	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	A-N						to the log for v /01IW for ptions	vell		5.0	
				<u> </u>			Match to She	et 2			l
DRILLING CO DRILLER:		t - Wolff Lafever	·····	····	-		ER REP.: NG NO.:	Mark 93-TV	DeJohn V01	SHEET	T 1 OF 2

Baken

Baker Environmental

PROJECT:	Phase	I Investig	ation at Site	es 88, 89,	and 93	- MCB Camp Lejeune				
CTO NO.:	62470	-356		· · · · · · · · · · · · · · · · · · ·	•	BORING NO .:	_	93-TW0)1	
D =	S = Split T = Shel	by Tube N Rotary	A = Auger W = Wash C = Core	mple		SPT = Standard Pene PID = Photo Ionizatio Lab Class = USCS (A	on Detect	est (AS) or meas)
	Sample	Sample		Lab	PID		1	W	Vell	Elevation
Depth (Ft.)	Type &	Rec.	SPT	Class	(ppm)	Visual Descripti	ion		llation	(Ft. MSL)
	No.	(Ft.,%)				-		De	etail	
11										
12									-	
13	A-N								-	
14										
15 15.0							15.0		15.0	
16						BOH @ 15.0'				
¹⁰ –							-			
17						- - -				
18	:						-			
19									_	
20										
21							_		-	
22										
23										
24										
25									-	
										-
26										
27										
28	:								-	
29 _							_		-	
30							-		- 	
DRILLING CO).: <u>Parrat</u> t Chip L	t - Wolff Lafever	·····			BAKER REP.: BORING NO.:	Mark D 93-TW		SHEET	2 OF 2

.

PROJEC				gation at Si	tes 88, 89), and 9		B Camp Leje					
CTO NO		62470						NG NO.:				01IW	
		ES: EAST	-	2464819.	6049		NORT					6193.961	9
ELEVAT	ION:	SURF	ACE:	14.54			TOPO	OF PVC CASI	NG:]	6.1	70	
Rig:	Died	rich D-50		· · · · · · · · · · · · · · · · · · ·								Depth to)
		Split	Casing	Augers	Core	. 1	Date	Progress	Wea	ather		Water	Time
		Spoon	Ŭ	Ũ	Barre	el 🛛		(Ft.)				(Ft.)	
Size (ID)		1-3/8"		2-3/4"		7/	29/96	0.0 - 54.0.0	P Sun	ny, 8	0s		
Length		2'		5'									
Туре		Stainless		HSA									
Hammer	Wt.	140 #											
Fall		30"											
Stickup													
Remarks	8:												
			MPLE T					WEL	<u>L INFO</u>	ORM	[A]		
		-	-	A = Auger								Тор	Bottom
				W = Wash				Туре		Dia	m.	Depth	Depth
		R = Air		C = Core							-	(Ft.)	(Ft.)
		D = Deni		P = Piston), PVC Riser		1		0	48.5
			= No San	nple			Sch 40), 10-Slot, PV	C Scre	1'		48.5	53.5
	-	Sample	Sample	CDT	Lab	PID	.	1.0	•	l .		Vell	Elevation
Depth (Ft.)	Type &	Rec.	SPT	Class.	(ppm)		sual Descript	10n			ullation	(Ft. MSL)
		No.	(Ft.,%)	0		<u> </u>	 			$\left \right $		etail	
,		S-1	1.0	9 12			ECAN	D some silt	2221		1		
1_		5-1	1.0 50%	13 11			1	ID, some silt, crete; brown;	coal			-	
2	2.0		50%	11			1	se; moist					
²	2.0			11		· · · ·		se, moise				-	
3 -		S-2	0.5	6			FSAN	D; It gray; m	dense.				
- ⁻		0-2	25%	6			moist	, it gruy, in	<u>uciise,</u>				1
4	4.0		2570	2					4.0			1	
·		=		2			1					-	1
5		S-3	1.8	3			F SAN	JD & SILT; h	t grav &				
			90%	3			1 C	; m stiff; wet	<u> </u>			-	1
6	6.0			3			Water	r @ 4.5'					
				4				-		1		-	Ĩ
7		S-4	2.0	6			little v	vood & clay la	aminae;				
			100%	5			It gray	r; stiff	_				
8	8.0			5								-	
_				2					_				
9_		S-5	2.0	3			little v	vood; m stiff	<u> </u>			-	1
			100%	4					•• =				
10	10.0			6				Matak to Ol	10.0			-	4
	<u> </u>	L		2	I		I	Match to Sh	icei 2		1	<u> </u>	I
DRILLIN	IG C	O.: <u>P</u> arra	tt - Wolff			-		ER REP.:	Jeff Te	epsic			
DRILLE	R:	Chip	Lafever			_	BORI	NG NO.:	93-TV	VOII	W	SHEE	T 1 OF 4

Baker Environmental

TEST BORING AND WELL CONSTRUCTION RECORD

SAMPLE TYPE DEFINITIONS S = Split Spoon A = Auger SPT = Standard Penetration Test (ASTM D1586) T = Shelby Tube W = Wash PID = Photo Ionization Detector measurement R = Air Rotary C = Core Lab Class = USCS (ASTM D2487) D = Denison P = Piston N = No Sample Sample Lab PID	PROJEC				gation at Si	tes 88, 8	9, and 9	3 - MCB Camp Lejeune	00 million 1111	<u> </u>
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	CIONO).: 	62470	-336			-		93-TW01IW	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		D=	S = Split $T = Shelt$ $R = Air$	Spoon by Tube Rotary	A = Auger $W = Wash$ $C = Core$	ample		SPT = Standard Penetration PID = Photo Ionization Det	Test (ASTM D ector measurem	· ·
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		<u> </u>			14 140 56	· · · · · · · · · · · · · · · · · · ·			Well	Elevation
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Depth ((Ft.)	Type &	Rec.	SPT			Visual Description	Installation	(Ft. MSL)
12 12.0 5 loose; wet 13 S-7 2.0 5 - 14 14.0 6 - 14 14.0 6 - 15 S-8 1.8 WOH/ 16 16.0 - - - 17 S-9 1.8 2 - 18 18.0 3 - - - 19 S-10 1.0 1 19 S-11 1.0 1 20 20.0 2 - F/M SAND, little shell frag, trace c sand; lt gray; loose; wet 21 S-11 1.0 6 22 22.0 - 30 F SAND & SILT; lt gray to lt gray; v loose; wet 21.0 23 S-12 2.0 12 F/C SAND, little shell/ 24 24.0 39 SHELL/FOSSIL FRAG, F SAND, trace silt; dense 26	11			2.0	4			Continued from Sheet 1		
13 S-7 2.0 4 14 14.0 6 15 S-8 1.8 WOH/ trace m/c sand & silt 16 16.0 F/M SAND, trace c sand; 17 S-9 1.8 2 F/M SAND, trace c sand; 18 18.0 2 F/M SAND, trace c sand; 19 S-10 1.0 1 M SAND, little shell frag, trace c sand; lt gray; v loose; wet 20.0 20 20.0 2 F/C SAND & SILT; lt gray to lt gray; v loose; wet 20.0 21 S-11 1.0 6 F/C SAND, little shell/ 22 22.0 30 F/C SAND, little shell/ 23 S-12 2.0 12 F/C SAND, little shell/ 24 24.0 39 SHELL/FOSSIL FRAG & F SAND, trace silt; dense;			S-6	100%	4			F SAND, trace silt; It gray;		
13 S-7 2.0 5 14 14.0 $100%$ 4 15 S-8 1.8 $90%$ 1 16 16.0 $90%$ 2 F/M SAND, trace c sand; 17 S-9 1.8 2 F/M SAND, trace c sand; 18 18.0 2 M SAND, trace c sand; 19 S-10 1.0 2 M SAND, trace c sand; It gray; 20 20.0 2 M SAND, trace c sand; It gray; 21 S-11 1.0 6 F SAND & SILT; It gray to t t green; m dense; 21.7 22 22.0 30 F/C SAND, bittle shell/ 22 22.0 30 F/C SAND, trace silt; dense; 24 24.0 20.0 20 <td>12</td> <td>12.0</td> <td></td> <td></td> <td>5</td> <td></td> <td></td> <td>loose; wet</td> <td></td> <td></td>	12	12.0			5			loose; wet		
14 14.0 100% 4 - - 15 S-8 1.8 WOH/ trace m/c sand & silt 16 16.0 90% 18" F/M SAND, trace c sand; 17 S-9 1.8 2 F/M SAND, trace c sand; 18 18.0 2 F/M SAND, trace c sand; 19 S-10 1.0 1 M SAND, little shell frag, trace c sand; lt gray; loose; wet 20.0 20 20.0 2 F SAND & SILT; lt gray to th green; m dense; 21.7 21 S-11 1.0 6 F/C SAND, little shell/_fossil frag; lt gray; v dense; wet 22 22.0 30 F/C SAND, little shell/_fossil frag; lt gray; v dense; wet 23 S-12 2.0 20 F/C SAND, trace silt; dense; trace f sand; v dense; 24 24.0 18 SHELL/FOSSIL FRAG, trace f sand; v dense; 26 26.0 <td></td> <td></td> <td></td> <td></td> <td>4</td> <td></td> <td></td> <td></td> <td></td> <td></td>					4					
14 14.0 6 $ 15$ $S-8$ 1.8 $WOH/$ $ 16$ 16.0 $90%$ $18"$ $ 17$ $S-9$ 1.8 2 $ 18$ 18.0 2 $ F/M$ SAND, trace c sand; 18 18.0 2 $ 19$ $S-10$ 1.0 1 $ 20$ 20.0 2 $ M$ SAND, little shell frag, trace c sand; It gray; v loose; wet 20.0 21 $S-11$ 1.0 6 $ F$ SAND & SILT; It gray to ht green; m dense; 21.7 22 22.0 30 $ F/C$ SAND, little shell/ $ 22$ 22.0 20 $ F/C$ SAND, little shell/ $ 22$ 22.0 20 $ F/C$ SAND, little shell/ $ 24$ 24.0	13		S-7	2.0	5					
15 S-8 1.8 $\frac{1}{90\%}$ trace m/c sand & silt 16 16.0 trace m/c sand & silt 17 S-9 1.8 2 F/M SAND, trace c sand; It gray; loose; wet 18 18.0 2 M SAND, trace c sand; It gray; loose; wet 19 S-10 1.0 1 M SAND, trace c sand; It gray; v loose; wet 20 20.0 2 M SAND, little shell frag, trace c sand; It gray; v loose; wet 20.0 21 S-11 1.0 6 F/C SAND & SILT; It gray to It gray; v loose; wet 22 22.0 F/C SAND, little shell/				100%	4					
15 S-8 1.8 WOH/ trace m/c sand & silt 16 16.0 2 F/M SAND, trace c sand; 17 S-9 1.8 2 18 18.0 2 F/M SAND, trace c sand; 19 S-10 1.0 1 19 S-10 1.0 1 20 20.0 2 M SAND, little shell frag, trace c sand; It gray; vicose; wet 20 20.0 2 F SAND & SILT; It gray to t green; m dense; 21.7] 21 S-12 2.0 12 F/C SAND, little shell/ 22 22.0 30 F/C SAND, little shell/ 23 S-12 2.0 22 F/C SAND, little shell/ 24 24.0 39 SHELL/FOSSIL FRAG & F SAND, trace silt; dense 26 26.0 41	14	14.0			6					
16 16.0 $90%$ $18"$ $ 17$ S-9 1.8 2 $ 18$ 18.0 3 $ 18$ 18.0 3 $ 19$ S-10 1.0 1 $ 20$ 20.0 2 $ 20$ 20.0 2 $ 21$ S-10 1.0 1 $ 22$ 22.0 4 $ 22$ 22.0 2 $ 21$ S-11 1.0 6 $ 22$ 22.0 22 $ 22$ 2.0 22 $ 22$ 2.0 2.0 2.0 $ -$					1					
16 16.0	15		S-8	1.8	WOH/			trace m/c sand & silt		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				90%	18"					
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	16	16.0]
18 18.0 90% 2 1t gray; loose; wet 19 S-10 1.0 1 19 S-10 1.0 1 20 20.0 2 M SAND, little shell frag, trace c sand; lt gray; v loose; wet 20.0 21 S-11 1.0 6 F SAND & SILT; lt gray to lt green; m dense; 21.7 22 22.0 30 F/C SAND, little shell/ 23 S-12 2.0 22 F/C SAND, little shell/ 24 24.0 39 SHELL/FOSSIL FRAG & F SAND, trace silt; dense 25 S-13 2.0 20 SHELL/FOSSIL FRAG & F SAND, trace silt; dense 26 26.0 -41 SHELL/FOSSIL FRAG, trace f sand; v dense 28 28.0 33 SHELL/FOSSIL FRAG, trace f sand; v dense					2					
18 18.0 3 M SAND, little shell frag, trace c sand; lt gray; 19 S-10 1.0 1 M SAND, little shell frag, trace c sand; lt gray; 20 20.0 2 F SAND & SILT; lt gray to lt green; m dense; 21.7 21 S-11 1.0 6 F SAND & SILT; lt gray to lt green; m dense; 21.7 22 22.0 30 F/C SAND, little shell/ 23 S-12 2.0 22 F/C SAND, little shell/ 24 24.0 39 SHELL/FOSSIL FRAG & F SAND, trace silt; dense 25 S-13 2.0 20 SHELL/FOSSIL FRAG & F SAND, trace silt; dense 26 26.0 41 SHELL/FOSSIL FRAG, trace f sand; v dense 28 28.0 33 SHELL/FOSSIL FRAG, trace f sand; v dense	17		S-9	1.8	2			F/M SAND, trace c sand;		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				90%	2			lt gray; loose; wet] [
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	18	18.0			3					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					2			_		1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	19		S-10	1.0	1			M SAND, little shell frag,		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		1		50%	2			trace c sand; lt gray;		1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	20	20.0								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	-				4		1			-1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	21		S-11	1.0	6			F SAND & SILT; It gray to		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		1		50%	18					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	22 -	22.0			30					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					12					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	23	1	S-12	2.0	22			F/C SAND, little shell/		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		1		100%				1		1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	24	24.0			39					
26 26.0 100% 29 F SAND, trace silt; dense 27 27. S-14 2.0 26 28 28.0 28.0 33 SHELL/FOSSIL FRAG,					18					1
26 26.0 100% 29 F SAND, trace silt; dense 27 27. S-14 2.0 26 28 28.0 28.0 33 SHELL/FOSSIL FRAG,	25	1	S-13	2.0				SHELL/FOSSIL FRAG &		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$]								1
27 S-14 2.0 26 SHELL/FOSSIL FRAG, 28 28.0 33 SHELL/FOSSIL FRAG,	26	26.0			41			· · · · •		
27 S-14 2.0 26 SHELL/FOSSIL FRAG, 28 28.0 33 SHELL/FOSSIL FRAG,					20		1			1
28 28.0 100% 38 trace f sand; v dense	27		S-14	2.0	26			SHELL/FOSSIL FRAG.		
28 28.0 33				100%						7
	28	28.0			33		1	-		
								1		7
29 _ S-15 2.0 10 I little f sand; dense	29		S-15	2.0	10			little f sand; dense		
				100%	21					1
30 30.0 25	30	30.0			25					
4 Match to Sheet 3					4			Match to Sheet 3]
DRILLING CO.: Parratt - Wolff BAKER REP.: Jeff Tepsic	ת ז זומח) · Darrat						neio	

DRILLING CO.: DRILLER: Parratt - Wolff Chip Lafever

BAKER REP.: BORING NO.: Jeff Tepsic 93-TW01IW SI

SHEET 2 OF 4

Baker Environmental

PROJEC CTO NO		Phase 62470		ation at Si	tes 88, 89	9, and 9	3 - MCB Camp Lejeune BORING NO.:	93-TW01	IW	
		SAT	MPLE T	YPE		-	DEFI	NITIONS		1
				A = Auger			SPT = Standard Penetrati		STM D1	586)
		-	-	W = Wash			PID = Photo Ionization D	•		· ·
				C = Core			Lab Class = USCS (AST)			
	D =	Denison P			ample					
		Sample	Sample		Lab	PID		We	11	Elevation
Depth (Ft.)	Type &	Rec.	SPT	Class.	(ppm)	Visual Description	Install	ation	(Ft. MSL)
		No.	(Ft.,%)					Deta	ail	
31		S-16	2.0	10			Continued from Sheet 2			
			100%	16						
32	32.0			18		1	_		_	
				16						
33		S-17	2.0	18			some f sand, little silt;			
_			100%	10			m dense			
34	34.0			17					_	
				22						
35		S-18	2.0	20			F SAND & LIMESTONE	3	_	
			100%	23			FRAG, little shell frag			
36	36.0			26						
				28						
37 -		S-19	2.0	47			F SAND, little shell frag;			
			100%	40			v dense]		
38 -	38.0			43						
				50			-		-	
39 -	1	S-20	2.0	22			M SAND & LIMESTON	E		
	1	~	100%	20			FRAG; dense		_	
40	40.0			19			,			
	40.3		.3/100	50/3"			F SAND	-1		
41										
··-	1	A-N					-	-	-	
42	42.0									
				4	1		-		-	
43	1	S-22	1.5	8			LIMESTONE FRAG, so	me		
		0	75%	15			m sand; m dense	ר <i>ו</i> ר	-	
44	44.0			19						
''				13			-		-	
45	-	S-23	1.5	56	l		F/M SAND, some limest	one		
"-	-		75%	38			frag; v dense	<u>ר ו ר</u>	-	1
46	46.0		1.570	24			46	.ō		
- ~	10.0			9					-	1
47	1	S-24	1.5	17			F SAND, trace silt; It gra	ay		
''-	-1		75%	17			& green; dense; wet	-	-	
48	48.0		1070	23	1			-1		
- *				8	+	1	1	-	48.5	1
49	-	S-25	1.5	28			moist to wet			
	-	5-25	75%	16					-	1
50	50.0			10						
"-			1	4	-		Match to Sheet 4	「目し	-	1
		<u> </u>	44 - 11/-14	1				Tepsic		-
DRILLI			tt - Wolff			_		TW01IW	SHEE	T 3 OF 4
DRILLE	ZK.	Cmp	Lafever				Joining 110 <u>33-</u>		شانسا ال	

TEST BORING AND WELL CONSTRUCTION RECORD

PROJECT:			gation at Si	tes 88, 89	9, and 9	3 - MCB Camp Lejeu				
CTO NO.:	62470	-356				BORING NO .:	9	93-TW(DIIW	
D	S = Split T = Shelt R = Air	by Tube Rotary	$\overline{A} = Auger$ $W = Wash$ $C = Core$			<u>D</u> SPT = Standard Pene PID = Photo Ionizatio Lab Class = USCS (A	on Dete	Test (A ctor me	ASTM D1	
D=	Denison P Sample	= Piston Sample		Lab	PID			w	/ell	Elevation
Depth (Ft.)	Type & No.	Rec. (Ft.,%)	SPT	Class.	(ppm)	Visual Description	on	Insta	llation tail	(Ft. MSL)
51	S-26	1.5	10			Continued from Shee	et 3	Ĩ		
		75%	22			some silt; It green				
52 52.0			25							
53	S-27	0.6 30%	12 12 31			trace silt			53.5	
54 54.0			49				54.0		54.0	
55						BOH @ 54.0'			-	
56 _									· _	
57									_	
58									_	
59							_		_	
60									-	
61									-	
62									-	
63							_		_	
64									_	
65									-	
66							_		_	
67 _							_			
68 _							_		_	
69 _							_			
70							_		_	
DRILLING CO DRILLER:		t - Wolff Lafever		L			Jeff Tep 93-TW(SHEE	Γ 4 OF 4

TEST BORING AND WELL CONSTRUCTION RECORD

PROJECT:			ation at Site	s 88, 89,	and 93		Camp Lejeune				
CTO NO.:	62470				-		IG NO.:		93-TW(
COORDINAT			2464754.7	088	-	NORT				92.1715	
ELEVATION:	SURF	ACE:	16.59		-	TOP O	F PVC CASIN	G:	18.74		
Rig: Died	rich D-50							Τ		Depth to	
- 8	Split	Casing	Augers	Core		Date	Progress	Wea	ather	Water	Time
	Spoon	Ŭ	Ū	Barre	el		(Ft.)			(Ft.)	
Size (ID)	1-3/8"		2-3/4"		7.	/30/96	0.0 - 15.0	P Sun	ny, 80s		
Length	2'		5'								
Туре	Stainless		HSA								
Hammer Wt.											
Fall	30"										
Stickup											
Remarks:											
		MPLE T					WEL	L INFC	RMAT	1	
			A = Auger				_		L.	Тор	Bottom
		-	W = Wash				Туре		Diam.	Depth	Depth
		-	C = Core			G-1 40	DUCD		1"	(Ft.)	(Ft.)
	D = Den		P = Piston				, PVC Riser , 10-Slot, PVC	Samaan	1" 1"	0	5 15
	Sample	= No Sam Sample		Lab.	PID	<u>SCI 40</u>	, 10-5101, PVC	Screen		Vell	Elevation
Depth (Ft.)	Type &	Rec.	SPT	Class	(ppm)		isual Descripti	on		allation	(Ft. MSL)
Depui (i i.)	No.	(Ft.,%)	511	C1055	(^{ppm})	'	isuur Deseripti	011		etail	(1 (. 1415))
		<u> </u>									
1											
2										_	
								_		-	
3											
4								-			
·											
5	A-N					Refer t	o the log for w	ell –		5.0	
							02IW for			-	1
6						descrip	otions	_		-	
]
7											
			1		1			_		-	
8										_	-
										-	-
9											4
										-	4
10		1					Match to Shee	⊶t? —		-	-
	I		1	I	I						1
DRILLING C	the second s	tt - Wolff					R REP.:	(DeJohn	011000	
DRILLER:	Chip	Lafever				ROKI	NG NO.:	<u>93-TV</u>	VU2	- SHEE	Г 1 OF 2

Baken

Baker Environmental

PROJECT:	Phase	I Investiga	ation at Site	es 88, 89,	and 93	- MCB Camp Lejeur	ne			
CTO NO.:	62470				-	BORING NO.:		93-TW0	2	
D =	S = Split T = Shel	Rotary	A = Auger W = Wash C = Core	mnla		SPT = Standard Pen PID = Photo Ionizat Lab Class = USCS (ion Detect	est (AS) or meas		5)
<u> </u>	Sample	Sample	IN INO Sa	Lab	PID	· · · · · · · · · · · · · · · · · · ·	T	v	Vell	Elevation
Depth (Ft.)	Type & No.	Rec. (Ft.,%)	SPT	Class	(ppm)	Visual Descrip	tion	Insta	llation etail	(Ft. MSL)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	A-N					BOH @ 15.0'				
26 27 28 29 30										
DRILLING CO DRILLER:		t - Wolff Lafever				BAKER REP.: BORING NO.:	Mark E 93-TW		SHEET	2 OF 2

PROJECT:	:	Phase	I Investig	ation at S	ites 88, 8	39, and	93 - M	CB Camp Leje	eune			
CTO NO .:		62470	-356			_	BORIN	IG NO.:		93-TW	D2IW	
COORDIN	IATE	ES: EAST	:	246475	9.1998	_	NORT	H:		3605	92.2665	
ELEVATIO	ON:	SURF	ACE:	16.69			TOP O	F PVC CASE	NG:	18.7	2	
Rig: D	Diedr	ich D-50									Depth to	
		Split	Casing	Augers	Core		Date	Progress	We	ather	Water	Time
]	Spoon	0	g	Barre			(Ft.)			(Ft.)	1 mic
Size (ID)		1-3/8"		2-3/4"			/30/96	0.0 - 52.0	P Sun	ny, 80s		
Length		2'		5'								
Туре		Stainless		HSA								
Hammer \	Wt.	140 #			**							
Fall		30"										
Stickup												
Remarks:												
			IPLE TY					WEI	LL INF	ORMA	FION	
		S = Split S	-	-							Тор	Bottom
		T = Shelby	•					Туре		Diam.	Depth	Depth
		R = Air F		C = Core							(Ft.)	(Ft.)
		D = Denis		= Piston				, PVC Riser		1"	0	45
	r		No Samp		T -1-	DID	Sch 40	, 10-Slot, PV	<u>C</u> Scree	1"	45	50
Danth (E)		Sample	Sample	SPT	Lab	PID					Vell	Elevation
Depth (Ft	.)	Type &	Rec.	SPI	Class.	(ppm)		isual Descript	ion		allation	(Ft. MSL)
r		No.	(Ft.,%)	3							etail	
1		S-1	1.1	9		<u>0.2</u>	FSAN	D, little silt; c	ու			
1 —		0-1	55%	9		$\frac{0.2}{0.2}$; m dense; dar				
2 2	2.0			12		0.2		, uonoo, uu	P		-	
				1			1					
3		S-2	2.0	3		0.2	some c	lay, trace silt;			-	
_			100%	3		0.2		& gray w/ iro				
4 4	4.0			5			stains;	m stiff; moist	. –		-	
	ľ			1					_			
5		S-3	1.2	1		<u>0.2</u>		o some clay, ti				
			60%	1		0.2		d brown & gra	ау;		_	
6_6	6.0			1			v soft;					
				2			Water	· @ 4.0'	_		-	
7		S-4	2.0	2		$\frac{0.2}{0.2}$					_	
			100%	2		0.2			-		-	-
8 1	8.0			3			-				-	4
9 -		S-5	1.2	2 2		0.2			-	$\{ \mid \mid \}$	-	-
"-		5-5	60%	4		$\begin{array}{c c} \underline{0.2}\\ 0.2 \end{array}$				$\{ \mid \mid \}$		-
10 1	0.0		0070	5		0.2			-		-	1
				1				Match to She	et 2			1
DRILLING	300) · Dorrow	t - Wolff		L		RAKE	R REP.:		DeJohn		B
DRILLER			Lafever			-		NG NO.:	93-TW		SHEE	TIOF4
	-					-					-	•

1

-

Baker Environmental

TO NO.:	62470	-356			-	BORING NO.:	93-TW02IW	
	SAN	IPLE TY	PE			DEFINI	TIONS	
		Spoon A				SPT = Standard Penetration		D1586)
	T = Shelby	y Tube W	' = Wash			PID = Photo Ionization Deter	ctor measure	ment
		Rotary C				Lab Class = USCS (ASTM D	02487)	
D =	Denison P	= Piston 1	N = No S	ample				
	Sample	Sample		Lab	PID		Well	Elevation
Depth (Ft.)	Type & No.	Rec. (Ft.,%)	SPT	Class.	(ppm)	Visual Description	Installatio Detail	on (Ft. MSL)
11		0.9	2		<u>0.2</u>	Continued from Sheet 1		
	S-6	45%	7		0.2	little to some silt, trace		
12 12.0			7			clay; gray; loose		
					1	_		_
13	S-7							
_								_
14 14.0					<u> </u>			
			2					_
15	S-8	2.0	5		<u>0.2</u>	little to some silt & clay;		
		100%	7		0.2	stiff		_
16 16.0			13			_		
			4					_
17	S-9	2.0	5			little silt		
		100%	7		0.2	17.6		-
18 18.0			16					
_	:		2			M/C SAND, trace silt;		-
19	S-10	2.0	2		<u>0.2</u>	orange; loose; wet		
1		100%	2		0.2	19.5		
20 20.0			6					
_			2			_		_
21	S-11	0.5	2			F SAND, some silt, trace		
_		25%	2		0.2	clay; dk gray; soft; wet		
22 22.0			5					
_			1		r	_		-
23	S-12	0.9	1			little silt; v soft		
		45%	1		0.2			÷
2424.0			1	ļ	ļ			
			11	l				_
25	S-13	1.2	7		$\frac{0.2}{0.2}$	SILT, some f sand, trace		_
		60%	7		0.2	shell frag & clay; It gray;		4
26 26.0			10			stiff; damp 26.0		
~ -	0.14		2					4
27	S-14	2.0	12			F SAND, some shell/fossil		4
20 - an a		100%	41		0.2	frag, little silt, trace clay;		4
2828.0			50/.3			lt gray; v dense; damp		_
29	Q 15	20	11					-
47	S-15	2.0	16			m dense; moist to wet		
30 30.0		100%	11		0.2	_		4
30 30.0			32 13		<u> .</u>	Motoh to Chart 2		
			13			Match to Sheet 3		
RILLING CO		t - Wolff			-	BAKER REP.: Mark E	DeJohn	
RILLER:		Lafever				BORING NO.: 93-TW	0.01111/ 07	IEET 2 OF 4

Baker Environmental

TEST BORING AND WELL CONSTRUCTION RECORD

.

1

PROJEC	T:	Phase	I Investiga	ntion at S	Sites 88,	89, and	93 - MCB Camp Lejeune		
CTO NO	.:	62470	-356			-	BORING NO.:	93-TW02IW	
			IPLE TY			-		NITIONS	
		S = Split S	•				SPT = Standard Penetratior		· · ·
		T = Shelb					PID = Photo Ionization Det		ent
	D – I	R = Air R Denison P :	lotary C		omnlo		Lab Class = USCS (ASTM	D2487)	
	<u>– u</u>	Sample	Sample	6 UNI - N	Lab	PID		Well	Elevation
Depth (Ft.)	Type &	Rec.	SPT	Class.	(ppm)	Visual Description	Installation	(Ft. MSL)
		No.	(Ft.,%)			41-3		Detail	(,
31		S-16	1.2	20		<u>0.2</u>	Continued from Sheet 2		
_			60%	25		0.2	dense; moist		-
32	32.0			25					
-		0.17		4				4	_
33		S-17	1.4	13		$\begin{array}{ c c }\hline \underline{0.2}\\ 0.2 \end{array}$	SHELL/FOSSIL FRAG,	4	_
34	34.0		70%	11 24		0.2	little f sand & silt, trace clay; lt gray; m dense	$\left\{ \left[\right] \right\}$	-
34	54.0			24 5				4	
35		S-18	2.0	18		<u>0.2</u>	F SAND, some shell/fossil		-
		•	100%	23		$\frac{0.2}{0.2}$	frag, little silt; gray; dense;		-
36	36.0			38			moist to wet	-1	- 1
				15			1 –]	
37		S-19	2.0	17		<u>0.2</u>	wet		
_			100%	19		0.2	_		
38	38.0			26			4	_	
				20					_
39		S-20	0.8	26		<u>0.2</u>	v dense	-{	
40	40.0		40%	29		0.2	-		-
40	40.0	S-21	0.8	25 28		0.2	F SAND, little silt; gray;		-
41	41.0	5-21	100%	50/.3		0.2	v dense; wet		-
	11.0	A-N							
42	42.0						-		-
			1	26			-	1	
43		S-22	2.0	28		0.2	F/M SAND, little silt;]	
			100%	24		0.2	gray; v dense; wet		
44	44.0			30		<u> </u>	4	_	
				14			-	4111	
45		S-23	2.0	24		$\frac{0.2}{0.2}$			5.0
46	46.0		100%	28 32		0.2		-	-
40 -	40.0			17					
47		S-24	2.0	25		<u>0.2</u>	F SAND, little silt, trace	1 🗐	-
"	1	~ ~ ~ .	100%	27		0.2	shell frag, m sand & clay;	1 🗐	-
48	48.0			23			gray; v dense; wet	1 🗐 📔	1
-			İ	8		1]
49		S-25	2.0	9	l	0.2	little silt, trace shell frag &		
			100%	16		0.2	clay; m dense		
50	50.0		ļ	27	ļ	<u> </u>	-	5	0.0
	L	L		7	L	1	Match to Sheet 4		
DRILLIN		· · · · · · · · · · · · · · · · · · ·	tt - Wolff			-		DeJohn	
DRILLE	R:	Chip 1	Lafever			_	BORING NO.: 93-T	W02IW SHE	EET 3 OF 4

PROJECT:			ation at S	Sites 88, 8	89, and	93 - MCB Camp Lejeune						
CTO NO .:	62470	-356			-	BORING NO .:	<u>93-TW02</u>	2IW				
D = 1	S = Split S T = Shelby	y Tube W lotary C	= Auger = Wash = Core			<u>DEFINITIONS</u> SPT = Standard Penetration Test (ASTM D1586) PID = Photo Ionization Detector measurement Lab Class = USCS (ASTM D2487)						
	Sample	Sample		Lab	PID			ell	Elevation			
Depth (Ft.)	Type & No.	Rec. (Ft.,%)	SPT	Class.	(ppm)	Visual Description		lation tail	(Ft. MSL)			
51	S-26	2.0	16		<u>0.2</u>	Continued from Sheet 3						
52 52.0		100%	33 37		0.2		2.0	52.0				
53 - 53 - 53 - 54 - 55 - 55 - 55 - 56 - 57 - 58 - 57 - 58 - 59 - 59 - 59 - 59 - 59 - 59 - 59						trace shell frag & clay; greenish- gray; dense; <u>damp to moist</u> BOH@ 52.0'						
68 69 70												
DRILLING CO	Crimental Street, Stre	t - Wolff Lafever	L	L	-		rk DeJohn TW02IW	SHEET	4 OF 4			

TEST BORING AND WELL CONSTRUCTION RECORD

Baker Environmental

Size (ID) Length Type Hammer Wt. Fall	SURF. rich D-50 Split Spoon	:	2464683.5 13.08	8832		BORIN		-	93-TW		
ELEVATION: Rig: Died Size (ID) Length Type Hammer Wt. Fall	SURF. rich D-50 Split Spoon	ACE:		0032	•	NUKII					
Rig: Diedr Size (ID) Length Type Hammer Wt. Fall	rich D-50 Split Spoon		13.00				1: F PVC CASIN	с. ·	15.93	03.1455	
Size (ID) Length Type Hammer Wt. Fall	Split Spoon	Casing			•	1010	PTVC CASIN	U	15.55		
Length Type Hammer Wt. Fall	Spoon	Casing								Depth to	
Length Type Hammer Wt. Fall			Augers	Core		Date	Progress	Wea	ther	Water	Time
Length Type Hammer Wt. Fall	1 2 /08			Barre			(Ft.)			(Ft.)	
Type Hammer Wt. Fall	1-3/8"		2-3/4"		7.	/30/96	0.0 - 15.0	P Sun	ny, 80s		
Hammer Wt. Fall	2'		5'								1
Fall	Stainless		HSA								
	140 #							Į			
	30"										
Stickup							a	1			
Remarks:											
		MPLE T					WEL	L INFO	RMAT		
	-	Spoon A	•							Тор	Bottom
		by Tube N					Type		Diam.	Depth	Depth
			C = Core							(Ft.)	(Ft.)
	D = Den		P = Piston				, PVC Riser		1"	0	4.5
		= No Sam	ple		r	Sch 40	, 10-Slot, PVC	Screen	1"	4.5	14.5
	Sample	Sample	-	Lab.	PID					Well	Elevatio
Depth (Ft.)	Type &	Rec.	SPT	Class	(ppm)		isual Descripti	on		allation	(Ft. MSI
	No.	(Ft.,%)			ļ					etail	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	A-N						o the log for w 03IW for tions	ell		4.5	
DRILLING CO		tt - Wolff Lafever			-		Match to Shee R REP.: NG NO.:		DeJohn		Г 1 OF 2

ŝ

Baker Environmental

PROJECT: CTO NO.:	Phase 62470		ation at Site	es 88, 89,	and 93	- MCB Camp Lejeune BORING NO.:	9	03-TW0	3				
<u> </u>		MPLE TY	/DF				DEFINIT]			
		t Spoon A				SPT = Standard Penet			TM D1586	a			
			V = Wash										
		Rotary				PID = Photo Ionization Detector measurement Lab Class = USCS (ASTM D2487)							
D =	R – All Denison F			mnle		Lau Class – 0505 (A	51141 DZ	107)					
	Sample	Sample	14 140.54	Lab	PID			v	Vell	Elevation			
Depth (Ft.)	Type &	Rec.	SPT	Class	(ppm)	Visual Description	on		llation	(Ft. MSL)			
Depui (I t.)	No.	(Ft.,%)	01			· · · · · · · · · · · · · · · · · · ·			etail	` ´			
11		(, //			1								
				1			-1						
12							-		-				
13	A-N						1		-				
]]	1							
14									-				
									14.5	1			
15 15.0							15.0		15.0	1			
						BOH @ 15.0'		T]]			
16						_]]			
									_				
17													
									-				
18							_						
].		_		-				
19							_						
							_						
20													
_				1			_		-				
21							_			4			
						· ·	4		-				
22										4			
							_		-	-			
23										4			
~				1						4			
24					1				-				
ac -									-	-			
25				1									
26									-	-			
20													
· 27 -							-		· ·	1			
* '		l	ł	1					-	1 1			
28									-	1 1			
									-	1 1			
29		1			1				-				
	Į								-	1			
30							-1		-	1 1			
							-			1			
	<u> </u>		•			DAVED DED				<u> </u>			
DRILLING C DRILLER:	Construction of the local division of the lo	tt - Wolff	_ _+			BAKER REP.: BORING NO.:	Mark E 93-TW		CUEE				
DRILLER.	Cmp	Lafever			-	DURING NU.:	93-1 W	03	- SHEE	Г 2 OF 2			

Baker Environmental

.

PROJECT:		I Investig	gation at Si	tes 88, 89	9, and	93 - MC I	B Camp Lejeu	ne			
CTO NO.:	62470				_		IG NO.:		93-TW	703IW	
COORDINATES:	EAST	•	2464686	.6361	-	NORTI	H:		3612	05.3081	
ELEVATION:	SURF	-	12.98		-	TOP O	F PVC CASIN	IG:	14.74		
Rig: Diedrich	D-50	-						Τ		Depth to	
	Split	Casing	Augers	Core		Date	Progress	We	ather	Water	Time
	Spoon			Barre			(Ft.)			(Ft.)	
Size (ID)	1-3/8"		2-3/4"			1/30/96	0.0 - 54.0	P Sun	iny, 80s		
Length	2'		5'				•	ļ			
Туре	Stainless		HSA							1	
Hammer Wt.	140 #							<u> </u>			
Fall	30"										
Stickup											
Remarks:											
		PLE TYP					WEI	L INFO	<u>DRMA'</u>		
	S = Split Sp						_		 	Тор	Bottom
:	T = Shelby						Туре		Diam	1 *	Depth
	R = Air Ro	-	= Core			0.1.10				(Ft.)	(Ft.)
	D = Deniso		= Piston				, PVC Riser		1"	0	45
ir		No Sampl	e	T .1.		Scn 40	, 10-Slot, PVC	Screen		45	50
	Sample	Sample	CDT	Lab	PID					Well	Elevation
Depth (Ft.)	Type &	Rec.	SPT	Class. (ppm)		ין י	isual Descripti	ion		tallation	(Ft. MSL)
	No.	(Ft.,%)	2							Detail	
	C 1		2			ECAN					
	S-1	2.0 100%	4		$\begin{vmatrix} \underline{0.1}\\ 0.1 \end{vmatrix}$		D, some silt, t		$\{ \ \ $		
		100%	6		0.1		lack, brown & m dense; dam		4 1 1	-	
2 2.0	·		6 4				in dense, dam	Р	4		
	S-2	1.1	4		0.1	come c	ilt, little clay;	moist -	4 1 1	-	
3	5-2	55%	6		0.1	moist	ant, intuc ciay, i			-	-
4 4.0		5576	7		0.1	liioist		-	$\{ \mid \}$	-	-
4 4.0			1			-			+ $+$ $+$		1
5	S-3	1.3	2	l	0.1	some	organic matter;	-	1	-	1
	0-5	65%	2		0.1		loose; wet		1 1		
6 6.0		0370	3				· @ 4.0'	-	1	-	1
			5			-	9	_			
7	S-4	1.0	5		0.1	little si	ilt & clay; dk g	reen	1	-	
	2	50%	4		0.1		,,		1	-	1
8 8.0			4					-	1	-	-
					\uparrow	1			1		1
9	S-5	2.0	WOT/		0.1	little si	ilt & clay, trac	e –	1	-	1
	-	100%	24"		0.1		; v loose		1	-	1
10 10.0								-	1	-	
			4		1	1	Match to She	et 2			1
DRILLING CO.:	Parra	tt - Wolff				BAKE	R REP.:	Jeff T	epsic		
DRILLER:		Lafever			-		NG NO.:		V03IW	SHEE	Γ 1 OF 4
	<u></u>				-		=				

Baken

TEST BORING AND WELL CONSTRUCTION RECORD

ROJECT: TO NO.:	Phase 62470		ation at Si	ies 88, 8	9, and 9	3 - MCB Camp Lejeune BORING NO.:	93-TW03IW	
		PLE TYP	E		-		TIONS	
	S = Split					SPT = Standard Penetration		86)
	T = Shelby					PID = Photo Ionization Detec	•	
	R = Air Ro					Lab Class = USCS (ASTM D	2487)	
D =	Denison P =			ple				
	Sample	Sample		Lab	PID		Well	Elevation
Depth (Ft.)	Type &	Rec.	SPT	Class.	(ppm)	Visual Description	Installation	(Ft. MSL)
	No.	(Ft.,%)	<u>.</u>				Detail	
11		1.8	8		<u>0.1</u>	Continued from Sheet 1		_
	S-6	90%	10		0.1	some silt, trace shell frag;		_
12 12.0			12	ļ	<u> </u>	m dense; moist		_
			6					-
13	S-7	1.4	7		<u>0.1</u>			
		70%	9		0.1	-		-
14 14.0		↓↓	13	ļ	<u> </u>		4 4	_
	- -		4				4	_
15	S-8	2.0	6			some silt, trace shell frag &	4 4	_
		100%	6		0.1	clay; greenish-gray	4	_
16 16.0		<u> </u>	13	 				
. 4	a -		4				1	-
17	S-9	1.3	16		<u>0.1</u>	SHELL/LIMESTONE FRAC		
		65%	28		0.1	trace f sand & silt; lt		4
18 18.0			38	 	1	gray; dense; wet	4 1 1 1	
	G 4 6		13			-		_
19	S-10	1.0	20		<u>0.1</u>	_		
		50%	16		0.1	-		_
20 20.0			20		ļ	4		
	0.11		12			-		-
21	S-11	1.3	33		$\frac{0.1}{0.1}$	some f sand		
		65%	14		0.1	-		-4
22 22.0			15	<u> </u>		4		
	G 10		21					4
23	S-12	2.0	32		$\frac{0.1}{0.1}$	23.2		_
		100%	45		0.1	SILT, some f sand, little		4
24 24.0	<u></u>		<u>46</u> 20			clay & shell frag; 24.0	4	-
25	S-13	1.3	20 24		0.1	It gray; hard; damp	4	-
²³	5-15	65%	24 28		$\begin{array}{c} \underline{0.1}\\ 0.1 \end{array}$	F SAND & SHELL FRAG,	4]	
26 26.0			30		0.1	some silt, trace clay;	1]]	-
20 20.0	<u></u>	+	25	<u> </u>		gray; v dense; wet	1	
27	S-14	2.0	25		<u>0.1</u>	5.uj, + uoiso, mot	1	-1
~ -	5-14	100%	45	1	0.1		1	
28 28.0		100/0	46	1		-	1	-1
20		+	14			1		-1
29	S-15	1.1	17		<u>0.1</u>	dense	1	-
	515	55%	20		$\frac{0.1}{0.1}$			
30 30.0			40			-	1	-
	,,		27			Match to Sheet 3	1	
	. n			1	_l		<u> </u>	
DRILLING CO.		<u>tt - Wolff</u>			-	BAKER REP.: Jeff T		
DRILLER:	Chip	Lafever				BORING NO.: 93-TV	V03IW SHE	ET 2 OF 4

TEST BORING AND WELL CONSTRUCTION RECORD

PROJECT:	Phase	I Investig	gation at Si	tes 88, 89	9, and 9	3 - MCB Camp Lejeune			
CTO NO.:	62470				_	BORING NO .:	93-TW03	IW	
	SAME	PLE TYP	<u>E</u>			DEFI	INITIONS		<u> </u>
	S = Split Sp					SPT = Standard Penetratio	n Test (ASTI)
	T = Shelby '					PID = Photo Ionization De		rement	
	$\mathbf{R} = \mathbf{Air} \mathbf{Ro}$	•				Lab Class = USCS (ASTM	(D2487)		F
D	= Denison $P = 1$		= No Sam	P	T				
	-	Sample		Lab	PID		We		Elevation
Depth (Ft.)	• •	Rec.	SPT	Class.	(ppm)	Visual Description	Install		(Ft. MSL)
31	<u>No.</u> S-16	(Ft.,%) 1.9	28	<u> </u>		Continued from Sheet 2	Det	a11	
	5-10	1.9 95%	28 21		<u>0.1</u> 0.1	Commuted from Sheet 2			
32 32.0		3370	21					-	
52 52.0			22						
33	S-17	1.3	25			SHELL/FOSSIL FRAG,		-	
		65%	26			little f sand & silt; v dense		_	
34 34.0			33		1			-	
			27						
35	S-18	1.2	29			F SAND, some shell/fossil		_	
		60%	22		1	frag, little silt			
36 36.0			24		<u> </u>				
			24					_	
37	S-19	1.2	24						
		60%	30					_	
38 38.0	÷		42			-			
	G 20		28					-	
39	S-20	2.0	17 22			some silt, little shell/fossil			
40 40.0		100%	31			frag; dense		-	
40 40.0	<u></u>	<u> </u>	28		+				
41	S-21	1.0	20					-	
	0-21	50%	21				-1	_	
42 42.0			34					-	
			15			1			
43	S-22	1.3	20			some shell/fossil frag,		-	
		65%	50			little silt			
44 44.0			48						
								-	
45								45.0	
					1			-	ļ
46									
47 -	A 31							-	
47	A-N								1
48				1				-	1
- ^{or}									
49								-	1
50 50.0								5 0.0	
		1	15		İ.	Match to Sheet 4			
). Down	tt - Wolff				BAKER REP.: Jeff	f Tepsic		
DRILLING CO DRILLER:		Lafever			-		TW03IW	SHEET	Г 3 OF 4
DAILLER,	Cmp	Latevel				<u></u>	11103111	. تربيد ان	

Beken

Baker Environmental

PROJECT:	Phase	I Investig	gation at Si	ites 88, 8	9, and 9	3 - MCB Camp Lejeun	e		
CTO NO.:	62470					BORING NO.:		-TW03IW	
	SAM	PLE TYP	PE			I	DEFINITI	ONS	
	S = Split Sp					SPT = Standard Penet			5)
	T = Shelby					PID = Photo Ionization			·
	R = Air Ro	tary C	= Core			Lab Class = USCS (As	STM D248	7)	
D	= Denison $P =$	Piston N	i = No Sam	ple					
		Sample		Lab	PID			Well	Elevation
Depth (Ft.)		Rec.	SPT	Class.	(ppm)	Visual Description	on	Installation	(Ft. MSL)
	No.	(Ft.,%)			ļ			Detail	
51	S-23	1.1	16			Continued from Sheet	3		
		55%	30					_	
52 52.0			30						
							_	-	
53	S-24	1.2							
		60%					<i>a</i> 4 -	.	
54 54.0		<u> </u>			 	DOM @ 64 0	54.0	54.0	
55						BOH @ 54.0'		-	
56							-		
								-	
57							-		
58									
59							_	-	
³⁹ -									
60 _							-	-	
61									
62								-	
63								-	
64									
							_	-	
65									
66							- 1		
67								-	
68								-	
				:					
69								-	
70 -									
70									
					L	1		II	
DRILLING CC		t - Wolff			-	BAKER REP .:	Jeff Tepsic		8./
DRILLER:	<u>Chip I</u>	Lafever			_	BORING NO .:	93-TW031	IW SHEET	' 4 OF 4

TEST BORING AND WELL CONSTRUCTION RECORD

PROJECT:	Phase	I Investig	ation at Site	s 88, 89,	and 93	- <u>M</u> CB	Camp Lejeun	e				
CTO NO.:	62470						IG NO.:		<u>93-TW05</u>			
COORDINAT			2464903.	9975	-	NORT	H:		3597	26,9448		
ELEVATION:	SURF	ACE:	16.58		-	TOP O	F PVC CASIN	1G :	19.72			
Rig: Died	rich D-50							1		Depth to		
	Split	Casing	Augers	Core		Date	Progress	We	ather	Water	Time	
	Spoon	8	8	Barro			(Ft.)		acher	(Ft.)	1 11110	
Size (ID)	1-3/8"		2-3/4"			/31/96	0.0 - 15.0	M.cloi	ıdy, 90s			
Length	2'		5'									
Туре	Stainless		HSA									
Hammer Wt.	140 #											
Fall	30"											
Stickup								1				
Remarks:												
	<u>SA</u>	MPLE T	<u>YPE</u>				WEI	L INFC	ORMAT	ION		
			A = Auger							Тор	Bottom	
		•	W = Wash				Туре		Diam.	Depth	Depth	
	R = Air	•	C = Core							(Ft.)	(Ft.)	
	D = Den		P = Piston				, PVC Riser		1"	0	5	
		= No Sam	ple		<u> </u>	Sch 40	, 10-Slot, PVC	Screen	1"	5	15	
	Sample	Sample	0.000	Lab.	PID					Vell	Elevation	
Depth (Ft.)	Type &	Rec.	SPT	Class	(ppm)	V	isual Descripti	ion		allation	(Ft. MSL)	
	No.	(Ft.,%)			 					etail		
1												
1												
2								-		-		
2												
3								_		_		
4					l			-		_	2 2	
5	A-N					Refer to	o the log for w	ell –		5.0		
						93-TW	05IW for					
6						descrip	tions					
7												
_										_		
8												
										-		
9												
10 -										-		
10							Match to Shee	× 2 —				
I		L	L	L				5L Z			L	
DRILLING CO		t - Wolff			-		R REP.:	-	DeJohn			
DRILLER:	Chip I	afever			-	BORIN	IG NO.:	<u>93-TW</u>	705	SHEET	` 1 OF 2	

Selken

Baker Environmental

PROJECT:	Phase	I Investig	ation at Site	es 88, 89,	and 93	- MCB Camp Lejeur	ne	<u></u>					
CTO NO.:	62470				<u> </u>	BORING NO.:		93-TW()5				
D =	S = Split T = Shel	Rotary	A = Auger W = Wash C = Core	mple		DEFINITIONS SPT = Standard Penetration Test (ASTM D1586) PID = Photo Ionization Detector measurement Lab Class = USCS (ASTM D2487)							
	Sample	Sample		Lab	PID			v	Vell	Elevation			
Depth (Ft.)	Type & No.	Rec. (Ft.,%)	SPT	Class	(ppm)	Visual Descript	tion	Insta	llation etail	(Ft. MSL)			
11													
12							-		-				
13	A-N						-						
¹⁴ 15 ⁻ 15.0							 15.0		15 0				
15 15.0				<u> </u>		BOH @ 15.0'	15.0	-月-	15.0				
16							-						
17													
18													
¹⁹													
20 21				ł									
22					ļ								
23									_				
24					}								
25									-				
26													
27													
28													
29							_						
30			<u> </u>										
DRILLING CO DRILLER:		t - Wolff Lafever			-	BAKER REP.: BORING NO.:	Mark I 93-TW		SHEET	2 OF 2			

-Beker

.

TEST BORING AND WELL CONSTRUCTION RECORD

PROJEC				ation at Site	\$ 88, 89,	and 93		Camp Lejeune				
CTO NO		62470				-	BORIN			93-TW0		_
COORD				2464893.2	.027		NORTI				25.9103	
ELEVAT	FION:	SURF	ACE:	16.68		-	TOP O	F PVC CASIN	G:	18.88		
Rig:	Died	rich D-50									Depth to	
		Split	Casing	Augers	Core		Date	Progress	Wea	ther	Water	Time
		Spoon		8	Barre			(Ft.)			(Ft.)	
Size (ID))	1-3/8"		2-3/4"			/31/96	0.0 - 52.0	M Clou	ıdy, 90s		
Length		2'		5'				(i , i				
Туре		Stainless		HSA					1			
Hammer	r Wt.	140 #										
Fall		30"							1			
Stickup								· · · · · · · ·	T			
Remark	s:											
·		<u>SA</u>	MPLE TY	<u>PE</u>				WEL	L INFO	RMAT	ION	
		-	t Spoon A	•							Тор	Bottom
		T = Shel	by Tube V	W = Wash				Туре		Diam.	Depth	Depth
		R = Air	Rotary	C = Core							(Ft.)	(Ft.)
		D = Den	ison I	P = Piston			Sch 40,	PVC Riser		1"	0	45
			= No Sam	ple			Sch 40,	10-Slot, PVC	Screen	1"	45	50
		Sample	Sample		Lab	PID			l		Vell	Elevation
Depth ((Ft.)	Type &	Rec.	SPT	Class.	(ppm)		isual Descripti	on		llation	(Ft. MSL)
		No.	(Ft.,%)			ļ	ļ			D	etail	
				3			_					
1_		S-1	1.2	8				D, some silt, tr	ace			
-			60%	4		0.1		own & black;	_		-	
2	2.0			2			m dens	e; damp			_	
											-	
3_		A-N										
4 -		A-IN							_		-	
4												
5 -	5.0								5.0		-	
	5.0			2			CLAY	some f sand &				
6		S-2	1.6	2		<u>0.1</u>		stiff; moist			-	
		~ -	80%	2		$\overline{0.1}$	0,-	· · · · · , · · · · · · · ·	6,4			
7 -	7.0			2							-	
·							M/C SA	AND, some sil	t&			
8 -	1							ay; m stiff; we			-	1
		A-N					Water	a 6.5				
9											-	
											_]
10	10.0								10.0			
L				5			[Match to Shee	:t 2			
DRILLIN	NG CO	D.: Parrat	t - Wolff				BAKE	R REP.:	Mark I	DeJohn		
						-	BORIN					1 OF 4

Baker

Baker Environmental

PROJECT: CTO NO.:	62470	-356	ation at Sit	es 88, 89,	and 93	- MCB Camp Lejeune BORING NO.:	93-TW05IW	
			ZDE			-		
		MPLE TY t Spoon A				DEFINI SPT - Standard Penetration T		
	-	by Tube	U U			SPT = Standard Penetration T PID = Photo Ionization Detect		(0)
		Rotary				Lab Class = USCS (ASTM D2		
D =	Denison I			ample		Lab Class – USCS (ASTM D2	.407)	
	Sample	Sample	11 110 50	Lab	PID		Well	Elevation
Depth (Ft.)	Type &	Rec.	SPT	Class.	(ppm)	Visual Description	Installation	(Ft. MSL)
• • •	No.	(Ft.,%)			(TF)		Detail	
11	S-3	2.0	7		0.1	Continued from Sheet 1		
		100%	9		0.1	_		
12 12.0			12			SILT, some clay; dk gray;		1
						v stiff; damp		1
13								
_	A-N		-					
14						7		
15 15.0								
	æ .		10					
16	S-4	2.0	11		<u>0.1</u>			
		100%	12		0.1			
17 17.0			14	L				
10						_		-
18	A . N.T.							
10 -	A-N					_		_
19							_	
						_		4
20 20.0								1
21	S-5	20	3					4
²¹	3-3	2.0	7		<u>0.1</u>	some clay, trace f sand		- 1
22 22.0		100%	9		0.1	_		-
22 22.0			11				-	4
23						-		-
	A-N							4
24	₩ -11							4
							-	-
25 25.0						25.0		-
			3				-	
26	S-6	1.3	29		<u>0.1</u>	SHELL/FOSSIL FRAG,		1
		65%	25			trace silt & clay; gray;		1
27 27.0			36			v dense; wet		1
							-	1 1
28								1
	A-N							1
29						1		1
								1
30 30.0						1		1
_			6			Match to Sheet 3		1
DRILLING CO	.: Parratt	- Wolff				BAKER REP.: Mark D	elohn	

Baker

TEST BORING AND WELL CONSTRUCTION RECORD

Baker Environmental

PROJEC				ation at Site	es 88, 89,	and 93	- MCB Camp Lejeune				
CTO NC	D.:	62470	-356			-	BORING NO.:	_9	93-TW0:	SIW	
	D =	S = Split T = Shel	MPLE TY Spoon A by Tube V Rotary P = Piston	A = Auger W = Wash C = Core	mple		I SPT = Standard Penet PID = Photo Ionizatio Lab Class = USCS (A	n Detecto	est (AST or measu)
Depth (Sample Type &	Sample Rec.	SPT	Lab Class.	PID (ppm)	Visual Description	on	Instal	ell lation	Elevation (Ft. MSL)
31		<u>No.</u> S-7	(Ft.,%) 1.4 70%	33 36		<u>0.1</u> 0.1	Continued from Sheet little silt & clay	2		tail	
32	32.0			37		ļ				_	
33 34 35	35.0	A-N								-	
36 37	37.0	S-8	1.2 60%	8 31 38 30		<u>0.1</u> 0.1	some silt, little clay	-		-	
38 39 40	40.0	A-N									
41 42	42.0	S-9	0.9 45%	17 18 22 24		<u>0.1</u> 0.1	trace silt & clay; dense	e			
43		A-N								-	
45 46 47	45.0	S-10	1.2 60%	24 28 31 37		<u>0.1</u> 0.1	v dense				
48		A-N					·				
50 _	50.0						ļ			_	
		D . D	4 Walf	24			Match to Shee		- Y - 1		
DRILLII DRILLE			t - Wolff Lafever			-	BAKER REP.: BORING NO.:	Mark D 93-TW		SHEET	' 3 OF 4

Beker

Baker Environmental

CTO NO.:				•		DODDIC NO .	02 33100	ET317	
		-356			•	BORING NO.:	<u>93-TW0</u>	21.M	
D =	S = Split T = Shelt	MPLE TY Spoon A by Tube V Rotary P = Piston	V = Auger V = Wash C = Core	mnle		DEFI SPT = Standard Penetration PID = Photo Ionization Det Lab Class = USCS (ASTM	tector measu		»)
	Sample	Sample	11 110 04	Lab	PID		W	/ell	Elevation
Depth (Ft.)	Type & No.	Rec. (Ft.,%)	SPT	Class.	(ppm)	Visual Description	Insta	llation tail	(Ft. MSL)
51	S-11	1.2	32		<u>0.1</u>	Continued from Sheet 3			
52 52.0		60%	27 33		0.1	52	2.0	52.0	
53						BOH @ 52.0'	_	_	
³³									
54				- -					
55	:						_		
56							_	×	
57									
58 _							_	-	
59							_		
						-			
60						-			
61									
62								-	
						-			
⁶³						-			
64							-	_	
65								-	
						-	_	_	
66						-		_	
67								-	
68						-			
						-			
69						-			
70								_	
		- Wolff							
DRILLING CO		117.100				BAKER REP.: Mar	k DeJohn		

TEST BORING AND WELL CONSTRUCTION RECORD

Baker Environmental

PROJECT:	Phase	I Investiga	ation at Site	s 88, 89,	and 93	- MCB	3 Camp Lejeune				
CTO NO.:	62470	-356					NG NO.:		93-TW(
COORDINAT	ES: EAST		2464470.	2932		NORT		-		33.3393	
ELEVATION:	SURF	ACE:	17.72			TOP C	OF PVC CASIN	G: .	19.45		
Rig: Died	rich D-50						1	Γ		Depth to	
	Split	Casing	Augers	Core		Date	Progress	Wea	ther	Water	Time
	Spoon	8	8	Barre			(Ft.)			(Ft.)	
Size (ID)	1-3/8"		2-3/4"		8	/1/96	0.0 - 15.0	M Clou	ıdy, 80s		
Length	2'		5'								
Туре	Stainless		HSA								
Hammer Wt.	140 #						ļ				
Fall	30"			~~				ļ	-		
Stickup											
Remarks:										_	
		MPLE T				L	WEL	L INFC	RMAT		
			A = Auger				-		D .	Тор	Bottom
		•	W = Wash				Туре		Diam.	Depth	Depth
	R = Air	-	C = Core				DIC D		1.0	(Ft.)	(Ft.)
	D = Den		P = Piston), PVC Riser	Samaan	<u>1"</u> 1"	0 4.5	4.5 14.5
		= No Sam		Lab.	PID	Scn 4	0, 10-Slot, PVC	Screen		<u>4.3</u> Well	Elevation
Douth (Et.)	Sample	Sample Rec.	SPT	Class		,	Visual Descripti	on		allation	(Ft. MSL)
Depth (Ft.)	Type & No.	(Ft.,%)	SF1	Class	(ppm)	'	visual Descripti	011		etail	
	INU.	(11.,70)	ļ								
1											
						1					
2								-		-	1
										-	
3											
]
4											
								_		-	
5	A-N						to the log for w	ell		_	
						1	W06IW for				
6						descri	ptions			4.5	
						1		-		-	
7										_	
								-		.	
8	1									-	-
								_			-
9										-	1 1
10 -								-			1
		1			1		Match to She	et 2 —			
	L			1					Del-ba		
DRILLING C		tt - Wolff					ER REP.:	<u>Mark</u> 93-TV	DeJohn		T 1 OF 2
DRILLER:	Chip	Lafever	·			DOKI	ING NO.:	93-19	100	_ SHEE	I I OF 2

Bakan

Baker Environmental

D = Depth (Ft.)	S = Split T = Shell	MPLE TY Spoon A by Tube V					TO TO TO TO TO TO		
	T = Shell R = Air Denison P		s – Auger			SPT = Standard Per	DEFINIT		86)
	R = Air Denison P		V = Wash			PID = Photo Ionizat	tion Detector	r measuremen	
		-	C = Core			Lab Class = USCS ((ASTM D24	87)	
Depth (Ft.)	Sample I		N = No Sa			·	<u> </u>	111	
Depui (rt.)		Sample Rec.	SPT	Lab	PID	Visual Descrip	ntion	Well Installation	Elevation (Ft. MSL)
	Type & No.	(Ft.,%)	511	Class	(ppm)	visual Descrip		Detail	
11		(1 (1, 7 ()							
12									
12	A-N						_		-
¹³	A-IN								-
14							-		-
									.5
15 15.0							15.0	15	.0
				ŀ		BOH @ 15.0'	-		-
16									-
17							_		-
·									
18									
19						1 -			_
20							-		-
20									
21							-		-1
22									
					ļ		4		
23							_		
24									-
									-
25 _									
26							_		_
27							-		
~									
28							-		-
				ļ					
29	:								
30							_		4
30									
), n	L	L	1	1			_ <u>i_i</u>	<u>_</u>
DRILLING CO DRILLER:		t - Wolff Lafever		<u> </u>	-	BAKER REP.: BORING NO.:	Mark De 93-TW0		ET 2 OF 2

TEST BORING AND WELL CONSTRUCTION RECORD

Baker Environmental

-

PROJECT:	Phase	I Investiga	ation at Site	s 88, 89,	and 93	- MCB	Camp Lejeune	;			
CTO NO.:	62470			f			NG NO.:		93-TW0	6IW	
COORDINAT	ES: EAST	•	2464472.0	6119	-	NORT	H:	•	36023	36.2220	
ELEVATION	SURF.	ACE:	17.72		-	TOP C	OF PVC CASIN	G:	19.08	<u> </u>	
Rig: Died	rich D-50									Depth to	
8	Split Spoon	Casing	Augers	Core Barre		Date	Progress (Ft.)	Wea	ther	Water (Ft.)	Time
Size (ID)	1-3/8"		2-3/4"		8	/1/96	0.0 - 52.0	M Clou	ıdy, 80s		
Length	2'		5'								
Туре	Stainless		HSA								
Hammer Wt.	140 #										
Fall	30"										
Stickup				-							
Remarks:	Note: (1) H	I-Nu not v	vorking pro	perly; pe	rhaps d	ue to ra	iny conditions				
		MPLE T					WEL	L INFO	RMAT	ION	
	•	Spoon A								Тор	Bottom
		•	W = Wash				Type		Diam.	Depth	Depth
			C = Core							(Ft.)	(Ft.)
	D = Den		P = Piston), PVC Riser		1"	0	45
		= No Sam	ple			Sch 40), 10-Slot, PVC	Screen	1"	45	50
	Sample	Sample		Lab	PID	1		1		Vell	Elevation
Depth (Ft.)	Type &	Rec.	SPT	Class.	(ppm)	/ \	/isual Descripti	on	Insta	llation	(Ft. MSL)
	No.	(Ft.,%)							D	etail	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	A-N S-1 A-N	 1 50%	 2 2 4 5		<u></u> <u>0.1</u> 0.1	clay; d CLAY mottle	ID, little silt, tra lamp 7, some f sand & rd brown & gray f, moist	 5.5 & silt;			
10 10.0										-	
			3				Match to Shee	et 2			
DRILLING C DRILLER:	****	t - Wolff Lafever			-		ER REP.: NG NO.:	Mark 1 93-TW	DeJohn /06IW	SHEET	1 OF 4

Baker

Baker Environmental

ROJECT: TO NO.:	62470				-	- MCB Camp Lejeune BORING NO.:	9	3-TW06IW	1	
D:	S = Split T = Shel	Rotary	A = Auger W = Wash C = Core	mple		<u>D</u> SPT = Standard Penetr PID = Photo Ionization Lab Class = USCS (AS	Detecto	st (ASTM I r measuren)
	Sample	Sample		Lab	PID			Well	T	Elevation
Depth (Ft.)	Type & No.	Rec. (Ft.,%)	SPT	Class.	(ppm)	Visual Description	n	Installatie Detail		(Ft. MSL)
11 _	S-2	1.3 65%	4 4		0.2 0.2	Continued from Sheet	1 11.4			
12 12.0			6	ļ	<u> </u>	M/C SAND, little silt;				
13	4 NT	:				gray; loose; wet Water @ 11.5			-	
14	A-N				-				_	
15			16						-	
16 _	S-3	2.0 100%	15 14		<u>0.4</u> 0.2	little silt, trace clay	-			
17 <u>17.0</u>		100/0	10		V.2		_		-	
18	A-N								-	
19 _							_			
2020.0			5							
21	S-4	1.3 65%	8		<u>0.2</u> 0.2		21.5			
2222.0			10			F SAND, some silt, tra clay; dk green; m dense	ce		-	
23	A-N					wet				
24	A-IN						_			
2525.0			22				25.0		_	
26	S-5	1.5	22 23		<u>0.2</u>	SHELL/FOSSIL FRAC	Ъ,		_	
27 _ 27.0		75%	28 22		0.2	some silt trace clay; lt gray; v dense; wet	_		-	
28	A 37									
29 _	A-N								_	
30 <u>30.0</u>			10						-	
	L		12	L		Match to Sheet	·			
DRILLING CO DRILLER:	· · · · · · · · · · · · · · · · · · ·	t - Wolff Lafever					Mark De 93-TW0		HEET	2 OF 4

Baker

Baker Environmental

PROJEC CTO NC		Phase 62470	I Investiga	ation at Site	es 88, 89,	, and 93	- MCB Camp Lejeune BORING NO.:	93-TW		
					_	-				•
	D =	S = Split		A = Auger W = Wash C = Core	mple		DE SPT = Standard Penetrat PID = Photo Ionization I Lab Class = USCS (AST	Detector meas	TM D1586	5)
		Sample	Sample	10 110 04	Lab	PID			Well	Elevation
Depth	(Ft.)	Type & No.	Rec. (Ft.,%)	SPT	Class.	(ppm)	Visual Description	Insta	allation etail	(Ft. MSL)
31		S-6	1.4	20		<u>0.2</u>	Continued from Sheet 2			
			70%	23		0.2	little silt & clay; dense		_	
32	32.0			22		<u> </u>			_	
33 _		A-N							-	
34										
35 _	35.0									
36 _	-	S-7	0.9	32 32		<u>0.2</u>	some silt, little clay;		-	
37 _	37.0		45%	34 40		0.2	v dense			
38 _		A-N				 				
39 _										
40 -	40.0			I					-	
				27		1				
41		S-8	1.3	27		(1)	trace silt & clay			
40 -			65%	26					-	
42	42.0			25	 	 			<u> </u>	
43	{ }								-	
		A-N								
44	1								-	
45	45.0									
				24						
46_		S-9	1.3	23		(1)	dense			
47 -	47.0		65%	20 19					-	
						1				
48										
49 -		A-N]			-		
49 —										
50 -	50.0								-	
				17	İ		Match to Sheet 4			
DRILLIN).: Parrat	t - Wolff				BAKER REP.: M	lark DeJohn		·
DRILLE		·	Lafever			-		3-TW06IW	SHEET	3 OF 4
						-				

TEST BORING AND WELL CONSTRUCTION RECORD

Baker Environmental

PROJEC		Phase	I Investig	ation at Sit	es 88, 89	, and 93	- MCB Camp Lejeu				
CTO NO	.:	62470	-356			-	BORING NO .:		93-TW06	SIW	
		SA	MPLE T	YPE		-		DEFINI	TIONS		
		S = Split	t Spoon A	A = Auger			SPT = Standard Pe			M D1586)
				W = Wash			PID = Photo Ioniza				,
			Rotary				Lab Class = USCS				
	D =	= Denison H			mnle			(101101)22	.407)		
		Sample	Sample		Lab	PID			We		Elevation
Depth (Ft)	Type &	Rec.	SPT	Class.	(ppm)	Visual Descrip	ntion	Install		
Dopti (,	No.	(Ft.,%)	DI I	Ciass.	(Upin)	visual Descri				(Ft. MSL)
51		S-10	1.4	21		(1)	Continued from Sh		Det		
		5 10	70%	35				eet 3			
52	52.0		1076				v dense				
JZ	52.0			35	[<u></u>		52.0		52.0	
53							BOH @ 52.0'				
· · · ·											
							•	_		_	
54											
					1						
55										-	
						1					
56								_		-	
										_	
57								-		-	
	([
58										-	
-										—	
59										_	
60								_		-	
7										_	
61								4			
⁰¹ –											
67											
62											
~ - I	1										
63											
64								7		1	ļ
										-	
65	1							1		. 1	
66								-1		-1	
67								-		-	
68						ľ				-	
								_		_	
69								_		-	
70	1	1				- 1		_		_	1
· •											
L											
RILLIN		the second second second second second second second second second second second second second second second se	- Wolff				BAKER REP :	Mark De	eJohn		
RILLER	:	Chip L	afever	<u>_</u>			BORING NO .:	93-TW0		SHEET 4	1 OF 4
									~	, I (1111)	7 UL 4

Bakar

TEST BORING AND WELL CONSTRUCTION RECORD

Baker Environmental

PROJECT:	Phase	I Investiga	ntion at Site	s 88, 89,	and 93	- MCB	Camp Lejeune	:			
CTO NO.:	62470						NG NO.:		93-TW	07	
COORDINAT	ES: EAST		2464169.7	606		NORT	H:		3601′	77.9285	
ELEVATION:	SURF	ACE:	17.82			TOP C	F PVC CASIN	G:	20.08		
Rig: Died	rich D-50							1		Depth to	
	Split	Casing	Augers	Core		Date	Progress	Wea	ather	Water	Time
	Spoon	Ű	0	Barre	1		(Ft.)			(Ft.)	
Size (ID)	1-3/8"		2-3/4"		8	/2/96	0.0 - 15.0	P Sun	ny, 70s		
Length	2'		5'								
Туре	Stainless		HSA								
Hammer Wt.	140 #										
Fall	30"							ļ			
Stickup											
Remarks:											
		MPLE T					WEL	L INFC	DRMAT		
			A = Auger				The	I	D:	Top	Bottom
		-	W = Wash				Туре		Diam.	Depth	Depth
	R = Air D = Den	-	C = Core P = Piston			Sch 40	, PVC Riser		1"	(Ft.) 0	<u>(Ft.)</u> 5
		= No Sam), 10-Slot, PVC	Screen	1"	5	15
· · · · · · · · · · · · · · · · · · ·	Sample	Sample		Lab.	PID		, 10-5101, 1 4 C	Scicen		Well	Elevation
Depth (Ft.)	Type &	Rec.	SPT	Class	(ppm)	l v	/isual Descripti	on		allation	(Ft. MSL)
	No.	(Ft.,%)			(FF)		F			etail	(- • • - • - • - • - • - •)
	A-N						to the log for we			5.0	
6 7 8 9 10 DRILLING C		tt - Wolff				descrip	ptions <u>Match to Shee</u> ER REP.:		DeJohn		
DRILLING C		Lafever			-		NG NO.:	93-TV		SHEE	Г 1 OF 2
— • • • • • • • • • • • • • • • • • • •					-		• •	·			

¢

321.(c))

TEST BORING AND WELL CONSTRUCTION RECORD

Baker Environmental

PROJECT: CTO NO.:	Phase 62470	I Investig	ation at Site	es 88, 89,	, and 93	- MCB Camp Lejeune BORING NO.:		2 711/0	7	
C10 NO					•			93-TW()	
	S = Split T = Shel R = Air	by Tube V Rotary	A = Auger $W = Wash$ $C = Core$			<u>D</u> SPT = Standard Penetr PID = Photo Ionization Lab Class = USCS (AS	Detecto	est (AS' or meas)
D =	Denison I		N = No Sa							
Depth (Ft.)	Sample Type & No.	Sample Rec. (Ft.,%)	SPT	Lab Class	PID (ppm)	Visual Description	n	Insta	Vell Illation etail	Elevation (Ft. MSL)
11		(2 0., 7 0)						T	Cum	
12										
13 _	A-N						_			
14									-	
15 15.0							15.0		15.0	
16						BOH @ 15.0'	-		_	
17					-				-	
18									_	
19							-			
20 _										
21							_			
22									-	
23							-			
²⁴										
25 26							_			
20									-	
28			-							
29										
30							-			
DRILLING CO DRILLER:		t - Wolff					Mark De			
MULEK.	Chip I	Jaiever	,,			BORING NO.:	93-TW0	7	SHEET	2 OF 2

Beiken

TEST BORING AND WELL CONSTRUCTION RECORD

Baker Environmental

CTO NC	T:).:	62470		ation at Site	···· ,			IG NO.:		93-TW	07IW	
COORD				2464169.6	6813	-	NORTI				85.7764	
ELEVAT				17.52		•		F PVC CASI	NG:	19.87		
Rig:	Died	rich D-50	·····	<u></u>		- 			1		Depth to	
ng.	Dicu	Split	Casing	Augers	Core		Date	Progress	Wea	ather	Water	Time
		Spoon	U	Ũ	Barre	el 📔		(Ft.)			(Ft.)	
Size (ID))	1-3/8"		2-3/4"		8	/2/96	0.0 - 52.0	P Sun	ny, 70s		
Length		2'		5'								
Туре		Stainless		HSA								
Hamme	r Wt.	140 #										
Fall		30"										
Stickup												
Remark	s:				perly; pe	rhaps d	ue to rai	iny conditions				
	_		MPLE TY					WE	LL INFO	ORMAT		
		-	-	A = Auger				-		.	Тор	Bottom
			•	W = Wash				Туре		Diam.	Depth	Depth
				C = Core			0.1.40			10	(Ft.)	(Ft.)
		D = Den		P = Piston				, PVC Riser		1"	0	45
			= No Sam	pie	Tab		Scn 40	, 10-Slot, PVC	Screen	1"	45 Well	50
Donth	(TE+)	Sample	Sample Rec.	SPT	Lab Class.	PID		isual Descript	ion		allation	Elevation (Ft. MSL
Depth	(ГГ.)	Type & No.	(Ft.,%)	511	Class.	(ppm)	l v	isual Descript	ION		etail	
		INU.	(11.,70)	6								
1		S-1	1.1	8		0.1	FSAN	D, little silt, t	race			
1 _	-	5-1	55%	13			6	rown; m dense				
2	1		5570	17		0.1	damp	iowii, ili delist	·, _		-	
<i>L</i>				_ ,			uump					
3									-		-	
-		A-N										
4										1	-	
	1											
5	5.0								5.0			
				5					<u> </u>			
6		S-2	1.4	8			•	ND some silt			_	
-			70%	13		0.1		ray; m dense;	wet _		-	1
7 _	7.0			15			Water	· @ 5.0'			_	
-									_		-	
8									<u></u>			-
	4	A-N							_			-
9_	-										-	4
10	100											-
10	10.0		<u> </u>	4			1	Match to She				4
	1	I	L	l	1	1	I	,		II		1
DRILLI DRILLE		-	tt - Wolff Lafever			-		R REP.: NG NO.:		DeJohn V07IW	0177777	Г 1 OF 4
		('hin	010000						94-IV		SHEE	

Baken

Baker Environmental

ROJECT: TO NO.:	62470-			, _/,	-	- MCB Camp Lejeune BORING NO.:	93-TW	07IW	
	S = Split T = Shell R = Air	MPLE TY Spoon A by Tube W Rotary	= Auger V = Wash C = Core			DEF SPT = Standard Penetration PID = Photo Ionization D Lab Class = USCS (ASTM	etector meas	TM D158	6)
D=	= Denison F Sample	Sample	N = NO Sa	Lab	PID			Well	Elevation
Depth (Ft.)	Type & No.	Rec. (Ft.,%)	SPT	Class.	(ppm)	Visual Description	Inst	allation Detail	(Ft. MSL)
11	S-3	0.9	4		<u>0.1</u>	Continued from Sheet 1		_	
1212.0		45%	5 3		0.1	Little silt; loose		_	-
13			:				-		-
13 —	A-N							· -	
14								_	
15 15.0									-
15			17					-	
16	S-4	1.5	15		<u>0.2</u>	dense		-	
		75%	18		0.2		411		-
17 17.0	<u> </u>		21	<u> </u>				-	-
18								-	-
	A-N								_
19									-
20 20.0									-
			25					-	_
21	S-5	1.5	19		<u>0.2</u>	v dense		-	_
22 22.0	-	75%	33 39		0.2				
			39	<u> </u>		-		-	
23								_	
~	A-N								_
24			1					-	-
25 25.0)					,	25.0		-
			2						-
26	S-6	2.0 100%	2 3		$\begin{array}{c c} \underline{0.1} \\ 0.1 \end{array}$	F SAND, some silt, trace clay; dk green; loose; wet		-	
27 27.0)	100%	3 2		0.1	loiay, un green, 100se, Wel	· -		-
					1	-		-	
28 _			1					-	_
29	A-N						-		-
²⁹								-	
30 _ 30.0								_	1
			WOH			Match to Sheet 3			<u> l_ </u>
DRILLING C		tt - Wolff			_		ark DeJohn		
DRILLER:	Chip	Lafever			_	BORING NO.: <u>93</u>	-TW07IW	_ SHEE	ET 2 OF 4

TEST BORING AND WELL CONSTRUCTION RECORD

Baker Environmental

.

PROJECT:			ation at Site	es 88, 89	and 93	- MCB Camp Lejeune			
CTO NO.:	<u>62470</u>)-356			<u>-</u>	BORING NO .:	<u>93-TV</u>	V07IW	
E	S = Spli T = She	Rotary	A = Auger W = Wash C = Core	mple		DE SPT = Standard Penetrat PID = Photo Ionization I Lab Class = USCS (AST	Detector me	STM D1586	5)
Depth (Ft.)	Sample	Sample Rec. (Ft.,%)	SPT	Lab Class.	PID (ppm)	Visual Description	1	Well stallation Detail	Elevation (Ft. MSL)
31	S-7	1.2 60%	WOH 1		<u>0.2</u> 0.2	Continued from Sheet 2 some silt, little clay; v loo		-	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	A-N		2						
35 35.	0		25			some silt w/ tan clay			
$\begin{array}{c c} 36 \\ 36 \\ 37 \end{array}$	5-8	1.5 100%	27 50/5"		<u>0.1</u> 0.1	laminae; v dense			
38 39	A-N								
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	S-9	0.5 50%	45 52		<u>0.2</u> 0.2	SHELL/FOSSIL FRAG, trace silt & clay; gray	40.0		
42	A-N					v dense; wet			
44 4545,	S-10	1.0	34		<u>0.2</u>	F SAND, some shell/foss			
46 <u>46.</u> 47 _	0	100%	56		0.2	frag & silt, trace clay; lt greenish-gray; v dense wet			
48 49	A-N								
50 _ 50.	0		15			Match to Sheet 4			
DRILLING DRILLER:		it - Wolff Lafever			-		lark DeJohr 3-TW07IW		3 OF 4

Beken

Baker Environmental

PROJECT: CTO NO.:	62470			<u>,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,</u>	<u>ana 75</u>	- MCB Camp Lejeune BORING NO.:		93-TW07	IW	
	S = Split T = Shel R = Air	MPLE TY t Spoon A by Tube V Rotary	A = Auger V = Wash C = Core		•		ation T Detect	tor measur		5)
D =	= Denison H		N = NO Sa	mple Lab	PID	: 		We	11	Elevation
Depth (Ft.)	Sample Type & No.	Sample Rec. (Ft.,%)	SPT	Class.	(ppm)	Visual Description	n	Installa Deta	ation	(Ft. MSL)
51	S-11	1.0	17		(1)	Continued from Sheet 3	3			
		50%	18			dense			5 0 -	
52 52.0			18				52.0		52.0	
53						BOH @ 52.0'			_	
55										
54							_		-	
			I							
55									<u> </u>	
56									_	
									_	
57			1		Ì		-		-	1 1
					ļ		_		-	
58		1								
59									-	
J y									—	
60							-			
]					
61									_	
							_		_	
62										
63							_		-	
										· ·
64									_	
-							_		-	
65										
66									_	
••• —										
67 _							_		-	
							_		_	
68										
69							_		_	
70 _							-		-	
DRILLING CO	D.: Parrat	t - Wolff				BAKER REP.:	Mark I	DeJohn		
ORILLER:	· · · · · · · · · · · · · · · · · · ·	Lafever			•		93-TW		SHEET	' 4 OF 4

Baken

TEST BORING AND WELL CONSTRUCTION RECORD

Baker Environmental

PROJECT:	Phase	I Investiga	ation at Site	s 88, 89,	and 93	- MCB	Camp Lejeune				
CTO NO.:	62470						IG NO.:		93-TW		
COORDINAT	ES: EAST	:	2464852.	0714		NORT	H:		35989	B92.5238 Depth to Water (Ft.) s s Image: stallation Ft Depth Image: stallation Detail Image: stallation Image: stallation <th< td=""><td></td></th<>	
ELEVATION:	SURF	ACE:	15.58			TOP C	F PVC CASIN	IG:	17.69		
Rig: Died	rich D-50									Depth to	
<u>g</u> .	Split	Casing	Augers	Core		Date	Progress	Wea	ather		Time
	Spoon	Ű	Ũ	Barre	1		(Ft.)			(Ft.)	
Size (ID)	1-3/8"		2-3/4"		8	/5/96	0.0 - 25.0	P Sun	ny, 80s		
Length	2'		5'							Depth to Water T (Ft.) D Ds ATION B ATION I O I I Depth I I Depth I I Depth I I O I I Depth I I O I I O I I O I I O I I O I I O I I O I I O I I O I I O I I O I I O I I I O I I I I O I I I I O I I I I I O I I I <th< td=""><td></td></th<>	
Туре	Stainless		HSA							B92.5238 Depth to Water T (Ft.) S S S S S S S S S Non Depth I O I O I O I O I O I O I O I O I O I O I O I O I O I O I O I O I O I I I O I O I O I O I O I O I O <th< td=""><td></td></th<>	
Hammer Wt.	140 #								359892.5238 17.69 ather Depth to Water (Ft.) my, 80s Image: state stat		
Fall	30"										
Stickup											
Remarks:			<u> </u>								
		MPLE T					WEI	L INFC	DRMAT	· · · · · · · · · · · · · · · · · · ·	D
			A = Auger				m		Diam		Bottom
			W = Wash C = Core				Туре		Diam.		Depth (Ft)
	R = Air D = Den		P = Piston			Sch AC	, PVC Riser		1"		(Ft.) 14.5
		= No San					, 10-Slot, PVC	Screen			24.5
	Sample	Sample		Lab.	PID	Deal +C	, 10 0.01, 1 10	bereen			Elevation
Depth (Ft.)	Type &	Rec.	SPT	Class	(ppm)	1	visual Descript	ion			(Ft. MSL)
	No.	(Ft.,%)	~		(FF)		F				(,
		<u> </u>									
1											
2											
										-	
3											
								_			
4											-
						Dafar	to the log for w			-	-
5	A-N						V14IW for	<u> </u>		-	
6						descri	_	-		-	-
,		1				uesen	ptions				
7								_		-	
8								_		-	
						1					
9		1									
			1								
10											-
		<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	Match to She	et 2		1	<u> </u>
DRILLING C	O.: Parrat	tt - Wolff			_	BAKI	ER REP.:	Mark	DeJohn		
DRILLER:	Chip	Lafever				BORI	NG NO.:	93-TV	V14	SHEE	Г 1 OF 2

Baker

Baker Environmental

CTO NO.:	62470	-356	· · · · · · · · · · · · · · · · · · ·		_	- MCB Camp Lejeun BORING NO.:	9	3-TW14	
D -	S = Split T = Shel	MPLE TY t Spoon A by Tube V Rotary	A = Auger W = Wash C = Core	malo		SPT = Standard Pene PID = Photo Ionizati Lab Class = USCS (A	on Detecto	st (ASTM D158 r measurement	36)
<u>D</u> -	Sample	Sample	14 - 100 Sa	Lab	PID		<u> </u>	Well	Elevation
Depth (Ft.)	Type & No.	Rec. (Ft.,%)	SPT	Class	(ppm)	Visual Descript	ion	Installation Detail	(Ft. MSL
11									
12							_		_
13	A-N								-
14									-
15 _									-
16								-	-
17								-	-
18 _									-
19									
20									
21									-
22 _									-
23							_		_
24									
2525.0						DOLLONG	25.0	24. 25.	
26						BOH @ 25.0'	-	-	_
27			Í						-
28									-
29									-
30 _							-	-	
DRILLING CO) · Parratt	t - Wolff			I	BAKER REP.:		L L L	- I
DRILLER:		afever	<u> </u>		•	BORING NO.:	Mark De 93-TW14		T 2 OF 2

Baker Baker Environmental

PROJECT:			ation at Site	<u>s 88, 89,</u>	and 93		Camp Lejeune				
CTO NO .:	62470						NG NO.:		93-TW		
COORDINAT			24644849	7354		NORT				2.7213	
ELEVATION	: SURF	ACE:	15.58		•	TOP C	OF PVC CASIN	G:	17.73		·····
Rig: Diec	lrich D-50									Depth to]
	Split	Casing	Augers	Core	;	Date	Progress	Wea	ather	Water	Time
	Spoon			Barre			(Ft.)			(Ft.)	
Size (ID)	1-3/8"		2-3/4"		8	5/96	0.0 - 47.0	P Sun	ny, 80s		
Length	2'		5'			= ==.					
Туре	Stainless		HSA								
Hammer Wt								ļ			
Fall	30"						<u> </u>	<u> </u>			
Stickup							L				
Remarks:	Note: (1)			ing prope	riy.	1	N / 10 7	T TATE			———
		MPLE T	<u>YPE</u> A = Auger				WEL	L INF(DRMA 1		Bottom
	A	-	W = Wash				Туре		Diam.	Top Depth	Depth
		Rotary					Турс			(Ft.)	(Ft.)
	D = Den		P = Piston			Sch 40	, PVC Riser		1"	0	45
		= No Sam					, 10-Slot, PVC	Screen	1"	45	50
	Sample	Sample		Lab	PID		,,		1	Well	Elevation
Depth (Ft.)	Type &	Rec.	SPT	Class.	(ppm)	\	visual Description	on	Inst	allation	(Ft. MSL)
_	No.	(Ft.,%)							D	etail	
			2								
1	S-1	1.5	3		(1)	1	D, some silt, lit	ttle		_	
		75%	6				rown & gray -				
2 2.0			5			mottle	d; loose; damp				
										-	
3											
4	A-N									-	
4											
5 5.0								5.0		-	
			2				·			-	1
6	S-2	1.3	3		(1)	CLAY	, little silt, trace	ef –		-	
		65%	4				gray & red - mo				
7 7.0			5			m stiff	f; damp - becom	ing –		_]
						some	f sand & silt				
8										_	
	A-N							-		-	_
9				1						_	
								-		-	
1010.0	<u>' </u>		4	——		4	Match to Shee	+ 2			-
	<u> </u>	I	<u> </u>	1		L				<u> </u>	L
DRILLING C		tt - Wolff			-		ER REP.:		DeJohn		
DRILLER:	Chip	Lafever			_	BORI	NG NO.:	<u>93-TV</u>	V14IW	SHEET	Г 1 OF 3

Belicin

Baker Environmental

CTO NO.:	62470	-356	ation at Sit		-	BORING NO .:	9	93 - TW	l4IW	
D =	S = SplitT = Shel	Rotary	A = Auger W = Wash C = Core	ample		<u>D</u> SPT = Standard Penetr PID = Photo Ionization Lab Class = USCS (AS	n Detecto	est (AS' or meas		5)
	Sample	Sample	14 140 56	Lab	PID		Г	v	Vell	Elevation
Depth (Ft.)	Type & No.	Rec. (Ft.,%)	SPT	Class.	(ppm)	Visual Descriptio	n	Insta	llation etail	(Ft. MSL)
11 - 12 - 12.0	S-3	2.0 100%	7 8 15		(1)	Continued from Sheet some silt, trace shell fr				
			15			dk gray; v stiff; damp				
	A-N									
14 - 15 - 15.0										
16	S-4	1.9	5 7		(1)					
17 17.0	• · · · · · · · · · · · · · · · · · · ·	95%	9 14						-	
18	A-N						_		_	
$\frac{19}{20}$ 20.0										
21 22	S-5	2.0 100%	3 6 12 18		(1)	M/C SAND, little silt, clay & shell frag; dk gr m dense; wet			-	
23	A-N					Water @ 20.5'			-	
²⁴ 25 25.0							25 0			
26	S-6	1.4	12 19		(1)	F SAND some silt, littl				
2726.9		70%	27 50/5"			shell/fossil frag, trace c lt gray; dense; moist	lay;		-	
28 <u> </u>	A-N						- 			
30 30.0										
			18			Match to Sheet	3			
RILLING CO RILLER:	: Parratt Chip L	- Wolff afever					Mark De 93-TW1		SHEET	2 OF 3

st:ker

Baker Environmental

PROJEC				tion at Site	<u>s 88, 89,</u>	and 93	- MCB Camp Lejeune	93-TW14IW DEFINITIONS Penetration Test (ASTM D1586) zation Detector measurement S (ASTM D2487) ription Installation Sheet 2			
CTO NO	.:	SAMPLE TYPE S = Split Spoon A = Auger T = Shelby Tube W = Wash R = Air Rotary C = Core = Denison P = Piston N = No SampleSPT = Stat PID = Pho Lab Class.Sample Type & Rec. No.SPTLab Class.PID (ppm)S-71.426(1) Somple SPTContinued SHELL/FG trace silt & dense; wetA-N000000000000000000001.139(1)1.139(1)1.1390001.1391.1391.2 </td <td></td> <td></td> <td></td> <td>. 11</td> <td></td>				. 11					
	 D =	S = Split $T = Shell$ $R = Air$	Spoon A by Tube W Rotary	= Auger V = Wash C = Core	mple		SPT = Standard Penetrat PID = Photo Ionization I	tion Test	st (ASTN r measur)
						PID	······································		We	11	Elevation
Depth (Ft.)	Type &	Rec.	SPT			Visual Description				(Ft. MSL)
31				26		(1)	Continued from Sheet 2				
							SHELL/FOSSIL FRAG,				
32	32.0			39			trace silt & clay; lt gray;				
							dense; wet			_	
33						1	BORING NO.: 93-TW14IW DEFINITIONS SPT = Standard Penetration Test (ASTM D1586) PID = Photo Ionization Detector measurement Lab Class = USCS (ASTM D2487) Visual Description Well Eleva (Ft. M Detail Continued from Sheet 2 SHELL/FOSSIL FRAG, trace silt & clay; lt gray; dense; wet smaller frag, little silt & v dense v dense v dense box dense smaller frag box dense v dense box dense box dense box dense box dense box dense Larger frag BOH @ 50.0' BAKER REP:: Mark DeJohn				
		A-N	- 					_	INITIONS on Test (ASTM D1586) etector measurement 1 D2487) Well Elev Installation Ft. Detail - - <t< td=""><td></td></t<>		
34	1									M D1586) rement ell Elev lation (Ft. tail 	
										-	
35	35.0										
								_		-	
36		S-8				(1)					
	36.5		65%			1	clay			TM D1586) surement Well Ele allation (Ft etail	
37				21			-	93-TW14IW DEFINITIONS Penetration Test (ASTM D1586) ization Detector measurement CS (ASTM D2487) cription Well Installation Detail Sheet 2 FRAG, It gray; -			
								_	ITTIONS Test (ASTM D1586) ctor measurement D2487)		
38								_			
		A-N						_		-	
39											4
_								_		-	
40	40.0					ļ	_				-
_										-	-
41		S-9	1			(1)	v dense				-
_			75%					_		-	4
42	42.0		ļ	47	<u> </u>		_			_	
_	_							_		STM D1586) isurement	-
43 _										_	-
		A-N						_		-	-
44 _										_	4
											-
45 _	45.0	I					4				-
	1										-
46		S-10			1	(1)	larger frag		-		
			55%						-		
47	47.0	<u>'</u>		47			4			-	
	_	.0 55% 45 47	1						-		
48_	_										-
	4	A-N						_			-
49_	_		1							_	-
	_							50 1		50 /	4
50	50.0)		<u> </u>				50.0		50.0	4
			1		1						<u> </u>
DRILLI	ING (O.: Parra	att - Wolff								
DRILL							BORING NO .:	93-TW	14IW	SHEE	T 3 OF 3
		F									

APPENDIX B CHAIN-OF-CUSTODY RECORDS

Client BAKE	R E	NVIRONMENTA	5. INC	station e a doars	Refrige	erator #																
Est. Final Proj.	Samp	ling Date 8/2//	9 6	an an an an an an an an an an an an an a	#/Type	Container		an an an an an an an an an an an an an a		100	Hand Made	en en en en en en en en en en en en en e	5074 1954 - 14	ta dia Canàda	in Maria	n ale R	C	rente de la com Tablécia	antini Santini	enter Part es	n CRUAN Se GARES	0
Work Order #	S. 1	. # M. Bartman		69-205	? Volume	}	Liquid	President.	Ser d		ie den			્યુરા છે. આ ગામના છે.	\$64.	549 F.	8	and s	100		1	300
AD Project Man	ader	D. Woltman		(Million al Arrive)	Preser	vatives	Solid				<u>编辑</u> 建筑		9-21-2 1-21-2	- 14 - 53 (35)	经保	19.00 M	S	tin an an an an an an an an an an an an an	्राम्सः ह 1200 - द	A Start	5.0	<u>t</u> r
QC		SITAT	Kanalari		ANALY	SES			ORG	ANIC						ORG	2-2	2			4	83
Date Rec'd Account #		Date Due			REQUE			٩ V	BNA	Pest/ PCB	Herb			1.0	Metal	z	55	らら		1997	33	
				Matrix							ł	WE	STON	I Anal		Use O	nly	+				- -
CODES:	Lab	Client ID/Desci	ription	QC Chosen	Matrix	Date	Time															
S - Soll SE - Sediment	ID			(√)		Collected	Collected															
SO - Solid SL - Sludge W - Water		00 000	in the second	MS MSD			(Second)	500									6		1000	14.84	-	227 (£78)
O - OI		89-EC-RS	101		5988 A.							1	hanna a		577		1997		語の語	123		
DS - Drum Solids		a Fee-Na					Con 1				61-19-74 61-19-74	1	269.65		X							37
DL - Drum						1. 1. 1. 1. 1.	545		uzan SZ		a a constant a fille de la constant a constant a constant a constant a constant a constant a constant a constant		er och setter at a setter setter at			1						25
Liquids		YG. CAN	VINCON			TY Friend	(a);;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;	1					5					8 (110		5	35
WI - Wipe		89- EC-500	1276				Call?	6.16	CE Re		ka di sa ka				87.	A.	X	¥.	136	254	た法	28
X - Other F - Fish		89-ECSDC	the second second second		E Basend	A land	a and a second			1 K			1.2.1.M				N2a	N.	iller's		3	33
		89-EG-SD				-71C-16		IS/I									X	Ň		Tortes	3	
		89-EC-SDO	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	1998 - 1998 -	SE	9759	0855	SV.	V	10-		12.55		S.X.L	X		X	Y		19. A.	3. Aston	35
		89-EC-Sha				7/27	0 826	N/	X						X	120	X	X	33.3		3	35
		OMPLETE ONLY SHADED	C	DATE/RE	VISIONS:	6. 074055.A.,	here the billed	7	i bran den vrijedi	to the date of the	Landau et andread	and a second second second second second second second second second second second second second second second	A	Γ	WE	STON	Analy	rtics l	Jse On	iv.		
Special Instructi 89 - E - D	ons:	1 = Stoinkss S	led San	pling <ā	<i>DO</i>	1								<u> </u>		amples				C Tape v		
				0.		2	·····							···	- 1)) Shipp	ed		1) P	resent c	on Out	
			-		3										irbili # _	livered			kage Y Inbroker			
				-		4											ent or C		Pac	kage Y	r or	N
EED-EV	<u>.</u>	- L:11 #		-	<u></u>	5											vedin (n Y o		3) P	resent c Y	on San ⁄or	nple N
131.97	т 99	nol	• –	<u>_</u>	6											s Indica Preser		4) U	Inbroker	n on		
Relinguished						Received		ate	Tin	ne	Disc	repanc	ies Bel	ween	⁻	торепу		r N		nple Y C Recon		
by						by			<u> </u>		Sam	ples La	abels a) Recei	ved Wit	hin		n Samp		

•

•

· · ····

Client BAK						Refrig	erator #	L total date		Marine Cast (19		and the second	2000-200	a di sta da	A La Chas	di tatak	un stradium	<u></u> _	States 1	a tradest de la	1.69. 3. 5	1. A. A.	a jire
Est. Final Proj	Samp	ling Date 🗳	1/21/91		a a siste	#/Type	Container	Liquid Solid	and a constant					1 14 14 14	32.48°.			÷.			2018		P
Work Order # Project Contac		M Rea	<u>ا</u>	412.249	-2053	Volum	e	Liquid	San Ca	Antar S		a Jaar		4.702	A. 130	Maria,	Ed de l	8	The second	الم من يود الم	1918. 1918	4	5
AD Project Ma	nager	D. Woll	-man		11. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	Preser	vatives	Solid	1.60	and the second s	1. 1. julija 1. julija	al and a second	·····································	an Antoire	MS E. T.			20	54	-15	e Agricit	iyay	Q.
QC	<u>.</u> De	n <u>and and a</u>				ANAL	VSES		·	ORGA	- 1				额		RG	3	đ			21	B
Date Rec'd			ate Due			REQU			N N	BNA	PCB	Herb				Metal	z	23	N			NC NC	や
MATRIX		<u> </u>	<u></u>				<u> </u>					ł	WE	STON	l Anal	ytics l	Jse C)nly	ł	P. 177.94		1.1.1	
CODES: S - Soll SE - Sediment SO - Solid	Lab ID	Cli	ent ID/Desci	ription	Matrix QC Chosen (√) MS MSD	Matrix	Date Collected	Time Collected															
SL - Sludge W - Water		89-E	C-SD	13-612			7129	65,210		W					1.32	X	285	X	X	W.R.	127	2	3
O - Oil A - Air			Sec. 30.	Stipking										And a			12.2	(\$ 2.)	tine.	南北			
DS - Drum Solids				<i>读。</i> 在199					a contractor		ann ann an an an an an an an an an an an		() 				教	教	激怒			藏	1
DL - Drum Liquids		:水谷市	和利益							•		n say proce			Sec.				建築				
L - EP/TCLP Leachate		林湖市		S AND				allowed Street							派翻		8 46	1 A 10	142				
WI - Wipe X - Other		ALL IN ME				and the second se					97. FO)							120	23		322		
F - Fish		istration and	. Neselle			a contra analar a		and a second second second second second second second second second second second second second second second				e o general de service de	in the second								144		響
		12.000																	和经	載	265		
		1.30	-	into est					1	y and y county of the second second			1	میں ایک 2 میں ڈیک	a survey and							د. مدينة م	
		主教研究会			激躁				Lise suit		أهمعادهم	ويتعادر والمع	المتعادين والم		i dente								
FIELD PERSON	NEL: C					DATE/RE	VISIONS:										WE	ESTON	I Anal	ytics	Use O	nly	
Special Instruc	al Instructions: - EX Airbill# 69799001				-		2 3									1) H Ai	Shipp and D irbill #	s were: bed elivered	_or j	1) F Pac 2) l	C Tape Present Skage Unbroke Skage	on Ou Yor an on C	N Duter
FED-EX	Air	bill#			-		. 4 _ 5									- 3] - C	Rece onditio	lived in on Y	Good or N	3) I	Present	on Sa Yor	mple
13697 Relinquished					Relinquist	ed	Receive	d L							•			y Prese		Sa	mple	Y or	
by DPT	ished Received Date Time Rel				by		by)ate	Tim		San COC	crepanc nples La C Reco TES:	abels a	ind			eived W Times	ithin		C Recc on Sam		c't
	by by by										-11		163.					Y	or N				

	WESTON Ana	ytics L	ise Only	Cı	istod	ly Tra	०व nsfe	s56- er Re	୍ତ୍ର Corc	ノン	ab	Wo	brk	R	eq	ues	st					<u>i</u> ð	of	R.
l												· · ·		i								<u> </u>		त्रि
	Client BAK	EL.	ENVIRO	NMENT	AL I	<u>NG: 88</u>	Refrige		Liquid		W. San	1. A. S. I.	77439F	建设 本*	物编码	42.96	SU5-		391-3		34033	1. 1. 1. 1.	1	Ř
	Est. Final Proj.	Samp	ling Date	8/21	70		#/Type	Container	Solid	State .	and the state of t			2.340	:Siet d	1.20	A.		J.				\$	1.54
	Work Order # Project Contac	R	D. 4	Joltm	aN		Volume	•	Liquid Solid	isteriati Vienati	1992) 1992	ter al la compañía Compañía	ter an an an an an an an an an an an an an	dina. Nati	49.48%) 19.99	ा <u>(१</u> २२) 12-047	1994) 2004)		2	N N	an de la composition de la composition de la composition de la composition de la composition de la composition Composition de la composition de la comp	an an the second second second second second second second second second second second second second second se	<u>Ş</u>	2
	AD Project Mai		M. Bart	Man/4	12.269.	2053	Presen	vatives		Sent a				28.75	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	Se des	and the second	anter de la	\$ 0			D. Mark	山西谷	Š
	QC		el i	TAT	a sa tangén	S. C. Standing	ANALY				ORG	ANIC		SA.				DRG	<u>S</u>	<u> </u>			0.5	à.
	Date Rec'd		C	Date Due			REQUE			NON.	BNA	Pest/ PCB	Herb				Metal	S	ËŠ	S	1		Ş	ち
	Account #		1			T				⊢́−	<u> </u>			WE	STON	Analy		Jse Oi	niv	<u></u>	Sec. H.	1.19		
	MATRIX CODES: S - Soli	Lab ID	CII	ient ID/Descr	iption	Matrix QC Chosen	Matrix	Date Collected	Time Collected														1/26	
	SE - Sediment SO - Solid							1996															pT	
	SL - Sludge W - Water		89 EC.	- CIVDS	-01			5/574	10.00	82					224		X	14. 14.	Ý.	X		5	2	35
	O- Oil A- Air				- J - 6:0-40		Second Street and Street	7/1/21-	15 76	\mathbb{S}			in the set of the set				۶X.	1.4	Ż.	X	14 M	25	3	35
	DS - Drum Solids			-SIM	a bind million bind	med Las A. A. Said Las and		1977 - 1977 - 1984 - 1984 - 1984 - 1984 - 1984 - 1984 - 1984 - 1984 - 1984 - 1984 - 1984 - 1984 - 1984 - 1984 -									36		X			No.	\$2 ²	35
	DL - Drum			-500	Constant and the South		512	701514	10540	52	15.2				11		X	张王	X.				Z	35
	Liquids L - EP/TCLP		89-EC	Marine States and	المسترقين لاجتز سنرات الاساده	ALL MARCHAEL STREAM		57.52	1777-								X	9 . 1	X	\otimes			3	35
	Leachate WI - Wipe		T	-500	1. 2 Sec. 20 14	the state will contain the		-//3%	No ola					6 (c. 54)			874	12st	X	N.		A	3	35
	X - Other F - Fish		and the second second	and the second state of the second state of the	Contraction of the second	THE REPORT OF THE PARTY OF		Steres				and her side						1996					学派	35
				<u>-swo</u>	Sec. 25 Bart & Section of			1977 - A. M. 1977 - A. M. M. M. M. M. M. M. M. M. M. M. M. M.	HEAD A									ALL THE		1.441.4			3	35
			an and an attended a	<u>-Swø</u>	Second assessment with the				<u>.(0)</u> 			12.6.1						128	100	84. 19			T	20
			89-EC		<u>)-(</u>						tiles an El const							2.1		an an tar		100		
	FIELD PERSON		89- TE				DATE/RE	VISIONS	A Train Providence	Pala	فيفتد مناقا			لأدكمت والم	a she at an	and realized and			222.04	Creation of	10000			1657 1085
\frown								1									₋∟	WE	STON	Analy	rtics U	ise On	iiy	
< 2	Fed.Ex	A	irbill T	-13697	19879	10		2.										amples Shippe		o r		C Tape resent (tor
	SAMPLE	.#	89-EC.	-SWØ	5 M.S	IMSU		3.									н	and De	livered			kage 1		
	Special Instruct Fed EX SAMALE	ť	89-EC-	-5005-	-06-11	11		4									_ 2)	rbill # _ Ambie	nt or C	hilled		nbrokei kage N		
×	CONFIRM : CANCERN ON DUI	w, ^e	H MAI	T ISART	MAN	or neo	<u>}</u>	5				<u></u>					- c	Receiv ondition	ηΥο	or N	•		r or	
	ON DUI	Dric	ATE 5	epime	UT SA	MPLe.		6									- 4) P	Labels roperly	Preser	ved		nbrokei iple		N
	Relinquished by		by	Date	Time	by	hed	Receive by)ate	Tin	ne	Sam	ples La	ies Bei abels a rd? Y	nd		Receiv	ved Wit	r N thin		Recor	ole Rec	c't
	JAC	FE	D-EX	7/26/96	1800								NOT		, .	- 11 -		oluniy		n N		Ì	r or	2
	RFW 21-21-001/A-	1 7/91			L L37	/2	L373	L:	375	I	.377	N	_ L37	78	Ref#	·		_ Coc	ler# _				38	31-596a

•

WESTON Ana	alytics U	ise Only]	<u>^.</u> .	istod			nof	035	l - q	\$Ø 11	4 2h	۱۸/	orl	, D	64		et				Ŵ	5		
				Cu	istoa	y i	Id	1151				av	VV			ey	uc	σι				Page	<u> </u>	of	
Client BAD	<i>leR</i>				1 1 - D	a. 20		Refrig	erator #	<u> </u>				1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ಎ.ಎಸ್.							┝───┤			•
Est. Final Proj	I. Samp	ling Date			1 		New pr	#/Тур	e Container	Liquid Solid								1.							•
Work Order #	-3	56	1 4 77 10	. 0	<u> </u>		5. 7 (A. 1 1977) - 1977	Volun	ne	Liquid			1 ^{- (w² - 1)}												
Project Conta				911	MAN		- * <u>.</u>		rvatives	Solid			1.22												,
AD Project Ma	anager				an shipe	a d	ari.]				OR	GANIC	;				_	RG						
									YSES JESTED -		NO A	BNA	est/ CB	Herb				Metal	z						į
Account #	1	1							Т	1	 ∕	<u> </u>	1	+	WE	STON	Anal			nly	+		I		•
MATRIX CODES: S - Soil SE - Sediment	Lab ID		Client ID/	/Descri	ption	Ch	2C osen	Matrix	Date Collected	Time Collected															
SO - Solid SL - Sludge																	2. 19. 19. 19.	Sec. 18		Sec. 1		No. 1			1
W - Water	L			-				Catt Wat Sublight	8/6/2/	0752	X			1002											
A - Air	ļ	93-7	rwoz	<u> Iw</u>	-01				1 S	132.20 Mar 11 11	Stage Server				140.	Sin in						+			•
Solids	<u> </u>	73-7	wa:	7-	01	1.154	Al en	U.	series Market Black Burkland	A DESCRIPTION OF BOARD AND	S 1. 18 1 1	in all	1.1.1	1. 20		angarina (a San Anna San Anna			<u> </u>	<u> </u>		cikes.		•
Liquids		89-	Two	<u>8-c</u>	2/			Ŵ	8/4/94	0840	\mathbb{X}		1	((********) ((***)		an an an an an an an an an an an an an a		Station of the		2.9		<u> </u>			
Account # Horizon (# Council # Counc																									
					-	<u> </u>		<u>, X</u> 74,																	
					and the second second second second second second second second second second second second second second second	Catholic .		120	2/2 k	A Description of the Property of the						1	2 M	â.		1.11			The second		,
											X	- 	1. L.	1			A.C.						244 2744 - 2	4	
			<u>≓t rv</u>	<u> </u>		1 100 M		12-11-0		and S.		s estratio				a sil contration	2 (R.) (A	35.55	26		7				
FIELD PERSO	I NNEL: C	OMPLETE	ONLY SH	ADED	AREAS		1.42.64						ar - 1963199846					Г	WF	STON	I Anal	vtics I	Jse Or	nly	i
Oneslal Instance						ןד כי	,		_ 2 _ 3 _ 4 _ 5										Sample:) Shipp land D \irbill # 2) Ambi 3) Rece Condition 4) Labe	s were: bed elivered ent or C lived in on Y is Indic y Prese	or Chilled Good or N ate rved	CO0 1) P Pac 2) L Pac 3) F 4) L Sar	C Tape Present kage Jobroke kage Present Jobroke	was: on Ou Y or en on (Y or On Sa Y or en on	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	and		-,	eived W Times	ithin	CO Upo	on Sam		1																
1	1 '		1			1		1													_			3	ſ

Client RAY	ER	ENVIRO	NMEN	TAL	NC	Refrige	erator #							PT									_
Est Final Prol	RAKER ENVIRONMENTAL INC			#/Type	Container	Liquid	17 17					È.					1.12						
Marile Orden H		,					<u> </u>	Solid Liquid		1993 (M. 1997) 1993 (M. 1997)	29.63 A			sh F ad		इस्ट्रेस्ट्रेस् इन्हेंद्वेष्ट्री				n zára <u>na</u>	38 		
Prolect Contac	t/Phon	o # M. Bar	tman	1412-2	69-205	Voium	e <u>``</u>	Solid	en Reference			1.12.2	ار میکند. از میکند ا	22							4		S.V
AD Project Ma	nager	D. Wolt	man			Preser	vatives	dia t) mest	199 4	ં દ્વે લ્યુલ		2.5		27.65 INC	RG	1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.				2. (F	÷-
QC			_TAT		Age Dig	ANAL	SES			ORG			$ \infty $	L'ú		_						1.2.5	01
Date Rec'd Account #			ate Due			REQU	ESTED -		VOA	BNA	Pest/ PCB	Herb	2			Metal	S						N N N
						1	T					ł	WE	STON	Anal	rtics l	Jse O	nly	ł				
MATRIX CODES:	Lab				Matrix QC		Date	Time	_]		Ì		
S - Soil SE - Sediment	ID	Cile	ent ID/Descri	ption	Chosen (√)	Matrix	Collected	Collected															
SO - Solid SL - Sludge					MS MS	5	1996				(in printer advect	rada Acar							<u> </u>	1.5		1. 314	
W · Water		89-30	x o 1	01		S	8/16	1230	1. S. S. S. S. S. S. S. S. S. S. S. S. S.	19- 1		10.000	X	X	- 2. 2 . 	1. A. A.				nin year Archaeltae		م معرفة المراجع مراجع	4
O - Oil A - Air DS - Drum Solids		89.71			***		8/16	IN Sile	X	X	S.			(1)(1)	. 200	X	5ar 35	Sec. 1			3 1 54		8
		89. T	BØ3				311-11		X.		an ana		1. A.	- 5 2%			28 %a		22.6	₿¢¢ 	就带	18 A	2
DL - Drum Liquids							1	N. 197			ite Alti						2010	1. 64 3. 6. 10 3. 6. 10			1.54	蒙遊	然
L - EP/TCLP Leachate		1978 - L				12.07							all sheets		秋 季		報錢		Press				溅
WI - Wipe			and the R	ે બંધરાદાવી						20126			2 - 2 - 1 - C - C - C - C - C - C - C - C - C		100		1		14.5°	1 AND		新語	
X - Other F - Fish				2 H54												新新			14				
		Section Section of		n De General and					2010-00 10-00-00 10-00-00-00 10-00-00-00-00-00-00-00-00-00-00-00-00-0	Carlos Carlos	6	Reiser Later			100		40.59		Sal	27	查讨		352
			ing an ing a sub-	<u>6 - 1969</u>		n an an an an an an an an an an an an an			0.02	S.c. 1			1	1.14			1.1.1				1		
					WHE SE	1999 - 19							2, 3 1-40 									indiana.e	
			VOUADED	ADEAC	964 994		VISIONS:				د شمند می ا	an an an an an an an an an an an an an a	h hiine daanto	a barrana an			79 K.444		a catora	4. 544	5.07588		English
FIELD PERSON Special Instruc							1										WE	STON	I Analy	rtics L	Jse Or	nly	
Special Instruc 89 - Boxd 89 - TNK	1.0	124	02. Soil	s for C	ixtra U	یار	2.			_							amples				C Tape	was: on Out	~~
89-TAIK	d1.	- d] 1	11:4.0	cale	for ext	ra Vol	• 3									H	Shippe and De	livered	I			Y or	
	φ±•		1.1.1.64	O mgar	101		_ 0										rbill # _					n on O	
Fed-Ex	Air	b:11 #	13697	990	82		4									- I '	Ambie Recei				•	Y or on Sar	
					•	<u></u>	5			. <u></u>				<u> </u>			onditio			5) 1	103011	Y or	N
							6										Label: roperly				Inbroke		
Relinquished	F	leceived	Date	Time	Relinquis	hed	Receive	ed	Date	Tim	ne	Dise	crepan	cies Be	tween	(spany		or N		'	Y or rd Pres	
by		by			by		by					San	nples L	abels a ord? Y	Ind		Recei				n Sam	ple Red	c't
ANT.	FE	D.EX	8/16/96	1800				1					TES:			п	olding		or N			Y or	N

and the second second second second second second second second second second second second second second second

.

APPENDIX C LABORATORY DATA

ENGINEERING DATA SUMMARY OPERABLE UNIT NO. 16 (SITE 89) MCB, CAMP LEJEUNE, NORTH CAROLINA CTO-0356

SAMPLE NO	89-EC-SD05-06	89-EC-SD05-612	89-EC-SD04-06	89-EC-SD04-612	89-EC-SD01-06
DATE SAMPLED	07/26/96	07/26/96	07/26/96	07/26/96	07/27/96
WET CHEMISTRY TOTAL ORGANIC CARBON (%)	0.17	0.22	0.59	3.4	1.3

ENGINEERING DATA SUMMARY OPERABLE UNIT NO. 16 (SITE 89) MCB, CAMP LEJEUNE, NORTH CAROLINA CTO-0356

SAMPLE NO	89-EC-SD02-612	89-EC-SD02-612	89-EC-SD02-06	89-EC-SD03-06	89-EC-SD03-612
DATE SAMPLED	07/27/96	07/27/96	07/27/96	07/27/96	07/27/96
WET CHEMISTRY TOTAL ORGANIC CARBON (%)	1.5	0.8	1.2	0.83	0.27

SAMPLE NO LAB ID DATE SAMPLED UNITS	89-EC-SW05D 9607G440-008 07/26/96 UG/L
UNITS VOLATILES CHLOROMETHANE BROMOMETHANE WINYL CHLORIDE CHLOROETHANE METHYLENE CHLORIDE ACETONE CARBON DISULFIDE 1,1-DICHLOROETHENE 1,1-DICHLOROETHENE 1,2-DICHLOROETHANE 2-BUTANONE 1,2-DICHLOROETHANE 2-BUTANONE 1,1-TRICHLOROETHANE 2-BUTANONE 1,1-TRICHLOROETHANE CARBON TETRACHLORIDE BROMODICHLOROMETHANE 1,2-DICHLOROPROPANE CIS-1,3-DICHLOROPROPENE TRICHLOROETHENE DIBROMOCHLOROMETHANE 1,1,2-TRICHLOROETHANE 1,1,2-TRICHLOROETHANE 1,1,2-TRICHLOROPENE BROMOFORM 4-METHYL-2-PENTANONE 2-HEXANONE TETRACHLOROETHENE 1,1,2,2-TETRACHLOROETHANE 1,1,2,2-TETRACHLOROETHANE CHLOROBENZENE ETHYLBENZENE	UG/L 10 U 10 U
STYRENE XYLENE (TOTAL)	10 U 10 U 10 U

1

SAMPLE NO LAB ID DATE SAMPLED UNITS	89-EC-SW05D 9607G440-008 07/26/96 UG/L
SEMIVOLATILES	
PHENOL	11 U
BIS(2-CHLOROETHYL)ETHER	11 U
2-CHLOROPHENOL	11 U
1,3-DICHLOROBENZENE	11 U
1,4-DICHLOROBENZENE	11 U
1,2-DICHLOROBENZENE	11 U
2-METHYLPHENOL	11 U
2,2'-OXYBIS(1-CHLOROPROPANE)	11 U
	11 U
	11 U
HEXACHLOROETHANE NITROBENZENE	11 U
ISOPHORONE	11 U
2-NITROPHENOL	11 U 11 UJ
2.4-DIMETHYLPHENOL	11 U
BIS(2-CHLOROETHOXY)METHANE	11 U
2,4-DICHLOROPHENOL	11 U
1,2,4-TRICHLOROBENZENE	11 U
NAPHTHALENE	11 U
4-CHLOROANILINE	11 U
HEXACHLOROBUTADIENE	11 U
4-CHLORO-3-METHYLPHENOL	11 U
2-METHYLNAPHTHALENE	11 U
HEXACHLOROCYCLOPENTADIENE	11 U
2.4.6-TRICHLOROPHENOL	11 U
2.4.5-TRICHLOROPHENOL	27 U
2-CHLORONAPHTHALENE	11 U
2-NITROANILINE	27 U
DIMETHYLPHTHALATE	11 U
ACENAPHTHYLENE	11 U
2,6-DINITROTOLUENE	11 U
3-NITROANILINE	27 U
ACENAPHTHENE	11 U

11/26/96 89SWOD.WK4

.

SAMPLE NO	89-EC-SW05D
LAB ID	9607G440-008
DATE SAMPLED	07/26/96
UNITS	UG/L
SEMIVOLATILES (cont) 2,4-DINITROPHENOL 4-NITROPHENOL DIBENZOFURAN 2,4-DINITROTOLUENE DIETHYLPHTHALATE 4-CHLOROPHENYL-PHENYLETHER FLUORENE 4-NITROANILINE 4,6-DINITRO-2-METHYLPHENOL N-NITROSODIPHENYLAMINE (1) 4-BROMOPHENYL-PHENYLETHER HEXACHLOROBENZENE PENTACHLOROBENZENE PENTACHLOROBENZENE PENTACHLOROPHENOL PHENANTHRENE ANTHRACENE CARBAZOLE DI-N-BUTYLPHTHALATE FLUORANTHENE PYRENE BUTYLBENZYLPHTHALATE 5,3'-DICHLOROBENZIDINE BENZO(A)ANTHRACENE CHRYSENE BIS(2-ETHYLHEXYL)PHTHALATE DI-N-OCTYLPHTHALATE BENZO(B)FLUORANTHENE BENZO(A)PYRENE BENZO(A)PYRENE INDENO(1,2,3-CD)PYRENE	27 U 27 U 11 U 11 U 11 U 11 U 11 U 11 U 27 UJ 27 UJ 27 UJ 27 UJ 11 U 11 U 11 U 11 U 11 U 11 U 11 U 1
DIBENZO(A,H)ANTHRACENE	11 U
BENZO(G,H,I)PERYLENE	11 U

4

i

SAMPLE NO LAB ID DATE SAMPLED UNITS	89-EC-SW05D 9607G440-008 07/26/96 UG/L
PESTICIDES/PCBS	
ALPHA-BHC	0.056 UJ
BETA-BHC	0.056 UJ
DELTA-BHC	0.056 UJ
GAMMA-BHC (LINDANE)	0.056 UJ
HEPTACHLOR	0.056 UJ
ALDRIN	0.056 UJ
HEPTACHLOR EPOXIDE	0.056 UJ
ENDOSULFAN I	0.056 UJ
DIELDRIN	0.11 UJ
4,4'-DDE	0.11 UJ
ENDRIN	0.11 UJ
ENDOSULFAN II	0.11 UJ
4,4'-DDD	0.11 UJ
ENDOSULFAN SULFATE	0.11 UJ
4,4'-DDT	0.11 UJ
METHOXYCHLOR	0.56 UJ
ENDRINKETONE	0.11 UJ
ENDRIN ALDEHYDE	0.11 UJ
ALPHA-CHLORDANE	0.056 UJ
GAMMA-CHLORDANE	0.056 UJ
	5.6 UJ
AROCLOR-1016 AROCLOR-1221	1.1 UJ
AROCLOR-1221 AROCLOR-1232	2.2 UJ
AROCLOR-1232 AROCLOR-1242	1.1 UJ
AROCLOR-1242 AROCLOR-1248	1.1 UJ
AROCLOR-1248 AROCLOR-1254	1.1 UJ
AROCLOR-1254 AROCLOR-1260	1.1 UJ
ARUULUR-1200	1.1 UJ

SAMPLE NO LAB ID DATE SAMPLED UNITS	89-EC-SW05D 9607G440-008 07/26/96 UG/L
TOTAL METALS ALUMINUM, TOTAL ANTIMONY, TOTAL ARSENIC, TOTAL BARIUM, TOTAL BERYLLIUM, TOTAL CADMIUM, TOTAL CALCIUM, TOTAL CALCIUM, TOTAL CHROMIUM, TOTAL COBALT, TOTAL COPPER, TOTAL IRON, TOTAL LEAD, TOTAL LEAD, TOTAL MAGNESIUM, TOTAL MANGANESE, TOTAL MERCURY, TOTAL NICKEL, TOTAL NICKEL, TOTAL SELENIUM, TOTAL SELENIUM, TOTAL SODIUM, TOTAL THALLIUM, TOTAL	$\begin{array}{c} 294 \\ 14.4 \ U \\ 1.4 \ U \\ 20.6 \\ 0.7 \ U \\ 2.6 \ U \\ 39200 \\ 3.3 \ U \\ 3.6 \ U \\ 2.5 \\ 1250 \\ 2 \\ 2330 \\ 27.8 \\ 0.1 \ U \\ 8.7 \ UJ \\ 2690 \\ 1.8 \ U \\ 3.1 \ U \\ 12000 \\ 1.5 \ U \\ 2.6 \\ 10 \ c \end{array}$
ZINC, TOTAL	12.6

.

SAMPLE NO	89-EC-SD05-06D	89-EC-SD05-612D
LAB ID	9607G440-003	9607G440-004
DATE SAMPLED	07/26/96	07/26/96
UNITS	UG/KG	UG/KG
VOLATILES		40.11
CHLOROMETHANE	12 U	12 U
BROMOMETHANE	12 U	12 U
VINYL CHLORIDE	12 U	12 U
CHLOROETHANE	12 U	12 U
METHYLENE CHLORIDE	12 U	12 U
ACETONE	12 UJ	12 UJ
CARBON DISULFIDE	12 UJ	12 UJ
1,1-DICHLOROETHENE	12 UJ	12 UJ
1,1-DICHLOROETHANE	12 U	12 U
1,2-DICHLOROETHENE (TOTAL)	12 U	12 U
CHLOROFORM	12 U	12 U
1,2-DICHLOROETHANE	12 U	12 U
2-BUTANONE	12 UJ	12 UJ
1,1,1-TRICHLOROETHANE	12 U	12 U
CARBON TETRACHLORIDE	12 U	12 U
BROMODICHLOROMETHANE	12 U	12 U
1,2-DICHLOROPROPANE	12 U	12 U
CIS-1,3-DICHLOROPROPENE	12 U	12 U
TRICHLOROETHENE	12 U	12 U
DIBROMOCHLOROMETHANE	12 U	12 U
1,1,2-TRICHLOROETHANE	12 U	12 U
BENZENE	12 U	12 U
TRANS-1,3-DICHLOROPROPENE	12 U	12 U
BROMOFORM	12 UJ	12 UJ
4-METHYL-2-PENTANONE	12 U	12 U
2-HEXANONE	12 U	12 U
TETRACHLOROETHENE	12 U	12 U
1,1,2,2-TETRACHLOROETHANE	12 U	12 U
TOLUENE	12 U	12 U
CHLOROBENZENE	12 U	12 U
ETHYLBENZENE	12 U	12 U
STYRENE	12 U	12 U
XYLENE (TOTAL)	12 U	12 U
- ·		

11/26/96 89SDOD.WK4

.

.

SAMPLE NO	89-EC-SD05-06D	89-EC-SD05-612D
LABID	9607G440-003	9607G440-004
DATE SAMPLED	07/26/96	07/26/96
UNITS	UG/KG	UG/KG
SNITS	06/16	00///0
SEMIVOLATILES		
PHENOL	380 U	410 U
BIS(2-CHLOROETHYL)ETHER	380 U	410 U
2-CHLOROPHENOL	380 U	410 U
1,3-DICHLOROBENZENE	380 U	410 U
1,4-DICHLOROBENZENE	380 U	410 U
1,2-DICHLOROBENZENE	380 U	410 U
2-METHYLPHENOL	380 U	410 U
2,2-OXYBIS(1-CHLOROPROPANE)	380 U	410 U
4-METHYLPHENOL	380 U	410 U
N-NITROSO-DI-N-PROPYLAMINE	380 U	410 U
HEXACHLOROETHANE	380 U	410 U
NITROBENZENE	380 UJ	410 UJ
ISOPHORONE	380 U	410 U
2-NITROPHENOL	380 U	410 U
2,4-DIMETHYLPHENOL	380 U	410 U
BIS(2-CHLOROETHOXY)METHANE	380 U	410 U
2,4-DICHLOROPHENOL	380 U	410 U
1,2,4-TRICHLOROBENZENE	380 U	410 U
NAPHTHALENE	380 U	410 U
4-CHLOROANILINE	380 U	410 U
HEXACHLOROBUTADIENE	380 U	410 U
4-CHLORO-3-METHYLPHENOL	380 U	410 U
2-METHYLNAPHTHALENE	380 U	410 U
HEXACHLOROCYCLOPENTADIENE	380 U	410 U
2,4,6-TRICHLOROPHENOL	380 U	410 U
2,4,5-TRICHLOROPHENOL	960 U	1000 U
2-CHLORONAPHTHALENE	380 U	410 U
2-NITROANILINE	960 U	1000 U
DIMETHYLPHTHALATE	380 U	410 U
ACENAPHTHYLENE	380 U	410 U
2,6-DINITROTOLUENE	380 U	410 U
3-NITROANILINE	960 UJ	1000 UJ
ACENAPHTHENE	380 U	410 U

2

SAMPLE NO	89-EC-SD05-06D	89-EC-SD05-612D
LABID	9607G440-003	9607G440-004
DATE SAMPLED	07/26/96	07/26/96
UNITS	UG/KG	UG/KG
SEMIVOLATILES (cont)		
2.4-DINITROPHENOL	960 UJ	1000 UJ
4-NITROPHENOL	960 U	1000 U
DIBENZOFURAN	380 U	410 U
2.4-DINITROTOLUENE	380 U	410 U
DIETHYLPHTHALATE	380 U	410 U
4-CHLOROPHENYL-PHENYLETHER	380 U	410 U
FLUORENE	380 U	410 U
4-NITROANILINE	960 U	1000 U
4,6-DINITRO-2-METHYLPHENOL	960 U	1000 U
N-NITROSODIPHENYLAMINE (1)	380 U	410 U
4-BROMOPHENYL-PHENYLETHER	380 U	410 U
HEXACHLOROBENZENE	380 U	410 U
PENTACHLOROPHENOL	960 U	1000 U
PHENANTHRENE	380 U	410 U
ANTHRACENE	380 U	410 U
CARBAZOLE	380 U	410 U
DI-N-BUTYLPHTHALATE	380 U	410 U
FLUORANTHENE	46 J	410 U
PYRENE	56 J	410 U
BUTYLBENZYLPHTHALATE	380 U	410 U
3.3'-DICHLOROBENZIDINE	380 U	410 U
BENZO(A)ANTHRACENE	380 U	410 U
CHRYSENE	380 U	410 U
BIS(2-ETHYLHEXYL)PHTHALATE	110 J	180 J
DI-N-OCTYLPHTHALATE	380 U	410 U
BENZO(B)FLUORANTHENE	380 U	410 U
BENZO(K)FLUORANTHENE	380 U	410 U
BENZO(A)PYRENE	380 U	410 U
INDENO(1,2,3-CD)PYRENE	380 U	410 U
DIBENZO(A,H)ANTHRACENE	380 U	410 U
BENZO(G,H,I)PERYLENE	380 U	410 U
		410 0

•

.

SAMPLE NO		
LAB ID	89-EC-SD05-06D	89-EC-SD05-612D 9607G440-004
DATE SAMPLED	9607G440-003 07/26/96	•••••
UNITS		07/26/96
UNITS	UG/KG	UG/KG
PESTICIDES/PCBS		
ALPHA-BHC	1.9 U	2 UJ
BETA-BHC	1.9 U	2 UJ
DELTA-BHC	1.9 UJ	2 UJ
GAMMA-BHC (LINDANE)	1.9 U	2 UJ
HEPTACHLOR	1.9 U	2 UJ
ALDRIN	1.9 U	2 UJ
HEPTACHLOR EPOXIDE	1.9 U	2 UJ
ENDOSULFAN I	1.9 U	2 UJ
DIELDRIN	3.8 U	4.1 UJ
4,4'-DDE	23 J	14 J
ENDRIN	3.8 U	4.1 UJ
ENDOSULFAN II	3.8 U	4.1 UJ
4,4'-DDD	39 J	19 J
ENDOSULFAN SULFATE	3.8 U	4.1 UJ
4,4'-DDT	3.4 J	3.3 J
METHOXYCHLOR	19 UJ	20 UJ
ENDRIN KETONE	3.8 U	4.1 UJ
ENDRIN ALDEHYDE	3.8 U	4.1 UJ
ALPHA-CHLORDANE	1.9	2 UJ
GAMMA-CHLORDANE	1.9 J	2 UJ
TOXAPHENE	190 U	200 UJ
AROCLOR-1016	38 U	41 UJ
AROCLOR-1221	76 U	82 UJ
AROCLOR-1232	38 U	41 UJ
AROCLOR-1242	38 U	41 UJ
AROCLOR-1248	38 U	41 UJ
AROCLOR-1254	38 U	41 UJ
AROCLOR-1260	38 U	41 UJ

SAMPLE NO	89-EC-SD05-06D	89-EC-SD05-612D
LAB ID	9607G440-003	9607G440-004
DATE SAMPLED	07/26/96	07/26/96
UNITS	MG/KG	MG/KG
TOTAL METALS	1000	000 1
ALUMINUM, TOTAL	1320 J	893 J
ANTIMONY, TOTAL	2.9 U	3.1 U
ARSENIC, TOTAL	0.24 UJ	0.27
BARIUM, TOTAL	13.7	2.2
BERYLLIUM, TOTAL	0.19	0.15 U
CADMIUM, TOTAL	0.72	0.56 U
CALCIUM, TOTAL	54300 J	179
CHROMIUM, TOTAL	2.9	1.1
COBALT, TOTAL	0.72 U	0.77 U
COPPER, TOTAL	2 U	2 U
IRON, TOTAL	1400 J	711
LEAD, TOTAL	10.1 J	15.5
MAGNESIUM, TOTAL	917	209
MANGANESE, TOTAL	13.7	5.2
MERCURY, TOTAL	0.04 U	0.06 U
NICKEL, TOTAL	1.7 U	1.9 U
POTASSIUM, TOTAL	138 U	148 U
SELENIUM, TOTAL	0.31 U	0.31 U
SILVER, TOTAL	0.62 U	0.67 U
SODIUM. TOTAL	154	683
THALLIUM, TOTAL	0.26 UJ	0.26 UJ
VANADIUM, TOTAL	3.6	2.4
ZINC, TOTAL	22.8	5.9
	22.0	0.5

1

QA/QC SUMMARY RINSATE AND TRIP BLANKS ORGANIC COMPOUNDS OPERABLE UNIT NO. 16 (SITE 89) MCB, CAMP LEJEUNE, NORTH CAROLINA CTO-0356

SAMPLE NO	89-EC-RS01	89-TB01	89-TB02
LAB ID	9607G440-012	9607G440-010	9607G440-011
DATE SAMPLED	07/27/96	07/26/96	07/27/96
UNITS	UG/L	UG/L	UG/L
VOLATILES			
CHLOROMETHANE	10 U	10 U	10 U
BROMOMETHANE	10 U	10 U	10 U
VINYL CHLORIDE	10 U	10 U	10 U
CHLOROETHANE	10 U	10 U	10 U
METHYLENE CHLORIDE	10 U	10 U	10 U
ACETONE	10 UJ	10 UJ	10 UJ
CARBON DISULFIDE	10 U	10 U	10 U
1,1-DICHLOROETHENE	10 U	10 U	10 U
1,1-DICHLOROETHANE	10 U	10 U	10 U
1,2-DICHLOROETHENE (TOTAL)	10 U	10 U	10 U
CHLOROFORM	10 U	10 U	10 U
1,2-DICHLOROETHANE	10 U	10 U	10 U
2-BUTANONE	10 UJ	10 UJ	10 UJ
1,1,1-TRICHLOROETHANE	10 U	10 U	10 U
CARBON TETRACHLORIDE	10 U	10 U	10 U
BROMODICHLOROMETHANE	10 U	10 U	10 U
1,2-DICHLOROPROPANE	10 U	10 U	10 U
CIS-1,3-DICHLOROPROPENE	10 U	10 U	10 U
TRICHLOROETHENE	10 U	10 U	10 U
DIBROMOCHLOROMETHANE	10 U	10 U	10 U
1,1,2-TRICHLOROETHANE	10 U	10 U	10 U
BENZENE	10 U	10 U	10 U
TRANS-1,3-DICHLOROPROPENE	10 U	10 U	10 U
BROMOFORM	10 U	10 U	10 U
4-METHYL-2-PENTANONE	10 UJ	10 UJ	10 UJ
2-HEXANONE	10 UJ	10 UJ	10 UJ
TETRACHLOROETHENE	10 U	10 U	10 U
1,1,2,2-TETRACHLOROETHANE	10 UJ	10 U	10 UJ
TOLUENE	10 U	10 U	10 U
CHLOROBENZENE	10 U	10 U	10 U
ETHYLBENZENE	10 U	10 U	10 U
STYRENE	10 U	10 U	10 U
XYLENE (TOTAL)	10 U	10 U	10 U
		_	

QA/QC SUMMARY RINSATE AND TRIP BLANKS ORGANIC COMPOUNDS OPERABLE UNIT NO. 16 (SITE 89) MCB, CAMP LEJEUNE, NORTH CAROLINA CTO-0356

SAMPLE NO	89-EC-RS01	89-TB01	89-TB02
LAB ID	9607G440-012	9607G440-010	9607G440-011
DATE SAMPLED	07/27/96	07/26/96	07/27/96
UNITS	UG/L	UG/L	UG/L
SEMIVOLATILES			
PHENOL	12 U	NA	NA
BIS(2-CHLOROETHYL)ETHER	12 U	NA	NA
2-CHLOROPHENOL	12 U	NA	NA
1,3-DICHLOROBENZENE	12 U	NA	NA
1,4-DICHLOROBENZENE	12 U	NA	NA
1,2-DICHLOROBENZENE	12 U	NA	NA
2-METHYLPHENOL	12 U	NA	NA
2,2'-OXYBIS(1-CHLOROPROPANE)	12 U	NA	NA
4-METHYLPHENOL	12 U	NA	NA
N-NITROSO-DI-N-PROPYLAMINE	12 U	NA	NA
HEXACHLOROETHANE	12 U	NA	NA
NITROBENZENE	12 U	NA	NA
ISOPHORONE	12 U	NA	NA
2-NITROPHENOL	12 U	NA	NA
2,4-DIMETHYLPHENOL	12 UJ	NA	NA
BIS(2-CHLOROETHOXY)METHANE	12 U	NA	NA
2,4-DICHLOROPHENOL	12 U	NA	NA
1,2,4-TRICHLOROBENZENE	12 U	NA	NA
NAPHTHALENE	12 U	NA	NA
4-CHLOROANILINE	12 U	NA	NA
HEXACHLOROBUTADIENE	12 U	NA	NA
4-CHLORO-3-METHYLPHENOL	12 U	NA	NA
2-METHYLNAPHTHALENE	12 U	NA	NA
HEXACHLOROCYCLOPENTADIENE	12 U	NA	NA
2,4,6-TRICHLOROPHENOL	12 U	NA	NA
2,4,5-TRICHLOROPHENOL	30 U	NA	NA
2-CHLORONAPHTHALENE	12 U	NA	NA
2-NITROANILINE	30 U	NA	NA
DIMETHYLPHTHALATE	12 U	NA	NA
ACENAPHTHYLENE	12 U	NA	NA
2,6-DINITROTOLUENE	12 U	NA	NA
3-NITROANILINE	30 U	NA	NA
ACENAPHTHENE	12 U	NA	NA

•

QA/QC SUMMARY RINSATE AND TRIP BLANKS ORGANIC COMPOUNDS OPERABLE UNIT NO. 16 (SITE 89) MCB, CAMP LEJEUNE, NORTH CAROLINA CTO-0356

SAMPLE NO	89-EC-RS01	89-TB01	89-TB02
LAB ID	9607G440-012	9607G440-010	9607G440-011
DATE SAMPLED	07/27/96	07/26/96	07/27/96
UNITS	UG/L	UG/L	UG/L
SEMIVOLATILES (cont)			
2.4-DINITROPHENOL	30 U	NA	NA
4-NITROPHENOL	30 U	NA	NA
DIBENZOFURAN	12 U	NA	NA
2.4-DINITROTOLUENE	12 U	NA	NA
DIETHYLPHTHALATE	12 U	NA	NA
4-CHLOROPHENYL-PHENYLETHER	12 U	NA	NA
FLUORENE	12 U	NA	NA
4-NITROANILINE	30 UJ	NA	NA
4,6-DINITRO-2-METHYLPHENOL	30 UJ	NA	NA
N-NITROSODIPHENYLAMINE (1)	12 U	NA	NA
4-BROMOPHENYL-PHENYLETHER	12 U	NA	NA
HEXACHLOROBENZENE	12 U	NA	NA
PENTACHLOROPHENOL	30 UJ	NA	NA
PHENANTHRENE	12 U	NA	NA
ANTHRACENE	12 U	NA	NA
CARBAZOLE	12 U	NA	NA
DI-N-BUTYLPHTHALATE	12 U	NA	NA
FLUORANTHENE	12 U	NA	NA
PYRENE	12 U	NA	NA
BUTYLBENZYLPHTHALATE	12 U	NA	NA
3.3'-DICHLOROBENZIDINE	12 UJ	NA	NA
BENZO(A)ANTHRACENE	12 U	NA	NA
CHRYSENE	12 U	NA	NA
DI-N-OCTYLPHTHALATE	12 U	NA	NA
BENZO(B)FLUORANTHENE	12 U	NA	NA
BENZO(K)FLUORANTHENE	12 U	NA	NA
BENZO(A)PYRENE	12 U	NA	NA
INDENO(1,2,3-CD)PYRENE	12 U	NA	NA
DIBENZO(A,H)ANTHRACENE	12 U	NA	NA
BENZO(G,H,I)PERYLENE	12 U	NA	NA
BIS(2-ETHYLHEXYL)PHTHALATE	120 R	NA	NA

3

.

FIXED BASE QA/QC SUMMARY RINSATE AND TRIP BLANKS OPERABLE UNIT NO. 16 SITES 89 MCB, CAMP LEJEUNE, NORTH CAROLINA CTO-0356

SAMPLE NO	89-EC-RS01	89-TB01	89-TB02
LAB ID	9607G440-012	9607G440-010	9607G440-011
DATE SAMPLED	07/27/96	07/26/96	07/27/96
UNITS	UG/L	UG/L	UG/L
VOLATILES			
CHLOROMETHANE	10 U	10 U	10 U
BROMOMETHANE	10 U	10 U	10 U
VINYL CHLORIDE	10 U	10 U	10 U
CHLOROETHANE	10 U	10 U	10 U
METHYLENE CHLORIDE	10 U	10 U	10 U
ACETONE	10 UJ	10 UJ	10 UJ
CARBON DISULFIDE	10 U	10 U	10 U
1,1-DICHLOROETHENE	10 U	10 U	10 U
1,1-DICHLOROETHANE	10 U	10 U	10 U
1,2-DICHLOROETHENE (TOTAL)	10 U	10 U	10 U
CHLOROFORM	10 U	10 U	10 U
1,2-DICHLOROETHANE	10 U	10 U	10 U
2-BUTANONE	10 UJ	10 UJ	10 UJ
1,1,1-TRICHLOROETHANE	10 U	10 U	10 U
CARBON TETRACHLORIDE	10 U	10 U	10 U
BROMODICHLOROMETHANE	10 U	10 U	10 U
1,2-DICHLOROPROPANE	10 U	10 U	10 U
CIS-1,3-DICHLOROPROPENE	10 U	10 U	10 U
TRICHLOROETHENE	10 U	10 U	10 U
DIBROMOCHLOROMETHANE	10 U	10 U	10 U
1,1,2-TRICHLOROETHANE	10 U	10 U	10 U
BENZENE	10 U	10 U	10 U
TRANS-1,3-DICHLOROPROPENE	10 U	10 U	10 U
BROMOFORM	10 U	10 U	10 U
4-METHYL-2-PENTANONE	10 UJ	10 UJ	10 UJ
2-HEXANONE	10 UJ	10 UJ	10 UJ
TETRACHLOROETHENE	10 U	10 U	10 U
1,1,2,2-TETRACHLOROETHANE	10 UJ	10 U	10 UJ
TOLUENE	10 U	10 U	10 U
CHLOROBENZENE	10 U	10 U	10 U
ETHYLBENZENE	10 U	10 U	10 U
STYRENE	10 U	10 U	10 U
XYLENE (TOTAL)	10 U	10 U	10 U

FIXED BASE QA/QC SUMMARY RINSATE AND TRIP BLANKS OPERABLE UNIT NO. 16 SITES 89 MCB, CAMP LEJEUNE, NORTH CAROLINA CTO-0356

SAMPLE NO	89-EC-RS01	89-TB01	89-TB02
LAB ID	9607G440-012	9607G440-010	9607G440-011
DATE SAMPLED	07/27/96	07/26/96	07/27/96
UNITS	UG/L	UG/L	UG/L
SEMIVOLATILES			
PHENOL	12 U	NA	NA
BIS(2-CHLOROETHYL)ETHER	12 U	NA	NA
2-CHLOROPHENOL	12 U	NA	NA
1,3-DICHLOROBENZENE	12 U	NA	NA
1,4-DICHLOROBENZENE	12 U	NA	NA
1,2-DICHLOROBENZENE	12 U	NA	NA
2-METHYLPHENOL	12 U	NA	NA
2,2-OXYBIS(1-CHLOROPROPANE)	12 U	NA	NA
4-METHYLPHENOL	12 U	NA	NA
N-NITROSO-DI-N-PROPYLAMINE	12 U	NA	NA
HEXACHLOROETHANE	12 U	NA	NA
NITROBENZENE	12 U	NA	NA
ISOPHORONE	12 U	NA	NA
2-NITROPHENOL	12 U	NA	NA
2,4-DIMETHYLPHENOL	12 UJ	NA	NA
BIS(2-CHLOROETHOXY)METHANE	12 U	NA	NA
2,4-DICHLOROPHENOL	12 U	NA	NA
1,2,4-TRICHLOROBENZENE	12 U	NA	NA
NAPHTHALENE	12 U	NA	NA
4-CHLOROANILINE	12 U	NA	NA
HEXACHLOROBUTADIENE	12 U	NA	NA
4-CHLORO-3-METHYLPHENOL	12 U	NA	NA
2-METHYLNAPHTHALENE	12 U	NA	NA
HEXACHLOROCYCLOPENTADIENE	12 U	NA	NA
2,4,6-TRICHLOROPHENOL	12 U	NA	NA
2,4,5-TRICHLOROPHENOL	30 U	NA	NA
2-CHLORONAPHTHALENE	12 U	NA	NA
2-NITROANILINE	30 U	NA	NA
DIMETHYLPHTHALATE	12 U	NA	NA
ACENAPHTHYLENE	12 U	NA	NA
2,6-DINITROTOLUENE	12 U	NA	NA
3-NITROANILINE	30 U	NA	NA
ACENAPHTHENE	30 0 12 U	NA	NA
2,4-DINITROPHENOL	30 U	NA	NA
	30 0	INA	NA

FIXED BASE QA/QC SUMMARY RINSATE AND TRIP BLANKS OPERABLE UNIT NO. 16 SITES 89 MCB, CAMP LEJEUNE, NORTH CAROLINA CTO-0356

SAMPLE NO	89-EC-RS01	89-TB01	89-TB02
LAB ID	9607G440-012	9607G440-010	9607G440-011
DATE SAMPLED	07/27/96	07/26/96	07/27/96
UNITS	UG/L	UG/L	UG/L
UNITS SEMIVOLATILES (cont) 4-NITROPHENOL DIBENZOFURAN 2,4-DINITROTOLUENE DIETHYLPHTHALATE 4-CHLOROPHENYL-PHENYLETHER FLUORENE 4-NITROANLINE 4,6-DINITRO-2-METHYLPHENOL N-NITROSODIPHENYLAMINE (1) 4-BROMOPHENYL-PHENYLETHER HEXACHLOROBENZENE PENTACHLOROBENZENE PENTACHLOROBENZENE PENTACHLOROBENZENE PENTACHLOROBENZENE DI-N-BUTYLPHTHALATE SUTYLBENZYLPHTHALATE SUTYLBENZYLPHTHALATE BENZO(A)ANTHRACENE CHRYSENE DI-N-OCTYLPHTHALATE BENZO(B)FLUORANTHENE BENZO(A)PYRENE INDENO(1,2,3-CD)PYRENE	30 U 12 U 12 U 12 U 12 U 12 U 12 U 12 U 12 U 30 UJ 30 UJ 30 UJ 12 U 12 U	UG/L NA NA NA NA NA NA NA NA NA NA NA NA NA	NA NA NA NA NA NA NA NA NA NA NA NA NA N
DIBENZO(A,H)ANTHRACENE	12 U	NA	NA
BENZO(G,H,I)PERYLENE	12 U	NA	NA
BIS(2-ETHYLHEXYL)PHTHALATE	120 R	NA	NA

FIXED BASE QA/QC SUMMARY RINSATE AND TRIP BLANKS INORGANIC COMPOUNDS OPERABLE UNIT NO. 16 (SITE 89) MCB, CAMP LEJEUNE, NORTH CAROLINA CTO-0356

SAMPLE NO LAB ID DATE SAMPLED UNITS	89-EC-RS01 9607G440-012 07/27/96 UG/L
TOTAL METALS ALUMINUM, TOTAL ANTIMONY, TOTAL ARSENIC, TOTAL BARIUM, TOTAL BERYLLIUM, TOTAL CADMIUM, TOTAL CALCIUM, TOTAL CALCIUM, TOTAL CHROMIUM, TOTAL COBALT, TOTAL COPPER, TOTAL IRON, TOTAL IRON, TOTAL IRON, TOTAL MAGNESIUM, TOTAL MAGANESE, TOTAL MERCURY, TOTAL NICKEL, TOTAL POTASSIUM, TOTAL SELENIUM, TOTAL SULVER, TOTAL SULVER, TOTAL SULVER, TOTAL THALLIUM, TOTAL VANADIUM, TOTAL ZINC, TOTAL	$\begin{array}{c} 25.1 \\ 14.4 \ U \\ 1.4 \ U \\ 1.4 \ U \\ 1.4 \ U \\ 0.7 \ U \\ 2.6 \ U \\ 45.9 \\ 3.3 \ U \\ 3.6 \ U \\ 2 \ U \\ 4.5 \ U \\ 1.2 \ U \\ 20.8 \ U \\ 1.6 \ U \\ 0.1 \ U \\ 8.7 \ UJ \\ 690 \ U \\ 1.8 \ U \\ 3.1 \ U \\ 114 \\ 1.5 \ U \\ 2.5 \ U \\ 2.3 \ U \end{array}$

,

r