01.04-11/27/96-01747

PHASE I INVESTIGATION OPERABLE UNIT NO. 15 (Site 88)

MCB CAMP LEJEUNE, NORTH CAROLINA

CONTRACT TASK ORDER 0356

NOVEMBER 27, 1996

Prepared for:

DEPARTMENT OF THE NAVY ATLANTIC DIVISION NAVAL FACILITIES ENGINEERING COMMAND

Norfolk, Virginia

Under:

LANTDIV CLEAN Program Contract N62470-89-D-4814

Prepared by:

BAKER ENVIRONMENTAL, INC. Coraopolis, Pennsylvania

TABLE OF CONTENTS

1.0	INTR	ODUCTION	
	1.1	Scope and Objectives	
	1.2	Report Organization	
	1.3	Site Description and History	
		1.3.1 Operable Unit No. 15 - Site 88 (Building 25, MWR Dry Cleaners)	
	1.4	Previous Investigations and Findings	. 1-2
2.0	SITE	CHARACTERISTICS	
	2.1	Topography and Surface Features	
	2.2	Surface Water Hydrology	
	2.3	Site Geology	
	2.4	Site Hydrogeology	
	2.5	Identification of Water Supply Wells	2-3
3.0	FIEL	D INVESTIGATION	
	3.1	Field Activities	
		3.1.1 Subsurface Soil Sampling	3-1
		3.1.2 Temporary Monitoring Well Installation	3-2
		3.1.3 Groundwater Sampling	3 - 3
		3.1.4 Land Survey	3-3
		3.1.5 Well Abandonment	
		3.1.6 Decontamination Procedures	
		3.1.7 Investigation Derived Waste Management	3-4
	3.2	Sample Acquisition and Analytical Program	3-4
		3.2.1 Subsurface Soil Sample Acquisition and Analyses	3-4
		3.2.2 Groundwater Sample Acquisition and Analyses	3-5
		3.3.3 Quality Assurance Quality Control	
		3.3.4 Data Management and Tracking	3-5
4.0	FIND	DINGS OF THE PHASE I INVESTIGATION STUDY	4-1
	4.1	Screening Standard Comparisons	4-1
		4.1.1 Subsurface Soil	4-1
		4.1.2 Groundwater	4-1
	4.2	Non-Site Related Analytical Results	4-2
		4 2.1 Laboratory Contaminants	4-2
	4.3	Site Analytical Sample Results	4-2
		4.3.1 Subsurface Soil	4-2
		4.3.2 Groundwater	4-3
5.0	CON	CLUSIONS AND RECOMMENDATIONS	5-1
	5.1	Conclusions	5-1
	–	5.1.1 Subsurface Soil	5-1
		5.1.2 Groundwater	
	5.2	Recommendations	5-1
6.0	REF	ERENCES	6-1

LIST OF APPENDICES

Appendix A Test Boring and Well Construction Records

Appendix B Chain-of-Custody Records

Appendix C QA/QC Data

LIST OF TABLES

- 2-1 Geologic and Hydrogeologic Units of North Carolina's Coastal Plain
- 2-2 Water Supply Well Information
- 3-1 Summary of Well Construction Details, Site 88
- 3-2 Summary of Field Parameters for Groundwater Sampling, Site 88
- 3-3 Soil Sampling Summary, Site 88
- 3-4 Groundwater Sampling Summary, Site 88
- 4-1 Onsite Laboratory Positive Detection Summary, Subsurface Soil, Volatile Organic Compounds, Operable Unit No. 15, Site 88
- 4-2 Summary of Site Soil Contamination, Operable Unit No. 15, Site 88
- 4-3 Fixed Base Detection Summary, Subsurface Soil, Volatile Organic Compounds, Operable Unit No. 15, Site 88
- 4-4 Onsite Laboratory Positive Detection Summary, Groundwater, Volatile Organic Compounds, Operable Unit No. 15, Site 88
- 4-5 Fixed Base Detection Summary, Groundwater, Volatile Organic Compounds, Operable Unit No. 15, Site 88
- 4-6 Summary of Site Groundwater Contamination, Operable Unit No. 15, Site 88

LIST OF FIGURES

- 1-1 Operable Units and Site Locations at Marine Corps Base, Camp Lejeune
- 1-2 Site Location Map, Site 88

.

- 2-1 Cross-Section Location Map, Site 88
- 2-2 Hydrogeologic Cross-Section A-A' Site 88
- 2-3 Hydrogeologic Cross-Section B-B' Site 88
- 2-4 Groundwater Elevations, Site 88
- 2-5 Active Water Supply Well Locations, Site 88
- 3-1 Typical Temporary Monitoring Well Construction Diagram
- 3-2 Temporary Monitoring Well Locations, Site 88
- 4-1 Subsurface Soil Contamination By On-Site Analysis, Site 88
- 4-2 Volatile Organic Compounds in Groundwater (Shallow Wells) By On-Site Analysis, Site 88
- 4-3 Volatile Organic Compounds in Groundwater, (Intermediate Wells) By On-Site Analysis, Site 88

LIST OF ACRONYMS AND ABBREVIATIONS

ASTM	American Society for Testing and Materials
AST	above ground storage tank
bgs	below ground surface
CERCLA	Comprehensive Environmental Response, Compensation and Liability Act
CLP	Contract Laboratory Program
COC	Chain-of-Custody
CTO	Contract Task Order
cis-DCE	cis-1,2-Dichloroethene
trans-DCE	trans-1,2-Dichloroethene
D.O.	dissolved oxygen
DoN	Department of the Navy
°F	degrees Fahrenheit
FFA	Federal Facilities Agreement
ft	feet
gpm	gallons per minute
IDW	investigation derived waste
LANTDIV	Naval Facilities Engineering Command, Atlantic Division
μg/L	micrograms per liter
μg/kg	micrograms per kilogram
MCB	Marine Corps Base
MCL	maximum contaminant level
MWR	Morale, Welfare, and Recreation
NC DEHNR	North Carolina Department of Environment, Health, and Natural Resources
NCWQS	North Carolina Water Quality Standard
No.	Number
NPL	National Priorities List
OD	outside diameter
OHM	OHM Remediation Services Corporation
OU	operable unit
PCB PCE PID ppb ppm pvc QA/QC	polychlorinated biphenyl Tetrachloroethene photoionization detector parts per billion polyvinyl chloride quality assurance/quality control

iv

LIST OF ACRONYMS (Continued)

RCRA RI/FS SOPs SPT SSL	Resource Conservation and Recovery Act Remediation Investigation/Feasibility Study standard operating procedures standard penetration test soil screening level
TAL	Target Analyte List
TCA	1,1,2,2-tetrachloroethane
TCE	trichloroethene
TCL	Target Compound List
ТРН	total petroleum hydrocarbon
USCS	Unified Soil Classification System
USEPA	United States Environmental Protection Agency
USGS	United States Geological Survey
UST	Underground Storage Tank
VOA	volatile organic analysis
VOC	volatile organic compound

.

1.0 INTRODUCTION

Marine Corps Base (MCB) Camp Lejeune was place on the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA) National Priorities List (NPL) effective November 4, 1989 (54 Federal Register 41015, October 4, 1989). Subsequent to this listing, the United States Environmental Protection Agency (USEPA) Region IV, the North Carolina Department of Environment, Health and Natural Resources (NC DEHNR), the United States Department of the Navy (DoN) and the Marine Corps entered into a Federal Facilities Agreement (FFA) for MCB Camp Lejeune in 1991. The primary purpose of the FFA was to ensure that environmental impacts associated with past and present activities at the MCB are throughly investigated, and that appropriate CERCLA response and Resource Conservation Recovery Act (RCRA) corrective action alternatives are developed and implemented as necessary to protect public health and welfare, and the environment (MCB Camp Lejeune FFA, 1989).

The fiscal year 1997 Site Management Plan for MCB Camp Lejeune, a primary document referenced in the FFA, identifies 42 sites that require Remedial Investigation/Feasibility Study (RI/FS) activities. These 42 sites have been divided into 18 Operable Units (OUs). This report describes the Phase I Investigation conducted at OU No. 15, which is comprised of Site 88. The location of OU No. 15 is provided on Figure 1-1.

The Investigation was conducted by Baker Environmental, Inc. (Baker) for the Naval Facilities Engineering Command, Atlantic Division (LANTDIV) Contract Task Order (CTO) 0356 under Contract Number N62470-89-D-4814.

1.1 Scope and Objectives

The scope of the Phase I Investigation was to evaluate the nature and extent of the threat to public health and the environment caused by the release or threatened release of hazardous substances, pollutants, or contaminants. The Phase I Investigation was conducted through the sampling of soil and groundwater at Site 88, evaluating the resultant analytical and geologic data, and performing a qualitative assessment of the soil and groundwater findings.

The objective of the Phase I Investigation was to gather data and to delineate the extent of soil and groundwater contamination. This data is to be used to provide recommendations for Phase II of the Investigation.

1.2 <u>Report Organization</u>

This report is divided into five sections, including Section 1.0 Introduction. Section 2.0 presents the site characteristics. The field Investigation which details procedures and sampling strategies is presented in Section 3.0. Section 4.0 presents the findings of the Phase I Investigation. The conclusions and recommendations for this document are contained in Section 5.0. The appendices referenced throughout the document are included at the end of the report and include Appendices A through C.

1.3 Site Description and History

The sections below summarize information concerning the site description and history. Further information of this type can be found in the draft Site Evaluation Project Plans (Baker, May 1996).

1.3.1 Operable Unit No. 15 - Site 88 (Building 25, MWR Dry Cleaners)

Site 88 is referred to as "Building 25, Morale, Welfare, and Recreation (MWR) Dry Cleaners". The site is located near Post Lane and Virginia Dare Drive (Figure 1-2). Building 25 has been operating as a dry cleaning facility since the 1940s and is located in a flat area surrounded by barracks, office buildings, and other occupied structures. As can be seen on Figure 1-2 the surrounding buildings include Building 37, the Base Chaplain's Office to the north, Building 43, the Cobbler Shop to the west, Building HP57, a dormitory, to the east and Building 80, a warehouse, to the south. The New River is the nearest surface water body, located approximately 3,000 feet west of Building 25.

As shown on Figure 1-2, five former underground storage tanks (USTs) were located on the north side of Building 25. These USTs are known to have been used to store dry cleaning fluids. The USTs were reportedly installed in the 1940s, at the time the building was constructed. These USTs were used in conjunction with the dry cleaning operations until the early 1970s. During this time, VarsolTM, a dry cleaning fluid, was stored in the USTs. The VarsolTM was reportedly introduced into the UST by a feed line that is located in the front (south side) of the building and runs under the building to the rear (north side) where the tanks were located. Because of Varsol's flammability, its use was discontinued in the 1970s and replaced with tetrachloroethene (PCE). PCE was stored in 150 gallon aboveground storage tanks (ASTs) outside Building 25 from the 1970s to mid-1980s. Groundwater contamination at Site 88 was suspected during the UST removal action conducted by OHM Remediation Services Corporation (OHM) in November 1995.

Currently, the dry cleaning machines are equipped with self containment units, eliminating the need for ASTs. There are two dry cleaning units in operation. One unit was brought on-line in December, 1986, and the second in March, 1995.

1.4 <u>Previous Investigations and Findings</u>

The following sections provide information on the previous Investigation regarding Site 88. The information summarized in this document is for the purpose of providing relevant background information which has been used to assess the site. For further details, concerning previous investigative work, the reader is referred to Baker's draft Site Evaluation Project Plans.

The five USTs were located on the north side of Building 25. During removal of the tanks in November 1995, soil contamination was identified and impact to the groundwater was suspected.

OHM performed the removal of the five USTs at Building 25. As a follow-up to the removal of the tanks, a four-well site check was conducted in November 1995 by OHM to identify and/or verify the suspected contaminant impact in the subsurface soil and groundwater. The locations of these four initial temporary monitoring wells are shown on Figure 1-2. The activities and findings of the initial Investigation included:

- Installation of three temporary monitoring wells (TW01 through TW03) around the former UST location and one (TW04) on the opposite side (south) of the building.
- Analysis of subsurface soil samples revealed levels of PCE ranging from 13 µg/kg to 55 µg/kg in three of the four well borings, 1,2-dichloroethene (DCE) (total) at a concentration of 9 µg/kg, and two common laboratory contaminants (acetone and methylene chloride). Several metals also were detected in the subsurface soil

samples. No pesticides, polychlorinated biphenyls (PCBs), total petroleum hydrocarbons (TPH), or semivolatile compounds were detected in any of the subsurface soil samples.

One groundwater sample was collected from each of the four temporary monitoring wells and analyzed for full target compound list (TCL) organics, target analyte list (TAL) metals and TPH. Iron and nickel were detected above the North Carolina 2L Water Quality Standard (WQS) in all four wells. These metals are not believed to be associated with the site. TPH was detected in two of the groundwater samples at 628 µg/L and 552 µg/L. Bis(2-ethylhexyl)phthalate and naphthalene were detected in the groundwater; however, bis(2-ethylhexyl)phthalate is not likely to be associated with the site and is considered a laboratory contaminant. The TPH and naphthalene could be present as a result of fuel-related USTs in the area. PCE was detected in all the groundwater samples at concentrations ranging from 416 µg/L to 29,200 µg/L. 1,2-dichloroethene was also detected in the samples at concentration of 2,750 µg/L. No pesticides or PCBs were detected in the four groundwater samples.

2.0 SITE CHARACTERISTICS

This section of the report describes the physical setting of Site 88 including topography, drainage characteristics, geology, hydrogeology, and general groundwater flow patterns.

2.1 <u>Topography and Surface Features</u>

Site 88 is located in the industrial/commercial section of MCB Camp Lejeune referred to as the "Hadnot Point Industrial Area". As described in Section 1.0, the site is located near Post Lane and Virginia Dare Drive. The site terrain is relatively flat, with elevations of approximately 25 feet above mean sea level (msl). Most of the area is covered by a combination of existing buildings, asphalted streets, and parking areas. Grass areas exist along with a few trees and ornamental shrubbery in the vicinity of the site.

2.2 Surface Water Hydrology

There are no surface water features at the site. The New River is the nearest surface water body, located approximately 3,000 feet west of Building 25. During storm events, overland drainage offsite is unlikely as most of the site has a relatively flat topography and run-off is collected by underground storm water drainage systems. Storm water drains are located on the south side of the building along Post Lane, as shown on Figure 1-2.

2.3 Site Geology

The sections which follow describe the site specific geology based on the borings completed as part of the Phase I Investigation. When applicable, the local geology is placed in the context of the regional geology, as described in the "Hydrogeologic Framework of U.S. Marine Corps Base at Camp Lejeune, North Carolina", Cardinell, et al., 1993.

A fairly consistent depositional sequence was observed in borings throughout Site 88. The subsurface sediments are typical of the southeastern coastal plain geology. The site is underlain by unconsolidated sediments resulting from a near shore depositional environment. This observed sequence is similar to the generalized North Carolina coastal plain sequence shown in Table 2-1. Table 2-1 shows that the Yorktown, Eastover, and Pungo River Formations lie between the Undifferentiated and Belgrade Formations. The Yorktown, Eastover, and Pungo River Formations, however, have not been identified at Camp Lejeune.

During this Investigation, the Undifferentiated and River Bend Formations were encountered. The presence or absence of the Belgrade Formation at Site 88 is debatable; however, a description of this unit has been included in this report. Shallow borings were advanced to approximately 15 to 20 feet below ground surface (bgs) while four deeper borings were drilled to depths ranging from 47 to 57 feet bgs. The shallow temporary wells installed during this Investigation were screened in the Undifferentiated Formation (surficial aquifer), while the intermediate wells were screened in the River Bend Formation (upper portion of the Castle Hayne aquifer).

The Undifferentiated Formation is comprised of loose to medium dense sands and soft to medium stiff clay. This formation is comprised of several units of Holocene and Pleistocene ages and can consist of a fine to coarse sand, with lesser amounts of silt and clay. At Site 88, this formation typically extends to a depth of approximately 18 feet bgs. The silt and clay layer near the bottom of this formation may be correlated to the regional geology as the Belgrade Formation, or Castle Hayne

Confining unit. As shown by the cross-sections prepared for Site 88, however, this clay layer does not appear consistent.

The Belgrade Formation is typically comprised of fine sand with some shell fragments, silt, and clay of Miocene age. Shell fragments were not identified to be present within the sediments at Site 88, suggesting that the Belgrade Formation may be absent at this location. In general, the Undifferentiated (surficial aquifer) appears to lie immediately above the River Bend Formation (upper portion of the Castle Hayne aquifer), with little to no presence of the Belgrade Formation (Castle Hayne confining unit).

Beneath the Undifferentiated Formation (surficial aquifer) lies the River Bend Formation (upper portion of the Castle Hayne aquifer). This unit is present at Site 88 at depths of approximately 25 to 50 feet bgs.

Figure 2-1 shows the location of two geologic cross-sections constructed to represent the subsurface conditions. Figures 2-2 and 2-3 present geologic cross-section A-A' and B-B', respectively.

As can be seen from cross-sections A-A' and B-B', the soils below the site generally consist of fine sand with a trace to little silt and clay. This unit, extending to a depth of approximately 18 feet bgs, correlates to the Undifferentiated Formation. A laterally discontinuous layer of clay with little to some silt is present approximately 12 to 18 feet bgs which may be representative of the Belgrade Formation. The clay layer is laterally discontinuous and, therefore, the surficial aquifer is hydraulically connected to the upper portions of the underlying Castle Hayne aquifer. The inconsistency of this semi-confining layer has been reported in previous Investigations conducted at the Hadnot Point Industrial Area (ESE, 1990; Law-Catlin, 1996). In addition, previous studies in the area have noted that as distance from the New River increases, the semi-confining unit slopes or "dips" away from the river and tends to increase in thickness.

Beneath the clay layer lies a fine to medium sand with some silt and clay. This unit is indicative of the River Bend Formation, or upper portions of the Castle Hayne aquifer. The unit has a green to greenish-gray and brown color and in some areas contains a little gravel.

2.4 Site Hydrogeology

As shown on Table 2-1, the surficial aquifer resides within the Undifferentiated Formation, the Belgrade Formation resides within the Castle Hayne confining unit, and the Castle Hayne aquifer resides within the River Bend Formation. The 1993 USGS document referenced above reports that the thickness of the surficial aquifer is 17 feet thick in this area (based on water supply well boring logs). This thickness correlates with what was observed in the soil borings at Site 88. Based upon the borings, it appears that the surficial aquifer lies immediately above the Castle Hayne aquifer, with little to no presence of the Castle Hayne confining unit.

At the time of drilling, groundwater was generally encountered from five to 10 feet bgs. A complete picture of the groundwater flow regime in the form of a potentiometric map has not been presented in this report. Instead, only relative groundwater elevations and approximate flow directions are shown on Figure 2-4 for the surficial (shallow wells) and Castle Hayne (intermediate wells) aquifers. Groundwater elevations collected from the temporary monitoring wells were not used for an accurate presentation of groundwater flow due to the fact that measurements were recorded on different days depending on the sampling efforts. The elevations on Figure 2-4 can be used as a guide, however, to give a general indication of the local flow regime.

In general, groundwater elevations seem to be higher in the area of Building 25 and decrease to the west and southwest. This would suggest a local groundwater flow pattern toward the New River which is to be expected. Moreover, this trend is consistent with groundwater flow patterns described in several other Hadnot Point Investigations (ESE, 1990; Baker, 1993; Law-Catlin, 1996). Although difficult to estimate based upon the limited data, groundwater flow directions recorded from the intermediate wells suggest a slight variation in groundwater flow direction as compared to the shallow wells. The different flow directions are shown on Figure 2-4 by the different colored arrows. Approximate flow direction of the surficial aquifer is to the south southwest as shown by the red arrow, while the wells screened in the Castle Hayne aquifer indicate a flow direction slightly more to the west as shown by the green arrow. Overall, groundwater from both aquifers appear to flow in the direction of the New River.

Groundwater head differentials between the shallow and intermediate wells were evaluated to determine if a vertical component of flow exists at Site 88. The data demonstrate a downward component of groundwater movement from the surficial aquifer to the Castle Hayne aquifer. This implies that a significant hydraulic connection exists between the surficial and upper portion of the Castle Hayne aquifer. This situation impacts the migration of contaminants as they tend to move downward in the direction of vertical groundwater flow.

In addition to migration of contaminants due to groundwater flow, the orientation or "dip" of the clay layer in the area of Site 88 can have a direct impact on contaminant migration. For example, vertical migration of contaminants will be greater in areas where this unit is thin or absent. In addition, lateral migration of the contaminants will be controlled not only by groundwater flow direction, but also by the orientation or "dip" of the unit. The affect of groundwater flow direction and subsurface conditions on contaminant migration is discussed further in Section 4.0.

2.5 Identification of Water Supply Wells

A database containing information on water supply wells at MCB Camp Lejeune was examined to determine if any water supply wells were in close proximity to Site 88. As shown on Figure 2-5, there are no active wells present within a one mile radius of the site. The nearest active water supply well is HP-642 which is located approximately 1.5 miles east of Site 88. As shown on Figure 2-5, this well falls just outside the boundary of the one mile radius. Table 2-2 provides construction details on HP-642.

3.0 FIELD INVESTIGATION

Section 3.0 provides a description of the field activities and sample analysis associated with the Investigation at Site 88. General activities and standard operating procedures followed the guidelines set forth in the draft Site Evaluation Project Plans. This section discusses the specific field activities and graphically depicts or tabulates appropriate investigative points.

3.1 Field Activities

The Phase I field Investigation activities at Site 88 were conducted in August 1996, and provided the necessary data to estimate the effects of previous site activities on the soil and groundwater. This was accomplished through the acquisition of environmental samples which were analyzed by an on-site with confirmation samples analyzed by a fixed based laboratory. The following tasks were completed at Site 88. Further discussion of the field activities follow.

- Subsurface Soil Sampling
- Temporary Monitoring Well Installation
- Groundwater Sampling
- Land Survey
- Well Abandonment
- Decon Procedures
- Investigative Derived Waste Management

3.1.1 Subsurface Soil Sampling

Standard drilling methods were employed at the site to complete soil borings for temporary monitoring well installation. Soil samples were collected via split-spoon sampling methods in general accordance with the procedures outlined in the American Society for Testing and Materials (ASTM) Standard Method for Penetration Test and Split-Barrel Sampling of Soils (Designation D 1586). Split-spoons of 24-inch (nominal) length were used throughout the Investigation. In most cases, samples were collected continuously from the surface (i.e., ground surface to a depth of twelve inches) at two-foot intervals starting at one foot below ground surface. Continuous sample collection proceeded until the water table. Below this depth, samples were collected at various intervals depending upon site conditions.

Each sample was classified in the field by a geologist using the Unified Soil Classification System (USCS) in accordance with the visual-manual methods described by the American Society for Testing and Materials (ASTM, 1993a). The field descriptions were recorded in a field logbook and later transposed onto boring log records. Soil classification included characterization of soil type, grain size, color, moisture content, relative density, plasticity, and other pertinent information such as any indication of contamination. The Standard Penetration Test (SPT) blow counts were also recorded. In addition, a photoionization detector (PID) was used to screen the samples to detect the presence of any VOCs. The test boring records and well construction records are presented in Appendix A. Sample information such as boring number, sample identification, time and date of sample collection, field sampling team, and analytical parameters were recorded for each of the soil samples.

All drilling and soil sampling activities were performed in Level D personnel protective equipment.

Soil cuttings generated during the Investigation were collected, handled, and stored according to the procedures outlined in Section 3.1.7.

A total of 19 soil borings were advanced at Site 88 to classify the subsurface conditions and collect soil samples for laboratory analysis. Fifteen shallow soil borings were drilled for the installation of the shallow temporary monitoring wells. These borings varied in depth from 15 to 20 feet bgs. Four deeper borings were drilled to depths ranging from 47 to 57 feet bgs. These borings were used for the installation of the intermediate wells at Site 88.

3.1.2 Temporary Monitoring Well Installation

A total of 19 temporary monitoring wells were installed during the Phase I Investigation at Site 88 (August 16, 1996 to August 20, 1996). This included 15 shallow and 4 intermediate wells at the site. Four existing shallow temporary monitoring wells (TW01 through TW04) were installed by OHM in November 1995. All of the wells installed as part of this Investigation were installed using a standard truck mounted drill rig. Use of a standard drill rig enabled the field crew to install intermediate wells which were approximately 50 feet bgs. The wells were situated spatially across the site to provide samples from potentially impacted groundwater, and to characterize the nature and extent of possible contamination. Placement of the temporary wells was based on the previous Investigation, site conditions, locations of underground utilities, and the overall scope and objectives of the project.

All of the monitoring wells were constructed of one-inch diameter, Schedule 40, flush-joint and threaded, polyvinyl chloride (PVC) casing. The wells utilized either a 10-foot or a 15-foot screened interval of No. 10 (i.e., 0.0010 inch) slot screen sections. The screened sections of the wells were covered with a piece of cloth material known as a "well sock", which reduces the amount of fine grained material that moves through the screen and into the monitoring well. The boreholes were backfilled to the surface with natural material and left as "stick-up" for subsequent groundwater sampling. The well identification of each temporary well was written with a permanent marker to identify the location during sampling and surveying activities. Typical temporary monitoring well construction details are shown on Figure 3-1. Well construction records are provided on the Test Boring and Well Construction Records in Appendix A.

The four existing temporary monitoring wells installed by OHM in November 1995, were drilled using a GeoProbe drill rig. The wells were installed with five to ten feet of one-inch outside diameter (OD) PVC well screen with approximately 10 feet of riser. A summary of this work is provided in Section 1.4 of this report.

The Phase I Investigation wells were installed after completing a soil boring to the appropriate depth as discussed in Section 3.1.1. The shallow well depths at Site 88 ranged from 15 to 20 feet bgs. In general, the shallow wells were installed approximately 10 feet below the water table encountered during drilling. The intermediate wells were installed to identify the absence or presence of a semiconfining layer (known as the "Castle Hayne Confining Unit") at the site and to characterized the groundwater at this depth. The intermediate wells ranged in depths from 44 to 50 feet bgs. Screened intervals for these wells ranged from 39 to 50 feet bgs (refer to Appendix A and Table 3-1 for test boring and well construction records). Figure 3-2 shows the locations of all of the temporary wells installed at Site 88.

3.1.3 Groundwater Sampling

Groundwater samples were collected to assess whether contamination, that may have resulted from previous activities at Site 88 was present in the shallow aquifer. Based upon the previous investigative results and historical records, the contaminants of potential concern were primarily volatile organic compounds (VOCs). Prior to groundwater purging, a water level measurement from each well was obtained. The total well depth was also recorded from each well to the nearest 0.1-foot. Water level and well depth measurements were used to calculate the volume of water in each well and the volume of water necessary to purge the well.

A minimum of three to five well volumes were purged from each well prior to sampling. Measurements of pH, specific conductance, temperature, turbidity, and dissolved oxygen (D.O.) were taken after each well volume was purged to ensure that the groundwater characteristics had stabilized before sampling These measurements were recorded in a field logbook and are provided on Table 3-2. Purge water was contained and handled as described in Section 3.1.7.

Groundwater sampling involved the use of a low flow well purging and sampling technique. The sampling methodology was developed in response to conversations with USEPA Region IV personnel in Athens, Georgia. A peristaltic pump (GeoPump), with the intake set two to three feet into the static water column, was used to purge each of the wells. While purging groundwater from each of the monitoring wells, a flow rate of less than 0.25 gallons per minute (gpm) was maintained. The groundwater samples were collected directly from the pump discharge. Dedicated sections of polyethylene and silicon pump-head tubing were used during purging and sampling activities at each well. Rinsate blanks were collected from the polyethylene and silicon tubing to verify that proper procedures had been followed.

Documentation of groundwater samples incorporated procedures similar to those described for soil samples. Sample information, including well number, sample identification, time and date of sample collection, sampling team, analytical parameters, were recorded in a field logbook and on the sample labels. Chain-of-custody documentation (provided in Appendix B) accompanied the samples to the laboratory.

3.1.4 Land Survey

A land survey was conducted by Lanier Surveying, a licensed professional surveyor in the State of North Carolina. The surveying was completed under the direction of the Baker Site Manager. The survey of the site included the temporary monitoring wells, locations, buildings, and other relevant features such as trees, utilities, and parking areas. All of the points were surveyed for vertical and horizontal control using North Carolina State Plane Coordinates.

3.1.5 Well Abandonment

Upon completion of the groundwater sampling and surveying activities, all of the temporary monitoring wells were abandon. The PVC pipe was removed from the ground manually by pulling it to the surface using pipe wrenches for leverage. The boreholes were then backfilled to the surface with soil cuttings. As shown on Figure 3-2, several of the wells were installed in traffic areas. Upon removal of the PVC pipe, these boreholes were filled with cement to approximately four inches below the surface and then repaired with an asphalt patch to grade.

3.1.6 Decontamination Procedures

All of the equipment used during the field activities was decontaminated before and after each use to prevent cross-contamination of samples, with the exception of disposable sampling equipment. The disposable sampling equipment was appropriately discarded subsequent to its initial use. Disposable equipment included polyethylene and silicon tubing used for groundwater sampling. Soil samples at Site 88 were collected with split-spoons and stainless steel sampling equipment. Decontamination of these items followed the USEPA Region IV's Standard Operating Procedures (SOPs). The drill rig and all associated drilling and sampling tools were steam cleaned prior to initiating drilling activities and between borings. Decontamination of the sampling equipment involved:

- scrubbing the item with liquinox soap and potable water
- rinsing with distilled water
- rinsing with 10 percent nitric acid
- rinsing with distilled water
- rinsing with isopropanol
- allowing the item to air dry

Meters and instruments used for measuring dissolved oxygen, pH, temperature, specific conductivity, and turbidity were rinsed with distilled water after each use.

3.1.7 Investigation Derived Waste Management

Field Investigation activities associated with CTO-0356 resulted in the generation of various Investigation derived waste (IDW). The IDW included soil cuttings, purge water, and solutions used to decontaminate non-disposable sampling equipment. The general management techniques utilized for the IDW were:

- Collection and containerization of IDW material
- Temporary storage of IDW while awaiting confirmatory analytical data
- Final disposal of aqueous and solid IDW material

The management of the IDW was performed in accordance with guidelines developed by the USEPA Office of Emergency and Remedial Response, Hazardous Site Control Division (USEPA, 1992). IDW soils from Site 88 were transported to a remote area of Lot 203, dumped from the roll-off box and regraded. The purge water from Site 88 was found to contain VOCs and was therefore transported off-site and disposed of at the water treatment plant at Site 82.

3.2 Sample Acquisition and Analytical Program

The following sections provide information on the numbers of samples collected at Site 88, the type of media sampled and the requested analytical procedures. Tables have been prepared which detail the analytical tests and figures are provided which show the sample locations relative to the sites.

3.2.1 Subsurface Soil Sample Acquisition and Analyses

Nineteen soil samples were collected at Site 88 from test borings and analyzed by an on-site mobile laboratory for VOCs according to EPA method 8240. Four of the soil samples were submitted for

fixed based laboratory confirmation. Fixed based confirmation samples were submitted for Contract Laboratory Program (CLP) Target Compound List (TCL) volatile organic analysis (VOA). Table 3-3 lists the analyses performed on the soil samples at Site 88 along with the sample identifications, and sampling depths.

The borings were positioned across the site in an effort to provide complete coverage while taking account for numerous underground utilities. The locations of the borings are presented on Figure 3-2.

3.2.2 Groundwater Sample Acquisition and Analyses

Groundwater samples were collected from Site 88 from the temporary wells. These samples were analyzed in the field with a mobile laboratory for VOCs according to EPA Method 8240. In addition, confirmation samples were collected and submitted for TCL VOAs at a fixed based laboratory. Table 3-4 provides information on the groundwater sample analysis for Site 88. Figure 3-2 illustrates the locations of the groundwater monitoring wells.

3.3.3 Quality Assurance Quality Control

Quality Assurance/Quality Control (QA/QC) samples were collected during the Phase I Investigation. Field QA/QC samples were collected at the site according to the procedures outlined in the USEPA Region IV SOPs. Two types of QA/QC samples were obtained at the site. Field blanks were collected to establish field background conditions and trip blanks were collected to evaluate whether cross-contamination occurred during sampling and shipping of the fixed based samples. Equipment rinsate samples, duplicate samples, and matrix spike/matrix spike duplicates were not collected as part of the Phase I field Investigation. These QA/QC samples were not deemed necessary due to the use of dedicated disposable sampling equipment and the fact that fixed based results were only used for confirmation of the on-site analysis.

The definition of each type of QA/QC sample is provided in the Environmental Compliance Branch SOPs and Quality Assurance Manual, USEPA Region IV (USEPA, 1991). A brief summary of the QA/QC samples collected during this Investigation is provided below.

- Field Blanks: Field blanks were collected to provide analytical data on the water used in the field for decontamination purposes. The results for the field blanks collected during this Investigation can be found in Appendix C.
- Trip Blanks: Trip blanks are prepared prior to the sampling event, placed in the actual sample container, and kept with the investigative samples throughout the sampling event. Results of the trip blanks analyses can be found in Appendix C.

3.3.4 Data Management and Tracking

The management and tracking of data, from time of field collection to receipt of the analytical report, is of primary importance to the overall quality of laboratory results. Samples collected for on-site analysis were identified by recording in a field log book and on the sample container. These samples were immediately transported to the on-site laboratory and logged into a database prior to analysis. Sample identification of those samples analyzed at the fixed based lab were recorded on chain-of-custody forms, provided in Appendix B. Chain-of-custody forms were reviewed by data

management personnel to verify that appropriate laboratory analyses had been requested. Upon receipt of laboratory analytical results, a further comparison was performed to verify that each sample received by the laboratory was analyzed for the correct parameters.

The management and tracking of data from the time of sample collection until receipt of the analytical results was completed to determine the following items:

- Identify and correct chain-of-custody discrepancies prior to laboratory analysis
- Verify the receipt of all samples by the laboratory
- Confirm that requested sample analyses were performed
- Ensure the delivery of a complete data set

4.0 FINDINGS OF THE PHASE I INVESTIGATION STUDY

This section of the report presents the findings of the Phase I Investigation Study. It includes results of soil sampling and groundwater sampling for OU 15 (Site 88). The analytical results for QA/QC samples also are presented in this section.

Presentation of the analytical data in this section includes a comparison of the site data to established federal and state standards and criteria. The standards and criteria chosen for evaluation are media specific and help to provide a reasonable assessment of site conditions. An explanation and justification for using each of the standards and criteria are presented in section 4.1.

4.1 <u>Screening Standard Comparisons</u>

The qualitative assessment for soil and groundwater data was completed using state and federal standards and criteria to evaluate the contaminant levels detected in the media. The sections below are presented to define the screening standards applied to each of the media

4.1.1 Subsurface Soil

The screening standard applied to subsurface soil is based on the following sources:

 USEPA Region III soil screening levels for transfer from soil to groundwater (USEPA, May 1996a). The soil screening levels (SSLs) established by USEPA Region III provide reasonable maximum estimates of transfer of contaminants from soil to other media. Soil concentrations protective of groundwater are used to qualitatively assess the soil. Protective is defined as a residential contact scenario that will yield a fixed upper bound risk of 10⁻⁶ or fixed hazard quotient of 1 [(whichever occurs at the lower concentration). (USEPA May, 1996a)]

4.1.2 Groundwater

The screening standard applied to groundwater is based on the following sources:

- North Carolina Water Quality Standards (NC WQS, 1994) North Carolina WQSs are the maximum allowable concentrations, resulting from any discharge of contaminants to the lands or waters of the state, that may be tolerated without threatening human health or otherwise rendering the groundwater unsuitable for its intended purposes.
- USEPA Maximum Contaminant Levels (MCLs), February, 1996 MCLs are enforceable standards for public water supplies, designed to protect human health and promulgated under the Safe Drinking Water Act. MCLs also account for the technical feasibility of removing contamination from a public water supply. MCLs are based on laboratory or epidemiological studies and are applied to analyses of drinking water supplies consumed by a minimum of 25 persons. MCLs establish limits under which 70 kg adults, drinking 2 liters of water a day for 70 years, can avoid detrimental health effects.

4.2 Non-Site Related Analytical Results

Some of the organic compounds detected in the environmental media may be attributable to non-site related conditions. Two primary sources of non-site related analytical results include laboratory contaminants and contaminants introduced during field activities such as decontamination procedures. A brief discussion of non-site related analytical results is provided in the section which follows.

4.2.1 Laboratory Contaminants

Field blank and trip blank samples provide a measure of contamination that may have been introduced into a sample set during the collection, transportation, preparation, or analysis of samples. To remove non-site related constituents from further consideration, the concentrations of chemicals detected in blanks were compared with concentrations of the same chemicals detected in environmental samples.

As the scope of the Phase I Investigation was limited to estimating the extent of contamination through on-site screening, limited QA/QC samples were collected. The QA/QC samples included trip blanks that accompanied confirmatory samples to the fixed based laboratory and field blanks of the potable water source used during drilling operations. The trip blank samples did not detect any contaminants . The field blank samples collected from the potable water source used during drilling operations detected low concentrations of chloroform. This compound was common in all the groundwater samples collected from borings in which water was used while drilling (typically the intermediate wells). As the chloroform was present in the potable water source used for drilling, its detection in the environmental samples was not considered to be site related. The concentrations of the chloroform detections in the groundwater samples were similar to those detected in the potable water supply. Due to the analytical similarities between the groundwater samples and the field blanks, detected concentrations of chloroform were not reported on the analytical tables or figures.

4.3 <u>Site Analytical Sample Results</u>

This section presents the results of the soil and groundwater Investigations performed as part of the Phase I Investigation. The data are presented by the individual media; soil and groundwater. The results are discussed and presented in corresponding tables which show all of the positive detections and a summary table which includes comparison to the appropriate "screening standard". The positive detections are also included on figures in this section to illustrate the spatial relationships of the data.

4.3.1 Subsurface Soil

A total of 19 soil samples were collected at Site 88 using standard drilling and sampling procedures as described in Section 3.1.1. The majority of the samples were collected from the shallow subsurface, at or just above the water table. However, several soil samples were collected below the watertable to compare results to that of the shallow subsurface results. All of the samples were analyzed on-site by a mobile laboratory in accordance with EPA Method 8240. The results of this analysis are presented on Table 4-1. Three VOCs were detected in the soil samples analyzed on site, including cis-1,2-DCE, TCE and PCE. Cis-1,2-DCE was detected in one soil sample 88-TW15 at a concentration of 21 μ g/kg, TCE was detected at concentrations ranging from 0.1 μ g/kg to 8.5

 μ g/kg, and PCE was detected at concentrations ranging from 0.1 μ g/kg 237.6 μ g/kg. These results are summarized on Table 4-2 and illustrated on Figure 4-1. As shown on Table 4-2, the detection of PCE at 237.6 μ g/kg at TW08 exceeded the established screening criteria estimated for subsurface soils.

Four of the soil samples were split and submitted to a fixed based laboratory to confirm the precision and accuracy of the on-site analytical findings. The selected samples were chosen to confirm high, medium, low, and nondetect concentrations. Correlations of the on-site to the fixed based results indicate that nondetect results were reported to be one to one. However, for positive findings the on-site laboratory levels were elevated compared to the fixed based results. This difference could be attributable to the time between sampling and analysis and/or preparation of the sample for analysis. However, the integrity of the data is considered acceptable because both analytical methods were able to confirm nondetects and trace level concentrations. The only VOC detected in the fixed based soil samples was PCE at a concentration of 53 μ g/kg in sample 88-TW08-03. A complete report of the fixed based results are shown on Table 4-3. Chain-of-custody documentation is provided in Appendix B.

In general, the impact to the soil at Site 88 appears to be concentrated in the area of Building 25 and the parking area across the street to the northwest near Building 43. The presence of VOCs in the soils near the parking area may be a result of migration of contaminants along preferential pathways such as underground utilities, or lateral migration along confining units. Based upon the on-site screening analytical data the estimated area of impacted soils is shown on Figure 4-1. As shown on the figure, concentrations of VOCs north, south, and east of Building 25 decrease dramatically at a short distance from the source area. The boundary of the soil contamination to the northwest is estimated to extend to Building 43. At the present time, the presence of contaminants near Building 43 are suspected to have originated from Building 25 as there are no known sources for these contaminants at Building 43.

4.3.2 Groundwater

The groundwater Investigation at Site 88 entailed the collection of groundwater samples from 23 temporary monitoring wells. Each of the groundwater samples collected were analyzed according to EPA Method 8240. In addition, seven samples were analyzed by the fixed based laboratory for full TCL VOAs using CLP protocols. The positive detections for on-site analyses are included on Table 4-4. Table 4-5 provides the results of the fixed based results and Table 4-6 summarizes these results.

Five VOCs were detected in the groundwater samples analyzed on-site including, cis-1,2-DCE, trans-1,2-Dichloroethene (trans-1,2-DCE), 1,1,1-trichloroethane (1,1,1-TCA), TCE, and PCE. Trans-1,2-DCE was detected in one groundwater sample at a concentration of 38 μ g/L and cis-1,2-DCE was detected at concentrations ranging from 3 μ g/L to 3,725 μ g/L. 1,1,1-TCA was detected in three samples at concentrations ranging from 0.2 μ g/L to 0.5 μ g/L. TCE was detected in 14 of the 23 groundwater samples at concentrations ranging from 0.2 μ g/L to 3,030 μ g/L. PCE was the most frequently detected compound, present in 19 of the 23 samples. The concentrations ranged from 0.2 μ g/L to 53,703 μ g/L. The concentrations of the compounds cis-1,2-DCE, TCE, and PCE exceeded both the federal MCLs and the NC WQSs. Table 4-4 presents the positive detections for the on-site analysis.

The seven samples submitted for fixed based confirmation were selected to measure the precision

and accuracy of the on-site laboratory. These samples were selected based upon the on-site analytical findings and to represent high, medium, low, and nondetect concentrations. A strong correlation was shown between the on-site and fixed based results at the nondetect and trace concentration level. At the higher concentration ranges, greater than 1,000 μ g/L, the on-site results indicated that contaminant levels were higher than the fixed based. This difference could be due to the potential loss of volatiles between time of sampling and time of analysis (head space) and/or the sample preparation. The analytical findings for the on-site and fixed based analysis are reliable information and have been used to assist in the delineation of the extent of groundwater contamination. Table 4-5 presents the fixed based analytical findings. Additionally, a comparison of on-site to fixed based analytical findings is presented on Table 4-6.

Figure 4-2 presents the results of the volatile organic compounds detected in the shallow groundwater samples from the on-site analyses. The on-site data demonstrate groundwater contamination of the surficial aquifer at Site 88. The area which has been impacted has been estimated on the figure and includes all of the area around Building 25. In addition, the data suggest that the plume has extended west-northwest of the source area, moving across the street in the direction of Building 43. Relatively high levels of VOCs were detected at TW08 possibly due to the migration of contaminants along underground utility lines, lateral migration along clay units, or movement due to seasonal variations in groundwater flow patterns. As mentioned in Section 2.0, the semiconfining unit in the area of Site 88 is discontinuous and may dip in the direction of Building 43. The discontinuous nature and orientation of clay layers can impact the migration of contaminants as they move along semiconfining beds laterally, and then move downward in areas where the clay layer pinches out.

The four intermediate wells at Site 88 provide data to estimate the vertical extent of the groundwater contamination. Data collected at intermediate monitoring wells TW04IW, TW05IW, and TW08IW demonstrate groundwater contamination in the upper portion of the Castle Hayne aquifer in the area near Building 25. Figure 4-3 provides the results of the analytical results from the intermediate wells. These wells are screened at depths ranging from approximately 40 to 50 feet bgs. Based on these findings, it is possible to estimate the vertical extent of groundwater contamination to be at least 50 feet bgs in this area. Although a lower permeability clay and silt layer is present in some locations at Site 88, it is discontinuous and has not completely impeded the migration of contaminants into the underlying aquifer.

The furthest intermediate temporary well was installed approximately 630 feet west of Building 25. Intermediate well TW19IW is screened 45 to 50 feet bgs. Analysis of the groundwater sample from this well did not detect any VOCs in the groundwater. Likewise, there was no detection of shallow groundwater contamination in TW19.

In summary, the data collected during the Phase I Investigation confirms the presence of VOCs in both soil and groundwater at Site 88. Groundwater contamination is present in both the surficial and upper portion of the Castle Hayne aquifers. The concentrations observed in the groundwater samples collected during the Investigation exceed both federal MCLs and NC WQSs. Shallow groundwater contamination exists in the area surrounding Building 25 and extends some distance to the north northwest in the direction of Building 43; however, the Phase I Investigation data does not fully delineate the horizontal and vertical extent of groundwater contamination. Shallow groundwater contamination has been adequately defined in the area local to Building 25, however, it extends some distance in the direction of Building 43 (west northwest of Building 25). Additional groundwater information is required in the area of Building 43 to define this portion of the plume.

Groundwater contamination in the upper portion of the Castle Hayne aquifer has been confirmed to depths of 40 to 50 feet bgs in the areas of Buildings 25 and 43 (TW08IW). Further information is required from the intermediate and deep zone of the aquifer to establish the total depth of contamination. As noted on the corresponding tables and figure, TW08IW which is screened at a depth of 39 to 44 feet bgs, detected PCE at 53,703.8 μ g/L. Permanent Type III monitoring wells will be required to collect the necessary data to establish the vertical extent of contamination in the area of Building 25 and Building 43.

•

5.0 CONCLUSIONS AND RECOMMENDATIONS

This section summarizes the findings of the Phase I Investigation at OU No. 15, Site 88. The conclusions and recommendations developed from the data collected at Site 88 are presented separately.

5.1 <u>Conclusions</u>

The Phase I Investigation has confirmed the presence of both soil and groundwater contamination at Site 88. The source of the contamination is assumed to be the former UST system at the site. The tanks and the soil immediately surrounding them were removed from the site in November 1995, therefore, with the exception of contaminated soil beneath Building 25, the source of groundwater contamination has been eliminated. However, concentrations of VOCs in the groundwater are significantly higher than allowable state and federal standards, therefore a remedial alternative to treat contaminated groundwater will need to be developed. Prior to any remedial efforts however, further investigative work will be necessary to define the vertical and horizontal extent of contamination.

Specific conclusions for soil and groundwater at Site 88 are presented below. In general, the text focuses only on those compounds detected at concentrations above the screening standards, or regulatory levels.

5.1.1 Subsurface Soil

Three VOCs were detected in the subsurface soil samples collected from Site 88, including cis-1,2-DCE, TCE, and PCE. The impact to the soils at the site appears to be concentrated in the area near Building 25 and extending slightly to the north-northwest in the direction of Building 43. In general, concentrations of VOCs in the soil were shown to have decreased with distance from Building 25 and the area of the former USTs.

5.1.2 Groundwater

Five VOCs were detected in the groundwater at Site 88. The compounds included cis-1,2-DCE, trans-1,2-DCE, 1,1,1-TCA, TCE, and PCE. PCE was the most frequently detected compound and demonstrated the highest concentrations in the groundwater samples. The concentrations of cis-1,2-DCE, TCE, and PCE exceeded NC WQSs and federal MCLs. The data demonstrate groundwater contamination at the site both in the shallow and intermediate zones in the area of Building 25. Groundwater contamination surrounds Building 25 and extends to the north northwest in the direction of Building 43.

5.2 <u>Recommendations</u>

The recommendations for Site 88 are presented below. The recommendations are general in nature and do not include specific design considerations or sampling strategy. These items are beyond the current scope of work for this CTO. Details concerning future investigative work at the site must be presented in formal work plans submitted to LANTDIV and MCB Camp Lejeune.

The contamination at Site 88 appears to be concentrated in the area of Building 25, however, it has not been thoroughly defined to the west northwest in the direction of Building 43. The horizontal and vertical extent of contamination at Site 88 must be delineated through further sampling efforts. This may be accomplished by completing the following items:

- Installation of permanent shallow (Type II) monitoring wells around the perimeter of the estimated contaminant plume.
- Installation of both intermediate and deep permanent (Type III) wells at points within the defined plume boundary and in the direction of contaminant migration. Intermediate wells will extend to approximately 50 feet bgs, while deep wells may extend another 40 to 50 feet into the aquifer.
- Collection of soil samples during shallow, intermediate, and deep monitoring well installation. In addition to environmental testing, geotechnical analyses should be conducted on these samples to assist in the preparation of groundwater migration and transport models and in the selection and design of a remedial alternative.
- Further definition of the local geology and its effect on both horizontal and vertical contaminant migration.
- Groundwater sampling from shallow, intermediate and deep permanent monitoring wells for the contaminants of concern (i.e., VOCs).
- Measurement of groundwater elevations to establish the local groundwater flow regime in the shallow aquifer and an examination of potential head differences between shallow and deeper monitoring wells.
- Completion of aquifer tests (slug tests) to establish the hydraulic conductivity of the aquifer in question. A comparison of vertical and horizontal conductivity values should be made.
- Upon completion of aquifer tests and the establishment of local groundwater flow patterns, estimates of groundwater flow velocity can be made and corresponding contaminant transport.

It is estimated that a total of approximately 10 shallow and 10 intermediate/deep wells will be necessary to establish the vertical and horizontal extent of groundwater contamination at Site 88. Once the plume geometry has been established both horizontally and vertically, preparation of a remedial action plan can commence.

6.0 **REFERENCES**

American Society for Testing and Materials (ASTM). 1993. <u>Standard Test Method for Description</u> and Identification of Soils (Visual Manual Procedure). ASTM D-2488-93. American Society for Testing and Materials, Philadelphia, Pennsylvania.

Atlantic Division, Naval Facilities Engineering Command. January 1988. <u>Camp Lejeune Complex</u> <u>Master Plan and Capital Improvements Plan Upgrade</u>. Prepared for the Commanding General, Marine Corps Base, Camp Lejeune, North Carolina.

Baker Environmental, Inc. Draft Site Evaluation Project Plans, Operable Unit No. 15 (Site 88) Marine Corps Base, Camp Lejeune, North Carolina. May 1996.

Cardinell, A.P., Berg, S.A., and Lloyd, O.B. 1993. <u>Hydrogeologic Framework of U.S. Marine Corps</u> Base at Camp Lejeune, North Carolina: U.S. Geological Survey Water Resources Investigation <u>Report</u>. Report No. 93-4049.

Environmental Science and Engineering, Inc. (ESE). 1990. <u>Site Summary Report, Final Marine</u> <u>Corps Base, Camp Lejeune, North Carolina</u>. Prepared for the Department of the Navy, Naval Facilities Engineering Command, Atlantic Division, Norfolk, Virginia. ESE Project No. 49-02036.

Environmental Science and Engineering, Inc. (ESE). 1988. <u>Characterization Step Report for Hadnot</u> <u>Point Industrial Area. Marine Corps Base, Camp Lejeune, North Carolina</u>. Prepared for the Department of the Navy, Naval Facilities Engineering Command, Atlantic Division, Norfolk, Virginia. ESE Project No. 49-02036-0150.

Federal Facilities Agreement (FFA) Between United States Environmental Protection Agency, Region IV: The North Carolina Department of Environment, Health and Natural Resources and North Carolina. North Carolina Natural Heritage Program, Division of Parks and Recreation, Department of Environment, Health, and Natural Resources, Raleigh, North Carolina.

Law-Catlin, 1996. Leaking Underground Storage Tank Comprehensive Site Assessment Hadnot Point Fuel Farm Marine Corps Base Camp Lejeune, North Carolina.

USEPA. May 1996. Drinking Water Regulations and Health Advisories. Office of Water. EPA 822-R-96-001.

<u>United States Department of Navy for Marine Corps Base, Camp Lejeune and Marine Corps Air</u> <u>Station, New River, North Carolina.</u> December 1989.

United States Environmental Protection Agency (USEPA). 1992. <u>Guide to Management of Investigation-Derived Wastes</u>. "Standard Default Exposure Factors" Interim Final. Office of Emergency and Remedial Response Hazardous Site Control Division. Washington, D.C. os-22OW. April 1992.

USEPA, U.S. Environmental Protection Agency. May 1, 1991. "Water Quality Criteria Summary" (Wall Chart). Office of Science and Technology. Health and Ecological Criteria Section. Washington, D.C.

TABLE 2-1

GEOLOGIC AND HYDROGEOLOGIC UNITS OF NORTH CAROLINA'S COASTAL PLAIN **OPERABLE UNIT 15 (SITE 88)** PHASE I INVESTIGATION STUDY, CTO-0356 MCB, CAMP LEJEUNE, NORTH CAROLINA

	Geologic Units		Hydrogeologic Units	
System	Series	Formation	Aquifer and Confining Unit	
Quaternary	Holocene/Pleistocene	Undifferentiated	Surficial aquifer	
	Pliocene	Yorktown Formation ⁽¹⁾	Yorktown confining unit	
	Miocene	Eastover Formation ⁽¹⁾	Yorktown Aquifer	
		Pungo River Formation ⁽¹⁾	Pungo River confining unit	
			Pungo River Aquifer	
Tertiary		Belgrade Formation ⁽²⁾	Castle Hayne confining unit	
	Oligocene	River Bend Formation	Castle Hayne Aquifer	
	Eocene	Castle Hayne Formation	Beaufort confining unit ⁽³⁾	
	Paleocene	Beaufort Formation	Beaufort Aquifer	
	Upper Cretaceous	Peedee Formation	Peedee confining unit Peedee Aquifer	
		Black Creek and Middendorf	Black Creek confining unit	
		Formations	Black Creek Aquifer	
Cretaceous		Cape Fear Formation	Upper Cape Fear confining uni	
			Upper Cape Fear Aquifer	
	·		Lower Cape Fear confining uni	
			Lower Cape Fear Aquifer	
	Lower Cretaceous ⁽¹⁾	Unnamed deposits ⁽¹⁾	Lower Cretaceous confining un	
			Lower Cretaceous Aquifer ⁽¹⁾	
Pre-Cretaceo	ous basement rocks	••		

Notes:

- (1) Geologic and hydrologic units probably not present beneath MCB, Camp Lejeune.
 (2) Constitutes part of the surficial aquifer and Castle Hayne confining unit in the study area.
- ⁽³⁾ Estimated to be confined to deposits of Paleocene age in the study area.

Source: Harned et al., 1989.

TABLE 2-2

WATER SUPPLY WELL INFORMATION OPERABLE UNIT 15 (SITE 88) PHASE I INVESTIGATION STUDY, CTO-0356 MCB, CAMP LEJEUNE, NORTH CAROLINA

Well Number	Well Diameter (inches)	Casing Material	Date Installed (year)	Status (on/off/closed)	Date Closed	Depth (bgs)	Screen Top Depth	Screen Bottom Depth	Pump Depth	Airline Depth	Approx. Direction and Distance
HP-642				On	NA	178		••	96	112	6,732 ft

Notes:

NA = Not applicable

-- = Data unavailable

TABLE 3-1

SUMMARY OF WELL CONSTRUCTION DETAILS **OPERABLE UNIT 15 (SITE 88)** PHASE I INVESTIGATION STUDY, CTO-0356 MCB, CAMP LEJEUNE, NORTH CAROLINA

Well Number	Date Installed	Top of Casing Elevation (ft. above msl) ⁽¹⁾	Ground Surface Elevation (ft. above msl)	Boring Depth (ft, bgs) ⁽²⁾	Well Depth (ft, bgs)	Screen Interval Depth (ft, bgs)
88-TW04IW	8/16/96	28.55	26.46	56.0	50.0	45.0-50.0
88-TW05	8/16/96	28.18	25.73	15.0	15.0	5.0-15.0
88-TW05IW	8/18/96	27.89	26.02	57.0	50.0	45.0-50.0
88-TW06	8/16/96	25.64	25.62	15.0	15.0	5.0-15.0
88-TW07	8/16/96	28.60	26.50	15.0	15.0	5.0-15.0
88-TW08	8/16/96	26.80	24.71	15.0	15.0	5.0-15.0
88-TW08IW	8/18/96	25.63	24.71	47.0	44.0	39.0-44.0
88-TW09	8/16/96	27.89	25.73	18.0	18.0	8.0-18.0
88-TW10	8/17/96			15.0	15.0	5.0-15.0
88-TW11	8/17/96	28.22	26.08	15.0	15.0	5.0-15.0
88-TW12	8/17/96	27.18	26.62	20.0	20.0	10.0-20.0
88-TW13	8/17/96	26.06	25.16	19.0	19.0	9.0-19.0
88-TW14	8/17/96	29.06	26.06	15.0	15.0	5.0-15.0
88-TW15	8/17/96	27.08	24.67	18.0	18.0	8.0-18.0
88-TW16	8/18/96	27.26	23.87	17.0	17.0	7.0-17.0
88-TW17	8/18/96	26.02	25.02	19.0	19.0	9.0-19.0
88-TW18	8/19/96	24.38	22.26	16.0	15.0	5.0-15.0
88-TW19	8/20/96	24.90	23.24	18.0	18.0	8.0-18.0
88-TW19IW	8/19/96	25.87	23.24	50.0	50.0	45.0-50.0

Notes:

⁽¹⁾ msl = mean sea level
 ⁽²⁾ ft, bgs = feet, below ground surface

TABLE 3-2

SUMMARY OF FIELD PARAMETERS FOR GROUNDWATER SAMPLING OPERABLE UNIT 15 (SITE 88) PHASE I INVESTIGATION, CTO-0356 MCB CAMP LEJEUNE, NORTH CAROLINA

Well Number				Field Parameters				
Date of Measurement	Measuring Time	Well Volume	Purge Volume (gals.)	Specific Conductance at 25°C (µmhos/cm)	Temperature at 25°C (°C)	рН (S.U.)	Turbidity (T.U.)	Dissolved Oxygen (mL/L)
88-TW04IW	1400	1	3	461	26.1	7.02	48.5	1.6
08/15/96	1428	2	6	460	25.9	7.02	8.5	1.6
	1455	3	9	450	26.0	7.09	2.5	1.7
88-TW05 ⁽¹⁾	1535	N/A	1				50	
08/16/96	1545	N/A	N/A				70	
	1555	N/A	N/A				42.5	
	1545	N/A	N/A			÷-		
	1630	N/A	N/A				70	
	1640	N/A	N/A				33	
	1650	N/A	N/A				12	
	1700	N/A	N/A				8	
88-TW05IW	1250	1	3	668	25.4	6.37	55	2.0
08/18/96	1308	2	6	608	24.4	6.42	2.6	2.6
	1327	3	9	565	24.4	6.57	0.7	2.6
88-TW06	0812	1	0.7	225	28.1	6.42	13	4.0
08/17/96	0900	2	1.4	217	18.5	625	3.4	3.4
	0933	3	2.1	213	29.0	6.21	1.2	3.8
88-TW07	0957	1	0.7	201	25.0	5.53	24	2.6
08/17/96	1008	2	1.4	203	24.6	5.46	16	2.5
	1015	3	2.1	225	24.0	4.87	95	2.0
	1025	4	3.0	221	24.3	4.81	19.5	1.8
	1030	N/A	N/A				10	
88-TW08	1057	1	.5	149	26.4	4.51	**	2.8
08/17/96	1100	2	1	104	26.5	4.34		2.0
	1120	3	1.5	885	25.7	4.70		19
	1116	4	2	87	25.7	4.64	20	2.0
	1130	6	3	885	26.1	4.89		2.0
	1220	N/A	N/A				68	
	1225	N/A	N/A				60	
	1230	N/A	N/A				44	
	1240	N/A	N/A				30	
	1245	N/A	N/A				22	

.

ę

TABLE 3-2 (Continued)

SUMMARY OF FIELD PARAMETERS FOR GROUNDWATER SAMPLING OPERABLE UNIT 15 (SITE 88) PHASE I INVESTIGATION, CTO-0356 MCB CAMP LEJEUNE, NORTH CAROLINA

Well Number					Field	Parameter	S	
Date of Measurement	Measuring Time	Well Volume	Purge Volume (gals.)	Specific Conductance at 25°C (µmhos/cm)	Temperature at 25°C (°C)	рН (S.U.)	Turbidity (T.U.)	Dissolved Oxygen (mL/L)
88-TW08IW	1445	1	2.4	359	26.7	6.73	93	12
08/18/96	1502	2	5	378	25.3	6.83	17	1.6
	1525	3	7.5	404	24.9	6.80	4	1.4
88-TW09	1305	1	.5	133	28.2	5.39	50	3.8
08/17/96	1313	2	1	101	26.6	526	3.5	3.8
	1320	3	1.5	1005	25.9	5.11	2.5	4.0
88-TW10	1350	1	0.7	127	28.5	5.69	10	3.8
	1402	2	1.4	720	28.7	5.75	3	3.6
	1413	3	2.1	118	28.2	5.72	2.5	4.0
88-TW11	1434	1	.7	139	23.4	4.36	158	1.2
08/17/96	1439	2	1.4	137	23.1	4.14	128	1.4
	1446	3	2.1	136	23.1	4.19	50	1.6
	1450	4	3				19	
	1458	5	3.5		···		7	
88-TW12	1525	1	0.4	158	23.9	5.04	11.5	3.8
08/17/96	1535	2	0.8	140	23.7	5.16	2.7	40
	1600	3	1.5	140	23.3	5.32		40
88-TW13	1623	1	0.6	99	26.4	4.47	101	3.2
08/17/96	1629	2	1.2	99.5	27.0	4.62	38	3.0
	1635	3	2	99	26.4	4.63	160	30
	1338						120	
	1642						94	
	1648						26	
	1651						17	
	1655						13.5	
88-TW14	0742	1	0.7	226	22.9	4.51	55	3.0
08/18/96	0755	2	1.5	224	23.0	4.48	1	3.4
	0806	3	2.5	225	23.1	4.37	1	3.0
88-TW15	0828	1	3.6	202	31.6	4.21	87	3.0
	0835	2	1.2	181	32.1	4.23	5	2.8
	0842	3	2.0	166	32.0	4.17	2.2	2.4
88-TW16	1620	1	.7	121	27.0	5.19	31	2.4
08/18/96	1632	2 -	1.5	109	25.9	5.11	15	2.4
ć	1643	3	2.5	105	25.8	5.30	2.3	2.4

TABLE 3-2 (Continued)

SUMMARY OF FIELD PARAMETERS FOR GROUNDWATER SAMPLING OPERABLE UNIT 15 (SITE 88) PHASE I INVESTIGATION, CTO-0356 MCB CAMP LEJEUNE, NORTH CAROLINA

Well Number				Field Parameters				
Date of Measurement	Measuring Time	Well Volume	Purge Volume (gals.)	Specific Conductance at 25°C (µmhos/cm)	Temperature at 25°C (°C)	рН (S.U.)	Turbidity (T.U.)	Dissolved Oxygen (mL/L)
88-TW17	0822	1	1	76	26.4	4.71	1.1	2.4
08/20/96	0832	2	1.5	70	26.6	4.57	1.5	3.0
	0842	3	2	69	26.7	4.53	7.0	3.0
88-TW18	0914	1	0.6	155	23.1	5.96	>200	4.0
08/20/96	0926	2	1.5	166	23.1	6.03	>200	4.0
	0937	3	2.2	171	23.2	6.09	195	4.0
	0945	N/A	N/A				99	
	0955	N/A	N/A				48	
	1005	N/A	N/A	••		**	32	
88-TW19	1537	1	0.9	113	23.2	4.44	.21	21
	1548	2	1.8	112	23.0	4.33	26	2.2
	1549	3	2.7	113	23.2	4.36	48	2.2
	1555	N/A	N/A				24	
	1605	N/A	N/A				5	
88-TW19IW	1204	1	3	141	24.2	6.0	194	4.6
08/20/96	1341	2	6	122	23.8	5.79	7	5
	1513	3	9	105	23.8	5.61	9	5

Notes:

(1) = Insufficient amount of water for readings

°C = Degrees Centigrade

S.U. = Standard Units

µmhos/cm = Micro ohms per Centimeters

N.T.U. = Neophelometric Turbidity Units

-- = Not measured

N/A = Not applicable

TABLE 3-3

SOIL SAMPLING SUMMARY, TEST BORINGS OPERABLE UNIT 15 (SITE 88) PHASE I INVESTIGATION, CTO-0356 MCB, CAMP LEJEUNE, NORTH CAROLINA

			Analytical	Parameters
Sample Location	Depth of Borehole Feet, bgs ⁽¹⁾	Sampling Interval Feet, bgs ⁽¹⁾	EPA 8240 ⁽²⁾	TCL VOA ⁽³⁾
88-TW04IW-03	56	6-8	•	
88-TW04IW-10	56	20-22	•	
88-TW05-04	15	6-8	•	
88-TW06-03	15	4-6	•	
88-TW07-03	15	4-6	•	٠
88-TW08-03	15	4-6	•	٠
88-TW09-04	18	6-8	•	٠
88-TW09-06	18	10-12	٠	
88-TW10-02	15	4-6	•	
88-TW11-02	15	2-4	•	
88-TW12-05	20	8-10	•	
88-TW13-03	19	5-7	•	
88-TW13-05	19	9-11	•	
88-TW14-03	15	4-6	•	
88-TW15-04	18	8-10	•	٠
88-TW16-04	17	7-9	•	
88-TW17-04	19	7-9	•	
88-TW18-03	16	4-6	•	
88-TW19-03	18	6-8	•	

Notes:

⁽¹⁾ Below Ground Surface

⁽²⁾ Analysis by on-site mobile laboratory

⁽³⁾ Analysis by fixed based laboratory

• = Sample analyzed for indicated parameter

TABLE 3-4

GROUNDWATER SAMPLING SUMMARY OPERABLE UNIT 15 (SITE 88) PHASE I INVESTIGATION, CTO-0356 MCB, CAMP LEJEUNE, NORTH CAROLINA

	Analytical Parameters				
Sample		TCL			
Location	EPA 8240 ⁽¹⁾	VOA ⁽²⁾			
88-TW01	•				
88-TW02	•				
88-TW03	•				
88-TW04	•				
88-TW04IW	•				
88-TW05	•	•			
88-TW05IW	•	•			
88-TW06	•				
88-TW07	•	٠			
88-TW08	•	•			
88-TW08IW	•	•			
88-TW09	•	•			
88-TW10	•				
88-TW11	•				
88-TW12	•				
88-TW13	•				
88-TW14	•				
88-TW15	•	•			
88-TW16	•				
88-TW17	•				
88-TW18	•				
88-TW19	•	•			
88-TW19IW	•	•			

Notes:

⁽¹⁾ On-site laboratory

⁽²⁾ Fixed based laboratory

TCL		Target Compound List
VOA	=	Volatile Organic Analysis
•	=	Sample analyzed for indicated parameter

TABLE 4-1	
ONSITE LABORATORY POSITIVE DETECTION SUMMARY	
SUBSURFACE SOIL	
VOLATILE ORGANIC COMPOUNDS	
OPERABLE UNIT NO. 15 (SITE 88)	
BUILDING 25, MWR DRY CLEANERS	
MCB, CAMP LEJEUNE NORTH CAROLINA	
CTO-0356	

SAMPLE ID	88-TW04IW-03	88-TW04IW-11	88-TW05-04	88-TW06-03	88-TW07-03	88-TW08-03
SAMPLE DATE	08/16/96	08/16/96	08/16/96	08/16/96	08/16/96	08/16/96
SAMPLE DEPTH (FT)	6-8	20-22	6-8	4-6	4-6	4-6
UNITS	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)
VOLATILES CIS-1,2-DICHLOROETHENE TRICHLOROETHENE TETRACHLOROETHENE	ND 0.2 14.8	ND 0.1 1.5	ND 0.1 1.2	ND ND 0.4	ND ND 0.1	ND 0.8 237.6

NOTES ug/kg = micrograms per kilogram. ND = Not Detected.

TABLE 4-1 (continued) ONSITE LABORATORY POSITIVE DETECTION SUMMARY SUBSURFACE SOIL VOLATILE ORGANIC COMPOUNDS OPERABLE UNIT NO. 15 (SITE 88) BUILDING 25, MWR DRY CLEANERS MCB, CAMP LEJEUNE NORTH CAROLINA CTO-0356

SAMPLE ID	88-TW09-04	88-TW09-06	88-TW10-02	88-TW11-02	88-TW12-05	88-TW13-03	88-TW13-05
SAMPLE DATE	08/17/96	08/17/96	08/17/96	08/17/96	08/17/96	08/17/96	08/17/96
SAMPLE DEPTH (FT)	6-8	10-12	4-6	2-4	8-10	5-7	9-11
UNITS	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)
VOLATILES CIS-1,2-DICHLOROETHENE TRICHLOROETHENE TETRACHLOROETHENE	ND 3.3 22.6	ND 0.5 3.1	ND ND ND	ND ND ND	ND ND ND	ND ND 1.5	ND ND 0.9

.

NOTES ug/kg = micrograms per kilogram. ND = Not Detected.

TABLE 4-1 (continued) ONSITE LABORATORY POSITIVE DETECTION SUMMARY SUBSURFACE SOIL VOLATILE ORGANIC COMPOUNDS OPERABLE UNIT NO. 15 (SITE 88) BUILDING 25, MWR DRY CLEANERS MCB, CAMP LEJEUNE NORTH CAROLINA CTO-0356

SAMPLE ID	88-TW14-03	88-TW15-04	88-TW16-04	88-TW17-04	88-TW18-03	88-TW19-03
SAMPLE DATE	08/17/96	08/17/96	08/18/96	08/18/96	08/20/96	08/20/96
SAMPLE DEPTH (FT)	4-6	8-10	7-9	7-9	4-6	6-8
UNITS	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)
VOLATILES CIS-1,2-DICHLOROETHENE TRICHLOROETHENE TETRACHLOROETHENE	ND ND 0.3	21 8.5 11.6	ND ND 0.2	ND ND 0.2	ND ND ND	ND ND ND

NOTES ug/kg = micrograms per kilogram. ND = Not Detected. ٩

TABLE 4-2

.

.

SUMMARY OF SITE SOIL CONTAMINATION OPERABLE UNIT NO. 15 (SITE 88) BUILDING 25 MWR DRY CLEANERS MCB, CAMP LEJEUNE, NORTH CAROLINA CTO-0356

			Comparison Criteria			Location of	Detection	Detections Above
Media	Fraction	Contaminants	USEPA Screening Levels ⁽¹⁾	ţ		Maximum Detection	Frequency	USEPA Screening Levels ⁽¹⁾
Subsurface	Volatiles	Cis-1,2-Dichloroethene	200	21	21	88-TW15-04	1/19	0
Soil ⁽¹⁾		Trichloroethene	20	0.1	8.5	88-TW15-04	7/19	0
(on-site lab)		Tetrachloroethene	40	0.1	237.6	88-TW08-03	14/19	1
Subsurface Soil ⁽¹⁾ (fixed-base lab)	Volatiles	Tetrachloroethene	40	53	53	88-TW08-03	1/4	1

(1) - Soil concentrations compared to USEPA Region III Soil Screening Levels for Transfer from Soil to Groundwater (May, 1996) Concentrations in ug/kg

TABLE 4-3 FIXED BASE DETECTION SUMMARY SUBSURFACE SOIL VOLATILE ORGANIC COMPOUNDS OPERABLE UNIT NO. 15 (SITE 88) BUILDING 25, MWR DRY CLEANERS MCB, CAMP LEJEUNE, NORTH CAROLINA CTO-0356

SAMPLE_NO LAB_ID DATE SAMPLED UNITS	88-TW07-03 9608G930-004 08/16/96 UG/KG	88-TW08-03 9608G930-002 08/16/96 UG/KG	88-TW09-04 9608G930-003 08/16/96 UG/KG	88-TW15-04 9608G930-005 08/17/96 UG/KG
VOLATILES				
CHLOROMETHANE	12 U	12 U	11 U	12 U
BROMOMETHANE	12 U	12 U	11 U	12 U
VINYL CHLORIDE	12 U	12 U	11 U	12 U
CHLOROETHANE	12 U	12 U	11 U	12 U
METHYLENE CHLORIDE	12 U	12 U	11 U	12 U
ACETONE	18 UJ	27 UJ	30 UJ	29 UJ
CARBON DISULFIDE	12 U	12 U	11 U	12 U
1,1-DICHLOROETHENE	12 U	12 U	11 U	12 U
1,1-DICHLOROETHANE	12 U	12 U	11 U	12 U
1,2-DICHLOROETHENE (TOTAL)	12 U	12 U	11 U	12 U
CHLOROFORM	12 U	12 U	11 U	12 U
1,2-DICHLOROETHANE	12 U	12 U	11 U	12 U
2-BUTANONE	12 U	12 U	11 U	12 U
1,1,1-TRICHLOROETHANE	12 U	12 U	11 U	12 U
CARBON TETRACHLORIDE	12 U	12 U	11 U	12 U
BROMODICHLOROMETHANE	12 U	12 U	11 U	12 U
1,2-DICHLOROPROPANE	12 U	12 U	11 U	12 U
CIS-1,3-DICHLOROPROPENE	12 U	12 U	11 U	12 U
TRICHLOROETHENE	12 U	12 U	11 U	12 U
DIBROMOCHLOROMETHANE	12 U	12 U	11 U	12 U
1,1,2-TRICHLOROETHANE	12 U	12 U	11 U	12 U
BENZENE	12 U	12 U	11 U	12 U
TRANS-1,3-DICHLOROPROPENE	12 U	12 U	11 U	12 U

QUALIFIER DEFINITIONS U = Not detected at reported quantitation limit. UJ = Reported quantitation limit is estimated.

bb - Reported quantitation initialis estimates

NOTES ug/kg = micrograms per kilogram.

TABLE 4-3 (continued) FIXED BASE DETECTION SUMMARY SUBSURFACE SOIL VOLATILE ORGANIC COMPOUNDS OPERABLE UNIT NO. 15 (SITE 88) BUILDING 25, MWR DRY CLEANERS MCB, CAMP LEJEUNE, NORTH CAROLINA CTO-0356

SAMPLE_NO LAB_ID DATE SAMPLED UNITS	88-TW07-03 9608G930-004 08/16/96 UG/KG	88-TW08-03 9608G930-002 08/16/96 UG/KG	88-TW09-04 9608G930-003 08/16/96 UG/KG	88-TW15-04 9608G930-005 08/17/96 UG/KG
VOLATILES (cont)				
BROMOFORM	12 U	12 U	11 U	12 U
4-METHYL-2-PENTANONE	12 U	12 U	11 U	12 U
2-HEXANONE	12 U	12 U	11 U	12 U
TETRACHLOROETHENE	12 U	53	11 Ų	12 U
1.1.2.2-TETRACHLOROETHANE	12 U	12 U	11 U	12 U
TOLUENE	12 U	12 U	11 U	12 U
CHLOROBENZENE	12 U	12 U	11 U	12 U
ETHYLBENZENE	12 U	12 U	11 U	12 U
STYRENE	12 U	12 U	11 U	12 U
XYLENE (TOTAL)	12 U	12 U	11 U	12 U

QUALIFIER DEFINITIONS U = Not detected at reported quantitation limit. UJ = Reported quantitation limit is estimated.

> NOTES ug/kg = micrograms per kilogram.

TABLE 4-4 ONSITE LABORATORY POSITIVE DETECTION SUMMARY GROUNDWATER VOLATILE ORGANIC COMPOUNDS OPERABLE UNIT NO. 15 (SITE 88) BUILDING 25, MWR DRY CLEANERS MCB, CAMP LEJEUNE NORTH CAROLINA CTO-0356

SAMPLE ID SAMPLE DATE UNITS	88-TW01 08/01/96 (ug/L)	88-⊤VV02 08/01/96 (ug/L)	88-TW03 08/01/96 (ug/L)	88-TW04 08/01/96 (ug/L)	88-TW04IW 08/16/96 (ug/L)	88-TW05 08/16/96 (ug/L)
VOLATILES						
TRANS-1,2-DICHLOROETHENE	ND	9	6	1	ND	ND
CIS-1,2-DICHLOROETHENE	4	445	1184	63	21	3
1,1,1-TRICHLOROETHANE	ND	ND	0.2	0.2	ND	ND
TRICHLOROETHENE	17.7	81.5	838.1	229.9	5.5	20.8
TETRACHLOROETHENE	157.2	649.1	14090	32839.4	21	1381.7

NOTES ug/L = micrograms per liter. ND = Not Detected.

TABLE 4-4 (continuted) ONSITE LABORATORY POSITIVE DETECTION SUMMARY GROUNDWATER VOLATILE ORGANIC COMPOUNDS OPERABLE UNIT NO. 15 (SITE 88) BUILDING 25, MWR DRY CLEANERS MCB, CAMP LEJEUNE NORTH CAROLINA CTO-0356

SAMPLE ID SAMPLE DATE UNITS	88-TW05IW 08/18/96 (ug/L)	88-TW06 08/17/96 (ug/L)	88-TW07 08/17/96 (ug/L)	88-TW08 08/17/96 (ug/L)	88-TW08IW 08/18/96 (ug/L)	88-TW09 08/17/96 (ug/L)
VOLATILES						
TRANS-1,2-DICHLOROETHENE	1	ND	ND	2	11	ND
CIS-1,2-DICHLOROETHENE	89	ND	ND	271	883	14
1.1.1-TRICHLOROETHANE	ND	ND	ND	0.5	ND	ND
TRICHLOROETHENE	71.2	ND	ND	341.2	822.7	70.8
TETRACHLOROETHENE	1142.7	ND	0.2	53703.8	1314.4	969.2

.

NOTES ug/L = micrograms per liter. ND = Not Detected.

TABLE 4-4 (continuted) ONSITE LABORATORY POSITIVE DETECTION SUMMARY GROUNDWATER VOLATILE ORGANIC COMPOUNDS OPERABLE UNIT NO. 15 (SITE 88) BUILDING 25, MWR DRY CLEANERS MCB, CAMP LEJEUNE NORTH CAROLINA CTO-0356

SAMPLE ID SAMPLE DATE UNITS	88-TW10 08/18/96 (ug/L)	88-TW11 08/17/96 (ug/L)	88-TW12 08/17/96 (ug/L)	88-TW13 08/18/96 (ug/L)	88-TW14 08/18/96 (ug/L)	88-TW15 08/18/96 (ug/L)	88-TW16 08/18/96 (ug/L)
VOLATILES							
TRANS-1,2-DICHLOROETHENE	ND	ND	ND	ND	ND	38	ND
CIS-1.2-DICHLOROETHENE	ND	ND	ND	ND	ND	3725	ND
1,1,1-TRICHLOROETHANE	ND						
TRICHLOROETHENE	0.2	0.2	ND	0.6	ND	3030.9	ND
TETRACHLOROETHENE	0.1	1.3	1.5	44.3	0.1	4931.8	0.2

.

NOTES ug/L = micrograms per liter. ND = Not Detected.

.

TABLE 4-4 (continuted) ONSITE LABORATORY POSITIVE DETECTION SUMMARY GROUNDWATER VOLATILE ORGANIC COMPOUNDS OPERABLE UNIT NO. 15 (SITE 88) BUILDING 25, MWR DRY CLEANERS MCB, CAMP LEJEUNE NORTH CAROLINA CTO-0356

SAMPLE ID SAMPLE DATE UNITS	88-TW17 08/20/96 (ug/L)	88-TW18 08/20/96 (ug/L)	88-TW19 08/20/96 (ug/L)	88-TW19IW 08/20/96 (ug/L)
VOLATILES				
TRANS-1,2-DICHLOROETHENE	ND	ND	ND	ND
CIS-1,2-DICHLOROETHENE	ND	ND	ND	ND
1,1,1-TRICHLOROETHANE	ND	ND	ND	ND
TRICHLOROETHENE	ND	ND	ND	ND
TETRACHLOROETHENE	0.2	ND	ND	ND

NOTES ug/L = micrograms per liter. ND = Not Detected.

TABLE 4-5 FIXED BASE DETECTION SUMMARY GROUNDWATER VOLATILE ORGANIC COMPOUNDS OPERABLE UNIT NO. 15 (SITE 88) BUILDING 25, MWR DRY CLEANERS MCB, CAMP LEJEUNE, NORTH CAROLINA CTO-0356

SAMPLE_NO LAB_ID DATE SAMPLED UNITS	88-TW05-01 9608G126-005 08/28/96 UG/L	88-TW08-01 9608G126-007 08/28/96 UG/L	88-TW09-01 9608G126-003 08/27/96 UG/L	88-TW19-01 9608G126-002 08/27/96 UG/L	88-TW05IW-01 9608G126-004 08/28/96 UG/L	88-TW08IW-01 9608G126-006 08/28/96 UG/L	88-TW19IW-01 9608G126-001 08/27/96 UG/L
VOLATILES							
CHLOROMETHANE	10 UJ	10 UJ	10 UJ	10 U	10 UJ	10 UJ	10 UJ
BROMOMETHANE	10 U	10 U	10 Ü				
VINYL CHLORIDE	10 U	10 U	10 U				
CHLOROETHANE	10 U	10 U	10 U				
METHYLENE CHLORIDE	10 U	10 U	· 10 U	10 U	10 U	10 U	10 U
ACETONE	10 U	10 U	10 U				
CARBON DISULFIDE	10 U	10 U	10 U				
1,1-DICHLOROETHENE	10 U	10 J	10 U				
1,1-DICHLOROETHANE	10 U	10 U	10 U				
1,2-DICHLOROETHENE (TOTAL)	160	210 J	8 J	10 U	120 J	1800	10 U
CHLOROFORM	10 U	10 U	10 U				
1,2-DICHLOROETHANE	10 U	10 U	10 U				
2-BUTANONE	10 U	10 U	10 U				
1,1,1-TRICHLOROETHANE	10 U	10 U	10 U				
CARBON TETRACHLORIDE	10 U	10 U	10 U				
BROMODICHLOROMETHANE	10 U	10 U	10 U				
1,2-DICHLOROPROPANE	10 U	10 U	10 U				
CIS-1,3-DICHLOROPROPENE	10 U	. 10 U	10 U				
TRICHLOROETHENE	34	230 J	54	10 U	72 J	1100	10 U
DIBROMOCHLOROMETHANE	10 U	10 U	10 U				
1,1,2-TRICHLOROETHANE	10 U	10 U	10 U				
BENZENE	10 U	10 U	10 U				
TRANS-1,3-DICHLOROPROPENE	10 U	10 U	10 U				

QUALIFIER DEFINITIONS

J = Estimated value.

U = Not detected at reported quantitation limit. UJ = Reported quantitation limit is estimated.

NOTES ug/L = micrograms per liter.

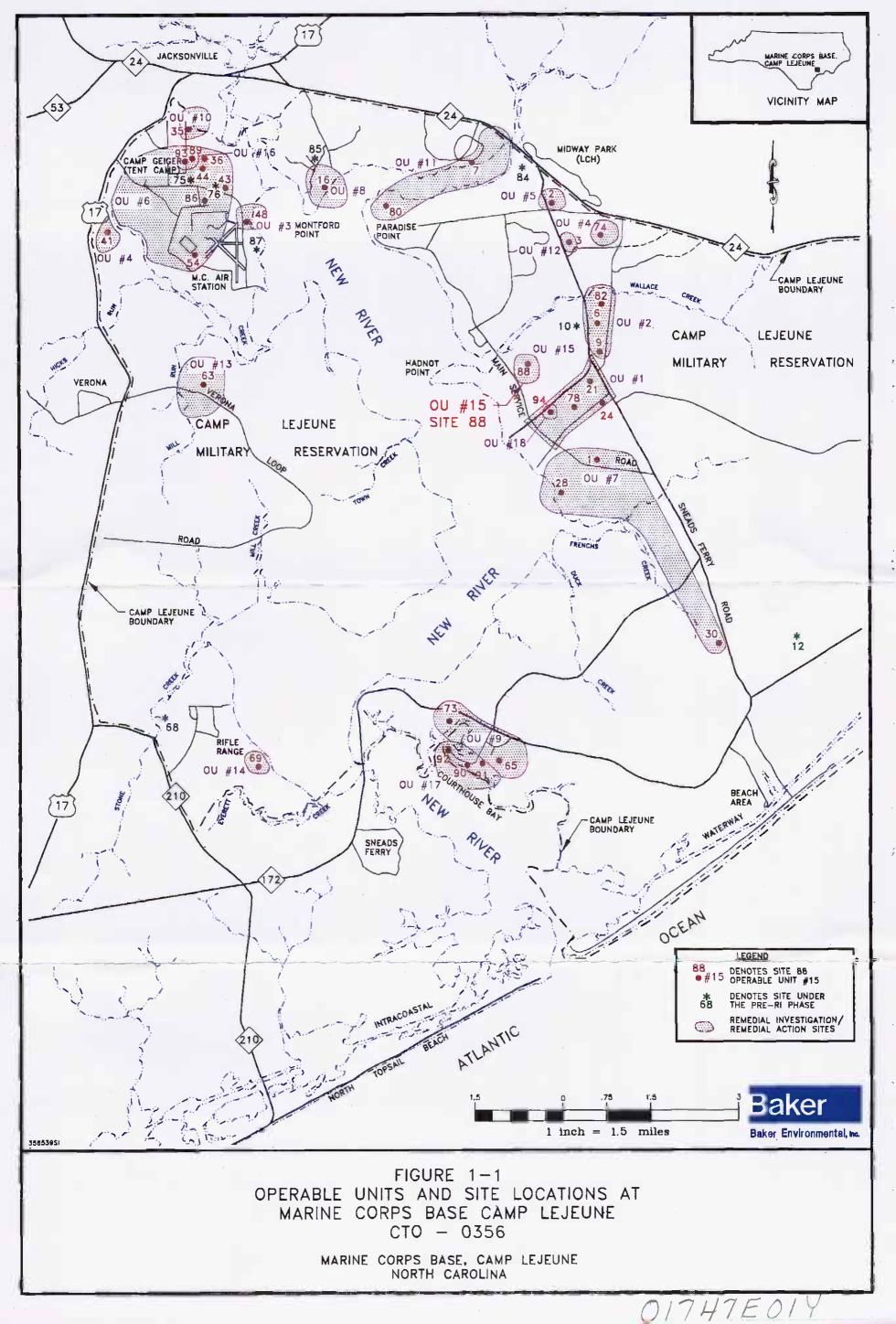
TABLE 4-5 (continued) FIXED BASE DETECTION SUMMARY GROUNDWATER VOLATILE ORGANIC COMPOUNDS OPERABLE UNIT NO. 15 (SITE 88) BUILDING 25, MWR DRY CLEANERS MCB, CAMP LEJEUNE, NORTH CAROLINA CTO-0356

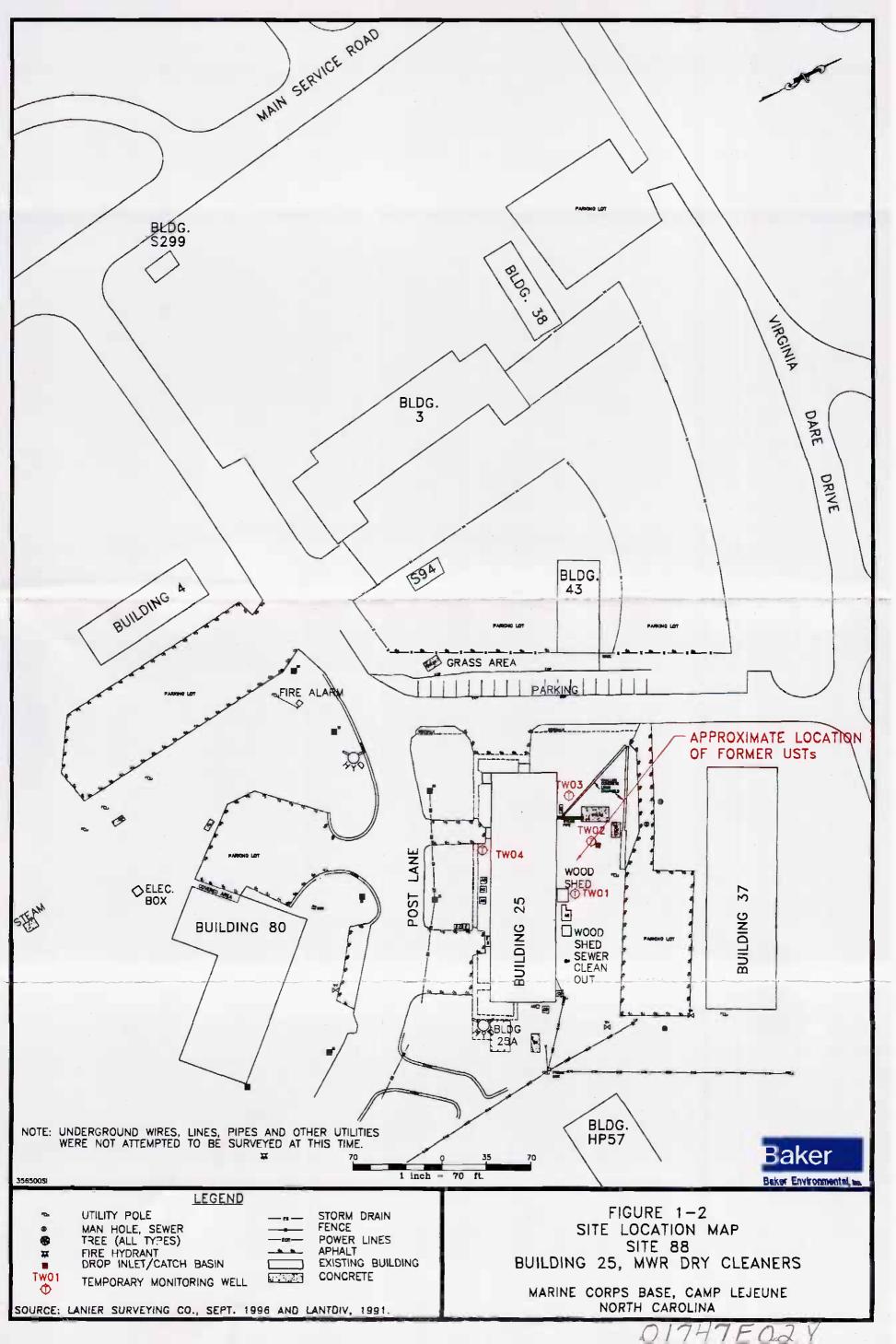
SAMPLE_NO LAB_ID DATE SAMPLED UNITS	88-TW05-01 9608G126-005 08/28/96 UG/L	88-TW08-01 9608G126-007 08/28/96 UG/L	88-TW09-01 9608G126-003 08/27/96 UG/L	88-TW19-01 9608G126-002 08/27/96 UG/L	88-TW05IW-01 9608G126-004 08/28/96 UG/L	88-TW08IW-01 9608G126-006 08/28/96 UG/L	88-TW19IW-01 9608G126-001 08/27/96 UG/L
VOLATILES (cont)							
BROMOFORM	10 U	10 U	10 U				
4-METHYL-2-PENTANONE	10 U	10 UJ	10 U	10 U	10 U	10 U	10 U
2-HEXANONE	10 U	10 UJ	10 U	10 U	10 U	10 U	10 U
TETRACHLOROETHENE	150	27000	1100	10 U	1900	1700	10 U
1,1,2,2-TETRACHLOROETHANE	10 U	10 UJ	10 U	10 U	10 U	10 U	10 U
TOLUENE	10 U	10 UJ	10 U	10 U	10 U	10 U	10 U
CHLOROBENZENE	10 U	10 U	10 U				
ETHYLBENZENE	10 U	10 U	10 U				
STYRENE	10 U	10 UJ	10 U	10 U	10 U	10 U	10 U
XYLENE (TOTAL)	10 U	10 UJ	10 U	10 U	10 U	10 U	10 U

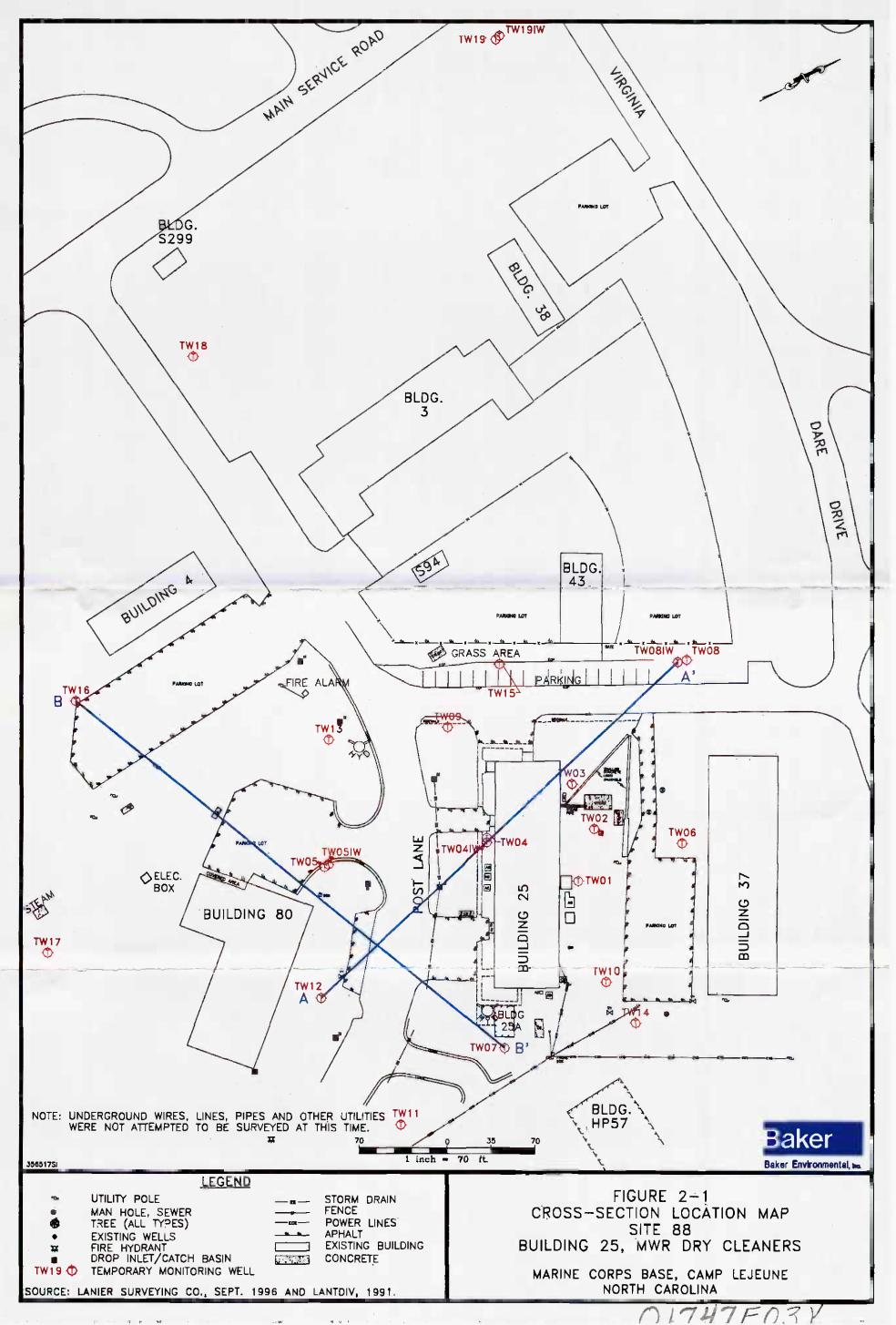
QUALIFIER DEFINITIONS J = Estimated value. U = Not detected at reported quantitation limit. NOTES ug/L = micrograms per liter.

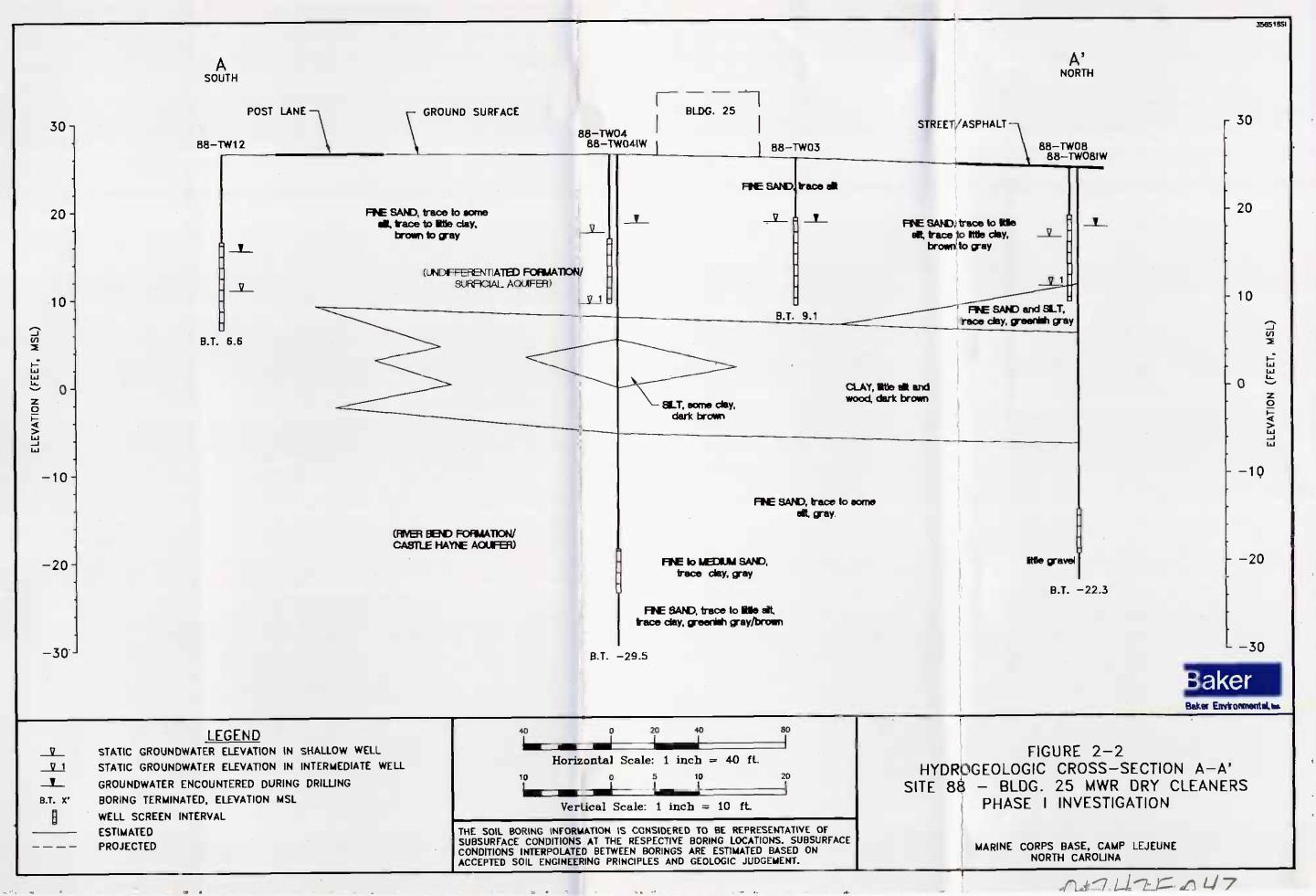
11/27/96 88GW.WK4

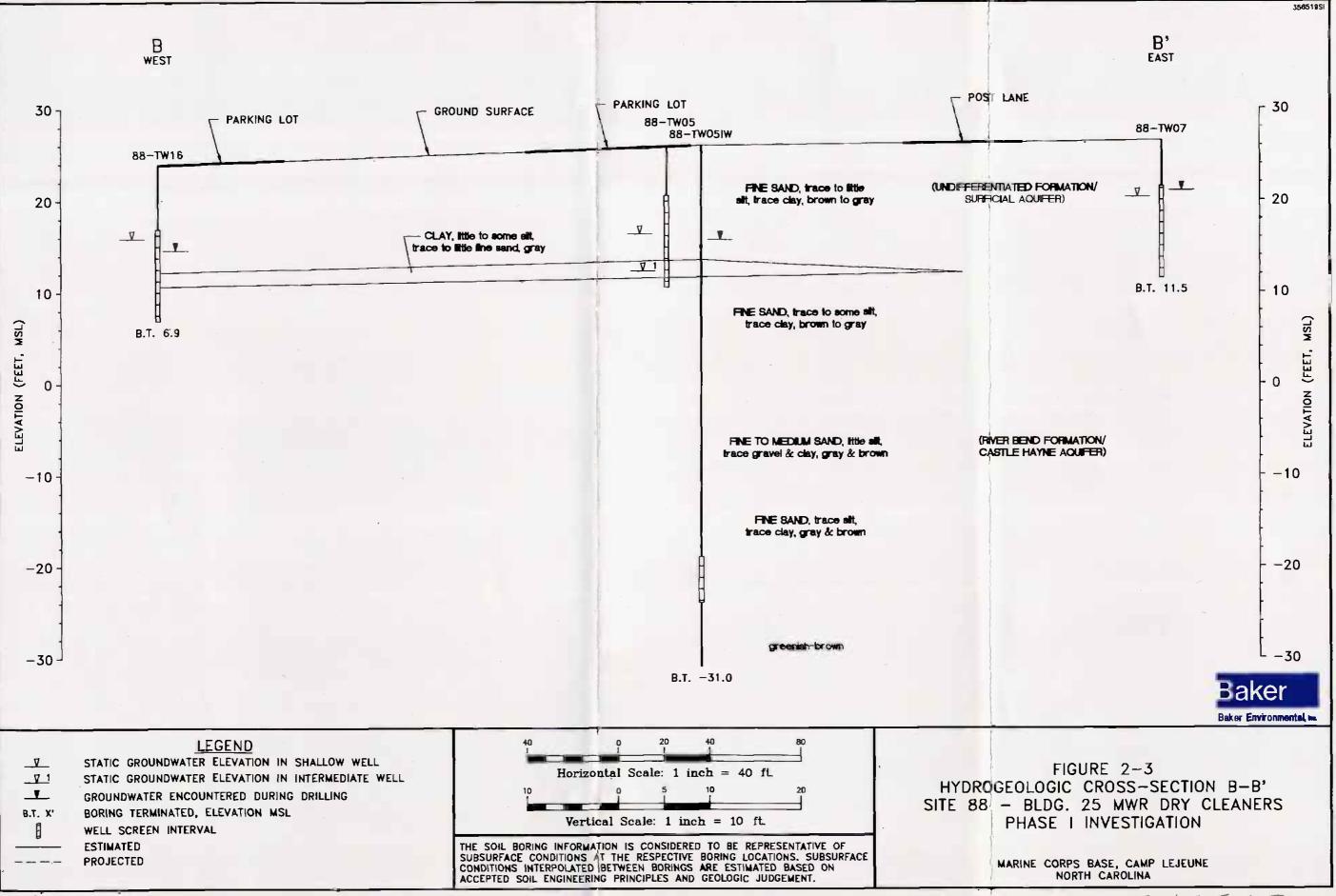
2

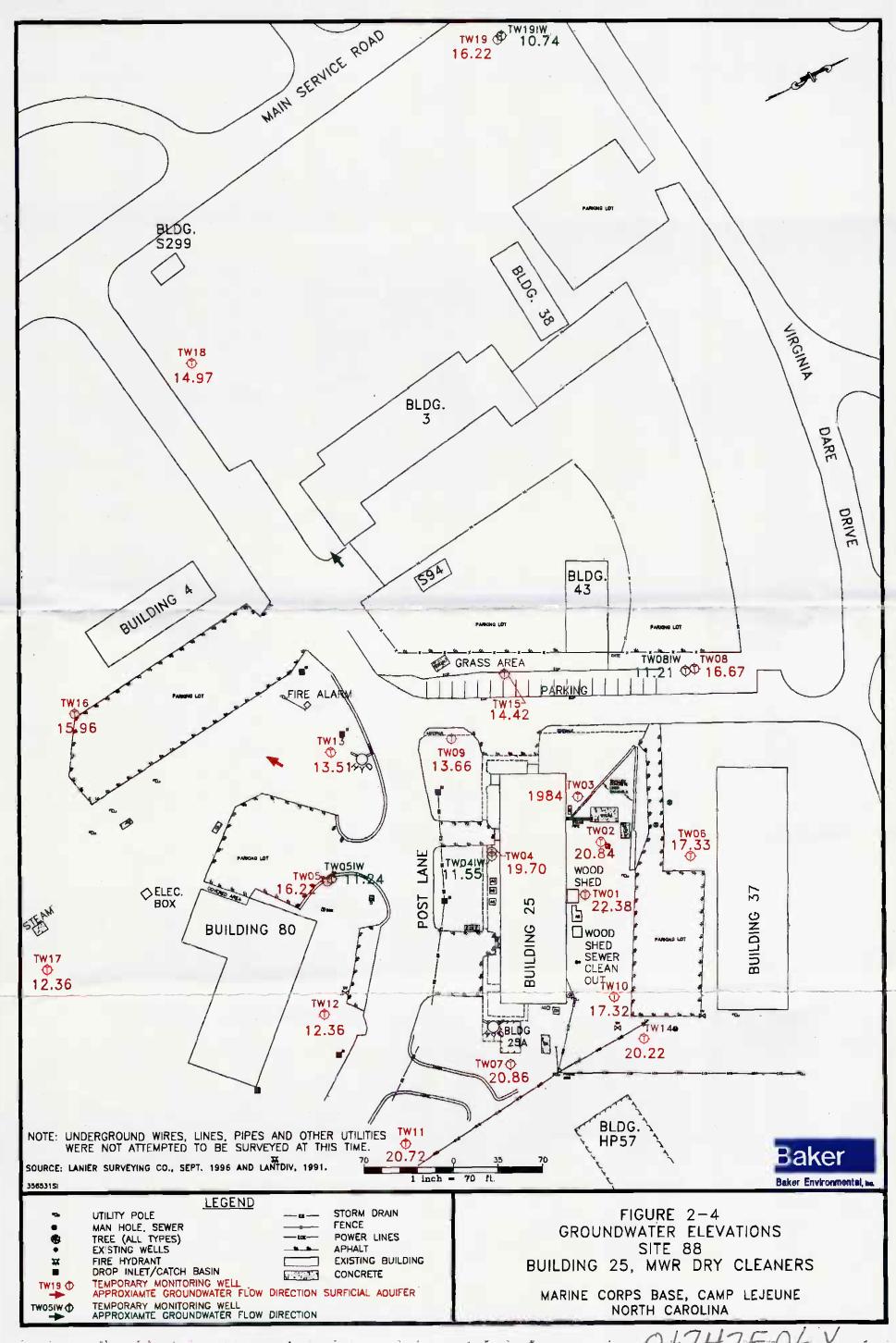

TABLE 4-6

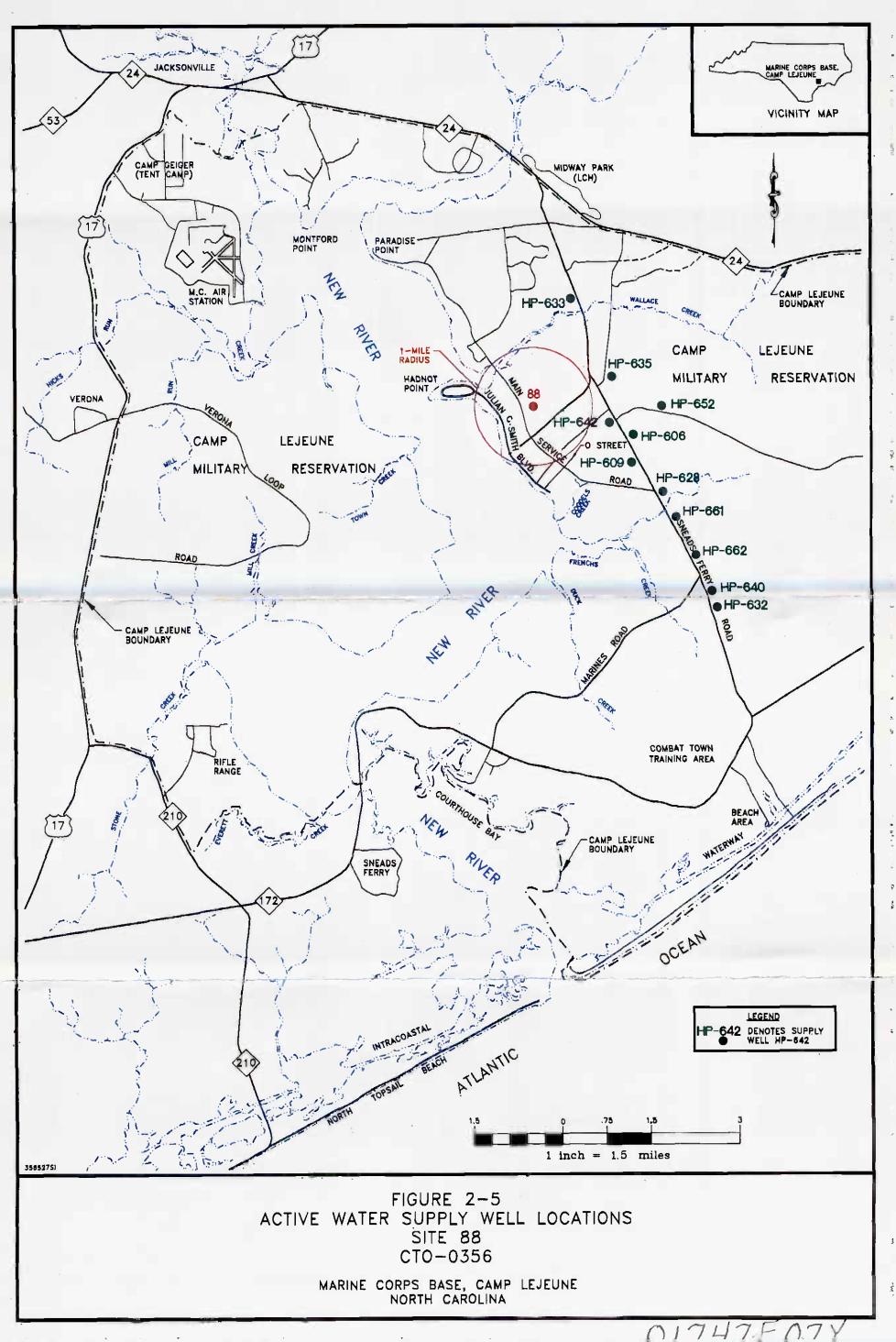

SUMMARY OF SITE GROUNDWATER CONTAMINATION OPERABLE UNIT NO. 15 (SITE 88) BUILDING 25 MWR DRY CLEANERS MCB, CAMP LEJEUNE, NORTH CAROLINA CTO-0356

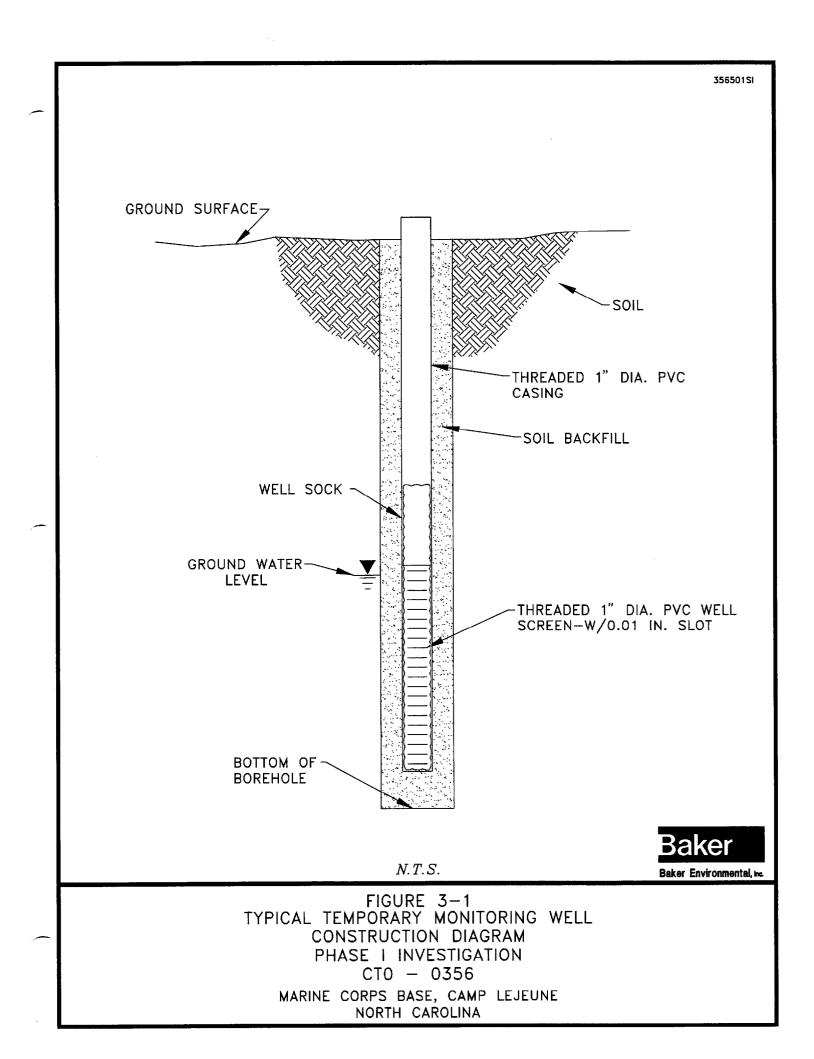

			Comparise	Comparison Criteria ⁽¹⁾			Location of	Detection	Detections Comparison	Above Criteria
Media Fraction	Contaminants	NC WQS	Federal MCL	Min.	Max.	Maximum Detection	Frequency	NC WQS	Federal MCL	
Groundwater (1)	Volatiles	Trans-1,2-Dichloroethene	70	100	1	38	88-TW15	7/23	0	0
(on-site lab)		Cis-1,2-Dichloroethene	70 .	70	3	3725	88-TW15	11/23	6	6
		1,1,1-Trichloroethane	NE	200	0.2	0.5	88-TW08	3/23	0	0
		Trichloroethene	2.8	5	0.2	3030	88-TW15	14/23	11	11
		Tetrachloroethene	1	5	0.2	53703	88-TW08	19/23	14	11
Groundwater (1)	Volatiles	Dichloroethene (total)	70	100	8J	1,800	88-TW08IW	5/7	4	4
(fixed based lab)		Trichloroethene	2.8	5	34	1,100	88-TW08IW	5/7	5	5
		Tetrachloroethene	1	5	150	27,000	88-TW08	5/7	5	5

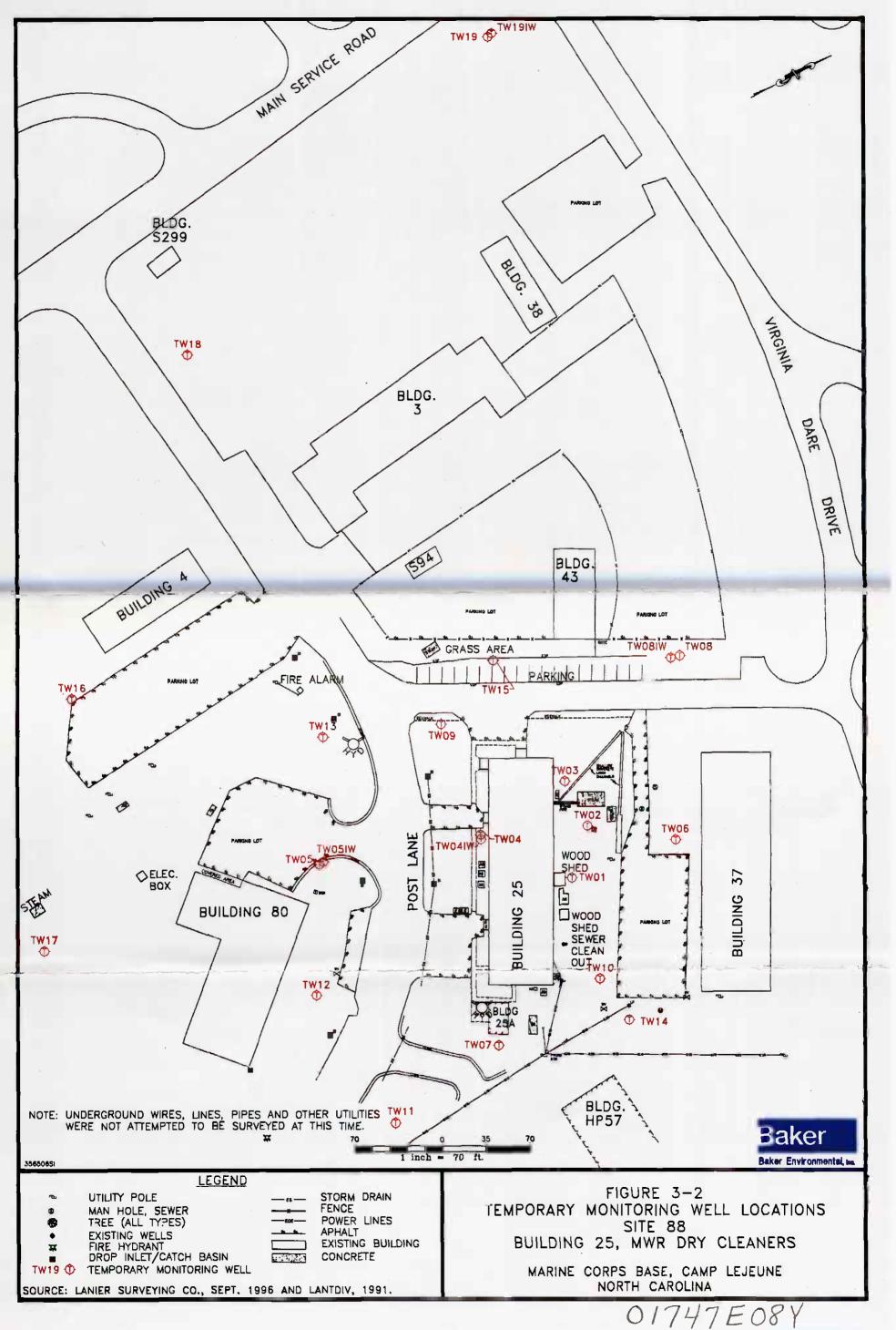

(1) - Groundwater concentrations compared to North Carolina Water Quality Standards for Groundwater/USEPA Maximum Contaminant Levels NE - Not Established

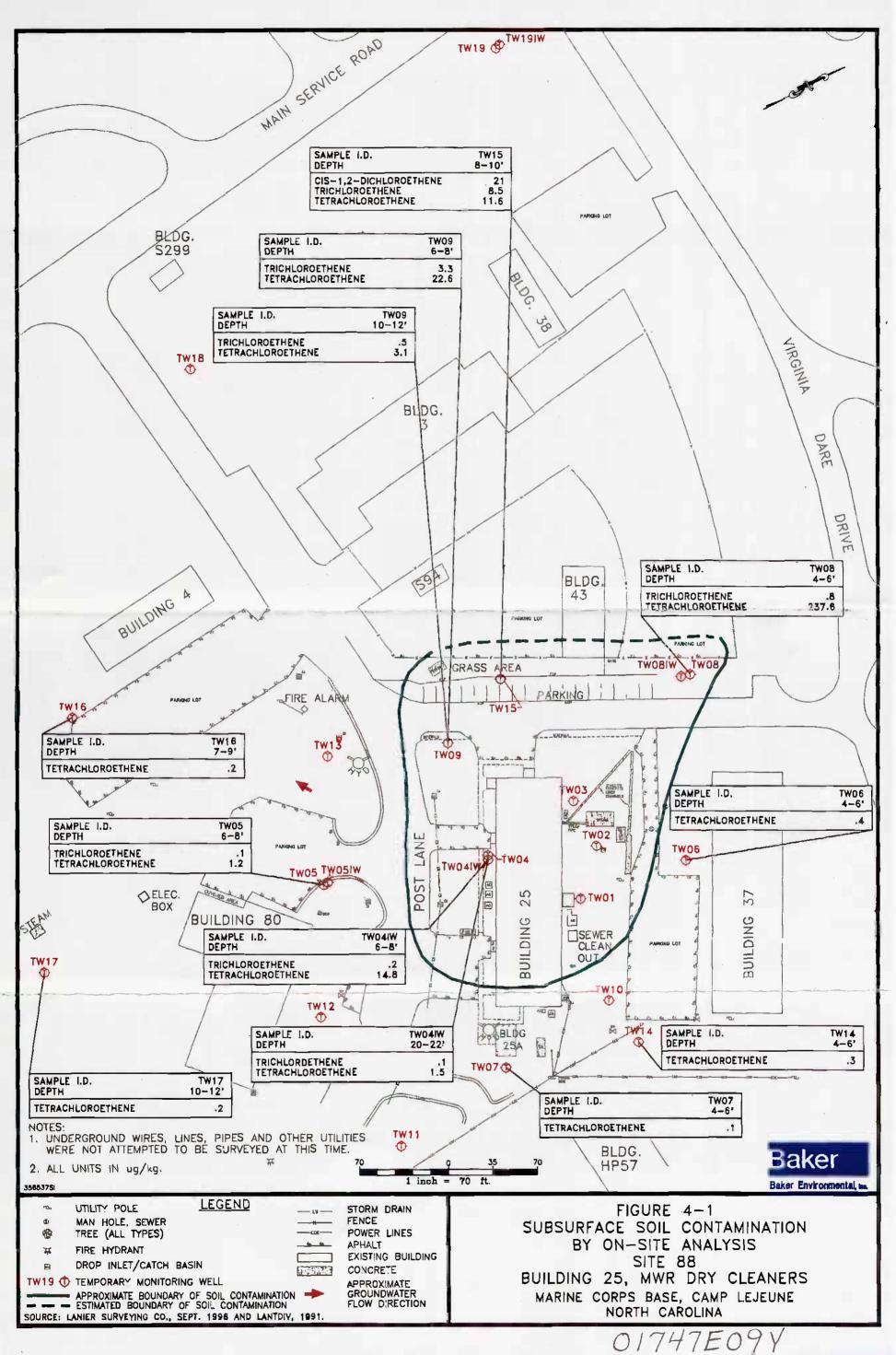

FIGURES

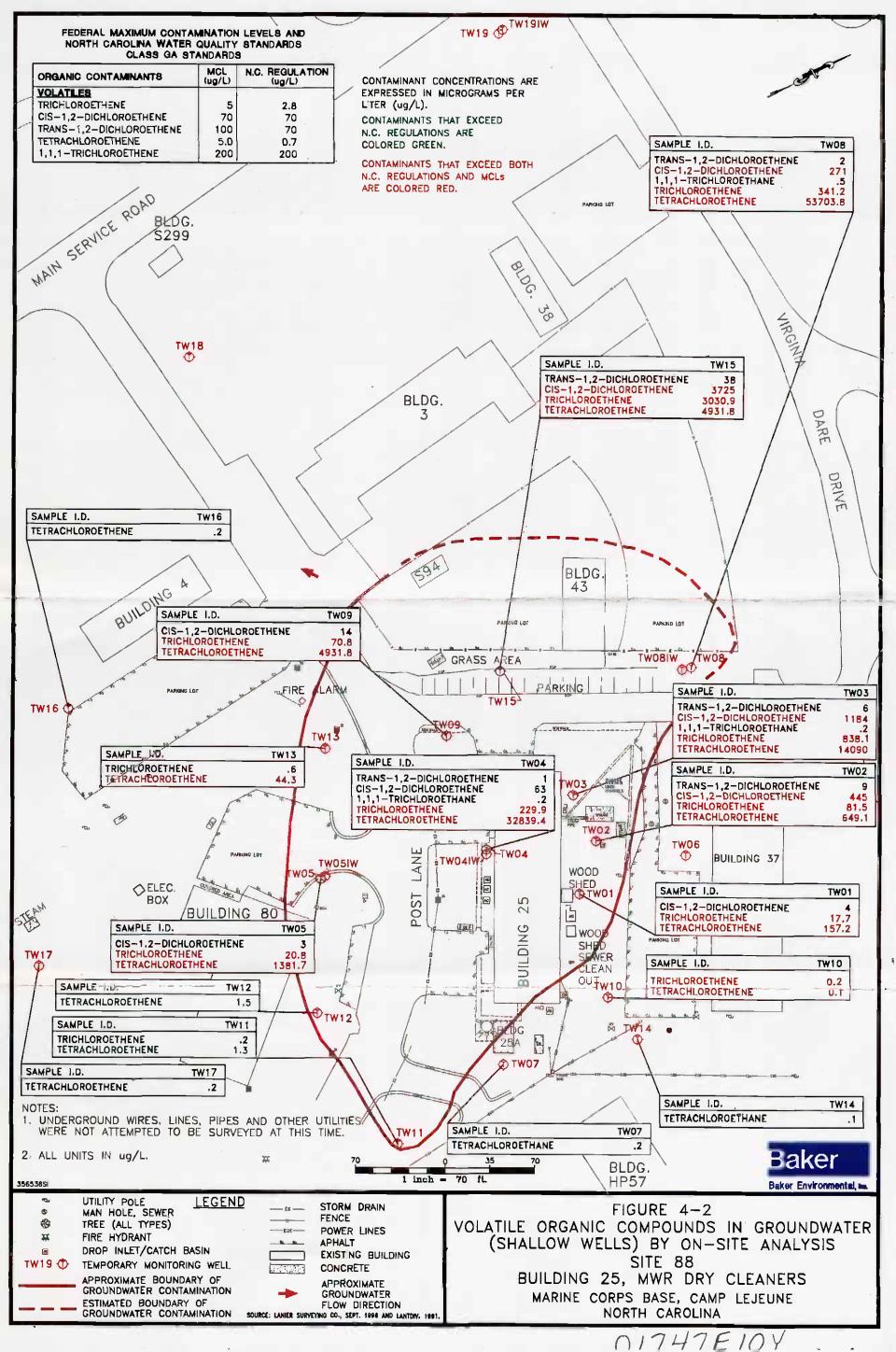


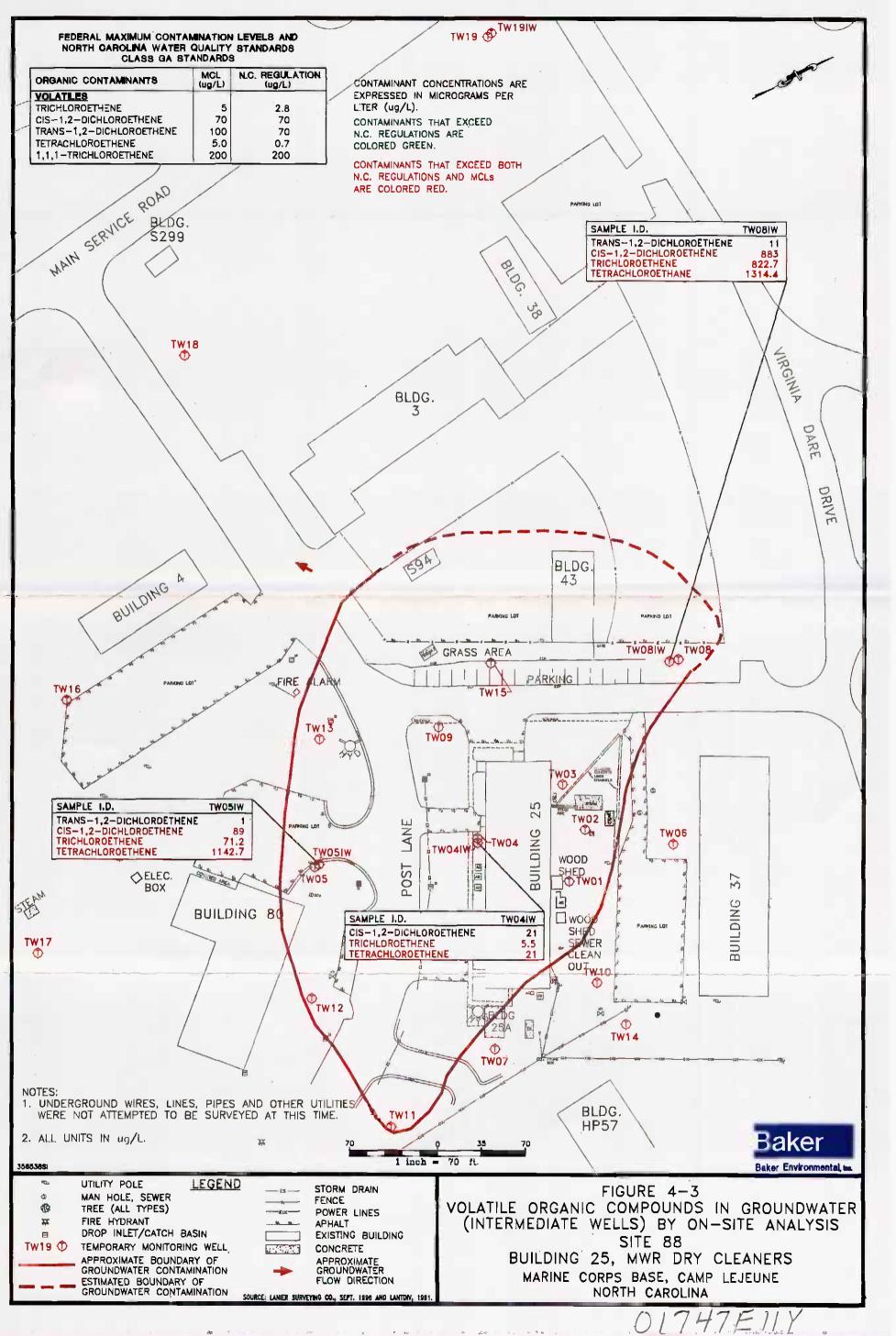





NITHTEN57


ار ا





APPENDIX A TEST BORING AND WELL CONSTRUCTION RECORDS

Baken

TEST BORING AND WELL CONSTRUCTION RECORD

Baker Environmental

PROJEC CTO NO		62470		ation at Site	<u>, 3 00, 07,</u>	anu 95		IG NO.:		00 'TTT	041317	·
COORDI				2496472.1	136	•	NORT			88-TW		
ELEVAT				26.46	450	•		n. F PVC CASIN(. .	28.55	.77.4643	
				20,10					J. 	20.55		
Rig:	Died	rich D-50 Split Spoon	Casing	Augers	Core Barre		Date	Progress (Ft.)	Wea	ather	Depth to Water (Ft.)	Time
Size (ID)		1-3/8"		2-3/4"			/16/96	0.0 - 56.0	Supp	y, 70s	(ri.) 	
Length		2'		5'			10/ 20	0.0 - 30.0	Suin	<u>y, 705</u>		
Туре		Stainless		HSA								
Hammer	·Wt.	140 #								•	<u> </u>	
Fall		30"										
Stickup				**								
Remark	5:								······			
	_	SA	MPLE T	YPE				WEL	L INFC	ORMAT	TION	
		S = Split	Spoon A	A = Auger							Тор	Bottom
		T = Shel		W = Wash				Туре		Diam.	Depth	Depth
				C = Core					_		(Ft.)	(Ft.)
		D = Den		P = Piston				, PVC Riser		1"	0	45
			= No Sam	ple			Sch 40	10-Slot, PVC	Screen	1"	45	50
-		Sample	Sample		Lab	PID	l				Well	Elevation
Depth (Ft.)	Type &	Rec.	SPT	Samp	(ppm)	l v	isual Descriptio	n		allation	(Ft. MSL
		No.	(Ft.,%)				ļ				etail	
,		S-1	20	2		0.2	ECAN	D				
1		2-1	2.0 100%	3 3		$\begin{array}{c c} \underline{0.3} \\ 0.3 \end{array}$		D, some silt; dk				
2	2.0		10070	4		0.5	brown;	loose; damp	_		-	
2	2.0			2			1					
3		S-2	1.8	3		0.2	little si	lt, trace clay; br	own.			
		02	90%	5		0.2	moist	it, that chay, of	0wn,		—	
4 -	4.0			6		0.2			_		-	
				1			1					
5		S-3		3		<u>0.2</u>			_		-	
		-		3		0.2						
6	6.0			4					_		-	
				3								
7		S-4	1.0	4	03	<u>0.2</u>		lt; mottled gray				
			50%	4		0.2		orange; moist t	0			l
8 _	8.0			6			wet	Water @ 8.0'				
_		_		2					_		_	
9		S-5	1.5	4		<u>0.2</u>	wet					
			75%	4		0.2			_		-	
10	10.0			6			ł) (l
				4	l	L	L	Match to Sheet	2		l	
DRILLIN	IG CO	D.: <u>Parrat</u>	t - Wolff			-	BAKE	R REP.:	Mark I	DeJohn		
DRILLE	R:	Chip I	afever				BORIN	IG NO.:	88-TW	/04IW	SHEET	1 OF 4

Bakan

Baker Environmental

ROJECT: TO NO.:		Phase 1 62470-		tion at Site	<u>s 88, 89,</u>	and 93	- MCB Camp Lejeune BORING NO.:	88	-TW04	IW			
.10 NO			MPLE TY	DF		•		FINITI					
			Spoon A				SPT = Standard Penetrat			A D1586	i)		
			by Tube V				PID = Photo Ionization D						
			Rotary (Lab Samp = Depth interv	al of sc	il samp	le			
	D =	Denison P			mple		submitted	submitted to mobile lab					
	ŤT	Sample	Sample		Lab	PID			We	:11	Elevation		
Depth (Fi	t.)	Type & No.	Rec. (Ft.,%)	SPT	Samp	(ppm)	Visual Description		Install Det		(Ft. MSL)		
11			1.5	5		<u>0.4</u>	Continued from Sheet 1						
		S-6	75%	4		0.4	trace silt; gray	_		-			
12 1	2.0			6									
				4				_		-			
13		S-7	0.0	3			No recovery	_					
	1		0%	6				-		-			
14 1	4.0			6			4						
			10	4		0.2	some silt, trace clay;	-		-	-		
15		S-8	1.2 60%	6 7		0.3 0.3	m dense				-		
12 -	16.0		0070	8		0.5		-		-			
16 _ 1	10.0			4			4				1		
17		S-9	2.0	5		0.3				-	-		
1'-		6-7	100%	5		0.3				_	1		
18 1	18.0		10070	5		1		18.0		-			
19		S-10	1.7	WOR/		0.2	CLAY, little silt, dk bro	wn;					
			85%	24"		0.2	v soft; wet						
20 2	20.0							20.0		_	_		
				WOH/				_			1		
21	ļ	S-11	1.5	12"		<u>0.2</u>	SILT, some clay; dk				4		
			75%	3		0.2	brown; soft; moist;	_			-		
22	22.0			1			solvent odor noted			_	-		
1				1							-		
23		S-12	1.2	2		$\frac{0.2}{0.2}$				_	-		
			60%			0.2					-		
24	24.0		<u> </u>	2 WOR		_	-	24.8			-		
~		S-13	1.4			0.2		24.0			-		
25		5-13	1.4			$\frac{0.2}{0.2}$	CLAY, little silt & woo	d;			-1		
26	26.0		1	1			dk brown; m stiff; wet	´			1		
			1	3	1		1 , , , , , , , , , , , , , , , , , , ,	-1		_]		
27		S-14	1.2	2		<u>0.2</u>	some wood, little silt;						
			60%	4		0.2	soft; moist			_	1		
28	28.0			6						_	1		
			1	1							-		
29 _		S-15	0.8	1		<u>0.2</u>							
-			40%	2		0.2					-		
30	30.0		ļ	4	-l			30.0		-	-1		
-		L	1	4			Match to Sheet	,					
DRILLIN	G C	O.: Parra	tt - Wolff				BAKER REP.:	Mark D	eJohn				
DUTT								38-TW			T 2 OF 4		

PROJEC		Phase	I Investig	ation at Site	es 88, 89	, and 93	- MCB Camp Lejeune						
CTO NO) .:	62470	-356			-	BORING NO.:	. [38-TW0	94IW			
			MPLE T					EFINIT					
				A = Auger			SPT = Standard Penetration Test (ASTM D1586)						
				W = Wash			PID = Photo Ionization			urement			
	л –	R = Air Denison F	Rotary				Lab Class = USCS (AS	STM D2	487)				
	<u> </u>	Sample	Sample	N = NO Sa	Lab	PID				7 11			
Depth	Ft λ	Type &	Rec.	SPT	Samp		Vigual Descriptio	-		/ell	Elevation		
Dopur	(1.)	No.	(Ft.,%)	SF, I	Samp	(ppm)	Visual Descriptio	n		llation	(Ft. MSL)		
31		S-16	1.2	6		0.2	Continued from Sheet	2		etail			
			60%	7		0.2	F SAND, trace silt; gra						
32	32.0			8		•	m dense; wet	·, –		-			
				4									
33 _		S-17	1.4	4		<u>0.2</u>	little silt	-1		-			
_			70%	6		0.2				_			
34	34.0			8				1		-			
				4									
35_		S-18	1.0	8		<u>0.2</u>	trace silt						
-	260		50%	14		0.2		_		-			
36_	36.0			12									
37 -		S-19	1.7	10 14		0.0	4 4 1141 114	_		-			
57-		5-19	85%	14 14		0.2 0.2	trace to little silt			_	ĺ		
38	38.0		0570	14		0.2		-		_			
50 -	.70.0			15									
39		S-20	1.1	2		<u>0.2</u>	trace silt; loose			-			
		2 = 0	55%	2		0.2	11000 5111, 10050			—			
40	40.0			2				-		-			
				2									
41		S-21	0.9	1		<u>0.2</u>	little silt; v loose			_			
			45%	1		0.2							
42	42.0			1						-			
		-		1									
43		S-22	1.7	1		<u>0.1</u>							
			85%	3		0.1		_		_			
44	44.0			7									
45		S-23	0.9	4		0.1				_			
		3-23	45%	4 6		<u>0.1</u> 0.1	F/M SAND, trace silt;				1		
46	46.0		4370	8		0.1	gray; loose	4		-			
	10.0			5									
47		S-24	1.9	6		<u>0.1</u>				-			
-			95%	12		0.1							
48	48.0			12				-		-			
				2									
49		S-25	1.1	4		<u>0.1</u>				-			
			55%	6		0.1							
50	50.0			8									
				2									
DRILLIN	IG CO		- Wolff				BAKER REP .:	Mark De	eJohn				
DRILLEI	<u>.</u>	Chip L	afever				_	88-TW0		SHEET	3 OF 4		
							-						

Baker

Baker Environmental

.

TO NC) .:	62470					- MCB Camp Lejeune BORING NO.:	88-TW04IV	V				
		S = Split T = Shel	MPLE TY t Spoon A by Tube V Rotary P = Piston	A = Auger W = Wash C = Core	mple		DEFINITIONS SPT = Standard Penetration Test (ASTM D1586) PID = Photo Ionization Detector measurement Lab Class = USCS (ASTM D2487)						
	<u> </u>	Sample	Sample	14 140 54	Lab	PID		Well	Elevation				
Depth	(Ft.)	Type & No.	Rec. (Ft.,%)	SPT	Samp	(ppm)	Visual Description	Installat Detail	ion (Ft. MSL				
51 52	52.0	S-26	0.9 45%	2 4 6		<u>0.1</u> 0.1	Continued from Sheet 3 F SAND, trace silt; greenish-gray	-					
53	52.0	S-27	1.1 55%	6 10 16			little silt, trace clay laminae; greenish-brown; m dense;	-					
54	54.0			<u>25</u> 20		0.1	moist	-	-				
55		S-28	1.5 75%	24 28		<u>0.1</u> 0.1		-	-				
56	56.0	·····		24			56.0 BOH @ 56.0'		56.0				
57													
58 59													
⁵⁹						ļ							
61													
62							-						
63													
64													
65													
66							-						
67									-				
68													
69							-		-				
70									_				
RILLIN		: <u>Parrati</u> Chip L	t - Wolff			•		DeJohn V04IW S	HEET 4 OF 4				

Baken

TEST BORING AND WELL CONSTRUCTION RECORD

Baker Environmental

PROJECT:	Phase	I Investig	ation at Site	es 88, 89	and 93	- MCB	Camp Lejeune					
CTO NO.:	62470	-356			_		IG NO.:		88-TW05			
COORDINAT	ES: EAST		2496448.9	9332	_	NORT	H:		3392			
ELEVATION:	SURF	ACE:	25.73		-	TOP O	F PVC CASIN	G:	28.18			
Rig: Died	rich D-50							<u> </u>		Depth to		
	Split	Casing	Augers	Core		Date	Progress	Wea	ather	Water	Time	
	Spoon	8	0	Barr	1		(Ft.)			(Ft.)		
Size (ID)	1-3/8"		2-3/4"			/16/96	0.0 - 15.0	P Sun	ny, 70s			
Length	2'		5'									
Туре	Stainless		HSA									
Hammer Wt.	140 #		~~									
Fall	30"											
Stickup		**										
Remarks:												
		MPLE T					WEL	L INFC	RMAT	ION		
]			A = Auger							Тор	Bottom	
		-	W = Wash				Type		Diam.	Depth	Depth	
	R = Air	•	C = Core							(Ft.)	(Ft.)	
	D = Den		P = Piston				, PVC Riser		1"	0	5	
		= No Sam	ple	T -1		Sch 40	, 10-Slot, PVC	Screen	1"	5	15	
Depth (Ft.)	Sample	Sample Rec.	SPT	Lab.	PID					Vell	Elevation	
Depin (FL)	Type & No.	(Ft.,%)	5P1	Samp.	(ppm)		isual Description	on		allation	(Ft. MSL)	
	110.	(ГІ.,70)				<u> </u>				etail		
1												
^												
2	A-N					F SAN	D, trace to little	silt [.]		-		
1						brown;	-	<u> </u>				
3						,	₽			-		
4 4.0								_		-		
			2			1						
5	S-1	2.0	3		<u>0.2</u>	trace si	lt; brown; loose	e;		-		
		100%	6		0.2	damp						
6 6.0			7									
			6					_		-		
7	S-2	1.1	12	04	<u>0.2</u>		brown & oran					
		55%	10		0.2	lamina	e; m dense; mo	ist _		-		
8 8.0			11		<u> </u>	4						
	C 2	20	6					_				
9	S-3	2.0 100%	6 8		0.2 0.2							
10 10.0		100%	8 10		0.2			_		-		
			3			1	Match to Shee	2				
				l,	<u></u>	<u> </u>					I	
DRILLING CO		t - Wolff			-		R REP.:	Mark I			1.054	
DRILLER:	Chip I	Lafever			-	ROKIN	IG NO.:	88-TW	/05	SHEET	1 OF 2	

Bakan

Baker Environmental

PROJEĆ CTO NO		Phase 62470		ation at Site	es 88, 89,	and 93	- MCB Camp Lejeune BORING NO.:		88-TW	05				
	···					-								
			MPLE TY						TIONS		~			
			Spoon A				SPT = Standard Penetrat		-		"			
			Rotary	W = Wash			PID = Photo Ionization Detector measurement Lab Samp = Depth interval of soil sample							
	D -	Denison H			mato		submitted							
		Sample	Sample	IN - INU 5a	Lab	PID	Sublinitieu	Elevation						
Depth (Tet)	Type &	Rec.	SPT	Samp.	(ppm)				Well allation	(Ft. MSL)			
Depui	1.1	No.	(Ft.,%)	51 1	Samp.	(ppm)	visual Description			etail				
11		 	2.0	6		<u>0.2</u>			T					
	łł		100%	7		0.2				-	{ {			
12	12.0		10070	7		0.2		-						
12 -	12.0			4										
13		S-5	2.0	4 6]	0.2		13.1		-	-			
15 —		5-5	2.0 100%			0.2 0.2		13.1			1			
14	14.0		10076	4		0.2	CLAY, some silt, trace	-		-	-			
14	14.0	A-N		6										
15	15.0	A-IN					f sand; gray; stiff; moist	15.0		150	-			
15	15.0							13.0		15.0	1			
16 -							BOH @ 15.0'	_		-	-			
16					ł						4 1			
17 -											4			
17								_			4			
10 -										-				
18											-			
10 -								_		-	4			
19						1					4 1			
-	[[ſ			_		-	[[
20										_				
								_		-				
21														
_								-						
22										_				
					ļ					_	1			
23														
										-				
24	ļ		J		J		ļ							
_						1					l í			
25														
26														
_														
27														
28														
29														
					[_				
30						1								
RILLIN) · Parrat	t - Wolff				BAKER REP.: N	lorle D	eJohn					
RILLE			Lafever			-		8-TW		CUEE				
فابلا تتعاد		<u>Cup</u>	5410701			-		0~1 W		- SHEE	Г 2 OF 2			

Baker

TEST BORING AND WELL CONSTRUCTION RECORD

Baker Environmental

CTO NO.:	62470				and 93		IG NO.:		88-TW05IW				
COORDINAT	ES: EAST	:	2496448.6	554	-	NORTI	H:	•		51.5837	<u></u>		
ELEVATION:	SURF	ACE:	26.02			TOP O	F PVC CASI	∛G :	27.89				
Rig: Died	rich D-50									Depth to			
	Split Spoon	Casing	Augers	Core Barre		Date	Progress (Ft.)	Wea	Weather Water (Ft.)		Time		
Size (ID)	1-3/8"		2-3/4"		8/	18/96	0.0 - 57.0	Sunn	y, 70s				
Length	2'		5'										
Туре	Stainless		HSA										
Hammer Wt.	140 #												
Fall	30"												
Stickup													
Remarks:													
		MPLE T					WE	LL INFC	DRMAT				
		Spoon A					T		D .	Top	Bottom		
			W = Wash				Туре		Diam.	Depth	Depth		
	$R = Air Rotary \qquad C = Core$ $D = Denison \qquad P = Piston$					C.1. 40	DUC Disco		1"	(Ft.)	(Ft.)		
	$D = Demson \qquad P = Pision$ N = No Sample						, PVC Riser , 10-Slot, PVC	1 Company	<u>1"</u> 1"	0 45	45 50		
	Sample	Sample		Lab	PID	SCII 40	, 10-5101, P V	. Screen		Vell	Elevation		
Depth (Ft.)	Type &	Rec.	SPT	Samp	(ppm)		isual Descript	ion		allation	(Ft. MSL		
Depin (11.)	No.	(Ft.,%)	51.1	Banip				1011		etail			
		(=, /)			<u> </u>								
1													
,										-			
2										-			
]		<u></u>					
3													
										_			
4													
-								–					
5	A-N						o the log for v				÷		
_							05 for descrip	tions _		-	ł		
6						from 0	- 15						
, -					}								
7					1								
8 -										-			
° –													
9								-		-	1		
í —					1					-	1		
10										-	1		
							Match to She	et 2			1		
	<u> </u>								DeJohn				
DRILLING CO). D 4	t - Wolff				DAVE	R REP.:	N/inviz I	10000				

Bakan

Baker Environmental

PROJECT: CTO NO.:	Phase 62470		ation at Site	es 88, 89	, and 93	- MCB Camp Lejeune BORING NO.:	88-TW05IW						
					-								
		MPLE TY Spoon A				DEFIN SPT = Standard Penetration	ITIONS	586)					
		by Tube V				PID = Photo Ionization Detec							
		Rotary				Lab Samp = Depth interval o							
D =	Denison F			mple		submitted to mobile lab							
	Sample	Sample			PID		Well	Elevation					
Depth (Ft.)	Type &	Rec.	SPT		(ppm)	Visual Description	Installation	(Ft. MSL)					
	No.	(Ft.,%)					Detail						
11						Continued from Sheet 1							
_						_							
12								4					
								4					
13	A-N												
14						-		4					
¹⁴													
15 15.0						-	$\{ \mid \mid \mid \}$	-					
13 15.0			10	<u> </u>			4						
16	S-1	0.9	5	l		F SAND, some silt; gray w/		- 1					
· · ·	5.	45%	6			orange-brown layers;		-					
17 17.0			7			m dense; wet	1	-					
							1	-					
18								-					
	A-N												
19													
2020.0													
_			4			_							
21	S-2	1.6	6			some silt, trace clay; gray							
		80%	6			w/ trace brown laminae		-					
2222.0			7				\downarrow \downarrow \downarrow \downarrow \downarrow						
<u></u>						-	4	_					
23	A-N						4						
24	A-N					-	$\left\{ \left[\right] \right\} \left[\left[\right] \right]$	-					
24						_	4 1 1 1						
25			2			-	4	-					
			WOH	<u> </u>			4						
26	S-3	1.4	1			little silt; gray w/ little	111	-1					
		70%	2			orange laminae; loose	1						
27 27.0			6				1	-					
					1		1	-					
28 _						-	1						
	A-N]		_]						
29						-							
].					
30 30.0													
			2			Match to Sheet 3							
DRILLING CO	D.: Parrat	t - Wolff				BAKER REP.: Mark	DeJohn						
		Lafever											

TEST BORING AND WELL CONSTRUCTION RECORD

Baker Environmental

PROJEC CTO NO		Phase 62470	I Investiga	ation at Site	<u>es 88, 89</u>	, and 93	- MCB Camp Lejeune BORING NO.:		20. 1713	051117			
	·			40.02		-			88-TW				
	D =	S = Split		A = Auger W = Wash C = Core	mple		DEFINITIONS SPT = Standard Penetration Test (ASTM D1586) PID = Photo Ionization Detector measurement Lab Class = USCS (ASTM D2487)						
		Sample	Sample		Lab	PID	······		,	Well	Elevation		
Depth (Ft.)	Type & No.	Rec. (Ft.,%)	SPT	Samp	(ppm)	Visual Descriptior	n	Inst	allation Detail	(Ft. MSL)		
31		S-4	1.4	4			Continued from Sheet 2						
32 -	22.0		70%	3 7			F/M SAND, little silt, th	race		-			
³² —	32.0			1			gravel & clay; gray & brown						
33 -							010WII			-			
_		A-N								-			
34 _													
										-			
35 _	35.0			WOR/				_					
36 -		S-5	1.3	18"			F SAND, little silt, trac			-			
		0-5	65%	10			clayey laminae; gray;	°		-			
37 -	37.0			3			v loose	-		-			
38 _										_			
		A-N						_		-			
39													
40 -	40.0									-			
40	40.0							-		-			
41		S-6	1.0	WOH/			trace silt; gray & brown	-					
			50%	24"			layers						
42 _	42.0									-			
-										_			
43		A 3.7											
44 -		A-N											
										-			
45	45.0							-		-			
				4		1				-			
46 _		S-7	2.0	5			little silt; gray						
			100%	6						_			
47	47.0			7						_			
48													
- ⁴⁰		A-N								-			
49		1						-					
50	50.0												
				2	L		Match to Sheet 4						
DRILLIN			t - Wolff			_	BAKER REP.: 1	Mark D)eJohn				
DRILLEI	R:	Chip I	Lafever			-	BORING NO.:	88-TW	05IW	SHEET	3 OF 4		

Baker

Baker Environmental

PROJECT:	Phase	I Investig	ation at Sit	es 88, 89,	and 93	- MCB Camp Lejeune			
CTO NO .:	62470)-356				BORING NO.:	<u>88-</u> T	W05IW	
D =	S = Spli T = Shel	by Tube V Rotary	A = Auger W = Wash C = Core	ample		D SPT = Standard Penetr PID = Photo Ionization Lab Class = USCS (AS	Detector m	ASTM D1586 easurement	5)
	Sample	Sample		Lab	PID			Well	Elevation
Depth (Ft.)	Type & <u>No.</u>	Rec. (Ft.,%)	SPT	Samp	(ppm)	Visual Description	n II	stallation Detail	(Ft. MSL)
51	S-8	1.0	5			Continued from Sheet 3	3		
52 52.0		50%	19 22			little silt, trace clay; lt.		-	
53						greenish-brown; m den moist to wet	se;		
54	A-N								
55 55.0			5						
⁵⁶	S-9	0.6 30%	7 19			trace silt & clay; lt gree wet	n;		
57 57.0			>26				57.0	57.0	
58						BOH @ 57.0'		-	
59 _								-	
60							_	-	
61							_		
62 _							-	-	
63 _							-		
64									
65									
66									
67									
		l							
69							_		
70								-	
DRILLING CO. DRILLER:	: <u>Parratt</u> Chip L	- Wolff afever		····			1ark DeJohn 8-TW05IW	SHEET	4 OF 4

3e) (O)

TEST BORING AND WELL CONSTRUCTION RECORD

Baker Environmental

CTO NO	Г: .:	62470		ation at Site			BORING NO.: 88-TW06					
COORDI	NAT	ES: EAST	•	2496527.	2219	•	NORTI	H:	•	339522.7162		
ELEVAT	ION:	SURF	ACE:	25.62			TOP O	F PVC CASIN	G:	25.64		
Rig:	Died	rich D-50							1		Depth to	
<u></u>		Split	Casing	Augers	Core		Date	Progress	Wea	ther	Water	Time
		Spoon	Classing		Barre			(Ft.)			(Ft.)	
Size (ID)		1-3/8"		2-3/4"			/16/96	0.0 - 15.0	M Sun	ny, 80s		
Length		2'		5'		_ <u>_</u>	10,20	0.0 10.0		<u>,, 005</u>		
Туре		Stainless		HSA				<u> </u>		·····		
Hammer	·Wt.	140 #						_				- <u></u>
Fall		30"										
Stickup	Ĩ											
Remarks	5:										• <u>•••</u>	
		SA	MPLE T	YPE				WEL	L INFC	RMAT	TION	
				A = Auger							Тор	Bottom
	T = Shelby Tube $W = $ Wash						Туре		Diam.	Depth	Depth	
				C = Core							(Ft.)	(Ft.)
		D = Den		P = Piston				, PVC Riser		1"	0	5
			= No Sam	ple			Sch 40	, 10-Slot, PVC	Screen	1"	5	15
		Sample	Sample		Lab.	PID					Well	Elevatio
Depth (Ft.)	Type &	Rec.	SPT	Samp.	(ppm)		isual Descripti	on		allation	(Ft. MSI
		No.	(Ft.,%)		<u> </u>	ļ	ļ				Detail	
		1.57					A	4				
1		A-N					subbas	t pavement &				
_	20						subbas	8			-	
2 _	2.0			4	· · · · · · · · · · · · · · · · · · ·		-					
3		S-1	2.0	6		0.1	FSAN	D, some silt; n	nottled		-	
J		5-1	100%	5		$\left \begin{array}{c} \frac{0.1}{0.1} \\ 0.1 \end{array} \right $	1	& brown; m d			-	
4 -	4.0		10070	5		0.1	damp				-	
·	7.0			4		<u> </u>						
5		S-2	1.1	5	03	<u>0.1</u>	little si	lt; gray w/ ora	nge _		-	
		-	55%	6	1	0.1		l layers; moist	•			
6 -	6.0			7				•			-	
				6			1				_	
7		S-3	2.0	4		<u>0.1</u>	loose;	wet				Į
			100%	4	1	0.1	Water	· @ 6.0']
8 _	8.0		L	6			1					1
				2					_		-	
9_		S-4	0.0	2			No rec	overy			_	Į
_			0%	2					_		-	1
10	10.0		ļ	4	I	<u> </u>	4					1
		L		1	<u> </u>		<u> </u>	Match to Shee	et 2		L	L
DRILLI	NG C	O.: Parrat	tt - Wolff				BAKE	R REP.:	Mark	DeJohn		
DRILLE		Contraction of the local division of the loc	Lafever			-	BORI	NG NO.:	88-TV	V06	SHEET	Г 1 OF 2

Bakan

Baker Environmental

Phase I Investigation at Sites 88, 89, and 93 - MCB Camp Lejeune PROJECT: 88-TW06 62470-356 BORING NO .: CTO NO .: **SAMPLE TYPE DEFINITIONS** SPT = Standard Penetration Test (ASTM D1586)S = Split Spoon A = AugerPID = Photo Ionization Detector measurement T = Shelby Tube W = Wash Lab Samp = Depth interval of soil sample R = Air Rotary C = Coresubmitted to mobile lab D = Denison P = Piston N = No SamplePID Well Elevation Sample Sample Lab Installation (Ft. MSL) Depth (Ft.) Type & Rec. SPT Samp. (ppm) Visual Description Detail No. (Ft.,%) Continued from Sheet 1 11 S-5 1 0.8 0.1 ---2 40% little silt, trace clay; gray; 0.1 12 12.0 2 v loose; wet 12.0 3 F SAND, some silt, ltl clay; gray; v loose; wet S-6 2.0 2 13 <u>0.1</u> 13.0 100% 2 0.1 2 CLAY, some silt, trace 14 14.0 A-N f sand; gray; stiff; moist ----------15.0 15 15.0 15.0 BOH @ 15.0' 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 DRILLING CO .: Parratt - Wolff BAKER REP .: Mark DeJohn DRILLER: Chip Lafever BORING NO .: 88-TW06 SHEET 2 OF 2

Bakan

TEST BORING AND WELL CONSTRUCTION RECORD

CTO NO		62470		ation at Site		_		IG NO.:		88-TW	07	
COORE	DINAT	ES: EAST	•	2496634.	4204	_	NORT	H:		3393	33.8703	
ELEVA	TION	: SURF	ACE:	26.50		-	TOP O	F PVC CASIN	IG:	28.60		
Rig:	Died	rich D-50							<u> </u>		Depth to	
		Split	Casing	Augers	Core	2	Date	Progress	We	ather	Water	Time
		Spoon			Barro	el		(Ft.)			(Ft.)	
Size (II)		1-3/8"		2-3/4"		8	/16/96	0.0 - 15.0	M Sur	uny, 80s		
Length		2'		5'								
Гуре		Stainless		HSA								
Hamme	er Wt.								ļ			L
Fall		30"										
Stickup												L
Remarl	ks:	C A										
			MPLE TY Spoon A					WEL	L INFC	ORMAT		Dett
		-	-	V = Wash				Timo		Diam	Top	Botton
		R = Air	•	C = Core				Туре		Diam.	Depth	Depth
		D = Den	-	P = Piston			Sch 40	PVC Riser		1"	<u>(Ft.)</u> 0	<u>(Ft.)</u> 5
			= No Sam					, 10-Slot, PVC	Screen	1"	5	15
		Sample	Sample		Lab.	PID		, 10 5100, 1 7 0	Screen		Vell	Elevatio
Depth	(Ft.)	Type &	Rec.	SPT	Samp.	(ppm)	v v	isual Descripti	on	1	allation	(Ft. MS
_		No.	(Ft.,%)		-			•			etail	
				5			F SAN	D, little silt &	brick			
1 _		S-1	1.7	2				own & black;				
-			85%	2			loose; c	lamp				ĺ
2 _				3								: [
· ·	_			3					_			l
3_	-	S-2	1.1	3			little si	lt; brown; mois	st		_	
· ·			55%	5					_		_	
4	4.0			5		<u> </u>	4					
5	-	S-3	1.3	3 4	03		mattlad	1 hanna			_	
5	-	6-6	65%	4	03		mouled	l, brown & ora	nge;			
6	6.0		0370	4					_		-	
° –				3		<u> </u>	1					
7		S-4	1.6	4		<u>0.1</u>	wet		_		-	
·	1		80%	6		0.1	Water	@ 6.0'	<u></u>			
8	8.0			5				<u> </u>			-	
				5			1				_	
9_		S-5	0.8	5		<u>0.2</u>	some si	lt, trace clay; g	gray 🗍		-	
			40%	5		0.2						
10	10.0			6		L	1					
				2				Match to Shee	t 2			L
ORILLI	NG CO	D.: Parrat	t - Wolff				BAKE	R REP.:	Mark I	DeJohn		
ORILLE			afever			-	BORIN		88-TW		SHEET	' 1 OF 2

Baker Environmental

	onnine										
PROJECT:				ation at Site	s 88, 89,	and 93	- MCB Camp Lejeune		00 7711/	7	
CTO NO.:		62470				•	BORING NO.:		88-TW		
			MPLE TY	<u>YPE</u> A = Auger			<u>DE</u> SPT = Standard Penetra		FIONS		a
				V = Wash			PID = Photo Ionization				"
				C = Core			Lab Samp = Depth inter				
	D =			N = No Sa	mple		submitted				
		Sample	Sample		Lab	PID				Vell	Elevation
Depth (Fi	t.)	Type & No.	Rec. (Ft.,%)	SPT	Samp.	(ppm)	Visual Description	L		allation etail	(Ft. MSL)
11		S-6	1.3	2		<u>0.2</u>	Continued from Sheet 1				
			65%	2		0.2	little silt; brown & gray	_		_	
12 1	2.0			2			layers				
		0.7	1.0	2						-	
13		S-7	1.2	4		0.2 0.2	gray				
14 1	4.0		60%	4		0.2				-	
		A-N					• · · · · · · · · · · · · · · · · · · ·				
15 1	5.0	17-14						15.0		15.0	
		· · · · · · · · · · · · · · · · · · ·					BOH @ 15.0'		-17-		
16											
17											
_								_		-	
18											
10 -										-	.
19										-	
20								-			
20											1 1
21								-		-	1
22								-		-	1
23											
_										· .	
24							1				
<u> </u>				ł				_			
25											
26								_			1
										. —	1
27				1				_		-	1
-1											
28				Ĩ							
								_		-	
29										_	4
20 -								_			-
30											4
			I		I	J	<u>I</u>			<u>i</u>	
DRILLIN			t - Wolff			-	_		DeJohn		
DRILLER	:	Chip l	Lafever			_	BORING NO.: 8	<u> 88-TW</u>	07	_ SHEE	r 2 OF 2

3aken

TEST BORING AND WELL CONSTRUCTION RECORD

COORDI ELEVAT			-356			_	BORIN	IG NO.:		88-TW(78	
ELEVAT		ES: EAST	:	2496390.0	017	-	NORT	H:		33957	5.5495	
	ION:	SURF	ACE:	24.71		- -	TOP O	F PVC CASIN	IG:	26.80		
Rig:	Died	rich D-50									Depth to	
		Split Spoon	Casing	Augers	Core Barre		Date	Progress (Ft.)	Wea	ather	Water (Ft.)	Time
Size (ID)		1-3/8"		2-3/4"		8	/16/96	0.0 - 15.0	M Sun	ny, 80s		
Length		2'		5'								
Туре		Stainless		HSA								
Hammer	Wt.	140 #										
Fall		30"										
Stickup												
Remarks	:											
			MPLE TY				ļ	WEL	L INFC	RMAT		
			Spoon A				ł				Тор	Bottom
			-	W = Wash				Туре		Diam.	Depth	Depth
		R = Air D = Den		C = Core P = Piston			G -1 40	DUO D'		1"	(Ft.)	(Ft.)
			= No Sam					, PVC Riser	Carrow	1" 1"	0	5
		Sample	Sample	pie	Lab.	PID	SCII 40	, 10-Slot, PVC	Screen		Vell	15 Elevatio
Depth (F	Ft)	Type &	Rec.	SPT	Samp.	(ppm)		isual Descripti	on		allation	(Ft. MSI
Deptil (1		No.	(Ft.,%)	51 1	Samp.	(ppm)	ľ	Isual Descripti	011		etail	
			(1 (1, 7 0)									
1		A-N					Asphal	t pavement &				
							subbas	-				
2											-	
				2			1		_			l
3		S-1	1.6	2		0.3	F SAN	D, little silt, tra	ace		-	
			80%	3		0.3	clay; m	ottled, brown	&			
4	4.0			2			gray; lo	oose; moist				
_				2					_		_	1
5		S-2	1.0	4	03	<u>0.3</u>						
			50%	4		0.3			_		_	
6	6.0			5			ļ					
_ -			1.0	7			Į .		_		_	
7		S-3	1.3	6		$\frac{0.2}{0.2}$		ilt; brown & gr	-			1
8	•		65%	7		0.2		m dense; mois	l		_	1
° -+	8.0			6			wet	Water @ 7.5'			_	1
9		S-4	1.0	4 6		0.2	aros		. —			ł
7 -		5-4	1.0 50%	6		<u>0.2</u> 0.2	gray					1
10 -	10.0		5070	6		0.2			_			1
** <u>-</u>				2			1	Match to Shee	t 2 —			
	k				L		 ,	in the second				L
DRILLIN DRILLER			t - Wolff Lafever			-		R REP.: IG NO.:	Mark I 88-TW	DeJohn		5 1 OF 2

381(0)

Baker Environmental

PROJEC	T :	Phase	I Investiga	ation at Site	es 88, 89,	and 93	- MCB Camp Lejeune				
CTO NO).:	62470				-	BORING NO .:		88-TW	08	
			MPLE T					EFINI		-	
				A = Auger			SPT = Standard Penetr				5)
				W = Wash			PID = Photo Ionization				
	л –	R = Air Denison P	Rotary				Lab Samp = Depth inte submitte				1
	<u> </u>	Sample	Sample	$\frac{1}{1}$ - $\frac{1}{10}$ 58	Lab	PID	Submitte			, Well	Elevation
Depth (Ft)	Type &	Rec.	SPT	Samp.	(ppm)	Visual Description	n		allation	(Ft. MSL)
Doptin		No.	(Ft.,%)	ŬI I	bump.	(ppm)	visual Description	-		Detail	(1 (1 (1))))
11		S-5	1.0	2		0.2	Continued from Sheet	1			
			50%	2		0.2	little silt; loose				
12	12.0			3							
_				4						-	
13		S-6		6			tan; m dense			_	
-				7				_		-	-
14	14.0	A-N		7	<u> </u>						4
15 -	15.0	A-N						15.0		15.0	
15	15.0					<u> </u>	BOH @ 15.0'	15.0		15.0	4
16								-		-	
										-	
17								7		-	
18										_	
-								_		_	
19											
20										-	-
20											-
21								-		-	
					ļ					-	
22					1			-		-	
										-	
23 _										-	
_]]
24										_	-
as -								_		-	
25											-
26					[[- 1	4
										-	-
27								-1		-	1
					1					1 -	1
28 _					1]
					1						
29					1					_	
30 -								_		-	4
JU											{
			L		I	l	<u> </u>			I	L
DRILLIN			t - Wolff			-		Mark D			
DRILLE	KC	Cnip I	Jafever			-	BORING NO .:	88-TW	<u></u>	- SHEET	Г 2 OF 2

TEST BORING AND WELL CONSTRUCTION RECORD

PROJECT:			ation at Site	es 88, 89,	and		Camp Lejeu	ne		<u></u>	
CTO NO.:	62470				-		IG NO.:		88-TW		
COORDINAT			2496389.2	.768	-	NORT				9568.3202	
ELEVATION:	SURF	ACE:	24.71		-	TOP O	F PVC CAS	ING:	25.	.63	
Rig: Died	rich D-50									Depth to	
	Split	Casing	Augers	Core		Date	Progress	We	ather	Water	Time
	Spoon	5	Ũ	Barre	el 📔		(Ft.)			(Ft.)	
Size (ID)	1-3/8"		2-3/4"			8/18/96	0.0 - 47.0	M Su	nny, 80s		
Length	2'		5'								
Туре	Stainless		HSA								
Hammer Wt.	140 #		-								
Fall	30 ⁿ										
Stickup											
Remarks:											
		MPLE T					WEL	LINF	ORMA'	FION	
1			A = Auger							Тор	Bottom
			W = Wash				Туре		Diam.	Depth	Depth
	R = Air		C = Core							(Ft.)	(Ft.)
	D = Den		P = Piston				, PVC Riser		1"	0	39
		= No Sam	ple		r		, 10-Slot, PV	C Scr	1"	39	44
	Sample	Sample	0.00	Lab	PII						Elevatio
Depth (Ft.)	Type &	Rec.	SPT	Samp	(ppn	n) Vis	sual Descript	ion			(Ft. MSI
	No.	(Ft.,%)								etail	
					ł						ł
1								_			1
2 -				E.				-	$\{ \mid \}$	-	
2											{
3								-	$\{ \mid \mid \}$		1
3 —										-	4
4								-		-	1
*											-
5	A-N					Refer t	o the log for	well .			1
J							08 for descri				
6						from 0		· · · · · ·		-	1
								_			
7		{						-		-	1
8								-		-	-
										_	1
9								-		-	1
-1									1	_	1
10								-		-	1
							Match to Sh	neet 2	$1 \downarrow \downarrow$		1
	0 · Domot	t - Wolff				BAKE	R REP.:	Mark	DeJohn		
DRILLING CO DRILLER:		Lafever	·····		-		NG NO.:		W08IW		1 OF 3
DRILLER.	Cup	Laievel			-	DOM	10110	00-1	** 001 **	-	1.01.2

Baker

Baker Environmental

ROJEC CTO NO		Phase 62470		ation at Site	<u>es 88, 89,</u>	and 93	- MCB Camp Lejeune BORING NO.:	38-TW08IW
			MPLE T	VPE		•	DEFINI	
			t Spoon A				SPT = Standard Penetration	
				W = Wash			PID = Photo Ionization Det	
			Rotary				Lab Samp = Depth interval	
	D =	Denison F	-		mple		submitted to	
		Sample	Sample			PID		Well Elevation
Depth (Ft.)	Type &	Rec.	SPT	,	(ppm)	Visual Description	Installation (Ft. MSL
		No.	(Ft.,%)					Detail
11							Continued from Sheet 1	
10 -							-	
12							_	
13		A-N						
- 13		A-N					-	
14							-	
*								
15	15.0						-	
				8				
16		S-1	1.7	5			F SAND & SILT, trace	
			85%	4			clay; greenish-gray;	
17 _	17.0			4			stiff; wet	
18								
_		A-N					_	
19								
						[
20	20.0					ļ		
		G A		WOH/				
21		S-2	2.0 100%	12"			CLAY, little silt, trace	
22 -	22.0		100%	1 1			f sand; dk brown; v soft; moist	
^{LL}	22.0			1			-	
23 -							-	
~~		A-N					-	
24							-	
							· · ·	
25								
				WOH			-	
26 _		S-3	2.0	2			little silt & wood, trace	
			100%	1			f sand; dk brown; soft	
27	27.0			2				
28		4 37						
		A-N						
²⁹								
30	20.0							
- ³⁰	30.0			2		<u> </u>	Motol to Chart 2	
	L I			Ζ			Match to Sheet 3	
ORILLIN		A	t - Wolff	· · · · · · · · · · · · · · · · · · ·		-	BAKER REP .: Mark I	
ORILLEI	R:	Chip I	Lafever			_	BORING NO.: 88-TW	VO8IW SHEET 2 OF 3

Baker

Baker Environmental

.

PROJECT				tion at Site	s 88, 89,	and 93	- MCB Camp Lejeune		
CTO NO.:	:	62470	-356			-	BORING NO .:	88-TW0	BIW
		S = Split T = Shel R = Air	MPLE TY Spoon A by Tube V Rotary	A = Auger W = Wash C = Core			DE SPT = Standard Penet PID = Photo Ionization Lab Class = USCS (A	n Detector me	
		Denison F		N = No Sa					
Depth (F	⁻ t.)	Sample Type & No.	Sample Rec. (Ft.,%)	SPT	Lab Samp	PID (ppm)	Visual Description	n Instal	ellElevationlation(Ft. MSLtail
31		S-4	1.3	4			Continued from Sheet		
			65%	6					
32	32.0			8		<u> </u>	F SAND, some silt; 3 dk gray; m dense; wet		
33							uk gray, in uclise, wet		
		A-N							
34									_
35	35.0				:			-	-
	55.0			1					
36		S-5	1.4	1			little silt; bright gray;		_
			70%	1			v loose		_
37	37.0			1				_	
38									-
		A-N							
39 _									
				-					-
40	40.0			1			-		_
41		S-6	2.0	1			gray		-
			100%	1			6,		
42	42.0			1					
									-
43		A-N							
44		A-11							-
45	45.0						-		_
46		S-7	1.3	13 14			little silt & gravel; lt g	Trav	-
40 -		5-7	65%	22			dense; damp - beginin		
47	47.0			26			at 46.7'	47.0	47.0
							BOH @ 47.0'		-
48									
49									-
								-1	- 1
50									
		l	<u> </u>				L		
DRILLIN			tt - Wolff			_		Mark DeJohn	
DRILLEF	ર :	Chip	Lafever		<u> </u>	-	BORING NO.: 8	88-TW08IW	SHEET 3 OF 3

Bakan

TEST BORING AND WELL CONSTRUCTION RECORD

.

		62470						Camp Lejeune		88-TW	10	
CTO NO .: COORDIN				2496376.9	333	-	NORTI				77.8448	
ELEVATI		SURF		25.73	545	-		F PVC CASIN	Ċ.	27.89	//,0440	
ELEVAII	ION.	SURP	ACE.	25,15		•	101 0	F F VC CASIN	U.	21.09		
Rig: I	Diedr	ich D-50						-			Depth to	
		Split	Casing	Augers	Core	:	Date	Progress	Wei	ther	Water	Time
		Spoon			Barre			(Ft.)			(Ft.)	
Size (ID)		1-3/8"		2-3/4"		8	/16/96	0.0 - 18.0	M Sun	ny, 80s		
Length	Ī	2'		5'								
Туре	ſ	Stainless		HSA								
Hammer	Wt.	140 #	~~									
Fall	ſ	30"										
Stickup	ſ								1		,	
Remarks:	:								-			
		SA	MPLE T	YPE				WEL	L INFO	RMAT	ION	
				A = Auger							Тор	Bottom
		-	-	W = Wash				Туре		Diam.	Depth	Depth
			•	C = Core				21	1		(Ft.)	(Ft.)
		D = Den	-	P = Piston			Sch 40	, PVC Riser		1"	0	8
		N	= No Sam	ple				, 10-Slot, PVC	Screen	1"	8	18
		Sample	Sample	^	Lab.	PID		<u> </u>		I	Vell	Elevatio
Depth (F	Ft.)	Type &	Rec.	SPT	Samp.	(ppm)	l v	isual Descripti	on	Inst	allation	(Ft. MSL
- ·F v	~	No.	(Ft.,%)		· ·			•		D	etail	
1 2 3		A-N						D, trace to littl vn; damp	e silt;			
4	4.0											
	T			3				lt & clay; brow				
5		S-1	1.1	3			dk brov	wn; loose; dam	•			
			55%	3		1			5.6		_	
6	6.0	···· •		4		<u> </u>	 				_	
		_		4				lt; mottled, gra	-			
7		S-2	1.7	6	04		brown'	m dense; mois	st		-	
			85%	7					_			
8	8.0		 	8		<u> </u>	4					
_		_		4		1						
9	l	S-3	2.0	6			gray w	/ orange stains				
_			100%	7					_			
10	10.0			5			4					ł
			<u> </u>	5		<u> </u>		Match to She	et 2		L	l
) · Darrat	t - Wolff				BAKE	R REP.:	Mark '	DeJohn		
DRILLIN	1C i C T	1 1 1 1 1 1										

Baker Environmental

PROJECT: CTO NO.:	62470		non at one	3 00, 07,	anu 75	- MCB Camp Lejeune BORING NO.:	88-TW)9	
		·······			•				
		MPLE TY Spoon A				SPT = Standard Penetration	Test (AS	TM D1586	5
		by Tube V				PID = Photo Ionization Dete	•		<i>'</i>
		Rotary				Lab Samp = Depth interval ϕ			
D =		•	N = No Sa	mnle		submitted to r			
<u>P</u>	Sample	Sample		Lab	PID	Buomitou to a		Vell	Elevation
Depth (Ft.)	Type &	Rec.	SPT	Samp.	(ppm)	Visual Description		allation	(Ft. MSL)
	No.	(Ft.,%)	51 1	Sump.	(pp)	i ibuui 2 oboription	1	etail	(,,
11	S-4	1.4	7			Continued from Sheet 1			·····
		70%	6			trace silt; mottled, brown &		_	
12 12.0			9			gray; m dense; moist		-	
			6	<u>_</u>					
13	S-5	1.5	7			little silt; gray w/ orange	18	-	
		75%	10			stains; wet			
14 14.0			10			Water @ 12.0'			
			4						
15	S-6	1.3	7			some silt, trace clay;			
		65%	9			moist to wet		_	
16 16.0			8			· · ·			
			6					-	
17	S-7	2.0	8			little silt, trace clay; gray; _			
		100%	9			m dense; wet		_	
18 18.0			10			18.	이 📕	18.0	
_						BOH @ 18.0'		_	
19						_		_	
			:					_	
20						_			
								-	
21							_		
								-	
22						-			
23						_		_	
24							-		ł
₁₅ ↓							-		
25							-		
26							-		
20						-	-		
27							-	-	
						-	-	-	
28							-		
~								-	
29							-1		
						-		-	
30							-	-	
						-		-	
RILLING CO					ł			L	I
$\alpha \alpha \alpha \beta \alpha \beta$	ı∙ Pa rr at	t - Wolff				BAKER REP.: Mark	: DeJohn		

TEST BORING AND WELL CONSTRUCTION RECORD

PROJEC				ation at Site	es 88, 89,	, and 93			; 			
CTO NO		62470				-		IG NO.:		88-TW		
		ES: EAST		Not Reco		-	NORT		~		Recorded	
ELEVA	TION	SURF	ACE:	Not Recor	ded	-	TOP O	F PVC CASIN	G:	Not F	Recorded	
Rig:	Died	rich D-50							1		Depth to	
		Split Spoon	Casing	Augers	Core Barre		Date	Progress (Ft.)	We	ather	Water (Ft.)	Time
Size (ID)	1-3/8"		2-3/4"		8,	/17/96	0.0 - 15.0	Sunn	ıy, 80s		
Length		2'		5'								
Туре		Stainless		HSA								
Hamme	r Wt.	140 #										
Fall		30"										
Stickup												
Remark	ks:											
			MPLE TY					WEL	L INFC	ORMAT	TION	
		-	Spoon A	•							Тор	Bottom
			-	W = Wash				Туре		Diam.	Depth	Depth
		R = Air		C = Core							(Ft.)	(Ft.)
		D = Den		P = Piston				, PVC Riser		1"	0	5
			= No Sam	ple			Sch 40	, 10-Slot, PVC	Screen	1"	5	15
		Sample	Sample		Lab.	PID					Well	Elevation
Depth	(Ft.)	Type &	Rec.	SPT	Samp.	(ppm)	V	isual Descripti	on		allation	(Ft. MSL)
		No.	(Ft.,%)							D	Detail	
1		A-N					Asphal subbase	t pavement &				
2	2.0						Į				_	
	4			1					_		_	
3	_	S-1	0.8	2	02			D, little silt; br	own;			
	-		40%	2			loose; o	lamp	-		_	
4	4.0			2		ļ						
	4			1					_			
5	-	S-2	1.7	1				lt; gray; v loos			_	
			85%	1			wet	Water @ 4.5'				
6_	6.0			4			ł					
	-	6.2	0.1	4			1					
7	4	S-3	0.1	3			loose				_	
			5%	3							_	
8	8.0			2			4				_	
9	4	C 4	07	1			1:41	14				
9	-	S-4	0.7	2			little si	11				
10 -			35%	2								
10 _	10.0			4	ļ	<u> </u>		Match to Shee	+		_	
	1			3		I	I	match to shee	ι 2		<u> </u>	L
DRILLI			t - Wolff			_		R REP.:		DeJohn		
DRILLE	R ·	Chin I	Lafever				BORIN	IG NO.:	88-TW	710	SHEET	1 OF 2

57: Kar

Baker Environmental

PROJECT:	Phase	I Investiga	ation at Sit	tes 88, 89,	, and 93	- MCB Camp Lejeu	ne			
CTO NO.:	62470	0-356				BORING NO.:		38-TW	10	
Ι	S = Splite T T = She	MPLE TY it Spoon A lby Tube V Rotary P = Piston	A = Auger W = Wash C = Core		*****	SPT = Standard Pen PID = Photo Ionizat Lab Samp = Depth i	ion Detecto	est (AS or meas soil sar	TM D1586 surement nple	5)
	Sample	Sample		Lab	PID				Well	Elevation
Depth (Ft.)) Type & No.	Rec. (Ft.,%)	SPT	Samp.	(ppm)	Visual Descrip	tion	Inst		(Ft. MSL)
11	S-5	1.1	4			Continued from She	et 1			
12 12		55%	3				_			
			43	<u> </u>	· · · ·	1				
13	S-6	1.0	4			some silt	-		-	
		50%	2							
14 14	.0 A-N		2							
15 15							15.0		15.0	
					<u> </u>	BOH @ 15.0'	15.0		15.0	
16				1		Ŭ			_	
17										
"	Í						_			
18									-	
19		ļ ļ					-		_	
20					[·					
20										
21									-	
_										
22		F					-		-	
a a -									_	
23										
24									-	
25										
26 -										
26			i							
27							-		-	
28							-		-	
29										
47 <u> </u>			1							
30							-		-	
DRILLING (CO.: Parratt	- Wolff				BAKER REP.:	Mark De	Iohn		
ORILLER:	Chip L					BORING NO.:	88-TW1		SHEET	2 OF 2
									1	

TEST BORING AND WELL CONSTRUCTION RECORD

Baker Environmental

CTO NO.		62470					BORIN	IG NO.:		88-TW	11	
COORDI	NAT	ES: EAST	:	2496665.3	044	_	NORT	H:		3392	35.1036	
ELEVAT	'ION:	SURF	ACE:	26.08		-	TOP O	F PVC CASIN	G:	28.22	2	
Rig:	Died	rich D-50									Depth to	
		Split Spoon	Casing	Augers	Core Barre		Date	Progress (Ft.)	We	ather	Water (Ft.)	Time
Size (ID)		1-3/8"		2-3/4"		8/	/17/96	0.0 - 15.0	Sunn	y, 80s		
Length		2'		5'	1							
Гуре		Stainless		HSA					-			
Hammer	·Wt.	140 #										
Fall		30"										
Stickup												
Remarks	5:	<i>6</i> 4 A 1					r					
			MPLE TY					WEL	L INFC	DRMA 1		
		~	-	A = Auger				T		.	Тор	Bottom
				W = Wash				Туре		Diam.	Depth	Depth
		R = Air D = Den	-	C = Core P = Piston			Cal 40	DUC Disco		1"	<u>(Ft.)</u>	(Ft.)
			= No Sam				<u> </u>	, PVC Riser , 10-Slot, PVC	Saraan	1" 1"	0	5 15
		Sample	Sample		Lab.	PID	<u>SCII 40</u>	, 10-5101, PVC	Screen		Well	Elevatio
Depth (Ft.)	Type &	Rec.	SPT	Samp.	(ppm)	Ιv	isual Description	m		allation	(Ft. MS
- •p (No.	(Ft.,%)	~~ *	oump.	()		ibuur Deseriptik	,		Detail	(1 1. 1010)
				4			F SAN	D, little silt; bro	own			
1		S-1	1.9	4				k; loose; damp				
			95%	3				· · · ·	1.6			
2				4							-	
_				3			F SAN	D, little silt, tra	ce			
3		S-2	1.1	2	02		clay; g	ray; loose; mois	t		_	
_			55%	3		ļ			_		_	
4	4.0			3		ļ						
				3					_			
5		S-3	1.0	3			4	sh-gray; wet				
, -	<u> </u>		50%	2		1	water	@ 4.0'				
6	6.0			2			1					
7		S-4	1.6	3			little ci	lt; mottled, bro			-	
′ –		1 3-4	80%	4			gray	n, monicu, 010	wii 00		-	
8	8.0		0070	4			BIAY				-	
Ŭ -	0.0			7			1		_		-	
9 -		S-5	1.4	12			trace si	ilt; gray; m den	se -			1
			70%	13				·, o, · · · · · · ·			-	1
10	10.0		- · · ·	11					_		-	1
				6			1	Match to Sheet	2			1
) · Dorrot	t - Wolff				BAKE	R REP.:	Mork	DeJohn		
DRILLIN												

ł

Baker Environmental

PROJECT:	Phase	I Investig	ation at Site	es 88, 89,	and 93	- MCB Camp Lejeune		÷		¥
CTO NO.:	62470				-	BORING NO .:	-	88-T	W11	
· · · · · · · · · · · · · · · · · · ·	SA	MPLE T	<u>YPE</u>			<u>D</u>	EFINI	TION	IS	
			A = Auger			SPT = Standard Penetr				6)
		-	W = Wash			PID = Photo Ionization				
		Rotary		•		Lab Samp = Depth inte				
D =	= Denison F		N = No Sa			submitte	d to mo	bile i		Trisseties
Depth (Ft.)	Sample Type &	Sample Rec.	SPT	Lab	PID	Visual Description		In	Well stallation	Elevation (Ft. MSL)
Depui (Pl.)	No.	(Ft.,%)	SFI	Samp.	(ppm)				Detail	
11	S-6	1.4	5			Continued from Sheet	1			
		70%	5		ł				-	-
12 12.0	1		5				_			
			5]]
13	S-7	1.8	5		-	trace silt & clay			_	
		90%	7				_			1
14 14.0			10							-
	A-N						16 0		15.0	
1515.0						BOH @ 15.0'	15.0		15.0	4
16						DOI (@ 15.0				
										-
17 _									_	
18 -							_			-
10									-	-
19									_	
20							-			-
										-
21	·]
							_			
22									_	4
23							_			4
²³ —										-
24							-			-
									-	-
25							-			
²⁶									-	-
27 -							-			-
_										
28										-
29 _							-			
³⁰										╡ │ 、
		- W-100	L		L				I	
DRILLING CO DRILLER:		t - Wolff Lafever			-		Mark I 88-TW			F 2 OF 2
DRILLER,		2010101			-		00-1 W	11	SHEE	Г 2 OF 2

TEST BORING AND WELL CONSTRUCTION RECORD

CTO NO.:	62470						IG NO.:	-	88-TW		
COORDINA			2496547.	7784		NORT		-		10.0789	
ELEVATIO	I: SURF	ACE:	26.62		•	TOP O	F PVC CASIN	G :	27.18		
Rig: Die	drich D-50									Depth to	
	Split Spoon	Casing	Augers	Core Barre		Date	Progress (Ft.)	Wea	ther	Water (Ft.)	Time
Size (ID)	1-3/8"		2-3/4"		8	/17/96	0.0 - 20.0	P Sun	ny, 70s		
Length	2'		5'	1							
Гуре	Stainless		HSA								
Hammer W	. 140 #										
Fall											
Stickup											
Remarks:		_									
		MPLE T					WEL	L INFC	RMAT		
	-	t Spoon A	•				_			Тор	Bottom
		by Tube				1	Туре		Diam.	Depth	Depth
		•	C = Core				DUG D'		1.14	(Ft.)	(Ft.)
	D = Der		P = Piston				, PVC Riser	Samaan	1" 1"	0 10	10 20
		= No Sam		Lab.	PID	501 40	, 10-Slot, PVC	Screen		Vell	Elevatio
Depth (Ft.)	Sample Type &	Sample Rec.	SPT	Samp.	(ppm)	l t	isual Descripti	on		allation	(Ft. MS
Depth (Pt.)	No.	(Ft.,%)	511	Samp.	(Whin)	' '	Isual Descripti	011		etail	(11. 1415)
	NO	(11.,70)				┼───					
1											
1-1											
2	A-N					F SAN	D, trace to littl	e silt;		-	
1							wn, becoming	· -			1
3							to tan; damp	_		-	
								_			1
4 4.0)										
			4							_	
5	S-1	1.9	5			1	ilt; tan w/ oran	ge			ļ
		95%	4			stains;	loose	_		-	
6 6.0)		6			_					-
_			5								-
7	S-2	1.7	12				ing to lt gray @) 7.0';			-
_		85%	13			m den	se	_			4
8 8.)		14			4					-
		1.0	8	0.5		1	Charger Carry 1				-
9	S-3	1.8	8	05		layer o	of brown f sand	·		-	4
10 110		90%	10					_			1
10 10	<u> </u>	╉	<u>14</u> 11			-	Match to Shee			-	-
l		1		<u>I</u>		<u> </u>				<u> </u>	L
DRILLING		tt - Wolff			_		ER REP.:		DeJohn		
DRILLER:	Chip	Lafever				BORI	NG NO.:	88-TW	V12	SHEET	Γ1 OF 2

Baker

Baker Environmental

PROJECT:	Phase	I Investiga	ation at Site	s 88, 89,	and 93	- MCB Camp Lejeune				
CTO NO.:	62470					BORING NO .:	-	88-TW1	2	
	SA	MPLE TY	<u>YPE</u>			DE	FINI'	FIONS		
		Spoon A				SPT = Standard Penetrat)
			W = Wash			PID = Photo Ionization I				
		Rotary				Lab Samp = Depth inter				
D =	Denison F		N = No Sa		DTD	submitted	to mo			Elevation
	Sample	Sample	CD/T	Lab	PID	Vie al Description			Vell	
Depth (Ft.)	Type &	Rec.	SPT	Samp.	(ppm)	Visual Description			Illation etail	(Ft. MSL)
	<u>No.</u> S-4	(Ft.,%)	11			Continued from Sheet 1		T	Clair	
11	5-4	1.9	11			brown to orangish-brown	. –			
12 12.0		95%	9			w/ gray mottles; wet	" -		-	
12 12.0			5		<u> </u>	Water @ 11.5'				
13	S-5	1.8	6		l	little silt, trace clay; tan	-		-	
	55	90%	7				-			
14 14.0		2070	9	}			-		-	
			3				_		_	
15	S-6	1.0	5			gray	-		-	
		50%	7							1
16 16.0			7							
			4						_	
17	. S-7	2.0	6			some silt, trace to little				
		100%	6			clay	_		_	
18 18.0			9							
_			2				_		-	· ·
19	S-8	2.0	2			some silt, little clay; gra	у			
		100%	2			w/ orange stains; loose				
20 20.0			4	ļ			20.0		20.0	4
						BOH @ 20.0'			-	
21					1					
							-		-	-
22										
					1				-	
23										-
24				1			-		-	4
					1				-	1
25									-	
									-	
26	1		1						-	
27									-	-
28				1]
									-	
29	1									
							_			4
30			1							4
		L	L						<u> </u>	L
DRILLING C	O.: Parrat	tt - Wolff			_	BAKER REP.: <u>N</u>	<u>/ark</u> I	DeJohn		
DRILLER:	Chip	Lafever			-	BORING NO.: 8	8-TW	/12	SHEE	Г 2 OF 2

Baker

TEST BORING AND WELL CONSTRUCTION RECORD

PROJECT: CTO NO.:	62470			,			Camp Lejeune		88-TW	13	
COORDINAT			2496354.8	3031	-	NORT				85.1525	
ELEVATION	: SURF	ACE:	25.16		_	TOP O	F PVC CASING	G:	26.06		
Rig: Died	rich D-50				- 					Donth to	
Ing. Dicu	Split	Casing	Augers	Core	2	Date	Progress	Wea	ather	Depth to Water	Time
	Spoon	Ŭ	Ũ	Barro	el		(Ft.)		-	(Ft.)	
Size (ID)	1-3/8"		2-3/4"		8/	/17/96	0.0 - 19.0	Sunn	y, 80s		
Length	2'		5'								
Туре	Stainless		HSA								
Hammer Wt.											
Fall	30"										
Stickup			**								
Remarks:						· · · · · · · · · · · · · · · · · · ·					
		MPLE T					WELI	LINFO	RMAT		
		Spoon A					<u> </u>		_ .	Тор	Bottom
		•	W = Wash				Туре		Diam.	Depth	Depth
			C = Core			0.1.40				(Ft.)	(Ft.)
	D = Den	= No Sam	P = Piston				, PVC Riser , 10-Slot, PVC		<u>1"</u> 1"	0	9
	Sample	Sample	ipie	Lab.	PID	Sch 40	, 10-510L, PVC	Screen	-	Well	19 Elevatio
Depth (Ft.)	Type &	Rec.	SPT	Samp.	(ppm)		isual Descriptio	m		allation	(Ft. MSI
Depth (11.)	No.	(Ft.,%)	511	Samp.		'	isual Descriptio	AL .		etail	(14. 1915)
		(1 (., / 0)				<u> </u>					
1											
								—			
2								_		-	
	A-N					[
3										-	
								_			
4											
										_	
5 5.0						1					
			5					_		-	
6	S-1	2.0	4	03		1	D, little silt;				
		100%	5				sh-gray; loose;	_			
7 7.0			6		ļ	damp					
8	S-2	1.3	5 7		<u></u>	mottle	i brown & gray;				
°	5-2	1.3 65%	8	}		motued m dens		'		-	
9 - 9.0		05/0	8 9					_			
9 _ 9.0			6			1					
10	S-3	1.8	6	05				_			
~~-		90%	6			Match	to Sheet 2	10.5		-	
		•				· · · ·					
DRILLING C		t - Wolff			-				DeJohn	(III)	
ORILLER:	Chip I	Lafever			_	ROKIN	IG NO.:	88-TW	13	- SHEET	1 OF 2

Bakan

Baker Environmental

Baker Environme									
PROJECT:	Phase	I Investiga	ation at Site	x 88, 89,	and 93	- MCB Camp Lejeune			
CTO NO.:	62470	-356			-	BORING NO .:	88-TW	13	<u> </u>
_	S = Split T = Shel R = Air	Rotary	A = Auger W = Wash C = Core			SPT = Standard Penetration PID = Photo Ionization Dete Lab Samp = Depth interval of	ctor measof soil sar	TM D1586 surement nple)
D =	Denison F		N = No Sa			submitted to n			Theresting
Depth (Ft.)	Sample Type & No.	Sample Rec. (Ft.,%)	SPT	Lab Samp.	PID (ppm)	Visual Description	Inst	Well allation Detail	Elevation (Ft. MSL)
11 11.0			5			Continued from Sheet 1		_	
12 1313.0	S-4	2.0 100%	6 6 7 10			F SAND, little silt & clay; brown w/ orange stains; m dense; wet Water @ 10.5'			
14 1515.0	S-5	1.8 90%	4 4 5 4			gray w/ orange stains		-	
16 1717.0	S-6	2.0 100%	2 1 1 4			_			
18 19 1919.0	S-7	1.6 80%	3 5 6 8					19.0	
20						BOH @ 19.0' -			
²¹ 22									
23 24									
25									
26 27						-			
28						-		-	
29 30						-			
DRILLING CO	the second s	l tt - Wolff Lafever	I	I	- -	BAKER REP.: Mark BORING NO.: 88-T	DeJohn W13	SHEET	1 2 OF 2

PROJECT	•	Phase	I Investiga	ation at Site	s 88, 89,	and 93	- MCB	Camp Lejeune				
CTO NO.:	:	62470						IG NO.:		88-TW	14	
COORDIN	ITAN	ES: EAST	:	2496650.7	554		NORT	H:		3394	39.0566	
ELEVAT	ION:	SURF	ACE:	26.06			TOP C	F PVC CASIN	G:	29.06	5	
Rig: I	Died	rich D-50									Depth to	
Mg. 1		Split	Casing	Augers	Core		Date	Progress	Wea	ther	Water	Time
		Spine	Casing	magers	Barre		Dutt	(Ft.)			(Ft.)	
Size (ID)		1-3/8"		2-3/4"			/17/96	0.0 - 15.0	Supr	ıy, 80s		
Length	ł	2'		<u>2-374</u> 5'			11///0	0.0 - 15.0	Sum	iy, 003		
Туре		Stainless		HSA								
Hammer	Wt	140 #										
Fall		30"										
Stickup												
Remarks	:							L				
	-	SA	MPLE T	YPE			1	WEL	L INFC	RMA	TION	<u> </u>
1				A = Auger			 				Тор	Bottom
			-	W = Wash			1	Туре		Diam.	Depth	Depth
		R = Air		C = Core				<i></i>			(Ft.)	(Ft.)
		D = Den		P = Piston			Sch 40	, PVC Riser		1"	0	5
		N	= No Sam	ple			Sch 40	, 10-Slot, PVC	Screen	1"	5	15
		Sample	Sample		Lab.	PID				,,	Well	Elevation
Depth (F	Ft.)	Type &	Rec.	SPT	Samp.	(ppm)	V	isual Description	on	Inst	allation	(Ft. MSL)
[No.	(Ft.,%)							I	Detail	
				6								
1		S-1	1.0	7				D, little silt & 1				
			50%	6			dk bro	wn; m dense; m	oist _			
2				6	ļ		4				1	
				3				····	-		-	
3		S-2	1.6	4		-		ilt, trace clay; g	ray		-	
			80%	6				nge stains; wet	-			
4	4.0			7	 		water	·@ 5.5'				
		S-3	1.9	5	03				-			
5_		S-3	95%	5	03							
6	6.0		9570	5							-	
	0.0			5			1					
7		S-4	1.5	7					_			
' -		5-7	75%	6		1					-	
8	8.0		1370	5					_		-	
"-+					<u> </u>	1	1					
9									-		-	1
		A-N										
10							ł					
								Match to Shee	t 2			
DRILLIN		O Darras	tt - Wolff				BAKE	ER REP.:	Mark	DeJohn		
DRILLIN			Lafever			-		NG NO.:	88-TV			Г 1 OF 2
DUTTE	ν.	<u>Cmp</u>				-	DOID			· • ·	_	

Bakar

Baker Environmental

PROJECT: CTO NO.: $D = \frac{11}{12}$ $11 = \frac{12}{13}$ $14 = \frac{12}{14}$	$\frac{62470}{SAT}$ $S = Split$ $T = Shelt$	356 MPLE TY Spoon A by Tube V Rotary	YPE A = Auger W = Wash C = Core		PID (ppm)	SPT = Standard Penetratio PID = Photo Ionization De Lab Samp = Depth interva submitted to	tector measu l of soil samp	M D1586) rement ble ell Eleva	
Depth (Ft.)	S = Split T = Shelt R = Air I Denison P Sample Type & No.	Spoon A by Tube V Rotary = Piston Sample Rec.	A = Auger W = Wash C = Core N = No Sa	Lab		SPT = Standard Penetratio PID = Photo Ionization De Lab Samp = Depth interva submitted to	n Test (AST tector measu l of soil samp mobile lab W	rement ble ell Eleva	
Depth (Ft.)	Sample Type & No.	Sample Rec.		Lab			W		
	Type & No.	Rec.	SPT	•		Visual Description			
							De		.sl)
13	A-N			5		Continued from Sheet 1		_	
								-	
14									
15 15.0						1:	5.0	 15.0	
						BOH @ 15.0'		_	
¹⁶									
17					2				
18									
19									
20							_		
21								_	
22								_	
23									
24							_		
25									
26									
27								-1	
28 _								-	
29									
30									
DRILLING CO DRILLER:		t - Wolff Lafever	L	_L	_t	BAKER REP.: Ma BORING NO.: 88-	rk DeJohn	I	J

TEST BORING AND WELL CONSTRUCTION RECORD

CTO NC).:	Phase 62470	-356	·			BORIN	IG NO.:		88-TW	15	
		ES: EAST		2496343	2427	•	NORTI		•		433.8913	a
ELEVA				24.67		•		F PVC CASIN	'G: .	27.0		
						•						
Rig:	Died	rich D-50 Split	Casing	Augers	Core		Date	Progress	Wez	ather	Depth to Water	Time
<u>a.</u>		Spoon		0.0/48	Barre		117/07	(Ft.)	G		(Ft.)	
Size (ID))	<u>1-3/8"</u> 2'		<u>2-3/4"</u> 5'		8	/17/96	0.0 - 18.0	Sunn	y, 80s		
Length												
Type Hamme	- 11/4	Stainless 140 #		HSA								
fall	r พ.	30"										
Stickup												
Remark	S:						1	XX/I7T	I INEC	1118447		
			MPLE TY					WEL	L INFC	KIVIA		Dattar
			t Spoon A by Tube V					Tr		Diam.	Top Depth	Bottom
			•	C = Core				Туре		Diam.		Depth
		R = Air D = Den		P = Piston			Sah 40	, PVC Riser		1"	(Ft.) 0	(Ft.) 8
			= No Sam		-			, 10-Slot, PVC	Screen	1"	8	18
		Sample	Sample		Lab.	PID	SCII 40	, 10-3101, 1 VC	Scicen		Well	Elevation
Depth	(ፔቱ)	Type &	Rec.	SPT	Samp.	(ppm)	l v	isual Descripti	0.0		allation	(Ft. MSL
Depui	(ri.)	No.	(Ft.,%)	SFI	Samp.		ľ	isuai Descripti	on		Detail	(1.1.10151
	τ	140.	(11.,70)									
1												
1 _	4											
2 -	-	A-N							-		-	
² _	-											
3 -	-										-	
· · ·	-											
4	4.0								-			
· -	- 1.0			3			1		_		-	
5	-	S-1	1.7	3			F SAN	D, little silt; b	rown –		-	
	1		85%	3				nge stains; loos				1
6	6.0			3			damp	J,,,,,,,	·		-	1
Ŭ	+		<u>† – – – – – – – – – – – – – – – – – – –</u>	4			1				-	1
7	1	S-2	1.6	4					_		-	1
· _	1		80%	6					-			1
8	8.0			5						1	-	1
· -				4	<u> </u>	1	1				-	1
9	1	S-3	2.0	4	04		brown	& gray w/ oran	nge –		-	1
	1		100%	5			stains;	• •				1
10	10.0			3				·@ 9.5'			-	1
		1		2	1		1	Match to Shee	et 2			1
		·		***********	Au		DATE		M1-	Dataha		
DRILLI			tt - Wolff			-		R REP.: NG NO.:	88-TV	DeJohn		Г 1 OF 2
DRILLE	K.	Cnip.	Lafever				DOKI	NU 110	00-1 V	112		1 01. 7

Baker Environmental

PROJEC	T:	Phase	I Investig	ation at Site	s 88, 89,	and 93	- MCB Camp Lejeune	;			
CTO NO).:	62470	-356			-	BORING NO .:	-	88-TW15	5	
			MPLE T			•		DEFINI			
				A = Auger			SPT = Standard Penet)
				W = Wash			PID = Photo Ionizatio				
	D =	R = Air Denison F	Rotary = Piston		mnle		Lab Samp = Depth int submitte			bie	
	<u> </u>	Sample	Sample	11 - 110 Sa	Lab	PID	Subilite		W	ell	Elevation
Depth (Ft.)	Type &	Rec.	SPT	Samp.	(ppm)	Visual Description	on	Instal		(Ft. MSL)
		No.	(Ft.,%)		-		_		De		
11_		S-4	1.1	2			Continued from Sheet	1			
			55%	2				_		_	
12	12.0			4							
13 -		S-5	2.0	2				-		_	
		00	100%	3			·				
14	14.0			3				_		-	
				3							
15		S-6	0.7	7							
10 -	140		35%	9						-	
¹⁶ _	16.0			<u>8</u> 8				—			
17 -		S-7	1.7	8			gray w/ orange stains			-	
1		5.	85%	9			gruy in orange sums				
18 _	18.0			13				18.0		18.0	
19 -							BOH @ 18.0'			-	
								i			
20										-	
_											
21											
								_		` –	
22 _								—			
23 -								_		-	
24										_	
-										-	
25											
26 -										-	
										-	
27											
28 _											
29 -								-		-	
										8	
30											
). D	4 337-100	L	I	<u> </u>					L]
DRILLIN			t - Wolff Lafever	· · · · ·		-	BAKER REP.: BORING NO.:	Mark I 88-TW		SUEET	2 OF 2
	I .		Latever			-	DOMING INO	00-1 W	13	SHEEL	2 OF 2

Baker

TEST BORING AND WELL CONSTRUCTION RECORD

CTO NO.:	62470			ć	and 93		IG NO.:		88-TW	16	
	TES: EAST		2496258.4	829		NORTI		•		6.7734	
ELEVATIO			23,87				F PVC CASIN	G:	27.26		
nt	1-1-1 D 60							r			
Rig: Die	drich D-50	Casing	A	Core		Data	Due guess	Was	ther	Depth to Water	Time
	Split	Casing	Augers	Barre		Date	Progress (Et)	wea	uner		IIme
<u>(! (TD)</u>	Spoon		0.0/4#			110/07	(Ft.)	Mon	00	(Ft.)	-
Size (ID)	<u>1-3/8"</u> 2'		2-3/4" 5'		- 8	/18/96	0.0 - 17.0	M Su	nny, 90		
Length											
Туре История М	Stainless t. 140 #		HSA								
Hammer W Fall	30"					······	·				
								<u> </u>			-
Stickup Remarks:											l
Remarks:		MOLET				1			DBAAT	ION	
		MPLE TY t Spoon A					WEL	L INFC	KIVLA		Bottom
	*	by Tube	•				Туре		Diam.	Top Depth	Depth
			C = Core				Type		Diam.	(Ft.)	(Ft.)
	D = Der		P = Piston			Sch 40	, PVC Riser		1"	0	7
		= No Sam					, 10-Slot, PVC	Screen	1"	7	17
	Sample	Sample		Lab.	PID		, 10 0100, 1 00	bereen		Vell	Elevatio
Depth (Ft.)		Rec.	SPT	Samp.	(ppm)	Ιv	isual Descripti	ດກ		allation	(Ft. MSI
Doptii (1 t.)	No.	(Ft.,%)	51 1	Sump.		1	ibuui Deseripu	UII		etail	(1 (. 10101
						<u> </u>				[
1				1							
]				—		-	
2											
	A-N										
3								_		-	
											1
4								_		-	
											1
5 5.										-	
			4]					
6	S-1	1.4	3			F SAN	D, little silt; tr	ace			
		70%	2				rownish-gray;	_			
7 7.	o		2			loose;	moist				
			8							-	ļ
8	S-2	2.0	7	04			ilt; gray w/ ora				4
_		100%	8			lamina	e; m dense; m	oist _		-	1
9 9.	0		6								ļ
			6]		/ orange stains	· _		-]
10	S-3	1.9	11			wet	Water @ 9.0			_	-
		95%	14	L	<u> </u>	1	Match to Shee	et 2			L
DRILLING	CO.: Parra	tt - Wolff				BAKE	R REP.:	Mark]	DeJohn		
DRILLER:		Lafever			-		NG NO.:	88-TW		SHEET	Г 1 OF 2

Baker Environmental

	D 1	T T		- 00 00						
PROJECT: CTO NO.:	<u>Phase</u> 62470		uon at Site	es 88, 89,	and 93	- MCB Camp Lejeune BORING NO.:	88	B-TW	16	
	SA	MPLE TY Spoon A			•	DEF SPT = Standard Penetratio	INIT	IONS		5)
		by Tube V				PID = Photo Ionization De				·
_		Rotary				Lab Samp = Depth interva				
D =	Denison F		N = No Sa	·····	DID	submitted to	mobi		Well	Elevation
Depth (Ft.)	Sample Type &	Sample Rec.	SPT	Lab Samp.	PID (ppm)	Visual Description			allation	(Ft. MSL)
Deptil (11.)	No.	(Ft.,%)	511	Samp.		-			etail	(* 1. 1022)
11 11.0			16	<u> </u>		Continued from Sheet 1				4
12	S-4	1.7	7 8			1,	2.2			-
12		85%	8 9				2.2			
13 13.0			18			CLAY, little f sand & 13	3.0		-	
			5			silt; gray; v stiff; damp			-	-
14	S-5	1.3 65%	2 4			F SAND, some silt, trace to little clay; gray; m stiff;				-
15 15.0		0370	4			moist, wet at 14.5'	-		-	
			2							
16	S-6	1.4	4			little silt & clay; stiff;				
17 - 17 0		70%	7 9			moist	7.0		17.0	
17 17.0			9			BOH @ 17.0'	7.0		17.0	
18 _							_			
19										
20							_		-	
							_			
21										-
22							_		-	
23							- ·		-	_
_									-	
24							_			-
25 _									-	
26							_		-	
27							-		-	-
28 _										
29							-		-	-
										-
30										-
DRILLING CO).: Parrat	t - Wolff	Laura III	•		BAKER REP.: Ma	rk De	John		<u>نے ہے</u>
DRILLER:	Chip l	Lafever			-		TW1		SHEET	Г 2 OF 2

Baker

TEST BORING AND WELL CONSTRUCTION RECORD

PROJECT:			ation at Site	<u>s 88, 89,</u>	and 93		Camp Lejeun				
CTO NO.:	62470		0106110.0	0.00	-		IG NO.:		88-TW		
COORDINAT			2496440.8	958	-	NORT				18.1440	
ELEVATION	SURF	ACE:	25.02		-	TOPO	F PVC CASIN	IG:	26.02		
Rig: Died	rich D-50		• • •							Depth to	
	Split	Casing	Augers	Core		Date	Progress	Wea	ather	Water	Time
	Spoon	0	0	Barre			(Ft.)			(Ft.)	
Size (ID)	1-3/8"		2-3/4"			/18/96	0.0 - 19.0	M Su	11ny, 90		
Length	2'		5'								
Туре	Stainless		HSA								
Hammer Wt.	140 #							1			
Fall	30"										
Stickup											
Remarks:								- I			
	SA	MPLE T	YPE				WEI	L INFC	RMAT	ION	
			A = Auger							Тор	Bottom
	-	-	W = Wash				Туре		Diam.	Depth	Depth
			C = Core			Ē	-540			(Ft.)	(Ft.)
	D = Den		P = Piston			Sch 40	, PVC Riser		1"	0	9
	N	= No Sam					, 10-Slot, PVC	Screen	1"	9	19
	Sample	Sample	^	Lab.	PID		· · · · · ·		V	Vell	Elevation
Depth (Ft.)	Type &	Rec.	SPT	Samp.	(ppm)	l v	isual Descripti	ion		allation	(Ft. MSL)
	No.	(Ft.,%)		•			-		D	etail	` ´
1											
2										-	
	A-N										
3								-		-	
										-	
4										-	
_										-	
5 5.0								_		-	1
			4]					1
6	S-1	1.9	4			F SAN	D, some silt;	-		-	1
		95%	5			browni	sh-gray; loose	;			
7 7.0			8			damp					
			6								
8	S-2	1.4	9	04			ilt, lt gray; m d	lense;			
		70%	17			damp		_			
9 9.0			19				Y, trace silt &				
			3				l; gray w/ iron			_	
10	S-3	2.0	3			stains;	m stiff; moist-			_	
		100%	2				Match to She	et 2			L
DRILLING CO	O.: Parrat	t - Wolff				BAKE	R REP.:	Mark	DeJohn		
DRILLER:		Lafever			-		NG NO.:	88-TW		SHEET	1 OF 2
_ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	<u></u>				-					-	

321(0)

Baker Environmental

PROJECT:			ation at Site	es 88, 89,	and 93	- MCB Camp Lejeune				
CTO NO.:	62470	-356			-	BORING NO .:		38-TW1	7	
D	S = Split T = Shel	MPLE TY t Spoon A by Tube V Rotary Reserved	A = Auger W = Wash C = Core	mple		<u>D</u> SPT = Standard Penetr PID = Photo Ionizatior Lab Samp = Depth into submitte	n Detecto erval of	est (AST or measu soil sam	rement)
<u>ע</u>	Sample	Sample	N = NO Sa	Lab	PID	Sublitte			ell	Elevation
Depth (Ft.)	Type & No.	Rec. (Ft.,%)	SPT	Samp.	(ppm)	Visual Descriptio	m	Instal		(Ft. MSL)
11 11.0			4							
12 1313.0	S-4	2.0 100%	3 3 5 4			Continued from Sheet Water @ 10.5' F SAND, little silt & c gray w/ orange stains;	lay;			
14 15 <u>15.0</u>	S-5	1.8 90%	3 3 2 2			m stiff; wet	-			
16 17 <u>17.</u>	S-6	2.0 100%	3 3 2 2				-			
18 1919.	S-7	1.6 80%	2 3 4 6				 19.0		19.0	
20 21						BOH @ 19.0'				
22 23										
24 25										
25 26				-						
27 28										
29 30										
DRILLING (DRILLER:	territoria and a second se	tt - Wolff Lafever			_	BAKER REP.: BORING NO.:	Mark I 88-TW		SHEET	Г 2 OF 2

Baker

TEST BORING AND WELL CONSTRUCTION RECORD

CTO NO.:	62470	-356			_		Camp Lejeur IG NO.:		88-TW	18	
COORDINAT		:	2496030.6	5776	_	NORT	H:		3392	86.6393	
ELEVATION	: SURF	ACE:	22.26		-	TOP O	F PVC CASE	NG:	24.38		
Rig: Died	rich D-50									Depth to	
	Split Spoon	Casing	Augers	Core Barre		Date	Progress (Ft.)	We	ather	Water (Ft.)	Time
Size (ID)	1-3/8"	~~	2-3/4"		8	/19/96	0.0 - 16.0	M Sur	111y, 80s		
Length	2'		5'								
Туре	Stainless		HSA								
Hammer Wt.	and the second se										
Fall	30"										
Stickup											
Remarks:			•								
		MPLE T					WE	LL INFO	DRMAT		
	-	Spoon A	÷							Тор	Bottom
		•	W = Wash				Туре		Diam.	Depth	Depth
	R = Air D = Den		C = Core			0.1.10	DIVO D'			(Ft.)	(Ft.)
			P = Piston				PVC Riser		1"	0	5
	Sample	= No Sam Sample	ipie	Lab.	PID	Scn 40	10-Slot, PV	Screen	1"	5	15
Depth (Ft.)	Type &	Rec.	SPT	Samp.	(ppm)		isual Descript	ion	•	Vell Illation	Elevatio
Depui (Pt.)	No.	(Ft.,%)	SF I	Samp.	(ppm)	ľ	isual Descript	1011		etail	(Ft. MSI
	110.	(11.,70)									
1											
2	A-N							_		-	
3						ļ				-	
4 4.0										-	
			1								
5	S-1	0.9	1				D, little silt; d				
_		45%	2			1	to gray; v loos	е; _		_	
6 6.0			2		<u> </u>	damp		. <u> </u>			
			3								
7	S-2	1.5	3	03			ose; wet				
		75%	4			Water	@ 6.0'			_	
8 8.0			3			4					
9 -	S-3	1.7	3							-	
" –	5-5	1.7 85%	3 6					<u></u>			
10 10.0		0370	6 7					-		-	
			3		<u> </u>	4	Match to She	et 2		-	
L	1		5	I	1	•				L	L
DRILLING C		t - Wolff			-		R REP.:		DeJohn		
ORILLER:	Chip I	Lafever			_	ROKIN	IG NO.:	88-TW	/18	SHEET	1 OF 2

Bakar

Baker Environmental

Phase I Investigation at Sites 88, 89, and 93 - MCB Camp Lejeune **PROJECT**: 88-TW18 CTO NO .: 62470-356 BORING NO .: SAMPLE TYPE DEFINITIONS S = Split Spoon A = Auger SPT = Standard Penetration Test (ASTM D1586) T = Shelby Tube W = Wash PID = Photo Ionization Detector measurement R = Air Rotary C = CoreLab Samp = Depth interval of soil sample D = Denison P = Piston N = No Samplesubmitted to mobile lab Sample Sample PID Well Elevation Lab Visual Description SPT Installation (Ft. MSL) Depth (Ft.) Type & Rec. Samp. (ppm) Detail No. (Ft.,%) S-4 Continued from Sheet 1 11 4 1.3 --7 m dense 65% 12 12.0 11 6 S-5 2.0 9 trace clay begining @ 13.6' 13 ----100% 9 14 14.0 11 6 15 S-6 4 little silt; brown w/ orange ----10 stains; m dense 16.0 16.0 16.0 16 12 BOH @ 16.0' 17 18 19 20 21 22 23 24 25 26 27 28 29 30 DRILLING CO .: Parratt - Wolff BAKER REP .: Mark DeJohn DRILLER: Chip Lafever 88-TW18 SHEET 2 OF 2 BORING NO .:

Byai (car

TEST BORING AND WELL CONSTRUCTION RECORD

Baker Environmental

PROJEC				ation at Site	s 88, 89,	and 93		Camp Lejeune				
CTO NO		62470				-		IG NO.:		88-TW		
COORD				2495871.	5093	-	NORT				9.5696	
ELEVAT	FION:	SURF	ACE:	23.24		-	TOP O	F PVC CASIN	G: .	. 24.90		
Rig:	Died	rich D-50									Depth to	
		Split	Casing	Augers	Core		Date	Progress	Wea	ther	Water	Time
		Spoon			Barro	el		(Ft.)			(Ft.)	
Size (ID))	1-3/8"		2-3/4"		8	/20/96	0.0 - 18.0	M Sun	ny, 70s		
Length		2'		5'								
Туре		Stainless		HSA						_		
Hammer	r Wt.	140 #							· · · ·			
Fall		30"							L	<u> </u>		
Stickup												
Remark	s:											
			MPLE T					WEL	L INFC	RMAT		
		-	-	A = Auger				_			Тор	Bottom
			•	W = Wash				Type		Diam.	Depth	Depth
				C = Core							(Ft.)	(Ft.)
		D = Den		P = Piston				, PVC Riser		1"	0	8
			= No Sam		7 1	DID	Sch 40	, 10-Slot, PVC	Screen	1"	8	18
Denth	-	Sample	Sample	CIPT	Lab.	PID					Vell	Elevatio
Depth (FL.)	Type & No.	Rec. (Ft.,%)	SPT	Samp.	(ppm)		isual Description	on		allation etail	(Ft. MSL
	<u> </u>	<u>INU.</u>	(11.,70)									
1												
·												
2 -	1	A-N				<u> </u>			_		-	
									<u> </u>			
3 -						· .					-	
	1						1					
4	4.0										-	
				4			1				-	
5	1	S-1	2.0	5		0.7	F SAN	D, little silt; dk	_ د		_	
_			100%	4		0.7	brown;	loose; moist				}
6	6.0			3								
				4			1					
7 _		S-2	1.9	8	04	<u>0.8</u>			7.2			
			95%	5		0.8	}					
8	8.0			5			-	D, little silt, tra			_	1
				2				nottled brown, g			_	Į
9		S-3	1.1	2	-	<u>0.6</u>		nge; stiff; moist			_	
-			55%	3		0.6	wet	Water @ 8.0'			-	1
10 _	10.0		ļ	3	 	<u> </u>	4				_	ļ
L		L		2	I		<u> </u>	Match to Shee	et 2		L	<u> </u>
DRILLI	NG CO	O.: Parrat	t - Wolff				BAKE	R REP.:	Mark 1	DeJohn		
DRILLE			Lafever			_	BORI	NG NO.:	88-TW	/19	SHEET	[1 OF 2

-

Bakar

Baker Environmental

PROJECT:			tion at Site	es 88, 89,	and 93	- MCB Camp Lejeune				
CTO NO.:	62470	-356			-	BORING NO .:	•	88-TW1	9	
		MPLE TY						TIONS		-
		Spoon A				SPT = Standard Penetr				
			V = Wash			PID = Photo Ionization				
		Rotary				Lab Samp = Depth inte submitte			pie	
D=	Denison F Sample	Sample	N = NO Sa	Lab	PID	submitte			'ell	Elevation
Depth (Ft.)	Type &	Rec.	SPT	Samp.	(ppm)	Visual Description	n İ		llation	(Ft. MSL)
Depui (i i.)	No.	(Ft.,%)	01 1	Samp.	(ppm)	visuur Doboriptio			tail	(
11	S-4	1.7	1		0.5	Continued from Sheet	1			
		85%	1			v soft				
12 12.0			1			-				
			3						_	
13	S-5	1.6	4		<u>0.5</u>	little silt; gray; m dense	e			
_		80%	8		0.5		_			
14 14.0			9							
_			6							
15	S-6	1.4	6			little silt; trace clay;				
		70%	6		0.4	brownish-gray w/ oran	ge _		_	
16 16.0			7	 		stains @ 15.5'				-
17	S-7	1.5	3 8			dk gray @ 17.6'	-		-	
	5-7	1.3 75%	8		$\begin{array}{c} \underline{0.4}\\ 0.4 \end{array}$	uk glay (2 17.0				
18 18.0		1370	8		0.4		18.0		18.0	
				<u> </u>		BOH @ 18.0'			_	
19										
20							_		-	
20										
21							_		-	
							_		_	
22										
23									-	
24									_	
25							_		-	
26									·	
27							<u> </u>		-	
28							_			
					ĺ		_		-	
29										
30									-	
DRILLING C	O.: Parrat	t - Wolff				BAKER REP.:	Mark	DeJohn		
DRILLER:		Lafever			-		88-TW		SHEET	T 2 OF 2

TEST BORING AND WELL CONSTRUCTION RECORD

.

PROJECT:	Phase	I Investig	ation at Site	es 88, 89,	and 9	3 - MCB	Camp Lejeu	ne			
CTO NO.:	62470					BORIN	NG NO.:		88-TW	I9IW	
COORDINAT	ES: EAST		2495869.	6872		NORT	H:		339	9603.277	2
ELEVATION	SURF	ACE:	23.24			TOP O	F PVC CAS	ING:	25.8	37	
Rig: Died	rich D-50				Т			<u> </u>		Depth to)
	Split Spoon	Casing	Augers	Core Barre	1	Date	Progress (Ft.)	We	ather	Water (Ft.)	Time
Size (ID)	1-3/8"		2-3/4"			3/19/96	0.0 - 50.0	M Su	nny, 90	(FC)	
Length	2'		5'				0.0 50.0	111.04	my, 70		
Туре	Stainless		HSA								
Hammer Wt.	140 #										
Fall	30"										
Stickup											
Remarks:											
		MPLE T					WEL	L INFO	DRMAT	ION	
			A = Auger				_			Тор	Bottom
		•	W = Wash				Type		Diam.	Depth	Depth
	R = Air D = Den		C = Core $P = Piston$			0-1-40	DVO D		1.0	(Ft.)	(Ft.)
		= No San					, PVC Riser , 10-Slot, PV	C Soro	<u>1"</u> 1"	0 45	45 50
	Sample	Sample		Lab	PID	<u>501 40</u>	, 10 - 5101, F v	Colle			Elevation
Depth (Ft.)	Type &	Rec.	SPT	Samp	(ppm	vi	sual Descript	ion			(Ft. MSL
	No.	(Ft.,%)		Jump	(PP	1 .	buur 2 totrip.		1	tail	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	A-N						o the log for /19 for descri - 15'			-	
			l		l		Match to Sh				I
DRILLING CO		t - Wolff			•		R REP.:		DeJohn	CUEET	1053
DRILLER:		Lafever			-	DOKI	NG NO.:	00-19	V19IW	SHEE I	1 OF 3

Briken

Baker Environmental

ROJECT TO NO.:		62470-	-356		<u>s 00, 07,</u>	and 75	- MCB Camp Lejeune BORING NO.:	88-TW19	WI	
			MPLE TY	PE		•	DEFINI	TIONS		
			Spoon A				SPT = Standard Penetration		STM D	1586)
			by Tube W				PID = Photo Ionization De			
		R = Air	-	C = Core			Lab Samp = Depth interval			
	D =	Denison P	•		mple		submitted to			
	<u> </u>	Sample	Sample			PID		We	ell	Elevation
Depth (F	ал I	Type &	Rec.	SPT		(ppm)	Visual Description	Install	ation	(Ft. MSL
Depui (i	.)	No.	(Ft.,%)	51 1		(°°°°)	·	Det	ail	Í
11		110.	(11.,70)				Continued from Sheet 1			
···							<u> </u>	1		1
12							-	1		
¹² –								1		1
13		A-N					-			
								1		1
14		:					-	1		
^								1		1
15	15.0					1	-	1		
** - 	+2.0			4		1	1 -	1		1
16		S-1	1.1	5			F SAND, little to some silt	;		
~ –			55%	6			gray, becoming brown;	1		-
17	17.0			9			m dense; wet	1		
								1		
18							-]		
		A-N					_]		
19							-	1		
								$1 \mid 1 \mid$		-
20	20.0				ļ		20.0	$\overline{\mathbf{n}}$		
				6						
21		S-2	0.9	9			F SAND some silt & clay,]		
			45%	17			trace wood; dk brown;]
22	22.0			22			v stiff; wet			
						1				
23										
		A-N								
24										
25							25.0	2		
				4						
26		S-3	1.0	3			F SAND, little silt, trace_	_		-
			50%	4	1		clay; gray; m stiff; wet	┤╽╽│		
27 _	27.0			4						4
28 _							_	_		_
		A-N								
29 _										4
			1							
30 _	30.0				<u> </u>					4
		<u> </u>		8	<u> </u>		Match to Sheet 3			
RILLIN		0 · Parra	tt - Wolff				BAKER REP .: Mark	DeJohn		
	· U U	<u>I ui la</u>						W19IW		ET 2 OF 3

Baker

Baker Environmental

PROJECT:	Ph	ase I Investig	ation at Site	es 88, 89,	and 93	- MCB Camp Lejeune	•			
CTO NO.:		470-356			-	BORING NO.:		88-TW1	9IW	
		SAMPLE T	YPE	· · ·		DE	FINIT	FIONS		
		Split Spoon				SPT = Standard Pener				
		Shelby Tube				PID = Photo Ionizatio			asureme	nt
		Air Rotary				Lab Class = USCS (A	STM I	D2487)		
I		n P = Piston	N = No Sa	· · · · · · · · · · · · · · · · · · ·	T					
	Samp	-		Lab	PID			W		Elevation
Depth (Ft.)			SPT	Samp	(ppm)	Visual Descriptio	n	Instal		(Ft. MSL
21	<u>No.</u> S-4		11			Continued from Shee		De		
31	5-4	60%	11			trace silt; gray; m den			-	
32 32	0	0070	19			liace sin, gray, in der				
			17						-	
33							-1			
	A-N	J			·				-	
34							-			
									_	
35 35	.0								-	
			12							
36	S-5		15	·		little silt			_	
		70%	12				_			
37 37	.0		16	ļ	ļ	4			-	
							_			
38									-	
	A-N	4					-			
39									-	-
40 40	0.0									
			6						-	
41	S-6	1.7	1			brown, green beginin	φ —			
		85%	1			at 41.9'; v loose	° –		-	
42 42	2.0	0070	3				-			
					1	-			-	-
43							-			
	A-N	1							-	
44				1						
45 45	5.0								_	
			3		1	-	_		:	
46	S-7		4			brown & green; loose	•		-	4
		85%	4				_			
47 47	7.0		5	<u> </u>	<u> </u>	4			.	-
							_			
48										-
	1-A	N					_			
49										1 1
50 50	0.0						50.0		50.0)
			1	1		BOH @ 50.0'	20,0			1
				1	1) (c	Doloh-		· · · · ·
DRILLING		arratt - Wolff				-		DeJohn /19IW	SUEE.	T 3 OF 3
DRILLER:		hip Lafever					<u>00-1 M</u>		. ornee	I J OF J

APPENDIX B CHAIN-OF-CUSTODY RECORDS

		WARSONDER	2746-3 CIER	Mar.	Refrige	rator #		· · · ·										1		$ T_{ij} ^{1/2}$	
	Samo]]no.0	(c)	916			Container	Sold.														
		<u></u>	200 - 27 -		Volume	•	Elouid				lant in Southerd		2000								
والمحاج و	And the second				Preserv	atives	Solid						2			20					
<u>(</u>	Del	TAT			ANALY			-	T	ANIC	9				INO R	RG	120				6
ate Rec'd	· · · · · · · · · · · · · · · · · · ·	Date Due	-		REQUE	STED		AOV V	BNA	Pest/ PCB	Herb				Metal	S					No.
ANTED -				Matrix					1	<u> </u>	ł	WE	STON	Anal	ytics L	Jse Or	nly				
্রিটার্রন্থ জন্ম	Lab ID	Client ID/Descr	iption	QC Chosen	Matrix	Date Collected	Time Collected				;					•				an an T	
ិ- ខ្មែរទំពាលពីភូន ទំនាំខ្មែរ				(√) MS MSD		1996															
	8	S TWINGER	N-07A		SV.V	6127		X									教徒				
	8		1./4		Novi	Sevie in	15310	Ň												in the second	2
জনাইনের জুলাইনে জুলাইনে	8	H-TRNKOVE-10	<u>A A</u>		NW.	3177	11985-5		a S shalington and					••••••							2
ម របាកាត់ មេះត្រាទី ក្រោះទី	188	- TRIVICE -	<u>COLA</u>			2 5-3	<u>17230</u>	X.	Salan and	d 8			<u>.</u>	a constant of the						میا است. ۲	
	88	TIMOS (DINA		SW.	a deres	17/20														
ମା-<୍ୟାନ୍ତ ୋନକ ପିରୀ	88	TING	NE COUL			6. J. 2.	11030					be Casebortan and						変換			録之
	88	TON GOB-	10,1,14		E VAL	1173) (1)			Linkinger							يعسدهم					
	<i>Ö</i> e	S DIT		Same di sama					ie Bizanie zanas												
								an const	1				17. 21								
		TE ONLY SHADED	AREAS		DATE/RE	ISIONS:	Salahata - Ana				al de la caracteria de la		6. 				BANK R.				
				.		1									_	WE	STON	Analy	tics Us	e Only	
ED -EX	Airbi	1/ # 1369	700			2										amples Shippe		or	COC 1 1) Pres	ape wa sent on	s; Outer
		1361	199/15	-		3	i				1		17.5			and Del rbill #	livered			je Y	
	•	e a construction de la construct				4										Ambie	nt or C	hilled		roken d Je Y	n Outer or N
						5								1919) - 1	- 3) - Co	Receiv ondition	/edin () Y c	Good or N	3) Pre	sent on	Sample or N
						6								• •	4)	Labels	Indica	ite	4) Unb	roken c	ก
lelinquished	Receive	d Data	Time	Relinguis	hed	Receive	t l	ate	Tir	me	Disc	repanci	ies Bei	ween		operly		ved ir N	-,	e Y	-
by	by	Date	I	by		by					San	nples La C Recor	bels a	nd	5)	Received and a contract of the		thin		Sample	Present Rec't
ALLT	FED-E	X 8/29/96	1600			and the second second			11			TES:		e 191		niaiuâ i		r N		Y	or N

. . 14.

Giron 15 /4		Ranne	29455	MARCE	Refrige	rator # -	- A gette	and the					্র					Page	-2-12.4* .	
iza (Amiliani)	ອອກກຸງແກງເອົາສະວ	Sell Stal	191 <u>4</u>		#/Type	Container	- Liepile Selici				and and the state									
- (1) Frank - (1)		Same in the second second second	Buchelater Balance	RAL ZATE	Volume	9 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	Allonia Solia					eraitee siesed								
	Helitotra Mile Erect	ajtan da			Preser	vatives	English (ORG	ANIC					INORG			Respect to the second		
Date Rec'd	Del	Date Due				(SES ESTED -		VON	<u>г г</u>	PCB	Herb				Metal					
Account #							an a	Š	ä	مّد	<u> </u>	WE	STON	Call of the Call o	∑ C cs Use	APRICE AND				
100000 2000 30 - Soli 30 - Solimon 30 - Soli	Lab ID	Client ID/Descr	iption	Matrix QC Chosen (√)	Matrix	Date Collected	Time Collected	1												
BL Surra Mir Weiter	9985	SY SILL				19/5/2	Mar.			and the second of		<u>BV</u>								
10 · 10 () · 20 () · 20 () · 20	355	Magnulo			and a sum	51540	1000		<u>S</u> C	X										
নহাৰেন্দ্র নিবিহি এবিং	Test Confidential Confidentia Con	DELAY	<u> </u>			THE.	1322													
ະຊາດດີດ 12.1 (37.7) ເຊິ່ມດີ 12.1 (37.7) ເຊິ່ມດີ	and the second sec	TENVALELE TENVASE	10. 10 m 20 m			EN 110	Vierda Virake	1.0					6				2			
ণারনের্বা: বর্জী নার্দি বর্জী নার্দি	Photo and the second	IVNO 72	www.astrontha Greecontract		5	9///	1591L	52												
	All and the second second second	5/10/5-	1		6	Star.	125710	1X		8		1								
			an a		a and in a constraint		an an againtair an imreachanta			anna da Chuineachailte										
					interaction and a second s	a ber daha an							-							
FIELD PERSON	NEL: COMPLETE C	ONLY SHADED	AREAS		DATE/RE	VISIONS:		di inaziriki	أعدينا			Sec. 3	<u>المحصما</u> ا	ana ina dia amin'ny fanana amin'ny fanana amin'ny fanana amin'ny fanana amin'ny fanana amin'ny fanana amin'ny f		VESTO		vtice I	Ise Only	
Special Instructi 88-BOXA 88-TNKO	1-01 24 1-01 1	toz. Soils - I lifer a	for extre mber-for	Volume. - extra Ve	Jume.	1 2 3									Samp 1) Sh Hand Airbill	les were: pped Delivere: #	: _ or d	COC 1) P Paci 2) U	C Tape wa resent on kage Y	as: Oute or I on Ou
Fed-EX L	lirbi # 3(697991	64	-	-	4 5						•	i eta 1 Meta 1 Meta		3) Re Cond	bient or t ceived in ition Y bels Indic	Good or N	3) P		or I
Relinguished	Received	·		Relinguisi	bed	Receive	d I		1							orly Prese		San	Inbroken nple Y	or
by	by	Date	Time	by		by		Date	Tin		San	nples Li	ies Betv abeis an rd? Y	d	,	ceived W	/ithin	Upo	C Record In Sample	e Rec
<u>4KT.</u>	FED-EX	8/21/4	1700									TES:			rioidi	ng Times Y	or N		. * Y	or
						1.	2.1													38

APPENDIX C QA/QC DATA

,

-

QA/QC SUMMARY TRIP BLANKS VOLATILE ORGANIC COMPOUNDS OPERABLE UNIT NO. 15 (SITE 88) MCB, CAMP LEJEUNE, NORTH CAROLINA CTO-0356

SAMPLE NO LAB ID DATE SAMPLED UNITS	88-TB03 9608G686-008 08/06/96 UG/L	88-TB04 9608G930-001 08/16/96 UG/L
VOLATILES CHLOROMETHANE BROMOMETHANE VINYL CHLORIDE CHLOROETHANE	10 U 10 U 10 U 10 U	10 U 10 U 10 U 10 U
METHYLENE CHLORIDE ACETONE CARBON DISULFIDE 1.1-DICHLOROETHENE	10 U 10 U 10 U 10 U 10 U	10 U 10 U 10 U 10 U 10 U
1,1-DICHLOROETHANE 1,2-DICHLOROETHENE (TOTAL) CHLOROFORM 1,2-DICHLOROETHANE	10 U 10 U 10 U 10 U 10 U	10 U 10 U 10 U 10 U 10 U
2-BUTANONE 1,1,1-TRICHLOROETHANE CARBON TETRACHLORIDE BROMODICHLOROMETHANE	10 UJ 10 U 10 U 10 U	10 U 10 U 10 U 10 U 10 U
1,2-DICHLOROPROPANE CIS-1,3-DICHLOROPROPENE TRICHLOROETHENE DIBROMOCHLOROMETHANE	10 U 10 U 10 U 10 U	10 U 10 U 10 U 10 U 10 U
1,1,2-TRICHLOROETHANE BENZENE TRANS-1,3-DICHLOROPROPENE BROMOFORM	10 U 10 U 10 U 10 U	10 U 10 U 10 U 10 U
4-METHYL-2-PENTANONE 2-HEXANONE TETRACHLOROETHENE 1,1,2,2-TETRACHLOROETHANE TOLUENE	10 UJ 10 UJ 10 U 10 U 10 U	10 U 10 U 10 U 10 U 10 U 10 U
CHLOROBENZENE ETHYLBENZENE STYRENE XYLENE (TOTAL)	10 U 10 U 10 U 10 U 10 U	10 U 10 U 10 U 10 U 10 U

1

FIXED BASE QA/QC SUMMARY RINSATE AND TRIP BLANKS OPERABLE UNIT NO. 15 SITES 88 MCB, CAMP LEJEUNE, NORTH CAROLINA CTO-0356

SAMPLE NO LAB ID	88-TB03 9608G686-008	88-TB04 9608G930-001
DATE SAMPLED	08/06/96	08/16/96
UNITS	UG/L	UG/L
		00.0
VOLATILES		
CHLOROMETHANE	10 U	10 U
BROMOMETHANE	10 U	10 U
VINYL CHLORIDE	10 U	10 U
CHLOROETHANE	10 U	10 U
METHYLENE CHLORIDE	10 U	10 U
ACETONE	10 U	10 U
CARBON DISULFIDE	10 U	10 U
1,1-DICHLOROETHENE	10 U	10 U
1,1-DICHLOROETHANE	10 U	10 U
1,2-DICHLOROETHENE (TOTAL)	10 U	10 U
CHLOROFORM	10 U	10 U
1,2-DICHLOROETHANE	10 U	10 U
2-BUTANONE	10 UJ	10 U
1,1,1-TRICHLOROETHANE	10 U	10 U
CARBON TETRACHLORIDE	10 U	10 U
BROMODICHLOROMETHANE	10 U	10 U
1,2-DICHLOROPROPANE	10 U	10 U
CIS-1,3-DICHLOROPROPENE	10 U	10 U
TRICHLOROETHENE	10 U	10 U
DIBROMOCHLOROMETHANE	10 U	10 U
1,1,2-TRICHLOROETHANE	10 U	10 U
BENZENE	10 U	10 U
TRANS-1,3-DICHLOROPROPENE	10 U	10 U
BROMOFORM	10 U	10 U
4-METHYL-2-PENTANONE	10 UJ	10 U
2-HEXANONE	10 UJ	10 U
TETRACHLOROETHENE	10 U	10 U
1,1,2,2-TETRACHLOROETHANE	10 U	10 U
TOLUENE	10 U	10 U
CHLOROBENZENE	10 U	10 U
ETHYLBENZENE	10 U	10 U
STYRENE	10 U	10 U
XYLENE (TOTAL)	10 U	10 U

1

FIXED BASE QA/QC SUMMARY RINSATE AND TRIP BLANKS OPERABLE UNIT NO. 15 SITES 88 MCB, CAMP LEJEUNE, NORTH CAROLINA CTO-0356

SAMPLE NO LAB ID DATE SAMPLED UNITS	88-TB03 9608G686-008 08/06/96 UG/L	88-TB04 9608G930-001 08/16/96 UG/L
SEMIVOLATILES		
PHENOL	NA	NA
BIS(2-CHLOROETHYL)ETHER	NA	NA
2-CHLOROPHENOL	NA	NA
1,3-DICHLOROBENZENE	NA	NA
1,4-DICHLOROBENZENE	NA	NA
1,2-DICHLOROBENZENE	NA	NA
2-METHYLPHENOL	NA	NA
2,2'-OXYBIS(1-CHLOROPROPANE)	NA	NA
4-METHYLPHENOL	NA	NA
N-NITROSO-DI-N-PROPYLAMINE	NA	NA
HEXACHLOROETHANE	NA	NA
NITROBENZENE	NA	NA
ISOPHORONE	NA	NA
2-NITROPHENOL	NA	NA
2,4-DIMETHYLPHENOL	NA	NA
BIS(2-CHLOROETHOXY)METHANE	NA	NA
2,4-DICHLOROPHENOL	NA	NA
1.2,4-TRICHLOROBENZENE	NA	NA
NAPHTHALENE	NA	NA
4-CHLOROANILINE	NA	NA
HEXACHLOROBUTADIENE	NA	NA
4-CHLORO-3-METHYLPHENOL	NA	NA
2-METHYLNAPHTHALENE	NA	NA
HEXACHLOROCYCLOPENTADIENE	NA	NA
2,4,6-TRICHLOROPHENOL	NA	NA
2,4,5-TRICHLOROPHENOL	NA	NA
2-CHLORONAPHTHALENE	NA	NA
2-NITROANILINE	NA	NA
DIMETHYLPHTHALATE	NA	NA
ACENAPHTHYLENE	NA	NA
2,6-DINITROTOLUENE	NA	NA
3-NITROANILINE	NA	NA
ACENAPHTHENE	NA	NA
2,4-DINITROPHENOL	NA	NA

2

FIXED BASE QA/QC SUMMARY RINSATE AND TRIP BLANKS OPERABLE UNIT NO. 15 SITES 88 MCB, CAMP LEJEUNE, NORTH CAROLINA CTO-0356

SAMPLE NO LAB ID DATE SAMPLED UNITS	88-TB03 9608G686-008 08/06/96 UG/L	88-TB04 9608G930-001 08/16/96 UG/L
SEMIVOLATILES (cont)		
4-NITROPHENOL	NA	NA
DIBENZOFURAN	NA	NA
2.4-DINITROTOLUENE	NA	NA
DIETHYLPHTHALATE	NA	NA
4-CHLOROPHENYL-PHENYLETHER	NA	NA
FLUORENE	NA	NA
4-NITROANILINE	NA	NA
4.6-DINITRO-2-METHYLPHENOL	NA	NA
N-NITROSODIPHENYLAMINE (1)	NA	NA
4-BROMOPHENYL-PHENYLETHER	NA	NA
HEXACHLOROBENZENE	NA	NA
PENTACHLOROPHENOL	NA	NA
PHENANTHRENE	NA	NA
ANTHRACENE	NA	NA
CARBAZOLE	NA	NA
DI-N-BUTYLPHTHALATE	NA	NA
FLUORANTHENE	NA	NA
PYRENE	NA	NA
BUTYLBENZYLPHTHALATE	NA	NA
3,3'-DICHLOROBENZIDINE	NA	NA
BENZO(A)ANTHRACENE	NA	NA
CHRYSENE	NA	NA
DI-N-OCTYLPHTHALATE	NA	NA
BENZO(B)FLUORANTHENE	NA	NA
BENZO(K)FLUORANTHENE	NA	NA
BENZO(A)PYRENE	NA	NA
INDENO(1,2,3-CD)PYRENE	NA	NA
DIBENZO(A,H)ANTHRACENE	NA	NA
BENZO(G,H,I)PERYLENE	NA	NA
BIS(2-ETHYLHEXYL)PHTHALATE	NA	NA