Final

03.12-08/01/93-01558

Ecological Risk Assessment for Operable Unit No. 2 (Sites 6, 9, and 82)

Marine Corps Base, Camp Lejeune, North Carolina

Prepared For:

Department of the Navy Atlantic Division Naval Facilities Engineering Command Norfolk, Virginia

Under the

LANTDIV CLEAN Program

Comprehensive Long-Term Environmental Action Navy

			<u>Page</u>
	EXE	ECUTIVE SUMMARY	ES-1
1.0	INT	RODUCTION	1-1
	1.1	Objectives of the Ecological Risk Assessment	1-1
	1.2	Scope of the Ecological Risk Assessment	1-1
2.0	SIT	E BACKGROUND	2-1
	2.1	Site Description	2-1
		2.1.1 Site 9	2-1
		2.1.2 Site 6	2-1
		2.1.2.1 Storage Lot 201	2-2
		2.1.2.2 Storage Lot 203	2-2
		2.1.2.3 Wooded and Ravine Areas	2-3
		2.1.3 Site 82	2-3
	2.2	Site History	2-4
		2.2.1 Site 9	2-4
		2.2.2 Site 6	2-4
		2.2.2.1 Storage Lot 201	2-4
		2.2.2.2 Storage Lot 203	2-4
		2.2.2.3 Wooded and Ravine Areas	2-5
		2.2.3 Site 82	2-5
	2.3	Study Area Description	2-6
		2.3.1 Regional Ecology	2-6
		2.3.2 Sensitive Environments	2-7
		2.3.2.1 Wetlands	2-7
		2.3.2.2 Threatened and Endangered Species	2-7
		2.3.2.3 Other Sensitive Environments	2-10
	2.4	Remedial Investigations	2-13
		2.4.1 Source Identification	2-13
		2.4.1.1 Potential Sources of Contamination at Sites 6 and 82	2-13
		2.4.1.2 Potential Sources of Contamination at Site 9	2-14
		2.4.2 Overview of Results and Extent of Contamination	2-14
		2.4.3 Soil Investigation	2-15
		2.4.3.1 Site 9	2-15
		2.4.3.2 Site 6 (Lot 201)	2-17
		2.4.3.3 Site 6 (Lot 203)	2-19
		2.4.3.4 Sites 6 (Wooded and Ravine Areas) and 82	2-21
		2.4.4 Groundwater Investigation	2-23
3.0	SUI	RFACE WATER/SEDIMENT INVESTIGATION	3-1
	3.1	Surface Water and Sediment Sampling Methodology	3-1
		3.1.1 Surface Water	3-2
		3.1.1.1 Station Locations	3-2
		3.1.1.2 Sampling Procedures	3-2

		3.1.2	Sedimer	ut	3-3
			3.1.2.1	Station Locations	3-3
			3.1.2.2	Sampling Procedures	3-4
	3.2	Surfa	ce Water	and Sediment Sampling Results	3-4
		3.2.1	Field Me	easurements	3-4
		3.2.2	Surface	Water	3-5
			3.2.2.1	Wallace Creek	3-5
			3.2.2.2	Bear Head Creek	3-6
			3.2.2.3	Ravine	3-7
		3.2.3	Sedimer	nts	3-8
			3.2.3.1	Wallace Creek	3-9
			3.2.3.2	Bear Head Creek	3-11
			3.2.3.3	Ravine	3-13
	3.3	Exter	nt of Cont	amination	3-15
		3.3.1	Surface	Water	3-15
			3.3.1.1	Wallace Creek	3-15
			3.3.1.2	Bear Head Creek	3-16
			3.3.1.3	Ravine	3-16
		3.3.2	Sedimer	nts	3 - 17
			3.3.2.1	Wallace Creek	3-17
			3.3.2.2	Bear Head Creek	3-18
			3.3.2.3	Ravine	3-18
	3.4	Conta	aminant l	Distribution	3-19
4.0	ECO 4.1		CAL INV duction	ESTIGATION	4-1 4-1
	4.1 4.2			rget Indicator Species	4-2
	4.4		Fish	rget marcator species	4-2 4-2
				Macroinvertebrates	4-3
				lora and Fauna	4-4
				rial Fauna	4-4
	4.3			lpoints	4-5
	4.0		-	al Endpoints	4-6
		4.0.1	4.3.1.1	Water Criteria	4-6
			4.3.1.1 4.3.1.2	Sediment Screening Values	4-7
		139		ion Endpoints	4-8
			•	nity Endpoints	4-8
		4.0.0	4.3.3.1	Community Similarity	4-8
			4.3.3.2	Species Diversity	4-10
			4.3.3.3	Macroinvertebrate Biotic Index	4-10
	4.4	Biolo		pling Methodology	4-11
	7.7		Ŷ	d Crabs	4-13
		X. X. L	4.4.1.1	Wallace Creek	4-14
			4.4.1.2	Bear Head Creek	4-15
			4.4.1.3	Ravine	4-16
			4.4.1.4	Pettiford Creek	4-17
		4.4.2		Macroinvertebrate	4-17
			4.4.2.1	Wallace Creek	4-17

si.

			4.4.2.2	Bear Head Creek	4-19
			4.4.2.3	Pettiford Creek	4-20
	4.5	Site S	pecific E	cology	4-21
		4.5.1	Abiotic	Habitat	4-21
			4.5.1.1	Fish Stations	4-21
			4.5.1.2	Benthic Macroinvertebrate Stations	4 - 22
			4.5.1.3	Water Quality	4-24
		4.5.2	Biotic C	ommunity	4-24
			4.5.2.1	Fish	4-24
			4.5.2.2	Benthic Macroinvertebrate	4-31
			4.5.2.3	Terrestrial Fauna	4-35
5.0	CON	TAMI	NANTS	OF CONCERN	5-1
	5.1	Data	Evaluati	on	5-1
		5.1.1	Contam	inants of Concern - Surface Water	5-1
			5.1.1.1	Wallace Creek	5-2
			5.1.1.2	Bear Head Creek	5-2
			5.1.1.3	Ravine	5-3
		5.1.2	Contam	inants of Concern - Sediments	5-3
			5.1.2.1	Wallace Creek	5-3
			5.1.2.2	Bear Head Creek	5-4
			5.1.2.3	Ravine	5-4
		5.1.3	Contam	inants of Concern - Surface Soils	5-5
			5.1.3.1	Site 9	5-5
			5.1.3.2	Site 6 (Lot 201)	5-5
			5.1.3.3	Site 6 (Lot 203)	5-6
			5.1.3.4	Sites 6 (Wooded and Ravine Areas) and 82	5-7
		5.1.4	Contam	inants of Concern - Fish and Crab Tissue	5-8
			5.1.4.1	Wallace Creek	5-8
			5.1.4.2	Bear Head Creek	5- 9
	5.2		• •	Criteria	5-9
		5.2.1	Wallace	e Creek	5-9
				ead Creek	5-11
			Ravine	••••••	5-12
				d Creek	5-13
	5.3			ening Values	5-13
				e Creek	5-13
				ead Creek	5-14
			Ravine		5-15
	5.4			uality	5-17
			Site 9		5-17
			•	Lot 201)	5-18
				Lot 203)	5-19
				(Wooded and Ravine Areas) and 82	5-19
	5.5	Phys	ical/Chei	nical Characteristics	5-20

TAB	LEO)FC	ONI	TENTS
-----	-----	-----	-----	-------

. i .

6.0	ECO	DLOGICAL EXPOSURE CHARACTERIZATION	6-1
	6.1	Potential Exposure Scenarios	6-1
		6.1.1 Surface Water Exposure Pathway	6-1
		6.1.2 Sediment Exposure Pathway	6-2
		6.1.3 Air Exposure Pathway	6-3
		6.1.4 Soil Exposure Pathway	6-4
		6.1.5 Groundwater Exposure Pathway	6-4
7.0	RIS	K CHARACTERIZATION/INTEGRATION	. 7-1
	7.1	Water Quality	7-1
		7.1.1 Wallace Creek	7-1
		7.1.2 Bear Head Creek	7-2
		7.1.3 Ravine	7-4
		7.1.4 Pettiford Creek	7-5
	7.2	Sediment Quality	7-5
		7.2.1 Wallace Creek	7-6
		7.2.2 Bear Head Creek	7-7
		7.2.3 Ravine	7-8
	7.3	Surface Soil Quality	7-10
		7.3.1 Site 9	7-10
		7.3.2 Site 6 (Lot 201)	7-10
		7.3.3 Site 6 (Lot 203)	7-10
		7.3.4 Sites 6 (Wooded and Ravine Areas) and 82	7-11
	7.4	Fish and Crabs	7-11
		7.4.1 Population Statistics	7-11
		7.4.1.1 Wallace Creek	7-11
		7.4.1.2 Bear Head Creek	7-12
		7.4.1.3 Pettiford Creek	7-13
		7.4.2 Tissue Analysis	7-13
		7.4.2.1 Wallace Creek	7-14
		7.4.2.2 Bear Head Creek	7-17
		7.4.2.3 Pettiford Creek	7-20
	7.5	Benthic Macroinvertebrate	7-20
	1.0	7.5.1 Wallace Creek	7-20
		7.5.2 Bear Head Creek	7-22
	7.6	Terrestrial Species	7-23
	7.7	Threatened and/or Endangered Species	7-23
		Flora/Wetlands	7-24
	7.8	Uncertainty Analysis	7-24
	7.9	Uncertainty Analysis	1-74
8.0	SUI	MMARY/CONCLUSIONS	8-1
	8.1	Water Quality	8-1
		8.1.1 Wallace Creek	8-1
		8.1.2 Bear Head Creek	8-1
		8.1.3 Ravine	8-2
		8.1.4 Pettiford Creek	8-2

8.2	Sediment Quality	8-2
	8.2.1 Wallace Creek	8-2
	8.2.2 Bear Head Creek	8-3
	8.2.3 Ravine	8-3
8.3	Surface Soil Quality	8-4
	8.3.1 Site 9	8-4
	8.3.2 Site 6 (Lot 201)	8-4
	8.3.3 Site 6 (Lot 203)	8-4
	8.3.4 Sites 6 (Wooded and Ravine Areas) and 82	8-4
8.4	Fish	8-4
	8.4.1 Population Statistics	8-5
	8.4.1.1 Wallace Creek	8-5
	8.4.1.2 Bear Head Creek	8-5
	8.4.1.3 Pettiford Creek	8-6
	8.4.2 Tissue Analysis	8-6
	8.4.2.1 Wallace Creek	8-7
	8.4.2.2 Bear Head Creek	8-7
	8.4.2.3 Pettiford Creek	8-7
8.5	Benthic Macroinvertebrate	8-7
	8.5.1 Wallace Creek	8-7
	8.5.2 Bear Head Creek	8-8
	8.5.3 Pettiford Creek	8-9
BEF	ERENCES	9-1
	8.3 8.4 8.5	 8.2.1 Wallace Creek 8.2.2 Bear Head Creek 8.3 Surface Soil Quality 8.3.1 Site 9 8.3.2 Site 6 (Lot 201) 8.3.3 Site 6 (Lot 203) 8.3.4 Sites 6 (Wooded and Ravine Areas) and 82 8.4 Fish 8.4.1 Population Statistics 8.4.1.2 Bear Head Creek 8.4.1.3 Pettiford Creek 8.4.2 Tissue Analysis 8.4.2.1 Wallace Creek 8.4.2 Bear Head Creek 8.4.3 Pettiford Creek

LIST OF APPENDICES

Appendix BMCB Camp Lejeune Endangered Species and Special Interest CommunitiesAppendix CField Data Sheets Surface Water and Sediment SamplesAppendix DData and Frequency Summaries Surface Water SamplesAppendix EData and Frequency Summaries Sediment SamplesAppendix FField Data Sheets Benthic Macroinvertebrates and Fish SamplesAppendix GData and Frequency Summaries Fish TissuesAppendix HBenthic Macroinvertebrates Raw Data Tables	Appendix A	-	National Wetland Inventory Map
 Appendix D - Data and Frequency Summaries Surface Water Samples Appendix E - Data and Frequency Summaries Sediment Samples Appendix F - Field Data Sheets Benthic Macroinvertebrates and Fish Samples Appendix G - Data and Frequency Summaries Fish Tissues 	Appendix B	-	• • • •
 Appendix E - Data and Frequency Summaries Sediment Samples Appendix F - Field Data Sheets Benthic Macroinvertebrates and Fish Samples Appendix G - Data and Frequency Summaries Fish Tissues 	Appendix C	-	Field Data Sheets Surface Water and Sediment Samples
Appendix F - Field Data Sheets Benthic Macroinvertebrates and Fish Samples Appendix G - Data and Frequency Summaries Fish Tissues	Appendix D	-	Data and Frequency Summaries Surface Water Samples
Appendix G - Data and Frequency Summaries Fish Tissues	Appendix E	-	Data and Frequency Summaries Sediment Samples
	Appendix F	-	Field Data Sheets Benthic Macroinvertebrates and Fish Samples
Appendix H - Benthic Macroinvertebrates Raw Data Tables	Appendix G	-	Data and Frequency Summaries Fish Tissues
	Appendix H	-	Benthic Macroinvertebrates Raw Data Tables

v

LIST OF TABLES

		<u>Page</u>
2-1	Protected Species Within MCB Camp Lejeune	2- 9
3-1	Wallace Creek Surface Water and Sediment Station Sample Numbersand LocationsBear Head Creek Surface Water and Sediment Station Sample Numbers	3-22
3-2	and Locations	3-24
3-3	Ravine Surface Water and Sediment Station Sample Numbers and Locations	3-25
3-4	Field Chemistry from Sediment/Surface Water Samples	3-26
3-5	Wallace Creek Surface Water Positive Detection Summary - Organics	3-28
3-6	Wallace Creek Surface Water Positive Detection Summary - Total Metals	3-32
3-7	Bear Head Creek Surface Water Positive Detection Summary - Organics	3-37
3-8	Bear Head Creek Surface Water Positive Detection Summary - Total Metals	3-38
3-9	Ravine Surface Water Positive Detection Summary - Organics	3-41
3-10	Ravine Surface Water Positive Detection Summary - Total Metals	3-42
3-11	Wallace Creek Sediment Positive Detection Summary - Organics	3-43
3-12	Wallace Creek Sediment Positive Detection Summary - Total Metals	3-49
3-13	Bear Head Creek Sediment Positive Detection Summary - Organics	3-55
3-14	Bear Head Creek Sediment Positive Detection Summary - Total Metals	3-58
3-15	Ravine Sediment Positive Detection Summary - Organics	3-62
3-16	Ravine Sediment Positive Detection Summary - Total Metals	3-64
3-17	Tide Data for the New River in Jacksonville, North Carolina	3-66
3-18	Surface Water Samples Correlation with Tide	3-67
4-1	Wallace Creek and Bear Head Creek Summary of Fish and Crab	
	Sampling Events	
4-2	Summary of Fish and Crabs Sent to Ceimic for Tissue Analysis	
4-3	Field Chemistry from Biological Samples	4-54
4-4	Wallace, Bear Head and Pettiford Creeks Fish Distribution and	
	Characterization	
4-5	Wallace, Bear Head and Pettiford Creeks -1992 Seining Results	4-58
4-6	Wallace, Bear Head and Pettiford Creeks, Total Number of Species,	4 61
4 77	Individuals and the Shannon-Wiener Species Diversity Values for Fish	4-61
4-7	Wallace, Bear Head and Pettiford Creeks Results of the Jaccard Coefficient	
	of Community Similarity and the Sorenson Index of Community	4-62
4-8	Similarity Between Fish Stations Fish and Crab Tissue Positive Detection Summary - Organics	
4-0 4-9	Fish and Crab Tissue Positive Detection Summary - Organics	
4-5 4-10	Systematic List of Benthic Macroinvertebrate Species	
4-10	Summary Table: Benthic Macroinvertebrate Species	
4-12	Summary Table: Percent Benthic Macroinvertebrate Species	4-79
4-12	Biotic Index and U.S. EPA Tolerance to Organic Wastes and Sensitivity	1.0
- T -10	to Metals for Benthic Macroinvertebrates	4-86
4-14	Summary Statistics of Benthic Macroinvertebrate Species	
4-15	Results of Jaccard Coefficient of Community Similarity and Sorenson	
	Index of Community Similarity Between Benthic Macroinvertebrate	
	Stations	. 4-93

 \backslash

5-1	Surface Water Data Summary - Wallace Creek Frequency and Range of	
	Detection Compared to North Carolina and Region IV Freshwater	
	Surface Water Screening Values	5 - 22
5-2	Surface Water Data Summary - Bear Head Creek Frequency and Range of	
	Detection Compared to North Carolina and Region IV Freshwater	
	Surface Water Screening Values	5-24
5-3	Surface Water Data Summary - Ravine Frequency and Range of	
	Detection Compared to North Carolina and Region IV Freshwater	
	Surface Water Screening Values	5-26
5-4	Wallace Creek: Surface Water Criteria Exceedences	5 - 27
5-5	Bear Head Creek: Surface Water Criteria Exceedences	5-30
5-6	Ravine: Surface Water Criteria Exceedences	5-31
5-7	Sediment Data Summary - Wallace Creek Frequency and Range of Detection	
	Compared to U.S. EPA Region IV Sediment Screening Values	5-33
5-8	Sediment Data Summary - Bear Head Creek Frequency and Range of Detection	n
	Compared to U.S. EPA Region IV Sediment Screening Values	5-36
5- 9	Sediment Data Summary - Ravine Frequency and Range of Detection	
	Compared to U.S. EPA Region IV Sediment Screening Values	5-38
5-10	Wallace Creek: Sediment Criteria Exceedences	5-41
5-11	Bear Head Creek: Sediment Criteria Exceedences	5-44
5-12	Ravine: Sediment Criteria Exceedences	5-47
5-13	Physical/Chemical Characteristics of the Contaminants of Concern	5-50
7-1	Terrestrial Reference Values	7-29
7-2	Exposure Parameters	7-30

LIST OF FIGURES

3-1	Surface Water, Sediment, Fish and Benthic Macroinvertebrate Sampling Locations	3-20
3-2	Tide Data	3-21
4-1	Fish and Benthic Macroinvertebrate Sampling Location in Pettiford Creek	4-36
4-2	Size Class Distribution of American Eel in Bear Head Creek and Wallace Creek	4-37
4-3	Size Class Distribution of Eastern Mosquito in Bear Head Creek and Wallace Creek	4-38
4-4	Size Class Distribution of Shiner in Bear Head Creek and Wallace Creek \dots	4-389
4-5	Size Class Distribution of Pumpkinseed in Bear Head Creek and Wallace Creek	4-40
4-6	Size Class Distribution of Spot in Bear Head Creek and Wallace Creek $\ldots \ldots$	4-41
4-7	Number of Benthic Macroinvertebrate Taxa vs Station Replicate Data	4-42
4-8	Number of Benthic Macroinvertebrate Taxa vs Station Summary	4-43
4-9	Number of Benthic Macroinvertebrate Individuals vs Station Replicate Data	4-44
4-10	Number of Benthic Macroinvertebrate Individuals vs Station Summary Data	4-45
4-11	Benthic Macroinvertebrate Species Density vs Station Replicate Data	4-46
4-12	Benthic Macroinvertebrate Species Density vs Station Summary Data	4-47
4-13	Benthic Macroinvertebrate Species Diversity vs Station Replicate Data	4-48
4-14	Benthic Macroinvertebrate Species Diversity vs Station Summary Data	4-49
4-15	Macroinvertebrate Biotic Index vs Station Replicate Data	4-50
4-16	Macroinvertebrate Biotic Index vs Station Summary Data	4-51

ACRONYMS AND ABBREVIATIONS

AQUIRE	-	Aquatic Retrieval Database
ARAR	-	Applicable or Relevant and Appropriate Requirements
В	-	Represents that the value is above the instrument detection limit but is below the contract required quantitation limit
BCF	-	Bioconcentration Factor
BI	-	Biotic Index
BH	-	Bear Head Creek
CLEAN	-	Comprehensive Long-Term Environmental Action - Navy
COC	-	Contaminant of Concern
CRDL	-	Contact Required Detection Limit
СТО	-	Contract Task Order
DEM	-	NCDEHNR Division of Environmental Management
EPA	-	United States Environmental Protection Agency
ER-L	-	EPA Region IV Sediment Screening Value, Effects Range-Low
ER-M	-	EPA Region IV Sediment Screening Value, Effects Range-Median
ERA	-	Ecological Risk Assessment
FWS	-	U.S. Fish and Wildlife Service
H'	-	Species Diversity Coefficient
HQW	-	High Quality Water
IDL	-	Instrument Detection Limit
ղ	-	Represents that the value is estimated, either for a tentatively identified compound or when a compound is present but the value is below the contract required quantitation limit.
JB	-	Represents that the value is estimated below the contract required detection limit, but greater than the instrument detection limit.
MBI	-	Macroinvertebrate Biotic Index
мсв	-	Marine Corps Base
mg/l	-	Milligrams per liter
mg/kg	-	Milligrams per kilogram

,	msl	-	Mean Sea Level
	NCDEHNR	-	North Carolina Department of Environment, Health and Natural Resources
	NOAA	-	National Oceanic and Atmospheric Administration
	NSCRF	-	National Study of Chemical Residues in Fish
	NWI	-	National Wetlands Inventory
	QA/QC	-	Quality Assurance/Quality Control
	PAH	-	Polyaromatic Hydrocarbons
	PC	-	Pettiford Creek
	PCB	-	Polychloronated Biphenyl
	ppt	-	Parts per thousand
	RI/FS	-	Remedial Investigation/Feasibility Study
	RV	-	Ravine
λ.	SAP	-	Remedial Investigation/Feasibility Study Sampling and Analysis Plan for Sites 6, 9, 48, and 69
	SAV	-	Submerged Aquatic Vegetation
	Sj	-	Jaccard Similarity Coefficient
	SQSV	-	Region IV Sediment Screening Values
	Ss	-	Sorenson Similarity Coefficient
	S.U.	-	Standard Units
	SVOCs	-	Semivolatile Organic Compounds
	TAL	-	Target Analyte List
	TCL	-	Target Compound List
	ТРН	-	Total Petroleum Hydrocarbons
	VOCs	-	Volatile Organic Compounds
	ug/l	-	Micrograms per liter
	ug/kg	-	Micrograms per kilogram
	wc	-	Wallace Creek
	WQS	-	North Carolina Water Quality Standards
	WQSV	-	EPA Region IV Water Quality Screening Values

: · · i

х

EXECUTIVE SUMMARY

INTRODUCTION

Marine Corps Base (MCB), Camp Lejeune, North Carolina was placed on the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) National Priorities List (NPL) that became effective on October 4, 1989 (54 Federal Register 41015, October 4, 1989). The United States Environmental Protection Agency (USEPA) Region IV, the North Carolina Department of Environment, Health and Natural Resources (NC DEHNR) and the United States Department of the Navy (DoN) then entered into a Federal Facilities Agreement (FFA) for MCB Camp Lejeune. The primary purpose of the FFA was to ensure that environmental impacts associated with past and present activities at the MCB were thoroughly investigated and appropriate CERCLA response/Resource Conservation and Recovery Act (RCRA) corrective action alternatives were developed and implemented as necessary to protect public health and the environment.

The Fiscal Year 1994 Site Management Plan for MCB Camp Lejeune, a primary document identified in the FFA, identifies 27 sites requiring Remedial Investigation/Feasibility Study (RI/FS) activities. These 27 sites have been divided into thirteen operable units to simplify proceeding with RI/FS activities. This report describes the RI conducted at Operable Unit (OU) No. 2, which is comprised of Sites 6, 9, and 82.

SITE DESCRIPTION

OU No. 2 is located approximately 1.75 miles east of the New River and 2 miles south of State Route 24 on the mainside portion of MCB Camp Lejeune. The unit is bordered by Holcomb Boulevard on the west, Sneads Ferry Road on the south, Piney Green Road on the east, and by Wallace Creek on the north boundary. Camp Lejeune Railroad operates rail lines parallel to Holcomb Boulevard bordering OU No. 2. OU No. 2 covers an area of approximately 210 acres. OU No. 2 consists of three sites: Sites 6, 9, and 82.

There are distinctive areas of concern within each site of OU No. 2. The following section describes the background of each site.

Site 9

Site 9 is referred to in this report as the "Fire Training Area" (the formal name, as provided in the FFA, is "Fire Fighting Training Pit at Piney Green Road"). The site covers an area of approximately 2.6 acres. Site 9 is bounded by Holcomb Boulevard on the west, Bear Head Creek approximately 500 feet to the north, Piney Green Road on the east and Sneads Ferry Road on the south. Site 6 also borders Site 9 to the north. Locally, the site is bounded by unnamed streets leading to various storage buildings in the vicinity. Site 9 consists of an asphalt-lined fire training pit, an oil/water separator, four aboveground storage tanks (ASTs), and a fire tower (smoke house). The fire training pit, located in the southern area of the site, is used to conduct training exercises for extinguishing fires caused by flammable liquids. The oil/water separator is located next to the fire training pit to collect water used in the training exercises and storm water that falls into the pit. The recovered product collected in the oil/water separator is disposed of off site. Two of the ASTs at Site 9 are 2500-gallon steel tanks labeled "DO NOT USE". These tanks are not currently in use. Two additional storage tanks are located in a bermed area. These tanks are constructed of steel and contain approximately 500 gallons each.

Site 6

Site 6 is located north of and adjacent to Site 9. Site 6 is bounded on the north by Site 82, by Piney Green Road on the east, by Site 9 on the south, and by Holcomb Boulevard on the west. Site 6 covers an area of approximately 177 acres that incorporates Storage Lots 201 and 203, the wooded area between the storage lots, and a ravine, which begins at Site 6 and bisects Site 82. Three surface water bodies are associated with Site 6 for the purpose of this RI: Wallace Creek, Bear Head Creek, and a ravine located in the wooded area north of Lot 203 that drains to Wallace Creek.

Open Storage Lot 201 (Lot 201) is a fenced lot located in the south-central portion of Site 6. It is a flat area with sparse vegetation around the fence lines. The lot is approximately 25 acres in size. It is currently being used for the storage of military vehicles and equipment, lumber, hydraulic oils and lubricants, non-PCB transformers, and other supplies (ESE, 1991).

Open Storage Lot 203 (Lot 203) is a fenced lot located in the northern portion of Site 6 covering approximately 46 acres. Lot 203 is a relatively flat area with elevation differences of approximately five feet. The ground surface is comprised of both naturally existing soil and

ES-2

fill material. Lot 203 is bordered by Site 82, Piney Green Road to the east, woods to the south, and by Holcomb Boulevard to the west. Lot 203 is currently inactive.

Approximately 40 55-gallon drums are present at Lot 203. The majority of the drums, if labeled, were identified as containing lubricants, petroleum products, or corrosives. Empty storage tanks were also found on Lot 203. They were labeled as containing diesel fuel, gasoline, and kerosene (Baker, 1992).

A ravine is located in the northwest section of Site 6. The steepest area of the ravine is located "inside" of Storage Lot 203. The banks of the ravine gradually decline as the ravine bisects Site 82. The elevation ranges from 25 feet above msl at the north boundary of Lot 203 to 5 feet above msl where the ravine drains into Wallace Creek. The surface of the ravine area is littered with various debris including batteries, fencing, tires, empty unlabeled drums, wire cables, commercial ovens, commodes, and respirator cartridges. An empty drum labeled "DDT" was also found in the ravine area, as were small canisters labeled to contain "DDT".

Woods and open fields surround both Storage Lots 201 and 203 and make up the remaining area of Site 6. The topography of the wooded areas is relatively flat, but localized trenching and mounding is visible just north of Lot 203 and west of Piney Green Road. The wooded areas are randomly littered with debris including spent ammunition casings, and empty or rusted drums. Markings were observed on a few drums (most drums did not contain marking due to their condition and age) located north of Lot 203. These drums were marked as "lubrication oils". Many of the drums observed were only shells or fragments of drums. (Baker, 1992)

Site 82

Site 82 is situated at the northern end of OU No. 2. It is bordered to the north by Wallace Creek, to the east by Piney Green Road, to the west by Holcomb Boulevard, and to the south by Site 6. Site 82 encompasses approximately 30 acres and is predominantly covered by woodlands. The site is randomly littered with debris including communication wire, spent ammunition casings, and empty or rusted drums. Markings were observed on a few drums, however, most of the drums did not contain markings due to their condition and age. Some of the drums were marked as "lubrication oil" and "anti-freeze".

The topography within Site 82 is relatively flat near the southern portion of the site, but becomes very steep near the bank of Wallace Creek. Localized trenching and mounding is

visible near the southern portion of the site. The ravine bisects the site, as shown on Figure 1-3.

SITE HISTORY

Site 9

Site 9 has been used as a fire fighting training area from the early 1960s to the present. Fire extinguishing activities took place in an unlined pit. In 1981 the pit was lined with asphalt. The training fires in the pit were started with used oil, solvents, and contaminated fuels (unleaded). Approximately 30,000 to 40,000 gallons of JP-4 and JP-5 fuel were also burned in the fire training pit (Baker, 1992).

Site 6

Site 6 has a long history of various uses including the disposal and storage of wastes and supplies. This discussion on the history of Site 6 has been broken down into Storage Lot 201, Storage Lot 203, and the wooded areas and ravine to simplify the historical descriptions of these areas.

Currently, Lot 201 is used to store military equipment, vehicles, hydraulic oils, and other "non-hazardous" supplies. Pesticides were reportedly stored in the northeast and southeast corners of the lot. Transformers containing PCBs were reportedly stored in the southwest corner of the lot (Water and Air Research, 1983).

Lot 203 has been used as a disposal area since the 1940s. There is little documentation on the disposal activities at this lot. Lot 203 in not currently active as a storage or disposal area, but the ground surface is littered with various debris. Lot 203 was also used for the storage and disposal of radio and communication parts, shredded tires, lubricants, petroleum products, corrosives, expended demolition kit training materials, ordnance, sheet metal debris, wire cables, and wooded pallets. Empty and full 55-gallon drums were found at various locations on Lot 203.

Lot 203 is currently fenced. From historical photographs, it appears that the fenced boundaries have changed since the lot was in operation. Former employees at Lot 203 have

reported disposal of various chemicals including PCBs, cleaning solvents, electrolytes from used batteries, and waste oils.

The surface of the wooded areas around Lots 201 and 203 is randomly littered with debris including drums, metal storage containers, and spent ammunition cartridges. No organized disposal operations are documented for the wooded areas. A ravine is located on the northern boundary of Lot 203. As previously stated, this area is currently littered with various debris. From the deposition of the debris in the ravine, it appears that trucks may have dumped their contents into the ravine from Lot 203.

PREVIOUS INVESTIGATIONS

During the period 1983 through 1991, various studies were conducted at Sites 6, 9, and 82 by the Department of the Navy. These studies included an Initial Assessment Study and a Confirmation Study under the DoN's Installation Restoration Program. The studies included soil investigations at Site 6 (Lots 201 and 203), groundwater investigations at Sites 6, 9, and 82 and surface water/sediment investigations at Wallace Creek and Bear Head Creek.

Soil samples collected from shallow borings at Lot 201 and 203 were analyzed for pesticides. Low levels of pesticides ranging in concentration from 1.3 µg/kg to 770 µg/kg were detected in almost all of the soil samples. Groundwater samples collected from eight shallow monitoring wells at Site 6 revealed low levels of volatile organic compounds such as carbon disulfide and chloromethane in well 6GW6, which is located to the east of Lot 201. In addition, low levels of benzene and 1,1,2,2-tetrachloroethane were detected in well 6GW1, which is located just north of Lot 203. Further investigation of nearby water supply wells revealed elevated levels of trichloroethene (TCE), vinyl chloride, 1,2-dichloroethene, and tetrachloroethene (PCE) in wells HP-651 and HP-653. These wells are located east of Piney Green Road near Lot 203. The supply wells are screened to a depth of approximately 200 feet. The wells are no longer in operation due to elevated volatile organic compounds (VOCs).

Three shallow monitoring wells were installed at Site 9. Groundwater samples were collected in 1984, 1986, and 1987. In addition, one sample was collected in 1984 from a nearby supply well. No contamination was detected in the supply well. Low levels of phenol were detected in all three shallow monitoring wells. In addition, low levels of lead and chromium were detected in all three wells. Upstream and downstream surface water samples were collected from Wallace Creek and Bear Head Creek. Surface water samples collected from Wallace Creek revealed elevated levels of VOCs such as TCE, vinyl chloride, and 1,2-dichloroethene. No organic contamination was detected in Bear Head Creek. Sediment samples collected from Bear Head Creek revealed low levels of pesticides (13 to 75 μ g/kg) both upstream and downstream from Site 6. No pesticides were detected in either sample collected from Wallace Creek. However, PAHs (1,990 μ g/kg total) were detected in the downstream sediment sample collected near Holcomb Boulevard.

<u>Site 82</u>

A site investigation was conducted at Site 82 in June, 1991 by Halliburton NUS Environmental Corporation (NUS). The investigation was initiated based on results from an Environmental Science and Engineering (ES&E) field investigation in 1986 (the investigation was conducted as part of a study for Site 6). During this investigation, surface water samples collected from Wallace Creek contained VOCs. It was determined that the source of the VOCs in Wallace Creek most likely did not originate from Site 6 (Lot 203). Subsequently a new site, Site 82, was created to investigate the source of the VOCs (NUS, 1992).

The investigation conducted by NUS consisted of installing six shallow soil borings and three shallow monitoring wells, soil and groundwater sampling, and surface water and sediment sampling (Wallace Creek). Results from the investigation indicated positive detections of organic contamination in all of the media sampled. Pesticides (4,4'-DDD, 4,4'-DDE, 4,4'-DDT, endosulfan II, and dieldrin) were detected in soil (33 to 110 μ g/kg) and sediment (12 to 69 μ g/kg) samples with lower levels in surface water and groundwater. PCB (PCB-1260 and PCB-1242) contamination was also present in soil (150-1,900 μ g/kg), groundwater (15 μ g/l), surface water (80 μ g/l), and sediments (220-700 μ g/kg). Further, levels of TCE (3 to 74 μ g/l), 1,2-dichloroethene (6 to 64 μ g/l), and vinyl chloride (11 μ g/l) were detected in surface water samples. Note that concentrations of VOCs were not detected in any of the wells sampled.

REMEDIAL INVESTIGATION ACTIVITIES

A Remedial Investigation (RI) was conducted at Operable Unit No. 2 beginning in August 1992 (Final Project Plans were submitted in May 1992). The RI focused on various areas of concern within Operable Unit No. 2 including: Lot 201, Lot 203, the wooded areas surrounding both storage lots, the ravine north of Lot 203, Site 9, Site 82, Wallace Creek, and Bear Head Creek. Moreover, the investigation was conducted in two phases of work: Phase I (August through November 1992) and Phase II (February through May 1993).

The soil investigation focused the reported disposal areas within Lot 201 and Lot 203. Sampling grids were established at the following areas:

- Two reported pesticide storage areas within Lot 201
- A reported PCB storage area within Lot 201
- A reported pesticide disposal area within Lot 203
- A reported PCB disposal area within Lot 203

In addition, the soil investigation focused on other portions of OU No. 2 that were determined to be environmental concerns based on site reconnaissances and review of historical photographs. Sampling grids were established at the following areas:

- The wooded areas to the north, east, and south of Lot 201
- Site 82
- The fenced-in portion of Lot 203
- The ravine north of Lot 203

Two sampling grids were also established at Site 9 to evaluate potential soil contamination. The grids were established at:

- The fire training pit and oil/water separator
- Aboveground storage tanks

The grid points were surveyed by a licensed surveyor prior to initiating the soil investigation. Shallow borings were augered at each grid point and soil samples were collected at 2-foot continuous intervals until the water table was encountered. The majority of the samples were analyzed for full Target Compound List (TCL) organics and Target Analyte List (TAL) inorganics. In areas where a certain contaminant was expected based on existing information (e.g., pesticide disposal area at Lot 203), the majority of samples were analyzed for a particular contaminant of concern (e.g., TCL pesticides); however, at least ten percent of samples collected from these areas were analyzed for full TCL organics and TAL inorganics. The groundwater investigation focused on evaluating surficial and deep groundwater quality at Operable Unit No. 2. Shallow wells were installed in the wooded areas, Site 82 Lot 201, Lot 203, and Site 9. Deep groundwater wells were installed at Site 9, Lot 201, Lot 203, and Site 82. Groundwater samples were analyzed for full TCL organics and TAL inorganics (total and dissolved metals analysis). Furthermore, two rounds of samples were collected from the Phase I and existing wells, and one round of samples were collected from the Phase II wells. The groundwater investigation also included three to four rounds of water level measurements. These measurements included staff gauges that were installed in Bear Head Creek and Wallace Creek.

Placement of monitoring wells was based on reported storage/disposal areas, results of a geophysical investigation conducted at Lot 203, and review of historical aerial photographs produced by the U.S. Environmental Protection Agency (EPA) Environmental Photographic Interpretation Center (EPIC). Additionally, the placement of the Phase II shallow wells were based on the results of a soil gas survey and placement of the Phase II deep wells were based on the results of the Phase I analytical results.

Surface water and sediment investigations were conducted in Bear Head Creek, Wallace Creek, and the ravine. Surface and subsurface sediment samples were collected from the middle portion of the stream as well as from the stream bank. Deep surface water samples were collected when the depth of water exceeded five feet. All samples were analyzed for full TCL organics and TAL inorganics.

In addition to these studies, an ordnance survey was required at Lot 203 and the wooded areas surrounding Lot 203 due to the presence of surface and subsurface unexploded ordnance (UXO). On two occasions, the MCB Camp Lejeune ordnance specialists were contacted to examine UXO. In both cases, the devices were not determined to present a hazard.

Ecological Risk Assessment

Baker Environmental conducted an Ecological Risk Assessment (ERA) for Operable Unit No. 2 (Sites 6, 9 and 82) in accordance with the scope of work identified under Task 6 in the Final Remedial Investigation/Feasibility Study Work Plan (May 1992), prepared by Baker Environmental, Inc. (Baker), under Contract Task Order (CTO) 0133. The ERA has been conducted in conjunction with a remedial investigation/feasibility study (RI/FS) at Operable Unit No. 2 (OU No. 2) under the Department of Navy's Comprehensive Long-Term Environmental Action - Navy (CLEAN) Program, Contract N62470-89-D-4814. The RI and FS documents have been submitted under a separate cover.

The objective of the ERA is to determine if past reported disposal practices at OU No. 2 are adversely impacting the ecological integrity of the terrestrial environment and of Wallace Creek, Bear Head Creek, or the ravine. This assessment also evaluated the potential effects of contaminants at OU No. 2 on sensitive environments including wetlands, protected species, and fish nursery areas. The conclusions of the ERA will be used in conjunction with the human health risk assessment in order to determine the appropriate remedial action at this site for the overall protection of public health and the environment.

The ERA evaluated and analyzed the results from the remedial field investigation conducted as part of CTO 0133 and historical data collected during previous studies. The remedial field investigations included sampling and chemical analysis of the surface water, sediments, soil, and groundwater. In addition, ecological field investigations were conducted including collecting fishes for population statistics and chemical analysis of their tissues; collecting benthic macroinvertebrates for population statistics; and collecting blue crabs for chemical analysis of their tissues. Finally, information used to evaluate sensitive environments was obtained from historical data and previous studies conducted at Marine Corps Base (MCB) Camp Lejeune, North Carolina.

This assessment also evaluated the potential effects of contaminants at OU No. 2 on sensitive environments including wetlands, protected species, and fish nursery areas. Information for these environments were obtained primarily from historical data and previous studies conducted at MCB Camp Lejeune.

Conclusions

The following sections contain the summary/conclusions for the ERA including water quality, sediment quality, surface soil quality, fish, benthic macroinvertebrates and terrestrial fauna.

Water Quality

The water quality summary/conclusions are discussed in the following sections.

Wallace Creek

None of the TCL organic COCs detected in Wallace Creek exceeded applicable water quality criteria values. Dissolved oxygen concentrations and pH values were below WQS and WQSV at some of the stations, but probably were associated with natural conditions.

As detailed below, the surface water concentrations of cadmium, copper, lead, mercury, nickel, silver, and zinc exceeded the North Carolina Water Quality Standards (WQS) and/or U.S. EPA Region IV acute or chronic Water Quality Screening Values (WQSV) in some of the samples. Nickel, copper, and mercury exceeded standards in sampling stations upstream, adjacent, and downstream of Site 6 and 82. Cadmium and silver exceeded standards at one adjacent station. Whereas, lead concentrations exceeded standards at one station upstream to Sites 6 and 82. Zinc was exceeded in one upstream and one downstream station to Sites 6 and 82.

In addition, several TAL inorganics had the ratio of the upper 95% confidence limit (or maximum value) and the chronic WQSV greater than unity. Based on these results, the potential risk for aquatic life in Wallace Creek to be adversely affected by chronic toxicity from the COCs in the surface water is expected to be moderate to high, provided that the exposure concentration evaluated represents long-term conditions.

Bear Head Creek

None of the TCL organic COCs detected in Bear Head Creek exceeded applicable water quality criteria values. Dissolved oxygen concentrations and pH values were below WQS and WQSV at some of the stations, but probably were associated with natural conditions.

Surface water concentrations of copper, lead, mercury, nickel, and silver exceeded the WQS and/or WQSV in some of the samples. Copper, nickel, and silver concentrations exceeded standards at one downstream station. Whereas, mercury concentrations exceeded standards at two downstream stations. Lead exceeded standards at one immediately downstream and one immediately upstream station to Sites 6 and 9.

In addition, several TAL inorganics had the ratio of the upper 95% confidence limit (or maximum value) and the chronic WQSV greater than unity. Based on these results, the potential risk for aquatic life in Bear Head Creek to be adversely affected by chronic toxicity

from the COCs in the surface water is expected to be moderate to high, provided that the exposure concentration evaluated represents long-term conditions.

<u>Ravine</u>

None of the TCL organic COCs detected in the ravine exceeded applicable water quality criteria values.

Surface water concentrations of aluminum, cadmium, copper, iron, lead, silver, and zinc exceeded the WQS and/or WQSV in some of the samples. Aluminum and lead concentrations exceeded standards in the samples from the northern section of Site 6 through Site 82. Zinc concentrations were exceeded at one station within Site 6 and several stations throughout Site 82. Aluminum and zinc concentrations were higher at the southern stations within Site 82. Iron exceeded standards at two stations in the northern ravine area of Site 82. Cadmium concentrations exceeded standards in one ravine station in Site 6 and one in Site 82. Copper exceeded standards at one station in Site 6 and three stations in Site 82. Silver exceeded surface water standards at stations throughout Site 82.

In addition, several TAL inorganics had the ratio of the upper 95% confidence limit (or maximum value) and the chronic WQSV greater than unity. Based on these results, the potential risk for aquatic life in the ravine to be adversely affected by chronic toxicity from the COCs in the surface water is expected to be moderate to high, provided that the exposure concentration evaluated represents long-term conditions.

Pettiford Creek

Dissolved oxygen concentrations were below the WQS at one station, but probably was associated with natural conditions.

Sediment Quality

Currently promulgated sediment quality criteria do not exist. Until these criteria are developed, Region IV is using sediment values compiled by NOAA as screening values for evaluating the potential for chemical constituents in sediments to cause adverse biological effects (USEPA, 1992b). The lower ten percentile (Effects Range-Low (ER-L)) and the median percentile (Effects Range-Median (ER-M)) of biological effects have been developed for several

of the chemicals identified during the sediment investigations at OU No. 2. If sediment contaminant concentrations are above the ER-M, adverse effects on the biota are considered probable. If contaminant concentrations are between the ER-M and ER-L, adverse effects on the biota are considered possible, and EPA recommends conducting toxicity tests as a follow-up. Finally, if contaminant concentrations are below the ER-L, adverse effects on the biota are considered unlikely (USEPA, 1992b).

The sediment quality summary/conclusions are discussed in the following sections.

Wallace Creek

Sediment concentrations of copper, lead, silver, zinc, 4,4'-DDE, 4,4'-DDD, 4,4'-DDT, dieldrin, PCB-1260, benzo(a)pyrene, fluoranthene, and pyrene exceeded the Region IV lower 10 percentile (ER-L) and/or median percentile (ER-M) sediment screening values (SQSV) in some of the samples. The exceedences of the TAL inorganics occurred in both upstream and downstream samples. Copper concentrations exceeded regional values at one station upstream of Sites 6 and 82. Lead concentrations were in exceedence in upstream, adjacent, and downstream stations. Zinc exceeded regional values at one station upstream and two downstream stations to Sites 6 and 82.

Dieldrin was detected in the uppermost station only. The remaining pesticides and PCBs exceeded the SQSV primarily in adjacent and downstream samples and their presence might be attributable to site runoff. The PAHs only were detected near roadways.

In addition, several TAL inorganics and TCL organics had the ratio of the upper 95% confidence limit and the ER-L greater than unity. Based on these results, the potential risk for aquatic life in Wallace Creek to be adversely affected by chronic toxicity from the COCs in the sediments is expected to be moderate to high.

Bear Head Creek

Sediment concentrations of lead, 4,4'-DDE, 4,4'-DDD, 4,4'-DDT, PCB-1260, and benzo(a)pyrene exceeded the ER-L and/or ER-M SQSVs in some of the samples. The exceedences of lead occurred in both upstream and downstream samples and, therefore, do not appear site related. The pesticides and PCBs exceeded the SQSV primarily in adjacent and

downstream samples and their presence might be attributable to site runoff. The PAHs exceeded the SQSV near the roadway only.

In addition, several TAL inorganics and TCL organics had the ratio of the upper 95% confidence limit and the ER-L greater than unity. Based on these results, the potential risk for aquatic life in Bear Head Creek to be adversely affected by chronic toxicity from the COCs in the sediments is expected to be moderate to high.

<u>Ravine</u>

Sediment concentrations of cadmium, lead, mercury, silver, zinc, 4,4'-DDE, 4,4'-DDD, 4,4'-DDT, dieldrin, endrin, PCB-1260, and several PAHs exceeded the ER-L and/or ER-M SQSVs in some of the samples. These constituents probably are attributable to site runoff.

Cadmium and silver concentrations in the sediments exceeded regional values at one ravine station in the northern section of Site 6. Lead values were in exceedence at one station in the southern section of Site 82. Mercury exceeded regional values at the two stations within Site 6 and one station in the northern section of Site 82. Zinc concentrations were in exceedence at one station in northern section of Site 6 and three stations throughout Site 82. The concentrations of 4', 4'-DDE; 4', 4'-DDD; and 4', 4'-DDT were in exceedence at one station in the northern section of Site 6 and throughout the ravine stations within Site 82. Dieldrin was in exceedence at one station within Site 6 and one station in the southern section of Site 82. Whereas, endrin was only found at one station within Site 6. PCBs were in exceedence in the two ravine stations in Site 6 and one station in the southern section of Site 82. PAHs were in exceedence of regional values at one station in the northern section of Site 6.

In addition, several TAL inorganics and TCL organics had the ratio of the upper 95% confidence limit and the ER-L greater than unity. Based on these results, the potential risk for aquatic life in the ravine to be adversely affected by chronic toxicity from the COCs in the sediments is expected to be moderate to high.

Surface Soil Quality

The surface soil quality summary/conclusions are discussed in the following sections. The following paragraphs discuss effects on terrestrial life from the metals for which toxicological information was found.

Site 9

None of the metals detected in the Site 9 surface soil for which toxicological information was available exceeded the applicable values.

Site 6 (Lot 201)

Surface soil concentrations of chromium detected at Site 6 (Lot 201) exceeded published toxicological values and potentially may cause adverse effects to terrestrial life.

Site 6 (Lot 203)

Surface soil concentrations of chromium, copper and zinc detected at Site 6 (Lot 203) exceeded published toxicological values and potentially may cause adverse effect to terrestrial life.

Sites 6 (Wooded and Ravine Areas) and 82

Surface soil concentrations of arsenic, copper, and zinc detected at Sites 6 (Wooded and Ravine Areas) and 82 exceeded published toxicological values and potentially may cause adverse effects to terrestrial life.

Fish

The fish summary/conclusions are discussed in the following sections.

Population Statistics

The summary/conclusions for the fish population statistics are discussed in the following sections.

Wallace Creek

The majority of the individuals collected at Wallace Creek were represented by juveniles representing the following species: eastern mosquito, shiner sp., pumpkinseed and the American eel.

Community similarity indices showed the greatest similarity between Stations 6-BH6A and 6-WC6A (0.53) and the least similarity between Stations 6-BH6A and 6-WC11 (0) and Stations 6-WC4 and 6-WC11 (0). Because a limited number of fish were collected at all the stations, the similarity values are not reliable.

The diversity of fishes collected at Wallace Creek varied within the stations. Typically, estuarine environments produce a high biomass and abundance, but are limited in the quantity of species. As with the similarity values, the diversity values are not representative of the creek due to the limited data set.

At Wallace Creek, there were no anomalies observed on the fish such as lesions, bacterial or viral infections.

The fish community at Wallace Creek appeared healthy and the population statistics did not indicate that the environment was impacted by contaminants of concern from OU No. 2.

Bear Head Creek

The majority of the individuals collected at Bear Head Creek were represented by juveniles which included, eastern mosquito, spot, and pumpkinseed.

Community similarity indices showed the greatest similarity between Stations 6-BH6A and 6-WC6A (0.53) and the least similarity between Stations 6-BH6A and 6-WC11 (0) and Stations 6-WC4 and 6-WC11 (0). Because a limited number of fishes were collected at all the stations, the similarity values are not reliable.

The diversity value derived from the fish collected at Bear Head Creek was 0.29. Typically, estuarine environments produce a high biomass and abundance, but are limited in the quantity of species. As with the similarity values, the diversity values are not representative of the creek due to the limited data set.

ES-15

At Bear Head Creek, there were no anomalies observed on the fish such as lesions, bacterial or viral infections.

The fish community at Bear Head Creek appeared healthy and the population statistics did not indicate that the environment was impacted by contaminants of concern from OU No. 2.

Pettiford Creek

The individuals collected at Pettiford Creek included, shiner sp., pumpkinseed, and striped mullet. Because of the limited numbers of fishes that were collected, conclusions regarding population were limited.

The only diversity value derived from the fish collected at Pettiford Creek was 0.45. Typically, estuarine environments produce a high biomass and abundance, but are limited in the quantity of species.

At Pettiford Creek, there were no anomalies observed on the fish such as lesions, bacterial or viral infections.

The fish community at Pettiford Creek appeared healthy and the population statistics did not indicate that the environment was impacted by contaminants.

Tissue Analysis

The summary/conclusions for the fish tissue analysis are discussed in the following sections.

Wallace Creek

Toluene, silver, benzene, and selenium were detected in fish and crab tissue samples. The fish tissue concentrations were within the range of tissue concentrations for these contaminants reported in ecological studies. Because of the frequency of detection of these contaminants both upstream and downstream from OU No. 2, the contaminants may not be attributed to the sites. Due to the limited database, additional studies are recommended to better assess whether contaminants present in fish are due to the migration of contaminants from the operable unit.

The fish community at OU No. 2 had elevated tissue concentrations of the following contaminants of concern: pesticides, PCBs, trichloroethene, and zinc. Due to the nature of the contaminants of concern, these constituents may be attributed to OU No. 2. The crab tissues had elevated levels of phenols, although the contaminant may not be attributed to the site.

Bear Head Creek

Toluene, cadmium, benzene and selenium were detected in fish and crab tissue samples. The fish tissue concentrations were within the range of tissue concentrations for these contaminants reported in ecological studies. Because of the frequency of detection of these contaminants both upstream and downstream from OU No. 2, the contaminants may not be attributed to the sites.

The fish community in Bear Head Creek had elevated tissue concentrations of the following contaminants of concern: pesticides, PCBs, and zinc. Due to the nature of the contaminants of concern, these constituents may be attributed to OU No. 2.

Pettiford Creek

Baker was not tasked with collecting fish for tissue analysis at Pettiford Creek.

Benthic Macroinvertebrate

The benthic macroinvertebrate summary/conclusions are discussed in the following sections.

Wallace Creek

Species richness in Wallace Creek was highest in the upstream stations (7-12 species) and lowest in the downstream stations (0-3 species). Species density followed a similar pattern with approximately 1,200 individuals/m² in the upper reaches and approximately 50 individuals/m² in the lower reaches of the creek. Species diversity was less than 0.5 at all the sampled stations on Wallace Creek.

The dominant species in the creek varied from the chiromid species <u>Tribelos jucundum</u> (74 percent of the individuals) in the upper reaches, the amphipod <u>Gammarus</u> <u>fasciatus</u> (64

percent of the individuals) in the mid-reaches, and the polychaetes <u>Nereis succinea</u> and <u>Capitella capitata</u> (five of the eight individual) and the oligochaete <u>Limnodrilus hoffmeisteri</u> (three of the eight individuals) in the lower reaches of Wallace Creek. This variation followed the variation in salinity measurements at the stations and indicated the effects of the tidal influence seen in the transition from a freshwater system in the upper reaches of the creek and the estuarine influence in the lower reaches of the creek.

The Macroinvertebrates Biotic Index (MBI) ranged from good-fair (6.46) in the upper reaches of the creek to poor (9.8) in the lower reaches of the creek. However, the salinity gradient influenced the species composition in the lower reaches with the tolerant freshwater oligochaete species being present. In addition, the presence of the salt wedge and low dissolved oxygen can create an adverse habitat for intolerant species.

Bear Head Creek

Species richness in Bear Head Creek was highest in the upstream stations (16-33 species) and lowest in the downstream station (one species). Species density followed a similar pattern with approximately 2,700 to 3,700 individuals/m² in the upper reaches and approximately 25 individuals/m² in the lower reaches of the creek. Species diversity was less than 1.0 at the upper reach station and less than 0.5 in the mid-reach station. Only one species was found in the lower reach station.

The dominant species in the creek varied from the oligochaete species <u>Isochaetides</u> <u>curvisetosus</u> (45 percent of the individuals) in the upper reaches, the bivalve <u>Pisidium</u> <u>casertanu</u> (70 percent of the individuals) in the mid-reaches, and the polychaete <u>Nereis</u> <u>succinea</u> (100 percent of the individuals) in the lower reaches of Bear Head Creek. This variation followed the variation in the salinity measurements at the stations and indicated the effects of the tidal influence seen in the transition from a freshwater system in the upper reaches of the creek and the estuarine influence in the lower reaches of the creek.

The MBI was poor and ranged from 7.51 in the upper reaches of the creek to 7.06 in the midreach of the creek. However, the salinity gradient influenced the species composition in the lower reach with no freshwater species being present. In addition, the presence of the salt wedge and low dissolved oxygen can create an adverse habitat for intolerant species.

Pettiford Creek

Four species were collected in Pettiford Creek and species density was 210 individuals/m². Species diversity was less than 0.5 at the sampled station on Pettiford Creek. The dominant species in the creek was the oligochaete <u>Limnodrilus hoffmeisteri</u> (70 percent of the individuals). The MBI was poor at 8.84.

Terrestrial Receptors

Total exposure to the COCs in the soil and surface waters by the terrestrial receptors was evaluated by estimating the chronic daily dose and comparing this dose to terrestrial reference values (TRVs). Indicator species used in this analysis were the whitetailed deer, cottontail rabbit and the quail. The exposure points for these receptors are the surface soils and surface water (surface soils from site 6, Lot 201; Site 6, Lot 203; Sites 6, Wooded areas and Ravine, Site 82; and Site 9; Surface water from Wallace Creek). The routes for terrestrial exposure to the COCs in the soil and water are incidental soil ingestion, drinking water ingestion, and vegetation ingestion. Estimates of the potential risk to the terrestrial receptors were made by comparing the total exposure of the COCs to the TRVs using the Quotient Index (QI) method. Ratios of less than unity indicate a low likelihood of adverse effects while a ratio above unity indicate the likelihood of an adverse affect to the receptor. For the COCs that had available TRVs, the QI did not exceed unity for any of the indicator terrestrial receptors.

Ecological Significance

The objective of the ERA was to determine if past reported disposal practices at OU No. 2 were adversely impacting the ecological integrity of the terrestrial environment or of Wallace Creek, Bear Head Creek, or the ravine. The ecological significance of the results is necessary to provide the risk managers with the requisite information, to be used in conjunction with the human health risk assessment, in order to determine the appropriate remedial action at the site for the protection of public health and the environment.

Based on the above findings, past reported disposal practices at OU No. 2 potentially are adversely impacting the ecological integrity of Wallace Creek, Bear Head Creek, or the ravine. The findings do not indicate a potentially adverse impact to vertebrate terrestrial receptors.

1.0 INTRODUCTION

This Ecological Risk Assessment (ERA) for Operable Unit No. 2 (Sites 6, 9 and 82), has been prepared in accordance with the scope of work identified under Task 6 in the Final Remedial Investigation/Feasibility Study Work Plan (May 1992), prepared by Baker Environmental, Inc. (Baker), under Contract Task Order (CTO) 0133. The ERA has been conducted in conjunction with a remedial investigation/feasibility study (RI/FS) at Operable Unit No. 2 (OU No. 2) under the Department of Navy's Comprehensive Long-Term Environmental Action - Navy (CLEAN) Program, Contract N62470-89-D-4814. The RI and FS documents have been submitted under a separate cover.

1.1 Objectives of the Ecological Risk Assessment

The objective of the ERA is to determine if past reported disposal practices at OU No. 2 are adversely impacting the ecological integrity of the terrestrial environment or of Wallace Creek, Bear Head Creek, or the ravine. This assessment also evaluated the potential effects of contaminants at OU No. 2 on sensitive environments including wetlands, protected species, and fish nursery areas. The conclusions of the ERA will be used in conjunction with the human health risk assessment in order to determine the appropriate remedial action at this site for the overall protection of public health and the environment.

1.2 Scope of the Ecological Risk Assessment

The ERA will evaluate and analyze the results from the remedial field investigation conducted as part of CTO 0133 and historical data collected during previous studies. The remedial field investigations include sampling and chemical analysis of the surface water, sediments, soil, and groundwater. In addition, ecological field investigations were conducted including collecting fishes for population statistics and chemical analysis of their tissues; collecting benthic macroinvertebrates for population statistics; and collecting blue crabs for chemical analysis of their tissues. Finally, information used to evaluate sensitive environments was obtained from historical data and previous studies conducted at Marine Corps Base (MCB) Camp Lejeune, North Carolina.

The risk assessment methodologies used in this evaluation are consistent with those outlined in the <u>U.S. EPA Supplemental Risk Assessment Guidance for the Superfund</u>, Volume II, Environmental Evaluation Manual (USEPA, 1989a). In addition, information found in the following documents were used to supplement the EPA guidance document:

- Framework for Ecological Risk Assessment (USEPA, 1992a)
- Ecological Assessment of Hazardous Waste Sites: A Field and Laboratory Reference (USEPA, 1989b)
- <u>Rapid Bioassessment Protocols for use in Streams and Rivers: Benthic</u> <u>Macroinvertebrates and Fish</u> (USEPA, 1989c)

2.0 SITE BACKGROUND

This section includes a discussion of the site setting, history, study area and a summary of the remedial investigation conducted at OU No. 2.

2.1 Site Description

There are three distinctive sites within OU No. 2. The following section describes the background of each site.

2.1.1 Site 9

Site 9 covers an area of approximately 2.6 acres. Site 9 is bounded by Holcomb Boulevard on the west, Site 6 to the north, Piney Green Road on the east and Sneads Ferry Road on the south. Locally, the site is bounded by unnamed streets leading to various storage buildings in the vicinity. Site 9 consists of an asphalt-lined fire training pit, an oil/water separator, five aboveground storage tanks (ASTs), and a fire tower (smoke house). The fire training pit, located in the southern area of the site, is used to conduct training exercises for extinguishing fires caused by flammable liquids. The oil/water separator is located next to the fire training pit to collect water used in the training exercises and storm water that falls into the pit. The recovered product collected in the oil/water separator is disposed of offsite. Two of the ASTs at Site 9 are 2,500-gallon steel tanks labeled "DO NOT USE". These tanks are not currently in use. Two additional storage tanks are located in a bermed area. These tanks are constructed of steel and contain approximately 500 gallons each. Two pressurized containment tanks are also located at Site 9. Their contents are unknown. The smoke house, located in the northern part of Site 9, is also used for training exercises. No fuel products are used in this area.

2.1.2 Site 6

Site 6 is located north of and adjacent to Site 9. Site 6 is bounded by Site 82 on the north , by Piney Green Road on the east, by Site 9 on the south, and by Holcomb Boulevard on the west. Site 6 covers an area of approximately 177 acres that incorporates Storage Lots 201 and 203, the wooded area behind the storage lots, and a ravine which begins at Site 6 and bisects Site 82. Three surface water bodies were associated with Site 6 for the purpose of this RI: Wallace Creek, Bear Head Creek, and a ravine (intermittent surface water body) located in the wooded area north of Lot 203 that drains to Wallace Creek. Specific details of the individual areas that make up Site 6 are described below.

2.1.2.1 Storage Lot 201

Storage Lot 201 (Lot 201) is a fenced lot located in the south-west portion of Site 6. It is a flat area with sparse vegetation around the fence lines. The ground surface is densely compacted soil. Lot 201 is bordered by woods and Bear Head Creek to the south, by Holcomb Boulevard to the west and Piney Green Road to the east. The lot is approximately 25 acres in size. It is currently being used for the storage of military vehicles and equipment, lumber, hydraulic oils and lubricants, non-PCB transformers, and other supplies (ESE, 1991).

2.1.2.2 Storage Lot 203

Storage Lot 203 (Lot 203) is a fenced lot located in the northern portion of Site 6. The fenced area of the lot encompasses approximately 46 acres. Lot 203 is a relatively flat area with elevation differences of approximately five feet. The ground surface is comprised of both naturally existing soil and fill material. Lot 203 varies in vegetation from a hard compact surface with no vegetation to areas with loose sandy soil and dense vegetation. Lot 203 is bordered by woods to the north (Site 82) and south, Piney Green Road to the east, and Holcomb Boulevard to the west. Lot 203 is currently inactive, but it still contains randomly stored scrap materials from former activities such as rubber rafts, shredded tires, radio/ communications parts, empty ammunition boxes, spent ammunition casings, fiberglass-like material, barbed wire fencing, used demolition kit training materials, a non-PCB transformer, wooden pallets, shredded tires, metal debris, and 55-gallon drums.

The 55-gallon drums found on Lot 203 were observed in small groupings throughout the lot. The majority of the drums, if labeled, were identified as containing lubricants, petroleum products, or corrosives. Drum sampling was conducted as part of the RI. The results of the drum sampling are provided in Section 4.0 of the Remedial Investigation report (Baker, 1992). The drums will be removed during the non-time critical removal action.

Empty storage tanks were also found on Lot 203. They were labeled as containing diesel fuel, gasoline, and kerosene (Baker, 1992). These tanks will also be removed during the non-time critical removal action.

2-2

2.1.2.3 Wooded and Ravine Areas

Woods and open fields surround both Storage Lots 201 and 203 and make up the remaining area of Site 6. The topography of the wooded areas is relatively flat, but localized trenching and mounding is visible west of Piney Green Road. The wooded areas are randomly littered with debris including spent ammunition casings, and empty or rusted drums. Many of the drums observed were only shells or fragments of drums. (Baker, 1992)

A ravine is located in the north west section of Site 6. The ravine begins "inside" of Storage Lot 203 and bisects Site 82. The elevation ranges from 25 feet above msl at the north boundary of Lot 203 to 5 feet above msl where the ravine drains into Wallace Creek. The surface of the ravine area is littered with various debris including batteries, fencing, tires, empty unlabeled drums, wire cables, commercial ovens, commodes, and respirator cartridges. An empty drum labeled "DDT" was also found in the ravine area, as were small canisters labeled to contain "DDT". The date on the canisters was marked November, 1957.

2.1.3 Site 82

Site 82 (more commonly referred to as "Piney Green Road VOC Site") is situated at the northern end of OU No. 2. It is bordered to the north by Wallace Creek, to the east by Piney Green Road, to the west by Holcomb Boulevard, and to the south by Site 6. Site 82 encompasses approximately 30 acres and is predominantly covered by woodlands. The site is randomly littered with debris including communication wire, spent ammunition casings, and empty or rusted drums. Markings were observed on a few drums, however, most of the drums did not contain markings due to their condition and age. Some of the drums were marked as "lubrication oil" and "anti-freeze".

The topography within Site 82 is relatively flat near the southern portion of the site, but becomes very steep near the bank of Wallace Creek. Localized trenching and mounding is visible near the southern portion of the site. The ravine bisects the site, as shown on Figure 3-1.

2.2 <u>Site History</u>

The following paragraphs describe the documented history of OU No. 2. Waste storage and disposal activities at the individual sites are described below.

2.2.1 Site 9

Site 9 has been used as a fire fighting training area from the early 1960s to the present. Fire extinguishing activities took place in an unlined pit. In 1981 the pit was lined with asphalt. The training fires in the pit were started with used oil, solvents, and contaminated fuels (unleaded). Approximately 30,000 to 40,000 gallons of JP-4 and JP-5 fuel were also burned in the fire training pit. Chemical retardants containing diethylene glycol monobutyl ether, proprietary mixtures of hydrocarbons, fluorosurfactants and inorganic salts were occasionally used to extinguish the training fires (Baker, 1992).

2.2.2 Site 6

Site 6 has a long history of various uses including the disposal and storage of wastes and supplies. This section on the history of Site 6 has been broken down into Storage Lot 201, Storage Lot 203, and the wooded and the ravine areas to simplify the historical descriptions of these areas.

2.2.2.1 Storage Lot 201

Currently, Lot 201 is used to store military equipment, vehicles, hydraulic oils, and other "non-hazardous" supplies. Pesticides were reportedly stored in the northeast and southeast corners of the lot. Transformers containing PCBs were reportedly stored in the southwest corner of the lot (Water and Air Research, 1983). No storage or disposal activities have supporting documentation other than what is reported in the Initial Assessment Study prepared in 1983 by Water and Air Research.

2.2.2.2 Storage Lot 203

Storage Lot 203 has been used as a disposal area since the 1940s. There is little documentation on the disposal activities at this lot. Lot 203 is not currently active as a storage or disposal area, but the ground surface is littered with various debris. Pesticides were

2-4

reported to have been stored in a trailer on Lot 203 as well as in the southeast portion of the lot (Memo: Past Disposal Practices at DRMO Lot 203, 17 January 1989). Drums of DDT were found in the southwestern portion of the lot in 1989 (Memo: Unearthed 55-gallon drums of DDT and 55-gallon drums of unknown substance at Camp Lejeune DRMO Lot 203. 18 January 1989). Five 55-gallon drums and surrounding soil were containerized and disposed of (Memo: 18 January 1989).

Lot 203 was also used for the storage and disposal of radio and communication parts, shredded tires, lubricants, petroleum products, corrosives, expended demolition kit training materials, ordnance, sheet metal debris, wire cables, and wooden pallets. Empty and full 55-gallon drums were found at various locations on Lot 203. A drum survey was conducted as part of the RI and the results are located in Section 4.0 of the Remedial Investigation report (Baker, 1992).

Lot 203 is currently fenced. From historical photographs, it appears that the fenced boundaries have changed since the lot was in operation. Former employees at Lot 203 have reported disposal of various chemicals including PCBs, cleaning solvents, electrolytes from used batteries, and waste oils.

2.2.2.3 Wooded and Ravine Areas

The surface of the wooded areas around Lots 201 and 203 is randomly littered with debris including drums, metal storage containers, and rocket cartridges. No organized disposal operations are documented for the wooded areas. A ravine begins at the northern boundary of Lot 203. As previously stated, this area is currently littered with various debris. From the deposition of the debris in the ravine, it appears that trucks may have dumped their contents into the ravine from Lot 203.

2.2.3 Site 82

As described in Section 2.1.3, Site 82 is randomly littered with debris. No organized disposal operations are documented for the site. From the deposition of the debris at Site 82, it appears that the area was used for disposal of miscellaneous debris from Lot 203. Although the name of the site refers to VOCs (the site is named "Piney Green Road VOC Area"), there are not documents or memorandums which indicate any disposal of VOCs or solvents.

2.3 <u>Study Area Description</u>

This section describes the overall study area at MCB Camp Lejeune, North Carolina. The information in this section was obtained from previous studies conducted at the base, or from the available literature.

2.3.1 Regional Ecology

MCB Camp Lejeune, North Carolina, is approximately 108,800 acres, with 84 percent of the area covered by forests (USMC, 1987). The base drains primarily to the New River or its tributaries including Northeast Creek, Southwest Creek, Wallace Creek, French Creek, Bear Head Creek, Freeman Creek, and Duck Creek. The soil types range from sandy loams to fine sand and muck, with the dominant series being sandy loam (USMC, 1987).

Vegetation at MCB Camp Lejeune, North Carolina, includes pure pine stands of loblolly and longleaf pine in the drier upland soils, pure pond pine stands in high organic wet soils, pinehardwood and pure hardwood stands in streamside zones and in more productive soils, and bottomland hardwoods in the floodplains of the major creeks (USMC, 1987). Wildlife on the base includes white-tailed deer, wild turkey, and black bear along with numerous small game species (e.g., bobwhite quail, morning dove, rabbit) (USMC, 1987).

Wallace Creek and Bear Head Creek are designated as Class SB NSW by the North Carolina Department of Environment, Health, and Natural Resources (NCDEHNR), which are saltwaters protected for primary recreation (swimming on a frequent basis), fishing, and aquatic life including propagation and survival (NCDEHNR, 1992a, 1992b). These creeks are classified as Nutrient Sensitive Waters which are waters subject to growths of microscopic or macroscopic vegetation requiring limitations on nutrient inputs (NCDEHNR, 1992a, 1992b). Wallace Creek is classified as Inland Waters above, and Coastal Waters below the first bridge upstream from its mouth (NCMFC, 1992). Wallace Creek and Bear Head Creek are classified as Inland Waters at all the sample stations.

The New River, downstream of OU No. 2, is designated as Class SC: which are saltwaters protected for secondary recreation, fishing, and aquatic life including propagation and survival (NCDEHNR, 1992a, 1992b). All saltwaters in North Carolina are classified to protect these uses at a minimum (NCDEHNR, 1992a, 1992b). This section of the New River also is classified as a Nutrient Sensitive Water (NCDEHNR, 1992a, 1992b).

2.3.2 Sensitive Environments

This section describes the sensitive environments that were evaluated at OU No. 2. These sensitive environments include wetlands, protected species, and other potentially sensitive environments.

2.3.2.1 Wetlands

The NCDEHNR's, Division of Environmental Management (DEM) has developed guidance pertaining to activities that may impact wetlands (NCDEHNR, 1992c). In addition, certain activities impacting wetlands also are regulated by the U.S. Corps of Engineers.

The U.S. Fish and Wildlife Service (FWS) prepared a National Wetlands Inventory (NWI) map for the Camp Lejeune, North Carolina quadrangle by stereoscopic analysis of high altitude aerial photographs (USDI, 1982). OU No. 2 is included in this map (see Appendix A for a copy of the NWI map). The wetlands were identified on the photographs based on vegetation, visible hydrology, and geography in accordance with <u>Classification of Wetland and Deep-Water Habitats of the United States</u> (Cowardin, et al, 1979). NWI maps are intended for a initial identification of wetland areas. They cannot be substituted for an actual wetland delineation that may be required by Federal, state and/or local regulatory agencies.

Several types of wetlands have been identified adjacent to Wallace Creek and Bear Head Creek from the NWI map. The wetlands along the creeks primarily are palustine forested wetlands consisting of pond, longleaf or loblolly pines, along with oaks, black gum and baldcypress (NCDNRCD, 1988). See the NWI map in Appendix A for the wetland classifications and their locations.

2.3.2.2 Threatened and Endangered Species

Certain species have been granted protection by the FWS under the Federal Endangered Species Act (16 U.S.C. 1531-1543), and/or the North Carolina Wildlife Resources Commission, under the North Carolina Endangered Species Act (G.S. 113-331 to 113-337). The protected species fall into one of the following status classifications: Federal or State endangered, threatened or candidate species, State special concern, State significantly rare, or State watch list. While only the Federal or State threatened or endangered and State special concern species are protected from certain actions, the other classified species have the potential for protection in the future.

Table 2-1 lists the protected faunal species (either endangered, threatened, or special concern) and the only federally endangered or threatened floral species that have been identified in previous studies within the boundaries of MCB Camp Lejeune (USMC, 1991; LeBlond, 1991; Fussell, 1991; and Walters, 1991). The following paragraphs discuss the protected species observed at MCB Camp Lejeune during previous studies.

A Peregrine falcon was spotted approximately five miles southeast of OU No. 2 (Fussell, 1991). These birds potentially may inhabit or feed in areas surrounding OU No. 2 because of their large foraging range. Black skimmers and piping plovers were observed near the New River Inlet (Fussell, 1991). However, these birds primarily inhabit shore line areas and, therefore, are not expected to be found at OU No. 2. Bachmans sparrows and Red-cockaded woodpeckers were observed at numerous locations throughout southern MCB Camp Lejeune. None of these species were observed at OU No. 2 during intensive investigations previously conducted for MCB Camp Lejeune, therefore, there is a low potential for them to exist at OU No. 2 (Fussell, 1991; Walters, 1991).

Sea turtles and sea turtle nests have been observed downstream of OU No. 2 in the New River on Onslow Beach. Sea turtles do not swim very far up the New River because of the low salinity, therefore, they are not expected to inhabit areas of OU No. 2 (USMC, 1991). During the ecological investigation conducted in August and September 1992, an alligator was observed in Wallace Creek. In addition, signs were posted at the boat launching ramp in Wallace Creek warning of the American alligators presence in the creek.

A protected floral species and special-interest community survey previously was conducted at Camp Lejeune (LeBlond, 1991). From this list, the Rough-leaf loosestrife was the only Federally threatened or endangered plant species found on the Marine Corp Base. Several State endangered or threatened and Federal and State candidate species were found on the MCB. A road meadow, inhabited by the state watch species <u>Lugwigia microcarpa</u>, was located upstream of OU No. 2 on Wallace Creek (see Appendix B).

Also upstream of OU No. 2 on Wallace Creek, a state registered natural resource area has been identified (see Appendix B). The general landscape consists of a broad floodplain and former mill pond on Wallace Creek which is dominated by a Cypress-Gum Swamp Community

TABLE 2-1

OPERABLE UNIT NO. 2 PROTECTED SPECIES WITHIN MCB CAMP LEJEUNE REMEDIAL INVESTIGATION CTO-0133 MCB CAMP LEJEUNE, NORTH CAROLINA

Species	Protected Classification
American alligator (<u>Alligator mississippienis</u>)	T(f), T(s)
Bachmans sparrow (<u>Aimophilia aestivalis</u>)	SC
Black skimmer (<u>Rhynochops niger</u>)	SC
Green (Atlantic) turtle (<u>Chelonia m</u> . <u>mydas</u>)	T(f), T(s)
Loggerhead turtle (<u>Caretta caretta</u>)	T(f), T(s)
Peregrine Falcon (*)	(*)
Piping plover (<u>Charadrius melodus</u>)	T(f), T(s)
Red-cockaded woodpecker (Picoides borealis)	E(f), E(s)
Rough-leaf loosestrife (Lysimachia asperulifolia)	E(f), E(s)

Legend: SC = State Special Concern

- E(f) = Federal Endangered
- E(s) = State Endangered
- T(f) = Federal Threatened
- T(s) = State Threatened
- * The observer did not differentiate between the American eastern peregrine falcon [E (f), E (s)] or the Artic peregrine falcon [T(f), T(s)].

which grades upstream into a Coastal Plain Small Stream Swamp Community. The Cypress-Gum Swamp Community is dominated by <u>Taxodium distichum</u>, <u>Nyssa biflora</u>, <u>Acer rubrum</u>, <u>Ulmus alata</u>, and <u>Fraxinus pennsylvanica</u>. The Plain Small Stream Swamp Community is dominated by <u>Taxodium distichum</u>, <u>Nyssa biflora</u>, <u>Fraxinus pennsylvanica</u>, <u>Ulmus</u> <u>americana</u>, <u>Acer rubrum</u>, and <u>Liquidambar styraciflua</u>.

2.3.2.3 Other Sensitive Environments

In addition to wetlands and protected species, the presence of other sensitive environments, including those listed in 40 CFR Part 300, were evaluated. These sensitive environments are evaluated when assessing potential hazardous waste sites using the Hazard Ranking System. These sensitive environments and their presence or absence at OU No. 2 are discussed below.

- Marine Sanctuary OU No. 2 is not located within a Marine Sanctuary (NCMFC, 1992).
- National Park OU No. 2 is not located within a National Park (NPS, 1991).
- Designated Federal Wilderness Area OU No. 2 is not located within a Designated Federal Wilderness Area (WS, 1989).
- Areas Identified under the Coastal Zone Management Act The North Carolina Coastal Area Management Act (CAMA) regulates various types of Areas of Environmental Concern including estuarine waters, coastal wetlands, public trust areas, and estuarine shoreline through the establishment of unified policies, criteria, standards, methods, and processes (CAMA, 1974). Bearhead Creek, the inland portion of Wallace Creek and any coastal wetlands associated with these waters are regulated under CAMA. The tidal portions of Wallace Creek along with 75 feet adjacent to the mean water line also are regulated under CAMA (NCDEHNP, 1993a).
- Sensitive Areas Identified under the National Estuary Program (NEP) or Near Coastal Waters Program (NCWP) - OU No. 2 is not located within a Sensitive Area identified under the NEP or NCWP (USEPA, 1993).
- Critical Areas Identified under the Clean Lakes Program OU No. 2 is not located within a Critical Area identified under the Clean Lakes Program (NPS, 1991).

- National Monument OU No. 2 is not located within a National Monument (NPS, 1991).
- National Seashore Recreational Area OU No. 2 is not located within a National Seashore Recreational Area (NPS, 1991).
- National Lakeshore Recreational Area OU No. 2 is not located within a National Lakeshore Recreational Area (NPS, 1991).
- National Preserve OU No. 2 is not located within a National Preserve (NPS, 1991).
- National or State Wildlife Refuge OU No. 2 is not located within a National or State Wildlife Refuge (NCWRC, 1992).
- Unit of the Coastal Barrier Resource Program OU No. 2 is not located within a unit of the Coastal Barrier Resource Program (USDI, 1993).
- Administratively Proposed Federal Wilderness Area OU No. 2 is not located within an Administratively Proposed Federal Wilderness Area (WS, 1989, 1993).
- Spawning Areas Critical for the maintenance of fish/shellfish species within river, lake, or coastal tidal waters. There are probable spawning areas for resident fish species within Wallace Creek and Bear Head Creek. However, specific areas have not been designated in these creeks by state agencies (NCDEHNR, 1993b).
- Migratory pathways and feeding areas critical for maintenance of anadromous fish species within river reaches or areas in lakes or coastal tidal waters in which fish spend extended periods of time OU No. 2 is not a migratory pathway or feeding area critical for the maintenance of anadromous fish species (NCDEHNR, 1993b). There is not a significant population of anadromous fish in Wallace, Bear Head Creek, or the New River downstream of Wallace Creek
- Terrestrial areas utilized for breeding by large or dense aggregations of animals A study of the terrestrial species was not conducted at OU No. 2. As discussed in the Regional Ecology section of this report several large terrestrial species inhabit MCB

Camp Lejeune. Therefore, there is the potential for breeding by large aggregations of animals. It should be noted that because of the frequent military activity on the land, and the fences around Lot 203 and Lot 201, the potential for breeding by terrestrial species on OU No. 2 may be limited.

- National river reach designated as Recreational Wallace Creek, Bear Head Creek, or the New River downstream of Wallace Creek are not designated as National Recreational Rivers (NPS, 1990, 1993).
- Federal designated Scenic or Wild River Wallace Creek, Bear Head Creek, or the New River downstream of Wallace Creek are not Federally designated Scenic or Wild Rivers (NPS, 1990, 1993).
- State land designated for wildlife or game management OU No. 2 is not located within a State game land (NCWRC, 1992).
- State designated Scenic or Wild River Wallace Creek, Bear Head Creek, or the New River downstream of Wallace Creek are not State designated Scenic or Wild Rivers (NCMFC, 1992).
- State designated Natural Area OU No. 2 is not located within a State designated Natural Area or Area of Significant Value (LeBlond, 1991).
- State designated areas for protection or maintenance of aquatic life No areas within the boundaries of OU No. 2 are designated as primary nursery areas or are unique or special waters of exceptional state or national recreational or ecological significance which require special protection to maintain existing uses (NCDEHNR, 1992b).
- Areas of Significant Value OU No. 2 is not located within a State Area of Significant Value (LeBlond, 1991).
- State Registered Natural Resource Area The Wallace Creek Natural Resource Area is located upstream of OU No.2.

2.4 <u>Remedial Investigations</u>

The RI involved four environmental areas; Soil Investigation, Groundwater Investigation, Surface Water/Sediment Investigation, and Ecological Investigation. A summary of the results of the soil and groundwater investigations conducted at OU No. 2 is presented in this section of the report; detailed descriptions of these studies as well as the complete results can be found in the RI Report for OU No. 2 (Baker, 1993). The surface water and sediment investigations are discussed in Section 3.0 (Surface Water/Sediment Sampling) of this report while the ecological investigation is discussed in Section 4.0 (Ecological Investigation) of this report.

2.4.1 Source Identification

The remedial investigations concluded that organic and inorganic contamination was present in soil, groundwater, surface water, and sediments at OU No. 2. The data collected suggest that multiple sources have contributed to contaminating all the media. The following discussion identifies potential sources of contamination with each site.

2.4.1.1 Potential Sources of Contamination at Sites 6 and 82

Within Sites 6 and 82, numerous sources of contamination may exist including surficial and buried drums, miscellaneous size containers, surface spills, and routine spraying activities (pesticides).

Drums and other miscellaneous size containers were observed throughout Sites 6 and 82 including south of Bear Head Creek, north and east of Lot 201, within Lot 203, the ravine, and wooded areas north of Lot 203 (Site 82). Some of the drums were labeled as lubricating oils, pesticides (ravine area), or paint solvents. It was also reported (Memo: 12 January 1989) that drums may have been buried within Lot 203 although test pit excavations revealed only a limited number of small (5-gallon) canisters. Containers of paints, lubricating oils, and various solvents were observed in test pits trenched outside of Lot 203 (wooded area between Lots 201 and 203). Unidentified pits such as these may exist throughout the wooded areas. Surface spills of hazardous materials were not reported at Site 6 but some these materials are known to have existed on site (e.g., Lot 203).

Most of the groundwater contamination identified in the southeast portion of Site 82 appears to be centered in the vicinity of one well. The source of this contamination may be related to buried drums or containers in the area. Numerous apparently empty containers were identified on the surface in this area. Additional investigative activities may be needed to further evaluate this area.

The ravine is a potential source of contamination at Site 6. The ravine is filled with debris such as drums and five-gallon containers of unknown material, weathered battery packs, spent shell casings, and miscellaneous refuse (mainly demolition debris). It is unknown what materials, if any, underlie this surface debris. Trenching may be required in the ravine to further evaluate this potential source.

Several other contaminated areas within Site 6 were identified including Lot 201 and the wooded areas north and east of Lot 201. Within Lot 201, the sources of contamination appear to be related to current (i.e., storage of vehicles and pesticide spraying) and former site activities (PCBs and pesticide storage areas). Pesticides are very prevalent in surface soil at Lot 201.

2.4.1.2 Potential Sources of Contamination at Site 9

Investigation results indicate that the environmental contamination at Site 9 is minimal. The potential sources of contamination, although minimal, include the aboveground storage tanks and fire-fighting training pit (Volatile Organic Compounds (VOCs) and Semivolatile Organic Compounds (SVOCs), and spraying of pesticides on the surface). Overall, the site poses little risk to human health.

2.4.2 Overview of Results and Extent of Contamination

TCL organic and TAL inorganic contamination identified at OU No. 2 appears to have resulted from past disposal practices and recent site activities. The data suggest that these occurrences have impacted soil, groundwater, sediment, and surface water at OU No. 2. Contaminant distribution patterns at Site 82 for all of the media suggest that there is a significant source of groundwater contamination which appears to be located in the wooded area north of Lot 203. The nature and extent of this source, however, have not been fully evaluated. Moreover, many other sources of contamination also exist (e.g., the ravine Site 6), which have contributed to the overall environmental contamination.

2-14

Migration of contaminants, especially TCL organics, have resulted in widespread environmental contamination at the northern end of Site 6 and in Site 82. The data suggest that the primary contaminant plume (e.g., solvents, lubricating oils, etc.) is migrating away from the wooded area north of Lot 203 and toward Wallace Creek. TCL organics are contaminating the surface water and sediments of Wallace Creek. Migration of contaminants from the ravine area also appears to be contaminating Wallace Creek. Moreover, TAL inorganic contamination (potential source appears to be numerous battery packs) appears to be migrating from the ravine to Wallace Creek.

Other source areas within Sites 6 and 82 have been identified. The contaminant magnitude at these other areas is not as significant, however, as the primary occurrence at Site 82. These impacted areas appear to be isolated and not widespread. The sources of the contamination within these areas may be the result of small disposal pits or spills from drums.

2.4.3 Soil Investigation

The surface soil samples were analyzed for Target Compound List (TCL) organics, and Target Analyte List (TAL) inorganics. A summary of the results of the soil investigation conducted at OU No.2 are included in this section.

2.4.3.1 Site 9

Surface soil (i.e., ground surface to 6-inches) analytical results indicated the presence of TCL organics (including pesticides, volatiles, and semivolatiles), TAL inorganics (excluding cyanide), and total petroleum hydrocarbons (TPH). The following paragraphs summarize the results of the sampling.

Pesticides 4,4'-dichlorodiphenyl dichloroethylene (4,4'-DDE) and 4,4'-dichlorodiphenyltrichloroethane (4,4'-DDT) were detected at five soil boring locations. Four Volatile Organic Compounds (VOCs) including acetone, 1,1,1-Trichloroethane (TCA), Tetrachloroethene (PCE), and toluene were detected in the soil collected from two soil borings.

Three Semi-Volatile Organic Compounds (SVOCs) including pyrene, bis(2-ethylhexyl) phthalate, and benzo(b)fluoranthene were detected in soil samples collected from two soil

borings. The concentration ranges of the positively detected TCL organic compounds are as follows:

	Concentration
<u>Constituent</u>	Range (ug/kg)
4,4'-DDE	13 to 650
4,4'-DDT	3.3J to 570
Acetone	16
1,1,1-TCA	1J
PCE	21
Toluene	2J
Pyrene	59J
Bis(2-ethylhexyl)	71J
phthalate	
Benzo(b)fluoranthene	46J

J - Represents that the value is estimated either for a tentatively identified compound or when a compound is present but the value is below the contract required quantitation limit.

1.5

Fifteen of the 23 TAL inorganics were detected in the surface soils. Antimony, arsenic, beryllium, cadmium, nickel, selenium, silver, and thallium were not detected in any of the surface soil samples. The concentration ranges of the positively detected TAL inorganics are as follows:

	Concentration
Constituent	Range (mg/kg)
Aluminum	1,510 to 4,510
Barium	4.9JB to 8.9B
Calcium	179B to 47,100
Chromium	1.7B to 5.1
Cobalt	0.5JB to 0.85JB
Copper	0.93JB to 2.8JB
Iron	813 to 1,260
Lead	4.1 to 25.7
Magnesium	64B to 811B

Manganese	4.1 to 14.7
Mercury	0.02B to 0.03B
Potassium	20.6JB to 152B
Sodium	106JB
Vanadium	2.7JB to 4.8B
Zinc	6.8 to 18.1

B - Represents that the value is above the instrument detection limit but is below the contract required quantitation limit.

2.4.3.2 <u>Site 6 (Lot 201)</u>

TCL organic and TAL inorganic chemicals were detected in the surface soil samples collected from Lot 201. Of the organics detected at the site, six were pesticides, two were PCBs, three were VOCs and twelve were SVOCs. The concentration ranges of the positively detected TCL organics are as follows:

	Concentration
Constituent	Range (ug/kg)
Dieldrin	5.6J to 4.6
4,4'-DDE	4J to 17,000J
4,4'-DDD	0.98J to 180,000J
4,4'-DDT	3 J to 1,200,000
Alpha chlordane	8.9
Gamma chlordane	8J
PCB-1248	1,800
PCB-1260	31J to 36J
Methylene chloride	4J
Acetone	7J to 37J
1,1,1-TCA	2J to 42
1,4-Dichlorobenzene	37J to 38J
Phenanthrene	36J
Di-n-butyl phthalate	89J
Fluoranthene	43J to 94J
Pyrene	38J to 99J
Benzo(a)anthracene	47J

Chrysene	39J to 88J
Bis(2-ethylhexyl)phthalate	68J to 310J
Di-n-octyl phthalate	44J
Benzo(b)fluoranthene	61J to 160J
Benzo(k)fluoranthene	46J
Benzo(a)pyrene	78J

il

Nineteen of the 23 TAL inorganics were detected in the surface soils. Antimony, mercury, silver, and thallium were not detected in any of the surface soil samples. The concentration ranges of the positively detected TAL inorganics are as follows:

	Concentration
Constituent	Range (mg/kg)
Aluminum	245 to 5,520
Arsenic	0.91B to 9.7J
Barium	3.5JB to 16.5B
Beryllium	0.22B
Cadmium	0.51JB to 1.5J
Calcium	402B to 286,000
Chromium	3.5 to 21.6
Cobalt	1.3JB
Copper	0.75JB to 27.8
Iron	238 to 4,260
Lead	1J to 78
Magnesium	26B to 3,980
Manganese	4.2J to 204J
Nickel	3.7B to 6.4JB
Potassium	30.6JB to 567B
Selenium	2.2J
Sodium	41.6JB to 312JB
Vanadium	1.6B to 18.3
Zinc	4.6 to 135J

2.4.3.3 Site 6 (Lot 203)

TCL organic and TAL inorganic chemicals were detected in the surface soil samples collected at Lot 203. The TCL organics detected at the site included eight pesticides, three PCBs, three VOCs, and 23 SVOCs. The concentration ranges of the positively detected TCL organics are as follows:

	Concentration
<u>Constituent</u>	Range (ug/kg)
Dieldrin	3.6J to 270J
4,4'-DDE	3.8J to 2,100
Endrin	21 to 130J
Endosulfan II	4.4J
4,4'-DDD	4.5J to 180J
4,4'-DDT	3.4J to 1,500J
Alpha chlordane	2.3J to 72J
Gamma chlordane	160J
PCB-1248	580J
PCB-1254	2100J
PCB-1260	17J to 42,000J
Acetone	4J to 15
1,1,1-TCA	2J to 15
Toluene	7J
1,4-Dichlorobenzene	34J to 160J
1,2-Dichlorobenzene	160J
Napthalene	1,400J
2-Methylnaphthalene	3,100J
Acenaphthene	250J to 9,500J
Dibenzofuran	140J to 890J
Fluorene	220J to 940J
Pentachlorophenol	520
Phenanthrene	60J to 2,000
Anthracene	55J to 440J
Fluoranthene	39J to 2,300
Carbazole	390J to 910J
Pyrene	42J to 2,800
Butyl benzyl phthalate	83J

3,3-Dichlorobenzidine	540
Benzo(a)anthracene	47J to 1,600
Chrysene	50J to 1,300
Bis(2-ethylhexyl)phthalate	52J to 1,300
Benzo(b)fluoranthene	88J to 2,700
Benzo(k) fluoranthene	30J to 1,100
Benzo(a)pyrene	49J to 1,800
Indeno(1,2,3-cd)pyrene	42J to 1,000
Benzo(g,h,i)perylene	41J to 1,000J

- ti

Twenty of the 23 TAL inorganics were detected in the surface soils at Lot 203. Selenium, silver, and thallium were not detected in any of the surface soil samples. The concentration ranges of the positively detected TAL inorganics are as follows:

	Concentration
Constituent	<u>Range (mg/kg)</u>
Aluminum	495 to 4,170
Antimony	13.5J to 51.2
Arsenic	0.39B to 4.9
Barium	2.7 JB to 47.8
Beryllium	0.21B
Cadmium	0.48JB to 9.3
Calcium	44.4B to 92,100
Chromium	1.1B to 25.2
Cobalt	0.39JB to 2.2B
Copper	1JB to 75
Iron	241 to 12,900
Lead	4.1 to 4,010J
Magnesium	12B to 1,680
Manganese	1.9 JB to 182
Mercury	0.03B to 1.1
Nickel	1.8JB to 13.2
Potassium	27.7 JB to 195 B
Sodium	9.2B to 460JB
Vanadium	1.1B to 8.2JB
Zinc	1.1B to 604

2.4.3.4 Sites 6 (Wooded and Ravine Areas) and 82

TCL organics and TAL inorganics were detected in the surface soil samples collected at Sites 6 and 82. Samples collected from the ravine are also discussed in Section 3.4 (Sediment Investigation).

TCL organics detected at the site included six pesticides and one PCB. Eleven VOCs including methylene chloride, bromomethane, acetone, 1,2-dichloroethene, PCE, 1,1,1-TCA, trichloroethene (TCE), benzene, 1,1,2,2-tetrachloroethene, toluene, and styrene were detected at Site 6 in the surface soil samples. Twenty-five SVOCs were also detected in the soil samples. The concentration ranges of the positively detected TCL organics are as follows:

	Concentration
Constituent	Range (ug/kg)
Dieldrin	4.6 to 87J
4,4'-DDE	2.2J to 4,200
Endrin	5.6J to 2,40J
4,4'-DDD	10J to 12,000
4,4'-DDT	3.4J to 400
Alpha chlordane	3.6J
PCB-1260	28J to 26,000J
Chloromethane	620J to 9,800
Bromomethane	670J to 3,700J
Acetone	5J to 14J
1,2-Dichloroethane	1,500J
1,1,1-TCA	1J to 2J
TCE	4,600
Benzene	850J
PCE	2,600J to 7,000J
1,1,2,2-Tetrachloroethene	55,000
Toluene	120J
Styrene	2J
Phenol	37J to 160J
1,4-Dichlorobenzene	39J to 74J
4-Methylphenol	120 J

Napthalene	71J to 140J
2-Methylnaphthalene	42J
Acenaphthylene	84J
Acenaphthene	36J to 370
Dibenzofuran	82J to 120J
Fluorene	130J to 200J
Phenanthrene	46J to 1,500
Anthracene	41J to 260J
Fluoranthene	40J to 2,000J
Carbazole	73J to 190J
Pyrene	72J to 2,700
Butyl benzyl phthalate	140J
Benzo(a)anthracene	39J to 2,200
Chrysene	44J to 1,600
Bis(2-ethylhexyl)phthalate	35J to 320J
Di-n-octyl phthalate	40J
Benzo(b)fluoranthene	54J to 2,200
Benzo(k)fluoranthene	25J to 490
Benzo(a)pyrene	40J to 1,500
Indeno(1,2,3-cd)pyrene	45J to 1,300
Dibenz(a,h)anthracene	43J to 380J
Benzo(g,h,i)perylene	40J to 1,300J

All 23 of the TAL inorganics were found at the sites. The concentration ranges of the positively detected TAL inorganics are as follows:

	Concentration
<u>Constituent</u>	Range (mg/kg)
Aluminum	177J to 19,200J
Antimony	3.5JB to 13.2JB
Arsenic	0.49B to 26.3
Barium	1.1JB to 1,410
Beryllium	0.06B to 2.2
Cadmium	0.4JB to 51.9
Calcium	59.6B to 174,000J
Chromium	0.72B to 54.6

2-22

Cobalt	0.34B to 13.7
Copper	0.39JB to 348
Iron	113 to 149,000
Lead	2 to 1710
Magnesium	12.3B to 2,580J
Manganese	1.1JB to 700
Mercury	0.02B to 3.9
Nickel	1.7B to 79.4
Potassium	15JB to 2,560
Selenium	0.9 to 5.8
Silver	0.47JB to 0.49JB
Sodium	9.6JB to 809JB
Thallium	0.35B to 0.57JB
Vanadium	0.36JB to 35.7
Zinc	1.6B to 16,600

2.4.4 Groundwater Investigation

Organic and inorganic contamination identified at OU No. 2 appears to have resulted from past disposal practices and recent site activities. The data suggest that these occurrences have impacted soil, groundwater, sediment, and surface water, in particular at Sites 6 and 82. Contaminant distribution patterns at Sites 6 and 82 for all of the media suggest that there is a significant source of contamination (i.e., TCL organic) present which appears to be located in the wooded area north of Lot 203. The nature and extent of this source, however, have not been fully evaluated. Moreover, many other sources of contamination also exist (e.g., the ravine, Site 6) which have contributed to the overall environmental impact.

Migration of contaminants, especially TCL organics, has resulted in wide spread environmental impact at Site 82. The data suggest that a primary contaminant plume (i.e., chlorinated hydrocarbons) is migrating away from the wooded area north of Lot 203 toward Wallace Creek. TCL organic contaminants are impacting the surface water and sediments of Wallace Creek. Migration of contaminants from the ravine (Site 6) area also appears to be impacting Wallace Creek. Moreover, TAL inorganic contamination (the potential source appears to be numerous battery packs) also appears to be migrating from the ravine. Other source areas within Site 6 have been identified. The contaminant magnitude at these other areas of concern is not as significant, however, as the primary occurrence at Site 82. These impacted areas appear to be isolated and not widespread. The sources of the contamination within these areas may be the result of small disposal pits or spills from drums.

3.0 SURFACE WATER/SEDIMENT INVESTIGATION

This section discusses the surface water and sediment investigations conducted at OU No. 2. Included in this section are the sampling methodologies, procedures, locations, and results of the surface water and sediment sampling.

3.1 Surface Water and Sediment Sampling Methodology

Surface water and sediment sampling was conducted to determine if contamination attributable to OU No. 2 exists in Wallace Creek, Bear Head Creek, or the ravine which had an intermittent tributary to Wallace Creek. Surface water samples were collected at twentyfour stations at OU No. 2, while sediment samples were collected at twenty-six stations (see Figure 3-1). The majority of the samples were collected from August 22 to August 30, 1992, with one sample collected on October 23, 1992 due to site access problems.

The following information from each station was recorded in the field logbook:

- Project location, date and time
- Weather
- Sample location number and identification number
- Flow conditions (i.e., high, low, in flood, etc.)
- On-site water quality measurements
- Visual description of water (i.e., clear, cloudy, muddy, etc.)
- Description of biotic community (i.e., flora, fauna, etc.)
- Sketch of sampling location including boundaries of the water body, sample location (and depth), relative position with respect to the site, location of wood identifier stake
- Names of sampling personnel
- Sampling technique, procedure, and equipment used

The on-site water quality measurements consisted of temperature, pH, specific conductance, salinity, and dissolved oxygen. These measurements were collected immediately following sample collection.

3.1.1 Surface Water

The following sections describe the stations where surface water samples were collected and the procedures used for collecting the samples.

3.1.1.1 Station Locations

Forty-eight surface water samples were collected from twenty-four stations at OU No. 2 (see Figure 3-1 for station locations). Twenty-eight samples (eleven stations) were collected from Wallace Creek, fourteen samples (seven stations) were collected from Bear Head Creek, and six samples (six stations) were collected from the ravine (two other ravine sampling stations were dry at the time samples were collected). Tables 3-1, 3-2 and 3-3 contain a summary of the station numbers and locations, and sample numbers for the surface water samples collected at those stations.

The surface water sample numbers were designated as 6-WC"X"-SW-06B; the 6 indicates that the samples were collected at OU No. 2, WC stands for Wallace Creek (BH stands for Bear Head Creek and RV stands for the ravine), "X" stands for the station number, SW stands for surface water, 06 stands for a sample collected at the surface (312 stands for a sample collected at the surface water/sediment interface), and B stands for a sample collected at the creek bank (M stands for a sample collected in the middle of the creek).

3.1.1.2 Sampling Procedures

At stations where the water was more than three feet deep, samples were collected at the surface by dipping the sample bottles directly into the water and at one foot above the sediment by using a kemmerer sampler. To determine the designated depth, a marked weighted line was lowered into the water with the depth to the sediments recorded. At stations where the water was less than three feet deep, samples were collected at the approximate vertical mid-point by dipping the sample bottles directly into the water.

Care was taken when collecting samples for analysis of VOCs to avoid excessive agitation that could result in loss of VOCs. Samples for the VOC analysis were collected prior to the collection of the samples for analysis of the other parameters.

The samples were collected in clean containers provided by the analytical laboratory. Sampling personnel wore clean PVC gloves at each sampling station. For those sample bottles already containing preservative (e.g., sulfuric acid), the water was collected in a clean container and then slowly poured into the sample bottle. All sample containers not containing preservative were rinsed at least once with the sample water prior to sample collection.

The downstream water samples were collected first, with subsequent samples taken while moving upstream. Any sediment or biological samples were collected after the water samples were taken to minimize sediment resuspension that might contaminate the water samples.

The sampling locations were marked by placing a wooden stake and bright colored flagging at the nearest bank or shore. The sample number was marked on the stake with indelible ink. Photographs were taken to document the physical and biological characteristics of the sampling location.

3.1.2 Sediment

The following sections describe the stations where sediment samples were collected and the procedures used for collecting the samples.

3.1.2.1 Station Locations

Sixty-three sediment samples were collected from twenty-six stations at OU No. 2 (see Figure 3-1 for station locations); thirty-two samples (eleven stations) were located in Wallace Creek, twenty samples (seven stations) were located in Bear Head Creek, and eleven samples (eight stations) were located in the ravine. Tables 3-1, 3-2 and 3-3 contain a summary of the station numbers and locations, and sample numbers for the sediment samples collected at those stations.

The sediment sample numbers were designated as 6-WC"X"-SD-06B; the 6 indicates that the samples were collected at OU No. 2, WC stands for Wallace Creek (BH stands for Bear Head Creek and RV stands for the ravine), "X" stands for the station number, SD stands for sediment, 06 stands for a sample collected from the top six inches of the sediment (612 stands for a sample collected from six to twelve inches of the sediment), and B stands for a sample collected at the creek bank (M stands for a sample collected in the middle of the creek).

3-3

3.1.2.2 Sampling Procedures

At each station, sediment samples were collected at the surface (0-6 inches) and at depth (6-12 inches) using a stainless steel hand-held coring instrument. A new disposable clear plastic liner tube, fitted with a disposable eggshell catcher to prevent sample loss, was used at each station.

The coring device was pushed into the sediments to a maximum depth of fifteen to twenty inches, or until refusal. The liner was removed from the sampler and the sediments were extruded into the appropriate sample jars using a decontaminated extruder. The liners were not cut in half as stated in the work plan because the plastic shavings may have contaminated the sediments.

3.2 Surface Water and Sediment Sampling Results

Surface water and sediment samples were collected from three areas at OU No. 2: Wallace Creek north of Site 82, Bear Head Creek south of site Site 6, and the ravine located on the northern portion of Site 6 (see Figure 3-1). Water quality measurements were conducted at each station using field instruments. Appendix C contains the field data sheets for the surface water and sediment samples.

3.2.1 Field Measurements

During the collection of the surface water and sediment samples, water quality measurements (i.e., salinity, conductivity, dissolved oxygen, and pH) were conducted using field instruments. Table 3-4 summarizes these measurements.

A salt wedge was observed at Stations 6-WC07, 6-WC08, 6-WC09, 6-WC10, 6-WC11, and 6-BH07 with the salinity of the overlying water (freshwater) ranging from 0.0 to 4.0 parts per thousand (ppt), and the salinity of the bottom water (saltwater) ranging from 6.0 to 8.5 ppt. The dissolved oxygen followed a similar trend at these stations ranging from 2.2 mg/l to 5.8 mg/l at the surface and 0.15 mg/l and 0.3 mg/l at the bottom of the salt wedge. Conductivity at these stations ranged from 300 to 7,000 microhms/cm at the surface and 500 to 14,000 microhms/cm at the bottom, and the pH ranged from 6.0 to 6.8 standard units (S.U.).

Salinity concentrations at the other stations was non-detectable, and conductivity concentrations ranged from 30 to 420 microhms/cm. Dissolved oxygen concentrations at the other stations ranged from 4.6 to 7.7 mg/l and pH values ranged from 3.9 to 6.8 S.U.

3.2.2 Surface Water

Surface water samples were collected at OU No. 2 in Wallace Creek, Bear Head Creek, and the ravine (see Figure 3-1). This sampling was performed to determine the extent of contamination in the surface water due to past disposal activities at OU No. 2. The extent of contamination is discussed in Section 3.3 of this report. In addition, potential source areas are discussed in Section 2.2 of this report. The surface water sampling activities are described in Section 3.1.1.

At some of the mid-creek stations, samples were not collected due to depth of water and restricted boat access. The bank samples from these stations were collected from shore, however, the middle stations samples could not be reached. Tables 3-1, 3-2 and 3-3 explain why samples were not collected at some of the stations.

3.2.2.1 Wallace Creek

TCL organic and TAL inorganic chemicals were detected in several surface water samples collected from Wallace Creek (see Tables 3-5 and 3-6). The data and frequency tables are provided in Appendix D. Of the TCL organics that were detected in Wallace Creek, six were VOCs (vinyl chloride, acetone, 1,2,-dichloroethene, TCE, PCE, and toluene) and two were SVOCs (2,4,6,-trichlorophenol and bis(2-ethylhexyl)phthalate). Pesticides and PCBs were not detected in any of the samples. The concentration ranges of the positively detected TCL organics and the sample number with the maximum are as follows:

	Sample	Concentration
Constituent	Number	Range (ug/l)
Acetone	WC09-SW-312M	4J to 900J
1,2,-dichloroethene	WC07-SW-06B	2.0J to 85
PCE	WC07-SW-06M	1.0J to 4.0J
TCE	WC07-SW-06M	3J to 98
Toluene	WC07-SW-06B	1J to 3J
Vinyl chloride	WC07-SW-06B	6.0J
2,4,6-Trichlorophenol	WC10-SW-06M	1J

WC11-SW-312M

1J to 2J

Bis(2-ethylhexyl) phthalate

Nineteen of the 24 TAL inorganics were detected in the samples. Antimony, beryllium, cyanide, selenium, and thallium were not detected in any of the samples. The positively detected TAL inorganics, and the sample number with the maximum detection are as follows:

	Sample	Concentration
Constituent	Number	<u>Range (ug/l)</u>
Aluminum	WC01-SW-06B	480J to 1,350
Arsenic	WC09-SW-06B	3.7B
Barium	WC05-SW-06M	16JB to 22.6B
Cadmium	WC-07-SW-312M	3.2JB to 17.4J
Calcium	WC11-SW-312M	3,640B to 64,100
Chromium	WC05-SW-312M	4.9B
Cobalt	WC05-SW-312M	2.9B
Copper	WC11-SW-312M	3B to 209
Iron	WC01 -SW-06B	477 to 1,050
Lead	WC03-SW-312M	1.2B to 10.4
Magnesium	WC11-SW-312M	632B to 174,000
Manganese	WC11-SW-312M	8.2JB to 25J
Mercury	WC11-SW-312M	0.24B to 0.52
Nickel	WC03-SW-312M	102 to 1,380
Potassium	WC11-SW-312M	341B to 1,620,000
Silver	WC08-SW-312M	2.6B
Vanadium	WC01-SW-06B	1.9JB to 3.3JB
Zinc	WC03-SW-312M	7.3B to 111

3.2.2.2 Bear Head Creek

TCL organics and TAL inorganics were detected in several surface water samples collected from Bear Head Creek (Tables 3-7 and 3-8). The data and frequency tables are provided in Appendix D. Two SVOCs (diethyl phthalate and bis (2-ethylhexyl) phthalate were positively detected in these samples. No VOCs, pesticides, or PCBs were detected in any of the samples. The concentration ranges and the sample number with the maximum detection are as follows:

	Sample	Concentration
<u>Constituent</u>	Number	Range (ug/l)
Diethyl phthalate	BH07-SW-312M	2J
Bis(2-ethylhexyl)	BH05-SW-06B	1J to 2J
phthalate		

Sixteen of the 24 TAL inorganics were detected in the samples. Antimony, arsenic, beryllium, cadmium, cobalt, cyanide, selenium, and thallium were not detected in any of the samples. The concentration ranges of the positively detected TAL inorganic compounds, and the sample number with the maximum detection are as follows:

	Sample	Concentration
Constituent	Number	<u>Range (ug/l)</u>
Aluminum	BH05-SW-06M	334 to 2,700
Barium	BH05-SW-06M	13.4B to 36B
Calcium	BH07-SW-312M	600B to 54,900
Chromium	BH05-SW-06M	4.4B to 8.0B
Copper	BH07-SW-312M	4B to 55.8
Iron	BH05-SW-06M	501 to 6,200
Lead	BH05-SW-06M	1.5JB to 8.2
Magnesium	BH07-SW-312M	588B to 13,600
Manganese	BH05-SW-06M	6.2B to 65
Mercury	BH07-SW-312M	0.05B to 0.34
Nickel	BH07-SW-312M	8.0JB to 244
Potassium	BH07-SW-312M	685B to 49,000
Silver	BH07-SW-06B	2.1B to 3.6B
Sodium	BH07-SW-312M	4,310JB to 1,260,000
Vanadium	BH03-SW-06M	2JB to 3JB
Zinc	BH07-SW-312M	6.2B to 30.7

3.2.2.3 <u>Ravine</u>

TCL organics and TAL inorganics were detected in several surface water samples from the ravine (Tables 3-9 and 3-10). The data and frequency tables are provided in Appendix D. Acetone (140 ug/l in sample RV5-SW-06) was the only TCL organic compound that was positively detected in these samples.

Seventeen of the 24 TAL inorganics were detected in the samples. Antimony, beryllium, cyanide, nickel, mercury, selenium, and thallium were not detected in any of the samples. The concentration ranges of the positively detected TAL inorganics, and the sample number with the maximum detection are as follows:

	Sample	Concentration
Constituent	Number	<u>Range (ug/l)</u>
Aluminum	RV2-SW-06	119B to 613
Arsenic	RV8-SW-06	2.2B to 10.5
Barium	RV2-SW-06	37.1JB to 91B
Cadmium	RV5-SW-06	3.7JB to 4.3JB
Calcium	RV2-SW-06	12,300 to 102,000
Chromium	RV7-SW-06	4.2B to 6.5B
Cobalt	RV8-SW-06	2.3B
Copper	RV5-SW- 06	4.7B to 9JB
Iron	RV8-SW-06	127J to 9,600
Lead	RV8-SW-06	1.9B to 12.2
Magnesium	RV2-SW-06	1,200B to 7,100
Manganese	RV5-SW-06	38.6J to 597
Potassium	RV2-SW-06	393B to 2,910B
Silver	RV6-SW-06	2.9B to 67.6
Sodium	RV8-SW-06	2,860JB to 8,960
Vanadium	RV8-SW-06	6.2B
Zinc	RV6-SW-06	72.7 to 495

3.2.3 Sediments

Sediment samples were collected at OU No. 2 in Wallace Creek, Bear Head Creek, and the Ravine (see Figure 3-1). This sampling was performed to determine the extent of contamination in the sediments due to past disposal activities at OU No. 2. The sediment sampling activities are described in Section 3.1.2.

Some of the samples could not be collected due to sampler refusal, boat access (which required samples to be collected from the shore), and flocculant sediments that would not remain in the sampler. Tables 3-1, 3-2 and 3-3 explain why samples were not collected at some of the stations.

3.2.3.1 Wallace Creek

TCL organics and TAL inorganics were detected in sediment samples collected in Wallace Creek (see Tables 3-11 and 3-12). The data and frequency tables are provided in Appendix E. The following paragraphs summarize the results of the sediment investigation.

Pesticides 4,4'-DDE, 4,4'-DDT, 4,4'-DDD, and dieldrin were detected at seven sediment sample locations. PCB-1260 was detected at seven sediment locations.

The following VOC's were detected at all eleven sediment locations: methylene chloride, acetone, carbon disulfide, 2-butanone, 1,2,-dichloroethene, TCE, toluene, and total xylenes. The following SVOCs were detected in a few of the sediment samples: phenol, diethyl phthalate, phenanthrene, fluoranthene, butyl benzyl phthalate, benzo(a)anthracene, chrysene, bis(2-ethylhexyl) phthalate, pyrene, benzo(b)fluoranthene, benzo(a)pyrene, and benzo(k)fluoranthene. The concentration ranges of the positively detected TCL organics and the sample number with the maximum detection are as follows:

	Sample	Concentration
Constituent	Number	Range (ug/kg)
Dieldrin	WC01-SD-612D	4.8J
4,4'-DDE	WC09-SD-612M	5.9 to 8.3
4,4'-DDD	WC08-SD-06M	7.4J to 200J
4,4'-DDT	WC08-SD-06M	200J to 1,200J
PCB-1260	WC08-SD-06M	31J to 2,100J
Methylene chloride	2WC03-SD-612B	6J to 910J
Acetone	WC09-SD-612B	26 to 24,000J
Carbon Disulfide	WC10-SD-612M	2J to 24J
1,2-Dichloroethene	WC07-SD-06B	31J
2-Butanone	WC09-SD-612B	21J to 9,300
TCE	WC02-SD-06B	7J to 23
Toluene	WC06-SD-06M	4J to 5J
Total xylenes	WC03-SD-06M	26 to 120J
Phenol	WC06-SD-06B	120J to 190J
Diethyl phthalate	WC06-SD-06B	120J to 530J
Phenanthrene	WC08-SD-612M	76J
Flouranthene	WC08-SD-06B	94J to 760J

3-9

Pyrene	WC08-SD-06B	95J to 810J
Butyl benzyl phthalate	WC07-SD-06B	200J to 920J
Benzo(a)anthracene	WC08-SD-06B	67J to 210J
Chrysene	WC08-SD-06B	74J to 230J
Bis(2-ethylhexyl)	WC11-SD-06B	960J
phthalate		
Benzo(b)fluoranthene	WC08-SD-06B	4J to 420J
Benzo(k)fluoranthene	WC08-SD-06B	67J to 140J
Benzo(a)pyrene	WC09-SD-06B	63J to 1,600

Eighteen of 24 TAL inorganics were detected in these sediment samples. Antimony, cadmium, cyanide, mercury, selenium, and thallium were not detected in any of the samples. The concentration ranges of the positively detected TAL inorganics, and the sample number with the maximum detection are as follows:

	Sample	Concentration
<u>Constituent</u>	Number	Range (mg/kg)
Aluminum	WC10-SD-06M	539 to 25,400
Arsenic	WC08-SD-612M	1.0B to 10.2
Barium	WC08-SD-612M	2.5JB to 110
Beryllium	WC07-SD-06B	0.07B to 0.78B
Calcium	WC04-SD-06M	242B to 90,000J
Chromium	WC10-SD-06M	1.2B to 28.5
Cobalt	WC09-SD-06M	06JB to 3.3JB
Copper	WC-03-SD-06M	0.43JB to 53,200
Iron	WC09-SD-06M	390 to 14,600
Lead	WC03-SD-06M	1.5 to 314J
Magnesium	WC11-SD-06M	50.5B to 9840
Manganese	WC09-SD-06M	3.1 to 50.2
Nickel	WC10-SD-06M	2.7JB to 10.7JB
Potassium	WC10-SD-06M	38.5JB to 2,200B
Silver	WC03-SD-06M	7.3
Sodium	WC11-SD-06B	224JB to 18,300
Vanadium	WC10-SD-06M	0.82JB to 45.5J
Zinc	WC03-SD-06B	6.2 to 388

3.2.3.2 Bear Head Creek

TCL organics and TAL inorganics were detected in sediment samples collected in Bear Head Creek (see Tables 3-13 and 3-14). The data and frequency tables are provided in Appendix E. The following paragraphs summarize the results of the sediment investigation.

Pesticides, PCBs, VOCs, and SVOCs were all detected in some of the sediment samples taken in Bear Head Creek. The pesticides 4,4'-DDE, 4,4'-DDT, 4,4'-DDD, and alpha chlordane were detected at five sediment stations. PCB-1260 was detected at four sediment stations.

Several VOCs were detected at all seven sediment locations including methylene chloride, acetone, PCE, 2-butanone, TCE, benzene, ethlybenzene, and total xylenes. The following SVOCs were detected in several samples: 1,4-dichlorobenzene, pyrene, benzo(b)fluoranthene, benzo(a)pyrene, and indeno(1,2,3-cd)pyrene. The concentration ranges of the positively detected TCL organics and the sample number with the maximum detection are as follows:

	Sample	Concentration
<u>Constituent</u>	Number	Range (ug/kg)
4,4'-DDE	BH06-SD-06B	5.7 to 68
4,4'-DDD	BH04-SD-612M	8.4J to 220J
4,4'-DDT	BH04-SD-612M	6.6J to 38J
Alpha chlordane	BH06-SD-06B	14J
PCB-1260	BH04-SD-612M	51 to 370J
Methylene chloride	BH03-SD-612M	2J to 7J
Acetone	BH04-SD-06B	34 to 9,900J
2-Butanone	BH05-SD-06B	3J to 2,600
TCE	BH07-SD-06M	5J to 150
Benzene	BH01-SD-06B	5J
PCE	BH03-SD-06B	3J
Ethylbenzene	BH07-SD-06M	57J
Total Xylenes	BH07-SD-06M	3J to 380
1,4-Dichlorobenzene	BH07-SD-06M	340J to 370J
Pyrene	BH06-SD-06B	60J to 76J
Benzo(b)fluoranthene	BH06-SD-06B	96J
Benzo(a)pyrene	BH06-SD-06B	93J to 640
Indeno(1,2,3-cd)pyrene	BH04-SD-06B	40J

TAL inorganics were detected in all 20 of the sediment samples collected from Bear Head Creek. Eighteen of 24 TAL inorganics were detected in these sediment samples. Antimony, cyanide, mercury, nickel, silver, and thallium were not detected in any of the samples. The concentration ranges of the positively detected TAL inorganic compounds, and the sample number with the maximum detection are as follows:

	Sample	Concentration
<u>Constituent</u>	Number	Range (mg/kg)
Aluminum	BH07-SD-06M	465 to 22,100J
Arsenic	BH07-SD-06B	0.54B to 6.1JB
Barium	BH03-SD-612M	7.7JB to 40.4B
Beryllium	BH03-SD-612B	0.13B to 0.97B
Cadmium	BH07-SD-06M	0.54JB to 4.7JB
Calcium	BH04-SD-06B	1,210 to 45,600
Chromium	BH07-SD-06M	2.3B to 16.4B
Cobalt	BH07-SD-06M	1.7JB to 4B
Copper	BH07-SD-06B	1.2JB to 28.1B
Iron	BH07-SD-06	442 to 17,100J
Lead	BH07-SD-06M	2.5 to 70.4J
Magnesium	BH07-SD-06M	57.6B to 10,500J
Manganese	BH07-SD-06M	3.8J to 48.6
Potassium	BH07-SD-06B	121B to 1,930B
Selenium	BH02-SD-612M	2.9
Sodium	BH07-SD-06B	86.5JB to 36,200J
Vanadium	BH07-SD-06M	1.5JB to 54.1B
Zinc	BH07-SD-06M	6.4B to 82.4

3-12

3.2.3.3 Ravine

TCL organics and TAL inorganics were detected in sediment samples collected from the ravine (see Tables 3-15 and 3-16). The data and frequency tables are provided in Appendix E. The following paragraphs summarize the results of the sediment investigation.

Pesticides 4,4'-DDE, 4,4'-DDT, 4,4'-DDD, endrin, endrin aldehyde, and dieldrin were detected at all eight sediment locations. PCB-1260 was detected at five sediment locations.

Two VOCs (acetone and 2-butanone) were detected at several sediment stations. Twenty different SVOCs were detected in sediment samples. The concentration ranges of the positively detected TCL organic compounds and the sample number with the maximum detection are as follows:

	Sample	Concentration
<u>Constituent</u>	Number	<u>Range (ug/kg)</u>
Dieldrin	RV1-SD-06	8.1J to 43J
4,4'-DDE	RV2-SD-06	23J to 120J
Endrin	RV1-SD-06	5.1J
4,4'-DDD	RV2-SD-06	4.1J to 45J
4,4'-DDT	RV3-SD-06	14J to 210J
Endrin Aldehyde	RV1-SD-06	7.8
PCB-1260	RV1-SD-06	29J to 360J
Acetone	RV4-SD-612	62 to 9,100J
2-Butanone	RV4-SD-612	2300 to 2,400J
Naphthalene	RV2-SD-06	54J
2-Methylnaphthalene	RV2-SD-06	44J
Acenaphthene	RV2-SD-06	220J
Dibenzofuran	RV2-SD-06	110J
Fluorene	RV2-SD-06	250J
Phenanthrene	RV2-SD-06	50J to 1,600
Anthracene	RV2-SD-06	480
Di-n-butyl phthalate	RV7-SD-612	52J
Fluoranthene	RV2-SD-06	84J to 1,500J
Carbazole	RV2-SD-06	170J
Pyrene	RV2-SD-06	96J to 2,100

Benzo(a)anthracene	RV2-SD-06	43J to 1,100
Chrysene	RV2-SD-06	59J to 1,100
Bis(2-ethylhexyl)	RV3-SD-06	200J
phthalate		
Benzo(b)fluoranthene	RV2-SD-06	54J to 1,200
Benzo(k)fluoranthene	RV7-SD-06	440
Benzo(a)pyrene	RV2-SD-06	70J to 1,000
Indeno(1,2,3-cd)pyrene	RV2-SD-06	57J to 710
Dibenz(a,h)anthracene	RV2-SD-06	83J
Benzo(g,h,i)perylene	RV8-SD-06	57J to 680

: ŝ

Nineteen of 24 TAL inorganics were detected in these samples. Antimony, cyanide, selenium, sodium, and thallium were not detected in any of the samples. The concentration ranges of the positively detected TAL inorganics and the sample number with the maximum detection are as follows:

	Sample	Concentration
<u>Constituent</u>	Number	Range (mg/kg)
Aluminum	RV1-SD-06	739 to 10,300
Arsenic	RV1-SD-06	0.61B to 4.3
Barium	RV1-SD-06	2.9JB to 61.5
Beryllium	RV8-SD-06	0.06B to 0.25B
Cadmium	RV1-SD-06	0.53JB to 5.9J
Calcium	RV6-SD-06	148B to 10,100
Chromium	RV1-SD-06	2B to 17.7
Cobalt	RV1-SD-06	0.72B to 2.1JB
Copper	RV1-SD-06	2.6JB to 67.5
Iron	RV1-SD-06	420 to 7,590
Lead	RV8-SD-06	2.1B to 105J
Magnesium	RV1-SD-06	24.5B to 402B
Manganese	RV1-SD-06	3.4J to 288
Mercury	RV1-SD-06	0.03B to 0.75
Nickel	RV1-SD-06	2.1B to 7.7JB
Potassium	RV1-SD-06	29.5B to 361B
Silver	RV8-SD-06	0.56B to 1.2B
Vanadium	RV1-SD-06	1.2B to 19
Zinc	RV1-SD-06	20.3 to 408

3-14

3.3 Extent of Contamination

The following sections describe the extent of surface water and sediment contamination in Wallace Creek, Bear Head Creek, and the ravine.

3.3.1. Surface Water

The following discusses the extent of the contaminants detected in the surface water samples collected from Wallace Creek, Bear Head Creek, and the ravine. Several TCL organics and TAL inorganics were detected in samples collected from these areas.

3.3.1.1 Wallace Creek

VOCs and/or SVOCs were detected in Wallace Creek in sample stations 6-WC3 through 6-WC11. The VOCs were generally detected in higher frequencies and higher concentrations at stations 6-WC7, 6-WC8, and 6-WC9 while the SVOCs were only detected at stations 6-WC5 and 6-WC10. The VOCs in the surface water may be related to contaminated groundwater discharging to Wallace Creek between stations 6-WC6 and 6-WC7. However, the VOC contamination either ends or becomes diluted below detection levels by station 6-WC10. The SVOCs do not appear to be associated with Sites 6 or 82 because they are in low concentrations at two distinct stations.

The following TAL inorganics were detected in similar concentrations in both the upstream and downstream samples: aluminum, iron, manganese, and vanadium. The following TAL inorganics were detected in higher concentrations in the downstream samples, however, this increase is probably due to the increase in saltwater at these stations: calcium, magnesium, potassium, and sodium. The following TAL inorganics were detected in four or less samples and a trend could not be established: arsenic, cadmium, chromium, cobalt, mercury, nickel and silver. The following TAL inorganics were only detected at stations upstream of station 6-WC6: barium and lead. Finally, the following TAL inorganics only were detected at stations 6-WC5, 6-WC10, and 6-WC11: copper and zinc. Overall, there does not appear to be any association of the TAL inorganics in the surface water with contaminants from Sites 6 or 82.

3.3.1.2 Bear Head Creek

Two SVOCs were detected at low concentrations in Bear Head Creek. One SVOC was detected at one station (6-BH07) while the other SVOC was detected at three stations (6-BH01, 6-BH04, and 6-BH05). The SVOCs do not appear to be associated with this site because of the low frequency of detection and the low concentrations.

TAL inorganics were detected at every sampling station at Bear Head Creek. The following TAL inorganics were detected at both upstream and downstream sampling locations and at similar concentrations: aluminum, barium, manganese and iron. The following TAL inorganics were detected at higher concentrations at the downstream sampling locations, however, this increase is probably due to higher saltwater content at these stations: calcium, magnesium, potassium and sodium. The following TAL inorganics were detected only downstream and at low concentrations: chromium, copper, silver, mercury, and zinc. The source of these metals may be related to contamination at OU No. 2 via surface runoff. With the exception of one sample, lead was only detected in the downstream samples. Therefore, it may be associated with contamination at OU No. 2. Vanadium was only detected upstream of 6-BH04 at a low concentration. Finally, nickel was detected in two samples and a trend could not be established. Overall, chromium, copper, lead, mercury, silver and zinc appear to be the only TAL inorganics in Bear Head Creek that may be related to contamination at OU No. 2.

3.3.1.3 <u>Ravine</u>

Acetone was the only VOC detected in the surface water at the ravine. It was only detected once at sampling station 6-RV5. Pesticides, PCBs, and SVOCs were not detected in any of the surface water samples collected in the ravine. Therefore, there does not appear to be any organic contamination at this site since the acetone may be related to field decontamination procedures.

Seventeen of the 23 TAL inorganics were detected in the surface water at the ravine. Eleven TAL inorganics, including aluminum, barium, calcium, copper, iron, lead, magnesium, manganese, potassium, sodium, and zinc were found at stations 6-RV2, 6-RV3, 6-RV5, 6-RV7, and 6-RV8. Barium, aluminum, magnesium, potassium, and zinc appear to have higher concentrations at the lower stations, while iron appears to have a higher concentration at the higher stations. Calcium, copper, lead, and manganese have similar concentrations at all stations. Arsenic, cadmium, chromium, cobalt, silver and vanadium were detected four or less

times and a trend could not be established. The potential sources of contamination in the ravine include drums, containers and batteries observed in the ravine.

3.3.2 Sediments

The following discusses the extent of contaminants detected in the sediment samples collected from Wallace Creek, Bear Head Creek, and the ravine. Several TCL organics and TAL inorganics were detected in samples collected form the areas.

3.3.2.1 Wallace Creek

Pesticides and PCBs were detected at several stations at Wallace Creek. One pesticide (dieldrin) was detected once at an upstream location. 4,4'-DDE, 4,4'-DDD, and 4,4'-DDT were detected downstream at sampling locations 6-WC06 through 6-WC11. PCB-1260 was detected in the sediments at Wallace Creek at stations 6-WC04 through 6-WC11, with the highest concentrations being detected at stations 6-WC06 through 6-WC08. These pesticides and PCBs may be related to past disposal practices at OU No.2.

Eight VOCs and 12 SVOCs were detected in the sediments at Wallace Creek. The VOCs were detected both in upstream and downstream samples with the higher concentrations generally being found in the upstream samples. The SVOCs were detected mainly in downstream samples 6-WC05 through 6-WC11 with only two SVOC detections upstream (butyl-benzyl phthalate at 6-WC04 and benzo(k)fluoranthene at 6-WC01). The SVOCs may be related to the drums of petroleum products observed at OU No.2.

TAL inorganics were found at all sampling stations in Wallace Creek. The following metals were detected in several of the upstream and downstream samples: aluminum, arsenic, barium, calcium, chromium, copper, iron, lead, magnesium, manganese, potassium, sodium and vanadium. Cobalt and zinc were detected mainly in the downstream samples with higher concentrations detected at stations 6-WC08 through 6-WC11. Low concentrations of nickel were detected in one upstream sample and in three downstream samples. Silver was detected once at a low concentration at station 6-WC03. Arsenic, chromium, lead, nickel and zinc were detected in higher concentrations in the downstream samples and there presence may be related to contamination at OU No.2.

3.3.2.2 Bear Head Creek

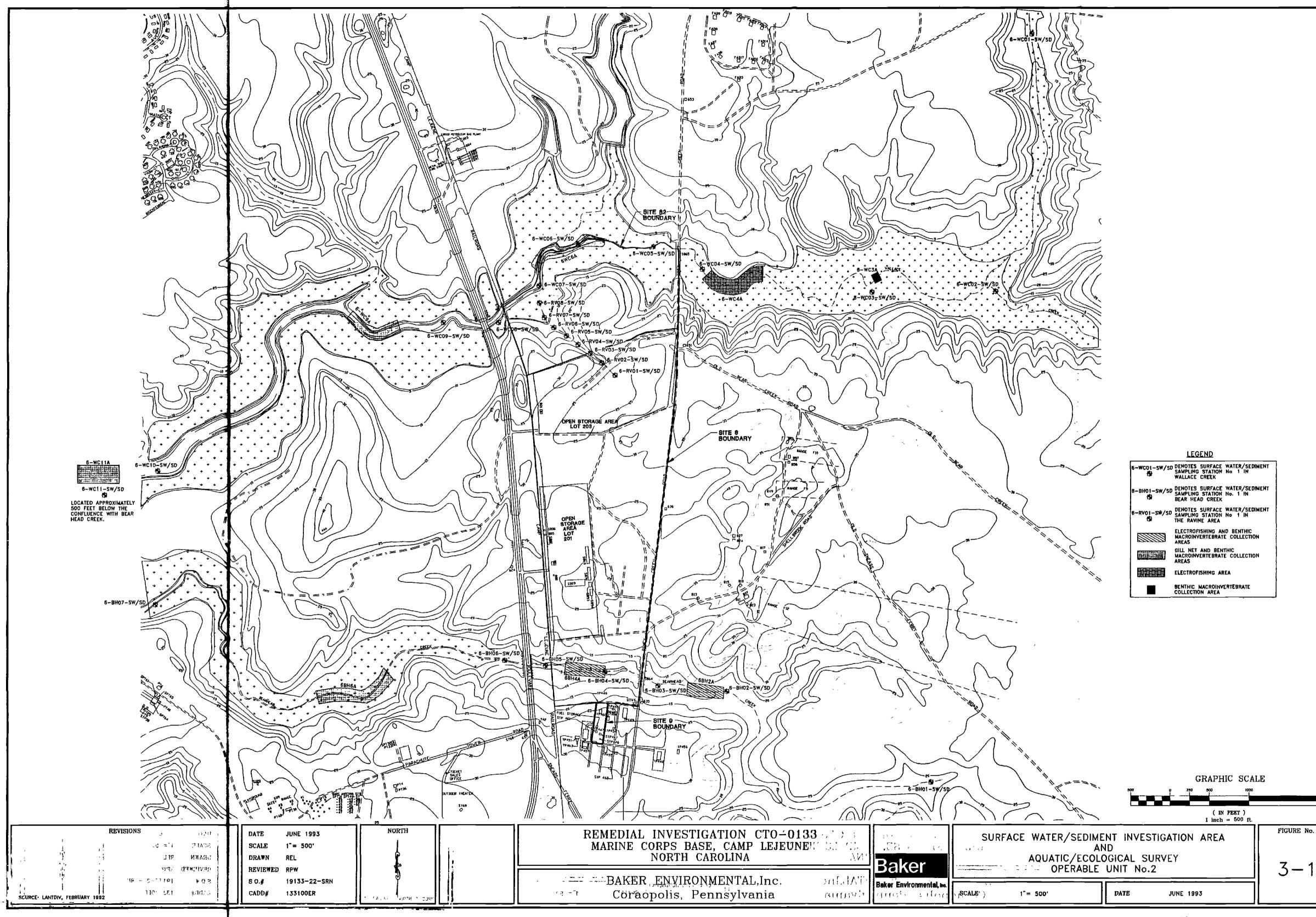
In Bear Head Creek, pesticides and PCBs were detected in both upstream and downstream samples at stations 6-BH03 through 6-BH06. Alpha chlordane was detected once at station 6-BH07 while 4,4'-DDE, 4,4'-DDD, 4,4'-DDT, and PCB-1260 were detected several times at all of the above stations. The highest pesticide and PCB concentrations were found at station 6-BH04. These pesticides and PCBs may be related to past disposal practices at OU No.2.

Eight VOCs and five SVOCs were detected in the sediments at Bear Head Creek. Acetone, 2butanone, TCE and total xylenes were found in both upstream and downstream samples. Methylene chloride, benzene and PCE were detected at low concentrations only in upstream samples. The highest VOC concentrations (acetone and 2-butanone) were found at stations 6-BH04 and 6-BH05. SVOCs were detected in the downstream samples with benzo(a)pyrene being the only SVOC detected in an upstream sample. The highest SVOC concentration was detected 6-BH03. The acetone and 2-butanone may be related to field decontamination procedures. The other VOCs and SVOCs do not appear to be site related.

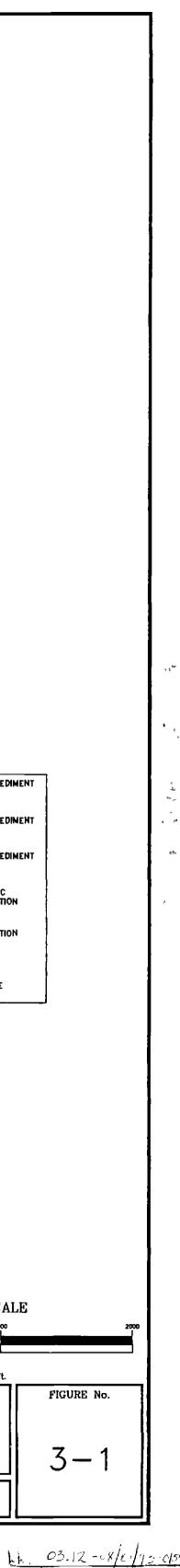
TAL inorganics were detected in both upstream and downstream sediment samples. The following TAL inorganics were detected both upstream and downstream with higher concentrations generally detected at the downstream stations: aluminum, arsenic, calcium, copper, iron, magnesium, manganese, potassium, sodium, vanadium, and zinc. Barium, beryllium, cadmium, chromium and lead were detected in both upstream and downstream samples at essentially constant concentrations. Cobalt was detected only in downstream samples and selenium was detected only once in an upstream sample. Overall, none of the metals in Bear Head Creek sediments appeared to be related to site contamination

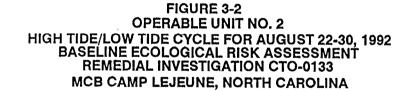
3.3.2.3 <u>Ravine</u>

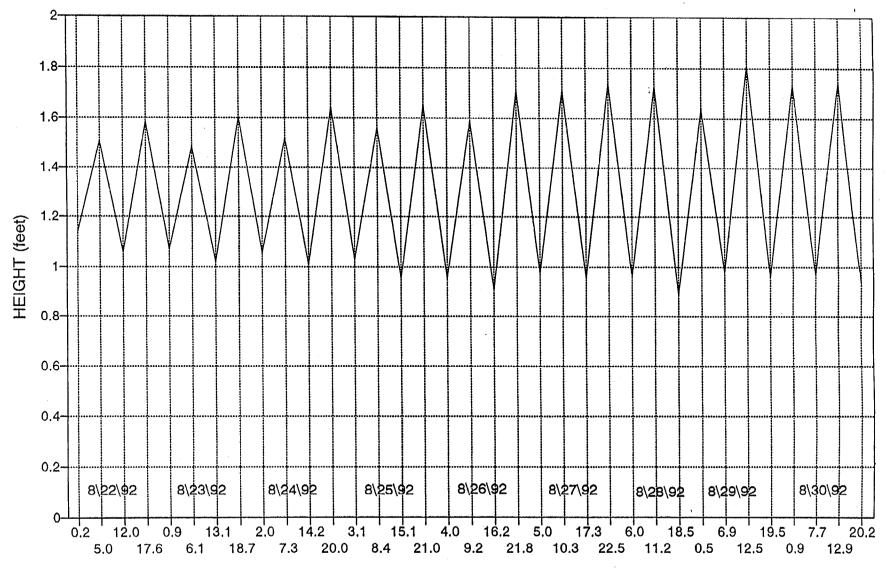
Pesticides and PCBs were detected at every sampling station at the ravine except 6-RV8. 4,4'-DDE, 4,4'-DDD, and 4,4'-DDT were detected at stations 6-RV2 through 6-RV7 with the highest concentrations being detected at stations 6-RV2 and 6-RV3. Endrin and endrin aldehyde were detected at low concentrations at station 6-RV2. PCB-1260 was detected at its highest concentration at stations 6-RV1 and 6-RV2. These pesticides and PCBs may be related to past disposal practices at OU No.2.


Two VOCs and 20 SVOCs were detected in the sediment at the ravine. The highest VOC concentrations (acetone and 2-butanone) were detected at stations 6-RV4 and 6-RV6. SVOCs were only detected at sampling stations 6-RV1 through 6-RV3 and 6-RV7 and 6-RV8. The highest SVOC (for each SVOC) concentrations were detected in 6-RV2. The acetone and 2-butanone may be related to field decontamination procedures. The SVOCs may be related to past disposal practices at OU No.2.

TAL inorganics were detected at all sampling stations in the ravine. The following TAL inorganics were detected at every station at varying concentrations: aluminum, copper, iron, lead, magnesium, manganese, vanadium and zinc. Cadmium, calcium, and potassium were found at almost every station at essentially constant concentrations. Chromium, mercury, and silver were found at low concentrations throughout the sediments. Arsenic, beryllium, cobalt and nickel were all detected in four or less samples and a trend could not be established. TAL inorganics may be related to past disposal practices at OU No.2.


3.4 Contaminant Distribution


The distribution of contaminants in the surface waters may vary depending on the tides and precipitation events. Concentrations of contaminants in the surface water are expected to decrease with higher tides and precipitation events because of the increased dilution. It also should be noted that the tides may transport contaminants upstream from the point of entry into tidally influenced areas of Wallace Creek and Bear Head Creek. High tide and low tide data was obtained from the National Oceanic and Atmospheric Administration (NOAA) for the New River at Jacksonville, North Carolina. The tide at Jacksonville was obtained by applying a correction factor to data collected from a NOAA tide station in Hampton Roads, Virginia. Table 3-17 contains the low tide and high tide feet and time from August 1 through September 17, 1992, while Figure 3-2 graphically displays the tide data for the days when the surface water samples were collected. In addition Table 3-18 lists if the surface water samples were collected during falling or rising tides.


Surface water samples were collected at OU No. 2 from August 22 to August 30, 1992. There was some precipitation approximately one week before the start of the sampling events, and there was no precipitation during the sampling events.

01558x01X

3-21

TIME

OPERABLE UNIT NO. 2 WALLACE CREEK SURFACE WATER AND SEDIMENT STATION SAMPLE NUMBERS AND LOCATIONS BASELINE ECOLOGICAL RISK ASSESSMENT REMEDIAL INVESTIGATION CTO-0133 MCB CAMP LEJEUNE, NORTH CAROLINA

Station Number	Station Location	Surface Water Sample Number	Sediment Sample Number
6-WC01-SW/SD	North Branch of Wallace Creek	6-WC01-SW-06B 6-WC01-SW-06M (A)	6-WC01-SD-06B 6-WC01-SD-612B (B)
6-WC02-SW/SD	South Branch of Wallace Creek	6-WC02-SW-06B(B)	6-WC02-SD-06B 6-WC02-SD-612B (B)
6-WC03-SW/SD	Approx. 2000 feet downstream of north and south branch	6-WC03-SW-06B 6-WC03-SW-06M 6-WC03-SW-312M	6-WC03-SD-06B 6-WC03-SD-612B 6-WC03-SD-06M (C)
6-WC04-SW/SD	Approx. 250 feet upstream of Piney Green Road	6-WC04-SW-06B 6-WC04-SW-06M	6-WC04-SD-06B 6-WC04-SD-612B 6-WC04-SD-06M (D)
6-WC05-SW/SD	Approx. 250 feet downstream of Piney Green Road	6-WC05-SW-06B 6-WC05-SW-06M 6-WC05-SW-312M	6-WC05-SD-06B 6-WC05-SD-612B 6-WC05-SD-06M (D)
6-WC06-SW/SD	Adjacent to Sites 6 and 9	6-WC06-SW-06B 6-WC06-SW-06M	6-WC06-SD-06B 6-WC06-SD-612B 6-WC06-SD-06M 6-WC06-SD-612M
6-WC07-SW/SD	Adjacent to Sites 6 and 9	6-WC07-SW-06B 6-WC07-SW-06M 6-WC07-SW-312M	6-WC07-SD-06B (D) 6-WC07-SD-06M 6-WC07-SD-612M
6-WC08-SW/SD	Between Lejeune Railroad and Holcomb Boulevard	6-WC08-SW-06B 6-WC08-SW-06M 6-WC08-SW-312M	6-WC08-SD-06B 6-WC08-SD-612B 6-WC08-SD-06M
6-WC09-SW/SD	Approx. 1000 feet Downstream of Holcomb Boulevard	6-WC09-SW-06B 6-WC09-SW-06M 6-WC09-SW-312M	6-WC09-SD-06B 6-WC09-SD-612B 6-WC09-SD-06M 6-WC09-SD-612M

B - Sample was collected from the south bank

M - Sample was collected from the middle of the creek

SW-06 - Sample was collected from the water surface (or mid-vertical point if a deeper water sample was not collected at this station).

SW-312 - Sample was collected from the water/sediment interface

SD-06 - Sample was collected from the top six inches of the sediment

SD-612 - Sample was collected from six to twelve inches of the sediment

(A) - Samples were collected from shore; depth sample could not be collected

(B) - Samples were collected from shore; middle samples could not be collected

(C) - Sampler refusal at 3-4 inches; 6-12 inch sample could not be collected

(D) - Sediments were flocculant; 6-12 inch sample could not be collected

TABLE 3-1 (cont.)

OPERABLE UNIT NO. 2 WALLACE CREEK SURFACE WATER AND SEDIMENT STATION SAMPLE NUMBERS AND LOCATIONS BASELINE ECOLOGICAL RISK ASSESSMENT REMEDIAL INVESTIGATION CTO-0133 MCB CAMP LEJEUNE, NORTH CAROLINA

Station Number			Sediment Sample Number		
6-WC10-SW/SD		6-WC10-SW-06B 6-WC10-SW-06M 6-WC10-SW-312M	6-WC10-SD-06B (D) 6-WC10-SD-06M 6-WC10-SD-612M		
6-WC11-SW/SD	Approx. 500 feet Downstream of Confluence with Bear Head Creek	6-WC11-SW-06B 6-WC11-SW-06M 6-WC11-SW-312M	6-WC11-SD-06B (D) 6-WC11-SD-06M (D)		

B - Sample was collected from the south bank

M - Sample was collected from the middle of the creek

SW-06 - Sample was collected from the water surface (or mid-vertical point if a deeper water sample was not collected at this station).

SW-312 - Sample was collected from the water/sediment interface

SD-06 - Sample was collected from the top six inches of the sediment

SD-612 - Sample was collected from six to twelve inches of the sediment

(A) - Samples were collected from shore; depth sample could not be collected

(B) - Samples were collected from shore; middle samples could not be collected

(C) - Sampler refusal at 3-4 inches; 6-12 inch sample could not be collected

(D) - Sediments were flocculant; 6-12 inch sample could not be collected

OPERABLE UNIT NO. 2 BEAR HEAD CREEK SURFACE WATER AND SEDIMENT STATION SAMPLE NUMBERS AND LOCATIONS BASELINE ECOLOGICAL RISK ASSESSMENT REMEDIAL INVESTIGATION CTO-0133 MCB CAMP LEJEUNE, NORTH CAROLINA

Station Number	Station Location	Surface Water Sample Number	Sediment Sample Number
6-BH01-SW/SD	Headwaters of Bear Head Creek	6-BH01-SW-06B 6-BH01-SW-06M	6-BH01-SD-06B 6-BH01-SD-612B 6-BH01-SD-06M 6-BH01-SD-612M
6-BH02-SW/SD	Upstream of Sites 6 and 9	6-BH02-SW-06M (A)	6-BH02-SD-06M 6-BH02-SD-612M (A)
6-BH03-SW/SD	Approx. 100 feet upstream of Piney Green Road	6-BH03-SW-06B 6-BH03-SW-06M	6-BH03-SD-06B 6-BH03-SD-612B 6-BH03-SD-06M 6-BH03-SD-612M
6-BH04-SW/SD	Adjacent to Sites 6 and 9	6-BH04-SW-06B 6-BH04-SW-06M	6-BH04-SD-06B 6-BH04-SD-612B 6-BH04-SD-06M 6-BH04-SD-612M
6-BH05-SW/SD	Between Lejeune Railroad and Holcomb Boulevard	6-BH05-SW-06B 6-BH05-SW-06M	6-BH05-SD-06B (B) 6-BH05-SD-06M (B)
6-BH06-SW/SD	Approx. 1000 feet Downstream of Holcomb Boulevard	6-BH06-SW-06B 6-BH06-SW-06M	6-BH06-SD-06B (B) 6-BH06-SD-06M (B)
6-BH07-SW/SD	Downstream of Sites 6 and 9	6-BH07-SW-06B 6-BH07-SW-06M 6-BH07-SW-312M	6-BH07-SD-06B (B) 6-BH07-SD-06M (B)

B - Sample was collected from the north bank

M - Sample was collected from the middle of the creek

SW-06 - Sample was collected from the water surface (or mid-vertical point if a deeper water sample was not collected at this station).

SW-312 - Sample was collected from the water/sediment interface

SD-06 - Sample was collected from the top six inches of the sediment

SD-612 - Sample was collected from six to twelve inches of the sediment

(A) - Creek was narrow and shallow; only middle sample was collected

(B) - Sediments were flocculant; 6-12 inch sample could not be collected

OPERABLE UNIT NO. 2 RAVINE SURFACE WATER AND SEDIMENT STATION SAMPLE NUMBERS AND LOCATIONS BASELINE ECOLOGICAL RISK ASSESSMENT REMEDIAL INVESTIGATION CTO-0133 MCB CAMP LEJEUNE, NORTH CAROLINA

Station Number	Station Location	Surface Water Sample Number	Sediment Sample Number
6-RV1-SD	Ravine	(A)	6-RV1-SD-06 (B)
6-RV2-SW/SD	Ravine	6-RV2-SW-06	6-RV2-SD-06 (B)
6-RV3-SW/SD	Ravine	6-RV3-SW-06	6-RV3-SD-06 6-RV3-SD-612
6-RV4-SD	Ravine	(A)	6-RV4-SD-06 6-RV4-SD-612
6-RV5-SW/SD	Ravine	6-RV5-SW-06	6-RV5-SD-06 (B)
6-RV6-SW/SD	Ravine	6-RV6-SW-06	6-RV6-SD-06 (B)
6-RV7-SW/SD	Ravine	6-RV7-SW-06	6-RV7-SD-06 6-RV7-SD-612
6-RV8-SW/SD	Ravine	6-RV8-SW-06	6-RV8-SD-06 (B)

SW-06 - Sample was collected from the water surface

SD-06 - Sample was collected from the top six inches of the sediment

SD-612 - Sample was collected from six to twelve inches of the sediment

(A) - No water was present at this station; water sample was not collected

(B) - Sampler refusal at 6 inches; 6-12 inch sample was not collected

1si

OPERABLE UNIT NO. 2 FIELD CHEMISTRY FROM SEDIMENT/SURFACE WATER SAMPLES **BASELINE ECOLOGICAL RISK ASSESSMENT REMEDIAL INVESTIGATION CTO-0133** MCB CAMP LEJEUNE, NORTH CAROLINA

Station Number (1)	Sample Location (2)	Salinity (ppt)	Conductivity (micromho/cm)	Dissolved Oxygen (mg/l)	рН (S.U.)	Temperature (deg. C)
Wallace Creek 6-WC01-SW/SD	Bottom	0.0	30.0	5.8	3.9	21.0
6-WC02-SW/SD	Bottom	NA		NA NA	<u></u>	NA
6-WC03-SW/SD	Surface	0.0	85.0	6.10	6.3	22.0
0-14 000-0 47.00	Bottom	0.0	85.0	6.05	6.3	22.0
6-WC04-SW/SD	Surface	0.0	89.1	6.0	6.6	21.8
0-11004-51/150	Bottom	0.0	89.1	6.8	6.8	21.8
6-WC05-SW/SD	Surface	0.0	83.0	6.0	6.5	22.9
	Bottom	0.0	91.0	6.0	6.5	22.5
6-WC06-SW-SD	Surface	0.0	10.0	6.15	6.7	22.5
	Bottom	0.0	85.0	6.1	NA	22.5
6-WC07-SW/SD-B	Bottom	0.0	500	NA	6.0	NA
6-WC07-SW/SD	Surface	0.0	300	5.8	6.8	23.7
	Bottom	6.0	9,000	0.2	NA	25.0
6-WC08-SW/SD-B	Bottom	0.1	500	5.25	6.2	22.8
6-WC08-SW/SD	Surface	0.0	550	5.35	6.2	22.9
	Bottom	7.5	12,500	0.15	NA	25.5
6-WC09-SW/SD-B	Bottom	1.2	2,100	4.6	6.1	22.8
6-WC09-SW/SD	Surface	0.3	900	2.25	6.1	23.0
	Bottom	8.5	14,000	0.15	NA	25.3
6-WC10-SW/SD-B	Bottom	2.5	5,000	3.0	6.3	24.2
6-WC10-SW/SD	Surface	2.9	4,900	3.2	6.3	24.9
	Bottom	8.2	14,000	0.15	NA	26.1
6-WC11-SW/SD-B	Bottom	3.5	5,500	2.2	6.1	24.0
6-WC11-SW/SD	Surface	4.0	7,000	3.2	6.3	24.2
	Bottom	8.0	13,500	0.3	NA	26.0

(1) (2)

All samples were collected from the middle station unless designated with a B (Bank sample) Water surface or water bottom -

Parts per thousand

 \mathbf{ppt} mg/l S.Ū.

deg.C

NĀ BH

WC RV

Milligrams per liter Standard Units

Degrees Celcius

Not Analyzed Bear Head Creek Station Wallace Creek Station

Ravine Station _

TABLE 3-4 (cont.)

si

OPERABLE UNIT NO. 2 FIELD CHEMISTRY FROM SEDIMENT/SURFACE WATER SAMPLES BASELINE ECOLOGICAL RISK ASSESSMENT REMEDIAL INVESTIGATION CTO-0133 MCB CAMP LEJEUNE, NORTH CAROLINA

Sample Identification (1)	Sample Location	Salinity (ppt)	Conductivity (micromho/cm)	Dissolved Oxygen (mg/l)	рН (S.U.)	Temperature (deg. C)
Bear Head Creek 6-BH01-SW/SD	Bottom	NA	NA	NA	NA	NA
6-BH02-SW/SD	Bottom	0.0	115	4.6	6.5	24.0
6-BH03-SW/SD	Bottom	0.0	420	7.89	6.5	27.5
6-BH04-SW/SD	Bottom	0.0	82	6.35	NA	23.0
6-BH05-SW/SD	Bottom	0.0	135	5.75	6.8	23.0
6-BH06-SW/SD	Bottom	0.0	120	5.85	6.6	23.0
6-BH07-SW/SD	Surface	1.0	2,223	3.15	6.2	25.0
	Bottom	7.5	12,500	0.3	6.6	26.5
Ravine 6-RV01-SD	Bottom	NA	NA	NA	NA	NA
6-RV02-SW/SD	Bottom	NA	NA	NA	NA	NA
6-RV03-SW/SD	Surface	NA	NA	NA	NA	NA
6-RV04-SD	Bottom	NA	NA	NA	NA	NA
6-RV05-SW/SD	Bottom	NA	NA	NA	NA	NA
6-RV06-SW/SD	Bottom	NA	NA	NA	NA	NA
6-RV07-SW/SD	Bottom	NA	NA	NA	NA	NA
6-RV08-SW/SD	Bottom	NA	NA	NA	NA	NA

(1) ppt

mg/l S.U.

deg.C

NA

BH

WC RV - All samples were collected from the middle station unless designated with a B (Bank sample)

- Parts per thousand

- Milligrams per liter
 - Standard Units
 - Degrees Celcius
 - Not Analyzed
- Sample Location Water surface or water bottom
 - Bear Head Creek Station
 - Wallace Creek Station
 - Ravine Station

SITE 6 WALLACE CREEK SURFACE WATER POSITIVE DETECTION SUMMARY REMEDIAL INVESTIGATION CTO-0133 MCB CAMP LEJEUNE, NORTH CAROLINA ORGANICS

Date Sam	epth:	6-WC03-SW-312M N/A 8/26/92 00439-20	6-WC04-SW-06B N/A 8/25/92 00439-21	6-WC04-SW-06M N/A 8/25/92 00439-22	6-WC05-SW-312M N/A 8/25/92 00437-21	6-WC06-SW-06B N/A 8/23/92 00429-05	6-WC06-SW-06M N/A 8/23/92 00429-06
Parameter	Units						
VOLATILES							
VINYL CHLORIDE	UG/L						
ACETONE	UG/L	46	14				4 J
1,2-DICHLOROETHENE	UG/L		4 J	4 J			
TRICHLOROETHENE	UG/L						
TETRACHLOROETHEN	E UG/L						
TOLUENE	UG/L					2 J	
SEMIVOLATILES							
2,4,6-TRICHLOROPHEN	OL UG/L						
BIS(2-ETHYLHEXYL)PH	TH UO/L				2 J		

3-28

N/A - Not applicable UG/L - microgram per liter J - value is estimated

Sample No: Depth: Date Sampled: Lab Id;	6-WC07-SW-06B N/A 8/23/92 00429-10	6-WC07-SW-312M N/A 8/23/92 00429-12	6-WC08-SW-06B N/A 8/23/92 00429-18	6-WC08-SW-06M N/A 8/23/92 00429-19	6-WC08-SW-312M N/A 8/23/92 00429-20	6-WC09-SW-06B N/A 8/23/92 00429-26
Parameter						00125-20
VOLATILES						
VINYL CHLORIDE	6 J			,		
ACETONE		5 J		6 J	27 J	
1,2-DICHLOROETHENE	85	9 J	13	23	9 J	17
TRICHLOROETHENE	98	4 J	16	28	10	22
TETRACHLOROETHENE	4 J			1 J	•••	
TOLUENE	3 J		·	•••		

SEMIVOLATILES

2,4,6-TRICHLOROPHENOL 3-29

BIS(2-ETHYLHEXYL)PHTH

N/A - Not applicable UG/L - microgram per liter J - value is estimated

Sample No: Depth: Date Sampled: Lab Id:	6-WC09-SW-06M N/A 8/23/92 00429-28	6-WC09-SW-312M N/A 8/23/92 00429-29	6-WC10-SW-06B N/A 8/22/92 00426-06	6-WC10-SW-06M N/A 8/22/92 00426-08	6-WC10-SW-312M N/A 8/22/92 00426-09	6-WC11-SW-06B N/A 8/22/92 00426-12
Parameter						
<u>VOLATILES</u> VINYL CHLORIDE ACETONE		900 J				
,2-DICHLOROETHENE	21		4 J	6 J		2 J
TRICHLOROETHENE FETRACHLOROETHENE	28 1 J		5 J	7 J		3 J
TOLUENE		·	1 J			1 J
SEMIVOLATILES						
2,4,6-TRICHLOROPHENOL				1 J		
BIS(2-ETHYLHEXYL)PHTH				2 J	1 J	

3-30

Sample No:	6-WC11-SW-06M	6-WC11-SW-312M				
Depth:	N/A ·	N/A				
Date Sampled:	8/22/92	8/22/92				
Lab Id:	00426-13	00426-14				
Parameter						
VOLATILES						
VINYL CHLORIDE						
ACETONE	9 J	14 J				
1,2-DICHLOROETHENE		2 J				
TRICHLOROETHENE	3 J	4 J				
TETRACHLOROETHENE						
TOLUENE						
SEMIVOLATILES						
2,4,6-TRICHLOROPHENOL						
BIS(2-ETHYLHEXYL)PHTH	2 J	2 1				

N/A - Not applicable UG/L - microgram per liter J - value is estimated

	Sample No: Depth:	6-WC01-SW-06B N/A	6-WC01-SW-06M N/A		6-WC02-SW-06B N/A		6-WC03-SW-06B N/A	6-WC03-SW-06M N/A		6-WC03-SW-312M N/A
	Date Sampled:	8/30/92	8/30/92		8/26/92		8/26/92	8/26/92		8/26/92
	Lab Id:	00464-25	00464-26		00445-16		00439-18	00439-19	I	00439-20
Parameter	Units									
ALUMINUM	UG/L	1350	1220		633		747	633		676
ARSENIC	UG/L									
BARIUM	UG/L	16 JB	16.2	лв	19.3	в				
CADMIUM	UG/L									
CALCIUM	UG/L	3640 B	3670	в	9990		9360	8890		9430
CHROMIUM	UG/L									
COBALT	UG/L									
COPPER	UG/L									129
IRON	UG/L	1050	941		844		849	756		830
LEAD	UG/L	2.3 JB	3 1.9	JB	1.2	В	5	5		10.4
MAGNESIUM	UG/L	632 B	639	в	1110	В	916 1	B 883	В	936 B
MANGANESI	UG/L				8.8	В	9.8	IB 8.2	JB	9.2 JB
MERCURY	UG/L									0.52
NICKEL	UG/L									1380
POTASSIUM	UG/L	376 B	341	в	604	В	610 1	B 603	В	640 B
SILVER	UG/L									
SODIUM	UG/L	3930 B	3980	В	7790		6240	6100		6500
VANADIUM	UG/L	3.3 JE	3 1.9	JВ	2.1	JB				
ZINC	UG/L									111

N/A - Not applicable

3 - 32

UG/L - microgram per liter

B - reported value is less than Contract Required Detection Limit (CRDL), but greater than Instrument Detection Limit (IDL)

J - value is estimated

	Sample No:	6-WC04-SW-06B	6-WC04-SW-06M	6-WC05-SW-06E	з е	-WC05-SW-06M	6-WC05-SW-312M	6-WC06-SW	7-06B
	Depth:	N/A	N/A	N/A	ł	N/A	N/4	A	N/A
	Date Sampled:	8/26/92	8/26/92	8/25/92	2	8/25/92	8/25/9:	2 8/	23/92
	Lab Id:	00439-21	00439-22	00437-19	9	00437-20	00437-2	1 004	29-05
Parameter	Units								
ALUMINUM	UG/L	697	698	799		945	762		751 J
ARSENIC	UG/L								
BARIUM	UG/L			18.9	B	22.6	В 17.6	В	
CADMIUM	UG/L		3.2	JB					
CALCIUM	UG/L	9720	9520	9440	1	11200	8850)	
CHROMIUM	UG/L						4.9	В	
COBALT	UG/L	• .					2.9	В	
COPPER	UG/L			5.5	В	3	B 43.8	:	
IRON	UG/L	834	812	854	ŀ	1020	818	1	701
LEAD	UG/L			1.8	В	2	B 3.1		
MAGNESIUM	UG/L	1080 B	995	B 1060	В	1230	B 985	Б	
MANGANESE	UG/L	10 JB	10.5	JB 10.6	ЛВ	12.2	ЈВ 10	лв 🗧	12.5 B
MERCURY	UG/L						0.24	B	
NICKEL	UG/L						177	1	
POTASSIUM	UG/L	636 B	614	B 821	В	821	В 700	B	
SILVER	UG/L						2.6	5 В	
sodium	UG/L	7400 J	6810	J 7400)	8430	6710)	
VANADIUM	UG/L								
ZINC	UG/L			20.6	5	9.9	B 26.8	3	

N/A - Not applicable

UG/L - microgram per liter

B - reported value is less than Contract Required Detection Limit (CRDL), but greater than Instrument Detection Limit (IDL)

J - value is estimated

JB - value is estimated below the CRDL, but greater than the IDL

3-33

	Sample No:	6-WC06-SW-06M	6-WC07-SW-06B	6-WC07-SW-06M	6-WC07-SW-312M	6-WC08-SW-06B	6-WC08-SW-06M
	Depth:	N/A	N/A	N/A	N/A	N/A	N/A
	Date Sampled:	8/23/92	8/23/92	8/23/92	8/23/92	8/23/92	8/23/92
	Lab Id:	00429-06	00429-10	00429-11	00429-12	00429-18	00429-19
Parameter	Units						
ALUMINU	M UG/L	798 J	881 J	814 J	696 J	811 J	845 J
ARSENIC	UG/L						
BARIUM	UG/L						
CADMIUN	/ UG/L				17.4 J		
CALCIUM	UG/L						
CHROMIU	JM UG/L						
COBALT	UG/L		•				
COPPER	UG/L						
IRON	UG/L	775	800	823	724	790	831
LEAD	UG/L						
' MAGNESI	UM UG/L		14400				
MANGAN	ESE UG/L	13.8 B	17.8	17.6	14.7 B	16.2	16.9
MERCUR	Y UG/L						
NICKEL	UG/L						
POTASSI	JM UG/L						
SILVER	UG/L						
SODIUM	UG/L						
VANADIL	JM UG/L		1.9 JB	2 JB		2.1 JB	1.9 JB
ZINC	UG/L						

N/A - Not applicable

3-34

UG/L - microgram per liter

B - reported value is less than Contract Required Detection Limit (CRDL), but greater than Instrument Detection Limit (IDL)

J - value is estimated

SITE 6 WALLACE CREEK SURFACE WATER POSITIVE DETECTION SUMMARY REMEDIAL INVESTIGATION CTO-0133 MCB CAMP LEJEUNE, NORTH CAROLINA TOTAL METALS

		Sample No: Depth: Date Sampled: Lab Id:	6-WC08-SW-312M N/A 8/23/92 00429-20	6-WC09-SW-06B N/A 8/23/92 00429-26	6-WC09-SW-06M N/A 8/23/92 00429-28	6-WC09-SW-312M N/A 8/23/92 00429-29	6-WC10-SW-06B N/A 8/22/92 00426-06	6-WC10-SW-06M N/A 8/22/92 00426-08
	Parameter	Units						
	ALUMINUM	UG/L	719 J	746 J	745 J	480 J	621	
	ARSENIC BARIUM	UG/L		3.7 B		,		
	CADMIUM	UG/L UG/L						
	CALCIUM	UG/L				56000 J	30900	32500
	CHROMIUM	UG/L				20000 1	50500	52,700
	COBALT	·UG/L						,
	COPPER	UG/L		•				
	IRON	UG/L	749	704	740	477	599	498
ယ	LEAD	UG/L						
-35	MAGNESIUM	I UG/L	12600	18300	12800	146000	76600	83300
5	MANGANESI	E UG/L	16.5	15.5	15.8	17.3	15 J	16 J
	MERCURY	UG/L						
	NICKEL	UG/L						
	POTASSIUM	UG/L				53700	25500	27700
	SILVER	UG/L		,				
	SODIUM	UG/L		154000 J		1340000	661000	714000
	VANADIUM	UG/L	2.5 JB		2 JB			
	ZINC	UG/L					9 B	7.3 B

N/A - Not applicable

UG/L - microgram per liter

B - reported value is less than Contract Required Detection Limit (CRDL), but greater than Instrument Detection Limit (IDL)

J - value is estimated

	Sample No: Depth: Date Sampled: Lab Id:	6-WC10-SW-312M N/A 8/22/92 00426-09		6-WC11-SW-06B N/A 8/22/92 00426-12		6-WC11-SW-06M N/A 8/22/92 00426-13	N/A /22/92 8/2		<u>.</u>	
Parameter	Units	***************************************								<u> </u>
ALUMINUM	UG/L			807				682		
ARSENIC	UG/L									
BARIUM	UG/L									
CADMIUM	UG/L									
CALCIUM	UG/L	53400		40300		36000		64100		
CHROMIUM	UG/L									
COBALT	UG/L									
COPPER	ŬG/L	66						209		
IRON	UG/L	494		881		546		649		
LEAD	UG/L									
MAGNESIUM	UG/L	143000		98900		88200		174000		
MANGANESE	UG/L	18	J	18	J	14	JB	25	J	
MERCURY	UG/L							0.52		
NICKEL	UG/L	102						213		
POTASSIUM	UG/L	48500		32000		28000		55700		
SILVER	UG/L									
SODIUM	UG/L	1620000		726000		700000		1260000		
VANADIUM	UG/L									
ZINC	UG/L	30.7		8.4	В	17.6	в	95.1		

N/A - Not applicable

UG/L - microgram per liter

B - reported value is less than Contract Required Detection Limit (CRDL), but greater than Instrument Detection Limit (IDL) J - value is estimated

· I	Sample No: Depth: Date Sampled; Lab Id:	6-BH01-SW-06M N/A 10/23/92 00591-06	6-BH04-SW-06B N/A 8/28/92 00454-03	6-BH04-SW-06M N/A 8/28/92 00454-04	6-BH05-SW-06B N/A 8/28/92 00454-05	6-BH07-SW-312M N/A 8/25/92 00437-03
Parameter	Units					
<u>Pesticide/pcbs</u> Diethyl phthalate Bis(2-ethylhexyl)phthalat	UG/L FE UG/L	1 J	1 J	1 J	2 J	2 J

3-37

N/A - Not applicable UG/L - microgram per liter J - value is estimate

Parameter	Sample No: Depth: Date Sampled: Lab Id: Units	6-BH01-SW-06B N/A 10/23/92 00591-05	6-BH01-SW-06M N/A 10/23/92 00591-06	6-BH02-SW-06M N/A 8/28/92 00458-04	N/ 8/28/9	A N/A 2 8/28/92	6-BH04-SW-06B N/A 8/28/92 00454-03
1 arameter	Ollits						
ALUMINU	IM UG/L	1210	1230	868	494	4 1560	
BARIUM	UG/L	13.4 JB	14	JB 25.1	JB 25.0	5 JB 31.3	B 22 B
CALCIUM	UG/L	612 B	600	B 16100	17200) 19100	20600
CHROMIU	JM UG/L						
COPPER	UG/L						
IRON	UG/L	958	818	921	989	9 . 1790	1180
LEAD	UG/L					5.9	1.8 JB
MAGNESI		588 B	612	B 1010	B 1050	D B 1120	B 1010 B
MANGAN		6.5 B	6.2	B 14	JB 10	5 J 23	J 17
5 MERCURY	Y UG/L						
D NICKEL	UG/L					3 JB	
POTASSIU				685	B 71	3 B 721	B
SILVER	UG/L						
SODIUM	UG/L	4680 B	4850	B 5250			4420 JB
VANADIU				2	JB	2 JB 3	JB
ZINC	UG/L						

N/A - Not applicable

3-38

UG/L - microgram per liter

B - reported value is less than Contract Required Detection Limit (CRDL), but greater than Instrument Detection Limit (IDL)

J - value is estimated

	Sample No: Depth: Date Sampled: Lab Id:	6-BH04-SW-06M N/A 8/28/92 00454-04	6-BH05-SW-06B N/A 8/28/92 00454-05	6-BH05-SW-06M N/A 8/28/92 00454-06	N/A 8/28/92	N/A N/A 8/28/92	6-BH07-SW-06B N/A 8/25/92 00437-01
Parameter	Units						
ALUMINUM BARIUM CALCIUM CHROMIUM COPPER IRON LEAD MAGNESIUN MANGANES	UG/L UG/L UG/L UG/L UG/L UG/L E UG/L	782 24 E 20000 1650 1.8 J 1060 E 17	20000 1120 B 1.5	22500 8 6200 JB 8.2 B 1160 65	20100 B 5 1150 2 B 1010 20	B 1180 JB 2.2 B 1130	24900 4.4 B 4 B 679 JB 2.4 B
 MERCURY NICKEL POTASSIUM SILVER SODIUM VANADIUM ZINC 	UG/L UG/L	4580 J	10100 B 4310	0.05 JB	B 5140	J 4510	13000 3.6 B 319000 6.4 B

N/A - Not applicable

UG/L - microgram per liter

B - reported value is less than Contract Required Detection Limit (CRDL), but greater than Instrument Detection Limit (IDL)

J - value is estimated

	Sample No:	6-BH07-SW-06M		6-BH07-SW-312M	
	Depth:	N/A		N/A 8/25/92 00437-03	
	Date Sampled:	8/25/92			
	Lab Id:	00437-02			
Parameter	Units				
ALUMINUM	UG/L	418		334	
BARIUM	UG/L	20.5	в	18.6	в
CALCIUM	UG/L	23900		54900	
CHROMIUM	UG/L				
COPPER	UG/L	5.2	в	55.8	
IRON	UG/L	725		501	
LEAD	UG/L	2	в	2.6	В
MAGNESIUM	UG/L	33600		136000	
MANGANESE	UG/L	13.5	JB	16.2	J
MERCURY	UG/L			0.34	
NICKEL	UG/L			244	
POTASSIUM	UG/L	11600		49000	
SILVER	UG/L	2.1	в		
SODIUM	UG/L	284000		1260000	
VANADIUM	UG/L				
ZINC	UG/L	6.2	В	30.7	

N/A - Not applicable

UG/L - microgram per liter

B - reported value is less than Contract Required Detection Limit (CRDL), but greater than Instrument Detection Limit (IDL)

J - value is estimated

TABLE 3 - 9 SITE 6 RAVINE SURFACE WATER POSITIVE DETECTION SUMMARY REMEDIAL INVESTIGATION CTO - 0133 MCB CAMP LEJEUNE, NORTH CAROLINA ORGANICS

mple No:	6-RV5-SW-06	
Depth:	N/A	
Sampled:	8/25/92	
Lab Id:	00439-16	
Units		
<u>s</u>		
UG/L	140	
	Depth: Sampled: Lab Id: Units	Depth: N/A Sampled: 8/25/92 Lab Id: 00439-16 Units 92

N/A - Not applicable UG/L - microgram per liter J - value is estimated

		Sample No: Depth:	6-RV2-SW-06 N/A	6-RV3-SW-06 N/A		6-RV5-SW-06 N/A		6-RV6-SW-06 N/A	6-RV7-SW-06 N/A	6-RV8-SW-(N/	
	I	Date Sampled:	8/25/92	8/24/92		8/25/92		8/25/92	8/25/92	8/25/9	
		Lab Id:	00439-14	00437-06		00439-16		00439-17	00437-15	00437-1	
	Parameter	Units						**************************************			
	ALUMINUM	UG/L	613	119	в	148	в	612	279	48	37
	ARSENIC	UG/L	2.2 B			3.5	в			10.	.5
	BARIUM	UG/L	91 B	79.1	В	37.1	JB	39.5 JB	49.6 H	3 56.	.9 B
	CADMIUM	UG/L	3.7 JB			4.3	JB				
	CALCIUM	UG/L	102000	79900		23100		19700	12300	1580	00
	CHROMIUM	UG/L							6.5 H	3 4.	.2 B
	COBALT	UG/L								2.	.3 B
	COPPER	UG/L	9 JB	4.7	В	9	JB	5.7 JB	7.5 H	3 7.	.2 B
ယ	IRON	UG/L	733	127	J	641		827	1910	960	00
42	LEAD	UG/L	6.1	1.9	В	4.8		8	2.8 1	3 12	.2
	MAGNESIUM	UG/L	7100	4650	В	1200	В	1930 B	2980 1	3 179	90 B
	MANGANESE	UG/L	319	38.6	J	597		204	267	25	53
·	POTASSIUM	UG/L	2910 B	2720	в	1620	В	393 B	607 1	3 84	44 B
	SILVER	UG/L		3.6	В			67.6		2	.9 B
	SODIUM	UG/L	6480	4380	JB	2860	JB	5920	8260	896	50
	VANADIUM	UG/L								6	.2 B
	ZINC	UG/L	452	113		374	,	495	248	72	.7

N/A - Not applicable

UG/L - microgram per liter

B - reported value is less than Contract Required Detection Limit (CRDL), but greater than Instrument Detection Limit (IDL)

J - value is estimated

SITE 6 WALLACE CREEK SEDIMENT POSITIVE DETECTION SUMMARY REMEDIAL INVESTIGATION CTO-0133 MCB CAMP LEJEUNE, NORTH CAROLINA ORGANICS

	I	Sample No: Depth: Date Sampled: Lab Id:	6-WC01-SD-06B 0 - 6" 8/30/92 00464-22	6-WC01-SD-612D 6 - 12" 8/30/92 00464-24	6-WC02-SD-06B 0 - 6" 8/26/92 00445-03	6-WC02-SD-612B 6 - 12" 8/26/92 00445-04	6-WC03-SD-06B 0 - 6" 8/26/92 00445-05	6-WC03-SD-06M 0 - 6" 8/26/92 00445-06
	Parameter	Units						00445-00
	DIELDRIN	UG/KG		4.8 J				
	4,4'-DDE	UG/KG						
	4,4'-DDD	UG/KG		16 J				
	4,4'-DDT	UG/KG						
	PCB-1260	UG/KG						
	METHYLENE CHLORIDE	UG/KG						
	ACETONE	UG/KG	26		320 J	95 J	8400 J	
	CARBON DISULFIDE	UG/KG						
	1,2-DICHLOROETHENE	UG/KG						
0	2-BUTANONE	UG/KG			21 J		4200	
ີ້ວ	TRICHLOROETHENE	UG/KG			23	7 J		
	TOLUENE	UG/KG						
	TOTAL XYLENES	UG/KG			70	26		120 J
	PHENOL	UG/KG						
	DIETHYL PHTHALATE	UG/KG						
	PHENANTHRENE	UG/KG						
	FLUORANTHENE	UG/KG						
	PYRENE	UG/KG						
	BUTYL BENZYL PHTHALAT	E UG/KG						
	BENZO(A)ANTHRACENE	UG/KG						
	CHRYSENE	UG/KG						
	BIS(2-ETHYLHEXYL)PHTHA					·		
	BENZO(B)FLUORANTHENE	UG/KG						
	BENZO(K)FLUORANTHENE	UG/KG					1	
	BENZO(A)PYRENE	UG/KG		63 J				

3-43

	Lab Id:	00445-07	00445-08	00445-09	00445-10	00445-11	00445-13
Parameter	Units					· · · · · · · · · · · · · · · · · · ·	
DIELDRIN	UG/KG						
4,4'-DDE	UG/KG						
4,4'-DDD	UG/KG						
4,4'-DDT	UG/KG						
PCB-1260	UG/KG			760			330 J
METHYLENE CHLORIDE	UG/KG	910 J					
ACETONE	UG/KG		. 180 J		160 J		
CARBON DISULFIDE	UG/KG						
1,2-DICHLOROETHENE	UG/KG						
2-BUTANONE	UG/KG						
TRICHLOROETHENE	UG/KG						
TOLUENE	UG/KG						
TOTAL XYLENES	UG/KG						
PHENOL	UG/KG						120 J
DIETHYL PHTHALATE	UG/KG						
PHENANTHRENE	UG/KG		۲.				
FLUORANTHENE	UG/KG						
PYRENE	UG/KG						
BUTYL BENZYL PHTHALATE	UG/KG		200 J				
BENZO(A)ANTHRACENE	UG/KG						
CHRYSENE	UG/KG						
BIS(2-ETHYLHEXYL)PHTHALAT	'E UG/KG					· · · · · · · · · · · · · · · · · · ·	
BENZO(B)FLUORANTHENE	UG/KG						
BENZO(K)FLUORANTHENE	UG/KG	•				ş .	
BENZO(A)PYRENE	UG/KG					850 J	

6-WC04-SD-06M

0 - 6"

8/26/92

6-WC04-SD-612B

6 - 12"

8/26/92

6-WC04-SD-06B

0 - 6"

8/26/92

Sample No:

Date Sampled:

Depth:

6-WC03-SD-612B

6 - 12"

8/26/92

TABLE 3 - 11

6-WC05-SD-06B

0 - 6"

8/27/92

6-WC05-SD-06M

0 - 6"

8/27/92

IABLE 3 - 11
SITE 6 WALLACE CREEK SEDIMENT
POSITIVE DETECTION SUMMARY
REMEDIAL INVESTIGATION CTO-0133
MCB CAMP LEJEUNE, NORTH CAROLINA
ORGANICS

	E	Sample No: Depth: Date Sampled: Lab Id:	6-WC05-SD-612B 6 - 12" 8/27/92 00445-14	6-WC06-SD-06B 0 - 6" 8/23/92 00429-01	6-WC06-SD-06M 0 - 6" 8/23/92 00429-02	6-WC06-SD-612B 6 - 12" 8/23/92 00429-03	6-WC06-SD-612M 6 - 12" 8/23/92 00429-04	6-WC07-SD-06B 0 - 6" 8/23/92 00429-07
	Parameter	Units						
	DIELDRIN	UG/KG						
	4,4'-DDE	UG/KG		25 J		16 J	7.9 J	48 J
	4,4'-DDD	UG/KG		80 J				
	4,4'-DDT	UG/KG		200 J				
	PCB-1260	UG/KG		1300 J	400 J			
	METHYLENE CHLORIDE	UG/KG			•			30 J
	ACETONE	UG/KG			240	220		
	CARBON DISULFIDE	UG/KG						
	1,2-DICHLOROETHENE	UG/KG						31 J
ယ္	2-BUTANONE	UG/KG						
45	TRICHLOROETHENE	UG/KG						
	TOLUENE	UG/KG	4 J		5 J			
	TOTAL XYLENES	UG/KG						
	PHENOL	UG/KG		190 J				
	DIETHYL PHTHALATE	UG/KG		530 J				
	PHENANTHRENE	UG/KG						
	FLUORANTHENE	UG/KG		290 J	100 J			
	PYRENE	UG/KO		210 J	200 J			
	BUTYL BENZYL PHTHALAT	E UG/KG						920 J
	BENZO(A)ANTHRACENE	UG/KG						
	CHRYSENE	UG/KG						
	BIS(2-ETHYLHEXYL)PHTHA	LATE UG/KG						
	BENZO(B)FLUORANTHENE	UG/KG						
	BENZO(K)FLUORANTHENE	UG/KG					i i	
	BENZO(A)PYRENE	UG/KG	1600					

UG/KG - microgram per kilogram J - value is estimated

TABLE 3 - 11

ORGANICS

	Sample No:	6-WC07-SD-06M	6-WC07-SD-612M	6-WC08-SD-06B	6-WC08-SD-06M	6-WC08-SD-612B	6-WC08-SD-612M
	Depth:	0 - 6"	6 - 12"	0 - 6"	0 - 6"	6 - 12"	6 - 12"
	Date Sampled:	8/23/92	8/23/92	8/23/92	8/23/92	8/23/92	8/23/92
	Lab Id:	00429-08	00429-09	00429-13	00429-15	00429-16	00429-17
Parameter	Units						
DIELDRIN	UG/KG						
4,4'-DDE	UG/KG			47 J	18 J	27.9	7.6 J
4,4'-DDD	UG/KG		67	50 J	200 J	23 J	49
4,4'-DDT	UG/KG		220 J		1200 J		
PCB-1260	UG/KG	2000 J		310 J	2100 J	32 J	
METHYLENE CHLORIDE	UG/KG	•	6 J				
ACETONE	UG/KG				350 ·	590 J	
CARBON DISULFIDE	UG/KG		2 J			5 J	
1,2-DICHLOROETHENE	UG/KG						
2-BUTANONE	UG/KG						
TRICHLOROETHENE	UG/KG						
TOLUENE	UG/KG						
TOTAL XYLENES	UG/KG						
PHENOL	UG/KG						
DIETHYL PHTHALATE	UG/KG				120 J		
PHENANTHRENE	UG/KG						76 J
FLUORANTHENE	UG/KG			760 J	250 J	180 J	94 J
PYRENE	UG/KG	95 J		810 J	220 J	350 J	130 J
BUTYL BENZYL PHTHAL							
BENZO(A)ANTHRACENE	UG/KG			210 J		67 J	
CHRYSENE	UG/KG			230 J		74 J	
BIS(2-ETHYLHEXYL)PHT							
BENZO(B)FLUORANTHE				420 J	140 J	95 J	
BENZO(K)FLUORANTHE				140 J		67 J	
BENZO(A)PYRENE	UG/KG			150 J			

3-46

TABLE 3 - 11
SITE 6 WALLACE CREEK SEDIMENT
POSITIVE DETECTION SUMMARY
REMEDIAL INVESTIGATION CTO-0133
MCB CAMP LEJEUNE, NORTH CAROLINA
ORGANICS

	E	Sample No: Depth: Date Sampled: Lab Id:	6-WC09-SD-06B 0 - 6" 8/23/92 00429-21	6-WC09-SD-06M 0 - 6" 8/23/92 00429-22	6-WC09-SD-612B 6 - 12" 8/23/92 00429-23	6-WC09-SD-612M 6 - 12" 8/23/92 00429-24	6-WC10-SD-06M 0 - 6" 8/22/92 00426-04	6-WC10-SD-612M 6 - 12" 8/22/92 00426-05
	Parameter	Units						······
	DIELDRIN	UG/KG						
	4,4'-DDE	UG/KG	5.9	69		83	32	34 J
	4,4'-DDD	UG/KG	7.4 J	80 J	16 J	49 J	44	43 J
	4,4'-DDT	UG/KG			••••			
	PCB-1260	UG/KG	31 J	290 J		730 J	420	160 J
	METHYLENE CHLORIDE	UG/KG						
	ACETONE	UG/KG	240		· 24000 J		140 J	200. J
	CARBON DISULFIDE	UG/KG				5 J		24 J
	1,2-DICHLOROETHENE	UG/KG						
ယ္	2-BUTANONE	UG/KG			9300			22 J
47	TRICHLOROETHENE	UG/KG						
	TOLUENE	UG/KG						
	TOTAL XYLENES	UG/KG						
	PHENOL	UG/KG						
	DIETHYL PHTHALATE	UG/KG						
	PHENANTHRENE	UG/KG						
	FLUORANTHENE	UG/KG	330 J			250 J	260 J	330 J
	PYRENE	UG/KG	410 J			190 J	300 J	230 J
	BUTYL BENZYL PHTHALAT							
	BENZO(A)ANTHRACENE	UG/KG	120 J					130 J
	CHRYSENE	UG/KG	74 J					
	BIS(2-ETHYLHEXYL)PHTHA							
	BENZO(B)FLUORANTHENE	UG/KG	140 J		190 J			94 J
	BENZO(K)FLUORANTHENE	UO/KO	_				,	
	BENZO(A)PYRENE	UG/KO	75 J			480 J		

2

UG/KG - microgram per kilogram

J - value is estimated

SITE 6 WALLACE CREEK SEDIMENT POSITIVE DETECTION SUMMARY REMEDIAL INVESTIGATION CTO-0133 MCB CAMP LEJEUNE, NORTH CAROLINA ORGANICS

	Sample No:	6-WC11-SD-06B		6-WC11-SD-06M	
	Depth:	0 - 6"		0 - 6"	
	Date Sampled:	8/22/92		8/22/92	
· · · · · · · · · · · · · · · · · · ·	Lab Id:	00426-10		00426-11	
Parameter	Units				
DIELDRIN	UG/KG				
4,4'-DDE	UG/KG			25	J
4,4'-DDD	UG/KG	35	J	42	J
4,4'-DDT	UG/KG				
PCB-1260	UG/KG			120	J
METHYLENE CHLORIDE	UG/KG				
ACETONE	UG/KG	330	J	72	J
CARBON DISULFIDE	UG/KG			15	J
1,2-DICHLOROETHENE	UG/KG				
2-BUTANONE	UG/KG				
TRICHLOROETHENE	UG/KG				
TOLUENE	UG/KG				
TOTAL XYLENES	UG/KG				
PHENOL	UG/KG				
DIETHYL PHTHALATE	UG/KG				
PHENANTHRENE	UG/KG				
FLUORANTHENE	UG/KG			200	J
PYRENE	UG/KG	,		120	J
BUTYL BENZYL PHTHAL	ATE UG/KG				
BENZO(A)ANTHRACENE	UG/KG				
CHRYSENE	UG/KG				
BIS(2-ETHYLHEXYL)PHT	HALATE UG/KG	960	J		
BENZO(B)FLUORANTHEN	IE UG/KG				
BENZO(K)FLUORANTHEN	ie ug/kg				
BENZO(A)PYRENE	UG/KG				

UG/KG - microgram per kilogram J - value is estimated

	Sample No:	6-WC01-SD-06B	6-WC01-SD-612B		5-WC02-SD-06B		6-WC02-SD-612B		6-WC03-SD-06B	l .	6-WC03-SD-06M	ſ
	Depth:	0 - 6'	6 - 12'		0 - 6'		6 - 12		0 - 6	,	0 - 6	7
	Date Sampled:	8/30/92	8/30/92		8/26/92		8/26/92		8/26/92		8/26/92	2
	Lab Id:	00464-22	00464-24		00445-03		00445-04		00445-05		00445-06	5
Parameter	Units							******				
ALUMINUM	MG/KG	2090 J	2510		6540	J	5390	J	6480	J	4780	J
ARSENIC	MG/KG	1.2 JB										
BARIUM	MG/KG	5.2 JB	15.3	В	19.6	лв	23.7	JB	15.8	лв	37.1	лв
BERYLLIUM	MG/KG											
CALCIUM	MG/KG	329 B	1060	в	1090	JВ	1790	J	2850	J	22200	J
CHROMIUM	MG/KG			•	4.2		3.4		6.2		6.4	
COBALT	MG/KG				0.6	JB	0.87	JB			1.3	Ъ
COPPER	MG/KG				0.43	JB	0.62	л	5.8	JB	53200	
IRON	MG/KG	724 J	1430	J	1200	J	1570	J	6870	J	6940	J
LEAD	MG/KG	9.7 J	2.3	J	4.8	J	4.8	J	9	J	314	J
MAGNESIUM	MG/KG	50.5 B	57	в	372	JB	356	JB	440	ЛВ	852	JB
MANGANESI	E MG/KG		4.7	J	8.8		6.5		9.7		23	
NICKEL	MG/KG						2.8	В				
POTASSIUM	MG/KG	92.1 B	98.1	В	145	В			220	в	360	В
SILVER	MG/KG										7.3	i
SODIUM	MG/KG				491	JB	469	JB			489	JB
VANADIUM	MG/KG	5.7 B	4.4	В	5.8	В	7	в	11.6	в	9.1	В
ZINC	MG/KG										926	;

MG/KG - milligram per kilogram

B - reported value is less than Contract Required Detection Limit (CRDL), but greater than Instrument Detection Limit (IDL)

J - value is estimated

3-49

:	Sample No:	6-WC03-SD-612B	6-WC04-SD-06B	6-WC04-SD-06M	6-WC04-SD-612E	6-WC05-SD-06B	6-WC05-SD-06M
	Depth:	6 - 12'	0 - 6'	0-6	6 - 12	. 0 - 6	0 - 6'
	Date Sampled:	8/26/92	8/26/92	8/26/92	8/26/92	2. 8/27/92	8/27/92
1	Lab Id:	00445-07	00445-08	00445-09	00445-10	00445-11	00445-13
Parame	eter Units				······································		
ALUM	INUM MG/KC	7040	J 1830	J 569	J 1950	J 8600	J 2040 J
ARSEN	NIC MG/KC	1.3	JB	1.3	В		
BARIU	JM MG/KC	25.2	JB 4.2	JB 4.3	JB 4.8	JB 18.1	JB 4.7 JB
BERYI	LLIUM MG/KC	ł					
CALCI	IUM MG/KC	4500	J 407	JB 90000	J 1090	JB 1300	JB 2430 J
CHRO	MIUM MG/KC	8.3	2.7	3.7	· 2	B 4.3	2.4
COBAI	LT MG/KC	ł			0.63	JB 1.1	JB 0.62 JB
COPPE	ER MG/KG	79.6	8.7	J 2.5	JB 1.8	JB 1.2	JB 1.9 JB
ω IRON	MG/KC	, 6050	J 1920	J 1160	J 2050	J 1680	J 1450 J
LEAD	MG/KC	3 10.3	J 3	J 4.4	J 4.4	J 6.2	J 7.1 J
• MAGN	NESIUM MG/KC	333	JB 160	JB 1380	J 311	JB 673	JB 209 JB
MANG	JANESE MG/KO	8.3	5	18.7	5.1	6.4	7.1
NICKE	EL MG/KO	}					
POTA	SSIUM MG/KO	} 457	В	101	В	180	В
SILVE	ER MG/KO	}					
SODIU	UM MG/KG	}			621	JB 1070	ЛВ
VANA	DIUM MG/KG	3 15.7	В			4.6	JB 3.5 JB
ZINC	MG/KO	}			15.9	l i i i i i i i i i i i i i i i i i i i	

MG/KG - milligram per kilogram

B - reported value is less than Contract Required Detection Limit (CRDL), but greater than Instrument Detection Limit (IDL)

J - value is estimated

.

		Sample No:	6-WC05-SD-612B	6-WC06-SD-06	3	6-WC06-SD-06M	C	6-WC06-SD-612B		6-WC06-SD-612M		6-WC07-SD-06B	
		Depth:	6 - 12'	0-0	5'	0 - 6	,	6 - 12'		6 - 12'		0 - 6'	
		Date Sampled:	8/27/92	8/23/9	2	8/23/92	2	8/23/92		8/23/92		8/23/92	
		Lab Id:	00445-14	00429-0	1	00429-02	2	00429-03		00429-04		00429-07	,
	Parameter	Units		**************************************									
	ALUMINUM	MG/KG	4130	J 9120)	1990		6210		1390		8590	
	ARSENIC	MG/KG		3.6	в	1	в						
	BARIUM	MG/KG	23.4		B		JВ	14.3	в	2.5	ЛВ	12	В
	BERYLLIUM	MG/KG		0.35	в	0.12	в	0.41	в	0.1	в	0.78	в
	CALCIUM	MG/KG	1530	J 3590)	1410	в	3930		1740		8290	
	CHROMIUM	MG/KG	2.4	5.4	IB∙	1.5	в	3.2	В	1.2	В·		
	COBALT	MG/KG	0.89	ЛВ				1.6	Ъ				
	COPPER	MG/KG	0.77	JB 13.3	JB	7.3	JB	5.2	JB	1.3	JB	7.2	JB
လု	IRON	MG/KG	1010	J 8080)	1480		5410		978		3980	
51	LEAD	MG/KG	3.4	J 70.9)	19.9		12.4		5.7		18.8	
	MAGNESIUM	MG/KG		2250) B	438	В	1110	в	427	В	5650	в
	MANGANESE	MG/KG	4.4	25.8	3	5,8		16.3		5.9		13.1	В
	NICKEL	MG/KG											
	POTASSIUM	MG/KG		533	3 B	99.8	JB	318	В	124	в	545	в
	SILVER	MG/KG											
	SODIUM	MG/KG	468	JB 4220)	481	JB	1630	JВ	1530	J	6020	В
	VANADIUM	MG/KG	4.7	B 14.3	2В	- 3.5	JB	9.6	JB	2.2	JB	16.7	в
	ZINC	MG/KG		39.0	5	11.5		22.6		6.2			

MG/KG - milligram per kilogram

B - reported value is less than Contract Required Detection Limit (CRDL), but greater than Instrument Detection Limit (IDL)

J - value is estimated

:	Sample No:	6-WC07-SD-06M 0 - 6'	6-WC07-SD-612M		08-SD-06B		6-WC08-SD-06M		6-WC08-SD-612B		6-WC08-SD-612M	
	Depth:	7	6 - 12'		0 - 6'		0 - 6		6 - 12'		6 - 12	
	Date Sampled:	8/23/92	8/23/92		8/23/92		8/23/92		8/23/92		8/23/92	
	Lab Id:	00429-08	00429-09		00429-13		00429-15		00429-16		00429-17	·
Parameter	Units											
ALUMINUM	MG/KG	975	539		10700		9810		4470		18300	
ARSENIC	MG/KG				4.9		3.2		9.7		10.2	
BARIUM	MG/KG	3.6 JB			12.8		38.4	В.	5.9	JВ	110	
BERYLLIUM	MG/KG		0.07	В	0.49	В	0.35	в	0.21	в	0.76	В
CALCIUM	MG/KG	457 B	242	В	4560		3080		2080		5270	
CHROMIUM	MG/KG	•			8.4		. 9.2		2.7	в	19.2	
COBALT	MG/KG										2	JB
COPPER	MG/KG		0.89	JB	21.5		13.7	J	16.7	J	27.2	
IRON	MG/KG	695	390		8680		7450		4090		11300	
LEAD	MG/KG	8,7	1.5		97		44.1	J	49.7		156	
MAGNESIUM	MG/KG	140 B	62.7	в	3620		1650	в	701	в	906	
MANGANESE	MG/KG	3.7 B	3.1		27.8		21.3		12		28.4	
NICKEL	MG/KG											JB
POTASSIUM	MG/KG	71.4 JB	38.5	JB	862	в	807	в	233	в	834	
SILVER	MG/KG							-		-		2
SODIUM	MG/KG	553 JB	224	ЛВ	6740		3730		1140	лв	1150	JB
VANADIUM	MG/KG	1.7 JB			21.8		19.1		8.1	JB	33.7	
ZINC	MG/KG				106		67.9		29.2		132	

2

MG/KG - milligram per kilogram

B - reported value is less than Contract Required Detection Limit (CRDL), but greater than Instrument Detection Limit (IDL)

J - value is estimated

3-52

TABLE 3 - 12 SITE 6 WALLACE CREEK SEDIMENT POSITIVE DETECTION SUMMARY REMEDIAL INVESTIGATION CTO-0133 MCB CAMP LEJEUNE, NORTH CAROLINA TOTAL METALS

		Sample No:	6-WC09-SD-06B	6-WC09-SD-06M		6-WC09-SD-612B		6-WC09-SD-612M		6-WC10-SD-06B		6-WC10-SD-06M	
		Depth:	0 - 6'	0 - 6'		N/A		N/A		0 - 6'		0 - 6'	
		Date Sampled:	8/23/92	8/23/92		8/23/92		8/23/92		8/22/92		8/22/92	
		Lab Id:	00429-21	00429-22	_	00429-23		00429-24		00426-02		00426-04	
	Parameter	Units	·										<u></u>
	ALUMINUM	MG/KG	978	17200		8610		9160		4640		25400	
	ARSENIC	MG/KG		5.8	в			3.5	В			4.7	В
	BARIUM	MG/KG	2.8 J	B 19.8	в	15.4	в	10.9	в			23.6	в
	BERYLLIUM	MG/KG		0.63	в	0.33	в	0.3	В				
	CALCIUM	MG/KG	399 H	3 6150		10300		3410		6500	В	4180	
	CHROMIUM	MG/KG	1.7 I	3 ·17.7		8.2	в	9.6				28.5	
	COBALT	MG/KG	2.3 J	В 3.3	JB	2.9	JB	1.6	JB				
	COPPER	MG/KG	11.9 J	33.5		4.4	JB	10.7	Ъ				
ω	IRON	MG/KG	789	14600		11600		7000		4610	J	13900	
-53	LEAD	MG/KG	4.9	106		8.8		37.4		22.4	J	68.9	J
ω	MAGNESIUM	MG/KG	213 H	B 4520	В	730	В	1350	в	6630	в	4630	
	MANGANESE	E MG/KG	3.2 I	B 50.2		42.5		20.9		11.8	JB	40.6	
	NICKEL	MG/KG	2.7 J	IB				4.3	$_{\mathrm{JB}}$			10.7	Љ
	POTASSIUM	MG/KG	65.5 J	JB 1390	в	419	в	628	в	829	В	2200	В
	SILVĖR	MG/KG											
	SODIUM	MG/KG	332 J	IB 8880		1380	JB	1110	JВ	14900		11900	
	VANADIUM	MG/KG	1.9 1	JB 41.5	В	12.7	JΒ	18.5	В			45.5	J
	ZINC	MG/KG	388	137		17.1		43.6		33.1	В	69.6	

MG/KG - milligram per kilogram

B - reported value is less than Contract Required Detection Limit (CRDL), but greater than Instrument Detection Limit (IDL)

J - value is estimated

JB - value is estimated below the CRDL, but greater than the IDL

3-53

TABLE 3 - 12 SITE 6 WALLACE CREEK SEDIMENT POSITIVE DETECTION SUMMARY REMEDIAL INVESTIGATION CTO-0133 MCB CAMP LEJEUNE, NORTH CAROLINA TOTAL METALS

Sam	ple No:	6-WC10-SD-612M		6-WC11-SD-06B		6-WC11-SD-06M	
	Depth:	6 - 12'		0 - 6'		0 - 6'	
Date Sa	impled:	8/22/92		8/22/92		8/22/92	
	Lab Id:	00426-05		00426-10		00426-11	
Parameter	Units					<u> </u>	
ALUMINUM	MG/KG	8070		3470		12000	
ARSENIC	MG/KG	1.8	в	8.9	В	4.4	JE
BARIUM	MG/KG	10.4	в				
BERYLLIUM	MG/KG						
CALCIUM	MG/KG	2560		9350		4170	
CHROMIUM	MG/KG	10		7.7	в	13.5	
COBALT	MG/KG						
COPPER	MG/KG						
IRON	MG/KG	6810		3940		11600	
LEAD	MG/KG	13.7	J	16.7	J	31.8	J
MAGNESIUM	MG/KG	1620	в	9840		3830	
MANGANESE	MG/KG	26.5		12.3	JB	38.8	
NICKEL	MG/KG						
POTASSIUM	MG/KG	762	в	. 1040	В	1280	B
SILVER	MG/KG						
SODIUM	MG/KG	2380		18300		10300	
VANADIUM	MG/KG						
ZINC	MG/KG	24.3		22.7	в	42.5	

MG/KG - milligram per kilogram

B - reported value is less than Contract Required Detection Limit (CRDL), but greater than Instrument Detection Limit (IDL)

J - value is estimated

JB - value is estimated below the CRDL, but greater than the IDL

TABLE 3 - 13 SITE 6 BEAR HEAD CREEK SEDIMENT POSITIVE DETECTION SUMMARY REMEDIAL INVESTIGATION CTO-0133 MCB CAMP LEJEUNE, NORTH CAROLINA ORGANICS

D:	Sample No: Depth: ate Sampled: Lab Id:	6-BH01-SD-06B 0 - 6" 10/23/92 00591-01	6-BH02-SD-06M 0 - 6" 8/28/92 00458-02	6-BH02-SD-612M 6 - 12" 8/28/92 00458-03	6-BH03-SD-06B 0 - 6" 8/28/92 00458-05	6-BH03-SD-06M 0 - 6" 8/28/92 00458-07	6-BH03-SD-612B 6 - 12" 8/28/92 00458-08
Parameter	Units						
4,4'-DDE	UG/KG		5.7			68	
4,4'-DDD	UG/KG					25	
4,4'-DDT	UG/KG					15	
ALPHA CHLORDANE	UG/KG						
PCB-1260	UG/KG					170	
METHYLENE CHLORID	DE UG/KG	•		2 J	3 J		4 J
ACETONE	UG/KG		840	140	34	99	210
2-BUTANONE	UG/KG		15 J	3 J	10 J	23 J	30
TRICHLOROETHENE	UG/KG				5 J		
BENZENE	UG/KG	5 J					
TETRACHLOROETHEN	ie ug/kg				3 J		
ETHYLBENZENE	UG/KG						
TOTAL XYLENES	UG/KG				3 J		
1,4-DICHLOROBENZEN PYRENE BENZO(B)FLUORANTH	UG/KG						
BENZO(A)PYRENE INDENO(1,2,3-CD) PYR	UG/KG				450 J	190 J	640

TABLE 3 - 13

SITE 6 BEAR HEAD CREEK SEDIMENT POSITIVE DETECTION SUMMARY REMEDIAL INVESTIGATION CTO-0133 MCB CAMP LEJEUNE, NORTH CAROLINA ORGANICS

Date S	ple No: Depth: ampled: Lab Id;	6-BH03-SD-612M 6 - 12" 8/28/92 00458-09	6-BH04-SD-06B 0 - 6" 8/26/92 00439-01	6-BH04-SD-06M 0 - 6" 8/26/92 00439-02	6-BH04-SD-612B 6 - 12" 8/26/92 00439-03	6-BH04-SD-612M 6 - 12" 8/26/92 00439-04	6-BH05-SD-06B 0 - 6" 8/26/92 00439-05
Parameter	Units						
4,4'-DDE	UG/KG	22	14	41 J	35 J	53 J	30 J
4,4'-DDD	UG/KG	9.2 J	8.4 J	42 J	11 J	220 J	26 J
4,4'-DDT	UG/KG	6.6 J	16 J	9.4 J		38 J	20 3
ALPHA CHLORDANE	UG/KG						
PCB-1260	UG/KG	160	51	110 J	240 J	370 J	64 J
METHYLENE CHLORIDE	UG/KG	7 J					
ACETONE	UG/KG	340	140	9900 J	50 J	91	3700 J
2-BUTANONE	UG/KG	59		2400	5 J		2600
FRICHLOROETHENE	UG/KG						2000
BENZENE	UG/KG						
TETRACHLOROETHENE	UG/KG						
ETHYLBENZENE	UG/KG						
FOTAL XYLENES	UG/KG						
,4-DICHLOROBENZENE	UG/KG						
YRENE	UG/KG					60 J	
BENZO(B)FLUORANTHENE						00 3	
BENZO(A)PYRENE	UG/KG	230 J			93 J	100 J	
NDENO(1,2,3-CD) PYRENE			40 J		73 J	100 1	

.....

3-56

TABLE 3 - 13 SITE 6 BEAR HEAD CREEK SEDIMENT POSITIVE DETECTION SUMMARY REMEDIAL INVESTIGATION CTO-0133 MCB CAMP LEJEUNE, NORTH CAROLINA ORGANICS

Sample	No: pth:	6-BH05-SD-06M 0 • 6"	6-BH06-SD-06B 0 - 6"	6-BH06-SD-06M 0 - 6"	6-BH07-SD-06B 0 - 6"	6-BH07-SD-06M 0 - 6"
Date Samp	-	8/26/92	8/26/92	8/26/92	8/27/92	8/27/92
-	o Id:	00439-06	00439-07	00439-09	00445-01	00445-02
Parameter	Units				· · ·	
4,4'-DDE	UG/KG	32	68 J	24 J		
4,4'-DDD	UG/KG	23	37 J	22 J		
4,4'-DDT	UG/KG	21 J	14 J	7 J		
ALPHA CHLORDANE	UG/KG		14 J			
PCB-1260	UG/KG	110 J	180 J	69 J		
METHYLENE CHLORIDE	UG/KG					
ACETONE	UG/KG	470 J	60 J	91 J		
2-BUTANONE	UG/KG	87 J	•			
TRICHLOROETHENE	UG/KG					150
BENZENE	UG/KG					
TETRACHLOROETHENE	UG/KG					
ETHYLBENZENE	UG/KG					57 J
TOTAL XYLENES	UG/KG					380
1,4-DICHLOROBENZENE	UG/KG				340 J	370 J
PYRENE	UG/KG		76 J			
BENZO(B)FLUORANTHENE	UG/KG		96 J			
BENZO(A)PYRENE	UG/KG					
INDENO(1,2,3-CD) PYRENE	UG/KG					

TABLE 3 - 14 SITE 6 BEAR HEAD CREEK SEDIMENT POSITIVE DETECTION SUMMARY REMEDIAL INVESTIGATION CTO-0133 MCB CAMP LEJEUNE, NORTH CAROLINA TOTAL METALS

:	Sample No:	6-BH01-SD-612B	6-BH01-SD-612M	6-BH01-SD-06B	6-BH01-SD-06M	6-BH02-SD-06M	6-BH02-SD-612M
	Depth:	6 - 12"	6 - 12"	0 - 6"	0 - 6"	0 - 6"	6 - 12"
·	Date Sampled:	10/23/92	10/23/92	10/23/92	10/23/92	8/28/92	8/28/92
	Lab Id:	00591-03	00591-04	00591-01	00591-02	00458-02	00458-03
Parameter	Units						
ALUMINUM	MG/KG	6760	7790	5610	6360	3010	7780
ARSENIC	MG/KG						1.6]
BARIUM	MG/KG	9.7 JB	14.4 B		9.9 JB	12.5 B	30 1
BERYLLIUM	MG/KG	0.13 B	0.17 B	0.14 B			0.33 1
CADMIUM	MG/KG					0.54 JB	1.3
CALCIUM	MG/KG	•			,	1410	3890
CHROMIUM	MG/KG	5.1	4.7	4.9	3.6		9.9
COBALT	MG/KG						
COPPER	MG/KG	3.2 JB	10.1 JB	4.2 JB	6.2 JB		
RON	MG/KG	765	1590	638	956	1240	3150
LEAD	MG/KG	8.9	12.3	11.3	10.2	6.9	8.9
MAGNESIUM	MG/KG	128 B	160 B	103 B	130 B	77.9 B	187
ANGANESE	E MG/KG	4.9	6 B	4.7	4.9 B	4.4 J	8.6
POTASSIUM	MG/KG	125 B	163 B	122 B	140 B		
SELENIUM	MG/KG						2.9
SODIUM	MG/KG						
VANADIUM	MG/KG	5.7 B	6.5 B	4.8 B	4.9 B	3.3 JB	14.1
ZINC	MG/KG					12	12.6

MG/KG - milligram per kilogram

B - reported value is less than Contract Required Detection Limit (CRDL), but greater than Instrument Detection Limit (IDL)

J - value is estimated

JB - value is estimated below the CRDL, but greater than the IDL

3-58

TABLE 3 - 14 SITE 6 BEAR HEAD CREEK SEDIMENT POSITIVE DETECTION SUMMARY REMEDIAL INVESTIGATION CTO-0133 MCB CAMP LEJEUNE, NORTH CAROLINA TOTAL METALS

•	Sample No:	6-BH03-SD-06B	6-BH03-SD-06M	6-BH03-SD-612	в	6-BH03-SD-612M	6-BH04-SD-	06B	6-BH04-SD-06M
	Depth:	0 - 6"	0 - 6"	6 - 12	2"	6 - 12"	0	- 6"	·0 - 6"
	Date Sampled:	8/28/92	8/28/92	8/28/9	2	8/28/92	8/2	6/92	8/26/92
	Lab Id:	00458-05	00458-07	00458-(8	00458-09	0043	9-01	00439-02
Parameter	Units								
ALUMINUM	MG/KG	13600 J	9210	1500	0	10800		465	570
ARSENIC	MG/KG								0.62 B
BARIUM	MG/KG	31.7 B	33.2	B 32.	8 B	40.4	В		
BERYLLIUM	MG/KG	0.63 B	0.56	B 0.9	7 B	0.42	В		
CADMIUM	MG/KG	1.3 JB	1.1	JB 1.	3 JB	1.7	JB	0.7 JB	
CALCIUM	MG/KG	3340	4850	328	0	5880	45	600	8560
CHROMIUM	MG/KG	11.9	8.4	13.	6	10		2.4	
COBALT	MG/KG								
COPPER	MG/KG		6.7	JB · ·		7.1	Ъ		
IRON	MG/KG	3050	4450	303	0	4660		516	442
LEAD	MG/KG	19.1 J	45.3	20.	8	46.1		2.9	7.7
MAGNESIUM	MG/KG	317 B	219	B 29	1 B	210	В	653 B	138 B
MANGANESE	MG/KG	11 J	14	J 8.	1 J	15	J	28.7	6.3 J
POTASSIUM	MG/KG	225 B		28	8 B				
SELENIUM	MG/KG								
SODIUM	MG/KG						:	86.5 JB	
VANADIUM	MG/KG	13.8 B	12.9	B 17	8	12.5	В	1.7 JB	1.5 JE
ZINC	MG/KG	11	30.4	6	4 B	34.5			7.7

MG/KG - milligram per kilogram

B - reported value is less than Contract Required Detection Limit (CRDL), but greater than Instrument Detection Limit (IDL)

J - value is estimated

3-59

JB - value is estimated below the CRDL, but greater than the IDL

TABLE 3 - 14 SITE 6 BEAR HEAD CREEK SEDIMENT POSITIVE DETECTION SUMMARY REMEDIAL INVESTIGATION CTO-0133 MCB CAMP LEJEUNE, NORTH CAROLINA TOTAL METALS

	Sample No:	6-BH04-SD-612B	6-BH04-SD-612M	6-BH05-SD-06B	6-BH05-SD-06M	6-BH06-SD-06B	6-BH06-SD-06M
	Depth:	6 - 12"	6 - 12"	0 - 6"	0 - 6"	0 - 6"	0 - 6"
	Date Sampled:	8/26/92	8/26/92	8/26/92	8/26/92	8/26/92	8/26/92
	Lab Id:	00439-03	00439-04	00439-05	00439-06	00439-07	00439-09
Parameter	Units						
ALUMINUM	MG/KG	1000	1300	1850	6230	3840	5260 J
ARSENIC	MG/KG		0.54 B		1.1 B	1 B	2.2 JB
BARIUM	MG/KG	8.1 JB		7.7 JB	27 B	17.9 B	25.1 JB
BERYLLIUM	MG/KG				0.3 B		
CADMIUM	MG/KG		0.73 JB		1.8 J	1.1 JB	
CALCIUM	MG/KG ·	7490	18000	1210	4070	4630	12300 J
CHROMIUM	MG/KG	3.4	2.8	2.3 B	6.6	5.5	9.2 J
COBALT	MG/KG				1.7 JB		
COPPER	MG/KG		1.2 JB	2.2 JB	6.2 JB	5.2 JB	8.8 JB
IRON	MG/KG	1320	995	998	6250	3060	5920 J
LEAD	MG/KG	2.5	17.8	17.6	29	42	27 J
MAGNESIUM	MG/KG	118 B	295 B	57.6 B	180 B	178 B	302 JB
MANGANESE	MG/KG	4.8 J	10.4 J	3.8 J	12.4 J	19 J	27.5 J
POTASSIUM	MG/KG				156 B	121 B	
SELENIUM	MG/KG						
SODIUM	MG/KG						93.7 JB
VANADIUM	MG/KG	1.5 JB	2.2 B	3.2 JB	10.4 B	6.5 B	9 JB
ZINC	MG/KG	6.7	11.4	13.8	36.6	24.9	50.7 J

MG/KG - milligram per kilogram

B - reported value is less than Contract Required Detection Limit (CRDL), but greater than Instrument Detection Limit (IDL)

J - value is estimated

JB - value is estimated below the CRDL, but greater than the IDL

3-60

TABLE 3 - 14

SITE 6 BEAR HEAD CREEK SEDIMENT POSITIVE DETECTION SUMMARY REMEDIAL INVESTIGATION CTO-0133 MCB CAMP LEJEUNE, NORTH CAROLINA TOTAL METALS

Sam	ple No: Depth:	6-BH07-SD-06B 0 - 6"		6-BH07-SD-06M 0 - 6"	
Date St	ampled:	8/27/92		8/27/92	
	Lab Id:	00445-01		00445-02	
Parameter	Units				
ALUMINUM	MG/KG	12300	J	22100	J
ARSENIC	MG/KG	6.1	JB	4.7	в
BARIUM	MG/KG	10.5	зв	22.8	JB
BERYLLIUM	MG/KG				
CADMIUM	MG/KG			4.7	JB
CALCIUM	MG/KG	9240	J	14400	J
CHROMIUM	MG/KG	10.8	в	16.4	в
COBALT	MG/KG	3.4	в	4	в
COPPER	MG/KG	. 28.1	в	23.8	В
IRON	MG/KG	15800	J	17100	J
LEAD	MG/KG	49.2	J	70.4	J
MAGNESIUM	MG/KG	9820	J	10500	J
MANGANESE	MG/KG	46.5		48.6	
POTASSIUM	MG/KG	1930	В	1460	В
SELENIUM	MG/KG				
SODIUM	MG/KG	36200	J	15500	J
VANADIUM	MG/KG	45.9	в	54.1	в
ZINC	MG/KG	77.1		82.4	

ŧ

MG/KG - milligram per kilogram

B - reported value is less than Contract Required Detection Limit (CRDL), but greater than Instrument Detection Limit (IDL)

J - value is estimated

JB - value is estimated below the CRDL, but greater than the IDL

TABLE 3 - 15 SITE 6 RAVINE SEDIMENT POSITIVE DETECTION SUMMARY REMEDIAL INVESTIGATION CTO-0133 MCB CAMP LEJEUNE, NORTH CAROLINA ORGANICS

	Sample No: Depth: te Sampled:	6-RV1-SD-06 0 - 6" 8/25/92	6-RV2-SD-06 0 - 6" 8/25/92	6-RV3-SD-06 0 - 6" 8/24/92	6-RV3-SD-612 6 - 12" 8/24/92	6-RV4-SD-06 0 - 6" 8/24/92	6-RV4-SD-612 6 - 12" 8/24/92
	Lab Id:	00439-11	00439-13	00437-04	00437-05	00437-08	00437-09
Parameter	Units						
DIELDRIN	UG/KG	43 J			8.1 J		
4,4'-DDE	UG/KG		120 J		53 J		
ENDRIN	UG/KG	5.1 J					
4,4'-DDD	UG/KG	1	45 J			9.4 J	4.1 J
4,4'-DDT	UG/KG		130 J	210 J	51	14 J	
ENDRIN ALDEHYDE	UG/KG	7.8					
PCB-1260	UG/KG	360 J	92 J	190 J			
ACETONE	UG/KG	62				180 J	9100 J
2-BUTANONE	UG/KG						2400 J
NAPHTHALENE	UG/KG		54 J				
2-METHYLNAPHTHALEN	NE UG/KG		44 J				
ACENAPHTHENE	UG/KG		220 J				
DIBENZOFURAN	UG/KG		110 J				
FLUORENE	UG/KG		250 J				
PHENANTHRENE	UG/KG	50 J	1600		90 J		
ANTHRACENE	UG/KG		480				
DI-N-BUTYL PHTHALAT	E UG/KG						
FLUORANTHENE	UG/KG	84 J	1500 J		130 J		
CARBAZOLE	UG/KG		170 J				
PYRENE	UG/KG	130 J	2100		96 J		
BENZO(A)ANTHRACENE	UG/KG	61 J	1100		43 J		
CHRYSENE	UG/KG	85 J	1100		59 J		
BIS(2-ETHYLHEXYL)PHT	THALATE UG/KG			200 J			
BENZO(B)FLUORANTHE	NE UG/KG	120 J	1200		54 J		
BENZO(K)FLUORANTHE	NE UG/KG		440				
BENZO(A)PYRENE	UG/KG	70 J	1000	,			
INDENO(1,2,3-CD) PYREI	NE UG/KG	57 J	710				
DIBENZ(A,H)ANTHRACE			83 J				
BENZO(G,H,I)PERYLENE		57 J	680				

UG/KG - microgram per kilogram J - value is estimated

3-62

TABLE 3 - 15 SITE 6 RAVINE SEDIMENT POSITIVE DETECTION SUMMARY REMEDIAL INVESTIGATION CTO-0133 MCB CAMP LEJEUNE, NORTH CAROLINA ORGANICS

Sampl	e No:	6-RV5-SD-06	6-RV6-SD-06		6-RV7-SD-06	;	6-RV7-SD-612		6-RV8-SD-06
D	epth:	0 - 6"	0 - 6"		0 - 6"	,	6 - 12"		0 - 6"
Date Sam	pled:	8/25/92	8/25/92		8/25/92	:	8/25/92		8/25/92
L.	ab Id:	00439-15	00437-11		00437-12	;	00437-14		00437-17
Parameter	Units						· · · · · · · · · · · · · · · · · · ·		
DIELDRIN	UG/KG								
4,4'-DDE	UG/KG	44 J	58	J	37	J	23	J	
ENDRIN	UG/KG								
4,4'-DDD	UG/KG	9 J			36	J	34	J	
4,4'-DDT	UG/KG	19 J	170	J	60		19		
ENDRIN ALDEHYDE	UG/KG								
PCB-1260	UG/KG	79 J			29	J	41	J	
ACETONE	UG/KG		3400	J					340 J
2-BUTANONE	UG/KG		2300				,		
NAPHTHALENE	UG/KG								
2-METHYLNAPHTHALENE	UG/KG								
ACENAPHTHENE	UG/KG								
DIBENZOFURAN	UG/KG								
FLUORENE	UG/KG								
PHENANTHRENE	UG/KG								
ANTHRACENE	UG/KG								
DI-N-BUTYL PHTHALATE	UG/KG						52	J	
FLUORANTHENE	UG/KG								
CARBAZOLE	UG/KG								
PYRENE	UG/KG								120 J
BENZO(A)ANTHRACENE	UG/KG								
CHRYSENE	UG/KG								
BIS(2-ETHYLHEXYL)PHTHAL	ATE UG/KG								
BENZO(B)FLUORANTHENE	UG/KG								110 J
BENZO(K)FLUORANTHENE	UG/KG								
BENZO(A)PYRENE	UG/KG								89 J
INDENO(1,2,3-CD) PYRENE	UG/KG								
DIBENZ(A,H)ANTHRACENE	UG/KG								
BENZO(G,H,I)PERYLENE	UG/KG								

TABLE 3 - 16 SITE 6 RAVINE SEDIMENT POSITIVE DETECTION SUMMARY REMEDIAL INVESTIGATION CTO-0133 MCB CAMP LEJEUNE, NORTH CAROLINA TOTAL METALS

	Sample No:	6-RV1-SD-06	6-RV2-SD-06	6-RV3-SD-06	6-RV3-SD-612	6-RV4-SD-06	6-RV4-SD-612
	Depth:	0 - 6"	0 - 6"	0 - 6"	6 - 12"	0 - 6"	6 - 12"
Γ	Date Sampled:	8/25/92	8/25/92	8/24/92	8/24/92	8/24/92	8/24/92
	Lab Id:	00439-11	00439-13	00437-04	00437-05	00437-08	00437-09
Parameter	Units				······	·	
ALUMINUM	MG/KG	10300	2540	3820	1090	947	739
ARSENIC	MG/KG	4.3	0.61 B	2.1 JB			
BARIUM	MG/KG	61.5	22.9 B	18.2 JB	5.6 JB	4.2 JB	2.9 JB
BERYLLIUM	MG/KG			0.13 B			
CADMIUM	MG/KG	5.9 J	1.8 J	1.9 J	0.61 J	0.53 JB	
CALCIUM	MG/KG	3450	1490	735 B	315 B	148 B	
CHROMIUM	MG/KG	17.7	3.6	6			
COBALT	MG/KG	2.1 JB		0.72 B			
COPPER	MG/KG	67.5	12.3	18.7 J	6 J	4.2 JB	2.6 JH
IRON	MG/KG	7590	2290	2690	828	1010	420
LEAD	MG/KG	2.1 B	21.2	62.3 J	12.4 J	6.6 J	5.4 J
MAGNESIUM	MG/KG	402 B	139 B	137 B	40 B	34.7 B	24,5 B
MANGANESE	MG/KG	288	. 24	58.3	5.1 J	6.5 J	3.4 J
MERCURY	MG/KG	0.75	0.25	0.1	0.04 B	0.03 B	
NICKEL	MG/KG	7.7 JB		2.1 B			
POTASSIUM	MG/KG	361 B	108 B	153 B	47.5 B	35.1 B	29.5 B
SILVER	MG/KG			0.85 B		0.56 B	0.6 B
VANADIUM	MG/KG	19	6 B	7 B	2.1 B	2.5 B	1.2 B
ZINC	MG/KG	408	64.8	113	24.8	31.6	20.3

MG/KG - milligram per kilogram

B - reported value is less than Contract Required Detection Limit (CRDL), but greater than Instrument Detection Limit (IDL)

J - value is estimated

3-64

JB - value is estimated below the CRDL, but greater than the IDL

SITE 6 RAVINE SEDIMENT POSITIVE DETECTION SUMMARY REMEDIAL INVESTIGATION CTO-0133 MCB CAMP LEJEUNE, NORTH CAROLINA TOTAL METALS

	Sample No:	6-RV5-SD-06		6-RV6-SD-06		6-RV7-SD-06		6-RV7-SD-612		6-RV8-SD-06	
Depth: Date Sampled: Lab Id:		0 - 6" 8/25/92 00439-15		0 - 6" 8/25/92 00437-11		0 - 6" 8/25/92 00437-12		6 - 12" 8/25/92 00437-14		0 - 6"	
										8/25/92	
										00437-17	
Parameter	Units										
ALUMINUM	MG/KG	913		2100		1260		1710		7130	
ARSENIC	MG/KG									2.3	В
BARIUM	MG/KG			8.5	JB	6.8	Ъ	12.2	JB	37.7	JB
BERYLLIUM	MG/KG			0.06	в			0.07	В	0.25	В
CADMIUM	MG/KG			1.7	J	0.64	JB	1.6	J	2.3	J
CALCIUM	MG/KG			10100		284	в	577	в	1390	в
CHROMIUM	· MG/KG	2	В.	3.1	J	•				10.5	
COBALT	MG/KG									1.1	В
COPPER	MG/KG	6.5	J	8.1	J	6.9	J	45	J	35	J
IRON	MG/KG	875		2950		851		1000		3420	
LEAD	MG/KG	25.6		11.2	J	13.3	J	18.5	J	105	J
MAGNESIUM	MG/KG	36.3	в	217	В	53.2	в	91.1	в	289	В
MANGANESE	MG/KG	28.9		104		25.5	J	21.6	J	24.2	J
MERCURY	MG/KG			0.15		0.09	в	0.15		0.27	
NICKEL	MG/KG							2.8	в	4	В
POTASSIUM	MG/KG			83.2	в	48.2	в	60.9	в	253	В
SILVER	MG/KG					0.82	В	0.85	В	1.2	в
VANADIUM	MG/KG	1.8	JB	4	В	2.4	JB	3.7	JB		JB
ZINC	MG/KG	80.8		204		94.2		193		142	

MG/KG - milligram per kilogram

B - reported value is less than Contract Required Detection Limit (CRDL), but greater than Instrument Detection Limit (IDL)

J - value is estimated

JB - value is estimated below the CRDL, but greater than the IDL

TABLE 3-17

OPERABLE UNIT NO. 2 TIDE DATA FOR THE NEW RIVER IN JACKSONVILLE, NORTH CAROLINA REMEDIAL INVESTIGATION CTO-0133 MCB CAMP LEJEUNE, NORTH CAROLINA

$\begin{array}{c} 08/01/92 & 13 \\ \hline N \\ 08/02/92 & 14 \\ \hline N \\ 08/03/92 & 2 \\ \hline 18 \\ 08/03/92 & 18 \\ \hline 08/04/92 & 3 \\ \hline 16 \\ 08/05/92 & 4 \\ \hline 16 \\ \hline \end{array}$	'ime 3.1 NA 1.5 4.1 NA 2.5 5.0 3.3 6.5 4.5 6.9 NA 5.4	Height (feet) 1.74 NA 1.62 1.62 NA 1.55 1.64 1.55 1.64 1.52 1.67 1.54 1.62	Time 7.9 20.3 NA 8.8 21.2 9.5 22.2 10.1 22.6 11.4	Height (feet) 0.88 0.92 NA 0.84 0.90 0.93 0.92 0.95 1.05	Date 08/17/92 08/18/92 08/19/92	Time 1.4 13.7 NA 1.9 14.5 NA 2.7 15.2	Height (feet) 1.67 1.66 NA 1.62 1.65 NA 1.55	Time NA 8.2 20.4 NA 8.6 21.4	Height (feet) NA 1.11 1.14 NA 1.09	Date 09/02/92 09/03/92	Time 3.1 15.6 4.1 16.7 NA	Height (feet) 1.52 1.59 1.45 1.55	Time 10.4 22.8 11.0 NA	Height (feet) 0.94 0.98 0.95 NA
$\begin{array}{c} 08/01/92 & 13 \\ \hline N \\ 08/02/92 & 14 \\ \hline N \\ 08/03/92 & 2 \\ \hline 18 \\ 08/03/92 & 18 \\ \hline 08/04/92 & 3 \\ \hline 16 \\ 08/05/92 & 4 \\ \hline 16 \\ \hline \end{array}$	3.1 NA 1.5 4.1 NA 2.5 5.0 3.3 6.5 4.5 6.9 NA	1.74 NA 1.62 1.62 NA 1.55 1.64 1.52 1.67 1.54 1.62	7.9 20.3 NA 8.8 21.2 9.5 22.2 10.1 22.6 11.4	0.88 0.92 NA 0.84 0.90 0.93 0.92 0.95 1.05	08/17/92 08/18/92	1.4 13.7 NA 1.9 14.5 NA 2.7	1.67 1.66 NA 1.62 1.65 NA	NA 8.2 20.4 NA 8.6	NA 1.11 1.14 NA	09/02/92	3.1 15.6 4.1 16.7	1.52 1.59 1.45 1.55	10.4 22.8 11.0 NA	0.94 0.98 0.95 NA
$\begin{array}{c c} 08/01/92 & \overline{N} \\ \hline 08/02/92 & 14 \\ \hline 08/03/92 & 2 \\ \hline 08/03/92 & 15 \\ \hline 08/04/92 & 3 \\ \hline 08/05/92 & 4 \\ \hline 08/05/92 $	NA 1.5 4.1 NA 2.5 5.0 3.3 6.5 4.5 6.9 NA	NA 1.62 1.62 NA 1.55 1.64 1.52 1.67 1.54 1.62	20.3 NA 8.8 21.2 9.5 22.2 10.1 22.6 11.4	0.92 NA 0.84 0.90 0.93 0.92 0.95 1.05	08/18/92	13.7 NA 1.9 14.5 NA 2.7	1.66 NA 1.62 1.65 NA	8.2 20.4 NA 8.6	1.11 1.14 NA		15.6 4.1 16.7	1.59 1.45 1.55	22.8 11.0 NA	0.98 0.95 NA
$\begin{array}{c} \cdot 1 \\ 08/02/92 \\ \hline 14 \\ \hline N \\ 08/03/92 \\ \hline 15 \\ 08/04/92 \\ \hline 3 \\ 08/05/92 \\ \hline 4 \\ 16 \\ \end{array}$	1.5 4.1 NA 2.5 15.0 3.3 16.5 4.5 16.9 NA	1.62 1.62 NA 1.55 1.64 1.52 1.67 1.54 1.62	NA 8.8 21.2 9.5 22.2 10.1 22.6 11.4	NA 0.84 0.90 0.93 0.92 0.95 1.05	08/18/92	NA 1.9 14.5 NA 2.7	NA 1.62 1.65 NA	20.4 NA 8.6	1.14 NA	09/03/92	4.1 16.7	1.45 1.55	11.0 NA	0.95 NA
$\begin{array}{c} 08/02/92 \\ \hline N \\ 08/03/92 \\ \hline 2 \\ 15 \\ 08/04/92 \\ \hline 3 \\ 16 \\ 08/05/92 \\ \hline 4 \\ 16 \\ \end{array}$	4.1 NA 2.5 15.0 3.3 16.5 4.5 16.9 NA	1.62 NA 1.55 1.64 1.52 1.67 1.54 1.62	8.8 21.2 9.5 22.2 10.1 22.6 11.4	0.84 0.90 0.93 0.92 0.95 1.05		14.5 NA 2.7	1.65 NA	8.6		09/03/92				
$ \begin{array}{c} 08/03/92 \\ \hline 08/04/92 \\ \hline 08/05/92 \\ \hline 4 \\ 16 \end{array} $	2.5 15.0 3.3 16.5 4.5 16.9 NA	1.55 1.64 1.52 1.67 1.54 1.62	9.5 22.2 10.1 22.6 11.4	0.93 0.92 0.95 1.05		NA 2.7	NA		1.09		NA			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	5.0 3.3 6.5 4.5 6.9 NA	1.64 1.52 1.67 1.54 1.62	22.2 10.1 22.6 11.4	0.92 0.95 1.05	08/19/92	2.7		21.4			7477	NA	0.2	1.02
$ \begin{array}{r} 18 \\ 08/04/92 \\ \hline 3 \\ 16 \\ 08/05/92 \\ \hline 4 \\ 16 \\ \hline 16 \\$	3.3 6.5 4.5 6.9 NA	1.52 1.67 1.54 1.62	10.1 22.6 11.4	0.95 1.05	08/19/92		1.55		1.12	09/04/92	4.8	1.39	12.0	0.99
$ \begin{array}{c cccccccccccccccccccccccccccccccccc$.6.5 4.5 .6.9 NA	1.67 1.54 1.62	22.6 11.4	1.05		15.2		9.3	1.05		17.7	1.53	NA	NA
$ \begin{array}{r} 16 \\ 08/05/92 \\ \hline 4 \\ 16 \end{array} $	4.5 .6.9 NA	1.54 1.62	11.4		1 1		1.64	22.2	1.13	09/05/92	NA	NA	0.7	1.02
08/05/92 16	.6.9 NA	1.62			08/20/92	$\frac{3.7}{15.4}$	1.54 1.66	10.0 23.3	$\frac{1.12}{1.17}$		6.2 18.8	$\frac{1.44}{1.58}$	13.2 NA	1.04 NA
	NA		3.7 4	1.05		15.4 4.2		23.3 11.2			NA	1.58 NA	1.7	1.15
		NTA	NA	NA	08/21/92	4.2	1.55 1.64	NA	1.13 NA	09/06/92	1NA 7.2	1.60	$\frac{1.7}{14.1}$	1.15 1.15
		NA 1.47	0.4 12.4	1.02 1.03	08/22/92	NA	NA	0.2	1.14	00/00/02	19.9	1.68	NA	NA
	8.1	1.59	NA	NA		5.0	1.51	12.0	1.06		NA	NA	2.7	1.23
	NA	NA	1.3	1.04	00,22,02	17.6	1.58	NA	NA	09/07/92	8.1	1.62	14.9	1.17
	6.3	1.49	13.3	1.04		NA	NA	0.9	1.07		20.4	1.66	NA	NA
	9.0	1.59	NA	NA	08/23/92	6.1	1.48	13.1	1.02	09/08/92	8.8	1.55	3.4	1.12
N	NA	NA	2.0	1.08		18.7	1.60	NA	NA	09/00/92	21.1	1.59	15.7	1.08
	7.3	1.47	14.4	1.02		NA	NA	2.0	1.05	09/09/92	9.6	1.55	4.0	1.04
20	20.1	1.58	NA	NA	08/24/92	7.3	1.52	14.2	1.01	00/00/02	21.9	1.57	16.5	1.04
111X/11U/U/2 [8.6	1.44	3.4	1.02		20.0	1.64	NA	NA	09/10/92	10.4	1.54	4.8	0.99
20	20.8	1.55	15.4	1.03	10/05/00	NA	NA	3.1	1.02		22.5	1.55	17.2	1.02
	9.6	1.50	4.1	1.02	08/25/92	8.4 21.0	1.56 1.65	15.1 NA	0.95 NA	09/11/92	10.8	1.66	4.8	1.05
2.	21.8	1,59	16.2	1.01		9.2	1.59	4.0	0.95		23.3	1.66	18.1	1.12
	0.2	1.52	4.9	1.03	08/26/92	9.2	$\frac{1.59}{1.71}$	$\frac{4.0}{16.2}$	0.95	09/12/92	$\frac{11.4}{23.7}$	$\frac{1.71}{1.64}$	6.1 18.5	$\frac{1.14}{1.12}$
	NA	NA	16.9	1.02		10.3	1.71	5.0	0.97				18.5 6.7	1.12
	0.3	$\frac{1.72}{1.57}$	NA 5.7	NA 0.99	08/27/92	22.5	1.74	17.3	0.95	09/13/92	12.1 NA	1.69 NA	0.7 18.9	1.10
	22.8	1.57	17.6	0.95		11.2	1.73	6.0	0.95		0.3	1.64	NA	NA
11	1.4	1.59	6.1	1.02	08/28/92	NA	NA	18.5	0.89	09/14/92	12.7	1.04 1.70	7.0	1.08
	NA	NA	18.0	1.02		0.5	1.64	NA	NA		NA	NA	19.8	1.11
	.04	1.81	NA	NA	08/29/92	12.5	1.81	6.9	0.97		0.9	1.61	NA	NA
	1.9	1.76	6.4	1.19		NA	NA	19.5	0.96	09/15/92	13.1	1.69	7.6	1.07
	NA	NA	19.0	1.21		0.9	1.74	NA	NA		NA	NA	20.2	1.11
	0.4	1.84	NA	NA	08/30/92	12.9	1.75	7.7	0.96		1.4	1.58	NA	NA
	2.6	1.79	8.0	1.27		NA	NA	20.2	0.93	09/16/92	13.9	1.62	8.1	1.05
	NA	NA	19.7	1.20	00/01/00	1.4	1.57	NA	NA		NA	NA	21.0	1.04
	1.0	1.76	NA	NA	08/31/92	14.1 NA	1.61 NA	8.5	0.84 0.91	09/17/92	2.2	1.50	9.1	1.00
	.3.0	1.73	7.7	1.22		NA 25	NA 1.56	21.0	0.91 NA	ļ	14.6	1.57	21.8	1.02
	NA	NA	19.9	1.16	09/01/92	2.5 NA	1.56 NA	NA 9.2	0.96	09/18/92	2.9	1.43	9.8	0.96
			*		03/01/32	14.8	1.65	21.9	1.00	L	15.4	1.56	22.8	1.03

Source: NOAA Tide Station in Hampton Roads, Virginia NA - Not Aplicable

(Note: Source data recalculated using appropriate correction factors to yield New River Data)

0 00

TABLE 3-18

OPERABLE UNIT NO. 2 SURFACE WATER SAMPLES CORRELATION WITH TIDE BASELINE ECOLOGICAL RISK ASSESSMENT REMEDIAL INVESTIGATION CTO-0133 MCB CAMP LEJEUNE, NORTH CAROLINIA

Station	Date	Time	Tide	Percent(%)*
WALLACE CREEK				
6-WC11-SW/SD	8/22/92	9:10	Falling	43
6-WC10-SW/SD	8/22/92	10:30	Falling	22
6-WC09-SW/SD	8/23/92	9:08	Falling	57
6-WC08-SW/SD	8/23/92	11:10	Falling	29
6-WC07-SW/SD	8/23/92	12:10	Falling	14
6-WC06-SW/SD	8/23/92	13:50	Rising	88
6-WC05-SW/SD	8/25/92	11:30	Falling	57
6-WC04-SW/SD	8/26/92	9:20	Falling	99
6-WC03-SW/SD	8/26/92	9:55	Falling	90
6-WC02-SW/SD	. 8/26/92	17:30	Rising	77
6-WC01-SW/SD	8/30/92	7:45	Low Tide	0
BEAR HEAD CREEK				
6-BH01-SW/SD	8/24/92	16:20	Rising	67
6-BH07-SW/SD	8/25/92	9:45	Falling	80
6-BH06-SW	8/28/92	7:40	Rising	67
6-BH05-SW	8/28/92	8:25	Rising	53
6-BH03-SW/SD	8/28/92	13:15	Falling	73
6-BH02-SW/SD	8/28/92	14:54	Falling	47
6-BH04-SW/SD	8/29/92	9:35	Rising	54
6-BH02A-SW/SD	8/29/92	12:45	Falling	97

* Percentage to reach high/low tide. (based on height of tide)

4.0 ECOLOGICAL INVESTIGATION

This section discusses the ecological investigation conducted at OU No. 2. Included in this section are the selection of target species; selection of ecological endpoints; the sampling methodologies, procedures, and station locations; and the sampling results. The sampling included the collection of fish and benthic macroinvertebrate species for population analysis and the collection of fish and crabs for tissue analysis.

4.1 Introduction

The ecological investigation at OU No. 2 was conducted to determine if contamination attributable to OU No. 2 is adversely impacting the ecological integrity of Wallace Creek, Bear Head Creek, or the ravine. The potential impact to the ecological integrity was evaluated by the use of ecological endpoints (described in Section 4.3) in the risk characterization (described in Section 7.0).

Three types of information are needed to evaluate potential links between the contaminants of concern (COCs) and the ecological endpoints. First, chemical analyses of the appropriate media are necessary to establish the presence, concentrations, and variabilities of the COCs. Second, ecological surveys are necessary to establish if adverse ecological effects have occurred. Finally, toxicological information is necessary to evaluate the potential effects of the COCs on the ecological receptors. The combination of all three types of data allows the assessment of the relative contribution of other potential causes of the OCcs, such as habitat alterations and natural variability. Therefore, confidence in cleanup and monitoring decisions is greatly enhanced when based on a combination of chemical, ecological, and toxicological data.

The investigation included the collection of fish and benthic macroinvertebrates for population statistics and fish and crabs for "body burden" analysis. The following describes the methodologies for the biosurvey field work and for the ecological endpoint evaluation.

4.2 <u>Selection of Target Indicator Species</u>

The following sections discuss the target indicator species that were chosen for the ecological risk assessment, and the reason they were chosen as indicator species. The four primary criteria used for the selection of the indicator species are listed below:

- Importance to ecological systems
- Sensitivity
- Availability of practical methods for prediction and measurement
- Trustee species or regulatory endpoint

4.2.1 Fish

Estuaries serve as a unique environment for many marine species of fish. Reduced salinity and lower incidence of piscivorous predators, together with a rich food supply, provide benefits to these fishes. While a few fish spend their entire life cycle in estuaries, most are seasonal members of estuarine communities or utilize this habitat strictly as a migratory pathway between feeding and spawning areas (Kennish, 1990).

Estuarine fish must have the ability to regulate their internal environment to successfully inhabit the fluctuating environment of estuaries, where sudden floods and tidal changes abruptly alter salinity. The dominant estuarine fishes have broad salinity tolerances. Marine fishes are preadapted to reduced salinities, so that when salinity gradually decreases in an estuary, many of them will have little difficulty adapting to it (Kennish, 1990).

Fish are commonly used as target indicator species of water quality conditions for the following reasons (USEPA, 1989c):

• Fish are integrators of community response to aquatic environmental quality conditions. They are the end products of most aquatic food webs and, thus, the total biomass of fishes is highly dependent on the gross primary and secondary productivity of lower organism groups.

- Fish constitute a conspicuous part of the aquatic biota and are recognized by the public for their endangered status. They also represent the end product of protection for most water pollution abatement programs.
- Fish reproduce once per year and complete their entire life cycle in the aquatic environment. Therefore, the success of each year class is dependent upon the quality of the aquatic environment which they inhabit. The success can be evaluated by determining the general condition of the fish community each summer and fall.
- Fish have a relatively high sensitivity to a variety of substances and physical conditions. Both acute toxicity (missing taxa) and stress effects (depressed growth and reproductive success) can be evaluated.
- Fish have a high capacity for bioaccumulating large amounts of chemicals that can be measured.
- Fish can be quickly identified to the species level in the field and there is an abundance of information available for many species concerning their life distribution.

4.2.2 Benthic Macroinvertebrates

Benthic macroinvertebrates are defined as organisms that are large enough to be seen by the unaided eye, and are retained by a U.S. Standard No. 30 sieve (28 meshes per inch, 0.595 mm openings) (USEPA, 1990). They live at least part of their life cycles within or upon available substrates in a body of water or water transport systems (USEPA, 1990).

Benthic macroinvertebrates are important organisms in the trophic food web. They are a primary food source for many fish species and some terrestrial and bird species. Therefore, a decrease in numbers of benthic macroinvertebrates could lead to decreased populations of fish and other species. Also, constituents that tend to bioaccumulate in organisms could be biomagnified in species that ingest benthic macroinvertebrates. The advantages of using benthic macroinvertebrates as target indicator species are as follows (USEPA, 1989c):

• Benthic macroinvertebrates generally have limited migration patterns or they are sessile for periods in their life cycle. Therefore, they are good indicators for site-specific impacts (i.e., upstream-downstream).

- Benthic macroinvertebrates have a relatively short life cycle (one year or more). Therefore, they are good indicators of short-term environmental variations because their sensitive life stages will respond quickly to various stresses, while the overall species community will respond more slowly.
- Benthic macroinvertebrates may be easily identified down to the family level by trained biologists. Degraded conditions often can be detected in the field in a very short time.
- Benthic macroinvertebrates are easily collected with one or two persons using relatively inexpensive equipment. In addition, there is no detrimental effect on the resident biota.
- Benthic macroinvertebrates are abundant in most water bodies.

4.2.3 Other Aquatic Flora and Fauna

Other aquatic fauna (e.g., zooplankton, microorganisms) and aquatic flora (e.g., submerged and floating vegetation, algae, etc.) are present in Wallace Creek and Bear Head Creek. Although these organisms are important in the ecological hierarchy, they were not collected or quantitatively evaluated in this assessment because they will be accounted for in the application of the ecological endpoints.

4.2.4 Terrestrial Fauna

As discussed earlier in this report, several terrestrial faunal species inhabit MCB Camp Lejeune. Because detailed collections and observations of these species were not conducted, population and community parameters for these species were discussed qualitatively in this evaluation. Comparisons of contaminant concentrations in soil to published plant and earthworm toxicity information was used to evaluate potential effects to flora and invertebrate terrestrial species. In addition, estimated daily intakes were calculated and compared to health-base terrestrial reference values to evaluate potential effects to vertebrate terrestrial species.

4.3 <u>Ecological Endpoints</u>

There are two primary types of ecological endpoints: assessment endpoints and measurement endpoints. Assessment endpoints are environmental characteristics, which, if they were found to be significantly affected, would indicate a need for remediation (e.g., decrease in sports/fisheries). Measurement endpoints are quantitative expressions of an observed or measured effect of the contamination of concern. Measurement endpoints may be identical to assessment endpoints (e.g., measurement of abundance of fish), or they may be used as surrogates for assessment endpoints (e.g., toxicity test endpoints). Both types of endpoints were used in the ecological risk evaluation.

The assessment endpoint should be well defined and operational with a subject (e.g., benthic macroinvertebrates) and a characteristic of the subject (e.g., decrease in numbers of benthic macroinvertebrate). An endpoint should be measurable (e.g., numbers of individuals) or predictable from measurements (e.g., toxicity tests), and the endpoint must be susceptible to the contaminant being assessed. Finally, the assessment endpoints should bear some logical relationship to the environmental decisions of concern.

The measurement endpoints must correspond to, or be predictive of, assessment endpoints. In addition, they must be readily measurable, preferably quickly and inexpensively, using existing techniques. Measurement endpoints must take into consideration the magnitude of the contamination (e.g., it would be inappropriate to use abundance of a deer population to assess the effects on a one acre site) and the exposure pathway. The measurement endpoint should be an indicator of effects that are temporally distributed. Low natural variability in the endpoint is preferred to aid in attributing the variability in the endpoint to the contaminant. Measurement endpoints should be diagnostic of the pollutants of interest, as well as broadly applicable to allow comparison among sites and regions. Also, measurement endpoints should be standardized (e.g., standard procedures for toxicity tests). Finally, it is desirable to use endpoints that already are being measured (if they exist) to determine baseline conditions.

Endpoints are divided into four primary ecological groups: individual, population, community, and ecosystem endpoints. Individual endpoints (e.g., death, growth, tissue concentrations) are evaluated through toxicity tests, models, and other methods used to assess the effects on individual organisms. Population endpoints (e.g., occurrence, abundance, reproductive performance) are evaluated to determine presence and absence of species

4-5

through field studies. Community endpoints (e.g., number of species, species diversity) are used to describe the complexity of the community. Finally, ecosystem endpoints (e.g., biomass, productivity, nutrient dynamics) are used to determine the effects between groups of organisms, and between organisms and the environment. Individual, population and community endpoints were evaluated in this assessment. In addition to those endpoints, the following were qualitatively evaluated in this risk assessment: species that are protected under either State or Federal laws and wetlands that are protected under State and/or Federal laws.

The primary goal in deciding upon which ecological endpoints to evaluate was to determine the current effects that the contamination is having on the environment. The endpoints and the indicator species that were evaluated are discussed in the following sections.

4.3.1 Individual Endpoints

This section discusses the individual endpoints that were used in the ERA including water and sediment criteria.

4.3.1.1 Water Criteria

The North Carolina Department of Environment, Health, and Natural Resources (N.C. DEHNR) has promulgated State Water Quality Standards (WQS). These WQS meet the requirements of both Federal and State law. These standards are regulatory values and are enforceable. They are used to evaluate the quality of waters in North Carolina.

The U.S. EPA Region IV Waste Management Division (Region IV) has adopted screening values for chemicals detected at hazardous waste sites (USEPA, 1992b) based on final and draft EPA Water Quality Criteria. These values are intended as preliminary screening tools to review chemical data from hazardous waste sites. Exceedences of the screening level values indicate that there may be a need for further investigation of the site. Acute and chronic Water Quality Screening Values (WQSV) have been developed for several of the chemicals identified during the surface water investigations at OU No. 2.

Contaminant concentrations detected in the surface water at OU No. 2 were compared to both the N.C. DEHNR WQS and Region IV WQSV to determine if there were any exceedences of the established values. In addition, the upper 95% confidence limit was compared to the

4-6

chronic WQSV. A ratio of greater than unity indicates a potential for adverse effects to aquatic life. The upper 95% confidence limit was used to represent the uncertainty associated with any estimate of exposure concentration over the exposure time and exposure area. If the variability in measured concentration values is great and the upper 95% confidence limit was greater than the maximum detected value, the maximum detected value was used in the comparison.

4.3.1.2 Sediment Screening Values

In addition to contaminants in surface water, aquatic organisms can be adversely affected by contaminants in sediments. Sediments tend to be a sink for certain types of toxic substances, with chemical concentrations in sediments often several orders of magnitude higher than their concentrations in the overlying water.

Currently promulgated sediment quality criteria do not exist. Until these criteria are developed, Region IV is using sediment values compiled by NOAA as screening values for evaluating the potential for chemical constituents in sediments to cause adverse biological effects (USEPA, 1992b). The lower ten percentile (Effects Range-Low (ER-L)) and the median percentile (Effects Range-Median (ER-M)) of biological effects have been developed for several of the chemicals identified during the sediment investigations at OU No. 2. If sediment contaminant concentrations are above the ER-M, adverse effects on the biota are considered probable. If contaminant concentrations are between the ER-M and ER-L, adverse effects on the biota are considered possible, and EPA recommends conducting toxicity tests as a followup. Finally, if contaminant concentrations are below the ER-L, adverse effects on the biota are considered unlikely (USEPA, 1992b).

Contaminant concentrations detected in the sediments at OU No. 2 were compared to the Region IV sediment screening values to determine if there were any exceedences in the established values. In addition, the upper 95% confidence limit was compared to the ER-L. A ratio of greater than unity indicates a possibility for adverse effects to aquatic life, and EPA recommends conducting toxicity tests as a follow-up. The upper 95% confidence limit was used to represent the uncertainty associated with any estimate of exposure concentration over the exposure time and exposure area. If the variability in measured concentration values is great and the upper 95% confidence limit was greater than the maximum detected value, the maximum detected value was used in the comparison.

4.3.2 ... Population Endpoints

The population endpoints that were evaluated in this risk assessment included species occurrence and abundance. The numbers and types of species collected from the sampling stations can qualitatively show trends of increasing or decreasing impacts. For example, if few organisms are collected at downstream stations while there is an abundant population in the upstream stations, the downstream ecosystem may be stressed.

Length-frequency distributions of fish of one age tend to follow a normal distribution pattern. By plotting the length of the fish on the X-axis and frequency on the Y-axis, a succession of peaks appears on the graph. A count of the peaks yields an approximation of age, which in many cases suffices only for the first two to four years because of the coalescing of the peaks due to increased dispersion of the data. Although the overlapping in length distribution reduces the reliability of the method for older age groups, it often is used as an effective check on the scale method of age determination. The length-frequency method suffers from several other disadvantages that affect its usage. First, a particular year class of fish may be absent or poorly represented in a sample. Second, size groupings of fish sometimes are not indicative of year classes due to irregular episodes of hatching. Third, a portion of a year class of fish may be equal in age but not in size owing to differential development under variable conditions. Fourth, fish of a certain size tend to school together.

The biological impairment of the fish community may be indicated by an abundance of tolerant species, the absence of intolerant species, and low species abundance. In addition, abnormal growths, lesions, etc., may indicate the fish community is stressed.

Biological impairment of the benthic macroinvertebrate community may be indicated by the absence of generally pollution-sensitive benthic macroinvertebrate, excess dominance by any one particular taxon, and low overall taxa richness (USEPA, 1989b). Benthic macroinvertebrates differ from each other in their relative sensitivity to pollution (e.g., chemicals) and/or natural stresses (e.g., low dissolved oxygen).

4.3.3 Community Endpoints

This section discusses the community endpoints that were used in the ERA including community similarity and species diversity.

4.3.3.1 Community Similarity

Community similarity between stations was measured using two qualitative indices of community similarity, the Jaccard coefficient (S_J) and the S Φ renson index (S_S) . These indices were used to detect changes in the community structure. Stressed communities presumably will have different species than relatively non-stressed communities, given that all other factors are equal. The indices use two possible attributes of the ecosystem, that is whether a species was or was not present in the collected sample. Because these coefficients are based on the number of species collected and not the number of individuals, a few organisms from several taxa could significantly change the similarity value, whereas there may not be an overall significant difference between the communities.

The S_J is better than the S_S at discriminating between highly similar collections and has been used widely in stream pollution investigations. The S_J ranges from 0.0 (dissimilar) to 1.0 (similar) and is calculated using the following equation:

Where:
$$Sj = \frac{a}{a+b+c}$$

a = number of species common to both collections

 $\mathbf{b} = \mathbf{number}$ of species in the first collection but not the second

c = number of species in the second collection but not in the first

The S_S places more emphasis on common attributes, and is better than the S_J at discriminating between highly dissimilar collections. The S_S ranges from 0.0 (dissimilar) to 1.0 (similar) and is calculated using the following equation:

$$Ss = \frac{2a}{2a+b+c}$$

Where a, b, and c are as described above.

4.3.3.2 Species Diversity

The fish and benthic communities were examined using a mathematical expression of community structure called a diversity index (H'). Diversity data are useful because they condense a substantial amount of data into a single value. The Shannon-Wiener function is one of the more commonly used formulas for calculating species diversity. Species diversity was calculated in logarithmic base 10 for the fish and benthic species collected during the ecological investigation using the following equation (Brower, 1977):

Where: $H' = \sum (p_i * \log(p_i))$.

H' = mean species diversity

 $p_i = proportion$ of the total number of individuals occurring in species i.

Typically, in waterways that are unpolluted and contain suitable habitat for aquatic life, H' ranges from three to four, while in polluted rivers or rivers with unsuitable habitat H' generally is less than one (USEPA, 1983). The operative assumption in the interpretation of H' values is that relatively undisturbed environments tend to support communities that consist of a large number of species with no single species present in overwhelming abundance. Many forms of stress tend to reduce diversity by producing an environment that is less desirable for some taxa and therefore giving a competitive advantage to other taxa.

4.3.3.3 Macroinvertebrate Biotic Index

Most of the benthic macroinvertebrates collected during the ecological investigation have been assigned a pollution tolerance rating. The tolerances were obtained from the N.C. DEHNR DEM, Environmental Sciences Branch (Lenat 1993) and the U.S. EPA Environmental Monitoring Systems Laboratory (U.S. EPA 1990). N.C. DEHNR maintains a complete list of benthic macroinvertebrate species collected, or known to occur, in North Carolina on a database called BINDEX. BINDEX contains the species Latin name, order, biotic index (BI), and feeding group. Biotic indices have not been established for estuarine species. The BI ranges from zero to ten; a zero is assigned to taxa found only in unaltered streams of high water quality, and a ten is assigned to taxa known to occur in streams with intermediate degrees of pollution or disturbance. In addition, the U.S. EPA lists many common benthic macroinvertebrate species along with their tolerance to organic wastes, heavy metals and acids (U.S. EPA, 1990).

The Macroinvertebrate Biotic Index (MBI) was developed to provide a rapid stream quality assessment. The index is an average of BI weighted by organism abundance, and is calculated as follows:

Where: MBI = $\sum (n_i * BI)/N$

The sampled benthic macroinvertebrate population will be assigned a general stream/water quality condition based on the MBI value. The five classes and their corresponding MBI values are given below (Lenat, 1993):

Excellent Water Quality	Good Water Quality	Fair Water Quality	Poor Water Quality	Serious Water Quality Problems
3.68-5.24	5.25-5.95	5.96-6.67	6.68-7.70	7.71-9.45

The MBI for the benthic macroinvertabrate stations was calculated using the values listed in BINDEX. When a BI for a specific species was not listed, either the family BI (if available) was used or the species was not included in the MBI calculations.

4.4 <u>Biological Sampling Methodology</u>

Biological samples collected at OU No. 2 consisted of fish, crabs and benthic macroinvertebrates. Prior to initiating the sampling event at each station, the following information describing the site was recorded in the field log book:

- Average width, depth and velocity of the water body
- Description of substrate

- Description of "abiotic" characteristics of the reach such as pools, riffles, runs, channel shape, degree of bank erosion, and shade/sun exposure
- Description of "biotic" characteristics of the reach including aquatic and riparian vegetation and wetlands

Water quality measurements were collected during the benthic macroinvertebrate sampling, at a minimum, and during collection of some of the fish samples. On-site water quality measurements at these stations consisted of temperature, pH, specific conductance, salinity and dissolved oxygen. These measurements were conducted prior to sample collection.

The Remedial Investigation/Feasibility Study, Sampling and Analysis Plan (SAP) for Sites 6,9,48, and 69 limited the sampling references sites to two stations in the White Oak River Basin (Baker, 1992). The SAP also limited the sampling at the references sites to sampling of fish and benthic macroinvertebrate populations and did not include chemical analyses of sediment, surface water, fish tissue or crab tissue samples. One of the stations was to be used as the reference for the stations with higher salinity, and the other was to be used as the reference for the stations with lower salinity. The reference stations were selected to be as ecologically similar to the sampling stations for Site 6 and 9 and Sites 48 and 69. However, because of the wide range of environmental conditions (i.e., salinity and dissolved oxygen) found at Sites 6, 9, 48, and 69, some of the environmental conditions present at the on-site stations could not be replicated using only the two reference stations. The White Oak River reference station was not included in the OU 2 Draft ERA because salinity ranged from 15 to 26 ppt. This station was selected to be representative of the high salinity New River Stations at Site 48.

The White Oak River watershed is smaller than the New River watershed (See Figure 4-1). It begins in the Hoffman Forest and flows approximately 48 miles and empties into the Atlantic Ocean. Approximately 77 percent of the watershed is within the Hoffman Forest and the Croatan National Forest. This watershed has very little development, with Swansboro being the largest town.

The reference fish and benthic macroinvertebrate station for OU No. 2 was established in Pettiford Creek which is located in the White Oak River Basin (See Figure 4-1). This station is similar to the stations in Wallace Creek and Bear Head Creek in that it has a salinity gradient from fresh to mesohaline at its mouth. The use of Pettiford Creek as a reference creek was based on recommendations by the N.C. DEHNR. The White Oak River watershed was recommended due to limited development. Therefore, the station should be representative of an aquatic system with relatively few impacts due to point and non-point sources of pollution of an industrial nature similar to Camp Lejeune.

The Pettiford Creek station was selected to be representative of a creek near the freshwater/saltwater interface (i.e., salt wedge). However, there are reported large fluctuations in salinity in the White Oak River watershed with measured salinities varying by 10 to 15 ppt from week to week at a given station. Therefore, the characteristics of the benthic macroinvertebrate and fish populations could reflect the variation between a freshwater and low salinity estuarine habitat. The sample results reflect the impact of the freshwater/saltwater interface in the low numbers of benthic macroinvertebrates and fish collected, demonstrating the low diversity and density of this ecotene area.

4.4.1 Fish and Crabs

This section discusses collection of the fish and crab samples in Wallace Creek, Bear Head Creek, and Pettiford Creek.

A literature review was conducted to determine the fish species that may potentially be exposed to contaminants in the surface water/sediment exposure pathway. This review included compiling information from State and Federal natural resources agencies. In addition, Baker's experience in sampling similar areas formed a basis for a database of expected species for the area.

Originally, three species of fish were to be sampled, with each species being a representative of one of three trophic (feeding) groups, which included a first order predator, a second order predator, and a third order predator. In addition, a minimum of ten individuals per specie, if available, of adult fish of preferably uniform size were to be composited and analyzed for whole body burden and fillet burden of chemicals, with the same species of fish being sampled from each station. A fish species was successfully collected if the above requirements were satisfied. These requirements were identified to Baker by the U.S. Fish and Wildlife Service as part of the Work Plan review. Sampling variability can prevent the same species of fish from being sampled at each station because either the preferred species was not captured, or adequate numbers of uniform-size individuals were not captured. Therefore, if the preferred species was not successfully collected to satisfy the above requirements, a substitute species was collected that, if possible, exhibiting a similar trophic position in the estuarine ecosystem.

4.4.1.1 Wallace Creek

This section discusses collection of the fish and crab samples in Wallace Creek including the station locations and sampling procedures.

Station Locations

Fish and crabs were collected from four stations in Wallace Creek. One station was located upstream of OU No. 2 (6-WC4A), one station was located adjacent to OU No. 2 (6-WC6A), and two stations were located downstream of OU No. 2 (6-WC9A and 6-WC11A) (see Figure 3-1).

Station 6-WC4A was located on Wallace Creek approximately 100 feet upstream of Piney Green Road. This station was relocated downstream from the proposed station location (see the Sampling and Analysis Plan [SAP] [Baker, 1992]) because debris obstructed upstream boat access during the time of sampling. Station 6-WC6A was located on Wallace Creek between Piney Green Road and Holcomb Boulevard. Station 6-WC9A was located on Wallace Creek approximately 1000-1500 feet downstream of Holcomb Boulevard, while Station 6-WC11A was located on Wallace Creek approximately 500 feet downstream of it's confluence with Bear Head Creek.

Sampling Procedures

Fish were collected in Wallace Creek using gill nets and a boat-mounted electrofisher. The electrofisher was used when the salinity was in the appropriate salinity range. See Table 4-1 for a listing of the sampling procedure used at each station.

The fish sampling via electroshocking was conducted using a Smith-Root, Inc. electrofisher powered by a 5,000-watt portable generator. A DC current was applied utilizing the boat as a cathode and a hand-held electrode as the anode. The length of shocking time per subsection was recorded as seconds of applied current. Stunned fish were collected with one-inch mesh or smaller dip nets handled by members of the field sampling team.

The gill nets were six feet deep by 50 feet long with two-inch square mesh and an approximate twine break strength of 29 pounds. The nets were deployed approximately at the locations shown on Figure 3-1. Weights were attached to the nets to secure them on the bottom of the stream and yellow bouys marked with "Baker Environmental" were attached to the tops of the nets. The nets were deployed in the morning or evening, and they were checked for fish within twelve hours after deployment.

The collected fish species were identified, measured, and counted. The small fish (less than 20 mm) were weighed in groups of 10 or 20 because of their low individual weight; the larger fish were weighed individually. In addition, blue crabs that were captured in the gill nets were collected, measured, and weighed. The proportion of individuals as hybrids and the proportion of individuals with disease, tumors, fin damage, and skeletal anomalies was recorded at each station.

Most of the fish species were processed in the field and returned alive to the creeks. Some specimens that presented taxonomic difficulties were preserved in 10% formalin and transported to the Baker Ecological Services Laboratory for taxonomic work. At a minimum, one representative fish from each species was preserved in 10% formalin as a voucher specimen.

An attempt was made to collect ten individuals from three different species with each species being a representative of one of the three trophic groups for the tissue analysis. However this success rate was not achieved at any of the stations. The fish were placed individually into clean ziploc or plastic garbage bags and stored on ice for whole body or fillet tissue analysis. The blue crabs were placed individually into clean ziploc bags and stored on ice for whole-body analysis. The bags were labeled with the date and station location. The fish and crabs were frozen prior to being shipped to Ceimic, Inc. for chemical analysis. Table 4-2 shows the number and total weight of the fish and blue crab samples sent to Ceimic.

4.4.1.2 Bear Head Creek

This section discusses collection of the fish and crab samples in Bear Head Creek including the station locations and sampling procedures.

Station Locations

Fish and crabs were collected from three stations in Bear Head Creek. One station was located upstream of OU No. 2 (6-BH2A), one station was located adjacent to site OU No. 2 (6-BH4A), and one station was located downstream of OU No. 2 (6-BH6A) (see Figure 3-1).

Station 6-BH2A was located on Bear Head Creek approximately 1,000 feet upstream of Piney Green Road. This station was located further downstream than proposed in the sampling and analysis plan (Baker, 1992) because the proposed sampling location could not be accessed due to vegetation overgrowth. Station 6-BH4A was located on Bear Head Creek between Piney Green Road and Holcomb Boulevard. Finally, Station 6-BH6A was located on the Bear Head Creek approximately 1,500 to 2,000 feet downstream of Holcomb Boulevard.

Sampling Procedures

Fish were collected in Bear Head Creek using gill nets and a backpack electrofisher. The electrofisher was used when the salinity was in the appropriate salinity range for use of the electrofisher. See Table 4-1 for a listing of the sampling procedures used at each station.

The fish sampling via electroshocking was conducted using a Smith-Root, Inc. electrofisher powered by a 300-watt portable generator. A DC current was applied utilizing a "rattail" as the cathode and a hand-held electrode as the anode. Blocking seines were placed downstream and upstream of the shocking areas to aid in the collection of the fish. The length of shocking time per subsection was recorded as seconds of applied current. Stunned fish were collected with one-inch mesh or smaller dip nets handled by members of the field sampling team.

Gill nets, similar to those used in Wallace Creek, were used to collect fish in Bear Head Creek. The same sample collection and sample processing procedures used in Wallace Creek were conducted in Bear Head Creek. Fish that were collected were processed for population statistics and tissue analysis.

4.4.1.3 Ravine

The ravine receives only runoff from Sites 6 and 82 and therefore, it is only intermittent in nature. No fish collection was proposed for this area in the SAP (Baker, 1992).

4.4.1.4 Pettiford Creek

This section discusses collection of the fish and crab samples in Pettiford Creek including the station locations and sampling procedures.

Station Location

The fish station was located upstream on Pettiford Creek where the salinity was close to zero. See Figure 4-1 for approximate sample location. Several locations with good electrofishing potential (based on salinity) were shocked, however, the yield was very low. Gill nets were not proposed for this station in the SAP (Baker, 1992).

Sampling Procedures

Fish were collected in Pettiford Creek using a boat-mounted electrofisher. The same sample collection and sample processing procedures used in Wallace Creek were conducted at the Pettiford Creek station. All fish that were collected were processed for population statistics; no fish at this station were collected for tissue analysis.

4.4.2 Benthic Macroinvertebrate

This section discusses collection of benthic macroinvertebrate samples in Wallace Creek, Bear Head Creek, and Pettiford Creek.

4.4.2.1 Wallace Creek

This section discusses collection of the benthic macroinvertebrate samples in Wallace Creek including the station locations and sampling procedures.

Station Locations

Benthic macroinvertebrates were collected from four stations in Wallace Creek. One station was located upstream of OU No. 2 (6-WC3A), one station was located adjacent to OU No. 2 (6-WC6A), and two stations were located downstream of OU No. 2 (6-WC9A and 6-WC11A) (see Figure 3-1).

Station 6-WC3A was located on Wallace Creek approximately 3,000 to 4,000 feet upstream of Piney Green Road. At the time this sample was collected, the path in the water was not being obstructed as it was when the fish sample was collected. Station 6-WC6A was located on Wallace Creek, between Piney Green Road and Holcomb Boulevard. Station 6-WC9A was located on Wallace Creek approximately 1,000-1,500 feet downstream of Holcomb Boulevard, and Station 6-WC11A was located on Wallace Creek approximately 500 feet downstream of its confluence with Bear Head Creek.

Sampling Procedures

Benthic macroinvertebrates were collected from a boat using a standard ponar grab. The dimensions of the ponar are $23 \times 23 \text{ cm} (9 \times 9 \text{ in.})$ for a sampling area of 529 cm^2 or 0.0529 m^2 (81 in²).

The ponar was deployed from the boat, which was positioned in slightly different locations for each replicate to prevent the ponar from re-sampling the same area. After retrieving the ponar with a sediment sample, it was opened into a clean tub and the sediments were removed with a teflon spatula. The sediments were transferred to a 0.5 mm sieve that was agitated (by hand) in a tub half-full of water to remove the small particles. The remaining contents in the sieve were transferred into 16-ounce plastic sample jars. The jars were filled up to one-half full with sediments and buffered formalin solution (10% by weight) was added to the remainder of the jar to preserve the benthic macroinvertebrates contained in the sediments. A 100% cotton paper label, marked in pencil with the sample number, was placed inside the jar. The outside of the jar was labeled with the sample number using a black permanent marker to identify the sample containers.

After all the benthic sampling at OU No. 2 was completed, the sample jars were transported to the Baker Ecological Laboratory for sample processing. Sample processing included washing each sample through a 0.5 mm sieve, transferring the washed sample back into the jar, and adding 70% isopropyl alcohol, as a preservative, to the washed sample in the jar. A small amount of rose bengal was added to each jar to stain the benthic macroinvertebrates a pinkred color to aid in the sorting process. The rose bengal stains the tissue cells of the organisms and helped to distinguish them from plant and other materials in the sediments. The benthic macroinvertebrates were stained for at least 24 hours prior to sorting under a dissecting microscope. The benthic macroinvertebrates were removed from the sediments using a pair of forceps, and placed into glass vials containing 70% isopropyl alcohol and a 100% cotton paper label marked in pencil with the sample number. A one-fourth aliquot of sample 6-WC3A was sorted because of its large sample volume. The number of individuals from that aliquot was multiplied by four to obtain the total number of individuals in the sample. The vials were sealed with cotton and placed into a jar containing 70% isopropyl alcohol. The date, sorting time, approximate number of benthic macroinvertebrates collected, and the name of the person who sorted the sample were recorded on a sample processing log sheet.

The same sorting procedures outlined above were repeated as a QA/QC measure, with any additional species identified being placed into their respective vials. A senior environmental scientist was employed to perform this QA/QC measure. Fifty-percent of a sample was resorted. If more than five percent of the individuals were missed during the initial sorting, than the rest of the sample was resorted. If less than five percent of the individuals were missed during the initial sorting, than the rest of the sample was not resorted.

The date, sorting time, number and type of additional organisms found and percent of sample that was QA/QCed were recorded on the sample processing log sheet. The vials containing the benthic macroinvertebrates were sent to RMC Environmental Services for taxonomic identification.

4.4.2.2 Bear Head Creek

This section discusses collection of the benthic macroinvertebrate samples in Bear Head Creek including the station location and sampling procedures.

Station Locations

Benthic macroinvertebrates were collected from three stations in Bear Head Creek. One station was located upstream of OU No. 2 (6-BH2A), one station was located adjacent to OU No. 2 (6-BH4A), and two stations were located downstream of OU No. 2 (6-BH6A) (see Figure 3-1).

Station 6-BH2A was located on Bear Head Creek approximately 1,000 feet upstream of Piney Green Road. This station was located further downstream than proposed in the SAP (Baker, 1992) because the proposed location could not be accessed due to vegetation overgrowth. Station 6-BH4A was located on Bear Head Creek between Piney Green Road and Holcomb Boulevard. Finally, Station 6-BH6A was located on Bear Head Creek, approximately 1,500-2,000 feet downstream of Holcomb Boulevard.

Sampling Procedures

Benthic macroinvertebrates were collected using the same procedures used in Wallace Creek. The only deviation from the procedures occurred at Stations 6-BH2A and 6-BH4A. The ponar samples collected at these stations were collected by standing in the creek and releasing the ponar, as opposed to deploying the ponar from the boat. The sample processing procedures remained the same for these samples.

A one-fourth aliquot of sample 6-BH6A was sorted because of its large sample volume. The number of individuals from that aliquot was multiplied by four to obtain the total number of individuals in the sample.

4.4.2.3 Pettiford Creek

This section discusses collection of the benthic macroinvertebrate samples in Pettiford Creek including the station location and sampling procedures.

Station Locations

The benthic macroinvertebrate station was located upstream on Pettiford Creek where the freshwater and saltwater interface was field measured. See Figure 4-1 for approximate sample location.

Sampling Procedures

Benthic macroinvertebrates were collected in Pettiford Creek using the ponar grab deployed from the boat. The same sample collection and sample processing procedures used in Wallace Creek were conducted at the Pettiford Creek station.

4.5 Site Specific Ecology

The following sections present the results of sampling the abiotic habitat and biotic communities from the ecological investigation.

4.5.1 Abiotic Habitat

Information describing the abiotic habitat at OU No. 2 was recorded in the field log books at each station and was later transferred to data sheets (see Appendix F). The data sheets also include representative photographs of the stations.

4.5.1.1 Fish Stations

Fish were sampled at four stations in the Wallace Creek and three stations in Bear Head Creek (see Figure 3-1). Fish also were sampled at one station in Pettiford Creek (see Figure 4-1).

Wallace Creek

The bank along Station 6-WC4A was lined with shrubs. There was some submerged aquatic vegetation (SAV) present. The water at this station was approximately 2.5 feet deep and the channel was 40 feet wide. The fish collection station consisted of an approximately 120 foot sampling reach which was fished using the boat electrofisher.

Station 6-WC6A was surrounded by deciduous trees and evergreens, with some deadfall. The water at this station was approximately 2.5 feet deep and the channel was 50 feet wide. There was a slight water flow from east to west.

Station 6-WC9A was surrounded by deciduous trees and evergreens, with some deadfall. The water at this station was approximately 12 feet deep and the channel was approximately 75 feet wide. There were no pools or riffles at this station. The water velocity was negligible due to tides.

Station 6-WC11 was surrounded by deciduous trees and evergreens, with some deadfall. The water at this station was approximately six feet deep and the channel was approximately 250

feet wide. There were no pools or riffles at this station. The water velocity was negligible due to tides.

Bear Head Creek

The fish collection station at 6-BH2A consisted of an approximately 120 foot sampling reach that was fished using the backpack electrofisher. The bank was lined with hardwood trees and dense vines. No SAV were present at this station. The water at this station was less than six inches deep and the channel was five feet wide.

The fish collection station at 6-BH4A consisted of an approximately 150 foot sampling reach that was fished using the backpack electrofisher. The bank was lined with deciduous trees. The water at this station was less than six inches deep and the channel was 12 feet wide.

The bank along Station 6-BH6A was lined primarily with deciduous trees and some pines and there was a zone of dead trees and bushes. Some SAVs were was present at this station. The water at this station was approximately 12 feet deep and the channel was approximately 75 feet wide.

Pettiford Creek

The bank along Station PC was lined primarily with conifers, hardwood trees, shrubs and Spanish moss. Some SAV were present at this station. The water at this station was approximately five feet deep and the channel was approximately 15 feet wide.

4.5.1.2 Benthic Macroinvertebrate Stations

Benthic macroinvertebrates were collected from four stations in the Wallace Creek and three stations in Bear Head Creek (see Figure 3-1). Benthic macroinvertebrates also were collected from one station in Pettiford Creek (see Figure 4-1). The following sections discuss the sediment type at each station. The abiotic habitat and biotic communities are discussed in the previous sections of this report.

Wallace Creek

Between 32 to 72 ounces of sediments were collected for the replicates at Station 6-WC3A. Approximately eight ounces of sediments were collected for the replicates at Station 6-WC6A. The sediments did not have a discernable odor. They were silty/sandy with approximately five percent woody debris.

At Station 6-WC9A, approximately eight ounces of sediments were collected in each replicate. The sediment had a strong anaerobic odor and was approximately ninety-five percent silt, with five percent detritus. A salt wedge was recorded at this station as discussed below in Section 4.5.1.

At Station 6-WC11A, approximately eight to sixteen ounces of sediments were collected in the replicates. The sediments had a slight anaerobic odor and were a very silty dark brown organic muck. A salt wedge was recorded at this station.

Bear Head Creek

Between 16 to 48 ounces of sediments were collected for the replicates at Station 6-BH2A. There was no odor to the sediments that were sandy with leaf and twig debris.

Approximately eight ounces of sediments were collected for the replicates at Station 6-BH4A. There was no odor in the sediments that were very silty/sandy.

Between 48 and 88 ounces of sediments were collected for the replicates at Station 6-BH6A. There was a slight anaerobic odor in the sediments that were approximately 60 percent silt and 40 percent organic debris.

Pettiford Creek

Approximately eight ounces of sediments were collected for the replicates at Station PC-BN. There was no odor in the sediments that were hard with approximately 50 percent silt/sand and 50 percent organic debris.

4.5.1.3 <u>Water Quality</u>

Table 4-3 summarizes the field water quality measurements collected at the biological stations. Water quality measurements were collected from the surface and bottom of the creek at representative stations.

A salt wedge was observed at Stations 6-WC9A and 6-WC11A with the salinity at the surface being 0.5 ppt, while the salinity at the bottom was 6 ppt and 7.5 ppt, respectively. The conductivity ranged from 900 to 1,500 micromhos/cm at the surface to 10,900 to 11,500 microhms/cm at the bottom. The dissolved oxygen also followed a similar trend at these stations being 5.1 mg/l and 4.45 mg/l at the surface and 0.13 mg/l and 0.15 mg/l at the bottom, respectively. Heavy rains occurred on the day previous to the sampling at Station 6-WC11A.

The salinity at the remaining stations was non-detectable and the conductivity ranged from 20 to 145 micromhos/cm. The dissolved oxygen at these stations ranged from 3.0 to 6.45 at the bottom and from 5.0 to 5.85 at the surface, The pH ranged from 5.5 to 6.4 S.U. at these stations, while the temperature ranged from 22 to 26 degrees C.

At Pettiford Creek, the conductivity was 270 microhoms/cm, the dissolved oxygen ranged from 3.1 to 7.95 mg/l, and the temperature was 22 degrees C. The salinity at several of the potential sampling stations in Pettiford Creek ranged from non-detectable to 1.5 ppt.

4.5.2 Biotic Community

The following sections present the results of the fish, crab and benthic macroinvertebrate sampling.

4.5.2.1 Fish

Population Statistics

A list of the fish species, the stations where they were collected, and a characterization of each species is presented in Table 4-4. The characterization includes the feeding guild, United States average length of the fish, the type of water where the species is typically found, the migration habits of the species, and the spawning periods and tolerance levels of the species.

Wallace Creek

Fish were sampled with gill nets and/or a boat-mounted electrofishier at four stations in Wallace Creek between August 28, 1992 and September 9, 1992. However, fish collection was unsuccessful at Station 6-WC9A. The fish captured in the gill nets were processed either for population statistics or tissue analysis. The quantity of fish per species, and the average, minimum and maximum length and weight of the fish per station collected from Wallace Creek are reported in Table 4-5.

Eleven fish species were collected in Wallace Creek. The percentage abundance of these species is listed below.

Common Name	<u>Latin Name</u>	<u>Percent</u>
Shiner sp.	<u>Notropis</u> sp.	36
Eastern mosquito	<u>Gambusia affinis</u>	20
Pumpkinseed	<u>Lepomis gibbosus</u>	17
American eel	Anguilla rostata	8
Bluespoted sunfish	Enneacanthus gloriosus	8
Spot	<u>Leiostomas xanthurus</u>	5
Pirate perch	Aphredoderus sayanus	2
Warmouth	<u>Lepomis gulosus</u>	2

Sunfish sp. variesLargemouth bassMicropterus salmoidesSummer flounderParalichthys dentatus

2 for these three species

The abundance of fish was highest at Station 6-WC6A. Of the eleven species that were evaluated at Wallace Creek, the average length of ten of the species was less than approximately one-half of the documented average length of that species. Spot and sunfish could not be compared to the average United States length because either the species could not be determined or the value was not available. Figures 4-2 through 4-6 graphically display the size class distribution for the predominant species in Wallace Creek (American eel, shiner, eastern mosquito, pumkinseed, spot). The distributions are skewed to the left, indicating the species populations are dominated by juveniles. The comparison of species length in Wallace Creek compared to the United States average also supports this theory. Stations 6-WC4A and 6-WC11A demonstrated low species diversity; however, 6-WC6A had an above average species diversity value. The species diversities can be found in Table 4-6.

As the fish were being processed for population statistics or tissue analysis, they were visually inspected for any anomalies such as fin rot and skeletal abnormalities. The species in Wallace Creek did not exhibit any physical anomalies.

Bear Head Creek

Fish were collected either with gill nets and/or a backpack electrofisher at three stations in Bear Head Creek between August 27, 1992 and September 9, 1992. However, fish collection was unsuccessful at Stations 6-BH2A, and 6-BH4A. The fish captured were processed either for population statistics or tissue analysis. The quantity of fish per species, and the average, minimum and maximum length and weight of the fish per station collected from Bear Head Creek are reported in Table 4-5.

Six fish species were collected in Bear Head Creek. The percentage abundance of these species is listed below.

<u>Common Name</u>	<u>Latin Name</u>	<u>Percent</u>
Eastern mosquito	<u>Gambusia affinis</u>	82
Spot	<u>Leiostomas xanthurus</u>	11
Pumpkinseed	<u>Lepomis gibbosus</u>	4
Bluespoted sunfish	<u>Enneacanthus gloriosus</u>	3.0 for these
Bay anchovy	<u>Anchoa mitchili</u>	three species
Killifish	<u>Fundulus</u> sp.	

The sampling efforts at Stations 6-BH2A (upstream station) and 6-BH4A (adjacent station) were not successful. Station 6-BH6A was the only station that fish were successfully collected. Of the six species that were evaluated at Bear Head Creek, the average length of three of the species was less than approximately one-half of the documented average length of that species. Two of the species (bluespoted sunfish and killifish) were within the upper half of the average U.S. range. Spot could not be compared to the average United States length because a length was not available. Figures 4-2 through 4-6 graphically display the size class distribution for the predominant species in Bear Head Creek. A size class distribution pattern could not be

distinguished due to inadequate numbers of fish. Station 6-BH6A had a species diversity of 0.29 (see Table 4-6).

As the fish were being processed for population statistics or tissue analysis, they were visually inspected for any anomalies such as fin rot and skeletal abnormalities. The species in Bear Head Creek did not exhibit any physical anomalies.

Pettiford Creek

Fish were collected with a boat-mounted electrofisher at one station in Pettiford Creek on September 15, 1992. The fish captured by electrofishing were processed for population statistics. The quantity of fish per species, and the average, minimum and maximum length and weight of the fish per station collected from Pettiford Creek are reported in Table 4-5.

Three fish species were collected in Pettiford Creek. The percentage abundance of these species is listed below.

Common Name	Latin Name	Percent
Pumpkinseed	Lepomis gibbosus	50
Shiner sp.	<u>Notropis</u> sp.	25
Striped mullet	<u>Mugil cephalus</u>	25

Of the three species that were collected in Pettiford Creek, the average length of one of the species (shiner) was less than approximately one-half of the documented average length of that species. One of the species (pumpkinseed) was within the upper half of the average United States range. The striped mullet that was captured at Station PC was above the national average for that particular species. Figures 4-2 through 4-6 graphically display the size class distribution for the predominant species in Bear Head Creek. Only a few fish were captured in the Pettiford Creek, therefore, an evaluation regarding the size class distribution could not be determined.

Station PC demonstrated a moderate species diversity. The species diversity value can be found in Table 4-6.

As the fish were being processed for population analysis, they were visually inspected for any anomalies such as fin rot and skeletal abnormalities. The species in Pettiford Creek did not exhibit any physical anomalies.

Similarity Index

The species community similarity between the stations were calculated for fish collected in Wallace Creek, Bear Head Creek and Pettiford Creek (see Table 4-7). The S_J between the Wallace Creek stations ranged from 0 (between several stations) and 0.30 (between Station 6-WC4A and Station 6-WC6A), while the S_S ranged from 0 (between several stations) and 0.46 (between Station 6-WC4A and Station 6-WC6A).

The S_J between Pettiford Creek and Wallace Creek ranged from 0 (between Station 6-WC9A and PC) and 0.25 (between Station 6-WC11A and PC), while the S_S ranged from 0 (between Station 6-WC9A and PC) and 0.33 (between Station 6-WC6A and PC). The S_J between Pettiford Creek and Bear Head Creek (Station 6-BH6A) was 0.13, while the Ss between these stations was 0.22. The S_J between Wallace Creek and Bear Head Creek ranged from 0 (between several stations) and 0.53 (between Station 6-WC6A and Station 6-BH6A), while the S_S ranged from 0 (between several stations) and 0.33 (between Station 6-WC6A and Station 6-BH6A).

The results of these similarity index calculations showed that the stations were not very similar with regards to species composition. The highest similarity (0.5 to 0.6) did not indicate very similar species compositions.

Fish and Crab Tissue Analysis

Fish and crab samples collected in Wallace Creek and Bear Head Creek were analyzed for tissue contaminant concentrations. The fish were analyzed either for fillet or whole body burden and the crabs were analyzed for whole body burden. Table 4-2 shows the number and weight of the fish and crabs sent to Chemic for chemical analysis.

Wallace Creek

Four species (warmouth, pumpkinseed, long-nosed gar, and striped mullet) from station 6-WC6A were submitted for tissue analyses. Two species (summer flounder and blue crab) from station 6-WC11A were submitted for tissue analyses.

Table 4-8 summarizes the results of the TCL organics detected in the fish and crab tissues at OU No. 2. Appendix G contains the data and frequency tables. The maximum concentration of the positively detected TCL organics in the fish or crab tissue, and the sample of the maximum detection, are as follows:

Constituent	Sample Number	Concentration (ug/kg)
Acetone	6-WC11-FL1	280J
Benzene	6-WC11-FL1	5J
2-Butanone	6-WC11-BC	15
	6-WC6-PS	15J
4,4'-DDE	6-WC6-WM1	180
4,4'-DDD	6-WC11-FL1	8.8J
4,4'-DDT	6-WC6-PS	4.9J
Dimethyl phthalate	6-WC11-FL1	86
Endrin	6-WC6-PS	5.4J
Endosulfan II	6-WC6-PS	12J
Methylene Chloride	6-WC11-BC	32
PCB-1260	6-WC06-SMF	1,000J
Phenol	6-WC11-BC	2,500
Toluene	6-WC6-PS	3J
Trichloroethene	6-WC11-BC	15
	6-WC6-SMF	5 J

Table 4-9 summarizes the results of the TAL inorganics detected in the fish and crab tissues at OU No. 2. Appendix G contains the data and frequency tables for these chemicals. The maximum concentration of the positively detected TAL inorganics in the fish or crab tissue, and the sample of the maximum detection are as follows:

<u>Constituent</u>	Sample Number	Concentration (mg/kg)
Beryllium	6-WC11-BC	0.005B
Calcium	6-WC11-BC	29,100J
Magnesium	6-WC11-BC	1,410
Potassium	6-WC06-SMF	3,450
Selenium	6-WC11-BC	0.38
Silver	6-WC11-BC	0.18
Sodium	6-WC11-BC	2,170
Zinc	6-WC6-PS	27.3

Bear Head Creek

Station 6-BH6A was the only station on Bear Head Creek that produced enough fish for tissue analyses. One species (pumpkinseed) from station 6-BH6A-FS was submitted for whole-body tissue analyses.

Table 4-8 summarizes the results of the organic chemicals detected in the fish and crab tissues at Sites 6 and 9. Appendix G contains the data and frequency tables for these chemicals. The maximum concentration of the positively detected TCL organics in the Pumpkinseed tissue are as follows:

Concentration (mg/kg)
350J
5.4J
6J
26J
290
72J
9.7J
15J
21
490J
8J

Table 4-9 summarizes the results of the TAL inorganics detected in the fish and crab tissues at OU No. 2. Appendix G contains the data and frequency tables for these chemicals. The maximum concentration of the positively detected TAL inorganics in the Pumpkinseed tissue are as follows:

Constituent	Concentration (mg/kg)
Cadmium	0.06B
Calcium	19,500J
Magnesium	453
Potassium	2,720
Selenium	0.27J
Sodium	1,370J
Zinc	23.4

Pettiford Creek

The fish collected in Pettiford Creek were not submitted for tissue analysis.

4.5.2.2 Benthic Macroinvertebrate

Table 4-10 contains a systematic listing of the all the benthic macroinvertebrates collected in Wallace Creek, Bear Head Creek, and Pettiford Creek. Individuals were keyed out to their specific genus or species classifications, where possible. However, this level of precision was not achievable in all cases due to damaged or juvenile organisms. The following sections discuss the results of the benthic macroinvertebrate sampling in each creek.

Wallace Creek

Three phyla were represented in the collections from Wallace Creek: Arthropoda, Annelida and Nematoda. Nineteen taxa of benthic macroinvertebrates from these three phyla were collected from Wallace Creek. Of these 19 taxa, 90.5 percent of the species were arthropods, 8.5 percent of the species were annelids and one percent of the species were nematodes. The most abundant species in Wallace Creek was the chironomid <u>Tribelos jucundum</u> with 182 individuals (47 percent), followed by the amphipod <u>Gammarus fusciatus</u> (29 percent) with 113 individuals.

Biological data of each replicate are given in Appendix H. Table 4-11 summarizes the raw data by combining the replicates at each station. Overall species richness (i.e., number of species) and faunal densities (i.e., individuals per square meter) are shown on these tables. The percentages of each species at each station is provided in Table 4-12.

The number of species ranged from zero at Station 6-WC9A to 12 at Station 6-WC3A. The number of individuals ranged from zero at Station 6-WC9A to 200 at Station 6-WC3A. The species density values ranged from zero individuals/m² at Station 6-WC9A to 1,275 individuals/m² at Station 6-WC3A. Species diversity ranged from zero at Station 6-WC9A to 0.510 at Station 6-WC3A.

Macroinvertebrate Biotic Index values ranged from 6.46 at Station 6-WC3A to 9.80 at Station 6-WC11A (an MBI could not be calculated for Station 6-WC9A). Table 4-13 lists the BI and U.S. EPA tolerance to organic wastes and sensitivity to metals for the benthic macroinvertebrates collected in Wallace Creek, Bear Head Creek, and Pettiford Creek. See Table 4-14 for a summary of all the above statistics.

Figures 4-7 and 4-8 graphically display the numbers of taxa from the sampling stations at each replicate, and Figures 4-9 and 4-10 graphically display the total numbers of individuals at each sampling stations. Figures 4-11 and 4-12 graphically display the faunal densities from the sampling stations, and Figures 4-13 and 4-14 graphically display the species diversity values from the sampling stations. Figures 4-15 and 4-16 graphically display the MBI values from the sampling stations.

Bear Head Creek

Four phyla were represented in the collections from Bear Head Creek: Arthropoda, Annelida Platyhelminthes, and Mollusca. Thirty-nine taxa of benthic macroinvertebrates from these four phyla were collected from Bear Head Creek. Of these thirty-nine taxa, 20 percent of the species were arthropods, 44 percent of the species were annelids and 0.4 percent of the species were platyhelminthes and 35.6 percent were molluscs. The most abundant species in Bear Head Creek was the bivalve, <u>Pisidium casertanum</u> with 345 individuals (34 percent), followed by the oligochaete, <u>Isocheatides curvisetosus</u> with 261 individuals (26 percent).

Biological data of each replicate are given in Appendix H. Table 4-11 summarizes the raw data by combining the replicates at each station. Overall species richness (i.e., number of species) and faunal densities (i.e., individuals per square meter) are shown on these tables. The percentages of each species at each station is provided in Table 4-12.

The number of species ranged from one at Station 6-BH6A to 33 at Station 6-BH2A. The number of individuals ranged from four at Station 6-BH6A to 582 at Station 6-BH2A. The species density values ranged from 25 individuals/m² at Station 6-BH6A to 3,709 individuals/m² at Station 6-BH2A. Species diversity ranged from zero at Station 6-BH6A to 0.932 at Station 6-BH2A. Macroinvertebrate Biotic Index values ranged from 7.51 at Station 6-BH2A to 7.06 at Station 6-BH4A. See Table 4-14 for a summary of all the above statistics.

Figures 4-7 and 4-8 graphically display the numbers of species from the sampling stations at each replicate, and Figures 4-9 and 4-10 graphically display the total numbers of individuals at each sampling stations. Figures 4-11 and 4-12 graphically display the faunal densities from the sampling stations, and Figures 4-13 and 4-14 graphically display the species diversity values from the sampling stations. Figures 4-15 and 4-16 graphically display the MBI values from the sampling stations.

Pettiford Creek

Two phyla were represented in the collections from Pettiford Creek: Arthropoda and Annelida. Four taxa of benthic macroinvertebrates from these two phyla were collected from Pettiford Creek. Of these four taxa, 30 percent of the species were arthropods and 70 percent of the species were annelids. The most abundant species in Pettiford Creek was the oligochaete, <u>Limnodrilus hoffmeisteri</u> with 23 individuals (70 percent), followed by the chironomid <u>Tribelos jucundum</u> with 7 individuals (21 percent).

Biological data of each replicate are given in Appendix H. Table 4-11 summarizes the raw data by combining the replicates at each station. Overall species richness (i.e., number of species) and faunal densities (i.e., individuals per square meter) are shown on these tables. The percentages of each species at each station is provided in Table 4-12.

Four species were collected in Pettiford creek, consisting of 33 individuals. The species density was 210 individuals/m² and the species diversity was 0.372. The MBI value was 8.84. See Table 4-14 for a summary of all the above statistics.

Figures 4-7 and 4-8 graphically display the numbers of species from the sampling stations at each replicate, and Figures 4-9 and 4-10 graphically display the total numbers of individuals at each sampling stations. Figures 4-11 and 4-12 graphically display the faunal densities from the sampling stations, and Figures 4-13 and 4-14 graphically display the species diversity

values from the sampling stations. Figures 4-15 and 4-16 graphically display the MBI values from the sampling stations.

Similarity Index

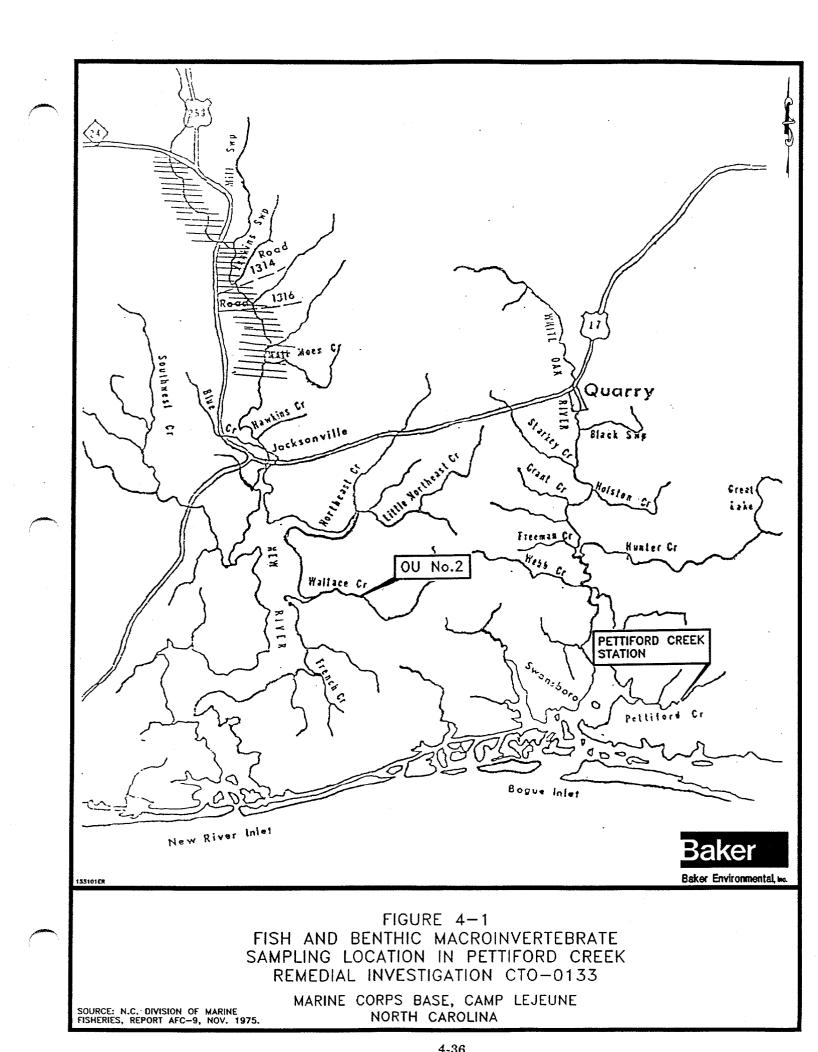
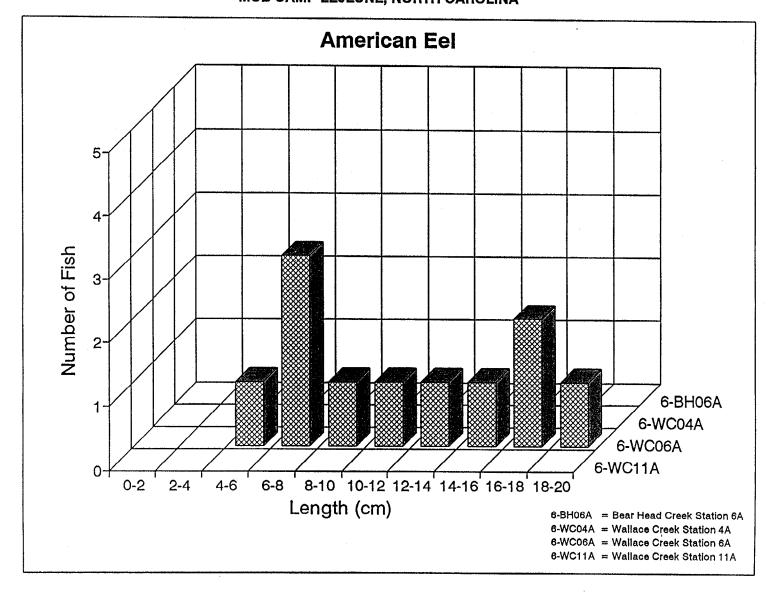
The species community similarity between the stations were calculated for benthic macroinvertebrates collected in Wallace Creek, Bear Head Creek and Pettiford Creek (see Table 4-15). The S_J between the Wallace Creek stations ranged from 0 (between several stations) and 0.143 (between Station 6-WC3A and Station 6-WC6A), while the S_S ranged from 0 (between several stations) and 0.250 (between Station 6-WC3A and Station 6-WC6A). The S_J between the Bear Head Creek stations ranged from 0 (between several stations) and 0.306 (between Station 6-BH2A and Station 6-BH4A), while the S_S ranged from 0 (between several stations) and 0.468 (between Station 6-BH2A and Station 6-BH4A).

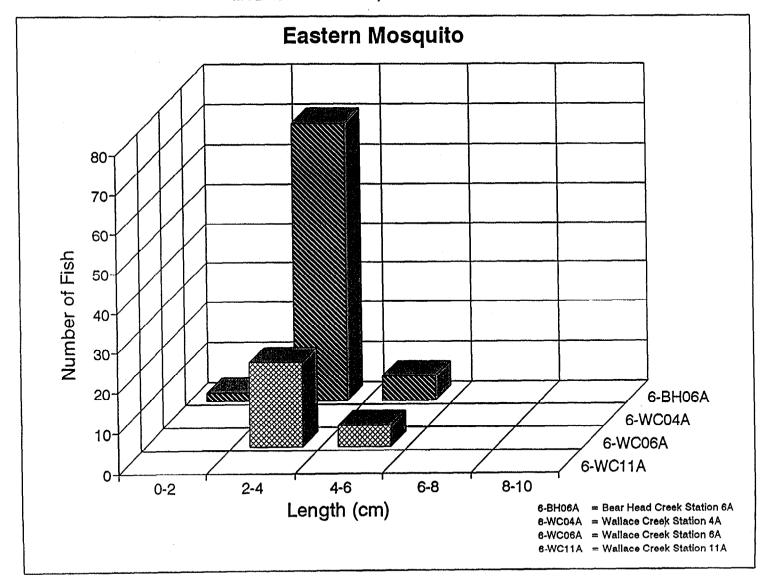
The S_J between Pettiford Creek and Wallace Creek ranged from 0 (between Station 6-WC9A and PC) and 0.545 (between Station 6-WC6A and PC), while the S_S ranged from 0 (between Station 6-WC9A and PC) and 0.375 (between Station 6-WC6A and PC). The S_J between Pettiford Creek and Bear Head Creek ranged from 0 (between Station 6-BH6A and PC) and 0.211 (between Station 6-BH4A and PC), while the Ss ranged from 0 (between Station 6-BH6A and PC) and 0.211 (between Station 6-BH4A and PC), while the Ss ranged from 0 (between Station 6-BH6A and PC) and 0.211 (between Station 6-BH4A and PC), while the Ss ranged from 0 (between Station 6-BH6A and PC) and 0.211 (between Station 6-BH4A and PC), while the Ss ranged from 0 (between Station 6-BH6A and PC) and 0.118 (between Station 6-BH4A and PC). The S_J between Wallace Creek and Bear Head Creek ranged from 0 (between several stations) and 0.333 (between Station 6-BH6A), while the S_S ranged from 0 (between several stations) and 0.500 (between Station 6-BH6A), while the S_S ranged from 0 (between several stations) and 0.500 (between Station 6-BH6A).

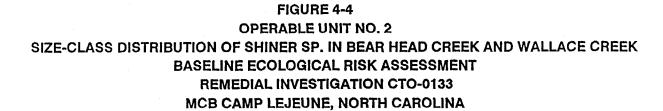
The results of these similarity index calculations showed that the stations were not very similar with regards to species composition. This was evident both in comparison of stations within a creek and between a creek. The highest similarity (0.5 to 0.6) was seen in comparison of stations between creeks, but the index calculated did not indicate very similar species compositions.

4.5.2.3 Terrestrial Fauna

Terrestrial fauna were not collected during this ecological investigation. Therefore, population and community ecological endpoints for terrestrial fauna could not be quantitatively evaluated in this report. The risks to terrestrial fauna discussed in the "Regional Ecology" section of this report will be quantitatively evaluated in this report by comparing estimated daily intakes to terrestrial reference values in Section 7.0 Risk Characterization/Integration.


FIGURE 4-2


OPERABLE UNIT NO. 2

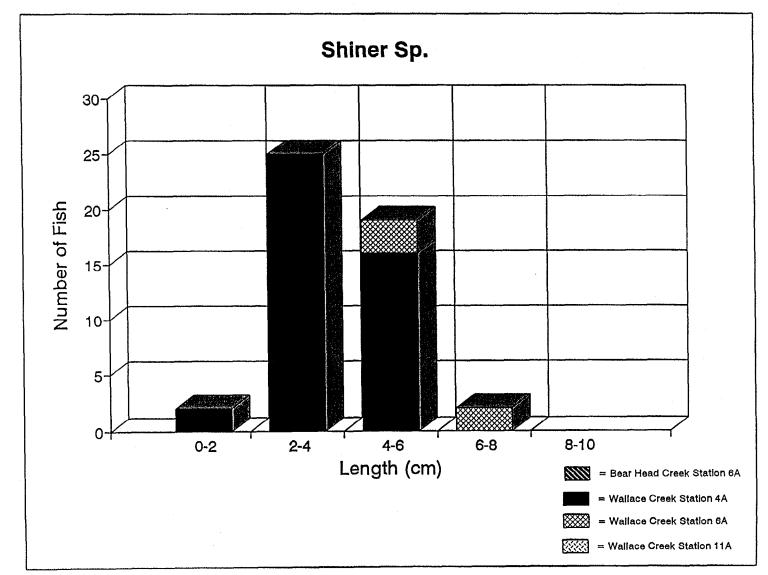
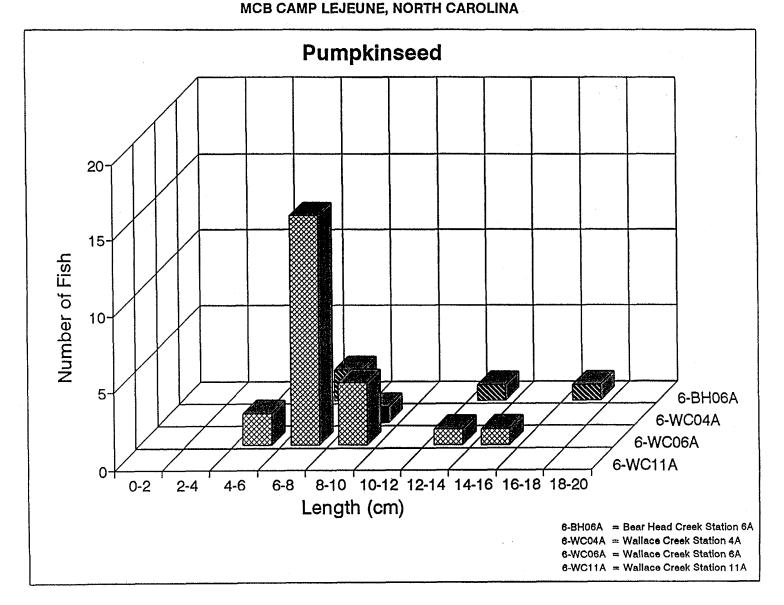
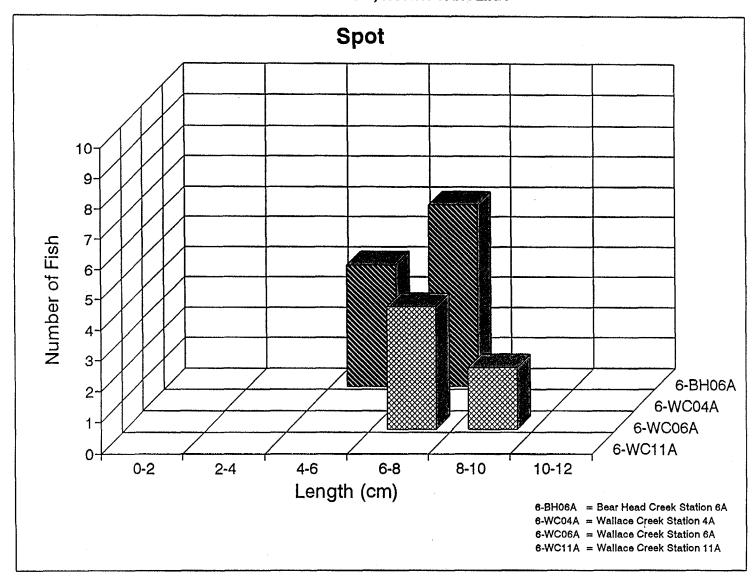
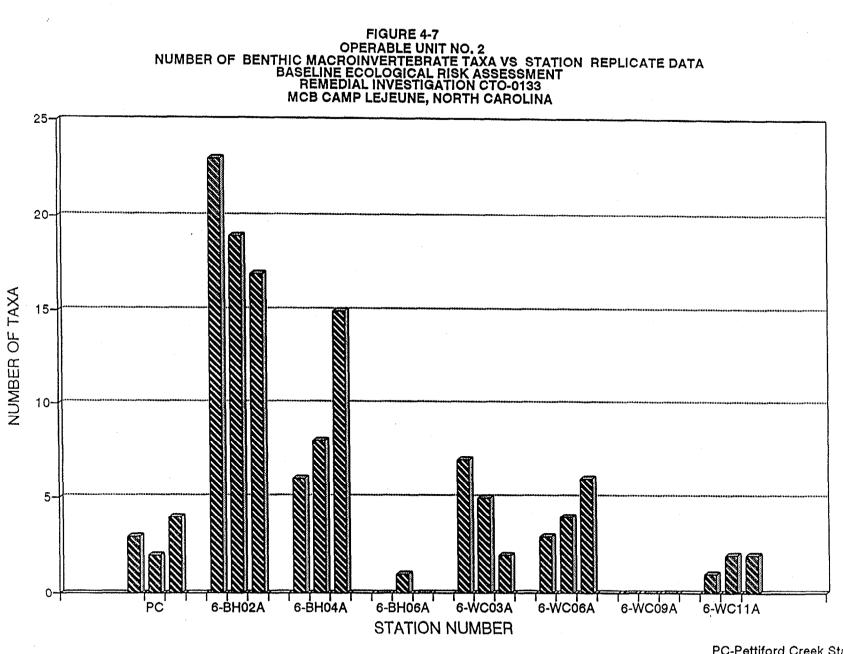

SIZE-CLASS DISTRIBUTION OF AMERICAN EEL IN BEAR HEAD CREEK AND WALLACE CREEK BASELINE ECOLOGICAL RISK ASSESSMENT REMEDIAL INVESTIGATION CTO-0133 MCB CAMP LEJEUNE, NORTH CAROLINA

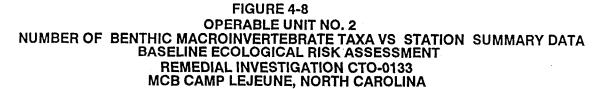
FIGURE 4-3 OPERABLE UNIT NO. 2 SIZE-CLASS DISTRIBUTION OF EASTERN MOSQUITO IN BEAR HEAD CREEK AND WALLACE CREEK BASELINE ECOLOGICAL RISK ASSESSMENT REMEDIAL INVESTIGATION CTO-0133 MCB CAMP LEJEUNE, NORTH CAROLINA

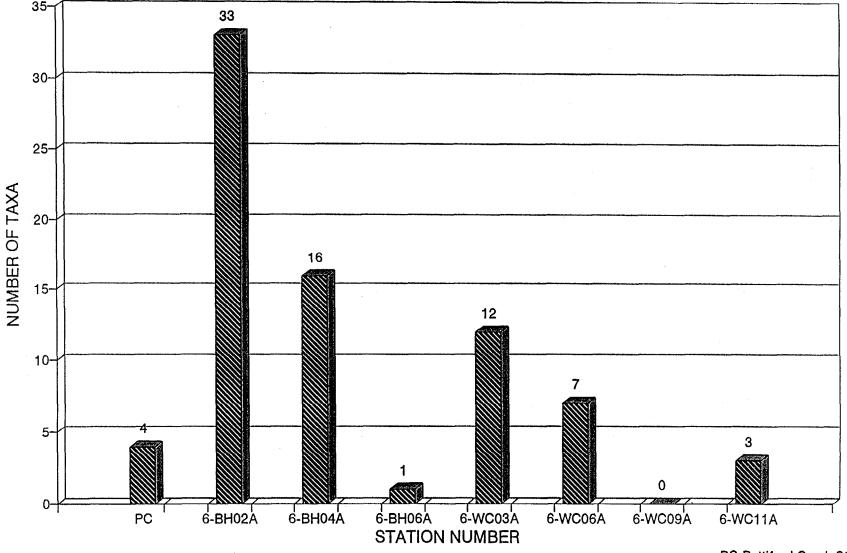


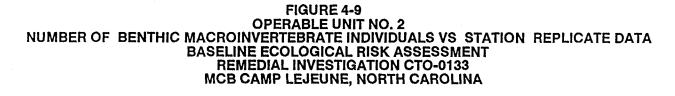

FIGURE 4-5

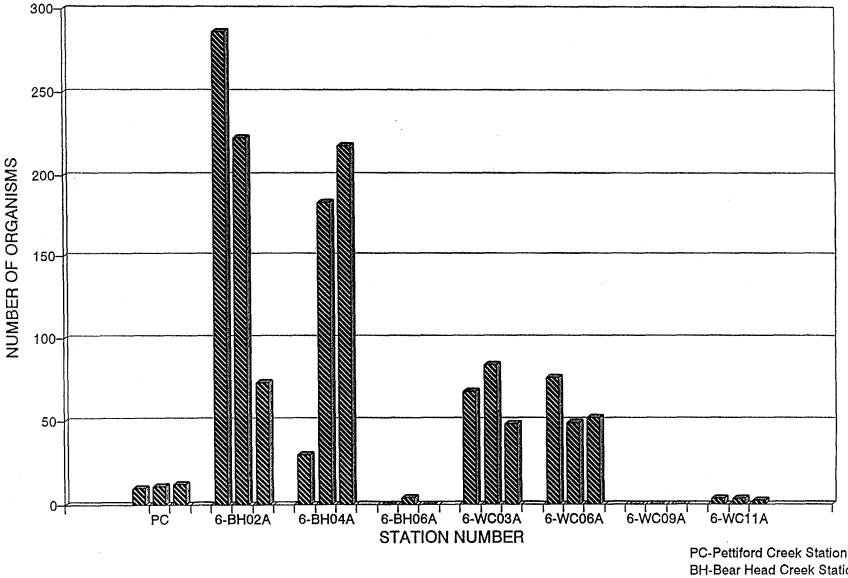

OPERABLE UNIT NO. 2

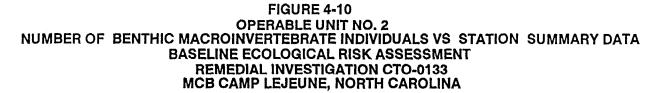
SIZE-CLASS DISTRIBUTION OF PUMPKINSEED IN BEAR HEAD CREEK AND WALLACE CREEK BASELINE ECOLOGICAL RISK ASSESSMENT REMEDIAL INVESTIGATION CTO-0133

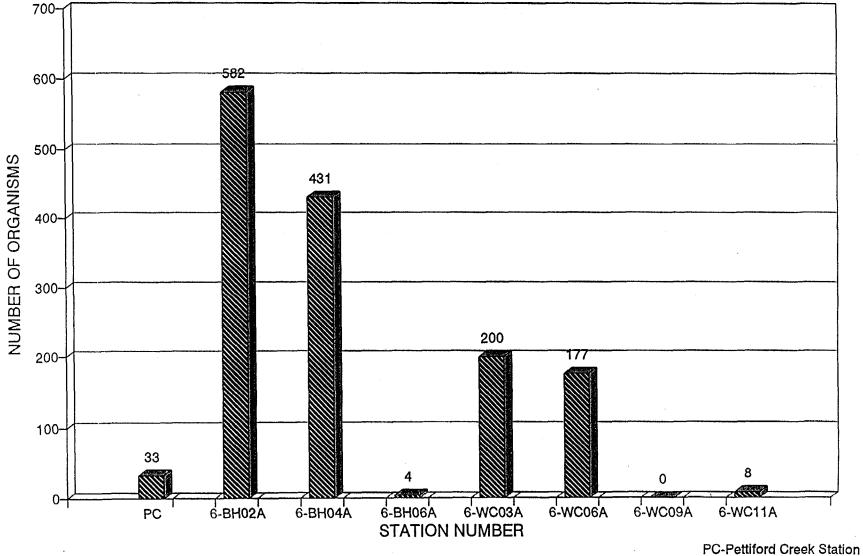



FIGURE 4-6 OPERABLE UNIT NO. 2 SIZE-CLASS DISTRIBUTION OF SPOT IN BEAR HEAD CREEK AND WALLACE CREEK BASELINE ECOLOGICAL RISK ASSESSMENT REMEDIAL INVESTIGATION CTO-0133 MCB CAMP LEJEUNE, NORTH CAROLINA

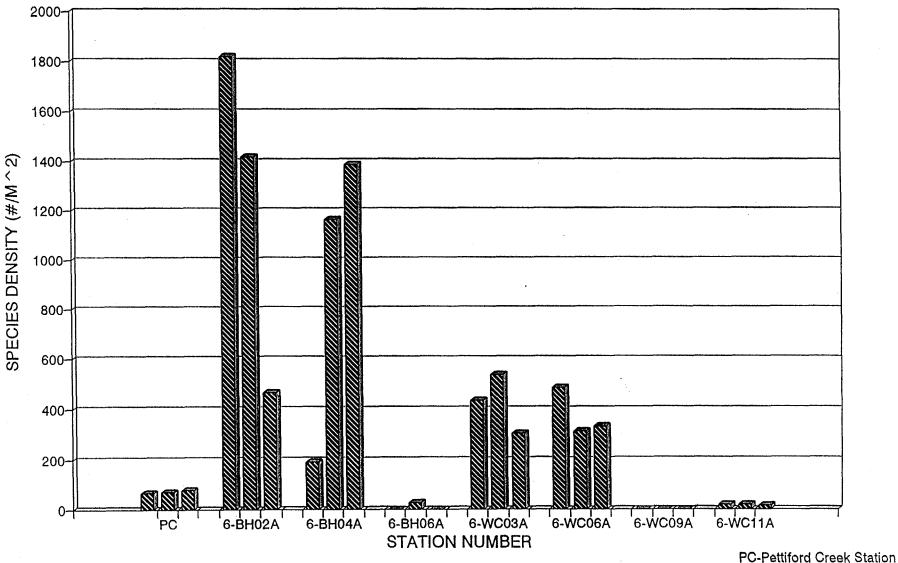


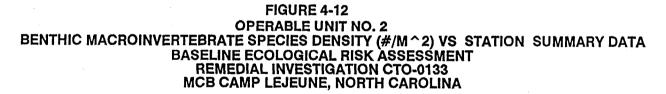

PC-Pettiford Creek Station BH-Bear Head Creek Station WC-Wallace Creek Station

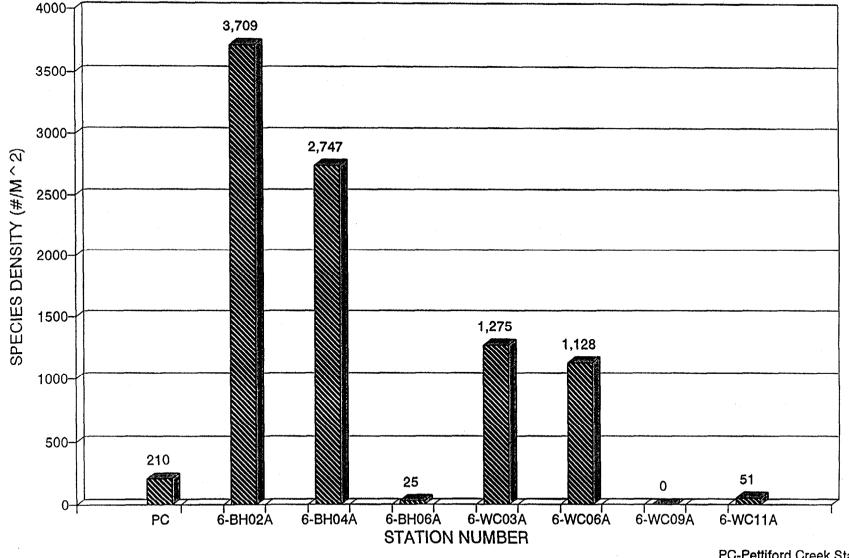



PC-Pettiford Creek Station BH-Bear Head Creek Station WC-Wallace Creek Station

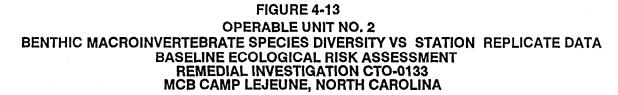
BH-Bear Head Creek Station WC-Wallace Creek Station



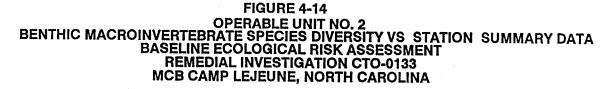

BH-Bear Head Creek Station WC-Wallace Creek Station

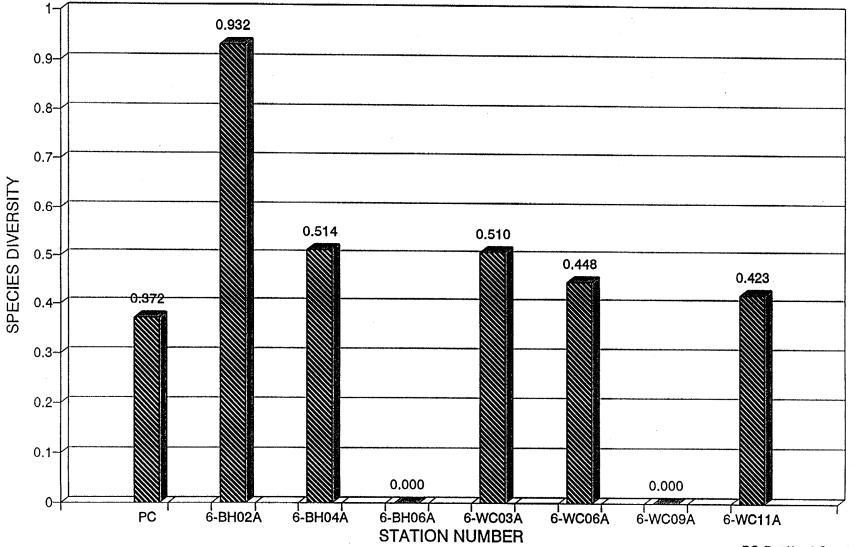


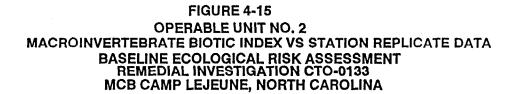
OPERABLE UNIT NO. 2 BENTHIC MACROINVERTEBRATE SPECIES DENSITY (#/M^2) VS STATION REPLICATE DATA BASELINE ECOLOGICAL RISK ASSESSMENT REMEDIAL INVESTIGATION CTO-0133 MCB CAMP LEJEUNE, NORTH CAROLINA

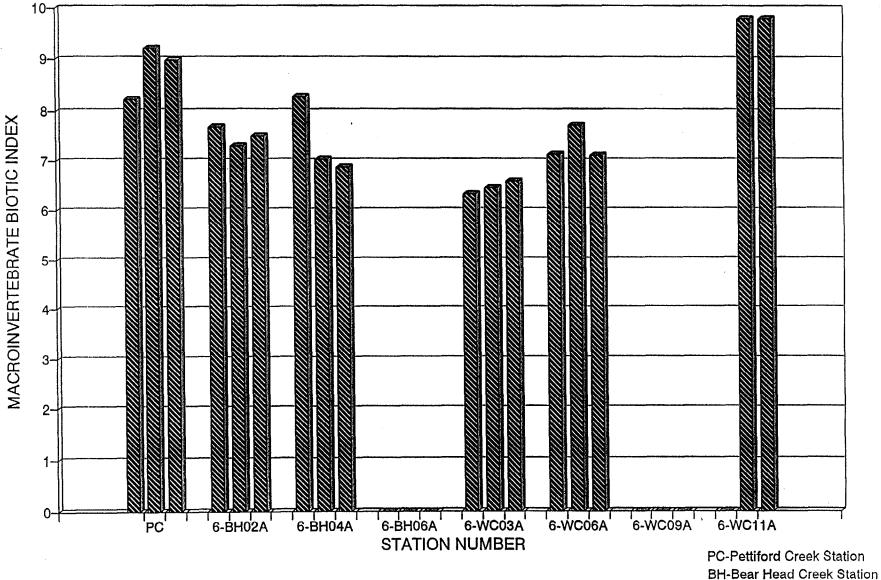


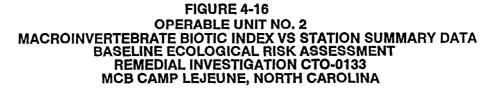
BH-Bear Head Creek Station WC-Wallace Creek Station

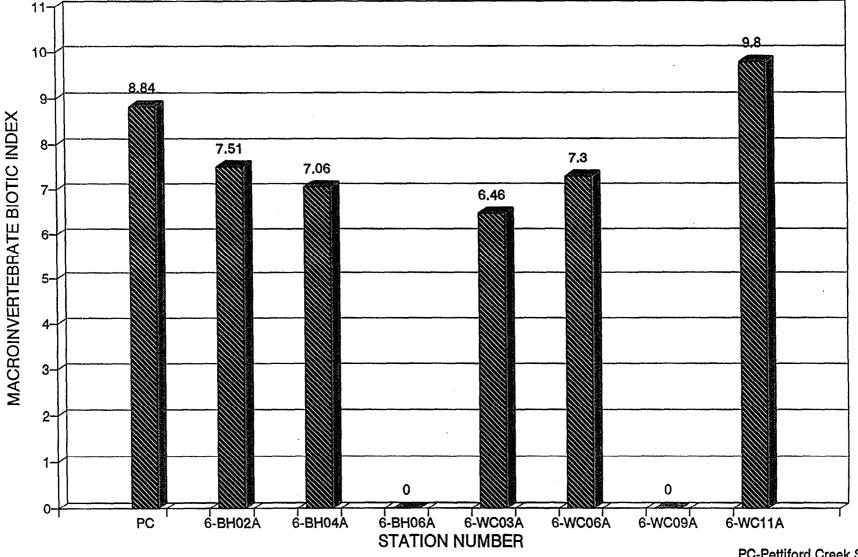



PC-Pettiford Creek Station BH-Bear Head Creek Station WC-Wallace Creek Station




BH-Bear Head Creek Station WC-Wallace Creek Station




PC-Pettiford Creek Station BH-Bear Head Creek Station WC-Wallace Creek Station

WC-Wallace Creek Station

PC-Pettiford Creek Station BH-Bear Head Creek Station WC-Wallace Creek Station

OPERABLE UNIT NO. 2 WALLACE CREEK AND BEAR HEAD CREEK SUMMARY OF FISH AND CRAB SAMPLING EVENTS BASELINE ECOLOGICAL RISK ASSESSMENT REMEDIAL INVESTIGATION CTO-0133 MCB CAMP LEJEUNE, NORTH CAROLINA

Date	Station Number	Sampling Procedure		
Wallace Creek				
8-28-92	6-WC09A	Gill Net		
8-29-92	6-WC09A	Gill Net		
8-29-92	6-WC06A	Gill Net		
8-30-92	6-WC06A	Gill Net		
8-30-92	6-WC09A	Gill Net		
9-09-92	6-WC06A	Electrofishing		
9-09-92	6-WC09A	Gill Net		
9-09-92	6-WC11A	Gill Net		
9-12-92	6-WC04A	Electrofishing		
Bear Head Creek	, ,			
8-27-92	6-BH04A	Electrofishing		
8-29-92	6-BH06A	Gill Net		
8-29-92	6-BH02A	Electrofishing		
9-09-92	6-BH06A	Electrofishing		
Pettiford Creek				
9-15-92	PC	Electrofishing		

BH - Bear Head Creek Station

WC- Wallace Creek Station

PC - Pettiford Creek Station

OPERABLE UNIT NO. 2 SUMMARY OF FISH AND CRABS SENT TO CEIMIC FOR TISSUE ANALYSIS BASELINE ECOLOGICAL RISK ASSESSMENT REMEDIAL INVESTIGATION CTO-0133 MCB CAMP LEJEUNE, NORTH CAROLINA

Sample Identification	Number of Fish in Sample	Species	Whole Body or Fillet	
Wallace Creek				
6-WC06-WM1	1	Warmouth	Whole Body	
6-WC06-PS	2	Pumpkinseed	Whole Body	
6-WC06-LGF	1	Long-nosed Gar	Fillet	
6-WC06-SMF	2	Striped Mullet	Fillet	
6-WC11-FL1	1	Summer Flounder	Whole Body	
6-WC11-BC	2	Blue Crab	Whole Body	
Bear Head Creek				
6-BH06-PS	2	Pumpkinseed	Whole Body	

WC - Wallace Creek

BH - Bear Head Creek

OPERABLE UNIT NO. 2 FIELD CHEMISTRY FROM BIOLOGICAL SAMPLES BASELINE ECOLOGICAL RISK ASSESSMENT REMEDIAL INVESTIGATION CTO-0133 MCB CAMP LEJEUNE, NORTH CAROLINA

Sample Identification	Sample Location	Salinity (ppt)	Conductivity (micromhos/cm)	Dissolved Oxygen (mg/l)	рН (S.U.)	Temperature (deg. C)
Wallace Creek	D ()	77.4) TA	37.4	374	
6-WC03A-BN	Bottom	NA	NA	NA	NA	NA
6-WC06A-BN	Surface	0.0	125	5.85	6.3	23.5
	Bottom	0.0	145	5.8	6.3	23.5
6-WC09A-BN	Surface	0.5	900	5.1	6.3	22.8
	Bottom	7	11,500	0.13	NA	25.5
6-WC11A-BN	Surface	0.5	1,500	4.45	6.3	23.3
	Bottom	7.5	10,900	0.15	NA	26.0
6-WC03A-FS	Bottom	0.0	20	NA	NA	28.0
6-WC06A-FS	Bottom	NA	NA	NA	NA	NA
6-WC09A-FS	Bottom	NA	NA	NA	NA	NA
6-WC11A-FS	Bottom	NA	NA	NA	NA	NA
Bear Head Creek 6-BH02A-BN	Bottom	0.0	6.0	6.45	5.5	24.0
6-BH04A-BN	Bottom	0.0	82	6.35	NA	23
6-BH06A-BN	Surface	0.0	135	5.0	6.3	22.9
	Bottom	0.0	140	4.95	NA	22.8
6-BH02A-FS	Bottom	0.0	115	5.0	NA	22.5
6-BH04A-FS	Bottom	0.0	112	5.7	6.4	24.0
6-BH06A-FS	Bottom	NA	NA	NA	NA	NA
Pettiford Creek PC1-BN	Bottom	1.5	270	7.95	NA	22
PC1-FS	Bottom	NA	270	3.1	NA	22

ppt	-	Parts per Thousand
mg/l	-	Milligram per Liter
S.U.	-	Standard Units
deg. C	-	Degrees Celcius
NA	-	Not Analyzed
Sample Location	-	Water Surface or Water Bottom
BN	-	Benthic Macroinvertebrate Sample
FS	-	Fish Sample
BH	-	Bear Head Creek Station
WC	-	Wallace Creek Station
PC	-	Pettiford Creek Station

OPERABLE UNIT NO. 2 WALLACE, BEAR HEAD AND PETTIFORD CREEKS FISH DISTRIBUTION AND CHARACTERIZATION BASELINE ECOLOGICAL RISK ASSESSMENT REMEDIAL INVESTIGATION CTO-0133 MCB CAMP LEJEUNE, NORTH CAROLINA

	Common	Scientific		Stat	ion Num	ıber		Feed Guild	Length Water Three	197 - 4 (Th	Migration	9	Tolerance	Family	Sources
	Name	Name	BH06A	WC04A	WC06A	WC11A	PC	reea Guila	Atlas (cm)	water Type Habits	Habits	Spawning			
	Eastern Mosquitofish	<u>Gambusia</u> affinis	X		X	-		Insectivore	to 6.25 cm	Freshwater and brackish water	NA	Apr to Aug Fertilization is internal	Intermediate	Poeciliidae	1,2,3,4
	Shiner sp.	<u>Notropis sp.</u>		X	X		x	Insectivore	to 20 cm	Freshwater creeks, rivers, lakes	NA	April to August	Intermediate to intolerant	Cyprinidae	1,2,3
4-55	Pumpkinseed	<u>Lepomis</u> gibbosus	X	X	X		x	Lower Carnivore	8-20	Freshwater	Freshwater stray	April through October	Moderately Tolerant	Centrarchida	1,2,3,4,5
	Spot	<u>Leiostomas</u> <u>xanthurus</u>	X		X			Omnivore	NA	Brackish or marine; enter freshwater	Warm water migrant	NA	NA	Sciaenidae	1,5
	American Eel	<u>Anguilla</u> rostata			x			Omnivore	to 147.5 cm	Brackish or freshwater	Resident	Spawns at sea in December	Intermediate	Anguillidae	1,2,3,4,5

1 The Freshwater Fishes of North Carolina

2 The Audubon Society Field Guide to North American Fishes, Whales & Dolphins

3 Rapid Bioassessment Protocols for Use in Streams and Rivers - Benthic Macroinvertebrates and Fish

4 Delaware's Freshwater and Brackish Water Fishes

5 CRC - Ecologies of Estuaries, Volume II

NA - Not Available

BH - Bear Head Creek

WC - Wallace Creek

PC - Pettiford Creek

TABLE 4-4 (cont.)

OPERABLE UNIT NO. 2 WALLACE, BEAR HEAD AND PETTIFORD CREEKS FISH DISTRIBUTION AND CHARACTERIZATION BASELINE ECOLOGICAL RISK ASSESSMENT REMEDIAL INVESTIGATION CTO-0133 MCB CAMP LEJEUNE, NORTH CAROLINA

4-56	Common Name	Scientific Name	Station Number					Fred Could	Length	Weter True	Migration	Spawning	Tolerance	Family	Sources
			BH06A	WC04A	WC06A	WC11A	PC	Feed Guild	Atlas (cm)	Water Type	Habits	Spawning	Iolerance	гашцу	Sources
	Bluespoted Sunfish	<u>Enneacanthus</u> gloriosus	x	X	X			Insectivore	to 10 cm	Clear, dark, sluggish coastal streams	NA	March	Varies	Centrarchidae	1,2,3
	Pirate Perch	<u>Aphredoderus</u> <u>sayanus</u>		X				Insectivore	<10 cm	Backwaters of low gradient streams, ponds and swamps abundant vegatation	Freshwater stray	Jan to March	Intermediate	Aphredoderidae	1,2,3,4,5
	Warmouth	<u>Lepomis</u> gulosus			X			Invertivore	to 25 cm	Freshwater ponds, lakes, swamps	NA	May to August	Intermediate	Centrarchidae	1,2,3,4,5
	Largemouth Bass	<u>Micropterus</u> salmoides			· X			Piscivore	to 95 cm	Freshwater and brackish <1% salinity	NA	April through June	Tolerant	Centrarchidae	1,2,3,4

1 The Freshwater Fishes of North Carolina

2 The Audubon Society Field Guide to North American Fishes, Whales & Dolphins

3 Rapid Bioassessment Protocols for Use in Streams and Rivers - Benthic Macroinvertebrates and Fish

4 Delaware's Freshwater and Brackish Water Fishes

5 CRC - Ecologies of Estuaries, Volume II

NA - Not Available

BH - Bear Head Creek

WC - Wallace Creek

PC - Pettiford Creek

TABLE 4-4 (cont.)

OPERABLE UNIT NO. 2 WALLACE, BEAR HEAD AND PETTIFORD CREEKS FISH DISTRIBUTION AND CHARACTERIZATION BASELINE ECOLOGICAL RISK ASSESSMENT REMEDIAL INVESTIGATION CTO-0133 MCB CAMP LEJEUNE, NORTH CAROLINA

Common	Scientific Namo	Station Number					E. J.C. III	Length	W (D	Migration	a .			
Name		BH06A	WC04A	WC06A	WC11A	PC	Feed Guild	Atlas (cm)	Water Type	Habits	Spawning	Tolerance	Family	Sources
Sunfish Sp.	<u>Varies</u>			X			Insectivore	Varies	Freshwater streams, rivers, and swamps	NA	April to August	Varies	Centrarchidae	1,2
Bay Anchovy	<u>Anchoa</u> <u>mitchili</u>	x					Planktivorous	to 15 cm	Freshwater or brackish <0.5% salinity or greater	Warm- water migrant	April to July	Intermediate	Engraulidae	1,2,4,5
Killifish	<u>Fundulus Sp.</u>	x					Insectivore	to 7.5 cm	Fresh, brackish or marine	Freshwater stray	April to August	Intolerant	Cyprinodontidae	1,2,3,4,5
Summer Flounder	<u>Paralichthys</u> dentatus				x		NA	37	Brackish or marine; enters freshwater	Warm water migrant	NA	NA	Bothidae	1,5
Striped Mullet	<u>Mugil</u> <u>Cephalus</u>					x	Herbivore	23-35	Brackish or marine; enters freshwater	Warm water migrant	NA	NA	Mugilidae	1,2,5

1 The Freshwater Fishes of North Carolina

2 The Audubon Society Field Guide to North American Fishes, Whales & Dolphins

3 Rapid Bioassessment Protocols for Use in Streams and Rivers - Benthic Macroinvertebrates and Fish

4 Delaware's Freshwater and Brackish Water Fishes

5 CRC - Ecologies of Estuaries, Volume II

NA - Not Available

4-57

BH - Bear Head Creek

WC - Wallace Creek

PC - Pettiford Creek

OPERABLE UNIT NO. 2 WALLACE, BEAR HEAD AND PETTIFORD CREEKS - 1992 SEINING RESULTS BASELINE ECOLOGICAL RISK ASSESSMENT REMEDIAL INVESTIGATION CTO-0133 MCB CAMP LEJEUNE, NORTH CAROLINA

				LENGTH (cm)			WEIGHT (g)	
Common Name	Station Number	Total Number	Average	Minimum	Maximum	Average	Minimum	Maximum
Eastern Mosquito	BH06A	78	2.89	1.90	5.60	0.26	0.26	0.26
	WC04A	0	NA	NA	NA	NA	NA	NA
	WC06A	26	3.14	2.00	4.80	NA	NA	NA
	WC11A	0	NA	NA	NA	NA	NA	NA
	PC	0	NA	NA	NA	NA	NA	NA
Shiner Sp.	BH06A	0	NA	NA	NA	NA	NA	NA
	WC04A	43	3.64	1.5	5.5	2.3E-1	2.3E-1	2.3E-1
	WC06A	5	5.68	4.5	7	2	2	2
	WC11A	0	NA	NA	NA	NA	NA	NA
	PC	1	3	3	3	<1	<1	<1
Pumpkinseed	BH06A	4	10.95	6.7	16.6	32.5	7.5	85
-	WC04A	1	8.9	8.9	8.9	5	5	5
	WC06A	22	7.55	5.6	14.4	15.45	7	110
	WC11A	0	NA	NA	NA	NA	NA	NA
	PC	2	16.75	14.5	19	75	10	140
Spot	BH06A	10	6.29	4.9	7.8	4.04	3.8	5
-	WC04A	0	NA	NA	NA	NA	NA	NA
	WC06A	7	8.01	6.6	9.8	15.69	18.3	18.3
	WC11A	0	NA	NA	NA	NA	NA	NA
	PC	0	NA	NA	NA	NA	NA	NA

BH - Bear Head Creek

WC - Wallace Creek

PC - Pettiford Creek

TABL: +-5 (cont.)

OPERABLE UNIT NO. 2 WALLACE, BEAR HEAD AND PETTIFORD CREEKS - 1992 SEINING RESULTS BASELINE ECOLOGICAL RISK ASSESSMENT REMEDIAL INVESTIGATION CTO-0133 MCB CAMP LEJEUNE, NORTH CAROLINA

				LENGTH (cm)	•		WEIGHT (g)	
Common Name	Station Number	Total Number	Average	Minimum	Maximum	Average	Minimum	Maximum
American Eel	BH06A	0	NA	NA	NA	NA	NA	NA
	WC04A	0	NA	NA	NA	NA	NA	NA
	WC06A	11	10.95	4	18	3.6	3.6	3.6
	WC11A	0	NA	NA	NA	NA	NA	NA
	PC	0	NA	NA	NA	NA	NA	NA
Bluespoted sunfish	BH06A	1	8.9	8.9	8.9	15	15	15
-	WC04A	2	5.75	5.5	6	NA	NA	NA
	WC06A	8	5.84	5	6.5	11.3	11.3	11.3
	WC11A	0	NA	NA	NA	NA	NA	NA
	PC	0	NA	NA	NA	NA	NA	NA
Pirate Perch	BH06A	0	NA	NA	NA	NA	NA	NA
	WC04A	3	5.8	4.2	8.5	1	1	1
1	WC06A	0	NA	NA	NA	NA	NA	NA
	WC11A	0	NA	NA	NA	NA	NA	NA
	PC	0	NA	NA	NA	NA	NA	NA
Warmouth	BH06A	0	NA	NA	NA	NA	NA	NA
	WC04A	0	NA	NA	NA	NA	NA	NA
	WC06A	2	14.65	9.7	19.6	117.5	75	160
	WC11A	0	NA	NA	NA	NA	NA	NA
	PC	0	NA	NA	NA	NA	NA	NA
Largemouth Bass	BH06A	0	NA	NA	NA	NA	NA	NA
	WC04A	0	NA	NA	NA	NA	NA	NA
	WC06A	1	4.7	4.7	4.7	NA	NA	NA
	WC11A	0	NA	NA	NA	NA	NA	NA
	PC	0	NA	NA	NA	NA	NA	NA

BH - Bear Head Creek

WC - Wallace Creek

PC - Pettiford Creek

OPERABLE UNIT NO. 2 WALLACE, BEAR HEAD AND PETTIFORD CREEKS - 1992 SEINING RESULTS BASELINE ECOLOGICAL RISK ASSESSMENT **REMEDIAL INVESTIGATION CTO-0133** MCB CAMP LEJEUNE, NORTH CAROLINA

				LENGTH (cm)			WEIGHT (g)	
Common Name	Station Number	Total Number	Average	Minimum	Maximum	Average	Minimum	Maximum
Sunfish	BH06A	0	NA	NA	NA	NA	NA	NA
	WC04A	0	NA	NA	NA	NA	NA	NA
	BH06A	1	3	3	3	NA	NA	NA
	WC11A	0	NA	NA	NA	NA	NA	NA
	PC	0	NA	NA	NA	NA	NA	NA
Bay Anchovy	BH06A	1	5.9	5.9	5.9	NA	NA	NA
	WC04A	0	NA	NA	NA	NA	NA	NA
	WC06A	0	NA	NA	NA	NA	NA	NA
	WC11A	0	NA	NA	NA	NA	NA	NA
	PC	0	NA	NA	NA	NA	NA	NA
Killifish	BH06A	1	6.1	6.1	6.1	NA	NA	NA
	WC04A	0	NA	NA	NA	NA	NA	NA
	WC06A	0	NA	NA	NA	NA	NA	NA
	WC11A	0	NA	NA	NA	NA	NA	NA
	PC	0	NA	NA	NA	NA	NA	NA
Summer Flounder	BH06A	0	NA	NA	NA	NA	NA	NA
	WC04A	0	NA	NA	NA	NA	NA	NA
	WC06A	0	NA	NA	NA	NA	NA	NA
	WC11A	1	27.6	27.6	27.6	200	200	200
	PC	0	NA	NA	NA	NA	NA	NA
Striped Mullet	BH06A	0	NA	NA	NA	NA	NA	NA
-	WC04A	0	NA	NA	NA	NA	NA	NA
	WC06A	0	NA	NA	NA	NA	NA	NA
	WC11A	0	NA	NA	NA	NA	NA	NA
	PC	1	39.6	39.6	39.6	700	700	700

BH - Bear Head Creek

WC - Wallace Creek

PC - Pettiford Creek

OPERABLE UNIT NO. 2 WALLACE, BEAR HEAD AND PETTIFORD CREEKS TOTAL NUMBER OF SPECIES, INDIVIDUALS AND THE SHANNON-WIENER SPECIES DIVERSITY VALUES FOR FISH BASELINE ECOLOGICAL RISK ASSESSMENT REMEDIAL INVESTIGATION CTO-0133 MCB CAMP LEJEUNE, NORTH CAROLINA

Station	Number of Species	Number of Individuals	Species Diversity
BH06A	6	95	0.29
WC04A	4	49	0.22
WC06A	9	83	0.77
WC11A	2	2	0.30
PC	3	4	0.45

BH - Bear Head Creek WC - Wallace Creek PC - Pettiford Creek

OPERABLE UNIT NO. 2 WALLACE, BEAR HEAD AND PETTIFORD CREEKS RESULTS OF THE JACCARD COEFFICIENT (Sj) OF COMMUNITY SIMILARITY AND SORENSON INDEX (Ss) OF COMMUNITY SIMILARITY BETWEEN FISH STATIONS BASELINE ECOLOGICAL RISK ASSESSMENT REMEDIAL INVESTIGATION CTO-0133 MCB CAMP LEJEUNE, NORTH CAROLINA

		Sj					
	Station	BH06A	WC04A	WC06A	WC11A	PC	
	BH06A	NA	0.25	0.36	0	0.13	
Ss	WC04A	0.40	NA	0.30	0	0.17	
	WC06A	0.53	0.46	NA	0.10	0.20	
	WC11A	0	0	0.18	NA	0.25	
	PC	0.22	0.29	0.33	0.17	NA	

BH - Bear Head Creek WC - Wallace Creek PC - Pettiford Creek NA - Not Applicable

TABLE 4 - 8 SITE 6 FISH AND CRAB TISSUE POSITVE DETECTION SUMMARY REMEDIAL INVESTIGATION CTO-0133 MCB CAMP LEJEUNE, NORTH CAROLINA ORGANICS

Sample No.		6-BH6-PS	6-WC06-LGF	6-WC06-SMF	6-WC11-BC	6-WC11-FL1	6-WC6-PS
Depti		(PS1&2)	N/A	N/A	(BC1&2)	N/A	(PS1&2)
Date Sample		9/9/92	9/3/92	9/3/92	9/11/92	9/9/92	9/9/92
Lab Id		00523-15	00489-01	00489-02	00523-13	00523-19	00523-21
Parameter	Units						
PESTICIDE/PCBS							
4,4'-DDE	UG/KG	290	130 J	87 J	15 J	26 J	28
ENDRIN	UG/KG	15 J				2.5 J	5.4 J
ENDOSULFAN II	UG/KG						12 J
4,4'-DDD	UG/KG	72 J			8.1 J	8.8 J	ل <i>ع</i> د ۲
4,4'-DDT	UG/KG	· 9.7				0.0 2	4.9 J
METHOXYCHLOR	UG/KG	21					7.2 3
ALPHA CHLORDANE	UG/KG	5.4 J					
PCB-1260	UG/KG	490 J	150 J	1000 J		51 J	370 J
VOLATILES					1		
METHYLENE CHLORIDE	UG/KG				32	11	7 J
ACETONE	UG/KG	350 J	26 J	25	220 J	280 J	230 J
2-BUTANONE	UG/KG	26 J		20	15	10 J	230 J 15 J
TRICHLOROETHENE	UG/KG			5 J	5 J	10 1	1.5 1
BENZENE	UG/KO	6 J			5 J		
TOLUENE	UG/KG	8 J			2 J		3 J
SEMIVOLATILES							
PHENOL	UG/KG				0500		
					2500		
DIMETHYL PHTHALATE	UG/KG UG/KG				2500	86	

86

. 1

TABLE 4 - 8 SITE 6 FISH AND CRAB TISSUE POSITVE DETECTION SUMMARY REMEDIAL INVESTIGATION CTO-0133 MCB CAMP LEJEUNE, NORTH CAROLINA ORGANICS

Sample No:	6-WC6-WM1
Depth:	N/A
Date Sampled:	9/11/92
Lab Id;	00523-20
Parameter	
PESTICIDE/PCBS	
4,4'-DDE	180
ENDRIN	
ENDOSULFAN II	
4,4'-DDD	
4,4'-DDT	
METHOXYCHLOR	
ALPHA CHLORDANE	
PCB-1260	370 J
VOLATILES	
METHYLENE CHLORIDE	5 J
ACETONE	35 J
2-BUTANONE	
TRICHLOROETHENE	
BENZENE	3 J
TOLUENE	2 J
<u>SEMIVOLATILES</u>	

PHENOL DIMETHYL PHTHALATE

4-64

TABLE 4 - 9 SITE 6 FISH AND CRAB TISSUE POSITIVE DETECTION SUMMARY REMEDIAL INVESTIGATION CTO-0133 MCB CAMP LEJEUNE, NORTH CAROLINA TOTAL METALS

	Sample No: Depth: te Sampled:	6-BH6-PS (PS1&2) 9/9/92	6-WC06-LGF N/A 9/3/92	6-WC06-SMF N/A 9/3/92	6-WC11-BC (BC1&2) 9/10/92	6-WC11-FL1 N/A 9/9/92	6-WC6-PS (PS1&2) 9/9/92
	Lab Id:	00523-15	00489-01	00489-02	00523-13	00523-19	00523-21
Parameter	Units						
BERYLLIUM	MG/KG				0.005 B		
CADMIUM	MG/KG	0.06 B					
CALCIUM	MG/KG	19500 J	192 B	414 B	29100 J	3110 J	15600 J
MAGNESIUM	MG/KG	453	256	232	1410	285	405
POTASSIUM	MG/KG	2720	3260	3450	2050	3330	2830
SELENIUM	MG/KG	0.27 J	0.14	0.16	0.38	0.18 B	0.23 B
SILVER	MG/KG		0.01 JB	0.01 JB	0.18 J		
SODIUM	MG/KG	1370 J	657 J	361 J	2170	760 J	1170 J
ZINC	MG/KG	23.4		10.6	20.3		27.3

N/A - Not applicable

MG/KG - milligram per kilogram

B - reported value is less than Contract Required Detection Limit (CRDL), but greater than Instrument Detection Limit (IDL)

J - value is estimated

JB - value is estimated below the CRDL, but greater thatn the IDL

SITE 6 FISH AND CRAB TISSUE POSITIVE DETECTION SUMMARY REMEDIAL INVESTIGATION CTO-0133 MCB CAMP LEJEUNE, NORTH CAROLINA TOTAL METALS

	Sample No:	6-WC6-WM1	
	Depth:	N/A	
	Date Sampled:	9/9/92	
	Lab Id:	00523-20	
Parameter	Units	· · · · · · · · · · · · · · · · · · ·	
BERYLLIUM	MG/KG		
CADMIUM	MG/KG		
CALCIUM	MG/KG	10800	J
MAGNESIUM	MG/KG	381	
POTASSIUM	MG/KG	3250	
SELENIUM	: MG/KG	0.21	в
SILVER	MG/KG		
SODIUM	MG/KG	1040	
ZINC	MG/KG	_ 11.2	

N/A - Not applicable

MG/KG - milligram per kilogram

B - reported value is less than Contract Required Detection Limit (CRDL), but greater than Instrument Detection Limit (IDL)

J - value is estimated

JB - value is estimated below the CRDL, but greater thatn the IDL

. . (1)

OPERABLE UNIT NO. 2 SYSTEMATIC LIST OF BENTHIC MACROINVERTEBRATE SPECIES BASELINE ECOLOGICAL RISK ASSESSMENT REMEDIAL INVESTIGATION CTO-0133 MCB CAMP LEJEUNE, NORTH CAROLINA

Species	Systematic Classification
ARTHROPODA	Phylum
Insecta	Class
Pterygota	Subclass
Diptera	Order
Ceratopogonidae	Family
Ceratopogon sp.	Genus
Chironomidae	Family
Chironomus decorus	Genus species
Clinotanypus pinguis	Genus species
Crytochironomous sp.	Genus
Krenopelopia sp.	Genus
Microtendipes pedellus	Genus species
Paramerina sp.	Genus
Pentaneura sp.	Genus
Polypedilum falax	Genus species
Polypedilum scalaenum	Genus species
Procladius sp.	Genus
Stenochironomus sp.	Genus
Tanytarsus sp.	Genus
Tribelos jucundum	Genus species
Tipulidae	Family
Hexatoma sp.	Genus
Ormosia sp.	Genus
Dolichopodidae	Family
Paraphrosylus sp.	Genus
Syrphidae	Family
Eristalis sp.	Genus

i ri

OPERABLE UNIT NO. 2 SYSTEMATIC LIST OF BENTHIC MACROINVERTEBRATE SPECIES BASELINE ECOLOGICAL RISK ASSESSMENT REMEDIAL INVESTIGATION CTO-0133 MCB CAMP LEJEUNE, NORTH CAROLINA

Species	Systematic Classification		
Tabanidae	Family		
Chrysops sp.	Genus		
Trichoptera	Order		
Polycentropodidae	Family		
Phylocentropus sp.	Genus		
Leptoceridae	Family		
Oecetis sp.	Genus		
Hemiptera	Order		
Nepomorpha	Suborder		
Corixidae	Family		
Sigara sp.	Genus		
Odonata	Order		
Anisoptera	Suborder		
Corduliidae	Family		
Zygoptera	Suborder		
Coenagrionidae	Family		
Enallagma sp.	Genus		
Gomphidae	Family		
Stylurus sp.	Genus		
Megaloptera	Order		
Sialidae	Family		
Dubiraphia sp.	Genus		
Coleoptera	Order		
Elmidae	Family		
Dubiraphia sp.	Genus		
Stenelmis sp.	Genus		

4-68

131

OPERABLE UNIT NO. 2 SYSTEMATIC LIST OF BENTHIC MACROINVERTEBRATE SPECIES BASELINE ECOLOGICAL RISK ASSESSMENT REMEDIAL INVESTIGATION CTO-0133 MCB CAMP LEJEUNE, NORTH CAROLINA

Species	Systematic Classification
Crustacea	Class
Malacostraca	Subclass
Amphipoda	Order
Gammaridae	Family
Gammarus fasciatus	Genus species
Isopoda	Order
Idoteidae	Family
Caecidotea sp.	Genus
Decapoda	Order
Palaemonidae	Family
Palaemonetes paludosus	Genus species
ANNELIDA	Phylum
Polychaeta	Class
Phyllodocida	Order
Nereidae	Family
Nereis succinea	Genus species
Capitellida	Order
Capitellidae	Family
Capitella capitata	Genus species
Terebellida	Order
Ampharetidae	Family
Hypaniola grayi	Genus species
Oligochaeta	Class
Tubificida	Order
Tubificidae	Family
Isochaetides curvisetosus	Genus species
Limnodrilus hoffmeisteri	Genus species

OPERABLE UNIT NO. 2 SYSTEMATIC LIST OF BENTHIC MACROINVERTEBRATE SPECIES BASELINE ECOLOGICAL RISK ASSESSMENT REMEDIAL INVESTIGATION CTO-0133 MCB CAMP LEJEUNE, NORTH CAROLINA

Species	Systematic Classification
Limnodrilus udekemianus	Genus species
Quistadrilus multisetosus	Genus species
Sparganophilidae	Family
Sparganophilus sp.	Genus
Haplotaxida	Order
Lumbriculidae	Family
Eclipidrilus sp.	Genus
PLATYHELMINTHES	Phylum
Turbellaria	Class
Tricladida	Order
Planariidae	Family
Dugesia tigrina	Genus species
NEMATODA	Phylum
MOLLUSCA	Phylum
Gastropoda	Class
Mesogastropoda	Order
Viviparidae	Family
Campeloma decisum	Genus species
Bivalvia	Class
Veneroida	Order
Sphaeriidae	Family
Pisidium casertanum	Genus species

OPERABLE UNIT NO. 2 SUMMARY TABLE: BENTHIC MACROINVERTEBRATE SPECIES BASELINE ECOLOGICAL RISK ASSESSMENT REMEDIAL INVESTIGATION CTO-0133 MCB CAMP LEJEUNE, NORTH CAROLINA

Species	Pettiford Creek		V	Vallace Cre	ek		Bear He	Bear Head Creek			
	PC	6-WC03A	6-WC06A	6-WC09A	6-WC11A	Total	6-BH02A	6-BH04A	6-BH06A	Total	
ARTHROPODA											
Insecta						· · · · · · · · · · · · · · · · · · ·					
Pterygota											
Diptera											
Ceratopogonidae								2		2	
Ceratopogon sp.							3			3	
Chironomidae	· · ·										
Chironomus decorus		12	3			15					
Clinotanypus pinguis							7			7	
Crytochironomous sp.							1			1	
Krenopelopia sp.		4				4	5			5	
Microtendipes pedellus	1										
Paramerina sp.		4				4					
Pentaneura sp.		4				4	1		Þ	.1	

PC - Pettiford Creek Station

WC - Wallace Creek Stations

BH - Bear Head Creek Stations

OPERABLE UNIT NO. 2 SUMMARY TABLE: BENTHIC MACROINVERTEBRATE SPECIES BASELINE ECOLOGICAL RISK ASSESSMENT REMEDIAL INVESTIGATION CTO-0133 MCB CAMP LEJEUNE, NORTH CAROLINA

Species	Pettiford Creek		V	Vallace Cre	ek	Bear Head Creek					
	PĊ	6-WC03A	6-WC06A	6-WC09A	6-WC11A	Total	6-BH02A	6-BH04A	6-BH06A	Total	
Polypedilum falax							2	6		8	
Polypedilum scalaenum			1			1	1	2		3	
Procladius sp.							1			1	
Stenochironomus sp.		4				4					
Tanytarsus sp.			1			1				-	
Tribelos jucundum	7	148	34			182	13			13	
Tipulidae											
Hexatoma sp.							3	7		10	
Ormosia sp.							8			8	
Dolichopodidae											
Paraphrosylus sp.							8			8	
Syrphidae											
Eristalis sp.							1			1	
Tabanidae											
Chrysops sp.							21	4	····	25	

PC - Pettiford Creek Station

WC - Wallace Creek Stations

BH - Bear Head Creek Stations

OPERABLE UNIT NO. 2 SUMMARY TABLE: BENTHIC MACROINVERTEBRATE SPECIES BASELINE ECOLOGICAL RISK ASSESSMENT REMEDIAL INVESTIGATION CTO-0133 MCB CAMP LEJEUNE, NORTH CAROLINA

Species	Pettiford Creek		W	Vallace Cre	Bear Head Creek					
	PC	6-WC03A	6-WC06A	6-WC09A	6-WC11A	Total	6-BH02A	6-BH04A	6-BH06A	Total
Trichoptera										
Polycentropodidae										
Phylocentropus sp.		4				4	3	4		7
Leptoceridae										
Oecetis sp.								1		1
Hemiptera										
Nepomorpha										
Corixidae										
Sigara sp.					· · · · · · · · · · · · · · · · · · ·		16			16
Odonata										
Anisoptera										
Corduliidae		4				4	1			1
Zygoptera		4				4				
Coenagrionidae										
Enallagma sp.							1			1

PC - Pettiford Creek Station

WC - Wallace Creek Stations

BH - Bear Head Creek Stations

OPERABLE UNIT NO. 2 SUMMARY TABLE: BENTHIC MACROINVERTEBRATE SPECIES BASELINE ECOLOGICAL RISK ASSESSMENT REMEDIAL INVESTIGATION CTO-0133 MCB CAMP LEJEUNE, NORTH CAROLINA

Species	Pettiford Creek		V	Vallace Cre	ek	Bear Head Creek					
	PC	6-WC03A	6-WC06A	6-WC09A	6-WC11A	Total	6-BH02A	6-BH04A	6-BH06A	Total	
Gomphidae											
Stylurus sp.							1			1	
Megaloptera											
Sialidae			i								
Sialis sp.							1			1	
Coleoptera											
Elmidae											
Dubiraphia sp.		4				4	25	1		26	
Stenelmis sp.								1		1	
Crustacea											
Malacostraca											
Amphipoda											
Gammaridae											
Gammarus fasciatus	2		113			113	2	48		50	
Isopoda											

PC - Pettiford Creek Station

WC - Wallace Creek Stations

BH - Bear Head Creek Stations

OPERABLE UNIT NO. 2 SUMMARY TABLE: BENTHIC MACROINVERTEBRATE SPECIES BASELINE ECOLOGICAL RISK ASSESSMENT REMEDIAL INVESTIGATION CTO-0133 MCB CAMP LEJEUNE, NORTH CAROLINA

Species	Pettiford Creek		W	Vallace Cre	ek	Bear Head Creek					
	PC	6-WC03A	6-WC06A	6-WC09A	6-WC11A	Total	6-BH02A	6-BH04A	6-BH06A	Total	
Idoteidae											
Caecidotea sp.		4				4	1			1	
Decapoda											
Palaemonidae											
Palaemonetes paludosus							1			1	
ANNELIDA											
Polychaeta											
Phyllodocida									2		
Nereidae											
Nereis succinea					4	4			4	4	
Capitellida											
Capitellidae											
Capitella capitata					1	1	1			1	
Terebellida											
Ampharetidae											

PC - Pettiford Creek Station

WC - Wallace Creek Stations

BH - Bear Head Creek Stations

OPERABLE UNIT NO. 2 SUMMARY TABLE: BENTHIC MACROINVERTEBRATE SPECIES BASELINE ECOLOGICAL RISK ASSESSMENT REMEDIAL INVESTIGATION CTO-0133 MCB CAMP LEJEUNE, NORTH CAROLINA

Species	Pettiford Creek		V	Vallace Cre	Bear Head Creek					
	PC	6-WC03A	6-WC06A	6-WC09A	6-WC11A	Total	6-BH02A	6-BH04A	6-BH06A	Total
Hypaniola grayi			1			1				
Oligochaeta										
Tubificida							1			
Tubificidae							2			2
Isochaetides curvisetosus							261			261
Limnodrilus hoffmeisteri	23		24		3	27	48	38		86
Limnodrilus udekemianus							26	6		32
Quistadrilus multisetosus							1			1
Sparganophilidae										
Sparganophilus sp.							60			60
Haplotaxida										
Lumbriculidae										
Eclipidrilus sp.								1		1
PLATYHELMINTHES										
Turbellaria				-						

PC - Pettiford Creek Station

WC - Wallace Creek Stations

BH - Bear Head Creek Stations

OPERABLE UNIT NO. 2 SUMMARY TABLE: BENTHIC MACROINVERTEBRATE SPECIES BASELINE ECOLOGICAL RISK ASSESSMENT REMEDIAL INVESTIGATION CTO-0133 MCB CAMP LEJEUNE, NORTH CAROLINA

Species	Pettiford Creek		V	Vallace Cre	Bear Head Creek					
	РС	6-WC03A	6-WC06A	6-WC09A	6-WC11A	Total	6-BH02A	6-BH04A	6-BH06A	Total
Tricladida										
Planariidae										
Dugesia tigrina								4	· · · · · · · · · · · · · · · · · · ·	4
NEMATODA		4				4				
MOLLUSCA									ž	
Gastropoda									-	
Mesogastropoda			· · · · · · · · · · · · · · · · · · ·							
Viviparidae										
Campeloma decisum							12	5		17
Bivalvia										
Veneroida										
Sphaeriidae										
Pisidium casertanum							44	301		345
TOTAL SPECIES	4	12	7	0	3	19	33	16	1	39
TOTAL INDIVIDUALS	33	200	177	0	8	385	582	431	4	1,017

PC - Pettiford Creek Station

WC - Wallace Creek Stations

BH - Bear Head Creek Stations

OPERABLE UNIT NO. 2 SUMMARY TABLE: BENTHIC MACROINVERTEBRATE SPECIES BASELINE ECOLOGICAL RISK ASSESSMENT REMEDIAL INVESTIGATION CTO-0133 MCB CAMP LEJEUNE, NORTH CAROLINA

Species	Pettiford Creek		V	Vallace Cre	ek		Bear Head Creek					
	PC	6-WC03A	6-WC06A	6-WC09A	6-WC11A	Total	6-BH02A	6-BH04A	6-BH06A	Total		
SPECIES DENSITY (#/M^2)	210	1,275	1,128	0	51	NA	3,709	2,747	25	NA		
SPECIES DIVERSITY	0.372	0.510	0.448	0	0.423	NA	0.932	0.514	0	NA		

PC - Pettiford Creek Station

WC - Wallace Creek Stations

BH - Bear Head Creek Stations

OPERABLE UNIT NO. 2 WALLACE, BEAR HEAD AND PETTIFORD CREEKS SUMMARY TABLE: PERCENT OF BENTHIC MACROINVERTEBRATE SPECIES AT EACH STATION BASELINE ECOLOGICAL RISK ASSESSMENT REMEDIAL INVESTIGATION CTO-0133 MCB CAMP LEJEUNE, NORTH CAROLINA

Species	Pettiford Creek		Ţ	Wallace Cre	ek			Bear He	ad Creek	· · · · ·
-	PC	6-WC03A	6-WC06A	6-WC09A	6-WC11A	Total	6-BH02A	6-BH04A	6-BH06A	Total
ARTHROPODA				·						
Insecta										
Pterygota										
Diptera										
Ceratopogonidae								0.46		2.E-1
Ceratopogon sp.							0.52			0.29
Chironomidae										······
Chironomus decorus		6.00	1.69			3.90				· · · ·
Clinotanypus pinguis							1.20			0.69
Crytochironomous sp.		,					0.17			0.10
Krenopelopia sp.		2.00				1.04	0.86			0.49
Microtendipes pedellus	3.03									
Paramerina sp.		2.00				1.04				
Pentaneura sp.		2.00				1.04	0.17			0.10
Polypedilum falax						· · · · · · · · · · ·	0.34	1.39		0.79
Polypedilum scalaenum			0.56			0.26	0.17	0.46		0.29

PC - Pettiford Creek Station

WC - Wallace Creek Stations

OPERABLE UNIT NO. 2 WALLACE, BEAR HEAD AND PETTIFORD CREEKS SUMMARY TABLE: PERCENT OF BENTHIC MACROINVERTEBRATE SPECIES AT EACH STATION BASELINE ECOLOGICAL RISK ASSESSMENT REMEDIAL INVESTIGATION CTO-0133 MCB CAMP LEJEUNE, NORTH CAROLINA

Species	Pettiford Creek		v	Vallace Cree	ek			Bear He	ad Creek	
-	PC	6-WC03A	6-WC06A	6-WC09A	6-WC11A	Total	6-BH02A	6-BH04A	6-BH06A	Total
Procladius sp.							0.17			0.10
Stenochironomus sp.		2.00				1.04				
Tanytarsus sp.			0.56			0.26				. '
Tribelos jucundum	21.21	74.00	19.21			47.27	2.23			1.28
Tipulidae										
Hexatoma sp.							0.52	1.62		0.98
Ormosia sp.							1.37			0.79
Dolichopodidae										
Paraphrosylus sp.							1.37			0.79
Syrphidae										
Eristalis sp.							0.17			0.10
Tabanidae										
Chrysops sp.							3.61	0.93		2.46
Trichoptera										·····
Polycentropodidae										
Phylocentropus sp.		2.00				1.04	0.52	0.93		0.69

PC - Pettiford Creek Station

WC - Wallace Creek Stations

TABLE +-12 (cont.)

OPERABLE UNIT NO. 2 WALLACE, BEAR HEAD AND PETTIFORD CREEKS SUMMARY TABLE: PERCENT OF BENTHIC MACROINVERTEBRATE SPECIES AT EACH STATION BASELINE ECOLOGICAL RISK ASSESSMENT REMEDIAL INVESTIGATION CTO-0133 MCB CAMP LEJEUNE, NORTH CAROLINA

Species	Pettiford Creek		V	Vallace Cree	ek			Bear He	ad Creek	
	PC	6-WC03A	6-WC06A	6-WC09A	6-WC11A	Total	6-BH02A	6-BH04A	6-BH06A	Total
Leptoceridae										
Oecetis sp.								0.23		0.10
Hemiptera								<u>.</u>		
Nepomorpha	,						<			
Corixidae										
Sigara sp.							2.75			1.57
Odonata										
Anisoptera										
Corduliidae						1.04				0.10
Zygoptera		2.00				1.04				·····
Coenagrionidae										
Enallagma sp.						-	0.17	······································		0.10
Corduliidae		2.00					0.17		-	
Gomphidae										
Stylurus sp.							0.17			0.10
Megaloptera										

PC - Pettiford Creek Station

WC - Wallace Creek Stations

TABLE --- 12 (cont.)

OPERABLE UNIT NO. 2 WALLACE, BEAR HEAD AND PETTIFORD CREEKS SUMMARY TABLE: PERCENT OF BENTHIC MACROINVERTEBRATE SPECIES AT EACH STATION BASELINE ECOLOGICAL RISK ASSESSMENT REMEDIAL INVESTIGATION CTO-0133 MCB CAMP LEJEUNE, NORTH CAROLINA

Species	Pettiford Creek	Wallace Creek						Bear He	ad Creek	
	PC	6-WC03A	6-WC06A	6-WC09A	6-WC11A	Total	6-BH02A	6-BH04A	6-BH06A	Total
Sialidae										
Sialis sp.				····			0.17			0.10
Coleoptera										
Elmidae										
Dubiraphia sp.	·	2.00				1.04	4.30	0.23		2.56
Stenelmis sp.								0.23		0.10
Crustacea										
Malacostraca										
Amphipoda										
Gammaridae									· ·	
Gammarus fasciatus	6.06		63.84			29.35	0.34	11.14		4.92
Isopoda										
Idoteidae		· ·								
Caecidotea sp.		2.00				1.04	0.17			0.10
Decapoda										
Palaemonidae										

PC - Pettiford Creek Station

WC - Wallace Creek Stations

TABLE --- 12 (cont.)

OPERABLE UNIT NO. 2 WALLACE, BEAR HEAD AND PETTIFORD CREEKS SUMMARY TABLE: PERCENT OF BENTHIC MACROINVERTEBRATE SPECIES AT EACH STATION BASELINE ECOLOGICAL RISK ASSESSMENT REMEDIAL INVESTIGATION CTO-0133 MCB CAMP LEJEUNE, NORTH CAROLINA

Species	Pettiford Creek		Ţ	Wallace Cree	ek			Bear He	ad Creek	
	PC	6-WC03A	6-WC06A	6-WC09A	6-WC11A	Total	6-BH02A	6-BH04A	6-BH06A	Total
Palaemonetes paludosus							0.17			0.10
ANNELIDA										
Polychaeta										
Phyllodocida										· · · · · · · · · · · ·
Nereidae										·····
Nereis succinea					50.00	1.04			100.00	0.39
Capitellida										
Capitellidae									·	
Capitella capitata					12.50	0.26	0.17			0.10
Terebellida										
Ampharetidae										
Hypaniola grayi			0.56			0.26				
Oligochaeta										
Tubificida						·····			. I	
Tubificidae							0.34			0.20
Isochaetides curvisetosus						<u> </u>	44.85			25.66

PC - Pettiford Creek Station

WC - Wallace Creek Stations

OPERABLE UNIT NO. 2 WALLACE, BEAR HEAD AND PETTIFORD CREEKS SUMMARY TABLE: PERCENT OF BENTHIC MACROINVERTEBRATE SPECIES AT EACH STATION BASELINE ECOLOGICAL RISK ASSESSMENT REMEDIAL INVESTIGATION CTO-0133 MCB CAMP LEJEUNE, NORTH CAROLINA

Species	Pettiford Creek	Wallace Creek						Bear Head Creek			
	PC	6-WC03A	6-WC06A	6-WC09A	6-WC11A	Total	6-BH02A	6-BH04A	6-BH06A	Total	
Limnodrilus hoffmeisteri	69.70		13.56		37.50	7.01	8.25	8.82		8.46	
Limnodrilus udekemianus							4.47	1.39		3.15	
Quistadrilus multisetosus							0.17	·		0.10	
Sparganophilidae											
Sparganophilus sp.							10.31			5.90	
Haplotaxida											
Lumbriculidae											
Eclipidrilus sp.			········					0.23		0.10	
PLATYHELMINTHES											
Turbellaria						· <u>·</u> ··································					
Tricladida											
Planariidae											
Dugesia tigrina								0.93		0.39	
NEMATODA		2.00				1.04					
MOLLUSCA											
Gastropoda											

PC - Pettiford Creek Station

WC - Wallace Creek Stations

OPERABLE UNIT NO. 2 WALLACE, BEAR HEAD AND PETTIFORD CREEKS SUMMARY TABLE: PERCENT OF BENTHIC MACROINVERTEBRATE SPECIES AT EACH STATION BASELINE ECOLOGICAL RISK ASSESSMENT REMEDIAL INVESTIGATION CTO-0133 MCB CAMP LEJEUNE, NORTH CAROLINA

Species	Pettiford Creek	Wallace Creek				Bear Head Creek				
	PC	6-WC03A	6-WC06A	6-WC09A	6-WC11A	Total	6-BH02A	6-BH04A	6-BH06A	Total
Mesogastropoda										······································
Viviparidae										
Campeloma decisum							2.06	1.16		1.67
Bivalvia										
Veneroida										
Sphaeriidae										
Pisidium casertanum							7.56	69.84		33.92

4-85

PC - Pettiford Creek Station

WC - Wallace Creek Stations

OPERABLE UNIT NO. 2 BIOTIC INDEX AND U.S. EPA TOLERANCE TO ORGANIC WASTES AND SENSITIVITY TO METALS FOR BENTHIC MACROINVERTEBRATES **BASELINE ECOLOGICAL RISK ASSESSMENT REMEDIAL INVESTIGATION CTO-0133** MCB CAMP LEJEUNE, NORTH CAROLINA

	U.S. I	EPA (1)	NODEIINE	
SPECIES	Metals	Organics	NCDEHNR(2) BIOTIC INDEX	
ARTHROPODA				
Insecta				
Pterygota				
Diptera				
Ceratopogonidae				
Ceratopogon sp.	NA	NA	NA	
Chironomidae				
Chironomus decorus	NA	NA	9.8 (a)	
Clinotanypus pinguis	S	3	9.1	
Crytochironomous sp.	NA	3	9.6 (c)	
Krenopelopia sp.	NA	NA	NA	
Microtendipes pedellus	S	1	6.2 (a)	
Paramerina sp.	NA	0	2.8	
Pentaneura sp.	NA	3	4.6	
Polypedilum falax	S	3	6.7	
Polypedilum scalaenum	Т	2	8.7	
Procladius sp.	NA	3	9.3	
Stenochironomus sp.	NA	1	6.4	
Tanytarsus sp.	NA	3	6.7	
Tribelos jucundum	S,D	1	6.6	

- (1) Source: USEPA, 1990
- Source: Lenat, 1993 (2) -
- (a) Value is based on genus Biotic Index
- (b) Value is based on family Biotic Index
 (c) Value is calculated by doubling the previous Biotic Index
- NA -Not Available
- Sensitive to heavy metals Tolerant to heavy metals S -
- Т -
- Intolerant to organic wastes D -

OPERABLE UNIT NO. 2 BIOTIC INDEX AND U.S. EPA TOLERANCE TO ORGANIC WASTES AND SENSITIVITY TO METALS FOR BENTHIC MACROINVERTEBRATES BASELINE ECOLOGICAL RISK ASSESSMENT REMEDIAL INVESTIGATION CTO-0133 MCB CAMP LEJEUNE, NORTH CAROLINA

SPECIES	U.S. 1	EPA (1)	NCDEHNR(2)	
	Metals	Organics	BIOTIC INDEX	
Tipulidae			NA	
Hexatoma sp.	NA	NA	4.7	
Ormosia sp.	NA	NA	NA	
Dolichopodidae			9.7	
Paraphrosylus sp.	NA	NA	9.7 (b)	
Syrphidae				
Eristalis sp.	NA	NA	10	
Tabanidae				
Chrysops sp.	NA	NA	7.3	
Trichoptera				
Polycentropodidae				
Phylocentropus sp.	S	2	3.5	
Leptoceridae				
Oecetis sp.	NA	NA	5.7	
Hemiptera				
Nepomorpha				
Corixidae				
Sigara sp.	NA	NA	8.6 (c)	
Odonata	·····	*		
Anisoptera				
Corduliidae			NA	

(1) - Source: USEPA, 1990

- (2) Source: Lenat, 1993
- (a) Value is based on genus Biotic Index
- (b) Value is based on family Biotic Index
- (c) Value is calculated by doubling the previous Biotic Index
- NA Not Available
- S Sensitive to heavy metals
- T Tolerant to heavy metals
- D Intolerant to organic wastes

OPERABLE UNIT NO. 2 BIOTIC INDEX AND U.S. EPA TOLERANCE TO ORGANIC WASTES AND SENSITIVITY TO METALS FOR BENTHIC MACROINVERTEBRATES BASELINE ECOLOGICAL RISK ASSESSMENT REMEDIAL INVESTIGATION CTO-0133 MCB CAMP LEJEUNE, NORTH CAROLINA

CDECIES	U.S. 1	EPA (1)	NCDEHNB(9)	
SPECIES	Metals	Organics	NCDEHNR(2) BIOTIC INDEX	
Zygoptera				
Coenagrionidae				
Enallagma sp.	NA	4	9	
Gomphidae				
Stylurus sp.	NA	NA	NA	
Megaloptera				
Sialidae				
Sailis sp.	NA	NA	7.5	
Coleoptera				
Elmidae				
Dubiraphia sp.	Т	3	6.4	
Stenelmis sp.	S	3	5.4	
Crustacea				
Malacostraca				
Amphipoda				
Gammaridae				
Gammarus fasciatus	NA	2	6.9	
Isopoda				
Idoteidae				
Caecidotea sp.	NA	NA	NA	

(1) - Source: USEPA, 1990

(2) - Source: Lenat, 1993

(a) - Value is based on genus Biotic Index

(b) - Value is based on family Biotic Index

(c) - Value is calculated by doubling the previous Biotic Index

NA - Not Available

S - Sensitive to heavy metals

T - Tolerant to heavy metals

D - Intolerant to organic wastes

OPERABLE UNIT NO. 2 BIOTIC INDEX AND U.S. EPA TOLERANCE TO ORGANIC WASTES AND SENSITIVITY TO METALS FOR BENTHIC MACROINVERTEBRATES BASELINE ECOLOGICAL RISK ASSESSMENT REMEDIAL INVESTIGATION CTO-0133 MCB CAMP LEJEUNE, NORTH CAROLINA

	U.S. 1	EPA (1)		
SPECIES	Metals	Organics	NCDEHNR(2) BIOTIC INDEX	
Decapoda				
Palaemonidae				
Palaemonetes paludosus	NA	2	6.7	
ANNELIDA			-	
Polychaeta				
Phyllodocida				
Nereidae				
Nereis succinea	NA	NA	NA	
Capitellida		-		
Capitellidae				
Capitella capitata	NA	NA	NA	
Terebellida				
Ampharetidae	· · · · · · · · · · · · · · · · · · ·			
Hypaniola grayi	NA	NA	NA	
Oligochaeta				
Tubificida				
Tubificidae			6.8 (c)	
Isochaetides curvisetosus	NA	2	7.1	
Limnodrilus hoffmeisteri	NA	5	9.8	
Limnodrilus udekemianus	NA	5	9.7	
Quistadrilus multisetosus	NA	4	4.8 (c)	

(1) - Source: USEPA, 1990

- (2) Source: Lenat, 1993
- (a) Value is based on genus Biotic Index
- (b) Value is based on family Biotic Index
- (c) Value is calculated by doubling the previous Biotic Index
- NA Not Available
- S Sensitive to heavy metals
- T Tolerant to heavy metals
- D Intolerant to organic wastes

OPERABLE UNIT NO. 2 BIOTIC INDEX AND U.S. EPA TOLERANCE TO ORGANIC WASTES AND SENSITIVITY TO METALS FOR BENTHIC MACROINVERTEBRATES BASELINE ECOLOGICAL RISK ASSESSMENT REMEDIAL INVESTIGATION CTO-0133 MCB CAMP LEJEUNE, NORTH CAROLINA

SPECIES	U.S. 1	EPA (1)	NCDEHNR(2)	
SPECIES	Metals	Organics	BIOTIC INDEX	
Sparganophilidae				
Sparganophilus sp.	NA	NA	NA	
Haplotaxida				
Lumbriculidae	· · · · · · · · · · · · · · · · · · ·			
Eclipidrilus sp.	NA	NA	4 (c)	
PLATYHELMINTHES				
Turbellaria				
Tricladida				
Planariidae				
Dugesia tigrina	NA	4	7.5	
NEMATODA	NA	NA	6.2 (c)	
MOLLUSCA				
Gastropoda				
Mesogastropoda				
Viviparidae				
Campeloma decisum	NA	3	6.7	
Bivalvia				
Veneroida				
Sphaeriidae				
Pisidium casertanum	NA	4	6.8 (a)	

(1) - Source: USEPA, 1990

(2) - Source: Lenat, 1993

(a) - Value is based on genus Biotic Index

(b) - Value is based on family Biotic Index

(c) - Value is calculated by doubling the previous Biotic Index

NA - Not Available

S - Sensitive to heavy metals

- T Tolerant to heavy metals
- D Intolerant to organic wastes

OPERABLE UNIT NO. 2 SUMMARY STATISTICS OF BENTHIC MACROINVERTEBRATE SPECIES BASELINE ECOLOGICAL RISK ASSESSMENT REMEDIAL INVESTIGATION CTO-0133 MCB CAMP LEJEUNE, NORTH CAROLINA

Station	Number of Taxa	Number of Organisms	Species Density (#/M^2)	Species Diversity	Macro- invertebrate Biotic Index
Wallace Creek					
6-WC03A-BN1	7	68	433	0.641	6.34
6-WC03A-BN2	5	84	535	0.326	6.47
6-WC03A-BN3	2	48	306	0.125	6.60
6-WC03A	12	200	1,275	0.510	6.46
6-WC06A-BN1	3	76	484	0.365	7.14
6-WC06A-BN2	4	49	312	0.517	7.73
6-WC06A-BN3	6	52	331	0.401	7.12
6-WC06A	7	177	1,128	0.448	7.30
6-WC09A-BN1	0	0	0	0	NA
6-WC09A-BN2	0	0	0	0	NA
6-WC09A-BN3	0	0	0	0	NA
6-WC09A	0	0	0	0	NA
6-WC11A-BN1	1	3	19	0	NA
6-WC11A-BN2	2	3	19	0.276	9.80
6-WC11A-BN3	2	2	13	0.301	9.80
6-WC11A	3	8	51	0.423	9.80
Bear Head Creek					
6-BH02A-BN1	23	286	1,823	0.896	7.69
6-BH02A-BN2	19	223	1,421	0.715	7.32
6-BH02A-BN3	17	73	465	1.065	7.51
6-BH02A	33	582	3,709	0.932	7.51
6-BH04A-BN1	6	30	191	0.572	8.28
6-BH04A-BN2	8	183	1,166	0.263	7.05

NA - Not Applicable

.

OPERABLE UNIT NO. 2 SUMMARY STATISTICS OF BENTHIC MACROINVERTEBRATE SPECIES BASELINE ECOLOGICAL RISK ASSESSMENT REMEDIAL INVESTIGATION CTO-0133 MCB CAMP LEJEUNE, NORTH CAROLINA

Station	Number of Taxa	Number of Organisms	Species Density (#/M^2)	Species Diversity	Macro- invertebrate Biotic Index
6-BH04A-BN3	15	218	1,389	0.606	6.89
6-BH04A	16	431	2,747	0.514	7.06
6-BH06A-BN1	0	0	0	0	NA
6-BH06A-BN2	1	4	25	0	NA
6-BH06A-BN3	0	0	0	0	NA
6-BH06A	1	4	25	0	NA
Pettiford Creek					
PC-BN1	3	10	64	0.410	8.23
PC-BN2	2	11	70	0.206	9.22
PC-BN3	4	12	76	0.363	8.99
PC	4	33	210	0.372	8.84

OPERABLE UNIT NO. 2 RESULTS OF THE JACCARD COEFFICIENT (Sj) OF COMMUNITY SIMILARITY AND SORENSON INDEX (Ss) OF COMMUNITY SIMILARITY BETWEEN BENTHIC MACROINVERTEBRATE STATIONS BASELINE ECOLOCICAL RISK ASSESSMENT REMEDIAL INVESTIGATION CTO-0133 MCB CAMP LEJEUNE, NORTH CAROLINA

		Ss										
	PC	6-WC03A	6-WC06A	6-WC09A	6-WC11A	6-BH02A	6-BH04A	6-BH06A				
PC	NA	0.154	0.545	0	0.286	0.167	0.211	0				
6-WC03A	0.083	NA	0.250	0	0	0.293	0.167	0				
6-WC06A	0.375	0.143	NA	0	0.200	0.205	0.273	0				
6-WC09A	0	0	0	NA	0	0	0	0				
6-WC11A	0.167	0	0.111	0	NA	0.114	0.111	0.500				
6-BH02A	0.091	0.171	0.114	0	0.061	NA	0.468	0				
6-BH04A	0.118	0.091	0.158	0	0.059	0.306	NA	0				
6-BH06A	0	0	0	0	0.333	0	0	NA				

NA - NOT APPLICABLE

Sj - Jaccard Coefficient

Ss - Sorenson Index

Si

5.0 CONTAMINANTS OF CONCERN

This section discusses the procedures used to evaluate the data for inclusion in the ERA. This section also includes a comparison of chemicals detected in the surface water and sediments to the applicable water quality and sediment quality criteria and a comparison of chemicals detected in the soil to plant and invertebrate toxicology data. Finally, a brief discussion of the physical/chemical characteristics of the COCs are included in this section.

5.1 Data Evaluation

This task uses a variety of information to select a list of COCs for each medium analyzed. The following rationale were used to determine and select the contaminants of concern per media for this site:

- Contaminants that were positively detected in at least one sample with no data qualifiers, and contaminants that indicate known identities but unknown concentrations
- Contaminants that were detected at elevated levels above the levels for the same contaminant detected in associated blanks
- Contaminants that were detected at elevated levels above naturally occurring levels of the same contaminant

Eliminating contaminants can be done through several procedures including: (1) historical information; (2) the detected concentration and contaminant's toxicity; (3) the contaminant's mobility and persistence; (4) exposure routes; and, (5) comparison to ARARs.

5.1.1 Contaminants of Concern - Surface Water

Surface water samples were collected at OU No. 2 from Wallace Creek, Bear Head Creek, and the ravine. The following sections discuss which chemicals were included in the ERA and the rationale for the chemicals that were not included in the ERA.

5.1.1.1 Wallace Creek

The following TCL organics detected in the surface water samples collected in Wallace Creek were not addressed in the ERA because they are common laboratory and/or decontamination contaminants: acetone and bis(2-ethylhexyl) phthalate. In addition, 2,4,6-trichlorophenol was not addressed in the ERA because it was only detected in one sample and it was not detected in any other sample at the site.

The following TAL inorganics detected in the surface water samples collected in Wallace Creek were not addressed in the ERA because of a lack of available toxicological information or they were not expected to be ecologically significant at the detected concentrations: calcium, cobalt, magnesium, potassium, and sodium.

In summary, the following chemicals detected in the surface water samples collected in Wallace Creek are included in the ERA: 1,2-dichloroethane, tetrachloroethene, toluene, trichloroethene, vinyl chloride, aluminum, arsenic, barium, cadmium, chromium, copper, iron, lead, manganese, mercury, nickel, silver, vanadium, and zinc.

5.1.1.2 Bear Head Creek

The following TCL organics detected in the surface water samples collected in Bear Head Creek were not addressed in the ERA because they are common laboratory contaminants: bis(2-ethylhexyl) phthalate and diethyl phthalate. No other TCL organics were detected in the surface water in Bear Head Creek.

The following TAL inorganics detected in the surface water samples collected in Bear Head Creek were not addressed in the ERA because of a lack of available toxicological information or they were not expected to be ecologically significant at the detected concentrations: calcium, magnesium, potassium, and sodium.

In summary, the following chemicals detected in the surface water in Bear Head Creek were addressed in the ERA: aluminum, barium, chromium, copper, iron, lead, manganese, mercury, nickel, silver, vanadium, and zinc.

5.1.1.3 Ravine

Acetone was the only TCL organic chemical detected in the surface water samples collected in ravine and was not addressed in the ERA because it is a common laboratory and decontamination contaminant.

The following TAL inorganics detected in the surface water samples collected in the ravine were not addressed in the ERA because of a lack of available toxicological information or they were not expected to be ecologically significant at the detected concentrations: calcium, cobalt, magnesium, potassium, and sodium.

In summary, the following chemicals detected in surface water samples collected in the ravine were addressed in the ERA: aluminum, arsenic, barium, cadmium, chromium, copper, iron, lead, manganese, silver, vanadium, and zinc.

5.1.2 Contaminants of Concern - Sediments

Sediment samples were collected at OU No. 2 from Wallace Creek, Bear Head Creek, and the ravine. The following sections discuss which chemicals were included in the ERA, and the rationale for the chemicals that were not included in the ERA.

5.1.2.1 Wallace Creek

The following TCL organics detected in the sediment samples collected in Wallace Creek were not addressed in the ERA because they are common laboratory and/or decontamination contaminants: acetone, 2-butanone, methylene chloride, bis(2-ethylhexyl) phthalate, butyl benzyl phthalate, and diethyl phthalate.

The following TAL inorganics detected in the sediment samples collected in Wallace Creek were not addressed in the ERA because of a lack of available toxicological information or they were not expected to be ecologically significant at the detected concentrations: calcium, cobalt, magnesium, potassium, and sodium.

In summary, the following chemicals detected in the sediment samples collected in Wallace Creek were addressed in the ERA: 1,2-dichloroethane, total xylenes, toluene, trichloroethene, carbon disulfide, dieldrin, 4,4'-DDD, 4,4'-DDE, 4,4'-DDT, phenol, phenanthrene, flouranthene, pyrene, benzo(a)anthracene, chrysene, benzo(b)fluoranthene, benzo(k)fluoranthene, benzo(a)pyrene, aluminum, arsenic, barium, beryllium, chromium, copper, iron, lead, manganese, nickel, silver, vanadium, and zinc.

5.1.2.2 Bear Head Creek

The following TCL organics detected in the sediment samples collected in Bear Head Creek were not addressed in the ERA because they are common laboratory and/or decontamination contaminants: acetone, 2-butanone, and methylene chloride. In addition, alpha chlordane and 1,4-dichlorobenzene were not addressed in the ERA because they had low frequencies of detection and there is limited toxicological information for those chemicals.

The following TAL inorganics detected in the sediment samples collected in Bear Head Creek were not addressed in the ERA because of a lack of available toxicological information or they were not expected to be ecologically significant at the detected concentrations: calcium, cobalt, magnesium, potassium, and sodium.

In summary, the following chemicals detected in the sediment samples collected in Bear Head Creek were addressed in the ERA: benzene, ethylbenzene, tetrachloroethene, trichloroethene, total xylenes, 4,4'-DDD, 4,4'-DDE, 4,4'-DDT, PCB-1260, PAHs, aluminum, arsenic, barium, beryllium, cadmium, chromium, copper, iron, lead, manganese, selenium, vanadium, and zinc.

5.1.2.3 Ravine

The following TCL organics detected in the sediment samples collected in the ravine were not addressed in the ERA because they are common laboratory and/or decontamination contaminants: acetone, 2-butanone, bis(2-ethylhexyl) phthalate, and di-n-butyl phthalate. In addition, endrin aldehyde, carbazole, and dibenzofuran were not addressed in the ERA because they had low frequencies of detection and there is limited toxicological information for those chemicals.

The following TAL inorganics detected in the sediment samples collected in the ravine were not addressed in the ERA because of a lack of available toxicological information or they were not expected to be ecologically significant at the detected concentrations: calcium, cobalt, magnesium, potassium, and sodium. In summary, the following chemicals detected in the sediment samples collected in the ravine were addressed in the ERA: dieldrin, 4,4'-DDD, 4,4'-DDE, 4,4'-DDT, endrin, PCB-1260, PAHs, aluminum, arsenic, barium, beryllium, cadmium, chromium, copper, iron, lead, manganese, mercury, nickel, silver, vanadium, and zinc.

5.1.3 Contaminants of Concern - Surface Soils

The following sections discuss which chemicals were included in the ERA, and the rationale for the chemicals that were not included in the ERA.

5.1.3.1 Site 9

The following TCL organics detected in the surface soil samples were not addressed in the ERA because they are common laboratory and/or decontamination contaminants: acetone, bis(2-ethylhexyl) phthalate and toluene.

The following TAL inorganics detected in the surface soil were not addressed in the ERA because of a lack of available toxicological information or they were not expected to be ecologically significant at the detected concentrations: aluminum, beryllium, calcium, cobalt, iron, magnesium, manganese, potassium and vanadium.

In summary, the following chemicals detected in the surface soil samples were addressed in the ERA: 4,4'-DDE, 4,4'-DDT, 1,1,1-trichloroethane, tetrachloroethene, pyrene, benzo(b)fluoranthene, barium, chromium, copper, lead, mercury, and zinc.

5.1.3.2 Site 6 (Lot 201)

Soil samples in this area were collected from three grid areas (i.e, grid locations 201A, 201B and 201C) in order to define the extent of contamination at the suspected PCB and pesticide storage areas.

The contaminants alpha and gamma chlordane were detected in only 1 of 96 samples, and PCB-1248 was detected in 1 of 87 samples therefore, these contaminants will not be retained as COCs for further evaluation.

The volatile contaminants acetone, methylene chloride, and 1,1,1-trichloroethane were not retained as COCs due to their infrequent detection and/or presence in field or laboratory blanks.

Several PAHs were detected throughout the site. The PAHs benzo(a)anthracene, benzo(k)fluoranthene, benzo(a)pyrene, and phenanthrene were detected in 1 of 17 samples, therefore they will not be retained as COCs for further evaluation. The presence of bis(2ethylhexyl)phthalate, di-n-butyl phthalate, and di-n-octyl phthalate are the result of blank contamination and therefore were not retained as COCs.

The following TAL inorganics detected in the surface soil were not addressed in the ERA because of lack of available toxicological information or they were not expected to be ecologically significant at the detected concentrations: aluminum, beryllium, calcium, cobalt, iron, magnesium, manganese, potassium, selenium, sodium and vanadium.

In summary, the following chemicals detected in the surface soil samples were addressed in the ERA: 4,4'-DDD, 4,4'-DDE, 4,4'-DDT, PCB-1260, chrysene, benzo(b)fluoranthene, 1,4-dichlorobenzene, fluoranthene, pyrene, arsenic, barium, cadmium, chromium, copper, lead, nickel, and zinc.

5.1.3.3 Site 6 (Lot 203)

Soil samples were collected from the area designated as Lot 203 Open Storage Area. Within this area, sampling grids (i.e. 203OSA, 203DDT, and 203PCB) were established to define areas of contamination.

Pesticides endosulfan II, alpha chlordane and gamma chlordane were detected infrequently and consequently were not retained as COCs. PCBs 1248 and 1254 were infrequently detected in this area and consequently were not retained as COCs.

The prevalence of TCL organics in this area does not warrant the retention of any of these as COCs for further evaluation. The infrequent detection and low concentrations of acetone and toluene detected in area soil samples indicate that these contaminants are blank related and not truly indicative of area-specific conditions. In addition, 1,1,1-trichloroethane was detected in 2 of 28 samples and does not warrant its retention as a COC.

Semivolatile contaminants benzo(a) anthracene, benzo(b)fluoranthene, benzo(k)fluoranthene, benzo(a)pyrene, chrysene, 1,4-dichlorobenzene, fluoranthene, indeno(1,2,3-cd)pyrene, and pyrene were detected at frequencies that were greater than five percent. Therefore, these contaminants have been retained as COCs. Other semivolatiles (i.e., naphthalene, carbazole, and butyl benzyl phthalate) do not warrant consideration as COCs. These contaminants were either infrequently detected or are a result of blank contamination.

The following TAL inorganics detected in the surface soil were not addressed in the ERA because of lack of available toxicological information or they were not expected to be ecologically significant at the detected concentrations: aluminum, antimony beryllium, calcium, cobalt, iron, magnesium, manganese, potassium, sodium and vanadium.

In summary, the following chemicals detected in the surface soil samples were addressed in the ERA: 4,4'-DDD, 4,4'-DDE, 4,4'-DDT, dieldrin, endrin, PCB-1260, chrysene, benzo(b)fluoranthene, benzo(a)anthracene, benzo(k)fluoranthene, benzo(a)pyrene, indeno(1,2,3-cd)pyrene, 1,4-dichlorobenzene, fluoranthene, pyrene, arsenic, barium, cadmium, chromium, copper, lead, mercury, nickel, and zinc.

5.1.3.4 Sites 6 (Wooded and Ravine Areas) and 82

The wooded and ravine areas consist of grid areas 201N (North), 201E (East), 201S (South) which bound Lot 201, and the wooded area north of Lot 203 bounded by Wallace Creek to the North, Piney Green Road to the East, and Holcomb Boulevard to the West. In addition, samples from the grid designated as 203OSA and the ravine were included as part of the wooded and ravine areas.

The pesticide alpha chlordane was detected in 1 of 83 samples in the surface soil, therefore, it was not retained as a COC.

The TCL organics acetone, bromomethane, chloromethane, 1,2-dichloroethene, trichloroethene, benzene, 1,1,2,2-tetrachloroethane, and toluene were not retained as COCs due to their infrequent occurrence in the soil and/or their presence in site or laboratory related blanks. Many of the semivolatile contaminants were not retained as COCs because they were either infrequently detected or are a result of blank contamination. The following TAL inorganics detected in the surface soil were not addressed in the ERA because of lack of available toxicological information or they were not expected to be ecologically significant at the detected concentrations: aluminum, antimony, beryllium, calcium, cobalt, iron, magnesium, manganese, potassium, selenium, silver, sodium, thallium and vanadium.

In summary, the following chemicals detected in the surface soil samples were addressed in the ERA: 4,4'-DDD, 4,4'-DDE, 4,4'-DDT, dieldrin, endrin, PCB-1260, anthracene, benzo(a)anthracene, benzo(b)fluoranthene, benzo(k)fluoranthene, benzo(a)pyrene, dibenz(a,h)anthracene, chrysene, indeno(1,2,3-cd)pyrene, 1,4-dichlorobenzene, fluoranthene, phenol, pyrene, arsenic, barium, cadmium, chromium, copper, lead, mercury, nickel, and zinc.

5.1.4 Contaminants of Concern - Fish and Crab Tissue

The following sections discuss the COCs in the fish and crabs tissues that were evaluated in the ERA.

5.1.4.1 Wallace Creek

For the tissue samples, endrin and endosulfan II were not addressed in the ERA because they were not detected in the sediment or surface water in Wallace Creek; therefore, they could not be attributed to contamination in Wallace Creek. Acetone, 2-butanone, methylene chloride, and dimethyl phthalate also were not evaluated in the ERA because they are common laboratory contaminants.

Selected TAL inorganics (calcium, magnesium, potassium and sodium) were not addressed in the ERA because they were not expected to be ecologically significant at the detected concentrations.

In summary, the following chemicals identified in the fish tissue will be addressed in the ERA: 4,4'-DDD, 4,4'-DDE, 4,4'-DDT, toluene, PCB-1260, trichloroethene, phenol, benzene, silver, selenium and zinc.

5.1.4.2 Bear Head Creek

For the tissue samples, endrin, methoxychlor, and alpha chlordane were not addressed in the ERA because they were not detected in the sediment or surface water samples collected in Bear Head Creek; therefore, they could not be attributed to contamination in Bear Head Creek. Methylene chloride, acetone, 2-butanone, and dimethyl phthalate also were not evaluated in the ERA because they are common laboratory contaminants.

Selected TAL inorganics (calcium, magnesium, potassium and sodium) were not addressed in the ERA because they were not expected to be ecologically significant at the detected concentrations.

In summary, the following chemicals identified in the fish tissue will be addressed in the ERA: 4,4'-DDD, 4,4'-DDE, 4,4'-DDT, toluene, PCB-1260, benzene, cadmium, selenium and zinc.

5.2 <u>Water Quality Criteria</u>

Tables 5-1 and 5-2, contain the North Carolina saltwater Water Quality Standards (WQS) and the Region IV saltwater Water Quality Screening Values (WQSV) for the COCs in Wallace Creek and Bear Head Creek. Table 5-3 contains the Freshwater WQS and WQSV for the COCs in the ravine. The COCs in the ravine are compared to the freshwater standards because the water in the ravine is not tidally influenced. The contaminants identified in the surface water were compared to these values to determine if they exceeded the published values. Tables 5-4, 5-5, and 5-6 lists the samples in which chemicals exceeded either the WQS or WQSV.

The water quality values for the following metals are water hardness dependent: cadmium, chromium III, copper, lead, nickel, silver, and zinc. In general, the higher the water hardness (in mg/l of CaCO₃) the higher the water quality value. A hardness concentration of 50 mg/l CaCO₃ was used to calculate these values.

5.2.1 Wallace Creek

Among the TAL inorganics, the WQS (5 ug/l) and the chronic (9.3 ug/l) WQSV for cadmium were exceeded in one sample (6-WC07-SW-312M), which had a cadmium concentration of 17.4J ug/l.

5-9

The WQS for copper (3 ug/l) was exceeded in five sample while the acute and chronic WQSV (2.9 ug/l) were exceeded in four samples, with the highest concentration of copper (209 ug/l) detected in sample 6-WC11-SW-312M.

The chronic WQSV for lead (5.6 ug/l) was exceeded in one sample (6-WC03-SW-312M), which had a lead concentration of 10.4 ug/l. Neither the WQS nor the acute WQSV for lead was exceeded in any of the samples. The WQS (0.025 ug/l) and chronic (0.025 ug/l) WQSV for mercury were exceeded in three samples with the highest concentration of mercury (0.52 ug/l) detected in samples 6-WC03-SW-312M and 6-WC11-SW-312M. The WQS (8.3 ug/l), the acute WQSV (789 ug/l), and the chronic WQSV (8.3 ug/l) for nickel were exceeded in four samples, with the highest concentration of nickel (1,380 ug/l) detected in sample 6-WC03-SW-312M. For silver, the WQS (0.1 ug/l), the acute (2.3 ug/l), and the chronic (0.23 ug/l) WQSVs were exceeded in one sample (6-WC05-SW-312M), which had a silver concentration of 2.6B ug/l. Finally, the WQS for zinc (86 ug/l) and the acute (95 ug/l) and chronic (86 ug/l) WQSVs were exceeded in two samples. The highest concentration of zinc was 111 ug/l detected in sample 6-WC03-SW-312M.

None of the TCL organic chemicals detected in the surface water samples collected from Wallace Creek exceeded the WQS or WQSV values.

Dissolved oxygen concentrations were less than the WQS (4.0 mg/l for an instantaneous reading) in 11 samples at seven stations. The pH value was not within the allowable WQS (6.8 to 8.5 for saltwaters) values in 20 samples, and the chronic WQSV (6.5 to 8.5) in 16 samples at ten stations.

The following chemicals detected in Wallace Creek surface water samples do not have N.C. WQS or Region IV screening values for them: aluminum, barium, iron, manganese, vanadium, 1,2-dichloroethane, tetrachloroethene, trichloroethane, and vinyl chloride. The potential impact to aquatic species from these chemicals in the surface water was evaluated using the results of acute and chronic tests obtained from the EPA Aquatic Information Retrieval (AQUIRE) database (AQUIRE, 1993). The maximum detected concentration of these chemicals in the surface water were below the adverse effects levels obtained from the database.

5.2.2 Bear Head Creek

Among the TAL inorganics, the WQS for copper (3 ug/l) and the acute (2.9 ug/l) and chronic (2.9 ug/l) WQSVs for copper were exceeded in sample 6-BH07-SW-312M (55.8 ug/l).

The chronic WQSV for lead (5.6 ug/l) was exceeded in two samples with the highest concentration of lead detected in sample 6-BH05-SW-06M (8.2 ug/l). The WQS and the chronic WQSV for mercury (0.025 ug/l) were exceeded in two samples with the highest concentration of mercury detected in sample 6-BH07-SW-312M (0.34B ug/l). This value did not exceed the acute WQSV.

The WQS (8.3 ug/l), the acute WQSV (75 ug/l), and the chronic WQSV (8.3 ug/l) for nickel were exceeded in sample 6-BH07-SW-312M (244 ug/l). Finally, the WQS (0.1 ug/l) and the chronic (0.23 ug/l) WQSV for silver were exceeded in two samples, while the acute WQSV (2.3 ug/l) was exceeded in one sample (6-BH07-SW-06B) which had a silver concentration of 3.6B ug/l.

None of the TCL organic chemicals detected in the surface water samples collected from Bear Head Creek exceeded the WQS or WQSV values.

Dissolved oxygen concentrations were less than the WQS (4.0 mg/l for an instantaneous reading) in two samples at two stations. The pH values were not within the allowable WSQ (6.8 to 8.5 for saltwaters) values in eight samples, and the chronic WQSV (6.5 to 8.5) in four samples at four stations.

The following chemicals detected in Bear Head Creek surface water samples do not have N.C. WQS or Region IV screening values for them: aluminum, barium, iron, manganese, and vanadium. The potential impact to aquatic species from these chemicals in the surface water was evaluated using the results of acute and chronic tests obtained from AQUIRE (AQUIRE, 1993). The maximum detected concentration of these chemicals in the surface water were below the adverse effects levels obtained from the database.

5.2.3 Ravine

The ravine is an intermittent tributary and usually there is water present only after a rain. Two of the proposed surface water samples could not be collected because there was not any water at the station.

Among the inorganic parameters, the chronic WQSV for aluminum (87 ug/l) was exceeded in six samples with the highest concentration of aluminum detected in sample 6-RV2-SW-06 (613 ug/l). The acute WQSV was not exceeded in any of the samples. The WQS for cadmium (2.0 ug/l) and the acute (1.79 ug/l) and chronic (0.66 ug/l) WQSVs were exceeded in two samples with the highest concentration of cadmium detected in sample 6-RV5-SW-06 (4.3JB).

The WQS for copper (7 ug/l) and the acute (9.22 ug/l) WQSV for copper were exceeded in four samples and the chronic WQSV (6.54 ug/l) was exceeded in two samples, with the highest concentration of copper detected in samples 6-RV2-SW-06 and 6-RV5-SW-06 (9JB ug/l). The WQS and the chronic WQSV for iron (1,000 ug/l) were exceeded in two samples with the highest concentration detected in sample 6-RV8-SW-06 (9,600 ug/l). The chronic WQSV for lead (1.32 ug/l) was exceeded in six samples, with the highest concentration of lead detected in sample 6-RV8-SW-06 (12.2 ug/l). None of the samples exceeded the WQS or the WQSV, 25 ug/l and 33.75 ug/l respectively, for lead.

The WQS for silver (0.06 ug/l) and the acute (1.23 ug/l) and chronic (0.012 ug/l) WQSVs for silver were exceeded in three samples with the highest concentration of silver detected in sample 6-RV6-SW-06 (67.6 ug/l). The WQS for zinc (50 ug/l) and the acute (65.04 ug/l) and chronic (58.91 ug/l) WQSVs for zinc were exceeded in six samples with the highest concentration of zinc detected in sample 6-RV6-SW-06 (495 ug/l).

None of the surface water samples collected from the ravine exceeded any established TCL organic parameter standards.

The following chemicals detected in the ravine surface water samples do not have N.C. WQS or Region IV screening values for them: barium, manganese, and vanadium. The potential impact to aquatic species from these chemicals in the surface water were evaluated using the results of acute and chronic tests obtained from AQUIRE (AQUIRE, 1993). The maximum detected concentration of these chemicals in the surface water were well below any of the adverse effects levels obtained from the database.

5.2.4 Pettiford Creek

Surface water samples were not collected from Pettiford creek for chemical analysis in accordance with the SAP (Baker, 1992). However, field water quality measurements were conducted during collection of the biological samples.

Dissolved oxygen concentrations were less than the WQS (4.0 mg/l for an instantaneous reading) in one sample. The pH was not measured in Pettiford Creek because the pH meter was not working.

5.3 <u>Sediment Screening Values</u>

Tables 5-7, 5-8, and 5-9 contain the Region IV sediment screening values (SQSV) for hazardous waste sites for the COCs at Site 6. The contaminants identified in the sediment were compared to these values to determine if they exceeded the published values. The NOAA ER-L values represent the lower screening values, while the NOAA ER-M Values represent the median screening values.

Tables 5-10, 5-11, and 5-12 lists the samples in which chemical concentrations exceeded the SQSV.

5.3.1 Wallace Creek

The ER-L for copper (70 mg/kg) was exceeded in two samples, while the ER-M (390 mg/kg) was exceeded in one sample with the highest concentration detected in sample 6-WC03-SD-06M (53,200 mg/kg). The ER-L for lead (35 mg/kg) was exceeded in nine samples, two of which exceeded the ER-M (110 mg/kg). The highest concentration of lead was detected in sample 6-WC03-SD-06M (314J mg/kg). The ER-L (1 mg/kg) and the ER-M (2.2 mg/kg) for silver were exceeded in sample 6-WC03-SD-06M, which had a silver concentration of 7.3 mg/kg. The ER-L for zinc (120 mg/kg) was exceeded in four samples, two of which exceeded the ER-M (270 mg/kg), with the highest concentration of zinc detected in sample 6-WC03-SD-06M (926 mg/kg).

Among TCL organics, the ER-L for 4,4'-DDE (2 ug/kg) was exceeded in fourteen samples, eleven of which exceeded the ER-M (15 ug/kg). The highest concentration of 4,4'-DDE was

detected in sample 6-WC09-SD-612M (83 ug/kg). The ER-L for 4,4'-DDD (2 ug/kg) was exceeded in fifteen samples, twelve of which exceeded the ER-M (20 ug/kg). The highest concentration of 4,4'-DDD was detected in sample 6-WC08-SD-612M (200J mg/kg). The ER-L (1 ug/kg) and the ER-M (7 ug/kg) for 4,4'-DDT were exceeded in three samples with the highest concentration detected in sample 6-WC08-SD-06M (1,200J ug/kg).

The ER-L for flouranthene (600 ug/kg) was exceeded in sample 6-WC08-SD-06B (760J ug/kg) and the ER-L (350 ug/kg) for pyrene was exceeded in sample 6-WC08-SD-06B (810J ug/kg). Neither the flouranthene nor the pyrene ER-MS, 3,600 ug/kg and 2,200 ug/kg, respectively, were exceeded in any samples. The ER-L for benzo(a)pyrene (400 ug/kg) was exceeded in three samples with the highest concentration detected in sample 6-WC05-SD-612B (1,600 ug/kg) and the ER-L for dieldrin (0.02 ug/kg) was exceeded in sample 6-WC01-SD-612D (4.8J ug/kg). Neither the benzo(a)pyrene nor the dieldrin ER-MS, 2,500 ug/lkg and 8 ug/kg respectively, were exceeded in any samples. Finally, the ER-L for PCB-1260 (50 ug/kg) was exceeded in twelve samples, six of which exceeded the median screening value (400 ug/kg). The highest concentration of PCB-1260 was detected in sample 6-WC08-SD-06M (2,100J mg/kg).

The following chemicals detected in Wallace Creek sediments do not have Region IV screening values for them: aluminum, barium, beryllium, iron, manganese, selenium, vanadium, 1,2dichloroethane, total xylenes, toluene, trichloroethene, carbon disulfide, benzo(b)fluoranthene, benzo(k)fluoranthene and phenol. There are either criteria or toxicity data for aquatic organisms exposed to these chemicals in water samples, however, there is limited, if any, data assessing the effects on aquatic organism exposed to these chemicals in sediment samples. Therefore, the effects of these chemicals on aquatic organisms cannot be determined. However, it should be noted that of these chemicals, only aluminum and iron exceeded state or federal water quality criteria for the surface water samples. None of these chemicals in the surface water for which criteria do not exist, exceeded the toxicity values obtained from AQUIRE. Finally, the toxicity of benzo(b)fluoranthene and benzo(k)fluoranthene are likely accounted for when the other PAHs are evaluated.

5.3.2 Bear Head Creek

Among the TAL inorganics, the ER-L for lead (35 mg/kg) was exceeded in five samples with the highest concentration of lead detected in sample 6-BH07-SD-06M (70.4J mg/kg). In no case was the ER-M exceeded. Among the TCL organics, the ER-L for 4,4'-DDE (2 ug/kg) was exceeded in eleven samples, nine of which exceeded the ER-M (15 ug/kg). The highest concentration of 4,4'-DDE was detected in sample 6-BH03-SD-06M (68 ug/kg). The ER-L for 4,4'-DDD (2 ug/kg) was exceeded in ten samples, seven of which exceeded the ER-M (20 ug/kg). The highest concentration of 4,4'-DDD was detected in sample 6-BH04-SD-612M (220J ug/kg). The ER-L for 4,4'-DDT (1 ug/kg) was exceeded in eight samples, six of which exceeded the median screening value (7 ug/kg). The highest concentration of 4,4'-DDT was detected in sample 6-BH04-SD-612M (38J ug/kg).

The ER-L for benzo(a)pyrene (400 ug/kg) was exceeded in two samples, with the highest concentration detected in sample 6-BH03-SD-612B (640 ug/kg). Finally, the ER-L for PCB-1260 (50 ug/kg) was exceeded in ten samples with the highest concentration of PCB-1260 detected in sample 6-BH04-SD-612M (370J ug/kg). The ER-M values for benzo(a)pyrene and PCB-1260, 2,500 ug/kg and 400 ug/kg respectively, were not exceeded in any samples.

The following chemicals detected in Bear Head Creek sediments do not have Region IV screening values for them: aluminum, barium, beryllium, iron, manganese, vanadium, benzene, ethylbenzene, tetrachloroethene, trichloroethene, total xylenes, benzo(b)fluoranthene, and indeno(1,2,3-cd)pyrene. There are either criteria or toxicity data for aquatic organisms exposed to these chemicals in water samples, however, there is limited, if any, data assessing the effects on aquatic organisms exposed to these chemicals in sediment samples. Therefore, the effects of these chemicals on aquatic organisms cannot be determined. However, it should be noted that of these chemicals, only aluminum and iron exceeded state or federal water quality criteria for the surface water samples. None of these chemicals in the surface water for which criteria do not exist, exceeded the toxicity values obtained from AQUIRE. Finally, the toxicity of benzo(b)fluoranthene, and indeno(1,2,3-cd)pyrene are likely accounted for when the other PAHs are evaluated.

5.3.3 Ravine

In addition to the ARAR comparison with sediment screening values, adverse ecological effects from contaminants in the ravine sediments will be compared to available toxicological data for ecological receptors exposed to contaminants in soils.

The ER-L for cadmium (5 mg/kg) was exceeded only in sample 6-RV1-SD-06 (5.9J mg/kg). The ER-L for lead (35 mg/kg) was exceeded in two samples with the highest concentration of lead

detected in sample 6-RV8-SD-06 (105J mg/kg). The ER-L for mercury (0.15 mg/kg) was exceeded in three samples with the highest concentration of mercury detected in sample 6-RV1-SD-06 (0.75 mg/kg). The ER-L for silver (1 mg/kg) was exceeded only in sample 6-RV8-SD-06 (1.2 mg/kg). In no cases were the ER-M values for cadmium, lead, mercury, or silver exceeded. Finally, the ER-L for zinc (120 mg/kg) was exceeded in four samples while the ER-M (270 mg/kg) for zinc was exceeded in one sample. The highest concentration of zinc was detected in sample 6-RV1-SD-06 (408 mg/kg).

Among the TCL organics, the ER-L (2 ug/kg) and the ER-M (15 ug/kg) for 4,4'-DDE were exceeded in six samples. The highest concentration of 4,4'-DDE was detected in sample 6-RV2-SD-06 (120J ug/kg). The ER-L for 4,4'-DDD (2 ug/kg) was exceeded in six samples, three of which exceeded the ER-M (20 ug/kg). The highest concentration of 4,4'-DDD was detected in sample 6-RV2-SD-06 (45J ug/kg). The ER-L (1 ug/kg) and the ER-M (7 ug/kg) for 4,4'-DDT were exceeded in eight samples with the highest concentration of 4,4'-DDT detected in sample 6-RV3-SD-06 (210J ug/kg).

The ER-L (0.02 ug/kg) and the ER-M (8 ug/kg) for dieldrin were exceeded in two samples with the higher concentration detected in sample 6-RV1-SD-07 (43J ug/kg). The ER-L for PCB-1260 (50 ug/kg) was exceeded in four samples with the the highest concentration of PCB-1260 detected in sample 6-RV1-SD-06 (360J ug/kg). The ER-L (0.02 ug/kg) for endrin was exceeded only in sample 6-RV1-SD-06 (5.1J ug/kg). The ER-M values for PCB-1260 and endrin were not exceeded.

Sample 6-RV2-SD-06 was the only sample in the ravine in which PAHs exceeded the ER-L values. The ER-L (225 ug/kg) and ER-M (1,380 ug/kg) for phenanthrene were exceeded in this sample (1,600 ug/kg) while the ER-L for flouranthene (600 ug/kg) also was exceeded in this sample (1,500J ug/kg). The ER-L for pyrene (350 ug/kg), benzo(a)anthracene (230 ug/kg), chrysene (400 ug/kg), dibenzo(a,h)anthracene (60 ug/kg), benzo(a)pyrene (400 ug/kg), acenapthene (150 ug/kg), fluorene (35 ug/kg), and anthracene (85 ug/kg) were all exceeded at this station due to the following sediment concentrations: pyrene (2,100 ug/kg), benzo(a)anthracene (1,100 ug/kg), chrysene (1,100 ug/kg), dibenzo(a,h)anthracene (83 ug/kg), and anthracene (480 ug/kg), and anthracene (480 ug/kg).

The following chemicals detected in the ravine sediments do not have Region IV screening values for them: aluminum, barium, beryllium, iron, manganese, vanadium,

5-16

benzo(b)fluoranthene, benzo(k)fluoranthene, and benzo(g,h,i)perylene and indeno(1,2,3-cd) pyrene. There are either criteria or toxicity data for aquatic organisms exposed to these chemicals in water samples, however, there is limited, if any, data assessing the effects on aquatic organism exposed to these chemicals in sediment samples. Therefore, the effects of these chemicals on aquatic organisms cannot be determined. However, it should be noted that of these chemicals, only aluminum and iron exceeded state or federal water quality criteria for the surface water samples. None of these chemicals in the surface water for which criteria do not exist, exceeded the toxicity values obtained from AQUIRE. Finally, the toxicity of benzo(b)fluoranthene, benzo(k)fluoranthene, and benzo(g,h,i)perylene are likely accounted for when the other PAHs are evaluated.

As discussed earlier in this section, the contaminants detected in the sediments will be compared to toxicological data associated with surface soils (See Section 5.4.4).

5.4 Surface Soil Quality

As discussed in the section above, there are no standards, criteria, or other screening values for assessing potential impacts to terrestrial ecological receptors from contaminants in soils. In addition, the amount of literature data evaluating adverse ecological effects on terrestrial species exposed to contaminants in surface soils is limited. The following paragraphs compare the concentrations of COCs detected in the surface soils to the published toxicity data. No information was found which evaluated the toxicological affects on plants and/or invertebrates inhabiting soils contaminated with TCL organics, therefore, the evaluation was limited to TAL inorganics.

5.4.1 Site 9

Toxicological effects on plants and/or invertebrates inhabiting soils contaminated by the following chemicals were obtained: barium, chromium, copper, lead, mercury, and zinc.

Barium concentrations in the surface soils ranged from 4.9JB to 8.9B mg/kg, which were below the 2,000 mg/kg that induced plant toxicity (Adriano, 1986). Chromium concentrations of 10 mg/kg in soil caused mortality in the earthworm species <u>Pheretima pesthuma</u> (Hopkin, 1989). Soil concentrations of chromium ranged from 1.7B to 5.1 mg/kg, which is below the 10 mg/kg toxicity level. Copper concentrations ranged from 0.93 JB to 2.8JB mg/kg, which are below the 50 mg/kg level that interfered with the reproduction activity of the earthworm

5-17

species <u>Allolobuphora caliginosa</u> (Hopkin, 1989). The concentrations of lead in the soil ranged from 4.1 to 25.7 mg/kg. The phytoxicity of lead was reported to be lower than that of copper, which would be greater than 50 mg/kg (Adriano, 1986). Mercury concentrations ranged from 0.02B to 0.03B mg/kg, which is less than the 0.79 mg/kg that caused toxicity to earthworms. (USDI, 1987). Finally, zinc concentrations ranged from 6.8 to 18.1 mg/kg, which are less than the 450 to 1,400 mg/kg that caused plant toxicity (Adriano, 1986).

5.4.2 Site 6 (Lot 201)

Toxicological effects on plants and/or invertebrates inhabiting soil contaminated by the following chemicals was obtained: arsenic, barium, cadmium, chromium, copper, lead, nickel and zinc.

Arsenic concentrations ranged from 0.91B to 9.7J mg/kg which were below the 25 mg/kg that depressed crop yields (USDI, 1988). Barium concentrations ranged from 3.5 JB to 16.5 B mg/kg which were below the 2,000 mg/kg that induced plant toxicity (Adriano, 1986). Cadmium concentrations ranged from 0.51 JB to 1.5 J mg/kg which were higher than the 0.5 mg/kg level that caused low toxicity in the earthworm species <u>Lumbricus rubellus</u> (Hopkin, 1989).

Soil concentrations of chromium ranged from 3.5 to 21.6 mg/kg, some of which exceeded the 10 mg/kg that caused mortality in the earthworm species <u>Pheretima pesthuma</u> (Hopkin, 1989). Copper concentrations ranged from 0.75JB to 27.81 mg/kg which were below the 50 mg/kg level that interfered with the reproduction activity of the earthworm species <u>Allolobuphora caliginosa</u> (Hopkin, 1989). The phytoxicity of lead is low compared with other trace elements such as cadmium, copper, nickel, and arsenic (Adriano, 1986). The concentrations of lead ranged from 1J to 78 mg/kg which cannot be evaluated because a specific toxicity level for lead was not found. Nickel concentrations ranged from 3.7B to 6.4JB mg/kg which were less than the 17 mg/kg that caused low toxicity to the earthworm species <u>Lumbricus rubellus</u> (Hopkin, 1989). Finally, zinc concentrations ranged from 4.6 to 135J mg/kg which were less than the 450 mg/kg causing plant toxicity (Adriano, 1986).

5.4.3 Site 6 (Lot 203)

Toxicological effects on plants and/or invertebrates inhabiting soil contaminated by the following chemicals was obtained: arsenic, barium, cadmium, chromium, copper, lead, mercury, nickel, and zinc.

Arsenic concentrations ranged from 0.39B to 4.9 mg/kg which were below the 25 mg/kg that depressed crop yields (USDI, 1988). Barium concentrations ranged from 2.7JB to 47.8 mg/kg which were below the 2,000 mg/kg that induced plant toxicity (Adriano, 1986). Cadmium concentrations ranged from 0.48 to 9.3 mg/kg which were higher than the 0.5 mg/kg level that caused low toxicity in the earthworm species Lumbricus rubellus (Hopkin, 1989).

Soil concentrations of chromium ranged from 1.1 to 25.2 mg/kg, some of which exceeded the 10 mg/kg that caused mortality in the earthworm species <u>Pheretima pesthuma</u> (Hopkin, 1989). Copper concentrations ranged from 1JB to 75 mg/kg, some of which exceeded the 50 mg/kg level that interfered with the reproduction activity of the earthworm species <u>Allolobuphora caliginosa</u> (Hopkin, 1989). The phytoxicity of lead is low compared with other trace elements such as cadmium, copper, nickel, and arsenic (Adriano, 1986). The concentrations of lead ranged from 4.1 to 4,010J mg/kg which cannot be evaluated because a specific toxicity level for lead was not found. Mercury concentrations ranged from 0.03B to 1.1 mg/kg, some of which exceeded the 0.79 mg/kg level that was toxic to the earthworm species <u>Octochaetus pattoni</u> (USDI, 1987). Nickel concentrations ranged from 1.8JB to 13.2 mg/kg which were less than the 17 mg/kg that caused low toxicity to the earthworm species <u>Lumbricus rubellus</u> (Hopkin, 1989). Finally, zinc concentrations ranged from 1.1B to 604 mg/kg some of which exceeded the 450 mg/kg causing plant toxicity (Adriano, 1986).

5.4.4 Sites 6 (Wooded and Ravine Areas) and 82

Toxicological effects on plants and/or invertebrates inhabiting soil contaminated by the following chemicals was obtained: arsenic, barium, cadmium, chromium, copper, lead, mercury, nickel and zinc.

Arsenic concentrations ranged from 0.49B to 26.3 mg/kg, most of which were below the 25 mg/kg that depressed crop yields (USDI, 1988). Barium concentrations ranged from 1.1JB to 1,410 mg/kg which were below the 2,000 mg/kg that induced plant toxicity (Adriano, 1986). Cadmium concentrations ranged from 0.4JB to 51.9 mg/kg, most of which exceeded the 0.5

mg/kg level that caused low toxicity in the earthworm species <u>Lumbricus</u> rubellus (Hopkin, 1989).

Soil concentrations of chromium ranged from 0.72B to 54.6 mg/kg, some of which exceed the 10 mg/kg that caused mortality in the earthworm species <u>Pheretima pesthuma</u> (Hopkin, 1989). Copper concentrations ranged from 0.39JB to 348 mg/kg, some of which were below the 50 mg/kg level that interfered with the reproduction activity of the earthworm species <u>Allolobuphora caliginosa</u> (Hopkin, 1989). The phytoxicity of lead is low compared with other trace elements such as cadmium, copper, nickel, and arsenic (Adriano, 1986). The concentrations of lead ranged from 2 to 1,710 mg/kg which cannot be evaluated because a specific toxicity level for lead was not found. Mercury concentrations ranged from 0.02B to 3.9 mg/kg, some of which exceeded the 0.79 mg/kg level that was toxic to the earthworm <u>Octochaetus pattoni</u> (USDI, 1987). Nickel concentrations ranged from 1.7B to 79.4 mg/kg, some of which exceeded the 17 mg/kg that caused low toxicity to the earthworm species <u>Lumbricus rubellus</u> (Hopkin, 1989). Finally, zinc concentrations ranged from 1.6 to 16,600 mg/kg, some of which exceeded the 450 mg/kg causing plant toxicity (Adriano, 1986).

5.5 <u>Physical/Chemical Characteristics</u>

Table 5-13 contains values for bioconcentration factors, water solubility, organic carbon partition coefficient, and vapor pressure for the contaminants identified in the sediments, surface water and surface soil samples. Information from this table was used in the risk characterization to assess the fate and transport of the constituents and the potential risks to the environmental receptors. The following paragraphs discuss the significance of each parameter included in the table.

Bioconcentration factors (BCF) measure the tendency for a chemical to partition from the water column or sediment and concentrate in aquatic organisms. This factor is important for ecological receptors because chemicals with high bioconcentration factors could accumulate in lower-order species and subsequently accumulate to toxic levels in higher-order species that consume the lower-order species. Bioconcentration factors among the metals range from 19 for beryllium to 350,000 for manganese, and 1.17 for vinyl chloride to 100,000 for PCB-1260 among the organics. The pesticides have the highest potential to concentrate in the fish or crab tissue. Published BCF data were not available for some of the COCs at OU No. 2.

Water solubility is important in the ecological environment because it measures the tendency for a chemical to remain dissolved in the water column, partition to soil or sediment, or bioconcentrate in aquatic organisms. Chemicals with high water solubilities tend to be more bioavailable to aquatic organisms. However, they will not significantly bioconcentrate in the organisms. On the other hand, chemicals with a low water solubility will remain bound to the sediment and soils but may bioconcentrate in organisms to a significant degree. Water solubility for metals is not applicable because they are practically insoluble in water. The water solubility of the organics ranged from less than 0.01 mg/l for the PAHs to 83,000 mg/l for phenol.

The organic carbon partition coefficient (Koc) measures the tendency for a chemical to partition between soil or sediment particles containing organic carbon and water. This coefficient is important in the ecological environment because it determines how strongly an organic chemical will be bound to the organics in the sediments. The Koc is highest for the pesticides ($4 \ge 10^6$ ml/g) and lowest for phenol (14.2 ml/g). Koc values are not applicable for metals.

The vapor pressure measures the tendency for a chemical to partition into air. This parameter is important for the ecological environment because it can be used to determine the concentrations of the constituents in air. The vapor pressure is highest for vinyl chloride (3,000 mm Hg). Other contaminants with significant vapor pressure values include benzene (95 mm Hg), carbon disulfide (360 mm Hg), and 1,2-dichloroethane (79 mm Hg). The vapor pressure for the most other contaminants of concern are low or negligible.

TABLE 5-1

OPERABLE UNIT NO. 2 SURFACE WATER DATA SUMMARY - WALLACE CREEK FREQUENCY AND RANGE OF DETECTION COMPARED TO NORTH CAROLINA AND REGION IV FRESHWATER SURFACE WATER SCREENING VALUES REMEDIAL INVESTIGATION CTO-0133 MCB CAMP LEJEUNE, NORTH CAROLINA

	S	urface Water ARAF	Rs	Cont Freque	aminant ncy/Range	Comparis	son to AR.	ARs
Analyte	North Carolina (NCWQS) (1)	Region IV ⁽²⁾ P Screening Values		No. of Positive Detects/ No. of Samples	Range of Positive Detections	No. of Positive Detects above NCWQS	Detect	Positive s above ng Values Chronic
Inorganics: (ug/l)				-				
Aluminum (pH 6.3 9.0)	Not Established	Not Established	Not Established	25/28	480J-1350	NA (3)	NA	NA
Arsenic	50	69	36	1/28	3.7B-3.7B	0/1	0/1	0/1
Barium	Not Established	Not Established	Not Established	6/28	16JB-22.6B	NA	NA	NA
Cadmium ⁽⁴⁾	5.0	43	9.3	2/28	3.2JB-17.4J	1/2	0/2	1/2
Chromium (VI)	20 (Total)	1,100	50	1/28	4.9B-4.9B	0/1	0/1	0/1
Copper ⁽⁴⁾	3	2.9	2.9	6/28	3B-209	5/6	6/6	6/6
Iron	Not Established	Not Established	Not Established	28/28	477-1,050	NA	NA	NA
Lead ⁽⁴⁾	25	140	5.6	9/28	1.2B-10.4	0/9	0/9	1/9
Manganese	Not Established	Not Established	Not Established	26/28	8.2JB-25J	NA	NA	NA
Mercury ⁽⁴⁾	0.025	2.1	0.025	3/28	0.24B-0.52	3/3	0/3	3/3

Notes: (1) NCWQS - North Carolina Water Quality Standard for Saltwater Aquatic Life

(2) U.S. EPA Region IV Freshwater Surface Water Screening Value for Hazardous Waste Sites

(3) NA - Not Applicable

5 - 22

(4) Hardness Dependent (Based on 50 mg/l CaCO₃)

(5) Designated Swamp Areas - Waters may have a pH as low as 4.3 and dissolved oxygen less than 5.0 mg/l if due to natural conditions.

(6) An instantaneous reading may be as low as 4.0 mg/l, but the daily average must be 5.0 mg/l.

TABLE 5-1 (cont.)

OPERABLE UNIT NO. 2 SURFACE WATER DATA SUMMARY - WALLACE CREEK FREQUENCY AND RANGE OF DETECTION COMPARED TO NORTH CAROLINA AND REGION IV FRESHWATER SURFACE WATER SCREENING VALUES REMEDIAL INVESTIGATION CTO-0133 MCB CAMP LEJEUNE, NORTH CAROLINA

	S	urface Water ARAF	₹ s		aminant ncy/Range	Comparison to ARARs			
	North Carolina	. +	Region IV ⁽²⁾ Screening Values		Range of Positive	No. of Positive Detects above	Detect	No. of Positive Detects above Screening Values	
Analyte	(NCWQS) (1)	Acute	Chronic	No. of Samples	Detections	NCWQS	Acute	Chronic	
Nickel ⁽⁴⁾	8.3	75	8.3	4/28	102-1,380	4/4	4/4	4/4	
Silver ⁽⁴⁾	0.1	2.3	0.23	1/28	2.6B-2.6B	1/1	1/1	1/1	
Vanadium	Not Established	Not Established	Not Established	9/28	1.9JB-3.3JB	NA	NA	NA	
Zinc ⁽⁴⁾	86	95	86	10/28	7.3B-111	2/10	2/10	2/10	
Organics: (ug/l) 1, 2-Dichloroethene	Not Established	Not Established	Not Established	13/28	2J-85	NA	NA	NA	
Tetrachloroethene	Not Established	1,020	45	3/28	1J-4J	NA	0/3	0/3	
Toluene	Not Established	370	37	4/28	1J-3J	0/4	0/4	0/4	
Trichloroethene	Not Established	Not Established	Not Established	12/28	3J-98	NA	NA	NA	
Vinyl Chloride	Not Established	Not Established	Not Established	1/28	6J-6J	NA	NA	NA	
Other Parameters: Dissolved Oxygen (mg/l)	5.0(5)	Not Established	Not Established	NA	0.15-6.8	11	NA	NA	
pH (S.U.)	6.8-8.5	Not Established	6.5-8.5	NA	3.9-6.8	20	NA	16	

Notes: (1) NCWQS - North Carolina Water Quality Standard for Saltwater Aquatic Life

(2) U.S. EPA Region IV Freshwater Surface Water Screening Value for Hazardous Waste Sites

(3) NA - Not Applicable

(4) Hardness Dependent (Based on 50 mg/l CaCO₃)

(5) An instantaneous reading may be as low as 4.0 mg/l, but the daily average must be 5.0 mg/l.

TABLE 5-2

OPERABLE UNIT NO. 2 SURFACE WATER DATA SUMMARY - BEAR HEAD CREEK FREQUENCY AND RANGE OF DETECTION COMPARED TO NORTH CAROLINA AND REGION IV FRESHWATER SURFACE WATER SCREENING VALUES REMEDIAL INVESTIGATION CTO-0133 MCB CAMP LEJEUNE, NORTH CAROLINA

	S	urface Water ARAI	રેક		minant cy/Range	Comparis	son to AR	ARs
	North Carolina	j – U	Region IV (2)No. of Positive Detects/Range of Positive		No. of Positive Detects above	Detect	Positive ts above ng Values	
Analyte	(NCWQS) ⁽¹⁾	Acute	Chronic	Samples	Detections	NCWQS	Acute	Chronic
Inorganics: (µg/l)								
Aluminum (pH 6.5-9.0)	Not Established	Not Established	Not Established	10/14	334-2,700	NA (3)	NA	NA
Barium	Not Established	Not Established	Not Established	14/14	13.4JB-36B	NA	NA	NA
Chromium (VI)	20 (Total)	1,100	50	3/14	4.4B-8B	0/3	0/3	0/3
Copper ⁽⁴⁾	3	2.9	2.9	3/14	4B-55.8	1/3	1/3	1/3
Iron	Not Established	Not Established	Not Established	14/14	501-6,200	NA	NA	NA
Lead ⁽⁴⁾	25	140	5.6	10/14	1.5JB-8.2	0/10	0/10	2/10
Manganese	Not Established	Not Established	Not Established	14/14	6.2B-65	NA	NA	NA
Mercury ⁽⁴⁾	0.025	2.1	0.025	2/14	0.05-0.34	2/2	0/2	2/2
Nickel (4)	8.3	75	8.3	2/14	8J-244	1/2	1/2	1/2

Notes: (1) NCWQS - North Carolina Water Quality Standard for Saltwater Aquatic Life

(2) U.S. EPA Region IV Freshwater Surface Water Screening Value for Hazardous Waste Sites

(3) NA - Not Applicable

(4) Hardness Dependent (Based on 50 mg/l CaC0₃)

(5) An instantaneous reading may be as low as 4.0 mg/l, but the daily average must be 5.0 mg/l.

5-24

TABLE 5-2 (cont.)

OPERABLE UNIT NO. 2 SURFACE WATER DATA SUMMARY - BEAR HEAD CREEK FREQUENCY AND RANGE OF DETECTION COMPARED TO NORTH CAROLINA AND REGION IV FRESHWATER SURFACE WATER SCREENING VALUES REMEDIAL INVESTIGATION CTO-0133 MCB CAMP LEJEUNE, NORTH CAROLINA

	S	Surface Water ARARs			Contaminant Frequency/Range		Comparison to ARARs		
Analyte	North Carolina	Region IV ⁽²⁾ Screening Values		No. of Positive Detects/ No. of	Range of Positive	No. of Positive Detects above	No. of Positive Detects above Screening Values		
	(NCWQS) (1)	Acute	Chronic	Samples	Detections	NCWQS	Acute	Chronic	
Silver ⁽⁴⁾	0.1	2.3	0.23	2/14	2.1B-3.6B	2/2	1/2	2/2	
Vanadium	Not Established	Not Established	Not Established	3/14	2JB-3JB	NA	NA	NA	
Zinc ⁽⁴⁾	86	95	86	3/14	6.2B-30.7	0/3	0/3	0/3	
Other Parameters: Dissolved Oxygen (mg/l)	5.0 (5)	Not Established	Not Established	NA	0.3-6.34	2	NA	NA	
pH (S.U.)	6.8-8.5	Not Established	6.5-8.5	NA	6.2-6.8	8	NA	4	

Notes: (1) NCWQS - North Carolina Water Quality Standard for Saltwater Aquatic Life

(2) U.S. EPA Region IV Freshwater Surface Water Screening Value for Hazardous Waste Sites

(3) NA - Not Applicable

(4) Hardness Dependent (Based on 50 mg/l CaCO₃)

(5) An instantaneous reading may be as low as 4.0 mg/l, but the daily average must be 5.0 mg/l.

TABLE 5-3

OPERABLE UNIT NO. 2 SURFACE WATER DATA SUMMARY - RAVINE FREQUENCY AND RANGE OF DETECTION COMPARED TO NORTH CAROLINA AND REGION IV FRESHWATER SURFACE WATER SCREENING VALUES REMEDIAL INVESTIGATION CTO-0133 MCB CAMP LEJEUNE, NORTH CAROLINA

	S	urface Water ARAI	Rs		minant cy/Range	Comparis	son to AR	ARs
	North Carolina		Region IV ⁽²⁾ Screening Values		Range of Positive	No. of Positive Detects above	No. of Positive Detects above Screening Values	
Analyte	(NCWQS) ⁽¹⁾	Acute	Chronic	No. of Samples	Detections	NCWQS	Acute	Chronic
Inorganics: (ug/l)								
Aluminum (pH 6.5-9.0)	Not Established	750	87	6/6	119B-613	NA (3)	0/6	6/6
Arsenic	50	360	90	3/6	2.2B-10.5	0/3	0/3	0/3
Barium	Not Established	Not Established	Not Established	6/6	37.1JB- 91B	NA	NA	NA
Cadmium ⁽⁴⁾	2.0	1.79	0.66	2/6	3.7JB- 4.3JB	2/2	2/2	2/2
Chromium	50	16	11	2/6	4.2B-6.5B	0/2	0/2	0/2
Copper ⁽⁴⁾	7	9.22	6.54	6/6	4.7B-9JB	4/6	0/6	4/6
Iron	1,000	NA	1,000	6/6	127J-9600	2/6	NA	2/6
Lead (4)	25	33.78	1.32	6/6	1.9B-12.2	0/6	0/6	6/6
Manganese	Not Established	Not Established	Not Established	6/6	38.6J-597	NA	NA	NA
Silver ⁽⁴⁾	0.06	1.23	0.012	3/6	2.9B-67.6	3/3	3/3	3/3
Vanadium	Not Established	Not Established	Not Established	1/6	6.2B-6.2B	NA	NA	NA
Zinc ⁽⁴⁾	50	65.04	58.91	6/6	72.7-495	6/6	6/6	6/6

Notes: (1) NCWQS - North Carolina Water Quality Standard for Freshwater Aquatic Life

(2) U.S. EPA Region IV Freshwater Surface Water Screening Value for Hazardous Waste Sites

(3) NA - Not Applicable

(4) Hardness Dependent (Based on 50 mg/l CaCO₃)

TABLE 5-4

OPERABLE UNIT NO. 2 WALLACE CREEK: SURFACE WATER CRITERIA EXCEEDENCES BASELINE ECOLOGICAL RISK ASSESSMENT REMEDIAL INVESTIGATION CTO-0133 MCB CAMP LEJEUNE, NORTH CAROLINA

Parameter	Sample Number	Concentration	North Carolina	Region IV Scre	ening Values (2)	
i arameter	Sample Number	in the Sample	NCWQS(1)	ACUTE	CHRONIC	
Inorganics: (ug/l)						
Cadmium	6-WC07-SW-312M	17.4J	5	43	9.3	
Copper	6-WC03-SW-312M	129	3	2.9	2.9	
	6-WC05-SW-06B	5.5B	3	2.9	2.9	
	6-WC05-SW-06M	3B	3	2.9	2.9	
	6-WC05-SW-312M	43.8	3	2.9	2.9	
	6-WC10-SW-312M	66	3	2.9	2.9	
	6-WC11-SW-312M	209	3	2.9	2.9	
Lead	6-WC03-SW-312M	10.4	25	140	5.6	
Mercury	6-WC03-SW-312M	0.52	0.025	2.1	0.025	
	6-WC05-SW-312M	0.24B	0.025	2.1	0.025	
	6-WC11-SW-312M	0.52	0.025	2.1	0.025	
Nickel	6-WC03-SW-312M	1,380	8.3	75	8.3	
	6-WC05-SW-312M	177	8.3	75	8.3	
	6-WC10-SW-312M	102	8.3	75	8.3	
	6-WC11-SW-312M	213	8.3	75	8.3	
Silver	6-WC05-SW-312M	2.6B	0.1	2.3	0.23	
Zinc	6-WC03-SW-312M	111	86	95	86	
	6-WC11-SW-312M	95.1	86	95	86	
Dissolved Oxygen (mg/l)	6-WC07-SW/SD-B (3)	0.2	5.0*	NA	NA	
	6-WC08-SW/SD-B	0.15	5.0*	NA	NA	
	6-WC09-SW/SD-S ⁽⁵⁾	2.26	5.0*	NA	NA	
	6-WC09-SW/SD-B	0.15	5.0*	NA	NA	

(1) NCWQS - North Carolina Water Quality Standard for Saltwater Aquatic Life

(2) U.S. EPA Region IV Freshwater Surface Water Screening Value For Hazardous Waste Sites

3) Sample Numbers with a"-B" indicates the sample was measured from the bottom in the middle of the creek

(4) Sample Numbers with a "-BB" indicates the sample was measured from the bottom of the bank of the creek

(5) Sample Numbers with a "-S" indicates the sample was measured from the surface in the middle of the creek

TABLE 5-4 (cont.)

OPERABLE UNIT NO. 2 WALLACE CREEK: SURFACE WATER CRITERIA EXCEEDENCES BASELINE ECOLOGICAL RISK ASSESSMENT REMEDIAL INVESTIGATION CTO-0133 MCB CAMP LEJEUNE, NORTH CAROLINA

Demonster	Samela Nambar	Concentration	North	Region IV Scree	Region IV Screening Values (2)		
Parameter	Sample Number	in the Sample	Carolina NCWQS (1)	ACUTE	CHRONIC		
Dissolved Oxygen (mg/l) (Cont.)	6-WC10-SW/SD-BB ⁽⁴⁾	3.0	5.0*	NA	NA		
	6-WC10-SW/SD-S	3.2	5.0*	NA	NA		
	6-WC10-SW/SD-B	0.15	5.0*	NA	NA		
	6-WC11-SW/SD-B	2.2	5.0*	NA	NA		
	6-WC11-SW/SD-S	3.2	5.0*	NA	NA		
	6-WC11-SW/SD-BB	0.3	5.0*	NA	NA		
	6-WC9A-BN-B	0.13	5.0*	NA	NA		
	6-WC11A-BN-B	0.15	5.0*	NA	NA		
pH (S.U.)	6-WC6A-BN-S	6.3	6.8 - 8.5	NA	6.5 - 8.5		
	6-WC6A-BN-B	6.3	6.8 - 8.5	NA	6.5 - 8.5		
	6-WC9A-BN-S	6.3	6.8 - 8.5	NA	6.5 - 8.5		
••••••••••••••••••••••••••••••••••••••	6-WC11A-BN-S	6.3	6.8 - 8.5	NA	6.5 - 8.5		
	6-WC01-SW/SD-B	3.9	6.8 - 8.5	NA	6.5 - 8.5		
	6-WC03-SW/SD-S	6.3	6.8 - 8.5	NA	6.5 - 8.5		
	6-WC03-SW/SD-B	6.3	6.8 - 8.5	NA	6.5 - 8.5		
	6-WC04-SW/SD-S	6.6	6.8 - 8.5	NA	6.5 - 8.5		
	6-WC05-SW/SD-B	6.5	6.8 - 8.5	NA	6.5 - 8.5		
	6-WC05-SW/SD-S	6.5	6.8 - 8.5	NA	6.5 - 8.5		
	6-WC06-SW/SD-S	6.7	6.8 - 8.5	NA	6.5 - 8.5		
	6-WC07-SW/SD-BB	6.0	6.8 - 8.5	NA	6.5 - 8.5		
	6-WC08-SW/SD-BB	6.2	6.8 - 8.5	NA	6.5 - 8.5		
<u> </u>	6-WC08-SW/SD-S	6.1	6.8 - 8.5	NA	6.5 - 8.5		
	6-WC09-SW/SD-BB	6.1	6.8 - 8.5	NA	6.5 - 8.5		

(1) NCWQS - North Carolina Water Quality Standard for Saltwater Aquatic Life

(2) U.S. EPA Region IV Freshwater Surface Water Screening Value For Hazardous Waste Sites

3) Sample Numbers with a"-B" indicates the sample was measured from the bottom in the middle of the creek

(4) Sample Numbers with a "-BB" indicates the sample was measured from the bottom of the bank of the creek

(5) Sample Numbers with a "-S" indicates the sample was measured from the surface in the middle of the creek

* An instantaneous reading may be as low as 4.0 mg/l; however, the daily average must be at least 5.0 mg/l.

TABLE 5-4 (cont.)

OPERABLE UNIT NO. 2 WALLACE CREEK: SURFACE WATER CRITERIA EXCEEDENCES BASELINE ECOLOGICAL RISK ASSESSMENT REMEDIAL INVESTIGATION CTO-0133 MCB CAMP LEJEUNE, NORTH CAROLINA

Parameter	Sample Number	Concentration	North Carolina	Region IV Screening Values (2		
rarameter	Sample Number	in the Sample	NCWQS (1)	ACUTE	CHRONIC	
	6-WC09-SW/SD-S	6.1	6.8 - 8.5	NA	6.5 - 8.5	
	6-WC10-SW/SD-BB	6.3	6.8 - 8.5	NA	6.5 - 8.5	
	6-WC10-SW/SD-S	6.3	6.8 - 8.5	NA	6.5 - 8.5	
	6-WC11-SW/SD-BB	6.1	6.8 - 8.5	NA	6.5 - 8.5	
	6-WC11-SW/SD-S	6.3	6.8 - 8.5	NA	6.5 - 8.5	

(1) NCWQS - North Carolina Water Quality Standard for Saltwater Aquatic Life

(2) U.S. EPA Region IV Freshwater Surface Water Screening Value For Hazardous Waste Sites

(3) Sample Numbers with a"-B" indicates the sample was measured from the bottom in the middle of the creek

(4) Sample Numbers with a "-BB" indicates the sample was measured from the bottom of the bank of the creek

(5) Sample Numbers with a "-S" indicates the sample was measured from the surface in the middle of the creek

* An instantaneous reading may be as low as 4.0 mg/l; however, the daily average must be at least 5.0 mg/l.

TABLE 5-5

OPERABLE UNIT NO. 2 BEAR HEAD CREEK: SURFACE WATER CRITERIA EXCEEDENCES BASELINE ECOLOGICAL RISK ASSESSMENT REMEDIAL INVESTIGATION CTO-0133 MCB CAMP LEJEUNE, NORTH CAROLINA

Parameter	Den le Neu les	Concentration	North Carolina	Region IV Scre	ening Values (2)
Parameter	Sample Number	in the Sample	NCWQS (1)	ACUTE	CHRONIC
Inorganics: (ug/l)					
Copper	6-BH07-SW-312M	55.8	3	2.9	2.9
Lead	6-BH03-SW-06M	5.9	25	140	5.6
	6-BH05-SW-06M	8.2	25	140	5.6
Mercury	6-BH05-SW-06M	0.05B	0.025	2.1	0.025
	6-BH07-SW-312M	0.34	0.025	2.1	0.025
Nickel	6-BH07-SW-312M	244	8.3	75	8.3
Silver	6-BH07-SW-06B	3.6B	0.1	2.3	0.23
	6-BH07-SW-06M	2.1B	0.1	2.3	0.23
Dissolved Oxygen (mg/l)	6-BHO7-SW/SD-B ⁽³⁾	0.3	5.0*	NA	NA
	6-BHO7-SW/SD-S ⁽⁴⁾	3.15	5.0*	NA	NA
pH (S.U.)	6-BH02-SW/SD-B	6.5	6.8 - 8.5	NA	6.5 - 8.5
	6-BH03-SW/SD-B	6.5	6.8 - 8.5	NA	6.5 - 8.5
	6-BH06-SW/SD-B	6.6	6.8 - 8.5	NA	6.5 - 8.5
	6-BH07-SW/SD-B	6.6	6.8 - 8.5	NA	6.5 - 8.5
	6-BHO7-SW/SD-S	6.2	6.8 - 8.5	NA	6.5 - 8.5
	6-BH2A-BN-B	5.5	6.8 - 8.5	NA	6.5 - 8.5
	6-BH6A-BN-S	6.3	6.8 - 8.5	NA	6.5 - 8.5
	6-BH4A-FS-B	6.4	6.8 - 8.5	NA	6.5 - 8.5

(1) NCWQS - North Carolina Water Quality Standard for Saltwater Aquatic Life

(2) U.S. EPA Region IV Freshwater Surface Water Screening Value For Hazardous Waste Sites

(3) Sample Numbers with "-B" indicate the sample was measured at the bottom in the middle of the creek

(4) Sample Numbers with "-S" indicate the sample was measured at the surface in the middle of the creek

TABLE 5-6

91

OPERABLE UNIT NO. 2 RAVINE: SURFACE WATER CRITERIA EXCEEDENCES BASELINE ECOLOGICAL RISK ASSESSMENT REMEDIAL INVESTIGATION CTO-0133 MCB CAMP LEJEUNE, NORTH CAROLINA

Parameter	Sample Number	Concentration	North Carolina	Region IV Screening Values (2)		
	-	in the Sample	NCWQS (1)	ACUTE	CHRONIC	
Inorganics: (ug/l)						
Aluminum	6-RV2-SW-06	613	NA	750	87	
	6-RV3-SW-06	119B	NA	750	87	
	6-RV5-SW-06	148B	NA	750	87	
	6-RV6-SW-06	612	NA	750	87	
	6-RV7-SW-06	279	NA	750	87	
	6-RV8-SW-06	487	NA	750	87	
Cadmium	6-RV2-SW-06	3.7JB	2	1.79	0.66	
	6-RV5-SW-06	4.3JB	2	1.79	0.66	
Copper	6-RV2-SW-06	9JB	7	9.22	6.54	
	6-RV5-SW-06	9JB	7	9.22	6.54	
	6-RV7-SW-06	7.5B	7	9.22	6.54	
	6-RV8-SW-06	7.2B	7	9.22	6.54	
Iron	6-RV7-SW-06	1,910	1,000	NA	1,000	
	6-RV8-SW-06	9,600	1,000	NA	1,000	
Lead	6-RV2-SW-06	6.1	25	33.78	1.32	
	6-RV3-SW-06	1.9B	25	33.78	1.32	
	6-RV5-SW-06	4.8	25	33.78	1.32	
<u> </u>	6-RV6-SW-06	8	25	33.78	1.32	
	6-RV7-SW-06	2.8B	. 25	33.78	1.32	
	6-RV8-SW-06	12.2	25	33.78	1.32	
Silver	6-RV3-SW-06	3.6B	0.06	1.23	0.012	
	6-RV6-SW-06	67.6	0.06	1.23	0.012	
	6-RV8-SW-06	2.9B	0.06	1.23	0.012	

(1) NCWQS - North Carolina Water Quality Standard for Freshwater Aquatic Life

(2) U. S. EPA Region IV Freshwater Surface Water Screening Value For Hazardous Waste Sites

TABLE 5-6 (cont.)

-1

OPERABLE UNIT NO. 2 RAVINE: SURFACE WATER CRITERIA EXCEEDENCES BASELINE ECOLOGICAL RISK ASSESSMENT REMEDIAL INVESTIGATION CTO-0133 MCB CAMP LEJEUNE, NORTH CAROLINA

Parameter	Sample Number	Concentration in the Sample	North Carolina	Region IV Screening Values (2)		
		in the Sample	NCWQS(1)	ACUTE	CHRONIC	
Zinc	6-RV2-SW-06	452	50	65.04	58.91	
	6-RV3-SW-06	113	50	65.04	58.91	
	6-RV5-SW-06	374	50	65.04	58.91	
	6-RV6-SW-06	495	50	65.04	58.91	
	6-RV7-SW-06	248	50	65.04	58.91	
	6-RV8-SW-06	72.7	50	65.04	58.91	

(1) NCWQS - North Carolina Water Quality Standard for Freshwater Aquatic Life

(2) U. S. EPA Region IV Freshwater Surface Water Screening Value For Hazardous Waste Sites

ТА Æ 5-7

OPERABLE UNIT NO. 2 SEDIMENT DATA SUMMARY - WALLACE CREEK FREQUENCY AND RANGE OF DETECTION COMPARED TO USEPA REGION IV SEDIMENT SCREENING VALUES **REMEDIAL INVESTIGATION CTO-0133** MCB CAMP LEJEUNE, NORTH CAROLINA

		on IV eening Value		minant cy/Range		rison to g Values
Analyte	ER-L ⁽¹⁾	ER-M(2)	No. of Positive Detects/ No. of Samples	Range of Positive Detections	No. of Positive Detects above ER-L	No. of Positive Detects above ER-M
Inorganics: (mg/kg)						
Aluminum	Not Established	Not Established	33/33	539-25,400	NA (3)	NA
Arsenic	33	85	15/33	1B-10.2	0/15	0/15
Barium	Not Established	Not Established	30/33	2.5JB-110	NA	NA
Beryllium	Not Established	Not Established	13/33	0.07B-0.78B	NA	NA
Chromium	80	145	27/33	1.2B-28.5	0/27	0/27
Copper	70	390	25/33	0.43JB- 53,200	2/25	1/25
Iron	Not Established	Not Established	33/33	390-14,600	NA	NA
Lead	35	110	33/33	1.5-314J	9/33	2/33
Manganese	Not Established	Not Established	32/33	3.1-50.2	NA	NA
Nickel	30	50	5/33	2.7JB-10.7JB	0/5	0/5
Silver	1	2.2	1/33	7.3-7.3	1/1	1/1
Vanadium	Not Established	Not Established	26/33	0.82JB-45.5J	NA	NA
Zinc	120	270	19/33	6.2-926	4/19	2/19

Notes: (1) ER-L - Effects Range - Low (2) ER-M - Effects Range - Median

(3) NA - Not Applicable
(4) Total PCBs

TABL⁻⁻⁻⁻7 (Cont.) OPERABLE UNIT NO. 2 SEDIMENT DATA SUMMARY - WALLACE CREEK FREQUENCY AND RANGE OF DETECTION COMPARED TO USEPA REGION IV SEDIMENT SCREENING VALUES REMEDIAL INVESTIGATION CTO-0133 MCB CAMP LEJEUNE, NORTH CAROLINA

	Region IV Sediment Screening Value		Contaminant Frequency/Range		Comparison to Screening Values	
Analyte	ER-L ⁽¹⁾	ER-M ⁽²⁾	No. of Positive Detects/ No. of Samples	Range of Positive Detections	No. of Positive Detects above ER-L	No. of Positive Detects above ER-M
Organics: (µg/kg)						
4',4'-DDE	2	15	14/33	5.9-83	14/14	11/14
4',4'-DDD	2	20	15/33	7.4J-200J	15/15	12/15
4',4'-DDT	1	7	3/33	200J-1,200J	3/3	3/3
Dieldrin	0.02	8	1/33	4.8J-4.8J	1/1	0/1
PCB-1260	50 (4)	400 (4)	14/33	31J-2,100J	12/14	6/14
1,2-Dichloroethene	Not Established	Not Established	1/33	31J-31J	NA	NA
Toluene	Not Established	Not Established	2/33	4 J- 5J	NA	NA
Total Xylenes	Not Established	Not Established	3/33	26-120J	NA	NA
Trichloroethene	Not Established	Not Established	2/33	7J-23	NA	NA
Phenol	Not Established	Not Established	2/33	120J-190J	NA	NA
Benzo(a)anthracene	230	1,600	4/33	67J-210J	0/4	0/4
Benzo (a) pyrene	400	2,500	6/33	63J-1,600	3/6	0/6
Benzo (b) fluoranthene	Not Established	Not Established	6/33	94J-420J	NA	NA
Benzo (k) fluoranthene	Not Established	Not Established	2/33	67J-140J	NA	NA
Carbon Disulfide	Not Established	Not Established	5/33	2J-24J	NA	NA

Notes: (1) ER-L - Effects Range - Low

(2) ER-M - Effects Range - Median

(3) NA - Not Applicable

(4) Total PCBs

TABL⁷ Y (Cont.) OPERABLE UNIT NO. 2 SEDIMENT DATA SUMMARY - WALLACE CREEK FREQUENCY AND RANGE OF DETECTION COMPARED TO USEPA REGION IV SEDIMENT SCREENING VALUES REMEDIAL INVESTIGATION CTO-0133 MCB CAMP LEJEUNE, NORTH CAROLINA

	Region IV Sediment Screening Value		Contaminant Frequency/Range		Comparison to Screening Values	
Analyte	ER-L ⁽¹⁾	ER-M ⁽²⁾	No. of Positive Detects/ No. of Samples	Range of Positive Detections	No. of Positive Detects above ER-L	No. of Positive Detects above ER-M
Chrysene	400	2,800	3/33	74J-230J	0/3	0/3
Fluoranthene	600	3,600	11/33	94J-760J	1/11	0/11
Phenanthrene	225	1,380	1/33	76J-76J	0/1	0/1
Pyrene	350	2,200	12/33	95J-810J	2/12	0/12

Notes: (1) ER-L - Effects Range - Low

(2) ER-M - Effects Range - Median

(3) NA - Not Applicable

(4) Total PCBs

OPERABLE UNIT NO. 2 SEDIMENT DATA SUMMARY - BEAR HEAD CREEK FREQUENCY AND RANGE OF DETECTION COMPARED TO USEPA REGION IV SEDIMENT SCREENING VALUES REMEDIAL INVESTIGATION CTO-0133 MCB CAMP LEJEUNE, NORTH CAROLINA

AT

£ 5-8

		Region IV Sediment Screening Value		Contaminant Frequency/Range		Comparison to Screening Values	
Analyte	ER-L ⁽¹⁾	ER-M ⁽²⁾	No. of Positive Detects/ No. of Samples	Range of Positive Detections	No. of Positive Detects above ER-L	No. of Positive Detects above ER-M	
Inorganics: (mg/kg)							
Aluminum	Not Established	Not Established	20/20	465-22,100	NA ⁽³⁾	NA	
Arsenic	33	85	8/20	0.54B-6.1JB	0/8	0/8	
Barium	Not Established	Not Established	16/20	7.7JB-40.4B	NA	NA	
Beryllium	Not Established	Not Established	9/20	0.13B-0.97B	NA	NA	
Cadmium	5	9	11/20	0.54JB-4.7JB	0/11	0/11	
Chromium	80	145	18/20	2.3B-16.4B	0/18	0/18	
Copper	70	390	13/20	1.2JB-28.1B	0/13	0/13	
Iron	Not Established	Not Established	20/20	442-17,100	NA	NA	
Lead	35	110	20/20	2.5-70.4J	5/20	0/20	
Manganese	Not Established	Not Established	20/20	3.8J-48.6	NA	NA	
Selenium	Not Established	Not Established	1/20	2.9-2.9	NA	NA	
Vanadium	Not Established	Not Established	20/20	1.5JB-54.1B	NA	NA	
Zinc	120	270	15/20	6.4B-82.4	0/15	0/15	

Notes: (1) ER-L - Effects Range - Low

(2) ER-M - Effects Range - Median

(3) NA - Not Applicable

(4) Total PCBs

TABL

OPERABLE UNIT NO. 2 SEDIMENT DATA SUMMARY - BEAR HEAD CREEK FREQUENCY AND RANGE OF DETECTION COMPARED TO USEPA REGION IV SEDIMENT SCREENING VALUES REMEDIAL INVESTIGATION CTO-0133 MCB CAMP LEJEUNE, NORTH CAROLINA

		Region IV Sediment Screening Value		Contaminant Frequency/Range		Comparison to Screening Values	
Analyte	ER-L ⁽¹⁾	ER-M ⁽²⁾	No. of Positive Detects/ No. of Samples	Range of Positive Detections	No. of Positive Detects above ER-L	No. of Positive Detects above ER-M	
Organics: (µg/kg) 4',4'-DDE	2	15	11/20	5.7-68	11/11	9/11	
4',4'-DDD	2	20	10/20	8.4J-220J	10/10	7/10	
4',4'-DDT	1	7	8/20	6.6J-38J	8/8	6/8	
PCB-1260	50 ⁽⁴⁾	400 (4)	10/20	51-370J	10/10	0/10	
Benzene	Not Established	Not Established	1/20	5J-5J	NA	NA	
Ethylbenzene	Not Established	Not Established	1/20	57J-57J	NA	NA	
Tetrachloroethane	Not Established	Not Established	1/20	3J-3J	NA	NA	
Trichloroethane	Not Established	Not Established	2/20	5J-150	NA	NA	
Total Xylenes	Not Established	Not Established	2/20	3J-380	NA	NA	
Benzo (b) fluoranthene	Not Established	Not Established	1/20	96J-96J	NA	NA	
Benzo (a) pyrene	400	2,500	6/20	93J-640	2/6	0/6	
Indeno (1,2,3-CD) pyrene	Not Established	Not Established	1/20	40J-40J	NA	NA	
Pyrene	350	2,200	2/20	60J-76J	0/2	0/2	

Notes: (1) ER-L - Effects Range - Low

(2) ER-M - Effects Range - Median

(3) NA - Not Applicable

(4) Total PCBs

TA - E 5-9

OPERABLE UNIT NO. 2 SEDIMENT DATA SUMMARY - RAVINE FREQUENCY AND RANGE OF DETECTION COMPARED TO USEPA REGION IV SEDIMENT SCREENING VALUES **REMEDIAL INVESTIGATION CTO-0133** MCB CAMP LEJEUNE, NORTH CAROLINA

		Region IV Sediment Screening Value		Contaminant Frequency/Range		Comparison to Screening Values	
Analyte	ER-L ⁽¹⁾	ER-M ⁽²⁾	No. of Positive Detects/ No. of Samples	Range of Positive Detections	No. of Positive Detects above ER-L	No. of Positive Detects above ER-M	
Inorganics: (mg/kg)							
Aluminum	Not Established	Not Established	11/11	739-10,300	NA ⁽³⁾	NA	
Arsenic	33	85	4/11	0.61B-4.3	0/4	0/4	
Barium	Not Established	Not Established	10/11	2.9JB-61.5	NA	NA	
Beryllium	Not Established	Not Established	4/11	0.06B-0.25B	NA	NA	
Cadmium	5	9	9/11	0.53JB-5.9J	1/9	0/9	
Chromium	80	145	6/11	2B-17.7	0/6	0/6	
Copper	70	390	11/11	2.6JB-67.5	0/11	0/11	
Iron	Not Established	Not Established	11/11	420-7,590	NA	NA	
Lead	35	110	11/11	2.1B-105J	2/11	0/11	
Manganese	Not Established	Not Established	11/11	3.4J-288	NA	NA	
Mercury	0.15	1.3	9/11	0.03B-0.75	3/11	0/9	
Nickel	30	50	4/11	2.1B-7.7JB	0/4	0/4	
Silver	1	2.2	6/11	0.56B-1.2B	1/6	0/6	
Vanadium	Not Established	Not Established	11/11	1.2B - 19	NA	NA	
Zinc	120	270	11/11	20.3-408	4/11	1/11	

Notes: (1) ER-L - Effects Range - Low (2) ER-M - Effects Range - Median (3) NA - Not Applicable (4) Total PCBs

TABL⁷9(Cont.)

OPERABLE UNIT NO. 2 SEDIMENT DATA SUMMARY - RAVINE FREQUENCY AND RANGE OF DETECTION COMPARED TO USEPA REGION IV SEDIMENT SCREENING VALUES **REMEDIAL INVESTIGATION CTO-0133** MCB CAMP LEJEUNE, NORTH CAROLINA

	Region IV Sediment Screening Value			Contaminant Frequency/Range		Comparison to Screening Values	
Analyte	ER-L ⁽¹⁾	ER-M ⁽²⁾	No. of Positive Detects/ No. of Samples	Range of Positive Detections	No. of Positive Detects above ER-L	No. of Positive Detects above ER-M	
Organics: (µg/kg)							
4',4'-DDE	2	15	6/11	23J-120J	6/6	6/6	
4',4'-DDD	2	20	6/11	4.1J-45J	6/6	3/6	
4',4'-DDT	1	7	8/11	14J-210J	8/8	8/8	
Dieldrin	0.02	8	2/11	8.1J-43J	2/2	2/2	
Endrin	0.02	45	1/11	5.1J-5.1J	1/1	0/1	
PCB 1260	50(4)	400(4)	6/11	29J-360J	4/6	0/6	
Acenaphthene	150	650	1/11	220J-220J	1/1	0/1	
Anthracene	85	960	1/11	480-480	1/1	0/1	
Benzo(a)anthracene	230	1,600	3/11	43J-1,100	1/3	0/3	
Benzo (a) pyrene	400	2,500	3/11	70J-1,000	1/3	0/3	
Benzo (b) fluoranthene	Not Established	Not Established	4/11	54J-1,200	NA	NA	
Benzo (g,h,i) perylene	Not Established	Not Established	2/11	57J-680	NA	NA	
Benzo (k) fluoranthene	Not Established	Not Established	1/11	440-440	NA	NA	
Chrysene	400	2,800	3/11	59J-1,100	1/3	0/3	
Dibenz (a,h) anthracene	60	260	1/11	83J-83J	1/1	0/1	

Notes: (1) ER-L - Effects Range - Low (2) ER-M - Effects Range - Median (3) NA - Not Applicable (4) Total PCBs

TABL 9 (Cont.)

OPERABLE UNIT NO. 2 SEDIMENT DATA SUMMARY - RAVINE FREQUENCY AND RANGE OF DETECTION COMPARED TO USEPA REGION IV SEDIMENT SCREENING VALUES **REMEDIAL INVESTIGATION CTO-0133** MCB CAMP LEJEUNE, NORTH CAROLINA

	Regi Sediment Scr	on IV eening Value	Contaminant Frequency/Range		Comparison to Screening Values	
Analyte	ER-L ⁽¹⁾	ER-M ⁽²⁾	No. of Positive Detects/ No. of Samples	Range of Positive Detections	No. of Positive Detects above ER-L	No. of Positive Detects above ER-M
Fluoranthene	600	3,600	3/11	84J-1,500J	1/3	0/3
Fluorene	35	640	1/11	250J-250J	1/1	0/1
Indeno (1,2,3-CD) pyrene	Not Established	Not Established	2/11	57J-710	NA	NA
2-Methylnapthalene	65	670	1/11	44J-44J	0/1	0/1
Napthalene	340	2,100	1/11	54J-54J	0/1	0/1
Phenanthrene	225	1,380	3/11	50J-1,600	1/3	1/3
Pyrene	350	2,200	4/11	96J-2,100	1/4	0/4

Notes: (1) ER-L - Effects Range - Low (2) ER-M - Effects Range - Median (3) NA - Not Applicable (4) Total PCBs

TABLE 5-10

£,

OPERABLE UNIT NO. 2 WALLACE CREEK: SEDIMENT CRITERIA EXCEEDENCES **BASELINE ECOLOGICAL RISK ASSESSMENT REMEDIAL INVESTIGATION CTO-0133 MCB CAMP LEJEUNE, NORTH CAROLINA**

Parameter		Concentration	Region IV (1)		
	Sample Number	in the Sample	NOAA ER-L Value	NOAA ER-M Value	
Inorganics: (mg/kg)					
Copper	6-WC03-SD-06M	53,200	70	390	
	6-WC03-SD-612B	79.6	70	390	
Lead	6-WC03-SD-06M	314J	35	110	
	6-WC06-SD-06B	70.9	35	110	
	6-WC08-SD-06B	97	35	110	
	6-WC08-SD-06M	44.1	35	110	
	6-WC08-SD-612B	49.7	35	110	
1	6-WC08-SD-612M	156	35	110	
	6-WC09-SD-06M	106	35	110	
	6-WC09-SD-612M	37.4	35	110	
	6-WC10-SD-06M	68.9	35	110	
Silver	6-WC03-SD-06M	7.3	1	2.2	
Zinc	6-WC03-SD-06M	926	120	270	
	6-WC08-SD-612M	132	120	270	
	6-WC09-SD-06B	388	120	270	
	6-WC09-SD-06M	137	120	270	
Organics: (ug/kg)					
4',4'-DDE	6-WC06-SD-06B	25J	2	15	
	6-WC06-SD-612B	16J	2	15	
	6-WC06-SD-612B	7.9J	2	15	
	6-WC07-SD-06B	48J	2	15	
	6-WC08-SD-06B	47J	2	15	

(1) - Region IV Sediment Screening Values ER-L - Lower 10 percentile value

TABLE 5-10 (cont.)

.÷i

OPERABLE UNIT NO. 2 WALLACE CREEK: SEDIMENT CRITERIA EXCEEDENCES **BASELINE ECOLOGICAL RISK ASSESSMENT REMEDIAL INVESTIGATION CTO-0133** MCB CAMP LEJEUNE, NORTH CAROLINA

Parameter		Concentration	Region IV (1)		
	Sample Number	in the Sample	NOAA ER-L Value	NOAA ER-M Value	
	6-WC08-SD-06M	18J	2	15	
	6-WC08-SD-612B	27.9	2	15	
	6-WC08-SD-612M	7.6J	2	15	
	6-WC09-SD-06B	5.9	2	15	
	6-WC09-SD-06M	69	2	15	
	6-WC09-SD-612M	83	2	15	
	6-WC10-SD-06M	32	2	15	
	6-WC10-SD-612M	34J	2	15	
	6-WC11-SD-06M	25J	2	15	
4',4'-DDD	6-WC01-SD-612D	16J	2	20	
	6-WC06-SD-06B	80J	2	20	
	6-WC07-SD-612M	67	2	20	
	6-WCO8-SD-06M	50J	2	20	
· · · · · · · · · · · · · · · · · · ·	6-WC08-SD-612M	200J	2	20	
	6-WC08-SD-612B	23J	2	20	
	6-WC08-SD-612M	49	2	20	
	6-WC09-SD-06B	7.4J	2	20	
	6-WC09-SD-06M	80J	2	20	
	6-WC09-SD-612B	16J	2	20	
	6-WC09-SD-612M	49J	2	20	
	6-WC10-SD-06M	44	2	20	
	6-WC10-SD-612M	43J	2	20	
	6-WC11-SD-06B	35J	2	20	
	6-WC11-SD-06M	42J	2	20	
4',4'-DDT	6-WC06-SD-06B	200J	1	7	

(1) - Region IV Sediment Screening Values ER-L - Lower 10 percentile value

TABLE 5-10 (cont.)

OPERABLE UNIT NO. 2 WALLACE CREEK: SEDIMENT CRITERIA EXCEEDENCES **BASELINE ECOLOGICAL RISK ASSESSMENT REMEDIAL INVESTIGATION CTO-0133** MCB CAMP LEJEUNE, NORTH CAROLINA

Parameter		Concentration	Region IV (1)		
	Sample Number	in the Sample	NOAA ER-L Value	NOAA ER-M Value	
	6-WC07-SD-612M	220J	1	7	
	6-WC08-SD-06M	1,200J	1	7	
Dieldrin	6-WC01-SD-612D	4.8J	0.02	8	
PCB-1260	6-WC04-SD-06M	760	50	400	
	6-WC05-SD-06M	330J	50	400	
	6-WC06-SD-06B	1,300J	50	400	
	6-WC06-SD-06M	400J	50	400	
	6-WC07-SD-06M	2,000J	50	400	
	6-WC08-SD-06B	310J	50	400	
	6-WC08-SD-06M	2,100J	50	400	
	6-WC09-SD-06M	290J	50	400	
	6-WC09-SD-612M	730J	50	400	
	6-WC10-SD-06M	420	50	400	
	6-WC10-SD-612M	160J	50	400	
	6-WC11-SD-06M	120J	50	400	
Benzo(a)pyrene	6-WC05-SD-06B	850J	400	2,500	
	6-WC05-SD-612B	1600	400	2,500	
· ·	6-WC09-SD-612M	480J	400	2,500	
Flouranthene	6-WC08-SD-06B	760J	600	3,600	
Pyrene	6-WC08-SD-06B	810J	350	2,200	
	6-WC09-SD-06B	410J	350	2,200	

(1) - Region IV Sediment Screening Values ER-L - Lower 10 percentile value ER-M - Median percentile value

TABLE 5-11

OPERABLE UNIT NO. 2 BEAR HEAD CREEK: SEDIMENT CRITERIA EXCEEDENCES BASELINE ECOLOGICAL RISK ASSESSMENT **REMEDIAL INVESTIGATION CTO-0133** MCB CAMP LEJEUNE, NORTH CAROLINA

Parameter		Concentration	Region IV (1)		
	Sample Number	in the Sample	NOAA ER-L Value	NOAA ER-M Value	
Inorganics: (mg/kg)					
Lead	6-BH03-SD-06M	45.3	35	110	
	6-BH03-SD-612M	46.1	35	110	
	6-BH06-SD-06B	42	35	110	
	6-BH07-SD-06B	49.2	35	110	
· · · ·	6-BH07-SD-06M	70.4J	35	110	
Organics: (ug/kg)					
4',4'-DDE	6-BH02-SD-06M	5.7	2	15	
	6-BH03-SD-06M	68	2	15	
	6-BH03-SD-612M	22	2 ·	15	
	6-BH04-SD-06B	14	2	15	
· ·	6-BH04-SD-06M	41J	2	15	
	6-BH04-SD-612B	35J	2	15	
	6-BH04-SD-612M	53J	2	15	
	6-BH05-SD-06B	30J	2	15	
	6-BH05-SD-06M	32	2	15	
·	6-BH06-SD-06B	68J	2	15	
	6-BH06-SD-06M	24J	2	15	
4',4'-DDD	6-BH03-SD-06M	25	2	20	
	6-BH03-SD-612M	9.2J	2	20	
	6-BH04-SD-06B	8.4J	2	20	
	6-BH04-SD-06M	42J	2	20	
	6-BH04-SD-612M	11J	2	20	

(1) - Region IV Sediment Screening Values ER-L - Lower 10 percentile value ER-M - Median percentile value

TABLE 5-11 (cont.)

U.

OPERABLE UNIT NO. 2 BEAR HEAD CREEK: SEDIMENT CRITERIA EXCEEDENCES BASELINE ECOLOGICAL RISK ASSESSMENT REMEDIAL INVESTIGATION CTO-0133 MCB CAMP LEJEUNE, NORTH CAROLINA

Parameter		Concentration	Region IV (1)		
	Sample Number	in the Sample	NOAA ER-L Value	NOAA ER-M Value	
	6-BH04-SD-612M	220J	2	20	
	6-BH05-SD-06B	26J	2	20	
•	6-BH05-SD-06M	23	2	20	
	6-BH06-SD-06B	37J	2	20	
	6-BH06-SD-06M	22J	2	20	
4',4'-DDT	6-BH03-SD-06M	15	1	7	
	6-BH03-SD-612M	6.6J	1	7	
	6-BH04-SD-06B	16J	1	7	
· · · · · · · · · · · · · · · · · · ·	6-BH04-SD-06M	9.4J	1	7	
· · · · · · · · · · · · · · · · · · ·	6-BH04-SD-612M	38J	1	7	
	6-BH05-SD-06M	21J	1	7	
	6-BH06-SD-06B	14J	1	7	
	6-BH06-SD-06M	7J	1	7	
PCB-1260	6-BH03-SD-06M	170	50	400	
	6-BH03-SD-612M	160	50	400	
	6-BH04-SD-06B	51	50	400	
	6-BH04-SD-612B	240J	50	400	
	6-BH04-SD-06M	110J	50	400	
	6-BH04-SD-612M	370J	50	400	
	6-BH05-SD-06B	64J	50	400	
	6-BH05-SD-06M	110J	50	400	
	6-BH06-SD-06B	180J	50	400	
· ·	6-BH06-SD-06M	69J	50	400	

(1) - Region IV Sediment Screening Values ER-L - Lower 10 percentile value

TABLE 5-11 (cont.)

:1

OPERABLE UNIT NO. 2 BEAR HEAD CREEK: SEDIMENT CRITERIA EXCEEDENCES BASELINE ECOLOGICAL RISK ASSESSMENT REMEDIAL INVESTIGATION CTO-0133 MCB CAMP LEJEUNE, NORTH CAROLINA

Parameter			Region IV (1)		
	Sample Number	Concentration in the Sample	NOAA ER-L Value	NOAA ER-M Value	
Benzo(a)pyrene	6-BH03-SD-06B	450J	400	2,500	
	6-BH03-SD-612B	640	400	2,500	

(1) - Region IV Sediment Screening Values

ER-L - Lower 10 percentile value

TABLE 5-12

OPERABLE UNIT NO. 2 RAVINE: SEDIMENT CRITERIA EXCEEDENCES BASELINE ECOLOGICAL RISK ASSESSMENT REMEDIAL INVESTIGATION CTO-0133 MCB CAMP LEJEUNE, NORTH CAROLINA

		Concentration	Region IV (1)		
Parameter	Sample Number	in the Sample	NOAA ER-L Value	NOAA ER-M Value	
Inorganics: (mg/kg)					
Cadmium	6-RV1-SD-06	5.9	5	9	
Lead	6-RV3-SD-06	62.3	35	110	
	6-RV8-SD-06	105J	35	110	
Mercury	6-RV1-SD-06	0.75	0.15	1.3	
	6-RV2-SD-06	0.23	0.15	1.3	
	6-RV8-SD-06	0.27	0.15	1.3	
Silver	6-RV8-SD-06	1.2	1	2.2	
Zinc	6-RV1-SD-06	408	120	270	
	6-RV6-SD-06	204	120	270	
	6-RV7-SD-612	193	120	270	
	6-RV8-SD-06	142	120	270	
Organics: (ug/kg)					
4',4'-DDE	6-RV2-SD-06	120J	2	15	
	6-RV3-SD-612	53J	2	15	
	6-RV5-SD-06	44J	2	15	
	6-RV6-SD-06	58J	2	15	
	6-RV7-SD-06	37J	2	15 ·	
	6-RV7-SD-612	23J	2	15	
4',4'-DDD	6-RV2-SD-06	45J	2	20	
	6-RV4-SD-06	9.4J	2	20	
	6-RV4-SD-612	4.1J	2	20	

(1) - Region IV Sediment Screening Values

ER-L - Lower 10 percentile value

TABLE 5-12 (cont.)

OPERABLE UNIT NO. 2 RAVINE: SEDIMENT CRITERIA EXCEEDENCES BASELINE ECOLOGICAL RISK ASSESSMENT REMEDIAL INVESTIGATION CTO-0133 MCB CAMP LEJEUNE, NORTH CAROLINA

Parameter		Concentration	Region IV (1)		
	Sample Number	in the Sample	NOAA ER-L Value	NOAA ER-M Value	
	6-RV5-SD-06	9J	2	20	
	6-RV7-SD-06	36J	2	20	
	6-RV7-SD-612	34J	2	20	
4',4'-DDD	6-RV2-SD-06	45J	2	20	
	6-RV4-SD-06	9.4J	2	20	
	6-RV4-SD-612	4.1J	2	20	
· · ·	6-RV5-SD-06	9J	2	20	
	6-RV7-SD-06	36J	2	20	
······································	6-RV7-SD-612	34J	2	20	
4',4'-DDT	6-RV2-SD-06	130J	1	7	
	6-RV3-SD-06	210J	1	7	
	6-RV3-SD-612	51	1	7	
	6-RV4-SD-06	14J	1	7	
	6-RV5-SD-06	19J	1	7	
	6-RV6-SD-06	170J	1	7	
	6-RV7-SD-06	60J	1	7	
· · · · · · · · · · · · · · · · · · ·	6-RV7-SD-612	19J	1	7	
Dieldrin	6-RV1-SD-07	43J	0.02	8	
	6-RV3-SD-612	8.1J	0.02	8	
Endrin	6-RV1-SD-06	5.1J	0.02	45	
PCB-1260	6-RV1-SD-06	360J	50	400	
	6-RV2-SD-06	92J	50	400	
	6-RV3-SD-06	190J	50	400	
	6-RV5-SD-06	79J	50	400	

(1) - Region IV Sediment Screening Values

ER-L - Lower 10 percentile value

TABLE 5-12 (cont.)

OPERABLE UNIT NO. 2 RAVINE: SEDIMENT CRITERIA EXCEEDENCES BASELINE ECOLOGICAL RISK ASSESSMENT **REMEDIAL INVESTIGATION CTO-0133** MCB CAMP LEJEUNE, NORTH CAROLINA

Parameter		Gamaantaatian	Region IV (1)	
	Sample Number	Concentration in the Sample	NOAA ER-L NOAA ER-M Value Value	NOAA ER-M Value
Acenapthene	6-RV2-SD-06	220J	150	650
Anthracene	6-RV2-SD-06	480	85	960
Benzo(a)anthracene	6-RV2-SD-06	1,100	230	1,600
Benzo(a)pyrene	6-RV2-SD-06	1,000	400	2,500
Chrysene	6-RV2-SD-06	1,100	400	2,800
Dibenz(a,h)anthrace ne	6-RV2-SD-06	83	60	260
Flouranthene	6-RV2-SD-06	1,500J	600	3,600
Flourene	6-RV2-SD-06	250J	35	640
Phenanthrene	6-RV2-SD-06	1,600	225	1,380
Pyrene	6-RV2-SD-06	2,100	350	2,200

(1) - Region IV Sediment Screening Values ER-L - Lower 10 percentile value

TABLE 5-13

OPERABLE UNIT NO. 2 PHYSICAL/CHEMICAL CHARATERISTICS OF THE CONTAMINANTS OF CONCERN BASELINE ECOLOGICAL RISK ASSESSMENT REMEDIAL INVESTIGATION CT0-0133 MCB CAMP LEJEUNE, NORTH CAROLINA

	BCF (I/kg)	Water Solubility (mg/l)	Organic Carbon Partition Coefficient (ml/g) ^(a)	Vapor Pressure (mm Hg)
Aluminum	ND(c)	ND(a, b)	ND	ND(a)
Arsenic	350 ^(c)	ND(a, b)	ND	(a, b)
Barium	ND ^(c)	ND(a, b)	ND	(a, b)
Beryllium	19(c)	ND(a, b)	ND	(a, b)
Cadmium	2700 ^(c)	(a, b)	ND	(a, b)
Chromium	190(c)	ND(a, b)	ND	(a, b)
Copper	23,000(c)	ND(a, b)	ND	(a, b)
Iron	ND ^(c)	ND(a, b)	ND	ND(a)
Lead	1700 ^(c)	ND(a, b)	ND	(a, b)
Manganese	350,000(c)	ND(a, b)	ND	ND(a)
Mercury	86,000 ^(c)	ND(a, b)	ND	0.002 ^(c)
Nickel	110 ^(c)	ND(a, b)	ND	(a, b)
Selenium	5,700 ^(c)	ND(a, b)	ND (d)	(a, b)
Silver	28 ^(c)	ND(a, b)	ND	(a, b)
Vanadium	ND ^(a)	ND(a, b)	ND	ND(a)
Zinc	970 ^(c)	ND(a, b)	ND	(a, b)
Benzene	230 ^(c)	1,800(c)	83	95(c)
Carbon Disulfide	ND(c)	1,200(c)	54	360(c)
Ethyl benzene	37.5 ^(c)	170 ^(c)	1,100	9.6 ^(c)
1,2-Dichloroethane	2.0(c)	8,500(c)	59	79(c)
Tetrachloroethene	49(c)	200 ^(c)	364	19(c)
Toluene	10.7(a)	535(c)	300	28.1 ^(c)
Total Xylenes	ND ^(a)	198 ^(a)	240	10 ^(a)
Trichloroethene	17(c)	1,100 ^(c)	126	69 ^(c)
Vinyl chloride	1.17(a)	8,800 ^(c)	57	3,000(c)

(a) U.S. EPA, 1986
 (b) Negligible (less than 0.1)
 (c) SPHEM, 1986

ND - No Data

BCF - Bioconcentration Factors

TABLE 5-13 (cont.)

đ

OPERABLE UNIT NO. 2 PHYSICAL/CHEMICAL CHARATERISTICS OF THE CONTAMINANTS OF CONCERN BASELINE ECOLOGICAL RISK ASSESSMENT REMEDIAL INVESTIGATION CT0-0133 MCB CAMP LEJEUNE, NORTH CAROLINA

	BCF (l/kg)	Water Solubility (mg/l)	Organic/Carbon Partition Coefficient (ml/g) ^(a)	Vapor Pressure (mm Hg)
Endrin	15,000 ^(c)	0.23 ^(c)	ND	(a, b)
Dieldrin	6,800 ^(c)	0.2 ^(c)	1,700	(a, b)
PCB-1260	100,000	(a, b)	530,000	(a, b)
4,4'-DDE	51,000	(a, b)	4,000,000	(a, b)
4,4'-DDD	ND	0.1 (a)	800,000	(a, b)
4,4'-DDT	54,000	(a, b)	200,000	(a, b)
Anthracene	9,200 ^(c)	(a, b)	14,000	(a, b)
Benzo(a) anthracene	ND	(a, b)	1,000,000	(a, b)
Benzo(a)pyrene	83,000 ^(c)	(a, b)	200,000	(a, b)
Benzo (b) fluoranthene	ND	(a, b)	550,000	(b, c)
Benzo (k) fluoranthene	ND	(a, b)	550,000	(a, b)
Chrysene	370(c)	(a, b)	6,000,000	(a, b)
Dibenzo (a,h) anthracene	478(c)	(a, b)	3,300,000	(a, b)
Fluoranthene	1,150	0.206 ^(a)	40,000	(a, b)
Fluorene	1,800 ^(c)	1.9 ^(c)	7,300	(a, b)
Indeno(1,2,3-CD)pyrene	ND	(a, b)	2,000,000	(a, b)
2-Methylnapthalene	ND	(a, b)	ND	ND(c)
Phenol	2.3(c)	83,000(c)	14.2	0.35(c)
Phenanthrene	2,630	1(a)	10,000	(a, b)
Pyrene	69(c)	(a, b)	40,000	(a, b)

(a) U.S. EPA, 1986

(b) Negligible (less than 0.1)
 (c) SPHEM, 1986
 ND - No Data
 BCF - Bioconcentration Factors

6.0 ECOLOGICAL EXPOSURE CHARACTERIZATION

This section of the ERA addresses each exposure pathway via surface water, sediment, air, soil, and groundwater. To determine if ecological exposure via these pathways may occur in the absence of remedial actions, an analysis was conducted including the identification and characterization of the exposure pathways. The following four elements were examined to determine if a complete exposure pathway was present:

- a source and mechanism of chemical release
- an environmental transport medium
- a feasible receptor exposure route
- a receptor exposure point

6.1 <u>Potential Exposure Scenarios</u>

This section discusses the potential exposure scenarios at OU No. 2 including surface water, sediments, air, soil, and groundwater.

6.1.1 Surface Water Exposure Pathway

Potential release sources to be considered in evaluating the surface water pathway are contaminated surface soils and groundwater. The release mechanisms to be considered are groundwater seepage and surface runoff. The potential routes to be considered for ecological exposure to the contaminated surface waters are ingestion and dermal contact. Potential exposure points for ecological receptors include species living in, or coming in contact with, the surface water onsite or offsite and downgradient relative to tidal influence.

Potential receptors that may be exposed to contaminants in surface waters include fish, crabs, benthic macroinvertebrates, birds, and other aquatic and terrestrial life.

Fish and crabs are exposed to contaminants in the surface water by ingesting water while feeding and by direct contact. Overall, fish and crabs have a high exposure to contaminants in the surface water. Potential adverse effects on fish and crabs from contaminants in the surface water were quantitatively evaluated by direct comparisons of contaminant concentrations in the surface water to published water quality standards, by the use of species diversity and similarity indices, and by fish and crab tissue analysis.

6-1

Benthic macroinvertebrates may swim through the water column and/or may attach themselves to substrates in the surface water. These species have a high potential exposure to contaminants in the surface water because they are in constant contact with the water and often they ingest water while feeding. Potential adverse effects on benthic macroinvertebrates from contaminants in the surface water were quantitatively evaluated by direct comparisons of contaminant concentrations in the surface water to published water quality standards and by use of species diversity index, similarity indices, and biotic indices.

Terrestrial faunal receptors potentially are exposed to contaminants in the surface water through ingestion and dermal contact. The magnitude of the exposure depends on their feeding habits and the amount of time they reside in the contaminated waters. In addition, terrestrial species may ingest organisms (e.g., fish, insects, plants) that have bioconcentrated contaminates from the surface water. Risk to terrestrial vertebrate ecological receptors was quantitatively evaluated by comparing chronic daily intake estimates to terrestrial reference values.

Finally, other aquatic organisms (e.g., zooplankton, microinvertebrates) and aquatic plants are potentially exposed to contaminants in the surface water. These aquatic organisms are a primary food source for the benthic macroinvertebrates, crabs, and fish examined in this ERA. In addition aquatic flora add oxygen to the water through photosynthesis, add nutrients to the sediments when degraded, provide cover for small aquatic organisms and are ingested by aquatic and terrestrial fauna. These potential receptors were qualitatively evaluated in the ERA.

6.1.2 Sediment Exposure Pathway

The potential release source to be considered in evaluating the sediment pathway are contaminated surface soils and groundwater. The release mechanisms to be considered are groundwater seepage and surface runoff. The potential routes to be considered for ecological exposure to the contaminated sediments are ingestion and dermal contact. Potential exposure points for ecological receptors include species living in, or coming in contact with, the sediments onsite or offsite and downgradient relative to tidal influence.

Potential receptors that may be exposed to contaminated sediments include benthic macroinvertebrates, bottom feeding fish, aquatic vegetation and other aquatic life.

6-2

Fish (especially bottom feeders) and crabs are exposed to contaminants in the sediments by ingesting sediments while feeding on benthic macroinvertebrates and/or organic detritus or by direct contact with the sediments. In addition, fish and crabs may ingest benthic macroinvertebrates that have bioconcentrated chemicals from the sediments. Overall, fish and crabs have a high potential exposure to contaminants in the sediments. Potential adverse effects on fish and crabs from contaminants in the sediments were quantitatively evaluated by direct comparisons of contaminant concentrations in the sediments to Region IV sediment screening values, by the species diversity index, and by fish and crab tissue analysis.

Benthic macroinvertebrates reside on the bottom of the water bodies either on or in the sediments. They are exposed to contaminants in sediments by ingesting sediments while feeding or burrowing and by direct contact. Therefore, they have a very high potential exposure to the contaminants. Potential adverse effects of benthic macroinvertebrates from contaminants in the sediments were quantitatively evaluated by direct comparisons of contaminant concentrations in the sediments to Region IV sediment screening values and by the use of the species diversity index and similarity indices.

Terrestrial faunal receptors potentially are exposed to contaminants in the sediments through ingestion and dermal contact. The magnitude of the exposure depends on their feeding habits and the amount of time they reside in the contaminated sediments. In addition, terrestrial species may ingest organisms (e.g., fish, insects, plants) that have bioconcentrated contaminants from the sediments. Risk to terrestrial ecological receptors was limited to a qualitative evaluation.

Finally, other aquatic organisms (e.g., zooplankton, microinvertebrates) and aquatic plants are potentially exposed to contaminants in the sediments. These aquatic organisms are a primary food source for the benthic macroinvertebrates, crabs, and fish examined in this ERA. In addition aquatic flora add oxygen to the water through photosynthesis, add nutrients to the sediments when degraded, provide cover for small aquatic organisms and are ingested aquatic and terrestrial fauna. These potential receptors were qualitatively evaluated in the ERA.

6.1.3 Air Exposure Pathway

There are two potential release mechanisms to be considered in evaluating the atmospheric pathway: release of contaminated particulates and volatilization from surface soil,

groundwater and surface water. The potential exposure points for receptors are areas on or adjacent to the site.

No data has been collected to document exposure to receptors via the air pathway. However, based on the low concentrations of VOCs detected in the soils, sediments, and surface water, the air concentration of these contaminants is not expected to cause a risk to the terrestrial ecology. Therefore, this pathway was not evaluated as part of the ERA.

6.1.4 Soil Exposure Pathway

Potential release sources to be considered in evaluating the soil pathway are surface or buried wastes and contaminated soil. The release mechanisms to be considered are fugitive dust, leaching, tracking, and surface runoff. The transport medium is the soil. The potential routes to be considered for ecological exposure to the contaminated soils are ingestion and dermal contact. Potential exposure points for ecological receptors include species living in, or coming in contact with, the soils. Terrestrial fauna receptors potentially are exposed to contaminants in the surface soils through incidental ingestion of surface soils and bioaccumulation/bioconcentration in prey. The magnitude of the exposure depends on their breeding habits and the amount of time they reside on the contaminated soils. In addition, terrestrial species may ingest other terrestrial species that have bioconcentrated or bioaccumulated contaminants from the surface soils. Risks to terrestrial vertebrate ecological receptors was quantitatively evaluated by comparing chronic daily intake estimates to terrestrial reference values.

6.1.5 Groundwater Exposure Pathway

The potential release source to be considered in evaluating the groundwater pathway are contaminated soils. The release mechanism to be considered is leaching. The routes to be considered for ecological exposure to the contaminated groundwater are ingestion and dermal contact. Groundwater discharge to area surface waters may represent a pathway for contaminant migration. Groundwater to surface water exposure will be evaluated in the surface water section of the ERA.

7.0 RISK CHARACTERIZATION / INTEGRATION

This section discusses the results of the sampling conducted during the remedial investigations at OU No. 2 and evaluates the potential impact on the ecological integrity of Wallace Creek, Bear Head Creek, and the ravine from contaminants identified at OU No. 2.

7.1 <u>Water Quality</u>

The concentrations of contaminants in the surface water were compared to applicable State and Federal water quality standards (see Tables 5-1, 5-2 and 5-3). Water quality criteria values are set to be protective of the aquatic environment and any exceedences of these criteria indicate a potentially hazardous environment for the aquatic organisms inhabiting the water body. However, because the surface water sampling program was a "snapshot" in time, it represents only one set of data points on a potential continuum of possible values. Variations in regional and local meteorological conditions can result in variations in stream flow and tidal influence as well as groundwater discharge that may significantly change the observed results either higher or lower. Therefore, based on the information collected and evaluated in the following sections, the exceedences noted would result in potential chronic toxicity if the data points were representative of long-term conditions.

7.1.1 Wallace Creek

Surface water concentrations of cadmium, copper, lead, mercury, nickel, silver, and zinc exceeded the North Carolina Water Quality Standards (WQS) and/or U.S. EPA Region IV acute or chronic Water Quality Screening Values (WQSV) in some of the samples.

Cadmium exceeded the WQS and the acute and chronic WQSVs in one sample, and copper exceeded the WQS in five samples and the acute and chronic WQSVs in six samples. Lead exceeded the chronic WQSV in one sample, and mercury exceeded the WQS and chronic WQSV in three samples. Nickel exceeded all three values in four samples. Finally silver and zinc exceeded the WQS and the acute and chronic WQSV in one and two samples, respectively.

Mercury, nickel and zinc exceeded water quality values in both upstream and downstream samples, therefore it is unlikely that those materials are site related. Lead exceeded the criteria only in one upstream sample and was not detected in samples downstream of the site. Also, cadmium and silver were only detected in four or less samples at the site, therefore no trend could be determined. Overall, there does not appear to be any association of TAL inorganics with contaminants from OU No.2.

The ratio of the upper 95% confidence limit (or maximum value) and the chronic WQSV was calculated for each COC. A ratio greater than unity indicated a potential for adverse effects to aquatic life. The following lists the ratios that were greater than unity:

	Chronic	
Chemical	<u>WQSV</u>	<u>Ratio</u>
Copper	2.9	4.9
Mercury	0.025	5.6
Nickel	8.3	5.4
Silver	0.23	14.2*

* Maximum value used

None of the chemicals for which WQS or WQSV were not established exceeded toxicological data available from the literature. Therefore, no adverse effects to the ecological receptors from these metals is expected.

Dissolved oxygen concentrations exceeded (were less than) the WQS in eleven samples. The pH values were not within the allowable WQS values in twenty samples and the chronic WQSV in sixteen samples (there is no acute WQSV for pH). The low dissolved oxygen values may be the cause of the absence and/or low number of benthic macroinvertebrates collected from two of the stations on Wallace Creek. The low dissolved oxygen concentrations and pH values are probably associated with natural conditions, rather than being site related.

Several of the COCs exceeded either the State and/or Federal water quality values and had the ratio of the upper 95% confidence limit (or maximum value) and the chronic WQSV greater than unity. Based on these results, the potential risk for aquatic life in Wallace Creek to be adversely affected by chronic toxicity from the COCs in the surface water is expected to be moderate to high, provided that the exposure concentration evaluated represents long-term conditions.

7.1.2 Bear Head Creek

Surface water concentrations of copper, lead, mercury, nickel and silver exceeded the WQS and/or acute or chronic WQSV in some of the samples.

Copper exceeded all three values in one sample. Lead exceeded the chronic WQSV in two samples. Mercury exceeded the WQS and the chronic WQSV in two samples, and nickel exceeded all three values in one sample. Finally, silver exceeded the WQS and the chronic WQSV in two samples, and the acute WQSV in one sample.

The ratio of the upper 95% confidence limit (or maximum value) and the chronic WQSV was calculated for each COC. A ratio greater than unity indicated a potential for adverse effects to aquatic life. The following list the ratios that were greater than unity:

Chemical	<u>Ratio</u>
Copper	2.4
Mercury	2.0
Nickel	2.2
Silver	18.3*

* Maximum value used

None of the chemicals for which WQS or WQSV were not established exceeded toxicological data available from the literature. Therefore, no adverse effects to the ecological receptors from these chemicals is expected.

Lead exceeded the water quality values in both the upstream and downstream samples, therefore it is unlikely that these metals are site related. Copper, nickel and silver exceeded the criteria in the furthest downstream samples only. It is unlikely that these metals are site related because copper and nickel were not detected in any other samples, and the only other sample that silver was detected in was upstream of the site. Mercury exceeded the water quality values immediately downstream from the sites and in the furthest downstream sample. However, mercury was not detected in the samples collected adjacent to the sites, or in the bank samples at the stations where mercury was detected onsite.

Dissolved oxygen concentrations exceeded (were less than) the WQS in two samples. The pH values were not within the allowable WSQ values in eight samples, and not within the

allowable chronic WQSV in four samples. The low dissolved oxygen concentrations and pH values are probably associated with natural conditions, rather than being site related.

Several of the COCs exceeded either the State and/or Federal water quality values and had the ratio of the upper 95% confidence limit (or maximum value) and the chronic WQSV greater than unity. Based on these results, the potential risk for aquatic life in Bear Head Creek to be adversely affected by chronic toxicity from the COCs in the surface water is expected to be moderate to high, provided that the exposure concentration evaluated represents long-term conditions.

7.1.3 Ravine

Surface water concentrations of aluminum, cadmium, copper, iron, lead, silver and zinc exceeded the WQS and/or acute or chronic WQSV in some of the samples.

Aluminum exceeded the chronic WQSV in six samples and cadmium exceeded the WQS and the acute and chronic WQSV in two samples. Copper and iron exceeded the WQS and chronic WQSV in four and two samples, respectively. Lead exceeded the chronic WQSV in six samples. Finally, silver and zinc exceeded the WQS and the acute and chronic WQSV in three and six samples, respectively.

The ratio of the upper 95% confidence limit (or maximum value) and the chronic WQSV was calculated for each COC. A ratio greater than unity indicated a potential for adverse effects to aquatic life. The following list portrays the ratios that were greater than unity:

<u>Ratio</u>
7.0*
6.1
1.4*
12.3
8.3
5,063.3
8.4*

* Maximum value used

None of the chemicals for which WQS or WQSV were not established exceeded toxicological data available from the literature. Therefore, no adverse effects to the ecological receptors from these chemicals is expected.

Field water quality measurements were not conducted in the ravine because of the intermittent nature of the water.

Several of the COCs exceeded either the State and/or Federal water quality values and had the ratio of the upper 95% confidence limit (or maximum value) and the chronic WQSV greater than unity. Based on these results, the potential risk for aquatic life in the ravine to be adversely affected by chronic toxicity from the COCs in the surface water is expected to be moderate to high, provided that the exposure concentration evaluated represent long-term conditions. The ravine originates in Site 6 and extends into Site 82. Therefore, any contamination detected in the ravine may be related to Sites 6 and 82.

7.1.4 Pettiford Creek

Surface water samples were not collected from Pettiford Creek for chemical analysis. However, field water quality measurements were conducted during the fish and benthic macroinverterbate sampling events.

Dissolved oxygen concentrations were less than the WQS in one sample. The pH was not measured in Pettiford Creek because the pH meter was not working. The low dissolved oxygen concentrations were probably associated with natural conditions.

7.2 Sediment Quality

The concentrations of contaminants in the sediments were compared to the Region IV lower 10 percentile (ER-L) and median percentile (ER-M) sediment screening values (SQSV) (see Tables 5-4, 5-5, and 5-6). Because the screening values are set to be protective of the aquatic environment, any exceedences of these values indicate a potentially toxic environment for the aquatic organisms inhabiting the water body.

7.2.1 Wallace Creek

Sediment concentrations of copper, lead, silver, zinc, 4,4'-DDE, 4',4-DDD, 4',4-DDT, dieldrin, PCB-1260, benzo(a)pyrene, fluoranthene, and pyrene exceeded the ER-L and/or ER-M in some of the samples.

Copper exceeded the ER-L in two samples and the ER-M in one sample, while lead exceeded the ER-L in nine samples and the ER-M in two samples. Silver exceeded the ER-L and ER-M in one sample. Finally, zinc exceeded the ER-L in four samples and the ER-M in two samples. 4,4'-DDE exceeded the ER-L and ER-M in 14 and 11 samples, respectively. 4,4'-DDD exceeded the ER-L and ER-M in 15 and 12 samples, respectively. 4,4'-DDT and dieldrin exceeded the ER-L and ER-M in three samples, and dieldrin exceeded the ER-L in one sample. PCB-1260 exceeded the ER-L in 12 samples and the ER-M in six samples. Finally, benzo(a)pyrene, fluoranthene, and pyrene exceeded the ER-L in three, one, and two samples, respectively.

The ratio of the upper confidence limit and the ER-L was calculated for each COC. A ratio greater than unity indicated a possibility for adverse effects to aquatic life, and EPA recommends conducting toxicity tests as a follow-up. The following list the ratios that were greater than unity:

Chemical	<u>Ratio</u>
Lead	1.0
Silver	1.6
4,4'-DDE	9.8
4,4'-DDD	15.5
4,4'-DDT	22.9
Dieldrin	240.0*
PCB-1260	6.1
Benzo (a) anthracene	1.0*
Benzo (a) pyrene	1.5
Pyrene	1.3

* Maximum value used

Literature data were not identified for determining the effects on aquatic life from contaminants for which there was not a screening value. It should be noted that of these contaminants, only aluminum and iron exceeded state or federal water quality criteria for the surface water samples. None of these contaminants for which criteria do not exist exceeded the toxicity values obtained from AQUIRE.

The exceedences of the inorganic chemicals occurred in both the upstream and downstream samples, therefore, these exceedences do not appear to be site related. Dieldrin was only detected in the furthest-most upstream station, therefore it is not site related. Except for one sample, 4,4'-DDE, 4,4'-DDD, 4,4'-DDT only exceeded the SQSV in the samples collected adjacent to, and downstream of OU No. 2, therefore, these contaminants might be attributable to runoff from the site. The PAHs primarily were detected adjacent to Piney Green Road and Holcomb Boulevard. Therefore, they are probably due to the automobile traffic on those roads. Finally, PCB-1260 exceeded the SQSV in the 0 to 6-inch sediment samples collected adjacent to and downstream of OU No. 2. PCB-1260 was detected in just two samples upstream of OU No. 2, therefore, PCB-1260 potentially may be associated with contamination at OU No.2.

Several of the COCs exceeded the ER-L and/or ER-M and had the ratio of the upper 95% confidence limit and the ER-L greater than unity. Based on these results, the potential risk for aquatic life in Wallace Creek to be adversely affected by chronic toxicity from the COCs in the sediments is expected to be moderate to high.

7.2.2 Bear Head Creek

Sediment concentrations of lead, 4,4'-DDE, 4,4'-DDD, 4,4'-DDT, PCB-1260 and benzo(a)pyrene exceeded the ER-L and/or ER-M in some of the samples.

Lead exceeded the ER-L in five samples. 4,4'-DDE, 4,4'-DDD, and 4,4'-DDT exceeded the ER-L in 11, 10, and eight samples, respectively, and the ER-M in nine, seven, and six samples respectively. PCB-1260 exceeded the ER-L in 10 samples and benzo(a)pyrene exceeded the ER-L in one sample.

The ratio of the upper confidence limit and the ER-L was calculated for each COC. A ratio greater than unity indicated a possibility for adverse effects to aquatic life, and EPA recommends conducting toxicity tests as a follow-up. The following list portrays the ratios that were greater than unity:

<u>Chemical</u>	<u>Ratio</u>
4,4'-DDE	17.3

4,4'-DDD	14.7
4,4'-DDT	13.5
PCB-1260	3.0
Benzo(a)pyrene	1.3
Pyrene	1.5

The exceedences of lead occurred in both the upstream and downstream samples, therefore, these exceedences do not appear to be site related. Most of the SQSV exceedences for 4,4'-DDE, 4,4'-DDD, 4,4'-DDT were in samples collected from the three stations adjacent to, and immediately downstream of OU No.2. Therefore, these contaminants might be attributable to runoff from the site. Benzo(a)pyrene only exceeded the SQSV at one station, which was located upstream of OU No.2 and adjacent to Piney Green Road. Therefore, benzo(a)pyrene is probably due to the automobile traffic on this road. Finally, PCB-1260 exceeded the SQSV in samples collected from the stations upstream, adjacent to, and downstream of OU No.2. Therefore, PCBs are likely related to OU No.2.

Several of the COCs exceeded the ER-L and/or ER-M and had the ratio of the upper 95% confidence limit and the ER-L greater than unity. Based on these results, the potential risk for aquatic life in Bear Head Creek to be adversely affected by chronic toxicity from the COCs in the sediments is expected to be moderate to high.

7.2.3 Ravine

Sediment concentrations of cadmium, lead, mercury, silver, zinc, 4,4'-DDE, 4',4-DDD, 4',4-DDT, dieldrin, endrin, PCB-1260, and several of the PAHs exceeded the ER-L and/or ER-M. The ravine is located adjacent to Site 6 and receives runoff from this site. Therefore, any contamination detected in the ravine would be site related or due to natural concentrations (especially for many of the metals).

Cadmium and lead exceeded the ER-L in one and two samples, respectively, and mercury and silver exceeded the ER-L in three and one sample, respectively. Zinc exceeded the ER-L in four samples and the ER-M in one sample. 4,4'-DDE, 4,4'-DDD, 4,4'-DDT and dieldrin exceeded the ER-L in six, six, eight and two samples, respectively, and the ER-M in six, three, eight, and two samples, respectively. Endrin exceeded the ER-L one sample. PCB-1260 exceeded the ER-L in four samples. Finally, ten PAHs exceeded the ER-L in one sample, while one PAH (phenanthrene) exceeded the ER-M in one sample.

The ratio of the upper confidence limit and the ER-L was calculated for each COC. A ratio greater than unity indicated a possibility for adverse effects to aquatic life, and EPA recommends conducting toxicity tests as a follow-up. The following list portrays the ratios that were greater than unity:

<u>Chemical</u>	Ratio
Lead	1.1
Mercury	2.1
Silver	1.1
Zinc	1.6
4,4'-DDE	41.0
4,4'-DDD	13.6
4,4'-DDT	187.4
Dieldrin	655.0
Endrin	255.0*
PCB-1260	3.0
Acenaphthene	1.5*
Anthracene	3.3
Benzo(a)anthracene	2.2
Benzo(a)pyrene	1.0
Chrysene	1.1
Dibenz(a,h)anthracene	1.4*
Phenanthrene	1.9
Pyrene	1.5

* Maximum value used

Several of the COCs exceeded the ER-L and/or ER-M and had the ratio of the upper 95% confidence limit and the ER-L greater than unity. Based on these results, the potential risk for aquatic life in the ravine to be adversely affected by chronic toxicity from the COCs in the sediments is expected to be moderate to high.

7.3 Surface Soil Quality

There are no standards, criteria, or other screening values for assessing potential impacts to terrestrial ecological receptors from contaminants in soils. In addition, the amount of literature data evaluating adverse ecological effects on terrestrial species exposed to contaminants in surface soil is limited and has not undergone extensive peer review.

Toxicological effects on plants and/or invertebrates inhabiting soils contaminated by several of the metals was obtained and compared to the concentrations of these metals. The available data was limited to plants and invertebrates, therefore, effects on mammals, reptiles, birds, and other terrestrial species could not be evaluated. The following paragraphs discuss the comparison of the metals concentrations in the surface soil to published toxicological data.

7.3.1 Site 9

The potential adverse effects on the plants and/or invertebrates from the metals detected at Site 9, were either insignificant or could not be evaluated with the available information.

7.3.2 Site 6 (Lot 201)

The concentration of chromium in some of the surface soil samples exceeded the level that caused mortality in an earthworm species. Therefore, there is a potential risk to at least one earthworm species from the chromium in the surface soils. The potential adverse effects on the plants and/or invertebrates from the other metals detected at Site 6 (Lot 201), were either insignificant or could not be evaluated with the available information.

7.3.3 Site 6 (Lot 203)

The concentrations of chromium, copper, and zinc in some of the surface soil samples exceeded levels that caused adverse effects either to plants or invertebrates. Therefore, there is a potential risk to some plants and/or invertebrates from these metals. The potential adverse effects on the plants and/or invertebrates from the other metals detected at Site 6 (Lot 203), were either insignificant or could not be evaluated with the available information.

7.3.4 Sites 6 (Wooded and Ravine Areas) and 82

The concentrations of arsenic, copper and zinc in some of the surface soil samples exceeded levels that caused adverse effects either to plants or invertebrates. Therefore, there is a potential risk to some plants and/or invertebrates from these metals. The potential adverse effects on the plants and/or invertebrates from the other metals detected at Sites 6 (Wooded and Ravine Areas) and 82, were either insignificant or could not be evaluated with the available information.

7.4 Fish and Crabs

The following sections discuss the current and potential risk to fish and crabs from contaminants identified at OU No.2.

7.4.1 **Population Statistics**

Estuarine fish faunas are typified by the numerical dominance of a few species. The number of estuarine families with basic marine affinities also is small. The dominant species tend to be widespread, reflecting the broad tolerances and range of adaptations of these organisms. By far, the most abundant forms are juveniles that use the estuarine environment as a nursery area. Although a few permanent residents can be found in estuaries at any time, most of the fish populations are seasonal migrants, moving into and out of these shallow ecosystems from the nearshore ocean (Kennish, 1990). Wallace Creek and Bear Head Creek are primarily freshwater in the upper stream areas and brackish in the lower stream areas. The most abundant fish forms found in the creeks were freshwater species.

7.4.1.1 Wallace Creek

The majority of the fish captured in Wallace Creek were freshwater and brackish water species (eastern mosquito, shiner sp., bluespoted sunfish and pumpkinseed). There also were species that typify an estuarine environment (spot, American eel and summer flounder); however, they were not found as abundantly as the freshwater species. The majority of the individuals of those species were represented by the juvenile form and qualify as both seasonal migrants and species that utilize estuaries as a nursery area. The size-class distribution of fish (Figures 4-2 through 4-6) support the presence of a juvenile population.

It should be noted that the population of fish evaluated in Wallace Creek, Bear Head Creek and Pettiford Creek was not large enough to interpret a hypothesis regarding similarity.

The diversity index values ranged from 0.22 at Station 6-WC4 to 0.77 at Station 6-WC6A. Decreased diversity is used as an indicator of gross environmental deterioration, where diversity of taxa and biomass of fish were inversely correlated with the percent of toxic contaminants in a river system. In estuarine environments, the abundance and biomass of fishes are large and the species diversity is generally low. This factor could explain the low diversity at Station 6-WC4.

Overall, the health of the fish community at Wallace Creek appeared normal when compared to the background station at Pettiford Creek. As discussed earlier in this report, none of the fish that were collected had anomalies. A total of four different fish species (Table 4-4) were collected at fish station WC04A (upstream of OU No. 2). The tolerance levels of the species collected are as follows: one intermediate to intolerant species (shiner sp.), one intermediate tolerant species (pirate perch), one moderately tolerant species (pumpkinseed), and one of the species (bluespoted sunfish) has a variable tolerance.

The fish species collected from an adjacent site to OU No. 2 (WC06A) had the following tolerance levels: one intermediate to intolerant species (shiner); three intermediate species (eastern mosquitofish, American eel, and warmouth); one moderately tolerant species (pumpkinseed), one tolerant species (largemouth bass); and two of the species (bluespoted sunfish and sunfish sp.) have variable tolerance levels.

Only one fish species (summer flounder) was collected downstream of OU No. 2 (WC11A) and the tolerance level of this species is not known. The fish species collected from the station adjacent to OU No. 2 were similar in tolerance levels to those species collected upstream of OU No. 2. The only difference in species tolerance between these to stations was that a tolerant species was collected at the adjacent station and no tolerant species were collected at the upstream station.

The majority of the fish that were captured had tolerance levels of intermediate to tolerant, which would indicate that Wallace Creek supports a quality of fish that are tolerant to environmental stressors.

7.4.1.2 Bear Head Creek

The majority of the fish captured in Bear Head Creek were freshwater and brackish water species (eastern mosquito, shiner sp. and pumpkinseed). There also were species that typify an estuarine environment (spot, bay anchovy and killifish); however, they were not found as abundantly as the freshwater species. The majority of the individuals of the estuarine species were represented by the juvenile form and qualify as both seasonal migrants and species that utilize estuaries as a nursery area. The size-class distribution of fish (Figures 4-2 through 4-6) support the presence of a juvenile population.

It should be noted that the population of fish evaluated in Wallace Creek, Bear Head Creek and Pettiford Creek was not large enough to interpret a hypothesis regarding similarity.

The diversity index value for Station 6-BH6A was 0.29. Decreased diversity is used as an indicator of gross environmental deterioration, where diversity of taxa and biomass of fish were inversely correlated with the percent of toxic contaminants in a river system. In estuarine environments, the abundance and biomass of fishes are large and the species diversity is generally low. This factor could explain the low diversity at Station 6-BH6A.

Overall, the health of the fish community at Bear Head Creek appeared normal when compared to the background station at Pettiford Creek. As discussed earlier in this report, none of the fish that were collected had anomalies. Fish were collected at only one station (Table 4-4) in Bear Head Creek BH06A (downstream of OU No. 2). The tolerance of these fish species consisted of the following: one intolerant species (killifish); two intermediate species (eastern mosquitofish and bay anchovy); one moderately tolerant species (pumpkinseed), and one species with variable tolerance (bluespoted sunfish). The majority of the fish species that were captured had intermediate to intolerant levels of tolerance, which would indicate that Bear Head Creek supports a quality of fish that are not tolerant to environmental stressors.

7.4.1.3 Pettiford Creek

Because of the lack of abundance of fish captured at Pettiford Creek, only limited interpretation of the population statistics can be made. The three species of fish that were captured (pumpkinseed, shiner sp. and striped mullet) had tolerances ranging from intolerant to moderately tolerant. The only fish that typified an estuarine environment was the striped mullet. The majority of the individuals of those species were not represented by the juvenile form as in Wallace and Bear Head Creeks. The pumpkinseeds and striped mullet were either above the national average for length or within the top 75 percent of the average.

It should be noted that the population of fish evaluated in Wallace Creek, Bear Head Creek and Pettiford Creek was not large enough to interpret a hypothesis regarding similarity. The diversity index value for Station PC was 0.45. Because of the limited sampling, any hypothesis drawn from this value should not be relied upon.

Overall, the health of the fish community at Pettiford Creek appeared normal. As discussed earlier in this report, none of the fish that were collected had anomalies.

Fish have been collected at one station (Table 4-4) in Pettiford Creek. The tolerance levels of the species collected are as follows: one intermediate to intolerant species (shiner sp.), and one moderately tolerant species (pumpkinseed).

7.4.2 Tissue Analysis

This section summarizes the results of the tissue analysis for the fish and crabs collected in Wallace and Bear Head Creeks, and compares the results to concentrations detected in fish from other studies identified in the literature. Concentrations for some of the contaminants in crab tissues in other studies were not located.

7.4.2.1 Wallace Creek

Fish were collected for tissue analysis at Station 6-WC6A (located adjacent to Site 6) and Station 6-WC11 (located downstream from Site 6) in Wallace Creek. There were no fish collected for tissue analysis from Station 6-WC3A (located upstream from OU No.2) because of inadequate sample size. The following provides the comparison of tissue concentrations of COCs at Wallace Creek to worldwide studies.

Pesticides (4,4'-DDD, 4,4'-DDE and 4,4'-DDT) were detected in all of the fish and crab samples collected in Wallace Creek. These chemicals biodegrade very slowly and they have a high potential for bioaccumulation in aquatic organisms. The maximum concentration of 4,4,'-DDE in the fish tissue was 180 ug/kg and the maximum concentration in the crab samples was 15 ug/kg. The average concentration level established in the National Study of Chemical Residues in Fish (NSCRF) for industrial/urban sites for any p,p'-DDE compound in fish tissue was between 7.23 and 14,028 ug/kg with the mean concentration being 602.34 ug/kg (NSCRF, 1992). Other ecological studies conducted in 1989 in Indonesia on saltwater fish tissues detected levels of p,p'-DDE between 40 and 6,800 ug/kg and 0 to 41 ug/kg in the North Sea (Ginn, 1990). The maximum concentration of 4,4'-DDD in the fish tissue was 8.8 ug/kg and the maximum concentration in the crab samples was 8.1 ug/kg. Studies conducted in Rhode

Island in 1989 detected p,p'-DDD fish tissue levels between 18.0 and 46.0 ug/kg and North Sea studies detected levels between 0 and 28.0 ug/kg (Ginn, 1990). 4,4'-DDT was detected in one fish tissue sample at Station 6-WC6A in the concentration of 4.9 ug/kg. Studies conducted in Pacific ocean revealed levels of 4,4'-DDT ranging from 0 to 76.3 ug/kg (Geesey, 1982). Levels in the Central Mediterranean Sea ranged from 3.9 to 85.5 ug/kg.

Overall, the pesticide levels in the fish tissues at Wallace Creek were within the range of the levels detected in fish from other studies, and the pesticides were at or below levels typical to aquatic life in areas categorized as urban/industrial by the NSCRF. The pesticide concentrations in the fish were higher at Station 6-WC6A as opposed to the downstream Station (6-WC11). There was only one crab submitted for tissue analyses in Wallace Creek. The cause of the slightly elevated pesticide concentrations in the crabs at Station 6-WC11 cannot be attributed directly to OU No. 2 since the crabs are fairly mobile, and the concentrations were not substantially different between the stations. Pesticides were expected to be detected in the fish and crab tissues because pesticide use has been documented as widespread throughout MCB Camp Lejuene, North Carolina.

The concentration of PCBs detected in fish collected from Wallace Creek ranged from 51 to 1,000 ug/kg. The minimum concentration was found at Station 6-WC11 (located downstream from Site 6) and the maximum concentration was found at Station 6-WC6A (located adjacent to Site 6). PCBs were not found in the tissue of the crab. The national average of PCBs found in fish tissue is 1,897 ug/kg (NSCRF, 1992). The NSCRF reported that 91 percent of all the stations included in their survey had PCB contamination. The PCB tissue concentrations found at Wallace Creek were below the reported national average. However, based on the potential sources of contamination at Sites 6 and 82 the PCBs detected in the fish tissue may be attributed to contamination found at Sites 6 and 82.

Toluene was detected in the tissue of fish collected at Stations 6-WC11 and 6-WC6A in the concentrations of 2 ug/kg and 3 ug/kg, respectively. Studies have revealed that the average concentration of toluene in fish collected from a petroleum contaminated harbor in Japan was 5 mg/kg (Howard, 1991). This level of contamination is considerably higher than the levels of toluene found in the fish in Wallace Creek. Toluene does not readily bioaccumulate in fish, and when released into water, it will be lost by both volatilization and biodegradation.

At Stations 6-WC6A and 6-WC11, trichloroethylene was detected in fish tissue at concentrations ranging from 3 to 6 ug/kg. Average concentrations of trichoroethylene in

marine fish in the United States ranged from 0.04 to 1.1 ug/kg in fish tissue, and 0.66 to 20.0 ug/kg in fish livers (Howard, 1991). Therefore, the concentrations of trichloroethylene in the fish tissue collected at Wallace Creek appeared to be at background levels when compared to the national average. It should be noted that trichloroethylene was detected in the surface water and sediments in Wallace Creek. Marine monitoring data suggest only moderate bioconcentration (2 to 25 times the concentration in water). Because of the nature of the potential sources of contamination at Sites 6 and 82 (various solvents), the levels of contamination found in the surface water and sediments, and the bioconcentration factor of trichloroethylene, the trichloroethylene detected in the fish tissue may be attributable to Sites 6 and 82.

Benzene was detected in the fish tissue at Station 6-WC6A and in crab tissue at Station 6-WC11 in concentrations of 3 and 2 ug/kg, respectively. Studies regarding the national average range of benzene in fish and crab could not be located. It is known that benzene is not expected to bioconcentrate in aquatic organisms. This is due in part to benzene's ability to rapidly volatilize when released to water. Because benzene was not detected in either the surface water or sediment in Wallace Creek, it is not likely that the benzene concentrations in the fish could be attributed to Sites 6 and 82.

Phenols were detected in the crab tissue at Station 6-WC11 in the concentration of 2,500 ug/kg. Published studies have indicated that phenols were detected in fish from Commencement Bay, Tacoma, WA in an average concentration of 0.14 ug/kg. The maximum concentration was 0.22 ug/kg (Howard, 1990). The level of phenol in the crab tissue at Wallace Creek was higher than the maximum concentration and the average concentration found in fish at Commencement Bay. However, the sample result was based on a single composite of crab tissue and may not be representative of the entire crab population. Natural sources of phenol include animal wastes and decomposition of organic wastes. Artificial sources of phenols include wastewater from manufacturers of materials such as resins, plastics, iron, steel and rubber. Phenols are frequently found in wastewater from these commercial processes (Sax, 1987). If phenols are released to the environment, its primary removal mechanism is biodegradation which is generally rapid. Data suggest that degradation will take on the order of hours to days in freshwater systems and up to a few weeks in estuarine waters, Also, phenol is not expected to significantly bioconcentrate in aquatic organisms. Phenol was not detected in the surface water of Wallace Creek and was only detected in low concentrations in the sediments. None of the fish tissue samples analyzed from Wallace Creek contained phenols. It is suggested that because of the factors listed above, compounded by the fact that crabs are fairly mobile, phenol cannot be directly attributed to Sites 6 and 82.

Fish tissue concentrations of selenium ranged from 0.14 to 0.38 mg/kg. Worldwide ecological studies detected selenium concentrations in fish tissues from 0.03 to 0.7 mg/kg in Sydney Australia and 0.62 to 14.2 mg/kg in China (Ginn, 1988) and 0.8 to 1.3 mg/kg in Massachusetts (Geesey, 1982). There did not appear to be any difference in selenium concentrations between the fish collected at each station. Therefore, the concentrations of selenium in the fish tissue collected at Wallace Creek appeared to be at background levels when compared to worldwide survey data. Because selenium was not detected in the surface water or sediment samples collected in Wallace Creek, it is unlikely that the selenium concentrations in the fish could be attributed to Sites 6 and 82.

Silver was detected in fish tissues at Station 6-WC6A in the concentration of 0.01 mg/kg. The concentration of silver in the crab tissue at Station 6-WC6A was 0.18 mg/kg. A National Marine Fishery survey conduced in March, 1978 reported the average silver concentration at 0.1 mg/kg in the muscle of the fish and 0.2 mg/kg in the whole body sample of the fish (NOAA, 1978). The tissue samples collected from 6-WC6A appear to be within the reported national average for silver. The maximum bioconcentration factor for silver in fish is 28 (SCDM, 1991). Silver concentrations in exceedence of Region IV Screening Values were found in three Ravine surface water samples. Although silver concentrations were found in Wallace Creek in one surface water sample (6-WC05-SW) and one sediment sample (6-WC03-SD), both of these locations are upstream of ravine sample locations. Wallace Creek sampling stations adjacent to or downstream of the Ravine did not exhibit silver concentrations in surface water or sediments. Therefore, the high silver concentrations found in the Ravine do not appear to be affecting Wallace Creek. The silver exceedence found at sampling station 6-WC05-SW may be a result of tidal influences.

Zinc concentrations in the fish samples ranged from 10.6 to 27.3 mg/kg, while the crab tissue concentration was 20.3 mg/kg. Other saltwater ecological studies detected the following zinc values in fish tissue analyses: 5.9 to 16.6 mg/kg in the Arabian Gulf (Ginn, 1989), 4.1 to 58.8 mg/kg in the Mediterranean Sea in Israel, 0.02 to 5.6 mg/kg in the United Kingdom (Ginn, 1988), and 88 to 145 mg/kg in the Gulf of Mexico (Ginn, 1987). The National Marine Fishery trace element survey revealed that the average concentration of zinc in the muscle of fish ranged from 2.0 to 20.0 mg/kg (NOAA, 1978). It can be determined from the above worldwide data that the concentrations of zinc found in the fish and crabs at Station 6-WC6A were within

the reported normal ranges. Because zinc was detected in higher concentrations in the sediments at the downstream stations as compared to the upstream stations, the zinc detected in the fish tissues may be attributed to contamination from Sites 6 and 82.

The overall physical appearance of the fish, and the relatively low concentration of contaminants present in the fish tissues indicate the aquatic environment at Wallace Creek is not suffering from any stress presented by the detected contaminants; however, some of the contaminants found in the fish tissue (i.e., pesticides, PCBs, trichloroethylene, and zinc) may be attributed to the potential areas of contamination from Sites 6 and 82.

7.4.2.2 Bear Head Creek

Fish were collected for tissue analyses at Station 6-BH6A (located downstream from OU No. 2). There were no fish collected from Station 6-BH4A (located adjacent to OU No. 2) or Station 6-BH2A (located upstream from OU No. 2). The following provides the comparison of tissue analyses at Bear Head Creek to worldwide studies.

Pesticides (4,4'-DDD, 4,4'-DDE and 4,4'-DDT) were detected in the fish sample at Bear Head Creek. These chemicals biodegrade very slow, and as discussed previously in this report, they have a high potential for bioaccumulation in aquatic organisms. The maximum concentration of 4,4,'-DDE in the fish tissue was 290 ug/kg. The average concentration level established in the National Study of Chemical Residues in Fish (NSCRF) for industrial/urban sites for any p,p'-DDE compound in fish tissue was found to be between 7.23 and 14,028 ug/kg with the mean concentration being 602.34 ug/kg (NSCRF, 1992). Other ecological studies conduced in 1989 in Indonesia on saltwater fish tissues detected levels of p,p'-DDE between 40 and 6,800 ug/kg and 0 to 41 ug/kg in the North Sea (Ginn 1990). The maximum concentration of 4,4'-DDD in the fish tissue was 72.0 ug/kg. Studies conducted in Rhode Island in 1989 detected p,p'-DDD fish tissue levels between 18.0 and 46.0 ug/kg; North Sea studies detected levels between 0 and 28.0 ug/kg (Ginn, 1990). 4,4'-DDT was detected in one fish tissue sample at Station 6-BH6A in the concentration of 9.7 ug/kg. Studies conducted in the Pacific ocean revealed levels of 4,4'-DDT ranging from 0 to 76.3 mg/kg (Ginn, 1982). Levels in the Central Mediterranean Sea ranged from 3.9 to 85.5 ug/kg.

Overall, the pesticide levels in the fish tissues at Bear Head Creek were within the range of the levels detected in fish from other studies, and the pesticides are either at, below or slightly above levels typical to aquatic life in areas categorized as urban/industrial by the NSCRF. Pesticides were expected to be detected in the fish tissues because pesticide use has been documented as widespread throughout MCB Camp Lejuene, North Carolina.

The PCB tissue concentration found in Bear Head Creek was reported to be 490 ug/kg. The national average of PCBs found in fish tissue is 1,897 ug/kg (NSCRF, 1992). The NSCRF reported that 91 percent of all the stations included in their survey had PCB contamination. The PCB tissue concentrations found at Bear Head Creek were below the reported national average. However, based on the potential sources of contamination at OU No. 2 (lubricating oil), the PCBs detected in the fish may be attributable to OU No. 2.

Toluene was detected in a fish collected at Station 6-BH6A at a concentration of 8 ug/kg. Studies have revealed that the average concentration of toluene in fish collected from a petroleum contaminated harbor in Japan was 5 mg/kg (Howard, 1991). This level of contamination is considerably higher than the levels of toluene found in the fish in Bear Head Creek. Toluene does not readily bioaccumulate in fish, and when released into water, it will be lost by both volatilization and biodegradation.

Benzene was detected in the fish tissue at Station 6-BH6A in a concentration of 6.0 ug/kg. Studies regarding the national average range of benzene in fish could not be located. It is known that benzene is not expected to bioconcentrate in aquatic organisms (Howard, 1991). This is due in part to benzene's ability to rapidly volatilize when released to water. Benzene was not detected in the surface water in Bear Head Creek; however, it was detected in the sediment at 6-BH1 (located at the most upstream station). Due to the proximity of the positive detection of benzene in the sediment and the lack of detection in surface water, it is not likely that the benzene concentrations in the fish could be attributed to OU No.2.

Fish tissue concentrations of selenium were reported at 0.27 mg/kg. Worldwide ecological studies detected selenium concentrations in fish tissues from 0.03 to 0.7 mg/kg in Sydney Australia and 0.62 to 14.2 mg/kg in China (Ginn, 1988) and 0.8 to 1.3 mg/kg in Massachusetts (Geesey, 1982). The concentrations of selenium in the fish tissue collected at Bear Head Creek appeared to be below the worldwide data. Because selenium was not detected in the surface water in Bear Head Creek and only appeared in one sediment sample, it is unlikely that the selenium concentration in the fish tissue could be attributed to OU No.2.

Cadmium was found in fish tissues at Station 6-BH6A in the concentration of 0.06 mg/kg. The National Marine Fishery trace element survey determined that the national average of

cadmium in fish muscle was less than 0.1 mg/kg (NOAA, 1978); therefore, the concentration of cadmium in the fish tissue collected at Bear Head Creek appears to be below the national average. Cadmium was not detected in the surface water in Bear Head Creek; however it was detected in the sediment in both the upstream and downstream stations. Therefore, the cadmium detected in the fish collected from Bear Head Creek cannot be attributed to contamination from OU No.2.

Zinc concentrations in the fish samples were reported at 23.4 mg/kg. Other saltwater ecological studies detected the following zinc values in fish tissue analyses: 5.9 to 16.6 mg/kg in the Arabian Gulf (Ginn, 1989), 4.1 to 58.8 mg/kg in the Mediterranean Sea in Israel, 0.02 to 5.6 mg/kg in the United Kingdom (Ginn, 1988), and 88 to 145 mg/kg in the Gulf of Mexico (Ginn, 1987). The National Marine Fishery trace element survey revealed that the average concentration of zinc in the muscle of fish ranged from 2.0 to 20.0 mg/kg (NOAA, 1978). It can be determined from the above worldwide data that the concentrations of zinc found in the fish at Station 6-BH6A were within the reported normal ranges. Because zinc was detected in higher concentrations in the sediments at the downstream stations as compared to the upstream stations, the zinc detected in the fish tissues may be attributed to contamination from Sites 6 and 82.

The overall physical appearance of the fish, and the relatively low concentration of contaminants present in the fish tissues indicate the aquatic environment at Bear Head Creek is not suffering from any stress presented by the detected contaminants; however, some of the contaminants found in the fish tissue (pesticides, PCBs, and zinc) could be attributed to the potential areas of contamination.

7.4.2.3 Pettiford Creek

Baker did not collect fish or crab tissue samples at Pettiford Creek.

7.5 <u>Benthic Macroinvertebrate</u>

This section evaluates the current and potential adverse risk to the benthic macroinvertebrates from contaminants detected in the sediments and surface water in Wallace Creek, Bear Head Creek, and the ravine.

7.5.1 Wallace Creek

The species density at Stations 6-WC3A and 6-WC6A was 1,275 and 1,128 individuals/m², respectively and the species diversity for these stations was 0.448 and 0.510, respectively. These values compare to a species density of 210 individuals/m² and species diversity of 0.372 at the Pettiford Creek station (PC). The MBI values at Stations 6-WC3A and 6-WC6A were 6.46 and 7.30, respectively, compared to 8.84 at Station PC.

Station 6-WC3A was more similar to Station 6-WC6A than Station PC concerning water chemistry, habitat, and sediment type. Therefore, the species density, diversity, and MBI values are expected to be similar, if all other factors (i.e., pollution impacts) are equal.

Approximately 74 percent (148 individuals) of the individuals collected at Station 6-WC3A were the chiromid species <u>Tribelos jucundum</u>; none of the other 52 individuals at this station comprised more than six percent of the sample number. <u>Tribelos jucundum</u> does not have a BI, however <u>Tribelos</u> spp. has a BI of 6.6 (Lenat, 1993). <u>Tribelos jucundum</u> is relatively sensitive to heavy metals, and intolerant to organic waters with a tolerance value of 1.0 (U.S. EPA, 1990). This organism is primarily found in freshwaters with salinity concentrations of less than 0.5 ppt and waters having moderate dissolved oxygen concentrations (U.S. EPA, 1977). In addition, they are characteristic of clean water habitats, but are tolerant of organic enrichment if the dissolved oxygen concentration remains above 5.0 mg/l and the pH and water temperature are not adversely altered (U.S. EPA, 1977).

Overall, contaminants at Station 6-WC3A do not appear to be adversely affecting the benthic community based on the similar species densities and diversities between Station 6-WC3A and Station 6-WC6A and the 6.46 MBI value indicating good to fair water quality. In addition, <u>Tribelos jucundum</u>, a relatively intolerant species found primarily in clean environments, accounted for most of the individuals at Station 6-WC3A.

At Station 6-WC6A, approximately 64 percent (113 individuals) of the individuals collected at Station 6-WC6A were the amphipod species, <u>Gammarus fasciatus</u>, 19 percent (34 individuals) were <u>Tribelos jucundum</u>, and 13.5 percent (24 individuals) were the oligochaete species, <u>Limnodrilus hoffmeisteri</u>.

In general, amphipods occur in unpolluted waters (Pennak, 1989). In addition, <u>Gammarus</u> <u>fasciatus</u> (among a few other amphipods) often comprise the majority of specimens taken by casual collectors and widely distributed and common in unpolluted waters (Pennak, 1989). <u>Gammarus fasciatus</u> has a BI of 6.9 (Lenat, 1993) and is facultative in its tolerance to organic wastes with a tolerance value of 2.0 (U.S. EPA, 1990). As discussed above, <u>Tribelos jucundum</u> individuals are usually associated with clean and unpolluted environments. Oligichaetes, however, are generally regarded as "indicators" of organic pollution (Pennak, 1989). <u>Limnodrilus hoffmeisteri</u> has a BI of 9.8 (Lenat, 1993) and is tolerant to organic wastes with a tolerance value of 5.0 (U.S. EPA, 1990).

Overall, contaminants at Station 6-WC6A do not appear to be adversely affecting the benthic community based on the similar species densities and diversities between Station 6-WC6A and Station 6-WC3A and the 7.30 MBI value which indicates fair water quality (Lenat, 1993). In addition, <u>Gammarus fasciatus</u> and <u>Tribelos jucundum</u>, which are generally found in unpolluted environments, comprise approximately 84 percent of the individuals collected at Station 6-WC6A.

No benthic macroinvertebrates were collected at Station 6-WC9A and only eight individuals representing three species were collected at Station 6-WC11A. The dissolved oxygen at these stations were less than 0.2 mg/l at the bottom and there also was a salt wedge at these stations. This most likely accounted for the low density of individuals at these stations because an increase in chemical concentrations were not detected at these two stations. Previous studies have reported that macrobenthos in the deeper mud environments underwent drastic seasonal fluctuations due to anoxic conditions (Tenore, 1972). In addition, the study correlated the absence of benthic life in much of the deeper portions of an estuary with anoxic conditions in those areas (Tenore, 1972).

Several of the metals detected in the surface water of Wallace Creek exceeded their applicable WQSs and/or WQSVs while several of the metals and pesticides and PCB-1260 detected in the sediment of Wallace Creek exceeded their applicable SQSVs. Therefore, although there does not appear to be a current adverse risk to the benthic macroinvertebrate community, the potential for adverse effects to this community is present.

7.5.2 Bear Head Creek

The species density at Stations 6-BH2A and 6-BH4A was 3,709 and 2,747 individuals/m², respectively, and the species diversity for these stations was 0.932 and 0.514, respectively. These values compare to a species density of 210 individuals/m² and species diversity of 0.372

at the Pettiford Creek station (PC). Station 6-BH2A was very similar to Station 6-BH2A based on the water chemistry, habitat, and sediment type, and not very similar to Station PC. The MBI values at Stations 6-BH2A and 6-BH4A were 7.51 and 7.06, respectively, compared to 8.84 at Station PC.

Approximately 45 percent (261 individuals) of the individuals collected at Station 6-BH2A were the oligochaete <u>Isochaetides curvisetosus</u>, 10 percent of the species were the oligochaete <u>Sparganophilus</u> sp., 8 percent of the species were the oligochaete <u>Limnodrilus</u> <u>hoffmeisteri</u>, and 7.5 percent of the species were the bivalve <u>Pisidium casertanum</u>.

As discussed earlier in this report, oligichaetes are generally regarded as "indicators" of organic pollution (Pennak, 1989). However, <u>Isochaetides curvisetosus</u> has a BI of 7.1 (Lenat, 1993), and it is facultative in its tolerance to organic wastes with a tolerance value of 2.0 (U.S. EPA, 1990). A tolerance value for <u>Sparganophilus</u> sp. has not been established. <u>Limnodrilus hoffmeisteri</u> has a BI of 9.8 (Lenat, 1993) and it is tolerant to organic wastes with a tolerance value of five (U.S. EPA, 1990). Finally, <u>Pisidium</u> spp. has a BI of 6.8 (Lenat, 1993) and the species <u>Pisidium casertanum</u> is tolerant to organic wastes with a tolerance value of 4.0 (U.S. EPA, 1990).

Overall, contaminants at Station 6-BH2A do not appear to be adversely affecting the benthic community based on the relatively high species density and diversity values and the MBI value of 7.51 indicating fair water quality (Lenat, 1993). In addition, <u>Isochaetides curvisetosus</u>, a relatively pollution intolerant species found primarily in clean environments, accounted for nearly half of the individuals at Station 6-BH2A.

Approximately 70 percent (301 individuals) of the individuals collected at Station 6-BH4A were the bivalve <u>Pisidium casertanum</u>, 11 percent of the species were the amphipod <u>Gammarus fasciatus</u>, and 8 percent of the species were the oligochaete <u>Limnodrilus</u> <u>hoffmeisteri</u>.

<u>Pisidium casertanum</u>, with a BI of 6.8, and <u>Gammarus</u> <u>fasciatus</u>, with a BI of 6.9 are facultatively tolerant to pollution, while <u>Limnodrilus</u> <u>hoffmeisteri</u>, with a BI of 9.8, is relatively tolerant to pollution.

Overall, contaminants at Station 6-BH4A do not appear to be adversely affecting the benthic macroinvertebrate community based on the similar species densities and diversities between

7 - 23

Station 6-WC3A and Station 6-WC6A and the MBI value of 7.06 indicating fair water quality (Lenat, 1993). The majority of the individuals collected at Station 6-BH4A are facultatively tolerant to pollution, which means they may live in clean or semi-polluted habitats.

One benthic macroinvertebrate was collected at Station 6-BH6A. A slight anaerobic odor was detected in the sediments at Station 6-BH6A indicating that the sediments may have been slightly anoxic. This potentially could have caused the low numbers of individuals at this station.

7.6 <u>Terrestrial Species</u>

As discussed in Section 7.3 (Surface Soil Quality), the contaminant concentrations in the surface soils of a few of the TAL inorganics potentially may be high enough to cause adverse effects to plants or invertebrates (specifically earthworms). The available data was limited to plants and invertebrates, therefore, effects on mammals, reptiles, birds, and other terrestrial species could not be evaluated.

The potential soil exposure to terrestrial fauna at OU No. 2 was evaluated by both direct and indirect exposure to COCs via water and soil and via foodchain transfer. Contaminants of concern at OU No. 2 are identified in section 5.1.3 for each individual site. Indicator species used in this analysis are the whitetailed deer, cottontail rabbit and the quail. The exposure points for these receptors are the surface soils and surface water (surface soils from site 6, Lot 201; Site 6, Lot 203; Sites 6, Wooded areas and Ravine, and 82; and, Site 9; Surface water from Wallace Creek). The routes for terrestrial exposure to the COCs in the soil and water are incidental soil ingestion, drinking water ingestion, and vegetation ingestion.

Total exposure to the COCs in the soil and surface waters by the terrestrial receptors was evaluated by estimating the chronic daily dose and comparing this dose to terrestrial reference values (TRVs) representing acceptable daily dose in mg/kg/day. For this analysis, TRVs were developed from No-Observed-AdverseEffect-Levels (NOAELs) obtained from the Integrated Risk Information System (IRIS, 1993) or toxicological profiles (Table 7-1). No uncertainty factors or modifying factors were applied to the NOAELs.

The estimated chronic daily doses representing the total exposure of the receptors to soils, surface water, and vegetation were determined using the following equation:

$$E = \frac{(Cw)(Iw) + [(Cs)(Bv)(Iv) + (Cs)(Is)][H]}{BW}$$

Where:

E = Total Exposure, mg/kg/d

Cw = Constituent concentration in water, mg/L

Iw = Rate of drinking water ingestion, L/d

Cs = Constituent concentration in soil, mg/kg

Bv = Soil to plant transfer coefficient, unitless

Iv = Rate of vegetation ingestion, kg/d

Is = Incidental soil ingestion, kg/d

H = Contaminated area/Home range area ratio, unitless

BW = Body weight, kg

Bioconcentration of the COCs were calculated using the soil to plant transfer coefficient (Bv) for organics (Travis, 1988) and metals (Baes, 1984). The concentrations of the COCs in the soil, Cs, were the log-normal 95th percentile upper confidence limit of the arithmetic mean concentration and the concentrations of the COCs in the water, Cs, were the log-normal 95th percentile upper confidence limit of the arithmetic mean concentration for Wallace Creek.

The exposure parameters used in the exposure calculation are presented in Table 7-1 and are summarized for each receptor below.

Whitetailed Deer

For the whitetailed deer, the feeding rate is 1.6 kg/d (Dee, 1991). The incidental soil ingestion rate is 0.019 kg/d (Scarano, 1993). The rate of drinking water ingestion is 1.1 L/d (Dee, 1991). The rate of vegetation ingestion is 1.6 kg/d (Dee, 1991). The body weight is 45.4 kg (Dee, 1991), and the home range is 454 acres (Dee, 1991).

Cottontail Rabbit

For the cottontail rabbit, the feeding rate is 0.1 kg/d (Newell, 1987). The incidental soil ingestion rate is 0.002 kg/d (Newell, 1987). The rate of drinking water ingestion is 0.185 L/d

(Federal Register, 1993). The rate of vegetation ingestion is 0.1 kg/d. The body weight is 2 kg (Newell, 1987), and the home range is 10 acres (USDI, 1984).

Bobwhite Quail

For the bobwhite quail, the feeding rate is 0.01 kg/d (Newell, 1987). The incidental soil ingestion rate is 0.001 kg/d (Newell, 1987). The rate of drinking water ingestion is 0.013 L/d (Federal Register, 1993). The rate of vegetation ingestion is 0.01 kg/d. The body weight is 0.1 kg (Newell, 1987), and the home range is 12.1 acres (USDI, 1985).

Estimates of the potential risk to the terrestrial receptors were made by comparing the total exposure of the COCs to the TRVs. Exceedences of the TRVs indicates a potential for adverse effects.

The Quotient Index (QI) method was used in this analysis.

$$QI = \frac{E}{TRV}$$

where:

QI = Quotient Index

E = Total Exposure, mg/kg/day

TRV = Terrestrial Reference Value, mg/kg/day

Ratios of less than unity indicate a low likelihood of adverse effects while a ratio above unity indicate the likelihood of an adverse affect to the receptor. For the COCs that had available TRVs, the QI did not exceed unity for any of the indicator terrestrial receptors.

7.7 Threatened and/or Endangered Species

The only identified threatened or endangered species at OU No. 2 is the American alligator. This species potentially may be adversely affected by the contaminants detected in the surface water, sediments and fish tissue. No attempt was made during this evaluation to estimate the exposure to contaminants in these media because of the large uncertainty in available models. In addition, even if exposure could be quantified, there is limited (if any) toxicological data on alligators. Therefore, actual risk to the alligators exposed to contaminants at OU No. 2 can not be determined.

7.8 <u>Flora/Wetlands</u>

Wetlands have been identified along the banks of Wallace Creek and Bear Head Creek. Wetlands are valuable components of the environment as they play an important role in maintaining and improving environmental quality. A few of their significant functions include controlling flood waters, improving water quality, and providing wildlife habitat.

A wetland delineation or evaluation was not conducted at OU No. 2. Some stressed and/or dead vegetation was observed along the stream bank at a few of the stations. The observed stressed/dead vegetation was neither widespread or extensive in areal extent. This is typical of any wetland system that has natural successional processes occurring including maturing trees and seasonal die off of mature plant species. In addition, natural stresses may be added to the wetlands systems from variation in tidal influence of the saltwater. The National Wetlands Inventory Map (NWI) was examined to determine the classification of wetlands in OU No. 2. The NWI has designated the banks surrounding Wallace Creek as a palustrine system that is forested with evergreens. A palustrine system included all non-tidal wetlands dominated by trees, shrubs, persistent emergents, emergent mosses or lichens, and all such wetlands that occur in tidal areas where salinity due to ocean-derived salts is below 0.5%. The area surrounding Bear Head Creek is also a palustrine system; however, it is forested with primarily deciduous trees. The northern bank is designated as a non-tidal, saturated area, where the southern bank is designated as a non-tidal, temporarily flooded, partially drained area. Contaminants in the surface water and sediments potentially may adversely impact the wetland systems due to the observed exceedences of water and sediment quality values.

7.9 Other Sensitive Environments

Bear Head Creek and the inland portion of Wallace Creek and any coastal wetlands associated with these waters is regulated under the CAMA. The tidal portion of Wallace Creek, and the New River and a 75 foot inland buffer zone are regulated under CAMA. The only activities occurring in the inland portions of the waters that would require authorization under CAMA are activities that would occur in the water (e.g., constructing a pier or boat ramp, dredging, etc.). In addition, for the tidal waters, any land disturbing activities (e.g., construction, digging, etc.) within the water and within the 75 feet buffer zone will require a permit or authorization. OU No. 2 is located in the inland portion of Bear Head Creek and Wallace Creek. There do not appear to be any activities that will occur in the waters at these locations, and therefore no authorization under CAMA would be required.

No specific areas within Wallace Creek, Bear Head Creek, and the New River directly downstream of Wallace Creek have been designated as spawning areas critical for the maintenance of fish/shellfish, however, some spawning areas may exist in these waters. The potential impacts to the fish in these waters have already been discussed in this report. These same impacts would apply to fish in the spawning areas. The fish/shellfish in these spawning areas, however, may be more susceptible to chemical stresses due to the higher sensitivity of the reproductive life stages of organisms to these types of stresses.

The Wallace Creek Swamp Natural Area is located in and adjacent to Wallace Creek upstream of Piney Green Road. Although this area is upstream of the suspected sources of contamination at OU No. 2, potential impacts to this area may occur if contaminants are transported upstream due to the tidal influence in Wallace Creek.

No specific areas with Wallace Creek, Bear Head Creek, and the New River directly downstream of Wallace Creek have been designed as nursery areas, however, some nursery areas may exist in these waters. The potential impacts to the fish in these waters have already been discussed in this report. These same impacts would apply to fish in the nursery areas. The fish/shellfish in these spawning areas, however, may be more susceptible to chemical stresses due to the higher sensitivity of juvenile organisms to these types of stresses.

7.10 <u>Uncertainty Analysis</u>

The procedures used in this evaluation to assess risks to ecological receptors, as in all such assessments, are subject to uncertainties. In general, the following are the main sources of uncertainty:

- Environmental chemistry sampling and analysis;
- Environmental parameter measurement;
- Exposure parameter estimation;
- Toxicological information.

Each of these sources of uncertainty as they pertain to this risk assessment are discussed below.

The chemical sampling program at OU No. 2 consisted of surface water, sediments, soil, tissue, and groundwater. The concentrations of chemicals in the surface water will vary with the tides; the concentrations are expected to be lower at higher tides (more dilution) and higher at low tides (less dilution).

The proximity of estuaries to landmasses renders them highly susceptible to pollution from human activities; this pollution threatens fish communities in many regions. Anthropogenic stresses on fish populations can be intense. Whereas much attention has been focused on the acute exposure of these populations to pollutants, sublethal and chronic exposures also debilitate resident and seasonal species. The mobility and migratory habits of fishes, however, make observations on anthropogenic effects more difficult to assess, and most of the evidence on pollution-induced changes in fish populations has been derived from laboratory experiments. Effects of man-made stresses on fishes in estuaries are often obscured by naturally occurring and poorly understood, long-term variations.

The ecological investigation consisted of one sampling effort. The results of this sampling will only provide a "snapshot in time" of the ecological environment. Because the biotic community can have a high amount of natural variability, the "snapshot in time" may not be an accurate representation of actual site conditions. There also is error and uncertainty in the sampling methods used to collect the fish and benthic macroinvertebrates. Because few, if any, fish were collected at the stations, the population statistics were not reliable. In addition, in several of the tissue samples, only one fish was analyzed because only one was collected of that species. Therefore, the concentrations of contaminants may not be a good representation of the average tissue concentration.

The collection of benthic macroinvertebrates has less uncertainty than the collection of fish. However, the effectiveness of the ponar depends upon the sediment type. The ponar is less effective in hard, rocky sediments, or sediments with a lot of organic debris that may prevent the ponar from completely closing, than in soft, mucky sediments. Because the sediment types varied among the stations, the effectiveness of the ponar also would have varied.

There is uncertainty in trying to attribute differences in species density, diversity, and similarities between stations to specific hazards, because these differences may be the result of

natural causes. As discussed previously, fish and crabs are mobile. Therefore, the tissue contaminant concentrations cannot be correlated with the contaminants detected at OU No. 2 because the fish or crabs may have been exposed to the contaminants at a different location. Also, as observed in this investigation, natural conditions (salt wedge, low dissolved oxygen) can result in low numbers of individuals.

There also is uncertainty in the use of toxicological data in ecological risk assessments. The surface water and sediment values established by North Carolina and Region IV are set to be protective of a majority of the potential receptors. There will be some species, however, that will not be protected by the values because of their increased sensitivity to the chemicals. Also, the toxicity of chemicals mixtures is not well understood. All the toxicity information used in the ERA for evaluating risk to the ecological receptors is for individual chemicals. Chemical mixtures can affect the organisms very differently than the individual chemicals.

Finally, estuaries are physically unstable areas characterized by large spatial and temporal variations in temperature, salinity, oxygen concentration, turbidity, and other factors. Temporally, such variations take place in the short term and long term. Yet, despite these variations, the basic structure of estuarine fish communities is reasonably stable, and the fishes often have more or less predictable patterns of abundance and distribution. However, estuarine fish populations change dramatically in response to environmental perturbations; these population changes can be permanent even though the predominantly estuarine species have broad temperature tolerances and strong osmoregulatory abilities. The species composition of estuarine communities change constantly, attesting to the variable environmental conditions and the limitations of the tolerances of the fish populations to alterations in the habitat.

7.11 Ecological Significance

The objective of the ERA was to determine if past reported disposal practices at OU No. 2 were adversely impacting the ecological integrity of the terrestrial environment or of Wallace Creek, Bear Head Creek, or the ravine. The ecological significance of the results is necessary to provide the risk managers with the requisite information, to be used in conjunction with the human health risk assessment, in order to determine the appropriate remedial action at the site for the protection of public health and the environment. For the aquatic portion of the ERA, the results indicate that COCs present in surface water and sediments of Wallace Creek, Bear Head Creek, and the Ravine could pose a moderate to high potential risk to aquatic receptors. The presence of VOCs in Wallace Creek results from groundwater discharge from the site to the creek. However, none of the TCL organic chemicals detected in the surface water samples exceeded the WQS or WQSV values. Some TAL inorganics exceeded the WQS and/or WQSV in both creeks and the ravine. However, although the ravine is a source of the inorganic contamination, the results of the inorganic sampling in Wallace Creek could not establish a direct impact to the creek due to exceedence of these inorganics in both upstream and downstream samples. The fish population of both creeks appeared healthy and population statistics did not indicate that they were impacted by COCs from OU No. 2. Fish tissue results indicated that some COCs were elevated in concentration and could be attributed to sources of COCs at OU No. 2. The primary influence on the benthic macroinverebrate community appeared to be related to the presence of salinity gradients in the two creeks. The salt wedge that developed at the interface of the freshwater and saltwater systems resulted in low dissolved oxygen that created an adverse habitat for intolerant species. It is noted that the seasonal rainfall for the area was atypically high and resulted in lower salinities throughout the New River estuary.

For the terrestrial portion of the ERA, the results indicate that COCs present in the surface soils could pose a moderate risk to plant and terrestrial invertebrates when compared to available toxicological values. However, comparisons of the total exposure to the COCs in the soil and surface waters by the terrestrial vertebrate receptors with available TRVs indicated that the QI did not exceed unity for any of the indicator terrestrial receptors.

Based on the above findings, past reported disposal practices at OU No. 2 potentially are adversely impacting the ecological integrity of Wallace Creek, Bear Head Creek, or the ravine. The findings do not indicate a potentially adverse impact to vertebrate terrestrial receptors.

TABLE 7-1

OPERABLE UNIT NO. 2 TERRESTRIAL REFERENCE VALUES REMEDIAL INVESTIGATION CTO-0133 MCB CAMP LEJEUNE, NORTH CAROLINA

Contaminant of Concern	Soil to Plant Transfer Coefficient (Bv)	Toxicity Reference Value (TRV) mg/kg/d	
4,4'-DDE	0.006 (1, 2)	0.05 (4)	
4,4'-DDD	0.015 (1, 2)	0.05 (4)	
4,4'-DDT	0.033 (1, 2)	0.05 (4)	
Dieldrin	0.526 (1, 2)	0.005 (4)	
Endrin	0.015 (2)	0.025 (4)	
PCB-1260	0.019 (1, 2)	2.4 (9)	
1,1,1-Trichloroethane	1.390 (1, 2)	350 (4)	
Tetrachloroethene	1.281 (1, 2)	20 (4)	
Anthracene	0.155 (1, 2)	1000 (4)	
1,4-Dichlorobenzene	0.322 (1, 2)	60 (4)	
Flouranthene	0.085 (1, 2)	125 (4)	
Phenol	8.360 (1, 2)	60 (4)	
Pyrene	0.085 (1, 2)	75 (4)	
Arsenic	0.040 (3)	16 (5)	
Barium	0.150 (3)	30 (4)	
Cadmium	0.550 (3)	4.7 (6)	
Chromium	0.008 (3)	2.7 (7)	
Copper	0.020 (3)	300 (4)	
Lead	0.045 (3)	27.4 (4)	
Mercury	0.900 (3)	7.4 (8)	
Nickel	0.060 (3)	5 (4)	
Zinc	1.500 (3)	38 (10)	

(1) Table 5-13.

⁽²⁾ Travis, 1988.

⁽³⁾ Baes, 1984.

(4) IRIS, 1993.

(5) USDH, 1992a.

(6) USDH, 1992b.

(7) USDH, 1991a.

(8) ATSDR, 1988.

⁽⁹⁾ USDH, 1991b.

(10) ATSDR, 1989.

TABLE 7-2

OPERABLE UNIT NO. 2 EXPOSURE PARAMETERS (1) REMEDIAL INVESTIGATION CTO-0133 MCB CAMP LEJEUNE, NORTH CAROLINA

	UNITS	WHITE- TAILED DEER	COTTON- TAIL RABBIT	BOBWHITE QUAIL
Food Source Ingestion		Vegetation 100 %	Vegetation 100 %	Vegetation 100 %
Feeding Rate	kg/d	1.6(2)	0.1(3)	0.01(3)
Incident Soil Ingestion	kg/d	0.019(1)	0.002(3)	0.001(3)
Rate of Drinking Water Ingestion	l/d	1.1(2)	0.185(4)	0.013(4)
Rate of Vegetation Ingestion	kg/d	1.6(2)	0.1	0.01
Body Weight	kg	45.4(2)	2(3)	0.1(3)
Home Range Size	acres	454(2)	10(6)	12.10(5)

NA - Not Applicable (1) Scarano, 1993.

⁽²⁾ Dee, 1991.

(3) Newell, 1987.
 (4) Federal Register, 1993.
 (5) USDI, 1985.

(6) USDI, 1984.

8.0 SUMMARY/CONCLUSIONS

The following sections contain the summary/conclusions for the ERA including Water Quality, Sediment Quality, Surface Soil Quality, fish and benthic macroinvertebrates.

8.1 <u>Water Quality</u>

The water quality summary/conclusions are discussed in the following sections.

8.1.1 Wallace Creek

None of the TCL organic COCs detected in Wallace Creek exceeded applicable water quality criteria values. Dissolved oxygen concentrations and pH values were below WQS and WQSV at some of the stations, but probably were associated with natural conditions.

Surface water concentrations of cadmium, copper, lead, mercury, nickel, silver, and zinc exceeded the North Carolina Water Quality Standards (WQS) and/or U.S. EPA Region IV acute or chronic Water Quality Screening Values (WQSV) in some of the samples. The exceedences of these TAL inorganics occurred in upstream and/or downstream samples or were infrequent in occurrence.

In addition, several TAL inorganics had the ratio of the upper 95% confidence limit (or maximum value) and the chronic WQSV greater than unity. Based on these results, the potential risk for aquatic life in Wallace Creek to be adversely affected by chronic toxicity from the COCs in the surface water is expected to be moderate to high, provided that the exposure concentration evaluated represents long-term conditions.

8.1.2 Bear Head Creek

None of the TCL organic COCs detected in Bear Head Creek exceeded applicable water quality criteria values. Dissolved oxygen concentrations and pH values were below WQS and WQSV at some of the stations, but probably were associated with natural conditions.

Surface water concentrations of copper, lead, mercury, nickel, and silver exceeded the WQS and/or WQSV in some of the samples. The exceedences of these TAL inorganics occurred in upstream and/or downstream samples or were infrequent in occurrence.

In addition, several TAL inorganics had the ratio of the upper 95% confidence limit (or maximum value) and the chronic WQSV greater than unity. Based on these results, the potential risk for aquatic life in Bear Head Creek to be adversely affected by chronic toxicity from the COCs in the surface water is expected to be moderate to high, provided that the exposure concentration evaluated represents long-term conditions.

8.1.3 Ravine

None of the TCL organic COCs detected in the ravine exceeded applicable water quality criteria values.

Surface water concentrations of aluminum, cadmium, copper, iron, lead, silver, and zinc exceeded the WQS and/or WQSV in some of the samples. The exceedences of these TAL inorganics occurred in upstream and/or downstream samples or were infrequent in occurrence.

In addition, several TAL inorganics had the ratio of the upper 95% confidence limit (or maximum value) and the chronic WQSV greater than unity. Based on these results, the potential risk for aquatic life in the ravine to be adversely affected by chronic toxicity from the COCs in the surface water is expected to be moderate to high, provided that the exposure concentration evaluated represents long-term conditions.

8.1.4 Pettiford Creek

Dissolved oxygen concentrations were below the WQS at one station, but probably was associated with natural conditions.

8.2 <u>Sediment Quality</u>

The sediment quality summary/conclusions are discussed in the following sections.

8.2.1 Wallace Creek

Sediment concentrations of copper, lead, silver, zinc, 4,4'-DDE, 4,4'-DDD, 4,4'-DDT, dieldrin, PCB-1260, benzo(a)pyrene, fluoranthene, and pyrene exceeded the Region IV lower 10 percentile (ER-L) and/or median percentile (ER-M) sediment screening values (SQSV) in some

8-2

of the samples. The exceedences of the TAL inorganics occurred in both upstream and downstream samples and, therefore, do not appear site related. Dieldrin was detected in the uppermost station only. The remaining pesticides and PCBs exceeded the SQSV primarily in adjacent and downstream samples and their presence might be attributable to site runoff. The PAHs only were detected near roadways.

In addition, several TAL inorganics and TCL organics had the ratio of the upper 95% confidence limit and the ER-L greater than unity. Based on these results, the potential risk for aquatic life in Wallace Creek to be adversely affected by chronic toxicity from the COCs in the sediments is expected to be moderate to high.

8.2.2 Bear Head Creek

Sediment concentrations of lead, 4,4'-DDE, 4,4'-DDD, 4,4'-DDT, PCB-1260, and benzo(a)pyrene exceeded the ER-L and/or ER-M SQSVs in some of the samples. The exceedences of lead occurred in both upstream and downstream samples and, therefore, do not appear site related. The pesticides and PCBs exceeded the SQSV primarily in adjacent and downstream samples and their presence might be attributable to site runoff. The PAHs exceeded the SQSV near the roadway only.

In addition, several TAL inorganics and TCL organics had the ratio of the upper 95% confidence limit and the ER-L greater than unity. Based on these results, the potential risk for aquatic life in Bear Head Creek to be adversely affected by chronic toxicity from the COCs in the sediments is expected to be moderate to high.

8.2.3 Ravine

Sediment concentrations of cadmium, lead, mercury, silver, zinc, 4,4'-DDE, 4,4'-DDD, 4,4'-DDT, dieldrin, endrin, PCB-1260, and several PAHs exceeded the ER-L and/or ER-M SQSVs in some of the samples. These constituents probably are attributable to site runoff.

In addition, several TAL inorganics and TCL organics had the ratio of the upper 95% confidence limit and the ER-L greater than unity. Based on these results, the potential risk for aquatic life in the ravine to be adversely affected by chronic toxicity from the COCs in the sediments is expected to be moderate to high.

8.3 Surface Soil Quality

The surface soil quality summary/conclusions are discussed in the following sections. The effects on terrestrial life from pesticides, PCBs, PAHs and several of the metals could not be addressed in the ERA because of lack of available information. The following paragraphs discuss effects on terrestrial life from the metals for which toxicological information was found.

8.3.1 Site 9

None of the metals detected in the Site 9 surface soil for which toxicological information was available, exceeded the applicable values.

8.3.2 Site 6 (Lot 201)

Surface soil concentrations of chromium detected at Site 6 (Lot 201) exceeded published toxicological values and potentially may cause adverse effects to terrestrial life.

8.3.3 Site 6 (Lot 203)

Surface soil concentrations of chromium, copper and zinc detected at Site 6 (Lot 203) exceeded published toxicological values and potentially may cause adverse effect to terrestrial life.

8.3.4 Sites 6 (Wooded and Ravine Areas) and 82

Surface soil concentrations of arsenic, copper, and zinc detected at Sites 6 (Wooded and Ravine Areas) and 82 exceeded published toxicological values and potentially may cause adverse effects to terrestrial life.

8.4 <u>Fish</u>

The fish summary/conclusions are discussed in the following sections. 8.4.1 Population Statistics

The summary/conclusions for the fish population statistics are discussed in the following sections.

8.4.1.1 Wallace Creek

The majority of the individuals collected at Wallace Creek were represented by juveniles representing the following species: eastern mosquito, shiner sp., pumpkinseed and the american eel.

Community similarity indices showed the greatest similarity between Stations 6-BH6A and 6-WC6A (0.53) and the least similarity between Stations 6-BH6A and 6-WC11 (0) and Stations 6-WC4 and 6-WC11 (0). Because a limited number of fish were collected at all the stations, the similarity values are not reliable.

The diversity of fishes collected at Wallace Creek varied within the stations. Typically, estuarine environments produce a high biomass and abundance, but are limited in the quantity of species. As with the similarity values, the diversity values are not representative of the creek due to the limited data set.

At Wallace Creek, there were no anomalies observed on the fish such as lesions, bacterial or viral infections.

The fish community at Wallace Creek appeared healthy and the population statistics did not indicate that the environment was impacted by contaminants of concern from OU No. 2.

8.4.1.2 Bear Head Creek

The majority of the individuals collected at Bear Head Creek were represented by juveniles which included, eastern mosquito, spot, and pumpkinseed.

Community similarity indices showed the greatest similarity between Stations 6-BH6A and 6-WC6A (0.53) and the least similarity between Stations 6-BH6A and 6-WC11 (0) and Stations 6-WC4 and 6-WC11 (0). Because a limited number of fishes were collected at all the stations, the similarity values are not reliable.

The diversity value derived from the fish collected at Bear Head Creek was 0.29. Typically, estuarine environments produce a high biomass and abundance, but are limited in the

quantity of species. As with the similarity values, the diversity values are not representative of the creek due to the limited data set.

At Bear Head Creek, there were no anomalies observed on the fish such as lesions, bacterial or viral infections.

The fish community at Bear Head Creek appeared healthy and the population statistics did not indicate that the environment was impacted by contaminants of concern from OU No. 2.

8.4.1.3 Pettiford Creek

The individuals collected at Pettiford Creek included, shiner sp., pumpkinseed, and striped mullet. Because of the limited numbers of fishes that were collected, conclusions regarding population were limited.

The only diversity value derived from the fish collected at Pettiford Creek was 0.45. Typically, estuarine environments produce a high biomass and abundance, but are limited in the quantity of species.

At Pettiford Creek, there were no anomalies observed on the fish such as lesions, bacterial or viral infections.

The fish community at Pettiford Creek appeared healthy and the population statistics did not indicate that the environment was impacted by contaminants.

8.4.2 Tissue Analysis

The summary/conclusions for the fish tissue analysis are discussed in the following sections.

8.4.2.1 Wallace Creek

Toluene, silver, benzene, and selenium were detected in fish and crab tissue samples. The fish tissue concentrations were within the range of tissue concentrations for these contaminants reported in ecological studies. Because of the frequency of detection of these contaminants both upstream and downstream from OU No. 2, the contaminants can not be attributed to the sites.

The fish community at OU No. 2 had elevated tissue concentrations of the following contaminants of concern: pesticides, PCBs, trichloroethene, and zinc. Due to the nature of the contaminants of concern, these constituents may be attributed to OU No. 2. The crab tissues had elevated levels of phenols, although the contaminant can not be attributed to the site.

8.4.2.2 Bear Head Creek

Toluene, cadmium, benzene and selenium were detected in fish and crab tissue samples. The fish tissue concentrations were within the range of tissue concentrations for these contaminants reported in ecological studies. Because of the frequency of detection of these contaminants both upstream and downstream from OU No. 2, the contaminants can not be attributed to the sites.

The fish community in Bear Head Creek had elevated tissue concentrations of the following contaminants of concern: pesticides, PCBs, and zinc. Due to the nature of the contaminants of concern, these constituents may be attributed to OU No. 2.

8.4.2.3 Pettiford Creek

Baker was not tasked with collecting fish for tissue analysis at Pettiford Creek.

8.5 Benthic Macroinvertebrate

The benthic macroinvertebrate summary/conclusions are discussed in the following sections.

8.5.1 Wallace Creek

Species richness in Wallace Creek was highest in the upstream stations (7-12 species) and lowest in the downstream stations (0-3 species). Species density followed a similar pattern with approximately 1,200 individuals/m² in the upper reaches and approximately 50 individuals/m² in the lower reaches of the creek. Species diversity was less than 0.5 at all the sampled stations on Wallace Creek.

The dominant species in the creek varied from the chiromid species <u>Tribelos jucundum</u> (74 percent of the individuals) in the upper reaches, the amphipod <u>Gammarus fasciatus</u> (64

percent of the individuals) in the mid-reaches, and the polychaetes <u>Nereis succinea</u> and <u>Capitella capitata</u> (five of the eight individual) and the oligochaete <u>Limnodrilus hoffmeisteri</u> (three of the eight individuals) in the lower reaches of Wallace Creek. This variation followed the variation in salinity measurements at the stations and indicated the effects of the tidal influence seen in the transition from a freshwater system in the upper reaches of the creek and the estuarine influence in the lower reaches of the creek.

The Macroinvertebrates Biotic Index (MBI) ranged from good-fair (6.46) in the upper reaches of the creek to poor (9.8) in the lower reaches of the creek. However, the salinity gradient influenced the species composition in the lower reaches with the tolerant freshwater oligochaete species being present. In addition, the presence of the salt wedge and low dissolved oxygen can create an adverse habitat for intolerant species.

8.5.2 Bear Head Creek

Species richness in Bear Head Creek was highest in the upstream stations (16-33 species) and lowest in the downstream station (one species). Species density followed a similar pattern with approximately 2,700 to 3,700 individuals/m² in the upper reaches and approximately 25 individuals/m² in the lower reaches of the creek. Species diversity was less than 1.0 at the upper reach station and less than 0.5 in the mid-reach station. Only one species was found in the lower reach station.

The dominant species in the creek varied from the oligochaete species <u>Isochaetides</u> <u>curvisetosus</u> (45 percent of the individuals) in the upper reaches, the bivalve <u>Pisidium</u> <u>casertanu</u> (70 percent of the individuals) in the mid-reaches, and the polychaete <u>Nereis</u> <u>succinea</u> (100 percent of the individuals) in the lower reaches of Bear Head Creek. This variation followed the variation in the salinity measurements at the stations and indicated the effects of the tidal influence seen in the transition from a freshwater system in the upper reaches of the creek and the estuarine influence in the lower reaches of the creek.

The MBI was poor and ranged from 7.51 in the upper reaches of the creek to 7.06 in the midreach of the creek. However, the salinity gradient influenced the species composition in the lower reach with no freshwater species being present. In addition, the presence of the salt wedge and low dissolved oxygen can create an adverse habitat for intolerant species.

8-8

Although there was no observed salt wedge or salinity graident in Bear Head Creek between the biological sampling stations (i.e., above station 6-BH07), Table 3-4 does indicate that a salinity gradient and salt wedge exists at station 6-BH07SW/SD, approximately 2,500 feet below station 6-BH07. Table 3-18 indicates that surface water samples were taken at station 6-BH07-SW/SD on a falling tide approximately 80 percent to low tide. Finally, there are reported large fluctuations in salinity in estuaries similar to the New River watershed (e.g., White Oak River) with measured salinities varying by 10 to 15 ppt at a given station. Due to the high seasonal rainfall, the salt wedge may be positioned much lower in the downstream reach of Bear Head Creek than would be typical. Therefore, a salinity gradient is the likely influence in the species composition in the lower reach of the creek.

8.5.3 Pettiford Creek

Four species were collected in Pettiford Creek and species density was 210 individuals/m². Species diversity was less than 0.5 at the sampled station on Pettiford Creek. The dominant species in the creek was the oligochaete <u>Limnodrilus hoffmeisteri</u> (70 percent of the individuals). The MBI was poor at 8.84.

8.6 <u>Terrestrial Receptors</u>

Total exposure to the COCs in the soil and surface waters by the terrestrial receptors was evaluated by estimating the chronic daily dose and comparing this dose to terrestrial reference values (TRVs). Indicator species used in this analysis were the whitetailed deer, cottontail rabbit and the quail. The exposure points for these receptors are the surface soils and surface water (surface soils from site 6, Lot 201; Site 6, Lot 203; Sites 6, Wooded areas and Ravine, and 82; and, Site 9; Surface water from Wallace Creek). The routes for terrestrial exposure to the COCs in the soil and water are incidental soil ingestion, drinking water ingestion, and vegetation ingestion. Estimates of the potential risk to the terrestrial receptors were made by comparing the total exposure of the COCs to the TRVs using the Quotient Index (QI) method. Ratios of less than unity indicate a low likelihood of adverse effects while a ratio above unity indicate the likelihood of an adverse affect to the receptor. For the COCs that had available TRVs, the QI did not exceed unity for any of the indicator terrestrial receptors.

8.7 Ecological Significance

The objective of the ERA was to determine if past reported disposal practices at OU No. 2 were adversely impacting the ecological integrity of the terrestrial environment or of Wallace Creek, Bear Head Creek, or the ravine. The ecological significance of the results is necessary to provide the risk managers with the requisite information, to be used in conjunction with the human health risk assessment, in order to determine the appropriate remedial action at the site for the protection of public health and the environment.

Based on the above findings, past reported disposal practices at OU No. 2 potentially are adversely impacting the ecological integrity of Wallace Creek, Bear Head Creek, or the ravine. The findings do not indicate a potentially adverse impact to vertebrate terrestrial receptors. Adriano, D.C. 1986. <u>Trace Elements in the Terrestrial Environment</u>. Springer-Verlag New York Inc.

AQUIRE, Aquatic Information Retrieval Database. 1993. Developed by a research group associated with the Environmental Research Laboratory of the U.S. Environmental Protection Agency in Deluth, Minnesota. Accessed through Chemical Information Systems, Inc., Baltimore, MD.

ATSDR, Agency for Toxic Substances and Disease Registry. December 1988. <u>Toxicological</u> <u>Profile for Mercury</u>. U.S. Public Health Services. Contract No. 205-88-0608.

ATSDR, Agency for Toxic Substances and Disease Registry. December 1989. <u>Toxicological</u> <u>Profile for Zinc</u>. U.S. Public Health Services. Contract No. 205-88-0608.

Baes, C.F., Sharp, A.L., and R.W. Shor. September 1984. "Review and Analysis of Parameters for Assessing Transport of Environmentally Released Radionuclides through Agriculture". Oak Ridge National Laboratory.

Baker Environmental, Inc. May 1992. <u>Remedial Investigation/Feasibility Study Work Plan</u> for Sites 6, 9, 48, and 69, Camp Lejeune Marine Corps Base, Jacksonville, North Carolina. Final. Prepared for the Department of the Navy, Naval Facilities Engineering Command, Atlantic Division, Norfolk, Virginia.

Baker Environmental, Inc. March 1993. <u>Remedial Investigation Report for Operable Unit 2.</u> Prepared for Department of the Navy, Atlantic Division, Naval Facilities Engineering Command, Norfolk, Virginia.

Boschung, Herbert T., James D. Williams, Daniel W. Gotshall, Melba C. Caldwell and David K. Caldwell. 1983. <u>The Audubon Society Field Guide to North American Fishes, Whales, and Dolphins.</u> Alfred A. Knopf, Inc. New York.

Brower, James E, and Jerrold H. Zar. 1977. <u>Field and Laboratory Methods for General</u> <u>Ecology</u>. Wm. C. Brown Company Publishers. Cowardin, Lewis M., Virginia Carter, Francis C. Golet, and Edward T. LaRoe. December 1979. <u>Classification of Wetlands and Deepwater Habitats of the United States.</u> Performed for U.S. Department of the Interior, Fish and Wildlife Service, Office of Biological Services -FWS/OBS-79/31.

Dee, J.C. November, 1991. "Methodology For Assessing Potential Risks To Deer Populations: A Case Study at a Superfund Site". Paper presented at the 1991 Annual Meeting of the Society of Environmental Toxicology and Chemistry Abstract No. 426.

ESE, Environmental Science and Engineering, Inc. 1991. <u>Site Assessment Report for Sites 6</u>, <u>9, 48, and 69 - Characterization Study to Determine Existence and Possible Migration of</u> <u>Specific Chemicals In Situ</u>. Marine Corps Base, Camp Lejeune, North Carolina.

Federal Register, April 16, 1993, Vol. 158, No. 72, pp. 21029-21030.

Fussell, John. 1991. Progress Reports for Bachmans Sparrow Survey. Mailed to Environmental Management Department, Marine Corps Base, Camp Lejeune, North Carolina.

Geesey, Gill G., Thomas C. Ginn, Alan J. Mearns, Philip S. Oshida, Donald J. Reish, Steven S. Rossi, and Frank G. Wilkes. June, 1982. "Marine and Estuarine Pollution." Journal Water Pollution Control Federation.

Ginn, Thomas C., Alan J. Mearns, Philip S. Oshida, and Donald J. Reish. June, 1987. "Effects on Saltwater Organisms". Journal Water Pollution Control Federation.

Ginn, Thomas C., Alan J. Mearns, Philip S. Oshida, and Donald J. Reish. June, 1988. "Effects on Saltwater Organisms". Journal Water Pollution Control Federation.

Ginn, Thomas C., Alan J. Mearns, Philip S. Oshida, and Donald J. Reish . June, 1989. "Effects on Saltwater Organisms". Journal Water Pollution Control Federation.

Ginn, Thomas C., Alan J. Mearns, Philip S. Oshida, and Donald J. Reish . June, 1990. "Effects on Saltwater Organisms". Research Journal of Water Pollution Control Federation. Hart, C.W. Jr. and Samuel L.H. Fuller. 1979. <u>Pollution Ecology of Estuarine Invertebrates</u>. Academic Press. New York.

Hopkin, Stephen P. 1989. "Ecophysiology of Metals in Terrestrial Invertebrates". Applied Science.

Howard, Philip H. 1990. <u>Handbook of Environmental Fate and Exposure Data for Organic</u> <u>Chemicals - Large Production and Priority Pollutants.</u> Lewis Publishers, Chelsea, Michigan.

Howard, Philip H. 1991. <u>Handbook of Environmental Fate and Exposure Data for Organic</u> <u>Chemicals - Solvents.</u> Lewis Publishers, Chelsea, Michigan.

IRIS, Integrated Risk Information System. August 1993. Accessed through Chemical Information Systems, Inc., Baltimore, MD.

Kennish, Michael J. Ph.D. 1986. <u>Ecology of Estuaries, Volume II Biological Aspects</u>. CRC Press, Boca Raton, Florida.

LeBlond, Richard. 1991. Critical Species List - <u>Camp Lejeune Endangered Species and</u> <u>Special-Interest Communities Survey</u>. Principal Investigator.

Lenat, David R. 1993. "A Biotic Index for the Southeastern United States: Derivation and List of Tolerance Values, with Criteria for Assigning Water Quality Values (DRAFT)". North Carolina Division of Environmental Management, Water Quality Section.

Newell, Arthur J., David W. Johnson, and Laurie K. Allen. July, 1987. "Niagara River Biota Contamination Project: Fish Flesh Criteria for Piscivorous Wildlife". Division of Fish and Wildlife, Bureau of Environmental Protection.

USMC, MCB Camp Lejeune. 1987. <u>Multiple-Use Natural Resources Management Plan</u>. Fish and Wildlife Division, Environmental Management Department, Marine Corps Base, Camp Lejeune, North Carolina.

USMC, MCB Camp Lejeune. 1991. <u>Sea Turtle Inventory for Summer and Fall 1991</u>. Assistant Chief of Staff, Environmental Management Department, Fish and Wildlife Division, Marine Corps Base, Camp Lejeune, North Carolina. Memorandum: Past Disposal Practices at DRMO Lot 203; From: Chief, Defense Reutilitzation and Marketing Office; To: Commanding Officer, Attn: Base Safety Officer, Marine Corps Base, Camp Lejeune, North Carolina; Date: 17 January 1989.

Memorandum: Unearthed 55 Gallon Drum and Unknown at DRMO Lot 203; From: Assistant Chief of Staff, Facilities; To: Director, Natural Resources and Environmental Affairs Division; Date: 18 January, 1989.

Menhinick, Edward F. 1992. <u>The Freshwater Fishes of North Carolina</u>. North Carolina Wildlife Resources Commission. Raleigh, North Carolina.

CAMA, North Carolina Coastal Management Act of 1974. (1973, c.1284, s; 1975, c.452, s.: c. 932, s. 2.1.). 1974.

N.C. DEHNR, North Carolina Department of Environment, Health, and Natural Resources. February 6, 1990. <u>Standard Operating Procedures</u>, <u>Biological Monitoring</u>. Division of Environmental Management, Water Quality Section. Environmental Sciences Branch, Ecosystems Analysis Unit, Biological Assessment Group.

N.C. DEHNR, North Carolina Department of Environment, Health, and Natural Resources. August, 1992a. <u>Procedures for Assignment of Water Quality Standards.</u> Administrative Code 15A NCAC 2B .0100. Division of Environmental Management.

N.C. DEHNR, North Carolina Department of Environment, Health, and Natural Resources. August, 1992b. <u>Classifications and Water Quality Standards Applicable to Surface Waters of</u> <u>North Carolina.</u> Administrative Code 15A NCAC 2B .0200. Division of Environmental Management.

N.C. DEHNR, North Carolina Department of Environment, Health, and Natural Resources. May, 1992c. <u>Interim Guidance for Wetlands Protection</u>. Division of Environment, Water Quality Section.

N.C. DEHNR, North Carolina Department of Environment, Health, and Natural Resources. August, 1993a. Phone conversation with Charles Jones. Coastal Management Division.

9-4

N.C. DEHNR, North Carolina Department of Environment, Health, and Natural Resources. August, 1993b. Phone conversation with Richard Carpenter. Marine Fisheries Division.

N.C. DNRCD, North Carolina, Department of Natural Resources and Community Development. May, 1988. <u>National Wetlands Inventory, North Carolina User Notes.</u> Division of Soil and Water Conservation.

N.C. MFC, North Carolina Marine Fisheries Commission. 1992. <u>North Carolina Fisheries</u> <u>Rules for Coastal Waters 1992-1993.</u> North Carolina Marine Fisheries Commission, Division of Marine Fisheries.

N.C. WRC, North Carolina Wildlife Resources Commission. June, 1992. <u>1992-1993 Hunting</u> and Fishing Maps for North Carolina Game Lands.

NOAA, Hall R. A., E. G. Zook, and G. M. Meaburn. March 1978. <u>National Marine Fisheries</u> <u>Service Survey of Trace Elements in the Fishery Resource</u>. NOAA Technical Report NMFS SSRF-721.

NPS, National Park Service. 1990. <u>The Wild and Scenic Rivers Act</u>. U.S. Department of the Interior, National Park Service, Park Planning and Protection Division, Washington D.C.

NPS, National Park Service. 1991. <u>National Park System Map and Guide</u>. U.S. Department of the Interior, National Park Service, Washington D.C.

NPS, Telephone conservation with the National Park Service. 1993. <u>The Wild and Scenic</u> <u>Rivers Division</u>. U.S. Department of the Interior, National Park Service, Park Planning and Protection Division, Washington D.C.

NSCRF, <u>National Study of Chemical Residues in Fish</u>, Vol. 1 and 2. 1992. United States Environmental Detection Agency, Office of Science and Technology.

Pennak, Robert W. 1989. <u>Fresh-Water Invertebrates of the United States</u>, Protozoa to <u>Mollusca</u>. John Wiley & Sons, Inc.

Raasch, Maynard S. and Vaughn L. Altemus, Sr. 1991. <u>Delaware's Freshwater and Brackish</u> <u>Water Fishes: A Popular Account</u>. Delaware State College Center for the Study of Del-Mar-Va Habitats and Society of Natural History of Delaware, Dover, Delaware.

Sax, N. and Richard Lewis. 1987. <u>Hawley's Condensed Chemical Dictionary</u>. Van Norstrand Reinhold, New York.

SCDM, Superfund Chemical Data Matrix. December, 1991. U.S. EPA Hazardous Site Evaluation Division.

Scarano, Louis, J. PhD. and Daniel M. Woltering PhD. "Terrestrial and Aquatic Eco-Assessment For A RCRA Hazardous Waste Site". <u>Application of Ecological Risk Assessment</u> <u>To Hazardous Waste Site Remediation</u>. January 1993. Water Environment Federation.

Sholar, Terry M. November 1975. <u>Anadromous Fisheries Survey of the New and White Oak</u> <u>River Systems.</u> N.C. Division of Marine Fisheries, Morehead, North Carolina. Completion Report for Project AFC-9.

Tenore, Kenneth R. 1972. "Macrobenthos of the Pamlico River Estuary, North Carolina". <u>Ecological Monographs</u>. 42(1) 51-69.

Travis, Cutis C., and Angela Arms. 1988. "Bioconcentration of Organics in Beef, Milk, and Vegetation". Environmental Science Technology. Vol. 22, No. 3.

USDH, U.S. Department of Health and Human Services. February 1992a. <u>Toxicological</u> <u>Profile for Arsenic</u>. Public Health Services, Agency for Toxic Substances and Disease Registry. Contract No. 205-88-0608.

USDH, U.S. Department of Health and Human Services. February 1992b. <u>Toxicological</u> <u>Profile for Cadmium</u>. Public Health Services, Agency for Toxic Substances and Disease Registry. Contract No. 205-88-0608.

USDH, U.S. Department of Health and Human Services. October 1991a. <u>Toxicological Profile</u> <u>for Chromium</u>. Public Health Services, Agency for Toxic Substances and Disease Registry. Contract No. 205-88-0608. USDH, U.S. Department of Health and Human Services. October 1991b. <u>Toxicological Profile</u> <u>for Polychlorinated Biphenyls</u>. Public Health Services, Agency for Toxic Substances and Disease Registry. Contract No. 205-88-0608.

USDI, U.S. Department of the Interior. March 1982. <u>National Wetland Inventory Map, Camp</u> <u>Lejeune, N.C.</u> Fish and Wildlife Service.

USDI, U.S. Department of Interior. July 1984. <u>Habitat Suitability Index Models: Eastern</u> <u>Cottontail</u>. Fish and Wildlife Service. FWS/OBS-82/10.66.

USDI, U.S. Department of Interior. August 1985. <u>Habitat Suitability Index Models:</u> <u>Northern Bobwhite</u>. Fish and Wildlife Service. Biological Report 82(10.104).

USDI, U.S. Department of the Interior. 1986. <u>National Wildlife Refuge System.</u> Fish and Wildlife Service.

USDI, U.S. Department of the Interior. April 1987. <u>Mercury Hazards to Fish, Wildlife, and</u> <u>Invertebrates: A Synoptic Review.</u> Fish and Wildlife Service. Biological Report 85(1.10).

USDI, U.S. Department of the Interior. January 1988. <u>Arsenic Hazards to Fish, Wildlife, and</u> <u>Invertebrates: A Synoptic Review.</u> Fish and Wildlife Service. Biological Report 85(1.12).

USDI, U.S. Department of the Interior. 1993. Correspondence and Maps showing units within the Coastal Barriers Resource System. Fish and Wildlife Service.

USEPA, U.S. Environmental Protection Agency. April 1977. <u>Environmental Requirements</u> and Pollution Tolerance of Common Freshwater Chironomidae. Environmental Monitoring and Support Laboratory, Cincinnati, Ohio. EPA/600/4-77-024.

USEPA, U.S. Environmental Protection Agency. October 1986. <u>Superfund Public Health</u> <u>Evaluation Manual</u>. Office of Emergency and Remedial Response, Washington D.C. EPA/540/1-86/060.

USEPA, U.S. Environmental Protection Agency. May 1987. <u>Quality Criteria for Water, 1986</u>. Office of Water, Regulations and Standards, Washington, DC. EPA/440/5-86-001.

9-7

USEPA, U.S. Environmental Protection Agency. March 1989a. <u>Risk Assessment Guidance</u> for Superfund, Volume II Environmental Evaluation Manual. Office of Emergency and Remedial Response, Washington, DC. EPA/540/1-89/001.

USEPA, U.S. Environmental Protection Agency. March 1989b. <u>Ecological Assessment of</u> <u>Hazardous Waste Sites: A Field and Laboratory Reference</u>. Environmental Research Laboratory, Corvallis OR. EPA/600/3-89/013.

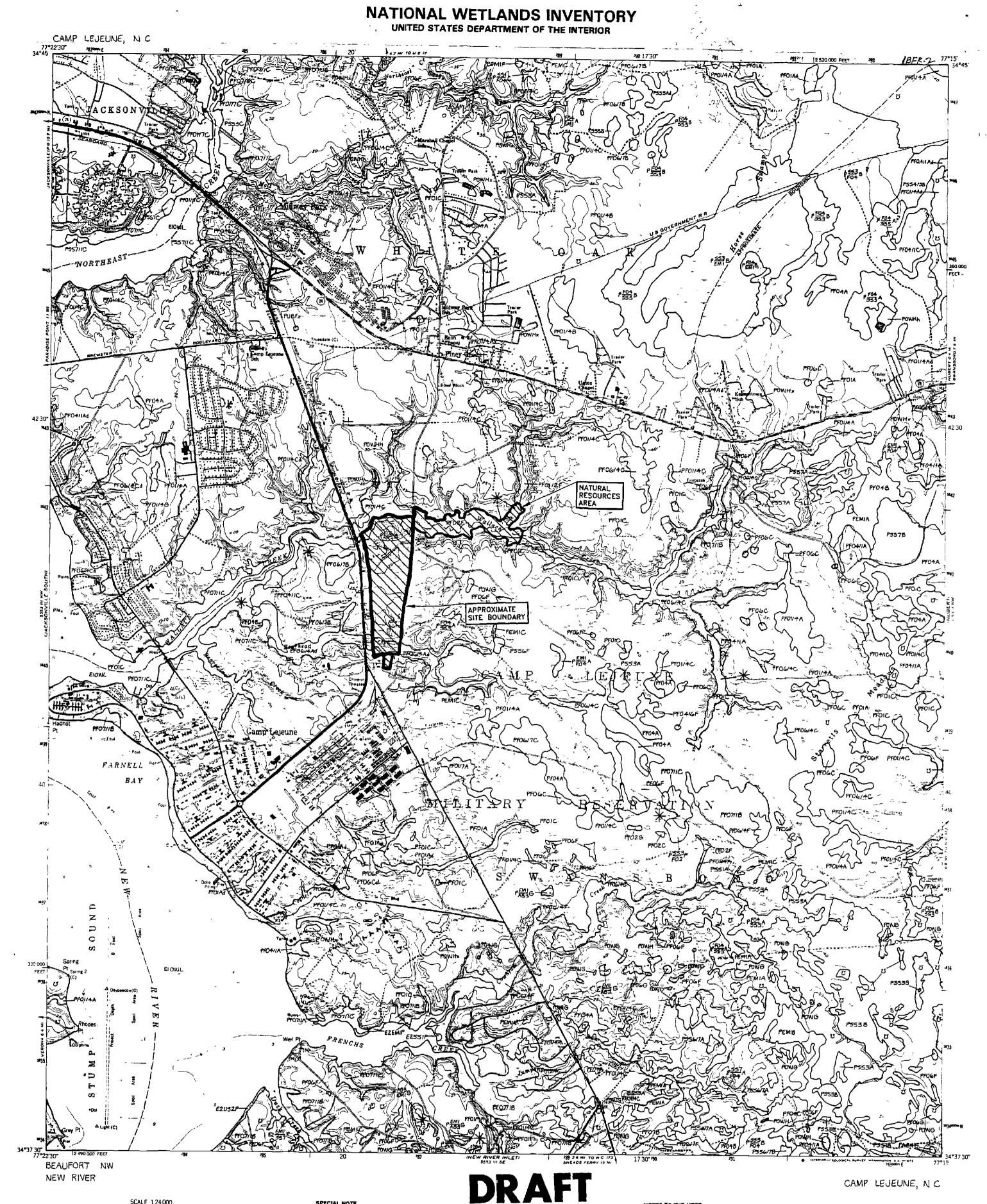
USEPA, U.S. Environmental Protection Agency. May 1989c. <u>Rapid Bioassessment Protocals</u> for Use in Streams and Rivers, Benthic Macroinvertebrates and Fish. Office of Water, Washington, DC. EPA/440/4-89/001.

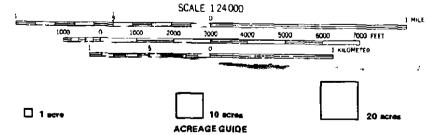
USEPA, U.S. Environmental Protection Agency. March 1989d. <u>Technical Support Manual:</u> <u>Waterbody Surveys and Assessments for Conducting Use Attainability Analysis</u>. Office of Emergency and Remedial Response, Washington, DC. EPA/540/1-89/001.

USEPA, U.S. Environmental Protection Agency. November 1990. <u>Macroinvertebrate Field</u> <u>and Laboratory Methods for Evaluating the Biological Integrity of Surface Waters</u>. Office of Research and Development, Washington, DC. EPA/600/4-90/030.

USEPA, U.S. Environmental Protection Agency. February 1992a. <u>Framework for Ecological</u> <u>Risk Assessment</u>. Risk Assessment Forum. EPA/630/R-92/001.

USEPA, U.S. Environmental Protection Agency. January 1992b. <u>Region IV Waste</u> <u>Management Division Screening Values for Hazardous Waste Sites</u>. Region IV, Atlanta Georgia.

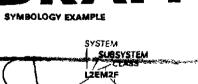

USEPA, Telephone Conversation with the U.S. Environmental Protection Agency, National Estuary Program, Washington D.C. 1993.

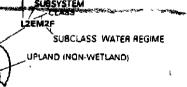

Walters, J.R. and J.M. Goodson. 1991. <u>Status of the Red-cockaded Woodpecker at Camp</u> <u>Lejeune, 1991</u>. North Carolina State University. Submitted to the Department of Defense, USMC, Camp Lejeune, Environmental Management Department.

Water and Air Research, Inc. 1983. <u>Initial Assessment Study of Marine Corps Base Camp</u> <u>Lejeune, North Carolina</u>. Prepared for Naval Energy and Environmental Support Activity. WS, The Wilderness Society. 1989. <u>The National Wilderness Preservation System</u>, 1964-<u>1989</u>. The Wilderness Society, Washington D.C.

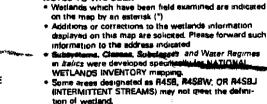
WS, Telephone conservation with the Wilderness Society, Washington D.C. 1993.

APPENDIX A NATIONAL WETLAND INVENTORY MAP



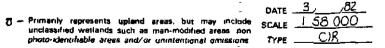

Other information including a narrative report concerning the watland resources depicted on this document may be available For information, contact

ļ	TECHNICAL RESPON	SIBILITY	
ա խ	TASK	NAME	DATE
IWN NO		D BARCLAY	1-7-86
	Laitenng	<u>↓</u>	Τ
	ZTS QC	I WERTED	2-2-80
<u>8 5 5 8 1</u>		1 Jacque The	2 6-86
	ZTS CORRECTION	D Barchaz	3-6-86
	CORRECTION CHECK	R Planten	27.86
- 4 <u>6</u>	FWS ACCEPT	C MARTIN	3-5-86


SPECIAL NOTE This document was prepared primarily by stereoscopic analysis of high altitude aerial photographs. Weilands were identified on the photographs based on vegetation visible hydrology and geography in accordence with Classifica-tion of Wetlands and Degowards Mathematica Statistics states (FMS/QBS + JW/3) Decomber 1979) The serial states to based to reduce the serial this document

Federal State and local regulatory agencies with jurisdie Federal State and local regulatory sgencies with jurisdic-tion over wellands may define and describe wetlands in a different manner than that used in this inventory. There is no attempt, in either the design or products of this inven-tory, to define the limits of programy jurisdiction of any Federal. State or local government or to establish the geographical scope of the regulatory programs of govern-ment agencies. Persons intending to engage in activities involving modifications within or adjacent to wetland areas should seek the advice of appropriate Federal. State or local agencies concerning specified agency regulatory programs and proprietary jurisdictions that may affect such activities.

- **R20WH** (LINEAR DEEPWATER HABITAT)

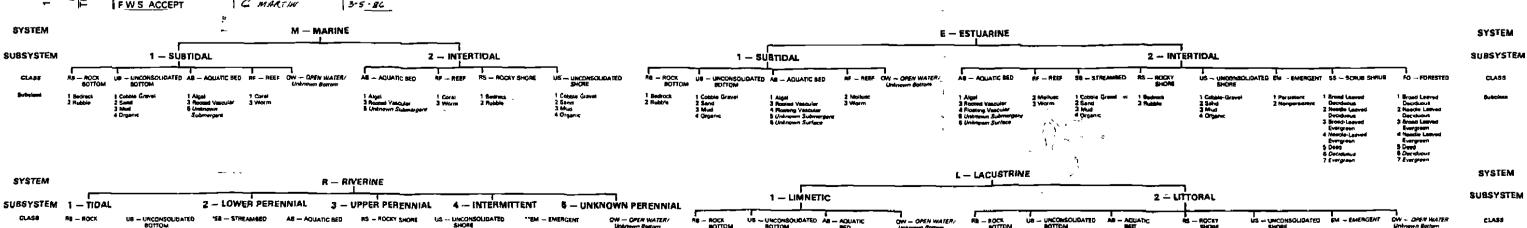


NOTES TO THE USER

IN IERMITENT STREAMS) may not devert the dewite ton of wetland. This map uses the class Unconsolidated Shore (US) On earlier NWI maps that class was designated Beach/ Bar (BB), or Flat (FL) Subclasses remain the same in both

Versions

AERIAL PHOTOGRAPHY



<u>_82</u>_ DATE SCALE TYPE

U.S. DEPARTMENT OF THE INTERIOR

FISH AND WILDLIFE SERVICE

Prepared by National Wetlands Inventory

futicien	Z Rubble 2 S 3 A	ierd Rud Ingenet	1 Bedrick 2 Rubble 3 Gabble Graver 4 Sand 5 Mad 6 Drgame 7 Vegelssej	1 Algui 2 Aquatic Mosa 3 Rasteg Viscular 4 Flosting Vascular 6 Unknown Submergent 6 Unknown Surface		1 Cobbin-Gravel 2 Sand 3 Akar 4 Organic 8 Vagalizard	2 Nondersstern		t Bedrock 1 Cabile 2 Rubble 2 Sand 3 Mud 4 Drgen	2 Aquatic Moss 3 Report Ventules	47 (part)	† Cobbie-Grevel 2 Sand 3 Mud 6 Organe:	1 Alget 2 Aqualic Masy 3 Round Macuar 4 Round Macuar 4 Dataser Submargan 6 Uniteen Submargan 6 Uniteen Suffice	1 Bedrock 2 Rubbie 1	1 Coltain Gravel 3 Sand 3 Mud 4 Organic 6 Vegetalogi	2 Norgon under 1	
				mans the only CLASS in the M maining CLASSES are found								MODIFIE	R5				
SYSTEM			•	P — PALUŠ	TRINE					•	In order to more adequately describe w an or special modifiers may be applied at the class (etiand and desperate he or lower level in the hiera	bitate one or more of the wi city. The farmed moduliar in	atterategime water chemi- lay-ales be expliced to the	aury accelogrant: ayotam	-	.].
d r diretim										WATER R	REGIME		WATER CHEMIST	RY	SOIL	SPECIAL MODIF	FIÈRS
CLASS	RE - ROCK BOTTOM	UB UNCONSOLIDATED INTTOM	AB - AQUATIC BED	US - UNCONSOLIDATI SHOPE	D ML - MOSS UCHEN	BM - EMERGENT SS	i - Schus Shrub fo - F	DRESTED DW - OPEN WATER, Unknown Zeitam		Non-Tidal	Tidal	Coastal Halim	ity Inland Salinity	pH Modifiers for			
Subcises	1 Augustoch 2 Ruditio	1 Cobbe Griwel 2 Sand 3 Mud 4 Organic	⁴ Y Algai 2 Aguste Moss 3 Ronet Yasculat 6 Platmy Vasculat 8 Linknew Submergen 6 Linknew Submergen 10		1 Mosa 2 Letter	2 horiporsenere 2 h 3 B 4 h 1 5 C 5 C	Deciduo _{les} 2 Need Needle <u>Leave</u> 3 D ood	Lagrad Doctoos Lagrad Soctoos Lagrad Swatter Lagrad	A Temporaria Flocad B Surverset C Seesanally Flocade D Seesanaly Flocade Well Drawned E Seesanaly Flocade Estructure F Son garmarethy Fit G Intermiserity Fit G Intermiserity Fit	J Intermittently Flooted R Actificatly Roused W Reprintpanty Flooted/Temperary Selected/Semperary Selected/Semperary Separat	K Artureath Floorded - S Temporev Table L Subreat - Seansport Table M Seansport Seanse M Seansport - Seansport R Regularity Floorded U Unknown R Regularity Floorded U Unknown C Seansport - Seansport - Seans P tempularity Floorded U Unknown C Seansport - Seanspor	2 Euhaine 3 Minchakine (Braci 4 Polyhakine 5 Mesohakine 4 Oligahakine 0 Freeh	7 Hillerskile	BE Prosti Water a Aga- t Grannoutal j r Alkaide v	G Graine		: Джер Мирисилово Алтасы Subbuyer , Sand : Евсаноми,

APPENDIX B MCB CAMP LEJEUNE ENDANGERED SPECIES AND SPECIAL INTEREST COMMUNITIES SURVEY Critical species list - Camp Lejeune endangered species and <u>special-interest communities survey</u>

مرارية مريحان معود المحمد والمنتجر المريحات المحاصرة والمحاصر المحاجر وراعدات المتعامر والتربع مراري معقات فيمريهم

Principal investigator: Richard LeBlond, 326-1440 (******************************

List current as of 9-30-91. Replaces list of 6-30-91.

"?" = Species names followed by a "?" are less than confidently identified. They are nonetheless caught in this biological safety net, the mesh size of which errs on the side of diversity. Until identification is confirmed (most of these are represented by a specimen), these site records should be regarded as tentative.

Species sites are listed chronologically under the species name; with the 1990 month and day of discovery listed first, followed by the site's sector site number, community type and UTM grid number. Sites documented prior to the start of the current survey are indicated by the parenthetical date of discovery following the site name (see <u>Rhexia aristosa</u> at FD-1). Prior sites not yet relocated during the current survey are indicated by "---" in the date column (see <u>Rhynchospora tracyi</u> at FD-1).

Status codes. Federal status is listed first, and separated from the state status by a comma; e.g., <u>Rhexia</u> <u>aristosa</u> FC2,T (Federal Candidate level 2, state Threatened). Species with state status only are indicated by a single code without comma; e.g., <u>Rhynchospora</u> tracyi SR (Significantly Rare).

FE = Federal Endangered

FT = Federal Threatened

FC1 = Federal Candidate level 1. At risk. Listing warrented but precluded by higher priorities.

FC2 = Federal Candidate level 2. Vulmerable. Listing warrented but precluded by higher priorities.

F3C = Federal Candidate level 3C. More abundant and/or less threatened than previously known.

- E = State Endangered
- T = State Threatened
- SC = State Special Concern
- C = State Candidate
- SR = State Significantly Rare
- W =State Watch List (W1)
- W3 = " " " , undocumented state occurrence prior to Lejeune site.

proposed = proposed for listing as State Candidate, Significantly Rare or Watch List based on current evidence List of species and communities by sector - Camp Lejeune endangered species and special-interest communities survey

List current as of 9-30-91. Replaces list of 6-30-91.

-		<u>Status</u>	UTM Grid
SEC	TOR E		
E-1	Upper Beach Amaranthus pumilus (1988)	FC2,T	907266- 949297
E-5	Brackish Marsh Parietaria praetermissa Solanum pseudogracile	ະ ພ ພັ	860237
SEC	TOR F		
FA-1	Depression Meadow Aristida palustris Burmannia biflora Panicum tenerum Rhexia aristosa Rhynchospora wrightiana	SR W SR FC2,T W	878409
FA-2	Road Meadow Rhynchospora nitens Rhynchospora pusilla	ພ ພ	895385
FA-4	Depression Meadow Aristida palustris Coelorachis rugosa Dichanthelium erectifolium Rhexia aristosa Rhynchospora harperi	SR W SR FC2,T C	883407
FB-1	Wet Pine Flatwoods Amphicarpum purshii Lysimachia loomisii Panicum tenerum Xyris difformis var. curtissii	SR W SR W	927413
FB-2	Road Meadow Rhynchospora pusilla Rhynchospora nite n s	ພ . ພ	926409
FB-3	Wet Pine Flatwoods Lysimachia loomisii Pleea tenuifolia Scleria minor Tofieldia glabra	ω sr fc2,C	937416

•

:

.

(FB-3	cont.) Xyris difformis var. curtissii	ω	
	Xyris elliottii	SR	
FB-4	Wet Pine Flatwoods Lysimachia loomisii Rhynchospora harveyi Rhynchospora pusilla Scleria minor	ພ ພ ນ SR	939426
FC-2	Flatwood/Swamp Ecotone Anthaenantia rufa Helianthus heterophyllus Lysimachia loomisii Dxypolis tern a ta	W W W FC2,T	922413
FC-3	Depression Meadow Aristida palustris Bartonia verna Burmannia biflora Dichanthelium erectifolium Litsea aestivalis Muhlenbergia torreyana Paspalum praecox Rhexia aristosa Rhynchospora cephalantha f. antrorsa Rhynchospora tracyi	SR W SR FC2,C F3C,E W FC2,T	918318
FC-4	Pocosin Ecotone Andropogon capillipes Gentiana aut u mnalis	ω ω ω	919376
FD-1	Cypress Savanna Agalinis linifolia Anthaenantia rufa Aristida palustris Bartonia verna Burmannia biflora Carex verrucosa Coelorachis rugosa Dichanthelium sp. 1 =Panicum hirstii Dichanthelium erectifolium Lobelia boykinii Lysimachia loomisii Muhlenbergia torreyana Panicum tenerum Paspalum praecox Rhexia aristosa Rhynchospora cephalantha f antrorsa Rhynchospora tracyi (1984) Rhynchospora wrightiana Scleria georgiana Spiranthes laciniata	SR W SR W FC2,C SR FC2,C SR FC2,C W F3C,E SR W FC2,T unusual/rare C SR W C C	904377

.

:1

			•		
(FD-1	cont.)				
	Xyris baldwiniana		ω		
FD-3	Small Depression Pond			899378	
	Carex verrucosa		SR		
	Eleocharis equisetoides		SR		
	LIEULIA IS EQUISEVOIDES		517		
-					
SECT	TOR G				
G-10	Pocosin Ecotone			929348 🖗	
	Lysimachia asperulifolia		FE,E	2017 - 20	
	-/				
GA-1	Depression Meadow, Wet Pine	Flatwoode		894359	
GH-1		FIACWOODS		074007 Jak	
	Agalinis linifolia		SR		
	Andropogon capillipes		W		
	Aristida palustris		SR		
	Burmannia biflora		W		
	Dichanthelium erectifolium		SR	(a) (a)	SOLUTION
	Eleocharis equisetoides		SR		
	•		C		
	Eleocharis melanocarpa				
	Gentiana autumnalis		W		
	Panicum tenerum		SR		
	Rhexia aristosa	· F	FC2,T		
	Rhynchospora tracyi		SR		1740.200 A
	Scleria georgiana		С		
			-		
~~ ~	Demonstrum Manufau			896360	
GA-2	Depression Meadow			00000	
	Andropogon capillipes		W		
	Agalinis linifolia		SR		
	Aristida palustris		SR		
	Burmannia biflora		ω		
	Dichanthelium erectifolium		SR		
	Panicum tenerum		SR		
	Pleea tenuifolia		ω ω		
	Rhexia aristosa	E	C2,Ť		
		Г	ارىمېت 11		
	Rhynchospora wrightiana		ω ~		
	Scleria georgiana		С		
				· · ·	
GA-3	Cypress Savanna			898360	1
	Agalinis linifolia		SR		
	Andropogon capillipes		W		
	Aristida palustris		SR		
	•		Sr. ₩		
	Burmannia biflora				
	Carex vernucosa		SR		
	Coelorachis rugosa		W		
	Dichanthelium erectifolium		SR		
	Eleocharis equisetoides		SR		
	Panicum tenerum		SR		
	Paspalum praecox		Ŵ		
	•	-			
•	Rhexia aristosa	-	C2,T		
	Rhynchospora pusilla		. Ψ		
	Rhynchospora tracyi		SR		
	Scleria georgiana		C		

а

•

. . .

:

GA-4	Savanna	899349
	Asclepias pedicellata	С С С С С С С С С С С С С С С С С С С
	Dichanthelium erectifolium	
		SR
	Dionaea muscipula	FC2,C-SC
	Lysimachia loomisii	W
	Oxypolis ternata	FC2,C
	Pleea tenuifolia	W
	Polygala brevifolia	W
	Polygala hookeri	C
	Rhynchospora pallida	SR
	Sarracenia rubra ssp. rubra	W States and Stat
	Solidago pulchra	FC2,C
	Tofieldia glabra .	FC2,C
	Xyris baldwiniana	
	and the second	
GA-5	Depression Meadow	OATOCT.
	Agalinis linifolia	901361
		SR
	Anthaenantia rufa	W
	Aristida palustris	SR
	Burmannia biflora	W
	Carex verrucosa	SR
	Dichanthelium erectifolium	SR SR
	Eleocharis equisetoides	SR
	Panicum tenerum	SR
	Paspalum praecox	W
	Rhexia aristosa	FC2,T
	Rhynchospora inundata	U U
	Rhynchospora tracyi	SR
	Xyris smalliana	U
	yy is smarrana	*
GB-1	Wet Pine Flatwoods/Small Stream Poo	osin 908376
	Rhynchospora elliottii	US111 US111
	Mynchospora errocorr	W Construction of the second sec
GB-2	Road Meadow	907376
	Agalinis virgata	C
~~ ~	P 1 1 1 1	
GB-3	Road Meadow	929368
	Calopogon barbatus	
	Dionaea muscipula	FC2,C-SC
	Solidago pulchra	FC2,C
GB- 4	Road Meadow	931365
	Dionaea muscipula	FC2,C-SC
	Rhynchospora pallida	SR
	Solidago pulcra	FC2,C
		-
GB-5	Wet Pine Flatwoods	932364
	Dionaea muscipula	FC2,C-SC
	Solidago pulchra	FC2,C
	Tofieldia glabra	FC2,C
	a an a an	s taraan y tar

ş

GB-6	Pocosin Ecotone		935364
	Amphicarpum purshii	SR	200004
	Dionaea muscipula	FC2,C-SC	
	Solidago pulchra	FC2,C	
	corrado parente		
68 -7	Road Meadow		940364
-	Rhexia aristosa	FC2,T	
	Solidago pulchra	FC2,C	
		·	
68 -8			9 32368
	Bartonia verna	ω	
	Solidago pulchra	FC2,C	
	Tofieldia glabra	FC2,C	
68-9	Road Meadow	S.	934362
	Juncus validus		<i>3</i> 34362
	Juncus Various	W ₄	
GB-10	Road Depression Meadow		918374
	Calopogon barbatus	ω	<i></i>
	•		
GC-1	Small Depression Pond		946360
	Agalinis linifolia	SR	
	Aristida palustris	SR	
	Coelorachis rugosa	ليا	
	Dichanthelium erectifolium	SR	
	Eleocharis tricostata	ω	
	Panicum tenerum	SR	
	Paspalum praecox	W	,
	Rhexia aristosa	FC2,Ť	
	Rhynchospora tracyi	SR SR	
			·
GC-2	Small Depression Pond		949357
	Agalinis linifolia	SR	
	Aristida palustris	SR	· · · ·
	Burmannia biflora	ω	ж.
	Cladium mariscoides	、 SR	
	Dichanthelium erectifolium	SR	
	Eleocharis equisetoides	SR	
	Ludwigia linifolia	SR	
	Panicum tenerum	SR	
	Paspalum praecox	W	
	Rhexia aristosa	FC2,T	
	Rhynchospora harperi	C	
	Rhynchospora pusilla	U	
	Rhynchospora tracyi	SR	
	Scleria georgiana	Sn C	
	orreita AeolArana	L.	
GC-3	Pocosin Ecotone		945342
	Amphicarpum purshii	SR	
_			
GC-5 ·	Depression Meadow		940345
	Eleocharis tricostata	Ψ	
	Panicum tenerum	SR	

「「「「「「「「」」」」

.

.

٩.

:

GC-6	Depression Meadow		942358
.	Agalinis linifolia	SR	- <i>5</i> 42358
	Aristida palustris	SR	
	Burmannia biflora	Ŵ	
	Coelorachis rugosa	ü	
	Dichanthelium erectifolium	SR	
	Litsea aestivalis	FC2,C	
-	Panicum tenerum	SR	
	Paspalum praecox	ы. Ш	
	Rhexia aristosa	FC2,T	
	Rhynchospora wrightiana	ν <u>στ</u> , γ	
	Scleria georgiana	č	
GC-7	Depression Meadow		942359
	Aristida palustris	SR	
	Litsea aestivalis	FC2,C	
	Panicum tenerum	SR	
	Rhexia aristosa	FC2,T	
	Rhexia cubensis	SR	
	Sarracenia rubra ssp. rubra	W	
GC-8	Small Depression Pond		947356
	Rhexia aristosa	FC2,T	547000
	Rhexia aristosa X cubensis		
	Rhexia cubensis	SR	
	1 98 6 tun - 'n de Tert - Ter Tert des 'en J E met de ned'	UN UN	
GC-9	Depression Meadow		949356
	Aristida palustris	SR	
	Coelorachis rugosa	ω	
	Rhexia aristosa	FC2,T	
G-10	Depression Meadow		948356
	Agalinis linifolia	SR	
	Aristida palustris	SR	
	Coelorachis rugosa	ω	
	Eleocharis tricostata	ü	
	Panicum tenerum	SR	이 이 이 이 이 이 이 이 이 이 이 이 이 이 이 이 이 이 이
	Paspalum praecox	ພິ	
	Rhexia aristosa	FC2,T	
	Rhynchospora tracyi	SR	
	Scleria georgiana	C	
3C-11	Flatwoods Road Meadow		949364
	Andropogon capillipes	ω	
°C_1⊃	Channel Dessein		011010
	Streamhead Pocosin	~~	944348
	Amphicarpum purshii Dionaea muscipula	SR Eco cuec	
	Peltandra sagittifolia	FC2,C-SC	
	Rhynchospora pallida	SR SR	
	Solidago pulchra	FC2,C	
	Tofieldia glabra	FC2,C	
	· · · · · · · · · · · · · · · · · · ·	i Andrew State	

\$

GD-1.	Road Meadow Amphicarpum purshii Rhexia cubensis	SR SR	938326	
GD-2	Small Depression Pond Eleocharis tricostata	ω	938335	
GD-3	Small Depression Pond Eleocharis vivipara Litsea aestivalis Rhexia aristosa Xyris smalliana	ω FC2,C FC2,T W	937335	
GD- 4	Small Depression Pond Dichanthelium erectifolium Eleocharis melanocarpa Eleocharis tricostata Rhexia aristosa	SR Cୁ ଜ FC2,T	936336	
GD- 5	Road Meadow Agalinis linifolia Dionaea muscipula Pleea tenuifolia Rhynchospora pusilla Solidago pulchra	SR FC2,C-SC W W FC2,C	921333	
GD-6	Road Meadow Rhexia aristosa Rhexia aristosa X cubensis undesc Rhexia cubensis Rhynchospora pusilla Xyris baldwiniana	FC2,T ribed taxon SR W W	922332	
GE-1	Flatwoods/Pocosin Ecotone Calamovilfa brevipilis Carex elliottii Dionaea muscipula (1988) Ludwigia microcarpa (1988) Lysimachia asperulifolia (1988) Polygala brevifolia Rhynchospora pallida Solidago pulchra (1988) Tofieldia glabra	F3C,E W FC2,C-SC W FE,E W SR FC2,C FC2,C	910328	
GE-2	Pocosin Ecotone Amphicarpum purshii Dionaea muscipula Oxypolis ternata Pleea tenuifolia Polygala brevifolia Rhynchospora pallida Rhynchospora wrightiana Solidago pulchra Tofieldia glabra	SR FC2,C-SC FC2,C W W SR W FC2,C FC2,C	918333	

• .

١

-

GE-3.	Road Depression Meadow Amphicarpum purshii Calamovilfa brevipilis Dionaea muscipula Pleea tenuifolia	SR F3C,E FC2,C-SC W	907330.	
_GE-4	Small Depression Pond Rhexia aristosa Rhynchospora inundata	FC2,T W	907328	
GF-1	Wet Pine Flatwoods Agalinis fasciculata Agalinis virgata Calopogon barbatus Gentiana autumnalis Tofieldia glabra	ଧ C କ କୁ FC2, C	949331	
GF-1	Road Meadow Andropogon capillipes	ω	949331	
GF-3	Depression Meadow Rhexia aristosa	FC2,T	906327	
GF-5	Road Meadow Agalinis linifolia Ludwigia microcarpa Rhexia aristosa Xyris baldwiniana	SR W FC2,T W	944326	
GG-1	Depression Meadow Dichanthelium erectifolium Eleocharis equisetoides Panicum tenerum Rhexia aristosa Rhexia cubensis Rhynchospora inundata Rhynchospora tracyi Rhynchospora wrightiana	SR SR FC2,T SR W SR W	934317	
GG-2	Road Meadow Eleocharis tricostata Ludwigia microcarpa	ພ ພ	943325	
GH-1	Coastal Fringe Sandhill Cladina evansii	ω	?	
GI-1	Coastal Fringe Sandhill Cladina evansii	ω.	?	

SECTOR H

:

۰.

٢

.

			مرکز ۲۰۰۰ میں در اور اور اور اور اور اور اور اور اور او	
HA-3	Depression Meadow Aristida palustris Burmannis biflora Coelorachis rugosa Dichanthelium erectifolium Ludwigia linifolia Rhexia aristosa Rhynchospora harperi Rhynchospora nitens Rhynchospora wrightiana Scleria georgiana	FC2	SR W SR SR T C W U C	876335
HA-5	Depression Meadow Aristida palustris Dichanthelium erectifolium Ludwigia linifolia Rhexia aristosa Scleria georgiana	FC2,	SR SR SR T C	874336
HA-6	Small Depression Pond Aristida palustris Coelorachis rugosa Dichanthelium erectifolium Eleocharis tricostata Rhexia aristosa Rhynchospora harperi Rhynchospora nitens Scleria reticularis var. reticularis	FC2,	SR W SR W T C W C	873334
HA -7	Small Depression Pond Dichanthelium erectifolium Ludwigia linifolia Rhexia aristosa Rhynchospora nitens Scleria reticularis var. reticularis	FC2,	SR SR T W C	872334
HA-8	Small Depression Pond Coelorachis rugosa Rhynchospora nitens Scleria reticularis var. reticularis		ພ ພ C	872333
HA-9	Road Meadow (best treated as extension Scleria georgiana		A-10) C	871336
HA-10	Small Depression Pond Scleria georgiana		с	870337
HA-11	Small Depression Pond Ludwigia linifolia Rhexia aristosa Rhynchospora nitens Scleria reticularis var. reticularis	FC2,	SR T W C	869338

			•
HB-1-	Flatwoods/Pocosin Ecotone		876311
	Carex elliottii	W	
	Dionaea muscipula	FC2,C-SC	
	Polygala brevifolia	ω	
HB-2	Flatwoods/Pocosin Ecotone		875317
	Amphicarpum purshii	SR	
	Lysimachia asperulifolia (P. Robinson)	FE,E	
	Polygala brevifolia	ω	8 1 2-10
	Solidago pulchra	FC2,C	
нв-з	Small Depression Pond		878328
no-3	Agalinis linifolia	SR	
	Aristida palustris	SR	
	Burmannia biflora	LU LU	
	Dichanthelium erectifolium	SR	
	Dionaea muscipula	FC2,C-SC	
	Ludwigia linifolia	ŚR	
	Dxypolis ternata	FC2,C	
	Paspalum praecox	·, ω	
	Rhexia aristosa	FC2,T	
	Rhynchospora harperi	C	
	Solidago pulchra	FC2,C	
	Sorrege porche		
HB-5	Wet Pine Flatwoods, Pocosin	<u>_</u>	870320
	Asclepias pedicellata	C	
	Calopogon barbatus	W Ecc. C	
	Solidago pulchra	FC2,C FC2,T	
	Sporopolus species l	، ريدن "	
HD-1	Small Depression Pond/Black Gum Swamp	.	878337
	Dichanthelium erectifolium	SR	
	Rhexia aristosa	FC2,T	
HD-2	Depression Meadow/Small Depression Pon	3	876339
	Aristida palustris	SR	
	Burmannia biflora	· W	
	Rhexia aristosa	FC2,T	
HD-3	Depression Meadow/Small Depression Pon	9	871341
	Aristida palustris	SR	
	Burmannia biflora	ω	
	Dichanthelium erectifolium	SR	
	Eleocharis equisetoides	SR	
	Eleocharis robbinsii	C	
	Myriophyllum laxum	FC2,T	
	Panicum tenerum	SR	
	Rhexia aristosa	FC2,T	
	Rhynchospora harperi	C	
	Rhynchospora inundata	ω	
	Rhynchospora nitens	W	
	Rhynchospora pleiantha	SR	
	Rhynchospora tracyi	SR -	
	Scleria georgiana	C:	

.

.) I.

÷

•

.

. .

\$

			100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100
HE-1	Depression Meadow		
, ram 1	Agalinis linifolia	~~	893334
		SR	1.
	Aristida palustris	SR	
	Burmannia biflora	W	
	Rhexia aristosa	FC2,T	
. HE-2	Depression Meadow		892334
	Agalinis linifolia	SR	
	Aristida palustris	SR	
	Bartonia verna	ω	
	Burmannia biflora	ພ ຟ	
		**	
	Rhexia aristosa	FC2,T	
	Rhynchospora wrightiana	ω	
		1 <u>5</u>	
HE-3	Depression Meadow		889332
	Aristida palustris	SR	
	Dichanthelium erectifolium	SR	
	Eleocharis equisetoides	SR	
	Ludwigia linifolia	SR	
	Panicum tenerum		
		SR	
	Rhexia aristosa	FC2,T	
	Rhynchospora harperi	C .	
	Rhynchospora inundata	ω	
	Rhynchospora tracyi	SR	
	Scleria reticularis var. reticularis	С	
	Xyris smalliana	ω	
	•		
HE-4	Small Stream Pocosin		895331
	Rhynchospora inundata	ω	0.000
	e se e presentation de la construction de l	*	
HE-5	Depression Meadow		00000
			896332
	Aristida palustris	SR	
	Burmannia biflora	W	
	Eleocharis equisetoides	SR	
	Panicum tenerum	SR	
	Rhexia aristosa	FC2,T	
	Rhynchospora harperi	C	
	Rhynchospora inundata	Ŵ	
HE-6	Small Depression Pond		882329
	Burmannia biflora	ω	002000
	Dichanthelium erectifolium		
		SR	
	Eleocharis equisetoides	SR	
	Panicum tenerum	SR	
	Rhexia aristosa	FC2,T	
	Rhexia aristosa X cubensis 👘 undescrit	bed taxon	
	Rhexia cubensis	SR	
	Rhynchospora scirpoides	С	
	Rhynchospora tracyi	SR	
	Rhynchospora wrightiana		
		**	

ti Er

•

.

•

HE-7.	Road Meadow Agalinis fasciculata	÷.	880330	
	Rhexia aristosa	₩ FC2,T		
	Rhynchospora pusilla	، دی ، ۱ ایا		
	Rhynchospora nitens	ŵ		
	, .			
HE-8			883329	
	Dionaea muscipula	FC2,C-SC		
	Dead Decasarian Mendau			
HE-8	Road Depression Meadow Paspalum praecox	LJ	882328	•
	asparum praecox	W		
HF-1	Small Depression Pond/Depression Mea	dow	900316	
	Agalinis linifolia	SR		
	Aristida palustris	SR		
	Coelorachis rugosa	ω		
	Dichanthelium erectifolium	SR		
	Eleocharis tricostata	Ŵ		
	Ludwigia linifolia	SR		الله من المراجع . معاد المحكم
	Panicum tenerum Passalum paassau	SR		
	Paspalum praecox Rhexia aristosa	W ECO T		
	Rhynchospora tracyi	FC2,T SR	·	ji -
	Rhynchospora wrightiana	61. W		
	Scleria georgiana	ĉ		
	Spiranthes laciniata	c		
	Xyris smalliana	ω		
	B 1.12			
HF-2			899316	
	Aristida palustris Dichanthelium erectifolium	SR		
	Eleocharis equisetoides	SR SR		
	Rhexia aristosa	FC2,T		
	Rhynchospora inundata	W I U		
	Rhynchospora nitens	ŵ		
	Rhynchospora pallida	、 SR		
	Rhynchospora wrightiana	ω		
	Sagittaria graminea var. chapmanii	С		
HF-3	Small Depression Pond			
16°-C	Aristida palustris	SR	898318	
	Dichanthelium erectifolium	SR		
	Eleocharis equisetoides	SR		
	Paspalum praecox	 W		
	Rhexia aristosa	FC2,T		
	Sagittaria graminea var. chapmanii	С		
HF-3	Pond Mondow		سر به سرسرس	
nr - 3	Road Meadow Amphicarpum purshii	ē.	898318	
	unburren han hai suitt	SR		
HF-4	Road Meadow		898319	
	Agalinis linifolia	SR		
	Rhexia aristosa	FC2,T		
	Rhexia cubensis	SR		
	· · ·			

•

•

5

•

(HE-A	cont.)	÷	
VIII - 44	Rhynchospora nitens	1.1	1
		Ŵ	
	Sagittaria graminea var. chapmanii	С	
	Flaturado (Deserto Frates)		
nr-3	Flatwoods/Pocosin Ecotone		896319
	Carex elliottii	Ψ	
-	Rhexia cubensis	SR	
	Rhynchospora pallida	SR	
	.		
HF-6			894319
	Rhexia aristosa	FC2,T	i di sensi di seconda d Seconda di seconda di se
	Rhynchospora pallida	SR	
HF-7	Small Depression Bond		892318
mr - 7		5 65	892318 to the get
	Eleocharis equisetoides	SR	
	Rhynchospora inundata	Ŵ	
	Xyris smalliana	ω	
HF-8	Road Meadow		896311
nr-0		SR	020311 (* 19 1926-19
	Amphicarpum purshii	SN	
HF-8	Small Depression Pond		896312
	Agalinis linifolia	SR	
	Aristida palustris	SR	
	Burmannia biflora	U U	
	Dichanthelium erectifolium	sr Sr	
	Eleocharis elongata	С	
	Eleocharis equisetoides	SR	
	Eleocharis tricostata	W	
	Panicum tenerum	SR	
	Rhexia aristosa	FC2,T	
	Rhexia cubensis	SR	
	Rhynchospora inundata	- W	
	Rhynchospora pleiantha	Ĉ	-
	anynenospora preranona	v	
	Dead Mandau		000010
HF-9	Road Meadow	· .	889313
	Amphicarpum purshii	SR	
HF-11	Small Depression Pond		897309
	Agalinis linifolia	SR	·
	Carex verrucosa	SR	
	Coelorachis rugosa	W	
	Dichanthelium erectifolium	ŠR	
	Eleocharis equisetoides	SR	
	Panicum tenerum	SR	
	Rhexia aristosa	FC2,T	
	Rhynchospora inundata	ω	
	Spiranthes laciniata	C	
	Sporobolus species 1 (into HF-20)	FC2,T	
ur. 10	Serll Depression Prod		<u> </u>
	Small Depression Pond	<i></i>	897308
	Eleocharis elongata .	C	
	Eleocharis equisetoides	SR	

:1

.

.

۰.

HF-13	3 Small Depression Pond			895309
	Carex verrucosa		SR	
	Panicum tenerum		SR	
	Rhexia aristosa		FC2,T	
	Rhynchospora inundata		ω	
	Rhynchospora tracyi		SR	
HF-14	Pocosin Ecotone			894312
	Amphicarpum purshii		SR	
	Rhexia aristosa		FC2,T	
HF-15	Small Depression Pond			894310
	Eleocharis equisetoides		SR	
	Litsea aestivalis		FC2,C	÷
	Scirpus etuberculatus		SR	~
HF-15	Pond/Flatwoods Ecotone		3. 2.3 1.	894310
	Asclepias pedicellata		С	
	· · · · · ·			
HF-16	Small Depression Pond			892308
	Eleocharis robbinsii? (to	o deep to w		
	Panicum tenerum Rhexia aristosa		SR FOO T	
	Rhexia aristosa Rhexia cubensis		FC2,T	
	Rhynchospora inundata		SR W	
	Rhynchospora scirpoides		č	
	intynchospora scripordes		C C	
HF-17	Small Depression Pond			891306
	Aristida palustris		SR	
	Burmannia biflora		W	2000 - 2000
	Dichanthelium erectifoliu	m	SR	
	Eleocharis equisetoides		SR	·
	Eleocharis robbinsii		C	
	Panicum tenerum Rhexia aristosa		SR FCO T	
	Rhynchospora scirpoides		FC2,T C	
	Rhynchospora tracyi		SR	· · · · ·
	Rhynchospora wrightiana		ω	÷
	Utricularia olivacea		Ť	
	Xyris smalliana		Ŵ	
HF-18	Depression Meadow		·	898308
	Agalinis linifolia		SR	
	Coelorachis rugosa Paspalum praecox		W	
	Rhexia aristosa		₩ FC2,T	
	nn neite an te tait te the set		ا و کدید ا	
HF-19	Small Depression Pocosin			897307
	Amphicarpum purshii (into	HF-20)	SR	
HF-20	Flatwoods/Pocosin Ecotone			897308
	Amphicarpum purshii		SR	and an a sub an an
	Solidago pulchra		FC2,C	
	Sporobolus species 1		FC2,T	

÷È

•

.

HF-21	Small Depression Pond Coelorachis rugosa	ω	899310
HF-22	Road Depression Meadow Juncus validus	ω	902306
. HF-23	Small Stream Swamp Carex albicans var. emmonsii	ω	905302
HF-24	Road/Pocosin Ecotone Dionaea muscipula Rhynchospora pallida	FC2,C-SC SR	900309
HF-25	Road Depression Meadow Andropogon capillipes Burmannia biflora Dichanthelium wrightianum Dionaea muscipula Ludwigia microcarpa Paspalum praecox Polygala brevifolia Rhynchospora nitens Rhynchospora pallida Solidago pulchra Xyris baldwiniana	W W W FC2,C-SC W W W SR FC2,C W	904310
SECT	DR I		
IA-1	Small Depression Pond Rhynchospora inundata Rhynchospora scirpoides	ω C	886297
IA-2	Small Depression Pond Burmannia biflora Eleocharis equísetoides Eleocharis vivipara (?) Panicum tenerum Rhyncospora inundata Rhynchospora scirpoides	W SR W SR W C	890296
	Wet Pine Flatwoods Asclepias pedicellata	C	887298
	Small Depression Pond Eleocharis equisetoides Rhynchospora inundata	SR W	875279
	Small Depression Pond Eleocharis equisetoides	SR	869280

;+

. .

١

.

	Small Depression Pond Eleocharis equisetoides Rhynchospora inundata Sagittaria engelmanniana		SR W W	87 0280	
IC-6	Coastal Fringe Sandhill Cladina evansii		Ŵ	859270	
IC-7	Small Depression Pond Eleocharis equisetoides		SR	862270	
IC-8	Coastal Fringe Sandhill Cladina evansii		W	?	
IC-9	Maritime Forest Cynanchum angustifolium Iresine rhizomatosa Sageretia minutif l ora		ε S C	853258	•••• • •
IC-10	Coastal Fringe Evergreen Forest Asplenium platyneuron var. bacculum-rub Cornus asperifolia Rhynchospora miliacea	rum	W C W	856262	
IC-11	Seepage Meadow Eleocharis montevidensis	prop	osed	867259	
IE-2	Pocosin Ecotone Dionaea muscipula	FC2,	C-SC	873291	
SECT	<u>for J</u>	•	• •		
				010005	
JB-1	Small Stream Swamp Carex chapmanii Carex floridana	FC2,	.T ₩	819305	
JB-1 JC-1	Carex chapmanii	FC2,	υ C	844290	
JC-1	Carex chapmanii Carex floridana Small Depression Pond	FC2,	W 44		
JC-1	Carex chapmanii Carex floridana Small Depression Pond Eleocharis melanocarpa	FC2,	W 44		

.

a i

.

•

¢

•

SECTOR L

LA-1	Road Depression Meadow Wet Pine Flatwoods Dionaea muscipula Pleea tenuifolia Rhynchospora pusilla Xyris elliottii	FC2,C-SC W W SR
LB-1	Road Meadow (US 17) Savanna Agalinis aphylla Agalinis fasciculata Agalinis virgata Amphicarpum purshii Andropogon capillipes Asclepias pedicellata Bartonia verna Calamovilfa brevipilis Calopogon barbatus Dionaea muscipula Gentiana autumnalis Linum floridanum var. chrysocarpum Oxypolis ternata Pleea tenuifolia Polygala brevifolia Rhynchospora nitens Rhynchospora pusilla Solidago pulchra Sporobolus species l Tofieldia glabra Xyris baldwiniana Xyris flabelliformis	725306 C W C SR W F3C,E W F3C,E W FC2,C-SC W SR FC2,C SR W SR W FC2,C FC2,T FC2,C SR C
LB-3	Mesic Pine Flatwoods Carex chapmanii Carex floridana	FC2,T W
LB-4	Powerline Depression Meadow Carex elliottii Polygala brevifolia	743296 W W
LC-1	Road Meadow (NC 210) Agalinis fasciculata Agalinis tenella Andropogon capillipes Dionaea muscipula Xyris difformis var. curtissii Xyris elliottii	752270 W W FC2,C-SC W SR

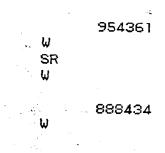
зi

306-724337 SC

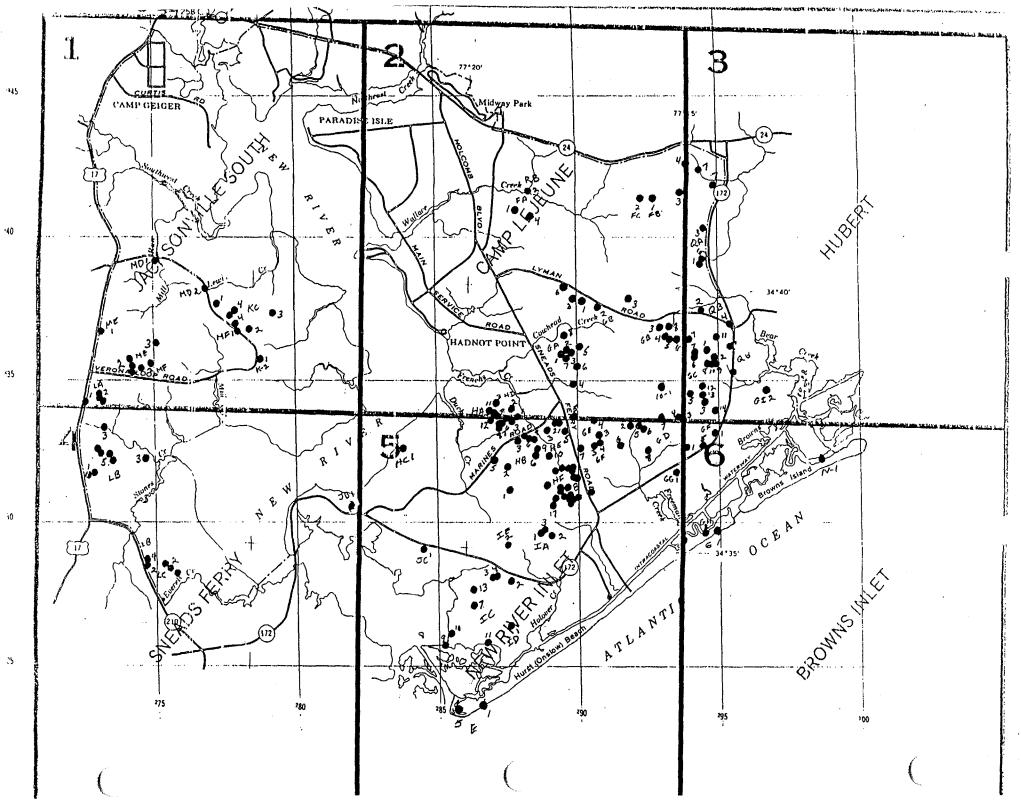
727352-724337

734330

296-747287


270-745287 SC: SR

LC-2	Powerline Depression Meadow Andropogon capillipes Carex elliottii Dionaea muscipula Rhexia aristosa Rhynchospora oligantha	747287-764282 W W FC2,C-SC FC2,T C
SEC	TOR M	
MB-1	Mesic Pine Flatwoods Carex floridana	770398 W
MD-1	Small Stream Swamp Carex chapmanii Carex floridana Scirpus lineatus Senecio glabellus	752393- FC2,T 752372 س C
ME-1	Road Meadow (US 17) Oxypolis ternata	728353-735387 FC2,C
MF-1	Wet Pine Flatwoods , Pocosin Ecotone Andropogon capillipes Calamovilfa brevipilis Calopogon barbatus Carex elliottii Dionaea muscipula Polygala brevifolia Solidago pulchra	776370 C F3C,E W FC2,C-SC W FC2,C
SEC.	TOR Q	
QA-1	Small Depression Pocosin Litsea aestivalis (1984)	943390 FC2,C
QA-2	Small Depression Pond	941391
QA-3	Depression Meadow Anthaenantia rufa Aristida palustris Burmannia biflora Coelorachis rugosa Dichanthelium erectifolium Dichanthelium sp. 1 =Panicum hirstii Eleocharis equisetoides Lobelia boykinii Muhlenbergia torreyana Panicum tenerum Paspalum praecox Rhexia aristosa Rhynchospora elliottii Rhynchospora harperi	946402 W SR W W SR FC2,C SR FC2,C F3C,E SR W FC2,T W C


			yiu
(QA:	3 Depression Meadow cont.) Rhynchospora tracyi Scleria georgiana Spiranthes laciniata Xyris smalliana	SR C C W	
QA-3	Pocosin Ecotone Amphicarpum purshii Gentiana autumnalis Rhynchospora nitens	SR W W	946401
QA-4	Wet Pine Flatwoods Andropogon capillipes	. Ψ	940403
QA-5	Wet Pine Flatwoods Andropogon capillipes Gentiana autumnalis	م لا لا	950414
QA-6	Depression Meadow Aristida palustris Carex verrucosa Panicum tenerum Rhynchospora inundata	SR SR W	944392
QA-7	Small Stream Swamp Carex chapmanii Carex elliottii Rhynchospora miliacea Scirpus lineatus	FC2,T W W C	944424
QB-1	Nonriverine Swamp Forest "Peterson's Quagmire"	(<u>Nyssa biflora</u> varian	ıt) 953375
QB-2	Road Meadow (Lyman Road) Anthaenantia rufa Coelorachis rugosa Dionaea muscipula Gentiana autumnalis Paspalum praecox Paspalum stramineum var. Polygala brevifolia Rhynchospora nitens Rhynchospora oligantha Rhynchospora pallida Scleria georgiana Scleria minor Solidago gracillima Solidago pulchra Tofieldia glabra Xyris baldwiniana	W FC2,C-S W Stramineum Propose W W SR SR C SR C SR W FC2,C FC2,C FC2,C FC2,C	

QB-3. Small Depression Pond Eleocharis tricostata Rhexia cubensis Rhynchospora wrightiana

RB-1 Road Meadow Ludwigia microcarpa

 \overline{z}

NATURAL AREA DESCRIPTION - WALLACE CREEK SWAMP CAMP LEJEUNE MARINE CORPS BASE, ONSLOW CO.

(from Moore 1985)

NAME OF SITE: Wallace Creek Swamp. RB-2 (portions of the area also occur in Sectors FA and RA).

QUAD: Camp Lejeune. UTM COORDINATES: 882417.

LOCATION AND DIRECTIONS: Wallace Creek floodplain east from Old Piney Green Road for 0.9 mile, and extending 0.3 mile north in floodplain of North Prong Wallace Creek flowing southward from Powerline Road 0.9 mile east of Piney Green Road. Site includes portions of Compartment 7 timber stand 7, Compartment 8 timber stand 11, and Compartment 20 timber stand 2.

SIZE: 115 acres. PROVINCE: Coastal Plain. WATERSHED: Wallace Creek / New River.

GENERAL LANDSCAPE DESCRIPTION: Broad floodplain and former mill pond on Wallace Creek dominated by a Cypress-Gum Swamp community (CT-1) grading upstream into a Coastal Plain Small Stream Swamp community (CT-2). The adjacent uplands contain mixed pine/ hardwood communities, including Loblolly Pine associations with Red Oak and Sweet Gum.

PHYSICAL DESCRIPTION

ASPECT: Flat. SLOPE: Flat. TOPOGRAPHIC POSITION: Alluvial flats. HYDROLOGY: Palustrine. MOISTURE: Wet to intermittently flooded. SOILS: Muckalee loam (CT-1, CT-2) grading to Marvyn loamy fine sand on the low slopes. GEOLOGY: Talbot surface unconsolidated sandy sediments. ELEVATION: <5-5 feet (CT-1), 5-10 feet (CT-2).

NATURAL COMMUNITY DESCRIPTION - CT-1

A) NAME OF COMMUNITY: Cypress-Gum Swamp.

B) VEGETATION STRUCTURE: <u>Taxodium</u> canopy and open understory over an herbaceous ground layer.

C> DOMINANTS AND IMPORTANT SPECIES: Canopy: <u>Taxodium distichum</u> dominates, with a subcanopy of <u>Nyssa biflora, Acer rubrum, Ulmus alata and Fraxinus</u> pennsylvanica. C) DOMINANTS AND IMPORTANT SPECIES:

Shrub layer: scattered <u>Sabal minor</u> and <u>Persea palustris</u>. Ground layer: grass dominated with <u>Glyceria striata</u>, <u>Poa</u> spp., <u>Panicum</u> spp.

D) POSITION IN THE LANDSCAPE AND RELATION TO OTHER COMMUNITIES: Community occupies a former mill pond basin grading upstream into the small stream swamp community (CT-2).

E) QUALITY AND CONDITION: Community dominated by old Cypress trees 5 or more feet in diameter at their bases, and 2-2.5 feet in diameter 6-7 feet above ground. Community occurs within a former mill pond basin and thus is artificially influenced.

F) SIZE: Estimated at 90 acres.

NATURAL COMMUNITY DESCRIPTION - CT-2

A) NAME OF COMMUNITY: Coastal Plain Small Stream Swamp (Blackwater Subtype).

B) VEGETATION STRUCTURE: Mixed Cypress-hardwood canopy with moderate understory over a patchy herbaceous ground layer.

C) DOMINANTS AND IMPORTANT SPECIES:

Canopy: <u>Taxodium distichum</u>, <u>Nyssa biflora</u>, <u>Fraxinus</u> <u>pennsylvanica</u>, <u>Ulmus americana</u>, <u>Acer rubrum</u>, <u>Liquidambar</u> <u>styraciflua</u>. <u>Taxodium</u> is not as dominant here as in the Cypress--Gum community.

Understory: Persea palustris, Sabal minor, Ilex opaca.

D) POSITION IN THE LANDSCAPE AND RELATION TO OTHER COMMUNITIES: Community occurs in the floodplain upstream from the former mill pond Cypress-Gum Swamp community (CT-1) and grades at the low slope into upland pine/hardwood communities.

E) QUALITY AND CONDITION: Apparently a typical example with mature forest.

F) SIZE: Estimated at 25 acres.

SPECIAL STATUS SPECIES PRESENT PLANTS

NC: <u>Ponthieva</u> <u>racemosa</u> (CT-1).

POTENTIAL FOR OTHER SPECIAL STATUS SPECIES: Moderate; site not visited during current survey, but contains suitable habitat for <u>Carex chapmanii</u> and <u>Scirpus lineatus</u>.

OTHER NOTEWORTHY SPECIES OR FEATURES PRESENT: State Watch List species: <u>Dryopteris ludoviciana</u> (CT-1) and <u>Senecio glabellus</u> (CT-1), which also may occur in CT-2.

SITE INTEGRITY: Site impacted by creation and discontinuance of mill pond.

AVERAGE DBH OF CANOPY TREES CT-1: No information available. CT-2: No information available. MAXIMUM DBH OF CANOPY TREES CT-1: <u>Taxodium distichum</u> - 2-2.5 feet. CT-2:

FIRE REGIME: Site not on a controlled burn rotation; communities not fire dependent.

OTHER DISTURBANCES OR IMPACTS: None known (but see next item).

ADJACENT LAND USE: Upland area south of the floodplain from Old Piney Green Road to ca. 0.3 mile east has been heavily impacted as part of the Engineer Training Area, and is the site of a proposed landfill.

SIGNIFICANCE OF SITE: The old-growth Cypress stand in the old mill pond is a rare remnant of a once-common community.

PROTECTION CONSIDERATIONS AND MANAGEMENT NEEDS: Landfill site needs to be monitored to insure that erosion, debris and pollution do not enter the Wallace Creek drainage system.

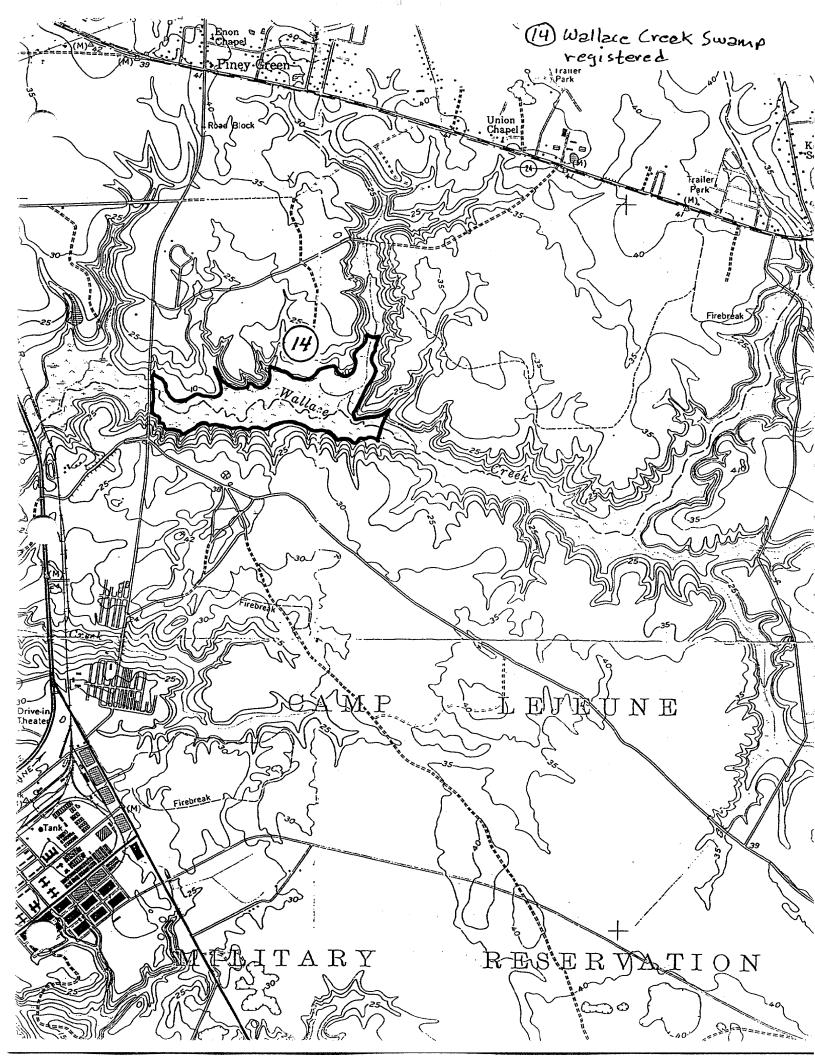
SURVEY BOUNDARIES: Stream channels surveyed eastward to Smith Road and northward to highway NC 24 (by J.H. Moore and/or S. Leonard in 1984).

PRIORITY FOR FURTHER STUDY: The small stream swamp community (CT-2) needs additional survey work to determine extent, quality and special status species present.

OTHERS KNOWLEDGEABLE ABOUT SITE: S. Leonard, J.H. Moore.

PLANT SPECIES LIST

Codes: D = stratal dominant or codominant; d = subdominant; * = special status species; x = present.


CT-1: Cypress-Gum Swamp. CT-2: Coastal Plain Small Stream Swamp (Blackwater Subtype).

	<u>CT-1</u>	<u>CT-2</u>
CANOPY		
Acer rubrum	x	x
Fraxinus pennsylvanica	x	x
Liquidambar styraciflua		x
Nyssa biflora	x	d
Taxodium distichum	D	đ
Ulmus alata	x	x

	<u>CT-1</u>	<u>CT-2</u>
UNDERSTORY	•	
Ilex opaca		x
SHRUBS		
Persea palustris	x	x
Sabal minor	x	x
VINES		
Anisostichus capreolata	x	
Berchemia scandens	x	
Decumaria barbara	x	
Parthenocissus quinquefolia	x	
Smilax glauca	x	
Toxicodendron radicans	x	
HERBS		
Asplenium asplenioides	x	•
Boehmeria cylindrica	x	
Dryopteris ludoviciana	х	
Galium sp.	x	
Glyceria striata	x	
Hydrocotyle sp.	x	
Hypoxis hirsuta var. leptocarpa	x	
Onoclea sensibilis	х	
Panicum spp.	x	
Poa spp.	x	
Polygonum spp.	x	
Polystichum acrostichoides	x,	
Ponthieva racemosa	*	
Potamogeton pulcher		X
Ranunculus spp.	x	
Saururus cernuus		x
Senecio glabellus	x	
Viola spp.	x	

1.9 Î

NOTE: It is likely that most of the herbs in CT-1 will also be found in CT-2.

APPENDIX C FIELD DATA SHEETS SURFACE WATER AND SEDIMENT SAMPLES

Sample Type: Fish Benthic Macroinverdebrate Geliument Orp Spoon Other:	Station Number: 6 - BHOI-Sw/SD Date: 10/2/92 Time: 16:20 Sample Type: Fish Benthic Macroinvertebrate (Sediment) Surface Water)
Riparian Zono/Instream Features Predominant Surrounding Land Use: Forest Industrial Other:	Sample Type. The Benchic Matternet Control of Sample Type.
Riparian Zono/Instream Features Predominant Surrounding Land Use: Forest Industrial Other:	
Predominant Surrounding Land Use: Forest Industrial Other: Vegetation Type: NE Estimated Stream Width: NE m Est. Stream Depth: NE m Riffle: ME m Pool: MZ Estimated Stream Width: ME m Est. Stream Depth: .ME m Riffle: ME m Pool: MZ m Stream Type: Cold Water Warm Water Velocity: .ME Channelized: Yes No Canopy Cover: Open Partly Open Partly Shaded Shaded Sediment/Substrate: Sediment Odors: Normal Sewage Petroleum Chemical Anaerobic Other:	NOT AVAILABLE
Predominant Surrounding Land Use: Forest Industrial Other: Vegetation Type: NE Estimated Stream Width: NE m Est. Stream Depth: NE m Riffle: ME m Pool: MZ Estimated Stream Width: ME m Est. Stream Depth: .ME m Riffle: ME m Pool: MZ m Stream Type: Cold Water Warm Water Velocity: .ME Channelized: Yes No Canopy Cover: Open Partly Open Partly Shaded Shaded Sediment/Substrate: Sediment Odors: Normal Sewage Petroleum Chemical Anaerobic Other:	
Stream Type: Cold Water Warm Water Velocity: ME Channelized: Yes No Canopy Cover: Open Partly Open Partly Shaded Shaded Sediment/Substrate: Stediment/Substrate: Sediment/Substrate: Nome Other: Image: Cold Water Nome Nome <t< td=""><td>Predominant Surrounding Land Use: Forest Industrial Other:</td></t<>	Predominant Surrounding Land Use: Forest Industrial Other:
Sediment/Substrate: Sediment Odors: Normal Sewage Petroleum Chemical Anaerobic Orne Other:	Stream Type: Cold Water Warm Water Velocity: <u>NE</u> Channelized: Yes No
Water: Temp.: NE C Dissolved Oxygen: NE mg/L pH: WE S.U. Conductivity: ME Micromhos/cm Salinity: NE ppt Water Odors: Normal Sewage Petroleum Chemical None Other: Water Surface Oils: Slick Sheen None Other:	Sediment/Substrate: Sediment Odors: Normal Sewage Petroleum Chemical Anaerobic None Other: Sediment Oils: Absent Slight Moderate Ponar Grab: Number of Jars Filled with Sediments Replicate: #1:
Turbidity: Clear Slightly Turbid Turbid Opaque Water Color: NE Weather Conditions: NE Tide: In Out	<u>Water:</u> Temp.: <u>NE</u> C Dissolved Oxygen: <u>NE</u> mg/L pH: <u>WE</u> S.U. Conductivity: <u>NE</u> Micromhos/cm Salinity: <u>NE</u> ppt
Comments: DEV \subset DEV CV	Turbidity: Clear Slightly Turbid Turbid Opaque Water Color: <u>NE</u> Weather Conditions: <u>NE</u> Tide: In Out

SAMPLING STATION CHARACTERIZATION DATA SHEET

Time: 14:54 Date: \$128/92 Station Number: 6-BHO2-5w/SD Surface Water Sample Type: Fish **Benthic Macroinvertebrate** Sediment SAMPLING EQUIPMENT: Seine Gill Net Ponar Kemmerer Sediment Corer Spoon Other: NOT AVAILABLE Riparian Zone/Instream Features Predominant Surrounding Land Use: Forest Industrial Other: Vegetation Type: N F _m Est. Stream Depth: <u>0, 6</u> m Riffle: <u>NE</u>m Run: <u>NE</u>m Pool: <u>NE</u>m Estimated Stream Width: 1.5 Velocity: NE Stream Type: Cold Water Warm Water Channelized: Yes 🗶 No ___ Partly Open Canopy Cover: Partly Shaded Shaded Open 9090 Sediment/Substrate: Sediment Odors: Normal Sewage Petroleum Chemical Anaerobic (None) Other: Sediment Oils: Absent Slight Moderate Profuse Ponar Grab: Number of Jars Filled with Sediments Replicate: #1: _____ Replicate #2: ____ Replicate #3: ____ Sediment Description: Hard Packed Sand, minimum organics Water: 4.6 24 Temp.: C Dissolved Oxygen: _mg/L pH: 65 S.U. Conductivity: 115 0.0 Micromhos/cm Salinity: ppt Water Odors: Normal None Sewage Petroleum Chemical Other: Water Surface Oils: Slick Sheen None Turbidity: Clear Slightly Turbid Turbid Opaque Water Color: Weather Conditions: Tide: In Out Comments: NE = Not Evaluated

SAMPLING STATION	CHARACTERIZATION DATA	SHEET

Station Number: 6-8401-5		SAMPLING STATION	CHARACTER	IZATION DATA	SHEET	•
SAMPLING EQUIPMENT: Seine Gill Net Ponar Kemmerer Sediment Corer Spoon Other: NOT AVAILABLE NOT AVAILABLE Riparian Zonofinstream Features Predominant Surrounding Land Use: Protect Offer Velocity: NE Cold Weter Weter Weter Steam Type: Cold Weter Schiment Olin: Theorem <t< th=""><th>Station Number: 6-8</th><th>Het-SwisD</th><th>Date: 8</th><th>129192</th><th>Time:</th><th>09:35</th></t<>	Station Number: 6-8	Het-SwisD	Date: 8	129192	Time:	09:35
Riperies Zenofinstream Peatures Predominant Surrounding Land Use: Prediment Surrounding Land Use: Stream Type: Cold Water Water Odors: Open Petrologen Stephter Marker Stellment Olars: Stephter Preduce:	Sample Type: Fish	Benthic Mac	roinvertebrate	Sedime	nt)	Surface Water
Riparian Zone/Instream Features Predominant Surrounding Land Use: Stream Type: Old Vater Warm Water Velocity: NE Canopy Cover: Open Partly Shaded Stream Type: Cold Water Warm Water Sediment Substrate: Sediment Other: Sediment Other: Alsen Sediment Other: Alsen Sediment Other: Sediment Other: <th>SAMPLING EQUIPMENT:</th> <th>Seine Gill Net Pon</th> <th>ar Kemmerer</th> <th>Sediment Corer</th> <th>Spoon Other:</th> <th>;</th>	SAMPLING EQUIPMENT:	Seine Gill Net Pon	ar Kemmerer	Sediment Corer	Spoon Other:	;
Predominant Surrounding Land Use: Forest Industrial Other: Vegetation Type: Diciduous + rees Estimated Stream Width: NE m Riffle: NE m Run: NE m Pool: NE m Stream Type: Cold Water Warm Water Velocity: NE Channelized: Yes No Stream Type: Cold Water Warm Water Velocity: NE Channelized: Yes No Canopy Cover: Open Partly Open Partly Shaded Shaded Shaded Sediment/Substrate: Sediment Odors: Normal Sewage Petroleum Chemical Anserobic None Other:		\mathcal{N}	DT AL) AILA BL	E	
Estimated Stream Width: \underline{NE}_{m} Est. Stream Depth: \underline{NE}_{m} Riffle: \underline{NE}_{m} Run: \underline{NE}_{m} Pool: \underline{NE}_{m} Stream Type: Cold Water Warm Water Velocity: \underline{NE}_{m} Channelized: Yes No Canopy Cover: Open Partly Open Partly Shaded Shaded S5% Sediment Substrate: Sediment Odors: Normal Sewage Petroleum Chemical Anaerobic None Other: Sediment Oils: Absent Slight Moderate Profuse Ponar Grab: Number of Jars Filled with Sediments Replicate: #1: Replicate #2: Replicate #3: Sediment Description: $\underline{Very fine 5ilt / Sand Mixed with Organi CS}$ Nater: Premp.:						
Stream Type: Cold Water Warm Water Velocity: NE Channelized: Yes	Predominant Surrounding La	and Use: Forest	1	al Other:		
Canopy Cover: Open Partly Open Partly Shaded Shaded Sediment/Substrate: Sediment/Substrate: Sediment Odors: Normal Sewage Petroleum Chemical Anaerobic None Other: Sediment Oils: Absent Slight Moderate Profuse Ponar Grab: Number of Jars Filled with Sediments Replicate: #1: Replicate #2: Replicate #3: Sediment Description: Very fine 5:14/Sand Mixed with Organics Sediment Description: Very fine 5:14/Sand Mixed with Organics Nater: Pemp.:	Predominant Surrounding La Vegetation Type:	ind Use: Forest	rels		p	
Sediment Odors: Normal Sewage Petroleum Chemical Anaerobic None Other:	Predominant Surrounding La Vegetation Type: Estimated Stream Width: <u>N</u>	Em Est. Stream Dep	re es oth: <u>NE</u> m	Riffle: <u>NE</u> m		•
Seediment Oils: Absent Slight Moderate Profuse Ponar Grab: Number of Jars Filled with Sediments Replicate: #1: Replicate #2: Replicate #3: Replicate #3: Replicate #3: Sediment Description: Very fine 511 / Sand Mixed with Organics Organics Supervise Vater: Very Vater: Very Very Very Vater: Vater Odors: Normal Sewage Petroleum Chemical None Other: Moderate Ieaf /// Vater Surface Oils: Slightly Turbid Turbid Opaque <td>Predominant Surrounding La Vegetation Type: <u>De C</u> Estimated Stream Width: <u>N</u> Stream Type: Cold Water Canopy Cover: Open</td> <td>E m Est. Stream Dep Warm Water</td> <td>r<u>e e.S</u> oth: <u>N E_</u>m Velocity:</td> <td>Riffle: <u>NE</u>m <u>NE</u>Ch Partly Shaded</td> <td>annelized: Ye</td> <td>es No</td>	Predominant Surrounding La Vegetation Type: <u>De C</u> Estimated Stream Width: <u>N</u> Stream Type: Cold Water Canopy Cover: Open	E m Est. Stream Dep Warm Water	r <u>e e.S</u> oth: <u>N E_</u> m Velocity:	Riffle: <u>NE</u> m <u>NE</u> Ch Partly Shaded	annelized: Ye	es No
Ponar Grab: Number of Jars Filled with Sediments Replicate: #1: Replicate #2: Replicate #3: Sediment Description: <u>Very fine 5:14/Sand Mixed with Organics</u> <u>Water:</u> Nemp.: 23.D_C Dissolved Oxygen: <u>5.8</u> mg/L pH: <u>6.8</u> S.U. Sonductivity: <u> 40</u> Micromhos/cm Salinity: ppt Water Odors: Normal Sewage Petroleum Chemical None Other: <u>Moderate leaf / 1</u> Water Surface Oils: Slick Sheen <u>None</u> wrbidity: <u>Clear</u> Slightly Turbid Turbid Opaque Water Color: <u>Browy</u>	Predominant Surrounding La Vegetation Type: Dec Estimated Stream Width: <u>N</u> Stream Type: Cold Water Canopy Cover: Open Sediment/Substrate:	E m Est. Stream Dep Warm Water Partly Open	oth: <u>N E.</u> m Velocity:	Riffle: \underline{NE} m \underline{NE} Ch Partly Shaded $\overline{85\%}$	annelized: Ye	es No ded
Sediment Description: <u>Very fine Silt/Sand Mixed with Organics</u> <u>Water:</u> Temp.: <u>3.0</u> C Dissolved Oxygen: <u>5.8</u> mg/L pH: <u>6.8</u> S.U. Conductivity: <u>140</u> Micromhos/cm Salinity: <u>ppt</u> Water Odors: Normal Sewage Petroleum Chemical None Other: <u>Moderate leaf</u> Water Surface Oils: Slick Sheen <u>None</u> Water Surface Oils: Slick Sheen <u>None</u>	Predominant Surrounding La Vegetation Type: De C Estimated Stream Width: <u>N</u> Stream Type: Cold Water Canopy Cover: Open Sediment/Substrate: Sediment Odors: Normal	Ind Use: Forest Forest E m Est. Stream Dep Warm Water Partly Open Sewage Petroleum	n Chemical	Riffle: \underline{NE} m \underline{NE} Ch Partly Shaded $\overline{85\%}$ Anaerobic (annelized: Ye Sha None Other	es No ded r:
Vater: Demp.: <u>23.0</u> C Dissolved Oxygen: <u>5.8</u> mg/L pH: <u>6.8</u> S.U. Conductivity: <u>/40</u> Micromhos/cm Salinity: <u>ppt</u> Water Odors: Normal Sewage Petroleum Chemical None Other: <u>Moderate leaf</u> Vater Surface Oils: Slick Sheen <u>None</u> wrbidity: <u>Clear</u> Slightly Turbid Turbid Opaque Water Color: <u>Browm</u>	Predominant Surrounding La Vegetation Type: <u>De C</u> Estimated Stream Width: <u>N</u> Stream Type: Cold Water Canopy Cover: Open Sediment/Substrate: Sediment Odors: Normal Sediment Oils: (Abs	Ind Use: Forest CIUCUS + E m Est. Stream Dep Warm Water Partly Open Sewage Petroleum ent SI	n Chemical	Riffle: NE m NE Ch Partly Shaded 85% Anaerobic (Moderate	annelized: Ye Sha None Other Pr	28 No ded r: rofuse
Cemp.: 23.0 C Dissolved Oxygen: 5.8 mg/L pH: 6.8 S.U. Conductivity: /40 Micromhos/cm Salinity: ppt Vater Odors: Normal Sewage Petroleum Chemical None Other: Moderate leaf 1 Vater Odors: Normal Sewage Petroleum Chemical None Other: Moderate leaf 1 Vater Surface Oils: Slick Sheen None Vater Color: Brown	Predominant Surrounding La Vegetation Type: Dec Estimated Stream Width: <u>N</u> Stream Type: Cold Water Canopy Cover: Open <u>Sediment/Substrate</u> : Sediment Odors: Normal Sediment Oils: Abs Ponar Grab: Number of Jars F	Ind Use: Forest CIUCUS + E m Est. Stream Dep Warm Water Partly Open Sewage Petroleum ent St Silled with Sediments	oth: <u>N E</u> m Velocity: Chemical light Replicate: #1:	Riffle: <u>NE</u> m <u>NE</u> Ch Partly Shaded 85% Anaerobic Moderate Replicate	annelized: Ye Sha None Other P: #2: Repl	28No ded r: rofuse licate #3:
Conductivity: <u>140</u> Micromhos/cm Salinity: <u>ppt</u> Water Odors: Normal Sewage Petroleum Chemical None Other: <u>Moderate leaf</u> Water Surface Oils: Slick Sheen <u>None</u> urbidity: <u>Clear</u> Slightly Turbid Turbid Opaque Water Color: <u>Browm</u>	Predominant Surrounding La Vegetation Type: <u>) (</u> Estimated Stream Width: <u>N</u> Stream Type: Cold Water Canopy Cover: Open <u>Sediment/Substrate</u> : Sediment Odors: Normal Sediment Oils: (Abs Ponar Grab: Number of Jars F	Ind Use: Forest CIUCUS + E m Est. Stream Dep Warm Water Partly Open Sewage Petroleum ent St Silled with Sediments	oth: <u>N E</u> m Velocity: Chemical light Replicate: #1:	Riffle: <u>NE</u> m <u>NE</u> Ch Partly Shaded 85% Anaerobic Moderate Replicate	annelized: Ye Sha None Other P: #2: Repl	28No ded r: rofuse licate #3:
Vater Odors: Normal Sewage Petroleum Chemical None Other: <u>Moderate leaf</u> Vater Surface Oils: Slick Sheen <u>None</u> urbidity: <u>Clear</u> Slightly Turbid Turbid Opaque Water Color: <u>Brown</u>	Predominant Surrounding La Vegetation Type: Dec Estimated Stream Width: <u>N</u> Stream Type: Cold Water Canopy Cover: Open Sediment/Substrate: Sediment Odors: Normal Sediment Odors: Normal Sediment Oils: Abs Ponar Grab: Number of Jars F Sediment Description: <u>Very</u> <u>Water</u> :	end Use: Forest	n Chemical ight Replicate: #1: 5 and M	Riffle: \underline{NE} m \underline{NE} Ch Partly Shaded $\overline{85\%}$ Anaerobic (Moderate $\underline{Replicate}$ \underline{NE} with	Annelized: Ye Sha None Other P: #2: Repl 7 0 rga	es No ded r: rofuse licate #3: #1 i < S
Water Surface Oils: Slick Sheen None Wrbidity: Clear Slightly Turbid Turbid Opaque Water Color: Brown	Predominant Surrounding La Vegetation Type: Dec Estimated Stream Width: <u>N</u> Stream Type: Cold Water Canopy Cover: Open Sediment/Substrate: Sediment Odors: Normal Sediment Odors: Normal Sediment Oils: Abs Ponar Grab: Number of Jars F Sediment Description: <u>Ver</u> y <u>Vater</u> :	end Use: Forest	n Chemical ight Replicate: #1: 5 and M	Riffle: \underline{NE} m \underline{NE} Ch Partly Shaded $\overline{85\%}$ Anaerobic (Moderate $\underline{Replicate}$ \underline{NE} with	Annelized: Ye Sha None Other P: #2: Repl 7 0 rga	es No ded r: rofuse licate #3: #1 i < S
Vater Surface Oils: Slick Sheen None Purbidity: Clear Slightly Turbid Turbid Opaque Water Color: Brown	Predominant Surrounding La Vegetation Type: Dec Estimated Stream Width: <u>N</u> Stream Type: Cold Water Canopy Cover: Open Sediment/Substrate: Sediment Odors: Normal Sediment Odors: Normal Sediment Oils: Abs Ponar Grab: Number of Jars H Sediment Description: <u>Very</u> <u>Water</u> : Semp.: <u>23.0</u>	Lend Use: Forest CIUCUS + Em Est. Stream Dep Warm Water Partly Open Sewage Petroleum ent SI Filled with Sediments fine Silt / C Dissolved Oxygen	$r \cdot e \cdot e \cdot s$ oth: <u>N E</u> m Velocity: n Chemical light Replicate: #1: $5 \cdot a \cdot c \cdot f \cdot s$ Salinity:	Riffle: <u>NE</u> m <u>NE</u> Ch Partly Shaded 85% Anaerobic (Moderate <u>Replicate</u> <u>IXed with</u>	Annelized: Ye Sha None Other #2: Repl A <u>organ</u> H:	es No ded r: rofuse licate #3: #1 i < S 8S.U.
	Predominant Surrounding La Vegetation Type: Dec Estimated Stream Width: <u>N</u> Stream Type: Cold Water Canopy Cover: Open Sediment/Substrate: Sediment Odors: Normal Sediment Odors: Normal Sediment Oils: Abs Ponar Grab: Number of Jars F Sediment Description: <u>Very</u> <u>Water</u> : Comp.: <u>23.0</u> Conductivity: <u>140</u>	Ind Use: Forest Fores	$r \cdot e \cdot e \cdot s$ oth: <u>N E</u> m Velocity: n Chemical light Replicate: #1: $5 \cdot a \cdot c \cdot f \cdot s$ Salinity:	Riffle: <u>NE</u> m <u>NE</u> Ch Partly Shaded 85% Anaerobic (Moderate <u>Replicate</u> <u>IXed with</u>	Annelized: Ye Sha None Other #2: Repl A <u>organ</u> H:	es No ded r: rofuse licate #3: #1 i < S 8S.U.
Veather Conditions: <u>Shight rain</u> Tide: In Out	Predominant Surrounding La Vegetation Type: Dec Estimated Stream Width: <u>N</u> Stream Type: Cold Water Canopy Cover: Open Sediment/Substrate: Sediment Odors: Normal Sediment Oils: Abs Ponar Grab: Number of Jars F Sediment Description: <u>Very</u> <u>Water:</u> Conductivity: <u>/40</u> Water Odors: Normal	end Use: Forest Fores	r e e.s $r e e.s$ $r e$	Riffle: <u>NE</u> m <u>NE</u> Ch Partly Shaded 85% Anaerobic (Moderate <u>Replicate</u> <u>IXed with</u>	Annelized: Ye Sha None Other #2: Repl A <u>organ</u> H:	es No ded r: rofuse licate #3: #1 i < S 8S.U.
	Predominant Surrounding La Vegetation Type: Dec Estimated Stream Width: <u>N</u> Stream Type: Cold Water Canopy Cover: Open Sediment/Substrate: Sediment Odors: Normal Sediment Odors: Normal Sediment Description: <u>Very</u> <u>Vater</u> : Femp.: <u>23.0</u> Conductivity: <u>140</u> Water Surface Oils: Slick Water Surface Oils: Slick	Ind Use: Forest Fores	ree.S oth: <u>NE</u> m Velocity: n Chemical hight Replicate: #1: <u>5 and M</u> : <u>5.8</u> Salinity: m Chemical <u>None</u> Turbid	Riffle: <u>NE</u> m <u>NE</u> Ch Partly Shaded 85% Anaerobic (Moderate Replicate 1.Xed with mg/L pf	Annelized: Ye Sha None Other #2: Repl h Crga H: Drga H: Other: <u>Mode</u>	es _ No ded r: rofuse licate #3: $m_i \leq \leq$ 8S.U. erate leaf //

	6-BHO	3-5-/50	Date:	28/92		Time:	
Sample Type:	Fish	Benthic Macro	- 7 oinvertebrate	Sedim	ent	Surface T	Water
SAMPLING EQUI	PMENT: Sei	ine Gill Net Pona	r Kemmerer	Sediment Core) Spoon	Other:	
	a	-					1
•				01 E			
		NOT	AVAILA	GLC			
						×	
						-	[]
							21
	H						
iparian Zone/Instr	eam Features						
		Jse: Forest	Industria	al Other	······································		Į
redominant Surrou	unding Land U		Industria	al Other	:		¥
redominant Surrou egetation Type: <u> </u>	unding Land U Tardwood					/ <u>A_m</u> Pool:	
redominant Surrou egetation Type: <u>/</u> stimated Stream W	unding Land U Jardwood Vidth: <u>J.6</u> n	trees	h: <u>D. 9_</u> m		Run: <u>N</u>		•
redominant Surrou egetation Type: <u>/</u> stimated Stream W ream Type: Col	unding Land U Hardwood Vidth: <u>H. 6</u> n Id Water W	HTees n Est. Stream Dept	h: <u>0,9</u> m Velocity: <u>N</u>	Riffle: <u>NA</u> m	Run: <u>N</u>		•
redominant Surrou egetation Type: <u></u> stimated Stream W ream Type: Col anopy Cover:	unding Land U Jardwood Vidth: <u>J.6</u> n Id Water W Open	Hrees n Est. Stream Dept Varm Water	h: <u>0,9</u> m Velocity: <u>N</u>	Riffle: <u>NA</u> m	Run: <u>N</u>	: Yes 🗶	•
redominant Surrou egetation Type: <u>/</u> stimated Stream W ream Type: Col anopy Cover: ediment/Substrate:	unding Land U <u>Jardwood</u> Vidth: <u>J. 6</u> n Id Water W Open	HT-ES n Est. Stream Dept Varm Water Partly Open	h: <u>0,9</u> m Velocity: <u>N</u>	Riffle: <u>NA</u> m EC Partly Shaded	Run: <u>M</u>	Yes X Shaded	No
redominant Surrou egetation Type: <u>/</u> stimated Stream W cream Type: Col anopy Cover: <u>ediment/Substrate</u> : ediment Odors: 1	unding Land U <u>Jardwood</u> Vidth: <u>J.6</u> n Id Water W Open : Normal Sev	frees n Est. Stream Dept Varm Water Partly Open wage Petroleum	h: <u>0,9</u> m Velocity: <u>M</u>	Riffle: <u>NA</u> m Partly Shaded Anserobic	Run: <u>M</u> Channelized	Yes X Shaded	No
redominant Surrou egetation Type: <u>/</u> stimated Stream W ream Type: Col anopy Cover: ediment/Substrate: ediment Odors: N ediment Oils:	unding Land U <u>fardwood</u> Vidth: <u>J.6</u> n Id Water W Open : Normal Sev Absent	Hrees n Est. Stream Dept Varm Water Partly Open wage Petroleum Sli	h: <u>0,9</u> m Velocity: <u>M</u> Chemical ght	Riffle: <u>NA</u> m E C Partly Shaded Anaerobic Moderate	Run: <u>M</u> Channelized	Yes X Shaded Other: Profuse	No
redominant Surrou egetation Type: <u>/</u> stimated Stream W ream Type: Col anopy Cover: ediment/Substrate: ediment Odors: M ediment Oils:	unding Land U <u>Jardwood</u> Vidth: <u>J.6</u> n Id Water W Open Normal Sev Absent er of Jars Filled	frees n Est. Stream Dept Varm Water Partly Open wage Petroleum Sli d with Sediments	h: <u>D</u> , <u>9</u> m Velocity: <u>M</u> Chemical ght Replicate: #1:	Riffle: <u>NA</u> m Partly Shaded Anaerobic Moderate Replicat	Run: <u>M</u> Phannelized None e #2:	Yes X Shaded Other: Profuse Replicate #3:	No
redominant Surrou egetation Type: <u>/</u> stimated Stream W ream Type: Col anopy Cover: ediment/Substrate: diment Odors: M ediment Oils: onar Grab: Numbe diment Description	unding Land U <u>Jardwood</u> Vidth: <u>J.6</u> n Id Water W Open Normal Sev Absent er of Jars Filled	Hrees n Est. Stream Dept Varm Water Partly Open wage Petroleum Sli	h: <u>D</u> , <u>9</u> m Velocity: <u>M</u> Chemical ght Replicate: #1:	Riffle: <u>NA</u> m Partly Shaded Anaerobic Moderate Replicat	Run: <u>M</u> Phannelized None e #2:	Yes X Shaded Other: Profuse Replicate #3:	No
redominant Surrou egetation Type: <u>/</u> stimated Stream W cream Type: Col anopy Cover: ediment/Substrate: ediment Odors: M ediment Oils: onar Grab: Numbe diment Description ater:	unding Land U <u>Hardwood</u> Vidth: <u>J.6</u> n Id Water W Open Normal Sev Absent or of Jars Filled n: <u>A lot</u> a	frees n Est. Stream Dept Varm Water Partly Open wage Petroleum Sli d with Sediments	h: <u>D</u> , <u>q</u> _m Velocity: <u>M</u> Chemical ght Replicate: #1: <u>CLEP</u>	Riffle: <u>NA</u> m Partly Shaded Anaerobic Moderate Replicat	Run: <u>M</u> Channelized	Yes X Shaded Other: Profuse Replicate #3:	No
redominant Surrou egetation Type: <u>/</u> stimated Stream W tream Type: Col anopy Cover: ediment/Substrate: ediment Odors: M ediment Oils: bonar Grab: Numbe diment Description ater: mp.: <u>27.5</u>	unding Land U <u>fardwood</u> Vidth: <u>4.6</u> n Id Water W Open Normal Sev Absent or of Jars Filled n: <u>A lot</u> <u>c</u>	frees n Est. Stream Dept Varm Water Partly Open wage Petroleum Sli d with Sediments	h: <u>D</u> , <u>9</u> m Velocity: <u>M</u> Chemical ght Replicate: #1: <u>Cheb</u> r 7.89	Riffle: m Partly Shaded Anserobic Moderate Replicat	Run: <u>M</u> Channelized None e #2:	Yes X Shaded Other: Profuse Replicate #3:	No
redominant Surrou egetation Type: <u>/</u> stimated Stream W ream Type: Col anopy Cover: ediment/Substrate: ediment Odors: M ediment Odors: M ediment Description ater: mp.: <u>27.5</u> nductivity: <u>4</u>	unding Land U <u>fardwood</u> Vidth: <u>4.6</u> n Id Water W Open Normal Sev Absent or of Jars Filled n: <u>A lot</u> <u>c</u> <u>ao</u> <u>c</u>	<u>frees</u> n Est. Stream Dept Varm Water Partly Open wage Petroleum Sli d with Sediments of organic Dissolved Oxygen: Micromhos/cm	h: <u>D</u> , <u>9</u> m Velocity: <u>M</u> Chemical ght Replicate: #1: <u></u>	Riffle: C Partly Shaded Anserobic Moderate Replicat	Run: <u>M</u> Phannelized None e #2: pH:	Yes X Shaded Other: Profuse Replicate #3:	No
aream Type: Col anopy Cover: Col ediment/Substrate: Col ediment Odors: N ediment Oils: Col onar Grab: Numbe ediment Description Col ater: Col mp.: Col ater Odors: N	unding Land U 4ardwood 4ardwood Vidth: 4.6 m Id Water W Open Normal Sev Absent or of Jars Filled n: <u>A lot</u> <u>c</u> 20 Normal Sev	<u>frees</u> n Est. Stream Dept Varm Water Partly Open wage Petroleum Sli d with Sediments <u>of organic</u> Dissolved Oxygen: <u>Micromhos/cm</u> wage Petroleum	h: <u>D</u> , <u>9</u> m Velocity: <u>M</u> Chemical ght Replicate: #1: <u></u>	Riffle: C Partly Shaded Anserobic Moderate Replicat	Run: <u>M</u> Phannelized None e #2: pH:	Yes X Shaded Other: Profuse Replicate #3:	No
redominant Surrou egetation Type: <u>/</u> stimated Stream W tream Type: Col anopy Cover: ediment/Substrate: ediment Odors: N ediment Oils: onar Grab: Numbe diment Description ater: mp.: <u>07.5</u> nductivity: <u>4</u> ater Odors: N	unding Land U <u>fardwood</u> Vidth: <u>4.6</u> n Id Water W Open Normal Sev Absent or of Jars Filled n: <u>A lot</u> <u>c</u> <u>ao</u> Lormal Se Slick	hrees h Est. Stream Dept Varm Water Partly Open Wage Petroleum Sli d with Sediments of organic Dissolved Oxygen: Micromhos/cm wage Petroleum Sheen	h: <u>0</u> , <u>9</u> m Velocity: <u>M</u> Chemical ght Replicate: #1: <u>0</u> <u>7.89</u> Salinity: Chemics None	Riffle: C Partly Shaded Anserobic Moderate Replicat	Run: M Phannelized None we #2: pH: ppt Other: _	Yes X Shaded Other: Profuse Replicate #3:	No

 \bigcap

:	SAMPLING STATION CHARACTERIZATION DATA SHEET 6-8405-50 8/28/92 Station Number: 6-8405-50 Date: 8/26/92 Sample Type: Fish Benthic Macroinvertebrate Sediment SAMPLING EQUIPMENT: Seine Gill Net Ponar Kemmerer Sediment Corer Spoon Other:
	NOT AVAILABLE
1	<u>Riparian Zone/Instream Features</u> Predominant Surrounding Land Use: Forest Industrial Other:
5	Estimated Stream Width:m Est. Stream Depth:m Riffle:NA_m Run: <u>NA_</u> m Pool: <u>NA_</u> m Stream Type: Cold Water Warm Water Velocity: Channelized: YesX No Canopy Cover: Open Partly Open Partly Shaded Shaded
s I	Sediment/Substrate: Sediment Odors: Normal Sediment Odors: Normal Sediment Odors: Normal Sediment Oils: Absent Slight Moderate Ponar Grab: Number of Jars Filled with Sediments Replicate: #1: Sediment Description: Schody
. <u>v</u>	Water: Femp.:C Dissolved Oxygen:mg/L pH:6.8 S.U.
W W T	Conductivity: <u>/35</u> Micromhos/cm Salinity: <u>0.0</u> ppt Water Odors: Normal Sewage Petroleum Chemical None Other: Water Surface Oils: Slick Sheen None Surbidity: Clear Slightly Turbid Turbid Opaque Water Color: <u>5/19h Hy</u> Amber Weather Conditions: <u>8/26/12: Surny appx 32°C: 8/28/92: Raining</u> Tide: In Out Weather Conditions: <u>8/26/12: Surny appx 32°C: 8/28/92: Raining</u> Tide: <u>1n</u> Out

	6-BHO6-5	D	Date:	ZATION DATA 28/92 266/92		ne: <u>09!0.</u>
Sample Type:	Fish	Benthic Macroir	vertebrate	Sedime	nt (Surface Wat
SAMPLING EQU	JIPMENT: Seine	Gill Net Ponar	Kemmerer	Sediment Corer	Spoon Oth	ner:
	1					
				•		
		1.1				
				A		
		\sim	07 F	LVAILA	DLE	
				•		
	M					
	n .					
<u>Riparian Zone/Inst</u>	ream Features					
<u>Riparian Zone/Inst</u> Predominant Surro		Forest	Industrial	Other:		
Predominant Surro Vegetation Type:	ounding Land Use: 1 st hor. 2010-91	usses; Andh	orizon-dec	ciduous and		
Predominant Surro Vegetation Type: _ Estimated Stream	ounding Land Use: 1 st hor. <i>con- 91</i> Width: <u>_0</u> _m	Est. Stream Depth:	<u>NE</u> m	<u>ciduous and</u> Riffle: <u>NA</u> m	Run: <u>NA</u>	m Pool: NI
Predominant Surro Vegetation Type: _ Estimated Stream	ounding Land Use: 1 st hor. <i>con- 91</i> Width: <u>_0</u> _m	usses; Andh	<u>NE</u> m	<u>ciduous and</u> Riffle: <u>NA</u> m	Run: <u>NA</u>	m Pool: NI
Predominant Surro Vegetation Type: _ Estimated Stream	ounding Land Use: 1 st hor. <u>20n-91</u> Width: <u>0</u> m old Water Warr	Est. Stream Depth:	or izon - dei <u>NE</u> m Velocity: <u>NE</u>	<u>ciduous and</u> Riffle: <u>NA</u> m	Run: <u>MA</u> annelized:	m Pool: NI
Predominant Surro Vegetation Type: _ Estimated Stream Stream Type: Co Canopy Cover:	ounding Land Use: <u>1st hor.20n-91</u> Width: <u>0</u> m old Water Warr Open	Est. Stream Depth: n Water	or izon - dei <u>NE</u> m Velocity: <u>NE</u>	Cid <i>uous and</i> Riffle: <u>NA</u> m Ch	Run: <u>MA</u> annelized:	_m Pool: <u>N</u> YesNo
Predominant Surre Vegetation Type: _ Estimated Stream Stream Type: Co Canopy Cover: Sediment/Substrat	ounding Land Use: <u>1st hor. 20n-91</u> Width: <u>0</u> m old Water Warr Open <u>e:</u>	Est. Stream Depth: n Water Partly Open	or <i>īzon - dec NE</i> m Zelocity: <u>NE</u>	Riffle: <u>NA</u> m Ch Partly Shaded	Run: <u>MA</u> annelized: S	_m Pool: <u>N</u> Yes No Shaded
Predominant Surre Vegetation Type: _ Estimated Stream Stream Type: Co Canopy Cover: Sediment/Substrat	ounding Land Use: <u>1st hor. 20n-91</u> Width: <u>0</u> m old Water Warr Open <u>e:</u>	e Petroleum	or izon - dec <u>NE</u> m Velocity: <u>NE</u>	Riffle: <u>NA</u> m Ch Partly Shaded	Run: <u>MA</u> annelized: S	_m Pool: <u>N</u> Yes No Shaded
Predominant Surre Vegetation Type: _ Estimated Stream Stream Type: Co Canopy Cover: <u>Sediment/Substrat</u> Sediment Odors: Sediment Oils:	ounding Land Use: <u>1st hor.2on-91</u> Width: <u>o</u> 9 m old Water Warr Open <u>e:</u> Normal Sewage Absent	e Petroleum	or <i>izon - dec</i> <u>NE</u> m Velocity: <u>NE</u> Chemical	Ciduous and Riffle: <u>NA</u> m Ch Partly Shaded Anaerobic Moderate	Run: <u>MA</u> annelized: S None Ot	_m Pool: <u>N</u> Yes No Shaded her: Profuse
Predominant Surro Vegetation Type: _ Estimated Stream Stream Type: Co Canopy Cover: Sediment/Substrat Sediment Odors: Sediment Oils: Ponar Grab: Numb	bunding Land Use: 1 st hor. 2on-91 Width:m old Water Warr Open e: Normal Sewage Absent er of Jars Filled wit	Est. Stream Depth: n Water Partly Open e Petroleum Sligh th Sediments R	<u>NE</u> m <u>NE</u> m Velocity: <u>NE</u> Chemical tt Ceplicate: #1: _	Ciduous and Riffle: <u>NA</u> m Ch Partly Shaded Anaerobic Moderate Replicate	Run: <u>// A</u> annelized: None Ot #2: R	_m Pool: <u>N</u> Yes No Shaded her: Profuse ceplicate #3:
Predominant Surre Vegetation Type: _ Estimated Stream Stream Type: Co Canopy Cover: <u>Sediment/Substrat</u> Sediment Odors: Sediment Oils: Ponar Grab: Numb Sediment Description	bunding Land Use: 1 st hor. 2on-91 Width:m old Water Warr Open e: Normal Sewage Absent er of Jars Filled wit	e Petroleum	<u>NE</u> m <u>NE</u> m Velocity: <u>NE</u> Chemical tt Ceplicate: #1: _	Ciduous and Riffle: <u>NA</u> m Ch Partly Shaded Anaerobic Moderate Replicate	Run: <u>// A</u> annelized: None Ot #2: R	_m Pool: <u>N</u> Yes No Shaded her: Profuse ceplicate #3:
Predominant Surre Vegetation Type: _ Estimated Stream Stream Type: Co Canopy Cover: Sediment/Substrate Sediment Odors: Sediment Odors: Sediment Oils: Ponar Grab: Numb Sediment Description	bunding Land Use: 1 st hor. 2on - 91 Width:m old Water Warr Open e: Normal Sewage Absent er of Jars Filled with on: <u>Locso</u> 5	Est. Stream Depth: n Water Partly Open e Petroleum Sligh th Sediments R and y Jubs	Chemical t t t t t t t t t t t t t	Ciduous and Riffle: <u>NA</u> m Ch Partly Shaded Anaerobic Moderate <u>Replicate</u>	Run: <u>// A</u> annelized: S None Ot #2: R <u>Mater</u>	_m Pool: <u>N</u> Yes No Shaded her: Profuse eplicate #3: ia_1_
Predominant Surre Vegetation Type: _ Estimated Stream Stream Type: Co Canopy Cover: <u>Sediment/Substrat</u> Sediment Odors: Sediment Odors: Sediment Oils: Ponar Grab: Numb Sediment Description <u>Water</u> : Pemp.:23	bunding Land Use: 1 st hor. 2on-91 Width: 0 m old Water Warr Open e: Normal Sewage Absent er of Jars Filled wite on: 10550 5	Est. Stream Depth: n Water Partly Open e Petroleum Sligh th Sediments R and y Subs	<u>NE</u> m <u>NE</u> m Velocity: <u>NE</u> Chemical t teplicate: #1: <u>4raTa</u> wri 5. 85	Ciduous and Riffle: <u>NA</u> m Ch Partly Shaded Anaerobic Moderate <u>Replicate</u> <u>Horganic</u>	Run: <u>MA</u> annelized: <u>None</u> Ot #2: R <u>Mater</u> a:6.2	_m Pool: <u>N</u> Yes No Shaded her: Profuse eplicate #3: ia_1_
Predominant Surre Vegetation Type: _ Estimated Stream S Stream Type: Co Canopy Cover: Sediment/Substrate Sediment Odors: Sediment Odors: Sediment Oils: Ponar Grab: Numb Sediment Description Water: Pemp.:34 Conductivity:	bunding Land Use: 1 st hor. 2on-91 Width:m old Water Warr Open e: Normal Sewage Absent er of Jars Filled with on: $\angle o_{650}$ 5 C Di /20	Est. Stream Depth: n Water Partly Open e Petroleum Sligh th Sediments R And y Jub S issolved Oxygen:	or $i = on - dec$ <u>NE</u> m Velocity: <u>NE</u> Chemical t teplicate: #1: <u>$4raTa$</u> <u>wit</u> <u>5.</u> 85 Salinity: <u>6</u>	Ciduous and Riffle: <u>NA</u> m Ch Partly Shaded Anaerobic Moderate Replicate <u>horganic</u> <u>mg/L</u> pH D.D	Run: <u>// A</u> annelized: S None Ot #2: R <u>Mater</u> f: 	_m Pool: <u>N</u> Yes No Shaded her: Profuse ceplicate #3: ia. I S
Predominant Surre Vegetation Type: _ Estimated Stream Stream Type: Co Canopy Cover: Sediment/Substrate Sediment Odors: Sediment Odors: Sediment Description Water: Conductivity: Water Odors:	bunding Land Use: 1 st hor. 2on - 91 Width:m old Water Warr Open e: Normal Sewage Absent er of Jars Filled with on: <u>Locso</u> 5 C Di 120 Normal Sewage	Est. Stream Depth: n Water Partly Open Partly Open Partly Open Partly Open Slighth Slighth Sediments Encl (1) Dub S issolved Oxygen: Micromhos/cm Se Petroleum	<u>NE</u> m <u>NE</u> m Velocity: <u>NE</u> Chemical t teplicate: #1: <u>4raTe</u> wr <u>5. 85</u> Salinity: <u>C</u>	Ciduous and Riffle: <u>NA</u> m Ch Partly Shaded Anaerobic Moderate Replicate Horganic D.D None	Run: <u>// A</u> annelized: None Ot #2: R <u>Mater</u> a: ppt Other:	_m Pool: <u>N</u> Yes No Shaded her: Profuse eplicate #3: ia. I S
Predominant Surre Vegetation Type: _ Estimated Stream Stream Type: Co Canopy Cover: Sediment/Substrate Sediment Odors: Sediment Odors: Sediment Description Water: Pemp.:	bunding Land Use: 1 st hor. 2on-91 Width:m old Water Warr Open e: Normal Sewage Absent on: <u>Locso</u> 5 <u>C</u> Di <u>120</u> Normal Sewage Slick	Est. Stream Depth: n Water Partly Open Partly Open Partly Open Partly Open Slighth Sli	<u>NE</u> m <u>NE</u> m Velocity: <u>NE</u> Chemical t teplicate: #1: <u>4raTe</u> wr <u>5. 85</u> Salinity: <u>C</u>	Ciduous and Riffle: <u>NA</u> m Ch Partly Shaded Anaerobic Moderate Replicate Horganic D.D None	Run: <u>// A</u> annelized: None Ot #2: R <u>Mater</u> a: ppt Other:	_m Pool: <u>N</u> Yes No Shaded her: Profuse eplicate #3: ia. I S
Predominant Surre Vegetation Type: Estimated Stream Stream Type: Co Canopy Cover: Sediment/Substrate Sediment Odors: Sediment Odors: Sediment Description Water: Temp.: Conductivity: Water Odors: I Water Surface Oils: Furbidity:	bunding Land Use: 1 st hor. 2on - 91 Width: 0 m old Water Warr Open e: Normal Sewage Absent er of Jars Filled wite on: $\angle 0650$ 5 C Di /20 Normal Sewage Slick Slick Slightly	Est. Stream Depth: n Water Partly Open Partly Open Partly Open Partly Open Slighth Sli	<u>NE</u> m <u>NE</u> m Velocity: <u>NE</u> Chemical t teplicate: #1: <u>4raTe</u> wr <u>5. 85</u> Salinity: <u>C</u>	Ciduous and Riffle: <u>NA</u> m Ch Partly Shaded Anaerobic Moderate Replicate <u>Morganic</u> D.D None	Run: <u>// A</u> annelized: None Ot #2: R <u>Mater</u> a: ppt Other:	_m Pool: <u>N</u> Yes No Shaded her: Profuse eplicate #3: ia. I S

 $\mathbb{C} \mathbb{I}$

SAMPLING STATION CHARACTERIZATION DATA SHEET	e de la la
Station Number: 6-BH87-5W/SD Date: 8/25/92 Time: 09:45	_
Sample Type: Fish Benthic Macroinvertebrate Sediment Surface Water	
SAMPLING EQUIPMENT: Seine Gill Net Ponar Kemmerer Sediment Corer Spoon Other:	-
	Ħ
Downstream	
Riparian Zone/Instream Features	
Predominant Surrounding Land Use: Forest Industrial Other:	
Vegetation Type: <u>Cedar evergreams</u>	
Estimated Stream Width: 33.5m Est. Stream Depth: 1.4 m Riffle: <u>NAm</u> Run: <u>AAm</u> Pool: <u>NAm</u>	
Estimated Stream Width: <u>33</u> , <u>5</u> m Est. Stream Depth: <u>1,4</u> m Riffle: <u>NA</u> m Run: <u>A</u> M Pool: <u>NA</u> m Stream Type: Cold Water Warm Water Velocity: <u>NE</u> Channelized: Yes X No_	
Stream Type: Cold Water Warm Water Velocity: NE Channelized: Yes_X No Canopy Cover: Open Partly Open Partly Shaded Shaded	
Stream Type: Cold Water Warm Water Velocity: <u>NE</u> Channelized: Yes X No_	
Stream Type: Cold Water Warm Water Velocity: <u>NE</u> Channelized: Yes X No Canopy Cover: Open Partly Open Partly Shaded Shaded 5-870	
Stream Type: Cold Water Warm Water Velocity: <u>NE</u> Channelized: Yes X No Canopy Cover: Open Partly Open Partly Shaded Shaded 5-870 Sediment/Substrate:	
Stream Type: Cold Water Warm Water Velocity: NE Channelized: Yes X No Canopy Cover: Open Partly Open Partly Shaded Shaded 5-870 Sediment/Substrate: Sediment Odors: Normal Sewage Petroleum Chemical Anaerobic None Other:	
Stream Type: Cold Water Warm Water Velocity: NE Channelized: Yes _X No _ Canopy Cover: Open Partly Open Partly Shaded Shaded 5-8% Sediment/Substrate: Sediment Odors: Normal Sewage Petroleum Chemical Anserobic None Other: Sediment Oils: Absent Slight Moderate Profuse	
Stream Type: Cold Water Warm Water Velocity: NE Channelized: Yes X No Canopy Cover: Open Partly Open Partly Shaded Shaded 5-8% Sediment/Substrate: Sediment Odors: Normal Sewage Petroleum Chemical Anserobic None Other:	
Stream Type: Cold Water Warm Water Velocity: NE Channelized: Yes X No Canopy Cover: Open Partly Open Partly Shaded Shaded 5-8% Sediment/Substrate: Sediment Odors: Normal Sewage Petroleum Chemical Anserobic None Other:	
Stream Type: Cold Water Warm Water Velocity: NE Channelized: Yes X No Canopy Cover: Open Partly Open Partly Shaded Shaded 5-8% Sediment/Substrate: Sediment Odors: Normal Sewage Petroleum Chemical Anaerobic None Other: Sediment Oils: Absent Slight Moderate Profuse Ponar Grab: Number of Jars Filled with Sediments Replicate: #1: Replicate #2: Replicate #3: Sediment Description: $5:11 + /mucK$ Water: Temp.: $5=25^{\circ}$: $B=265^{\circ}$ Dissolved Oxygen: $5=3.15^{\circ}$, $B=0.3$ mg/L pH: $5=6.2^{\circ}$, $B=6.6$ S.U.	
Stream Type: Cold Water Warm Water Velocity: \underline{NE} Channelized: Yes \underline{X} No Canopy Cover: Open Partly Open Partly Shaded Shaded 5-8% Sediment/Substrate: Sediment Odors: Normal Sewage Petroleum Chemical Anaerobic None Other: Sediment Oils: Absent Slight Moderate Profuse Ponar Grab: Number of Jars Filled with Sediments Replicate: #1: Replicate #2: Replicate #3: Sediment Description: $5:1+/MUCK$ Water: Temp: $5=25^{\circ}$: $B=265^{\circ}$ Dissolved Oxygen: $5=3.15$; $B=0.3$ mg/L pH: $5=6.2$; $B=6.46$ S.U. Conductivity: $B=14,566$ Micromhos/cm Salinity: $5=1.0$; $B=7.5$ ppt	
Stream Type:Cold WaterWarm WaterVelocity: NE Channelized:YesXNoCanopy Cover:OpenPartly OpenPartly OpenPartly ShadedShaded5-8%Sediment/Substrate:Sediment Odors:NormalSewagePetroleumChemicalAnaerobicNoneOther:Sediment Odors:NormalSewagePetroleumChemicalAnaerobicNoneOther:	
Stream Type:Cold WaterWarm WaterVelocity: NE Channelized:Yes X NoCanopy Cover:OpenPartly OpenPartly ShadedShaded5-8%Sediment/Substrate:Sediment/Substrate:Sediment/Substrate:NoneOther:Sediment Odors:NormalSewagePetroleumChemicalAnaerobicNoneOther:Sediment Oils:AbsentSlightModerateProfusePonar Grab:Number of Jars Filled with SedimentsReplicate: #1:Replicate #2:Replicate #3:Sediment Description: $5:1H/MUCK$ Water:Temp.: $5=250$; $B=2650$; Dissolved Oxygen: $5=3.15$; $B=0.3$ mg/LpH: $5=6.2$; $B=6.6$, S.U.Conductivity: $B=12,350$ Micromhos/cmSalinity: $5=1.0$; $B=7.5$ pptWater Odors:NormalSewagePetroleumChemicalNoneWater Surface Oils:SlickSheenNone	
Stream Type:Cold WaterWarm WaterVelocity: NE Channelized:Yes X No _Canopy Cover:OpenPartly OpenPartly ShadedShaded5-8%Sediment/Substrate:Sediment/Substrate:Sediment/Substrate:NoneOther:Sediment Odors:NormalSewagePetroleumChemicalAnaerobicNoneOther:Sediment Oils:AbsentSlightModerateProfusePonar Grab:Number of Jars Filled with SedimentsReplicate: #1:Replicate #2:Replicate #3:Sediment Description: $5:11 + /muc K$ Water:Temp:: $5:250$: $B:2650$:Dissolved Oxygen: $5:3.15$: $B=0.3$ mg/LpH: $5:6.2$; $B:6.6$ $S.U.$ Conductivity: $H=1450$:Micromhos/cmSalinity: $5:1.0$: $B=7.5$ pptWater Odors:NormalSewagePetroleumChemicalNoneOther:Water Surface Oils:SlickSheenNoneTurbidTurbidOpaqueWater Color: $Tacoric$	
Stream Type:Cold WaterWarm WaterVelocity: NE Channelized:Yes X No _Canopy Cover:OpenPartly OpenPartly ShadedShaded5-8%Sediment/Substrate:Sediment/Substrate:Sediment/Substrate:NoneOther:Sediment Odors:NormalSewagePetroleumChemicalAnaerobicNoneOther:Sediment Odors:NormalSewagePetroleumChemicalAnaerobicNoneOther:Sediment Olis:AbsentSlightModerateProfusePonar Grab:Number of Jars Filled with SedimentsReplicate: #1:Replicate #2:Replicate #3:Sediment Description: $5:11 + / M u \in K$ Water:Temp:: $5:250$; $B:2650$; Dissolved Oxygen: $5:3.15$; $B:0.3$ mg/LpH: $5:6.2$; $B:6.6$ S.U.Conductivity: $B:26332$;	

\sim of \sim of \sim
SAMPLING STATION CHARACTERIZATION DATA SHEET
Station Number: $b - R \vee 1 - 50$ Date: $8/25/92$ Time: 17:10
Sample Type: Fish Benthic Macroinvertebrate Sediment Surface Water
SAMPLING EQUIPMENT: Seine Gill Net Ponar Kemmerer Sediment Corer Spoon Other:
NOT AVAILABLE
Riparian Zone/Instream Features
Predominant Surrounding Land Use: Forest Industrial Other:
Vegetation Type: Evergreen brush, 9090 fines, 1090 deciduous trees
Estimated Stream Width: D. bl.m Est. Stream Depth: NA m Riffle: NA m Run: NA m Pool: NA m
Stream Type: Cold Water Warm Water Velocity: <u>NA</u> Channelized: Yes No
Canopy Cover: Open Partly Open Partly Shaded Shaded
Sediment/Substrate:
Sediment Odors: Normal Sewage Petroleum Chemical Anaerobic None Other:
Sediment Oils: Absent Slight Moderate Profuse
Ponar Grab: Number of Jars Filled with Sediments Replicate: #1: Replicate #2: Replicate #3:
Sediment Description: Dark Brown, NOt Sand, NOT Clay
Water:
Temp.: NA C Dissolved Oxygen: NA mg/L pH: NA S.U.
· · · · · · · · · · · · · · · · · · ·
Water Odors: Normal Sewage Petroleum Chemical None Other:
Water Surface Oils: Slick Sheen None
Turbidity: Clear Slightly Turbid Turbid Opaque Water Color: <u>A/A</u>
Weather Conditions: <u>Sunny</u> , <u>>32°C</u> Tide: In Out
Comments: No water in stream bed; NA= Not Applicable

· •

SAMPLING STATION CHARACTERIZATION DATA SHEET
Station Number: 6-RV2-5W/SD Date: 8/25/92 Time: 16:30
Sample Type: Fish Benthic Macroinvertebrate Sediment Surface Water
SAMPLING EQUIPMENT: Seine Gill Net Ponar Kemmerer Sediment Corer Spoon Other:
NOT AVAILABLE
AVAILADEL
· · · · ·
a
Riparian Zone/Instream Features
Predominant Surrounding Land Use: Forest Industrial Other:
Vegetation Type: 600 pine, 409 deciduo US
Estimated Stream Width: 0.6 m Est. Stream Depth: 0.15 m Riffle: MAm Run: MA m Pool: 6.1 m
Stream Type: Cold Water Warm Water Velocity: <u>NE</u> Channelized: Yes No_
Canopy Cover: Open Partly Open Partly Shaded Shaded
10070
<u>Sediment/Substrate:</u> Sediment Odors: Normal Sewage Petroleum Chemical Anaerobic (None) Other:
Sediment Odors: Normal Sewage Petroleum Chemical Anaerobic None Other: Sediment Oils: Absent Slight Moderate Profuse
Ponar Grab: Number of Jars Filled with Sediments Replicate: #1: Replicate #2: Replicate #3:
Sediment Description: <u>Pine</u> <u>predles</u>
······································
Water:
Temp.: <u>NE</u> C Dissolved Oxygen: <u>NE</u> mg/L pH: <u>NE</u> S.U.
Conductivity:NEMicromhos/cm Salinity:NEppt
Water Odors: Normal Sewage Petroleum Chemical None Other:
Water Surface Oils: Slick Sheen None
Turbidity: Clear Slightly Turbid Turbid Opaque Water Color: <u>NE</u>
Weather Conditions: Sunny, > 32°C Tide: In Out
Comments: NA= Not Applicable; NE= Not Evoluated

· · · id :

•

SAMPLING STATION CHARACTERIZATION DATA SHEET 8/24 Time: 16:30 Station Number: _ 6-RV3-SW/SD Date: Surface Water Benthic Macroinvertebrate Sample Type: Fish ediment SAMPLING EQUIPMENT: Seine Gill Net Ponar Kemmerer (Sediment Corer) Spoon Other: NOT AVAILABLE Riparian Zone/Instream Features Predominant Surrounding Land Use: Forest Industrial Other: Vegetation Type: Pine and deciduous trees Estimated Stream Width: 1.5 m Est. Stream Depth: NE m Riffle: NA m Run: NA m Pool: NA m Velocity: NE Stream Type: Cold Water Warm Water Channelized: Yes 🔀 No ___ Canopy Cover: Partly Open Partly Shaded Shaded Open Sediment/Substrate: Sediment Odors: Normal Anaerobic None Petroleum Chemical Other: Sewage Sediment Oils: Slight Moderate Profuse Absent Ponar Grab: Number of Jars Filled with Sediments Replicate: #1: _____ Replicate #2: _____ Replicate #3: _____ Sediment Description: Sandy, upper layer of organics, no mottling Water: Temp: NE C Dissolved Oxygen: NE mg/L pH: NE S.U. _Micromhos/cm Salinity: <u>NE</u> Conductivity: _____NE ppt Water Odors: Normal Sewage Chemical Petroleum None Other: Water Surface Oils: Slick Sheen (None) Water Color: NE Turbidity: Turbid Clear Slightly Turbid Opaque Tide: In Out Comments: NA= Not Applicable; NE= Not Analyzed

		ING STATION C				(F 1 - D
Station Number:			Date:			Vime: <u>15:30</u>
Sample Type:	Fish	Benthic Macroi		Sedime		Surface Wates
SAMPLING EQUIPM	IENT: Seine	Gill Net Ponar	Kemmerer (Sediment Corer	Spoon C)ther:
	Я					
		NOT			<u>, </u>	
		1101	AVAI	LHOLD	•	
			•			
	tt					
	·					
•		al <u>ka</u>				
Riparian Zone/Instrea						
Predominant Surroun	ding Land Use:		Industria	ıl Other	, 	
Predominant Surroun Vegetation Type:	ding Land Use:	iduous 4	rels			
Predominant Surroun	ding Land Use:	iduous 4	rels			m Pool:
Predominant Surroun Vegetation Type:	ding Land Use:	id UOUS 4 Est. Stream Dept	rees h: <u>NA</u> m	Riffle: <u>NA</u> m		
Predominant Surroun Vegetation Type: <u>P</u> Estimated Stream Wig Stream Type: Cold	ding Land Use: 1.0, dec dth: <u>1.8 m</u> Water War	id UOUS 4 Est. Stream Dept	r-ea_5 h: <u>NA_</u> m Velocity: <u>A</u>	Riffle: <u>NA</u> m	hannelized:	Yes X No
Predominant Surroun Vegetation Type: <u>P</u> Estimated Stream Wie Stream Type: Cold Canopy Cover: C	ding Land Use: 1.0, dec dth: <u>1.8 m</u> Water War	Est. Stream Dept	r-ea_5 h: <u>NA_</u> m Velocity: <u>A</u>	Riffle: <u>NA</u> m JA C	hannelized:	Yes X No
Predominant Surroun Vegetation Type: <u>P</u> Estimated Stream Wid Stream Type: Cold Canopy Cover: C Sediment/Substrate:	ding Land Use: 1.0, dec dth: <u>1.8</u> m Water Warn Open	Est. Stream Dept m Water Partly Open	rees h: <u>NA</u> m Velocity: <u>A</u>	Riffle: <u>NA</u> m JA C Partly Shaded	hannelized:	Yes X No
Predominant Surroun Vegetation Type: <u>P</u> Estimated Stream Wie Stream Type: Cold Canopy Cover: C	ding Land Use: 1.0, dec dth: <u>1.8</u> m Water Warn Open	Est. Stream Dept m Water Partly Open	h: <u>NA</u> m Velocity: <u>A</u>	Riffle: <u>NA</u> m JA C Partly Shaded	hannelized:	Yes X No
Predominant Surroun Vegetation Type: <u>P</u> Estimated Stream Wid Stream Type: Cold Canopy Cover: C <u>Sediment/Substrate</u> : Sediment Odors: No	ding Land Use: 1.0, dec dth: <u>1.8</u> m Water Warn Open ormal Sewag Absent	Est. Stream Dept m Water Partly Open ge Petroleum Slig	h: <u>NA</u> m Velocity: <u>A</u> Chemical	Riffle: <u>MA</u> m JA C Partly Shaded Anaerobic Moderate	None	Yes X No Shaded · Other: Profuse
Predominant Surroun Vegetation Type: <u>P</u> Estimated Stream Wid Stream Type: Cold Canopy Cover: C Sediment/Substrate: Sediment Odors: No Sediment Oils: Ponar Grab; Number of	ding Land Use: 1.0, dec dth: <u>1.8</u> m Water Warn Open ormal Sewag Absent of Jars Filled with	Est. Stream Dept m Water Partly Open ge Petroleum Slig ith Sediments	h: <u>NA</u> m Velocity: <u>A</u> Chemical ght Replicate: #1:	Riffle: <u>MA</u> m JA C Partly Shaded Anaerobic Moderate Replicat	None	Yes X No . Shaded · Other: Profuse Replicate #3:
Predominant Surroun Vegetation Type: <u>P</u> Estimated Stream Wid Stream Type: Cold Canopy Cover: C Sediment/Substrate: Sediment Odors: No Sediment Oils: Ponar Grab; Number of	ding Land Use: 1.0, dec dth: <u>1.8</u> m Water Warn Open ormal Sewag Absent of Jars Filled with	Est. Stream Dept m Water Partly Open ge Petroleum Slig ith Sediments	h: <u>NA</u> m Velocity: <u>A</u> Chemical ght Replicate: #1:	Riffle: <u>MA</u> m JA C Partly Shaded Anaerobic Moderate Replicat	None	Yes X No . Shaded · Other: Profuse Replicate #3:
Predominant Surroun Vegetation Type: <u>P</u> Estimated Stream Wid Stream Type: Cold Canopy Cover: C Sediment/Substrate: Sediment Odors: No Sediment Oils: Ponar Grab: Number of Sediment Description:	ding Land Use: 1.0, dec dth: <u>1.8</u> m Water Warn Open ormal Sewag Absent of Jars Filled with	Est. Stream Dept m Water Partly Open ge Petroleum Slig ith Sediments	h: <u>NA</u> m Velocity: <u>A</u> Chemical ght Replicate: #1:	Riffle: <u>MA</u> m JA C Partly Shaded Anaerobic Moderate Replicat	None	Yes X No . Shaded · Other: Profuse Replicate #3:
Predominant Surroun Vegetation Type: <u>P</u> Estimated Stream Wid Stream Type: Cold Canopy Cover: C Sediment/Substrate: Sediment Odors: No Sediment Oils: Ponar Grab: Number of Sediment Description: <u>Water</u> :	ding Land Use: <u>n0</u> , <u>d0</u> dth: <u>f.8</u> m Water War Open ormal Sewag <u>Absent</u> of Jars Filled wi <u>Sundy</u>	Est. Stream Dept m Water Partly Open Petroleum Slig ith Sediments	rees h: <u>NA</u> m Velocity: <u>A</u> Chemical ght Replicate: #1: <u>ayer D</u>	Riffle: <u>NA</u> m JA C Partly Shaded Anaerobic Moderate Replicat	None None $ke #2: \$ iCS + n	Yes X No Shaded Other: Profuse Replicate #3: o mottling
Predominant Surroun Vegetation Type: <u>P</u> Estimated Stream Wid Stream Type: Cold Canopy Cover: C Sediment/Substrate: Sediment Odors: No Sediment Odors: No Sediment Oils: Ponar Grab: Number of Sediment Description: <u>Water</u> : Femp.: <u>NA</u>	ding Land Use: 1.0, dec dth: <u>1.8</u> m Water Warn Dpen ormal Sewag Absent of Jars Filled with <u>Sundy</u>	id UOUS Est. Stream Dept mWater Partly Open Petroleum Slig ith Sediments UPper	rees h: <u>NA</u> m Velocity: <u>A</u> Chemical ght Replicate: #1: ayer D	Riffle: <u>NA</u> m JA C Partly Shaded Anaerobic Moderate Replicat CIGAN	None	Yes X No Shaded Other: Profuse Replicate #3: o mottling
Predominant Surroun Vegetation Type: <u>P</u> Estimated Stream Wio Stream Type: Cold Canopy Cover: C Sediment/Substrate: Sediment Odors: No Sediment Odors: No Sediment Oils: Ponar Grab: Number of Sediment Description: <u>Vater</u> : Femp.: <u>IVA</u> Conductivity: <u>Y</u>	ding Land Use: 1.0 , dec dth: <u>1.8 m</u> Water Warn Dpen Drmal Sewag Absent of Jars Filled with Sundy C I	Est. Stream Dept m Water Partly Open Partly Open Slig ith Sediments Upper	reas h: <u>NA</u> m Velocity: <u>N</u> Chemical ght Replicate: #1: <u>ayer</u> D <u>NA</u> Salinity:	Riffle: <u>NA</u> m JA C Partly Shaded Anaerobic Moderate E Organ mg/L	None	Yes X No Shaded Other: Profuse Replicate #3: o mothing MAS.U.
Predominant Surroun Vegetation Type: <u>P</u> Estimated Stream Wie Stream Type: Cold Canopy Cover: C Sediment/Substrate: Sediment Odors: No Sediment Oils: Ponar Grab: Number of Sediment Description: <u>Water</u> : Cemp.: <u>///A</u> Conductivity: <u>//</u> Water Odors: No	ding Land Use: 1.0, dec dth: <u>1.8</u> m Water Warn Dpen Drmal Sewag Absent of Jars Filled with Sundy C I V/A rmal Sewa	Est. Stream Dept m Water Partly Open Partly Open Slig ith Sediments Upper	reas h: <u>NA</u> m Velocity: <u>N</u> Chemical ght Replicate: #1: <u>ayer</u> D <u>NA</u> Salinity:	Riffle: <u>NA</u> m JA C Partly Shaded Anaerobic Moderate E Organ mg/L	None	Yes X No Shaded Other: Profuse Replicate #3: o mottling
Predominant Surroun Vegetation Type: <u>P</u> Estimated Stream Wid Stream Type: Cold Canopy Cover: C Sediment/Substrate: Sediment Odors: No Sediment Odors: No Sediment Description: <u>Vater</u> : Conductivity: <u>YA</u> Conductivity: <u>YA</u> Vater Odors: No	ding Land Use: 1.0, dec dth: <u>1.8</u> m Water Warn Dpen ormal Sewag <u>Absent</u> of Jars Filled with <u>Sundy</u> <u>C</u> I <u>MA</u> rmal Sewa Slick	Est. Stream Dept m Water Partly Open Partly Open Slig ith Sediments Upper Dissolved Oxygen: Micromhos/cm ge Petroleum Sheen	h: <u>NA</u> m Velocity: <u>N</u> Chemical ght Replicate: #1: <u>ayer D</u> Salinity: <u></u> Chemica None	Riffle: <u>NA</u> m JA C Partly Shaded Anaerobic Moderata E Organo mg/L NA al None	None ics ics pH: ppt Other:	Yes X No Shaded Other: Profuse Replicate #3: o mothing MAS.U.
Predominant Surroun Vegetation Type: <u>P</u> Estimated Stream Wie Stream Type: Cold Canopy Cover: C Sediment/Substrate: Sediment Odors: No Sediment Oils: Ponar Grab: Number of Sediment Description: <u>Water</u> : Cemp.: <u>///A</u> Conductivity: <u>//</u> Water Odors: No	ding Land Use: 1.0, dec dth: <u>1.8</u> m Water Warn Open ormal Sewag Absent of Jars Filled with Sundy C I 1.4 rmal Sewa Slick Slight	Est. Stream Dept m Water Partly Open Partly Open Partly Open Slig ith Sediments Upper Dissolved Oxygen: Micromhos/cm ge Petroleum Sheen	reas h: <u>NA</u> m Velocity: <u>N</u> Chemical ght Replicate: #1: <u>ayer</u> D' <u>NA</u> Salinity: <u></u> Chemica None Turbid	Riffle: <u>NA</u> m JA C Partly Shaded Anaerobic Moderata E Organo mg/L NA al None Opaque	None ic ic pH:	Yes No Shaded Other: Profuse Replicate #3: o mothing IAS.U.

281 (C. 1977)

Station Number:	6-RV5-:	sw/sn	Date:	8/25/92	Time: 16:05
Sample Type:	Fish	Benthic Macro		Sediment	Surface Water
SAMPLING EQU				Sediment Corer Spoo	
-					
				•	
•				$\rho_{i} =$	
		NOT	AVAILA	022	
× •.					
			•		
	H			, 	
				······································	
Riparian Zone/Inst	ream Features				
		Forest	Industria	I Other:	
Predominant Surro				· · · · · · · · · · · · · · · · · · ·	
Predominant Surro Vegetation Type:	Deciduous	trees	and	Dines	
Vegetation Type:				•	NAm Pool: 9 m
Vegetation Type: _ Estimated Stream V	Width: <u>•9 m</u>]	Est. Stream Depth	: <u>NE</u> m	Riffle: <u>AIA</u> m Run:	<u>NA</u> m Pool: <u>-9</u> m ed: Yes No
Vegetation Type: Estimated Stream V	Width: <u>•9</u> m 1 Id Water (Warn	Est. Stream Depth	: <u>NE</u> m Velocity: <u>/</u>	Riffle: <u>AIA</u> m Run:	NA m Pool: <u>9</u> m ed: Yes No _ Shaded
Vegetation Type: _ Estimated Stream V Stream Type: Co Canopy Cover:	Width: <u>•9 m</u> 1 Id Water Warn Open	Est. Stream Depth	: <u>NE</u> m Velocity: <u>/</u>	Riffle: ALA_m Run: <u>VONE</u> Channeliz	ed: Yes X No _
Vegetation Type: _ Estimated Stream V Stream Type: Co Canopy Cover: <u>Sediment/Substrate</u>	Width: <u>•9</u> m 1 Id Water Warn Open	Est. Stream Depth	: <u>NE</u> m Velocity: <u>/</u>	Riffle: ALA_m Run: <u>VONE</u> Channeliz Partly Shaded	ed: Yes X No Shaded
Vegetation Type: _ Estimated Stream V Stream Type: Co Canopy Cover: <u>Sediment/Substrate</u> Sediment Odors: 1	Width: <u>•9</u> m 1 Id Water Warn Open Normal Sewage	Est. Stream Depth	: <u>NE</u> m Velocity: <u>/</u> Chemical	Riffle: ALA m Run: <u>VONE</u> Channeliz Partly Shaded Anaerobic None	ed: Yes X No _ Shaded) Other:
Vegetation Type: Estimated Stream V Stream Type: Co Canopy Cover: <u>Sediment/Substrate</u> Sediment Odors: I Sediment Oils:	Width: <u>•9</u> m 1 Id Water Warn Open Normal Sewage	Est. Stream Depth	: <u>NE</u> m Velocity: <u>/</u> Chemical at	Riffle: ALA m Run: <u>VONE</u> Channeliz Partly Shaded Anaerobic None Moderate	ed: Yes X No Shaded) Other: Profuse
Vegetation Type: Estimated Stream V Stream Type: Co Canopy Cover: <u>Sediment/Substrate</u> Sediment Odors: I Sediment Oils: Ponar Grab: Numbe	Width: <u>•9</u> m 1 Id Water Warn Open Normal Sewage Absent er of Jars Filled wit	Est. Stream Depth Water Partly Open Petroleum Sligh h Sediments H	: <u>NE</u> m Velocity: <u>/</u> Chemical at Replicate: #1:	Riffle: AJA_m Run: <u>VONE</u> Channeliz Partly Shaded Anaerobic None Moderate Replicate #2:	ed: Yes X No Shaded) Other: Profuse Replicate #3:
Vegetation Type: Estimated Stream V Stream Type: Co Canopy Cover: <u>Sediment/Substrate</u> Sediment Odors: I Sediment Oils: Ponar Grab: Numbe	Width: <u>•9</u> m 1 Id Water Warn Open Normal Sewage Absent er of Jars Filled wit	Est. Stream Depth Water Partly Open Petroleum Sligh h Sediments H	: <u>NE</u> m Velocity: <u>/</u> Chemical at Replicate: #1:	Riffle: AJA_m Run: <u>VONE</u> Channeliz Partly Shaded Anaerobic None Moderate Replicate #2:	ed: Yes X No Shaded) Other: Profuse
Vegetation Type: Estimated Stream W Stream Type: Co Canopy Cover: <u>Sediment/Substrate</u> Sediment Odors: I Sediment Oils: Ponar Grab: Numbe Sediment Description <u>Water</u> :	Width: <u>9</u> m 1 Id Water Warn Open Normal Sewage Absent er of Jars Filled witt n: <u>Sandy</u>	Est. Stream Depth Water Partly Open Petroleum Sligh h Sediments F MUD, M	: <u>NE</u> m Velocity: <u>/</u> Chemical at Replicate: #1: edium	Riffle: AJA m Run: <u>VONE</u> Channeliz Partly Shaded Anaerobic None Moderate Replicate #2: <u>Srown</u> Ca	ed: Yes X No
Vegetation Type: Estimated Stream V Stream Type: Co Canopy Cover: <u>Sediment/Substrate</u> Sediment Odors: I Sediment Odors: I Sediment Oils: Ponar Grab: Numbe Sediment Description <u>Water</u> : Temp.:N	Width: <u>9</u> m l Id Water Warn Open Normal Sewage <u>Absent</u> er of Jars Filled witt n: <u>Sandy</u> <u>C</u> Dis	Est. Stream Depth Water Partly Open Petroleum Sligh A Sediments F MUD, M	: <u>NE</u> m Velocity: <u>/</u> Chemical at Replicate: #1: <u>edium</u>	Riffle: AJA m Run: <u>VoNE</u> Channeliz Partly Shaded Anaerobic None Moderate Replicate #2: <u>Brown</u> Ca	ed: Yes X No Shaded) Other: Profuse Replicate #3:
Vegetation Type: Estimated Stream V Stream Type: Co Canopy Cover: <u>Sediment/Substrate</u> Sediment Odors: I Sediment Oils: Ponar Grab: Numbe Sediment Description <u>Water</u> : Temp.: <u>N</u> Conductivity:	Width: <u>9</u> m 1 Id Water Warn Open Normal Sewage Absent or of Jars Filled with n: <u>Sandy</u> <u>E</u> C Dis <u>NE</u> 1	Est. Stream Depth Water Partly Open Petroleum Sligh Modents Ssolved Oxygen: Micromhos/cm	: <u>NE</u> m Velocity: <u>/</u> Chemical at Replicate: #1: <u>edium</u>	Riffle: AJA m Run: <u>VoNE</u> Channeliz Partly Shaded Anaerobic None Moderate Replicate #2: <u>Brown</u> Ca	ed: Yes No
Vegetation Type: Estimated Stream W Stream Type: Co Canopy Cover: <u>Sediment/Substrate</u> Sediment Odors: I Sediment Odors: I Sediment Oils: Ponar Grab: Numbe Sediment Description <u>Water</u> : Temp.: Conductivity: Water Odors: N	Width: <u>9</u> m 1 Id Water Warn Open Normal Sewage Absent er of Jars Filled witt n: <u>Sandy</u> <u>E</u> C Dis <u>NE</u> 1 Jormal Sewage	Est. Stream Depth Water Partly Open Petroleum Sligh Mod M Ssolved Oxygen: Micromhos/cm	: <u>NE</u> m Velocity: <u>/</u> Chemical at Replicate: #1: <u>edium</u>	Riffle: AJA m Run: <u>VoNE</u> Channeliz Partly Shaded Anaerobic None Moderate Replicate #2: <u>Brown Ca</u> mg/L pH: <u>NE</u> ppt	ed: Yes No
Vegetation Type: Estimated Stream V Stream Type: Co Canopy Cover: <u>Sediment/Substrate</u> Sediment Odors: I Sediment Odors: I Sediment Description <u>Water</u> : Temp.: <u>N</u> Conductivity: Water Odors: N Water Surface Oils:	Width: <u>9</u> m l Id Water Warn Open Normal Sewage Absent or of Jars Filled with n: <u>Sandy</u> <u>E</u> C Dis <u>NE</u> n Jormal Sewage Slick	Est. Stream Depth Water Partly Open Petroleum Sligh Mod M ssolved Oxygen: Micromhos/cm Petroleum Sheen	: <u>NE</u> m Velocity: <u>/</u> Chemical at Replicate: #1: <u>edium</u> <u>NE</u> Salinity: <u></u> Chemical	Riffle: AJA m Run: <u>VoNE</u> Channeliz Partly Shaded Anaerobic None Moderate Replicate #2: <u>Brown Ca</u> mg/L pH: <u>NE</u> ppt None Other	ed: Yes No
Vegetation Type: Estimated Stream W Stream Type: Co Canopy Cover: <u>Sediment/Substrate</u> Sediment Odors: I Sediment Odors: I Sediment Oils: Ponar Grab: Numbe Sediment Description <u>Water</u> : Temp.: Conductivity: Water Odors: N	Width: <u>9</u> m l Id Water Warn Open Normal Sewage <u>Absent</u> or of Jars Filled with n: <u>Sandy</u> <u>E</u> <u>C</u> Dis <u>NE</u> <u>n</u> formal Sewage Slick Slick	Est. Stream Depth Water Partly Open Petroleum Sligh Mod M ssolved Oxygen: Vicromhos/cm Petroleum Sheen Turbid Tr	: <u>NE</u> m Velocity: <u>/</u> Chemical at Replicate: #1: <u>edium</u> <u>NE</u> Salinity: <u></u> Chemical None urbid	Riffle: AJA_m Run: <u>VONE</u> Channeliz Partly Shaded Anaerobic None Moderate Replicate #2: <u>Brown</u> Ca mg/L pH: <u>NE</u> ppt None Other: Opaque Water Co	ed: Yes No

Ć....

$\mathbf{u}_{i} = \mathbf{u}_{i}$, $\mathbf{u}_{i} = \mathbf{u}_{i}$, \mathbf{u}_{i} , \mathbf{u}_{i
SAMPLING STATION CHARACTERIZATION DATA SHEET
la la la la dada a ludo
Station Number: $6 - RV6 - 5\omega/5D$ Date: $8/25/92$ Time: 11.40
Sample Type: Fish Benthic Macroinvertebrate Sediment Surface Water
SAMPLING EQUIPMENT: Seine Gill Net Ponar Kemmerer Sediment Corer Spoon Other:
1
NOT AVAILABLE
Pinetion Zanaffratures Protocol
Riparian Zone/Instream Features Predominant Surrounding Land Use: Forest Industrial Other:
Vegetation Type: <u>9090 deciduous, 1090 Pine</u>
Estimated Stream Width: 0.9 m Est. Stream Depth: 0.3 m Riffle: NA m Run: NA m Pool: 0.9 m
Stream Type: Cold Water Warm Water Velocity: NE Channelized: Yes No_
Canopy Cover: Open Partly Open Partly Shaded Shaded
Sediment/Substrate:
Sediment Odors: Normal Sewage Petroleum Chemical Anaerobic (None) Other:
Sediment Oils: (Absent) Slight Moderate Profuse
Ponar Grab: Number of Jars Filled with Sediments Replicate: #1: Replicate #2: Replicate #3:
Sediment Description: <u>Sandy</u>
Water:
Temp.: <u>NE</u> C Dissolved Oxygen: <u>NE</u> mg/L pH: <u>NE</u> S.U.
Conductivity: <u>NE</u> Micromhos/cm Salinity: <u>NE</u> ppt
Water Odors: Normal Sewage Petroleum Chemical None Other:
Water Surface Oils: Slick Sheen None
Turbidity: Clear Slightly Turbid Turbid Opaque Water Color: Slightly Amber
Weather Conditions: <u>Sunny Some Clouds present</u> affy 30 (Tide: In Out
Comments: NA = Not Applicable; NE = Not Evaluated

 \frown

	-RU7-51	ulsd	Date: 8/25/	92	Time: 10:2	D
	Fish	Benthic Macroir	· · · · · · · · · · · · · · · · · · ·	Sediment	Surface Wa	
SAMPLING EQUIPM					Other:	
		·				
		······································				
•						
•				_		
		NOT	AVAILA	BLE		
			•			
ł						
-						
parian Zone/Instream	Features	~				
edominant Surroundin	g Land Use:	Forest	Industrial	Other:		
egetation Type: <u>30</u>	Do pine	s, 7090	decid vous	s trees		·
timated Stream Width	: <u>0,9</u> m 1	Est. Stream Depth:	<u>•9 m</u> Riffle:	<u></u>	A_m Pool: 1,2	<u> </u>
ream Type: Cold Wa	ter Warn.	1 Water V	elocity: <u>NE</u>	Channelized	l: Yes No	
nopy Cover: Open	a	Partly Open	Partly	Shaded	Shaded	
					10090	
<u>liment/Substrate:</u>		Petroleum	Chemical Ana	erobic None	Other:	
	al Sewage			\sim		·
diment Odors: Norm	al Sewage	Slight	l I	Moderate	Profuse	
diment/Substrate: liment Odors: Norm liment Oils: par Grab: Number of J	Absent	_				
liment Odors: Norm liment Oils:	Absent ars Filled wit	h Sediments Ro	eplicate: #1:	Replicate #2:		
diment Odors: Norm liment Oils: nar Grab: Number of J liment Description:	Absent ars Filled wit	h Sediments Ro	eplicate: #1:	Replicate #2:		
diment Odors: Norm liment Oils: nar Grab: Number of J liment Description:	Absent ars Filled wit Sand (a	h Sediments Ra Me <i>n, Orge</i>	plicate: #1: 	Replicate #2:	Replicate #3:	
liment Odors: Norm liment Oils: nar Grab: Number of J liment Description: ter:NE	Absent ars Filled wit Sand (a C Dis	h Sediments Ra 	nen	Replicate #2:	Replicate #3:	
diment Odors: Norm diment Oils: har Grab: Number of J liment Description: ter: mp.:NE ductivity:N	Absent ars Filled wit Sand (a C Dis E 1	h Sediments Ra 	plicate: #1: 	Replicate #2:	Replicate #3:	
diment Odors: Norm diment Oils:	Absent ars Filled wit Sand (a C Dis E 1	h Sediments Ra <i>yex, Orge</i> ssolved Oxygen: Micromhos/cm S e Petroleum	plicate: #1: 	Replicate #2:	Replicate #3:	

..

	SAMPLING STATION CHARACTERIZATION DATA SHEET
	Station Number: $6 - kV \hat{8} - 5\omega/SD$ Date: $8/25/92$ Time: $69\hat{2}20$
<u> </u>	Sample Type: Fish Benthic Macroinvertebrate Cediment Surface Water
(SAMPLING EQUIPMENT: Seine Gill Net Ponar Kemmerer Sediment Corer Spoon Other:
	H
	NOT AVAILABLE
\frown	
	Riparian Zone/Instream Features
	Predominant Surrounding Land Use: Forest Industrial Other:
	Vegetation Type: <u>Decid wows trees</u>
	Estimated Stream Width: <u>0</u> , 8 m Est. Stream Depth: <u>0,4-0,5</u> m Riffle: <u>NA</u> m Run: <u>NA</u> m Pool: <u>NA</u> m Stream Type: Cold Water (Warm Water) Velocity: <u>NE</u> Channelized: Yes X No_
	Canopy Cover: Open Partly Open Partly Shaded (Shaded)
	1009
	Sediment/Substrate:
	Sediment Odors: Normal Sewage Petroleum Chemical Anaerobic None Other: Sediment Oils: Absent Slight Moderate Profuse
	Ponar Grab: Number of Jars Filled with Sediments Replicate: #1: Replicate #2: Replicate #3:
	Sediment Description: <u>NE</u>
•	Water:
	Temp.: NE NE mg/L pH : NE $S.U.$ Conductivity: NE ME ppt
	Conductivity: <u>NE</u> Micromhos/cm Salinity: <u>NE</u> ppt Water Odors: Normal Sewage Petroleum Chemical None Other:
	Water Surface Oils: Slick Sheen None
	Turbidity: Clear Slightly Turbid Turbid Opaque Water Color: Rust Color, blue shaan
4	Weather Conditions: Sunny, some clouds, appr. 30°C Tide: In Out
	Comments: NA= Not Applicable; NE= Not EValuated

SAMPLING STATION CHARACTERIZATION DATA SHEET
Station Number: $6 - WC \theta I - 5W/5D$ Date: $8/30/92$ Time: $07:45$
Sample Type: Fish Benthic Macroinvertebrate Sediment Surface Water
SAMPLING EQUIPMENT: Seine Gill Net Ponar Kemmerer Sediment Corer Spoon Other:
NOT AVAILABLE
Riparian Zone/Instream Features
Predominant Surrounding Land Use: Forest Industrial Other:
Predominant Surrounding Land Use: Forest Industrial Other: Vegetation Type: Deciduous frees
Predominant Surrounding Land Use: Forest Industrial Other: Vegetation Type: <u>Deciduous</u> Veas Estimated Stream Width: <u>1.8 m Est. Stream Depth: <u>1.8 m</u> Riffle: <u>NAm Run: NA m Pool: 1.5-1.8 m</u></u>
Predominant Surrounding Land Use: Forest Industrial Other: Vegetation Type: Deciduous Weas Estimated Stream Width: 1.8 m Est. Stream Depth: 1.8 m Riffle: NAm Run: NAm Pool: 5-1.5 m Stream Type: Cold Water Warm Water Velocity: NE Channelized: Yes No
Predominant Surrounding Land Use: Forest Industrial Other: Vegetation Type: <u>Deciduous</u> Veas Estimated Stream Width: <u>1.8 m Est. Stream Depth: <u>1.8 m</u> Riffle: <u>NAm Run: NA m Pool: 1.5-1.8 m</u></u>
Predominant Surrounding Land Use: Forest Industrial Other: Vegetation Type: Deciduous Weas Estimated Stream Width: 1.8 m Est. Stream Depth: 1.8 m Riffle: NAm Run: NAm Pool: 5-1.5 m Stream Type: Cold Water Warm Water Velocity: NE Channelized: Yes No
Predominant Surrounding Land Use: Forest Industrial Other: Vegetation Type: Deciduous Industrial Other: Estimated Stream Width: 1.8 m Est. Stream Depth: 1.8 m Riffle: NAm Run: NA m Pool: .5-1.8 m Stream Type: Cold Water Warm Water Velocity: NE Channelized: Yes_ No_ Canopy Cover: Open Partly Open Partly Shaded Shaded Shaded
Predominant Surrounding Land Use: Forest Industrial Other:
Predominant Surrounding Land Use: Forest Industrial Other:
Predominant Surrounding Land Use: Forest Industrial Other: Vegetation Type: Decide cost Iverst Industrial Other: Vegetation Type: Decide cost Iverst Industrial Other: Industrial Estimated Stream Width: I.V m Est. Stream Depth: Iverst m Riffle: NAm Run: NAm m Pool: Set. Stream Type: Cold Water Warm Water Velocity: NE Channelized: Yes No No Canopy Cover: Open Partly Open Partly Shaded Shaded
Predominant Surrounding Land Use: Forest Industrial Other:
Predominant Surrounding Land Use: Forest Industrial Other:
Predominant Surrounding Land Use: Forest Industrial Other: Vegetation Type: Decid words Heas Estimated Stream Width: 1.9 m Est Stream Depth: 1.8 m Riffle: MAm Run: MA m Pool. 5.1.5 m Estimated Stream Width: 1.9 m Est Stream Depth: 1.18 m Riffle: MAm Run: MA m Pool. 5.1.5 m Stream Type: Cold Water Warm Water Velocity: NE Channelized: Yes
Predominant Surrounding Land Use: Forest Industrial Other: Vegetation Type: Deciduous Image: Stream Depth: 1.8 m Riffle: MAm Run: MA m Pool: 5.16 m Estimated Stream Width: 1.9 m Est. Stream Depth: 1.18 m Riffle: MAm Run: MA m Pool: 5.16 m Stream Type: Cold Water Warm Water Velocity: NE Channelized: Yes No Canopy Cover: Open Partly Open Partly Shaded Shaded Sediment Odors: Normal Sewage Petroleum Chemical Anaerobic None Other:
Predominant Surrounding Land Use: Forest Industrial Other: Vegetation Type: Deciduous Industrial Other: Estimated Stream Width: 1.8 m Riffle: NAm Run: NAm Pool: Estimated Stream Width: 1.8 m Riffle: NAm Run: NAm Pool: 5.1% Stream Type: Cold Water Warm Water Velocity: NE Channelized: Yes
Predominant Surrounding Land Use: Forest Industrial Other: Vegetation Type: Deciduous Ivess Estimated Stream Width: 1.8 m Est. Stream Depth: 1.8 m Riffle: NAm Run: NAm Pool: 5.9 Estimated Stream Width: 1.8 m Est. Stream Depth: 1.8 m Riffle: NAm Run: NAm Pool: 5.9 Estimated Stream Width: 1.8 m Est. Stream Depth: 1.8 m Riffle: NAm Run: NAm Pool: 5.9 Canopy Cover: Open Partly Open Partly Shaded Shaded Shaded Sediment Odors: Normal Sewage Petroleum Chemical Anserobic None Other:
Predominant Surrounding Land Use: Forest Industrial Other:

~ • ~ • •	<u>62-5w/5D</u>	Date: 8/26/9	Sediment	Time: <u>17:30</u> Surface Water
Sample Type: Fish				Other:
SAMPLING EQUIPMENT	Seine GillNet Ponar	Kemmerer (Sean	hent Corer Spoon	other.
Æ				
		<i>.</i>		_
	NOT	- AVA	ILABLE	т
		-		
				1
			<u></u>	
parian Zone/Instream Fea	tures			
partan bonomisacani i ca			0.1	
		Industrial	Other:	
edominant Surrounding L	and Use: Forest	Industrial	Other:	
edominant Surrounding L egetation Type: <u>Har</u>	and Use: Forest		······	VA_m Pool: <u>NA_</u> m
edominant Surrounding L egetation Type: <u>Har</u> timated Stream Width: <u>1</u> 4	and Use: Forest dword 5 2 m Est. Stream Depth:	<u> </u>	M Run: Channelized	
edominant Surrounding L getation Type: <u>Har</u> timated Stream Width: <u>Id</u> ream Type: Cold Water	and Use: Forest d Wood 5 2.2 m Est. Stream Depth: Warm Water V	<u> </u>	M Run: Channelized	VA_m Pool: NA_m l: Yes X No Shaded
edominant Surrounding L egetation Type: <u>Har</u> timated Stream Width: <u>Id</u> eeam Type: Cold Water nopy Cover: Open	and Use: Forest d Wood 5 2 m Est. Stream Depth: Warm Water V	<u> </u>	Channelized	1: Yes 🗙 No _
edominant Surrounding L getation Type: <u>Har</u> timated Stream Width: <u>Id</u> ream Type: Cold Water nopy Cover: Open <u>liment/Substrate</u> :	and Use: Forest A WOOD 5 A Wood 5 A Warm Water Warm Water Partly Open	2.1 m Riffle Velocity: NA Partly	<u>NA</u> m Run: Channelized Shaded	l: Yes X No Shaded
edominant Surrounding L getation Type: <u>Har</u> timated Stream Width: <u>13</u> ream Type: Cold Water nopy Cover: Open <u>diment/Substrate</u> : diment Odors: Normal	and Use: Forest d Wood 5 2 m Est. Stream Depth: Warm Water V Partly Open Sewage Petroleum	Delocity: NA Partly Chemical An	NA m Run: Channelized Shaded 5070 herobic None	l: Yes X No Shaded Other:
edominant Surrounding L egetation Type: <u>Har</u> timated Stream Width: <u>Id</u> ream Type: Cold Water nopy Cover: Open <u>diment/Substrate</u> : diment Odors: Normal diment Oils: Ab	and Use: A WOOD 5 A WOOD 5 A Warm Water Varm Water Varm Water Varm Vater Vartly Open Sewage Sewage Petroleum Sent Slight	Qol m Riffle Velocity: <u>N A</u> Partly Chemical And t	<u>NA</u> m Run: Channelized Shaded 5076 aerobic None Moderate	l: Yes X No Shaded Other: Profuse
edominant Surrounding L getation Type: <u>Har</u> timated Stream Width: <u>Id</u> ream Type: Cold Water nopy Cover: Open <u>diment/Substrate</u> : diment Odors: Normal diment Oils: Absolutions: Ab	and Use: A WOOD 5 A WOOD 5 A Warm Water Varm Water Varm Water Varm Water Varm Vater Varm Varm Vater Varm Vater Varm Varm Vater Varm Varm Varm Varm Varm Vater Varm Varm Varm Varm Varm Varm Varm Varm	Delocity: <u>NA</u> Partly Chemical And t eplicate: #1:	<u>NA</u> m Run: Channelized Shaded 50% terobic None Moderate Replicate #2:	l: Yes X No Shaded Other: Profuse Replicate #3:
edominant Surrounding L getation Type: <u>Har</u> timated Stream Width: <u>Id</u> ream Type: Cold Water nopy Cover: Open <u>diment/Substrate</u> : diment Odors: Normal diment Oils: Absolutions: Ab	and Use: A WOOD 5 A WOOD 5 A Warm Water Varm Water Varm Water Varm Vater Vartly Open Sewage Sewage Petroleum Sent Slight	Delocity: <u>NA</u> Partly Chemical And t eplicate: #1:	<u>NA</u> m Run: Channelized Shaded 50% terobic None Moderate Replicate #2:	l: Yes X No Shaded Other: Profuse Replicate #3:
edominant Surrounding L egetation Type: <u>Har</u> timated Stream Width: <u>13</u> ream Type: Cold Water nopy Cover: Open <u>diment/Substrate</u> : diment Odors: Normal diment Oils: Ab- nar Grab: Number of Jars liment Description: <u>51</u>	and Use:	Delocity: <u>NA</u> Partly Chemical And t eplicate: #1:	$\frac{NA}{m} \text{Run:} \\ ChannelizedShaded50%herobic NoneModerateReplicate #2:ack Color,$	l: Yes X No Shaded Other: Profuse Replicate #3: Grag Mothled Sc
edominant Surrounding L getation Type: <u>Har</u> timated Stream Width: <u>13</u> ream Type: Cold Water nopy Cover: Open <u>diment/Substrate</u> : diment Odors: Normal diment Oils: Ab- har Grab: Number of Jars liment Description: <u>51</u>	and Use:	Delocity: <u>NA</u> Partly Chemical And t eplicate: #1:	$\frac{NA}{m} \text{Run:} \\ ChannelizedShaded50%herobic NoneModerateReplicate #2:ack Color,$	l: Yes X No Shaded Other: Profuse Replicate #3: Grag Mothled Sc
edominant Surrounding L getation Type: <u>Har</u> timated Stream Width: <u>Id</u> ream Type: Cold Water nopy Cover: Open <u>diment/Substrate</u> : diment Odors: Normal liment Oils: Abi har Grab: Number of Jars. liment Description: <u>Sil</u> <u>ter</u> : np.: <u>NE</u> ductivity: <u>NE</u>	and Use:	<u>Q.</u> m Riffle Velocity: <u>NA</u> <u>Partly</u> Chemical And t eplicate: #1: <u>NE</u> Salinity: <u>NE</u>	MA m Run:	I: Yes X No Shaded Other: Profuse Replicate #3: Grag Mottled Sc NES.U.
edominant Surrounding L egetation Type: <u>Har</u> timated Stream Width: <u>13</u> ream Type: Cold Water nopy Cover: Open <u>diment/Substrate</u> : diment Odors: Normal diment Oils: Ab- har Grab: Number of Jars liment Description: <u>51</u> <u>ter</u> : np.: <u>NE</u> eductivity: <u>NE</u> ter Odors: Normal	and Use:	Delicity: <u>NA</u> Partly Chemical And t eplicate: #1: <u>NE</u> Salinity: <u>NE</u> Chemical (MA m Run:	I: Yes X No Shaded Other: Profuse Replicate #3: Grag Mottled Sc NES.U.
redominant Surrounding L regetation Type: <u>Har</u> timated Stream Width: <u>Id</u> ream Type: Cold Water nopy Cover: Open <u>diment/Substrate</u> : <u>diment Odors:</u> Normal diment Oils: Ab nar Grab: Number of Jars liment Description: <u>Sil</u> <u>ter</u> : np.: <u>NE</u> <u>ductivity:</u> <u>NE</u> <u>ter</u> Odors: Normal ter Surface Oils: Slice	and Use:	$2 \cdot 1$ m Riffle Velocity: $N A$ Partly Chemical And t eplicate: #1: $D \cdot c \cdot b \cdot d$ Salinity: Chemical (None	MA m Run:	I: Yes X No Shaded Other: Profuse Replicate #3: Grag Mottled Sc NES.U.
redominant Surrounding L egetation Type: <u>Har</u> stimated Stream Width: <u>Id</u> ream Type: Cold Water nopy Cover: Open <u>diment/Substrate</u> : diment Odors: Normal diment Oils: Abs nar Grab: Number of Jars liment Description: <u>5:1</u> <u>ter</u> : np.: <u>NE</u> ductivity: <u>NE</u> ter Odors: Normal ter Surface Oils: Slice bidity: <u>Clear</u>	and Use:	Del m Riffle Velocity: <u>NA</u> Partly Chemical And t eplicate: #1: <u>None</u> urbid Opaqu	$\frac{NA}{m} \text{Run:} \\ ChannelizedShaded50%herobic NoneModerateReplicate #2:ack Color,mg/L pH:pptNone Other:1e Water Colo$	I: Yes X No Shaded Other: Profuse Replicate #3: Gray Mottled Sc NE S.U.

5 - 5 H

 \frown

 \sim

.

•

SAMPLING STATION CHARACTERIZATION DATA SHEET 50 = 09:55 Time: SD = 15:40 Station Number: 6-WC 03-5W /sD 8/26/92 Date: Surface Water Sediment Sample Type: Benthic Macroinvertebrate Fish Other: SAMPLING EQUIPMENT: Seine Gill Net Ponar Kemmerer (Sediment Corer) Spoon NOT AVAILABLE **Riparian Zone/Instream Features** Predominant Surrounding Land Use: Forest Other: Industrial Vegetation Type: Decid uous うわ rubs Estimated Stream Width: 12.2 m Est. Stream Depth: NE m Riffle: NAm Run: NA m Pool: NA m Velocity: <u>NE</u> Channelized: Yes X No ____ Cold Water (Warm Water) Stream Type: Partly Open Partly Shaded Canopy Cover: Open. Shaded 30% Sediment/Substrate: Sediment Odors: Normal Sewage Petroleum Chemical Anaerobic None Other: Sediment Oils: Absent Slight Moderate Profuse Ponar Grab: Number of Jars Filled with Sediments Replicate: #1: Replicate #2: Replicate #3: Sediment Description: Floce Vent Water: Temp.: 5= 22° B= 22° C Dissolved Oxygen: 5=6.1; B= 6.05 mg/L pH: 5= 6.3; B= 6. Conductivity: 5=85'B= 85 Micromhos/cm Salinity: 5=0.0'B=0.0 ppt Water Odors: Normal None Petroleum Chemical Other: Sewage Water Surface Oils: Slick Sheen None Water Color: Jannic Turbidity: Turbid Clear Slightly Turbid Opaque Sunny, appx, 32°C Weather Conditions: Tide: Comments: S= Surface; B= Bottom' NA=Not Applicable; NE = Not Evaluated

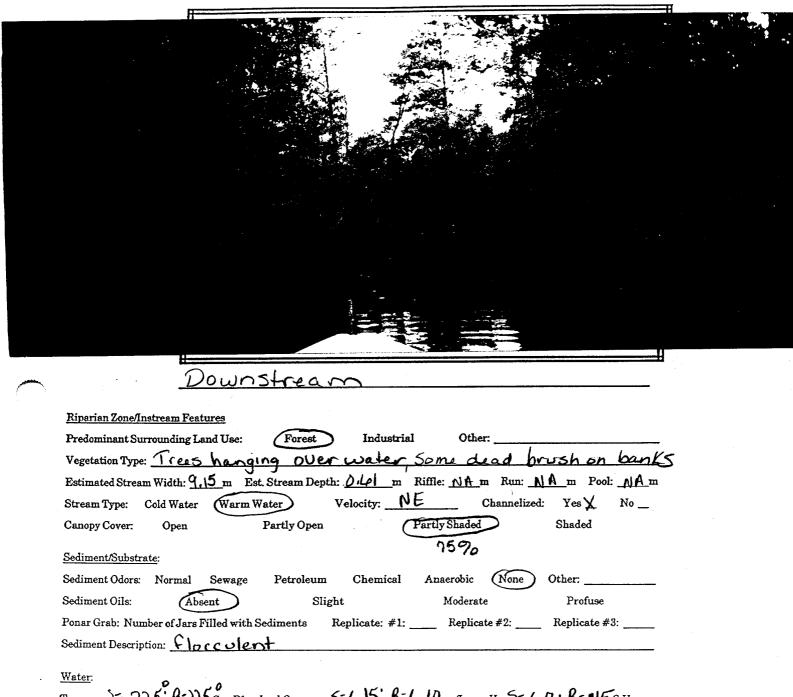
SAMPLING STATION CHARACTERIZATION DATA SHEET

чu

SAMPLING STATION CHARACTERIZATION DATA SHEDI
Station Number: $1 - WCO4 - SW/SD$ Date: $8/26/92$ Time: $09:20$
Sample Type: Fish Benthic Macroinvertebrate Sediment Surface Water
SAMPLING EQUIPMENT: Seine Gill Net Ponar Kemmerer Sediment Corer Spoon Other:
NOT AVAILABLE
NOT AUHILING
Riparian Zone/Instream Features
Predominant Surrounding Land Use: Forest Industrial Other:
Vegetation Type: Deciduous shrubs and trees, few dead falls
Estimated Stream Width: 9.1 m Est. Stream Depth: 0.46 m Riffle: <u>NAm</u> Run: <u>NA</u> m Pool: <u>N1</u> m
Stream Type: Cold Water Warm Water Velocity: <u>NE</u> Channelized: Yes X No_
Canopy Cover: Open Partly Open Partly Shaded Shaded
Sediment/Substrate:
Sediment Odors: Normal Sewage Petroleum Chemical Anaerobic None Other:
Sediment Oils: Absent Slight Moderate Profuse
Ponar Grab: Number of Jars Filled with Sediments Replicate: #1: Replicate #2: Replicate #3:
Sediment Description: Sandy/muck, organics
Water:
Temp: $5=21.8^{\circ}; B=21.8^{\circ}$ Dissolved Oxygen: $5=6.0; B=6.8$ mg/L pH: $5=6.6; B=6.8$ S.U.
Temp.: $\underline{5=21.8^{\circ}}, \underline{5=21.8^{\circ}}, \underline{5=2.18^{\circ}}, \underline{5=2.18^{\circ}$
Conductivity: $5 = 89.1$; $B = 89.1$ Micromhos/cm Salinity: $5 = 0.0$; $B = 0.0$ ppt
Conductivity: 5=89.1; B=89.1 Micromhos/cm Salinity: 5=0.0; B=0.0 ppt Water Odors: Normal Sewage Petroleum Chemical None Other: Water Surface Oils: Slick Sheen None Opaque Water Color: Tannic Turbidity: Clear Slightly Turbid Turbid Opaque Water Color: Tannic
Conductivity: 5:89.1; B:89.1 Micromhos/cm Salinity: 5:0.0; B:0.0 ppt Water Odors: Normal Sewage Petroleum Chemical None Other: Water Surface Oils: Slick Sheen None None Other:
Conductivity: <u>5=89.1; B=89.1</u> Micromhos/cm Salinity: <u>5=0.0; B=0.0</u> ppt Water Odors: Normal Sewage Petroleum Chemical None Other: Water Surface Oils: Slick Sheen None Turbidity: <u>Clear</u> Slightly Turbid Turbid Opaque Water Color: <u>Tannı</u> Weather Conditions: <u>50009</u> , <u>6098</u> , <u>32°C</u> Tide: In Out
Conductivity: 5=89.1; B=89.1 Micromhos/cm Salinity: 5=0.0; B=0.0 ppt Water Odors: Normal Sewage Petroleum Chemical None Other: Water Surface Oils: Slick Sheen None Opaque Water Color: Tannic Turbidity: Clear Slightly Turbid Turbid Opaque Water Color: Tannic

	SAMPLING STATION CHARACTERIZATION DATA SHEET
	$S\omega = 8/25/92$ $S\omega = 11.50$
	Station Number: $6 - WCO5 - SW/SD$ Date: $SD = 8/27/92$ Time: $\overline{SD} = 10 = 10$
	Sample Type: Fish Benthic Macroinvertebrate Sediment Surface Water
\frown	SAMPLING EQUIPMENT: Seine Gill Net Ponar Kemmerer Sediment Corer Spoon Other:
r	
	UPstream
	Urstitum
	Riparian Zone Instream Features
	Predominant Surrounding Land Use: Forest Industrial Other:
	Vegetation Type: Deciduous trees, with a few everyneens
	Estimated Stream Width: 18.3 m Est. Stream Depth: 0.2 m Riffle: NAm Run: NA m Pool: NA m
	Stream Type: Cold Water Warm Water Velocity: <u>NE</u> Channelized: Yes X No_
	Canopy Cover: Open Partly Open (Partly Shaded) Shaded
	85%
	Sediment/Substrate:
	Sediment Odors: Normal Sewage Petroleum Chemical Anaerobic None Other:
	Sediment Oils: Absent Slight Moderate Profuse
	Ponar Grab: Number of Jars Filled with Sediments Replicate: #1: Replicate #2: Replicate #3:
	Sediment Description: <u>Silty / MUCK</u>
	57
•	Water:
	Temp.: $\underline{BA=22.5}$, $\underline{M=22.9}^{\circ}$ Dissolved Oxygen: $\underline{BA=6.0}$, $\underline{M=6.0}$ mg/L pH: $\underline{BA=6.5}$, $\underline{M=6.5}$ S.U.
	Conductivity: BA=91.0 'M=83.0 Micromhos/cm Salinity: BA=0.0' M=0.0 ppt
	Water Odors: Normal Sewage Petroleum Chemical None Other:
	Water Surface Oils: Slick Sheen None
	Turbidity: Clear Slightly Turbid Turbid Opaque Water Color: Tannic
	Weather Conditions: Tide: In Out
•	
	Comments: BA= Bank Surface; M= Middle Surface; NA=Not
	Applicable; NE= Not Analyzed
	Applicable; NE= Not Analyzed

- B


•

5

.

SAMPLING STATION CHARACTERIZATION DATA SHEET

Station Number: 6-41COLO-5W/5D Date: 8/23/92 Time: 13:50 Surface Water Sediment Sample Type: **Benthic Macroinvertebrate** Fish SAMPLING EQUIPMENT: Seine Gill Net Ponar Kemmerer Sediment Corer Spoon Other:

Temp: $\underline{)} = 22.5$, $\underline{B} = 22.5$ Dissolved Oxygen: $\underline{5} = 6.15$, $\underline{B} = 6.10$ mg/L pH: $\underline{5} = 6.7$; $\underline{B} = NE$ S.U.
Conductivity: <u>5=10</u> ; <u>8=85</u> Micromhos/cm Salinity: <u>5=0.0</u> ppt
Water Odors: Normal Sewage Petroleum Chemical None Other:
Water Surface Oils: Slick Sheen None
Turbidity: Clear Slightly Turbid Turbid Opaque Water Color: Amber Brown
Turbidity: Clear Slightly Turbid Turbid Opaque Water Color: Amber Brown Weather Conditions: Partly Sunny, Slight rain Tide: In Out
Comments: 5= Surface; B= Bottom, NA= Not Applicable; NE=
Not Evaluated

	SAMPL	ING STATION C	CHARACTERI	ZATION DATA SHEET	r sa san san sa		
			Date: 8/		Time: 12:10		*.
Station Number Sample Type:	r: <u>6-wC07</u> Fish	Benthic Macroi		Sediment	Surface Wate	er.)	
			_	Sediment Corer Spoon			
	H I T	Y	10 TE 10				
				K Tower I			
	He is						
100 100 100 100 100 100 100 100 100 100	• •						\$1. •
	50 S		an ing an ing a saga Tang tang tang tang tang tang tang tang t				
	6	et ja				,	
		· · · ·					
1							
	المعالي في الم						
			and the				
				fs. ? `2			
		₹					
		8			-		
	<u>e - 1</u>				1 S		
							• • •
	Right	of Up:	stream				• • •
· ·	Right	of Up:	stream	<u>^</u>		-	
Riparian Zone/Ins	L L	of Up:	stream	<u> </u>		-	· · .
	L L	of Up:	strean Industrial	Other:		 - 	· · · .
Predominant Sur Vegetation Type:	<u>tream Features</u> ounding Land Use: Trees line 4	Forest 4 Creek	Industrial	Other:		 - 	· · · .
Predominant Sur Vegetation Type:	<u>tream Features</u> ounding Land Use: Trees line 4	Forest 4 Creek	Industrial		1 <u>A_m</u> Pool: <u>NA</u>		· · .
Predominant Sur Vegetation Type: Estimated Stream	<u>tream Features</u> ounding Land Use: Trees line 4	Forest <u> a Cr-ee-K</u> Est. Stream Depth:	Industrial	Other:			· · · .
Predominant Sur Vegetation Type: Estimated Stream	tream Features ounding Land Use: <u>Trees</u> <u>Line</u> Width: <u>0.7-15.2</u> m E cold Water Warm	Forest <u> a Cr-ee-K</u> Est. Stream Depth:	Industrial : <u>1.5</u> m F Velocity: <u>NE</u>	Other:			· · · · .
Predominant Sur Vegetation Type: Estimated Stream Stream Type: C Canopy Cover:	tream Features ounding Land Use: <u>Trees line 4</u> Width: <u>0.7-15.2</u> m F cold Water Warm Open 770	Forest <u> <u> o</u> Cree K Est. Stream Depth: Water</u>	Industrial : <u>1.5</u> m F Velocity: <u>NE</u>	Other: Riffle: <u>NA</u> m Run: <u>A</u> Channelize	d: Yes 🗶 No _		
Predominant Surr Vegetation Type: ' Estimated Stream Stream Type: C Canopy Cover: <u>Sediment/Substrat</u>	tream Features ounding Land Use: <u>Trees line 4</u> Width: <u>0.7-15.2</u> m E cold Water Warm <u>Open</u> 770	Forest <u>A Cr-ee K</u> Est. Stream Depth: Water Partly Open	Industrial : <u>1.5</u> m F Velocity: <u>NE</u> P	Other: Riffle: <u>NA_</u> m Run: <u>A</u> Channelize Partly Shaded	d: Yes X No _ Shaded		· · · · .
Predominant Surr Vegetation Type: ' Estimated Stream Stream Type: C Canopy Cover: <u>Sediment/Substrat</u> Sediment Odors:	tream Features ounding Land Use: <u>Trees line</u> Width: 1 <u>2.7-15.2</u> m H old Water Warm <u>Open</u> 770 .e: Normal Sewage	Forest A Creek Est. Stream Depth: Water Partly Open Petroleum	Industrial : <u>1.5</u> m F Velocity: <u>NE</u> P Chemical	Other: Riffle: <u>NA_</u> m Run: <u>A</u> Channelize Partly Shaded Anaerobic None	d: Yes X No		
Predominant Surr Vegetation Type: ' Estimated Stream Stream Type: C Canopy Cover: <u>Sediment/Substrat</u> Sediment Odors: Sediment Oils:	tream Features ounding Land Use: <u>Trees Line 4</u> Width: <u>0.9-15.2</u> m E Cold Water Warm Open 790 .e: Normal Sewage	Forest <u>A Creek</u> Est. Stream Depth: Water Partly Open Petroleum Sligh	Industrial <u>1.5</u> m F Velocity: <u>NE</u> P Chemical at	Other: Riffle: <u>NA_</u> m Run: <u>A</u> Channelize Partly Shaded Anaerobic None Moderate	d: Yes X No Shaded Other: Profuse	. .	
Predominant Surr Vegetation Type: ' Estimated Stream Stream Type: C Canopy Cover: <u>Sediment/Substrat</u> Sediment Odors: Sediment Oils: Ponar Grab: Numb	Absent	Forest Est. Stream Depth: Water Partly Open Petroleum Sligh	Industrial : <u>1.5</u> m F Velocity: <u>NE</u> P Chemical at teplicate: #1: _	Other: Riffle: <u>NA_</u> m Run: <u>A</u> Channelize Partly Shaded Anaerobic None	d: Yes X No Shaded Other: Profuse	. .	
Predominant Surr Vegetation Type: ' Estimated Stream Stream Type: C Canopy Cover: <u>Sediment/Substrat</u> Sediment Odors: Sediment Oils: Ponar Grab: Numb	tream Features ounding Land Use: <u>Trees Line 4</u> Width: <u>0.9-15.2</u> m E Cold Water Warm Open 790 .e: Normal Sewage	Forest Est. Stream Depth: Water Partly Open Petroleum Sligh	Industrial : <u>1.5</u> m F Velocity: <u>NE</u> P Chemical at teplicate: #1: _	Other: Riffle: <u>NA_</u> m Run: <u>A</u> Channelize Partly Shaded Anaerobic None Moderate	d: Yes X No Shaded Other: Profuse	. .	
Predominant Surr Vegetation Type: ' Estimated Stream Stream Type: C Canopy Cover: <u>Sediment/Substrat</u> Sediment Odors: Sediment Oils: Ponar Grab: Numi Sediment Description	Absent	Forest Est. Stream Depth: Water Partly Open Petroleum Sligh	Industrial : <u>1.5</u> m F Velocity: <u>NE</u> P Chemical at teplicate: #1: _	Other: Riffle: <u>NA_</u> m Run: <u>A</u> Channelize Partly Shaded Anaerobic None Moderate	d: Yes X No Shaded Other: Profuse	. .	
Predominant Surr Vegetation Type: ' Estimated Stream Stream Type: C Canopy Cover: <u>Sediment/Substrat</u> Sediment Odors: Sediment Odors: Ponar Grab: Numi Sediment Descripti <u>Water:</u>	Absent Normal Sewage Absent Sounding Land Use: <u>Trees line 4</u> Width: <u>0.7-15.2</u> m F Warm Open 790 290 290 290 290 290 290 290 2	Forest Est. Stream Depth: Water Partly Open Petroleum Sligh A Sediments R	Industrial <u>1.5</u> m F Velocity: <u>NE</u> P Chemical at teplicate: #1:	Other: Riffle: MA_m Run: A Channelize Partly Shaded Anserobic None Moderate Replicate #2:	d: Yes X No Shaded Other: Profuse Replicate #3:	. .	
Predominant Surr Vegetation Type: ' Estimated Stream Stream Type: C Canopy Cover: <u>Sediment/Substrat</u> Sediment Odors: Sediment Oils: Ponar Grab: Numb Sediment Description <u>Water:</u> Temp.: <u>BA = NE S</u>	tream Features rounding Land Use: $\underline{\Gamma ces} \underline{Iine} \underline{4}$ Width: $\underline{i_2} \underline{n} \underline{5} \underline{\lambda} \underline{m}$ E old Water Warm \underline{Open} $\underline{79}_{b}$ Normal Sewage Absent per of Jars Filled with on: <u>Sondy</u> $\underline{0}$ $\underline{33.7^{\circ}}_{B} \underline{550^{\circ}}$ Dis	Forest Creek Est. Stream Depth: Water Partly Open Petroleum Sligh Solved Oxygen: BA Solved Oxygen: BA	Industrial $\frac{1.5}{m}$ F Velocity: <u>NE</u> P Chemical at Chemical $\frac{1.5}{m}$ H Chemical $\frac{1.5}{m}$ H Chemical H Chemi	Other:	d: Yes X No Shaded Other: Profuse Replicate #3:	. .	
Predominant Surr Vegetation Type: ' Estimated Stream Stream Type: C Canopy Cover: <u>Sediment/Substrat</u> Sediment Odors: Sediment Oils: Ponar Grab: Numi Sediment Descripti <u>Water</u> : Temp.: <u>BA = NE S</u> Conductivity: <u>BA = S</u>	tream Features vounding Land Use: $\underline{\Gamma ces} \underline{I ce}$ Width: $\underline{0.7-15.2m}$ E old Water Warm \underline{Open} $\underline{790}$ Normal Sewage Absent or of Jars Filled with on: $\underline{S0.5250}$ Dis $\underline{63.52300}$ B=250° Dis	Forest Creek Est. Stream Depth: Water Partly Open Petroleum Sligh Sligh Solved Oxygen: BA Aicromhos/cm	Industrial : 1.5 m F Velocity: NE P Chemical at teplicate: #1: := NE 5=5.8; B= Salinity: $BA=0$	Other:	d: Yes X No	. .	
Predominant Surr Vegetation Type: ' Estimated Stream Stream Type: C Canopy Cover: <u>Sediment/Substrat</u> Sediment Odors: Sediment Oils: Ponar Grab: Numb Sediment Descripti <u>Water:</u> Temp.: <u>BA = AJE S</u> Conductivity: <u>BA = S</u> Water Odors:	tream Features ounding Land Use: \underline{Trees} [ine 4] Width: $\underline{0}$, $\underline{1}$ -15.2m If Width: $\underline{0}$, $\underline{1}$ -15.2m If Cold Water Warm Open $\underline{770}$ Normal Sewage \underline{Absent} Der of Jars Filled with on: $\underline{50006:5000}$ Dis $\underline{60:5:3006:9000}$ Normal Sewage	Forest A Creek Est. Stream Depth: Water Partly Open Petroleum Sligh A Cose Solved Oxygen: BA Aicromhos/cm	Industrial $\frac{1.5}{NE} = ME$ $\frac{1.5}{NE} = ME$ $\frac{1.5}{NE} = \frac{1.5}{S} = \frac$	Other:	d: Yes X No	. .	
Predominant Surr Vegetation Type: 7 Estimated Stream Stream Type: 0 Canopy Cover: <u>Sediment/Substrat</u> Sediment Odors: Sediment Odors: Ponar Grab: Numi Sediment Descripti <u>Water</u> : Temp.: <u>BA = AJE S</u> Conductivity: <u>BA = S</u> Water Odors: Water Surface Oils:	tream Features rounding Land Use: $\boxed{1 \cdot ees}$ [ine 4 Width: $(3, 7-15, 2)$ m F Fold Water Warm $\boxed{0pen}$ 79b e: Normal Sewage \boxed{Absent} $er of Jars Filled with on: \underline{Sondy} \overline{0}\underline{c}\underline{c}Normal Sewage\underline{Slick}$	Forest Creek Est. Stream Depth: Water Partly Open Petroleum Sligh Solved Oxygen: Market Aicromhos/cm Sheen	Industrial $\frac{1.5}{M} = F$ Velocity: NE P Chemical At At At At At At At At At At	Other:	d: Yes X No		
Predominant Surr Vegetation Type: '/ Estimated Stream Stream Type: 'O' Canopy Cover: Sediment/Substrat Sediment Odors: Sediment Oils: Ponar Grab: Numb Sediment Description Water: Temp.: <u>BA = NE S</u> Conductivity: <u>BA - S</u> Water Odors: Water Surface Oils: Turbidity: Ch	$\frac{\text{tream Features}}{\text{Frees} i \sim e^{-\frac{1}{2}}}$ $\frac{\text{Frees} i \sim e^{-\frac{1}{2}}}{\text{Frees} i \sim e^{-\frac{1}{2}}}$	Forest C.S. Stream Depth: Water Partly Open Petroleum Sligh Solved Oxygen: BA Micromhos/cm Sheen Turbid	Industrial $\frac{1.5}{NE}$ m F Velocity: <u>NE</u> P Chemical At Chemical $\frac{1.5}{NE}$ $\frac{5.5}{N}$ $\frac{6}{R}$ Salinity: $\frac{6}{8}$ $\frac{6}{2}$ Chemical None urbid O	Other:	d: Yes X No		
Predominant SurrVegetation Type: 7Estimated StreamStream Type: 70Canopy Cover:Sediment/SubstratSediment/SubstratSediment/SubstratSediment/SubstratSediment/SubstratSediment/SubstratSediment/SubstratSediment/SubstratSediment Odors:Sediment Odors:Sediment DescriptionSediment DescriptionSediment DescriptionWater:Temp.: $\underline{BA} = \underline{AJE} = \underline{S}$ Conductivity: $\underline{BA} = \underline{S}$ Water Odors:Water Surface Oils:Turbidity:ClassWeather Conditions	tream Features ounding Land Use: $\underline{Trees} \underline{ree} $ Width: $\underline{0.7-15.2m}$ H Cold Water Warm Open 770 E: Normal Sewage Absent Der of Jars Filled with on: $\underline{S0.04}$ Dis $\underline{c}:$ Dis $\underline{c}:$ Dis $\underline{c}:$ Slightly $\underline{c}:$ Normal Sewage Slick Slightly $\underline{c}:$	Forest A Creek Est. Stream Depth: Water Partly Open Petroleum Sligh A Cose Solved Oxygen: BA A Cose Solved Oxygen: BA A Cose Fetroleum Sheen Turbid Turbid Cose Cos	Industrial 1 + 5 - m F Velocity: <u>NE</u> P Chemical At Chemical 1 + 1 =	Other:	d: Yes X No		
Predominant SurrVegetation Type: 7Estimated StreamStream Type: 70Canopy Cover:Sediment/SubstratSediment/SubstratSediment/SubstratSediment/SubstratSediment/SubstratSediment/SubstratSediment/SubstratSediment/SubstratSediment Odors:Sediment Odors:Sediment DescriptionSediment DescriptionSediment DescriptionWater:Temp.: $\underline{BA} = \underline{AJE} = \underline{S}$ Conductivity: $\underline{BA} = \underline{S}$ Water Odors:Water Surface Oils:Turbidity:ClassWeather Conditions	tream Features ounding Land Use: $\underline{Trees} \underline{ree} $ Width: $\underline{0.7-15.2m}$ H Cold Water Warm Open 770 E: Normal Sewage Absent Der of Jars Filled with on: $\underline{S0.04}$ Dis $\underline{c}:$ Dis $\underline{c}:$ Dis $\underline{c}:$ Slightly $\underline{c}:$ Normal Sewage Slick Slightly $\underline{c}:$	Forest A Creek Est. Stream Depth: Water Partly Open Petroleum Sligh A Cose Solved Oxygen: BA A Cose Solved Oxygen: BA A Cose Fetroleum Sheen Turbid Turbid Cose Cos	Industrial 1 + 5 - m F Velocity: <u>NE</u> P Chemical At Chemical 1 + 1 =	Other:	d: Yes X No		

: .31

SAMPLING STATION CHARACTERIZATION DATA SHEET
Station Number: $6 - \omega c_0 - s_0 - $
Sample Type: Fish Benthic Macroinvertebrate Sediment Surface Water
SAMPLING EQUIPMENT: Seine Gill Net Ponar Kemmerer Sediment Corer Spoon Other: Hand Auger
LeFT of Upstream
Riparian Zone/Instream Features
Predominant Surrounding Land Use: Forest Industrial Other:
Vegetation Type: Low trees hanging towards the stream
Estimated Stream Width: 1 <u>0/0-10 d</u> m Est. Stream Depth: <u>//8</u> m Riffle: <u>NA</u> m Run: <u>NA</u> m Pool: <u>NA</u> m Stream Type: Cold Water (Warm Water) Velocity: <u>NE</u> Channelized: Yes No_
Canopy Cover. Open Partly Open Partly Shaded Shaded
Sediment/Substrate:
Sediment Odors: Normal Sewage Petroleum Chemical Anserobic None Other:
Sediment Oils: Absent Slight Moderate Profuse
Ponar Grab: Number of Jars Filled with Sediments Replicate: #1: Replicate #2: Replicate #3:
Sediment Description: <u>NE</u>
Water:
Temp.: <u>BA: 22.9', 5=22,9'A:255</u> C Dissolved Oxygen: <u>BA: 5.25; 5=5.35; B=0.15</u> mg/L pH: <u>BA: 6.2; 5=6.2; B=N=</u> S.U.
Conductivity: <u>BA-550; S=500; B=13,50</u> Micromhos/cm Salinity: <u>BA=0.1; S=0; B=7.5</u> ppt
Water Odors: Normal Sewage Petroleum Chemical None Other:
Water Surface Oils: Slick Sheen None
Turbidity: Clear Slightly Turbid Turbid Opaque Water Color: Amber Brown
Weather Conditions: <u>Sunny</u> ; 24.2° Tide: In Out
Comments: BA = Bank; 5 = Surface; B= Bottom; NA= Not Applicable;
NE- Not Evaluated

	SAMPLING STATION CHARACTERIZATION DATA SHEET		
	Station Number: $6 - 0009 - 50/5D$ Date: $8/23/92$	Time: 09:08	
	Sample Type: Fish Benthic Macroinvertebrate Sediment	Surface Water	
(\cap)	SAMPLING EQUIPMENT: Seine Gill Net Ponar Kemmerer Sediment Corer Spoon	Other:	
÷. ?			
	a final second and the second s		
		tur estat	
			.
	Downstream	· · · · · · · · · · · · · · · · · · ·	
\frown			
	Riparian Zone/Instream Features		
	Predominant Surrounding Land Use: Forest Industrial Other:		
	Vegetation Type: Trees line bank	1:4 - Deals AHA -	
	Estimated Stream Width: <u>1.5 m</u> Est. Stream Depth: <u>NE</u> m Riffle: <u>NA</u> m Run: <u>A</u> Stream Type: Cold Water (Warm Water) Velocity: <u>NE</u> Channelized		
		(Shaded)	
	Sediment/Substrate:	0.1	
	Sediment Odors: Normal Sewage Petroleum Chemical Anaerobic None Sediment Oils: Absent Slight Moderate	Other: Profuse	
	Sediment Oils: Absent Slight Moderate Ponar Grab: Number of Jars Filled with Sediments Replicate: #1: Replicate #2:		
	Sediment Description: Flocoulent		
	Water:		
	Temp.: $\underline{BA:22:8}; \underline{S:230}; \underline{B:253C}$ Dissolved Oxygen: $\underline{BA:4:5:5:25}; \underline{B:1.5mg/L}$ pH: $\underline{BA:5:6.1}$	<u>, 5=6. [] IS= NE</u> S.U.	
	Conductivity: <u>BA-3,100' 5-900</u> Micromhos/cm Salinity: <u>BA-1,2',5-0,3' 8-8.5</u> ppt B-14,600 Water Odors: Normal Sewage Petroleum Chemical None Other:		
	Water Odors: Normal Sewage Petroleum Chemical (None) Other:	·	
	Turbidity: Clear Slightly Turbid Turbid Opaque Water Color	Amber Brown	
\square	Weather Conditions: Junny, 24.2°C Tide:	In Out	
		+ Analizable	
	Comments: BA= Bank', S= Sur Face', B= Bo Hom! NA= No NE= Not Evoluated	· ripp nearly	
	- Con C VIII Ourcy		

SAMPLING STATION CHARACTERIZATION DATA SHEET Date: 8/22/ 92 10:30 Station Number: 6-WC10-5w/SD Time: Surface Water Sediment Benthic Macroinvertebrate Sample Type: Fish SAMPLING EQUIPMENT: Seine Gill Net Ponar (Kemmerer) Sediment Core Spoon Other: Upstream **Riparian Zone/Instream Features** Other: Industrial Predominant Surrounding Land Use: Forest along bank of dead Vegetation Type: Zone N005 Estimated Stream Width: 91.4 m Est. Stream Depth: 108 m Riffle: NEm Run: NEm Pool: NEm Velocity: NE Channelized: Yes ____ No ___ Stream Type: Cold Water Warm Water Shaded Partly Open Partly Shaded Canopy Cover: Open Sediment/Substrate: Other: (Anaerobic) None Chemical Sediment Odors: Normal Sewage Petroleum Profuse Moderate Sediment Oils: Absent Slight Replicate: #1: ____ Replicate #2: ____ Replicate #3: ____ Ponar Grab: Number of Jars Filled with Sediments Sediment Description: <u>NE</u> Water: Temp.: <u>RA: 24.2' 5-24.9°</u> C Dissolved Oxygen: <u>BA: 3.0' 5: 3.2</u> mg/L pH: <u>BA: 6.3' S.U.</u> 5-2.9 Conductivity: BA= 5.000:5= 4.900 Micromhos/cm Salinity: BA 14,000 Normal Other: Chemical None Water Odors: Sewage Petroleum Water Surface Oils: (None Slick Sheen Water Color: <u>Ambe-B</u>roux Tide: In Out Opaque Clear Slightly Turbid Turbid Turbidity: Weather Conditions: Sunny Appx. 27°C Comments: BA=Bank; S= Surface; B= Bottom; NE= Not Evoluateof

			,	N DATA SHEET		
	Station Number: 6-WC-11-	Sw/SD	Date: 8/22/9	2	Time: <u>09!10</u>	
	Sample Type: Fish	Benthic Macroi	nvertebrate	Sediment	Surface Water	>
1	SAMPLING EQUIPMENT: Seine	Gill Net Ponar	Kemmerer Sedimer	nt Corer Spoon	Other:	· · ·
	B					Ħ
			D.			
	<u></u>					
	LIPS	TREAM				
		TREAM				
	Riparian Zone/Instream Features					
	<u>Riparian Zone/Instream Features</u> Predominant Surrounding Land Use:	Forest	Industrial	Other:		
	Riparian Zone/Instream Features Predominant Surrounding Land Use: Vegetation Type: <u>NE</u>	Forest	·····		15 p. 1. 4/ 5	
	<u>Riparian Zone/Instream Features</u> Predominant Surrounding Land Use: Vegetation Type: <u>NE</u> Estimated Stream Width: <u>NE</u> m H	Forest Est. Stream Depth:	1.2 m Riffle:	<u>/E</u> m Run: <u>/</u>		
	Riparian Zone/Instream Features Predominant Surrounding Land Use: Vegetation Type: <u>NE</u> Estimated Stream Width: <u>NE</u> m H Stream Type: Cold Water Warm	Forest Est. Stream Depth: Water	l-2 m Riffle: / Velocity: WE	VEm Run: <u>A</u> Channelized	: Yes No	
	<u>Riparian Zone/Instream Features</u> Predominant Surrounding Land Use: Vegetation Type: <u>NE</u> Estimated Stream Width: <u>NE</u> m H	Forest Est. Stream Depth:	1.2 m Riffle:	VEm Run: <u>A</u> Channelized		
	Riparian Zone/Instream Features Predominant Surrounding Land Use: Vegetation Type: <u>NE</u> Estimated Stream Width: <u>NE</u> m H Stream Type: Cold Water Warm	Forest Est. Stream Depth: Water	l-2 m Riffle: / Velocity: WE	VEm Run: <u>A</u> Channelized	: Yes No	
	Riparian Zone/Instream Features Predominant Surrounding Land Use: Vegetation Type: <u>NE</u> Estimated Stream Width: <u>NE</u> m H Stream Type: Cold Water Warm Canopy Cover: Open	Forest Est. Stream Depth: Water Partly Open	l.2_m Riffle: 1 Velocity: <u>WE</u> PartlySh	VEm Run: <u>A</u> Channelized	: Yes No	
: : : : :	<u>Riparian Zone/Instream Features</u> Predominant Surrounding Land Use: Vegetation Type: <u>NE</u> Estimated Stream Width: <u>NE</u> m H Stream Type: Cold Water Warm Canopy Cover: Open <u>Sediment/Substrate</u> :	Forest Est. Stream Depth: Water Partly Open	L.2 m Riffle: L Velocity: <u>WE</u> Partly Sh Chemical Ansert	VEm Run: A Channelized aaded	: Yes No Shaded	
: : : : : : : : : : : : : : : : : : :	Riparian Zone/Instream Features Predominant Surrounding Land Use: Vegetation Type: <u>NE</u> Estimated Stream Width: <u>NE</u> m H Stream Type: Cold Water Warm Canopy Cover: Open <u>Sediment/Substrate</u> : Sediment Odors: Normal Sewage Sediment Oils: <u>Absent</u> Ponar Grab: Number of Jars Filled with	Forest Est. Stream Depth: Water Partly Open Petroleum Sligh	L.2 m Riffle: L Velocity: <u>WE</u> Partly Sh Chemical Ansert	VEm Run: A Channelized aaded bbic None derate	: Yes No Shaded Other: Profuse	
: : : : : : : : : : : : : : : : : : :	<u>Riparian Zone/Instream Features</u> Predominant Surrounding Land Use: Vegetation Type: <u>NE</u> Estimated Stream Width: <u>NE</u> m H Stream Type: Cold Water Warm Canopy Cover: Open <u>Sediment/Substrate</u> : Sediment Odors: Normal Sewage Sediment Oils: <u>Absent</u>	Forest Est. Stream Depth: Water Partly Open Petroleum Sligh	LIZ m Riffle: L Velocity: <u>WE</u> Partly Sh Chemical Ansero t Mo	VEm Run: A Channelized aaded bbic None derate	: Yes No Shaded Other: Profuse	
: : : : : : : : : : : : : : : : : : :	Riparian Zone/Instream Features Predominant Surrounding Land Use: Vegetation Type: <u>NE</u> Estimated Stream Width: <u>NE</u> m H Stream Type: Cold Water Warm Canopy Cover: Open <u>Sediment/Substrate</u> : Sediment Odors: Normal Sewage Sediment Odors: Normal Sewage Sediment Oils: <u>Absent</u> Ponar Grab: Number of Jars Filled with Sediment Description: <u>Floccu</u>	Forest Est. Stream Depth: Water Partly Open Petroleum Sligh	LIZ m Riffle: L Velocity: <u>WE</u> Partly Sh Chemical Ansero t Mo	VEm Run: A Channelized aaded bbic None derate	: Yes No Shaded Other: Profuse	
: : : : : : : : : : : : : : : : : : :	Riparian Zone/Instream Features Predominant Surrounding Land Use: Vegetation Type: <u>NE</u> Estimated Stream Width: <u>NE</u> m H Stream Type: Cold Water Warm Canopy Cover: Open <u>Sediment/Substrate</u> : Sediment Odors: Normal Sewage Sediment Odors: Normal Sewage Sediment Oils: <u>Absent</u> Ponar Grab: Number of Jars Filled with Sediment Description: <u>Floccu</u> <u>Water</u> :	Forest Est. Stream Depth: Water Partly Open Petroleum Sligh Sediments R	I 2 m Riffle: Velocity: <u>WE</u> Partly Sh Chemical Ansero t Mo ceplicate: #1: Re	VEm Run: A Channelized naded bbic None derate eplicate #2:	: Yes No Shaded Other: Profuse Replicate #3:	
: : : : : : : : : : : : : : : : : : :	Riparian Zone/Instream Features Predominant Surrounding Land Use: Vegetation Type: NE Estimated Stream Width: NE m H Stream Type: Cold Water Warm Canopy Cover: Open Sediment/Substrate: Sediment Odors: Normal Sediment Oils: Absent Ponar Grab: Number of Jars Filled with Sediment Description: Floccu Water: Yemp.: Baz 24°, Sz 24.3 '2.6° Yemp.: Baz 24°, Sz 24.3 '2.6° Dis	Forest Est. Stream Depth: Water Partly Open Petroleum Sligh Solved Oxygen: &	LIZ m Riffle: Velocity: <u>WE</u> Partly Sh Chemical Anaero t Mo eplicate: #1: Ro A:2, 2, 5=3.2, B=0.3 mg/	L pH: Ba-6.	: Yes No Shaded Other: Profuse Replicate #3:	
: : : : : : : : : : : : : : : : : : :	Riparian Zone/Instream Features Predominant Surrounding Land Use: Vegetation Type: NE Estimated Stream Width: NE m H Stream Type: Cold Water Warm Canopy Cover: Open Sediment/Substrate: Sediment Odors: Normal Sewage Sediment Odors: Normal Sewage Sediment Oils: Absent Ponar Grab: Number of Jars Filled with Sediment Description: $F/OCCL$ Water: Yemp:: $\theta_{A=2}H^{o}$, $S=2H_{A}/2b^{o}C$ Dis Conductivity: $BA=5,500'S=7,000$ M	Forest Est, Stream Depth: Water Partly Open Petroleum Sligh Sediments Solved Oxygen: Street Solved Oxygen: Street Solved Oxygen: Street	<i>L:2</i> m Riffle: μ <i>Velocity:</i> μE Partly Sh Chemical Ansero t Mo <i>eplicate:</i> #1: Ro <i>A:3,3,5:3,8-0.3mg</i> Salinity: $\beta A:3,5',5=4,0$	L pH: Ba: 6.1	: Yes No Shaded Other: Profuse Replicate #3:	
: : : : : : : : : : : : : : : : : : :	Riparian Zone/Instream FeaturesPredominant Surrounding Land Use:Vegetation Type: NE Estimated Stream Width: NE m HStream Type:Cold WaterCanopy Cover:OpenSediment/Substrate:Sediment Odors:NormalSeeinent Oils:AbsentPonar Grab:Number of Jars Filled withSediment Description: $FIOCCL$ Water:Sediment:Semp:: Ba_224° , $S_2 24.3 (-7.6)^\circ$ CSonductivity: $Ba_2 5.50(52.7, 50)$ MVater Odors: $Sewage$	Forest Est. Stream Depth: Water Partly Open Petroleum Sligh Sediments Solved Oxygen: & ficromhos/cm Petroleum	$\frac{1 \cdot 2}{\text{m}} \text{m} \text{Riffle: } 4$ $\frac{1 \cdot 2}{\text{Velocity: } ME}$ Partly Sh Chemical Anserd t Mo eplicate: #1: Re $\frac{1 \cdot 2}{1 \cdot 2} \cdot 5 = 3 \cdot 2 \cdot B = 0 \cdot 3 \text{mg/}$ Salinity: $\frac{1 \cdot 2 \cdot 5}{1 \cdot 5} \cdot 5 = 4 \cdot 0$ Chemical No	L pH: Ba: 6.1	: Yes No Shaded Other: Profuse Replicate #3:	
: : : : : : : : : : : : : : : : : : :	Riparian Zone/Instream FeaturesPredominant Surrounding Land Use:Vegetation Type: NE Estimated Stream Width: NE m HStream Type:Cold WaterCanopy Cover:OpenSediment/Substrate:Sediment Odors:NormalSeediment Oils: $Absent$ Ponar Grab:Number of Jars Filled withSediment Description: $F + O \subset C \sqcup$ Water:Yemp.:Penp.: $Ba_2 = 24^\circ$, $S_2 = 24.3 + 26^\circ$ CVater: $Sewage$ Vater Odors: $Normal$ Vater Odors:NormalVater Surface Oils:Slick	Forest Est. Stream Depth: Water Partly Open Petroleum Sligh Sediments F Solved Oxygen: & ficromhos/cm S Petroleum Sheen	$\frac{1 \cdot 2}{\text{Melocity:}} \text{m Riffle:}_{\mu}$ $\frac{1 \cdot 2}{\text{Partly Sh}}$ $\frac{1 \cdot 2}{\text{Partly Sh}}$ $\frac{1 \cdot 2}{\text{Chemical}} \text{Ansero}$ $\frac{1 \cdot 3}{12} \cdot \frac{5 \cdot 3}{2} \cdot \frac{3}{6} \cdot \frac{6}{3} \cdot \frac{3}{16}$ $\frac{1 \cdot 3}{12} \cdot \frac{5 \cdot 3}{2} \cdot \frac{3}{6} \cdot \frac{6}{3} \cdot \frac{3}{16}$ $\frac{1 \cdot 3}{12} \cdot \frac{5 \cdot 3}{2} \cdot \frac{3}{6} \cdot \frac{6}{3} \cdot \frac{3}{16}$ $\frac{1 \cdot 3}{12} \cdot \frac{5 \cdot 3}{2} \cdot \frac{3}{6} \cdot \frac{5}{5} \cdot \frac{4}{6} \cdot \frac{6}{16}$ $\frac{1 \cdot 3}{16} \cdot \frac{1 \cdot 3}{16} \cdot \frac{5}{16} \cdot \frac{5}{16} \cdot \frac{4}{16}$ $\frac{1 \cdot 3}{16} \cdot \frac{1 \cdot 3}{16} \cdot \frac{5}{16} \cdot \frac{5}{16} \cdot \frac{4}{16}$ $\frac{1 \cdot 3}{16} \cdot \frac{1 \cdot 3}{16} \cdot \frac{5}{16} \cdot \frac{5}{16} \cdot \frac{4}{16}$ $\frac{1 \cdot 3}{16} \cdot \frac{1 \cdot 3}{16} \cdot \frac{5}{16} \cdot \frac{5}{16} \cdot \frac{4}{16}$ $\frac{1 \cdot 3}{16} \cdot \frac{1 \cdot 3}{16} \cdot \frac{5}{16} \cdot \frac{5}{16} \cdot \frac{4}{16}$ $\frac{1 \cdot 3}{16} \cdot \frac{1 \cdot 3}{16} \cdot \frac{5}{16} \cdot \frac{1 \cdot 3}{16} \cdot \frac{5}{16} \cdot \frac{1 \cdot 3}{16} \cdot \frac{1 \cdot 3}{16$	L pH: <u>Ba-6.</u>	: Yes No Shaded Other: Profuse Replicate #3: <u>S: 6.3' ß: NE</u> S.U.	
: : : : : : : : : : : : : : : : : : :	Riparian Zone/Instream FeaturesPredominant Surrounding Land Use:Vegetation Type: NE Estimated Stream Width: NE m HStream Type:Cold WaterCanopy Cover:OpenSediment/Substrate:Sediment Odors:NormalSeediment Oils: $Absent$ Ponar Grab:Number of Jars Filled withSediment Description: $F + O \subset C \sqcup$ Water: $Ponar Grab:$ Semp.: $Ba_2 A J^2$, $S_2 = 74.3 + 16^2$ CDisDisConductivity: $Ba_2 = 5.500 + 52 + 7.500$ Water Odors:NormalVater Odors:SickWater Surface Oils:Slickurbidity:ClearSlightly 2	Forest Est. Stream Depth: Water Partly Open Petroleum Sligh Sediments F Solved Oxygen: & ficromhos/cm S Petroleum Sheen C Furbid Tu	$\frac{1 \cdot 2}{\text{M}} \text{m Riffle: } \mu$ $\frac{1 \cdot 2}{\text{Partly Sh}}$ $\frac{1 \cdot 2}{\text{Partly Sh}}$ $\frac{1 \cdot 2}{\text{Partly Sh}}$ $\frac{1 \cdot 2}{\text{Chemical}}$ $\frac{1 \cdot 2}{\text{Salinity: } \frac{1 \cdot 2}{9 \cdot 3 \cdot 5} \cdot \frac{1 \cdot 2}{5 \cdot 5} \cdot \frac{1 \cdot 2}{9 \cdot 6}}{\text{Chemical}}$ $\frac{1 \cdot 2}{\text{None}}$ $\frac{1 \cdot 2}{\text{Wone}}$ $\frac{1 \cdot 2}{\text{Solution}}$ $\frac{1 \cdot 2}{1 \cdot 2} \cdot \frac{1 \cdot 2}{5 \cdot 5} \cdot 1 \cdot 2$	L pH: <u>Barb.</u> Umber of the physic of the ph	: Yes No Shaded Other: Profuse Replicate #3: S: 6.3' B: NES.U.	
2 2 2 2 2 2 2 2 2 2 2 7 1 7 0 0 8 7 1 7 0 8 7 1 8 7 1 8 1 8 1 8 19 19 19 19 19 19 19 19 19 19 19 19 19	Riparian Zone/Instream FeaturesPredominant Surrounding Land Use:Vegetation Type: NE Estimated Stream Width: NE m HStream Type:Cold WaterCanopy Cover:OpenSediment/Substrate:Sediment Odors:NormalSeediment Oils: $Absent$ Ponar Grab:Number of Jars Filled withSediment Description: $F + O \subset C \sqcup$ Water:Yemp.:Penp.: $Ba_2 = 24^\circ$, $S_2 = 24.3 + 26^\circ$ CVater: $Sewage$ Vater Odors: $Normal$ Vater Odors:NormalVater Surface Oils:Slick	Forest Est. Stream Depth: Water Partly Open Petroleum Sligh Solved Oxygen: & ficromhos/cm Sheen Furbid Sheen	$\frac{1 \cdot 2}{\text{M}} \text{m} \text{Riffle: } 4$ $\frac{1 \cdot 2}{\text{Partly Sh}}$ $\frac{1 \cdot 2}{\text{Partly Sh}}$ $\frac{1 \cdot 2}{\text{Partly Sh}}$ $\frac{1 \cdot 2}{\text{Chemical}}$ $\frac{1 \cdot 2}{\text{Chemical}}$ $\frac{1 \cdot 2}{\text{None}}$ $\frac{1 \cdot 2}{\text{Chemical}}$	VEm Run: A Channelized haded bbic None derate eplicate #2: L pH: <u>Ba: [6.1]</u> <u>Channelized</u> derate eplicate #2: L pH: <u>Ba: [6.1]</u> <u>UE-BO</u> ppt Other: Water Colo Tide:	: Yes No Shaded Other: Profuse Replicate #3: S: <u>6.3' B: NE</u> S.U. r: <u>N/E</u> In Out	

- 1. F

APPENDIX D DATA AND FREQUENCY SUMMARIES SURFACE WATER SAMPLES

	Sample No: Depth: Date Sampled: Lab Id:	6-WC01-SW-06B N/A 8/30/92 00464-25	6-WC01-SW-06M N/A 8/30/92 00464-26	6-WC02-SW-06B N/A 8/26/92 00445-16	6-WC03-SW-06B N/A 8/26/92 00439-18	6-WC03-SW-06M N/A 8/26/92 00439-19	6-WC03-SW-312M N/A 8/26/92 00439-20
Parameter	Units			······································			
PESTICIDE/P	CBS						
ALPHA-BHC	UG/L	0.05 U	0.05 UJ				
BETA-BHC	UG/L	0.05 U	0.05 UJ				
DELTA-BHC	UG/L	0.05 U	0.05 UJ				
GAMMA-BHC(LINDANE)		0.05 U	0.05 UJ				
HEPTACHLOR	UG/L	0.05 U	0.05 UJ				
ALDRIN	UG/L	0.05 U	0.05 UJ				
HEPTACHLOR EPOXIDE	UG/L	0.05 U	0.05 UJ				
ENDOSULFAN I	UG/L	0.05 U	0.05 UJ				
DIELDRIN	UG/L	0.1 U	0.1 UJ				
4,4'-DDE	UG/L	0.1 U	0.1 UJ				
ENDRIN	UG/L	0.1 U	0.1 UJ				
ENDOSULFAN II	UG/L	0.1 U	0.1 UJ				
4,4'-DDD	UG/L	0.1 U	0.1 UJ				
ENDOSULFAN SULFATE	UG/L	0.1 U	0.1 UJ				
4,4'-DDT	UG/L	0.1 U	0.1 UJ				
METHOXYCHLOR	UG/L	0.5 U	0.5 UJ				
ENDRIN KETONE	UG/L	0.1 U	0.1 UJ				
ENDRIN ALDEHYDE	UG/L	0.1 U	0.1 UJ				
ALPHA CHLORDANE	UG/L	0.05 U	0.05 UJ				
GAMMA CHLORDANE	UG/L	0.05 U	0.05 UJ				
TOXAPHENE	UG/L	5 U	5 UJ				
PCB-1016	UG/L	1 U	1 UJ				
PCB-1221	UG/L	2 U	2 UJ				
PCB-1232	UG/L	1 U	1 UJ				
PCB-1242	UG/L	1 U	1 UJ				
PCB-1248	UG/L	1 U	1 UJ				
PCB-1254	UG/L	1 U	1 UJ				
PCB-1260	UG/L	1 U	1 UJ				
VOLATILE	S						
CHLOROMETHANE	≞ UG/L	10 U					
BROMOMETHANE	UG/L	10 U					
VINYL CHLORIDE	UG/L	10 U					
CHLOROETHANE	UG/L	10 U					
METHYLENE CHLORIDE	UG/L	10 U					
ACETONE	UG/L	10 U	46				
CARBON DISULFIDE	UG/L	10 U					
1.1-DICHLOROETHENE	UG/L	10 U					
1,1-DICHLOROETHANE	UG/L	10 U	10 U	10 Ŭ	10 U	10 U	10 U
.2-DICHLOROETHENE	UG/L	10 U	10 U	10 U	10 Ŭ	10 U	10 U
CHLOROFORM	UG/L	10 U					
1,2-DICHLOROETHANE	UG/L	10 U					
2-BUTANONE	UG/L	10 U					

6wcswor.wk1

1	Samplo No: Depth: Date Sampled: Lab Id:	6-WC01-SW-06B N/A 8/30/92 00464-25	6 – WC01 – SW –06M N/A 8/30/92 00464 – 26	6-WC02-SW-06B N/A 8/26/92 00445-16	6-WC03-SW-06B N/A 8/26/92 00439-18	6-WC03-SW-06M N/A 8/26/92 00439-19	6-WC03-SW-312M N/A 8/26/92 00439-20
Parameter	Units		······································				
VOLATILES Con	t,						
1,1,1-TRICHLOROETHANE	UG/L	10 U	10 U	10 U	10 U	10 U	10 U
CARBON TETRACHLORIDE	UG/L	10 U	10 U	10 U	10 U	10 U	10 U
BROMODICHLOROMETHAN		10 U	10 U	10 U	10 U	10 U	10 U
1.2-DICHLOROPROPANE	UG/L	10 U	10 U	10 U	10 U	10 U	10 U
CIS-13-DICHLOROPROPEN	NE UG/L	10 U	10 U	10 U	10 U	10 U	10 U
TRICHLOROETHENE	UG/L	10 U	10 U	10 U	10 U	10 U	10 U
DIBROMOCHLOROMETHAN		10 U	10 U	10 U	10 U	10 U	10 U
1.1.2-TRICHLOROETHANE	UG/L	10 U	10 U	10 U	10 U	10 U	10 U
BENZENE	UG/L	10 U	10 U	10 U	10 U	10 U	10 U
FRANS-1,3-DICHLOROPRO		10 U	10 U	10 U	10 U	10 U	10 U
BROMOFORM	UG/L	10 U	10 U	10 U	10 U	10 U	10 U
-METHYL-2-PENTANON		10 U	10 U	10 U	10 U	10 U	10 U
2-HEXANONE	UG/L	10 U	10 U	10 U	10 U	10 U	10 U
TETRACHLOROETHENE	UG/L	10 U	10 U	10 U	10 U	10 U	10 U
1,1,2,2-TETRACHLOROETH		10 U	10 U	10 U	10 U	10 U	10 U
roluene	UG/L	10 U	10 U	10 U	10 U	10 U	10 U
CHLOROBENZENE	UG/L	10 U	10 U	10 U	10 U	10 U	10 U
THYLBENZENE	UG/L	10 U	10 U	10 U	10 U	10 U	10 U
	UG/L	10 U	10 U	10 U	10 U	10 U	10 U
STYRENE FOTAL XYLENES	UG/L	10 U	10 U	10 U	10 U	10 U	10 U
SEMIVOLATILE		10 U	10 U	10 U	10 U	10 U	10 U
PHENOL	UG/L	10 U	10 U	10 U	10 U	10 U	10 U
BIS(2-CHLOROETHYL) ETH		10 U 10 U	10 U	10 U	10 U	10 U	10 U
2-CHLOROPHENOL	UG/L		10 U	10 U	10 U	10 U	10 U
1,3-DICHLOROBENZENE	UG/L	10 U			10 U	10 U	10 U
4-DICHLOROBENZENE	UG/L	10 U	10 U	10 U		10 U	10 U
1,2-DICHLOROBENZENE	UG/L	10 U	10 U	10 U	10 U		10 U
2-METHYLPHENOL	UG/L	10 U	10 U	10 U	10 U	10 U	10 U
2,2°–OXYBIS (1–CHLOROPR		10 U	10 U	10 U	10 U	10 U	10 U
-METHYLPHENOL	UG/L	10 U	10 U	10 U	10 U	10 U	
1-NITROSODI-N-PROPYL		10 U	10 U	10 U	10 U	10 U	10 U
IEXACHLOROETHANE	UG/L	10 U	10 U	10 U	10 U	10 U	10 U
VITROBENZENE	UG/L	10 U	10 U	10 U	10 U	10 U	10 U
SOPHORONE	UG/L	10 U	10 U	10 U	10 U	10 U	10 U
-NITROPHENOL	UG/L	10 UJ	10 UJ	10 U	10 U	10 U	10 U
4-DIMETHYLPHENOL	UG/L	10 U	10 U	10 U	10 U	10 U	10 U
BIS(2-CHLOROETHOXY) M	ETHANE UG/L	10 U	10 U	10 U	10 U	10 U	10 U
4-DICHLOROPHENOL	UG/L	10 U	10 U	10 U	10 U	10 U	10 U
.2.4-TRICHLOROBENZENE		10 U	10 U	10 U	10 U	10 U	10 U
APHTHALENE	UG/L	10 U	10 U	10 U	10 U	10 U	10 U
-CHLORANILINE	UG/L	10 U	10 U	10 U	10 U	10 U	10 U
HEXACHLOROBUTADIENE		10 U	10 U	10 U	10 U	10 U	10 U

P 3 of 18

6wcswor.wk1

	Sample No: Depth: Date Sampled: Lab Id:		6-WC01-SW-06B N/A 8/30/92 00464-25	6-WC01-SW-06M N/A 8/30/92 00464-26	6-WC02-SW-06B N/A 8/26/92 00445-16	6-WC03-SW-06B N/A 8/26/92 00439-18	6-WC03-SW-06M N/A 8/26/92 00439-19	6-WC03-SW-312M N/A 8/26/92 00439-20
Parameter		Units				· · · · · · · · · · · · · · · · · · ·	······	
SEMIVOLATI	ES Cont.							
4-CHLORO-3-METHY	LPHENOL U	UG/L	10 U					
2-METHYLNAPHTHAL	ENE U	UG/L	10 U					
HEXACHLOROCYCLOP	ENTADIENE U	UG/L	10 U					
2,4,6-TRICHLOROPHEN	IOL U	UG/L	10 U					
2,4,5-TRICHLOROPHEN	IOL U	U G/L	25 U					
2-CHLORONAPHTHAL	ENE U	UG/L	10 U					
2-NITROANILINE	τ	UG/L	25 U					
DIMETHYL PHTHALAT	E t	UGIL	10 U					
ACENAPHTHYLENE		UG/L	10 U					
2,6-DINITROTOLUENE	τ	UG/L	10 UJ	10 UJ	10 U	10 U	10 U	10 U
3-NITROANILINE	- T	UG/L	25 U					
ACENAPHTHENE	t	UG/L	10 U					
2,4-DINITROPHENOL	τ	UG/L	25 U					
4-NITROPHENOL	τ	UG/L	25 U					
DIBENZOFURAN		UG/L	10 U					
2.4-DINITROTOLUENE	t	UG/L	10 UJ	10 UJ	10 U	10 U	10 U	10 U
DIETHYL PHTHALATE	τ	UG/L	10 U					
4-CHLOROPHENYL PH	ENYL ETHER U	UG/L	10 U					
FLUORENE		UG/L	10 U					
4-NITROANILINE	τ	UG/L	25 U					
4,6-DINITRO-2-METH	YLPHENOL U	UG/L	25 U					
N-NITRISODIPHENYLA		JG/L	10 U					
4-BROMOPHENYL PHE	NYL ETHER U	JG/L	10 U					
HEXACHLOROBENZEN	E U	JG/L	10 U					
PENTACHLOROPHENO	ιt	JG/L	25 U					
PHENANTHRENE		JG/L	10 U					
ANTHRACENE	τ	JG/L	10 U					
DI-N-BUTYL PHTHAL	ATE U	JG/L	10 U					
FLUORANTHENE	τ	JG/L	10 U					
CARBAZOLE	τ	JG/L	10 U					
PYRENE	ι	JG/L	10 U					
BUTYL BENZYL PHTHA		JG/L	10 U					
3,3-DICHLOROBENZID	INE U	JG/L	10 U					
BENZO(A)ANTHRACEN	E L	JG/L	10 U					
CHRYSÈNE		JG/L	10 U					
BIS(2-ETHYLHEXYL)PI	ITHALATE U	JG/L	10 U					
DI-N-OCTYL PHTHAL		JG/L	10 UJ	10 UJ	10 U	10 UJ	10 U	10 U
BENZO(B)FLUORANTH		JG/L	10 UJ	10 UJ	10 U	10 UJ	10 U	10 U
BENZO(K)FLUORANTH		JG/L	10 UJ	10 UJ	10 U	10 UJ	10 U	10 U
BENZO(A)PYRENE		JG/L	10 UJ	10 UJ	10 U	10 UJ	10 U	10 U
INDENO(12,3-CD) PYR		JG/L	10 UJ	10 UJ	10 U	10 UJ	10 U	10 U
DIBENZ(AH)ANTHRAC		JG/L	10 UJ	10 UJ	10 U	10 UJ	10 U	10 U
BENZO(G,H,I)PERYLEN		JG/L	10 UJ	10 UJ	10 U	10 UJ	10 U	10 U

	Sample No: Depth: Date Sampled:	6-WC04-SW-06B N/A 8/25/92	6-WC04-SW-06M N/A 8/25/92	6-WC05-SW-06B N/A 8/25/92	6-WC05-SW-06M N/A 8/25/92	6-WC05-SW-312M N/A 8/25/92	6-WC06-SW-06B N/A 8/23/92
	Lab Id:	00439-21	00439-22	00437-19	00437-20	00437-21	00429-05
rameter	Units						
PESTICIDE/PC	CBS						,
LPHA-BHC	UG/L	0.05 UJ	0.05 UJ	0.05 UJ	0.05 UJ	0.05 U	0.05 U
ETA-BHC	UG/L	0.05 UJ	0.05 UJ	0.05 UJ	0.05 UJ	0.05 U	0.05 U
ELTA-BHC	UG/L	0.05 UJ	0.05 UJ	0.05 UJ	0.05 UJ	0.05 U	0.05 U
AMMA-BHC(LINDANE)	UG/L	0.05 UJ	0.05 UJ	0.05 UJ	0.05 UJ	0.05 U	0.05 U
PTACHLOR	UG/L	0.05 UJ	0.05 UJ	0.05 UJ	0.05 UJ	0.05 U	0.05 U
DRIN	UG/L	0.05 UJ	0.05 UJ	0.05 UJ	0.05 UJ	0.05 U	0.05 U
PTACHLOR EPOXIDE	UG/L	0.05 UJ	0.05 UJ	0.05 UJ	0.05 UJ	0.05 U	0.05 U
DOSULFAN I	UG/L	0.05 UJ	0.05 UJ	0.05 UJ	0.05 UJ	0.05 U	0.05 U
ELDRIN	UG/L	0.1 UJ	0.1 UJ	0.1 UJ	0.1 UJ	0.1 U	0.1 U
-DDE	UG/L	0.1 UJ	0.1 UJ	0.1 UJ	0.1 UJ	0.1 U	0.1 U
DRIN	UG/L	0.1 UJ	0.1 UJ	0.1 UJ	0.1 UJ	0.1 U	0.1 U
DOSULFAN II	UG/L	0.1 UJ	0.1 UJ	0.1 UJ	0.1 UJ	0.1 U	0.1 U
-DDD	UG/L	0.1 UJ	0.1 UJ	0.1 UJ	0.1 UJ	0.1 U	0.1 U
DOSULFAN SULFATE	UG/L	0.1 UJ	0.1 UJ	0.1 UJ	0.1 UJ	0.1 U	0.1 U
-DDT	UG/L	0.1 UJ	0.1 UJ	0.1 UJ	0.1 UJ	0.1 U	0.1 U
THOXYCHLOR	UG/L	0.5 UJ	0.5 UJ	0.5 UJ	0.5 UJ	0.5 U	0.5 U
DRIN KETONE	UG/L	0.5 UJ	0.5 UJ	0.1 UJ	0.1 UJ	0.1 U	0.5 U 0.1 U
DRIN ALDEHYDE	UG/L	0.1 UJ	0.1 UJ	0.1 UJ	0.1 UJ	0.1 U	0.1 U
	UG/L	0.05 UJ	0.05 UJ	0.05 UJ	0.05 UJ	0.05 U	0.05 U
PHA CHLORDANE		0.05 UJ	0.05 UJ	0.05 UJ	0.05 UJ	0.05 U	
MMA CHLORDANE	UG/L						0.05 U
XAPHENE	UG/L	5 UJ	5 UJ	5 UJ	5 UJ	5 U	5 U
B-1016	UG/L	1 UJ	1 UJ	1 UJ	1 UJ	1 U	1 U
B-1221	UG/L	2 UJ	2 UJ	2 UJ	2 UJ	2 U	2 U
B-1232	UG/L	1 UJ	1 UJ	1 UJ	1 UJ	1 U	1 U
B-1242	UG/L	1 UJ	1 UJ	1 UJ	1 UJ	1 U	1 U
B-1248	UG/L	1 UJ	1 UJ	1 UJ	1 UJ	1 U	1 U
B-1254	UG/L	1 UJ	1 UJ	1 UJ	1 UJ	1 U	1 U
8-1260	UG/L	1 UJ	1 UJ	1 UJ	1 UJ	1 U	1 U
VOLATILES	5						
LOROMETHANE	UG/L	10 U	10 U				
OMOMETHANE	UG/L	10 U	10 U				
NYL CHLORIDE	UG/L	10 U	10 U				
LOROETHANE	UG/L	10 U	10 U				
THYLENE CHLORIDE	UG/L	10 U	10 U				
ETONE	UG/L	14	10 U	10 U	10 U	10 U	10 UJ
RBON DISULFIDE	UG/L	14 10 U	10 U	10 U	10 U	10 U	10 U
			10 U	10 U		10 U	
-DICHLOROETHENE	UG/L	10 U			10 U		10 U
-DICHLOROETHANE	UG/L	10 U	10 U				
-DICHLOROETHENE	UG/L	4 J	4 J	10 U	10 U	10 U	10 U
LOROFORM	UG/L	10 U	10 U				
-DICHLOROETHANE	UG/L	10 U	10 U				
BUTANONE	UG/L	10 U	10 U				

r

6wcswor.wk1

D	Sample No: Depth: ate Sampled: Lab Id:	6-WC04-SW-06B N/A 8/25/92 00439-21	6-WC04-SW-06M N/A 8/25/92 00439-22	6-WC05-SW-06B N/A 8/25/92 00437-19	6-WC05-SW-06M N/A 8/25/92 00437-20	6-WC05-SW-312M N/A 8/25/92 00437-21	6-WC06-SW-06B N/A 8/23/92 00429-05
Parameter	Units						
VOLATILES Cont.							
1,1,1-TRICHLOROETHANE	UG/L	10 U	10 U				
CARBON TETRACHLORIDE	UG/L	10 U	10 U				
BROMODICHLOROMETHANE	UG/L	10 U	10 U				
1,2-DICHLOROPROPANE	UG/L	10 U	10 U				
CIS-1,3-DICHLOROPROPENH	G UG/L	10 U	10 U				
TRICHLOROETHENE	UG/L	10 U	10 U				
DIBROMOCHLOROMETHANE	UG/L	10 U	10 UJ				
1,1,2-TRICHLOROETHANE	UG/L	10 U	10 U				
BENZENE	UG/L	10 U	10 U				
TRANS-1,3-DICHLOROPROP	'ENE UG/L	10 U	10 U				
BROMOFORM	UG/L	10 U	10 U				
4-METHYL-2-PENTANONE	UG/L	10 U	10 U				
2-HEXANONE	UG/L	10 U	10 U				
TETRACHLOROETHENE	UG/L	10 U	10 U				
1,1,2,2-TETRACHLOROETHAM	VE UG/L	10 U	10 U				
TOLUENE	UG/L	10 U	2 J				
CHLOROBENZENE	UG/L	10 U	10 U				
ETHYLBENZENB	UG/L	10 U	10 U				
STYRENE	UG/L	10 U	10 U				
TOTAL XYLENES	UG/L	10 U	10 U				
SEMIVOLATILES				`			
PHENOL	UG/L	10 U	10 U				
BIS(2-CHLOROETHYL) ETHE		10 U	10 U				
2-CHLOROPHENOL	UG/L	10 U	10 U				
1,3-DICHLOROBENZENE	UG/L	10 U	10 U				
1.4-DICHLOROBENZENE	UG/L	10 U	10 U				
1,2-DICHLOROBENZENE	UG/L	10 U	· 10 Ŭ	10 U	10 U	10 Ŭ	10 U
2-METHYLPHENOL	UG/L	10 U	10 U				
2,2'-OXYBIS (1-CHLOROPRO		10 U	10 U				
4-METHYLPHENOL	UG/L	10 U	10 U				
N-NITROSODI-N-PROPYLA		10 U	10 U				
HEXACHLOROETHANE	UG/L	10 U	10 U				
NITROBENZENE	UG/L	10 U	10 U				
ISOPHORONE	UG/L	10 U	10 U				
2-NITROPHENOL	UG/L	10 U	10 U				
2.4-DIMETHYLPHENOL	UG/L	10 U	10 U				
BIS(2-CHLOROETHOXY) MET		10 U	10 U				
2,4-DICHLOROPHENOL	UG/L	10 U	10 U				
1,2,4 - TRICHLOROBENZENE	UG/L	10 U	10 U 10 U				
NAPHTHALENE	UG/L	10 U	10 U				
4-CHLORANILINE	UG/L	10 U					
			10 U				10 U
HEXACHLOROBUTADIENE	UG/L	10 U	10 0	10 U	10 U	10 U	10 U

6wcswor.wk1

.

	Sample No: Depth: Date Sampled: Lab Id:	6-WC04-SW-06B N/A 8/25/92 00439-21	6-WC04-SW-06M N/A 8/25/92 00439-22	6-WC05-SW-06B N/A 8/25/92 00437-19	6-WC05-SW-06M N/A 8/25/92 00437-20	6-WC05-SW-312M N/A 8/25/92 00437-21	6-WC06-SW-06B N/A 8/23/92 00429-05
Parameter	Units		· · · · ·				
SEMIVOLATILI	ES Cont.						
4-CHLORO-3-METHYL	PHENOL UG/L	. 10 U	10 U	10 U	10 U	10 U	10 U
2-METHYLNAPHTHALE	NE UG/L	, 10 U	10 U	10 U	10 U	10 U	10 U
HEXACHLOROCYCLOPE	INTADIENE UG/L	, 10 U	10 U	10 U	10 U	10 U	10 U
2,4,6-TRICHLOROPHENG	OL UG/L	, 10 U	10 U	10 U	10 U	10 U	10 U
2,4,5-TRICHLOROPHENO		. 25 U	25 U	25 U	25 U	25 U	25 U
2-CHLORONAPHTHALE			10 U	10 U	10 U	10 U	10 U
2-NITROANILINE	UG/L		25 U	25 U	25 U	25 U	25 U
DIMETHYL PHTHALATE			10 U	10 U	10 U	10 U	10 U
ACENAPHTHYLENE	UG/L		10 U	10 U	10 U	10 U	10 Ŭ
2,6-DINITROTOLUENE	UG/L		10 U	10 U	10 U	10 U	10 U
3-NITROANILINE	UG/L		25 U	25 U	25 U	25 U	25 U
ACENAPHTHENE	UG/L		10 U	10 U	10 U	10 U	10 U
2.4-DINITROPHENOL	UG/L		25 U	25 U	25 U	25 U	25 U
4-NITROPHENOL	UG/L		25 U	25 U	25 U	25 U	25 U
	UG/L		25 U 10 U	10 U	25 U 10 U	23 U 10 U	25 U 10 U
DIBENZOFURAN			10 U				
2,4-DINITROTOLUENE	UG/L			10 U	10 U	10 U	10 U
DIETHYL PHTHALATE	UG/L		10 U	10 U	10 U	10 U	10 U
4-CHLOROPHENYL PHE			10 U	10 U	10 U	10 U	10 U
FLUORENE	UG/L		10 U	10 U	10 U	10 U	10 U
4-NITROANILINE	UG/L		25 U	25 U	25 U	25 U	25 U
4,6-DINITRO-2-METHY			25 U	25 U	25 U	25 U	25 U
N-NITRISODIPHENYLA!			10 U	10 U	10 U	10 U	10 U
4-BROMOPHENYL PHEN			10 U	10 U	10 U	10 U	10 U
HEXACHLOROBENZENE			10 UJ	10 U	10 UJ	10 UJ	10 U
PENTACHLOROPHENOL			25 U	25 U	25 UJ	25 UJ	25 U
PHENANTHRENE	UG/L		10 U	10 U	10 U	10 U	10 U
ANTHRACENE	UG/L		10 U	10. U	10 U	10 U	10 U
DI-N-BUTYL PHTHALA	TE UG/L	, 10 U	10 U	10 U	10 U	10 U	10 U
FLUORANTHENE	UG/L	. 10 U	10 U	10 U	10 U	10 U	10 U
CARBAZOLE	UG/L	10 U	10 U				
PYRENE	UG/L	, 10 U	10 U	10 U	10 U	10 U	10 U
BUTYL BENZYL PHTHAL	ATE UG/L	10 U	10 U				
3,3-DICHLOROBENZIDI	NE UG/L	. 10 U	10 U	10 U	10 U	10 U	10 U
BENZO(A)ANTHRACENE			10 U	10 U	10 U	10 U	10 U
CHRYSENE	UG/L		10 U	10 U	10 U	10 U	10 U
BIS(2-ETHYLHEXYL)PH			10 U	10 U	10 U	2 J	10 U
DI-N-OCTYL PHTHALA			10 UJ	10 UJ	10 U	10 U	10 U
BENZO(B)FLUORANTHE			10 UJ	10 UJ	10 U	10 U	10 U
BENZO(K)FLUORANTHE			10 UJ	10 UJ	10 U	10 U	10 U
BENZO(A)PYRENE	UG/L		10 UJ	10 UJ	10 U	10 U	10 U
INDENO(12,3-CD) PYRE			10 UJ	10 UJ	10 U	10 U	10 U
LINDING 460 TODI LIND		10.03		10 05	10 0	10 0	10 0
DIBENZ(AH)ANTHRACE	ENE UG/L	10 UJ	10 UJ	10 UJ	10 U	10 U	10 U

BETA-BHC UGL 0.61 U 0.05 U 0.65 U </th <th></th> <th>Sample No; Depth: Date Sampled: Lab Id;</th> <th>6-WC06-SW-06M N/A 8/23/92 00429-06</th> <th>6-WC07-SW-06B N/A 8/23/92 00429-10</th> <th>6-WC07-SW-06M N/A 8/23/92 00429-11</th> <th>6-WC07-SW-312M N/A 8/23/92 00429-12</th> <th>6-WC08-SW-06B N/A 8/23/92 00429-18</th> <th>6-WC08-SW-06M N/A 8/23/92 00429-19</th>		Sample No; Depth: Date Sampled: Lab Id;	6-WC06-SW-06M N/A 8/23/92 00429-06	6-WC07-SW-06B N/A 8/23/92 00429-10	6-WC07-SW-06M N/A 8/23/92 00429-11	6-WC07-SW-312M N/A 8/23/92 00429-12	6-WC08-SW-06B N/A 8/23/92 00429-18	6-WC08-SW-06M N/A 8/23/92 00429-19
ALPHA-BHC UGA 0.05 U 0.05 U<	Parameter	Units						<u>. </u>
BETA-BIC UGL 0.05 U 0.05 U </td <td>PESTICIDE/P</td> <td>CBS</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	PESTICIDE/P	CBS						
DELTA-BRC UG/L 0.65 U 0.05 U	ALPHA-BHC	UG/L	0.05 U	0.05 UJ	0.05 U	0.05 U	0.05 U	0.05 UJ
GAMMA-BRC(LNDANE) UGA. 0.05 U 0.05 U </td <td>BETA-BHC</td> <td>UG/L</td> <td>0.05 U</td> <td>0.05 UJ</td> <td>0.05 U</td> <td>0.05 U</td> <td>0.05 U</td> <td>0.05 UJ</td>	BETA-BHC	UG/L	0.05 U	0.05 UJ	0.05 U	0.05 U	0.05 U	0.05 UJ
HEPTACELOR UG/L 0.05 U 0.01 U 0.1 U	DELTA-BHC	UG/L	0.05 U	0.05 UJ	0.05 U	0.05 U	0.05 U	0.05 UJ
ALDRN UGAL 0.05 U 0.05 U <td>GAMMA-BHC(LINDANE)</td> <td>) UG/L</td> <td>0.05 U</td> <td>0.05 UJ</td> <td>0.05 U</td> <td>0.05 U</td> <td>0.05 U</td> <td>0.05 UJ</td>	GAMMA-BHC(LINDANE)) UG/L	0.05 U	0.05 UJ	0.05 U	0.05 U	0.05 U	0.05 UJ
HEPTACHLOR EPOXIDE UGL 0.05 U 0.05 U <t< td=""><td>HEPTACHLOR</td><td>UG/L</td><td>0.05 U</td><td>0.05 UJ</td><td>0.05 U</td><td>0.05 U</td><td>0.05 U</td><td>0.05 UJ</td></t<>	HEPTACHLOR	UG/L	0.05 U	0.05 UJ	0.05 U	0.05 U	0.05 U	0.05 UJ
ENDOSULEAN I UGL 0.05 U 0.01 U 0.1 U	ALDRIN	UG/L	0.05 U	0.05 UJ	0.05 U	0.05 U	0.05 U	0.05 UJ
DIELDRIN UG/L 0.1 U <	HEPTACHLOR EPOXIDE	UG/L	0.05 U	0.05 UJ	0.05 U	0.05 U	0.05 U	0.05 UJ
44-DDE UGAL 0.1 U 0.1 U <th< td=""><td>ENDOSULFAN I</td><td>UG/L</td><td>0.05 U</td><td>0.05 UJ</td><td>0.05 U</td><td>0.05 U</td><td>0.05 U</td><td>0.05 UJ</td></th<>	ENDOSULFAN I	UG/L	0.05 U	0.05 UJ	0.05 U	0.05 U	0.05 U	0.05 UJ
44-DDE UGAL 0.1 U 0.1 U <th< td=""><td></td><td></td><td>0.1 U</td><td></td><td></td><td></td><td></td><td>0.1 UJ</td></th<>			0.1 U					0.1 UJ
ENDRIN UGL 0.1 U 0.1 U <th0< td=""><td>4,4'-DDE</td><td>UG/L</td><td></td><td></td><td></td><td></td><td></td><td>0.1 UJ</td></th0<>	4,4'-DDE	UG/L						0.1 UJ
ENDOSULFAN II UG/L 0.1 U	ENDRIN	UG/L	0.1 U	0.1 UJ	0.1 U	0.1 U		0.1 UJ
44-DD UG/L 0.1 U 0.1 U <th0< td=""><td>ENDOSULFAN II</td><td>UG/L</td><td>0.1 U</td><td>0.1 UJ</td><td>0.1 U</td><td>0.1 U</td><td>0.1 U</td><td>0.1 UJ</td></th0<>	ENDOSULFAN II	UG/L	0.1 U	0.1 UJ	0.1 U	0.1 U	0.1 U	0.1 UJ
ENDOSULFAN SULPATE UG/L 0.1 U	4,4'-DDD	UG/L	0.1 U	0.1 UJ	0.1 U			0.1 UJ
44-DDT UG/L 0.1 U 0.1 U <th< td=""><td>ENDOSULFAN SULFATE</td><td>UG/L</td><td>0.1 U</td><td>0.1 UJ</td><td>0.1 U</td><td></td><td></td><td>0.1 UJ</td></th<>	ENDOSULFAN SULFATE	UG/L	0.1 U	0.1 UJ	0.1 U			0.1 UJ
METHOXYCHLOR UG/L 0.5 U 0.6 U 0.6 U 0.1 U 0.0 U								0.1 UJ
ENDRIN ALDEHYDE UG/L 0.1 U 0.0 U 0.05 U<								0.5 UJ
ENDRIN ALDEHYDE UG/L 0.1 U 0.0 U 0.05 U<	ENDRIN KETONE							0.1 UJ
ALPHA CHLORDANE UG/L 0.05 U		UG/L	0.1 U	0.1 UJ	0.1 U			0.1 UJ
GAMMA CHLORDANE UG/L 0.05 U 0.05 U <th0< td=""><td></td><td>UG/L</td><td>0.05 U</td><td>0.05 UJ</td><td>0.05 U</td><td></td><td></td><td>0.05 UJ</td></th0<>		UG/L	0.05 U	0.05 UJ	0.05 U			0.05 UJ
PCB-1016 UG/L 1 U 1 U 1 U 1 U 1 U PCB-1221 UG/L 2 U 2 UI 2 U 2 U 2 U 2 U PCB-1232 UG/L 1 U 1 U 1 U 1 U 1 U 1 U PCB-1242 UG/L 1 U 1 U 1 U 1 U 1 U 1 U PCB-1242 UG/L 1 U 1 U 1 U 1 U 1 U 1 U PCB-1242 UG/L 1 U 1 U 1 U 1 U 1 U 1 U PCB-1243 UG/L 1 U 1 U 1 U 1 U 1 U 1 U PCB-1244 UG/L 1 U 1 U 1 U 1 U 1 U 1 U PCB-1245 UG/L 1 U 1 U 1 U 1 U 1 U 1 U PCB-1246 UG/L 1 U 1 U 1 U 1 U 1 U 1 U PCB-1246 UG/L 1 U 1 U 1 U 1 U 1 U 1 U PCB-1246 UG/L 1 0 U 10 U 1	GAMMA CHLORDANE	UG/L	0.05 U	0.05 UJ	0.05 U	0.05 U	0.05 U	0.05 UJ
PCB-1221 UG/L 2 U 2 U 2 U 2 U 2 U PCB-1232 UG/L 1 U 1 U 1 U 1 U 1 U 1 U PCB-1232 UG/L 1 U 1 U 1 U 1 U 1 U 1 U PCB-1242 UG/L 1 U 1 U 1 U 1 U 1 U 1 U PCB-1248 UG/L 1 U 1 U 1 U 1 U 1 U 1 U PCB-1254 UG/L 1 U 1 U 1 U 1 U 1 U 1 U PCB-1260 UG/L 1 U 1 U 1 U 1 U 1 U 1 U PCB-1260 UG/L 1 U 1 U 1 U 1 U 1 U 1 U PCB-1260 UG/L 1 0 U 1 0 U 1 0 U 1 0 U 1 0 U 1 0 U PCB-1260 UG/L 1 0 U 10 U 10 U 10 U 10 U 10 U 10 U PCB-1260 UG/L 1 0 U 10 U P		UG/L	5 U	5 UJ	5 U			5 UJ
PCB-1232 UG/L 1 U 1 U 1 U 1 U 1 U PCB-1242 UG/L 1 U 1 U 1 U 1 U 1 U PCB-1248 UG/L 1 U 1 U 1 U 1 U 1 U PCB-1248 UG/L 1 U 1 U 1 U 1 U 1 U 1 U PCB-1254 UG/L 1 U 1 U 1 U 1 U 1 U 1 U PCB-1260 UG/L 1 U 1 U 1 U 1 U 1 U 1 U PCB-1260 UG/L 1 U 1 U 1 U 1 U 1 U 1 U PCB-1260 UG/L 1 0 U 1 0 U 1 0 U 1 0 U 1 0 U 1 0 U PCB-1260 UG/L 10 U PCB-1260 UG/L 10 U PCB-1260 UG/L 10 U	PCB-1016	UG/L	1 U	1 UJ	1 U	1 U	1 U	1 UJ
PCB-1242 UG/L 1 U 1 U 1 U 1 U 1 U PCB-1248 UG/L 1 U 1 U 1 U 1 U 1 U PCB-1254 UG/L 1 U 1 UJ 1 U 1 U 1 U PCB-1254 UG/L 1 U 1 UJ 1 U 1 U 1 U PCB-1260 UG/L 1 U 1 UJ 1 U 1 U 1 U PCB-1260 UG/L 1 U 1 UJ 1 UJ 1 U 1 U 1 U PCB-1260 UG/L 1 U 1 UJ 1 UJ 1 UJ 1 U 1 U 1 U PCB-1260 UG/L 1 U 1 UJ 1 UJ 1 UJ 1 U 1 U 1 U PCB-1260 UG/L 1 U 1 UJ 1 UJ 1 UJ 1 U 1 U 1 U PCB-1260 UG/L 1 0 U 1 0 U 1 0 U 1 0 U 1 0 U 1 0 U 1 0 U 1 0 U 1 0 U 1 0 U 1 0 U 1 0 U 1 0 U 1 0 U 1 0 U 1 0 U 1 0 U 1 0 U 1 0 U 1 0	PCB-1221	UG/L	2 U	2 UJ	2 U	2 U	2 U	2 UJ
PCB-1248 UG/L I U I U I U I U I U PCB-1254 UG/L I U I U I U I U I U PCB-1260 UG/L I U I U I U I U I U PCB-1260 UG/L I U I U I U I U I U PCB-1260 UG/L I U I U I U I U I U PCB-1260 UG/L I U I U I U I U I U PCB-1260 UG/L I U I U I U I U I U VIOLATILES UG/L I U I U I U I U I U I U PCH-1200 UG/L I 0 U I 0 U I 0 U I 0 U I 0 U I 0 U I 0 U I 0 U PCHOREMANE UG/L I 0 U I 0 U I 0 U I 0 U I 0 U I 0 U I 0 U I 0 U I 0 U I 0 U I 0 U PCHOREMANE UG/L I 0 U I 0 U I 0 U I 0 U I 0 U <thi 0="" th="" u<=""> I 0 U I 0 U</thi>	PCB-1232	UG/L	1 U	1 UJ	1 U	1 U	1 U	1 UJ
PCB-1254 UG/L 1 U 1 U 1 U 1 U 1 U PCB-1260 UG/L 1 U 1 U 1 U 1 U 1 U PCB-1260 UG/L 1 U 1 U 1 U 1 U 1 U 1 U PCB-1260 UG/L 1 U 1 U 1 U 1 U 1 U 1 U PCB-1260 UG/L 1 U 1 U 1 U 1 U 1 U 1 U VEX Visit CHLOROMETHANE UG/L 10 U 11 U	PCB-1242	UG/L	1 U	1 UJ	1 U	1 U	1 U	1 UJ
PCB-1260 UG/L 1 U 1 U 1 U 1 U 1 U VOLATILES CHLOROMETHANE UG/L 10 U 11 U 11 U 11 U 11 U 11 U 10 U 10 U	PCB-1248	UG/L	1 U	1 UJ	1 U	1 U	1 U	1 UJ
VOLATILES CHLOROMETHANE UG/L 10 U 11 L	PCB-1254	UG/L	1 U	1 UJ	1 U	1 U	1 U	1 UJ
CHLOROMETHANE UG/L 10 U 11 U	PCB - 1260	UG/L	1 U	1 UJ	1 U	1 U	1 U	1 UJ
CHLOROMETHANE UG/L 10 U 11 U	VOLATILE	S						
BROMOMETHANE UG/L 10 U 10 U 10 U 10 U 10 U 10 U VINYL CHLORIDE UG/L 10 U 6 J 10 U 11 U 11 U 11 U 11 U 10 U 10 U 10 U 11 U <td< td=""><td></td><td></td><td>10 U</td><td>10 U</td><td>10 U</td><td>10 U</td><td>10 U</td><td>10 U</td></td<>			10 U	10 U	10 U	10 U	10 U	10 U
VINYLCHLORIDE UG/L 10 U 6 J 10 U 10 U 10 U 10 U CHLOROETHANE UG/L 10 U 10 U <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>10 U</td>								10 U
CHLOROETHANE UG/L 10 U METHYLENE CHLORIDE UG/L 10 U								10 U
METHYLENE CHLORIDE UG/L 10 U 10 U <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>10 U</td>								10 U
ACETONE UG/L 4 J 10 UJ 10 UJ 5 J 10 UJ CARBON DISULFIDE UG/L 10 U 10 U <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>10 U</td>								10 U
CARBON DISULFIDE UG/L 10 U					_			6 J
1,1-DICHLOROETHENE UG/L 10 U 10 U 10 U 10 U 10 U 10 U 1,1-DICHLOROETHANE UG/L 10 U 10 U <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>10 U</td>								10 U
1,1-DICHLOROETHANE UG/L 10 U 10 U 10 U 10 U 10 U 11 U <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>10 U</td>								10 U
1,2-DICHLOROETHENE UG/L 10 U 85 10 U 9 J 13 22 CHLOROFORM UG/L 10 U	-							10 U
CHLOROFORM UG/L 10 U 10 U 10 U 10 U 10 U 10 U 11 U								23
								10 U
1.2-DICHLOROETHANE UG/L 10 U 10 U 10 U 10 U 10 U	1.2-DICHLOROETHANE	UG/L	10 U	10 U	10 U	10 U	10 U	10 U
								10 Ŭ

	Sample No: Depth: Date Sampled: Lab Id:	6-WC06-SW-06M N/A 8/23/92 00429-06	6 - WC07 - SW -06B N/A 8/23/92 00429 - 10	6-WC07-SW-06M N/A 8/23/92 00429-11	6-WC07-SW-312M N/A 8/23/92 00429-12	6-WC08-SW-06B N/A 8/23/92 00429-18	6 WC08 SW06M N/A 8/23/92 00429 19
Parameter	Units						
VOLATILES Co	nt.						
1,1,1-TRICHLOROETHANE		10 U	10 U	10 U	10 U	10 U	10 U
CARBON TETRACHLORIDI		10 U	10 U	10 U	10 U	10 U	10 U
BROMODICHLOROMETHA	NE UG/L	10 U	10 U	10 U	10 U	10 U	10 U
1,2-DICHLOROPROPANE	UG/L	10 U	10 U	10 U	10 U	10 U	10 U
CIS-1,3-DICHLOROPROPE	ENE UG/L	10 U	10 U	10 U	10 U	10 U	10 U
TRICHLOROETHENE	UG/L	10 U	98	10 U	4 J	16	28
DIBROMOCHLOROMETHA	NE UG/L	10 UJ	10 UJ	10 UJ	10 UJ	10 UJ	10 UJ
1,1,2-TRICHLOROETHANE	UG/L	10 U	10 U	10 U	10 U	10 U	10 U
BENZENE	UG/L	10 U	10 U	10 U	10 U	10 U	10 U
TRANS-1,3-DICHLOROPR		10 U	10 U	10 U	10 U	10 U	10 U
BROMOFORM	UG/L	10 U	10 U	10 U	10 U	10 U	10 U
4-METHYL-2-PENTANON	IE UG/L	10 U	10 U	10 U	10 U	10 U	10 U
2-HEXANONE	UG/L	10 U	10 U	10 U	10 U	10 U	10 U
TETRACHLOROETHENE	UG/L	10 U	4 J	10 U	10 U	10 U	1 J
1,1,2,2-TETRACHLOROETH	IANE UG/L	10 U	10 U	10 U	10 U	10 U	10 U
TOLUENE	UG/L	10 U	3 J	10 U	10 U	10 U	10 U
CHLOROBENZENE	UG/L	10 U	10 U	10 U	10 U	10 U	10 U
ETHYLBENZENE	UG/L	10 U	10 U	10 U	10 U	10 U	10 U
STYRENE	UG/L	10 U	10 U	10 U	10 U	10 U	10 U
TOTAL XYLENES	UG/L	10 U	10 U	10 U	10 U	10 U	10 U
SEMIVOLATILI	ES						
PHENOL	UG/L	10 U	10 U	10 U	10 U	10 U	10 U
BIS(2-CHLOROETHYL) ET		10 U	10 U	10 U	10 U	10 U	10 U
2-CHLOROPHENOL	UG/L	10 U	10 U	10 U	10 U	10 U	10 U
1,3-DICHLOROBENZENE	UG/L	10 U	10 U	10 U	10 U	10 U	10 U
1.4-DICHLOROBENZENE	UG/L	10 U	10 U	10 U	10 U	10 U	10 U
1,2-DICHLOROBENZENE	UG/L	10 U	10 U	10 U	10 U	10 U	10 U
2-METHYLPHENOL	UG/L	10 U	10 U	10 U	10 U	10 U	10 U
2,2'-OXYBIS (1-CHLOROP)	ROPANE) UG/L	10 U	10 U	10 U	10 U	10 U	10 U
-METHYLPHENOL	, UG/L	10 U	10 U	10 U	10 U	10 U	10 U
N-NITROSODI-N-PROPY		10 U	10 U	10 U	10 U	10 U	10 UJ
HEXACHLOROETHANE	UG/L	10 U	10 U	10 U	10 U	10 U	10 U
NITROBENZENE	UG/L	10 U	10 U	10 U	10 U	10 U	10 U
ISOPHORONE	UG/L	10 U	10 U	10 U	10 U	10 U	10 U
2-NITROPHENOL	UG/L	10 U	10 U	10 U	10 U	10 U	10 Ŭ
24-DIMETHYLPHENOL	UG/L	10 U	10 U	10 U	10 U	10 U	10 U
BIS(2-CHLOROETHOXY) M		10 U	10 U	10 U	10 U	10 U	10 U
2.4 - DICHLOROPHENOL	UG/L	10 U	10 U	10 U	10 U	10 U	10 U
1,2,4-TRICHLOROBENZEN		10 U	10 U	10 U	10 U	10 U	10 U
NAPHTHALENE	UG/L	10 U	10 U	10 U	10 U	10 U	10 U
4-CHLORANILINE	UG/L	10 U	10 U	10 U	10 U	10 U	10 U
HEXACHLOROBUTADIENE		10 U	10 U	10 U	10 Ŭ	10 U	10 U

	Depth: Date Sampled: Lab Id:	N/A 8/23/92 00429-06	N/A 8/23/92 00429-10	N/A 8/23/92 00429-11	N/A 8/23/92 00429-12	N/A 8/23/92 00429—18	6-WC08-SW-06M N/A 8/23/92 00429-19
Parameter	Uni	ts					
SEMIVOLATILE	S Cont.						
4-CHLORO-3-METHYLP	HENOL UG	L 10 U	10 U	10 U	10 U	10 U	10 U
2-METHYLNAPHTHALEN	IE UG.	L 10 U	10 U	10 U	10 U	10 U	10 U
HEXACHLOROCYCLOPEN	TADIENE UG	L 10 U	10 U	10 U	10 U	10 U	10 U
2,4,6-TRICHLOROPHENO	L UG	L 10 U	10 U	10 U	10 U	10 U	10 U
2,4,5-TRICHLOROPHENO	L UG	L 25 U	25 U	25 U	25 U	25 U	25 U
2-CHLORONAPHTHALEN	E UG	L 10 U	10 U	10 U	10 U	10 U	10 U
2-NITROANILINE	UG	L 25 U	25 U	25 U	25 U	25 U	25 U
DIMETHYL PHTHALATE	UG	L 10 U	10 U	10 U	10 U	10 U	10 U
ACENAPHTHYLENE	UG		10 U				
2.6-DINITROTOLUENE	UG		10 U				
3-NITROANILINE	UG		25 U				
ACENAPHTHENE	UG		10 U				
2,4-DINITROPHENOL	UG		25 Ŭ	25 U	25 U	25 U	25 U
4-NITROPHENOL	UG		25 U				
DIBENZOFURAN	UG		10 U				
2,4 - DINITROTOLUENE	UG		10 U				
DIETHYL PHTHALATE	UG		10 U				
4-CHLOROPHENYL PHEN			10 U				
FLUORENE	UG		10 U				
4-NITROANILINE	UG		25 U				
4,6-DINITRO-2-METHYI			25 U				
N-NITRISODIPHENYLAM			10 U				
4-BROMOPHENYL PHENY			10 U				
HEXACHLOROBENZENE	UG/		10 U				
PENTACHLOROPHENOL	UG/		25 U	25 UJ	25 UJ	25 UJ	25 U
PHENANTHRENE	UG/		10 U				
ANTHRACENE	UG/		10 U				
DI-N-BUTYL PHTHALAT			10 U				
FLUORANTHENE	L 00/ UG/		10 U	10 UJ	10 UJ	10 UJ	10 U
CARBAZOLE	UG/		10 U				
PYRENE	UG/		10 U	10 UJ	10 UJ	10 UJ	10 U
BUTYL BENZYL PHTHALA			10 U				
3.3-DICHLOROBENZIDIN			10 U				
BENZO(A)ANTHRACENE	L 00/ UG/		10 U				
CHRYSENE	· UG/		10 U				
BIS(2-ETHYLHEXYL)PHT			10 U				
DI-N-OCTYL PHTHALAT			10 U				
BENZO(B)FLUORANTHEN			10 U				
BENZO(K)FLUORANTHEN			10 U				
BENZO(A)PYRENE	UG/		10 U	10 U	10 U	10 U	10 U 10 U
INDENO(1,2,3-CD) PYREN			10 U	10 U	10 U	10 U	10 UJ
DIBENZ(A,H)ANTHRACEN			10 U				
BENZO(G,H,I)PERYLENE	UG/		10 U	10 U	10 U	10 U	10 UJ

.

	Depth: Date Sampled: Lab Id:	N/A 8/23/92 00429-20	N/A 8/23/92 00429 26	6-WC09-SW-06M N/A 8/23/92 00429-28	N/A 8/23/92 00429-29	6-WC10-SW-06B N/A 8/22/92 00426-06	6-WC10-SW-06M N/A 8/22/92 00426-08
Parameter	Units			· · · · · · · · · · · · · · · · · · ·	<u> </u>		**************************************
PESTICIDE/PCI	BS						
ALPHA-BHC	UG/L	0.05 U	0.05 U	0.05 UJ	0.05 UJ	0.05 UJ	0.05 UJ
BETA-BHC	UG/L	0.05 U	0.05 U	0.05 UJ	0.05 UI	0.05 UJ	0.05 UJ
DELTA-BHC	UG/L	0.05 U	0.05 U	0.05 UJ	0.05 UJ	0.05 UJ	0.05 UJ
GAMMA-BHC(LINDANE)	UG/L	0.05 U	0.05 U	0.05 UJ	0.05 UJ	0.05 UJ	0.05 UJ
HEPTACHLOR	UG/L	0.05 U	0.05 U	0.05 UJ	0.05 UJ	0.05 UJ	0.05 UJ
ALDRIN	UG/L	0.05 U	0.05 U	0.05 UJ	0.05 UJ	0.05 UJ	0.05 UJ
HEPTACHLOR EPOXIDE	UG/L	0.05 U	0.05 U	0.05 UJ	0.05 UJ	0.05 UJ	0.05 UJ
ENDOSULFAN I	UG/L	0.05 U	0.05 U	0.05 UJ	0,05 UJ	0.05 UJ	0.05 UJ
DIELDRIN	UG/L	0.1 U	0.1 U	0.1 UJ	0.1 UJ	0.1 UJ	0.1 UJ
4,4'-DDE	UG/L	0.1 U	0.1 U	0.1 UJ	0.1 UJ	0.1 UJ	0.1 UJ
ENDRIN	UG/L	0.1 U	0.1 U	0.1 UJ	0.1 UJ	0.1 UJ	0.1 UJ
ENDOSULFAN II	UG/L	0.1 U	0.1 U	0.1 UJ	0.1 UJ	0.1 UJ	0.1 UJ
4,4'-DDD	UG/L	0.1 U	0.1 U	0.1 UJ	0.1 UJ	0.1 UJ	0.1 UJ
ENDOSULFAN SULFATE	UG/L	0.1 U	0.1 U	0.1 UJ	0.1 UJ	0.1 UJ	0.1 UJ
1,4' – DDT	UG/L	0.1 U	0.1 U	0.1 UJ	0.1 UJ	0.1 UJ	0.1 UJ
METHOXYCHLOR	UG/L	0.5 U	0.5 U	0.5 UJ	0.5 UJ	0.5 UJ	0.5 UJ
ENDRIN KETONE	UG/L	0.1 U	0.1 U	0.1 UJ	0.1 UJ	0.1 UJ	0.1 UJ
ENDRIN ALDEHYDE	UG/L	0.1 U	0.1 U	0.1 UJ	0.1 UJ	0.1 UJ	0.1 UJ
ALPHA CHLORDANE	UG/L	0.05 U	0.05 U	0.05 UJ	0.05 UJ	0.05 UJ	0.05 UJ
GAMMA CHLORDANE	UG/L	0.05 U	0.05 U	0.05 UJ	0.05 UJ	0.05 UJ	0.05 UJ
TOXAPHENE	UG/L	5 U	5 U	5 UJ	5 UJ	5 UJ	5 UJ
PCB-1016	UG/L	1 U	1 U	1 UJ	1 UJ	1 UJ	1 UJ
PCB-1221	UG/L	2 U	2 U	2 UJ	2 UJ	2 UJ	2 UJ
PCB-1232	UG/L	1 U	1 U	1 UJ	1 UJ	1 UJ	1 UJ
PCB-1242	UG/L	1 U .	1 U	1 UJ	1 UJ	1 UJ	1 UJ
PCB-1248	UG/L	1 U	1 U	1 UJ	1 UJ	1 UJ	1 UJ
PCB-1254	UG/L	1 U	1 U	1 UJ	1 UJ	1 UJ	1 UJ
PCB-1260	UG/L	1 U	1 U	1 UJ	1 UJ	1 UJ	1 UJ
VOLATILES						ı	
CHLOROMETHANE	UG/L	10 U	10 U	10 U	100 U	10 U	10 U
BROMOMETHANE	UG/L	10 U	10 U	10 U	100 U	10 U	10 Ŭ
VINYL CHLORIDE	UG/L	10 U	10 U	10 U	100 U	10 U	10 U
CHLOROETHANE	UG/L	10 U	10 U	10 U	100 U	10 U	10 U ~
METHYLENE CHLORIDE	UG/L	10 U	10 U	10 U	100 U	10 U	10 Ŭ
ACETONE	UG/L	27 J	10 UJ	10 UJ	900 J	10 UJ	10 UJ
CARBON DISULFIDE	UG/L	10 U	10 U	10 U	100 U	10 U	10 U
1-DICHLOROETHENE	UG/L	10 U	10 U	10 U	100 U	10 U	10 U
1-DICHLOROETHANE	UG/L	10 U	10 U	10 U	100 U	10 U	10 U
2-DICHLOROETHENE	UG/L	9 J	17	21	100 U	4 J	6 J
CHLOROFORM	UG/L	10 U	10 U	10 U	100 U	10 U	10 U
2-DICHLOROETHANE	UG/L	10 U	10 U	10 U	100 U	10 U	10 U
-BUTANONE	UG/L	10 U	10 U	10 U	100 U	10 U	10 U

	Sample No: Depth: Date Sampled: Lab Id:	6-WC08-SW-312M N/A 8/23/92 00429-20	6-WC09-SW-06B N/A 8/23/92 00429-26	6-WC09-SW-06M N/A 8/23/92 00429-28	6WC09-SW-312M N/A 8/23/92 00429-29	6-WC10-SW-06B N/A 8/22/92 00426-06	6-WC10-SW-06M N/A 8/22/92 00426-08
Parameter	Units						
VOLATILES	Cont.						
1.1.1-TRICHLOROETHAL	NE UG/L	10 U	10 U	10 U	100 U	10 U	10 U
CARBON TETRACHLORI	DE UG/L	10 U	10 U	10 U	100 U	10 U	10 U
BROMODICHLOROMETH		10 U	10 U	10 U	100 U	10 U	10 U
1,2-DICHLOROPROPANI		10 U	10 U	10 U	100 U	10 U	10 U
CIS-13-DICHLOROPRO		10 U	10 U	10 U	100 U	10 U	10 U
TRICHLOROETHENE .	UG/L	10	22	28	100 U	5 J	7 J
DIBROMOCHLOROMETH		10 UJ	10 UJ	10 UJ	100 UJ	10 UJ	10 UJ
1,1,2-TRICHLOROETHAN		10 U	10 U	10 U	100 U	10 U	10 U
BENZENE	UG/L	10 U	10 U	10 U	100 U	10 U	10 U
TRANS-1,3-DICHLOROI		10 U	10 U	10 U	100 U	10 U	10 U
BROMOFORM	UG/L	10 U	10 U	10 U	100 U	10 U	10 U
4-METHYL-2-PENTAN	•	10 U	10 U	10 U	100 U	10 U	10 U
2-HEXANONE	UG/L	10 U	10 U	10 U	100 U	10 U	10 U
TETRACHLOROETHENE		10 U	10 U	1 J	100 U	10 U	10 U
1,1,2,2-TETRACHLOROE		10 U	10 U	10 U	100 U	10 U	10 U
TOLUENE	UG/L	10 U	10 U	10 U	100 U	1 J	10 U
CHLOROBENZENE	UG/L	10 U	10 U	10 U	100 U	10 U	10 U
ETHYLBENZENE	UG/L UG/L	10 U	10 U	10 U	100 U	10 U	10 U
STYRENE	UG/L	10 U	10 U	10 U	100 U	10 U	10 U
TOTAL XYLENES	UG/L	10 U	10 U	10 U	100 U	10 U	10 U
SEMIVOLAT	11 E 6						
PHENOL	UG/L	10 U	10 U	10 U	10 U	10 U	10 UJ
BIS(2-CHLOROETHYL) H		10 U	10 U	10 U	10 U	10 U	10 UJ
2-CHLOROPHENOL	UG/L	10 U	10 U	10 U	10 U	10 U	
		10 U	10 U	10 U	10 U	10 U	10 UJ
1,3-DICHLOROBENZEN							10 UJ
1,4-DICHLOROBENZEN		10 U	10 U	10 U	10 U	10 U	10 UJ
1,2-DICHLOROBENZENE		10 U	10 U	10 U	10 U	10 U	10 UJ
2-METHYLPHENOL	UG/L	10 U	10 U 10 U	10 U	10 U	10 U	10 UJ
2,2'-OXYBIS (1-CHLORC		10 U	-	10 U	10 U	10 U	10 UJ
4-METHYLPHENOL	UG/L	10 U	10 U	10 U	10 U	10 U	10 UJ
N-NITROSODI-N-PROP		10 UJ	10 UJ	10 UJ	10 UJ	10 UJ	10 UJ
HEXACHLOROETHANE	UG/L	10 U	10 U	10 U	10 U	10 U	10 UJ
NITROBENZENE	UG/L	10 U	10 U	10 U	10 U	10 U	10 UJ
ISOPHORONE	UG/L	10 U	10 U	10 U	10 U	10 U	10 UJ
2-NITROPHENOL	UG/L	10 U	10 U	10 U	10 U	10 U	10 UJ
2,4-DIMETHYLPHENOL	UG/L	10 U	10 U	10 U	10 U	10 U	10 UJ
BIS(2-CHLOROETHOXY)		10 U	10 U	10 U	10 U	10 U	10 UJ
2,4-DICHLOROPHENOL	UG/L	10 U	10 U	10 U	10 U	10 U	10 UJ
1,2,4-TRICHLOROBENZE	NE UG/L	10 U	10 U	10 U	10 U	10 U	10 UJ
NAPHTHALENE	UG/L	10 U	10 U	10 U	10 U	10 U	10 UJ
4-CHLORANILINE	UG/L	10 U	10 U	10 U	10 U	10 U	10 UJ
HEXACHLOROBUTADIE		10 U	10 U	10 U	10 U	10 U	10 UJ

	Sample No: Depth: Date Sampled: Lab Id:	6-WC08-SW-312M N/A 8/23/92 00429-20	6-WC09-SW-06B N/A 8/23/92 00429-26	6-WC09-SW-06M N/A 8/23/92 00429-28	6-WC09-SW-312M N/A 8/23/92 00429-29	6-WC10-SW-06B N/A 8/22/92 00426-06	6-WC10-SW-06M N/A 8/22/92 00426-08
Parameter	Units						
SEMIVOLATILES	Cont.						
4-CHLORO-3-METHYLPH	IENOL UG/L	10 U	10 U	10 U	10 U	10 U	10 UJ
2-METHYLNAPHTHALENE		10 U	10 U	10 U	10 U	10 U	10 UJ
HEXACHLOROCYCLOPENT		10 U	10 U	10 U	10 U	10 U	10 UJ
2,4,6-TRICHLOROPHENOL	UG/L	10 U	10 U	10 U	10 U	10 U	1 J
2,4,5-TRICHLOROPHENOL	UG/L	25 U	25 U	25 U	25 U	25 U	25 UJ
2-CHLORONAPHTHALENE		10 U	10 U	10 U	10 U	10 U	10 UJ
2-NITROANILINE	UG/L	25 U	25 U	25 U	25 U	25 U	25 UJ
DIMETHYL PHTHALATE	UG/L	10 U	10 U	10 U	10 U	10 U	10 UJ
ACENAPHTHYLENE	UG/L	10 U	10 U	10 U	10 U	10 U	10 UJ
2,6-DINITROTOLUENE	UG/L	10 U	10 U	10 U	10 U	10 U	10 UJ
3-NITROANILINE	UG/L	25 U	25 U	25 U	25 U	25 U	25 UJ
ACENAPHTHENE	UG/L	10 U	10 U	10 U	10 U	10 U	10 UJ
2,4-DINITROPHENOL	UG/L	25 U	25 U	25 U	25 U	25 U	25 UJ
4-NITROPHENOL	UG/L	25 U	25 U	25 U	25 U	25 U	25 UJ
DIBENZOFURAN	UG/L	10 U	10 U	10 U	10 U	10 U	10 UJ
2,4 – DINITROTOLUENE	UG/L	10 U	10 U	10 U	10 U	10 U	10 UJ
DIETHYL PHTHALATE	UG/L	10 U	10 U	10 U	10 U	10 U	10 UJ
4-CHLOROPHENYL PHENY		10 U	10 U	10 U	10 U	10 U	10 UJ
FLUORENE	UG/L	10 U	10 U	10 U	10 U	10 U	10 UJ
4-NITROANILINE	UG/L	25 U	25 U	25 U	25 U	25 U	25 UJ
4,6-DINITRO-2-METHYLP		25 U	25 U	25 U	25 U	25 U	25 UJ
N-NITRISODIPHENYLAMI		10 U	10 U	10 U	10 U	10 U	10 UJ
4-BROMOPHENYL PHENYI		10 U	10 U	10 U	10 U	10 U	10 UJ
HEXACHLOROBENZENE	UG/L	10 U	10 U	10 U	10 U	10 U	10 UJ
PENTACHLOROPHENOL	UG/L	25 U	25 U	25 U	25 U	25 U	25 UJ
PHENANTHRENE	UG/L	10 U	10 U	10 U	10 U	10 U	10 UJ
ANTHRACENE	UG/L	10 U	10 U	10 U	10 U	10 U	10 UJ
DI-N-BUTYL PHTHALATE	UG/L	10 U	10 U	10 U	10 U	10 U	10 UJ
FLUORANTHENE	UG/L	10 U	10 U	10 U	10 U	10 U	10 UJ
CARBAZOLE	UG/L	10 U	10 U	10 U	10 U	10 U	10 UJ
PYRENE	UG/L	10 U	10 U	10 U	10 U	10 U	10 UJ
BUTYL BENZYL PHTHALAT	E UG/L	10 U	10 U	10 U	10 U	10 U	10 UJ
3,3-DICHLOROBENZIDINE	UG/L	10 U	10 U	10 U	10 U	10 U	10 UJ
BENZO(A)ANTHRACENE	UG/L	10 U	10 U	10 U	10 U	10 U	10 UJ
CHRYSENE	UG/L	10 U	10 U	10 U	10 U	10 U	10 UJ
BIS(2-ETHYLHEXYL)PHTH	ALATE UG/L	10 U	10 U	10 U	10 U	10 U	2 J
DI-N-OCTYL PHTHÁLATE	UG/L	10 U	10 UJ	10 U	10 U	10 UJ	10 UJ
BENZO(B)FLUORANTHENE	UG/L	10 U	10 UJ	10 U	10 U	10 UJ	10 UJ
BENZO(K)FLUORANTHENE	UG/L	10 U	10 UJ	10 U	10 U	10 UJ	10 UJ
BENZO(A)PYRENE	UG/L	10 U	10 UJ	10 U	10 U	10 UJ	10 UJ
INDENO(1,2,3-CD) PYRENE	UG/L	10 UJ	10 UJ	10 UJ	10 UJ	10 UJ	10 UJ
DIBENZ(A,H)ANTHRACENE	UG/L	10 U	10 UJ	10 U	10 U	10 UJ	10 UJ
BENZO(G,H,Í)PERYLENE	UG/L	10 UJ	10 UJ	10 UJ	10 UJ	10 UJ	10 UJ

6wcswor.wk1

	Sample No: Depth: Date Sampled: Lab Id;	6-WC10-SW-3 12M N/A 8/22/92 00426-09	6-WC11-SW-06B N/A 8/22/92 00426-12	6-WC11-SW-06M N/A 8/22/92 00426-13	6-WC11-SW-312M N/A 8/22/92 00426-14
Parameter	Units				
PESTICIDE/PC	BS				
ALPHA-BHC	UG/L	0.05 UJ	0.05 UJ	0.05 UJ	0.05 UJ
BETA-BHC	UG/L	0.05 UJ	0.05 UJ	0.05 UJ	0.05 UJ
DELTA-BHC	UG/L	0.05 UJ	0.05 UJ	0.05 UJ	0.05 UJ
GAMMA-BHC(LINDANE)	UG/L	0.05 UJ	0.05 UJ	0.05 UJ	0.05 UJ
HEPTACHLOR	UG/L	0.05 UJ	0.05 UJ	0.05 UJ	0.05 UJ
ALDRIN	UG/L	0.05 UJ	0.05 UJ	0.05 UJ	0.05 UJ
HEPTACHLOR EPOXIDE	UG/L	0.05 UJ	0.05 UJ	0.05 UJ	0.05 UJ
ENDOSULFAN I	UG/L	0.05 UJ	0.05 UJ	0.05 UJ	0.05 UJ
DIELDRIN	UG/L	0.1 UJ	0.1 UJ	0.1 UJ	0.1 UJ
4,4'-DDE	UG/L	0.1 UJ	0.1 UJ	0.1 UJ	0.1 UJ
ENDRIN	UG/L	0.1 UJ	0.1 UJ	0.1 UJ	0.1 UJ
ENDOSULFAN II	UG/L	0.1 UJ	0.1 UJ	0.1 UJ	0.1 UJ
1.4'-DDD	UG/L	0.1 UJ	0.1 UJ	0.1 UJ	0.1 UJ
ENDOSULFAN SULFATE	UG/L	0.1 UJ	0.1 UJ	0.1 UJ	0.1 UJ
4'-DDT	UG/L	0.1 UJ	0.1 UJ	0.1 UJ	0.1 UJ
METHOXYCHLOR	UG/L	0.5 UJ	0.5 UJ	0.5 UJ	0.5 UJ
ENDRIN KETONE	UG/L	0.1 UJ	0.1 UJ	0.1 UJ	0.1 UJ
ENDRIN ALDEHYDE	UG/L	0.1 UJ	0.1 UJ	0.1 UJ	0.1 UJ
ALPHA CHLORDANE	UG/L	0.05 UJ	0.05 UJ	0.05 UJ	0.05 UJ
GAMMA CHLORDANE	UG/L	0.05 UJ	0.05 UJ	0.05 UJ	0.05 UJ
TOXAPHENE	UG/L	5 UJ	5 UJ	5 UJ	5 UJ
PCB-1016	UG/L	1 UJ	1 UJ	1 UJ	1 UJ
PCB-1221	UG/L	2 UJ	2 UJ	2 UJ	2 UJ
PCB-1232	UG/L	1 UJ	1 UJ	1 UJ	1 UJ
°CB-1242	UG/L	1 UJ	1 UJ	1 UJ	1 UJ
°CB1248	UG/L	1 UJ	1 UJ	1 UJ	1 UJ
CB 1254	UG/L	1 UJ	1 UJ	1 UJ	1 UJ
CB-1260	UG/L	1 UJ	1 ឃ	1 UJ	1 UJ
VOLATILES					
CHLOROMETHANE	UG/L	10 U	10 U	10 U	10 U
BROMOMETHANE	UG/L	10 U	10 U	10 U	10 U
VINYL CHLORIDE	UG/L	10 U	10 U	10 U	10 U
CHLOROETHANE	UG/L	10 U	10 U	10 U	10 U
METHYLENE CHLORIDE	UG/L	10 U	10 U	10 U	10 U
CETONE	UG/L	10 UJ	10 UJ	91	. 14 J
CARBON DISULFIDE	UG/L	10 U	10 U	10 U	10 U
,1-DICHLOROETHENE	UG/L	10 U	10 U	10 U	10 U
,1-DICHLOROETHANE	UG/L	10 U	10 U	10 U	10 U
,2-DICHLOROETHENE	UG/L	10 U	2 J	10 U	2 J
CHLOROFORM	UG/L	10 U	10 U	10 U	10 U
,2-DICHLOROETHANE	UG/L	10 U	10 U	10 U	10 U
-BUTANONE	UG/L	10 U	10 U	10 U	10 U

	Sample No: Depth: te Sampled: Lab Id:	6-WC10-SW-312M N/A 8/22/92 00426-09	6-WC11-SW-06B N/A 8/22/92 00426-12	6-WC11-SW-06M N/A 8/22/92 00426-13	6-WC11-SW-312M N/A 8/22/92 00426-14
Parameter	Units			00120 15	00120 14
VOLATILES Cont.					
1,1,1-TRICHLOROETHANE	UG/L	10 U	10 U	10 U	10 U
CARBON TETRACHLORIDE	UG/L	10 U	10 U	10 U	10 U
BROMODICHLOROMETHANE	UG/L	10 U	10 U	10 U	10 U
1,2-DICHLOROPROPANE	UG/L	10 U	10 U	10 U	10 U
CIS-13-DICHLOROPROPENE	UG/L	10 U	10 U	10 U	10 U
TRICHLOROETHENE	UG/L	10 U	3 J	3 J	4 J
DIBROMOCHLOROMETHANE	UG/L	10 UJ	10 UJ	10 UJ	10 UJ
1,1,2-TRICHLOROETHANE	UG/L	10 U	10 U	10 U	10 U
BENZENE	UG/L	10 U	10 U	10 U	10 U
TRANS-1,3-DICHLOROPROPI	ENE UG/L	10 U	10 Ú	10 U	10 U
BROMOFORM	UG/L	10 U	10 U	10 U	10 U
4-METHYL-2-PENTANONE	UG/L	10 U	10 U	10 U	10 U
2-HEXANONE	UG/L	10 U	10 U	10 U	10 U
TETRACHLOROETHENE	UG/L	10 U	10 U	10 U	10 U
1,1,2,2-TETRACHLOROETHAN	E UG/L	10 U	10 U	10 U	10 U
TOLUENE	UG/L	10 U	1 J	10 U	10 U
CHLOROBENZENE	UG/L	10 U	10 U	10 U	10 U
ETHYLBENZENE	UG/L	10 U	10 U	10 U	10 U
STYRENE	UG/L	10 U	10 U	10 U	10 U
TOTAL XYLENES	UG/L	10 U	10 U	10 U	10 U
SEMIVOLATILES					
PHENOL	UG/L	10 U	10 U	10 U	10 U
BIS(2-CHLOROETHYL) ETHEI	R UG/L	10 U	10 U	10 U	10 U
2-CHLOROPHENOL	UG/L	10 U	10 U	10 U	10 U
1,3-DICHLOROBENZENE	UG/L	10 U	10 U	10 U	10 U
1,4-DICHLOROBENZENE	UG/L	10 U	10 U	10 U	10 U
1,2-DICHLOROBENZENE	UG/L	10 U	10 U	10 U	10 U
2-METHYLPHENOL	UG/L	10 U	10 U	10 U	10 U
2,2'-OXYBIS (1-CHLOROPROI	PANE) UG/L	10 U	10 U	10 U	10 U
-METHYLPHENOL	UG/L	10 U	10 U	10 U	10 U
N-NITROSODI-N-PROPYLAN	MINE UG/L	10 U	10 UJ	10 U	10 UJ
HEXACHLOROETHANE	UG/L	10 U	10 U	10 U	10 U
NITROBENZENE	UG/L	10 U	10 U	10 U	10 U
ISOPHORONE	UG/L	10 U	10 U	10 U	10 U
2-NITROPHENOL	UG/L	10 U	10 U	10 U	10 U
2,4-DIMETHYLPHENOL	UG/L	10 U	10 U	10 U	10 U
BIS(2-CHLOROETHOXY) MET	HANE UG/L	10 U	10 U	10 U	10 U
2,4-DICHLOROPHENOL	UG/L	10 U	10 U	10 U	10 U
1,2,4-TRICHLOROBENZENE	UG/L	10 U	10 U	10 U	10 U
NAPHTHALENE	UG/L	10 U	10 U	10 U	10 U
4-CHLORANILINE	UG/L	10 U	10 U	10 U	10 U
HEXACHLOROBUTADIENE	UG/L	10 U	10 U	10 U	10 U

\$

Date Sam	pth:	6-WC10-SW-312M N/A 8/22/92 00426-09	6-WC11-SW-06B N/A 8/22/92 00426-12	6-WC11-SW-06M N/A 8/22/92 00426-13	6-WC11-SW-312M N/A 8/22/92 00426-14
Parameter	Units				
SEMIVOLATILES Cont.					
4-CHLORO-3-METHYLPHENOL	UG/L	10 U	10 U	10 U	10 U
2-METHYLNAPHTHALENE	UG/L	10 U	10 U	10 U	10 U
HEXACHLOROCYCLOPENTADIENE	UG/L UG/L	10 U	10 U	10 U	10 U
2,4,6-TRICHLOROPHENOL	UG/L UG/L	10 U	10 U	10 U	10 U
2,4,5-TRICHLOROPHENOL	UG/L	25 U	25 U	25 U	25 U
2-CHLORONAPHTHALENE	UG/L UG/L	25 U 10 U	10 U	25 U 10 U	10 U
2-NITROANILINE	UG/L	25 U	25 U	25 U	25 U
DIMETHYL PHTHALATE	UG/L	25 U 10 U	25 U 10 U	25 U 10 U	25 U 10 U
ACENAPHTHYLENE	UG/L	10 U	10 U	10 U	10 U
2,6-DINITROTOLUENE	UG/L	10 U	10 U	10 U	10 U
3-NITROANILINE	UG/L	25 U	25 U	25 U	25 U
ACENAPHTHENE	UG/L	25 U 10 U	10 U	25 U 10 U	25 U 10 U
2,4-DINITROPHENOL	UG/L	25 U	25 U	25 U	25 U
4-NITROPHENOL	UG/L	25 U	25 U	25 U	25 U
DIBENZOFURAN	UG/L UG/L	10 U	25 U 10 U	25 U 10 U	25 U 10 U
2,4-DINITROTOLUENE	UG/L	10 U	10 U	10 U	10 U
DIETHYL PHTHALATE	UG/L	10 U	10 U	10 U	10 U
4-CHLOROPHENYL PHENYL ETHER	-	10 U	10 U	10 U	10 U
FLUORENE	UG/L	10 U	10 U	10 U	10 U
4-NITROANILINE	UG/L	25 U	25 U	25 U	25 U
4,6-DINITRO-2-METHYLPHENOL	UG/L	25 U	25 U	25 U	25 U
N-NITRISODIPHENYLAMINE	UG/L	10 U	10 U	10 U	10 U
4-BROMOPHENYL PHENYL ETHER	UG/L	10 U	10 U	10 U	10 U
HEXACHLOROBENZENE	UG/L	10 U	10 U	10 UJ	10 U
PENTACHLOROPHENOL	UG/L	25 U	25 U	25 U	25 U
PHENANTHRENE	UG/L	10 U	10 U	10 U	10 U
ANTHRACENE	UG/L	10 U	10 U	10 U	10 U
DI-N-BUTYL PHTHALATE	UG/L	10 U	10 U	10 U	10 U
FLUORANTHENE	UG/L	10 U	10 U	10 U	10 U
CARBAZOLE	UG/L	10 U	10 U	10 U	10 U
PYRENE	UG/L	10 U	10 U	10 U	10 U
BUTYL BENZYL PHTHALATE	UG/L	10 U	10 U	10 U	10 U
3,3-DICHLOROBENZIDINE	UG/L	10 U	10 U	10 U	10 U
BENZO(A)ANTHRACENE	UG/L	10 U	10 U	10 U	10 U
CHRYSENE	UG/L	10 U	10 U	10 U	10 U
BIS(2-ETHYLHEXYL)PHTHALATE	UG/L	1 J	10 U	2 J	2 J
DI-N-OCTYL PHTHALATE	UG/L	10 UJ	10 U	10 U	10 UJ
BENZO(B)FLUORANTHENE	UG/L	10 UJ	10 U	10 U	10 UJ
BENZO(K)FLUORANTHENE	UG/L	10 UJ	10 U	10 U	10 UJ
BENZO(A)PYRENE	UG/L UG/L	10 UJ	10 U	10 U	10 UJ
INDENO(1,2,3~CD) PYRENE	UG/L UG/L	10 UJ	10 UJ	10 U	10 UJ
DIBENZ(A,H)ANTHRACENE	UG/L	10 UJ	10 U	10 U	10 UJ
BENZO(G,H,I)PERYLENE	UG/L	10 UJ	10 UJ	10 U	10 UJ
DENEO(O,EI,I)I EN LEENE	00/12	10 03	10 03	10 0	10 03

6wcswor.wk1

	Depth: Date Sampled: Lab Id:	MINIMUM NONDETECTED	MAXIMUM NONDETECTED	MINIMUM DETECTED	MAXIMUM DETECTED	LOCATION OF MAXIMUM DETECTED	FREQUENCY OF DETECTION
arameter	Units	NONDETECTED	NONDEIDCIED	DBIECIED	DBIECIED	DETECTED	DETECTION
PESTICIDE/PC	CBS						
LPHA-BHC	UG/L	0.05 U	0.05 U	ND	ND		0/28
ETA-BHC	UG/L	0.05 U	0.05 U	ND	ND		0/28
DELTA-BHC	UG/L	0.05 U	0.05 U	ND	ND		0/28
AMMA-BHC(LINDANE)		0.05 U	0.05 U	ND	ND		0/28
IEPTACHLOR	UG/L	0.05 U	0.05 U	ND	ND		0/28
LDRIN	UG/L	0.05 U	0.05 U	ND	ND		0/28
IEPTACHLOR EPOXIDE	UG/L	0.05 U	0.05 U	ND	ND		0/28
NDOSULFAN I	UG/L	0.05 U	0.05 U	ND	ND		0/28
DIELDRIN	UG/L	0.1 U	0.1 U	ND	ND		0/28
4'-DDE	UG/L	0.1 U	0.1 U	ND	ND		0/28
NDRIN	UG/L	0.1 U	0.1 U	ND	ND		0/28
NDOSULFAN II	UG/L	0.1 U	0.1 U	ND	ND		0/28
4'-DDD	UG/L	0.1 U	0.1 U	ND	ND		0/28
NDOSULFAN SULFATE	UG/L	0.1 U	0.1 U	ND	ND		0/28
4'-DDT	UG/L	0.1 U	0.1 U	ND	ND		0/28
IETHOXYCHLOR	UG/L	0.5 U	0.5 U	ND	ND		0/28
NDRIN KETONE	UG/L	0.1 U	0.1 U	ND	ND		0/28
NDRIN ALDEHYDE	UG/L	0.1 U	0.1 U	ND	ND		0/28
LPHA CHLORDANE	UG/L	0.05 U	0.05 U	ND	ND		0/28
AMMA CHLORDANE	UG/L	0.05 U	0.05 U	ND	ND		0/28
OXAPHENE	UG/L	5 U	5 U	ND	ND		0/28
CB-1016	UG/L	1 U	1 U	ND	ND		0/28
		2 U	2 U	ND			0/28
CB-1221	UG/L		2 U 1 U		ND		
CB-1232	UG/L	1 U		ND	ND		0/28
CB-1242	UG/L	1 U	1 U	ND	ND		0/28
CB-1248	UG/L	1 U	1 U	ND	ND		0/28
CB-1254	UG/L	1 U	1 U	ND	ND		0/28
CB-1260	UG/L	1 U	1 U	ND	ND		0/28
VOLATILE	<u>s</u>			•			
HLOROMETHANE	UG/L	10 U	100 U	ND	ND		0/28
ROMOMETHANE	UG/L	10 U	100 U	ND	ND		0/28
INYL CHLORIDE	UG/L	10 U	100 U	6 J	6 J	6-WC07-SW-06B	1/28
HLOROETHANE	UG/L	10 U	100 U	ND	ND		0/28
ETHYLENE CHLORIDE	UG/L	10 U	100 U	ND	ND		0/28
CETONE	UG/L	10 U	10 U	4 J	900 J	6-WC09-SW-312M	9/28
ARBON DISULFIDE	UG/L	10 U	100 U	ND	ND		0/28
1-DICHLOROETHENE	- UG/L	10 U	100 U	ND	ND		0/28
1-DICHLOROBTHENE	UG/L	10 U	100 U	ND	ND		0/28
2-DICHLOROETHENE	UG/L	10 U	100 U	2 J	85	6-WC07-SW-06B	13/28
HLOROFORM	UG/L UG/L	10 U	100 U	ND	ND	0-11C0/-011-00B	0/28
2-DICHLOROETHANE	UG/L UG/L	10 U	100 U	ND	ND		0/28
Zeinkankukukukank	UG/L	10 ()	100 0	עא	UN UN		0/20

ж

I	Sample No: Depth: Date Sampled:	MINIMUM	MAXIMUM	MINIMUM	MAXIMUM	LOCATION OF MAXIMUM	FREQUENCY OF
	Lab Id:	NONDETECTED	NONDETECTED	DETECTED	DETECTED	DETECTED	DETECTION
Parameter	Units		**************************************				
VOLATILES Cont	•						
1,1,1-TRICHLOROETHANE	UG/L	10 U	100 U	ND	ND		0/28
CARBON TETRACHLORIDE	UG/L	10 U	100 U	ND	ND		0/28
ROMODICHLOROMETHAN	E UG/L	10 U	100 U	ND	ND		0/28
,2-DICHLOROPROPANE	UG/L	10 U	100 U	ND	ND		0/28
IS-13-DICHLOROPROPEN	E UG/L	10 U	100 U	ND	ND		0/28
RICHLOROETHENE	UG/L	10 U	100 U	3 J	98	6-WC07-SW-06B	12/28
DIBROMOCHLOROMETHAN	E UG/L	10 U	100 UJ	ND	ND		0/28
1,2-TRICHLOROETHANE	UG/L	10 U	100 U	ND	ND		0/28
ENZENE	UG/L	10 U	100 U	ND	ND		0/28
RANS-1,3-DICHLOROPRO		10 U	100 U	ND	ND		0/28
ROMOFORM	UG/L	10 U	100 U	ND	ND		0/28
-METHYL-2-PENTANONE		10 U	100 U	ND	ND		0/28
-HEXANONE	UG/L	10 U	100 U	ND	ND		0/28
ETRACHLOROETHENE	UG/L	10 U	100 U	11	4 J	6-WC07-SW-06B	3/28
1.2.2-TETRACHLOROETHA		10 U	100 U	ND	ND	0-11207 -511-005	0/28
OLUENE	UG/L	10 U	100 U	1 J	3 J	6-WC07-SW-06B	4/28
HLOROBENZENE	UG/L	10 U	100 U	ND	ND S	0-WC07~3W-00B	0/28
THYLBENZENE	UG/L	10 U	100 U	ND	ND		0/28
TYRENE	UG/L	10 U	100 U	ND	ND		0/28
OTAL XYLENES	UG/L	10 U	100 U	ND	ND		0/28
SEMIVOLATILES	•					· .	
PHENOL	UG/L	10 U	10 U	ND	ND		0/28
IS(2-CHLOROETHYL) ETH	• ·	10 U	10 U	ND	ND		0/28
-CHLOROPHENOL	UG/L UG/L	10 U	10 U	ND	ND		0/28 -
3-DICHLOROBENZENE	UG/L	10 U	10 U	ND	ND		0/28
4-DICHLOROBENZENE	UG/L	10 U	10 U	ND	ND		0/28
2-DICHLOROBENZENE	UG/L	10 U	10 U	ND	ND		0/28
-METHYLPHENOL	UG/L	10 U	10 U	ND	ND		0/28
		10 U	10 U	ND	ND		0/28
2'-OXYBIS (1-CHLOROPRO	UG/L	10 U		ND	ND		0/28
-METHYLPHENOL		10 U	10 U	ND			
-NITROSODI-N-PROPYLA			10 U		ND		0/28
EXACHLOROETHANE	UG/L	10 U	10 U	ND	ND		0/28
ITROBENZENE	UG/L	10 U	10 U	ND	ND		0/28
OPHORONE	UG/L	10 U	10 U	ND	ND		0/28
-NITROPHENOL	UG/L	10 UJ	10 UJ	ND	ND		0/28
4-DIMETHYLPHENOL	UG/L	10 U	10 U	ND	ND		0/28
IS(2-CHLOROETHOXY) ME		10 U	10 U	ND	ND		0/28
4-DICHLOROPHENOL	UG/L	10 U	10 U	ND	ND		0/28
2,4-TRICHLOROBENZENE	UG/L	10 U	10 U	ND	ND		0/28
APHTHALENE	UG/L	10 U	10 U	ND	ND		0/28
-CHLORANILINE	UG/L	10 U	10 U	ND	ND		0/28
IEXACHLOROBUTADIENE	UG/L	10 U	10 U	ND	ND		0/28

6wcswor.wk1

.

•	Sample No: Depth: e Sampled: Lab Id:	MINIMUM NONDETECTED	MAXIMUM NONDETECTED	MINIMUM DETECTED	MAXIMUM DETECTED	LOCATION OF MAXIMUM DETECTED	FREQUENCY OF DETECTION
Parameter	Units	RONDERICIED	NONDBILDIED	DETECTED	DEILOILED	DEILCILD	DETECTION
SEMIVOLATILES Cont							
4-CHLORO-3-METHYLPHEN		10 U	10 U	ND	ND	•	0/28
2-METHYLNAPHTHALENE	UG/L	10 U	10 U	ND	ND		0/28
IEXACHLOROCYCLOPENTAD		10 U	10 U	ND	ND		0/28
4,6-TRICHLOROPHENOL	UG/L	10 U	10 U	1 J	1 J	6-WC10-SW-06M	1/28
4.5-TRICHLOROPHENOL	UG/L	25 U	25 U	ND	ND		0/28
-CHLORONAPHTHALENE	UG/L	10 U	10 U	ND	ND		0/28
-NITROANILINE	UG/L	25 U	25 U	ND	ND		0/28
DIMETHYL PHTHALATE	UG/L	10 U	10 U	ND	ND		0/28
CENAPHTHYLENE	UG/L	10 U	10 U	ND	ND		0/28
6-DINITROTOLUENE	UG/L	10 UJ	10 UJ	ND	ND T		0/28
-NITROANILINE	UG/L	25 U	· 25 U	ND	ND		0/28
CENAPHTHENE	UG/L	10 U	10 U	ND	ND		0/28
4-DINITROPHENOL	UG/L	25 U	25 U	ND	ND		0/28
-NITROPHENOL	UG/L	25 U	25 U	ND	ND		0/28
DIBENZOFURAN	UG/L	25 U 10 U	25 U 10 U	ND	ND		0/28
	UG/L UG/L	10 UJ	10 UJ	ND	ND		0/28
4-DINITROTOLUENE			10 U				
IETHYL PHTHALATE	UG/L	10 U		ND	ND		0/28
-CHLOROPHENYL PHENYL E		10 U	10 U	ND	ND		0/28
LUORENE	UG/L	10 U	10 U	ND	ND		0/28
-NITROANILINE	UG/L	25 U	25 U	ND	ND		0/28
6-DINITRO-2-METHYLPHE		25 U	25 U	ND	ND		0/28
-NITRISODIPHENYLAMINE	UG/L	10 U	10 U	ND	ND		0/28
-BROMOPHENYL PHENYL ET		10 U	10 U	ND	ND		0/28
IEXACHLOROBENZENE	UG/L	10 U	10 U	ND	ND		0/28
ENTACHLOROPHENOL	UG/L	25 U	25 U	ND	ND		0/28
HENANTHRENE	UG/L	10 U	10 U	ND	ND		0/28
NTHRACENE	UG/L	10 U	. 10 U	ND	ND		0/28
I-N-BUTYL PHTHALATE	UG/L	10 U	10 U	ND	ND		0/28
LUORANTHENE	UG/L	10 U	10 U	ND	ND		0/28
ARBAZOLE	UG/L	10 U	10 U	ND	ND		0/28
YRENE	UG/L	10 U	10 U	ND	ND		0/28
UTYL BENZYL PHTHALATE	UG/L	10 U	10 U	ND	ND		0/28
3-DICHLOROBENZIDINE	UG/L	10 U	10 U	ND	ND		0/28
ENZO(A)ANTHRACENE	UG/L	10 U	10 U	ND	ND		0/28
HRYSENE	UG/L	10 U	10 U	ND	ND		0/28
HKISENE IS(2-ETHYLHEXYL)PHTHALA		10 U 10 U	10 U	1 J	2 J	6-WC11-SW-312M	5/28
I-N-OCTYL PHTHALATE	UG/L UG/L	10 UJ	10 UJ	ND	ND	0-WCII-3W-312M	5/28 0/28
ENZO(B)FLUORANTHENE	UG/L	10 UJ	10 UJ	ND	ND		0/28
ENZO(K)FLUORANTHENE	UG/L	10 UJ	10 UJ	ND	ND		0/28
ENZO(A)PYRENE	UG/L	10 UJ	10 UJ	ND	ND		0/28
IDENO(1,2,3-CD) PYRENE	UG/L	10 UJ	10 UJ	ND	ND		0/28
IBENZ(AH)ANTHRACENE	UG/L	10 UJ	10 UJ	ND	ND		0/28
ENZO(G,H,I)PERYLENE	UG/L	10 UJ	10 UJ	ND	ND		0/28

Г

	Sample No: Depth: Date Sampled: Lab Id:	6-WC01-SW-06B N/A 8/30/92 00464-25	6-WC01-SW-06M N/A 8/30/92 00464-26	6-WC02-SW-06B N/A 8/26/92 00445-16	6-WC03-SW-06B N/A 8/26/92 00439-18	6WC03-SW-06M N/A 8/26/92 00439-19	6-WC03-SW-312M N/A 8/26/92 00439-20
Parameter	Units						
ALUMINUM	UG/L	1350	1220	633	747	633	676
ANTIMONY	UG/L	14 U	14 U	16.2 UJ	49 U	49 U	49 U
ARSENIC	UG/L	3 UJ	3 UJ	2 U	2 U	2 U	49 U 2 U
BARIUM	UG/L	16 JB	16.2 JB	19.3 B	21 U	2 U 21 U	21 U
BERYLLIUM	UG/L	0.3 U	0.3 U	0.3 U	1 Ŭ	1 U	10
CADMIUM	UG/L	1.9 U	1.9 U	1.9 U	3 U	3 U	3 U
CALCIUM	UG/L	3640 B	3670 B	9990	9360	8890	9430
CHROMIUM	UG/L	3.6 UJ	3.6 UJ	3.6 U	5 U	5 U	5 U
COBALT	UG/L	2 U	2 U	2 U	6 U	6 U	6 U
COPPER	UG/L	1.9 U	1.9 U	1.9 U	4 U	4 U	129
CYANIDE	UG/L	10 U	10 U	10 UJ	10 U	10 U	10 U
IRON	UG/L	1050	941	844	849	756	830
LEAD	UG/L	2.3 JB	1.9 JB	1.2 B	5	5	10.4
MAGNESIUM	UG/L	632 B	639 B	1110 B	916 B	883 B	936 B
MANGANESE	UG/L	9 UJ	8.9 UJ	8.8 B	9.8 JB	8.2 JB	9.2 JB
MERCURY	UG/L	0.04 U	0.04 U	0.07 U	0.2 U	0.2 U	0.52
NICKEL	UG/L	7.9 UJ	7.9 UJ	7.9 U	17 U	17 U	1380
POTASSIUM	UG/L	376 B	341 B	604 B	610 B	603 B	640 B
SELENIUM	UG/L	5 UJ	5 UJ	5 U	5 U	5 U	5 U
SILVER	UG/L	2 UJ	2 UJ	3.8 UJ	10 U	10 U	10 U
SODIUM	UG/L	3930 B	3980 B	7790	6240	6100	6500
THALLIUM	UG/L	2 U	2 UJ	2 UJ	2 UJ	2 UJ	2 UJ
VANADIUM	UG/L	3.3 JB	1.9 JB	2.1 JB	5 U	5 U	5 U
ZINC	UG/L	8.7 U	7.6 U	7.5 U	7.4 U	10.4 U	111

	Sample No: Depth: Date Sampled: Lab Id:	6-WC04-SW-06B N/A 8/26/92 00439-21	6-WC04-SW-06M N/A 8/26/92 00439-22	6-WC05-SW-06B N/A 8/25/92 00437-19	6 WC05-SW-06M N/A 8/25/92 00437-20	6-WC05-SW-312M N/A 8/25/92 00437-21	6-WC06-SW-06B N/A 8/23/92 00429-05
arameter	Units						
LUMINUM	UG/L	697	698	799	945	762	751 J
ANTIMONY	UG/L	49 U	49 U	14 U	14 U	14 U	14 UJ
ARSENIC	UG/L	2 UJ	2 UJ	3 U	3 U	3 U	3 UJ
BARIUM	UG/L	21 U	21 U	18.9 B	22.6 B	17.6 B	17 UJ
BERYLLIUM	UG/L	1 U	1 U	0.3 U	0.3 U	0.3 U	0.3 U
CADMIUM	UG/L	3 U	3.2 JB	1.9 U	1.9 U	1.9 U	1.9 U
CALCIUM	UG/L	9720	9520	9440	11200	8850	6640 UJ
HROMIUM	UG/L	5 UJ	5 UJ	3.6 U	3.6 U	4.9 B	3.6 UJ
OBALT	UG/L	6 U	6 U	2 U	2 U	2.9 B	2 U
OPPER	UG/L	4 U	4 U	5.5 B	3 B	43.8	1.9 U
YANIDE	UG/L	10 U	10 U	· 10 U	10 U	10 U	10 U
RON	UG/L	834	812	854	1020	818	701
EAD	UG/L	3.5 U	4 U	1.8 B	2 B	3.1	1.2 U
AGNESIUM	UG/L	1080 B	995 B	1060 B	1230 B	985 B	1090 U
ANGANESE	UG/L	10 JB	10.5 JB	10.6 JB	12.2 JB	10 JB	12.5 B
AERCURY	UG/L	0.2 U	0.2 U	0.05 U	0.05 U	0.24 B	0.11 U
NICKEL	UG/L	17 U	17 U	7.9 U	7.9 U	177	7.9 U
OTASSIUM	UG/L	636 B	614 B	821 B	821 B	700 B	677 U
ELENIUM	UG/L	5 U	5 U	5 U	5 ŬJ	5 UJ	5 U
ILVER	UG/L	10 U	10 U	2 U	2 U	2.6 B	3.3 U
ODIUM	UG/L	7400 J	6810 J	7400	8430	6710	122000 U
HALLIUM	UG/L	2 UJ	2 UJ	2 UJ	2 UJ	2 U	2 UJ
ANADIUM	UG/L	5 U	5 U	1.8 U	1.8 U	1.8 U	1.8 U
LINC	UG/L	8 U	9.5 U	20.6	9.9 B	26.8	6.4 U

	Sample No: Depth: Date Sampled: Lab Id:	6-WC06-SW-06M N/A 8/23/92 00429-06	6-WC07-SW-06B N/A 8/23/92 00429-10	6-WC07-SW-06M N/A 8/23/92 00429-11	6-WC07-SW-312M N/A 8/23/92 00429-12	6-WC08-SW-06B N/A 8/23/92 00429-18	6-WC08-SW-06M N/A 8/23/92 00429-19
Parameter	Units						
ALUMINUM	UG/L	798 J	881 J	814 J	696 J	811 J	845 J
ANTIMONY	UG/L	14 UJ	14 UJ	14 UJ	14 UJ	14 UJ	14 UJ
ARSENIC	UG/L	3 U	3 U	3 U	3 U	3 U	3 U
BARIUM	UG/L	18.3 UJ	18.4 UJ	19.3 UJ	16.6 UJ	18 UJ	20 UJ
BERYLLIUM	UG/L	0.3 U	0.3 U	0.3 U	0.3 U	0.3 U	0.3 U
CADMIUM	UG/L	1.9 U	1.9 U	2.3 UJ	17.4 J	1.9 U	1.9 U
CALCIUM	UG/L	7310 UJ	13700 UJ	9200 UJ	8180 UJ	9600 UJ	10200 UJ
CHROMIUM	UG/L	3.6 UJ	3.6 UJ	3.6 UJ	3.6 UJ	3.6 UJ	3.6 UJ
COBALT	UG/L	2 U	2 U	2 U	2 U	2 U	2 U
COPPER	UG/L	1.9 U	1.9 U	1.9 U	63.9 UJ	1.9 U	2.4 UJ
YANIDE	UG/L	10 U	10 U	10 U	10 U	10 U	10 U
RON	UG/L	775	800	823	724	790	831
.EAD	UG/L	1 U	2.3 UJ	1.3 UJ	2 UJ	1.2 UJ	1.4 UJ
AGNESIUM	UG/L	1170 U	14400	4810 U	6030 U	8990 U	7710 U
ANGANESE	UG/L	13.8 B	17.8	17.6	14.7 B	16.2	16.9
IERCURY	UG/L	0.09 U	0.1 U	0.11 U	0.69 U	0.1 U	0.11 U
NCKEL	UG/L	7.9 U	7.9 U	7.9 U	274 U	7.9 U	7.9 U
OTASSIUM	UG/L	677 U	4820 U	1940 U	2230 U	3180 U	3020 U
SELENIUM	UG/L	5 UJ	5 U	5 UJ	5 UJ (5 UJ	5 UJ
ILVER	UG/L	3.6 U	3.1 U	4 U	4.3 U	4.4 U	2.4 U
ODIUM	UG/L	8190 U	119000 U	41200 U	51100 U	74300 U	65200 U
HALLIUM	UG/L	2 UJ	2 UJ	2 UJ	2 UJ	2 UJ	2 UJ
ANADIUM	UG/L	1.8 U	1.9 JB	2 JB	1.8 U	2.1 JB	1.9 JB
LINC	UG/L	9.2 U	9.8 U	8.3 U	32.2 U	12.5 U	8.3 U

6wcswin.wk1

	Sample No: Depth: Date Sampled: Lab Id:	6-WC08-SW-312M N/A 8/23/92 00429-20	6-WC09-SW-06B N/A 8/23/92 00429-26	6-WC09-SW-06M N/A 8/23/92 00429-28	6-WC09-SW-312M N/A 8/23/92 00429-29	6-WC10-SW-06B N/A 8/22/92 00426-06	6-WC10-SW-06M N/A 8/22/92 00426-08
Parameter	Units						
ALUMINUM	UG/L	719 J	746 J	745 J	480 J	621	523 U
NTIMONY	UG/L	14 UJ	14 UJ	14 UJ	14 UJ	49 U	49 U
RSENIC	UG/L	3 U	3.7 B	3 U	2 U	2 U	2 U
BARIUM	UG/L	17.9 UJ	18.1 UJ	18.3 UJ	19.4 UJ	21 U	21 U
BERYLLIUM	UG/L	0.3 U	0.3 U	0.3 U	0.3 U	1 U	1 U
ADMIUM	UG/L	5.5 UJ	1.9 U	1.9 U	2.4 UJ	3 U	3 UJ
ALCIUM	UG/L	11100 UJ	12500 UJ	10900 UJ	56000 J	30900	32500
HROMIUM	UG/L	3.6 UJ	3.6 UJ	3.6 UJ	3.6 UJ	5 U	5 U
OBALT	UG/L	2 U	2 U	2 U	2 U	6 U	6 UJ
OPPER	UG/L	64.2 UJ	1.9 U	2.3 UJ	22.8 UJ	6 UJ	4 UJ
YANIDE	UG/L	10 U	10 U	10 U	10 U	10 U	10 U
RON	UG/L	749	704	740	477	599	498
EAD	UG/L	3.2 U	2 U	1.3 U	1 U	1 UJ	1.4 U
AGNESIUM	UG/L	12600	18300	12800	146000	76600	83300
ANGANESE	UG/L	16.5	15.5	15.8	17.3	15 J	16 J
IERCURY	UG/L	0.73 U	0.1 U	0.1 U	0.37 U	0.2 U	0.2 U
ICKEL	UG/L	160 U	7.9 U	7.9 U	94.4 U	17 U	17 U
OTASSIUM	UG/L	4400 U	6300 U	4410 U	53700	25500	27700
ELENIUM	UG/L	5 U	5 U	5 U	5 U	5 U	5 U
ILVER	UG/L	2.6 U	2 U	2 U	2.2 U	10 U	10 U
ODIUM	UG/L	107000 U	154000 J	107000 U	1340000	661000	714000
HALLIUM	UG/L	2 UJ	2 UJ	2 UJ	2 UJ	2 UJ	2 UJ
ANADIUM	UG/L	2.5 JB	1.8 U	2 JB	1.8 U	7 UJ	7 UJ
ZINC	UG/L	28.4 U	9.4 U	8.4 U	16.9 U	9 B	7.3 B

4 of 6

	Sample No: Depth: Date Sampled: Lab Id:	6-WC10-SW-312M N/A 8/22/92 00426-09	6-WC11-SW-06B N/A 8/22/92 00426-12	6-WC11-SW-06M N/A 8/22/92 00426-13	6-WC11-SW-312M N/A 8/22/92 00426-14
Parameter	Units				
ALUMINUM	UG/L	529 U	807	469 U	682
ANIIMONY	UG/L	49 U	49 U	49 U	49 U
ARSENIC	UG/L	2 U	2 U	2 U	2 U
BARIUM	UG/L	21 U	21 U	21 U	21 U
BERYLLIUM	UG/L	1 U	1 U	1 U	1 U
CADMIUM	UG/L	3 UJ	3 U	3 U	3 UJ
CALCIUM	UG/L	53400	40300	36000	64100
CHROMIUM	UG/L	6 UJ	5 U	7 U	5 U
COBALT	UG/L	6 U	6 U	6 U	6 U
COPPER	UG/L	66	4 UJ	6 U	209
CYANIDE	UG/L	10 U	10 U	10 U	10 U
IRON	UG/L	494	881	546	649
LEAD	UG/L	1.3 UJ	2.2 U	2.9 U	2.6 UJ
MAGNESIUM	UG/L	143000	98900	88200	174000
MANGANESE	UG/L	18 J	18 J	14 JB	25 J
MERCURY	UG/L	0.2 U	0.2 U	0.2 U	0.52
NICKEL	UG/L	102	17 U	17 U	213
POTASSIUM	UG/L	48500	32000	28000	55700
SELENIUM	UG/L	5 U	5 U	5 U	5 UJ
SILVER	UG/L	10 U	10 U	10 U	10 U
SODIUM	UG/L	1620000	726000	700000	1260000
THALLIUM	UG/L	2 UJ	2 UJ	2 UJ	2 UJ
VANADIUM	UG/L	5 UJ	8 UJ	8 UJ	7 UJ
ZINC	UG/L	30.7	8.4 B	17.6 B	95.1

	Sample No: Depth: Date Sampled: Lab Id:	MINIMUM NONDETECTED	MAXIMUM NONDETECTED	MINIMUM DETECTED	MAXIMUM DETECTED	LOCATION OF MAXIMUM DETECTED	FREQUENCY OF DETECTION
Parameter	Units			·····	······································		
ALUMINUM	UG/L	469 U	529 U	480 J	1350	6-WC01-SW-06B	25/28
ANTIMONY	UG/L	14 U	49 U	ND	ND		0/28
ARSENIC	UG/L	2 U	3 UJ	3.7 B	3.7 B	6-WC09-SW-06B	1/28
BARIUM	UG/L	16.6 UJ	21 U	16 JB	22.6 B	6-WC05-SW-06M	6/28
BERYLLIUM	UG/L	0.3 U	1 U	ND	ND		0/28
CADMIUM	UG/L	1.9 U	5.5 UJ	3.2 JB	17.4 J	6-WC07-SW-312M	2/28
CALCIUM	UG/L	6640 UJ	13700 UJ	3640 B	64100	6-WC11-SW-312M	18/28
CHROMIUM	UG/L	3.6 UJ	7 U	4.9 B	4.9 B	6-WC05-SW-312M	1/28
OBALT	UG/L	2 U	6 U	2.9 B	2.9 B	6-WC05-SW-312M	1/28
OPPER	UG/L	1.9 U	64.2 UJ	3 B	209	6-WC11-SW-312M	6/28
YANIDE	UG/L	10 U	10 U	ND	ND		0/28
RON	UG/L	NA	NA	477	1050	6-WC01-SW-06B	. 28/28
EAD	UG/L	1 U	4 U	1.2 B	10.4	6-WC03-SW-312M	9/28
MAGNESIUM	UG/L	1090 U	8990 U	632 B	174000	6-WC11-SW-312M	22/28
MANGANESE	UG/L	8.9 UJ	9 UJ	8.2 JB	25 J	6-WC11-SW-312M	26/28
MERCURY	UG/L	0.04 U	0.73 U	0.24 B	0.52	6-WC11-SW-312M	3/28
NICKEL	UG/L	7.9 UJ	274 U	102	1380	6-WC03-SW-312M	4/28
OTASSIUM	UG/L	677 U	6300 U	341 B	55700	6-WC11-SW-312M	18/28
ELENIUM	UG/L	5 UJ	5 UJ	ND	ND		0/28
ILVER	UG/L	2 UJ	10 U	2.6 B	2.6 B	6-WC08-SW-312M	1/28
ODIUM	UG/L	8190 U	122000 U	3930 B	1620000	6-WC10-SW-312M	19/28
HALLIUM	UG/L	2 U	2 U	ND	ND		0/28
ANADIUM	UG/L	1.8 U	8 UJ	1.9 JB	3.3 JB	6~WC01-SW-06B	9/28
ZINC	UG/L	6.4 U	32.2 U	7.3 B	111	6-WC03-SW-312M	10/28

LISTICUER/CLS ALPHA -BRC U0/AL 0.05 UJ		Sample No: Depth: Date Sampled: Lab Id:	6-BH01-SW-06B N/A 10/23/92 00591-05	6-BH01-SW-06M N/A 10/23/92 00591-06	6-BH02-SW-06M N/A 8/28/92 00458-04	6-BH03-SW-06B N/A 8/28/92 00458-10	6-BH03-SW-06M N/A 8/28/92 00458-11	6-BH04-SW-06B N/A 8/28/92 00454-03
ALPHA -BHC UOL 0.65 UJ 0.65 U 0.65	Parameter	Units						
ALPHA -BHC UOL 0.65 UJ 0.65 U 0.65	PESTICIDE/PC	CBS						
BETA-BICUGL0.65 U0.65 U0.65 U0.65 U0.65 U0.65 UGAMMA-BHQLINDANE)UGL0.65 U0.65 U0.65 U0.65 U0.65 U0.65 UGAMMA-BHQLINDANE)UGL0.65 U0.65 U0.65 U0.65 U0.65 U0.65 UIBPTA-GHLORUGL0.65 U0.65 U0.65 U0.65 U0.65 U0.65 UALDRINUGL0.65 U0.65 U0.65 U0.65 U0.65 U0.65 UBETA-BICUGL0.65 U0.65 U0.65 U0.65 U0.65 U0.65 UBETA-BICUGL0.65 U0.65 U0.65 U0.65 U0.65 U0.65 UBETA-BICUGL0.65 U0.65 U0.65 U0.65 U0.65 U0.65 UBETA-BICUGL0.61 U0.61 U0.61 U0.61 U0.61 U0.61 UBETA-BICUGL0.1 U0.1 U0.1 U0.1 U0.1 U0.1 UBEDOSULZANIUGL0.1 U0.1 U0.1 U0.1 U0.1 U0.1 UMETA-BICUGL0.1 U0.1 U0.1 U0.1 U0.1 U0.1 UMETA-SITAUGL0.1 U0.1 U0.1 U0.1 U0.1 U0.1 U <t< td=""><td>ALPHA-BHC</td><td></td><td>0.05 UJ</td><td>0.05 U</td><td>0.05 U</td><td>0.05 U</td><td>0.05 U</td><td>0.05 UJ</td></t<>	ALPHA-BHC		0.05 UJ	0.05 U	0.05 U	0.05 U	0.05 U	0.05 UJ
DELTA-BRIC UGL 0.65 U	BETA-BHC	UG/L	0.05 UJ	0.05 U	0.05 U			
HEPTACHLOR UG/L 0.65 U 0.61 U 0.1 U <th0.1 th="" u<=""> 0.1 U 0.1 U<td>DELTA-BHC</td><td>UG/L</td><td>0.05 UJ</td><td>0.05 U</td><td>0.05 U</td><td>0.05 U</td><td>0.05 U</td><td>0.05 UJ</td></th0.1>	DELTA-BHC	UG/L	0.05 UJ	0.05 U	0.05 U	0.05 U	0.05 U	0.05 UJ
ALDRINUGL0.05 U0.05 U0.05 U0.05 U0.05 U0.05 U0.05 UBETACHLOR EPFOXDEUGL0.05 U0.05 U0.05 U0.05 U0.05 U0.05 UENDOSULFANIUGL0.05 U0.05 U0.05 U0.05 U0.05 U0.05 UALPARNIUGL0.05 U0.01 U0.1 U0.1 U0.1 U0.1 U0.1 U0.1 UALPARNIUGL0.1 U0.1 U0.1 U0.1 U0.1 U0.1 U0.1 U0.1 UALPARNIUGL0.1 U0.1 U0.1 U0.1 U0.1 U0.1 U0.1 U0.1 UENDOSULFANIUGL0.1 U0.1 U<	GAMMA-BHC(LINDANE)	UG/L	0.05 UJ	0.05 U	0.05 U	0.05 U	0.05 U	0.05 UJ
ALDRINUG/L0.05 U0.05 U0.05 U0.05 U0.05 U0.05 U0.05 UBETYACHLOR FPCXIDEUG/L0.05 U0.05 U0.05 U0.05 U0.05 U0.05 UENDOSULFANIUG/L0.05 U0.05 U0.05 U0.05 U0.05 U0.05 UMALDRINUG/L0.05 U0.01 U0.1 U0.1 U0.1 U0.1 U0.1 U0.1 UK4^-DDEUG/L0.1 U0.1 U0.1 U0.1 U0.1 U0.1 U0.1 U0.1 UENDOSULFANIUG/L0.1 U0.1 U0.1 U0.1 U0.1 U0.1 U0.1 U0.1 U0.1 UENDOSULFANIUG/L0.1 U0.1 U <td>HEPTACHLOR</td> <td>UG/L</td> <td>0.05 UJ</td> <td>0.05 U</td> <td>0.05 U</td> <td>0.05 U</td> <td>0.05 U</td> <td>0.05 UJ</td>	HEPTACHLOR	UG/L	0.05 UJ	0.05 U	0.05 U	0.05 U	0.05 U	0.05 UJ
ENDOSULFANI UG/L 0.05 U// 0.07 U// 0.01 U// 0.1 U/// 0.1 U/// <th0.1 <="" td="" u=""><td>ALDRIN</td><td>UG/L</td><td>0.05 UJ</td><td>0.05 U</td><td>0.05 U</td><td>0.05 U</td><td>0.05 U</td><td></td></th0.1>	ALDRIN	UG/L	0.05 UJ	0.05 U	0.05 U	0.05 U	0.05 U	
ENDOSULFANI UG/L 0.65 U 0.05 U 0.05 U 0.05 U 0.05 U 0.05 U VAGADE UG/L 0.1 U	HEPTACHLOR EPOXIDE	UG/L	0.05 UJ	0.05 U	0.05 U	0.05 U	0.05 U	0.05 UJ
44-DDEUG/L0.1 U0.1 U	ENDOSULFAN I	UG/L	0.05 UJ	0.05 U	0.05 U	0.05 U	0.05 U	
44-DDEUG/L0.1 U0.1 U0.1 U0.1 U0.1 U0.1 U0.1 U0.1 UENDRINUG/L0.1 U0.1 U	DIELDRIN	UG/L	0.1 UJ	0.1 U	0.1 U	0.1 U	0.1 U	0.1 UJ
ENDRIN UGAL 0.1 UJ 0.1 UJ <td>4,4'-DDE</td> <td>UG/L</td> <td>0.1 UJ</td> <td>0.1 U</td> <td>0.1 U</td> <td>0.1 U</td> <td>0.1 U</td> <td></td>	4,4'-DDE	UG/L	0.1 UJ	0.1 U	0.1 U	0.1 U	0.1 U	
ENDOSULFAN II UGA. 0.1 UJ 0.1 UJ 0.1 U 0.1 UJ 0.1 UJ <th0.1 th="" uj<=""> 0.1 UJ <th0.1 td="" u<=""><td>ENDRIN</td><td>UG/L</td><td>0.1 UJ</td><td>0.1 U</td><td>0.1 U</td><td></td><td></td><td></td></th0.1></th0.1>	ENDRIN	UG/L	0.1 UJ	0.1 U	0.1 U			
k4-DDDUGA.0.1 UI0.1 UI0.1 U0.1 U0.1 U0.1 UI0.1 UI <td>ENDOSULFAN II</td> <td>UG/L</td> <td>0.1 UJ</td> <td>0.1 U</td> <td>0.1 U</td> <td>0.1 U</td> <td>0.1 U</td> <td></td>	ENDOSULFAN II	UG/L	0.1 UJ	0.1 U	0.1 U	0.1 U	0.1 U	
ENDOSULFAN SULFAYE UGL 0.1 U W-DDT UGL 0.1 U 0.1 U <th0.1 th="" u<=""></th0.1>	4,4'-DDD	UG/L	0.1 UJ	0.1 U	0.1 U	0.1 U	0.1 U	
METHOXYCHLOR UG/L 0.5 UI 0.5 U 0.5 U 0.5 UI 0.5 UI ENDRIN KETONE UG/L 0.1 UI 0.1 U 0.1 U 0.1 U 0.1 U 0.1 U 0.1 UI 0.05 UI 0.0	ENDOSULFAN SULFATE	UG/L	0.1 UJ	0.1 U	0.1 U	0.1 U	0.1 U	
METHOXYCHLOR UG/L 0.5 UI 0.5 U 0.5 U 0.5 UI 0.5 UI ENDRIN KETONE UG/L 0.1 UI 0.1 U 0.1 U 0.1 U 0.1 U 0.1 U 0.1 UI 0.05 UI 0.0	4,4°-DDT	UG/L	0.1 UJ	0.1 U	0.1 U	0.1 U	0.1 U	0.1 UJ
ENDRINALDEHYDE UG/L 0.1 0.05 0 0.05 0 0.05 0 0.05 0 0.05 0 0.05 0 0.05 0 0.05 0 0.05 0 0.05 0 0.05 0 0.05 0 0.05 0 0.05 0 0.05 0 0.05 0 <td>METHOXYCHLOR</td> <td>UG/L</td> <td>0.5 UJ</td> <td>0.5 U</td> <td>0.5 U</td> <td>0.5 U</td> <td>0.5 U</td> <td>0.5 UJ</td>	METHOXYCHLOR	UG/L	0.5 UJ	0.5 U	0.5 U	0.5 U	0.5 U	0.5 UJ
ENDRINALDEHYDE UG/L 0.1 U 0.05 U 0.05 <th< td=""><td>ENDRIN KETONE</td><td>UG/L</td><td>0.1 UJ</td><td>0.1 U</td><td>0.1 U</td><td>0.1 U</td><td>0.1 U</td><td>0.1 UJ</td></th<>	ENDRIN KETONE	UG/L	0.1 UJ	0.1 U	0.1 U	0.1 U	0.1 U	0.1 UJ
GAMMA CHLORDANEUGAL0.05 U0.05 U0.05 U0.05 U0.05 UTOXAPHENEUGAL5 UU5 U5 U5 U5 U5 U5 U5 UTOXAPHENEUGAL1 UU1 U1 U1 U1 U1 U1 U1 UPCB-1016UGAL2 U2 U2 U2 U2 U2 U2 U2 UPCB-1231UGAL1 UU1 U1 U </td <td>ENDRIN ALDEHYDE</td> <td>UG/L</td> <td>0.1 UJ</td> <td>0.1 U</td> <td>0.1 U</td> <td>0.1 U</td> <td>0.1 U</td> <td></td>	ENDRIN ALDEHYDE	UG/L	0.1 UJ	0.1 U	0.1 U	0.1 U	0.1 U	
TOXAPHENE UG/L S UI S U S U S U S U S U S U S U CCB-1016 UG/L 1 UI 1 U 1 U 1 U 1 U 2 U	ALPHA CHLORDANE	UG/L	0.05 UJ	0.05 U	0.05 U	0.05 U	0.05 U	0.05 UJ
PCB-1016 UG/L 1 UJ 1 U 1 U 1 U 1 U 1 U 1 U PCB-121 UG/L 2 UJ 2 U	GAMMA CHLORDANE	UG/L	0.05 UJ	0.05 U	0.05 U	0.05 U	0.05 U	0.05 UJ
PCB-1221 UG/L 2 UJ 2 U 2 U 2 U 2 U 2 U PCB-1232 UG/L 1 UJ 1 U 1 U 1 U 1 U 1 UJ PCB-1242 UG/L 1 UJ 1 U 1 U 1 U 1 UJ 1 UJ PCB-1248 UG/L 1 UJ 1 U 1 U 1 U 1 U 1 U 1 U PCB-1248 UG/L 1 UJ 1 U <t< td=""><td>TOXAPHENE</td><td>UG/L</td><td>5 UJ</td><td>5 U</td><td>5 U</td><td>5 U</td><td>5 U</td><td>5 UJ</td></t<>	TOXAPHENE	UG/L	5 UJ	5 U	5 U	5 U	5 U	5 UJ
PCB-1322 UG/L 1 UI 1 U 1 U 1 U 1 U 1 U PCB-1242 UG/L 1 UJ 1 U	PCB-1016	UG/L	1 UJ	1 U	1 U	1 U	1 U	1 UJ
PCB-1242 UG/L 1 UJ 1 U 1 U 1 U 1 U 1 U 1 U PCB-1248 UG/L 1 UJ 1 U 1 U 1 U 1 U 1 U 1 UJ PCB-1244 UG/L 1 UJ 1 U 1 U 1 U 1 U 1 U 1 UJ PCB-1254 UG/L 1 UJ 1 U 1 U 1 U 1 U 1 U 1 UJ PCB-1260 UG/L 1 UJ 1 U 1 U 1 U 1 U 1 U 1 UJ PCB-1260 UG/L 1 UJ 1 UJ 1 U 1 U 1 U 1 UJ 1 UJ PCB-1260 UG/L 1 UJ 1 UJ 1 UJ 1 UJ 1 UJ 1 UJ PCB-1260 UG/L 1 UJ PCB-1260 UG/L 1 UJ PCB-1260 UG/L 10 U	PCB-1221	UG/L	2 UJ	2 U	2 U	2 U	2 U	2 UJ
PCB-1248 UG/L 1 UJ 1 U 1 U 1 U 1 U 1 U 1 UJ PCB-1254 UG/L 1 UJ 1 U 1 U 1 U 1 U 1 UJ 1 UJ PCB-1260 UG/L 1 UJ 1 UJ 1 U 1 U 1 UJ 1 UJ 1 UJ PCB-1260 UG/L 1 UJ PCB-1260 UG/L 1 UJ PCB-1260 UG/L 1 UJ 1 UJ 1 UJ 1 UJ 1 UJ 1 UJ PCB-1260 UG/L 1 UJ PCB-1260 UG/L 1 0 U 1	PCB-1232	UG/L	1 UJ	10	1 U	1 U	1 U	1 UJ
PCB-1234 UG/L 1 UJ 1 U <th1< td=""><td>PCB-1242</td><td>UG/L</td><td>1 UJ</td><td>1 U</td><td>1 U</td><td>1 U</td><td>1 U</td><td>1 UJ</td></th1<>	PCB-1242	UG/L	1 UJ	1 U	1 U	1 U	1 U	1 UJ
PCB-1260 UG/L 1 U/I 1 U/I 1 U/I 1 U/I 1 U/I VOLATILES UG/L 10 U SCMOMETHANE UG/L 10 U 10 U </td <td>PCB-1248</td> <td>UG/L</td> <td>1 UJ</td> <td>1 U</td> <td>1 U</td> <td>1 U</td> <td>1 U</td> <td>1 UJ</td>	PCB-1248	UG/L	1 UJ	1 U	1 U	1 U	1 U	1 UJ
VOLATILES VOLATILES VOLATILES CHLOROMETHANE UG/L 10 U	PCB-1254	UG/L	1 UJ	1 U	1 U	1 U	1 U	1 UJ
CHLOROMETHANE UG/L 10 U 10 U </td <td>PCB-1260</td> <td>UG/L</td> <td>1 UJ</td> <td>1 U</td> <td>1 U</td> <td>1 U</td> <td>1 U</td> <td>1 UJ</td>	PCB-1260	UG/L	1 UJ	1 U	1 U	1 U	1 U	1 UJ
CHLOROMETHANE UG/L 10 U 10 U </td <td>VOLATILES</td> <td>5</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	VOLATILES	5						
BROMOMETHANE UG/L 10 U 10 U <td></td> <td>•</td> <td>10 U</td> <td>10 U</td> <td>10 U</td> <td>10 U</td> <td>10 U</td> <td>10 U</td>		•	10 U	10 U	10 U	10 U	10 U	10 U
VINYL CHLORIDE UG/L 10 U								
CHLOROETHANE UG/L 10 U 10 U 10 U 10 U 10 U 10 U METHYLENE CHLORIDE UG/L 10 U ACETONE UG/L 10 U ACETONE UG/L 10 U CARBON DISULFIDE UG/L 10 U 10 U <td< td=""><td></td><td>•</td><td></td><td></td><td></td><td></td><td></td><td></td></td<>		•						
METHYLENE CHLORIDE UG/L 10 U 10 U 10 U 10 U 10 U 10 U ACETONE UG/L 10 U ACETONE UG/L 10 U CARBON DISULFIDE UG/L 10 U 10 U </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
ACETONE UG/L 10 U 10 U 10 U 10 U 10 U CARBON DISULFIDE UG/L 10 U								
CARBON DISULFIDE UG/L 10 U								
L,1-DICHLOROETHENE UG/L 10 U 10 U <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
L1-DICHLOROETHANE UG/L 10 U 10 U 10 U 10 U 10 U L2-DICHLOROETHENE UG/L 10 U 10 U <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>								
L2-DICHLOROETHENE UG/L 10 U 10 U 10 U 10 U 10 U CHLOROFORM UG/L 10 U 10 U<								
CHLOROFORM UG/L 10 U	•							
1,2-DICHLOROETHANE UG/L 10 U 10 U 10 U 10 U 10 U 10 U								
	2-BUTANONE	UG/L	10 U	10 U	10 U	10 U	10 U	10 U

	Sample No: Depth: Date Sampled: Lab Id:	6-BH01-SW-06B N/A 10/23/92 00591-05	6-BH01-SW-06M N/A 10/23/92 00591-06	6-BH02-SW-06M N/A 8/28/92 00458-04	6-BH03-SW-06B N/A 8/28/92 00458-10	6-BH03-SW-06M N/A 8/28/92 00458-11	6-BH04-SW-06B N/A 8/28/92 00454-03
Parameter	Units						
VOLATILES C	ont.						
1,1,1-TRICHLOROETHAN	E UG/L	10 U	10 U	10 U	10 U	10 U	10 U
CARBON TETRACHLORID	E UG/L	10 U	10 U	10 U	10 U	10 U	10 U
BROMODICHLOROMETH	ANE UG/L	10 U	10 U	10 U	10 U	10 U	10 U
1,2-DICHLOROPROPANE	UG/L	10 U	10 U	10 U	10 U	10 U	10 U
CIS-13-DICHLOROPROP	ENE UG/L	10 U	10 U	10 U	10 U	10 U	10 U
TRICHLOROETHENE	UG/L	10 U	10 U	10 U	10 U	10 U	10 U
DIBROMOCHLOROMETH	ANE UG/L	10 U	10 U	10 U	10 U	10 U	10 U
1,1,2-TRICHLOROETHAN	E UG/L	10 U	10 U	10 U	10 U	10 U	10 U
BENZENE	UG/L	10 U	10 U	10 U	10 U	10 U	10 U
TRANS-1,3-DICHLOROPI	ROPENE UG/L	10 U	10 U	10 U	10 U	10 U	10 U
BROMOFORM	UG/L	10 U	10 U	10 U	10 U	10 U	10 UJ
4-METHYL-2-PENTANO	NE UG/L	10 U	10 U	10 U	. 10 U	10 U	10 U
2-HEXANONE	UG/L	10 U	10 U	10 U	10 U	10 U	10 U
TETRACHLOROETHENE	UG/L	10 U	10 U	10 U	10 U	10 U	10 U
1,1,2,2-TETRACHLOROET		10 UJ	10 UJ	10 U	10 U	10 U	10 U
TOLUENE	UG/L	10 U	10 U	10 U	10 U	10 U	10 U
CHLOROBENZENE	UG/L	10 U	10 U	10 U	10 U	10 U	10 U
ETHYLBENZENE	UG/L	10 U	10 U	10 U	10 U	10 U	10 U
STYRENE	UG/L	10 U	10 U	10 U	10 U	10 U	10 U
TOTALXYLENES	UG/L	10 U	10 U	10 U	10 U	10 U	10 U
101122.20	0012				10 0		
SEMIVOLATII							· · ·
PHENOL	UG/L	10 U	10 U	10 U		10 U	10 U
BIS(2-CHLOROETHYL) ET		10 U	10 U	10 U		10 U	10 U
2-CHLOROPHENOL	UG/L	10 U	10 U	10 U		10 U	10 U
1,3-DICHLOROBENZENE	UG/L	10 U	10 U	10 U		10 U	10 U
1,4-DICHLOROBENZENE	UG/L	10 U	10 U	10 U		10 U	10 U
1,2-DICHLOROBENZENE	UG/L	10 U	10 U	10 U		10 U	10 U
2-METHYLPHENOL	UG/L	10 U	10 U	10 U		10 U	10 U
2,2'-OXYBIS (1-CHLOROI		10 U	10 U	10 U		10 U	10 U
4-METHYLPHENOL	UG/L	10 U	10 U	10 U ,		10 U	10 U
N-NITROSODI-N-PROPY		10 U	10 U	10 U		10 U	10 U
HEXACHLOROETHANE	UG/L	10 U	10 U	10 U		10 U	10 U
NITROBENZENE	UG/L	10 U	10 U	10 U		10 U	10 U
ISOPHORONE	UG/L	10 U	10 U	10 U		10 U	10 U
2-NITROPHENOL	UG/L	10 U	10 U	10 U		10 UJ	10 UJ
2,4 – DIMETHYLPHENOL	UG/L	10 U	10 U	10 U		10 U	10 U
BIS(2-CHLOROETHOXY)		10 U	10 U	10 U		10 U	10 U
2,4-DICHLOROPHENOL	UG/L	10 U	10 U	10 U		10 U	10 U
1,2,4-TRICHLOROBENZEN		10 U	10 U	10 U		10 U	10 U
NAPHTHALENE	UG/L	10 U	10 U	10 U		10 U	10 U
4-CHLORANILINE	UG/L	10 U	10 U	10 U	* · · · ·	10 U	10 U
HEXACHLOROBUTADIEN	E UG/L	10 U	10 U	10 U		10 U	10 U

	Sample No: Depth: Date Sampled: Lab Id:		6-BH01-SW-06B N/A 10/23/92 00591-05	6-BH01-SW-06M N/A 10/23/92 00591-06	6-BH02-SW-06M N/A 8/28/92 00458-04	6-BH03-SW-06B N/A 8/28/92 00458-10	6-BH03-SW-06M N/A 8/28/92 00458-11	6-BH04-SW-06B N/A 8/28/92 00454-03
Parameter		Juits	· · · · · · · · · · · · · · · · · · ·					
SEMIVOLATILE	S Cont.							
4-CHLORO-3-METHYL		JG/L	10 U	10 U	10 U		10 U	10 U
2-METHYLNAPHTHALE		JO/L	10 U	10 U	10 U		10 U	10 U
HEXACHLOROCYCLOPE		JG/L	10 U	10 U	10 U		10 U	10 U
2.4.6-TRICHLOROPHENC		JGIL	10 U	10 U	10 U		10 U	10 U
2,4,5-TRICHLOROPHENC		JG/L	25 U	25 U	25 U		25 U	25 U
2-CHLORONAPHTHALE		JG/L	10 U	10 U	10 U		10 U	10 U
2-NITROANILINE		JG/L	25 U	25 U	25 U		25 U	25 U
DIMETHYL PHTHALATE		JG/L	10 U	10 U	10 U		10 U	10 U
ACENAPHTHYLENE		JG/L	10 U	10 U	10 U		10 U	10 U
2.6-DINITROTOLUENE		JG/L	10 U	10 U	10 U		10 U	10 U
3-NITROANILINE	U	JG/L	25 U	25 U	25 U		25 U	25 U
ACENAPHTHENE	U	JG/L	10 U	10 U	10 U		10 U	10 U
2,4-DINITROPHENOL		JG/L	25 U	25 U	25 U		25 U	25 U
4-NITROPHENOL		JG/L	25 U	25 U	25 U		25 U	25 U
DIBENZOFURAN		JG/L	10 U	10 U	10 U		10 U	10 U
2,4-DINITROTOLUENE	U	JG/L	10 U	10 U	10 UJ		10 UJ	10 UJ
DIETHYL PHTHALATE	U	JG/L	10 U	10 U	10 U		10 U	10 U
4-CHLOROPHENYL PHE	NYL ETHER U	JG/L	10 U	10 U	10 U		10 U	10 U
FLUORENE		JG/L	10 U	10 U	10 U		10 U	10 U
4-NITROANILINE	U	JG/L	25 U	25 U	25 U		25 U	25 U
4,6-DINITRO-2-METHY	LPHENOL U	JG/L	25 U	25 U	25 U		25 U	25 U
N-NITRISODIPHENYLAM	IINE U	JG/L	10 U	10 U	10 U		10 U	10 U
4-BROMOPHENYL PHEN	YL ETHER U	JG/L	10 U	10 U	10 U		10 U	10 U
HEXACHLOROBENZENE		JG/L	10 U	10 U	10 U		10 U	10 U
PENTACHLOROPHENOL		JG/L	25 U	25 U	25 U		25 U	25 U
PHENANTHRENE		IG/L	10 U	10 U	10 U		10 U	10 U
ANTHRACENE		IG/L	10 U	10 U	10 U		10 U	10 U
DI-N-BUTYL PHTHALA'	re u	JG/L	10 U	10 U	10 U		10 U	10 U
FLUORANTHENE		JG/L	10 U	10 U	10 U		10 UJ	10 UJ
CARBAZOLE	U	IG/L	10 U	10 U	10 U		10 U	10 U
PYRENE	U	G/L	10 U	10 U	10 U		10 U	10 UJ
BUTYL BENZYL PHTHAL		IG/L	10 U	10 U	10 U		10 U	10 U
3.3-DICHLOROBENZIDIN		IG/L	10 U	10 U	10 U		10 U	10 U
BENZO(A)ANTHRACENE	U	IG/L	10 U	10 U	10 U		10 U	10 U
CHRYSÈNE		IG/L	10 U	10 U	10 U		10 U	10 U
BIS(2-ETHYLHEXYL)PHT		IG/L	10 U	1 J	10 U		10 U	1 J
DI-N-OCTYL PHTHÁLAT		IG/L	10 U	10 U	10 U		10 UJ	10 UJ
BENZO(B)FLUORANTHEM		IG/L	10 U	10 U	10 U		10 U	10 UJ
BENZO(K)FLUORANTHEN		IG/L	10 U	10 U	10 U		10 U	10 UJ
BENZO(A)PYRENE		IG/L	10 U	10 U	10 U		10 U	10 UJ
INDENO(1,2,3-CD) PYREN	NE U	IG/L	10 U	10 U	10 U		10 U	10 UJ
DIBENZ(AH)ANTHRACE		G/L	10 U	10 U	10 U	·	10 UJ	10 UJ
BENZO(G,H,I)PERYLENE		G/L	10 U	10 U	10 U		10 U	10 UJ

	Sample No: Depth: Date Sampled: Lab Id:	6-BH04-SW-06M N/A 8/28/92 00454-04	6-BH05-SW-06B N/A 8/28/92 00454-05	6-BH05-SW-06M N/A 8/28/92 00454-06	6-BH06-SW-06B N/A 8/28/92 00454-07	6-BH06-SW-06M N/A 8/28/92 00454-09	6-BH07-SW-06B N/A 8/25/92 00437-01
arameter	Units						
PESTICIDE/P							
LPHA-BHC	UG/L	0.05 U					
BETA-BHC	UG/L	0.05 U					
DELTA-BHC	UG/L	0.05 U					
JAMMA-BHC(LINDANE)) ŪG/L	0.05 U					
IEPTACHLOR	UG/L	0.05 U					
LDRIN	UG/L	0.05 U					
IEPTACHLOR EPOXIDE	UG/L	0.05 U					
NDOSULFAN I	UG/L	0.05 U	0.05 U	. 0.05 U	0.05 U	0.05 U	0.05 U
DIELDRIN	UG/L	0.1 U					
,4'-DDE	UG/L	0.1 U					
INDRIN	UG/L	0.1 U					
NDOSULFAN II	UG/L	0.1 U					
,4°-DDD	UG/L	0.1 U					
ENDOSULFAN SULFATE	UG/L	0.1 U					
4'-DDT	UG/L	0.1 U					
METHOXYCHLOR	UG/L	0.5 U					
NDRIN KETONE	UG/L	0.1 U					
ENDRIN ALDEHYDE	UG/L	0.1 U					
LPHA CHLORDANE	UG/L	0.05 U					
JAMMA CHLORDANE	UG/L	0.05 U					
OXAPHENE	UG/L	5 U	5 U	5 U	5 U	5 U	5 U
CB-1016	UG/L	1 U	1 U	1 U	1 U	1 U	1 U
CB-1221	UG/L	2 U	2 U	2 U	2 U	2 U	2 U
CB-1232	UG/L	1 U	1 U	1 U	1 U	1 U	1 U
CB-1242	UG/L	1 U	1 U	1 U	1 U	1 U	1 U
CB-1248	UG/L	1 U	1 U	1 U	1 U	1 U	1 U
CB-1254	UG/L	1 U	1 U	1 U	1 U	1 U	1 U
CB-1260	UG/L	1 U	1 U	1 U	1 U	t U	1 U
VOLATILE	S						
HLOROMETHANE	UG/L	10 U					
ROMOMETHANE	UG/L	10 U					
/INYL CHLORIDE	UG/L	10 U					
HLOROETHANE	UG/L	10 U	10 U	10 U	10 U	· 10 U	10 U
AETHYLENE CHLORIDE	UG/L	10 U					
CETONE	UG/L	10 U					
CARBON DISULFIDE	UG/L	10 U					
1-DICHLOROETHENE	UG/L	10 U					
1-DICHLOROETHANE	UG/L	10 Ŭ	10 U				
2-DICHLOROETHENE	UG/L	10 U					
CHLOROFORM	UG/L	10 U					
2-DICHLOROETHANE	UG/L	10 U					
-BUTANONE	UG/L	10 U					

.

	Sample No: Depth: Date Sampled: Lab Id:	6-BH04-SW-06M N/A 8/28/92 00454-04	6-BH05-SW-06B N/A 8/28/92 00454-05	6-BH05-SW-06M N/A 8/28/92 00454-06	6-BH06-SW-06B N/A 8/28/92 00454-07	6-BH06-SW-06M N/A 8/28/92 00454-09	6-BH07-SW-06B N/A 8/25/92 00437-01
Parameter	Units	· · · · · · · · · · · · · · · · · · ·					
VOLATILES	Cont.						
1,1,1-TRICHLOROETHAN		10 U					
CARBON TETRACHLORI	DE UG/L	10 U					
BROMODICHLOROMETH	IANE UG/L	10 U					
1,2-DICHLOROPROPANE	e ug/L	10 U					
CIS-1,3-DICHLOROPRO	PENE UG/L	10 U					
TRICHLOROETHENE	UG/L	10 U					
DIBROMOCHLOROMETH	LANE UG/L	10 U					
1,1,2-TRICHLOROETHAN	ie UG/L	10 U					
BENZENE	UG/L	10 U					
TRANS-1,3-DICHLOROF	ROPENE UG/L	10 U					
BROMOFORM	UG/L	10 U					
4-METHYL-2-PENTANG	ONE UG/L	10 U					
2-HEXANONE	UG/L	10 U	10 · U	10 U	10 U	10 U	10 U
TETRACHLOROETHENE	UG/L	10 U					
1,1,2,2-TETRACHLOROE	THANE UG/L	10 U					
TOLUENE	UG/L	10 U					
CHLOROBENZENE	UG/L	10 U					
ETHYLBENZENE	UG/L	10 U					
STYRENE	UG/L	10 U					
TOTAL XYLENES	UG/L	10 U					
SEMIVOLATI	I FS						
PHENOL	UG/L	10 U					
BIS(2-CHLOROETHYL) E		10 U					
2-CHLOROPHENOL	UG/L	10 U					
1,3-DICHLOROBENZENE		10 Ŭ	10 U				
1,4-DICHLOROBENZENE		10 U					
1,2-DICHLOROBENZENE		10 U					
2-METHYLPHENOL	UG/L	10 U					
2,2'-OXYBIS (1-CHLORO		10 U	10 U	10 Ŭ	10 Ŭ	10 U	10 U
-METHYLPHENOL	UG/L	10 U					
N-NITROSODI-N-PROP		10 U					
HEXACHLOROETHANE	UG/L	10 U					
NITROBENZENE	UG/L	10 U	10 U	10 Ŭ	10 U	10 U	10 U
SOPHORONE	UG/L	10 U	10 U	10 U	. 10 U	10 U	10 U
-NITROPHENOL	UG/L	10 U	10 U	10 U	10 U	10 UJ	10 U
4-DIMETHYLPHENOL	UG/L	10 U					
BIS(2-CHLOROETHOXY)		10 U					
2,4-DICHLOROPHENOL	UG/L	10 U					
1,2,4-TRICHLOROBENZE		10 U					
NAPHTHALENE	UG/L	10 U					
-CHLORANILINE	UG/L	10 U					
HEXACHLOROBUTADIEN		10 U					

	Samplo No: Depth: te Sampled: Lab Id:	6-BH04-SW-06M N/A 8/28/92 00454-04	6-BH05-SW-06B N/A 8/28/92 00454-05	6-BH05-SW-06M N/A 8/28/92 00454-06	6 - BH06 - SW -06B N/A 8/28/92 00454 - 07	6 - BH06 - SW - 06M N/A 8/28/92 00454 - 09	6 – BH07 – SW – 06B N/A 8/25/92 00437 – 01
Parameter	Units						
SEMIVOLATILES Con	t.						
4-CHLORO-3-METHYLPHEN		10 U	10 U	10 U	10 U	10 U	10 U
2-METHYLNAPHTHALENE	UG/L	10 U	10 U	10 U	10 U	10 U	10 U
HEXACHLOROCYCLOPENTAL	DIENE UG/L	10 U	10 U	10 U	10 U	10 U	10 U
2,4,6-TRICHLOROPHENOL	UG/L	10 U	10 U	10 U	10 U	10 U	10 U
2,4,5-TRICHLOROPHENOL	UG/L	25 U	25 U	25 U	25 U	25 U	25 U
2-CHLORONAPHTHALENE	UG/L	10 U	10 U	10 U	10 U	10 U	10 U
2-NITROANILINE	UG/L	25 U	25 U	25 U	25 U	25 U	25 U
DIMETHYL PHTHALATE	UG/L	10 U	10 U	10 U	10 U	10 U	10 U
ACENAPHTHYLENE	UG/L	10 U	10 U	10 U	10 U	10 U	10 U
2.6-DINITROTOLUENE	UG/L	10 U	10 U	10 U	10 U	10 U	10 U
3-NITROANILINE	UG/L	25 U	25 U	25 U	25 U	25 U	25 U
ACENAPHTHENE	UG/L	10 U	10 U	10 U	10 U	10 U	10 U
2,4-DINITROPHENOL	UG/L	25 U	25 U	25 U	25 U	25 U	25 U
4-NITROPHENOL	UG/L	25 U	25 U	25 U	25 U	25 U	25 U
DIBENZOFURAN	UG/L	10 U	10 U	10 U	10 U	10 U	10 U
2,4-DINITROTOLUENE	UG/L	10 UJ	10 UJ	10 UJ	10 U	10 UJ	10 U
DIETHYL PHTHALATE	UG/L	10 U	10 U	10 U	10 U	10 U	10 U
4-CHLOROPHENYL PHENYL I	ETHER UG/L	10 U	10 U	10 U	10 U	10 U	10 U
FLUORENE	UG/L	10 U	10 U	10 U	10 U	10 U	10 U
4-NITROANILINE	UG/L	25 U	25 U	25 U	25 U	25 U	25 U
4,6-DINITRO-2-METHYLPHE	NOL UG/L	25 Ü	25 U	25 U	25 U	25 U	25 U
N-NITRISODIPHENYLAMINE	UG/L	10 U	10 U	10 U	10 U	10 U	10 U
4-BROMOPHENYL PHENYL E	iher UG/L	10 U	10 U	10 U	10 U	10 U	10 U
HEXACHLOROBENZENE	UG/L	10 U	10 U	10 U	10 U	10 U	10 U
PENTACHLOROPHENOL	UG/L	25 U	25 U	25 U	25 U	25 U	25 U
PHENANTHRENE	UG/L	10 U	10 U	10 U	10 U	10 U	10 U
ANTHRACENE	UG/L	10 U	10 U	10 U	10 U	10 U	10 U
DI-N-BUTYL PHTHALATE	UG/L	10 U	10 U	10 U	10 U	10 U	10 U
FLUORANTHENE	UG/L	10 U	10 U	10 U	10 U	10 UJ	10 U
CARBAZOLE	UG/L	10 U	10 U	10 U	10 U	10 U	10 U
PYRENE	UG/L	10 U	10 U	10 U	10 UJ	10 U	10 U
BUTYL BENZYL PHTHALATE	UG/L	10 U	10 U	10 U	10 U	10 U	10 U
3,3-DICHLOROBENZIDINE	UG/L	10 U	10 U	10 U	10 U	10 U	10 U
BENZO(A)ANTHRACENE	UG/L	10 U	10 U	10 U	10 U	10 U	10 U
CHRYSÈNE	UG/L	10 U	10 U	10 U	10 U	10 U	10 U
BIS(2-ETHYLHEXYL)PHTHAL	ATE UG/L	1 J	2 J	10 U	10 UJ	10 U	10 U
DI-N-OCTYL PHTHÁLATE	UG/L	10 U	10 U	10 U	10 UJ	10 UJ	10 U
BENZO(B)FLUORANTHENE	UG/L	10 U	10 U	10 U	10 U	10 UJ	10 U
BENZO(K)FLUORANTHENE	UG/L	10 U	10 U	10 U	10 U	10 UJ	10 U
BENZO(A)PYRENE	UG/L	10 U	10 U	10 U	10 U	10 UJ	10 U
INDENO(1,2,3-CD) PYRENE	UG/L	10 U	10 U	10 U	10 U	10 UJ	10 U
DIBENZ(A,H)ANTHRACENE	UG/L	10 U	10 U	10 U	10 U	10 UJ	10 U
BENZO(G,H,Í)PERYLENE	UG/L	10 U	10 U	10 U	10 U	10 UJ	10 U

· · ·	Sample No: Depth: Date Sampled: Lab Id:	6-BH07-SW-06M N/A 8/25/92 00437-02	6-BH07-SW-312M N/A 8/25/92 00437-03	
Parameter	Units			
PESTICIDE/PC	BS			
ALPHA-BHC	UG/L	0.05 U	0.05 U	
BETA-BHC	UG/L	0.05 U	0.05 U	
DELTA-BHC	UG/L	0.05 U	0.05 U	
GAMMA-BHC(LINDANE)	UG/L	0.05 U	0.05 U	
HEPTACHLOR	UG/L	0.05 U	0.05 U	
ALDRIN	UG/L	0.05 U	0.05 U	•
HEPTACHLOR EPOXIDE	UG/L	0.05 U	0.05 U	
ENDOSULFAN I	UG/L	0.05 U	0.05 U	
DIELDRIN	UG/L	0.1 U	0.1 U	
4.4'-DDE	UG/L	0.1 U	0.1 U	
ENDRIN	UG/L	0.1 U	0.1 U	
ENDOSULFAN II	UG/L	0.1 U	0.1 U	
4,4'-DDD	UG/L	0.1 U	0.1 U	
ENDOSULFAN SULFATE	UG/L	0.1 U	0.1 U	
4,4'-DDT	UG/L	0.1 U	0.1 U	
METHOXYCHLOR	UG/L	0.5 U	0.5 U	
ENDRIN KETONE	UG/L	0.1 U	0.1 U	
ENDRIN ALDEHYDE	UG/L	0.1 U	0.1 U	
ALPHA CHLORDANE	UG/L	0.05 U	0.05 U	
GAMMA CHLORDANE	UG/L	0.05 U	0.05 U	
TOXAPHENE	UG/L	5 U	5 U	
PCB-1016	UG/L	1 U	1 U	
PCB-1221	UG/L	2 U	2 U	
PCB-1232	UG/L	1 U	1 U	
PCB-1242	UG/L	1 U	10	
PCB-1248	UG/L	10	10	
PCB-1254	UG/L	1 U	1 U	
PCB-1254 PCB-1260	UG/L	10		
FCB-1200	UUIL	10	1 U	
VOLATILES				
CHLOROMETHANE	UG/L	10 U	10 U	
BROMOMETHANE	UG/L	10 U	10 U	
VINYL CHLORIDE	UG/L	10 U	10 U	
CHLOROETHANE	UG/L	10 U	10 U	
METHYLENE CHLORIDE	UG/L	10 U	10 U	
ACETONE	UG/L	10 U	10 U	
CARBON DISULFIDE	UG/L	10 U	10 U	
1.1-DICHLOROETHENE	UG/L	10 U	10 U	
1,1~DICHLOROETHANE	UG/L UG/L	10 U	10 U	
1.2-DICHLOROETHENE	UG/L	10 U	10 U	
CHLOROFORM	UG/L	10 U	10 U	
1,2-DICHLOROETHANE	UG/L	10 U	10 U	
2-BUTANONE	UG/L UG/L	10 U	10 U	
2-BUTMINUNE	00/L	10 0	10.0	

E	Sample No: Depth: Pate Sampled: Lab Id:	6-BH07-SW-06M N/A 8/25/92 00437-02	6-BH07-SW-312M N/A 8/25/92 00437-03	
Parameter	Units			·
VOLATILES Cont.				
1,1,1-TRICHLOROETHANE	UG/L	10 U	10 U	
CARBON TETRACHLORIDE	UG/L	10 U	10 U	
BROMODICHLOROMETHAN	E UG/L	10 U	10 U	
1,2-DICHLOROPROPANE	UG/L	10 U	10 U	
CIS-1,3-DICHLOROPROPEN	E UG/L	10 U	10 U	
TRICHLOROETHENE	UG/L	10 U	10 U	
DIBROMOCHLOROMETHAN	E UG/L	10 U	10 U	
1,1,2-TRICHLOROETHANE	UG/L	10 U	10 U	
BENZENE	UG/L	10 U	10 U	
TRANS-1,3-DICHLOROPROF		10 U	10 U	
BROMOFORM	UG/L	10 U	10 Ŭ	
4-METHYL-2-PENTANONE	UG/L	10 U	10 U	
2-HEXANONE	UG/L	10 U	10 U	
TETRACHLOROETHENE	UG/L	10 U	10 U	
1,1,2,2-TETRACHLOROETHA		10 U	10 U	
TOLUENE	UG/L	10 U	10 U	
CHLOROBENZENE	UG/L	10 U	10 U	
ETHYLBENZENE	UG/L	10 U	10 U	
STYRENE	UG/L	10 U	10 U	
TOTAL XYLENES	UG/L	10 U	10 U	
IOIALAILLINES	00/2	10 0	10 0	
<u>SEMIVOLATILES</u>				
PHENOL	UG/L	10 U	10 U	
BIS(2–CHLOROETHYL) ETHE		10 U	10 U	
2-CHLOROPHENOL	UG/L	10 U	10 U	
1,3-DICHLOROBENZENE	UG/L	10 U	10 U	
1,4-DICHLOROBENZENE	UG/L	10 U	10 U	
1,2-DICHLOROBENZENE	UG/L	10 U	10 U	
2-METHYLPHENOL	UG/L	10 U	10 U	
2,2'-OXYBIS (1-CHLOROPRO	PANE) UG/L	10 U	10 U	
4-METHYLPHENOL	UG/L	10 U	10 U	
N-NITROSODI-N-PROPYLA	MINE UG/L	10 U	10 U	· · · · ·
HEXACHLOROETHANE	UG/L	10 U	10 U	
NITROBENZENE	UG/L	10 U	10 U	
ISOPHORONE	UG/L	10 U	10 U	
2-NITROPHENOL	UG/L	10 U	10 U	,
2,4-DIMETHYLPHENOL	UG/L	10 U	10 U	
BIS(2-CHLOROETHOXY) ME	THANE UG/L	10 U	10 U	
2.4-DICHLOROPHENOL	UG/L	10 U	10 U	
1.2.4-TRICHLOROBENZENE	UG/L	10 U	10 U	
NAPHTHALENE	UG/L	10 U	10 U	•
4-CHLORANILINE	UG/L	10 U	10 U	
HEXACHLOROBUTADIENE	UG/L	10 U	10 U	

6bhswor.wk1

	ample No: Depth: e Sampled: Lab Id;	6-BH07-SW-06M N/A 8/25/92 00437-02	6-BH07-SW-312M N/A 8/25/92 00437-03	
Parameter	Units			· · · · · · · · · · · · · · · · · · ·
SEMIVOLATILES Cont.				
4-CHLORO-3-METHYLPHENC	•	10 U	10 U	
2-METHYLNAPHTHALENE	UG/L	10 U	10 U	
HEXACHLOROCYCLOPENTADI		10 U	10 U	
2,4,6-TRICHLOROPHENOL	UG/L	10 U	10 U	
2,4,5-TRICHLOROPHENOL	UG/L	25 U	25 U	
2-CHLORONAPHTHALENE	UG/L	10 U	10 U	
2-NITROANILINE	UG/L	25 U	25 U	۴.
DIMETHYL PHTHALATE	UG/L	10 U	10 U	· ·
ACENAPHTHYLENE	UG/L	10 U	10 U	
2.6-DINITROTOLUENE	UG/L	10 U	10 U	
-NITROANILINE	UG/L	25 U	25 U	
ACENAPHTHENE	UG/L	10 U	10 U	
2,4-DINITROPHENOL	UG/L	· 25 U	25 U	
-NITROPHENOL	UG/L	25 U	25 U	
DIBENZOFURAN	UG/L	10 U	10 U	
2.4-DINITROTOLUENE	UG/L	10 U	10 U	
DIETHYL PHTHALATE	UG/L	10 U	2 J	
-CHLOROPHENYL PHENYL E		10 U	10 U	
FLUORENE	UG/L	10 U	10 U	
	UG/L	25 U		
-NITROANILINE			25 U	
6-DINITRO-2-METHYLPHEN		25 U	25 U	
N-NITRISODIPHENYLAMINE	UG/L	10 U	10 U	
-BROMOPHENYL PHENYL ETI		10 U	10 U	
IEXACHLOROBENZENE	UG/L	10 U	10 U	
PENTACHLOROPHENOL	UG/L	25 U	25 U	
PHENANTHRENE	UG/L	10 U	10 U	
NTHRACENE	UG/L	10 U	. 10 U	
DI-N-BUTYL PHTHALATE	UG/L	10 U	10 U	
LUORANTHENE	UG/L	10 U	10 U	
CARBAZOLE	UG/L	10 U	10 U	
YRENE	UG/L	10 U	10 U	
SUTYL BENZYL PHTHALATE	UG/L	10 U	10 U	
3-DICHLOROBENZIDINE	UG/L	10 U	10 U	
BENZO(A)ANTHRACENE	UG/L	10 U	10 U	
CHRYSÈNE	UG/L	10 U	10 U	
BIS(2-ETHYLHEXYL)PHTHALA	TE UG/L	10 U	10 U	
DI-N-OCTYL PHTHALATE	UG/L	10 UJ	10 U	
ENZO(B)FLUORANTHENE	UG/L	10 UJ	10 U	
ENZO(K)FLUORANTHENE	UGAL	10 UJ	10 U	
ENZO(A)PYRENE	UG/L	10 UJ	10 U	
NDENO(1,2,3-CD) PYRENE	UG/L	10 UJ	10 U	
DIBENZ(A,H)ANTHRACENE	UG/L	10 UJ	10 U	
ENZO(G,H,I)PERYLENE	UG/L	10 UJ	10 U	

	Sample No: Depth: Date Sampled: Lab Id:	MINIMUM NONDETECTED	MAXIMUM NONDETECTED	MINIMUM DETECTED	MAXIMUM DETECTED	LOCATION OF MAXIMUM DETECTED	FREQUENCY OF DETECTION
arameter	Units			DEIBOIED		DBIBOTA	DDIDOIRM
PESTICIDE/PC	BS						
LPHA-BHC	UG/L	0.05 UJ	0.05 UJ	ND	ND		0/14
ETA-BHC	UG/L	0.05 UJ	0.05 UJ	ND	ND		0/14
ELTA-BHC	UG/L	0.05 UJ	0.05 UJ	ND	ND		0/14
AMMA-BHC(LINDANE)	UG/L	0.05 UJ	0.05 UJ	ND	ND		0/14
EPTACHLOR	UG/L	0.05 UJ	0.05 UJ	ND	ND		0/14
LDRIN	UG/L	0.05 UJ	0.05 UJ	ND	ND		0/14
EPTACHLOR EPOXIDE	UG/L	0.05 UJ	0.05 UJ	ND	ND		0/14
NDOSULFAN I	UG/L	0.05 UJ	0.05 UJ	ND	ND		0/14
IELDRIN	UG/L	0.1 UJ	0.1 UJ	ND	ND		0/14
4'-DDE	UG/L	0.1 UJ	0.1 UJ	ND	ND		0/14
NDRIN	UG/L	0.1 UJ	0.1 UJ	ND	ND		0/14
NDOSULFAN II	UG/L	0.1 UJ	0.1 UJ	ND	ND		0/14
4'-DDD	UG/L	0.1 UJ	0.1 UJ	ND	ND		0/14
NDOSULFAN SULFATE	UG/L	0.1 UJ	0.1 UJ	ND	ND		0/14
4'-DDT	UG/L	0.1 UJ	0.1 UJ	ND	ND		0/14
IETHOXYCHLOR	UGAL	0.5 UJ	0.1 UJ	ND	ND		0/14
NDRIN KETONE	UG/L	0.1 UJ	0.5 UJ 0.1 UJ	ND	ND		0/14
7	UG/L	0.1 UJ	0.1 UJ	ND	ND		0/14
NDRIN ALDEHYDE							
LPHA CHLORDANE	UG/L	0.05 UJ	0.05 UJ	ND	ND		0/14
AMMA CHLORDANE	UG/L	0.05 UJ	0.05 UJ	ND	ND		0/14
OXAPHENE	UG/L	5 UJ	5 UJ	ND	ND		0/14
CB-1016	UG/L	1 UJ	. 1 UJ	ND	ND		0/14
CB-1221	UG/L	2 UJ	2 UJ	ND	ND		0/14
CB-1232	UG/L	1 UJ	1 W	ND	ND		0/14
CB-1242	UG/L	1 UJ	1 UJ	ND	ND		0/14
CB-1248	UG/L	1 UJ	1 UJ	ND	ND		0/14
CB-1254	UG/L	1 UJ	1 UJ	ND	ND		0/14
CB-1260	UG/L	1 UJ	1 UJ	ND	ND		0/14
VOLATILES	;						
HLOROMETHANE	UG/L	10 U	10 U	ND	ND		0/14
ROMOMETHANE	UG/L	10 U	10 U	ND	ND		0/14
INYL CHLORIDE	UG/L	10 U	10 U	ND	ND		0/14
HLOROETHANE	UG/L	10 U	10 U	ND	ND		0/14
ETHYLENE CHLORIDE	UG/L	10 U	10 U	ND	ND		0/14
CETONE	UG/L'	10 U	10 U	ND	ND		0/14
ARBON DISULFIDE	UG/L	10 U	10 U	ND	ND		0/14
1-DICHLOROETHENE	UG/L	10 U	10 U	ND	ND		0/14
1-DICHLOROETHANE	UG/L	10 U	10 U	ND	ND		0/14
2-DICHLOROETHENE	UG/L	10 U	10 U	ND	ND		0/14
HLOROFORM	UG/L	10 U	10 U	ND	ND		0/14
2-DICHLOROETHANE	UG/L	10 U	10 U	ND	ND		0/14
*-DICUTORODIUMIC	UG/L UG/L	10 U	10 U	ND	ND		0/14

٠

Date Samp	epth: oled:	MINIMUM	MAXIMUM	MINIMUM	MAXIMUM	LOCATION OF MAXIMUM	FREQUENCY
Parameter	b Id: Units	NONDETECTED	NONDETECTED	DETECTED	DETECTED	DETECTED	DETECTION
	CTIM						
VOLATILES Cont.							
1,1,1–TRICHLOROETHANE	UG/L	10 U	10 U	ND	ND		0/14
CARBON TETRACHLORIDE	UG/L	10 U	10 U	ND	ND		0/14
BROMODICHLOROMETHANE	UG/L	10 U	10 U	ND	ND		0/14
1,2-DICHLOROPROPANE	UG/L	10 U	10 U	ND	ND		0/14
CIS-1,3-DICHLOROPROPENE	UG/L	10 U	10 U	ND	ND		0/14
TRICHLOROETHENE	UG/L	10 U	10 U	ND	ND		0/14
DIBROMOCHLOROMETHANE	UG/L	10 U	10 U	ND	ND		0/14
1,1,2-TRICHLOROETHANE	UG/L	10 U	10 U	ND	ND		0/14
BENZENE	UG/L	10 U	10 U	ND	ND		0/14
TRANS-1,3-DICHLOROPROPENE	UG/L	10 U	10 U	ND	ND		0/14
BROMOFORM	UG/L	10 U	10 U	ND	ND		0/14
4-METHYL-2-PENTANONE	UG/L	10 U	10 U	ND	ND		0/14
2-HEXANONE	UG/L	10 U	10 U	ND	ND		0/14
TETRACHLOROETHENE	UG/L	10 U	10 U	ND	ND		0/14
1.1.2.2-TETRACHLOROETHANE	UG/L	10 UJ	10 UJ	ND	ND		0/14
TOLUENE	UG/L	10 U	10 U	ND	ND		0/14
CHLOROBENZENE	UG/L	10 U	10 U	ND	ND		0/14
ETHYLBENZENE	UG/L	10 U	10 U	· ND	ND		0/14
STYRENE	UG/L	10 U	10 U	ND	ND		0/14
TOTAL XYLENES	UG/L	10 U	10 U	ND	ND		0/14
TOTALATLEAD	00/2			112	ND		0114
SEMIVOLATILES							
PHENOL	UG/L	10 U	10 U	ND	ND		0/13
BIS(2-CHLOROETHYL) ETHER	UG/L	10 U	10 U	ND	ND		0/13
2-CHLOROPHENOL	UG/L	10 U	10 U	ND	ND		0/13
1,3-DICHLOROBENZENE	UG/L	10 U	10 U	ND	ND		0/13
1,4-DICHLOROBENZENE	UG/L	10 U	10 U	ND	ND		0/13
1,2-DICHLOROBENZENE	UG/L	10 U	10 U	ND	ND		0/13
2-METHYLPHENOL	UG/L	10 U	10 U	ND	ND		0/13
2,2'-OXYBIS (1-CHLOROPROPANE)	UG/L	10 U	10 U	ND	ND		0/13
4-METHYLPHENOL	UG/L	10 U	10 U	ND	ND		0/13
N-NITROSODI-N-PROPYLAMINE	UG/L	10 U	10 U	ND	ND		0/13
HEXACHLOROETHANE	UG/L	10 U	10 U	ND	ND		0/13
NITROBENZENE	UG/L	10 U	10 U	ND	ND		0/13
ISOPHORONE	UG/L	10 U	10 U	ND	ND		0/13
2-NITROPHENOL	UG/L	10 U	10 U	ND	ND		0/13
2,4-DIMETHYLPHENOL	UG/L	10 U	10 U	ND	ND		0/13
BIS(2-CHLOROETHOXY) METHANE	UG/L	10 U	10 U	ND	ND		0/13
2.4-DICHLOROPHENOL	UG/L UG/L	10 U	10 U	ND	ND		0/13
1,2,4-TRICHLOROBENZENE	UG/L	10 U	10 U	ND	ND		0/13
NAPHTHALENE	UG/L UG/L	10 U	10 U	ND	ND		0/13
	UG/L UG/L	10 U	10 U	ND	ND		0/13
4-CHLORANILINE			10 U		ND		
HEXACHLOROBUTADIENE	UG/L	10 U	10 0	ND	ND		0/13

6bhswor.wk1

E	Sample No: Depth: Date Sampled: Lab Id:	MINIMUM	MAXIMUM NONDETECTED	MINIMUM DETECTED	MAXIMUM DETECTED	LOCATION OF MAXIMUM DETECTED	FREQUENCY OF DETECTION
Parameter	Units						
SEMIVOLATILES Co	ont						
4-CHLORO-3-METHYLPHE		10 U	10 U	ND	ND		0/13
-METHYLNAPHTHALENE	UG/L	10 U	10 U	ND	ND		0/13
IEXACHLOROCYCLOPENTA		10 U	10 U	ND	ND		0/13
4.6-TRICHLOROPHENOL	UG/L	10 U	10 U	ND	ND		0/13
4.5-TRICHLOROPHENOL	UG/L	25 U	25 U	ND	ND		0/13
-CHLORONAPHTHALENE	UG/L	10 U	10 U	ND	ND		0/13
-NITROANILINE	UG/L	25 U	25 U	, ND	ND		0/13
IMETHYL PHTHALATE	UG/L	10 U	10 U	ND	ND		0/13
CENAPHTHYLENE	UG/L	10 U	10 U	ND	ND		0/13
6-DINITROTOLUENE	UG/L	10 U	10 U	ND	ND		0/13
-NITROANILINE	UG/L	25 U	25 U	ND	ND		0/13
CENAPHTHENE	UG/L	10 U	10 U	ND	ND		0/13
4-DINITROPHENOL	UG/L	25 U	25 U	ND	ND		` 0/13
-NITROPHENOL	UG/L	25 U	25 U	ND	ND		0/13
IBENZOFURAN	UG/L	10 U	10 U	ND	ND		0/13
4-DINITROTOLUENE	UG/L	10 U	10 U	ND	ND		0/13
IETHYL PHTHALATE	UG/L	10 U	10 U	2 J	2 J	6-BH07-SW-312M	1/13
-CHLOROPHENYL PHENYI		10 U	10 U	ND	ND		0/13
LUORENE	UG/L	10 U	10 U	ND	ND		0/13
-NITROANILINE	UG/L	25 U	25 U	ND	ND		0/13
6-DINITRO-2-METHYLPH		25 U	25 U	ND	ND		0/13
-NITRISODIPHENYLAMIN		10 U	10 U	ND	ND		0/13
-BROMOPHENYL PHENYL		10 U	10 U	ND	ND		0/13
EXACHLOROBENZENE	UG/L	10 U	10 U	ND	ND		0/13
	UG/L	25 U	25 U	ND	ND		0/13
ENTACHLOROPHENOL HENANTHRENE	UG/L	10 U	10 U	ND	ND		0/13
	UG/L	10 U	10 U	ND	ND		0/13
NTHRACENE	UG/L UG/L	10 U	10 U	ND	ND		0/13
I-N-BUTYL PHTHALATE	UG/L	10 U	10 U	ND	ND		0/13
LUORANTHENE	UG/L UG/L	10 U	10 U	ND	ND		0/13
ARBAZOLE			10 U	ND	ND		0/13
YRENE	UG/L	10 U	10 U	ND	ND		0/13
UTYL BENZYL PHTHALATI		10 U	10 U	ND	ND		0/13
3-DICHLOROBENZIDINE	UG/L	10 U	10 U	ND	ND		0/13
ENZO(A)ANTHRACENE	UG/L	10 U		ND	ND	-	0/13
HRYSENE	UG/L	10 U	10 U			C DIAG CNU OCD	4/13
IS(2-ETHYLHEXYL)PHTHA		10 U	10 U	1 J	2 J	6-BH05-SW-06B	4/13 0/13
I-N-OCTYL PHTHALATE	UG/L	10 U	10 U	ND	ND		
ENZO(B)FLUORANTHENE	UG/L	10 U	10 U	ND	ND		0/13
ENZO(K)FLUORANTHENE	UG/L	10 U	10 U	ND	ND		0/13
ENZO(A)PYRENE	UG/L	10 U	10 U	ND	ND		0/13
NDENO(1,2,3-CD) PYRENE	UG/L	10 U	10 U	ND	ND		0/13
IBENZ(A,H)ANTHRACENE	UG/L	10 U	10 U	ND	ND		0/13
BENZO(G,H,I)PERYLENE	UG/L	10 U	10 U	ND	ND		0/13

	Sample No: Depth: Date Sampled: Lab Id:	6-BH01-SW-06B N/A 10/23/92 00591-05	6-BH01-SW-06M N/A 10/23/92 00591-06	6-BH02-SW-06M N/A 8/28/92 00458-04	6-BH03-SW-06B N∕A 8/28/92 00458-10	6 BH03 SW06M N/A 8/28/92 00458 11	6-BH04-SW-06B N/A 8/28/92 00454-03
Parameter	Units		······································				
ALUMINUM	UG/L	1210	1230	868	494	1560	714 U
ANTIMONY	UG/L	17.2 UJ	14 U	14 U	14 U	14 U	49 UJ
ARSENIC	UG/L	3 U	3 U	3 UJ	3 UJ	3 U	3 UJ
BARIUM	UG/L	13.4 JB	14 JB	25.1 JB	25.6 JB	31.3 B	22 B
BERYLLIUM	UG/L	0.3 U	0.3 U	0.3 U	0.3 U	0.3 U	5 UJ
CADMIUM	UG/L	1.9 UJ	2.6 UJ	1.9 U	1.9 U	1.9 U	3 U
CALCIUM	UG/L	612 B	600 B	16100	17200	19100	20600
CHROMIUM	UG/L	3.6 U	3.6 U	7 U	9 U	3.6 U	5 U
COBALT	UG/L	2 U	2 U	3 UJ	3 UJ	2 UJ	6 U
COPPER	UG/L	3.2 UJ	3 UJ	7 UJ	8 UJ	6 UJ	7 ŬJ
CYANIDE	UG/L	10 U	10 U	10 U	10 U	10 U	10 U
IRON	UG/L	958	818	921	989	1790	1180
LEAD	UG/L	1 U	1 U	3 U	2.4 U	5.9	1.8 JB
MAGNESIUM	UG/L	588 B	612 B	1010 B	1050 B	1120 B	1010 B
MANGANESE	UG/L	6.5 B	6.2 B	14 JB	16 J	23 J	17
MERCURY	UG/L	0.04 U	0.05 U	0.04 U	0.04 U	0.04 U	0.06 U
NICKEL	UG/L	7.9 UJ	7.9 UJ	7.9 U	8 JB	7.9 U	17 U
POTASSIUM	UG/L	117 UJ	146 UJ	685 B	713 B	721 B	1030 UJ
SELENIUM	UG/L	5 U	5 U	5 U	5 U	5 U	5 U
SILVER	UG/L	2 UJ	2 UJ	4 UJ	5 UJ	4 UJ	10 UJ
SODIUM	UG/L	4680 B	4850 B	5250	5480	5620	4420 JB
THALLIUM	UG/L	2 UJ	2 UJ	2 UJ	2 UJ	2 UJ	2 UJ
VANADIUM	UG/L	1.8 UJ	1.8 UJ	2 JB	2 JB	3 JB	5 U
ZINC	UG/L	4.5 U	4.9 U	13.1 U	13.2 U	21.3 U	9 U

	Sample No: Depth: Date Sampled: Lab Id:	6- BH04-SW-06M N/A 8/28/92 00454-04	6 BH05-SW06B N/A 8/28/92 0045405	6-BH05-SW-06M N/A 8/28/92 00454-06	6-BH06-SW-06B N/A 8/28/92 00454-07	6 BH06 SW 06M N/A 8/28/92 00454 09	6-BH07-SW-06B N/A 8/25/92 00437-01
Parameter	Units						~
ALUMINUM	UG/L	782	320 U	2700	317 U	342 U	408
ANTIMONY	UG/L	49 UJ	49 UJ	49 UJ	49 UJ	49 UJ	14 U
ARSENIC	UG/L	3 UJ	3 UJ	3 UJ	3 UJ	3 UJ	3 U
BARIUM	UG/L	24 B	22 B	36 B	24 B	27 B	20.6 B
BERYLLIUM	UG/L	5 UJ	5 UJ	4 UJ	5 UJ	4 UJ	0.3 U
CADMIUM	UG/L	3 U	3 U	3 UJ	3 UJ	3 U	1.9 U
CALCIUM	UG/L	20000	20000	22500	20100	23000	24900
CHROMIUM	UG/L	5 U	5 U	8 B	5 B	5 U	4.4 B
COBALT	UG/L	8 UJ	6 UJ	6 U	6 U	7 UJ	2 U
COPPER	UG/L	5 UJ	6 UJ	7 UJ	5 UJ	5 UJ	4 B
CYANIDE	UG/L	10 U	10 U	10 U	10 U	10 U	10 U
IRON	UG/L	1650	1120	6200	1150	1180	679
LEAD	UG/L	1.8 JB	1.5 JB	8.2	2 JB	2.2 JB	2.4 B
MAGNESIUM	UG/L	1060 B	1240 B	1160 B	1010 B	1130 B	37900
MANGANESE	UG/L	17	18	65	20	20	13.5 JB
MERCURY	UG/L	0.05 U	0.05 U	0.05 B	0.05 U	0.05 U	0.04 U
NICKEL	UG/L	17 U	17 U	17 U	17 U	17 U	7.9 U
POTASSIUM	UG/L	965 UJ	10100	439 UJ	725 UJ	1050 UJ	13000
SELENIUM	UG/L	5 U	5 U	5 U	5 U	5 U	5 U
SILVER	UG/L	10 UJ	10 UJ	10 UJ	10 UJ	10 UJ	3.6 B
SODIUM	UG/L	4580 JB	4310 JB	50 U	5140 J	4510 JB	319000
THALLIUM	UG/L	2 UJ	10 UJ	10 UJ	2 UJ	2 UJ	2 UJ
VANADIUM	UG/L	5 UJ	5 UJ	9 UJ	5 U	5 UJ	1.8 U
ZINC	UG/L	7 U	18 U	22 U	8 U	6 U	6.4 B

_`of 4

.

	Sample No: Depth:	6 BH07 SW 06M N/A	6 BH07 SW312M N/A	
	Date Sampled:	8/25/92	8/25/92	
	Lab Id:	00437-02	00437-03	· ····································
Parameter	Units			
ALUMINUM	UG/L	418	334	
ANTIMONY	UG/L	14 U	14 U	
ARSENIC	UG/L	3 U	3 U	
BARIUM	UG/L	20.5 B	18.6 B	
BERYLLIUM	UG/L	0.3 U	0.3 U	
CADMIUM	UG/L	1.9 U	1.9 U	
CALCIUM	UG/L	23900	54900	
CHROMIUM	UG/L	3.6 U	3.6 U	
COBALT	UG/L	2 U	2 U	
COPPER	UG/L	5.2 B	55.8	
CYANIDE	UG/L	10 U	10 U	
IRON	UG/L	725	501	
LEAD	UG/L	2 B	2.6 B	
MAGNESIUM	UG/L	33600	136000	
MANGANESE	UG/L	13.5 JB	16.2 J	
MERCURY	UG/L	0.04 U	0.34	
NICKEL	UG/L	7.9 U	244	
POTASSIUM	UG/L	11600	49000	
SELENIUM	UG/L	5 U	5 U	
SILVER	UG/L	2.1 B	2 U	
SODIUM	UG/L	284000	1260000	
THALLIUM	UG/L	2 UJ	10 UJ	
VANADIUM	UG/L	1.8 U	1.8 U	
ZINC	UG/L	6.2 B	30.7	

	Sample No: D e pth: Date Sampled: Lab Id:	MINIMUM NONDETECTED	MAXIMUM NONDETECTED	MINIMUM DETECTED	MAXIMUM DETECTED	LOCATION OF MAXIMUM DETECTED	FREQUENCY OF DETECTION
Parameter	Units						
ALUMINUM	UG/L	317 U	714 U	334	2700	6-BH05-SW-06M	10/14
ANTIMONY	UG/L	14 U	49 UJ	ND	ND		0/14
ARSENIC	UG/L	3 U	3 U	ND	ND		0/14
BARIUM	UG/L	NA	NA	13.4 JB	36 B	6-BH05-SW-06M	14/14
BERYLLIUM	UG/L	0.3 U	5 UJ	ND	ND		0/14
CADMIUM	UG/L	1.9 UJ	3 U	ND	ND		0/14
CALCIUM	UG/L	NA	NA	600 B	54900	6-BH07-SW-312M	14/14
HROMIUM	UG/L	· 3.6 U	9 U	4.4 B	8 B	6-BH05-SW-06M	3/14
OBALT	UG/L	2 U	8 UJ	ND	ND		0/14
OPPER	UG/L	3 UJ	8 UJ	4 B	55.8	6 BH07 SW312M	3/14
YANIDE	UG/L	10 U	10 U	ND	ND		0/14
RON	UG/L	NA	NA	501	6200	6-BH05-SW-06M	14/14
EAD	UG/L	1 U	3 U	1.5 JB	8.2	6-BH05-SW-06M	10/14
MAGNESIUM	UG/L	NA	NA	588 B	136000	6-BH07-SW-312M	14/14
IANGANESE	UG/L	NA	NA	6.2 B	65	6-BH05-SW-06M	14/14
MERCURY	UG/L	0.04 U	0.06 U	0.05 B	0.34	6-BH07-SW-312M	2/14
JCKEL	UG/L	7.9 UJ	17 U	8 JB	244	6-BH07-SW-312M	2/14
OTASSIUM	UG/L	117 UJ	1050 UJ	685 B	49000	6-BH07-SW-312M	7/14
ELENIUM	UG/L	5 U	5 U	ND	ND	1	0/14
ILVER	UG/L	2 UJ	10 UJ	2.1 B	3.6 B	6-BH07-SW-06B	2/14
ODIUM	UG/L	50 U	50 U	4310 JB	1260000	6-BH07-SW-312M	13/14
HALLIUM	UG/L	2 UJ	10 UJ	ND	ND		0/14
ANADIUM	UG/L	1.8 UJ	9 UJ	2 JB	3 JB	6-BH03-SW-06M	3/14
LINC	UG/L	4.5 U	22 U	6.2 B	30.7	6-BH07-SW-312M	3/14

6bhswin.wk1

	Sample No: Depth: Date Sampled: Lab Id:	6-RV2-SW-06 N/A 8/25/92 00439-14	6-RV3-SW-06 N/A 8/24/92 00437-06	6-RV5-SW-06 N/A 8/25/92 00439-16	6-RV6-SW-06 N/A 8/25/92 00439-17	6-RV7-SW-06 N/A 8/25/92 00437-15	6-RV8-SW-06 N/A 8/25/92 00437-18	
Parameter	Units							
PESTICIDE/								
ALPHA-BHC	UG/L	0.05 U	0.05 U	0.05 U	0.05 UJ	0.05 U	0.05 U	
BETA-BHC	UG/L	0.05 U	0.05 U	0.05 U	0.05 UJ	0.05 U	0.05 U	
DELTA-BHC	UG/L	0.05 U	0.05 U	0.05 U	0.05 UJ	0.05 U	0.05 U	
GAMMA-BHC(LINDAN		0.05 U	0.05 U	0.05 U	0.05 UJ	0.05 U	0.05 U	
HEPTACHLOR	UG/L	0.05 U	0.05 U	0.05 U	0.05 UJ	0.05 U	0.05 U	
ALDRIN	UG/L	0.05 U	0.05 U	0.05 U	0.05 UJ	0.05 U	0.05 U	
HEPTACHLOR EPOXIDE		0.05 U	0.05 U	0.05 U	0.05 UJ	0.05 U	0.05 U	
ENDOSULFAN I	UG/L	0.05 U	0.05 U	0.05 U	0.05 UJ	0.05 U	0.05 U	
DIELDRIN	UG/L	0.1 U	0.1 U	0.1 U	0.1 UJ	0.1 U	0.1 U	
4,4'-DDE	UG/L	0.1 U	0.1 U	0.1 U	0.1 UJ	0.1 U	0.1 U	
ENDRIN	UG/L	0.1 U	0.1 U	0.1 U	0.1 UJ	0.1 U	0.1 U	
ENDOSULFAN II	UG/L	0.1 U	0.1 U	0.1 U	0.1 UJ	0.1 U	0.1 U	
4,4'-DDD	UG/L	0.1 U	0.1 U	0.1 U	0.1 UJ	0.1 U	0.1 U	
ENDOSULFAN SULFATE		0.1 U	0.1 U	0.1 U	0.1 UJ	0.1 U	0.1 U	
4,4'-DDT	UG/L	0.1 U	0.1 U	0.1 U	0.1 UJ	0.1 U	0.1 U	
METHOXYCHLOR	UG/L	0.5 U	0.5 U	0.5 U	0.5 UJ	0.5 U	0.5 U	
ENDRIN KETONE	UG/L	0.1 U	0.1 U	0.1 U	0.1 UJ	0.1 U	0.1 U	
ENDRIN ALDEHYDE	UG/L	0.1 U	0.1 U	0.1 U	0.1 UJ	0.1 U	0.1 U	
ALPHA CHLORDANE	UG/L	0.05 U	0.05 U	0.05 U	0.05 UJ	0.05 U	0.05 U	
GAMMA CHLORDANE	UG/L	0.05 U	0.05 U	0.05 U	0.05 UJ	0.05 U	0.05 U	
TOXAPHENE	UG/L	5 U	5 U	5 U	5 UI	5 U	5 U	
PCB-1016	UG/L	1 U	1 U	1 U	1 UJ	1 U	1 U	
PCB-1221	UG/L	2 U	2 U	2 U	2 UJ	2 U	2 U	
PCB-1232	UG/L	1 U	1 U	1 U	1 UJ	1 U	1 U	
PCB-1242	UG/L	1 U	1 U	1 U	1 UJ	1 U	1 U	
PCB-1248	UG/L	1 U	1 U	1 U	1 UJ	1 U	1 U	
PCB-1254	UG/L	1 U	1 U	1 U	1 UJ	1 U	1 U	
PCB-1260	UG/L	1 U	1 U	1 U	1 UJ	1 U	1 U	
VOLATIL	ES							
CHLOROMETHANE	UG/L	10 U						
BROMOMETHANE	UG/L	10 U						
VINYL CHLORIDE	UG/L	10 U						
CHLOROETHANE	UG/L	10 U						
METHYLENE CHLORIDE	3 UG/L	10 U						
ACETONE	UG/L	10 U	10 U	140	10 U	10 U	10 U	
CARBON DISULFIDE	UG/L	10 U						
1,1-DICHLOROETHENE	UG/L	10 U						
1,1-DICHLOROETHANE		10 U						
1,2-DICHLOROETHENE	UG/L	10 U						
CHLOROFORM	UG/L	10 U						
1,2-DICHLOROETHANE		10 U						
2-BUTANONE	UG/L	10 U						

Page 1 of 6

 I	Sample No: Depth: Date Sampled: Lab Id:	6-RV2-SW-06 N/A 8/25/92 00439-14	6 – RV3 – SW –06 N/A 8/24/92 00437 – 06	6-RV5-SW-06 N/A 8/25/92 00439-16	6-RV6-SW-06 N/A 8/25/92 00439-17	6-RV7-SW-06 N/A 8/25/92 00437-15	6-RV8-SW-06 N/A 8/25/92 00437-18
Parameter	Units					· · · ·	
VOLATILES Cont							
1,1,1-TRICHLOROETHANE	UG/L	10 U	10 U	10 U	10 U	10 U	10 U
CARBON TETRACHLORIDE	UG/L	10 U	10 U	10 U	10 U	10 U	10 U
BROMODICHLOROMETHAN	E UG/L	10 U	10 U	10 U	10 U	10 U	10 U
1,2-DICHLOROPROPANE	UG/L	10 U	10 U	10 U	10 U	10 U	10 U
CIS-13-DICHLOROPROPEN	E UG/L	10 U	10 U	10 U	10 U	10 U	10 U
TRICHLOROETHENE	UG/L	10 U	10 U	10 U	10 U	10 U	10 U
DIBROMOCHLOROMETHAN	E UG/L	10 U ·	10 U	10 U	10 U	10 U	10 U
1,1,2-TRICHLOROETHANE	UG/L	10 U	10 U	10 U	10 U	10 U	10 U
BENZENE	UG/L	10 U	10 U	10 U	10 U	10 U	10 U
TRANS-1,3-DICHLOROPRO	PENE UG/L	10 U	10 U	10 U	10 U	10 U	10 U
BROMOFORM	UG/L	10 U	10 U	10 U	10 U	10 U	10 U
4-METHYL-2-PENTANONE	UG/L	10 U	10 U	10 U	10 U	10 U	10 U
2-HEXANONE	UG/L	10 U	10 U	10 U	10 U	10 U	10 U
TETRACHLOROETHENE	UG/L	10 U	10 U	10 U	10 U	10 U	10 U
1,1,2,2-TETRACHLOROETHA		10 U	10 U	10 U	10 U	10 U	10 U
TOLUENE	UG/L	10 U	10 U	10 U	10 U	10 U	10 U
CHLOROBENZENE	UG/L	10 U	10 U	10 U	10 U	10 U	10 U
ETHYLBENZENE	UG/L	10 U	10 U	10 U	10 U	10 U	10 U
STYRENE	UG/L	10 U	10 U	10 U	10 U	10 U	10 U
TOTAL XYLENES	UG/L	10 U	10 U	10 U	10 U	10 U	10 U
SEMIVOLATILES							
PHENOL	2 UG/L	10 U	10 U	10 U	10 U	10 U	10 U
THENUL		10 U	10 U	10 U	10 U	10 U	10 U
BIS(2-CHLOROETHYL) ETH	UG/L	10 U	10 U	10 U	10 U	10 U	10 U
2-CHLOROPHENOL	UG/L UG/L	10 U	10 U	10 U	10 U	10 U	10 U
1,3-DICHLOROBENZENE	UG/L	10 U	10 U	10 U	10 U	10 U	10 U
4-DICHLOROBENZENE	UG/L UG/L	10 U	10 U	10 U	10 U	10 U	10 U
	UG/L	10 U	10 U	10 U	10 U	10 U	10 U
2–METHYLPHENOL 2,2'–OXYBIS (1–CHLOROPRO		10 U	10 U	10 U	10 U	10 U	10 U
	UG/L	10 U	10 U	10 U	10 U	10 U	10 Ŭ
-METHYLPHENOL		10 U	10 U	10 U	10 U	10 U	10 U
N-NITROSODI-N-PROPYL		10 U	10 U	10 U	10 U	10 U	10 U
IEXACHLOROETHANE	UG/L	10 U	10 U	10 U	10 U	10 U	10 U
NITROBENZENE	UG/L		10 U	10 U	10 U	10 U	10 U
SOPHORONE	UG/L	10 U		10 U	10 U	10 U	10 U
-NITROPHENOL	UG/L	10 U	10 U		10 U 10 U	10 U	10 U
2,4-DIMETHYLPHENOL	UG/L	10 U	10 U	10 U		10 U 10 U	10 U
BIS(2-CHLOROETHOXY) ME		10 U	10 U	10 U	10 U		10 U
2,4-DICHLOROPHENOL	UG/L	10 U	10 U	10 U	10 U	10 U	
1,2,4-TRICHLOROBENZENE	UG/L	10 U	10 U	10 U	10 U	10 U	10 U
NAPHTHALENE	UG/L	10 U	10 U	10 U	10 U	10 U	10 U
4-CHLORANILINE	UG/L	10 U	10 U	10 U	10 U	10 U	10 U
HEXACHLOROBUTADIENE	UG/L	10 U	10 U	10 U	10 U	10 U	10 U

2 of 6

Da	Sample No: Depth: ate Sampled: Lab Id:	6RV2-SW-06 N/A 8/25/92 00439-14	6-RV3-SW-06 N/A 8/24/92 00437-06	6-RV5-SW-06 N/A 8/25/92 00439-16	6-RV6-SW-06 N/A 8/25/92 00439-17	6-RV7-SW-06 N/A 8/25/92 00437-15	6-RV8-SW-06 N/A 8/25/92 00437-18
Parameter	Units						
SEMIVOLATILES Con	at.						
4-CHLORO-3-METHYLPHEN	VOL UG/L	10 U	10 U	10 U	10 U	10 U	10 U
2-METHYLNAPHTHALENE	UG/L	10 U	10 U	10 U	10 U	10 U	10 U
HEXACHLOROCYCLOPENTAL	DIENE UG/L	10 U	10 U	10 U	10 U	10 U	10 U
1,4,6-TRICHLOROPHENOL	UG/L	10 U	10 U	10 U	10 U	10 U	10 U
4,5-TRICHLOROPHENOL	UG/L	25 U	25 U	25 U	25 U	25 U	25 U
-CHLORONAPHTHALENE	UG/L	10 U	10 U	10 U	10 U	10 U	10 U
-NITROANILINE	UG/L	25 U	25 U	25 U	25 U	25 U	25 U
DIMETHYL PHTHALATE	UG/L	10 U	10 U	10 U	10 U	10 U	10 U
CENAPHTHYLENE	UG/L	10 U	10 U	10 U	10 U	10 U	10 U
6-DINITROTOLUENE	UG/L	10 U	10 U	10 U	10 U	10 U	10 U
-NITROANILINE	UG/L	25 U	25 U	25 U	25 U	25 U	25 U
CENAPHTHENE	UG/L	10 U	10 U	10 U	10 U	10 U	10 U
4-DINITROPHENOL	UG/L	25 U	25 U	25 U	25 U	25 U	25 U
-NITROPHENOL	UG/L	25 U	25 U	25 U	25 U	25 U	25 U
DIBENZOFURAN	UG/L	10 U	10 U	10 U	10 U	10 U	10 U
4-DINITROTOLUENE	UG/L	10 U	10 U	10 U	10 U	10 U	10 U
IETHYL PHTHALATE	UG/L	10 U	10 U	10 U	10 U	10 U	10 U
-CHLOROPHENYL PHENYL		10 U	10 U	10 U	10 U	10 U	10 U
LUORENE	UG/L	10 U	10 U	10 U	10 U	10 U	10 Ŭ
-NITROANILINE	UG/L	25 U	25 U	25 U	25 U	25 U	25 U
6-DINITRO-2-METHYLPH		25 U	25 U	25 U	25 U	25 U	25 U
-NITRISODIPHENYLAMINE	UG/L	10 U	10 U	10 U	10 U	10 U	10 U
-BROMOPHENYL PHENYL E		10 U	10 U	10 U	10 U	10 U	10 U
EXACHLOROBENZENE	UG/L	10 U	10 U	10 U	10 U	10 U	10 U
ENTACHLOROPHENOL	UG/L	25 U	25 U	25 U	25 U	25 U	25 U
HENANTHRENE	UG/L	10 U	10 U	10 U	10 U	10 U	10 U
NTHRACENE	UG/L	10 U	10 U	10 U	10 U	10 U	10 U
I-N-BUTYL PHTHALATE	UG/L	10 U	10 U	10 U	10 U	10 U	10 U
LUORANTHENE	UG/L	10 U	10 U	10 U	10 U	10 U	10 U
ARBAZOLE	UG/L	10 U	10 U	10 U	10 U	10 U	10 U
YRENE	UG/L	10 U	10 U	10 U	10 U	10 U	10 U
UTYL BENZYL PHTHALATE	UG/L	10 U	10 U	10 U	10 U	10 U	10 U
3-DICHLOROBENZIDINE	UG/L	10 U	10 U	10 U	10 U	10 U	10 U
ENZO(A)ANTHRACENE	UG/L	10 U	10 U	10 U	10 U	10 U	10 U
HRYSENE	UG/L UG/L	10 U	10 U	10 U	10 U	10 U	10 U
		10 U	10 U	10 U			
IS(2–ETHYLHEXYL)PHTHAL I~N–OCTYL PHTHALATE	UG/L	10 U	10 U 10 U	10 U	10 U 10 UJ	10 U	10 U
						10 U	10 U
ENZO(B)FLUORANTHENE	UG/L	10 U	10 U	10 U	10 UJ	10 U	10 U
ENZO(K)FLUORANTHENE	UG/L	10 U	10 U	10 U	10 UJ	10 U	10 U
ENZO(A)PYRENE	UG/L	10 U	10 U	10 U	10 UJ	10 U	10 U
NDENO(1,2,3-CD) PYRENE	UG/L	10 U	10 U	10 U	10 UJ	10 U	10 U
DIBENZ(A,H)ANTHRACENE	UG/L	10 U	10 U	10 U	10 UJ	10 U	10 U
ENZO(G,H,I)PERYLENE	UG/L	10 U	10 U	10 U	10 UJ	10 U	10 U

	Sample No: Depth: Date Sampled: Lab Id:	MINIMUM NONDETECTED	MAXIMUM NONDETECTED	MINIMUM DETECTED	MAXIMUM DETECTED	LOCATION OF MAXIMUM DETECTED	FREQUENCY OF DETECTION
Parameter	Units						
PESTICIDE/	PCB\$						
ALPHA-BHC	UG/L	0.05 U	0.05 U	ND	ND		0/6
BETA-BHC	UG/L	0.05 U	0.05 U	ND	ND		0/6
DELTA-BHC	UG/L	0.05 U	0.05 U	ND	ND		0/6
AMMA-BHC(LINDANE		0.05 U	0.05 U	ND	ND		0/6
IEPTACHLOR	UG/L	0.05 U	0.05 U	ND	ND		0/6
LDRIN	UG/L	0.05 U	0.05 U	ND	ND		0/6
IEPTACHLOR EPOXIDE		0.05 U	0.05 U	ND	ND		0/6
NDOSULFAN I	UG/L	0.05 U	0.05 U	ND	ND		0/6
DIELDRIN	UG/L	0.1 U	0.1 U	ND	ND		0/6
4'-DDE	UG/L	0.1 U	0.1 U	ND	ND		0/6
	UG/L	0.1 U	0.1 U	ND	ND		0/6
ENDOSULFAN II	UG/L	0.1 U	0.1 U	ND	ND		0/6
4'-DDD	UG/L	0.1 U	0.1 U	ND	ND		0/6
ENDOSULFAN SULFATE		0.1 U	0.1 U	ND	ND		0/6
4'-DDT	UG/L	0.1 U	0.1 U	ND	ND		0/6
AETHOXYCHLOR	UG/L	0.5 U	0.5 U	ND	ND		0/6
NDRIN KETONE	UG/L	0.1 U	0.1 U	ND	ND		0/6
NDRIN ALDEHYDE	UG/L	0.1 U	0.1 U	ND	ND		0/6
LPHA CHLORDANE	UG/L	0.05 U	0.05 U	ND	ND		0/6
	UG/L UG/L	0.05 U	0.05 U	ND	ND		0/6
JAMMA CHLORDANE	UG/L UG/L	0.05 U	5 U	ND	ND		0/6
OXAPHENE	UG/L UG/L	1 U	1 U	ND	ND		0/6
CB-1016			2 U	ND	ND		0/6
CB-1221	UG/L	2 U	2 U 1 U	ND	ND		0/6
CB-1232	UG/L	1 U			ND		0/6
CB-1242	UG/L	1 U	1 U	ND	ND		0/6
CB-1248	UG/L	1 U	1 U	ND			0/6
CB-1254	UG/L	1 U	1 U	ND	ND		
°CB-1260	UG/L	1 U	1 U	ND	ND		0/6
VOLATIL	ES						
HLOROMETHANE	UG/L	10 U	10 U	ND	ND		0/6
ROMOMETHANE	UG/L	10 U	10 U	ND	ND		0/6
INYL CHLORIDE	UG/L	10 U	10 U	ND	ND		0/6
HLOROETHANE	UG/L	10 U	10 U	ND	ND		0/6
AETHYLENE CHLORIDE		10 U	10 U	ND	ND		0/6
CETONE	UG/L	10 U	10 U	140	140	6-RV5-SW-06	1/6
CARBON DISULFIDE	UG/L	10 U	10 U	ND	ND		0/6
1-DICHLOROETHENE		10 U	10 U	ND	ND		0/6
1-DICHLOROETHANE		10 U	10 U	ND	ND		0/6
,2-DICHLOROETHENE		10 U	10 U	ND	ND		0/6
THLOROFORM	UG/L	10 Ŭ	10 U	ND	ND		0/6
2-DICHLOROETHANE		10 U	10 U [.]	ND	ND		0/6
-BUTANONE	UG/L	10 U	10 U	ND	ND		0/6

9 of 6

	Sample No: Depth:					LOCATION OF	FREQUENCY
D	ate Sampled: Lab Id:	MINIMUM NONDETECTED	MAXIMUM NONDETECTED	MINIMUM DETECTED	MAXIMUM	MAXIMUM DETECTED	OF DETECTION
Parameter	Units	NONDETICIED	NONDETICIBD	· ·	DBIECIED	DEIECIED	DETECTION
VOLATILES Cont.							
1,1,1-TRICHLOROETHANE	UG/L	10 U	10 U	ND	ND		0/6
CARBON TETRACHLORIDE	UG/L	10 U	10 U	ND	ND		0/6
BROMODICHLOROMETHAN		10 U	10 U	ND	ND		0/6
,2-DICHLOROPROPANE	UG/L	10 U	10 U	ND	ND		0/6
CIS-13-DICHLOROPROPENI		10 U	10 U	ND	ND		0/6
RICHLOROETHENE	UG/L	10 U	10 U	ND	ND		0/6
DIBROMOCHLOROMETHANI		10 U	10 U	ND	ND		0/6
,1,2-TRICHLOROETHANE	UG/L	10 U	10 U	ND	ND		0/6
ENZENE	UG/L	10 U	10 U	ND	ND		0/6
RANS-1,3-DICHLOROPROP	=	10 U	10 U	ND	ND		0/6
BROMOFORM	UG/L	10 U	10 U	ND	ND		0/6
-METHYL-2-PENTANONE	UG/L	10 U	10 U	ND	ND		0/6
HEXANONE	UG/L	10 U	10 U	ND	ND		0/6
TETRACHLOROETHENE	UG/L	10 U	10 U	ND	ND		0/6
1,2,2-TETRACHLOROETHAN		10 U	10 U	ND	ND		0/6
OLUENE	UG/L	10 U	10 U	ND	ND		0/6
HLOROBENZENE	UG/L	10 U	10 U	ND	ND ND		0/6
THYLBENZENE	UG/L UG/L	10 U	10 U	ND	ND		0/6
TYRENE	UG/L	10 U	10 U	ND	ND		
OTAL XYLENES	UG/L	10 U	10 U	ND	ND		0/6 0/6
SEMIVOLATILES						•	
PHENOL	UG/L	10 U	10 U	ND	ND		0/6
SIS(2-CHLOROETHYL) ETHE		10 U	10 U	ND	ND		0/6
-CHLOROPHENOL	UG/L UG/L	10 U	10 U	ND	ND		0/6
3-DICHLOROBENZENE	UG/L	10 U		ND	ND		• •
			10 U				0/6
4-DICHLOROBENZENE	UG/L	10 U	10 U	ND	ND		0/6
2-DICHLOROBENZENE	UG/L	10 U	10 U	ND	· ND		0/6
-METHYLPHENOL	UG/L	10 U	10 U	ND	ND		0/6
,2'-OXYBIS (1-CHLOROPRO		10 U	10 U	ND	ND		0/6
-METHYLPHENOL	UG/L	10 U	10 U	ND	ND		0/6
-NITROSODI-N-PROPYLA		10 U	10 U	ND	ND		0/6
EXACHLOROETHANE	UG/L	10 U	10 U	ND	ND		0/6
ITROBENZENE	UG/L	10 U	10 U	ND	ND		0/6
OPHORONE	UG/L	10 U	10 U	ND	ND		0/6
-NITROPHENOL	UG/L	10 U	10 U	ND	. ND		0/6
4-DIMETHYLPHENOL	UG/L	10 U	10 U	ND	ND	,	0/6
IS(2-CHLOROETHOXY) MET		10 U	10 U	ND	ND		0/6
4-DICHLOROPHENOL	UG/L	10 U	10 U	ND	ND		0/6
2,4-TRICHLOROBENZENE	UG/L	10 U	10 U	ND	ND		0/6
APHTHALENE	UG/L	10 U	10 U	ND	ND		0/6
-CHLORANILINE	UG/L	10 U	10 U	ND	ND		0/6
IEXACHLOROBUTADIENE	UG/L	10 U	10 U	ND	ND		0/6

·]	Sample No: Depth: Date Sampled: Lab Id:	MINIMUM	MAXIMUM NONDETECTED	MINIMUM DETECTED	MAXIMUM DETECTED	LOCATION OF MAXIMUM DETECTED	FREQUENCY OF DETECTION
arameter	Units	NONDERECTED	NONDETECTED	DETECTED	DETECTED	DETECTED	DETECTION
SEMIVOLATILES C	ont.						
-CHLORO-3-METHYLPH		10 U	10 U	ND	ND		0/6
-METHYLNAPHTHALENE	UG/L	10 U	10 U	ND	ND		0/6
IEXACHLOROCYCLOPENT		10 U	10 U	ND	ND		0/6
4,6-TRICHLOROPHENOL	UG/L	10 U	10 U	ND	ND		0/6
4.5-TRICHLOROPHENOL	UG/L	25 U	25 U	ND	ND		0/6
-CHLORONAPHTHALENE	UG/L	10 U	10 U	ND	ND		0/6
-NITROANILINE	UG/L	25 U	25 U	ND	ND		0/6
DIMETHYL PHTHALATE	UG/L	10 U	10 U	ND	ND		0/6
CENAPHTHYLENE	UG/L	10 U	10 U	ND	ND		0/6
6-DINITROTOLUENE	UG/L UG/L	10 U	10 U 10 U	ND	ND		0/6
-NITROANILINE	UG/L UG/L	25 U	25 U	ND	ND		0/6
	UG/L UG/L	25 U 10 U					
CENAPHTHENE			10 U	ND	ND		0/6
4-DINITROPHENOL	UG/L	25 U	25 U	ND	ND		0/6
-NITROPHENOL	UG/L	25 U	25 U	ND	ND		0/6
DIBENZOFURAN	UG/L	10 U	10 U	ND	ND		0/6
4-DINITROTOLUENE	UG/L	10 U	10 U	ND	ND		0/6
DIETHYL PHTHALATE	UG/L	10 U	10 U	ND	ND		0/6
-CHLOROPHENYL PHENY		10 U	10 U	ND	ND		0/6
LUORENE	UG/L	10 U	10 U	ND	ND		0/6
-NITROANILINE	UG/L	25 U	25 U	ND	ND		0/6
,6–DINITRO–2–METHYLPI		25 U	25 U	ND	ND		0/6
I–NITRISODIPHENYLAMIN		10 U	10 U	ND	ND		0/6
-BROMOPHENYL PHENYL		10 U	10 U	ND	ND		0/6
IEXACHLOROBENZENE	UG/L	10 U	10 U	ND	ND		0/6
ENTACHLOROPHENOL	UG/L	25 U	25 U	ND	ND		0/6
HENANTHRENE	UG/L	10 U	10 U	ND	ND		0/6
NTHRACENE	UG/L	10 U	10 U	ND	ND		0/6
DI-N-BUTYL PHTHALATE	UG/L	10 U	10 U	ND	ND		0/6
LUORANTHENE	UG/L	10 U	10 U	ND	ND		0/6
ARBAZOLE	UG/L	10 U	10 U	ND	ND		0/6
YRENE	UG/L	10 U	10 U	ND	ND		0/6
UTYL BENZYL PHTHALAT	3 UG/L	10 U	10 U	ND	ND		0/6
3-DICHLOROBENZIDINE	UG/L	10 U	10 U	ND	ND		0/6
ENZO(A)ANTHRACENE	UG/L	10 U	10 U	ND	ND		0/6
HRYSENE	UG/L	10 U	10 U	ND	ND		0/6
IS(2-ETHYLHEXYL)PHTHA		10 U	10 U	ND	ND		0/6
N-OCTYL PHTHALATE	UG/L	10 U	10 U	ND	ND		0/6
ENZO(B)FLUORANTHENE	UG/L	10 U	10 U	ND	ND		0/6
ENZO(B)FLUORANTHENE	UG/L	10 U	10 U	ND	ND		0/6
ENZO(A)PYRENE	UG/L	10 U	10 U	ND	ND		0/6
	UG/L			ND	ND ND		0/6
NDENO(12,3-CD) PYRENE		10 U	10 U				
IBENZ(A,H)ANTHRACENE	UG/L	10 U	10 U	ND	ND		0/6

r ∵of 6

	Sample No: Depth: Date Sampled: Lab Id:	6-RV2-SW-06 N/A 8/25/92 00439-14	6 RV3SW-06 N/A 8/24/92 00437-06	6-RV5-SW-06 N/A 8/25/92 00439-16	6-RV6-SW-06 N/A 8/25/92 00439-17	6-RV7-SW-06 N/A 8/25/92 00437-15	6- RV8- SW-06 N/A 8/25/92 00437- 18
Parameter	Units						
ALUMINUM	UG/L	613	119 B	148 B	612	279	487
ANTIMONY	UG/L	49 U	14 U	49 U	49 U	14 U	14 U
ARSENIC	UG/L	2.2 B	3 U	3.5 B	2 U	3 U	10.5
BARIUM	UG/L	91 B	79.1 B	37.1 JB	39.5 JB	49.6 B	56.9 B
BERYLLIUM	UG/L	1 U	0.3 U	1 U	1 U	0.3 U	0.3 U
CADMIUM	UG/L	3.7 JB	1.9 U	4.3 JB	3 U	1.9 U	1.9 U
CALCIUM	UG/L	102000	79900	23100	19700	12300	15800
HROMIUM	UG/L	8 U	3.6 U	5 U	5.7 U	6.5 B	4.2 B
OBALT	UG/L	6 U	2 U	6 U	6 U	2 U	2.3 B
OPPER	UG/L	9 JB	4.7 B	9 JB	5.7 JB	7.5 B	7.2 B
YANIDE	UG/L	10 U	10 U	10 U	10 U	10 U	10 U
RON	UG/L	733	127 J	641	827	1910	9600
.EAD	UG/L	6.1	1.9 B	4.8	8	2.8 B	12.2
IAGNESIUM	UG/L	7100	4650 B	1200 B	1930 B	2980 B	1790 B
IANGANESE	UG/L	319	38.6 J	597	204	267	253
AERCURY	UG/L	0.2 U	0.05 U	0.2 U	0.2 U	0.04 U	0.04 U
ICKEL	UG/L	17 U	7.9 U	17 U	17 U	7.9 U	7.9 U
OTASSIUM	UG/L	2910 B	2720 B	1620 B	393 B	607 B	844 B
ELENIUM	UG/L	5 UJ	5 U	5 U	5 U	5 U	5 UJ
ILVER	UG/L	10 U	3.6 B	10 U	67.6	2 U	2.9 B
ODIUM	UG/L	6480	4380 JB	2860 JB	5920	8260	8960
HALLIUM	UG/L	2 UJ	2 UJ	2 UJ	2 UJ	2 U	2 UJ
ANADIUM	UG/L	5 U	1.8 U	5 U	5 U	1.8 U	6.2 B
LINC	UG/L	452	113	374	495	248	72.7

5

	Sample No: Depth: Date Sampled: Lab Id:	MINIMUM NONDETECTED	MAXIMUM NONDETECTED	MINIMUM DETECTED	MAXIMUM DETECTED	LOCATION OF MAXIMUM DETECTED	FREQUENCY OF DETECTION
Parameter	Units						· ·
ALUMINUM	UG/L	NA	NA	119 B	613	6-RV2-SW-06	6/6
ANTIMONY	UO/L	14 U	49 U	ND	ND		0/6
ARSENIC	UG/L	2 U	3 U	2.2 B	10.5	6-RV8-SW-06	3/6
BARIUM	UG/L	NA	NA	37.1 JB	91 B	6-RV2-SW-06	6/6
BERYLLIUM	UG/L	0.3 U	1 U	ND	ND		0/6
CADMIUM	UG/L	1.9 U	3 U	3.7 JB	4.3 JB	6-RV5-SW-06	2/6
CALCIUM	UG/L	NA	NA	12300	102000	6-RV2-SW-06	6/6
CHROMIUM	UG/L	3.6 U	8 U	4.2 B	6.5 B	6-RV7-SW-06	2/6
COBALT	UG/L	2 U	6 U	2.3 B	2.3 B	6-RV8-SW-06	1/6
COPPER	UG/L	NA	NA	4.7 B	9 JB	6-RV5-SW-06	6/6
CYANIDE	UG/L	10 U	10 U	ND	ND		0/6
IRON	UG/L	NA	NA	127 J	9600	6-RV8-SW-06	6/6
LEAD	UG/L	NA	NA	1.9 B	12.2	6-RV8-SW-06	6/6
MAGNESIUM	UG/L	NA	NA	1200 B	7100	6-RV2-SW-06	6/6
MANGANESE	UG/L	NA	NA	38.6 J	597	6-RV5-SW-06	6/6
MERCURY	UG/L	0.04 U	0.2 U	ND	ND		0/6
NICKEL	UG/L	7.9 U	17 U	ND	ND		0/6
POTASSIUM	UG/L	NA	NA	393 B	2910 B	6-RV2-SW-06	6/6
SELENIUM	UG/L	5 UJ	5 UJ	ND	ND		0/6
SILVER	UG/L	2 U	10 U	2.9 B	67.6	6-RV6-SW-06	3/6
SODIUM	UG/L	NA	NA	2860 JB	8960	6-RV8-SW-06	6/6
THALLIUM	UG/L	2 UJ	2 UJ	ND	ND		0/6
VANADIUM	UG/L	1.8 U	5 U	6.2 B	6.2 B	6-RV8-SW-06	1/6
ZINC	UG/L	NA	NA	72.7	495	6-RV6-SW-06	6/6

٢

) of 2

APPENDIX E DATA AND FREQUENCY SUMMARIES SEDIMENT SAMPLES

SITE 6 WALLACE CREEK SEDIMENT DATA AND FREQUENCY SUMMARY REMEDIAL INVESTIGATION CTO-0133 MCB CAMP LEJEUNE, NORTH CAROLINA ORGANICS

	Sample No: Depth: Date Sampled: Lab Id;	6-WC01-SD-06B N/A 8/30/92 00464-22	6-WC01-SD-612D N/A 8/30/92 00464-24	6-WC02-SD-06B N/A 8/26/92 00445-03	6-WC02-SD-612B N/A 8/26/92 00445-04	6-WC03-SD-06B N/A 8/26/92 00445-05	6-WC03-SD-06M N/A 8/26/92 00445-06
Parameter	Units		· · · · · · · · · · · · · · · · · · ·			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
PESTICIDE/PC	CBS						
ALPHA-BHC	UG/KG	2.4 UJ	2.5 UJ	2.4 U	2.5 U	15 U	12 U
BETA-BHC	UG/KG	2.4 UJ	2.5 UJ	2.4 U	2.5 U	15 U	12 U
DELTA-BHC	UG/KG	2.4 UJ	2.5 UJ	2.4 U	2.5 U	15 U	12 U
GAMMA-BHC(LINDANE)	UG/KG	2.4 UJ	2.5 UJ	2.4 U	2.5 U	15 U	12 U
HEPTACHLOR	UG/KG	2.4 UJ	2.5 UJ	2.4 U	2.5 U	15 U	12 U
ALDRIN	UG/KG	2.4 UJ	2.5 UJ	2.4 U	2.5 U	15 U	12 U
HEPTACHLOR EPOXIDE	UG/KG	2.4 UJ	2.5 UJ	2.4 U	2.5 U	15 U	12 U
ENDOSULFAN I	UG/KG	2.4 UJ	2.5 UJ	2.4 U	2.5 U	15 U	12 U
DIELDRIN	UG/KG	4.6 UJ	4.8 J	4.6 U	4.9 U	30 U	23 Ŭ
4,4'-DDE	UG/KG	4.6 UJ	7.6 UJ	4.6 U	4.9 U	30 U	23 U
ENDRIN	UG/KG	4.6 UJ	4.8 UJ	4.6 U	4.9 U	30 U	23 U
ENDOSULFAN II	UG/KG	4.6 UJ	4.8 UJ	4.6 U	4.9 U	30 U	23 U
4,4'-DDD	UG/KG	4.6 UJ	16 J	4.6 U	4.9 U	30 U	23 U
ENDOSULFAN SULFATE	UG/KG	4.6 UJ	4.8 UJ	4.6 U	4.9 U	30 U	23 U
4,4'-DDT	UG/KG	4.6 UJ	4.8 UJ	4.6 U	4.9 U	30 U	23 U
METHOXYCHLOR	UG/KG	24 UJ	25 UJ	24 U	25 U	150 U	120 U
ENDRIN KETONE	UG/KG	4.6 UJ	4.8 UJ	4.6 U	4.9 U	30 U	23 U
ENDRIN ALDEHYDE	UG/KG	4.6 UJ	4.8 UJ	4.6 U	4.9 U	30 U	23 U
ALPHA CHLORDANE	UG/KG	2.4 UJ	2.5 UJ	2.4 U	2.5 U	15 U	12 U
GAMMA CHLORDANE	UG/KG	2.4 UJ	2.5 UJ	2.4 U	2.5 U	15 U	12 U
TOXAPHENE	UG/KG	240 UJ	250 UJ	240 U	250 U	1500 U	1200 U
PCB-1016	UG/KG	46 UJ	48 UJ	46 U	49 U	300 U	230 U
PCB-1221	UG/KG	93 UJ	98 UJ	93 U	100 U	600 U	460 U
PCB-1232	UG/KG	46 UJ	48 UJ	46 U	49 U	300 U	230 U
PCB-1242	UG/KG	46 UJ	48 UJ	46 U	49 U	300 U	230 U
PCB-1248	UG/KG	46 UJ	48 UJ	46 U	49 U	300 U	230 U
PCB-1254	UG/KG	46 UJ	48 UJ	46 U	49 U	300 U	230 U
PCB-1260	UG/KG	46 UJ	48 UJ	46 U	49 U	300 U	230 U
VOLATILES	1						
CHLOROMETHANE	UG/KG	16 U	16 U	21 U	14 U	1900 U	120 U
BROMOMETHANE	UG/KG	16 U	16 U	21 U	14 U	1900 U	120 U
VINYL CHLORIDE	UG/KG	16 U	16 U	21 U	14 U	1900 U	120 U
CHLOROETHANE	UG/KG	16 U	16 U	21 U	14 U	1900 U	120 U
METHYLENE CHLORIDE	UG/KG	16 U	16 U	21 U 21 U	14 U	1900 U	120 U
ACETONE	UG/KG	26	16 UJ	320 J	95 J	8400 J	470 UJ
CARBON DISULFIDE	UG/KG	16 U	16 U	21 U	14 U	1900 U	120 U
1,1-DICHLOROETHENE	UG/KG	16 U	16 U	21 U	14 U	1900 U	120 U
1,1-DICHLOROETHANE	UG/KG	16 U	16 U	21 U 21 UJ	14 UJ	1900 U	120 UJ
1.2-DICHLOROETHENE	UG/KG	16 U	16 U	21 U	14 U	1900 U	120 U
CHLOROFORM	UG/KG	16 U	16 U	21 U	14 U	1900 U	120 U
1,2-DICHLOROETHANE	UG/KG	16 U	16 U	21 U	14 U	1900 U	120 U
2-BUTANONE	UĠ/KG	16 U	16 U	21 J	14 U	4200	120 U

SITE 6 WALLACE CREEK SEDIMENT DATA AND FREQUENCY SUMMARY REMEDIAL INVESTIGATION CTO-0133 MCB CAMP LEJEUNE, NORTH CAROLINA ORGANICS

	Sample No: Depth: Date Sampled: Lab Id:	6-WC01-SD-06B N/A 8/30/92 00464-22	6-WC01-SD-612D N/A 8/30/92 00464-24	6-WC02-SD-06B N/A 8/26/92 00445-03	6-WC02-SD-612B N/A 8/26/92 00445-04	6-WC03-SD-06B N/A 8/26/92 00445-05	6-WC03-SD-06M N/A 8/26/92 00445-06
Parameter	Units	· · · · · · · · · · · · · · · · · · ·					
VOLATILES Co							
1.1.1-TRICHLOROETHANE		16 U	16 U	21 U	14 U	1900 U	120 U
CARBON TETRACHLORID		16 U	16 U	21 U	14 U	1900 U	120 U
BROMODICHLOROMETHA		16 U	16 U	21 U	14 U	1900 U	120 U
1.2-DICHLOROPROPANE	UG/KG	16 U	16 U	21 U	14 U	1900 U	120 U
CIS-13-DICHLOROPROPI	ENE UG/KG	16 U	16 U	21 U	14 U	1900 U	120 U
TRICHLOROETHENE	UG/KG	16 U	16 U	23	7 J	1900 U	120 U
DIBROMOCHLOROMETHA	NE UG/KG	16 U	16 U	21 U	14 U	1900 U	120 U
1,1,2-TRICHLOROETHANI	E UG/KG	16 U	16 U	21 U	14 U	1900 U	120 U
BENZENE	UG/KG	16 U	16 U	21 U	14 U	1900 U	120 U
TRANS-1,3-DICHLOROPR	OPENE UG/KG	16 U	16 U	21 U	14 U	1900 U	120 U
BROMOFORM	UG/KG	16 U	16 U	21 U	14 U	1900 U	120 U
4-METHYL-2-PENTANO	NE UG/KG	16 U	16 U	21 U	14 U	1900 U	120 U
2-HEXANONE	UG/KG	16 U	16 U	21 U	14 U	1900 U	120 U
TETRACHLOROETHENE	UG/KG	16 U	16 U	21 U	14 U	1900 U	120 U
1,1,2,2-TETRACHLOROETH	IANE UG/KG	16 U	16 U	21 U	14 U	1900 U	120 U
TOLUENE	UG/KG	16 U	16 U	21 U	14 U	1900 U	120 U
CHLOROBENZENE	UG/KG	16 U	16 U	21 U	14 U	1900 U	120 U
ETHYLBENZENE	UG/KG	16 U	16 U	21 U	· 14 U	1900 U	120 U
STYRENE	UG/KG	16 U	16 U	21 U	14 U	1900 U	120 U
TOTAL XYLENES	UG/KG	16 U	16 U	70	26	1900 U	120 J
SEMIVOLATIL	FS	, · · ·					
PHENOL	UG/KG	460 U	490 U	460 U	490 U	990 U	450 UR
BIS(2-CHLOROETHYL) ET		460 U	490 U	460 U	490 U	990 U	450 UR
2-CHLOROPHENOL	UG/KG	460 U	490 U	460 U	490 U	990 U	450 UR
1,3-DICHLOROBENZENE	UG/KG	460 U	490 U	460 U	490 U	990 U	450 UR
14-DICHLOROBENZENE	UG/KG	460 U	490 U	460 U	490 U	990 U	450 UR
1,2-DICHLOROBENZENE	UG/KG	460 U	490 U	460 U	490 U	990 U	450 UR
2-METHYLPHENOL	UG/KG	460 U	490 U	460 U	490 U	990 U	450 UR
2,2'-OXYBIS (1-CHLOROP		460 U	490 UJ	460 U	490 U	990 U	450 UR
4-METHYLPHENOL	UG/KG	460 U	490 U	460 U	490 U	990 U	450 UR
N-NITROSODI-N-PROPY		460 U	490 U	460 U	490 U	990 U	450 UR
HEXACHLOROETHANE	UG/KG	460 U	490 U	460 U	490 U	990 U	450 UR
NITROBENZENE	UG/KG	460 U	490 U	460 U	490 U	990 U	450 UR
ISOPHORONE	UG/KG	460 U	490 U	460 U	490 U	990 U	450 UR
2-NITROPHENOL	UG/KG	460 U	490 U	460 U	490 U	990 U	450 UR
2,4-DIMETHYLPHENOL	UG/KG	460 U	490 U	460 U	490 U	990 U	450 UR
BIS(2-CHLOROETHOXY)		460 U	490 U	460 U	490 U	990 U	450 UR
24-DICHLOROPHENOL	UG/KG	460 U	490 U	460 U	490 U	990 U	450 UR
1,2,4-TRICHLOROBENZEN		460 U	490 U	460 U	490 U	990 U	450 UR
NAPHTHALENE	UG/KG	460 U	490 U	460 U	490 U	990 U	450 UR
4-CHLORANILINE	UG/KG	460 U	490 U	460 U	490 U	990 U	450 UR
HEXACHLOROBUTADIENI		460 U	490 U	460 U	490 U	990 U	450 UR
IIBANOILOROBOIADIBNI		400 0	470 0	100 0			

6wcsdor.wk1

	Sample No: Depth: Date Sampled: Lab Id;	6-WC01-SD-06B N/A 8/30/92 00464-22	6-WC01-SD-612D N/A 8/30/92 00464-24	6-WC02-SD-06B N/A 8/26/92 00445-03	6-WC02-SD-612B N/A 8/26/92 00445-04	6-WC03-SD-06B N/A 8/26/92 00445-05	6-WC03-SD-06M N/A 8/26/92 00445-06
Parameter	Units				· · · · · · · · · · · · · · · · · · ·		
SEMIVOLATILI	S Cont						
4-CHLORO-3-METHYL		G 460 U	490 U	460 U	490 U	990 U	450 UR
2-METHYLNAPHTHALE			490 U	460 U	490 U	990 U	450 UR
HEXACHLOROCYCLOPE			490 U	460 U	490 U	990 U	450 UR
2,4,6-TRICHLOROPHENO			490 U	460 U	490 U	990 U	450 UR
2,4,5-TRICHLOROPHENO			1200 U	1100 U	1200 U	2400 U	1100 UR
2-CHLORONAPHTHALE	NE UG/KO	G 460 U	490 U	460 U	490 U	990 U	450 UR
2-NITROANILINE	UG/KC	G 1100 U	1200 U	1100 U	1200 U	2400 U	1100 UR
DIMETHYL PHTHALATE	UG/KC	G 460 U	490 U	460 U	490 U	990 U	450 UR
ACENAPHTHYLENE	UG/KO	G 460 U	490 U	460 U	490 U	990 U	450 UR
2,6-DINITROTOLUENE	UG/KC	G 460 U	490 U	460 U	490 U	990 U	450 UR
3-NITROANILINE	UG/KC		1200 U	1100 U	1200 U	2400 U	1100 UR
ACENAPHTHENE	UG/KC		490 U	460 U	490 U	990 U	450 UR
2,4-DINITROPHENOL	UG/KC	G 1100 U	1200 U	1100 U	1200 U	2400 U	1100 UR
4-NITROPHENOL	UG/KC	3 1100 U	1200 UJ	1100 U	1200 U	2400 U	1100 UR
DIBENZOFURAN	UG/KC		490 U	460 U	490 U	990 U	450 UR
2.4 - DINITROTOLUENE	UG/KC		490 U	460 U	490 U	990 U	450 UR
DIETHYL PHTHALATE	UG/KC		490 U	460 U	490 U	990 U	450 UR
4-CHLOROPHENYL PHE			490 U	460 U	490 U	990 U	450 UR
FLUORENE	UG/KC		490 U	460 U	490 U	990 U	450 UR
4-NITROANILINE	UG/KC	3 1100 U	1200 U	1100 U	1200 U	2400 U	1100 UR
4.6-DINITRO-2-METHY	LPHENOL UG/KC	G 1100 U	1200 U	1100 U	1200 U	2400 U	1100 UR
N-NITRISODIPHENYLAN	AINE UG/KO	G 460 U	490 U	460 U	490 U	990 U	450 UR
4-BROMOPHENYL PHEN	YL ETHER UG/KC	3 460 U	490 U	460 U	490 U	990 U	450 UR
HEXACHLOROBENZENE	UG/KC	3 460 U	490 UJ	460 U	490 U	990 U	450 UR
PENTACHLOROPHENOL	UG/KC	G 1100 U	1200 U	1100 U	1200 U	2400 U	1100 UR
PHENANTHRENE	UG/KC	3 460 U	490 U	460 U	490 U	990 U	450 UR
ANTHRACENE	UG/KO	3 460 U	490 U	460 U	490 U	990 U	450 UR
DI-N-BUTYL PHTHALA	TE UG/KO	j 460 U	490 U	460 U	490 U	990 U	450 UR
FLUORANTHENE	UG/KC	3 460 U	490 U	460 U	490 U	990 U	450 UR
CARBAZOLE	UG/KC	3 460 U	490 U	460 U	490 U	990 U	450 UR
PYRENE	UG/KO	5 460 U	490 U	460 U	490 UJ	990 UJ	450 UR
BUTYL BENZYL PHTHAL	ATE UG/KO	3 460 U	490 U	460 U	490 UJ	990 UJ	450 UR
3,3-DICHLOROBENZIDIN	IE UG/KO	5 460 U	490 U	460 U	490 UJ	990 UJ	450 UR
BENZO(A)ANTHRACENE			490 U	460 U	490 UJ	990 UJ	450 UR
CHRYSENE	UG/KG	3 460 U	490 U	460 U	490 UJ	990 UJ	450 UR
BIS(2-ETHYLHEXYL)PHT	THALATE UG/KG	3 460 U	490 U	460 U	490 UJ	990 UJ	1200 UR
DI-N-OCTYL PHTHÁLA	re UG/KG	3 460 UJ	490 U	460 U	490 UJ	990 UJ	450 UR
BENZO(B)FLUORANTHE	NE UG/KG	F 460 UJ	490 U	460 U	490 UJ	990 UJ	450 UR
BENZO(K)FLUORANTHE			490 U	460 U	490 UJ	990 UJ	450 UR
BENZO(A)PYRENE	UG/KG	6 460 UJ	63 J	460 U	490 UJ	990 UJ	450 UR
INDENO(1,2,3-CD) PYRE			490 UJ	460 U	490 ÙJ	990 UJ	450 UR
DIBENZ(A,H)ANTHRACE	NE UG/KG	3 460 UJ	490 UJ	460 U	490 UJ	990 UJ	450 UR
BENZO(G,H,Í)PERYLENE	UG/KG	3 460 UJ	490 UJ	460 U	490 UJ	990 UJ	450 UR

.

.

	Sample No: Depth: Date Sampled: Lab Id:	6-WC03-SD-612B N/A 8/26/92 00445-07	6-WC04-SD-06B N/A 8/26/92 00445-08	6-WC04-SD-06M N/A 8/26/92 00445-09	6-WC04-SD-612B N/A 8/26/92 00445-10	6-WC05-SD-06B N/A 8/27/92 00445-11	6-WC05-SD-06M N/A 8/27/92 00445-13
Parameter	Units	· · · · · · · · · · · · · · · · · · ·					
PESTICIDE/PO	CBS						
ALPHA-BHC	UG/KG	4.7 U	24 U	6.5 U	2.4 U	2.5 U	5.6 UJ
BETA-BHC	UG/KG	4.7 U	24 U	6.5 U	2.4 U	2.5 U	5.6 UJ
DELTA-BHC	UG/KG	4.7 U	24 U	6.5 U	2,4 U	2.5 U	5.6 UJ
GAMMA-BHC(LINDANE)	UG/KG	4.7 U	24 U	6.5 U	2.4 U	2.5 U	5.6 UJ
HEPTACHLOR	UG/KG	4.7 U	24 U	6.5 U	2.4 U	2.5 U	5.6 UJ
ALDRIN	UG/KG	4.7 U	24 U	6.5 U	· 2.4 U	2.5 U	5.6 UJ
HEPTACHLOR EPOXIDE	UG/KG	4.7 U	24 U	6.5 U	2.4 U	2.5 U	5.6 UJ
ENDOSULFAN I	UG/KG	4.7 U	24 U	6.5 U	2.4 U	2.5 U	5.6 UJ
DIELDRIN	UG/KG	9.2 U	47 U	13 U	4.6 U	4.9 U	-11 UJ
4,4'-DDE	UG/KG	9.2 U	47 U	13 U	4.6 U	4.9 U	11 UJ
ENDRIN	UG/KG	9.2 U	47 U	13 U	4.6 U	4.9 U	11 UJ
ENDOSULFAN II	UG/KG	9.2 U	47 U	13 U	4.6 U	4.9 U	11 UJ
4,4'-DDD	UG/KG	9.2 U	47 U	13 U	4.6 U	4.9 U	11 UJ
ENDOSULFAN SULFATE	UG/KG	9.2 U	47 U	13 U	4.6 U	4.9 U	11 UJ
I,4' – DDT	UG/KG	9.2 U	47 U	13 U	4.6 U	4.9 U	11 UJ
METHOXYCHLOR	UG/KG	47 U	240 U	65 U	24 U	25 U	56 UJ
ENDRIN KETONE	UG/KG	9.2 U	47 U	13 U	4.6 U	4.9 U	11 UJ
ENDRIN ALDEHYDE	UG/KG	9.2 U	47 U	13 U	4.6 U	4.9 U	11 UJ
ALPHA CHLORDANE	UG/KG	4.7 U	24 U	6.5 U	2.4 U	2.5 U	5.6 UJ
GAMMA CHLORDANE	UG/KG	4.7 U	24 U	6.5 U	2.4 U	2.5 U	5.6 UJ
TOXAPHENE	UG/KG	470 U	2400 U	650 U	240 U	250 U	560 UJ
PCB-1016	UG/KG	92 U	470 U	130 U	46 U	49 U	110 UJ
PCB-1221	UG/KG	190 U	940 U	260 U	93 U	100 U	220 UJ
PCB-1232	UG/KG	92 U	470 U	130 U	46 U	49 U	110 UJ
PCB-1242	UG/KG	92 U	470 U	130 U	46 U	49 U	110 UJ
PCB-1248	UG/KG	92 U	470 U	130 U	46 U	49 U	110 UJ
PCB-1254	UG/KG	92 U	470 U	130 U	46 U	49 U	110 UJ
PCB-1260	UG/KG	92 U	470 U	760	46 U	49 U	330 J
VOLATILE	S						
CHLOROMETHANE	UG/KG	2200 U	19 U	17 U	19 U	16 U	16 U
BROMOMETHANE	UG/KG	2200 U	19 U	17 U	19 U	16 U	16 U
VINYL CHLORIDE	UG/KG	2200 U	19 U	17 U	19 U	16 U	16 U
CHLOROETHANE	UG/KG	2200 U	19 U	17 U	19 U	16 U	16 U
METHYLENE CHLORIDE	UG/KG	910 J	19 U	17 U	19 U	16 U	16 U
ACETONE	UG/KG	15000 J	180 J	54 UJ	160 J	25 UJ	110 UJ
CARBON DISULFIDE	UG/KG	2200 U	19 U	17 U	19 U	16 U	16 U
1-DICHLOROETHENE	UG/KG	2200 U	19 UJ	17 UJ	19 UJ	16 UJ	16 U
1.1-DICHLOROETHANE	UG/KG	2200 U	19 U	17 U	19 U	16 U	16 U
1.2-DICHLOROETHENE	UG/KG	2200 U	19 U	17 U	19 U	16 U	16 U
CHLOROFORM	UG/KG	2200 U	19 U	17 U	19 U	16 U	16 U
1.2-DICHLOROETHANE	UG/KG	2200 U	19 U	17 U	19 U	16 U	16 U
2-BUTANONE	UG/KG	2200 U	19 U	17 U	19 U	16 U	16 U

6wcsdor.wk1

Parameter Units Units Units VOLATILES Cont. I.1,1-TRICHLOROETHANE UG/KG 2200 U 19 U 17 U 19 U 16 U 16 U CARBON TETRACHLORIDE UG/KG 2200 U 19 U 17 U 19 U 16 U 16 U BROMODICHLOROMETHANE UG/KG 2200 U 19 U 17 U 19 U 16 U 16 U 1,2-DICHLOROPROPANE UG/KG 2200 U 19 U 17 U 19 U 16 U 16 U 1,2-DICHLOROPROPENE UG/KG 2200 U 19 U 17 U 19 U 16 U 16 U 1,12-TRICHLOROETHANE UG/KG 2200 U 19 U 17 U 19 U 16 U 16 U DIBROMOCHLOROMETHANE UG/KG 2200 U 19 U 17 U 19 U 16 U 16 U DIBROMOCHLOROMETHANE UG/KG 2200 U 19 U 17 U 19 U 16 U 16 U BROMOPRIM UG/KG 2200 U 19 U 17 U 19 U 16 U 16	Date Sau	Depth:	6-WC03-SD-612B N/A 8/26/92 00445-07	6-WC04-SD-06B N/A 8/26/92 00445-08	6-WC04-SD-06M N/A 8/26/92 00445-09	6-WC04-SD-612B N/A 8/26/92 00445-10	6-WC05-SD-06B N/A 8/27/92 00445-11	6-WC05-SD-06M N/A 8/27/92 00445-13
1,1,1-TRICHLOROETHANE UG/KG 2200 U 19 U 17 U 19 U 16 U 16 U CARBON TETRACHLORIDE UG/KG 2200 U 19 U 17 U 19 U 16 U 16 U BROMODICHLOROMETHANE UG/KG 2200 U 19 U 17 U 19 U 16 U 16 U 1,2-DICHLOROPROPANE UG/KG 2200 U 19 U 17 U 19 U 16 U 16 U CIS-1,3-DICHLOROPROPANE UG/KG 2200 U 19 U 17 U 19 UJ 16 U 16 U CIS-1,3-DICHLOROPTENE UG/KG 2200 U 19 U 17 U 19 UJ 16 U 16 U DIBROMOCHLOROMETHANE UG/KG 2200 U 19 U 17 U 19 U 16 U 16 U DIBROMOCHLOROMETHANE UG/KG 2200 U 19 U 17 U 19 U 16 U 16 U I1,1,2-TRICHLOROETHANE UG/KG 2200 U 19 U 17 U 19 U 16 U 16 U I1,2-TRICHLOROPENE UG/KG 2200 U 19 U 17 U 19 U 16 U 16 U IERNAS-1,3-DICHLOROPROPENE <th>Parameter</th> <th>Units</th> <th></th> <th></th> <th></th> <th>·····</th> <th></th> <th></th>	Parameter	Units				·····		
1,1,1-TRICHLOROETHANE UG/KG 2200 U 19 U 17 U 19 U 16 U 16 U CARBON TETRACHLORIDE UG/KG 2200 U 19 U 17 U 19 U 16 U 16 U BROMODICHLOROMETHANE UG/KG 2200 U 19 U 17 U 19 U 16 U 16 U 1,2-DICHLOROPROPANE UG/KG 2200 U 19 U 17 U 19 U 16 U 16 U CIS-1,3-DICHLOROPROPANE UG/KG 2200 U 19 U 17 U 19 UJ 16 U 16 U CIS-1,3-DICHLOROPTENE UG/KG 2200 U 19 U 17 U 19 UJ 16 U 16 U DIBROMOCHLOROMETHANE UG/KG 2200 U 19 U 17 U 19 U 16 U 16 U DIBROMOCHLOROMETHANE UG/KG 2200 U 19 U 17 U 19 U 16 U 16 U I1,1,2-TRICHLOROETHANE UG/KG 2200 U 19 U 17 U 19 U 16 U 16 U I1,2-TRICHLOROPENE UG/KG 2200 U 19 U 17 U 19 U 16 U 16 U IERNAS-1,3-DICHLOROPROPENE <td>NOT ATH DO COM</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	NOT ATH DO COM							
CARBON TETRACHLORIDE UG/KG 200 19 U 17 U 19 U 16 U 16 U BROMODICHLOROMETHANE UG/KG 2200 U 19 U 17 U 19 U 16 U 16 U L2-DICHLOROPRAPANE UG/KG 2200 U 19 U 17 U 19 U 16 U 16 U L2-DICHLOROPROPANE UG/KG 2200 U 19 U 17 U 19 U 16 U 16 U L3-DICHLOROPROPANE UG/KG 2200 U 19 U 17 U 19 U 16 U 16 U TRICHLOROPROPENE UG/KG 2200 U 19 U 17 U 19 U 16 U 16 U DIBROMOCHLOROMETHANE UG/KG 2200 U 19 U 17 U 19 U 16 U 16 U J1,1-TRICHLOROETHANE UG/KG 2200 U 19 U 17 U 19 U 16 U 16 U BENZENE UG/KG 2200 U 19 U 17 U 19 U 16 U 16 U BENZENE UG/KG 2200 U 19 U 17 U 19 U <td></td> <td>110/80</td> <td>2200 11</td> <td>10.11</td> <td>17 11</td> <td>40.11</td> <td></td> <td></td>		110/80	2200 11	10.11	17 11	40.11		
BROMODICHLOROMETHANE UG/KG 200 1								
1,2-DICHLOROPROPANE UG/KG 2200 U 19 U 17 U 19 U 16 U 16 U CIS-1,3-DICHLOROPROPENE UG/KG 2200 U 19 UJ 17 UJ 19 UJ 16 UJ 16 U TRICHLOROPROPENE UG/KG 2200 U 19 UJ 17 UJ 19 UJ 16 UJ 16 U TRICHLOROETHENE UG/KG 2200 U 19 U 17 U 19 U 16 U 16 U DIBROMOCHLOROMETHANE UG/KG 2200 U 19 U 17 U 19 U 16 U 16 U 1,1,2-TRICHLOROETHANE UG/KG 2200 U 19 U 17 U 19 U 16 U 16 U BRZENE UG/KG 2200 U 19 U 17 U 19 U 16 U 16 U BROMOFORM UG/KG 2200 U 19 U 17 U 19 U 16 U 16 U VTRANS-1,3-DICHLOROPROPENE UG/KG 2200 U 19 U 17 U 19 U 16 U 16 U 4-METHYL-2-PENTANONE UG/KG 2200 U 19 U 17 U 19 U 16 U 16 U 2-HEXANONE UG/KG 2200								
CIS-1,3-DICHLOROPROPENE UG/KG 200 U 19 U 17 U 19 U 16 U 16 U TRICHLOROBTHENE UG/KG 2200 U 19 U 17 U 19 U 16 U 16 U DIBROMOCHLOROMETHANE UG/KG 2200 U 19 U 17 U 19 U 16								
TRICHLOROETHENE UG/KG 2200 U 19 U 17 U 19 U 16 U 16 U DIBROMOCHLOROMETHANE UG/KG 2200 U 19 U 17 U 19 U 16 U 16 U 1,1,2-TRICHLOROETHANE UG/KG 2200 U 19 U 17 U 19 U 16 U 16 U 1,1,2-TRICHLOROETHANE UG/KG 2200 U 19 U 17 U 19 U 16 U 16 U BENZENE UG/KG 2200 U 19 U 17 U 19 U 16 U 16 U BENZENE UG/KG 2200 U 19 U 17 U 19 U 16 U 16 U BROMOFORM UG/KG 2200 U 19 U 17 U 19 U 16 U 16 U 4-METHYL-2-PENTANONE UG/KG 2200 U 19 U 17 U 19 U 16 U 16 U 2-HEXANONE UG/KG 2200 U 19 U 17 U 19 U 16 U 16 U 1,1,2,2-TETRACHLOROETHENE UG/KG 2200 U 19 U 17 U 19 U 16 U 16 U 1,1,2,2-TETRACHLOROETHANE UG/KG 2200 U	• • • • • • • • • • • • • • • • • • • •							
DIBROMOCHLOROMETHANE UG/KG 200 U 19 U 17 U 19 U 16 U 16 U 1,1,2-TRICHLOROETHANE UG/KG 2200 U 19 U 17 U 19 U 16 U 16 U BENZENE UG/KG 2200 U 19 U 17 U 19 U 16 U 16 U TRANS-1,3-DICHLOROPROPENE UG/KG 2200 U 19 U 17 U 19 U 16 U 16 U BROMOFORM UG/KG 2200 U 19 U 17 U 19 U 16 U 16 U Vambor And Vamb	•							
1,1,2-TRICHLOROETHANE UG/KG 2200 U 19 U 17 U 19 U 16 U 16 U BENZENE UG/KG 2200 U 19 U 17 U 19 U 16 U 16 U TRANS-1,3-DICHLOROPROPENE UG/KG 2200 U 19 U 17 U 19 U 16 U 16 U BROMOFORM UG/KG 2200 U 19 U 17 U 19 U 16 U 16 U 4-METHYL-2-PENTANONE UG/KG 2200 U 19 U 17 U 19 U 16 U 16 U 2-HEXANONE UG/KG 2200 U 19 U 17 U 19 U 16 U 16 U 1,1,2-TETRACHLOROETHENE UG/KG 2200 U 19 U 17 U 19 U 16 U 16 U 1,1,2,2-TETRACHLOROETHANE UG/KG 2200 U 19 U 17 U 19 U 16 U 16 U 1,1,2,2-TETRACHLOROETHANE UG/KG 2200 U 19 U 17 U 19 U 16 U 16 U 1,1,2,2-TETRACHLOROETHANE UG/KG 2200 U 19 U 17 U 19 U 16 U 16 U CHLOROBENZENE UG/KG								
BENZENE UG/KG 2200 U 19 U 17 U 19 U 16 U 16 U TRANS-1,3-DICHLOROPROPENE UG/KG 2200 U 19 U 17 U 19 U 16 U 16 U BROMOFORM UG/KG 2200 U 19 U 17 U 19 U 16 U 16 U 4-METHYL-2-PENTANONE UG/KG 2200 U 19 U 17 U 19 U 16 U 16 U 2-HEXANONE UG/KG 2200 U 19 U 17 U 19 U 16 U 16 U 2-HEXANONE UG/KG 2200 U 19 U 17 U 19 U 16 U 16 U 1,1,2,2-TETRACHLOROETHENE UG/KG 2200 U 19 U 17 U 19 U 16 U 16 U 1,1,2,2-TETRACHLOROETHANE UG/KG 2200 U 19 U 17 U 19 U 16 U 16 U 10 UCHLOROBENZENE UG/KG 2200 U 19 U 17 U 19 U 16 U 16 U CHLOROBENZENE UG/KG 2200 U 19 U 17 U 19 U <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
TRANS-1,3-DICHLOROPROPENE UG/KG 2200 U 19 U 17 U 19 U 16 U 16 U BROMOFORM UG/KG 2200 U 19 U 17 U 19 U 16 U 16 U 4-METHYL-2-PENTANONE UG/KG 2200 U 19 U 17 U 19 U 16 U 16 U 2-HEXANONE UG/KG 2200 U 19 U 17 U 19 U 16 U 16 U 2-HEXANONE UG/KG 2200 U 19 U 17 U 19 U 16 U 16 U 1.1,2,2-TETRACHLOROETHENE UG/KG 2200 U 19 U 17 U 19 U 16 U 16 U 1.1,2,2-TETRACHLOROETHANE UG/KG 2200 U 19 U 17 U 19 U 16 U 16 U 1.1,2,2-TETRACHLOROETHANE UG/KG 2200 U 19 U 17 U 19 U 16 U 16 U 1.1,2,2-TETRACHLOROETHANE UG/KG 2200 U 19 U 17 U 19 U 16 U 16 U 1.1,2,2-TETRACHLOROETHANE UG/KG 2200 U 19 U 17 U 19 U 16 U 16 U CHLOROBENZENE UG/KG </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
BROMOFORM UG/KG 2200 U 19 U 17 U 19 U 16 U 16 U 4-METHYL-2-PENTANONE UG/KG 2200 U 19 U 17 U 19 U 16 U 16 U 2-HEXANONE UG/KG 2200 U 19 U 17 U 19 U 16 U 16 U 2-HEXANONE UG/KG 2200 U 19 U 17 U 19 U 16 U 16 U 1.1,2,2-TETRACHLOROETHENE UG/KG 2200 U 19 U 17 U 19 U 16 U 16 U 1,1,2,2-TETRACHLOROETHANE UG/KG 2200 U 19 U 17 U 19 U 16 U 16 U 10 UCHLOROBENZENE UG/KG 2200 U 19 U 17 U 19 U 16 U 16 U ETHYLBENZENE UG/KG 2200 U 19 U 17 U 19 U 16 U 16 U ETHYLBENZENE UG/KG 2200 U 19 U 17 U 19 U 16 U 16 U STYRENE UG/KG 2200 U 19 U 17 U 19 U <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>								
4-METHYL-2-PENTANONE UG/KG 2200 U 19 U 17 U 19 U 16 U 16 U 2-HEXANONE UG/KG 2200 U 19 U 17 U 19 U 16 U 16 U TETRACHLOROETHENE UG/KG 2200 U 19 U 17 U 19 U 16 U 16 U 1,1,2,2-TETRACHLOROETHANE UG/KG 2200 U 19 U 17 U 19 U 16 U 16 U 1,1,2,2-TETRACHLOROETHANE UG/KG 2200 U 19 U 17 U 19 U 16 U 16 U 1,1,2,2-TETRACHLOROETHANE UG/KG 2200 U 19 U 17 U 19 U 16 U 16 U 10 CHLOROBENZENE UG/KG 2200 U 19 U 17 U 19 U 16 U 16 U ETHYLBENZENE UG/KG 2200 U 19 U 17 U 19 U 16 U 16 U STYRENE UG/KG 2200 U 19 U 17 U 19 U 16 U 16 U								
2-HEXANONE UG/KG 2200 U 19 U 17 U 19 U 16 U 16 U TETRACHLOROETHENE UG/KG 2200 U 19 U 17 U 19 U 16 U 16 U 1,1,2,2-TETRACHLOROETHANE UG/KG 2200 U 19 U 17 U 19 U 16 U 16 U 1,1,2,2-TETRACHLOROETHANE UG/KG 2200 U 19 U 17 U 19 U 16 U 16 U TOLUENE UG/KG 2200 U 19 U 17 U 19 U 16 U 16 U CHLOROBENZENE UG/KG 2200 U 19 U 17 U 19 U 16 U 16 U ETHYLBENZENE UG/KG 2200 U 19 U 17 U 19 U 16 U 16 U STYRENE UG/KG 2200 U 19 U 17 U 19 U 16 U 16 U								
TETRACHLOROETHENE UG/KG 2200 U 19 U 17 U 19 U 16 U 16 U 1,1,2,2-TETRACHLOROETHANE UG/KG 2200 U 19 U 17 U 19 U 16 U 16 U 1,1,2,2-TETRACHLOROETHANE UG/KG 2200 U 19 U 17 U 19 U 16 U 16 U TOLUENE UG/KG 2200 U 19 U 17 U 19 U 16 U 16 U CHLOROBENZENE UG/KG 2200 U 19 U 17 U 19 U 16 U 16 U ETHYLBENZENE UG/KG 2200 U 19 U 17 U 19 U 16 U 16 U STYRENE UG/KG 2200 U 19 U 17 U 19 U 16 U 16 U								
1,1,2,2-TETRACHLOROETHANE UG/KG 2200 U 19 U 17 U 19 U 16 U 16 U TOLUENE UG/KG 2200 U 19 U 17 U 19 U 16 U 16 U CHLOROBENZENE UG/KG 2200 U 19 U 17 U 19 U 16 U 16 U ETHYLBENZENE UG/KG 2200 U 19 U 17 U 19 U 16 U 16 U STYRENE UG/KG 2200 U 19 U 17 U 19 U 16 U 16 U								
TOLUENE UG/KG 2200 U 19 U 17 U 19 U 16 U 16 U CHLOROBENZENE UG/KG 2200 U 19 U 17 U 19 U 16 U 16 U ETHYLBENZENE UG/KG 2200 U 19 U 17 U 19 U 16 U 16 U STYRENE UG/KG 2200 U 19 U 17 U 19 U 16 U 16 U								
CHLOROBENZENE UG/KG 2200 U 19 U 17 U 19 U 16 U 16 U ETHYLBENZENE UG/KG 2200 U 19 U 17 U 19 U 16 U 16 U STYRENE UG/KG 2200 U 19 U 17 U 19 U 16 U 16 U STYRENE UG/KG 2200 U 19 U 17 U 19 U 16 U 16 U								
ETHYLBENZENE UG/KG 2200 U 19 U 17 U 19 U 16 U 16 U STYRENE UG/KG 2200 U 19 U 17 U 19 U 16 U 16 U								
STYRENE UG/KG 2200 U 19 U 17 U 19 U 16 U 16 U	ETHYLBENZENE							
	STYRENE							
TOTAL XYLENES UG/KG 2200 U 19 U 17 U 19 U 16 U 16 U	TOTAL XYLENES							
							10 0	10 0
<u>SEMIVOLATILES</u>								
PHENOL UG/KG 910 U 470 UR 420 U 460 U 490 U 120 J				470 UR	420 U	460 U	490 U	120 J
BIS(2-CHLOROETHYL) ETHER UG/KG 910 U 470 UR 420 U 460 U 490 U 1100 U					420 U	460 U	490 U	1100 U
2-CHLOROPHENOL UG/KG 910 U 470 UR 420 U 460 U 490 U 1100 U					420 U	460 U	490 U	1100 U
1,3-DICHLOROBENZENE UG/KG 910 U 470 UR 420 U 460 U 490 U 1100 U	-				420 U	460 U	490 U	1100 U
1,4-DICHLOROBENZENE UG/KG 910 U 470 UR 420 U 460 U 490 U 1100 U	• • • • • • • • •					460 U	490 U	1100 U
1,2-DICHLOROBENZENE UG/KG 910 U 470 UR 420 U 460 U 490 U 1100 U	-				420 U	460 U	490 U	1100 U
2-METHYLPHENOL UG/KG 910 U 470 UR 420 U 460 U 490 U 1100 U					420 U	460 U	490 U	1100 U
2,2 ² -OXYBIS (1-CHLOROPROPANE) UG/KG 910 U 470 UR 420 U 460 U 490 U 1100 U						460 U	490 U	1100 U
4-METHYLPHENOL UG/KG 910 U 470 UR 420 U 460 U 490 U 1100 U							490 U	1100 U
N-NITROSODI-N-PROPYLAMINE UG/KG 910 U 470 UR 420 U 460 U 490 U 1100 U							490 U	1100 U
HEXACHLOROETHANE UG/KG 910 U 470 UR 420 U 460 U 490 U 1100 U						460 U	490 U	1100 U
NITROBENZENE UG/KG 910 U 470 UR 420 U 460 U 490 U 1100 U							490 U	1100 U
ISOPHORONE UG/KG 910 U 470 UR 420 U 460 U 490 U 1100 U						460 U	490 U	1100 U
2-NITROPHENOL UG/KG 910 U 470 UR 420 U 460 U 490 U 1100 U						460 U	490 U	1100 U
2,4-DIMETHYLPHENOL UG/KG 910 470 UR 420 U 460 U 490 U 1100 U			,				490 U	1100 U
BIS(2-CHLOROETHOXY) METHANE UG/KG 910 U 470 UR 420 U 460 U 490 U 1100 U					420 U	460 U	490 U	1100 U
2,4-DICHLOROPHENOL UG/KG 910 U 470 UR 420 U 460 U 490 U 1100 U							490 U	1100 U
1,2,4-TRICHLOROBENZENE UG/KG 910 U 470 UR 420 U 460 U 490 U 1100 U						460 U	490 U	1100 U
NAPHTHALENE UG/KG 910 U 470 UR 420 U 460 U 490 U 1100 U							490 U	1100 U
4-CHLORANILINE UG/KG 910 U 470 UR 420 U 460 U 490 U 1100 U						460 U	490 U	1100 U
HEXACHLOROBUTADIENE UG/KG 910 U 470 UR 420 U 460 U 490 U 1100 U	HEXACHLOROBUTADIENE	UG/KG	910 U	470 UR	420 U	460 U	490 U	1100 U

Page 5 of 21

Ľ	Sample No: Depth: Date Sampled: Lab Id:	6 – WC03 – SD –612B N/A 8/26/92 00445 – 07	6 - WC04 - SD-06B N/A 8/26/92 00445-08	6-WC04-SD-06M N/A 8/26/92 00445-09	6-WC04-SD-612B N/A 8/26/92 00445-10	6-WC05-SD-06B N/A 8/27/92 00445-11	6-WC05-SD-06M N/A 8/27/92 00445-13
Parameter	Units				····	- · · · - · · · · · · · · · · · · · · ·	
SEMIVOLATILES CO	nt.						
4-CHLORO-3-METHYLPHE		910 U	470 UR	420 U	460 U	490 U	1100 U
2-METHYLNAPHTHALENE	UG/KG	910 U	470 UR	420 U	460 U	490 U	1100 U
HEXACHLOROCYCLOPENTA		910 U	470 UR	420 U	460 U	490 U	1100 U
2.4.6-TRICHLOROPHENOL	UG/KG	910 U	470 UR	420 U	460 U	490 U	1100 U
2,4,5-TRICHLOROPHENOL	UG/KG	2200 U	1100 UR	1000 U	1100 U	1200 U	2600 U
2-CHLORONAPHTHALENE	UG/KG	910 U	470 UR	420 U	460 U	490 U	1100 U
2-NITROANILINE	UG/KG	2200 U	1100 UR	1000 U	1100 U	1200 U	2600 U
DIMETHYL PHTHALATE	UG/KG	910 U	470 UR	420 U	460 U	490 U	1100 U
ACENAPHTHYLENE	UG/KG	910 U	470 UR	420 U	460 U	490 U	1100 U
2,6-DINITROTOLUENE	UG/KG	910 U	470 UR	420 U	460 U	490 U	1100 U
3-NITROANILINE	UG/KG	2200 U	1100 UR	1000 U	1100 U	1200 U	2600 U
ACENAPHTHENE	UG/KG	910 U	470 UR	420 U	460 U	490 U	1100 U
2,4-DINITROPHENOL	UG/KG	2200 U	1100 UR	1000 U	1100 U	1200 U	2600 U
4-NITROPHENOL	UG/KG	2200 U	1100 UR	1000 U	1100 U	1200 U	2600 U
DIBENZOFURAN	UG/KG	910 U	470 UR	420 U	460 U	490 U	1100 U
2,4-DINITROTOLUENE	UG/KG	910 U	470 UR	420 U	460 U	490 U	1100 U
DIETHYL PHTHALATE	UG/KG	910 U	470 UR	420 U	460 U	490 U	1100 U
4-CHLOROPHENYL PHENYL	ETHER UG/KG	910 U	470 UR	420 U	460 U	490 U	1100 U
FLUORENE	UG/KG	910 U	470 UR	420 U	460 U	490 U	1100 U
4-NITROANILINE	UG/KG	2200 U	1100 UR	1000 U	1100 U	1200 U	2600 U
4,6-DINITRO-2-METHYLPH	ENOL UG/KG	2200 U	1100 UR	1000 U	1100 U	1200 U	2600 U
N-NITRISODIPHENYLAMINI	3 UG/KG	910 U	470 UR	420 U	460 U	490 U	1100 U
4-BROMOPHENYL PHENYL		910 U	470 UR	420 U	460 U	490 U	1100 U
HEXACHLOROBENZENE	UG/KG	910 U	470 UR	420 U	460 U	490 UJ	1100 UJ
PENTACHLOROPHENOL	UG/KG	2200 U	1100 UR	1000 U	1100 U	1200 U	2600 U
PHENANTHRENE	UG/KG	910 U	470 UR	420 U	460 U	490 U	1100 U
ANTHRACENE	UG/KG	910 U	470 UR	420 U	460 U	490 U	1100 U
DI-N-BUTYL PHTHALATE	UG/KG	910 U	470 UR	420 U	460 U	490 U	1100 U
FLUORANTHENE	UG/KG	910 U	470 UR	420 U	460 U	490 U	1100 U
CARBAZOLE	UG/KG	910 U	470 UR	420 U	460 U	490 U	1100 U
PYRENE	UG/KG	910 U	470 UR	420 UJ	460 U	490 U	1100 U
BUTYL BENZYL PHTHALATE	UG/KG	910 U	200 J	420 UJ	460 U	490 U	1100 U
3,3-DICHLOROBENZIDINE	UG/KG	910 U	470 UR	420 UJ	460 U	490 U	1100 U
BENZO(A)ANTHRACENE	UG/KG	910 U	470 UR	420 UJ	460 U	490 U	1100 U
CHRYSENE	UG/KG	910 U	470 UR	420 UJ	460 U	490 U	1100 U
BIS(2–ETHYLHEXYL)PHTHA		910 U	470 UR	420 UJ	460 U	490 U	1100 U
DI-N-OCTYL PHTHÁLATE	UG/KG	910 U	470 UR	420 UJ	460 U	490 U	1100 U
BENZO(B)FLUORANTHENE	UG/KG	910 U	470 UR	420 UJ	460 U	490 U	1100 U
BENZO(K)FLUORANTHENE	UG/KG	910 U	470 UR	420 UJ	460 U	490 U	1100 U
BENZO(A)PYRENE	UG/KG	910 U	470 UR	420 UJ	460 U	850 J	1100 U
INDENO(1,2,3-CD) PYRENE	UG/KG	910 U	470 UR	420 UJ	460 U	490 UJ	1100 UJ
DIBENZ(AH)ANTHRACENE	UG/KG	910 U	470 UR	420 UJ	460 U	490 UJ	1100 UJ
BENZO(G,H,I)PERYLENE	UG/KG	910 U	470 UR	420 UJ	460 U	490 UJ	1100 UJ

	Sample No: Depth: Date Sampled: Lab Id:	6-WC05-SD-612B N/A 8/27/92 00445-14	6-WC06-SD-06B N/A 8/23/92 00429-01	6-WC06-SD-06M N/A 8/23/92 00429-02	6~WC06-SD-612B N/A 8/23/92 00429-03	6-WC06-SD-612M N/A 8/23/92 00429-04	6-WC07-SD-06B N/A 8/23/92 00429-07
Parameter	Units				0	00127 01	
PESTICIDE/	PCBS						
ALPHA-BHC	UG/KG	2.4 U	14 UJ	3.5 U	6.1 UJ	2.1 U	17 UJ
BETA-BHC	UG/KG	2.4 U	14 UJ	3.5 U	6.1 UJ	2.1 U	17 UJ
DELTA-BHC	UG/KG	2.4 U	14 UJ	3.5 U	6.1 UJ	2.1 U	17 UJ
GAMMA-BHC(LINDANI		2.4 U	14 UJ	3.5 U	6.1 UJ	2.1 U	17 UJ
HEPTACHLOR	UG/KG	2.4 U	14 UJ	3.5 U	6.1 UJ	2.1 U	17 UJ
ALDRIN	UG/KG	2.4 U	14 UJ	3.5 U	6.1 UJ	2.1 U	17 UJ
HEPTACHLOR EPOXIDE	UG/KG	2.4 U	14 UJ	3.5 U	6.1 UJ	2.1 U	17 UJ
ENDOSULFAN I	UG/KG	2.4 U	14 UJ	3.5 U	6.1 UJ	2.1 U	17 UJ
DIELDRIN	UG/KG	4.7 U	27 UJ	6.9 U	12 UJ	4.1 U	33 UJ
4,4'-DDE	UG/KG	4.7 U	25 J	6.9 U	16 J	7.9 J	48 J
ENDRIN	UG/KG	4.7 U	27 UJ	6.9 U	12 UJ	4.1 U	33 UJ
ENDOSULFAN II	UG/KG	4.7 U	27 UJ	6.9 U	12 UJ	4.1 U	33 UJ
4,4'-DDD	UG/KG	4.7 U	80 J	6.9 U	12 UJ	4.1 U	33 UJ
ENDOSULFAN SULFATE		4.7 U	27 UJ	6.9 U	12 UJ	4.1 U	33 UJ
4,4'-DDT	UG/KG	4.7 U	200 J	6.9 U	12 UJ	4.1 U	33 UJ
METHOXYCHLOR	UG/KG	24 U	140 UJ	35 U	61 UJ	21 U	170 UJ
ENDRIN KETONE	UG/KG	4.7 U	27 UJ	6.9 U	12 UJ	4.1 U	33 UJ
ENDRIN ALDEHYDE	UG/KG	4.7 U	27 UJ	6.9 U	12 UJ	4.1 U	33 UJ
ALPHA CHLORDANE	UG/KG	2.4 U	14 UJ	3.5 U	6.1 UJ	2.1 U	17 UJ
GAMMA CHLORDANE	UG/KG	2.4 U	14 UJ	3.5 U	6.1 UJ	2.1 U	17 UJ
TOXAPHENE	UG/KG	240 U	1400 UJ	350 U	610 UJ	210 U	1700 UJ
PCB-1016	UG/KG	47 U	270 UJ	69 U	120 UJ	41 U	330 UJ
PCB-1221	UG/KG	94 U	550 UJ	140 U	240 UJ	83 U	660 UJ
PCB-1232	UG/KG	47 U	270 UJ	69 U	120 UJ	41 U	330 UJ
PCB-1242	UG/KG	47 U	270 UJ	69 U	120 UJ	41 U	330 UJ
PCB-1248	UG/KG	47 U	270 UJ	69 U	120 UJ	41 U	330 UJ
PCB-1254	UG/KG	47 U	270 UJ	69 U	120 UJ	41 U	330 UJ
PCB-1260	UG/KG	47 U	1300 J	400 J	120 UJ	41 U	330 UJ
VOLATILI	ES						
CHLOROMETHANE	UG/KG	14 U	42 U	21 U	36 U	13 U	100 U
BROMOMETHANE	UG/KG	14 U	42 U	21 U	36 U	13 U	100 U
VINYL CHLORIDE	UG/KG	14 U	42 U	21 U	36 U	13 U	· 100 U
CHLOROETHANE	UG/KG	14 U	42 U	21 U	36 U	13 U	100 U
METHYLENE CHLORIDE	UG/KG	14 U	42 U	21 U	36 U	13 U	30 J
ACETONE	UG/KG	14 UJ	42 U	240	220	44 U	160 UJ
CARBON DISULFIDE	UG/KG	14. U	42 U	21 U	36 U	13 U	100 U
1,1-DICHLOROETHENE	UG/KG	14 UJ	42 U	21 U	36 U	13 U	100 U
1,1-DICHLOROETHANE	UG/KG	14 U	42 U	21 U	36 U	13 U	100 U
1,2-DICHLOROETHENE	UG/KG	14 U	42 U	21 U	36 U	13 U	31 J
CHLOROFORM	UG/KG	14 U	42 U	21 U	36 U .	13 U	100 U
1,2-DICHLOROETHANE	UG/KG	14 U	42 U	21 U	36 U	13 U	100 U
2-BUTANONE	UG/KG	14 U	42 U	21 U	36 U	13 U	100 U

Page 7 of 21

Farameter Units VOLATLESCAL (L1-TREELORDEFIANE UGKO 14 U 42 U 21 U 36 U 13 U 100 U CARBON TETRACHLORDE UGKO 14 U 42 U 21 U 36 U 13 U 100 U REMONDICALLORMETHANE UGKO 14 U 42 U 21 U 36 U 13 U 100 U LIC-1-DICHLONOPROFENE UGKO 14 U 42 U 21 U 36 U 13 U 100 U TERCHLORGENTANE UGKO 14 U 42 U 21 U 36 U 13 U 100 U DISROMOCHLOROMETHANE UGKO 14 U 42 U 21 U 36 U 13 U 100 U L12-TREELOROPROFENE UGKO 14 U 42 U 21 U 36 U 13 U 100 U TRANS-13-DICHLOROPROFENE UGKO 14 U 42 U 21 U 36 U 13 U 100 U TERALOROPORTHANE UGKO 14 U 42 U 21 U 36 U 13 U 100 U TEAMANETANNE UGKO		Sample No: Depth: te Sampled: Lab Id:	6-WC05-SD-612B N/A 8/27/92 00445-14	6-WC06-SD-06B N/A 8/23/92 00429-01	6-WC06-SD~06M N/A 8/23/92 00429-02	6-WC06-SD-612B N/A 8/23/92 00429-03	6-WC06-SD-612M N/A 8/23/92 00429-04	6-WC07-SD-06B N/A 8/23/92 00429-07
1,1,-TRICHLOROBETAINE UORG H U 42 U 21 U 36 U 13 U 100 U BROMODICILLOROMETHANE UORG H U 42 U 21 U 36 U 13 U 100 U BROMODICILLOROMETHANE UORG H U 42 U 21 U 36 U 13 U 100 U CLABON TERNER UORG H U 42 U 21 U 36 U 13 U 100 U CLABON TERNER UORG H U 42 U 21 U 36 U 13 U 100 U DIBROMOCHLOROMETHANE UORG H U 42 U 21 U 36 U 13 U 100 U LIA-TRICHLOROROFENE UORG H U 42 U 21 U 36 U 13 U 100 U BROMOCHLOROMETHANE UORG H U 42 U 21 U 36 U 13 U 100 U ILA-TRICHLOROROFENE UORG H U 42 U 21 U 36 U 13 U 100 U PRANS-13-DICHLOROROFENE UORG H U 42 U 21 U 36 U 13 U 100 U 2 UORG H U 42 U 2	Parameter	Units	******************					
CABON TETLACHLORIDE UORGO 14 U 42 U 21 U 36 U 13 U 100 U 14-DECILGROMETIANE UGRGO 14 U 42 U 21 U 36 U 13 U 100 U 12-DECILGROPENTANE UGRGO 14 U 42 U 21 U 36 U 13 U 100 U 12-DECILGROPENTHENE UGRGO 14 U 42 U 21 U 36 U 13 U 100 U TRICHLOROFTHENE UGRGO 14 U 42 U 21 U 36 U 13 U 100 U DIBROMOCILLOROFTHANE UGRGO 14 U 42 U 21 U 36 U 13 U 100 U 11.3 - TRICHLOROFTHANE UGRGO 14 U 42 U 21 U 36 U 13 U 100 U TRANSILGROFTHANE UGRGO 14 U 42 U 21 U 36 U 13 U 100 U TRANSILGROFTHANE UGRGO 14 U 42 U 21 U 36 U 13 U 100 U HETHONE UGRGO 14 U 42 U 21 U 36 U <td>VOLATILES Cont.</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	VOLATILES Cont.							
Incomposition control of the constraints UGKG 14 U 42 U 21 U 36 U 13 U 100 U C12-DICLECROPROPANE UGKG 14 U 42 U 21 U 36 U 13 U 100 U C13-DICLECROPROPANE UGKG 14 U 42 U 21 U 36 U 13 U 100 U DIBROMOCHLOROMETHANE UGKG 14 U 42 U 21 U 36 U 13 U 100 U DIBROMOCHLOROMETHANE UGKG 14 U 42 U 21 U 36 U 15 U 100 U L12-TRICHLOROFROFENE UGKG 14 U 42 U 21 U 36 U 15 U 100 U BENZENS UGKG 14 U 42 U 21 U 36 U 13 U 100 U 2-HERANONE UGKG 14 U 42 U 21 U 36 U 13 U 100 U 2-HERANONE UGKG 14 U 42 U 21 U 36 U 13 U 100 U 2-HERACHLOROFTHANE UGKG 14 U 42 U 21 U 36 U </td <td>1,1,1-TRICHLOROETHANE</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	1,1,1-TRICHLOROETHANE							
Displace	CARBON TETRACHLORIDE							
CONSTRUCTOR OF NOTENE UCARG 14 U 42 U 21 U 35 U 13 U 100 U DIBROMCCHLOROMENTENNE UCARG 14 U 42 U 21 U 35 U 13 U 100 U DIBROMCCHLOROMENTENNE UCARG 14 U 42 U 21 U 35 U 13 U 100 U DIBROMCCHLOROMENTENNE UCARG 14 U 42 U 21 U 35 U 13 U 100 U BENZENE UCARG 14 U 42 U 21 U 35 U 13 U 100 U HANNS-15-DICHLOROPROPENE UCARG 14 U 42 U 21 U 35 U 13 U 100 U 2-HEXANONE UCARG 14 U 42 U 21 U 35 U 13 U 100 U 2-HEXANONE UCARG 14 U 42 U 21 U 35 U 13 U 100 U 112A-CHLOROPTHANE UCARG 14 U 42 U 21 U 35 U 13 U 100 U 112A-CHLOROPTHANE UCARG 14 U 42 U 21 U 35 U	BROMODICHLOROMETHANE	UG/KG	14 U	42 U	21 U		13 U	
TRICELOROETHENE UCKG 14 U 42 U 21 U 50 U 13 U 100 U DIRGOMOLICONDETIANE UCKG 14 U 42 U 21 U 50 U 13 U 100 U 1.1.2-FRICHLOROETIANE UCKG 14 U 42 U 21 U 50 U 13 U 100 U ENZENE UCKG 14 U 42 U 21 U 50 U 13 U 100 U TAANS-1.3-DICHLOROETIANE UCKG 14 U 42 U 21 U 50 U 13 U 100 U TAANS-1.3-DICHLOROETIANE UCKG 14 U 42 U 21 U 50 U 13 U 100 U 4-METHYL-2-FENTANONE UCKG 14 U 42 U 21 U 50 U 13 U 100 U -HEXANONE UCKG 14 U 42 U 21 U 50 U 13 U 100 U TERACHLOROETHANE UCKG 14 U 42 U 21 U 50 U 13 U 100 U TERACHLOROETHANE UCKG 14 U 42 U 21 U 50 U 13 U 100 U TERACHLOROETHANE UCKG 14 U 42 U 21 U 50 U 13 U 100 U TERACHLOROETHANE UCKG 14 U 42 U 21 U 50 U 13 U 100 U TERACHLOROETHANE UCKG 14 U 42 U 21 U 50 U 13 U 100 U TERACHLOROETHANE UCKG 14 U 42 U 21 U 50 U 13 U 100 U TERACHLOROETHANE UCKG 14 U 42 U 21 U 50 U 13 U 100 U TERACHLOROETHANE UCKG 14 U 42 U 21 U 50 U 13 U 100 U TITYLENEE UCKG 14 U 42 U 21 U 50 U 13 U 100 U TITYLENEE UCKG 14 U 42 U 21 U 50 U 13 U 100 U TITYLENEE UCKG 14 U 42 U 21 U 50 U 13 U 100 U TITYLENEE UCKG 14 U 42 U 21 U 50 U 13 U 100 U TITYLENEE UCKG 14 U 42 U 21 U 50 U 13 U 100 U TOTAL XYLENES UCKG 14 U 42 U 21 U 50 U 13 U 100 U TOTAL XYLENES UCKG 440 U 100 U 400 U 100 U 420 U 300 U 2-CLOROETHYL) ETHER UCKG 440 U 100 U 400 U 120 U 420 U 300 U 2-CLOROETHYL) ETHER UCKG 440 U 100 U 400 U 120 U 420 U 300 U 2-CLOROETHENOL UCKG 440 U 1400 U 400 U 120 U 420 U 300 U 2-CLOROENERNE UCKG 440 U 1400 U 400 U 120 U 420 U 300 U 2-CLOROENERNE UCKG 440 U 1400 U 400 U 120 U 420 U 300 U 2-CLOROENERNE UCKG 440 U 1400 U 400 U 120 U 420 U 300 U 2-CLOROENERNE UCKG 440 U 1400 U 400 U 120 U 420 U 300 U 2-CLOROENERNE UCKG 440 U 1400 U 400 U 120 U 420 U 300 U 2-CLOROENERNE UCKG 440 U 1400 U 400 U 120 U 420 U 300 U 2-CLOROENERNE UCKG 440 U 1400 U 400 U 120 U 420 U 300 U 2-CLOROENERNE UCKG 440 U 1400 U 400 U 120 U 420 U 300 U 2-CLOROENERNE UCKG 440 U 1400 U 400 U 120 U 420 U 300 U 2-CLOROENERNE UCKG 440 U 1400 U 400 U 120 U 420 U 300 U 2-CLOROENERNE UCKG 440 U 1400 U 400 U 120 U 420 U 300 U 2-CLOROENERNE UCKG 44	1,2-DICHLOROPROPANE	UG/KG	14 U	42 U	21 U	36 U	13 U	
DIBRONCHLOROMETHANE UG/KG 14 U 42 U 21 U 36 U 13 U 100 U DIBROMCHLOROMETHANE UG/KG 14 U 42 U 21 U 36 U 13 U 100 U BENZENE UG/KG 14 U 42 U 21 U 36 U 13 U 100 U BENZENE UG/KG 14 U 42 U 21 U 36 U 13 U 100 U JENZANGIA VG/KG 14 U 42 U 21 U 36 U 13 U 100 U 2-HEXANONE UG/KG 14 U 42 U 21 U 36 U 13 U 100 U 2-HEXANONE UG/KG 14 U 42 U 21 U 36 U 13 U 100 U 11,12-TETERACHLOROETHANE UG/KG 14 U 42 U 21 U 36 U 13 U 100 U CHENACELENE UG/KG 14 U 42 U 21 U 36 U 13 U 100 U CHUNDENEZENE UG/KG 14 U 42 U 21 U 36 U 13 U 100 U </td <td>CIS-1,3-DICHLOROPROPENE</td> <td>UG/KG</td> <td>14 UJ</td> <td></td> <td></td> <td></td> <td></td> <td></td>	CIS-1,3-DICHLOROPROPENE	UG/KG	14 UJ					
112 - FRICHLOROETHANE UGAG 14 U 42 U 21 U 36 U 13 U 100 U TANS-13 - DICHLOROPROFENE UGAG 14 U 42 U 21 U 36 U 13 U 100 U TRANS-13 - DICHLOROPROFENE UGAG 14 U 42 U 21 U 36 U 13 U 100 U 4 - METHYL - 2 - FENTANONE UGAG 14 U 42 U 21 U 36 U 13 U 100 U 4 - METHYL - 2 - FENTANONE UGAG 14 U 42 U 21 U 36 U 13 U 100 U 4 - METHYL - 2 - FENTANONE UGAG 14 U 42 U 21 U 36 U 13 U 100 U 112 - TETRACHLOROFTHENE UGAG 14 U 42 U 21 U 36 U 13 U 100 U TOLUENE UGAG 14 U 42 U 21 U 36 U 13 U 100 U 100 U STYRENE UGAG 14 U 42 U 21 U 36 U 13 U 100 U 100 U STYRENE UGAG 14 U 42 U 21 U 36 U 13 U 100 U 100 U 100 U	TRICHLOROETHENE	UG/KG	14 U					
DERVENIE UGKG 14 U 42 U 21 UJ 56 UJ 13 U 100 U BRANGFORM UGKG 14 U 42 U 21 U 56 U 13 U 100 U BROMGFORM UGKG 14 U 42 U 21 U 56 U 13 U 100 U 4-METHYL-2-FENTANONE UGKG 14 U 42 U 21 U 56 U 13 U 100 U 12.2-TESTANONE UGKG 14 U 42 U 21 U 56 U 13 U 100 U 12.2-TESTANCLOROFTHENE UGKG 14 U 42 U 21 U 56 U 13 U 100 U 12.2-TESTANCLOROFTHANE UGKG 14 U 42 U 21 U 36 U 13 U 100 U 12.2-TESTANCLOROFTHANE UGKG 14 U 42 U 21 U 36 U 13 U 100 U TYTRENS UGKG 14 U 42 U 21 U 36 U 13 U 100 U TYTRENS UGKG 460 U 190 L 660 U 120 U 420 U <t< td=""><td>DIBROMOCHLOROMETHANE</td><td>UG/KG</td><td>14 U</td><td>42 U</td><td>21 U</td><td></td><td>13 U</td><td></td></t<>	DIBROMOCHLOROMETHANE	UG/KG	14 U	42 U	21 U		13 U	
TANS. 13 - DICHLOROPROFENE UG/RG 14 U 42 12 10 36 U 13 U 100 U BROMOROM UG/RG 14 U 42 U 12 U 36 U 13 U 100 U 4 - METHYL - 2 - PENTANONE UG/RG 14 U 42 U 21 U 36 U 13 U 100 U 2 - HEXANONE UG/RG 14 U 42 U 21 U 36 U 13 U 100 U 1, 1, 22 - TETRACHLOROETHANE UG/RG 14 U 42 U 21 U 36 U 13 U 100 U 13 U 100 U 100 U 100 U 100 U 100 <td>1,1,2-TRICHLOROETHANE</td> <td>UG/KG</td> <td>14 U</td> <td>42 U</td> <td>21 U</td> <td>36 U</td> <td>13 U</td> <td>100 U</td>	1,1,2-TRICHLOROETHANE	UG/KG	14 U	42 U	21 U	36 U	13 U	100 U
BRUMOROPAM UGAG 14 U 42 U 21 U 36 U 13 U 100 U 4-METHYL-2-FENTANONE UGAG 14 U 42 U 21 U 36 U 13 U 100 U 2-HERANDNE UGAG 14 U 42 U 21 U 36 U 13 U 100 U 2-HERACHLOROFTHENE UGAG 14 U 42 U 21 U 36 U 13 U 100 U 12.2-TETRACHLOROFTHANE UGAG 14 U 42 U 21 U 36 U 13 U 100 U TOLLENE UGAG 4 U 42 U 21 U 36 U 13 U 100 U TOLLENE UGAG 14 U 42 U 21 U 36 U 13 U 100 U TYRENE UGAG 14 U 42 U 21 U 36 U 13 U 100 U TOTALXYLENES UGAG 14 U 42 U 21 U 36 U 13 U 100 U TOTALXYLENES UGAG 14 U 42 U 21 U 36 U 13 U 100 U TOTALXYLENES UGAG 46 U 140 U 20 U 1200 U 2		UG/KG	14 U	42 UJ	21 UJ	36 UJ	13 UJ	100 U
BROMORORM UG/KG 14 U 42 U 21 U 36 U 13 U 100 U 2-HEXANONE UG/KG 14 U 42 U 21 U 36 U 13 U 100 U 2-HEXANONE UG/KG 14 U 42 U 21 U 36 U 13 U 100 U 11,12-7ETRACHLOROFTHENE UG/KG 14 U 42 U 21 U 36 U 13 U 100 U 11,12-7ETRACHLOROFTHENE UG/KG 14 U 42 U 21 U 36 U 13 U 100 U CHLOROENZENE UG/KG 14 U 42 U 21 U 36 U 13 U 100 U CHLOROENZENE UG/KG 14 U 42 U 21 U 36 U 13 U 100 U STRANE UG/KG 14 U 42 U 21 U 36 U 13 U 100 U TOTAL XYLENES UG/KG 14 U 42 U 21 U 36 U 13 U 200 U TOTAL XYLENES UG/KG 460 U 40 U 20 U 20 U 20 U 20	TRANS-1.3-DICHLOROPROPI	ENE UG/KG	14 U	42 U	21 U	36 U	13 U	100 U
2-HEXAGOR UG/KG 14 U 12 U 13 U 100 U TETRACHLONOETHENE UG/KG 14 U 42 U 21 U 36 U 13 U 100 U TETRACHLONOETHENE UG/KG 14 U 42 U 21 U 36 U 13 U 100 U TOLUBNE UG/KG 14 U 42 U 21 U 36 U 13 U 100 U TOLUBNE UG/KG 14 U 42 U 21 U 36 U 13 U 100 U CHLOROBENZENE UG/KG 14 U 42 U 21 U 36 U 13 U 100 U TOTAL XYLENES UG/KG 14 U 42 U 21 U 36 U 13 U 100 U TOTAL XYLENES UG/KG 14 U 42 U 21 U 36 U 13 U 100 U SEMIVOLATILES UG/KG 460 UI 190 J 690 U 1200 U 420 U 3200 U 1.3 -DICHCROBENZENE UG/KG 460 U 1400 U 690 U 1200 U 420 U 3200 U	BROMOFORM	UG/KG	14 U	42 U	21 U	36 U	13 U	
TETRACHLOROETHENE UG/KG 14 U 42 U 21 U 36 U 13 U 100 U 1,1,2,2-TETRACHLOROETHANE UG/KG 14 U 42 U 21 U 36 U 13 U 100 U CHLOROBENZENE UG/KG 14 U 42 U 21 U 36 U 13 U 100 U CHLOROBENZENE UG/KG 14 U 42 U 21 U 36 U 13 U 100 U STYRENE UG/KG 14 U 42 U 21 U 36 U 13 U 100 U STYRENE UG/KG 14 U 42 U 21 U 36 U 13 U 100 U STYRENE UG/KG 14 U 42 U 21 U 36 U 13 U 100 U TOTALXYLENES UG/KG 460 UI 190 J 690 U 1200 U 420 U 3200 U 13-DICHLOROBENZENE UG/KG 460 U 1400 U 690 U 1200 U 420 U 3200 U 13-DICHLOROBENZENE UG/KG 460 U 1400 U 690 U 1200 U <t< td=""><td>4-METHYL-2-PENTANONE</td><td>UG/KG</td><td>14 U</td><td>42 U</td><td>21 U</td><td>36 U</td><td>13 U</td><td>100 U</td></t<>	4-METHYL-2-PENTANONE	UG/KG	14 U	42 U	21 U	36 U	13 U	100 U
1,1,2,2-ETRAGHLOROBTHANE UOKG 4 U 4 U 21 U 36 U 13 U 100 U TOLUENE UGKG 4 I 42 U 5 J 36 U 13 U 100 U CHLOROBENZENE UGKG 14 U 42 U 21 U 36 U 13 U 100 U ETHYLDENZENE UGKG 14 U 42 U 21 U 36 U 13 U 100 U STYRENE UGKG 14 U 42 U 21 U 36 U 13 U 100 U TOTAL XYLENES UGKG 14 U 42 U 21 U 36 U 13 U 100 U TOTAL XYLENES UGKG 40 U 42 U 21 U 36 U 13 U 200 U TOTAL XYLENES UGKG 40 U 190 J 690 U 1200 U 420 U 3200 U 2-CHLOROFTHYL) ETHER UGKG 460 U 1400 U 690 U 1200 U 420 U 3200 U 2-CHLOROPENENE UGKG 460 U 1400 U 690 U 1200 U 420 U 3200 U 1-DCHLOROBENZENE UGKG 460 U 1400 U 690 U<	2-HEXANONE	UG/KG	14 U	42 U	21 U	36 U	13 U	100 U
TOLUENE UG/KG 4 J 4 2 UJ 5 J 3 6 UJ 13 UJ 100 U CHLOROBENZENE UG/KG 14 U 42 U 21 U 36 U 13 U 100 U CHLOROBENZENE UG/KG 14 U 42 U 21 U 36 U 13 U 100 U STYRINE UG/KG 14 U 42 U 21 U 36 U 13 U 100 U TOTAL XYLENES UG/KG 14 U 42 U 21 U 36 U 13 U 100 U SEMIVOLATILES UG/KG 460 UJ 190 J 690 U 1200 U 420 U 3200 U 2-CHLOROPENNOL UG/KG 460 UJ 1400 U 690 U 1200 U 420 U 3200 U 1.4 - DICHLOROBENZENE UG/KG 460 U 1400 U 690 U 1200 U 420 U 3200 U 1.2 - CHLOROBENZENE UG/KG 460 U 1400 U 690 U 1200 U 420 U 3200 U 1.2 - DICHLOROBENZENE UG/KG 460 U 1400 U 690 U <t< td=""><td>TETRACHLOROETHENE</td><td>UG/KG</td><td>14 U</td><td>42 U</td><td>21 U</td><td>36 U</td><td>13 U</td><td>100 U</td></t<>	TETRACHLOROETHENE	UG/KG	14 U	42 U	21 U	36 U	13 U	100 U
TOLIDNE UG/KG 4 J 42 UJ 5 J 36 UJ 13 UJ 100 U CHLOROBENZENE UG/KG 14 U 42 U 21 U 36 U 13 U 100 U STYRENE UG/KG 14 U 42 U 21 U 36 U 13 U 100 U STYRENE UG/KG 14 U 42 U 21 U 36 U 13 U 100 U TOTAL XYLENES UG/KG 14 U 42 U 21 U 36 U 13 U 100 U TOTAL XYLENES UG/KG 460 U 42 U 21 U 36 U 1200 U 420 U 3200 U SEMIVOLATILES UG/KG 460 U 1400 U 690 U 1200 U 420 U 3200 U 1.4 - DICHLOROBENZENE UG/KG 460 U 1400 U 690 U 1200 U 420 U 3200 U 1.4 - DICHLOROBENZENE UG/KG 460 U 1400 U 690 U 1200 U 420 U 3200 U 2OKDIBNIZENE UG/KG 460 U 1400 U 690 U 1200 U	1.1.2.2-TETRACHLOROETHAN	E UG/KG	14 U	42 U	21 U	36 U	13 U	100 U
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			4 J	42 UJ	5 J	36 UJ	13 UJ	100 U
ETHYLEENZENE UG/KG 14 U 42 U 21 U 36 U 13 U 100 U STYRENE UG/KG 14 U 42 U 21 U 36 U 13 U 100 U STYRENE UG/KG 14 U 42 U 21 U 36 U 13 U 100 U SEMIVOLATILES UG/KG 460 U 190 J 690 U 1200 U 420 U 3200 U 2-CHLOROETHYL) ETHER UG/KG 460 U 1400 U 690 U 1200 U 420 U 3200 U 1.4 - DICHLOROBENZENE UG/KG 460 U 1400 U 690 U 1200 U 420 U 3200 U 1.4 - DICHLOROBENZENE UG/KG 400 U 1400 U 690 U 1200 U 420 U 3200 U 1.2 - DICHLOROBENZENE UG/KG 400 U 1400 U 690 U 1200 U 420 U 3200 U 2.2 - OXYBIS (1-CHLOROPRANE) UG/KG 400 U 1400 U 690 U 1200 U 420 U 3200 U 2.2 - OXYBIS (1-CHLOROPROPANE) UG/KG 460 U			14 U	42 U	21 U	36 U	13 U	100 U
STYENE UG/KG 14 U 42 U 21 U 36 U 13 U 100 U TOTALXYLENES UG/KG 14 U 42 U 21 U 36 U 13 U 100 U SEMICOLATILES UG/KG 460 U 190 J 690 U 1200 U 420 U 3200 U BIS(2-CHLOROETHYL) ETHER UG/KG 460 U 1400 U 690 U 1200 U 420 U 3200 U 2-CHLOROPHENOL UG/KG 460 U 1400 U 690 U 1200 U 420 U 3200 U 1,3 - DICHLOROBENZENE UG/KG 460 U 1400 U 690 U 1200 U 420 U 3200 U 1,2 - DICHLOROBENZENE UG/KG 460 U 1400 U 690 U 1200 U 420 U 3200 U 2,2 - OXYBIS (1 - CHLOROPROPANE) UG/KG 460 U 1400 U 690 U 1200 U 420 U 3200 U 2,2 - OXYBIS (1 - CHLOROPROPANE) UG/KG 460 U 1400 U 690 U 1200 U 420 U 3200 U 2,2 - OXYBIS (1 - CHLOROPROPANE) UG/KG<			14 U	42 U	21 U	36 U	13 U	100 U
TOTAL XYLENES UG/KG 14 U 42 U 21 U 36 U 13 U 100 U SEMIVOLATILES UG/KG 460 UJ 190 J 690 U 1200 U 420 U 3200 U BIS(2-CHLOROFTHYL) ETHER UG/KG 460 UJ 1400 U 690 U 1200 U 420 U 3200 U 2-CHLOROFHENOL UG/KG 460 U 1400 U 690 U 1200 U 420 U 3200 U 1,3-DICHLOROBENZENE UG/KG 460 U 1400 U 690 U 1200 U 420 U 3200 U 1,2-DICHLOROBENZENE UG/KG 460 U 1400 U 690 U 1200 U 420 U 3200 U 1,2-DICHLOROBENZENE UG/KG 460 U 1400 U 690 U 1200 U 420 U 3200 U 2,-OXYBIS (I-CHLOROPROPANE) UG/KG 460 U 1400 U 690 U 1200 U 420 U 3200 U 2,-OXYBIS (I-CHLOROPROPANE) UG/KG 460 U 1400 U 690 U 1200 U 420 U 3200 U N-NITROSODI -N-PROYLAMINE UG/				42 U	21 U	36 U	13 U	100 U
PHENOL UG/KG 460 UJ 190 J 690 U 1200 U 420 U 3200 U BIS(2-CHLOROETHYL) ETHER UG/KG 460 UJ 1400 U 690 U 1200 U 420 U 3200 U SCHLOROETHYL) ETHER UG/KG 460 U 1400 U 690 U 1200 U 420 U 3200 U 1,3-DICHLOROBENZENE UG/KG 460 U 1400 U 690 U 1200 U 420 U 3200 U 1,4-DICHLOROBENZENE UG/KG 460 U 1400 U 690 U 1200 U 420 U 3200 U 2-METHYLPHENOL UG/KG 460 U 1400 U 690 U 1200 U 420 U 3200 U 2,2'-CXYBIS (1-CHLOROPROPANE) UG/KG 460 U 1400 U 690 U 1200 U 420 U 3200 U 2,2'-CXYBIS (1-CHLOROPROPANE) UG/KG 460 U 1400 U 690 U 1200 U 420 U 3200 U 1,2-DICHLOROBENZENE UG/KG 460 U 1400 U 690 U 1200 U 420 U 3200 U 2,-OXYBIS (1-CHLOROPENPANE)		UG/KG	14 U	42 U	21 U	36 U	13 U	100 U
PHENOL UG/KG 460 UJ 190 J 690 U 1200 U 420 U 3200 U BIS(2-CHLOROETHYL) ETHER UG/KG 460 UJ 1400 U 690 U 1200 U 420 U 3200 U SCHLOROETHYL) ETHER UG/KG 460 U 1400 U 690 U 1200 U 420 U 3200 U 1,3-DICHLOROBENZENE UG/KG 460 U 1400 U 690 U 1200 U 420 U 3200 U 1,4-DICHLOROBENZENE UG/KG 460 U 1400 U 690 U 1200 U 420 U 3200 U 2METHYLPHENOL UG/KG 460 U 1400 U 690 U 1200 U 420 U 3200 U 2.2-OXYBIS (1-CHLOROPROPANE) UG/KG 460 U 1400 U 690 U 1200 U 420 U 3200 U 2.2-OXYBIS (1-CHLOROPROPANE) UG/KG 460 U 1400 U 690 U 1200 U 420 U 3200 U SOPHORONE UG/KG 460 U 1400 U 690 U 1200 U 420 U 3200 U SOPHORONE UG/KG	SEMIVOLATILES							
BIS(2-CHLOROETHYL) ETHER UG/KG 460 UI 1400 U 690 U 1200 U 420 U 3200 U 2-CHLOROPHENOL UG/KG 460 U 1400 U 690 U 1200 U 420 U 3200 U 1.3 - DICHLOROBENZENE UG/KG 460 U 1400 U 690 U 1200 U 420 U 3200 U 1.4 - DICHLOROBENZENE UG/KG 460 U 1400 U 690 U 1200 U 420 U 3200 U 1.2 - DICHLOROBENZENE UG/KG 460 U 1400 U 690 U 1200 U 420 U 3200 U 2-METHYLPHENOL UG/KG 460 U 1400 U 690 U 1200 U 420 U 3200 U 2-METHYLPHENOL UG/KG 460 U 1400 0 690 U 1200 U 420 U 3200		UG/KG	460 UJ	190 J	690 U	1200 U	420 U	3200 U
2-CHLOROPHENOL UG/KG 460 U 1400 U 690 U 1200 U 420 U 3200 U 1,3-DICHLOROBENZENE UG/KG 460 U 1400 U 690 U 1200 U 420 U 3200 U 1,4-DICHLOROBENZENE UG/KG 460 U 1400 U 690 U 1200 U 420 U 3200 U 1,2-DICHLOROBENZENE UG/KG 460 U 1400 U 690 U 1200 U 420 U 3200 U 2-METHYLPHENOL UG/KG 460 U 1400 U 690 U 1200 U 420 U 3200 U 2,2'-OXYBIS (1-CHLOROPROPANE) UG/KG 460 U 1400 U 690 U 1200 U 420 U 3200 U N-NITROSODI-N-PROPYLAMINE UG/KG 460 U 1400 U 690 U 1200 U 420 U 3200 U NITROBENZENE UG/KG 460 U 1400 U 690 U 1200 U 420 U 3200 U NITROBENZENE UG/KG 460 U 1400 U 690 U 1200 U 420 U 3200 U NITROBENZENE UG/KG 460 U 1400 U 690 U 1200 U 420 U 3200 U			460 UJ	1400 U	690 U	1200 U	420 U	3200 U
1.3 - DICHLOROBENZENE UG/KG 460 U 1400 U 690 U 1200 U 420 U 3200 U 1.4 - DICHLOROBENZENE UG/KG 460 U 1400 U 690 U 1200 U 420 U 3200 U 1.2 - DICHLOROBENZENE UG/KG 460 U 1400 U 690 U 1200 U 420 U 3200 U 2-METHYLPHENOL UG/KG 460 U 1400 U 690 U 1200 U 420 U 3200 U 2,2'-OXYBIS (1-CHLOROPROPANE) UG/KG 460 U 1400 U 690 U 1200 U 420 U 3200 U 2,-OXYBIS (1-CHLOROPROPANE) UG/KG 460 U 1400 U 690 U 1200 U 420 U 3200 U N-NITROSODI-N-PROPYLAMINE UG/KG 460 U 1400 U 690 U 1200 U 420 U <td></td> <td></td> <td>460 U</td> <td>1400 U</td> <td>690 U</td> <td>1200 U</td> <td>420 U</td> <td>3200 U</td>			460 U	1400 U	690 U	1200 U	420 U	3200 U
1.4 - DICHLOROBENZENE UG/KG 460 U 1400 U 690 U 1200 U 420 U 3200 U 1.2 - DICHLOROBENZENE UG/KG 460 U 1400 U 690 U 1200 U 420 U 3200 U 2 - METHYLPHENOL UG/KG 460 U 1400 U 690 U 1200 U 420 U 3200 U 2.4 - OLTHOROPROPANE) UG/KG 460 U 1400 U 690 U 1200 U 420 U 3200 U 4 METHYLPHENOL UG/KG 460 U 1400 U 690 U 1200 U 420 U 3200 U 4 METHYLPHENOL UG/KG 460 U 1400 U 690 U 1200 U 420 U 3200 U V - NITROSODI - N-PROPYLAMINE UG/KG 460 U 1400 U 690 U 1200 U 420 U 3200 U NITROBENZENE UG/KG 460 U 1400 U 690 U 1200 U 420 U 3200 U ISOPHORONE UG/KG 460 U 1400 U 690 U 1200 U 420 U 3200 U 2.4 - DIMETHYLPHENOL UG/KG 460 U 1400 U 690 U 1200 U 420 U 3200 U			460 U	1400 U	690 U	1200 U	420 U	3200 U
1.2 - DICHLOROBENZENE UG/KG 460 U 1400 U 690 U 1200 U 420 U 3200 U 2 - METHYLPHENOL UG/KG 460 U 1400 U 690 U 1200 U 420 U 3200 U 2.2'-OXYBIS (1-CHLOROPROPANE) UG/KG 460 U 1400 U 690 U 1200 U 420 U 3200 U 2.2'-OXYBIS (1-CHLOROPROPANE) UG/KG 460 U 1400 U 690 U 1200 U 420 U 3200 U 4 - METHYLPHENOL UG/KG 460 U 1400 U 690 U 1200 U 420 U 3200 U N=NITROSODI -N-PROPYLAMINE UG/KG 460 U 1400 U 690 U 1200 U 420 U 3200 U NITROSODI-N-PROPYLAMINE UG/KG 460 U 1400 0 690 U 1200 U 420 U </td <td></td> <td></td> <td>460 U</td> <td>1400 U</td> <td>690 U</td> <td>1200 U</td> <td>420 U</td> <td>3200 U</td>			460 U	1400 U	690 U	1200 U	420 U	3200 U
2-METHYLPHENOL UG/KG 460 U 1400 U 690 U 1200 U 420 U 3200 U 2,2'-OXYBIS (1-CHLOROPROPANE) UG/KG 460 U 1400 U 690 U 1200 U 420 U 3200 U 4-METHYLPHENOL UG/KG 460 U 1400 U 690 U 1200 U 420 U 3200 U 4-METHYLPHENOL UG/KG 460 U 1400 U 690 U 1200 U 420 U 3200 U N-NITROSODI-N-PROPYLAMINE UG/KG 460 U 1400 U 690 U 1200 U 420 U 3200 U NITROBENZENE UG/KG 460 U 1400 U 690 U 1200 U 420 U 3200 U ISOPHORONE UG/KG 460 U 1400 U 690 U 1200 U 420 U 3200 U 2-NITROPHENOL UG/KG 460 U 1400 U 690 U 1200 U 420 U 3200 U 2,4-DIMETHYLPHENOL UG/KG 460 U 1400 U 690 U 1200 U 420 U 3200 U 2,4-DIMETHYLPHENOL UG/KG 460 U 1400 U 690 U 1200 U 420 U 3200 U <t< td=""><td></td><td></td><td></td><td>1400 U</td><td>690 U</td><td>,1200 U</td><td>420 U</td><td>3200 U</td></t<>				1400 U	690 U	,1200 U	420 U	3200 U
2.2 - OXYBIS (1-CHLOROPROPANE) UG/KG 460 U 1400 U 690 U 1200 U 420 U 3200 U 4-METHYLPHENOL UG/KG 460 U 1400 U 690 U 1200 U 420 U 3200 U N-NITROSODI-N-PROPYLAMINE UG/KG 460 UJ 1400 U 690 U 1200 U 420 U 3200 U N-NITROSODI-N-PROPYLAMINE UG/KG 460 UJ 1400 U 690 U 1200 U 420 U 3200 U NITROBENZENE UG/KG 460 U 1400 U 690 U 1200 U 420 U 3200 U ISOPHORONE UG/KG 460 U 1400 U 690 U 1200 U 420 U 3200 U 2-NITROPHENOL UG/KG 460 U 1400 U 690 U 1200 U 420 U 3200 U 2,4-DIMETHYLPHENOL UG/KG 460 U 1400 U 690 U 1200 U 420 U 3200 U 2,4-DIMETHYLPHENOL UG/KG 460 U 1400 U 690 U 1200 U 420 U 3200 U 2,4-DIMETHYLPHENOL UG/KG 460 U 1400 U 690 U 1200 U 420 U 3200 U			460 U	1400 U	690 U	1200 U	420 U	3200 U
4-METHYLPHENOL UG/KG 460 U 1400 U 690 U 1200 U 420 U 3200 U N-NITROSODI-N-PROPYLAMINE UG/KG 460 UJ 1400 U 690 U 1200 U 420 U 3200 U HEXACHLOROETHANE UG/KG 460 U 1400 U 690 U 1200 U 420 U 3200 U NITROBENZENE UG/KG 460 U 1400 U 690 U 1200 U 420 U 3200 U ISOPHORONE UG/KG 460 U 1400 U 690 U 1200 U 420 U 3200 U 2-NITROPHENOL UG/KG 460 U 1400 U 690 U 1200 U 420 U 3200 U 2,4-DIMETHYLPHENOL UG/KG 460 U 1400 U 690 U 1200 U 420 U 3200 U 2,4-DIMETHYLPHENOL UG/KG 460 U 1400 U 690 U 1200 U 420 U 3200 U 2,4-DIMETHYLPHENOL UG/KG 460 U 1400 U 690 U 1200 U 420 U 3200 U 2,4-DICHLOROETHOXY)METHANE UG/KG 460 U 1400 U 690 U 1200 U 420 U 3200 U			460 U	1400 U	690 U	1200 U	420 U	3200 U
N-NITROSODI-N-PROPYLAMINE UG/KG 460 UJ 1400 U 690 U 1200 U 420 U 3200 U HEXACHLOROETHANE UG/KG 460 U 1400 U 690 U 1200 U 420 U 3200 U NITROBENZENE UG/KG 460 U 1400 U 690 U 1200 U 420 U 3200 U NITROBENZENE UG/KG 460 U 1400 U 690 U 1200 U 420 U 3200 U ISOPHORONE UG/KG 460 U 1400 U 690 U 1200 U 420 U 3200 U 2-NITROPHENOL UG/KG 460 U 1400 U 690 U 1200 U 420 U 3200 U 2,4-DIMETHYLPHENOL UG/KG 460 U 1400 U 690 U 1200 U 420 U 3200 U 3,4-CHLOROPHENOL UG/KG 460 U 1400 U 690 U 1200 U 420 U 3200 U 2,4-DICHLOROPHENOL UG/KG 460 U 1400 U 690 U 1200 U 420 U 3200 U 1,2,4-TRICHLOROBENZENE UG/KG 460 U			460 U	1400 U	690 U	1200 U	420 U	3200 U
HEXACHLOROETHANE UG/KG 460 U 1400 U 690 U 1200 U 420 U 3200 U NITROBENZENE UG/KG 460 U 1400 U 690 U 1200 U 420 U 3200 U ISOPHORONE UG/KG 460 U 1400 U 690 U 1200 U 420 U 3200 U 2-NITROPHENOL UG/KG 460 U 1400 U 690 U 1200 U 420 U 3200 U 2,4-DIMETHYLPHENOL UG/KG 460 U 1400 U 690 U 1200 U 420 U 3200 U 3,4-DIMETHYLPHENOL UG/KG 460 UJ 1400 U 690 U 1200 U 420 U 3200 U 2,4-DIMETHYLPHENOL UG/KG 460 UJ 1400 U 690 U 1200 U 420 U 3200 U 2,4-DICHLOROPHENOL UG/KG 460 U 1400 U 690 U 1200 U 420 U 3200 U 2,4-DICHLOROPHENOL UG/KG 460 U 1400 U 690 U 1200 U 420 U 3200 U 1,2,4-TRICHLOROBENZENE UG/KG 460 U 1400 U 690 U 1200 U 420 U 3200 U					690 U	1200 U	420 U	3200 U
NITROBENZENE UG/KG 460 U 1400 U 690 U 1200 U 420 U 3200 U ISOPHORONE UG/KG 460 U 1400 U 690 U 1200 U 420 U 3200 U 2-NITROPHENOL UG/KG 460 U 1400 U 690 U 1200 U 420 U 3200 U 2,4-DIMETHYLPHENOL UG/KG 460 U 1400 U 690 U 1200 U 420 U 3200 U 18(2-CHLOROETHOXY) METHANE UG/KG 460 U 1400 U 690 U 1200 U 420 U 3200 U 2,4-DICHLOROETHOXY) METHANE UG/KG 460 U 1400 U 690 U 1200 U 420 U 3200 U 2,4-DICHLOROPHENOL UG/KG 460 U 1400 U 690 U 1200 U 420 U 3200 U 2,4-DICHLOROPHENOL UG/KG 460 U 1400 U 690 U 1200 U 420 U 3200 U 1,2,4-TRICHLOROBENZENE UG/KG 460 U 1400 U 690 U 1200 U 420 U 3200 U NAPHTHALENE UG/KG 460 U 1400 U 690 U 1200 U 420 U 3200 U					690 U	1200 U	420 U	3200 U
ISOPHORONE UG/KG 460 U 1400 U 690 U 1200 U 420 U 3200 U 2-NITROPHENOL UG/KG 460 U 1400 U 690 U 1200 U 420 U 3200 U 2,4-DIMETHYLPHENOL UG/KG 460 U 1400 U 690 U 1200 U 420 U 3200 U 3,4-DIMETHYLPHENOL UG/KG 460 U 1400 U 690 U 1200 U 420 U 3200 U 1,4-DIMETHYLPHENOL UG/KG 460 UJ 1400 U 690 U 1200 U 420 U 3200 U 2,4-DICHLOROPTHOXY) METHANE UG/KG 460 U 1400 U 690 U 1200 U 420 U 3200 U 2,4-DICHLOROPHENOL UG/KG 460 U 1400 U 690 U 1200 U 420 U 3200 U 1,2,4-TRICHLOROBENZENE UG/KG 460 U 1400 U 690 U 1200 U 420 U 3200 U NAPHTHALENE UG/KG 460 U 1400 U 690 U 1200 U 420 U 3200 U 4-CHLORANILINE UG/KG 460				1400 U	690 U	1200 U	420 U	3200 U
100 HORORD UG/KG 460 U 1400 U 690 U 1200 U 420 U 3200 U 2 - NITROPHENOL UG/KG 460 U 1400 U 690 U 1200 U 420 U 3200 U 2,4 - DIMETHYLPHENOL UG/KG 460 U 1400 U 690 U 1200 U 420 U 3200 U 15(2 - CHLOROETHOXY) METHANE UG/KG 460 U 1400 U 690 U 1200 U 420 U 3200 U 2,4 - DICHLOROPHENOL UG/KG 460 U 1400 U 690 U 1200 U 420 U 3200 U 1,2,4 - TRICHLOROBENZENE UG/KG 460 U 1400 U 690 U 1200 U 420 U 3200 U NAPHTHALENE UG/KG 460 U 1400 U 690 U 1200 U 420 U 3200 U NAPHTHALENE UG/KG 460 U 1400 U 690 U 1200 U 420 U 3200 U 4 - CHLORANILINE UG/KG 460 U 1400 U 690 U 1200 U 420 U 3200 U								
2,4-DIMETHYLPHENOL UG/KG 460 U 1400 U 690 U 1200 U 420 U 3200 U 2,4-DIMETHYLPHENOL UG/KG 460 UJ 1400 U 690 U 1200 U 420 U 3200 U 2,4-DICHLOROPHENOL UG/KG 460 U 1400 U 690 U 1200 U 420 U 3200 U 2,4-DICHLOROPHENOL UG/KG 460 U 1400 U 690 U 1200 U 420 U 3200 U 1,2,4-TRICHLOROBENZENE UG/KG 460 U 1400 U 690 U 1200 U 420 U 3200 U NAPHTHALENE UG/KG 460 U 1400 U 690 U 1200 U 420 U 3200 U VA-CHLORANILINE UG/KG 460 U 1400 U 690 U 1200 U 420 U 3200 U								3200 U
LAP DIRUM LAP DIRUM <thlap dirum<="" th=""> LAP DIRUM <thlap dirum<="" th=""> LAP DIRUM <thlap dirum<="" th=""> <thlap dirum<="" th=""> <thlap< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></thlap<></thlap></thlap></thlap></thlap>								
Difference UG/KG 460 U 1400 U 690 U 1200 U 420 U 3200 U 1,24-TRICHLOROBENZENE UG/KG 460 U 1400 U 690 U 1200 U 420 U 3200 U NAPHTHALENE UG/KG 460 U 1400 U 690 U 1200 U 420 U 3200 U A_PHTHALENE UG/KG 460 U 1400 U 690 U 1200 U 420 U 3200 U 4-CHLORANILINE UG/KG 460 U 1400 U 690 U 1200 U 420 U 3200 U								
L24-TRICHLOROBENZENE UG/KG 460 U 1400 U 690 U 1200 U 420 U 3200 U NAPHTHALENE UG/KG 460 U 1400 U 690 U 1200 U 420 U 3200 U 4-CHLORANILINE UG/KG 460 U 1400 U 690 U 1200 U 420 U 3200 U								
NAPHTHALENE UG/KG 460 U 1400 U 690 U 1200 U 420 U 3200 U 4-CHLORANILINE UG/KG 460 U 1400 U 690 U 1200 U 420 U 3200 U								
4-CHLORANILINE UG/KG 460 U 1400 U 690 U 1200 U 420 U 3200 U								
HEXACHLOROBUTADIENE UG/KG 460 U 1400 U 690 U 1200 U 420 U 3200 U		UG/KG	460 U	1400 U	690 U	1200 U	420 U	3200 U

-

Ľ	Sample No: Depth: Date Sampled: Lab Id:	6-WC05-SD-612B N/A 8/27/92 00445-14	6-WC06-SD-06B N/A 8/23/92 00429-01	6-WC06-SD-06M N/A 8/23/92 00429-02	6-WC06-SD-612B N/A 8/23/92 00429-03	6-WC06-SD-612M N/A 8/23/92 00429-04	6-WC07-SD-06B N/A 8/23/92 00429-07
Parameter	Units	·····				· · · · · · · · · · · · · · · · · · ·	
SEMIVOLATILES CO	ont.						
4-CHLORO-3-METHYLPHE		460 U	1400 U	690 U	1200 U	420 U	3200 U
2-METHYLNAPHTHALENE	UG/KG	460 U	1400 U	690 U	1200 U	420 U	3200 U
HEXACHLOROCYCLOPENTA	DIENE UG/KG	460 U	1400 U	690 U	1200 U	420 U	3200 U
4,6-TRICHLOROPHENOL	UG/KG	460 U	1400 U	690 U	1200 U	420 U	3200 U
2,4,5-TRICHLOROPHENOL	UG/KG	1100 U	3300 U	1700 U	2800 U	1000 U	7900 U
-CHLORONAPHTHALENE	UG/KG	460 U	1400 U	690 U	1200 U	420 U	3200 U
-NITROANILINE	UG/KG	1100 U	3300 U	1700 U	2800 U	1000 U	7900 U
DIMETHYL PHTHALATE	UG/KG	460 U	1400 U	690 U	1200 U	420 U	3200 U
ACENAPHTHYLENE	UG/KG	460 U	1400 U	690 U	1200 U	420 U	3200 U
6-DINITROTOLUENE	UG/KG	460 U	1400 U	690 U	1200 U	420 U	3200 U
-NITROANILINE	UG/KG	1100 U	3300 UJ	1700 U	2800 U	1000 UJ	7900 U
ACENAPHTHENE	UG/KG	460 U	1400 U	690 U	1200 U	420 U	3200 U
4-DINITROPHENOL	UG/KG	1100 U	3300 U	1700 U	2800 U	1000 U	7900 U
-NITROPHENOL	UG/KG	1100 U	3300 U	1700 U	2800 U	1000 U	7900 U
DIBENZOFURAN	UG/KG	460 U	1400 U	690 U	1200 U	420 U	3200 U
4-DINITROTOLUENE	UG/KG	460 U	1400 U	690 U	1200 U	420 U	3200 U
DIETHYL PHTHALATE	UG/KG	460 U	530 J	690 U	1200 U	420 U	3200 U
-CHLOROPHENYL PHENYL	ETHER UG/KG	460 U	1400 U	690 U	1200 U	420 U	3200 U
LUORENE	UG/KG	460 U	1400 U	690 U	1200 U	420 U	3200 U
-NITROANILINE	UG/KG	1100 U	3300 U	1700 U	2800 U	1000 U	7900 U
6-DINITRO-2-METHYLPH	ENOL UG/KG	1100 U	3300 U	1700 U	2800 U	1000 U	7900 U
-NITRISODIPHENYLAMINI	UG/KG	460 U	1400 U	690 U	1200 U	420 U	3200 U
-BROMOPHENYL PHENYL	ETHER UG/KG	460 U	1400 U	690 U	1200 U	420 U	3200 U
IEXACHLOROBENZENE	UG/KG	460 U	1400 U	690 U	1200 U	420 U	3200 U
ENTACHLOROPHENOL	UG/KG	1100 U	3300 U	1700 U	2800 U	1000 U	7900 U
HENANTHRENE	UG/KG	460 U	1400 U	690 U	1200 U	420 U	3200 U
NTHRACENE	UG/KG	460 U	1400 U	690 U	1200 U	420 U	3200 U
N-N-BUTYL PHTHALATE	UG/KG	460 U	1400 U	690 U	1200 U	420 U	3200 U
LUORANTHENE	UG/KG	460 U	290 J	100 J	1200 U	420 U	3200 U
ARBAZOLE	UG/KG	460 U	1400 UJ	690 U	1200 U	420 UJ	3200 U
YRENE	UG/KG	460 U	210 J	200 J	1200 U	420 UJ	3200 U
UTYL BENZYL PHTHALATE	UG/KG	460 U	1400 U	690 U	1200 U	420 U	920 J
3-DICHLOROBENZIDINE	UG/KG	460 U	1400 U	690 U	1200 U	420 U	3200 U
ENZO(A)ANTHRACENE	UG/KG	460 U	1400 U	690 U	1200 U	420 U	3200 U
HRYSÈNE	UG/KG	460 U	1400 U	690 U	1200 U	420 U	3200 U
IS(2-ETHYLHEXYL)PHTHA		460 U	1400 U	690 U	1200 U	420 U	3200 U
I-N-OCTYL PHTHÁLATE	UG/KG	460 U	1400 U	690 U	1200 U	420 U	3200 U
ENZO(B)FLUORANTHENE	UG/KG	460 U	1400 U	690 U	1200 U	420 U	3200 U
ENZO(K)FLUORANTHENE	UG/KG	460 U	1400 U	690 U	1200 U	420 U	3200 U
ENZOAPYRENE	UG/KG	1600	1400 U	690 U	1200 U	420 U	3200 U
NDENO(1,2,3-CD) PYRENE	UG/KG	460 U	1400 U	690 U	1200 U	420 U	3200 U
DIBENZ(A,H)ANTHRACENE	UG/KG	460 U	1400 U	690 U	1200 U	420 U	3200 U
BENZO(G,H,I)PERYLENE	UG/KG	460 U	1400 U	690 U	1200 U	420 U	3200 U

	Sample No: Depth: Date Sampled: Lab Id:	6-WC07+SD-06M N/A 8/23/92 00429-08	6-WC07-SD-612M N/A 8/23/92 00429-09	6-WC08-SD-06B N/A 8/23/92 00429-13	6-WC08-SD-06M N/A 8/23/92 00429-15	6-WC08-SD-612B N/A 8/23/92 00429-16	6-WC08-SD-612M N/A 8/23/92 00429-17
arameter	Units						
PESTICIDE/PC	BS						
LPHA-BHC	UG/KG	13 U	4.2 U	18 U	12 UJ	3.2 U	3.6 U
ETA-BHC	UG/KG	13 U	4.2 U	18 U	12 UJ	3.2 U	3.6 U
DELTA-BHC	UG/KG	13 U	4.2 U	18 U	12 UJ	3.2 U	3.6 U
JAMMA-BHC(LINDANE)	UG/KG	13 U	4.2 U	18 U	12 UJ	3.2 U	3.6 U
IEPTACHLOR	UG/KG	13 U	4.2 U	18 U	12 UJ	3.2 U	3.6 U
LDRIN	UG/KG	13 U	4.2 U	18 U	12 UJ	3.2 U	3.6 U
IEPTACHLOR EPOXIDE	UG/KG	13 U	4.2 U	18 U	12 UJ	3.2 U	3.6 U
INDOSULFAN I	UG/KG	13 U	4.2 U	18 U	12 UJ	3.2 U	3.6 U
DIELDRIN	UG/KG	26 U	8.1 U	35 U	23 UJ	6.3 U	7.1 U
4'-DDE	UG/KG	26 U	8.1 U	47 J	18 J	27.9	7.6 J
NDRIN	UG/KG	26 U	8.1 U	35 U	23 UJ	6.3 U	7.1 U
NDOSULFAN II	UG/KG	26 U	8.1 U	35 U	23 UJ	6.3 U	7.1 U
,4'-DDD	UG/KG	26 U	67	50 J	200 J	23 J	49
NDOSULFAN SULFATE	UG/KG	26 U	8.1 U	35 U	23 UJ	6.3 U	7.1 U
,4'-DDT	UG/KG	26 U	220 J	35 U	1200 J	6.3 U	7.1 U
METHOXYCHLOR	UG/KG	130 U	42 U	180 U	120 UJ	32 U	36 U
ENDRIN KETONE	UG/KG	26 U	8.1 U	35 U	23 UJ	6.3 U	7.1 U
NDRIN ALDEHYDE	UG/KG	26 U	8.1 U	35 U	23 UJ	6.3 U	7.1 U
LPHA CHLORDANE	UG/KG	13 U	4.2 U	18 U	12 UJ	3.2 U	3.6 U
GAMMA CHLORDANE	UG/KG	13 U	4.2 U	18 U	12 UJ	3.2 U	3.6 U
OXAPHENE	UG/KG	1300 U	420 U	1800 U	1200 UJ	320 U	360 U
CB-1016	UG/KG	260 U	81 U	350 U	230 UJ	63 U	71 U
CB-1221	UG/KG	520 U	160 U	710 U	480 UJ	130 U	140 U
CB-1232	UG/KG	260 U	81 U	350 U	230 UJ	63 U	71 U
CB-1232	UG/KG	260 U	81 U	350 U	230 UJ	63 U	71 U
CB = 1242 CB = 1248	UG/KG	260 U	81 U	350 U	230 UJ	63 U	71 U
	UG/KG	260 U	81 U	350 U	230 UJ	63 U	71 U
CB-1254	UG/KG	200 J	81 U	310 J	2100 J	32 J	71 Ŭ
CB-1260	00/80	2000 3	01 0	510 5	2100 5	54 6	110
VOLATILES	3						
CHLOROMETHANE	UG/KG	1200 U	12 U	36 U	24 U	48 U	22 U
ROMOMETHANE	UG/KG	1200 U	12 U	36 U	24 U	48 U	22 U
VINYL CHLORIDE	UG/KG	1200 U	12 U	36 U	24 U	48 U	22 U
HLOROETHANE	UG/KG	1200 U	12 U	36 U	24 U	48 U	22 U
AETHYLENE CHLORIDE	UG/KG	1200 U	6 J	36 U	24 U	48 U	22 U
CETONE	UG/KG	1800 U	12 U	70 UJ	350	590 J	22 U
ARBON DISULFIDE	UG/KG	1200 U	2 J	36 U	24 U	5 J	22 U
,1-DICHLOROETHENE	UG/KG	1200 U	12 U	36 U	24 U	48 U	22 U
1-DICHLOROETHANE	UG/KG	1200 U	12 U	36 U	24 U	48 U	22 U
2-DICHLOROETHENE	UG/KG	1200 U	12 U	36 U	24 U	48 U	22 U
CHLOROFORM	UG/KG	1200 U	12 U	36 U	24 U	48 U	22 U
2-DICHLOROETHANE	UG/KG	1200 U	12 U	36 U	24 U	48 U	22 Ŭ
,e- DICHLONODHIMUS	UG/KG	1200 U	12 U	36 U	24 U	48 U	22 U

•

	Sample No: Depth: le Sampled: Lab Id:	6-WC07-SD-06M N/A 8/23/92 00429-08	6-WC07-SD-612M N/A 8/23/92 00429-09	6-WC08-SD-06B N/A 8/23/92 00429-13	6-WC08-SD-06M N/A 8/23/92 00429-15	6-WC08-SD-612B N/A 8/23/92 00429-16	6-WC08-SD-612M N/A 8/23/92 00429-17
Parameter	Units						
VOLATILES Cont.					•		
1,1,1-TRICHLOROETHANE	UG/KG	1200 U	12 U	36 U	24 U	48 U	22 U
CARBON TETRACHLORIDE	UG/KG	1200 UJ	12 U	36 U	24 U	48 U	22 U
BROMODICHLOROMETHANE	UG/KG	1200 U	12 U	36 U	24 U	48 U	22 U
1,2-DICHLOROPROPANE	UG/KG	1200 U	12 U	36 U	24 U	48 U	22 U
CIS-13-DICHLOROPROPENE	UG/KG	1200 U	12 U	36 U	24 U	48 U	22 Ŭ
TRICHLOROETHENE	UG/KG	1200 U	12 U	36 U	24 U	48 U	22 Ŭ
DIBROMOCHLOROMETHANE	UG/KG	1200 U	12 U	36 U	24 U	48 U	22 U
1,1,2-TRICHLOROETHANE	UG/KG	1200 U	12 U	36 U	24 U	48 U	22 U
BENZENE	UG/KG	1200 U	12 U	36 U	24 UJ	48 U	22 UJ
TRANS-1,3-DICHLOROPROPE		1200 U	12 U	36 U	24 U	48 U	22 U
BROMOFORM	UG/KG	1200 U	12 U	36 U	24 U	48 U	22 U
4-METHYL-2-PENTANONE	UG/KG	1200 U	12 U	36 U	24 U	48 U	22 U
2-HEXANONE	UG/KG	1200 U	12 U	36 U	24 U	48 U	22 UJ
TETRACHLOROETHENE	UG/KG	1200 U	12 U	36 U	24 U	48 U	22 UJ
1,1,2,2-TETRACHLOROETHANI		1200 U	12 U	36 U	24 U	48 U	22 UJ
TOLUENE	UG/KG	1200 U	12 U	36 U	24 UJ	48 U	22 UJ
CHLOROBENZENE	UG/KG	1200 U	12 U	36 U	24 U	48 U	22 UJ
ETHYLBENZENE	UG/KG	1200 U	12 U	36 U	24 U	48 U	22 UJ
STYRENE	UG/KG	1200 U	12 U	36 U	24 U	48 U	22 UJ
TOTAL XYLENES	UG/KG	1200 U	12 U	36 U	24 U	48 U	22 UJ
SEMIVOLATILES							
PHENOL	UG/KG	640 U	410 U	1200 U	770 U	630 U	710 U
BIS(2-CHLOROETHYL) ETHER	UG/KG	640 U	410 U	1200 U	770 U	630 U	710 U
2-CHLOROPHENOL	UG/KG	640 U	410 U	1200 U	770 U	630 U	710 U
1,3-DICHLOROBENZENE	UG/KG	640 U	410 U	1200 U	770 U	630 U	710 U
1,4-DICHLOROBENZENE	UG/KG	640 U	410 U	1200 U	770 U	630 U	710 U
1,2-DICHLOROBENZENE	UG/KG	640 U	410 U	1200 U	770 U	630 U	710 U
2-METHYLPHENOL	UG/KG	640 U	410 U	1200 U	770 U	630 U	710 U
2,2'-OXYBIS (1-CHLOROPROP.	ANE) UG/KG	640 U	410 U	1200 U	770 U	630 U	710 U
4-METHYLPHENOL	UG/KG	640 U	410 U	1200 U	770 U	630 U	710 U
N-NITROSODI-N-PROPYLAM		640 U	410 U	1200 U	770 UJ	630 U	710 U
HEXACHLOROETHANE	UG/KG	640 U	410 U	1200 U	770 U	630 U	710 U
NITROBENZENE	UG/KG	640 U	410 U	1200 U	770 U	630 U	710 U
ISOPHORONE	UG/KG	640 U	410 U	1200 U	770 U	630 U	710 U
2-NITROPHENOL	UG/KG	640 U	410 U	1200 U	770 U	630 U	710 U
2,4-DIMETHYLPHENOL	UG/KG	640 U	410 U	1200 U	770 U	630 U	710 U
BIS(2-CHLOROETHOXY) METH		640 U	410 U	1200 U	770 U	630 U	710 U
2,4-DICHLOROPHENOL	UG/KG	640 U	410 U	1200 U	770 U	630 U	710 U
1,2,4 – TRICHLOROBENZENE	UG/KG	640 U	410 U	1200 U	770 U	630 U	710 U
NAPHTHALENE	UG/KG	640 U	410 U	1200 U	770 U	630 U	710 U
4-CHLORANILINE	UG/KG	640 U	410 U	1200 U	770 U	630 U	710 U
HEXACHLOROBUTADIENE	UG/KG	640 U	410 U	1200 U	770 U	630 U	710 U

	ample No: Depth: sampled: Lab Id:	6-WC07-SD-06M N/A 8/23/92 00429-08	6-WC07-SD-612M N/A 8/23/92 00429-09	6-WC08-SD-06B N/A 8/23/92 00429-13	6-WC08-SD-06M N/A 8/23/92 00429-15	6-WC08-SD-612B N/A 8/23/92 00429-16	6-WC08-SD-612M N/A 8/23/92 00429-17
Parameter	Units						
SEMIVOLATILES Cont.							,
4-CHLORO-3-METHYLPHENC	DL UG/KG	640 U	410 U	1200 U	770 U	630 U	710 U
2-METHYLNAPHTHALENE	UG/KG	640 U	410 U	1200 U	770 U	630 U	710 U
HEXACHLOROCYCLOPENTAD	ENE UG/KG	640 U	410 U	1200 U	770 U	630 U	710 U
2,4,6-TRICHLOROPHENOL	UG/KG	640 U	410 U	1200 U	770 U	630 U	710 U
2,4,5-TRICHLOROPHENOL	UG/KG	1600 U	990 U	2800 U	1900 U	1500 U	1700 U
2-CHLORONAPHTHALENE	UG/KG	640 U	410 U	1200 U	770 U	630 U	710 U
2-NITROANILINE	UG/KG	1600 U	990 U	2800 U	1900 U	1500 U	1700 U
DIMETHYL PHTHALATE	UG/KG	640 U	410 U	1200 U	770 U	630 U	710 U
ACENAPHTHYLENE	UG/KG	640 U	410 U	1200 U	770 U	630 U	710 U
2,6-DINITROTOLUENE	UG/KG	640 U	410 U	1200 U	770 U	630 U	710 U
3-NITROANILINE	UG/KG	1600 U	990 UJ	2800 U	1900 U	1500 U	1700 U
ACENAPHTHENE	UG/KG	640 U	410 U	1200 U	770 U	630 U	710 U
2,4-DINITROPHENOL	UG/KG	1600 U	990 U	2800 U	1900 U	1500 U	1700 U
4-NITROPHENOL	UG/KG	1600 U	990 U	2800 U	1900 U	1500 U	1700 U
DIBENZOFURAN	UG/KG	640 U	410 U	1200 U	770 U	630 U	710 U
2.4-DINITROTOLUENE	UG/KG	640 U	410 U	1200 U	770 U	630 U	710 U
DIETHYL PHTHALATE	UG/KG	640 U	410 U	1200 U	120 J	630 U	710 U
4-CHLOROPHENYL PHENYL E	THER UG/KG	640 U	410 U	1200 U	770 U	630 U	710 U
FLUORENE	UG/KG	640 U	410 U	1200 U	770 U	630 U	710 U
4-NITROANILINE	UG/KG	1600 U	990 U	2800 U	1900 U	1500 U	1700 U
4.6-DINITRO-2-METHYLPHEN	NOL UG/KG	1600 U	990 U	2800 U	1900 U	1500 U	1700 U
N-NITRISODIPHENYLAMINE	UG/KG	640 U	410 U	1200 U	770 U	630 U	710 U
4-BROMOPHENYL PHENYL ET	HER UG/KG	640 U	410 U	1200 U	770 U	630 U	710 U
HEXACHLOROBENZENE	UG/KG	640 U	410 U	1200 U	770 U	630 U	710 U
PENTACHLOROPHENOL	UG/KG	1600 U	990 U	2800 U	1900 U	1500 U	1700 U
PHENANTHRENE	UG/KG	640 U	410 U	1200 U	770 U	630 U	76 J
ANTHRACENE	UG/KG	640 U	410 U	1200 U	770 U	630 U	710 U
DI-N-BUTYL PHTHALATE	UG/KG	640 U	410 U	1200 U	770 U	630 U	710 U
FLUORANTHENE	UG/KG	640 U	410 U	760 J	250 J	180 J	94 J
CARBAZOLE	UG/KG	640 U	410 UJ	1200 U	770 U	630 U	710 U
PYRENE	UG/KG	95 J	410 ÚJ	810 J	220 J	350 J	130 J
BUTYL BENZYL PHTHALATE	UG/KG	640 U	410 U	1200 U	770 U	630 U	710 U
3.3-DICHLOROBENZIDINE	UG/KG	640 U	410 U	1200 U	770 U	630 U	710 U
BENZO(A)ANTHRACENE	UG/KG	640 U	410 U	210 J	770 U	67 J	710 U
CHRYSENE	UG/KG	640 U	410 U	230 J	770 U	74 J	710 U
		640 U	410 U	1200 U	770 U	630 U	710 U
BIS(2-ETHYLHEXYL)PHTHALA DI-N-OCTYL PHTHALATE	UG/KG	640 U	410 U	1200 U	770 UJ	630 U	710 U
	UG/KG	640 U	410 U	420 J	140 J	95 J	710 U
BENZO(B)FLUORANTHENE	UG/KG	640 U	410 U	140 J	770 UJ	67 J	710 U
BENZO(K)FLUORANTHENE	UG/KG	640 U	410 U	140 J	770 UJ	630 U	710 U
BENZO(A)PYRENE	UG/KG	640 U	410 U	130 J	770 UJ	630 U	710 U
INDENO(1,2,3-CD) PYRENE	UG/KG	640 U	410 U	1200 U	770 UJ	630 U	710 U
DIBENZ(AH)ANTHRACENE		640 U	410 U	1200 U	770 UJ	630 U	710 U
BENZO(G,H,I)PERYLENE	UG/KG	040 0	410 0	1200 0	110 03	050 0	

F 12 of 21

ówcsdor.wki

	Depth: Date Sampled: Lab Id:	N/A 8/23/92 00429-21	N/A 8/23/92 00429-22	N/A 8/23/92 00429-23	N/A 8/23/92 00429-24	6-WC10-SD-06B N/A 8/22/92 00426-02	6-WC10-SD-06M N/A 8/22/92 00426-04
arameter	Units					00720-02	00420-04
PESTICIDE/PC	CBS						
LPHA-BHC	UG/KG	2.6 U	11 U	8.4 U	15 U	15 UJ	7 U
ETA-BHC	UG/KG	2.6 U	11 U	8.4 U	15 U	15 UJ	7 U
ELTA-BHC	UG/KG	2.6 U	11 U	8.4 U	15 U	15 UJ	7 U
AMMA-BHC(LINDANE)	UG/KG	2.6 U	11 U	8.4 U	15 U	15 UJ	7 UJ
EPTACHLOR	UG/KG	2.6 U	11 U	8.4 U	15 U	15 UJ	7 U
LDRIN	UG/KG	2.6 U	11 U	8.4 U	15 U	15 UJ	7 U
EPTACHLOR EPOXIDE	UG/KG	2.6 U	11 U	8.4 U	15 U	15 UJ	7 U
NDOSULFAN I	UG/KG	2.6 U	11 U	8.4 U	15 U	15 UJ	7 U
IELDRIN	UG/KG	5 U	22 U	16 U	30 U	30 UJ	14 U
4'-DDE	UG/KG	5.9	69	- 16 U	83	30 UJ	32
NDRIN	UG/KG	5 U	22 U	16 Ŭ	30 U	30 UJ	14 U
NDOSULFAN II	UG/KG	5 U	22 U	16 U	30 U	30 UJ	14 U
+ - DDD	UG/KG	7.4 J	80 J	16 J	49 J	30 UJ	44
NDOSULFAN SULFATE	UG/KG	5 U	22 U	16 U	30 U	30 UJ	14 U
₽-DDT	UG/KG	5 U	22 U	16 U	30 U	30 UJ	14 U
ETHOXYCHLOR	UG/KG	26 U	110 U	84 U	150 U	150 UJ	70 U
NDRIN KETONE	UG/KG	5 U	22 U	16 U	30 U	30 UJ	14 U
NDRIN ALDEHYDE	UG/KG	5 U	22 U	16 U	30 U	30 UJ	14 U
LPHA CHLORDANE	UG/KG	2.6 U	11 U	8.4 U	15 U	15 UJ	14 U 7 U
AMMA CHLORDANE	UG/KG	2.6 U	11 U	8.4 U	15 U	15 UJ	
OXAPHENE	UG/KG	260 U	1100 U	840 U	1500 U		7 U
CB-1016	UG/KG	50 U	220 U	160 U	300 U	1500 UJ 300 UJ	700 U
CB-1221	UG/KG	100 U	450 U	330 U	610 U		140 U
CB-1232	UG/KG	50 U	430 U 220 U	160 U	300 U	600 UJ	280 U
CB-1242	UG/KG	50 U	220 U	160 U	300 U	300 UJ	140 U
CB-1248	UG/KG	50 U	220 U			300 UJ	140 U
CB-1254	UG/KG	50 U		160 U	300 U	300 UJ	140 U
CB-1260	UG/KG		220 U	160 U	300 U	300 UJ	140 U
D-1200	00/K0	31 J	290 J	160 U	730 J	300 UJ	420
VOLATILES							
ILOROMETHANE	UG/KG	15 U	67 U	3100 U	30 U	110 U	56 U
ROMOMETHANE	UG/KG	15 U	67 U	3100 U	30 U	110 U	56 U
NYLCHLORIDE	UG/KG	15 U	67 U	3100 U	30 U	110 U	56 U
ILOROETHANE	UG/KG	15 U	67 U	3100 U	30 U	110 U	56 U
ETHYLENE CHLORIDE	UG/KG	15 U	67 U	3100 U	30 U	110 U	56 U
CETONE	UG/KG	240	170 UJ	24000 J	140 UJ	110 U	140 J
ARBON DISULFIDE	UG/KG	15 U	67 U	3100 U	5 J	110 U	56 U
-DICHLOROETHENE	UG/KG	15 U	67 U	3100 U	30 U	110 U	56 U
-DICHLOROETHANE	UG/KG	15 U	67 U	3100 U	30 U	110 U	56 U
-DICHLOROETHENE	UG/KG	15 U	67 U	3100 U	30 U	110 U	56 U
ILOROFORM	UG/KG	15 U	67 U	3100 U	30 U	110 U	56 U
-DICHLOROETHANE	UG/KG	15 U	67 U	3100 U	30 U	110 U	
BUTANONE	UG/KG	15 U	67 U	9300	30 U	110 U	56 U 56 U

6wcsdor.wk1

54.5 71 900

•	Sample No: Depth: Date Sampled: Lab Id:	6-WC09-SD-06B N/A 8/23/92 00429-21	6-WC09-SD-06M N/A 8/23/92 00429-22	6-WC09-SD-612B N/A 8/23/92 00429-23	6-WC09-SD-612M N/A 8/23/92 00429-24	6-WC10-SD-06B N/A 8/22/92 00426-02	6-WC10-SD-06M N/A 8/22/92 00426-04
Parameter	Units				·····		
VOLATILE	S Cont.						
1,1,1-TRICHLOROETH	ANE UG/KG	15 U	67 U	3100 U	30 U	110 U	56 U
CARBON TETRACHLO	RIDE UG/KG	15 U	67 U	3100 U	30 U	110 U	56 U
BROMODICHLOROME	THANE UG/KG	15 U	67 U	3100 U	30 U	110 U	56 U
1,2-DICHLOROPROPA	NE UG/KG	15 U	67 U	3100 U	30 U	110 U	. 56 U
CIS-1,3-DICHLOROPR	OPENE UG/KG	15 U	67 U	3100 U	30 U	110 U	56 U
TRICHLOROETHENE	UG/KG	15 U	67 U	3100 U	30 U	110 U	56 U
DIBROMOCHLOROME	THANE UG/KG	15 U	67 U	3100 U	30 U	110 U	56 U
1,1,2-TRICHLOROETH	ANE UG/KG	15 U	67 U	3100 U	30 U	110 U	56 U
BENZENE	UG/KG	15 UJ	67 U	3100 U	30 U	110 U	56 U
TRANS-1,3-DICHLOR	OPROPENE UG/KG	15 U	67 U	3100 U	30 U	110 U	56 U
BROMOFORM	UG/KG	15 U	67 U	3100 U	30 U	110 U	56 U
4-METHYL-2-PENTA	NONE UG/KG	15 U	67 U	3100 U	30 U	110 U	56 U
2-HEXANONE	UG/KG	15 U	67 U	3100 U	30 U	110 U	56 U
TETRACHLOROETHEN	NE UG/KG	15 U	67 U	3100 U	30 U	110 U	56 U
1,1,2,2-TETRACHLORO			67 U	3100 U	30 U	110 U	56 U
TOLUENE	UĠ/KG	15 UJ	67 U	3100 U	30 U	110 U	56 U
CHLOROBENZENE	UG/KG	15 U	67 U	3100 U	30 U	110 U	56 U
ETHYLBENZENE	UG/KG		67 U	3100 U	30 U	110 U	56 U
STYRENE	UG/KG		67 U	3100 U	30 U	110 U	56 U
TOTAL XYLENES	UG/KG		67 U	3100 U	30 U	110 U	56 U
SEMIVOLA	THES						
PHENOL	UG/KG	500 U	2200 U	1600 U	980 UJ	3000 U	1400 U
BIS(2-CHLOROETHYL			2200 U	1600 U	980 UJ	3000 U	1400 U
2-CHLOROPHENOL	UG/KG		2200 U	1600 U	980 UJ	3000 U	1400 U
1.3-DICHLOROBENZE			2200 U	1600 U	980 UJ	3000 U	1400 U
1.4-DICHLOROBENZE			2200 U	1600 U	980 UJ	3000 U	1400 UJ
1,2-DICHLOROBENZE			2200 U	1600 U	980 UJ	3000 U	1400 U
2-METHYLPHENOL	UG/KG		2200 U	1600 U	980 UJ	3000 U	1400 U
2,2'-OXYBIS (1-CHLOI			2200 U	1600 U	980 UJ	3000 U	1400 U
4-METHYLPHENOL	ÚG/KG	500 U	2200 U	1600 U	980 UJ	3000 U	1400 U
N-NITROSODI-N-PRO			2200 UJ	1600 U	980 UJ	3000 U	1400 UJ
HEXACHLOROETHANI			2200 U	1600 U	980 UJ	3000 U	1400 U
NITROBENZENE	UG/KG		2200 U	1600 U	980 UJ	3000 U	1400 U
ISOPHORONE	UG/KG		2200 U	1600 U	980 UJ	3000 U	1400 U
2-NITROPHENOL	UG/KG		2200 U	1600 U	980 UJ	3000 U	1400 U
2.4-DIMETHYLPHENO			2200 U	1600 U	980 UJ	3000 U	1400 U
BIS(2-CHLOROETHOX			2200 U	1600 U	980 UJ	3000 U	1400 U
2,4-DICHLOROPHENO	/		2200 U	1600 U	980 UJ	3000 U	1400 U
1.2.4-TRICHLOROBENZ			2200 U	1600 U	980 UJ	3000 U	1400 UJ
NAPHTHALENE	UG/KG		2200 U	1600 U	980 UJ	3000 U	1400 U
4-CHLORANILINE	UG/KG		2200 U	1600 U	980 UJ	3000 U	1400 U
	IENE UG/KG	500 U	2200 U	1600 U	980 UJ	3000 U	1400 U

r

Parameter Units SEMIVOLATILES Cont.	980 UJ 980 UJ 980 UJ 2400 UJ 980 UJ 2400 UJ	3000 U 1. 3000 U 1. 3000 U 1.	1400 UJ 1400 U 1400 U
4-CHLORO-3-METHYLPHENOL UG/KG 500 U 2200 U 1600 U 2-METHYLNAPHTHALENE UG/KG 500 U 2200 U 1600 U HEXACHLOROCYCLOPENTADIENE UG/KG 500 U 2200 U 1600 U 24,6 - TRICHLOROPHENOL UG/KG 500 U 2200 U 1600 U 24,5 - TRICHLOROPHENOL UG/KG 1200 U 5300 U 4000 U 2-CHLORONAPHTHALENE UG/KG 1200 U 5300 U 4000 U 2-CHLORONAPHTHALENE UG/KG 1200 U 5300 U 4000 U 2-NITROANILINE UG/KG 1200 U 3300 U 4000 U 2-NITROANILINE UG/KG 500 U 2200 U 1600 U ACENAPHTHYLENE UG/KG 500 U 2200 U 1600 U 2,6 - DINITROTOLUENE UG/KG 500 U 2200 U 1600 U 3-NITROANILINE UG/KG 1200 U 5300 U 4000 U 2,4 - DINITROTOLUENE UG/KG 1200 U 5300 U 4000 U 2,4 - DINITROPHENOL UG/KG 1200 U 5300 U 4000 U 2,4 - DINITROPHENOL UG/KG	980 UJ 980 UJ 980 UJ 2400 UJ 980 UJ 2400 UJ	3000 U 1. 3000 U 1. 3000 U 1.	1400 U
4-CHLORO-3-METHYLPHENOL UG/KG 500 U 2200 U 1600 U 2-METHYLNAPHTHALENE UG/KG 500 U 2200 U 1600 U HEXACHLOROCYCLOPENTADIENE UG/KG 500 U 2200 U 1600 U 24,6 - TRICHLOROPHENOL UG/KG 500 U 2200 U 1600 U 24,5 - TRICHLOROPHENOL UG/KG 1200 U 5300 U 4000 U 2-CHLORONAPHTHALENE UG/KG 1200 U 5300 U 4000 U 2-CHLORONAPHTHALENE UG/KG 1200 U 5300 U 4000 U 2-NITROANILINE UG/KG 1200 U 3300 U 4000 U 2-NITROANILINE UG/KG 500 U 2200 U 1600 U ACENAPHTHYLENE UG/KG 500 U 2200 U 1600 U 2,6 - DINITROTOLUENE UG/KG 500 U 2200 U 1600 U 3-NITROANILINE UG/KG 1200 U 5300 U 4000 U 2,4 - DINITROTOLUENE UG/KG 1200 U 5300 U 4000 U 2,4 - DINITROPHENOL UG/KG 1200 U 5300 U 4000 U 2,4 - DINITROPHENOL UG/KG	980 UJ 980 UJ 980 UJ 2400 UJ 980 UJ 2400 UJ	3000 U 1. 3000 U 1. 3000 U 1.	1400 U
HEXACHLOROCYCLOPENTADIENE UG/KG 500 U 2200 U 1600 U 24,6-TRICHLOROPHENOL UG/KG 500 U 2200 U 1600 U 24,5-TRICHLOROPHENOL UG/KG 1200 U 5300 U 4000 U 2-CHLORONAPHTHALENE UG/KG 1200 U 5300 U 4000 U 2-CHLORONAPHTHALENE UG/KG 1000 U 2200 U 1600 U 2-NITROANILINE UG/KG 1000 U 5300 U 4000 U DIMETHYL PHTHALATE UG/KG 500 U 2200 U 1600 U ACENAPHTHYLENE UG/KG 500 U 2200 U 1600 U 2,6-DINITROTOLUENE UG/KG 500 U 2200 U 1600 U 3-NITROANILINE UG/KG 1200 U 5300 U 4000 U 4-DINITROPHENOL UG/KG 1200 U 5300 U 4000 U 2,4-DINITROPHENOL UG/KG 1200 U 5300 U 4000 U 2,4-DINITROPHENOL UG/KG 1200 U 5300 U 4000 U 2,4-DINITROPHENOL UG/KG 500 U 2	980 UJ 980 UJ 2400 UJ 980 UJ 2400 UJ	3000 U 14 3000 U 14	
2,4,6-TRICHLOROPHENOL UG/KG 500 U 2200 U 1600 U 2,4,5-TRICHLOROPHENOL UG/KG 1200 U 3300 U 4000 U 2-CHLORONAPHTHALENE UG/KG 500 U 2200 U 1600 U 2-OHIROANILINE UG/KG 1200 U 5300 U 4000 U DIMETHYL PHTHALATE UG/KG 1200 U 5300 U 4000 U ACENAPHTHYLENE UG/KG 500 U 2200 U 1600 U 2,6-DINITROTOLUENE UG/KG 500 U 2200 U 1600 U 3-NITROANILINE UG/KG 1200 U 5300 U 4000 U 4.6ENAPHTHYLENE UG/KG 500 U 2200 U 1600 U 3-NITROANILINE UG/KG 1200 U 5300 U 4000 U 4.6ENAPHTHENE UG/KG 1200 U 5300 U 4000 U 2,4-DINITROPHENOL UG/KG 1200 U 5300 U 4000 U 2,4-DINITROPHENOL UG/KG 1200 U 5300 U 4000 U DIBENZOFURAN UG/KG 500 U 2200 U 1600 U 2,4-DINITROTOLUENE UG/KG 500 U 2200 U <td>980 UJ 2400 UJ 980 UJ 2400 UJ</td> <td>3000 U 14</td> <td>400 U</td>	980 UJ 2400 UJ 980 UJ 2400 UJ	3000 U 14	400 U
24,5-TRICHLOROPHENOL UG/KG 1200 U 5300 U 4000 U 2-CHLORONAPHTHALENE UG/KG 500 U 2200 U 1600 U 2-NITROANILINE UG/KG 1200 U 5300 U 4000 U DIMETHYL PHTHALATE UG/KG 500 U 2200 U 1600 U ACENAPHTHYL PHTHALATE UG/KG 500 U 2200 U 1600 U ACENAPHTHYLENE UG/KG 500 U 2200 U 1600 U 3-NITROANILINE UG/KG 500 U 2200 U 1600 U 3-NITROANILINE UG/KG 1200 U 5300 U 4000 UJ ACENAPHTHENE UG/KG 1200 U 5300 U 4000 UJ ACENAPHTHENE UG/KG 1200 U 5300 U 4000 U 2,4-DINITROPHENOL UG/KG 1200 U 5300 U 4000 U 2,4-DINITROPHENOL UG/KG 1200 U 5300 U 4000 U DIBENZOFURAN UG/KG 500 U 2200 U 1600 U 2,4-DINITROTOLUENE UG/KG 500 U 2200 U 1600 U 2,4-DINITROTOLUENE UG/KG 500 U 2200 U	2400 UJ 980 UJ 2400 UJ		
2-CHLORONAPHTHALENE UG/KG 500 U 200 U 1000 U 2-NITROANILINE UG/KG 1200 U 5300 U 4000 U DIMETHYL PHTHALATE UG/KG 500 U 2200 U 1600 U ACENAPHTHYLENE UG/KG 500 U 2200 U 1600 U 2,6-DINITROTOLUENE UG/KG 500 U 2200 U 1600 U 3-NITROANILINE UG/KG 500 U 2200 U 1600 U 3-NITROANILINE UG/KG 1200 U 5300 U 4000 UJ ACENAPHTHENE UG/KG 1200 U 5300 U 4000 UJ ACENAPHTHENE UG/KG 1200 U 5300 U 4000 UJ 2,4-DINITROPHENOL UG/KG 1200 U 5300 U 4000 U 4-NITROPHENOL UG/KG 500 U 2200 U 1600 U 2,4-DINITROTOLUENE UG/KG 500 U 2200 U 1600 U 2,4-DINITROTOLUENE UG/KG 500 U 2200 U 1600 U 2,4-DINITROTOLUENE UG/KG 500 U 2200 U 1600 U	980 UJ 2400 UJ	7200 U 3.	1400 U
2-NITROANILINE UG/KG 1200 U 5300 U 4000 U DIMETHYL PHTHALATE UG/KG 500 U 2200 U 1600 U ACENAPHTHYLENE UG/KG 500 U 2200 U 1600 U 2,6-DINITROTOLUENE UG/KG 500 U 2200 U 1600 U 3-NITROANILINE UG/KG 1200 U 5300 U 4000 UJ ACENAPHTHENE UG/KG 1200 U 5300 U 4000 UJ ACENAPHTHENE UG/KG 500 U 2200 U 1600 U 2,4-DINITROPHENOL UG/KG 1200 U 5300 U 4000 U JIBENZOFURAN UG/KG 500 U 2200 U 1600 U JIBENZOFURAN UG/KG 500 U 2200 U 1600 U DIETHYL PHTHALATE UG/KG 500 U 2200 U 1600 U JIETHYL PHTHALATE UG/KG 500 U 2200 U 1600 U	2400 UJ		300 U
DIMETHYL PHTHALATE UG/KG 500 U 2200 U 1600 U ACENAPHTHYLENE UG/KG 500 U 2200 U 1600 U 2,6-DINITROTOLUENE UG/KG 500 U 2200 U 1600 U 3-NITROANILINE UG/KG 500 U 2200 U 1600 U 3-NITROANILINE UG/KG 1200 U 5300 U 4000 UJ ACENAPHTHENE UG/KG 500 U 2200 U 1600 U 4-DINITROPHENOL UG/KG 1200 U 5300 U 4000 U 2,4-DINITROPHENOL UG/KG 1200 U 5300 U 4000 U JIBENZOFURAN UG/KG 500 U 2200 U 1600 U JIETHYL PHTHALATE UG/KG 500 U 2200 U 1600 U JIETHYL PHTHALATE UG/KG 500 U 2200 U 1600 U		3000 U 1	1400 U
ACENAPHTHYLENE UG/KG 500 U 2200 U 1600 U 2,6-DINITROTOLUENE UG/KG 500 U 2200 U 1600 U 3-NITROANILINE UG/KG 1200 U 5300 U 4000 UJ ACENAPHTHENE UG/KG 1200 U 5300 U 4000 UJ ACENAPHTHENE UG/KG 1200 U 5300 U 4000 U 2,4-DINITROPHENOL UG/KG 1200 U 5300 U 4000 U JIBENZOFURAN UG/KG 500 U 2200 U 1600 U DIETHYL PHTHALATE UG/KG 500 U 2200 U 1600 U 4CHLOROPHENYL PHENYL ETHER UG/KG 500 U 2200 U 1600 U			300 U
2,6-DINITROTOLUENE UG/KG 500 U 2200 U 1600 U 3-NITROANILINE UG/KG 1200 U 5300 U 4000 UJ ACENAPHTHENE UG/KG 500 U 2200 U 1600 U 2,4-DINITROPHENOL UG/KG 1200 U 5300 U 4000 U 4-NITROPHENOL UG/KG 1200 U 5300 U 4000 U JIBENZOFURAN UG/KG 500 U 2200 U 1600 U 2,4-DINITROTOLUENE UG/KG 500 U 2200 U 1600 U JIETHYL PHTHALATE UG/KG 500 U 2200 U 1600 U 4-CHLOROPHENYL PHENYL ETHER UG/KG 500 U 2200 U 1600 U	YOU UJ		400 U
3-NITROANILINE UG/KG 1200 U 5300 U 4000 UJ ACENAPHTHENE UG/KG 500 U 2200 U 1600 U 2,4-DINITROPHENOL UG/KG 1200 U 5300 U 4000 U 4-NITROPHENOL UG/KG 1200 U 5300 U 4000 U JBENZOFURAN UG/KG 500 U 2200 U 1600 U 2,4-DINITROTOLUENE UG/KG 500 U 2200 U 1600 U JBENZOFURAN UG/KG 500 U 2200 U 1600 U 4-CHLOROPHENYL PHENYL ETHER UG/KG 500 U 2200 U 1600 U			400 U
ACENAPHTHENE UG/KG 500 U 2200 U 1600 U 2,4-DINITROPHENOL UG/KG 1200 U 5300 U 4000 U 4-NITROPHENOL UG/KG 1200 U 5300 U 4000 U DIBENZOFURAN UG/KG 500 U 2200 U 1600 U 2,4-DINITROTOLUENE UG/KG 500 U 2200 U 1600 U DIETHYL PHTHALATE UG/KG 500 U 2200 U 1600 U 4-CHLOROPHENYL PHENYL ETHER UG/KG 500 U 2200 U 1600 U	980 UJ	3000 U 14	400 U
ACENAPHTHENE UG/KG 500 U 2200 U 1600 U 2,4-DINITROPHENOL UG/KG 1200 U 5300 U 4000 U 4-NITROPHENOL UG/KG 1200 U 5300 U 4000 U DIBENZOFURAN UG/KG 500 U 2200 U 1600 U 2,4-DINITROTOLUENE UG/KG 500 U 2200 U 1600 U DIETHYL PHTHALATE UG/KG 500 U 2200 U 1600 U 4-CHLOROPHENYL PHENYL ETHER UG/KG 500 U 2200 U 1600 U			300 U
2.4-DINITROPHENOL UG/KG 1200 U 5300 U 4000 U 4-NITROPHENOL UG/KG 1200 U 5300 U 4000 U DIBENZOFURAN UG/KG 500 U 2200 U 1600 U 2,4-DINITROTOLUENE UG/KG 500 U 2200 U 1600 U DIETHYL PHTHALATE UG/KG 500 U 2200 U 1600 U 4-CHLOROPHENYL PHENYL ETHER UG/KG 500 U 2200 U 1600 U			400 UJ
4-NITROPHENOL UG/KG 1200 U 5300 U 4000 U DIBENZOFURAN UG/KG 500 U 2200 U 1600 U 2,4-DINITROTOLUENE UG/KG 500 U 2200 U 1600 U DIETHYL PHTHALATE UG/KG 500 U 2200 U 1600 U 4-CHLOROPHENYL PHENYL ETHER UG/KG 500 U 2200 U 1600 U			300 U
DIBENZOFURAN UG/KG 500 U 2200 U 1600 U 2,4-DINITROTOLUENE UG/KG 500 U 2200 U 1600 U DIETHYL PHTHALATE UG/KG 500 U 2200 U 1600 U 4-CHLOROPHENYL PHENYL ETHER UG/KG 500 U 2200 U 1600 U			300 U
2.4-DINITROTOLUENE UG/KG 500 U 2200 U 1600 U DIETHYL PHTHALATE UG/KG 500 U 2200 U 1600 U 4-CHLOROPHENYL PHENYL ETHER UG/KG 500 U 2200 U 1600 U			400 U
DIETHYL PHTHALATE UG/KG 500 U 2200 U 1600 U 4-CHLOROPHENYL PHENYL ETHER UG/KG 500 U 2200 U 1600 U			400 UJ
4–CHLOROPHENYL PHENYL ETHER UG/KG 500 U 2200 U 1600 U			400 U
			400 U
			400 U
4-NITROANILINE UG/KG 1200 U 5300 U 4000 U			300 U
4.6-DINITRO-2-METHYLPHENOL UG/KG 1200 U 5300 U 4000 U			300 U
N-NITRISODIPHENYLAMINE UG/KG 500 U 2200 U 1600 U	980 UJ 3		400 U
4-BROMOPHENYL PHENYL ETHER UG/KG 500 U 2200 U 1600 U	980 UJ 3	3000 U 14	400 U
HEXACHLOROBENZENE UG/KG 500 U 2200 U 1600 U			400 U
PENTACHLOROPHENOL UG/KG 1200 U 5300 U 4000 U			300 UJ
PHENANTHRENE UG/KG 500 U 2200 U 1600 U			400 U
ANTHRACENE UG/KG 500 U 2200 U 1600 U	980 UJ 3	3000 U 14	400 U
DI-N-BUTYL PHTHALATE UG/KG 500 U 2200 U 1600 U	980 UJ 3	3000 U 14	400 U
FLUORANTHENE UG/KG 330 J 2200 U 1600 U	250 J 3	3000 U 2	260 J
CARBAZOLE UG/KG 500 U 2200 U 1600 UJ	980 UJ 3	3000 UJ 14	400 U
PYRENE UG/KG 410 J 2200 U 1600 UJ	190 J 3	3000 UJ 3	300 J
BUTYL BENZYL PHTHALATE UG/KG 500 U 2200 U 1600 U	980 UJ 3	3000 U 14	400 U
3,3-DICHLOROBENZIDINE UG/KG 500 U 2200 U 1600 U	980 UJ 3	3000 U 14	400 U
BENZO(A)ANTHRACENE UG/KG 120 J 2200 U 1600 U	980 UJ 3	3000 U 14	400 U
CHRYSÈNE UG/KG 74 J 2200 U 1600 U	980 UJ 3	3000 U 14	400 U
BIS(2-ETHYLHEXYL)PHTHALATE UG/KG 500 U 2200 U 2100 U		3000 U 14	400 U
DI-N-OCTYL PHTHÁLATE UG/KG 500 U 2200 U 1600 U	980 UJ 3	3000 U 14	400 U
BENZO(B)FLUORANTHENE UG/KG 140 J 2200 U 190 J	980 UJ 3	3000 U 14	400 U
BENZO(K)FLUORANTHENE UG/KG 500 U 2200 U 1600 U	980 UJ 3		400 U
BENZO(Á)PYRENE UG/KG 75 J 2200 U 1600 U	480 J 3		400 U
INDENO(1,2,3-CD) PYRENE UG/KG 500 U 2200 UJ 1600 U		3000 U 14	400 U
DIBENZ(A,H)ANTHRACENE UG/KG 500 U 2200 UJ 1600 U	980 UJ 3	•	
BENZO(G,H,I)PERYLENE UG/KG 500 U 2200 UJ 1600 U			400 U

6wcsdor.wk1

	Sample No: Depth: Date Sampled: Lab Id:	6-WC10-SD-612M N/A 8/22/92 00426-05	6-WC11-SD-06B N/A 8/22/92 00426-10	6-WC11-SD-06M N/A 8/22/92 00426-11
Parameter	Units	00420-05	00420-10	00420-11
PESTICIDE/PC	BS			
ALPHA-BHC	UG/KG	4.1 UJ	17 U	6.2 UJ
BETA-BHC	UG/KG	4.1 UJ	17 U	6.2 UJ
DELTA-BHC	UG/KG	4.1 UJ	17 U	6.2 UJ
GAMMA-BHC(LINDANE)	UG/KG	4.1 UJ	17 UJ	6.2 UJ
HEPTACHLOR	UG/KG	4.1 UJ	17 U	6.2 UJ
ALDRIN	UG/KG	4.1 UJ	17 U	6.2 UJ
HEPTACHLOR EPOXIDE	UG/KG	4.1 UJ	17 U	6.2 UJ
ENDOSULFAN I	UG/KG	4.1 UJ	17 U	6.2 UJ
DIELDRIN	UG/KG	8 UJ	33 U	12 UJ
L4'-DDE	UG/KG	34 J	33 U	25 J
ENDRIN	UG/KG	8 UJ	33 U	12 UJ
ENDOSULFAN II	UG/KG	8 UJ	33 U	12 UJ
4'-DDD	UG/KG	43 J	35 J	42 J
ENDOSULFAN SULFATE	UG/KG	8 UJ	33 U	12 UJ
L4'-DDT	UG/KG	8 UJ	33 U	12 UJ
METHOXYCHLOR	UG/KG	41 UJ	170 U	62 UJ
ENDRIN KETONE	UO/KO	8 UJ	33 U	12 UJ
ENDRIN ALDEHYDE	UG/KG	8 UJ	33 U	12 UJ
ALPHA CHLORDANE	UG/KG	4.1 UJ	17 U	6.2 UJ
	UG/KG	4.1 UJ	17 U	6.2 UJ
JAMMA CHLORDANE	UG/KG UG/KG	4.1 UJ 410 UJ	1700 U	620 UJ
TOXAPHENE	UG/KG	410 UJ 80 UJ	330 U	120 UJ
PCB-1016	UG/KG	160 UJ	670 U	250 UJ
PCB-1221			330 U	120 UJ
PCB-1232	UG/KG	80 UJ		120 UJ
PCB-1242	UG/KG	80 UJ	330 U	120 UJ
PCB-1248	UG/KG	80 UJ	330 U	
PCB-1254	UG/KG	80 UJ	330 U	120 UJ
PCB-1260	UG/KG	160 J	330 U	120 J
VOLATILES				
CHLOROMETHANE	UG/KG	29 U	110 U	32 U
BROMOMETHANE	UG/KG	29 U	110 U	32 U
VINYL CHLORIDE	UG/KG	29 U	110 U	32 U
CHLOROETHANE	UG/KG	29 U	110 U	32 U
METHYLENE CHLORIDE	UG/KG	29 U	110 U	32 U
ACETONE	UG/KG	200 J	330 J	72 J
CARBON DISULFIDE	UG/KG	24 J	110 U	15 J
1.1-DICHLOROETHENE	UG/KG	29 U	110 U	32 U
1.1-DICHLOROETHANE	UG/KG	29 U	110 U	32 U
1.2-DICHLOROETHENE	UG/KG	29 U	110 U	32 U
CHLOROFORM	UG/KG	29 U	110 U	32 U
1.2-DICHLOROETHANE	UG/KG	29 U	110 U	32 U
2-BUTANONE	UG/KG	22 J	110 U	32 U

6wcsdor.wk1

. 1	Sample No: Depth: Date Sampled: Lab Id:	6-WC10-SD-612M N/A 8/22/92 00426-05	6-WC11-SD-06B N/A 8/22/92 00426-10	6-WC11-SD-06M N/A 8/22/92 00426-11
Parameter	Units	00420-03	00420-10	00420-11
VOLATILES Cont	L			
1,1,1-TRICHLOROETHANE	UG/KG	29 U	110 U	32 U
CARBON TETRACHLORIDE	UG/KG	29 U	110 U	32 U
BROMODICHLOROMETHAN		29 U	110 U	32 U
1,2-DICHLOROPROPANE	UG/KG	29 U	110 U	32 U
CIS-13-DICHLOROPROPEN		29 U	110 U	32 U
TRICHLOROETHENE	UG/KG	29 U	110 U	32 U
DIBROMOCHLOROMETHAN		29 U	110 U	32 U
1,1,2-TRICHLOROETHANE	UG/KG	29 U	110 U	32 U
BENZENE	UG/KG	29 U	110 U	32 U
TRANS-1,3-DICHLOROPRO		29 U	110 U	32 U
BROMOFORM	UG/KG	29 U	110 U	32 U
-METHYL-2-PENTANONE		29 U	110 U	32 U
2-HEXANONE	UG/KG	29 U	110 U	32 U
TETRACHLOROETHENE	UG/KG	29 U	110 U	32 U
1,1,2,2-TETRACHLOROETHA		29 U	110 U	32 U
TOLUENE	UG/KG	29 U	110 U	32 U
CHLOROBENZENE	UG/KG	29 U	110 U	32 U
ETHYLBENZENE	UG/KG	29 U	110 U	32 U
STYRENE	UG/KG	29 U	110 U	32 U
TOTAL XYLENES	UG/KG	29 U	110 U	32 U
SEMIVOLATILES	5			
PHENOL	UG/KG	790 U	3300 UR	1200 U
BIS(2-CHLOROETHYL) ETH	ER UG/KG	790 U	3300 UR	1200 U
2-CHLOROPHENOL	UG/KG	790 U	3300 UR	1200 U
1,3-DICHLOROBENZENE	UG/KG	790 U	3300 UR	1200 U
4-DICHLOROBENZENE	UG/KG	790 U	3300 UR	1200 U
1,2-DICHLOROBENZENE	UG/KG	790 U	3300 UR	1200 U
-METHYLPHENOL	UG/KG	790 U	3300 UR	1200 U
2,2'-OXYBIS (1-CHLOROPRO	OPANE) UG/KG	790 U	3300 UR	1200 U
-METHYLPHENOL	UG/KG	790 U	3300 UR	1200 U
N-NITROSODI-N-PROPYL		790 U	3300 UR	1200 U
IEXACHLOROETHANE	UG/KG	790 U	3300 UR	1200 U
NITROBENZENE	UG/KG	790 U	3300 UR	1200 U
SOPHORONE	UG/KG	790 U	3300 UR	1200 U
-NITROPHENOL	UG/KG	790 U	3300 UR	1200 U
4-DIMETHYLPHENOL	UG/KG	790 U	3300 UR	1200 U
BIS(2-CHLOROETHOXY) ME		790 U	3300 UR	1200 U
4-DICHLOROPHENOL	UG/KG	790 U	3300 UR	1200 U
,2,4-TRICHLOROBENZENE	UG/KG	790 U	3300 UR	1200 U
NAPHTHALENE	UG/KG	790 U	3300 UR	1200 U
-CHLORANILINE	UG/KG	790 U	3300 UR	1200 U
HEXACHLOROBUTADIENE	UG/KG	790 U	3300 UR	1200 U

.

	mple No: Depth: Sampled: Lab Id:	6-WC10-SD-612M N/A 8/22/92 00426-05	6-WC11-SD-06B N/A 8/22/92 00426-10	6-WC11-SD-06M N/A 8/22/92 00426-11
Parameter	Units	· · .		
SEMIVOLATILES Cont.				
4-CHLORO-3-METHYLPHENO	L UG/KG	790 U	3300 UR	1200 U
2-METHYLNAPHTHALENE	UG/KG	790 U	3300 UR	1200 U
HEXACHLOROCYCLOPENTADI		790 U	3300 UR	1200 U
2.4.6-TRICHLOROPHENOL	UG/KG	790 U	3300 UR	1200 U
2,4,5-TRICHLOROPHENOL	UG/KG	1900 U	7900 UR	3000 U
2-CHLORONAPHTHALENE	UG/KG	790 U	3300 UR	1200 U
2-NITROANILINE	UG/KG	1900 U	7900 UR	3000 U
DIMETHYL PHTHALATE	UG/KG	790 U	3300 UR	1200 U
ACENAPHTHYLENE	UG/KG	790 U	3300 UR	1200 U
2,6-DINITROTOLUENE	UG/KG	790 U	3300 UR	1200 U
3-NITROANILINE	UG/KG	1900 UJ	7900 UR	3000 U
ACENAPHTHENE	UG/KG	790 U	3300 UR	1200 U
2,4-DINITROPHENOL	UG/KG	1900 U	7900 UR	3000 U
4-NITROPHENOL	UG/KG	1900 U	7900 UR	3000 U
DIBENZOFURAN	UG/KG	790 LJ	3300 UR	1200 U
2,4-DINITROTOLUENE	UG/KG	790 U	3300 UR	1200 U
DIETHYL PHTHALATE	UG/KG	790 U	3300 UR	1200 U
4-CHLOROPHENYL PHENYL ET	HER UG/KG	790 U	3300 UR	1200 U
FLUORENE	UG/KG	790 U	3300 UR	1200 U
4-NITROANILINE	UG/KG	1900 U	7900 UR	3000 U
4,6-DINITRO-2-METHYLPHEN	OL UG/KG	1900 U	7900 UR	3000 U
N-NITRISODIPHENYLAMINE	UG/KG	790 U	3300 UR	1200 U
4-BROMOPHENYL PHENYL ETH	IER UG/KG	790 U	3300 UR	1200 U
HEXACHLOROBENZENE	UG/KG	790 U	3300 UR	1200 U
PENTACHLOROPHENOL	UG/KG	1900 U	7900 UR	3000 U
PHENANTHRENE	UG/KG	790 U	3300 UR	1200 U
ANTHRACENE	UG/KG	790 U	3300 UR	1200 U
DI-N-BUTYL PHTHALATE	UG/KG	790 U	3300 UR	1200 U
FLUORANTHENE	UG/KG	330 J	3300 UR	200 J
CARBAZOLE	UG/KG	790 UJ	3300 UR	1200 U
PYRENE	UG/KG	230 J	3300 UR	120 J
BUTYL BENZYL PHTHALATE	UG/KG	790 U	3300 UR	1200 U
3,3-DICHLOROBENZIDINE	UG/KG	790 U	3300 UR	1200 U
BENZO(A)ANTHRACENE	UG/KG	130 J	3300 UR	1200 U
CHRYSÈNE	UG/KG	790 U	3300 UR	1200 U
BIS(2-ETHYLHEXYL)PHTHALAT	TE UG/KG	790 U	960 J	1200 U
DI-N-OCTYL PHTHALATE	UG/KG	790 U	3300 UR	1200 UJ
BENZO(B)FLUORANTHENE	UG/KG	94 J	3300 UR	1200 UJ
BENZO(K)FLUORANTHENE	UG/KG	790 U	3300 UR	1200 UJ
BENZO(A)PYRENE	UG/KG	790 U	3300 UR	1200 UJ
INDENO(1,2,3-CD) PYRENE	UG/KG	790 U	3300 UR	1200 UJ
DIBENZ(AH)ANTHRACENE	UG/KG	790 U	3300 UR	1200 UJ
BENZO(G,H,I)PERYLENE	UG/KG	790 U	3300 UR	1200 UJ

..

	Sample No: Depth: Date Sampled: Lab Id:	MINIMUM NONDETECTED	MAXIMUM NONDETECTED	MINIMUM DETECTED	MAXIMUM DETECTED	LOCATION OF MAXIMUM DETECTED	FREQUENCY OF DETECTION
Parameter	Units						
PESTICIDE/P	CBS						
ALPHA-BHC	UG/KG	2.1 U	24 U	ND	ND		0/33
BETA-BHC	UG/KG	2.1 U	24 U	ND	ND		0/33
DELTA-BHC	UG/KG	2.1 U	24 U	ND	ND		0/33
GAMMA-BHC(LINDANE)) UG/KG	2.1 U	24 U	ND	ND		0/33
HEPTACHLOR	UG/KG	2.1 U	24 U	ND	ND		0/33
ALDRIN	UG/KG	2.1 U	24 U	ND	ND		0/33
HEPTACHLOR EPOXIDE	UG/KG	2.1 U	24 U	ND	ND		0/33
ENDOSULFAN I	UG/KG	2.1 U	24 U	ND	ND		0/33
DIELDRIN	UG/KG	4.1 U	47 U	4.8 J	4.8 J	6-WC01-SD-612D	1/33
4,4'-DDE	UG/KG	4.6 UJ	47 U	5.9	83	6-WC09-SD-612M	14/33
ENDRIN	UG/KG	4.1 U	47 U	ND	ND		0/33
ENDOSULFAN II	UG/KG	4.1 U	47 U	ND	ND		0/33
4,4'-DDD	UG/KG	4.1 U	47 U	7.4 J	200 J	6-WC08-SD-06M	15/33
ENDOSULFAN SULFATE	UG/KG	4.1 U	47 U	ND	ND		0/33
44'-DDT	UG/KG	4.1 U	47 U	200 J	1200 J	6-WC08-SD-06M	3/33
METHOXYCHLOR	UG/KG	21 U	240 U	ND	ND		0/33
ENDRIN KETONE	UG/KG	4.1 U	47 U	ND	ND		0/33
ENDRIN ALDEHYDE	UG/KG	4.1 U	47 Ŭ	ND	ND		0/33
ALPHA CHLORDANE	UG/KG	2.1 U	24 U	ND	ND		0/33
GAMMA CHLORDANE	UG/KG	2.1 U	24 U	ND	ND		0/33
TOXAPHENE	UG/KG	210 U	2400 U	ND	ND		0/33
PCB-1016	UG/KG	41 U	470 U	ND	ND		0/33
PCB-1221	UG/KG	83 U	940 U	ND	ND		0/33
PCB-1232	UG/KG	41 U	470 U	ND	ND		0/33
PCB-1242	UG/KG	41 U 41 U	470 U	ND	ND		0/33
PCB-1248	UG/KG	41 U 41 U	470 U	ND	ND		0/33
PCB-1254	UG/KG	41 U 41 U	470 U	ND	ND		0/33
PCB-1260	UG/KG	41 U 41 U	470 U	31 J	2100 J	6-WC08-SD-06M	0/33 14/33
VOLATILE							
CHLOROMETHANE	UG/KG	12 U	3100 U	ND	ND		0/33
BROMOMETHANE	UG/KG	12 U	3100 U	ND	ND		0/33
VINYL CHLORIDE	UG/KG	12 U	3100 U	ND	ND		0/33
CHLOROETHANE	UG/KG	12 U	3100 U	ND	ND		0/33
METHYLENE CHLORIDE	UG/KG	13 U	3100 U	6 J	910 J	6-WC03-SD-612B	3/33
ACETONE	UG/KG	12 U	1800 U	26	24000 J	6-WC09-SD-612B	17/33
CARBON DISULFIDE	UG/KG	13 U	3100 U	2 J	24 J	6-WC10-SD-612M	5/33
1,1-DICHLOROETHENE	UG/KG	12 U	3100 U	ND	ND		0/33
1,1-DICHLOROETHANE	UG/KG	12 U	3100 U	ND	ND		0/33
1,2-DICHLOROETHENE	UG/KG	12 U	3100 U	31 J	31 J	6-WC07-SD-06B	1/33
CHLOROFORM	UG/KG	12 U	3100 U	ND	ND		0/33
2-DICHLOROETHANE	UG/KG	12 U	3100 U	ND	ND		0/33
2-BUTANONE	UG/KG	12 U	2200 U	21 J	9300	6-WC09-SD-612B	4/33

	Sample No:							
	Depth:					LOCATION OF	FREQUENCY	
	Date Sampled:	MINIMUM	MAXIMUM	MINIMUM	MAXIMUM	MAXIMUM	OF	
	Lab Id:	NONDETECTED	NONDETECTED	DETECTED	DETECTED	DETECTED	DETECTION	
arameter	Units							
VOLATILE	S Cont.	·						
1,1,1-TRICHLOROETHA	ANE UG/KG	12 U	3100 U	ND	ND		0/33	
CARBON TETRACHLOR	NIDE UG/KG	12 U	3100 U	ND	ND		0/33	
ROMODICHLOROME	THANE UG/KG	12 U	3100 U	ND	ND		0/33	
2-DICHLOROPROPA	NE UG/KG	12 U	3100 U	ND	ND		0/33	
IS-13-DICHLOROPR	OPENE UG/KG	12 U	3100 U	ND	ND		0/33	
RICHLOROETHENE	UG/KG	12 U	3100 U	7. J	23	6-WC02-SD-06B	2/33	
BROMOCHLOROME	THANE UG/KG	12 U	3100 U	ND	ND		0/33	
1,2-TRICHLOROETH			3100 U	ND	ND		0/33	
ENZENE	UG/KG		3100 U	ND	ND		0/33	
RANS-1.3-DICHLOR			3100 U	ND	ND		0/33	
ROMOFORM	UG/KG		3100 U	ND	ND		0/33	
-METHYL-2-PENTA			3100 U	ND	ND		0/33	
-HEXANONE	UG/KG		3100 U	ND	ND		0/33	
ETRACHLOROETHEN			3100 U	ND	ND		0/33	
1.2.2-TETRACHLORO			3100 U	ND	ND		0/33	
OLUENE	UG/KG		3100 U	4 J	5 J	6-WC06-SD-06M	2/33	
HLOROBENZENE	UG/KG		3100 U	ND		0-wc00-3D-00M		
					ND		0/33	
THYLBENZENE	UG/KG		3100 U	ND	ND		0/33	
TYRENE	UG/KG		3100 U	ND	ND		0/33	
TOTAL XYLENES	UG/KG	12 U	3100 U	26	120 J	6-WC03-SD-06M	3/33	
SEMIVOLA								
HENOL	UG/KG		3300 UR	120 J	190 J	6-WC06-SD-06B	2/33	
IS(2-CHLOROETHYL)	ETHER UG/KG	410 U	3300 UR	ND	ND		0/33	
-CHLOROPHENOL	UG/KG	410 U	3300 UR	ND	ND		0/33	
3-DICHLOROBENZEN	IE UG/KG	410 U	3300 UR	ND	ND		0/33	
4-DICHLOROBENZEN	IE UG/KG	410 U	3300 UR	ND	ND		0/33	
2-DICHLOROBENZEN	NE UG/KG	410 U	3300 UR	ND	, ND		0/33	
-METHYLPHENOL	UG/KG	410 U	3300 UR	ND	ND		0/33	
2'-OXYBIS (1-CHLOR	OPROPANE) UG/KG	410 U	3300 UR	ND	ND		0/33	
-METHYLPHENOL	UG/KG	410 U	3300 UR	ND	ND		0/33	
-NITROSODI-N-PRO	OPYLAMINE UG/KG	410 U	3300 UR	ND	ND		0/33	
EXACHLOROETHANE	UG/KG	410 U	3300 UR	ND	ND		0/33	
ITROBENZENE	UG/KG	410 U	3300 UR	ND	ND		0/33	
OPHORONE	UG/KG	410 U	3300 UR	ND	ND		0/33	
-NITROPHENOL	UG/KG		3300 UR	ND	ND		0/33	
4-DIMETHYLPHENOI			3300 UR	ND	ND		0/33	
IS(2-CHLOROETHOX			3300 UR	ND	ND		0/33	
4-DICHLOROPHENOI			3300 UR	ND	ND		0/33	
			3300 UR	ND	ND		0/33	
24-TRICHLOROBENZ	00,110							
	UG/KG	410 11	3300 UR	ND	ND		0/33	
,2,4–TRICHLOROBENZ NAPHTHALENE ~CHLORANILINE	UG/KG UG/KG		3300 UR 3300 UR	ND ND	ND ND	•	0/33 0/33	

`of 21

D	Sample No: Depth: ate Sampled: Lab Id:	MINIMUM NONDETECTED	MAXIMUM	MINIMUM DETECTED	MAXIMUM DETECTED	LOCATION OF MAXIMUM DETECTED	FREQUENC OF DETECTION
Parameter	Units			20100100			00.001101
OF AND AND TO O							
<u>SEMIVOLATILES Co</u> CHLORO-3-METHYLPHE		410 U	3300 UR	ND	ND		0/33
-METHYLNAPHTHALENE	UG/KG	410 U	3300 UR	ND	ND		0/33
IEXACHLOROCYCLOPENTA	•	410 U	3300 UR	ND	ND		0/33
4.6-TRICHLOROPHENOL	UG/KG	410 U	3300 UR	ND	ND		0/33
4,5-TRICHLOROPHENOL	UG/KG	990 U	7900 U	ND	ND		0/33
-CHLORONAPHTHALENE	UG/KG	410 U	3300 UR	ND	ND		0/33
-NITROANILINE	UG/KG	990 U	7900 U	ND	ND		0/33
IMETHYL PHTHALATE	UG/KG	410 U	3300 UR	ND	ND		0/33
CENAPHTHYLENE	UG/KG	410 U	3300 UR	ND	ND		0/33
6-DINITROTOLUENE	UG/KG	410 U	3300 UR	ND	ND		0/33
-NITROANILINE	UG/KG	990 UJ	7900 U	ND	ND		0/33
CENAPHTHENE	UG/KG	410 U	3300 UR	ND	ND		0/33
4-DINITROPHENOL	UG/KG	990 U	7900 U	ND	ND		0/33
-NITROPHENOL	UG/KG	990 U	7900 U	ND	ND		0/33
IBENZOFURAN	UG/KG	410 U	3300 UR	ND	ND		0/33
4-DINITROTOLUENE	UG/KG	410 U	3300 UR	ND	ND		0/33
	UG/KG	410 U	3300 UR	120 J	530 J	6-WC06-SD-06B	2/33
IETHYL PHTHALATE -CHLOROPHENYL PHENYL		410 U	3300 UR	ND	ND	0-WC00-3D-00B	0/33
	UG/KG	410 U 410 U	3300 UR	ND	ND		0/33
LUORENE	UG/KG	990 U	7900 U	ND	ND		0/33
-NITROANILINE			7900 U	ND	ND		0/33
6-DINITRO-2-METHYLPH		990 U	3300 UR	ND	ND		0/33
-NITRISODIPHENYLAMINE		410 U		ND	ND		0/33
-BROMOPHENYL PHENYL I		410 U	3300 UR 3300 UR	ND	ND		0/33
EXACHLOROBENZENE	UG/KG	410 U					0/33
ENTACHLOROPHENOL	UG/KG	990 U	7900 U	ND	ND		
HENANTHRENE	UG/KG	410 U	3300 UR	76 J	76 J	6-WC08-SD-612M	1/33
NTHRACENE	UG/KG	410 U	3300 UR	ND	ND		0/33
I-N-BUTYL PHTHALATE	UG/KG	410 U	3300 UR	ND	ND		0/33
LUORANTHENE	UG/KG	410 U	3300 UR	94 J	760 J	6-WC08-SD-06B	11/33
ARBAZOLE	UG/KG	410 UJ	3300 UR	ND	ND		0/33
YRENE	UG/KG	410 UJ	3300 UR	95 J	810 J	6-WC08-SD-06B	12/33
JTYL BENZYL PHTHALATE		410 U	3300 UR	200 J	920 J	6-WC07-SD-06B	2/33
B-DICHLOROBENZIDINE	UG/KG	410 U	3300 UR	ND	ND		0/33
ENZO(A)ANTHRACENE	UG/KG	410 U	3300 UR	. 67 J	210 J	6-WC08-SD-06B	4/33
HRYSENE	UG/KG	410 U	3300 UR	74 J	230 J	6-WC08-SD-06B	3/33
S(2-ETHYLHEXYL)PHTHA		410 U	3200 U	960 J	960 J	6-WC11-SD-06B	1/33
-N-OCTYL PHTHÁLATE	UG/KG	410 U	3300 UR	ND	ND		0/33
ENZO(B)FLUORANTHENE	UG/KG	410 U	3300 UR	94 J	420 J	6-WC08-SD-06B	6/33
ENZO(K)FLUORANTHENE	UG/KG	410 U	3300 UR	67 J	140 J	6-WC08-SD-06B	2/33
enzo(a)pyrene	UG/KG	410 U	3300 UR	63 J	1600	6-WC09-SD-612B	6/33
DENO(1,2,3-CD) PYRENE	UG/KG	410 U	3300 UR	ND	ND		0/33
IBENZ(AH)ANTHRACENE	UG/KG	410 U	3300 UR	ND	ND		0/33
ENZO(G,H,I)PERYLENE	UG/KG	410 U	3300 UR	ND	ND		0/33

	Sample No: Depth: Date Sampled: Lab Id:	6-WC01-SD-06B N/A 8/30/92 00464-22	6-WC01-SD-612B N/A 8/30/92 00464-24	6-WC02-SD-06B N/A 8/26/92 00445-03	6-WC02-SD-612B N/A 8/26/92 00445-04	6-WC03-SD-06B N/A 8/26/92 00445-05	6-WC03-SD-06M N∕A 8/26/92 00445-06
Parameter	Units						
ALUMINUM	MG/KG	2090 J	2510	6540 J	5390 J	6480 J	4780 J
ANTIMONY	MG/KG	3.3 U	3.1 U	3.1 U	4.1 U	6.8 UJ	3.4 U
ARSENIC	MG/KG	1.2 JB	0.73 UJ	0.81 U	0.64 U	1.4 UJ	0.82 UJ
BARIUM	MG/KG	5.2 JB	15.3 B	19.6 JB	23.7 JB	15.8 JB	37.1 JB
BERYLLIUM	MG/KG	0.07 U	0.07 U	0.26 U	0.33 U	0.27 U	0.32 U
CADMIUM	MG/KG	0.45 U	0.42 U	0.42 U	0.74 UJ	1.2 UJ	0.46 U
CALCIUM	MG/KG	329 B	1060 B	1090 JB	1790 J	2850 J	22200 J
CHROMIUM	MG/KG	3 UJ	2.5 UJ	4.2	3.4	6.2	6.4
COBALT	MG/KG	0.48 U	0.44 U	0.6 JB	0.87 JB	0.94 U	1.3 JB
COPPER	MG/KG	0.86 UJ	0.64 UJ	0.43 JB	0.62 JB	5.8 JB	53200
IRON	MG/KG	724 J	1430 J	1200 J	1570 J	6870 J	6940 J
LEAD	MG/KG	9.7 J	2.3 J	4.8 J	4.8 J	5 J	314 J
MAGNESIUM	MG/KG	50.5 B	57 B	372 JB	356 JB	440 JB	852 JB
MANGANESE	MG/KG	2.4 UJ	4.7 J	8.8	6.5	9.7	23
MERCURY	MG/KG	0.03 U	0.04 U	0.08 U	0.06 U	0.11 U	0.06 U
NICKEL	MG/KG	1.9 UJ	1.8 UJ	1.7 UJ	2.8 B	3.7 UJ	1.9 UJ
POTASSIUM	MG/KG	92.1 B	98.1 B	145 B	97 U	220 B	360 B
SELENIUM	MG/KG	1.4 UJ	1.2 UJ	1 U	1.3 U	2.7 U	1 UJ
SILVER	MG/KG	0.48 UJ	0.44 UJ	0.52 UJ	1.2 UJ	1.5 UJ	73
SODIUM	MG/KG	38.3 UJ	27 UJ	491 JB	469 JB	277 UJ	489 JB
THALLIUM	MG/KG	0.55 U	0.49 U	0.4 UJ	0.5 UJ	1.1 UJ	0.4 UJ
VANADIUM	MG/KG	5.7 B	4.4 B	5.8 B	7 B	11.6 B	9.1 B
ZINC	MG/KG	3.1 U	3.1 U	1.6 U	2.4 U	16.3 U	926

	Sample No: Depth: Date Sampled: Lab Id;	6-WC03-SD-612B N/A 8/26/92 00445-07	6-WC04-SD-06B N/A 8/26/92 00445-08	6-WC04-SD-06M N/A 8/26/92 00445-09	6-WC04-SD-612B N/A 8/26/92 00445-10	6 WC05-SD-06B N/A 8/27/92 00445-11	6-WC05-SD-06M N/A 8/27/92 00445-13
arameter	Units						·····
LUMINUM	MG/KG	7040 J	1830 J	569 J	1950 J	8600 J	2040 J
NTIMONY	MG/KG	6.8 U	3.5 U	3.2 U	3.6 U	3.7 U	2040 J 2.7 U
ARSENIC	MG/KG	1.3 JB	0.57 U	1.3 B	0.77 UJ	0.72 U	0.63 U
BARIUM	MG/KG	25.2 JB	4.2 JB	4.3 JB	4.8 JB	18.1 JB	4.7 JB
BERYLLIUM	MG/KG	0.26 U	0.12 U	0.07 U	0.13 U	0.43 U	0.09 U
ADMIUM	MG/KG	0.92 U	0.47 U	0.43 U	0.49 U	0.9 UJ	0.59 UJ
ALCIUM	MG/KG	4500 J	407 JB	90000 J	1090 JB	1300 JB	2430 J
HROMIUM	MG/KG	8.3	2.7	3.7	2 B	4.3	2.4
OBALT	MG/KG	0.97 U	0.49 U	0.45 U	0.63 JB	1.1 JB	0.62 JB
OPPER	MG/KG	79.6	8.7 J	2.5 JB	1.8 JB	1.2 JB	1.9 JB
RON	MG/KG	6050 J	1920 J	1160 J	2050 J	1680 J	1450 J
EAD	MG/KG	10.3 J	3 J	4.4 J	4.4 J	6.2 J	7.1 J
IAGNESIUM	MG/KG	333 JB	160 JB	1380 J	311 JB	673 JB	209 JB
IANGANESE	MG/KG	8.3	5	18.7	5.1	6.4	7.1
IERCURY	MG/KG	0.11 U	0.05 U	0.04 U	0.06 U	0.07 U	0.05 U
ICKEL	MG/KG	3.8 UJ	2 UJ	1.8 UJ	2 UJ	-2.1 UJ	1.5 UJ
OTASSIUM	MG/KG	457 B	88.5 U	101 B	75.6 U	180 B	74.8 U
ELENIUM	MG/KG	2.3 U	1.1 U	1 U	0.96 U	1.3 U	0.89 U
LVER	MG/KO	1.3 UJ	0.49 U	0.84 UJ	0.96 UJ	0.81 UJ	0.78 UJ
DDIUM	MG/KG	382 UJ	316 UJ	272 UJ	621 JB	1070 JB	161 UJ
HALLIUM	MG/KG	0.93 UJ	0.43 UJ	0.4 UJ	0.38 UJ	0.54 UJ	0.36 UJ
ANADIUM	MG/KG	15.7 B	3.2 UJ	1.4 UJ	3.5 UJ	4.6 JB	3.5 JB
INC	MG/KG	12.3 U	4.1 U	6.6 U	15.9	4 U	8.6 U

	Sample No: Depth: Date Sampled: Lab Id:	6-WC05-SD-612B N/A 8/27/92 00445-14	6-WC06-SD-06B N/A 8/23/92 00429-01	6-WC06-SD-06M N/A 8/23/92 00429-02	6-WC06-SD-612B N/A 8/23/92 00429-03	6-WC06-SD-612M N/A 8/23/92 00429-04	6-WC07-SD-06B N/A 8/23/92 00429-07
Parameter	Units						
ALUMINUM	MG/KG	4130 J	9120	1990	6210	1390	8590
ANTIMONY	MG/KG	2.8 UJ	9.2 U	5 U	8.9 U	3 U	22.7 U
ARSENIC	MG/KG	0.67 U	3.6 B	1 B	2 U	0.58 U	5.2 U
BARIUM	MG/KG	23.4 JB	14.8 B	4.2 JB	14.3 B	2.5 JB	12 B
BERYLLIUM	MG/KG	0.28 U	0.35 B	0.12 B	0.41 B	0.1 B	0.78 B
CADMIUM	MG/KG	0.37 U	2.4 UJ	0.71 UJ	1.6 UJ	0.48 UJ	3.1 UJ
CALCIUM	MG/KG	1530 J	3590	1410 B	3930	1740	8290
CHROMIUM	MG/KG	2.4	5.4 B	1.5 B	3.2 B	1.2 B	5.8 UJ
COBALT	MG/KG	0.89 JB	1.3 U	0.72 U	1.6 JB	0.44 U	3.2 U
COPPER	MG/KG	0.77 JB	13.3 JB	7.3 JB	5.2 JB	1.3 JB	7.2 JB
IRON	MG/KG	1010 J	8080	1480	5410	978	3980
LEAD	MG/KG	3.4 J	70.9	19.9	12.4	5.7	18.8
MAGNESIUM	MG/KG	138 UJ	2250 B	438 B	1110 B	427 B	5650 B
MANGANESE	MG/KG	4.4	25.8	5.8	16.3	5.9	13.1 B
MERCURY	MG/KG	0.04 U	0.19 U	0.07 U	0.14 U	0.05 U	0.42 U
NICKEL	MG/KG	1.5 UJ	5.2 U	2.8 U	5 U	1.7 U	12.8 U
POTASSIUM	MG/KG	81.6 U	533 B	99.8 JB	318 B	124 B	545 B
SELENIUM	MG/KG	1.1 U	3.4 UJ	1.6 UJ	3.3 UJ	0.97 UJ	8.6 UJ
SILVER	MG/KG	0.8 UJ	2.6 UJ	0.72 U	2.2 UJ	0.86 UJ	7.2 UJ
SODIUM	MG/KG	468 JB	4220	481 JB	1630 JB	1530 J	6020 B
THALLIUM	MG/KG	0.44 UJ	1.4 UJ	0.66 UJ	1.3 UJ	0.39 UJ	3.4 UJ
VANADIUM	MG/KG	4.7 B	14.2 B	3.5 JB	9.6 JB	2.2 JB	16.7 B
ZINC	MG/KG	1.1 U	39.6	11.5	22.6	6.2	29.9 U

	Sample No: Depth: Date Sampled: Lab Id:	6-WC07-SD-06M N/A 8/23/92 00429-08	6 WC07-SD-612M N/A 8/23/92 00429-09	6-WC08-SD-06B N/A 8/23/92 00429-13	6-WC08-SD-06M N/A 8/23/92 00429-15	6-WC08-SD-612B N/A 8/23/92 00429-16	6-WC08-SD-612M NA 8/23/92 00429-17
Parameter	Units		· · · · · · · · · · · · · · · · · · ·	······	·····		
ALUMINUM	MG/KG	975	539	10700	9810	4470	18300
ANTIMONY	MG/KG	5.2 U	2.8 U	8 U	6.2 U	5.1 U	53 U
ARSENIC	MG/KG	1 U	0.63 U	4.9 B	3.2 B	9.7	10.2
BARIUM	MG/KG	3.6 JB	2.8 JB	12.8 B	38.4 B	5.9 JB	110
BERYLLIUM	MG/KG	0.11 U	0.07 B	0.49 B	0.35 B	0.21 B	0.76 B
CADMIUM	MG/KG	0.93 UJ	0.4 UJ	3 UJ	1.8 UJ	1.4 UJ	2.8 UJ
CALCIUM	MG/KG	457 B	242 B	4560	3080	2080	5270
CHROMIUM	MG/KG	1.3 UJ	0.73 UJ	8.4	9.2	2.000 2.7 B	19.2
COBALT	MG/KG	0.74 U	0.4 U	1.1 U	0.88 U	0.73 U	2 JB
COPPER	MG/KG	0.7 U	0.89 JB	21.5	13.7 J	16.7 J	235
IRON	MG/KG	695	390	8680	7450	4090	11300
LEAD	MG/KG	8.7	1.5	97	44.1 J	49.7	156
MAGNESIUM	MG/KG	140 B	62.7 B	3620	1650 B	701 B	906 B
MANGANESE	MG/KG	3.7 B	3.1	27.8	21.3	12	28.4
MERCURY	MG/KG	0.07 U	0.05 U	0.14 U	0.17 U	0.11 U	0.37 U
NICKEL	MG/KG	2.9 U	1.6 U	4.5 U	3.5 U	2.9 U	7.4 JB
POTASSIUM	MG/KG	71.4 JB	38.5 JB	862 B	807 B	233 B	834 B
SELENIUM	MG/KG	1.7 UJ	1.1 U	3 UJ	1.9 UJ	1.7 UJ	1.9 UJ
SILVER	MG/KG	1.4 UJ	0.56 UJ	2.3 UJ	2.4 UJ	1.6 UJ	1.6 UJ
SODIUM	MG/KG	553 JB	224 JB	6740	3730	1140 JB	1150 JB
THALLIUM	MG/KG	0.68 UJ	0.42 UJ	1.2 UJ	0.76 UJ	0.66 UJ	7.8 UJ
VANADIUM	MG/KG	1.7 JB	0.82 JB	21.8 B	19.1 B	8.1 JB	33.7
ZINC	MG/KG	4.6 U	2.9 U	106	67.9	29.2	132

	Sample No: Depth: Date Sampled: Lab Id:	6WC09-SD-06B N/A 8/23/92 00429-21	6- WC09-SD-06M N/A 8/23/92 00429-22	6-WC09-SD-612B N/A 8/23/92 00429-23	6-WC09-SD-612M N/A 8/23/92 00429-24	6-WC10-SD-06B N/A 8/22/92 00426-02	6-WC10-SD-06M N/A 8/22/92 00426-04
Parameter	Units						
ALUMINUM	MG/KG	978	17200	8610	9160	4640	25400
ANTIMONY	MG/KG	3.6 U	17.2 U	11.7 U	6.2 U	82.6 UJ	29.7 UJ
ARSENIC	MG/KG	0.51 U	5.8 B	1.6 U	3.5 B	3.6 U	4.7 B
BARIUM	MG/KG	2.8 JB	19.8 B	15.4 B	10.9 B	35.4 U	23.6 B
BERYLLIUM	MG/KG	0.08 U	0.63 B	0.33 B	0.3 B	1.7 U	0.61 U
CADMIUM	MG/KG	0.49 U	3.3 UJ	1.6 U	. 1.1 UJ	6.7 UJ	1.8 UJ
CALCIUM	MG/KG	399 B	6150	10300	3410	6500 B	4180
CHROMIUM	MG/KG	1.7 B	17.7	8.2 B	9.6	8.4 U	28.5
COBALT	MG/KG	2.3 JB	3.3 JB	2.9 JB	1.6 JB	10.1 U	6.1 UJ
COPPER	MG/KG	11.9 J	33.5	4.4 JB	10.7 JB	11.8 UJ	20 UJ
IRON	MG/KG	789	14600	11600	7000	4610 J	13900
LEAD	MG/KG	4.9	106	8,8	37.4	22.4 J	68.9 J
MAGNESIUM	MG/KG	213 B	4520 B	730 B	1350 B	6630 B	4630
MANGANESE	MG/KG	3.2 B	50.2	42.5	20.9	11.8 JB	40.6
MERCURY	MG/KG	0.05 U	0.42 U	0.26 U	0.27 U	0.74 U	0.33 U
NICKEL	MG/KG	2.7 JB	9.7 U	6.6 U	4.3 JB	28.7 U	10.7 JB
POTASSIUM	MG/KG	65.5 JB	1390 B	419 B	628 B	829 B	2200 B
SELENIUM	MG/KG	1.3 UJ	6.1 U	4.1 U	2.6 U	6.1 U	3 UJ
SILVER	MG/KG	0.54 UJ	4.6 UJ	3 UJ	1.9 UJ	16.9 U	6.1 U
SODIUM	MG/KG	332 JB	8880	1380 JB	1110 JB	14900	11900
THALLIUM	MG/KG	0.51 U	2.4 U	1.6 U	1 U	2.4 U	1.2 U
VANADIUM	MG/KG	1.9 JB	41.5 B	12.7 JB	18.5 B	23.6 UJ	45.5 J
ZINC	MG/KG	388	137	17.1	43.6	33.1 B	69.6

	Sample No:	6-WC10-SD-612M	6-WC11-SD-06B	6WC11-SD-06M
	Depth:	N/A	N/A	N/A
	Date Sampled:	8/22/92	8/22/92	8/22/92
	Lab Id:	00426-05	00426-10	00426-11
Parameter	Units			
ALUMINUM	MG/KG	8070	3470	12000
ANTIMONY	MG/KG	19.7 UJ	75.6 UJ	28.8 UJ
ARSENIC	MG/KG	1.8 B	8.9 B	4.4 JB
BARIUM	MG/KG	10.4 B	32.4 U	12.3 U
BERYLLIUM	MG/KG	0.4 U	1.5 U	0.59 U
CADMIUM	MG/KG	1.2 UJ	4.6 U	1.8 UJ
CALCIUM	MG/KG	2560	9350	4170
CHROMIUM	MG/KG	10	7.7 B	13.5
COBALT	MG/KG	2.8 UJ	10.8 UJ	4.1 UJ
COPPER	MG/KG	8 UJ	13.9 UJ	12.9 UJ
IRON	MG/KG	6810	3940	11600
LEAD	MG/KG	13.7 J	16.7 J	31.8 J
MAGNESIUM	MG/KG	1620 B	9840	3830
MANGANESE	MG/KG	26.5	12.3 JB	38.8
MERCURY	MG/KG	0.23 U	0.87 U	0.32 U
NICKEL	MG/KG	6.8 U	26.2 U	10 U
POTASSIUM	MG/KG	762 B	1040 B	1280 B
SELENIUM	MG/KG	2.2 UJ	9 UJ	3.6 UJ
SILVER	MG/KG	4 U	15.4 U	5.9 U
SODIUM	MG/KG	2380	18300	10300
THALLIUM	MG/KG	0.89 U	3.6 U	1.4 U
VANADIUM	MG/KG	14.1 UJ	20.1 UJ	25.3 UJ
ZINC	MG/KG	24.3	22.7 B	42.5

5 of 7

٣

	Sample No: Depth: Date Sampled: Lab Id:	MINIMUM NONDETECTED	MAXIMUM NONDETECTED	MINIMUM DETECTED	MAXIMUM DETECTED	LOCATION OF MAXIMUM DETECTED	FREQUENCY OF DETECTION
Parameter	Units						
ALUMINUM	MG/KG	NA	NA	539	25400	6-WC10-SD-06M	33/33
ANTIMONY	MG/KG	2.7 U	82.6 UJ	ND	ND		0/33
ARSENIC	MG/KG	0.51 U	5.2 U	1 B	10.2	6-WC08-SD-612M	15/33
BARIUM	MG/KG	12.3 U	35.4 U	2.5 JB	110	6-WC08-SD-612M	30/33
BERYLLIUM	MG/KG	0.07 U	1.7 U	0.07 B	0.78 B	6-WC07-SD-06B	13/33
CADMIUM	MG/KG	0.37 U	6.7 UJ	ND	ND		0/33
CALCIUM	MG/KG	NA	NA	242 B	90000 J	6-WC04-SD-06M	33/33
CHROMIUM	MG/KG	0.73 UJ	8.4 U	1.2 B	28.5	6-WC10-SD-06M	27/33
COBALT	MG/KG	0.4 U	10.8 UJ	0.6 JB	3.3 JB	6-WC09-SD-06M	13/33
COPPER	MG/KG	0.64 UJ	20 UJ	0.43 JB	53200	6-WC03-SD-06M	25/33
IRON	MG/KG	NA	NA	390	14600	6-WC09-SD-06M	33/33
LEAD	MG/KG	NA	NA	1.5	314 J	6-WC03-SD-06M	33/33
MAGNESIUM	MG/KG	138 UJ	138 UJ	50.5 B	9840	6-WC11-SD-06B	32/33
MANGANESE	MG/KG	2.4 UJ	2.4 UJ	3.1	50.2	6-WC09-SD-06M	32/33
MERCURY	MG/KG	0.03 U	0.87 U	ND	ND		0/33
NICKEL	MG/KG	1.5 UJ	28.7 U	2.7 JB	10.7 JB	6-WC10-SD-06M	5/33
POTASSIUM	MG/KG	74.8 U	97 U	38.5 JB	2200 B	6-WC10-SD-06M	28/33
SELENIUM	MG/KG	0.89 U	9 UJ	ND	ND		0/33
SILVER	MG/KG	0.44 UJ	16.9 U	7.3	7.3	6-WC03-SD-06M	1/33
SODIUM	MG/KG	27 UJ	382 UJ	224 JB	18300	6-WC11-SD-06B	26/33
THALLIUM	MG/KG	0.36 UJ	7.8 UJ	ND	ND		0/33
VANADIUM	MG/KG	1.4 UJ	25.3 UJ	0.82 JB	45.5 J	6-WC10-SD-06M	26/33
ZINC	MG/KG	1.1 U	29.9 U	6.2	926	6-WC03-SD-06M	19/33

٠

	Sample No; Depth; Date Sampled; Lab Id;	6-BH01-SD-06B N/A 10/23/92 00591-01	6-BH01-SD-06M N/A 10/23/92 00591-02	6-BH01-SD-612B N/A 10/23/92 00591-03	6-BH01-SD-612M N/A 10/23/92 00591-04	6-BH02-SD-06M N/A 8/28/92 00458-02	6-BH02-SD-612M N/A 8/28/92 00458-03
Parameter	Units				· · · · · · · · · · · · · · · · · · ·		
PESTICIDE/P	CBS						
ALPHA-BHC	UG/KG	3.3 UJ	3.6 UJ	3.3 UJ	3.2 UJ	2.7 U	3.1 U
BETA-BHC	UG/KG	3.3 UJ	3.6 UJ	3.3 UJ	3.2 UJ	2.7 U	3.1 U
DELTA-BHC	UG/KG	3.3 UJ	3.6 UJ	3.3 UJ	3.2 UJ	2.7 U	3.1 U
GAMMA-BHC(LINDANE)	UG/KG	3.3 UJ	3.6 UJ	3.3 UJ	3.2 UJ	2.7 U	3.1 U
HEPTACHLOR	UG/KG	3.3 UJ	3.6 UJ	3.3 UJ	3.2 UJ	2.7 U	3.1 U
ALDRIN	UG/KG	3.3 UJ	3.6 UJ	3.3 UJ	3.2 UJ	2.7 U	3.1 U
HEPTACHLOR EPOXIDE	UG/KG	3.3 UJ	3.6 UJ	3.3 UJ	3.2 UJ	2.7 U	3.1 U
ENDOSULFAN I	UG/KG	3.3 UJ	3.6 UJ	3.3 UJ	3.2 UJ	2.7 U	3.1 U
DIELDRIN	UG/KG	6.5 UJ	6.9 UJ	6.5 UJ	6.3 UJ	5.2 U	6 U
4,4'-DDE	UG/KG	6.5 UJ	6.9 UJ	6.5 UJ	6.3 UJ	5.7	6 U
ENDRIN	UG/KG	6.5 UJ	6.9 UJ	6,5 UJ	6.3 UJ	5.2 U	6 U
ENDOSULFAN II	UG/KG	6.5 UJ	6.9 UJ	6.5 UJ	6.3 UJ	5.2 U	6 U
4,4' DDD	UG/KG	6.5 UJ	6.9 UJ	6.5 UJ	6.3 UJ	5.2 U	6 U
ENDOSULFAN SULFATE	UG/KG	6.5 UJ	6.9 UJ	6.5 UJ	6.3 UJ	5.2 U	6 U
4,4'-DDT	UG/KG	6.5 UJ	6.9 UJ	6.5 UJ	6.3 UJ	5.2 U	6 U
METHOXYCHLOR	UG/KG	33 UJ	36 UJ	33 UJ	32 UJ	27 U	31 U
ENDRIN KETONE	UG/KG	6.5 UJ	6.9 UJ	6.5 UJ	6.3 UJ	5.2 U	6 U
ENDRIN ALDEHYDE	UG/KG	6.5 UJ	6.9 UJ	6.5 UJ	6.3 UJ	5.2 U	6 U
ALPHA CHLORDANE	UG/KG	3.3 UJ	3.6 UJ	3.3 UJ	3.2 UJ	2.7 U	3.1 U
GAMMA CHLORDANE	UG/KG	3.3 UJ	3.6 UJ	3.3 UJ	3.2 UJ	2.7 U	3.1 U
TOXAPHENE	UG/KG	330 UJ	360 UJ	330 UJ	320 UJ	270 U	310 U
PCB-1016	UG/KG	65 UJ	69 UJ	65 UJ	63 UJ	52 U	60 U
PCB-1221	UG/KG	130 UJ	140 UJ	130 UJ	130 UJ	100 U	120 U
PCB-1232	UG/KG	65 UJ	69 UJ	65 UJ	63 UJ	52 U	60 U
PCB-1242	UG/KG	65 UJ	69 UJ	65 UJ	63 UJ	52 U	60 U
PCB-1248	UG/KG	65 UJ	69 UJ	65 UJ	63 UJ	52 U	60 U
PCB-1240 PCB-1254	UG/KG	65 UJ	69 UJ	65 UJ	63 UJ	52 U	60 U
PCB-1254	UG/KG	65 UJ	69 UJ	65 UJ	63 UJ	52 U	60 U
rCD-1200	00/K0	05 05	09 00		0, 0,	~~ ~	
VOLATILE	-						
CHLOROMETHANE	UG/KG	18 U	21 U	19 U	20 U	44 U	13 U
BROMOMETHANE	UG/KG	18 U	21 U	19 U	20 U	44 U	13 U
VINYL CHLORIDE	UG/KG	18 U	21 U	19 U	20 U	44 U	13 U
CHLOROETHANE	UG/KG	18 U	21 U	19 U	20 U	44 U	13 U
METHYLENE CHLORIDE	UG/KG	18 U	21 U	19 U	20 U	44 U	2 J
ACETONE	UG/KG	18 U	21 U	19 U	20 U	840	140
CARBON DISULFIDE	UG/KG	18 U	21 U	19 U	20 U	44 U	13 U
1.1-DICHLOROETHENE	UG/KG	18 U	21 U	19 U	20 U	44 U	13 U
1,1-DICHLOROETHANE	UG/KG	18 U	21 U	19 U	20 U	44 U	13 U
1,2-DICHLOROETHENE	UG/KG	18 U	21 U	19 U	20 U	44 U	13 U
CHLOROFORM	UG/KG	18 U	21 U	19 U	20 U	44 U	13 U
1,2-DICHLOROETHANE	UG/KG	18 U	21 U	19 U	20 U	44 U	13 U
2-BUTANONE	UG/KG	18 U	21 U	19 U	20 U	15 J	3 J

6bhsdor.wk1

D	Sample No: Depth: ate Sampled: Lab Id:	6-BH01-SD-06B N/A 10/23/92 00591-01	6-BH01-SD-06M N/A 10/23/92 00591-02	6-BH01-SD-612B N/A 10/23/92 00591-03	6-BH01-SD-612M N/A 10/23/92 00591-04	6-BH02-SD-06M N/A 8/28/92 00458-02	6-BH02-SD-612M N/A 8/28/92 00458-03
Parameter	Units						· · · · · · · · · · · · · · · · · · ·
VOLATILES Cont.							
1,1,1-TRICHLOROETHANE	UG/KG	18 U	21 U	19 U	20 U	44 U	13 U
CARBON TETRACHLORIDE	UG/KG	18 U	21 U	19 U	20 U	44 U	13 U
BROMODICHLOROMETHANE		18 U	21 U	19 U	20 U	44 U	13 U
1,2-DICHLOROPROPANE	UG/KG	18 U	21 U	19 U	20 U	44 U	13 U
CIS-1,3-DICHLOROPROPENI	E UG/KG	18 U	21 U	19 U	20 U	44 U	13 U
TRICHLOROETHENE	UG/KG	18 U	21 U	19 U	20 U	44 U	13 U
DIBROMOCHLOROMETHANE	E UG/KG	18 U	21 U	19 U	20 U	44 U	13 U
1,1,2-TRICHLOROETHANE	UG/KG	18 U	21 U	19 U	20 U	44 U	13 U
BENZENE	UG/KG	· 5 J	21 U	19 U	20 U	44 U	13 U
TRANS-1,3-DICHLOROPROP	ENE UG/KG	18 U	21 U	19 U	20 U	44 U	13 U
BROMOFORM	UG/KG	18 U	21 U	19 U	20 U	44 U	13 U
4-METHYL-2-PENTANONE	UG/KG	18 U	21 U	19 U	20 U	44 U	13 U
2-HEXANONE	UG/KG	18 U	21 U	19 U	20 U	44 U	13 U
TETRACHLOROETHENE	UG/KG	18 U	21 U	19 U	20 U	44 U	13 U
1.1.2.2-TETRACHLOROETHAN		18 U	21 U	19 U	20 U	44 U	13 U
TOLUENE	UG/KG	18 U	21 U	19 U	20 U	44 U	13 U
CHLOROBENZENE	UG/KG	18 U	21 U	19 U	20 U	44 U	13 U
ETHYLBENZENE	UG/KG	18 U	21 U	19 U	20 U	44 U	13 U
STYRENE	UG/KG	18 U	21 U	19 U	20 U	44 U	13 U
TOTAL XYLENES	UG/KG	18 U	21 U	19 U'	20 U	44 U	13 U
SEMIVOLATILES							
PHENOL	UG/KG	640 U	690 U	660 U	630 U	520 U	610 U
BIS(2-CHLOROETHYL) ETHE		640 U	690 U	660 U	630 U	520 U	610 U
2-CHLOROPHENOL	UG/KG	640 U	690 U	660 U	630 U	520 U	610 U
1.3-DICHLOROBENZENE	UG/KG	640 U	690 U	660 U	630 U	520 U	610 Ŭ
1.4-DICHLOROBENZENE	UG/KG	640 U	690 U	660 U	630 U	520 U	610 U
1,2-DICHLOROBENZENE	UG/KG	640 U	690 U	660 U	630 U	520 U	610 U
2-METHYLPHENOL	UG/KG	640 U	690 U	660 U	630 U	520 U	610 U
2,2'-OXYBIS (1-CHLOROPRO		640 U	690 U	660 U	630 U	520 U	610 U
4-METHYLPHENOL	UG/KG	640 U	690 U	660 U	630 U	520 U	610 U
N-NITROSODI-N-PROPYLA		640 U	690 U	660 U	630 U	520 U	610 U
HEXACHLOROETHANE	UG/KG	640 U	690 U	660 U	630 U	520 U	610 U
NITROBENZENE	UG/KG	640 U	690 U	660 U	630 U	520 U	610 U
ISOPHORONE	UG/KG	640 U	690 U	660 U	630 U	520 U	610 U
2-NITROPHENOL	UG/KG	640 U	690 U	660 U	630 U	520 U	610 U
2.4-DIMETHYLPHENOL	UG/KG	640 U	690 U	660 U	630 U	520 U	610 U
BIS(2-CHLOROETHOXY) MET		640 U	690 U	660 U	630 U	520 U .	610 U
2,4-DICHLOROPHENOL	UG/KG	640 U	690 U	660 U	630 U	520 U	610 U
1,2,4-TRICHLOROBENZENE	UG/KG	640 U	690 U	660 U	630 U	520 U	610 U
NAPHTHALENE	UG/KG	640 U	690 U	660 U	630 U	520 U	610 U
4-CHLORANILINE	UG/KG	640 U	690 U	660 U	630 U	520 U	610 U
HEXACHLOROBUTADIENE	UG/KG	640 U	690 U	660 U	630 U	520 U	610 U
HEXACHLOROBUTADIENE	UG/KG	04U U	090 U	000 U	030 U	520 U	610 U

Ľ	Sample No: Depth: bate Sampled: Lab Id:	6-BH01-SD-06B N/A 10/23/92 00591-01	6-BH01-SD-06M N/A 10/23/92 00591-02	6-BH01-SD-612B N/A 10/23/92 00591-03	6-BH01-SD-612M N/A 10/23/92 00591-04	6-BH02-SD-06M N/A 8/28/92 00458-02	6-BH02-SD-612M N/A 8/28/92 00458-03
arameter	Units			······································			
SEMIVOLATILES C	ont.						
-CHLORO-3-METHYLPHE	NOL UG/KG	640 U	690 U	660 U	630 U	520 U	610 U
-METHYLNAPHTHALENE	UG/KG	640 U	690 U	660 U	630 U	520 U	610 U
IEXACHLOROCYCLOPENTA	DIENE UG/KG	640 U	690 U	660 U	630 U	520 U	610 U
,4,6-TRICHLOROPHENOL	UG/KG	640 U	690 U	660 U	630 U	520 U	610 U
4,5-TRICHLOROPHENOL	UG/KG	1500 U	1700 U	1600 U	1500 U	1300 U	1500 U
-CHLORONAPHTHALENE	UG/KG	640 U	690 U	660 U	630 U	520 U	610 U
-NITROANILINE	UG/KG	1500 U	1700 U	1600 U	1500 U	1300 U	1500 U
IMETHYL PHTHALATE	UG/KG	640 U	690 U	660 U	630 U	520 U	610 U
CENAPHTHYLENE	UG/KG	640 U	690 U	660 U	630 U	520 U	610 U
6-DINITROTOLUENE	UG/KG	640 U	690 U	660 U	630 U	520 U	610 U
-NITROANILINE	UG/KG	1500 U	1700 U	1600 U	1500 U	1300 U	1500 U
CENAPHTHENE	UG/KG	640 U	690 U	660 U	630 U	520 U	610 U
4-DINITROPHENOL	UG/KG	1500 U	1700 U	1600 U	1500 U	1300 U	1500 U
-NITROPHENOL	UG/KG	1500 U	1700 U	1600 UJ	1500 UJ	1300 U	1500 U
IBENZOFURAN	UG/KG	640 U	690 U	660 U	630 U	520 U	610 U
4-DINITROTOLUENE	UG/KG	640 U	690 U	660 U	630 U	520 U	610 U
IETHYL PHTHALATE	UG/KG	640 U	690 U	660 U	630 U	520 U	610 U
-CHLOROPHENYL PHENYL	ETHER UG/KG	640 U	690 U	660 U	630 U	520 U	610 U
LUORENE	UG/KG	640 U	690 U	660 U	630 U	520 U	610 U
-NITROANILINE	UG/KG	1500 U	1700 U	1600 U	1500 U	1300 U	1500 U
6-DINITRO-2-METHYLPH	IENOL UG/KG	1500 U	1700 U	1600 U	1500 U	1300 U	1500 U
-NITRISODIPHENYLAMINI		640 U	690 U	660 U	630 U	520 U	610 U
-BROMOPHENYL PHENYL	ETHER UG/KG	640 U	690 U	660 U	630 U	520 U	610 U
EXACHLOROBENZENE	UG/KG	640 U	690 U	660 U	630 U	520 UJ	610 UJ
ENTACHLOROPHENOL	UG/KG	1500 U	1700 U	1600 U	1500 U	1300 U	1500 U
HENANTHRENE	UG/KG	640 U	690 Ú	660 U	630 U	520 U	610 U
NTHRACENE	UG/KG	640 U	690 U	660 U	630 U	520 U	610 U
I-N-BUTYL PHTHALATE	UG/KG	640 U	690 U	660 U	630 U	520 U	610 U
LUORANTHENE	UG/KG	640 U	690 U	660 U	630 U	520 U	610 U
ARBAZOLE	UG/KG	640 U	690 U	660 U	630 U	520 U	610 U
YRENE	UG/KG	640 U	690 U	660 UJ	630 U	520 U	610 U
UTYL BENZYL PHTHALATE		640 U	690 U	660 U	630 U	520 U	610 U
3-DICHLOROBENZIDINE	UG/KG	640 U	690 U	660 U	630 U	520 U	610 U
ENZO(A)ANTHRACENE	UG/KG	640 U	690 U	660 U	630 U	520 U	610 U
HRYSENE	UG/KG	640 U	690 U	660 UJ	630 UJ	520 U	610 U
S(2-ETHYLHEXYL)PHTHA		640 U	690 U	660 U	630 U	520 U	610 U
I-N-OCTYL PHTHALATE	UG/KG	640 U	690 U	660 UJ	630 UJ	520 U	610 U
ENZO(B)FLUORANTHENE	UG/KG	640 U	690 U	660 UJ	630 U	520 U	610 U
ENZO(K)FLUORANTHENE	UG/KG	640 U	690 U	660 UJ	630 U	520 U	610 U
ENZO(A)PYRENE	UG/KG	640 U	690 U	660 U	630 U	520 U	610 U
NDENO(1,2,3-CD) PYRENE	UG/KG	640 U	690 U	660 U	630 U	520 UJ	610 UJ
IBENZ(A,H)ANTHRACENE	UG/KG	640 U	690 U	660 U	630 U	520 UJ	610 UJ
ENZO(G,H,I)PERYLENE	UG/KG	640 U	690 U	660 U	630 U	520 UJ	610 UJ

6bhsdor.wk1

	Sample No: Depth: Date Sampled: Lab Id:	6-BH03-SD-06B N/A 8/28/92 00458-05	6-BH03-SD-06M N/A 8/28/92 00458-07	6-BH03-SD-612B N/A 8/28/92 00458-08	6-BH03-SD-612M N/A 8/28/92 00458-09	6-BH04-SD-06B N/A 8/26/92 00439-01	6-BH04-SD-06M N/A 8/26/92 00439-02
Parameter	Units						
PESTICIDE/P							
ALPHA-BHC	UG/KG	3.6 U	4.9 U	2.8 U	4 U	2 U	2.3 UJ
BETA-BHC	UG/KG	3.6 U	4.9 U	2.8 U	4 U	2 U	2.3 UJ
DELTA-BHC	UG/KG	3.6 U	4.9 U	2.8 U	4 U	2 U	2.3 UJ
GAMMA-BHC(LINDANE)		3.6 U	4.9 U	2.8 U	4 U	2 U	2.3 UJ
HEPTACHLOR	UG/KG	3.6 U	4.9 U	2.8 U	4 U	2 U	2.3 UJ
ALDRIN	UG/KG	3.6 U	4.9 U	2.8 U	4 U	2 U	2.3 UJ
HEPTACHLOR EPOXIDE	UG/KG	3.6 U	4.9 U	2.8 U	. 4 U	2 U	2.3 UJ
ENDOSULFAN I	UG/KG	3.6 U	4.9 U	2.8 U	4 U	2 U	2.3 UJ
DIELDRIN	UG/KG	7 U	9.4 U	5.4 U	7.9 U	3.9 U	4.5 UJ
4,4' DDE	UG/KG	7 U	68	5.4 U	22	14	41 J
ENDRIN	UG/KG	7 U	9.4 U	5.4 U	7.9 U	3.9 U	4.5 UJ
ENDOSULFAN II	UG/KG	7 U	9.4 U	5.4 U	7.9 U	3.9 U	4.5 UJ
4,4'-DDD	UG/KG	7 U	25	5.4 U	9.2 J	8.4 J	42 J
ENDOSULFAN SULFATE	UG/KG	7 U	9.4 U	5.4 U	7.9 U	3.9 U	4.5 UJ
4.4'-DDT	UG/KG	7 U	15	5.4 U	6.6 J	16 J	9.4 J
METHOXYCHLOR	UG/KG	36 U	49 U	28 U	40 U	20 U	23 ÚJ
ENDRIN KETONE	UG/KG	7 U	9.4 U	5.4 U	7.9 U	3.9 U	4.5 UJ
ENDRIN ALDEHYDE	UG/KG	7 U	9.4 U	5.4 U	7.9 U	3.9 U	4.5 UJ
ALPHA CHLORDANE	UG/KG	3.6 U	4.9 U	2.8 U	4 U	2 U	2.3 UJ
GAMMA CHLORDANE	UG/KG	3.6 U	4.9 U	2.8 U	4 U	2 U	2.3 UJ
TOXAPHENE	UG/KG	360 U	490 U	280 U	400 U	200 U	230 UJ
PCB-1016	UG/KG	70 U	94 U	54 U	79 U	39 U	45 UJ
PCB-1221	UG/KG	140 U	190 U	110 U	160 U	79 U	91 UJ
PCB-1232	UG/KG	70 U	94 U	54 U	79 U	39 U	45 UJ
PCB-1242	UG/KG	70 U	94 U	54 U	79 U	39 U	45 UJ
PCB-1248	UG/KG	70 U	94 U	54 U	79 U	39 U	45 UJ
PCB-1254	UG/KG	70 U	94 U	54 U	79 U	39 U	45 UJ
PCB-1260	UG/KG	70 U	170	54 U	160	51	110 J
VOLATILE	S						
CHLOROMETHANE	- UG/KG	15 U	30 U	16 U	28 U	12 U	880 U
BROMOMETHANE	UG/KG	15 U	30 U	16 U	28 U	12 U	880 U
VINYL CHLORIDE	UG/KG	15 U	30 U	16 U	28 U	12 U	880 U
CHLOROETHANE	UG/KG	15 U	30 U	16 U	28 U	12 U	880 U
METHYLENE CHLORIDE	UG/KG	3 J	30 U	4 J	7 J	12 U	880 U
ACETONE	UG/KG	34	99	210	340	140	9900 J
CARBON DISULFIDE	UG/KG	15 U	30 U	16 U	28 U	12 U	880 U
1,1-DICHLOROETHENE	UG/KG	15 U	30 U	16 U	28 U	12 U	880 U
1.1-DICHLOROETHANE	UG/KG	15 U	30 U	16 U	28 U	12 U	880 U
1,2-DICHLOROETHENE	UG/KG	15 U	30 U	16 U	28 U	12 U	880 U
CHLOROFORM	UG/KG	15 U	30 U	16 U	28 U	12 U	880 U
1,2-DICHLOROETHANE	UG/KG	15 U	30 U	16 U	28 U	12 U	880 U
2-BUTANONE	UG/KG	10 J	23 J	30	59	12 U	2400

6bhsdor.wk1

	Sample No: Depth: Date Sampled: Lab Id:	6-BH03-SD-06B N/A 8/28/92 00458-05	6-BH03-SD-06M N/A 8/28/92 00458-07	6-BH03-SD-612B N/A 8/28/92 00458-08	6–BH03–SD–612M N/A 8/28/92 00458–09	6-BH04-SD-06B N/A 8/26/92 00439-01	6-BH04-SD-06M N/A 8/26/92 00439-02
Parameter .	Units						· · · · · · · · · · · · · · · · · · ·
VOLATILES	Cont.						
1.1.1-TRICHLOROETHAN		15 U	30 U	16 U	28 U	12 U	880 U
CARBON TETRACHLORII		15 U	30 U	16 U	28 U	12 U	880 U
BROMODICHLOROMETH	ANE UG/KG	15 U	30 U	16 U	28 U	12 U	880 U
1,2-DICHLOROPROPANE	UG/KG	15 U	30 U	16 U	28 U	12 U	880 U
CIS-1,3-DICHLOROPROH	PENE UG/KG	15 U	30 U	16 U	28 U	12 U	880 U
TRICHLOROETHENE	UG/KG	5 J	30 U	16 U	28 U	12 U	880 U
DIBROMOCHLOROMETH	IANE UG/KG	15 U	30 U	16 U	28 U	12 U	880 U
1,1,2-TRICHLOROETHAN	IE UG/KG	15 U	30 U	16 U	28 U	12 U	880 U
BENZENE	UG/KG	15 U	30 U	16 U	28 U	12 UJ	880 U
TRANS-1,3-DICHLOROP		15 U	30 U	16 U	28 U	12 UJ	880 U
BROMOFORM	UG/KG	15 U	30 U	16 U	28 U	12 U	880 U
4-METHYL-2-PENTANC	DNE UG/KG	15 U	30 U	16 U	28 U	12 U	880 U
2-HEXANONE	UG/KG	15 U	30 U	16 U	28 U	12 U	880 U
TETRACHLOROETHENE	UG/KG	3 J	30 U	16 U	28 U	12 U	880 U
1,1,2,2-TETRACHLOROE1		15 U	30 U	16 U	28 U	12 U	880 U
TOLUENE	UG/KG	15 U	30 U	16 U	28 U	12 U	880 U
CHLOROBENZENE	UG/KG	15 U	30 U	16 U	28 U	12 U	880 U
ETHYLBENZENE	UG/KG	15 U	30 U	16 U	28 U	12 U	880 U
STYRENE	UG/KG	15 U	30 U	16 U	28. U	12 U	880 U
TOTAL XYLENES	UG/KG	3 J	30 U	16 U	28 U	12 U	880 U
SEMIVOLATI	LES						
PHENOL	UG/KG	700 U	930 U	540 U	780 U	390 U	450 U
BIS(2-CHLOROETHYL) E		700 U	930 U	540 U	780 U	390 U	450 U
2-CHLOROPHENOL	UG/KG	700 U	930 U	540 U	780 U	390 U	450 U
1,3-DICHLOROBENZENE		700 U	930 U	540 U	780 U	390 U	450 U
1.4-DICHLOROBENZENE		700 U	930 U	540 U	780 U	390 U	450 U
1,2-DICHLOROBENZENE	UG/KG	700 U	930 U	540 U	780 U	390 Ú	450 U
2-METHYLPHENOL	UG/KG	700 U	930 U	540 U	780 U	390 U	450 U
2,2'-OXYBIS (1-CHLORO)	PROPANE) UG/KG	700 UJ	930 UJ	540 U	780 U	390 U	450 U
4-METHYLPHENOL	UG/KG	700 U	930 U	540 U	780 U	390 U	450 U
N-NITROSODI-N-PROP	YLAMINE UG/KG	700 U	930 U	540 U	780 U	390 U	450 U
HEXACHLOROETHANE	UG/KG	700 U	930 U	540 U	780 U	390 U	450 U
NITROBENZENE	UG/KG	700 U	930 U	540 U	780 U	390 U	450 U
ISOPHORONE	UG/KG	700 U	930 U	540 U	780 U	390 U	450 U
2-NITROPHENOL	UG/KG	700 U	930 U	540 U	780 U	390 U	450 UJ
2,4-DIMETHYLPHENOL	UG/KG	700 U	930 U	540 U	780 U	390 U	450 U
BIS(2-CHLOROETHOXY)	METHANE UG/KG	700 U	930 U	540 U	780 U	390 U	450 U
2,4-DICHLOROPHENOL	UG/KG	700 U	930 U	540 U	780 U	390 U	450 U
1,2,4-TRICHLOROBENZE		700 U	930 U	540 U	780 U	390 U	450 U
NAPHTHALENE	UG/KG	700 U	930 U	540 U	780 U	390 U	450 U
4-CHLORANILINE	UG/KG	700 U	930 U	540 U	780 U	390 U	450 U
HEXACHLOROBUTADIEN	IE UG/KG	700 U	930 U	540 U	780 U	390 U	450 U

E	Sample No: Depth: Pate Sampled: Lab Id:	6-BH03-SD-06B N/A 8/28/92 00458-05	6-BH03-SD-06M N/A 8/28/92 00458-07	6-BH03-SD-612B N/A 8/28/92 00458-08	6-BH03-SD-612M N/A 8/28/92 00458-09	6-BH04-SD-06B N/A 8/26/92 00439-01	6-BH04-SD-06M N/A 8/26/92 00439-02
Parameter	Units						00107_02
SEMIVOLATILES Co	ont.						
-CHLORO-3-METHYLPHE		700 U	930 U	540 U	780 U	390 U	450 U
2-METHYLNAPHTHALENE	UG/KG	700 U	930 U	540 U	780 U	390 U	450 U
HEXACHLOROCYCLOPENTA		700 U	930 U	540 U	780 U	390 U	450 U
2,4,6-TRICHLOROPHENOL	UG/KG	700 U	930 U	540 U	780 U	390 U	450 U
2,4,5-TRICHLOROPHENOL	UG/KG	1700 U	2300 U	1300 U	1900 U	950 U	1100 U
2-CHLORONAPHTHALENE	UG/KG	700 U	930 U	540 U	780 U	390 U	450 U
-NITROANILINE	UG/KG	1700 U	2300 U	1300 U	1900 U	950 U	1100 U
DIMETHYL PHTHALATE	UG/KG	700 U	930 U	540 U	780 U	390 U	450 U
ACENAPHTHYLENE	UG/KG	700 U	930 U	540 U	780 U	390 U	450 U
2,6-DINITROTOLUENE	UG/KG	700 U	930 U	540 U	780 U	390 U	450 UJ
3-NITROANILINE	UG/KG	1700 U	2300 U	1300 U	1900 U	950 U	1100 U
ACENAPHTHENE	UG/KG	700 U	930 U	540 U	780 U	390 U	450 U
2,4-DINITROPHENOL	UG/KG	1700 U	2300 U	1300 U	1900 U	950 U	1100 U
-NITROPHENOL	UG/KG	1700 UJ	2300 UJ	1300 U	1900 U	950 U	1100 U
DIBENZOFURAN	UG/KG	700 U	930 U	540 U	780 U	390 U	430 U
2,4 – DINITROTOLUENE	UG/KG	700 U	930 U	540 U	780 U	390 U	450 UJ
DIETHYL PHTHALATE	UG/KG	700 U	930 U	540 U	780 U	390 U	450 U
-CHLOROPHENYL PHENYL	ETHER UG/KG	700 U	930 U	540 U	780 U	390 U	450 U
LUORENE	UG/KG	700 U	930 U	540 U	780 U	390 UJ	450 U
-NITROANILINE	UG/KG	1700 U	2300 U	1300 U	1900 U	950 U	1100 U
6-DINITRO-2-METHYLPH	ENOL UG/KO	1700 U	2300 U	1300 U	1900 U	950 U	1100 U
-NITRISODIPHENYLAMINI	UG/KG	700 U	930 U	540 U	780 U	390 U	450 U
-BROMOPHENYL PHENYL	ETHER UG/KG	700 U	930 U	540 U	780 U	390 U	450 U
IEXACHLOROBENZENE	UG/KG	700 UJ	930 UJ	540 UJ	780 UJ	390 U	450 U
ENTACHLOROPHENOL	UG/KG	1700 U	2300 U	1300 U	1900 U	950 U	1100 U
HENANTHRENE	UG/KG	700 U	930 U	540 U	780 U	390 U	450 U
NTHRACENE	UG/KG	700 U	930 U	540 U	780 U	390 U	450 U
DI-N-BUTYL PHTHALATE	UG/KG	700 U	930 U	540 U	780 U	390 U	450 U
LUORANTHENE	UG/KG	700 U	930 U	540 U	780 U	390 UJ	450 U
ARBAZOLE	UG/KG	700 U	930 U	540 U	780 U	390 U	450 U
YRENE	UG/KG	700 U	930 U	540 U	780 U	390 U	450 U
UTYL BENZYL PHTHALATE		700 U	930 U	540 U	780 U	390 U	450 U
3-DICHLOROBENZIDINE	UG/KG	700 U	930 U	540 U	780 U	390 U	450 U
ENZO(A)ANTHRACENE	UG/KG	700 U	930 U	540 U	780 U	390 U	450 U
HRYSÈNE	UG/KG	700 U	930 U	540 U	780 U	390 U	450 U
IS(2-ETHYLHEXYL)PHTHA	LATE UG/KG	700 U	930 U	540 U	780 U	390 U	450 U
DI-N-OCTYL PHTHALATE	UG/KG	700 U	930 U	540 U	780 U	390 UJ	450 U
ENZO(B)FLUORANTHENE	UG/KG	700 U	930 U	540 U	780 U	390 U	450 U
ENZO(K)FLUORANTHENE	UG/KG	700 U	930 U	540 U	780 U	390 U	450 U
ENZO(A)PYRENE	UG/KG	450 J	190 J	640	230 J	390 U	450 U
NDENO(1,2,3-CD) PYRENE	UG/KG	700 UJ	930 UJ	540 UJ	780 UJ	40 J	450 U
DIBENZ (AH) ANTHRACENE	UG/KG	700 UJ	930 UJ	540 UJ	780 UJ	390 U	450 U
SENZO(G,H,I)PERYLENE	UG/KG	700 UJ	930 UJ	540 UJ	780 UJ	390 U	450 U

,

6bhsdor.wk1

	Sample No: Depth: Date Sampled: Lab Id:	6-BH04-SD-612B N/A 8/26/92 00439-03	6-BH04-SD-612M N/A 8/26/92 00439-04	6-BH05-SD-06B N/A 8/26/92 00439-05	6-BH05-SD-06M N/A 8/26/92 00439-06	6-BH06-SD-06B N/A 8/26/92 00439-07	6-BH06-SD-06M N/A 8/26/92 00439-09
Parameter	Units						
PESTICIDE/PC	BS						
ALPHA-BHC	UG/KG	3.5 UJ	2.3 UJ	2.3 UJ	5.8 U	3.2 UJ	2.5 UJ
BETA-BHC	UG/KG	3.5 UJ	2.3 UJ	2.3 UJ	5.8 U	3.2 UJ	2.5 UJ
DELTA-BHC	UG/KG	3.5 UJ	2.3 UJ	2.3 UJ	5.8 U	3.2 UJ	2.5 UJ
GAMMA-BHC(LINDANE)	UG/KG	3.5 UJ	2.3 UJ	2.3 UJ	5.8 U	3.2 UJ	2.5 UJ
HEPTACHLOR	UG/KG	3.5 UJ	2.3 UJ	2.3 UJ	5.8 U	3.2 UJ	2.5 UJ
ALDRIN	UG/KG	3.5 UJ	2.3 UJ	2.3 UJ	5.8 U	3.2 UJ	2.5 UJ
HEPTACHLOR EPOXIDE	UG/KG	3.5 UJ	2.3 UJ	2.3 UJ	5.8 U	3.2 UJ	2.5 UJ
ENDOSULFAN I	UG/KG	3.5 UJ	2.3 UJ	2.3 UJ	5.8 U	3.2 UJ	2.5 UJ
DIELDRIN	UG/KG	6.8 UJ	4.4 UJ	4.5 UJ	11 U	6.3 UJ	4.8 UJ
	UG/KG	35 J	4,4 UJ 53 J	4.5 U3 4	32	68 J	4.8 03 24 J
4,4'-DDE ENDRIN	UG/KG	6.8 UJ	4.4 UJ	4.5 UJ	52 11 U	6.3 UJ	4.8 UJ
		6.8 UJ	4.4 UJ	4.5 UJ	11 U	6.3 UJ	4.8 UJ
ENDOSULFAN II 4.4' – DDD	UG/KG UG/KG	11 J	4.4 UJ 220 J	4.5 UJ 26 J	23	37 J	4.8 CJ 22 J
		6.8 UJ	4.4 UJ	4.5 UJ	11 U	6.3 UJ	4.8 UJ
ENDOSULFAN SULFATE	UG/KG		4.4 UJ 38 J	4.5 UJ	21 J	0.5 UJ 14 J	4.3 UJ 7 J
4,4'-DDT	UG/KG	6.8 UJ 35 UJ	23 UJ	4.3 UJ 23 UJ	58 U	32 UJ	25 UJ
METHOXYCHLOR	UG/KG		4.4 UJ	4.5 UJ	58 U 11 U	6.3 UJ	4.8 UJ
ENDRIN KETONE	UG/KG	6.8 UJ					4.8 UJ
ENDRIN ALDEHYDE	UG/KG	6.8 UJ	4.4 UJ	4.5 UJ	11 U	6.3 UJ	
ALPHA CHLORDANE	UG/KG	3.5 UJ	2.3 UJ	2.3 UJ	5.8 U	14 J	2.5 UJ
GAMMA CHLORDANE	UG/KG	3.5 UJ	2.3 UJ	2.3 UJ	5.8 U	3.2 UJ	2.5 UJ
TOXAPHENE	UG/KG	350 UJ	230 UJ	230 UJ	580 U	320 UJ	250 UJ
PCB-1016	UG/KG	68 UJ	44 UJ	45 UJ	110 U	63 UJ	48 UJ
PCB-1221	UG/KG	140 UJ	89 UJ	91 UJ	230 U	130 UJ	98 UJ
PCB-1232	UG/KG	68 UJ	44 UJ	45 UJ	110 U	63 UJ	48 UJ
PCB-1242	UG/KG	68 UJ	44 UJ	45 UJ	110 U	63 UJ	48 UJ
PCB-1248	UG/KG	68 UJ	44 UJ	45 UJ	110 U	63 UJ	48 UJ
PCB-1254	UG/KG	68 UJ	44 UJ	45 UJ	110 U	63 UJ	48 UJ
PCB-1260	UG/KG	240 J	370 J	64 J	110 J	180 J	69 J
VOLATILES							
CHLOROMETHANE	UG/KG	12 U	12 U	1900 U	37 U	20 U	14 U
BROMOMETHANE	UG/KG	12 U	12 U	1900 U	37 U	20 U	14 U
VINYL CHLORIDE	UG/KG	12 U	12 U	1900 U	37 U	20 U	14 U
CHLOROETHANE	UG/KG	12 U	12 U	1900 U	37 U	20 U	14 U
METHYLENE CHLORIDE	UG/KG	12 U	12 U	1990 U	37 U	20 U	14 U
ACETONE	UG/KG	50 J	91	3700 J	470 J	60 J	91 J
CARBON DISULFIDE	UG/KG	12 U	12 U	1900 U	37 U	20 U	14 U
1,1-DICHLOROETHENE	UG/KG	12 U	12 U	1900 U	37 U	20 U	14 U
1,1-DICHLOROBTHENE	UG/KG	12 U	12 U	1900 U	37 U	20 U	14 U
1.2-DICHLOROETHENE	UG/KG	12 U	12 U	1900 U	37 U	20 U	14 U
CHLOROFORM	UG/KG	12 U	12 U 12 U	1900 U	37 U	20 U	14 U
	UG/KG	12 U 12 U	12 U	1900 U	37 U	20 U 20 U	14 U
1,2-DICHLOROETHANE			12 U 12 U	2600	87 J	20 U 20 U	14 U
2-BUTANONE	UG/KG	5 J	12 0	2000	· 0/ J	20 U	14 U

· · · ·	Sample No: Depth: Date Sampled: Lab Id:	6-BH04-SD-612B N/A 8/26/92 00439-03	6-BH04-SD-612M N/A 8/26/92 00439-04	6BH05-SD-06B N/A 8/26/92 0043905	6-BH05-SD-06M N/A 8/26/92 00439-06	6-BH06-SD-06B N/A 8/26/92 00439-07	6-BH06-SD-06M N/A 8/26/92 00439-09
Parameter	Units						
VOLATILES Con	·						
1,1,1-TRICHLOROETHANE	UG/KG	12 U	12 U	1900 U	37 U	20 U	14 U
CARBON TETRACHLORIDE	UĠ/KG	12 U	12 U	1900 U	37 U	20 U	14 U
BROMODICHLOROMETHAN	E UG/KG	12 U	12 U	1900 U	37 U	20 U	14 U
1,2-DICHLOROPROPANE	UG/KG	12 U	12 U	1900 U	37 U	20 U	14 U
CIS-1,3-DICHLOROPROPEN	IE UG/KG	12 U	12 U	1900 U	37 U	20 U	14 U
TRICHLOROETHENE	UG/KG	12 U	12 U	1900 U	37 U	20 U	14 U
DIBROMOCHLOROMETHAN	E UG/KG	12 U	12 U	1900 U	37 U	20 U	14 U
1,1,2-TRICHLOROETHANE	UG/KG	12 U	12 U	1900 U	37 U	20 U	14 U
BENZENE	UG/KG	12 U	12 UJ	1900 U	37 U	20 U	14 UJ
TRANS-1,3-DICHLOROPRO		12 U	12 UJ	1900 U	37 U	20 U	14 UJ
BROMOFORM	UG/KG	12 U	12 U	1900 U	37 U	20 U	14 U
4-METHYL-2-PENTANON		12 U	12 U	1900 U	37 U	20 U	14 U
2-HEXANONE	UG/KG	12 U	12 U	1900 U	37 U	20 U	14 U
TETRACHLOROETHENE	UG/KG	12 U	12 U	1900 U	37 U	20 U	14 U
1,1,2,2-TETRACHLOROETHA		12 U	12 U	1900 U	37 U	20 U	14 U
TOLUENE	UG/KG	12 U	12 U	1900 U	37 U	20 U	14 U
CHLOROBENZENE	UG/KG	12 U	12 U	1900 U	37 U	20 U	14 U
ETHYLBENZENE	UG/KG	12 U	12 U	1900 U	37 U	20 U	14 U
STYRENE	UG/KG	12 U	12 U	1900 U	37 U	20 U	14 U
TOTAL XYLENES	UG/KG	12 U	12 U	1900 U	37 U	20 U	14 U
SEMIVOLATILE	5						
PHENOL	UG/KG	690 U	450 U	450 U	1800 U	640 U	480 U
BIS(2-CHLOROETHYL) ETH	ER UG/KG	690 U	450 U	450 U	1800 U	640 U	480 U
2-CHLOROPHENOL	UG/KG	690 U	450 U	450 U	1800 U	640 U	480 U
1.3-DICHLOROBENZENE	UG/KG	690 U	450 U	450 U	1800 U	640 U	480 U
1.4-DICHLOROBENZENE	UG/KG	690 U	450 U	450 U	1800 U	640 U	480 U
1,2-DICHLOROBENZENE	UG/KG	690 U	450 U	450 U	1800 U	640 U	480 U
2-METHYLPHENOL	UG/KG	690 U	450 U	450 U	1800 U	640 U	480 U
2,2'-OXYBIS (1-CHLOROPR		690 U	450 U	450 U	1800 U	640 U	480 U
-METHYLPHENOL	ÚG/KG	690 U	450 U	450 U	1800 U	640 U	480 U
N-NITROSODI-N-PROPYL	AMINE UG/KG	690 U	450 U	450 U	1800 U	640 U	480 U
HEXACHLOROETHANE	UG/KG	690 U	450 U	450 U	1800 U	640 U	480 U
NITROBENZENE	UG/KG	690 U	450 U	450 U	1800 U	640 U	480 U
ISOPHORONE	UG/KG	690 U	450 U	450 U	1800 U	640 U	480 U
2-NITROPHENOL	UG/KG	690 UJ	450 UJ	450 U	1800 U	640 U	480 U
2.4-DIMETHYLPHENOL	UG/KG	690 U	450 U	450 U	1800 U	640 U	480 U
BIS(2-CHLOROETHOXY) MI		690 U	450 U	450 U	1800 U	640 U	480 U
24-DICHLOROPHENOL	UG/KG	690 U	450 U	450 U	1800 U	640 U	480 U
1,2,4-TRICHLOROBENZENE	UG/KG	690 U	450 U	450 U	1800 U	640 U	480 U
NAPHTHALENE	UG/KG	690 U	450 U	450 U	1800 U	640 U	480 U
4-CHLORANILINE	UG/KG	690 U	450 U	450 U	1800 U	640 U	480 U
HEXACHLOROBUTADIENE	UG/KG	690 U	450 U	450 U	1800 U	640 U	480 U

۲

	Sample No: Depth: Date Sampled: Lab Id:	6-BH04-SD-612B N/A 8/26/92 00439-03	6-BH04-SD-612M N/A 8/26/92 00439-04	6-BH05-SD-06B N/A 8/26/92 00439-05	6-BH05-SD-06M N/A 8/26/92 00439-06	6-BH06-SD-06B N/A 8/26/92 00439-07	6-BH06-SD-06M N/A 8/26/92 00439-09
arameter	Unit						
SEMIVOLATIL	ES Cont.						
-CHLORO-3-METHYI		KG 690 U	450 U	450 U	1800 U	640 U	480 U
-METHYLNAPHTHALE			450 U	450 U	1800 U	640 U	480 U
EXACHLOROCYCLOPE			450 U	450 U	1800 U	640 U	480 U
4,6-TRICHLOROPHEN			450 U	450 U	1800 U	640 U	480 U
4,5-TRICHLOROPHEN			1100 U	1100 U	4400 U	1600 U	1200 U
-CHLORONAPHTHALE			450 U	450 U	1800 U	640 U	480 U
-NITROANILINE	UG/		1100 U	1100 U	4400 U	1600 U	1200 U
IMETHYL PHTHALATE			450 U	450 U	1800 U	640 U	480 U
CENAPHTHYLENE	UG/		450 U	450 U	1800 U	640 U	480 U
-DINITROTOLUENE	UG/		450 U	450 U	1800 U	640 U	480 U
-NITROANILINE	UG/		1100 U	1100 U	4400 U	1600 U	1200 U
CENAPHTHENE	UG/		450 U	450 U	1800 U	640 U	480 U
-DINITROPHENOL	UG/I		1100 U	1100 U	4400 U	1600 U	1200 U
-NITROPHENOL	UG/		1100 U	1100 U	4400 U	1600 U	1200 U
IBENZOFURAN	UG/		450 U	450 U	1800 U	640 U	480 U
-DINITROTOLUENE	UG/I		450 UJ	450 U	1800 U	640 U	480 U
IETHYL PHTHALATE	UG/		450 U	450 U	1800 U	640 U	480 U
CHLOROPHENYL PHE			450 U	450 U	1800 U	640 U	480 U
UORENE	UGA		450 U	450 UJ	1800 UJ	640 U	480 UJ
NITROANILINE	UG/I		1100 U	1100 U	4400 U	1600 U	1200 U
-DINITRO-2-METHY			1100 U	1100 U	4400 U	1600 U	1200 U
-NITRISODIPHENYLA			450 U	450 U	1800 U	640 U	480 U
BROMOPHENYL PHEN			450 U	450 U	1800 U	640 U	480 U
EXACHLOROBENZENE			450 U	450 U	1800 U	640 U	480 U
NTACHLOROPHENOL	UG/I		1100 U	1100 U	4400 U	1600 U	1200 U
IENANTHRENE	UG/I		450 U	450 U	1800 U	640 U	480 U
THRACENE	UG/I		450 U	450 U	1800 U	640 U	480 U
-N-BUTYL PHTHALA			450 U	450 U	1800 U	640 U	480 U
UORANTHENE	UG/I		450 U	450 UJ	1800 UJ	640 U	480 UJ
ARBAZOLE	UG/I		450 U	450 U	1800 U	640 U	480 U
RENE	UG/I		60 J	450 U	1800 U	76 J	480 U
JTYL BENZYL PHTHAL			450 U	450 U	1800 U	640 U	480 U
-DICHLOROBENZIDI			450 U	450 U	1800 U	640 U	480 U
ENZO(A)ANTHRACENE			450 U	450 U	1800 U	640 U	480 U
IRYSENE	UG/I		450 U	450 U	1800 U	640 U	480 U
S(2-ETHYLHEXYL)PH			450 U	450 U	1800 U	640 U	480 U
-N-OCTYL PHTHALA			450 U	450 UJ	1800 UJ	640 U	480 UJ
ENZO(B)FLUORANTHE			450 U	450 U	1800 U	96 J	480 U
ENZO(K)FLUORANTHE			450 U	450 U	1800 U	640 U	480 U 480 U
ENZO(A)PYRENE	UGA		450 C 100 J	450 U	1800 U	640 U	480 U 480 U
DENO(1,2,3-CD) PYRE			450 U	450 U	1800 U	640 U	480 U 480 U
BENZ(AH)ANTHRACE			450 U	450 U	1800 U	640 U	480 U 480 U
ENZO(G,H,I)PERYLENE			450 U	450 U	1800 U	640 U	480 U 480 U

6bhsdor.wk1

	Sample No: Depth: Date Sampled: Lab Id:	6-BH07-SD-06B N/A 8/27/92 00445-01	6-BH07-SD-06M N/A 8/27/92 00445-02	
Parameter	Units		00110 02	
PESTICIDE/PC	BS			<i>,</i> .
ALPHA-BHC	UG/KG	51 U	19 U	
BETA-BHC	UG/KG	51 U	19 U	
DELTA-BHC	UG/KG	51 U	19 U	
GAMMA-BHC(LINDANE)	UG/KG	51 U	19 U	
HEPTACHLOR	UG/KG	51 U	19 U	
ALDRIN	UG/KG	51 U	19 U	
HEPTACHLOR EPOXIDE	UG/KG	51 U	19 U	
ENDOSULFAN I	UG/KG	51 U	19 U	
DIELDRIN	UG/KG	99 U	37 U	
4,4'-DDE	UG/KG	99 U	37 U	
ENDRIN	UG/KG	99 U	37 U	
ENDOSULFAN II	UG/KG	99 U	37 U	
4.4'-DDD	UG/KG	99 U	37 U	
ENDOSULFAN SULFATE	UG/KG	99 U	37 U	
4.4'-DDT	UG/KG	99 U	37 U	
METHOXYCHLOR	UG/KG	510 U	190 U	
ENDRIN KETONE	UG/KG	99 U	37 U	
ENDRIN ALDEHYDE	UG/KG	99 U	37 U	
ALPHA CHLORDANE	UG/KG	51 U	19 U	
GAMMA CHLORDANE	UG/KG	51 U	19 U	
TOXAPHENE	UG/KG	5100 U	1900 U	
PCB-1016	UG/KG	990 U	370 U	
PCB-1221	UG/KG	2000 U	740 U	
PCB-1221	UG/KG	2000 U 990 U	370 U	
PCB-1232	UG/KG	990 U	370 U	
PCB-1242	UG/KG	990 U	370 U	
	UG/KG	990 U	370 U	
PCB-1254 PCB-1260	UG/KG UG/KG	990 U 990 U	370 U 370 U	
CD~1200	00/80	990 U	370 0	
VOLATILES				
CHLOROMETHANE	UG/KG	83 U	71 U	
BROMOMETHANE	UG/KG	83 U	71 U	
VINYL CHLORIDE	UG/KG	83 U	71 U	
CHLOROETHANE	UG/KG	83 U	71 U	
METHYLENE CHLORIDE	UG/KG	83 U	71 U	
ACETONE	UG/KG	110 UJ	180 UJ	
CARBON DISULFIDE	UG/KG	83 U	71 U	
I,1-DICHLOROETHENE	UG/KG	83 UJ	71 U	
1,1-DICHLOROETHANE	UG/KG	83 U	71 UJ	
1,2-DICHLOROETHENE	UG/KG	83 U	71 U	
CHLOROFORM	UG/KG	83 U	71 U	
1,2-DICHLOROETHANE	UG/KG	83 U	71 U	
2-BUTANONE	UG/KG	83 U	71 U	

,

D	Sample No: Depth: ate Sampled: Lab Id:	6-BH07-SD-06B N/A 8/27/92 00445-01	6-BH07-SD-06M N/A 8/27/92 00445-02	
Parameter	Lab Id: Units	00443~01	00445-02	
· · · · · · · · · · · · · · · · · · ·				
VOLATILES Cont.			·	
1,1,1–TRICHLOROETHANE	UG/KG	83 U	71 U	
CARBON TETRACHLORIDE	UG/KG	83 U	71 U	
BROMODICHLOROMETHANI	E UG/KG	83 U	71 U	
1,2-DICHLOROPROPANE	UG/KG	83 U	71 U	
CIS-1,3-DICHLOROPROPEN	E UG/KG	83 UJ	71 U	
TRICHLOROETHENE	UG/KG	83 U	150	
DIBROMOCHLOROMETHANI	E UG/KG	83. U	71 U	
1,1,2-TRICHLOROETHANE	UG/KG	83 U	71 U	
BENZENE	UG/KG	83 U	71 U	
TRANS-1,3-DICHLOROPROF	PENE UG/KG	83 U	71 U	
BROMOFORM	UG/KG	83 U	71 U	
4-METHYL-2-PENTANONE	UG/KG	83 U .	71 U	
2-HEXANONE	UG/KG	83 U	71 U	
TETRACHLOROETHENE	UG/KG	83 U	71 U	
1,1,2,2-TETRACHLOROETHA		83 U	71 U	
TOLUENE	UG/KG	83 U	71 U	
CHLOROBENZENE	UG/KG	83 U	71 U	
ETHYLBENZENE	UG/KG	83 U	57 J	
STYRENE	UG/KG	83 U	71 U	
TOTAL XYLENES	UG/KG	83 U	380	
SEMIVOLATILES				
PHENOL	UG/KG	3300 U	3600 U	
BIS(2-CHLOROETHYL) ETHE	R UG/KG	3300 U	3600 U	
2-CHLOROPHENOL	UG/KG	3300 U	3600 U	
1.3-DICHLOROBENZENE	UG/KG	3300 U	3600 U	
1.4-DICHLOROBENZENE	UG/KG	340 J	370 J	
1,2-DICHLOROBENZENE	UG/KG	3300 U	3600 U	
2-METHYLPHENOL	UG/KG	3300 U	3600 U	
2,2'-OXYBIS (1-CHLOROPRO		3300 U	3600 U	
4-METHYLPHENOL	UG/KG	3300 U	3600 U	
N-NITROSODI-N-PROPYLA		3300 U	3600 U	
HEXACHLOROETHANE	UG/KG	3300 U	3600 U	
NITROBENZENE	UG/KG	3300 U	3600 U	
ISOPHORONE	UG/KG	3300 U	3600 U	
2-NITROPHENOL	UG/KG	3300 U	3600 U	
2,4-DIMETHYLPHENOL	UG/KG	3300 U	3600 U	
BIS(2-CHLOROETHOXY) ME		3300 U	3600 U	
2.4 - DICHLOROPHENOL	UG/KG	3300 U	3600 U	
1,2,4-TRICHLOROBENZENE	UG/KG	3300 U	3600 U	
NAPHTHALENE	UG/KG	3300 U	3600 U	
		~~~~~		
4-CHLORANILINE	UG/KG	3300 U	3600 U	

.

	Sample No: Depth: te Sampled: Lab Id:	6-BH07-SD-06B N/A 8/27/92	6-BH07-SD-06M N/A 8/27/92	
Parameter	Units	00445-01	00445-02	
SEMIVOLATILES Con	•			
4-CHLORO-3-METHYLPHEN		3300 U	3600 U	
2-METHYLNAPHTHALENE	UG/KG	3300 U	3600 U	
HEXACHLOROCYCLOPENTAD		3300 U	3600 U	
2.4.6-TRICHLOROPHENOL	UG/KG	3300 U	3600 U	
2,4,5-TRICHLOROPHENOL	UG/KG	7900 U	8800 U	
2-CHLORONAPHTHALENE	UG/KG	3300 U	3600 U	
2-NITROANILINE	UG/KG	7900 U	8800 U	
DIMETHYL PHTHALATE	UO/KO	3300 U	3600 U	
ACENAPHTHYLENE	UG/KG	3300 U	3600 U	
2,6-DINITROTOLUENE	UG/KG	3300 U	3600 U	
3-NITROANILINE	UG/KG	7900 U	8800 U	
ACENAPHTHENE	UG/KG	3300 U	3600 U	
2.4-DINITROPHENOL	UG/KG	7900 U	8800 U	
4-NITROPHENOL	UG/KG	7900 U	8800 U	
DIBENZOFURAN	UG/KG	3300 U	3600 U	
2,4-DINITROTOLUENE	UG/KG	3300 U	3600 U	
DIETHYL PHTHALATE	UG/KG	3300 U	3600 U	
4-CHLOROPHENYL PHENYL B		3300 U	3600 U	
FLUORENE	UG/KG	3300 U	3600 U	
4-NITROANILINE	UG/KG	7900 U	8800 U	
4,6-DINITRO-2-METHYLPHE		7900 U	8800 U	
N-NITRISODIPHENYLAMINE	UG/KG	3300 U	3600 U	
4-BROMOPHENYL PHENYL EI		3300 U	3600 U	
HEXACHLOROBENZENE	UG/KG	3300 U	3600 U	
PENTACHLOROPHENOL	UG/KG	7900 U	8800 U	
PHENANTHRENE	UG/KG	3300 U	3600 U	
ANTHRACENE	UG/KG	3300 U	3600 U	
DI-N-BUTYL PHTHALATE	UG/KG	3300 U	3600 U	
FLUORANTHENE	UG/KG	3300 U	3600 U	
CARBAZOLE	UG/KG	3300 U	3600 U	
PYRENE	UG/KG	3300 U	3600 U	
BUTYL BENZYL PHTHALATE	UG/KG	3300 U	3600 U	
3,3-DICHLOROBENZIDINE	UG/KG	3300 U	3600 U	
BENZO(A)ANTHRACENE	UG/KG	3300 U	3600 U	
CHRYSENE	UG/KG	3300 U	3600 U	
				·
BIS(2-ETHYLHEXYL)PHTHALA DI-N-OCTVI PHTHALATE	ATE UG/KG UG/KG	3300 U 3300 U	3600 U	
DI-N-OCTYL PHTHALATE	UG/KG	3300 U	3600 UJ	
BENZO(B)FLUORANTHENE			3600 UJ	
BENZO(K)FLUORANTHENE	UG/KG	3300 U	3600 UJ	
BENZO(A)PYRENE	UG/KG	3300 U	3600 UJ	•··
INDENO(1,2,3-CD) PYRENE	UG/KG	3300 U	3600 UJ	
DIBENZ(AH)ANTHRACENE	UG/KG	3300 U	3600 UJ	
BENZO(G,H,I)PERYLENE	UG/KG	3300 U	3600 UJ	

,

	Sample No: Depth:					LOCATION OF	FREQUENCY
	Date Sampled: Lab Id:	MINIMUM NONDETECTED	MAXIMUM	MINIMUM DETECTED	MAXIMUM DETECTED	MAXIMUM DETECTED	OF DETECTION
Parameter	Units	MUNDEIDCIED	NONDETICIED	DETECTED	DETECTED	DBILCILD	DDILOIION
PESTICIDE/PC			<i>.</i>		ND		0/20
ALPHA-BHC	UG/KG	2 U	51 U	ND	ND		
BETA-BHC	UG/KG	2 U	51 U	ND	ND		0/20
DELTA-BHC	UG/KG	2 U	51 U	ND	ND		0/20
GAMMA-BHC(LINDANE)	UG/KG	2 U	51 U	ND	ND		0/20
HEPTACHLOR	UG/KG	2 U	51 U	ND	ND		0/20
ALDRIN	UG/KG	2 U	51 U	ND	ND		0/20
HEPTACHLOR EPOXIDE	UG/KG	2 U	51 U	ND	ND		0/20
ENDOSULFAN I	UG/KG	2 U	51 U	ND	ND		0/20
DIELDRIN	UG/KG	3.9 U	99 U	ND	ND		0/20
4.4'-DDE	UG/KG	5.4 U	99 U	5.7	68	6-BH06-SD-06B	11/20
ENDRIN	UG/KG	3.9 U	99 U	ND	ND		0/20
ENDOSULFAN II	UG/KG	3.9 U	99 U	ND	ND		0/20
4.4'-DDD	UG/KG	5.2 U	99 U	8.4 J	220 J	6-BH04-SD-612M	10/20
ENDOSULFAN SULFATE	UG/KG	3.9 U	99 U	ND	ND		0/20
4,4'-DDT	UG/KG	4,5 UJ	99 U	6.6 J	38 J	6-BH04-SD-612M	8/20
METHOXYCHLOR	UG/KG	20 U	510 U	ND	ND		0/20
ENDRIN KETONE	UG/KG	3.9 U	99 U	ND	ND		0/20
ENDRIN ALDEHYDE	UG/KG	3.9 U	99 U	ND	ND		0/20
ALPHA CHLORDANE	UG/KG	2 U	51 U	14 J	14 J	6-BH06-SD-06B	1/20
GAMMA CHLORDANE	UG/KG	2 U	51 U	ND	ND	0 2000 02 002	0/20
TOXAPHENE	UG/KG	200 U	5100 U	ND	ND		0/20
PCB-1016	UG/KG	39 U	990 U	ND	ND		0/20
	UG/KG	79 U	2000 U	ND	ND		0/20
PCB-1221	UG/KG	79 U 39 U	2000 U 990 U	ND	ND		0/20
PCB-1232	UG/KG	39 U 39 U	990 U 990 U	ND	ND		0/20
PCB-1242			990 U	ND	ND		0/20
PCB-1248	UG/KG	39 U		ND	ND		0/20
PCB-1254	UG/KG	39 U	990 U		ND 370 J	6-BH07-SD-06M	10/20
PCB-1260	UG/KG	52 U	990 U	51	5/U J	0-BH0/-3D-00M	10/20
VOLATILE	s						
CHLOROMETHANE	UG/KG	12 U	1900 U	ND	ND		0/20
BROMOMETHANE	UG/KG	12 U	1900 U	ND	ND		0/20
VINYLCHLORIDE	UG/KG	12 U	1900 U	ND	ND		0/20
CHLOROETHANE	UG/KG	12 U	1900 U	ND	ND	× .	0/20
METHYLENE CHLORIDE	UG/KG	12 U	1990 U	2 J	7 J	6-BH03-SD-612M	4/20
ACETONE	UG/KG	12 U 18 U	180 UJ	34	9900 J	6-BH04-SD-06M	14/20
CARBON DISULFIDE	UG/KG	18 U 12 U	1900 U	ND	ND	· DIAVY DE JUNI	0/20
		12 U 12 U	1900 U	ND	ND		0/20
1,1-DICHLOROETHENE	UG/KG UG/KG	12 U 12 U	1900 U 1900 U	ND	ND		0/20
1,1-DICHLOROETHANE		12 U 12 U	1900 U	ND	· ND		0/20
1,2-DICHLOROETHENE	UG/KG		1900 U	ND	ND		0/20
CHLOROFORM	UG/KG	12 U			ND		0/20
1,2-DICHLOROETHANE	UG/KG	12 U	1900 U	ND			10/20
2-BUTANONE	UG/KG	12 U	83 U	3 J	2600	6-BH05-SD-06B	10/20

	Sample No: Depth:					LOCATION OF	FREQUENCY
D	Date Sampled: Lab Id:	MINIMUM NONDETECTED	MAXIMUM NONDETECTED	MINIMUM DETECTED	MAXIMUM DETECTED	MAXIMUM DETECTED	OF DETECTION
'arameter	Units						
VOLATILES Cont.							
1,1,1-TRICHLOROETHANE	UG/KG	12 U	1900 U	ND	ND		0/20
CARBON TETRACHLORIDE	UG/KG	12 U	1900 U	ND	ND		0/20
ROMODICHLOROMETHAN	E UG/KG	12 U	1900 U	ND	ND		0/20
2-DICHLOROPROPANE	UG/KG	12 U	1900 U	ND	ND		0/20
IS-13-DICHLOROPROPEN	E UG/KG	12 U	1900 U	ND	ND		0/20
RICHLOROETHENE	UG/KG	12 U	1900 U	5 J	150	6-BH07-SD-06M	2/20
IBROMOCHLOROMETHAN	E UG/KO	12 U	1900 U	ND	ND		0/20
1,2-TRICHLOROETHANE	UG/KG	12 U	1900 U	ND	ND		0/20
ENZENE	UG/KG	12 UJ	1900 U	5 J	5 J	6-BH01-SD-06B	1/20
RANS-1,3-DICHLOROPROI	PENE UG/KG	12 UJ	1900 U	ND	ND		0/20
ROMOFORM	UG/KG	12 U	1900 U	ND	· ND		0/20
-METHYL-2-PENTANONE	UG/KG	12 U	1900 U	ND	ND		0/20
-HEXANONE	UG/KG	12 U	1900 U	ND	ND		0/20
ETRACHLOROETHENE	UG/KG	12 U	1900 U	3 J	3 J	6-BH03-SD-06B	1/20
1,2,2-TETRACHLOROETHA	NE UG/KG	12 U	1900 U	ND	ND		0/20
OLUENE	UG/KG	12 U	1900 U	ND	ND		0/20
HLOROBENZENE	UG/KG	12 U	1900 U	ND	ND		0/20
THYLBENZENE	UG/KG	12 U	1900 U	57 J	57 J	6-BH07-SD-06M	1/20
TYRENE	UG/KG	12 U	1900 U	ND	ND		0/20
OTAL XYLENES	UG/KG	12 U	1900 U	3 J	380	6-BH07-SD-06M	2/20
SEMIVOLATILES							
HENOL	UG/KG	390 U	3600 U	ND	ND		0/20
IS(2-CHLOROETHYL) ETHE	ER UG/KG	390 U	3600 U	ND	ND		0/20
-CHLOROPHENOL	UG/KG	390 U	3600 U	ND	ND		0/20
3-DICHLOROBENZENE	UG/KG	390 Ú	3600 U	ND	ND		0/20
4-DICHLOROBENZENE	UG/KG	390 U	1800 U	340 J	370 J	6-BH07-SD-06M	2/20
2-DICHLOROBENZENE	UG/KG	390 U	3600 U	ND	ND		0/20
-METHYLPHENOL	UG/KG	390 U	3600 U	ND	ND		0/20
2'-OXYBIS (1-CHLOROPRO		390 U	3600 U	ND	ND		0/20
-METHYLPHENOL	UG/KG	390 U	3600 U	ND	ND		0/20
-NITROSODI-N-PROPYLA		390 U	3600 U	ND	ND		0/20
EXACHLOROETHANE	UG/KG	390 U	3600 U	ND	ND		0/20
ITROBENZENE	UG/KG	390 U	3600 U	ND	ND		0/20
OPHORONE	UG/KG	390 U	3600 U	ND	ND		0/20
-NITROPHENOL	UG/KG	390 U	3600 U	ND	ND		0/20
4-DIMETHYLPHENOL	UG/KG	390 U	3600 U	ND	ND		0/20
IS(2-CHLOROETHOXY) ME		390 U	3600 U	ND	ND		0/20
4-DICHLOROPHENOL	UG/KG	390 U	3600 U	ND	ND		0/20
2,4-TRICHLOROBENZENE	UG/KG	390 U	3600 U	ND	ND		0/20
APHTHALENE	UG/KG	390 U	3600 U	ND	ND		0/20
	UG/KG	390 U	3600 U	ND	ND		0/20
-CHLORANILINE							
IEXACHLOROBUTADIENE	UG/KG	390 U	3600 U	ND	ND		0/20

F \of 15

÷.

D	Sample No: Depth: ate Sampled: Lab Id:	MINIMUM NONDETECTED	MAXIMUM NONDETECTED	MINIMUM DETECTED	MAXIMUM DETECTED	LOCATION OF MAXIMUM DETECTED	FREQUENCY OF DETECTION
Parameter	Units	NONDETECTED	NONDETICIED	DEILCIED	DETECTED		DDILOIION
SEMIVOLATILES Co		390 U	3600 U	ND	ND		0/20
-CHLORO-3-METHYLPHE		390 U 390 U	3600 U 3600 U	ND	ND		0/20
-METHYLNAPHTHALENE	UG/KG		3600 U	ND	ND		0/20
IEXACHLOROCYCLOPENTA		390 U	3600 U	ND	ND		0/20
4,6-TRICHLOROPHENOL	UG/KG	390 U		ND	ND		0/20
4,5-TRICHLOROPHENOL	UG/KG	950 U	8800 U 3600 U	ND	ND		0/20
-CHLORONAPHTHALENE	UG/KG	390 U 950 U	8800 U	ND	NĎ		0/20
-NITROANILINE	UG/KG		3600 U	ND	ND		0/20
DIMETHYL PHTHALATE	UG/KG	390 U		ND	ND		0/20
ACENAPHTHYLENE	UG/KG	390 U	3600 U		ND ND		0/20
6-DINITROTOLUENE	UG/KG	390 U	3600 U	ND ND	ND ND		0/20
-NITROANILINE	UG/KG	950 U	8800 U				0/20
CENAPHTHENE	UG/KG	390 U	3600 U	ND	ND ND		0/20
4-DINITROPHENOL	UG/KG	950 U	8800 U	ND	ND		0/20
-NITROPHENOL	UG/KG	950 U	8800 U	ND	ND		0/20
DIBENZOFURAN	UG/KG	390 U	3600 U	ND	ND		0/20
,4-DINITROTOLUENE	UG/KG	390 U	3600 U	ND	ND		0/20
DIETHYL PHTHALATE	UG/KG	390 U	3600 U	ND			0/20
-CHLOROPHENYL PHENYL		390 U	3600 U	ND	ND		
LUORENE	UG/KG	390 UJ	3600 U	ND	ND		0/20 0/20
-NITROANILINE	UG/KG	950 U	8800 U	ND	ND		0/20
,6-DINITRO-2-METHYLPH		950 U	8800 U	ND	ND ND		0/20
-NITRISODIPHENYLAMINE		390 U	3600 U	ND			0/20
-BROMOPHENYL PHENYL		390 U	3600 U	ND	ND		0/20
IEXACHLOROBENZENE	UG/KG	390 U	3600 U	ND	ND		0/20
ENTACHLOROPHENOL	UG/KG	950 U	8800 U	ND	ND		
HENANTHRENE	UG/KG	390 U	3600 U	ND	ND		0/20
NTHRACENE	UG/KG	390 U	3600 U	ND	ND		0/20
DI-N-BUTYL PHTHALATE	UG/KG	390 U	3600 U	ND	ND		0/20
LUORANTHENE	UG/KG	390 UJ	3600 U	ND ND	ND		0/20
CARBAZOLE	UG/KG	390 U	3600 U	ND	ND		0/20
YRENE	UG/KG	390 U	3600 U	60 J	76 J	6-BH06-SD-06B	2/20
SUTYL BENZYL PHTHALATE		390 U	3600 U	ND	ND		0/20
3-DICHLOROBENZIDINE	UG/KG	390 U	3600 U	ND	ND		0/20
SENZO(A)ANTHRACENE	UG/KG	390 U	3600 U	ND	ND		0/20
HRYSÈNE	UG/KG	390 U	3600 U	ND	ND		0/20
IS(2-ETHYLHEXYL)PHTHA	LATE UG/KG	390 U	3600 U	ND	ND		0/20
DI-N-OCTYL PHTHÁLATE	UG/KG	390 UJ	3600 UJ	ND	ND		0/20
ENZO(B)FLUORANTHENE	UG/KG	390 U	3600 UJ	96 J	96 J	6-BH06-SD-06B	1/20
BENZO(K)FLUORANTHENE	UG/KG	390 U	3600 UJ	ND	ND		0/20
SENZO(A)PYRENE	UG/KG	390 U	3600 UJ	93 J	640	6-BH06-SD-06B	6/20
NDENO(1,2,3-CD) PYRENE	UG/KG	450 U	3600 UJ	40 J	40 J	6-BH04-SD-06B	1/20
DIBENZ(A,H)ANTHRACENE	UG/KG	390 U	3600 UJ	ND	ND		0/20
BENZO(G,H,I)PERYLENE	UG/KG	390 U	3600 UJ	ND	ND		0/20

	Sample No: Depth: Date Sampled: Lab Id:	6-BH01-SD-612B N/A 10/23/92 00591-03	6- BH01-SD-612M N/A 10/23/92 00591-04	6-BH01-SD-6B N/A 10/23/92 00591-01	6-BH01-SD-6M N/A 10/23/92 00591-02	6-BH02-SD-06M N/A 8/28/92 00458-02	6-BH02-SD-612M N/A 8/28/92 00458-03
Parameter	Units						
ALUMINUM	MG/KG	6760	7790	5610	6360	3010	7780
ANTIMONY	MG/KG	4.7 UJ	5.9 U	4.9 UJ	4.8 U	3.8 U	4.6 U
ARSENIC	MG/KG	1 U	1.1 U	1.1 U	0.93 U	0.77 U	1.6 JB
BARIUM	MG/KG	9.7 JB	14.4 B	8.5 UJ	9.9 JB	12.5 B	30 B
BERYLLIUM	MG/KG	0.13 B	0.17 B	0.14 B	0.1 U	0.08 U	0.33 B
CADMIUM	MG/KG	0.51 UJ	0.8 UJ	0.86 UJ	0.65 UJ	0.54 JB	1.3 JB
CALCIUM	MG/KG	59.3 U	82.8 U	61.9 U	70.2 U	1410	3890
CHROMIUM	MG/KG	5.1	4.7	4.9	3.6	3.3 U	9.9
COBALT	MG/KG	0.53 U	0.84 U	0.55 U	0.69 U	1.1 UJ	2.6 UJ
COPPER	MG/KG	3.2 JB	10.1 JB	4.2 JB	6.2 JB	2.5 UJ	2.3 UJ
IRON	MG/KG	765	1590	638	956	1240	3150
LEAD	MG/KG	8.9	12.3	11.3	10.2	6.9	8.9
MAGNESIUM	MG/KG	128 B	160 B	103 B	130 B	77.9 B	187 B
MANGANESE	MG/KG	4.9	6 B	4.7	4.9 B	4.4 J	8.6 J
MERCURY	MG/KO	0.05 U	0.05 U	0.05 U	0.04 UJ	0.03 U	0.07 U
NICKEL	MG/KG	2.1 UJ	3.3 UJ	2.2 UJ	2.7 UJ	2.7 UJ	7.2 UJ
POTASSIUM	MG/KG	125 B	163 B	122 B	140 B	76.8 UJ	151 U
SELENIUM	MG/KG	1.7 UJ	1.9 U	1.8 UJ	1.6 UJ	1.3 U	2.9
SILVER	MG/KG	0.53 UJ	0.84 UJ	0.55 UJ	0.69 UJ	0.82 UJ	1.3 UJ
SODIUM	MG/KG	35.5 UJ	42.8 UJ	41.5 UJ	39.4 UJ	25.4 UJ	39.9 UJ
THALLIUM	MG/KG	0.69 U	0.76 U	0.73 U	0.62 U	0.51 U	0.65 UJ
VANADIUM	MG/KG	5.7 B	6.5 B	4.8 B	4.9 B	3.3 JB	14.1 B
ZINC	MG/KG	2.1 U	1.4 U	1.6 U	1.8 U	12	- 12.6

	Sample No: Depth: Date Sampled: Lab Id:	6-BH03-SD-06B N/A 8/28/92 00458-05	6-BH03-SD-06M N/A 8/28/92 00458-07	6-BH03-SD-612B N/A 8/28/92 00458-08	6-BH03-SD-612M N/A 8/28/92 00458-09	6-BH04-SD-06B N/A 8/26/92 00439-01	6-BH04-SD-06M N/A 8/26/92 00439-02
arameter	Units						
LUMINUM	MG/KG	13600 J	9210	15000	10800	465	570
ANTIMONY	MG/KG	4.4 U	7.8 U	4.5 U	5.8 U	10.2 U	11.3 U
ARSENIC	MG/KG	0.79 U	1.5 UJ	0.79 U	1.2 UJ	0.47 U	0.62 B
BARIUM	MG/KG	31.7 B	33.2 B	32.8 B	40.4 B	4.4 U	4.8 U
BERYLLIUM	MG/KG	0.63 B	0.56 B	0.97 B	0.42 B	0.21 U	0.23 U
CADMIUM	MG/KG	1.3 JB	1.1 JB	1.3 JB	1.7 JB	0.7 JB	0.69 U
CALCIUM	MG/KG	3340	4850	3280	5880	45600	8560
HROMIUM	MG/KG	11.9	8.4	13.6	10	2.4	1.2 U
COBALT	MG/KG	2.8 UJ	1.7 UJ	3.2 UJ	2.5 UJ	1.3 U	1.4 U
OPPER	MG/KG	2.8 UJ	6.7 JB	0.97 UJ	7.1 JB	0.83 U	0.92 U
RON	MG/KG	3050	4450	3030	4660	516	442
.EAD	MG/KG	19.1 J	45.3	20.8	46.1	2.9	7.7
MAGNESIUM	MG/KG	317 B	219 B	291 B	210 B	653 B	138 B
ANGANESE	MG/KG	11 J	14 J	8.1 J	15 J	28.7	6.3 J
<b>MERCURY</b>	MG/KG	0.05 U	0.08 U	0.08 U	0.11 U	0.1 U	0.11 U
ICKEL	MG/KG	4.7 UJ	4.4 U	4.2 UJ	5.8 UJ	3.5 U	3.9 U
OTASSIUM	MG/KG	225 B	215 U	288 B	176 U	79.8 U	88.3 U
ELENIUM	MG/KG	1.3 UJ	2.5 UJ	1.3 UJ	2.1 UJ	1.2 U	1.1 U
ILVER	MG/KG	0.63 UJ	2.2 UJ	0.65 UJ	1.2 UJ	2.1 U	2.3 U
ODIUM	MG/KG	61.8 UJ	73.5 UJ	83 UJ	59.5 UJ	86.5 JB	39.6 UJ
HALLIUM	MG/KG	0.53 UJ	1 U	0.53 UJ	0.83 UJ	0.47 UJ	0.45 U
ANADIUM	MG/KG	13.8 B	12.9 B	17.8	12.5 B	1.7 JB	1.5 JB
LINC	MG/KG	11	30.4	6.4 B	34.5	5 U	7.7

	Sample No: Depth: Date Sampled: Lab Id:	6- BH04-SD-612B N/A 8/26/92 00439-03	6- BH04- SD- 612M N/A 8/26/92 00439- 04	6-BH05-SD-06B N/A 8/26/92 00439-05	6- BH05-SD-06M N/A 8/26/92 00439-06	6 BH06 SD 06B N/A 8/26/92 00439 07	6 BH06 SD 06M N/A 8/26/92 00439 09
Parameter	Units						
ALUMINUM	MG/KG	1000	1300	1850	6230	3840	5260 J
ANTIMONY	MG/KG	9.4 U	10.6 U	11.5 U	13.1 U	11.9 U	31.7 UJ
ARSENIC	MG/KG	0.4 U	0.54 B	0.46 U	1.1 B	1 B	2.2 JB
BARIUM	MG/KG	8.1 JB	4.5 U	7.7 JB	27 B	17.9 B	25.1 JB
BERYLLIUM	MG/KG	0.19 U	0.22 U	0.24 U	0.3 B	0.24 U	0.65 UJ
CADMIUM	MG/KG	0.57 U	0.73 JB	0.71 U	<b>1.8 J</b>	1.1 JB	1.9 UJ
CALCIUM	MG/KG	7490	18000	1210	4070	4630	12300 J
CHROMIUM	MG/KG	3.4	2.8	2.3 B	6.6	5.5	9.2 J
COBALT	MG/KG	1.1 U	1.3 U	1.4 U	1.7 JB	1.5 U	3.9 UJ
COPPER	MG/KG	0.76 U	1.2 JB	2.2 JB	6.2 JB	5.2 JB	8.8 JB
RON	MG/KG	1320	995	998	6250	3060	5920 J
LEAD	MG/KG	2.5	17.8	17.6	29	42	27 J
MAGNESIUM	MG/KG	118 B	295 B	57.6 B	180 B	178 B	302 JB
MANGANESE	MG/KG	4.8 J	10.4 J	3.8 J	12.4 J	19 J	27.5 J
MERCURY	MG/KG	0.1 U	0.11 U	0.15 U	0.14 U	0.13 U	0.38 UJ
NICKEL	MG/KG	3.2 U	3.7 U	4 U	4.5 U	4.1 U	11 UJ
OTASSIUM	MG/KG	73.1 U	82.6 U	90 U	156 B	121 B	248 UJ
SELENIUM	MG/KG	1 U	1 U	1.2 U	1.2 U	1.5 U	3.3 UJ
SILVER	MG/KG	1.9 U	2.2 U	2.4 U	2.7 U	2.4 U	6.5 UJ
ODIUM	MG/KG	28.2 UJ	62.4 UJ	35 UJ	48.3 UJ	42.4 UJ	93.7 JB
HALLIUM	MG/KG	0.4 U	0.42 UJ	0.46 U	0.5 UJ	0.61 U	1.3 UJ
VANADIUM	MG/KG	1.5 JB	2.2 B	3.2 JB	10.4 B	6.5 B	9 JB
ZINC	MG/KG	6.7	11.4	13.8	36.6	24.9	50.7 J

	Sample No:	6-BH07-SD-06B	6-BH07-SD-06M	
	Depth:	N/A	NA	
	Date Sampled:	8/27/92	8/27/92	
	Lab Id:	00445-01	00445-02	
Parameter	Units			
ALUMINUM	MG/KG	12300 J	22100 J	
ANTIMONY	MG/KG	21.3 U	23.7 U	
ARSENIC	MG/KG	6.1 JB	4.7 B	
BARIUM	MG/KG	10.5 JB	22.8 JB	
BERYLLIUM	MG/KG	0.82 U	1.2 U	
CADMIUM	MG/KG	4.5 UJ	4.7 JB	
CALCIUM	MG/KG	9240 J	14400 J	
CHROMIUM	MG/KG	10.8 B	16.4 B	
COBALT	MG/KG	3.4 B	4 B	
COPPER	MG/KG	28.1 B	23.8 B	
IRON	MG/KG	15800 J	17100 J	
LEAD	MG/KG	49.2 J	70.4 J	
MAGNESIUM	MG/KG	9820 J	10500 J	
MANGANESE	MG/KG	46.5	48.6	
MERCURY	MG/KG	0.38 U	0.49 U	
NICKEL	MG/KG	12 UJ	13.4 UJ	
POTASSIUM	MG/KG	1930 B	1460 B	
SELENIUM	MG/KG	7.6 U	7.5 U	
SILVER	MG/KG	3 U	3.4 U	
SODIUM	MG/KG	36200 J	15500 J	
THALLIUM	MG/KG	3 UJ	3 UJ	
VANADIUM	MG/KG	45.9 B	54.1 B	
ZINC	MG/KG	77.1	82.4	

4 of 5

÷

	Sample No: Depth: Date Sampled: Lab Id:	MINIMUM NONDETECTED	MAXIMUM NONDETECTED	MINIMUM	MAXIMUM DETECTED	LOCATION OF MAXIMUM DETECTED	FREQUENCY OF DETECTION
Parameter	Units						
ALUMINUM	MG/KG	NA	NA	465	22100 J	6-BH07-SD-06M	20/20
ANTIMONY	MG/KG	3.8 U	31.7 UJ	ND	ND		0/20
ARSENIC	MG/KG	0.4 U	1.5 UJ	0.54 B	6.1 JB	6-BH07-SD-06B	8/20
BARIUM	MG/KG	4.4 U	8.5 UJ	7.7 JB	40.4 B	6-BH03-SD-612M	16/20
BERYLLIUM	MG/KG	0.08 U	1.2 U	0.13 B	0.97 B	6-BH03-SD-612B	9/20
CADMIUM	MG/KG	0.51 UJ	4.5 UJ	0.54 JB	4.7 JB	6-BH07-SD-06M	11/20
CALCIUM	MG/KG	59.3 U	82.8 U	1210	45600	6-BH04-SD-06B	16/20
CHROMIUM	MG/KG	1.2 U	3.3 U	2.3 B	16.4 B	6-BH07-SD-06M	18/20
COBALT	MG/KG	0.53 U	3.9 UJ	1.7 JB	4 B	6-BH07-SD-06M	3/20
COPPER	MG/KG	0.76 U	2.8 UJ	1.2 JB	28.1 B	6-BH07-SD-06B	13/20
IRON	MG/KG	NA	NA	442	17100 J	6-BH07-SD-06M	20/20
LEAD	MG/KG	NA	NA	2.5	70.4 J	6-BH07-SD-06M	20/20
MAGNESIUM	MG/KG	NA	NA	57.6 B	10500 J	6-BH07-SD-06M	20/20
MANGANESE	MG/KG	NA	NA	3.8 J	48.6	6-BH07-SD-06M	20/20
MERCURY	MG/KG	0.03 U	0.49 U	ND	ND		0/20
NICKEL	MG/KG	2.1 UJ	13.4 UJ	ND	ND		0/20
POTASSIUM	MG/KG	73.1 U	248 UJ	121 B	1930 B	6-BH07-SD-06B	10/20
SELENIUM	MG/KG	1 U	7.6 U	2.9	2.9	6-BH02-SD-612M	1/20
SILVER	MG/KG	0.53 UJ	6.5 UJ	ND	ND		0/20
SODIUM	MG/KG	25.4 UJ	83 UJ	86.5 JB	36200 J	6-BH07-SD-06B	4/20
THALLIUM	MG/KG	0.4 U	3 UJ	ND	ND		0/20
VANADIUM	MG/KG	NA	NA	1.5 JB	54.1 B	6-BH07-SD-06M	20/20
ZINC	MG/KG	1.4 U	5 U	6.4 B	82.4	6-BH07-SD-06M	15/20

	Sample No: Depth: Date Sampled: Lab Id:	6-RV1-SD-06 N/A 8/25/92 00439-11	6-RV2-SD-06 N/A 8/25/92 00439-13	6-RV3-SD-06 N/A 8/24/92 00437-04	6-RV3-SD-612 N/A 8/24/92 00437-05	6-RV4-SD-06 N/A 8/24/92 00437-08	6-RV4-SD-612 N/A 8/24/92 00437-09
Parameter	Units						
PESTICIDE/P	CBS						
ALPHA-BHC	UG/KG	2.4 U	2.1 UJ	13 U	4.2 U	2.1 UJ	2.1 UJ
BETA-BHC	UG/KG	2.4 U	2.1 UJ	13 U	4.2 U	2.1 UJ	2.1 UJ
DELTA-BHC	UG/KG	2.4 U	2.1 UJ	13 U	4.2 U	2.1 UJ	2.1 UJ
GAMMA-BHC(LINDANE	) UG/KG	2.4 U	2.1 UJ	13 U	4.2 U	2.1 UJ	2.1 UJ
HEPTACHLOR	UG/KG	2.4 U	2.1 UJ	13 U	4.2 U	2.1 UJ	2.1 UJ
ALDRIN	UG/KG	2.4 U	2.1 UJ	13 U	4.2 U	2.1 UJ	2.1 UJ
HEPTACHLOR EPOXIDE	UG/KG	2.4 U	2.1 UJ	13 U	4.2 U	2.1 UJ	2.1 UJ
ENDOSULFAN I	UG/KG	2.4 U	2.1 UJ	13 U	4.2 U	2.1 UJ	2.1 UJ
DIELDRIN	UG/KG	43 J	4.1 UJ	24 U	8.1 J	4.1 UJ	4 UJ
4,4'-DDE	UG/KG	4.7 U	120 J	24 U	53 J	4.1 UJ	4 UJ
ENDRIN	UG/KG	5.1 J	4.1 UJ	24 U	8.1 U	4.1 UJ	4 UJ
ENDOSULFAN II	UG/KG	4.7 U	4.1 UJ	24 U	8.1 U	4.1 UJ	4 UJ
1,4'-DDD	UG/KG	4.7 U	45 J	24 U	8.1 U	9.4 J	4.1 J
ENDOSULFAN SULFATE	UG/KG	4.7 U	4.1 UJ	24 U	8.1 U	4.1 UJ	4 UJ
1,4'-DDT	UG/KG	4.7 U	130 J	210 J	51	14 J	4 UJ
METHOXYCHLOR	UG/KG	24 U	21 UJ	130 U	42 U	21 UJ	21 UJ
ENDRIN KETONE	UG/KG	4.7 U	4.1 UJ	24 U	8.1 U	4.1 UJ	.4 UJ
ENDRIN ALDEHYDE	UG/KG	7.8	4.1 UJ	24 U	8.1 U	4.1 UJ	4 UJ
ALPHA CHLORDANE	UG/KG	2.4 U	2.1 UJ	13 U	4.2 U	2.1 UJ	2.1 UJ
JAMMA CHLORDANE	UG/KG	2.4 U	2.1 UJ	13 U	4.2 U	2.1 UJ	2.1 UJ
TOXAPHENE	UG/KG	240 U	210 UJ	1300 U	420 U	210 UJ	210 UJ
PCB-1016	UG/KG	47 U	41 UJ	240 U	81 U	41 UJ	40 UJ
PCB-1221	UG/KG	95 U	83 UJ	490 U	160 U	82 UJ	82 UJ
PCB-1232	UG/KG	47 U	41 UJ	240 U	81 U	41 UJ	40 UJ
PCB-1242	UG/KG	47 U	41 UJ	240 U	81 U	41 UJ	40 UJ
CB-1248	UG/KG	47 U	41 UJ	240 U	81 U	41 UJ	40 UJ
°CB-1254	UG/KG	47 U	41 UJ	240 U	81 U	41 UJ	40 UJ
CB-1254 PCB-1260	UG/KG	360 J	92 J	190 J	81 U	41 UJ	40 UJ
VOL ATH I							
VOLATILE	UG/KG	14 U	12 U	12 U	12 U	12 U	750 UJ
CHLOROMETHANE	UG/KG UG/KG	14 U 14 U	12 U 12 U	12 U	12 U	12 U	750 UJ
BROMOMETHANE		14 U 14 U	12 U 12 U	12 U 12 U	· 12 U	- 12 U	750 UJ
VINYL CHLORIDE	UG/KG		12 U 12 U	12 U 12 U	12 U	12 U	750 UJ
CHLOROETHANE	UG/KG	14 U		12 U 12 U	12 U 12 U	12 U 12 U	750 UJ
METHYLENE CHLORIDE		14 U	12 U				9100 J
ACETONE	UG/KG	62	12 U	60 UJ	12 UJ	180 J	
CARBON DISULFIDE	UG/KG	14 U	12 U	12 U	12 U	12 U	750 UJ
1,1-DICHLOROETHENE	UG/KG	14 U	12 U	12 U	12 U	12 U	750 UJ
1,1-DICHLOROETHANE	UG/KG	14 U	12 U	12 U	12 U	12 U	750 UJ
1,2-DICHLOROETHENE	UG/KG	14 U	12 U	12 U	12 U	12 U	750 UJ
CHLOROFORM	UG/KG	14 U	12 U	12 U	12 U	12 U	750 UJ
1,2-DICHLOROETHANE	UG/KG	14 U	12 U	12 U	12 U	12 U	750 UJ
2-BUTANONE	UG/KG	14 U	12 U	12 U	12 U	12 U	2400 J

6rvsdor.wk1

	Sample No: Depth: Date Sampled: Lab Id:	6-RV1-SD-06 N/A 8/25/92 00439-11	6-RV2-SD-06 N/A 8/25/92 00439-13	6-RV3-SD-06 N/A 8/24/92 00437-04	6-RV3-SD-612 N/A 8/24/92 00437-05	6-RV4-SD-06 N/A 8/24/92 00437-08	6-RV4-SD-612 N/A 8/24/92 00437-09
Parameter	Units						
VOLATILES Cont	L						
1,1,1-TRICHLOROETHANE	- UG/KG	14 U	12 U	12 U	12 U	12 U	750 UJ
CARBON TETRACHLORIDE	UG/KG	14 U	12 U	12 U	12 U	12 U	750 UJ
BROMODICHLOROMETHAN		14 U	12 U	12 U	12 U	12 U	750 UJ
1.2-DICHLOROPROPANE	UG/KG	14 U	12 U	12 U	12 U	12 U	750 UJ
CIS-13-DICHLOROPROPEN		14 U	12 U	12 U	12 U	12 U	750 UJ
TRICHLOROETHENE	UG/KG	14 U	12 U	12 U	12 U	12 U	750 UJ
DIBROMOCHLOROMETHAN		14 U	12 U	12 U	12 U	12 U	750 UJ
1,1,2-TRICHLOROETHANE	UG/KG	14 U	12 U	12 U	12 U 12 U	12 U	750 UJ
BENZENE	UG/KG	14 UJ	12 UJ	12 U	12 U	12 U	750 UJ
TRANS-1,3-DICHLOROPRO		14 UJ	12 UJ	12 U	12 U	12 U	750 UJ
BROMOFORM	UG/KG	14 U	12 U	12 U	12 U	12 U 12 U	750 UJ
4-METHYL-2-PENTANONE		14 U	12 U	12 U	12 U	12 U	750 UJ
2-HEXANONE	UG/KG	14 U	12 U	12 U	12 U	12 U 12 U	750 UJ
TETRACHLOROETHENE	UG/KG	14 U	12 U	12 U	12 U	12 U 12 U	
1,1,2,2-TETRACHLOROETHA		14 U	12 U	12 U	12 U	12 U	750 UJ
TOLUENE	UG/KG	14 U	12 U	12 U	12 U	12 U	750 UJ
CHLOROBENZENE	UG/KG	14 U	12 U	12 U	12 U	12 U	750 UJ 750 UJ
ETHYLBENZENE	UG/KG	14 U	12 U	12 U	12 U	12 U	750 UJ
STYRENE	UG/KG	14 U	12 U	12 U	12 U	12 U	750 UJ
TOTAL XYLENES	UG/KG	14 U	12 U	12 U	12 U	12 U	750 UJ
· · · ·							750 00
SEMIVOLATILES PHENOL	UG/KG	470 11	410 11	400 77			
		470 U	410 U	400 U	410 U	380 U	390 U
BIS(2-CHLOROETHYL) ETHI 2-CHLOROPHENOL		470 U	410 U	400 U	410 U	380 U	390 U
1,3-DICHLOROBENZENE	UG/KG	470 U 470 U	410 U	400 U	410 U	380 U	390 U
1,4-DICHLOROBENZENE	UG/KG UG/KG	470 U	410 U	400 U	410 U	380 U	390 U
1,2-DICHLOROBENZENE	UG/KG	470 U 470 U	410 U	400 U	410 U	380 U	390 U
2-METHYLPHENOL	UG/KG	470 U 470 U	410 U	400 U	410 U	380 U	390 U
		470 U 470 U	410 U	400 U	410 U	380 U	390 U
2,2'-OXYBIS (1-CHLOROPRO 4-METHYLPHENOL	UG/KG	470 U	410 U	400 U	410 U	380 U	390 U
N-NITROSODI-N-PROPYLA		470 U 470 U	410 U	400 U	410 U	380 U	390 U
HEXACHLOROETHANE	UG/KG	470 U 470 U	410 U	400 U	410 U	380 U	390 U
NITROBENZENE	UG/KG	470 U	410 U	400 U	410 U	380 U	390 U
ISOPHORONE			410 U	400 U	410 U	380 U	390 U
	UG/KG	470 U	410 U	400 U	410 U	380 U	390 U
2-NITROPHENOL 2.4-DIMETHYLPHENOL	UG/KG UG/KG	470 U 470 U	410 U	400 U	410 U	380 U	390 U
-		470 U 470 U	410 U	400 U	410 U	380 U	390 U
BIS(2-CHLOROETHOXY) ME 2,4-DICHLOROPHENOL	UG/KG	470 U 470 U	410 U	400 U	410 U	380 U	390 U
•			410 U	400 U	410 U	380 U	390 U
1,2,4-TRICHLOROBENZENE NAPHTHALENE	UG/KG	470 U	410 U	400 U	410 U	380 U	390 U
4-CHLORANILINE	UG/KG UG/KG	470 U 470 U	54 J	400 U	410 U	380 U	390 U
HEXACHLOROBUTADIENE	UG/KG	470 U 470 U	410 U	400 U	410 U	380 U	390 U
IIBAACILOKOBUIADIBNE	UJ/KU	4/U U	410 U	400 U	410 U	380 U	390 U

I	Sample No: Depth: Date Sampled: Lab Id:	6-RV1-SD-06 N/A 8/25/92 00439-11	6-RV2-SD-06 N/A 8/25/92 00439-13	6-RV3-SD-06 N/A 8/24/92 00437-04	6-RV3-SD-612 N/A 8/24/92 00437-05	6-RV4-SD-06 N/A 8/24/92 00437-08	6-RV4-SD-612 N/A 8/24/92 00437-09
Parameter	Units		······	· · · · · · · · · · · · · · · · · · ·	<u></u>		<u></u>
SEMIVOLATILES C	cont.						
4-CHLORO-3-METHYLPH	ENOL UG/KG	470 U	410 U	400 U	410 U	380 U	390 U
2-METHYLNAPHTHALENE	UG/KG	470 U	44 J	400 U	410 U	380 U	390 U
HEXACHLOROCYCLOPENT	ADIENE UG/KG	470 U	410 U	400 U	410 U	380 U	390 U
2,4,6-TRICHLOROPHENOL	UG/KG	470 U	410 U	400 U	410 U	380 U	390 U
2,4,5-TRICHLOROPHENOL	UG/KG	1100 U	1000 U	970 U	990 U	930 U	950 U
2-CHLORONAPHTHALENE	UG/KG	470 U	410 U	400 U	410 U	380 U	390 U
2-NITROANILINE	UG/KG	1100 U	1000 U	970 U	990 U	930 U	950 U
DIMETHYL PHTHALATE	UG/KG	470 U	410 U	400 U	410 U	380 U	390 U
ACENAPHTHYLENE	UG/KG	470 U	410 U	400 U	410 U	380 U	390 U
2.6-DINITROTOLUENE	UG/KG	470 U	410 U	400 U	410 U	380 U	390 U
3-NITROANILINE	UG/KG	1100 U	1000 U	970 U	990 U	930 U	950 U
ACENAPHTHENE	UG/KG	470 U	220 J	400 U	410 U	380 U	390 U
2,4-DINITROPHENOL	UG/KG	1100 U	1000 U	970 U	990 U	930 U	950 U
4-NITROPHENOL	UG/KG	1100 U	1000 U	970 U	990 U	930 U	950 U
DIBENZOFURAN	UG/KG	470 U	110 J	400 U	410 U	380 U	390 U
2,4-DINITROTOLUENE	UG/KG	470 U	410 U	400 U	410 U	380 U	390 U
DIETHYL PHTHALATE	UG/KG	470 U	410 U	400 U	410 U	380 U	390 U
4-CHLOROPHENYL PHENY		470 U	410 U	400 U	410 U	380 U	390 U
FLUORENE	UG/KG	470 UJ	250 J	400 U	410 U	380 U	390 U
4-NITROANILINE	UG/KG	1100 U	1000 U	970 U	990 U	930 U	950 U
4.6-DINITRO-2-METHYLPH	IENOL UG/KG	1100 U	1000 U	970 U	990 U	930 UJ	950 UJ
N-NITRISODIPHENYLAMIN	E UG/KG	470 U	410 U	400 U	410 U	380 UJ	390 UJ
4-BROMOPHENYL PHENYL	ETHER UG/KG	470 U	410 U	400 U	410 U	380 UJ	390 UJ
HEXACHLOROBENZENE	UG/KG	470 U	410 U	400 UJ	410 UJ	380 UJ	390 UJ
PENTACHLOROPHENOL	UG/KG	1100 U	1000 U	970 UJ	990 UJ	930 UJ	950 UJ
PHENANTHRENE	UG/KG	50 J	1600	400 U	50 J	380 UJ	390 UJ
ANTHRACENE	UG/KG	470 U	480	400 U	410 U	380 UJ	390 UJ
DI-N-BUTYL PHTHALATE	UG/KG	470 U	410 U	400 U	410 U	380 UJ	390 UJ
FLUORANTHENE	UG/KG	84 J	1500 J	400 U	130 J	380 UJ	390 UJ
CARBAZOLE	UG/KG	470 U	170 J	400 U	410 U	380 UJ	390 UJ
PYRENE	UG/KG	130 J	2100	400 U	96 J	380 UR	390 UR
BUTYL BENZYL PHTHALAT	E UG/KG	470 U	410 U	400 U	410 U	380 UR	390 UR
3,3-DICHLOROBENZIDINE	UG/KG	470 U	410 U	400 U	410 U	380 UR	390 UR
BENZO(A)ANTHRACENE	UG/KG	61 J	1100	400 Ú	43 J	380 UR	390 UR
CHRYSÈŃE	UG/KG	85 J	1100	400 U	59 J	380 UR	390 UR
BIS(2-ETHYLHEXYL)PHTHA	LATE UG/KG	470 U	410 U	200 J	480 U	380 UR	390 UR
DI-N-OCTYL PHTHÁLATE	UG/KG	470 UJ	410 UJ	400 U	410 U	380 UR	390 UR
BENZO(B)FLUORANTHENE	UG/KG	120 J	1200	400 U	54 J	380 UR	390 UR
BENZO(K)FLUORANTHENE	UG/KG	470 U	440	400 U	410 U	380 UR	390 UR
BENZOAPYRENE	UG/KG	70 J	1000	400 U	410 U	380 UR	390 UR
INDENO(1,2,3-CD) PYRENE	UG/KG	57 J	710	400 U	410 U	380 UR	390 UR
DIBENZ(A,H)ANTHRACENE	UG/KG	470 U	83 J	400 U	410 U	380 UR	390 UR
BENZO(G,H,I)PERYLENE	UG/KG	57 J	680	400 U	410 U	380 UR	390 UR

6rvsdor.wk1

	Sample No: Depth: Date Sampled: Lab Id:	6-RV5-SD-06 N/A 8/25/92 00439-15	6-RV6-SD-06 N/A 8/25/92 00437-11	6-RV7-SD-06 N/A 8/25/92 00437-12	6-RV7-SD-612 N/A 8/25/92 00437-14	6-RV8-SD-06 N/A 8/25/92 00437-17
Parameter	Units		· · · · · · · · · · · · · · · · · · ·			
PESTICIDE/PC	BS					
ALPHA-BHC	UG/KG	2.1 UJ	19 U	4.6 U	2.2 UJ	2.2 U
BETA-BHC	UG/KG	2.1 UJ	19 U	4.6 U	2.2 UJ	2.2 U
DELTA-BHC	UG/KG	2.1 UJ	19 U	4.6 U	2.2 UJ	2.2 U
GAMMA-BHC(LINDANE)	UG/KG	2.1 UJ	19 U	4.6 U	2.2 UJ	2.2 U
HEPTACHLOR	UG/KG	2.1 UJ	19 U	4.6 U	2.2 UJ	2.2 U
ALDRIN	UG/KG	2.1 UJ	19 U	4.6 U	2.2 UJ	2.2 U
HEPTACHLOR EPOXIDE	UG/KG	2.1 UJ	19 U	4.6 U	2.2 UJ	2.2 U
ENDOSULFAN I	UG/KG	2.1 UJ	19 U	4.6 U	2.2 UJ	2.2 U
DIELDRIN	UG/KG	4.1 UJ	37 U	8.9 U	4.3 UJ	4.3 U
4.4'-DDE	UG/KG	44 J	58 J	37 J	23 J	4.3 U
ENDRIN	UG/KG	4.1 UJ	37 U	8.9 U	4.3 UJ	4.3 U
ENDOSULFAN II	UG/KG	4.1 UJ	37 U	8.9 U	4.3 UJ	4.3 U
4,4'DDD	UG/KG	9 J	37 U	36 J	34 J	4.3 U
ENDOSULFAN SULFATE	UG/KG	4.1 UJ	37 U	8.9 U	4.3 UJ	4.3 U
4,4'-DDT	UG/KG	19 J	170 J	60 J	19 J	4.3 U
METHOXYCHLOR	UG/KG	21 UJ	190 U	46 U	22 UJ	22 U
ENDRIN KETONE	UG/KG	4.1 UJ	37 U	8.9 U	4.3 UJ	4.3 U
ENDRIN ALDEHYDE	UG/KG	4.1 UJ	37 U	8.9 U	4.3 UJ	4.3 U
ALPHA CHLORDANE	UG/KG	2.1 UJ	. 19 U	4.6 U	2.2 UJ	2.2 U
GAMMA CHLORDANE	UG/KG	2.1 UJ	19 U	4.6 U	2.2 UJ	2.2 U
TOXAPHENE	UG/KG	210 UJ	1900 U	460 U	220 UJ	220 U
PCB-1016	UG/KG	41 UJ	370 U	89 U	43 UJ	43 U
PCB-1221	UG/KG	83 UJ	740 U	180 U	87 UJ	86 U
PCB-1232	UG/KG	41 UJ	370 U	89 U	43 UJ	43 U
PCB-1242	UG/KG	41 UJ	370 U	89 U	43 UJ	43 U
PCB-1248	UG/KG	41 UJ	370 U	89 U	43 UJ	43 U
PCB-1254	UG/KG	41 UJ	370 U	89 U	43 UJ	43 U
PCB-1260	UG/KG	79 J	370 U	29 J	41 J	43 U
VOLATILES						
CHLOROMETHANE	UG/KG	12 U	810 U	13 U	13 U	24 U
BROMOMETHANE	UG/KG	12 U	810 U	13 U	13 U	24 U 24 U
VINYLCHLORIDE	UG/KG	12 U	810 U	13 U	13 U	24 U
CHLOROETHANE	UG/KG	12 U	810 U	13 U	13 U	24 U
METHYLENE CHLORIDE	UG/KG	12 U	810 U	13 U	13 U	24 U
ACETONE	UG/KG	12 U	3400 J	15 UJ	67 UJ	24 U 340 J
CARBON DISULFIDE	UG/KG	12 U	810 U	13 U	13 U	.24 U
1,1-DICHLOROETHENE	UG/KG	12 U	810 U	13 U	13 U	
1,1-DICHLOROETHANE	UG/KG	12 U 12 U	810 U	13 U 13 U	13 U	24 U
1,1-DICHLOROETHANE	UG/KG	12 U	810 U	13 U		24 U
CHLOROFORM	UG/KG	12 U 12 U	810 U	13 U	13 U	24 U
1.2-DICHLOROETHANE	UG/KG	12 U 12 U			13 U	24 U
			810 U	13 U	13 U	24 U
2-BUTANONE	UG/KG	12 U	2300	- 13 U	13 U	24 U

	Sample No: Depth; Date Sampled: Lab Id;	6-RV5-SD-06 N/A 8/25/92 00439-15	6-RV6-SD-06 N/A 8/25/92 00437-11	6-RV7-SD-06 N/A 8/25/92 00437-12	6-RV7-SD-612 N/A 8/25/92 00437-14	6RV8-SD-06 N/A 8/25/92 00437-17
Parameter	Units			00407 74	00407 14	
<u>VOLATILES (</u> 1,1,1-TRICHLOROETHAN		12 U	810 U	13 U	13 U	24 U
CARBON TETRACHLORI			810 U	13 U	13 U	24 U 24 U
BROMODICHLOROMETH			810 U	13 U	13 U	24 U 24 U
1.2-DICHLOROPROPANE			810 U	13 U	13 U	24 U
CIS-13-DICHLOROPRO			810 U	13 U	13 U	24 U 24 U
TRICHLOROETHENE	UG/KG		810 U	13 U	13 U	24 U
DIBROMOCHLOROMETH			810 U	13 U	13 U	24 U
1,1,2-TRICHLOROETHAN			810 U	13 U	13 U	24 U
BENZENE	UG/KG		810 U	13 U	13 U	24 U
TRANS-1,3-DICHLOROP			810 U	13 U	13 U	24 U 24 U
BROMOFORM	UG/KG		810 U	13 U	13 U	24 U 24 U
4-METHYL-2-PENTAN			810 U	13 U	13 U	24 U 24 U
2-HEXANONE	UG/KG		810 U	13 U	13 U	24 U 24 U
TETRACHLOROETHENE			810 U	13 U	13 U	24 U
1,1,2,2-TETRACHLOROE	<i>i</i> .		810 U	13 U	13 U	24 U
TOLUENE	UG/KG		810 U	13 U	13 U	24 U
CHLOROBENZENE	UG/KG		810 U	13 U	13 U	24 U
ETHYLBENZENE	UG/KG		810 U	13 U	13 U	24 U
STYRENE	UG/KG		810 U	13 U	13 U	24 U
TOTAL XYLENES	UG/KG		810 U	13 U	13 U	24 U
IUTALATLENES	00/80	12 0	010 0	150	15 0	24 0
SEMIVOLATI						
PHENOL	UG/KG		400 U	440 U	460 U	680 U
BIS(2-CHLOROETHYL) E			400 U	440 U	460 U	680 U
2-CHLOROPHENOL	UG/KG		400 U	440 U	460 U	680 U
1,3-DICHLOROBENZENE			400 U	440 U	460 U	680 U
1,4-DICHLOROBENZENE			400 U	440 U	460 U	680 U
1,2-DICHLOROBENZENE			400 U	440 U	460 U	680 U
2-METHYLPHENOL	UG/KG		400 U	440 U	460 U	680 U
2,2'-OXYBIS (1-CHLORO	PROPANE) UG/KG	410 U	400 U	440 U	460 U	680 U
4-METHYLPHENOL	UG/KG		400 U	440 U	460 U	680 U
N-NITROSODI-N-PROP	YLAMINE UG/KG	410 U	400 U	440 U	460 U	680 U
HEXACHLOROETHANE	UG/KG	410 U	400 U	440 U	460 U	680 U
NITROBENZENE	UG/KG	410 U	400 U	440 U	460 U	680 U
ISOPHORONE	UG/KG	410 U	400 U	440 U	460 U	680 U
2-NITROPHENOL	UG/KG	410 U	400 U	440 U	460 U	680 U
2,4-DIMETHYLPHENOL	UG/KG	410 U	400 U	440 U	460 U	680 U
BIS(2-CHLOROETHOXY)	METHANE UG/KG	410 U	400 U	440 U	460 U	680 U
2,4-DICHLOROPHENOL	UG/KG	410 U	400 U	440 U	460 U	680 U
1,2,4-TRICHLOROBENZE	NE UG/KG	410 U	400 U	440 U	460 U	680 U
NAPHTHALENE	UG/KG	410 U	400 U	440 U	460 U	680 U
4-CHLORANILINE	UG/KG	410 U	400 U	440 U	460 U	680 U
HEXACHLOROBUTADIE	NE UG/KG	410 U	400 U	440 U	460 U	680 U

Page 5 of 9

Parameter         Units           SEMUVOLATILES Cont.         400 U         400 U         400 U         460 U         680 U           2 -MERTAYLANTHTALENE         UORG         410 U         400 U         440 U         660 U         680 U           2 -MERTAYLANTHTALENE         UORG         410 U         400 U         440 U         660 U         680 U           2 -MERTAYLANTHTALENE         UORG         410 U         400 U         440 U         660 U         680 U           2 -ALTORONANTHALENE         UORG         400 U         400 U         440 U         660 U         680 U           2 -CHLORONANTHALENE         UORG         90 U         970 U         1100 U         100 U         660 U           2 -CHLORONANTINE         UORG         410 U         400 U         440 U         660 U         660 U           2 -CHLORONTOLUENE         UORG         410 U         400 U         440 U         660 U         660 U           2 -DINITRONTINE         UORG         980 U         970 U         1100 U         1600 U         660 U           2 -DINITRONTINE         UORG         480 U         440 U         440 U         660 U         660 U           2 -DINITRONTINE         UORG <td< th=""><th>Date S</th><th>aple No: Depth: ampled: Lab Id:</th><th>6-RV5-SD-06 N/A 8/25/92 00439-15</th><th>6-RV6-SD-06 N/A 8/25/92 00437-11</th><th>6-RV7-SD-06 N/A 8/25/92 00437-12</th><th>6-RV7-SD-612 N/A 8/25/92 00437-14</th><th>6-RV8-SD-06 N/A 8/25/92 00437-17</th></td<>	Date S	aple No: Depth: ampled: Lab Id:	6-RV5-SD-06 N/A 8/25/92 00439-15	6-RV6-SD-06 N/A 8/25/92 00437-11	6-RV7-SD-06 N/A 8/25/92 00437-12	6-RV7-SD-612 N/A 8/25/92 00437-14	6-RV8-SD-06 N/A 8/25/92 00437-17
CHORO-3-METURYLENOL         UG/KG         410 U         400 U         440 U         460 U         680 U           -METURYLAPHTHALENE         UG/KG         410 U         400 U         440 U         460 U         680 U           HEXACHLOROCYLOPENTADIENE         UG/KG         410 U         400 U         440 U         460 U         680 U           24.4-TEXICH.OROPHENOL         UG/KG         480 U         970 U         1100 U         1600 U         1600 U           2-CHLORONARTHHALENE         UG/KG         480 U         970 U         100 U         460 U         680 U           2-CHLORONARTHHALENE         UG/KG         410 U         400 U         440 U         460 U         680 U           2-CHLORONARTHHALENE         UG/KG         410 U         400 U         440 U         460 U         680 U           2-DINITROANILINE         UG/KG         980 U         970 U         1100 U         1000 U         1600 U           2-DINITROANILINE         UG/KG         980 U         970 U         1100 U         1600 U         1600 U           2-DINITROANILINE         UG/KG         410 U         400 U         440 U         460 U         660 U           2-DINITROANILINE         UG/KG         410 U	Parameter	Units				00107 11	<u>0007 11</u>
CHORO-3-METURYLENOL         UG/KG         410 U         400 U         440 U         460 U         680 U           -METURYLAPHTHALENE         UG/KG         410 U         400 U         440 U         460 U         680 U           HEXACHLOROCYLOPENTADIENE         UG/KG         410 U         400 U         440 U         460 U         680 U           24.4-TEXICH.OROPHENOL         UG/KG         480 U         970 U         1100 U         1600 U         1600 U           2-CHLORONARTHHALENE         UG/KG         480 U         970 U         100 U         460 U         680 U           2-CHLORONARTHHALENE         UG/KG         410 U         400 U         440 U         460 U         680 U           2-CHLORONARTHHALENE         UG/KG         410 U         400 U         440 U         460 U         680 U           2-DINITROANILINE         UG/KG         980 U         970 U         1100 U         1000 U         1600 U           2-DINITROANILINE         UG/KG         980 U         970 U         1100 U         1600 U         1600 U           2-DINITROANILINE         UG/KG         410 U         400 U         440 U         460 U         660 U           2-DINITROANILINE         UG/KG         410 U	SEMINON ATH ES Cont						
a-metrityLnAPHTHALENE         UGKG         410         400         440         460         680         U           24.4 - TRICHLOROPHENOL         UGKG         410         400         U         440         U         460         U         680         U           24.4 - TRICHLOROPHENOL         UGKG         410         U         400         U         440         U         460         U         680         U           2-CHLORONAPHTHALENE         UGKG         410         V         400         U         440         U         460         U         680         U           2-CHLORONAPHTHALENE         UGKG         410         V         400         U         440         U         460         U         680         U           2-MITROANILINE         UGKG         410         V         400         U         440         U         460         U         680         U           2-A-DINTROFOLENENGL         UGKG         410         V         400         U         440         U         460         U         680         U           2-A-DINTROFOLENENGL         UGKG         410         V         400         U         460         U		UG/KG	410 TT	400.11	440 11	460.71	(00 T)
HEXACHLOROCYCLOPENTADENE         UGKG         410         440         440         460         660         1           2A4-TEXICHLOROPHENOL         UGKG         980         970         1100         1100         1600         1600         1           2-CHLORONANTHIALENE         UGKG         980         970         1100         1600         1600         1         1600         1         1600         1         1600         1         1600         1         1600         1         1600         1         1600         1         1600         1         1600         1         1600         1         1600         1         1600         1         1600         1         1600         1         1600         1         1600         1         1600         1         1600         1         1600         1         1600         1         1600         1         1600         1         1600         1         1600         1         1600         1         1600         1         1600         1         1600         1         1600         1         1600         1         1600         1         1600         1         1600         1         1600         1         1600 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							
2.4.4 - TRICHLOROPHENOL       UO/KG       410 U       400 U       440 U       460 U       600 U         2-CHLORONAPHTHALENE       UO/KG       410 U       400 U       440 U       460 U       680 U         2-CHLORONAPHTHALENE       UO/KG       410 U       400 U       440 U       460 U       680 U         2-NTRCANALINE       UO/KG       410 U       400 U       440 U       460 U       680 U         ACENAPHTHYLENE       UO/KG       410 U       400 U       440 U       460 U       680 U         3-NTRCANALINE       UO/KG       410 U       400 U       440 U       460 U       680 U         24-DNITKOTOLUENE       UO/KG       410 U       400 U       440 U       460 U       680 U         24-DNITKOTOLUENE       UO/KG       980 U       970 U       1100 U       1100 U       1600 U         24-DNITKOTOLUENE       UO/KG       980 U       970 U       1100 U       460 U       680 U         24-DNITKOTOLUENE       UO/KG       410 U       400 U       440 U       460 U       680 U         24-DNITKOTOLUENE       UO/KG       410 U       400 U       460 U       680 U       100 U         4-CHLOROPHENVL FITHER       UO/KG       4							
2.4-7 TRICHLOROPHENCL       UG/KG       980 U       970 U       100 U       100 U       100 U       100 U         2-CHLORONAPHTHALATE       UG/KG       980 U       970 U       100 U							
2-CICLORONAMPHTMALENE         UGKG         410         440         1         440         1         640         1         680         1           2-NTIRGANILINE         UGKG         410         U         400         U         440         U         460         U         680         U           2-NTIRGANILINE         UGKG         410         U         400         U         440         U         460         U         680         U           24-DINTRANLINE         UGKG         410         U         400         U         440         U         460         U         680         U           24-DINTRANLINE         UGKG         980         U         970         U         1100         U         1000         1000         U         680         U         4-DINTRANLINE         UGKG         410         400         440         U         460         U         680         U         440         U         460         U         680							
2-NITROANLINE         UGKG         90 U         970 U         100 U         600 U         660 U		• • • •					
DIMETHYL PHTHALATE         UG/RG         410         U         400         U         460         U         460<							
ACEMAPHTHYLENE         UGRG         410 U         400 U         440 U         460 U         660 U           24-DNITROAULENE         UGRG         410 U         400 U         440 U         460 U         660 U           3-NITROANILINE         UGRG         410 U         400 U         440 U         460 U         660 U           ACEMAPHTHENE         UGRG         410 U         400 U         440 U         460 U         660 U           ACENAPHTHENE         UGRG         410 U         400 U         440 U         460 U         660 U           A-ENTROPHENOL         UGRG         980 U         970 U         1100 U         1100 U         1600 U           4-DNITROPHENOL         UGRG         410 U         400 U         440 U         460 U         680 U           24-DNITROTOLUENE         UGRG         410 U         400 U         440 U         460 U         680 U           4-CHLOROPHENVL PHENVLETHER         UGRG         980 U         970 U         1100 U         1100 U         1600 U           4-DINTROAULENE         UGRG         980 U         970 U         1100 U         1600 U         460 U           4-DINTROAULINE         UGRG         410 U         400 U         440 U         66							
2.6 - DINITROTOLUENE       UG/KG       410 U       400 U       440 U       460 U       660 U         3-NITKOANLINE       UG/KG       950 U       970 U       1100 U       1100 U       1600 U         ACENAPHTHENE       UG/KG       980 U       970 U       1100 U       1100 U       1600 U         A-DINTROPHENOL       UG/KG       980 U       970 U       1100 U       1100 U       1600 U         JabezZoFURAN       UG/KG       980 U       970 U       1100 U       460 U       680 U         J4-DINTROPHENOL       UG/KG       410 U       400 U       440 U       460 U       680 U         J4-DINTROPHENYL PHTHALATE       UG/KG       410 U       400 U       440 U       460 U       680 U         J4-ORINTROPHENYL PHTHALATE       UG/KG       410 U       400 U       440 U       460 U       680 U         J-ONTROPHENYL PHENYL ETHER       UG/KG       980 U       970 U       1100 U       1100 U       1600 U         J4-ONTROPHENYL PHENYL ETHER       UG/KG       980 U       970 U       1100 U       1600 U       680 U         FLUORANHINE       UG/KG       980 U       970 U       1100 U       1600 U       660 U         46-DINTRO-2-METHYPHENOL <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							
3-NIROANLINE         UGKG         98 U         970 U         1100 U         1100 U         1600 U           ACENAPITHENE         UG/KG         410 U         400 U         440 U         460 U         660 U           24-DINTROPHENOL         UG/KG         980 U         970 U         1100 U         1100 U         1600 U           4-NITROPHENOL         UG/KG         980 U         970 U         1100 U         1100 U         1600 U           1DEBX20FURAN         UG/KG         410 U         400 U         440 U         460 U         680 U           24-DINITROTOLUENE         UG/KG         410 U         400 U         440 U         460 U         680 U           4-CILOROPHENYL PHENYL FILER         UG/KG         410 U         400 U         440 U         460 U         680 U           4-DINTROANLINE         UG/KG         410 U         400 U         440 U         460 U         680 U           4-NITROANLINE         UG/KG         980 U         970 U         1100 U         1100 U         1600 U           4-DINTROCOLBENZE         UG/KG         410 U         400 U         440 U         460 U         680 U           PEXACHLOROPHENYL PHENYL ETHER         UG/KG         410 U         400 U							
ACENAPITHENE         UG/KG         410 U         400 U         440 U         460 U         660 U           24-DENTROPHENOL         UG/KG         980 U         970 U         1100 U         1100 U         1600 U           DIBERZOFURAN         UG/KG         410 U         400 U         440 U         460 U         680 U           JEENZOFURAN         UG/KG         410 U         400 U         440 U         460 U         680 U           JEENZOFURAN         UG/KG         410 U         400 U         440 U         460 U         680 U           JEENZOFURAN         UG/KG         410 U         400 U         440 U         460 U         680 U           JEENZOFURAN         UG/KG         410 U         400 U         440 U         460 U         680 U           JEUNRENE         UG/KG         410 U         400 U         440 U         460 U         680 U           4-ONITRO-2-METHYLPHENYL ETHER         UG/KG         980 U         970 U         1100 U         1100 U         1600 U           4-DINTRO-2-METHYLPHENOL         UG/KG         410 U         400 U         440 U         460 U         680 U           V=NTRRISODIPHENYLAMINE         UG/KG         410 U         400 U         440 U							
24-DINITROPHENOL         UG/KG         980 U         970 U         1100 U         1100 U         1000 U           4-NITROPHENOL         UG/KG         480 U         970 U         1100 U         1100 U         1600 U           24-DINTROPHENOL         UG/KG         410 U         400 U         440 U         460 U         660 U           24-DINITROTOLUENE         UG/KG         410 U         400 U         440 U         460 U         660 U           24-CHLOROPHENYL PHENYL ETHER         UG/KG         410 U         400 U         440 U         460 U         680 U           4-CHLOROPHENYL PHENYL ETHER         UG/KG         410 U         400 U         440 U         460 U         680 U           4-NTIKOANILINE         UG/KG         980 U         970 U         1100 U         1100 U         1600 U           4-NTIKOANILINE         UG/KG         980 U         970 U         1100 U         1600 U         680 U           4-NTIKOANILINE         UG/KG         410 U         400 U         440 U         460 U         680 U           HEXACHLOROBENZENE         UG/KG         410 U         400 U         440 U         460 U         680 U           HEXACHLOROBENZENE         UG/KG         410 U         400 U<							
4-INTROPHENOL         UG/KG         980 U         970 U         1100 U         1100 U         1000 U           DIBENZOFURAN         UG/KG         410 U         400 U         440 U         460 U         660 U           24-DINTROTOLUENE         UG/KG         410 U         400 U         440 U         460 U         660 U           DIEHYD, PHTHALATE         UG/KG         410 U         400 U         440 U         460 U         660 U           4-CHLOROPHENYL PHENYL ETHER         UG/KG         410 U         400 U         440 U         460 U         660 U           FLUORENE         UG/KG         410 U         400 U         440 U         460 U         680 U           4-NTRONNLINE         UG/KG         980 U         970 U         1100 U         1100 U         1600 U           4.6-DINTRO-3-METHYLPHENOL         UG/KG         980 U         970 U         1100 U         1600 U         680 U           4-BROMONPHENYL PHENYL ETHER         UG/KG         410 U         400 U         440 U         460 U         680 U           PENTACHLOROPENZENE         UG/KG         410 U         400 U         440 U         460 U         680 U           DI-N-BUTYL PHTHALATE         UG/KG         410 U         400 U<							
DIBERZOFURAN         UG/RC         410 U         400 U         440 U         460 U         680 U           2.4-DINITROTOLUENE         UG/RC         410 U         400 U         440 U         460 U         680 U           2.4-DINITROTOLUENE         UG/RC         410 U         400 U         440 U         460 U         680 U           4-CHLOROPHENYL PHENYL ETHER         UG/RC         410 U         400 U         440 U         460 U         680 U           4-CHLOROPHENYL PHENYL ETHER         UG/RC         410 U         400 U         440 U         460 U         680 U           4-NITROANILINE         UG/RC         980 U         970 U         1100 U         1100 U         1600 UJ           4.6-DINTRO-2-METHYLPHENOL         UG/RC         980 U         970 U         1100 U         460 U         680 U           4.6-DINTRO-2-METHYLPHENOL         UG/RC         410 U         400 U         440 U         460 U         680 U           4.6-DINTRO-2-METHYLPHENOL         UG/RC         410 U         400 U         440 U         460 U         680 U           4.5-XACHLOROPHENOL         UG/RC         410 U         400 U         440 U         460 U         680 U           PHENANTHENE         UG/RC         410 U </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							
24-DINITROTOLUENE         UG/KG         410 U         400 U         440 U         460 U         660 U           DIETHYL PHTHALATE         UG/KG         410 U         400 U         440 U         460 U         680 U           A-CHLOROPHENYL PHENYL ETHER         UG/KG         410 U         400 U         440 U         460 U         680 U           FLUORENE         UG/KG         410 U         400 U         440 U         460 U         680 U           4CHLOROPHENYL PHENYL ETHER         UG/KG         410 U         400 U         440 U         460 U         680 U           4SCHLOROPHENYL PHENYL         UG/KG         980 U         970 U         1100 U         1100 U         1600 U           4.6-DINTRO-2-METHYLPHENOL         UG/KG         410 U         400 U         440 U         460 U         680 U           A-BROMOPHENYL PHENYL ETHER         UG/KG         410 U         400 U         440 U         460 U         680 U           PENTACHLOROBENZENE         UG/KG         410 U         400 U         440 U         460 U         680 U           PLIN-NUTL PHTHALATE         UG/KG         410 U         400 U         440 U         460 U         680 U           ANTHRACENE         UG/KG         410 U							
DIETHYL PHTHALATE         UG/KG         410 U         400 U         440 U         400 U         600 U           4CHLOROPHENYL PHENYL ETHER         UG/KG         410 U         400 U         440 U         460 U         680 U           FLUORENE         UG/KG         410 UJ         400 U         440 U         460 U         680 U           4-NITROANILINE         UG/KG         980 U         970 U         1100 U         1100 U         1600 U           4-NITROANILINE         UG/KG         980 U         970 U         1100 U         100 U         680 U           A-DINTRO-2-METHYLPHENOL         UG/KG         410 U         400 U         440 U         460 U         680 U           N-NITRISODIFHENVLAMINE         UG/KG         410 U         400 U         440 U         460 U         680 U           HEXACHLOROPHENVL PHENYL ETHER         UG/KG         410 U         400 U         440 U         460 U         680 U           PENTATHRENE         UG/KG         410 U         400 U         440 U         460 U         680 U           ANTHRACENE         UG/KG         410 U         400 U         440 U         460 U         680 U           DI-N-BUTYL PHTHALATE         UG/KG         410 U         400 U <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							
4 - CHLOROPHENYL PHENYL ETHER       UG/KG       410 U       400 U       400 U       400 U       400 U       660 U         FLUORENE       UG/KG       410 UJ       400 U       440 U       460 U       680 U         4NITROANLINE       UG/KG       980 U       970 U       1100 U       1100 U       1600 UJ         4DINTRO-2-METHYLPHENOL       UG/KG       980 U       970 U       1100 U       1100 U       1600 U         ABROMOPHENYL PHENYL ETHER       UG/KG       410 U       400 U       440 U       460 U       680 U         ABROMOPHENYL PHENYL ETHER       UG/KG       410 U       400 U       440 U       460 U       680 U         HEXACHLOROBENZENE       UG/KG       410 U       400 U       440 U       460 U       680 U         PENTACHLOROPHENOL       UG/KG       410 U       400 U       440 U       460 U       680 U         DI-N-BUTYL PHTHALATE       UG/KG       410 U       400 U       440 U       460 U       680 U         ANTIRACENE       UG/KG       410 U       400 U       440 U       460 U       680 U         CARBAZOLE       UG/KG       410 U       400 U       440 U       460 U       680 U         S2-JC-LOR							
FLUORENE         UG/KG         410 UJ         400 U         440 U         460 U         680 U           4-NITROANILINE         UG/KG         980 U         970 U         1100 U         1100 U         1600 UJ           4-DINTRO-2-METHYLPHENOL         UG/KG         980 U         970 U         1100 U         1100 U         1600 UJ           N-NITRISODIPHENYLAMINE         UG/KG         410 U         400 U         440 U         460 U         680 U           4-BOMOPHENYLPHENYL ETHER         UG/KG         410 U         400 U         440 U         460 U         680 U           4-BROMOPHENYL PHENYL ETHER         UG/KG         410 U         400 U         440 U         460 U         680 U           PENTACHLOROBENZENE         UG/KG         410 U         400 U         440 U         460 U         680 U           ANTHRACENE         UG/KG         410 U         400 U         440 U         460 U         680 U           DIN-BUTYL PHTHALATE         UG/KG         410 U         400 U         440 U         660 U         680 U           FLUORANTHENE         UG/KG         410 U         400 U         440 U         660 U         680 U           Ja-DICHLOROBENZIDLE         UG/KG         10 U         400							
4-NITROANILINE         UG/KG         980 U         970 U         1100 U         1100 U         1600 UJ           4.6-DINTRO-2-METHYLPHENOL         UG/KG         980 U         970 U         1100 U         1100 U         1600 UJ           4.6-DINTRO-2-METHYLPHENOL         UG/KG         980 U         970 U         1100 U         1100 U         1600 UJ           M-NITRISOLIPHENYLAMINE         UG/KG         410 U         400 U         440 U         460 U         680 U           4-BROMOPHENYL PHENYL ETHER         UG/KG         410 U         400 U         440 U         460 U         680 U           PENTACHLOROPHENOL         UG/KG         980 U         970 U         1100 U         1600 U         680 U           PENTACHLOROPHENOL         UG/KG         410 U         400 U         440 U         460 U         680 U           ANTHRACENE         UG/KG         410 U         400 U         440 U         460 U         680 U           DI-N-BUTYL PHTHALATE         UG/KG         410 U         400 U         440 U         460 U         680 U           FLUORANTHENE         UG/KG         410 U         400 U         440 U         460 U         680 U           PYRENE         UG/KG         410 U         4							
4,6-DINITRO-2-METHYLPHENOL       UG/KG       980 U       970 U       1100 U       1100 U       1600 U         N-NITRISODIFHENYLAMINE       UG/KG       410 U       400 U       440 U       460 U       680 U         4-BROMOPHENYL PHENYL ETHER       UG/KG       410 U       400 U       440 U       460 U       680 U         HEXACHLOROBENZENE       UG/KG       410 U       400 U       440 U       460 U       680 U         PENTACHLOROPHENYL PHENYL ETHER       UG/KG       410 U       400 U       440 U       460 U       680 U         PENTACHLOROPHENOL       UG/KG       410 U       400 U       440 U       460 U       680 U         ANTHRACENE       UG/KG       410 U       400 U       440 U       460 U       680 U         DI-N-BUTYL PHTHALATE       UG/KG       410 U       400 U       440 U       460 U       680 U         CARBAZOLE       UG/KG       410 U       400 U       440 U       460 U       680 U         CARBAZOLE       UG/KG       410 U       400 U       440 U       460 U       680 U         S3,-DICHLOROBENZIDINE       UG/KG       410 U       400 U       440 U       460 U       680 U         3,3-DICHLOROBENZIDINE       <							
N-NITRISODIPHENYLAMINE         UG/KG         410         U         400         U         440         U         460         U         680         U           4-BROMOPHENYL PHENYL ETHER         UG/KG         410         U         400         U         440         U         460         U         680         U           HEXACHLOROBENZENE         UG/KG         410         U         400         U         440         U         460         U         680         U           PENTACHLOROBENZENE         UG/KG         410         U         400         U         440         U         460         U         680         U           PENTACHLOROPHENOL         UG/KG         410         U         400         U         440         U         460         U         680         U           ANTHRACENE         UG/KG         410         U         400         U         440         U         460         U         680         U           CARBAZOLE         UG/KG         410         U         400         U         440         U         460         U         680         U           SJ-DICHLOROBENZIDINE         UG/KG         410         U<							
4-BROMOPHENYL PHENYL ETHER       UG/KG       410 U       400 U       440 U       460 U       680 U         HEXACHLOROBENZENE       UG/KG       410 U       400 U       440 U       460 U       680 U         PENTACHLOROPHENOL       UG/KG       980 U       970 U       1100 U       1100 U       680 U         PENTACHLOROPHENOL       UG/KG       410 U       400 U       440 U       460 U       680 U         PHENANTHRENE       UG/KG       410 U       400 U       440 U       460 U       680 U         ANTHRACENE       UG/KG       410 U       400 U       440 U       460 U       680 U         DI-N-BUTYL PHTHALATE       UG/KG       410 U       400 U       440 U       460 U       680 U         CABBAZOLE       UG/KG       410 U       400 U       440 U       460 U       680 U         PYRENE       UG/KG       410 U       400 U       440 U       460 U       680 U         BUTYL BENZYL PHTHALATE       UG/KG       410 U       400 U       440 U       460 U       680 U         3.3 - DICHLOROBENZIDINE       UG/KG       410 U       400 U       440 U       460 U       680 UI         BENZO(A)ANTHRACENE       UG/KG       410 U </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							
HEXACHLOROBENZENE         UG/KG         410 U         400 U         440 U         460 U         680 U           PENTACHLOROPHENOL         UG/KG         980 U         970 U         1100 U         1100 U         1600 U           PHENANTHRENE         UG/KG         410 U         400 U         440 U         460 U         680 U           ANTHRACENE         UG/KG         410 U         400 U         440 U         460 U         680 U           DI-N-BUTYL PHTHALATE         UG/KG         410 U         400 U         440 U         460 U         680 U           CARBAZOLE         UG/KG         410 U         400 U         440 U         460 U         680 U           PYRENE         UG/KG         410 U         400 U         440 U         460 U         680 U           SAZOLE         UG/KG         410 U         400 U         440 U         460 U         680 U           BUTYL BENZYL PHTHALATE         UG/KG         410 U         400 U         440 U         460 U         680 U           3,3-DICHLOROBENZIDINE         UG/KG         410 U         400 U         440 U         660 U         680 UJ           CHRYSENE         UG/KG         410 U         400 U         440 U         660 U							
PENTACHLOROPHENOL         UG/KG         980 U         970 U         1100 U         100 U         100 U           PHENANTHRENE         UG/KG         410 U         400 U         440 U         460 U         680 U           ANTHRACENE         UG/KG         410 U         400 U         440 U         460 U         680 U           DI-N-BUTYL PHTHALATE         UG/KG         410 U         400 U         440 U         52 J         680 U           FLUORANTHENE         UG/KG         410 U         400 U         440 U         52 J         680 U           CARBAZOLE         UG/KG         410 U         400 U         440 U         460 U         680 U           PYRENE         UG/KG         410 U         400 U         440 U         460 U         680 U           Saya-DichLoroBENZIDINE         UG/KG         410 U         400 U         440 U         460 U         680 UJ           3,3-DICHLOROBENZIDINE         UG/KG         410 U         400 U         440 U         460 U         680 UJ           BENZO(A)ANTHRACENE         UG/KG         410 U         400 U         440 U         660 U         680 UJ           DI-N-OCTYL PHTHALATE         UG/KG         410 U         400 U         440 U							
PHENANTHRENE         UG/KG         410 U         400 U         440 U         400 U         680 U           ANTHRACENE         UG/KG         410 U         400 U         440 U         460 U         680 U           DI-N-BUTYL PHTHALATE         UG/KG         410 U         400 U         440 UJ         52 J         680 U           DI-N-BUTYL PHTHALATE         UG/KG         410 U         400 U         440 UJ         52 J         680 U           CARBAZOLE         UG/KG         410 U         400 U         440 U         460 U         680 U           CARBAZOLE         UG/KG         410 U         400 U         440 U         460 U         680 U           PYRENE         UG/KG         410 U         400 U         440 U         460 U         680 UJ           BUTYL BENZYL PHTHALATE         UG/KG         410 U         400 U         440 U         460 U         680 UJ           3.3 - DICHLOROBENZIDINE         UG/KG         410 U         400 U         440 U         460 U         680 UJ           BENZO(A)ANTHRACENE         UG/KG         410 U         400 U         440 U         680 UJ         680 UJ           DI-NCYL PHTHALATE         UG/KG         410 U         400 U         460 U							
ANTHRACENE       UG/KG       410 U       400 U       440 U       460 U       680 U         DI-N-BUTYL PHTHALATE       UG/KG       410 U       400 U       440 UJ       52 J       680 U         FLUORANTHENE       UG/KG       410 UJ       400 U       440 UJ       52 J       680 U         CARBAZOLE       UG/KG       410 UJ       400 U       440 U       460 U       680 U         PYRENE       UG/KG       410 U       400 U       440 U       460 U       680 U         BUTYL BENZYL PHTHALATE       UG/KG       410 U       400 U       440 U       460 U       680 UJ         3.3 - DICHLOROBENZIDINE       UG/KG       410 U       400 U       440 U       460 U       680 UJ         BUTYL BENZYL PHTHALATE       UG/KG       410 U       400 U       440 U       460 U       680 UJ         3.3 - DICHLOROBENZIDINE       UG/KG       410 U       400 U       440 U       660 U       680 UJ         BIS(2- ETHYLHEXYL)PHTHALATE       UG/KG       410 U       400 U       440 U       660 U       680 UJ         DI-N-OCTYL PHTHALATE       UG/KG       410 U       400 U       440 U       660 U       680 UJ         BENZO(B)FLUORANTHENE       UG/KG<							
DI-N-BUTYL PHTHALATE         UG/KG         410 U         400 U         440 UJ         52 J         680 U           FLUORANTHENE         UG/KG         410 UJ         400 U         440 UJ         460 U         680 U           CARBAZOLE         UG/KG         410 U         400 U         440 U         460 U         680 U           PYRENE         UG/KG         410 U         400 U         440 U         460 U         680 U           BUTYL BENZYL PHTHALATE         UG/KG         410 U         400 U         440 U         460 U         680 U           3,3-DICHLOROBENZIDINE         UG/KG         410 U         400 U         440 U         460 U         680 UJ           BENZO(A)ANTHRACENE         UG/KG         410 U         400 U         440 U         460 U         680 UJ           DI-N-OCTYL PHTHALATE         UG/KG         410 U         400 U         440 U         460 U         680 UJ           DI-N-OCTYL PHTHALATE         UG/KG         410 U         400 U         440 U         500 U         680 UJ           BENZO(B)FLUORANTHENE         UG/KG         410 U         400 U         440 U         460 U         680 UJ           BENZO(B)FLUORANTHENE         UG/KG         410 U         400 U	ANTHRACENE						
FLUORANTHENE       UG/KG       410 UJ       400 U       440 U       460 U       680 U         CARBAZOLE       UG/KG       410 U       400 U       440 U       460 U       680 U         PYRENE       UG/KG       410 U       400 U       440 U       460 U       680 U         BUTYL BENZYL PHTHALATE       UG/KG       410 U       400 U       440 U       460 U       680 UJ         3,3-DICHLOROBENZIDINE       UG/KG       410 U       400 U       440 U       460 U       680 UJ         3,3-DICHLOROBENZIDINE       UG/KG       410 U       400 U       440 U       460 U       680 UJ         BENZO(A)ANTHRACENE       UG/KG       410 U       400 U       440 U       460 U       680 UJ         BIS(2-ETHYLHEXYL)PHTHALATE       UG/KG       410 U       400 U       440 U       500 U       680 UJ         BIS(2-ETHYLHEXYL)PHTHALATE       UG/KG       410 UJ       400 U       440 U       500 U       680 UJ         DI-N-OCTYL PHTHALATE       UG/KG       410 UJ       400 U       440 U       660 U       680 UJ         BENZO(B)FLUORANTHENE       UG/KG       410 U       400 U       440 U       660 U       680 UJ         BENZO(A)FYRENE       UG	DI-N-BUTYL PHTHALATE	UG/KG	410 U				
CARBAZOLE       UG/KG       410 U       400 U       440 U       460 U       680 U         PYRENE       UG/KG       410 U       400 U       440 U       460 U       120 J         BUTYL BENZYL PHTHALATE       UG/KG       410 U       400 U       440 U       460 U       680 UJ         3,3-DICHLOROBENZIDINE       UG/KG       410 U       400 U       440 U       460 U       680 UJ         3,3-DICHLOROBENZIDINE       UG/KG       410 U       400 U       440 U       460 U       680 UJ         BENZO(A)ANTHRACENE       UG/KG       410 U       400 U       440 U       460 U       680 UJ         BIS(2-ETHYLHEXYL)PHTHALATE       UG/KG       410 U       400 U       440 U       500 U       680 UJ         DI-N-OCTYL PHTHALATE       UG/KG       410 U       400 U       440 U       500 U       680 UJ         BENZO(B)FLUORANTHENE       UG/KG       410 U       400 U       440 U       500 U       680 UJ         BENZO(X)FLUORANTHENE       UG/KG       410 U       400 U       440 U       460 U       680 UJ         BENZO(A)PYRENE       UG/KG       410 U       400 U       440 U       460 U       680 UJ         BENZO(A)PYRENE       UG/KG <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							
PYRENE         UG/KG         410 U         400 U         440 U         460 U         120 J           BUTYL BENZYL PHTHALATE         UG/KG         410 U         400 U         440 U         460 U         680 UJ           3,3-DICHLOROBENZIDINE         UG/KG         410 U         400 U         440 U         460 U         680 UJ           BENZO(A)ANTHRACENE         UG/KG         410 U         400 U         440 U         460 U         680 UJ           CHRYSENE         UG/KG         410 U         400 U         440 U         460 U         680 UJ           BIS(2-ETHYLHEXYL)PHTHALATE         UG/KG         410 U         400 U         440 U         500 U         680 UJ           DI-N-OCTYL PHTHALATE         UG/KG         410 U         400 U         440 U         500 U         680 UJ           BENZO(B)FLUORANTHENE         UG/KG         410 U         400 U         440 U         460 U         680 UJ           BENZO(K)FLUORANTHENE         UG/KG         410 U         400 U         440 U         460 U         680 UJ           BENZO(A)PYRENE         UG/KG         410 U         400 U         440 U         460 U         680 UJ           BENZO(A)PYRENE         UG/KG         410 U         400 U							
BUTYL BENZYL PHTHALATE         UG/KG         410 U         400 U         440 U         460 U         680 UJ           3,3-DICHLOROBENZIDINE         UG/KG         410 U         400 U         440 U         460 U         680 UJ           BENZO(A)ANTHRACENE         UG/KG         410 U         400 U         440 U         460 U         680 UJ           CHRYSENE         UG/KG         410 U         400 U         440 U         460 U         680 UJ           DI-N-OCTYL PHTHALATE         UG/KG         410 U         400 U         440 U         500 U         680 UJ           DI-N-OCTYL PHTHALATE         UG/KG         410 U         400 U         440 U         500 U         680 UJ           BENZO(B)FLUORANTHENE         UG/KG         410 U         400 U         440 U         500 U         680 UJ           BENZO(K)FLUORANTHENE         UG/KG         410 U         400 U         440 U         460 U         680 UJ           BENZO(A)PYRENE         UG/KG         410 U         400 U         440 U         460 U         680 UJ           BENZO(A)PYRENE         UG/KG         410 U         400 U         440 U         460 U         680 UJ           BENZO(A)PYRENE         UG/KG         410 U         400 U <td>PYRENE</td> <td>UG/KG</td> <td></td> <td></td> <td></td> <td></td> <td></td>	PYRENE	UG/KG					
3,3-DICHLOROBENZIDINE       UG/KG       410 U       400 U       440 U       460 U       680 UJ         BENZO(A)ANTHRACENE       UG/KG       410 U       400 U       440 U       460 U       680 UJ         CHRYSENE       UG/KG       410 U       400 U       440 U       460 U       680 UJ         BIS(2-ETHYLHEXYL)PHTHALATE       UG/KG       410 U       400 U       440 U       500 U       680 UJ         DI-N-OCTYL PHTHALATE       UG/KG       410 UJ       400 U       440 U       660 U       680 UJ         BENZO(B)FLUORANTHENE       UG/KG       410 U       400 U       440 U       660 U       680 UJ         BENZO(A)PYRENE       UG/KG       410 U       400 U       440 U       460 U       680 UJ         BENZO(A)PYRENE       UG/KG       410 U       400 U       440 U       460 U       680 UJ         BENZO(A)PYRENE       UG/KG       410 U       400 U       440 U       460 U       680 UJ         BENZO(A)PYRENE       UG/KG       410 U       400 U       440 U       460 U       680 UJ         BENZO(A)PYRENE       UG/KG       410 U       400 U       440 U       460 U       680 UJ         DIBENZO(A)PYRENE       UG/KG	BUTYL BENZYL PHTHALATE	UG/KG	410 U				
BENZO(A)ANTHRACENE         UG/KG         410 U         400 U         440 U         460 U         680 UJ           CHRYSENE         UG/KG         410 U         400 U         440 U         460 U         680 UJ           BIS(2-ETHYLHEXYL)PHTHALATE         UG/KG         410 U         400 U         440 U         500 U         680 UJ           DI-N-OCTYL PHTHALATE         UG/KG         410 U         400 U         440 U         500 U         680 UJ           BENZO(B)FLUORANTHENE         UG/KG         410 U         400 U         440 U         460 U         680 UJ           BENZO(A)PYRENE         UG/KG         410 U         400 U         440 U         460 U         680 UJ           BENZO(A)PYRENE         UG/KG         410 U         400 U         440 U         460 U         680 UJ           BENZO(A)PYRENE         UG/KG         410 U         400 U         440 U         460 U         89 J           INDENO(12,3-CD) PYRENE         UG/KG         410 U         400 U         440 U         460 U         680 UJ           DIBENZZ(A,H)ANTHRACENE         UG/KG         410 U         400 U         440 U         460 U         680 UJ	3,3-DICHLOROBENZIDINE	UG/KG	410 U	400 U	440 U		
CHRYSENE       UG/KG       410 U       400 U       440 U       460 U       680 UJ         BIS(2-ETHYLHEXYL)PHTHALATE       UG/KG       410 U       400 U       440 U       500 U       680 UJ         DI-N-OCTYL PHTHALATE       UG/KG       410 UJ       400 U       440 U       500 U       680 UJ         DI-N-OCTYL PHTHALATE       UG/KG       410 UJ       400 U       440 U       460 U       680 UJ         BENZO(B)FLUORANTHENE       UG/KG       410 U       400 U       440 U       460 U       680 UJ         BENZO(A)PYRENE       UG/KG       410 U       400 U       440 U       460 U       89 J         INDENO(1,2,3-CD) PYRENE       UG/KG       410 U       400 U       440 U       460 U       680 UJ         DIBENZ/(A,H)ANTHRACENE       UG/KG       410 U       400 U       440 U       660 U       680 UJ	BENZO(A)ANTHRACENE	UG/KG	410 U	400 U	440 U		
BIS(2-ETHYLHEXYL)PHTHALATE         UG/KG         410 U         400 U         440 U         500 U         680 UJ           DI-N-OCTYL PHTHALATE         UG/KG         410 UJ         400 U         440 U         460 U         680 UJ           BENZO(B)FLUORANTHENE         UG/KG         410 U         400 U         440 U         460 U         110 J           BENZO(B)FLUORANTHENE         UG/KG         410 U         400 U         440 U         460 U         180 UJ           BENZO(K)FLUORANTHENE         UG/KG         410 U         400 U         440 U         460 U         680 UJ           BENZO(A)PYRENE         UG/KG         410 U         400 U         440 U         460 U         680 UJ           INDENO(1,2,3-CD) PYRENE         UG/KG         410 U         400 U         440 U         460 U         680 UJ           DIBENZ(A,H)ANTHRACENE         UG/KG         410 U         400 U         440 U         460 U         680 UJ		UG/KG	410 U	400 U			
DI-N-OCTYL PHTHÁLATE         UG/KG         410 UJ         400 U         440 U         460 U         680 UJ           BENZO(B)FLUORANTHENE         UG/KG         410 U         400 U         440 U         460 U         110 J           BENZO(B)FLUORANTHENE         UG/KG         410 U         400 U         440 U         460 U         110 J           BENZO(K)FLUORANTHENE         UG/KG         410 U         400 U         440 U         460 U         680 UJ           BENZO(A)PYRENE         UG/KG         410 U         400 U         440 U         460 U         89 J           INDENO(1,2,3-CD) PYRENE         UG/KG         410 U         400 U         440 U         460 U         680 UJ           DIBENZ(A,H)ANTHRACENE         UG/KG         410 U         400 U         440 U         660 U         680 UJ	BIS(2-ETHYLHEXYL)PHTHALATE	UG/KG	410 U	400 U	440 U		
BENZO(B)FLUORANTHENE         UG/KG         410 U         400 U         440 U         460 U         110 J           BENZO(K)FLUORANTHENE         UG/KG         410 U         400 U         440 U         460 U         680 UJ           BENZO(A)PYRENE         UG/KG         410 U         400 U         440 U         460 U         680 UJ           INDENO(1,2,3-CD) PYRENE         UG/KG         410 U         400 U         440 U         460 U         680 UJ           DIBENZ(A,H)ANTHRACENE         UG/KG         410 U         400 U         440 U         660 U         680 UJ	DI-N-OCTYL PHTHÁLATE	UG/KG	410 UJ	400 U			
BENZO(K)FLUORANTHENE         UG/KG         410 U         400 U         440 U         460 U         680 UJ           BENZO(A)PYRENE         UG/KG         410 U         400 U         440 U         460 U         89 J           INDENO(1,2,3-CD) PYRENE         UG/KG         410 U         400 U         440 U         460 U         89 J           DIBENZ(A,H)ANTHRACENE         UG/KG         410 U         400 U         440 U         460 U         680 UJ	BENZO(B)FLUORANTHENE	UG/KG	410 U	400 U			
BENZO(A)PYRENE         UG/KG         410 U         400 U         440 U         460 U         89 J           INDENO(1,2,3-CD) PYRENE         UG/KG         410 U         400 U         440 U         460 U         680 UJ           DIBENZ(A,H)ANTHRACENE         UG/KG         410 U         400 U         440 U         660 U         680 UJ	<b>BENZO(K)FLUORANTHENE</b>	UG/KG	410 U	400 U			
INDENO(1,2,3-CD) PYRENE         UG/KG         410 U         400 U         440 U         460 U         680 UJ           DIBENZ(A,H)ANTHRACENE         UG/KG         410 U         400 U         440 U         460 U         680 UJ	BENZO(A)PYRENE	UG/KG	410 U	400 U	440 U		
DIBENZ(A,H)ANTHRACENE UG/KG 410 U 400 U 440 U 460 U 680 UJ	INDENO(1,2,3-CD) PYRENE	UG/KG	410 U	400 U			
	DIBENZ(AH)ANTHRACENE	UG/KG	410 U	400 U	440 U	460 U	
	BENZO(G,H,I)PERYLENE	UG/KG	410 U	400 U	440 U	460 U	680 UJ

5 of 9

.

	Sample No:						
	Depth:					LOCATION OF	FREQUENCY
	Date Sampled:	MINIMUM	MAXIMUM	MINIMUM	MAXIMUM	MAXIMUM	OF
	Lab Id:	NONDETECTED	NONDETECTED	DETECTED	DETECTED	DETECTED	DETECTION
'arameter	Units						
PESTICIDE/P							
ALPHA-BHC	UG/KG	2.1 UJ	19 U	ND	ND		0/11
BETA-BHC	UG/KG	2.1 UJ	19 U	ND	ND		0/11
DELTA-BHC	UG/KG	2.1 UJ	19 U	ND	ND		0/11
JAMMA-BHC(LINDANE)		2.1 UJ	19 U	ND	ND		0/11
IEPTACHLOR	UG/KG	2.1 UJ	19 U	ND	ND		0/11
LDRIN	UG/KG	2.1 UJ	19 U	ND	ND		0/11
IEPTACHLOR EPOXIDE	UG/KG	2.1 UJ	19 U	ND	ND		0/11
ENDOSULFAN I	UG/KG	2.1 UJ	19 U	ND	ND		0/11
DIELDRIN	UG/KG	4 UJ	37 U	8.1 J	43 J	6-RV1-SD-06	2/11
,4'-DDE	UG/KG	4 UJ	24 U	23 J	120 J	6-RV2-SD-06	6/11
INDRIN	UG/KG	4 UJ	37 U	5.1 J	5.1 J	6-RV1-SD-06	1/11
ENDOSULFAN II	UG/KG	4 UJ	37 U	ND	ND		0/11
4'-DDD	UG/KG	4.3 U	37 U	4.1 J	45 J	6-RV2-SD-06	6/11
ENDOSULFAN SULFATE	UG/KG	4 UJ	37 U	ND	ND		0/11
,4' – DDT	UG/KG	4 UJ	4.7 U	14 J	210 J	6-RV3-SD-06	8/11
<b>METHOXYCHLOR</b>	UG/KG	21 UJ	190 U	ND	ND		0/11
NDRIN KETONE	UG/KG	4 UJ	37 U	ND	ND		0/11
ENDRIN ALDEHYDE	UG/KG	4 UJ	37 U	7.8	7.8	6-RV1-SD-06	1/11
LPHA CHLORDANE	UG/KG	2.1 UJ	19 U	ND	ND		0/11
JAMMA CHLORDANE	UG/KG	2.1 UJ	19 U	ND	ND		0/11
OXAPHENE	UG/KG	210 UJ	1900 U	ND	ND		0/11
CB-1016	UG/KG	40 UJ	370 U	ND	ND		0/11
CB-1221	UG/KG	82 UJ	740 U	ND	ND		0/11
CB-1232	UG/KG	40 UJ	370 U	ND	ND		0/11
CB-1252 CB-1242	UG/KG	40 UJ	370 U	ND	ND		0/11
CB-1242 CB-1248	UG/KG	40 UJ	370 U	ND	ND		0/11
CB-1248 CB-1254	UG/KG	40 UJ	370 U	ND	ND		0/11
	UG/KG	40 UJ	370 U	29 J	360 J	6-RV1-SD-06	6/11
CB-1260	00/80	40 03	570 0	27 3	500 5	0 111 00 00	
VOLATILE	_		010 11	ND	ND		0/11
CHLOROMETHANE	UG/KG	12 U	810 U				0/11
ROMOMETHANE	UG/KG	12 U	810 U	ND	ND ND		0/11
/INYL CHLORIDE	UG/KG	12 U	810 U	ND			
CHLOROETHANE	UG/KG	12 U	810 U	ND	ND		0/11
<b>METHYLENE CHLORIDE</b>	UG/KG	12 U	810 U	ND	ND		0/11
CETONE	UG/KG	12 U	67 UJ	62	9100 J	6-RV4-SD-612	5/11
ARBON DISULFIDE	UG/KG	12 U	810 U	ND	ND		0/11
1-DICHLOROETHENE	UG/KG	12 U	810 U	ND	ND		0/11
1-DICHLOROETHANE	UG/KG	12 U	810 U	ND	ND		0/11
2-DICHLOROETHENE	UG/KG	12 U	810 U	ND	ND		0/11
HLOROFORM	UG/KG	12 U	810 U	/ ND	ND		0/11
2-DICHLOROETHANE	UG/KG	12 U	810 U	ND	ND		0/11
BUTANONE	UG/KG	12 U	24 U	2300	2400 J	6-RV4-SD-612	2/11

6rvsdor.wk1

	Sample No:						
	Depth:					LOCATION OF	FREQUENC
D	ato Sampled:	MINIMUM	MAXIMUM	MINIMUM	MAXIMUM	MAXIMUM	OF
	Lab Id:	NONDETECTED	NONDETECTED	DETECTED	DETECTED	DETECTED	DETECTION
arameter	Units						
VOLATILES Cont.							
,1,1-TRICHLOROETHANE	UG/KG	12 U	810 U	ND	ND		0/11
CARBON TETRACHLORIDE	UG/KG	12 U	810 U	ND	ND		0/11
ROMODICHLOROMETHANI	UG/KG	12 U	810 U	ND	ND		0/11
2-DICHLOROPROPANE	UG/KG	12 U	810 U	ND	ND		0/11
IS-13-DICHLOROPROPEN	E UG/KG	12 U	810 U	ND	ND		0/11
RICHLOROETHENE	UG/KG	12 U	810 U	ND	ND		0/11
IBROMOCHLOROMETHANI		12 U	810 U	ND	ND		0/11
1,2-TRICHLOROETHANE	UG/KG	12 U	810 U	ND	ND		0/11
ENZENE	UG/KG	12 UJ	810 U	ND	ND		0/11
RANS-1,3-DICHLOROPROP	• .	12 UJ	810 U	ND	ND		0/11
ROMOFORM	UG/KG	12 U	810 U	ND	ND		0/11
-METHYL-2-PENTANONE	UG/KG	12 U	810 U	ND	ND		
-HEXANONE	UG/KG	12 U 12 U	810 U	ND	ND		0/11 0/11
ETRACHLOROETHENE	UG/KG	12 U	810 U	ND	ND		
1,2,2-TETRACHLOROETHAL		12 U	810 U	ND			0/11
DLUENE	UG/KG	12 U	810 U	ND	ND		0/11
					ND		0/11
HLOROBENZENE	UG/KG	12 U	810 U	ND	ND		0/11
THYLBENZENE	UG/KG	12 U	810 U	ND	ND		0/11
FYRENE	UG/KG	12 U	810 U	ND	ND		0/11
OTAL XYLENES	UG/KG	12 U	810 U	ND	ND		0/11
SEMIVOLATILES							
HENOL	UG/KG	380 U	680 U	ND	ND		0/11
IS(2-CHLOROETHYL) ETHE	R UG/KG	380 U	680 U	ND	ND		0/11
-CHLOROPHENOL	UG/KG	380 U	680 U	ND	ND		0/11
3-DICHLOROBENZENE	UG/KG	380 U	680 U	ND	ND		0/11
4-DICHLOROBENZENE	UG/KG	380 U	680 U	ND	ND		0/11
2-DICHLOROBENZENE	UG/KG	380 U	680 U	ND	ND		0/11
-METHYLPHENOL	UG/KG	380 U	680 U	ND	ND		0/11
2'-OXYBIS (1-CHLOROPRO		380 U	680 U	ND	ND		0/11
-METHYLPHENOL	UG/KG	380 U	680 U	ND	ND		0/11
-NITROSODI-N-PROPYLA		380 U	680 U	ND	ND		0/11
EXACHLOROETHANE	UG/KG	380 U	680 U	ND	ND		0/11
TROBENZENE	UG/KG	380 U	680 U	ND	ND		0/11
OPHORONE	UG/KG	380 U	680 U	ND	ND		0/11
NITROPHENOL	UG/KG	380 U	680 U	ND	ND		
-DIMETHYLPHENOL	UG/KG	380 U	680 U	ND			0/11
					ND		0/11
(S(2-CHLOROETHOXY) MET		380 U	680 U	ND	ND		0/11
-DICHLOROPHENOL	UG/KG	380 U	680 U	ND	ND		0/11
2,4-TRICHLOROBENZENE	UG/KG	380 U	680 U	ND	ND	( D1/4 05 05	0/11
APHTHALENE	UG/KG	380 U	680 U	54 J	54 J	6-RV2-SD-06	1/11
-CHLORANILINE	UG/KG	380 U	680 U	ND	ND		0/11
EXACHLOROBUTADIENE	UG/KG	380 U	680 U	ND	ND		0/11

•

	Sample No:						
_	Depth:					LOCATION OF	FREQUENC
D	ate Sampled:	MINIMUM	MAXIMUM	MINIMUM	MAXIMUM	MAXIMUM	OF
	Lab Id:	NONDETECTED	NONDETECTED	DETECTED	DETECTED	DETECTED	DETECTION
arameter	Units						
SEMIVOLATILES Co	<u>ent.</u>						
-CHLORO-3-METHYLPHE	NOL UG/KG	380 U	680 U	ND	ND		0/11
-METHYLNAPHTHALENE	UG/KG	380 U	680 U	44 J	44 J	6-RV2-SD-06	1/11
<b>IEXACHLOROCYCLOPENTA</b>	DIENE UG/KG	380 U	680 U	ND	ND		0/11
4,6-TRICHLOROPHENOL	UG/KG	380 U	680 U	ND	ND		0/11
4,5-TRICHLOROPHENOL	UG/KG	930 U	1600 U	ND	ND	•	0/11
-CHLORONAPHTHALENE	UG/KG	380 U	680 U	ND	ND		0/11
-NITROANILINE	UG/KG	930 U	1600 U	ND	ND		0/11
IMETHYL PHTHALATE	UG/KG	380 U	680 U	ND	ND		0/11
CENAPHTHYLENE	UG/KG	380 U	680 U	ND	ND		0/11
6-DINITROTOLUENE	UG/KG	380 U	680 U	ND	ND		0/11
-NITROANILINE	UG/KG	930 U	1600 U	ND	ND		0/11
CENAPHTHENE	UG/KG	380 U	680 U	220 J	220 J	6-RV2-SD-06	1/11 -
4-DINITROPHENOL	UG/KG	930 U	1600 U	ND	ND		0/11
-NITROPHENOL	UG/KG	930 U	1600 U	ND	ND		0/11
IBENZOFURAN	UG/KG	380 U	680 U	110 J	110 J	6-RV2-SD-06	1/11
4-DINITROTOLUENE	UG/KG	380 U	680 U	ND	ND		0/11
IETHYL PHTHALATE	UG/KG	380 U	680 U	ND	ND		0/11
-CHLOROPHENYL PHENYL		380 U	680 U	ND	ND		0/11
LUORENE	UG/KG	380 U	680 U	250 J	250 J	6-RV2-SD-06	1/11
-NITROANILINE	UG/KG	930 U	1600 UJ	ND	ND		0/11
6-DINITRO-2-METHYLPH		930 UJ	1600 U	ND	ND		0/11
-NITRISODIPHENYLAMINE		380 UJ	680 U	ND	ND		0/11
-BROMOPHENYL PHENYL		380 UJ	680 U	ND	ND		0/11
EXACHLOROBENZENE	UG/KG	380 UJ	680 U	ND	ND		0/11
ENTACHLOROPHENOL	UG/KG	930 UJ	1600 U	ND	ND		0/11
HENANTHRENE	UG/KG	380 UJ	680 U	50 J	1600	6-RV2-SD-06	3/11
NTHRACENE	UG/KG	380 UJ	680 U	480	480	6-RV2-SD-06	1/11
I-N-BUTYL PHTHALATE	UG/KG	380 UJ	680 U	52 J	52 J	6-RV7-SD-612	1/11
LUORANTHENE	UG/KG	380 UJ	680 U	84 J	1500 J	6-RV2-SD-06	3/11
ARBAZOLE	UG/KG	380 UJ	680 U	170 J	170 J	6-RV2-SD-06	1/11
YRENE	UG/KG	380 UR	460 U	96 J	2100	6-RV2-SD-06	4/11
UTYL BENZYL PHTHALATE		380 UR	680 UJ	ND	ND		0/11
-DICHLOROBENZIDINE	UG/KG	380 UR	680 UJ	ND	ND		0/11
ENZO(A)ANTHRACENE	UG/KG	380 UR	680 UJ	43 J	1100	6-RV2-SD-06	3/11
HRYSENE	UG/KG	380 UR	680 UJ	45 J	1100	6-RV2-SD-06	3/11
S(2-ETHYLHEXYL)PHTHA		380 UR	680 UJ	200 J	200 J	6-RV3-SD-06	1/11
I-N-OCTYL PHTHALATE	UG/KG	380 UR	680 UJ	ND	200 J ND	V-1XVJ-01/-00	0/11
ENZO(B)FLUORANTHENE	UG/KG	380 UR	460 U	54 J	1200	6-RV2-SD-06	4/11
	UG/KG	380 UR	400 U 680 UJ	440	440	6-RV7-SD-06	4/11
ENZO(K)FLUORANTHENE ENZO(A)PYRENE	UG/KG	380 UR	460 U	440 70 J	1000	6-RV2-SD-06	3/11
IDENO(1,2,3-CD) PYRENE	UG/KG	380 UR	680 UJ	70 J	710	6-RV2-SD-06	2/11
IBENZ(AH)ANTHRACENE	UG/KG	380 UR	680 UJ	83 J	83 J	6-RV2-SD-06	1/11
	UG/KG	380 UR	680 UJ	57 J	680		
BENZO(G,H,I)PERYLENE	UG/KG	300 UK	000 01	3/ 3	. 000	6-RV8-SD-06	2/11

	Sample No: Depth: Date Sampled: Lab Id:	6-RV1-SD-06 N/A 8/25/92 00439-11	6-RV2-SD-06 N/A 8/25/92 00439-13	6-RV3-SD-06 N/A 8/24/92 00437-04	6-RV3-SD-612 N/A 8/24/92 00437-05	6-RV4-SD-06 N/A 8/24/92 00437-08	6-RV4-SD-612 N/A 8/24/92 00437-09
Parameter	Units					*******	
ALUMINUM	MG/KG	10300	2540	3820	1090	947	739
ANTIMONY	MG/KG	12.5 U	9.8 U	2.6 U	2.9 U	2.6 U	2.6 U
ARSENIC	MG/KG	4.3	0.61 B	2.1 JB	0.5 U	0.53 U	0.7 UJ
BARIUM	MG/KG	61.5	22.9 B	18.2 JB	5.6 JB	4.2 JB	2.9 JB
BERYLLIUM	MG/KG	0.26 U	0.2 U	0.13 B	0.06 U	0.06 U	0.06 U
CADMIUM	MG/KG	5.9 J	1.8 J	1.9 J	0.61 J	0.53 JB	0.36 U
CALCIUM	MG/KG	3450	1490	735 B	315 B	148 B	110 U
CHROMIUM	MG/KG	17.7	3.6	6	2.3 U	1.7 U	1.3 U
COBALT	MG/KG	2.1 JB	1.2 U	0.72 B	0.41 U	0.37 U	0.38 U
COPPER	MG/KG	67.5	12.3	18.7 J	6 J	4.2 JB	2.6 JB
RON	MG/KG	7590	2290	2690	828	1010	420
LEAD	MG/KG	2.1 B	21.2	62.3 J	12.4 J	6.6 J	5.4 J
MAGNESIUM	MG/KG	402 B	139 B	137 B	40 B	34.7 B	24.5 B
MANGANESE	MG/KG	288	24	58.3	5.1 J	6.5 J	3.4 J
MERCURY	MG/KG	0.75	0.25	0.1	0.04 B	0.03 B	0.02 U
VICKEL	MG/KG	7.7 JB	3.4 U	2.1 B	1.6 U	1.5 U	1.5 U
POTASSIUM	MG/KG	361 B	108 B	153 B	47.5 B	35.1 B	29.5 B
SELENIUM	MG/KG	1.1 U	1.1 U	1.1 UJ	0.83 U	0.89 U	1.2 U
SILVER	MG/KG	2.6 U	2 U	0.85 B	0.41 U	0.56 B	0.6 B
ODIUM	MG/KG	48.8 UJ	30.2 UJ	27.8 UJ	16.2 UJ	16.8 UJ	14.6 UJ
HALLIUM	MG/KG	0.44 UJ	0.43 UJ	0.43 UJ	0.33 UJ	0.36 U	0.46 U
/ANADIUM	MG/KG	19	6 B	7 B	2.1 B	2.5 B	1.2 B
LINC	MG/KG	408	64.8	113	24.8	31.6	20.3

	Sample No: Depth: Date Sampled: Lab Id:	6-RV5-SD-06 N/A 8/25/92 00439-15	6- RV6-SD-06 N/A 8/25/92 00437-11	6-RV7-SD-06 N/A 8/25/92 00437-12	6-RV7-SD-612 N/A 8/25/92 00437-14	6-RV8-SD-06 N/A 8/25/92 00437-17
Parameter	Units					
ALUMINUM	MG/KG	913	2100	1260	1710	7130
ANTIMONY	MG/KG	11.9 U	2.7 U	3.5 U	3.2 U	4.2 U
ARSENIC	MG/KG	0.44 U	0.67 UJ	0.87 UJ	0.78 UJ	2.3 B
BARIUM	MG/KG	5.1 U	8.5 JB	6.8 JB	12.2 JB	37.7 JB
BERYLLIUM	MG/KG	0.24 U	0.06 B	0.08 U	0.07 B	0.25 B
CADMIUM	MG/KG	0.73 U	1.7 J	0.64 JB	1.6 J	2.3 J
CALCIUM	MG/KG	301 U	10100	284 B	577 B	1390 B
CHROMIUM	MG/KG	2 B	3.1 J	1.9 U	3.8 U	10.5
COBALT	MG/KG	1.5 U	0.39 U	0.5 U	0.45 U	1.1 B
COPPER	MG/KG	6.5 J	8.1 J	6.9 J	45 J	35 J
IRON	MG/KG	875	2950	851	1000	3420
LEAD	MG/KG	25.6	11.2 J	13.3 J	18.5 J	105 J
MAGNESIUM	MG/KG	36.3 B	217 B	53.2 B	91.1 B	289 B
MANGANESE	MG/KG	28.9	104	25.5 J	21.6 J	24.2 J
MERCURY	MG/KG	0.12 U	0.15	0.09 B	0.15	0.27
NICKEL	MG/KG	4.1 U	1.5 U	2 U	2.8 B	4 B
POTASSIUM	MG/KG	93 U	83.2 B	48.2 B	60.9 B	253 B
SELENIUM	MG/KG	1.1 U	1.1 U	1.5 U	1.3 U	1.6 U
SILVER	MG/KG	2.4 U	0.39 U	0.82 B	0.85 B	1.2 B
SODIUM	MG/KG	26.9 UJ	41.4 UJ	25.5 UJ	24.3 UJ	60 UJ
THALLIUM	MG/KG	0.44 UJ	0.45 UJ	0.58 UJ	0.52 U	0.64 U
VANADIUM	MG/KG	1.8 JB	4 B	2.4 JB	3.7 JB	11.4 JB
ZINC	MG/KG	80.8	204	94.2	193	142

F

nf 3

Date Sampl		epth:	MINIMUM MAXIMUM MINIMUM NONDETECTED NONDETECTED DETECTED		MAXIMUM DETECTED	LOCATION OF MAXIMUM DETECTED	FREQUENCY OF DETECTION		
Parameter	La	Units						· • · · · · · · · · · · · · · · · · · ·	
ALUMINUM		MG/KG	NA	NA	739	10300	6-RV1-SD-06	11/11	
ANTIMONY		MG/KG	2.6 U	12.5 U	ND	ND		0/11	
ARSENIC		MG/KG	0.44 U	0.87 UJ	0.61 B	4.3	6-RV1-SD-06	4/11	
BARIUM		MG/KG	5.1 U	5.1 U	2.9 JB	61.5	6-RV1-SD-06	10/11	
BERYLLIUM		MG/KG	0.06 U	0.26 U	0.06 B	0.25 B	6-RV8-SD-06	4/11	
CADMIUM		MG/KG	0.36 U	0.73 U	0.53 JB	5.9 J	6-RV1-SD-06	9/11	
CALCIUM		MG/KG	110 U	301 U	148 B	10100	6-RV6-SD-06	9/11	
HROMIUM		MG/KG	1.3 U	3.8 U	2 B	17.7	6-RV1-SD-06	6/11	
OBALT		MG/KG	0.37 U	1.5 U	0.72 B	2.1 JB	6-RV1-SD-06	3/11	
OPPER		MG/KG	NA	NA .	2.6 JB	67.5	6-RV1-SD-06	11/11	
RON		MG/KG	NA	NA	420	7590	6-RV1-SD-06	11/11	
EAD		MG/KG	NA	NA	2.1 B	105 J	6-RV8-SD-06	11/11	
AGNESIUM		MG/KG	NA	NA	24.5 B	402 B	6-RV1-SD-06	11/11	
IANGANESE		MO/KG	NA	NA	3.4 J	288	6-RV1-SD-06	11/11	
MERCURY		MG/KG	0.02 U	0.12 U	0.03 B	0.75	6-RV1-SD-06	9/11	
VICKEL		MG/KG	1.5 U	4.1 U	2.1 B	7.7 JB	6-RV1-SD-06	4/11	
OTASSIUM		MG/KG	93 U	93 U	29.5 B	361 B	6-RV1-SD-06	10/11	
ELENIUM		MG/KG	0.83 U	1.6 U	ND	ND		0/11	
ILVER		MG/KG	0.39 U	2.6 U	0.56 B	1.2 B	6-RV8-SD-06	6/11	
ODIUM		MG/KG	14.6 UJ	60 UJ	ND	ND		0/11	
HALLIUM		MG/KG	0.33 UJ	0.64 U	ND	ND		0/11	
ANADIUM		MG/KG	NA	NA	1.2 B	19	6-RV1-SD-06	11/11	
LINC		MG/KG	NA	NA	20.3	408	6-RV1-SD-06	11/11	

APPENDIX F FIELD DATA SHEETS BENTHIC MACROINVERTEBRATES AND FISH SAMPLES

	SAMPLING STATION	CHARACTER	IZATION DATA S	HEET	
Station Number: 6 - 1	BHZA-Fish	Date: 5	129/92	Time:?	:45
Sample Type: /Fist			Sediment	Surface	Water
	T: Seine Gill Net Pona	r Kemmerer	Sediment Corer	Spoon Other: Ele.	ctro sh
12					
Г					
•			-		
1	NOT	AVAIL	ABLE		
		•			
	•				
					11
				gene line in	
parian Zone/Instream Fee	atures			<u>1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997</u>	
		) Industria	ıl Other:	<u></u>	
dominant Surrounding I		) Industris	ıl Other:		
dominant Surrounding I retation Type: <u>NE</u>	Land Use: Forest			Run <b>:</b> NE m Pool:	<u></u>
dominant Surrounding I etation Type: <u>NE</u> mated Stream Width: <u>1</u>	Land Use: Forest	h:. <u>.NE</u> m	Riffle: <u>NE</u> m 1		
dominant Surrounding I etation Type: <u>NE</u> mated Stream Width: <u>1</u> eam Type: Cold Water	Land Use: Forest	h: <u> NE_</u> m Velocity:	Riffle: <u>NE</u> m 1		
dominant Surrounding I getation Type: <u>NE</u> imated Stream Width: <u>1</u> eam Type: Cold Water hopy Cover: Open	Land Use: Forest VE_m Est. Stream Dept r Warm Water	h: <u> NE_</u> m Velocity:	Riffle: <u>NE</u> m 1 NE Char	nnelized: Yes	
edominant Surrounding I getation Type: <u>NE</u> imated Stream Width: <u>f</u> eam Type: Cold Water nopy Cover: Open <u>liment/Substrate</u> :	Land Use: Forest <u>VE</u> m Est. Stream Dept r Warm Water Partly Open	h: <u>NE</u> m Velocity: <u></u>	Riffle: <u>NE</u> m 1 <u>NE</u> Chan Partly Shaded	nnelized: Yes Shaded	No
edominant Surrounding I getation Type: <u>NE</u> timated Stream Width: <u>f</u> eam Type: Cold Water nopy Cover: Open <u>liment/Substrate</u> : liment Odors: Normal	Land Use: Forest <u>VE</u> m Est. Stream Dept r Warm Water Partly Open Sewage Petroleum	h: <u>NE</u> m Velocity:	Riffle: <u>NE</u> m 1 <u>NE</u> Chan Partly Shaded Anaerobic N	nnelized: Yes Shaded None Other:	No
edominant Surrounding I getation Type: <u>NE</u> timated Stream Width: <u>f</u> eam Type: Cold Water nopy Cover: Open <u>liment/Substrate</u> : liment Odors: Normal liment Oils: At	Land Use: Forest <u>VE</u> m Est. Stream Dept r Warm Water Partly Open Sewage Petroleum bsent Slig	h: <u>NE</u> m Velocity: <u> </u>	Riffle: <u>NE</u> m 1 <u>NE</u> Chan Partly Shaded Anaerobic N Moderate	nnelized: Yes Shaded Jone Other: Profuse	No
dominant Surrounding I getation Type: <u>NE</u> imated Stream Width: <u>f</u> cam Type: Cold Water topy Cover: Open <u>iment/Substrate</u> : iment Odors: Normal iment Oils: Al ar Grab: Number of Jars	Land Use: Forest <u>VE</u> m Est. Stream Dept r Warm Water Partly Open Sewage Petroleum bsent Slig a Filled with Sediments	h: <u>NE</u> m Velocity: <u></u> Chemical ght Replicate: #1:	Riffle: <u>NE</u> m 1 <u>NE</u> Chan Partly Shaded Anaerobic M Moderate Replicate #	nnelized: Yes Shaded Ione Other: Profuse 2: Replicate #3	No 
dominant Surrounding I getation Type: <u>NE</u> imated Stream Width: <u>f</u> cam Type: Cold Water topy Cover: Open <u>iment/Substrate</u> : iment Odors: Normal iment Oils: Al ar Grab: Number of Jars	Land Use: Forest <u>VE</u> m Est. Stream Dept r Warm Water Partly Open Sewage Petroleum bsent Slig	h: <u>NE</u> m Velocity: <u></u> Chemical ght Replicate: #1:	Riffle: <u>NE</u> m 1 <u>NE</u> Chan Partly Shaded Anaerobic M Moderate Replicate #	nnelized: Yes Shaded Ione Other: Profuse 2: Replicate #3	No 
dominant Surrounding I getation Type: <u>NE</u> imated Stream Width: <u>f</u> eam Type: Cold Water hopy Cover: Open iment/Substrate: iment Odors: Normal iment Oils: At ar Grab: Number of Jars iment Description: <u>S</u>	Land Use: Forest <u>VE</u> m Est. Stream Dept r Warm Water Partly Open Sewage Petroleum bsent Slig s Filled with Sediments 5 1 H Y + 5 Hrs	h: <u>NE</u> m Velocity: <u></u> Chemical ght Replicate: #1: <u>UP GU</u>	Riffle: <u>NE</u> m 1 NE Char Partly Shaded Anaerobic N Moderate Replicate #	nnelized: Yes Shaded None Other: Profuse 2: Replicate #3	No 
dominant Surrounding I getation Type: <u>NE</u> imated Stream Width: <u>f</u> eam Type: Cold Water topy Cover: Open iment/Substrate: iment Odors: Normal iment Oils: At ar Grab: Number of Jars iment Description: <u>S</u>	Land Use: Forest <u>VE</u> m Est. Stream Dept r Warm Water Partly Open Sewage Petroleum bsent Slig a Filled with Sediments	h: <u>NE</u> m Velocity: <u></u> Chemical ght Replicate: #1: <u>UP GU</u>	Riffle: <u>NE</u> m 1 NE Char Partly Shaded Anaerobic N Moderate Replicate #	nnelized: Yes Shaded None Other: Profuse 2: Replicate #3	No 
dominant Surrounding I getation Type: <u>NE</u> imated Stream Width: <u>1</u> eam Type: Cold Water hopy Cover: Open iment/Substrate: iment Odors: Normal iment Oils: At ar Grab: Number of Jars iment Description: <u>S</u> er: p.: <u>23.50</u>	Land Use: Forest <u>VE</u> m Est. Stream Dept r Warm Water Partly Open Sewage Petroleum bsent Slig s Filled with Sediments 5 1 H Y + 5 Hrs	h: <u>NE</u> m Velocity: Chemical ght Replicate: #1: <u>UP GU</u> 5. 0	Riffle: <u>NE</u> m 1 NE Chan Partly Shaded Anaerobic M Moderate Replicate # icKIY mg/L pH:	nnelized: Yes Shaded None Other: Profuse 2: Replicate #3	No
edominant Surrounding I getation Type: <u>NE</u> imated Stream Width: <u>1</u> eam Type: Cold Water hopy Cover: Open iment/Substrate: iment Odors: Normal iment Oils: Al ar Grab: Number of Jars iment Description: <u>S</u> er: p.: <u>27.50</u> ductivity: <u>11.5</u>	Land Use: Forest <u>VE</u> m Est. Stream Dept r Warm Water Partly Open Sewage Petroleum bsent Slig sFilled with Sediments Silfy Jury	h: $\underline{NE}_{m}$ Velocity: Chemical ght Replicate: #1: $\underline{UP} \underline{g} \underline{U}$ $\underline{5} \underline{D}$ Salinity:	Riffle: <u>NE</u> m 1 <u>NE</u> Char Partly Shaded Anaerobic M Moderate Replicate # icKly mg/L pH: mg/L pH:	Innelized: Yes Shaded None Other: Profuse 2: Replicate #3    	No
ream Type: Cold Water nopy Cover: Open <u>Aliment/Substrate</u> : Aliment Odors: Normal Aliment Oils: Aliment Oils: Aliment Jars Inent Description: 5 <u>ter:</u> ap.: 2350 Aductivity: 115	Land Use: Forest VE m Est. Stream Dept r Warm Water Partly Open Sewage Petroleum bsent Slig Filled with Sediments Diffy, 54145 C Dissolved Oxygen: Micromhos/cm Sewage Petroleum	h: $\underline{NE}_{m}$ Velocity: Chemical ght Replicate: #1: $\underline{UP} \underline{g} \underline{U}$ $\underline{5} \underline{D}$ Salinity:	Riffle: <u>NE</u> m 1 <u>NE</u> Char Partly Shaded Anaerobic M Moderate Replicate # icKly mg/L pH: mg/L pH:	Innelized: Yes Shaded None Other: Profuse 2: Replicate #3    	No
dominant Surrounding I retation Type: <u>NE</u> imated Stream Width: <u>1</u> eam Type: Cold Water topy Cover: Open iment/Substrate: iment Odors: Normal iment Oils: At ar Grab: Number of Jarse iment Description: <u>S</u> <u>er</u> : p.: <u>23,50</u> ductivity: <u>11,5</u> er Odors: Normal	Land Use: Forest <u>VE</u> m Est. Stream Dept r Warm Water Partly Open Sewage Petroleum bsent Slig Silled with Sediments Silley Jurs <u>C</u> Dissolved Oxygen: <u>Micromhos/cm</u> Sewage Petroleum ck Sheen	h: <u>NE</u> m Velocity: Chemical ght Replicate: #1: <u>UP 9 U</u> <u>5. D</u> Salinity: Chemica	Riffle: <u>NE</u> m I <u>NE</u> Chan Partly Shaded Anaerobic M Moderate <u>Replicate #</u> <u>CKIY</u>  mg/L pH:  Mone	Innelized: Yes Shaded None Other: Profuse 2: Replicate #3    	No

	H	i	
, ·		n de la companya de l La companya de la comp	•
S.	AMPLING STATION CHARAC	TERIZATION DATA SHE	ET
Station Number: $6 - BH$ Sample Type: Fish SAMPLING EQUIPMENT:	<u>D</u> <u>4</u> - FISH Date: D Benthic Macroinvertebra Seine Gill Net Ponar Kemm		Time: <u>15:18</u> Surface Water Other: <u>Electros</u>
		· .	
•	Not	AVAILAB	3LE
	•		
		i	· · ·
<u>Riparian Zone/Instream Featur</u>	<u>'es</u>		
Predominant Surrounding Land	d Use: Forest Indu	ustrial Other:	
Vegetation Type: <u>NE</u>			
•	m Est. Stream Depth: <u>NE</u>		
Stream Type: Cold Water ( Canopy Cover: Open	Warm Water Velocity: _ Partly Open	NE Channel Partly Shaded	lized: Yes No Shaded
Sediment/Substrate:		-	
Sediment Odors: Normal S	Sewage Petroleum Chemi	ical Anaerobic None	e Other:
Sediment Oils: Absen	-	Moderate	Profuse
-	led with Sediments Replicate:	#1: Replicate #2: _	Replicate #3:
Sediment Description: <u>NE</u>			
Water:	سے	$\sim$	
	C Dissolved Oxygen: <u>5</u> ,		<u>6.4</u> s.u.
	Micromhos/cm Salinity:	-	
Water Odors: Normal : Water Surface Oils: Slick	Sewage Petroleum Cher Sheen (None)	mical None Oth	er:
$\sim$		Opaque Water	Color:
Weather Conditions: <u>NE</u>		Tide	e: In Out
Comments: NE - NOt	- Evaluated	-	
	······································		

•

	L. Rilal	Fish		19/92		Time: 10:0	0
Station Number:	6-BHO6+		•	<u>979 C</u> Sedim			
Sample Type: SAMPLING EQUIF	Fish MENT: Saine		ecroinvertebrate			Surface V Other: <i>Floc</i>	
SAMPLING EQUIP	MENI: Seme	8/29/	47	Sediment Over			
	1						
					•		
•		SEE	6-BHO	A-BN			
		JLL	0,0,0				
			•				
	<del></del>						<u> </u>
inarian Zana/Instra	am Faaturaa						
		Fores	t Industri	al Other:			
redominant Surrow	nding Land Use:	Fores	t Industri	al Other:	, 		
redominant Surrou egetation Type: <u>N</u>	nding Land Use:   E				•	E m Pool:	VE m
iparian Zone/Instre redominant Surrow egetation Type: stimated Stream Wi ream Type: Cold	nding Land Use: E idth: <u>NE_</u> m	Est. Stream D		Riffle: AEm	Run: M		
redominant Surrous egetation Type: <u>N</u> stimated Stream Wi ream Type: Cold	nding Land Use: E idth: <u>NE_</u> m	Est. Stream D	epth: <u>NE</u> m Velocity:		Run: Mi		
redominant Surrow egetation Type: <u>N</u> stimated Stream Wi ream Type: Cold anopy Cover: 0	nding Land Use:   <u>E</u> idth: <u>NE</u> m ! Water War	Est. Stream D m Water	epth: <u>NE</u> m Velocity:	Riffle: <u>A</u> Em NE C	Run: Mi	Yes	
redominant Surrous egetation Type: <u>N</u> stimated Stream Wi ream Type: Cold anopy Cover: C <u>diment/Substrate</u> :	nding Land Use:  E idth: <u>NE m</u>  Water War Open	Est. Stream D m Water Partly Op	epth: <u>NE</u> m Velocity: en	Riffle: <u>A</u> Em <u>NE</u> C Partly Shaded	Run: Mi	Yes Shaded	No
redominant Surrous egetation Type: <u>N</u> stimated Stream Wi ream Type: Cold anopy Cover: <u>G</u> <u>diment/Substrate</u> : diment Odors: N	nding Land Use: E idth: <u>NE</u> m Water War Open ormal Sewag	Est. Stream D m Water Partly Op re Petrole	epth: <u>NE</u> m Velocity: en um Chemical	Riffle: <u>AE</u> m <u>NE</u> C Partly Shaded Anaerobic	Run: Mi ihannelized: None	Yes Shaded Other:	No
redominant Surrous egetation Type: <u>N</u> stimated Stream Wi ream Type: Cold anopy Cover: <u>O diment/Substrate</u> : diment Odors: No diment Oils:	nding Land Use: <u>E</u> idth: <u>NE</u> m Water War Open ormal Sewag Absent	Est. Stream D m Water Partly Op re Petroleu	epth: <u>NE</u> m Velocity: en um Chemical Slight	Riffle: <u>A</u> Em <u>NE</u> C Partly Shaded Anaerobic Moderate	Run: Ali hannelized: None	Yes Shaded Other: Profuse	No
redominant Surrous egetation Type: <u>N</u> stimated Stream Wi ream Type: Cold anopy Cover: <u>O diment/Substrate</u> : diment Odors: N diment Oils: nar Grab: Number	nding Land Use: <u>E</u> idth: <u>NE</u> m Water War Open ormal Sewag Absent of Jars Filled wi	Est. Stream D m Water Partly Op re Petroleu	epth: <u>NE</u> m Velocity: en um Chemical Slight	Riffle: <u>A</u> Em <u>NE</u> C Partly Shaded Anaerobic Moderate	Run: Ali hannelized: None	Yes Shaded Other: Profuse	No
redominant Surrous egetation Type: <u>N</u> stimated Stream Wi ream Type: Cold anopy Cover: <u>O</u> <u>diment/Substrate</u> : <u>diment Odors: N</u> diment Oils: nar Grab: Number diment Description	nding Land Use: <u>E</u> idth: <u>NE</u> m Water War Open ormal Sewag Absent of Jars Filled wi	Est. Stream D m Water Partly Op re Petroleu	epth: <u>NE</u> m Velocity: en um Chemical Slight	Riffle: <u>A</u> Em <u>NE</u> C Partly Shaded Anaerobic Moderate	Run: Ali hannelized: None	Yes Shaded Other: Profuse	No
redominant Surrous egetation Type: <u>N</u> stimated Stream Wi ream Type: Cold anopy Cover: <u>O</u> <u>diment/Substrate</u> : <u>diment Odors: Na</u> diment Oils: nar Grab: Number diment Description	nding Land Use: <u> E</u> idth: <u>NE</u> m Water War Open ormal Sewag Absent of Jars Filled with <u>.</u> NE	Est. Stream D m Water Partly Op re Petroles ith Sediments	epth: <u>NE</u> m Velocity: en um Chemical Slight Replicate: #1	Riffle: C NE C Partly Shaded Anaerobic Moderate : Replicat	Run: Alf hannelized: None e #2:	Yes Shaded Other: Profuse Replicate #3:	No
redominant Surrous egetation Type: <u>N</u> stimated Stream Wi ream Type: Cold anopy Cover: <u>O</u> <u>diment/Substrate</u> : <u>diment Odors:</u> N diment Oils: nar Grab: Number diment Description <u>ater</u> : <u>mp.:</u> <u>NE</u>	nding Land Use: <u> E</u> idth: <u>NE</u> m Water War Open ormal Sewag Absent of Jars Filled wi <u>. NE</u>	Est. Stream D m Water Partly Op re Petroler ith Sediments	epth: <u>NE</u> m Velocity: en um Chemical Slight Replicate: #1	Riffle: <u>A</u> E m <u>NE</u> C Partly Shaded Anaerobic Moderate : Replicat	Run: Mi hannelized: None e #2:	Yes Shaded Other: Profuse Replicate #3:	No
redominant Surrous egetation Type: <u>N</u> stimated Stream Wi ream Type: Cold anopy Cover: <u>Cold</u> anopy Cover: <u>Cold</u> diment/Substrate: diment Odors: N diment Oils: nar Grab: Number diment Description ater: mp.: <u>NE</u> nductivity: <u>NE</u>	nding Land Use: <u> E</u> idth: <u>NE</u> m Water War Open ormal Sewag Absent of Jars Filled wi <u>. NE</u> <u></u> C D	Est. Stream D m Water Partly Op re Petroles ith Sediments Dissolved Oxyge _Micromhos/cm	epth: <u>NE</u> m Velocity: en um Chemical Slight Replicate: #1 en:NE	Riffle: _NE m NE C Partly Shaded Anaerobic Moderate : Replicat	Run: /// hannelized: None e #2: pH:	Yes Shaded Other: Profuse Replicate #3:	No
redominant Surrous egetation Type: <u>N</u> stimated Stream Wi ream Type: Cold anopy Cover: <u>O</u> diment/Substrate: diment Odors: Nu diment Oils: nar Grab: Number diment Description ater: <u>mp.:NE</u> nductivity: <u>NE</u> atter Odors: No	nding Land Use: <u> E</u> idth: <u>NE</u> m Water War Open ormal Sewag Absent of Jars Filled wi <u>. NE</u> <u>. C D</u> <u>.</u> ormal Sewag	Est. Stream D m Water Partly Op re Petroles ith Sediments Dissolved Oxyge Micromhos/cr ge Petrole	epth: <u>NE</u> m Velocity: en um Chemical Slight Replicate: #1 en: <u>NE</u> n Salinity: eum Chemic	Riffle: <u>A</u> E m <u>NE</u> C Partly Shaded Anaerobic Moderate : Replicat	Run: /// hannelized: None e #2: pH:	Yes Shaded Other: Profuse Replicate #3:	No
redominant Surrous egetation Type: <u>N</u> stimated Stream Wi ream Type: Cold anopy Cover: <u>Cold</u> anopy Cover:	nding Land Use: <u> E</u> idth: <u>NE</u> m Water War Open ormal Sewag Absent of Jars Filled wi <u>. NE</u> <u>. C D</u> <u>.</u> ormal Sewag Slick	Est. Stream D m Water Partly Op re Petroles ith Sediments Dissolved Oxyge _Micromhos/cm	epth: <u>NE</u> m Velocity: en um Chemical Slight Replicate: #1 en:NE n Salinity: sum Chemic	Riffle: _NE m NE C Partly Shaded Anaerobic Moderate : Replicat	Run:	Yes Shaded Other: Profuse Replicate #3: NES	No

.

 $\frown$ 

AMPLING EQUIPMENT Seine Gill Net Ponar Kemmerer Sediment Corer Spoon Other Electrosho NOT AVAILABLE NOT AVAILABLE NOT AVAILABLE Montant Survending Land Use: Protect Industrial Other:					•
ample Type:       Pin       Benchik Macroinvertebrate       Sediment       Surface Water         AMPLING EQUIPMENT Seine GülNet Ponar Kemmerer Sediment Corer Spoon       Other:       Electroste         AMPLING EQUIPMENT Seine GülNet Ponar Kemmerer Sediment Corer Spoon       Other:       Electroste         Image: Surface Water       NoT       AVAILABLE         NoT       AVAILABLE       NoT       AVAILABLE         atian Zonofinstream Features       Industrial       Other:       Other:         dominant Surrounding Land Use:       Errest       Industrial       Other:       No         settion Type:       NE       instact Stream Depth:       NE       Mer       No       No         estion Type:       Cold Water       Warm Water       Velocity:       AE       No       No       Perty Shaded       Stade       No         error       Open       Partly Open       Partly Shaded       Stade       No       Perty Stade       Stade       No       Perty Open       Stade       Stade       Stade       Perty Open       Stade       Stade       Stade       Stade	SAMI	PLING STATION C	HARACTERIZATION I	DATA SHEET	
ample Type:       Pin       Benchik Macroinvertebrate       Sediment       Surface Water         AMPLING EQUIPMENT Seine GülNet Ponar Kemmerer Sediment Corer Spoon       Other:       Electroste         AMPLING EQUIPMENT Seine GülNet Ponar Kemmerer Sediment Corer Spoon       Other:       Electroste         Image: Surface Water       NoT       AVAILABLE         NoT       AVAILABLE       NoT       AVAILABLE         atian Zonofinstream Features       Industrial       Other:       Other:         dominant Surrounding Land Use:       Errest       Industrial       Other:       No         settion Type:       NE       instact Stream Depth:       NE       Mer       No       No         estion Type:       Cold Water       Warm Water       Velocity:       AE       No       No       Perty Shaded       Stade       No         error       Open       Partly Open       Partly Shaded       Stade       No       Perty Stade       Stade       No       Perty Open       Stade       Stade       Stade       Perty Open       Stade       Stade       Stade       Stade	Station Number: $6 - \omega co 3$	Fish	Date: 9/12/92	Ti	me: 07:45
Autian Zonofinstream Features         dominant Surrounding Land Use:         Detection Type:         AE         innated Stream Meditives         Departure         innated Stream Width:         ME         innated Stream Width:         ME         innated Stream Depth:         ME         innated Stream Width:         ME         innated Stream Width:         ME         innated Stream Width:         ME         innet Old Water         Warm Water         Velocity:         Meter Moreal         Slight         Meter Moreal         Stight         Moderate         Pic.         Chaineer of Jars Filled with Sodiments         Replicate #1:         Replicate #2:	Sample Type: Fish	Benthic Macroir			
arian Zone/Instream Features         dominant Surrounding Land Use:       Forest       Industrial       Other:	SAMPLING EQUIPMENT: Sein	e Gill Net Ponar	Kemmerer Sediment	Corer Spoon Ot	her: <u>Electrosh</u>
arian Zone/Instream Features         dominant Surrounding Land Use:       Forest       Industrial       Other:	8				
arian Zone/Instream Features         dominant Surrounding Land Use:       Forest       Industrial       Other:					
arian Zone/Instream Features         dominant Surrounding Land Use:       Forest       Industrial       Other:					
arian Zone/Instream Features         dominant Surrounding Land Use:       Forest       Industrial       Other:					
arian Zone/Instream Features         dominant Surrounding Land Use:       Forest       Industrial       Other:					
arian Zone/Instream Features         dominant Surrounding Land Use:       Forest       Industrial       Other:					
arian Zone/Instream Features         dominant Surrounding Land Use:       Forest       Industrial       Other:					
arian Zone/Instream Features         dominant Surrounding Land Use:       Forest       Industrial       Other:		- /			
sciominant Surrounding Land Use:       Forest       Industrial       Other:		NOT	AVAILA	1BLE	
sciominant Surrounding Land Use:       Forest       Industrial       Other:					
sciominant Surrounding Land Use:       Forest       Industrial       Other:					
sciominant Surrounding Land Use:       Forest       Industrial       Other:			·		
sciominant Surrounding Land Use:       Forest       Industrial       Other:			•		
sciominant Surrounding Land Use:       Forest       Industrial       Other:		•			
sciominant Surrounding Land Use:       Forest       Industrial       Other:					1
sciominant Surrounding Land Use:       Forest       Industrial       Other:			·····		
sciominant Surrounding Land Use:       Forest       Industrial       Other:	•	- 			
sciominant Surrounding Land Use:       Forest       Industrial       Other:	ingrian Zone/Instreem Restures				
getation Type: NE      imated Stream Width: NE m Est, Stream Depth: NE NE Run: NE Partly Open Partly Shaded No por Partly Open Partly Shaded None Other: iment Odors: Normal Sewage Petroleum Chemical Anaerobic None Other: iment Oils: Absent Slight Moderate Profuse ar Grab: Number of Jars Filled with Sediments Replicate: #1: Replicate #2: Replicate #3: iment Description: NE SU. ductivity: QO Micromhos/cm Salinity: Or Observe Other: er Odors: Normal Sewage Petroleum Chemical None Other: SU. ductivity: QO Micromhos/cm Salinity: Or Open Other: Er Surface Oils: Slightly Turbid Turbid Opaque Water Color: Tacher In Out		E: Forest	Industrial O	ther:	
eam Type: Cold Water Warm Water Velocity: NE Channelized: Yes No hopy Cover: Open Partly Open Partly Shaded Shaded	egetation Type: <u>NE</u>				
nopy Cover:       Open       Partly Open       Partly Shaded       Shaded         iment/Substrate:       iment Odors:       Normal       Sewage       Petroleum       Chemical       Anaerobic       None       Other:	stimated Stream Width: <u>NE</u> m	Est. Stream Depth:		Em Run: NE	m Pool: ME m
iment/Substrate: iment Odors: Normal Sewage Petroleum Chemical Anaerobic None Other: iment Oils: Absent Slight Moderate Profuse ar Grab: Number of Jars Filled with Sediments Replicate: #1: Replicate #2: Replicate #3: iment Description:	tream Type: Cold Water (Wa	rm Water V	elocity: <u>NE</u>	Channelized:	Yes No
iment Odors: Normal Sewage Petroleum Chemical Anaerobic None Other:	anopy Cover: Open	Partly Open	Partly Shao	ded (S	Shaded
iment Odors: Normal Sewage Petroleum Chemical Anaerobic None Other:	ediment/Substrate				
iment Oils:       Absent       Slight       Moderate       Profuse         ar Grab: Number of Jars Filled with Sediments       Replicate: #1:       Replicate #2:       Replicate #3:		ge Petroleum	Chemical Anaerob	ic None Of	ther:
ar Grab: Number of Jars Filled with Sediments Replicate: #1: Replicate #2: Replicate #3: iment Description:					
er: p.: <u>26.0</u> C Dissolved Oxygen: <u>NE</u> mg/L pH: <u>NE</u> S.U. ductivity: <u>20</u> Micromhos/cm Salinity: <u>0.0</u> ppt er Odors: Normal Sewage Petroleum Chemical None Other: er Surface Oils: Slick Sheen <u>None</u> idity: <u>Clear</u> Slightly Turbid Turbid Opaque Water Color: <u>Tannic</u> ther Conditions: <u>NE</u> In Out	onar Grab: Number of Jars Filled w	-			
p: <u>28.0</u> C Dissolved Oxygen: <u>NE</u> mg/L pH: <u>NE</u> S.U. ductivity: <u>20</u> Micromhos/cm Salinity: <u>0.0</u> ppt er Odors: Normal Sewage Petroleum Chemical None Other: er Surface Oils: Slick Sheen <u>None</u> idity: <u>Clear</u> Slightly Turbid Turbid Opaque Water Color: <u>Tannic</u> ther Conditions: <u>NE</u> In Out	diment Description: NE		······································		-
p: <u>28.0</u> C Dissolved Oxygen: <u>NE</u> mg/L pH: <u>NE</u> S.U. ductivity: <u>20</u> Micromhos/cm Salinity: <u>0.0</u> ppt er Odors: Normal Sewage Petroleum Chemical None Other: er Surface Oils: Slick Sheen <u>None</u> idity: <u>Clear</u> Slightly Turbid Turbid Opaque Water Color: <u>Tannic</u> ther Conditions: <u>NE</u> In Out	ator				
ductivity: <u>20</u> Micromhos/cm Salinity: <u>0.0</u> ppt er Odors: Normal Sewage Petroleum Chemical None Other: er Surface Oils: Slick Sheen <u>None</u> idity: Clear Slightly Turbid Turbid Opaque Water Color: <u>Tannic</u> ther Conditions: <u>NE</u> In Out	$\frac{\text{ater}}{2}$		AIF	ALE ALE	0.11
er Odors: Normal Sewage Petroleum Chemical None Other: er Surface Oils: Slick Sheen None idity: Clear Slightly Turbid Turbid Opaque Water Color: Tannic ther Conditions: NE Tide: In Out					8.0.
er Surface Oils: Slick Sheen None idity: Clear Slightly Turbid Turbid Opaque Water Color: <u>TanniC</u> ther Conditions: <u>NE</u> Tide: In Out					
idity: Clear Slightly Turbid Turbid Opaque Water Color: TaniC ther Conditions: NE Tide: In Out				• Other:	
ther Conditions: NE Tide: In Out				Water Color	Tannic
				-	
				-	

.

AMPLING EQUIPMENT: Seine (IIINe) Ponar Kemmerer Sediment Corer Spoon Other:	1	6 IN AL-Fish	Date: 8	129/92	Time:	-
AMPLING EQUIPMENT: Seine GILTE Ponar Kemmerer Sediment Corer Spoon Other:	•					
arian Zone/Instream Features         adominant Surrounding Land Use:         Forest         industrial         Other:         petation Type:         NE         industrial         Other:         mean Type:         Odd Water         Warm Weter         Velocity:         Nerr         Chamelized:         Yees         Non         Other:         ment Odors:         Non         Other:         Mercomhos/cm         Salinity:         ME         C         Dissolved Oxygen:         ME         Pote:         Stick <t< th=""><th></th><th></th><th></th><th>Sediment Corer</th><th>Spoon Other:</th><th>·</th></t<>				Sediment Corer	Spoon Other:	·
sarian Zone/Instream Features         odominant Surrounding Land Use:         setation Type:         ME         imated Stream Width:       ME         mated Stream Width:       ME         mean Type:       Cold Water         Warm Water       Velocity:         Velocity:       NE         channelized:       Yes         nopy Cover:       Open         Partly Open       Partly Shaded         Shaded       iment/Substrate:         iment/Substrate:       iment Olars         iment Olars       Absent       Slight         Moderate       Profuse         ar Grab:       Number of Jars Filled with Sediments         Replicate of Jars Filled with Sediments       Replicate: #1:         ment Description:       ME         mater       Micromhos/cm         Selinity:       ME         mater       None         Other:       moder         are:       None	•	$\smile$			•	
sarian Zone/Instream Features         odominant Surrounding Land Use:         setation Type:         ME         imated Stream Width:       ME         mated Stream Width:       ME         mean Type:       Cold Water         Warm Water       Velocity:         Velocity:       NE         channelized:       Yes         nopy Cover:       Open         Partly Open       Partly Shaded         Shaded       iment/Substrate:         iment/Substrate:       iment Olars         iment Olars       Absent       Slight         Moderate       Profuse         ar Grab:       Number of Jars Filled with Sediments         Replicate of Jars Filled with Sediments       Replicate: #1:         ment Description:       ME         mater       Micromhos/cm         Selinity:       ME         mater       None         Other:       moder         are:       None						
sarian Zone/Instream Features         odominant Surrounding Land Use:         setation Type:         ME         imated Stream Width:       ME         mated Stream Width:       ME         mean Type:       Cold Water         Warm Water       Velocity:         Velocity:       NE         channelized:       Yes         nopy Cover:       Open         Partly Open       Partly Shaded         Shaded       iment/Substrate:         iment/Substrate:       iment Olars         iment Olars       Absent       Slight         Moderate       Profuse         ar Grab:       Number of Jars Filled with Sediments         Replicate of Jars Filled with Sediments       Replicate: #1:         ment Description:       ME         mater       Micromhos/cm         Selinity:       ME         mater       None         Other:       moder         are:       None						
arian Zone/Instream Features         dominant Surrounding Land Use:         petation Type:         ME         imated Stream Width:       ME         mated Stream Width:       ME         mean Type:       Cold Water         Warm Water       Velocity:         Velocity:       NE         channelized:       Yes         nopy Cover:       Open         Partly Open       Partly Shaded         Shaded       iment/Substrate:         iment/Substrate:       iment Olis:         Absent       Slight         Moderate       Profuse         ar Grab:       Number of Jars Filled with Sediments         Replicate:       #1:         p:			ſ			
arian Zone/Instream Features         dominant Surrounding Land Use:         petation Type:         ME         imated Stream Width:       ME         mated Stream Width:       ME         mean Type:       Cold Water         Warm Water       Velocity:         Velocity:       NE         channelized:       Yes         nopy Cover:       Open         Partly Open       Partly Shaded         Shaded       iment/Substrate:         iment/Substrate:       iment Olis:         Absent       Slight         Moderate       Profuse         ar Grab:       Number of Jars Filled with Sediments         Replicate:       #1:         p:						
arian Zone/Instream Features         dominant Surrounding Land Use:         petation Type:         ME         imated Stream Width:       ME         mated Stream Width:       ME         mean Type:       Cold Water         Warm Water       Velocity:         Velocity:       NE         channelized:       Yes         nopy Cover:       Open         Partly Open       Partly Shaded         Shaded       Shaded         iment/Substrate:       iment Olar:         iment Olar:       Absent         Slight       Moderate         Profuse       ar Grab:         ar Grab:       Number of Jars Filled with Sodiments         Replicate #1:       Replicate #2:         ment Description:       ME         gr						
arian Zone/Instream Features         dominant Surrounding Land Use:         petation Type:         ME         imated Stream Width:       ME         mated Stream Width:       ME         mean Type:       Cold Water         Warm Water       Velocity:         Velocity:       NE         channelized:       Yes         nopy Cover:       Open         Partly Open       Partly Shaded         Shaded       Shaded         iment/Substrate:       iment Olar:         iment Olar:       Absent         Slight       Moderate         Profuse       ar Grab:         ar Grab:       Number of Jars Filled with Sodiments         Replicate #1:       Replicate #2:         ment Description:       ME         gr						
arian Zone/Instream Features         dominant Surrounding Land Use:         petation Type:         ME         imated Stream Width:       ME         mated Stream Width:       ME         mean Type:       Cold Water         Warm Water       Velocity:         Velocity:       NE         channelized:       Yes         nopy Cover:       Open         Partly Open       Partly Shaded         Shaded       Shaded         iment/Substrate:       iment Olar:         iment Olar:       Absent         Slight       Moderate         Profuse       ar Grab:         ar Grab:       Number of Jars Filled with Sodiments         Replicate #1:       Replicate #2:         ment Description:       ME         gr	•					
arian Zone/Instream Features         dominant Surrounding Land Use:         petation Type:         ME         imated Stream Width:       ME         mated Stream Width:       ME         mean Type:       Cold Water         Warm Water       Velocity:         Velocity:       NE         channelized:       Yes         nopy Cover:       Open         Partly Open       Partly Shaded         Shaded       Shaded         iment/Substrate:       iment Olar:         iment Olar:       Absent         Slight       Moderate         Profuse       ar Grab:         ar Grab:       Number of Jars Filled with Sodiments         Replicate #1:       Replicate #2:         ment Description:       ME         gr			T AV	ALLABL	E	
dominant Surrounding Land Use:       Forest       Industrial       Other:						
dominant Surrounding Land Use:       Forest       Industrial       Other:						
dominant Surrounding Land Use:       Forest       Industrial       Other:					v	
dominant Surrounding Land Use:       Forest       Industrial       Other:						
dominant Surrounding Land Use:       Forest       Industrial       Other:			•			
dominant Surrounding Land Use:       Forest       Industrial       Other:						
dominant Surrounding Land Use:       Forest       Industrial       Other:	, [*]					
dominant Surrounding Land Use:       Forest       Industrial       Other:						
adominant Surrounding Land Use:       Forest       Industrial       Other:			<u></u>		·	
adominant Surrounding Land Use:       Forest       Industrial       Other:	•		<u></u>			
getation Type:	arian Zonelinetr	nam Features	<u> </u>			
eam Type: Cold Water Warm Water Velocity: <u>NE</u> Channelized: Yes No_ hopy Cover: Open Partly Open Partly Shaded Shaded iment/Substrate: iment Odors: Normal Sewage Petroleum Chemical Anaerobic None Other: iment Oils: Absent Slight Moderate Profuse ar Grab: Number of Jars Filled with Sediments Replicate: #1: Replicate #2: Replicate #3: iment Description: <u>NE</u> er: p.: KE C Dissolved Oxygen: KE mg/L pH: KE S.U. ductivity: ME Micromhos/cm Salinity: Ppt er Odors: Normal Sewage Petroleum Chemical None Other: er: Surface Oils: Slick Sheen None		· · · · · · · · · · · · · · · · · · ·	t) Industris	l Other:		
hopy Cover:       Open       Partly Open       Partly Shaded       Shaded         iment/Substrate:       iment Odors:       Normal       Sewage       Petroleum       Chemical       Anserobic       None       Other:	dominant Surro	nding Land Use: Fores	t) Industris	l Other:		
iment/Substrate:         iment Odors: Normal Sewage Petroleum Chemical Anaerobic None Other:         iment Oils:       Absent         Slight       Moderate         ar Grab: Number of Jars Filled with Sediments       Replicate: #1:         iment Description:       NE         er:	dominant Surro zetation Type:	nding Land Use: Fores NE			Run: <u>NE</u> m	Pool: <u>NE</u> n
iment Odors: Normal Sewage Petroleum Chemical Anaerobic None Other:	dominant Surro getation Type: imated Stream V	nding Land Use: Fores NE idth: <u>NE m Est. Stream D</u>	epth: <u>NE</u> m	Riffle: <u>NE</u> m		
iment Odors: Normal Sewage Petroleum Chemical Anaerobic None Other:	dominant Surror retation Type: imated Stream V cam Type: Col	nding Land Use: Fores NE idth: <u>NE m</u> Est. Stream D d Water Warm Water	epth: <u>NE</u> m Velocity:	Riffle: <u>NE</u> m NE Cl	hannelized: Ye	3 No
iment Oils: Absent Slight Moderate Profuse ar Grab: Number of Jars Filled with Sediments Replicate: #1: Replicate #2: Replicate #3: ment Description:	dominant Surror retation Type: imated Stream V eam Type: Col lopy Cover:	nding Land Use: Fores <u>NE</u> idth: <u>NE</u> m Est. Stream D d Water Warm Water Open Partly Op	epth: <u>NE</u> m Velocity:	Riffle: <u>NE</u> m NE Cl	hannelized: Ye	3 No
ar Grab: Number of Jars Filled with Sediments Replicate: #1: Replicate #2: Replicate #3: ment Description:	dominant Surror getation Type: imated Stream V eam Type: Col lopy Cover: iment/Substrate	nding Land Use: Fores <u>NE</u> idth: <u>NE</u> m Est. Stream D d Water Warm Water Open Partly Op	epth: <u>NE</u> m Velocity: en	Riffle: <u>NE</u> m <u>NE</u> CI Partly Shaded	hannelized: Yea Shao	8 No led
er: p.: <u>NE</u> C Dissolved Oxygen: <u>NE</u> mg/L pH: <u>NE</u> S.U. ductivity: <u>NE</u> Micromhos/cm Salinity: <u>NE</u> ppt er Odors: Normal Sewage Petroleum Chemical None Other: er Surface Oils: Slick Sheen None	dominant Surror retation Type: imated Stream V eam Type: Col topy Cover: iment/Substrate iment Odors: 1	Inding Land Use: Fores NE Yet Yet Yet Yet Yet Yet Yet Yet	epth: <u>NE</u> m Velocity: en um Chemical	Riffle: <u>NE</u> m NE C Partly Shaded Anaerobic	hannelized: Yes Shao None Other	8 No led
p.: <u>NE</u> C Dissolved Oxygen: <u>NE</u> mg/L pH: <u>NE</u> S.U. ductivity: <u>NE</u> Micromhos/cm Salinity: <u>NE</u> ppt er Odors: Normal Sewage Petroleum Chemical None Other: er Surface Oils: Slick Sheen None	dominant Surror getation Type: imated Stream V eam Type: Col topy Cover: iment/Substrate iment Odors: 1 iment Oils:	Inding Land Use: Fores NE idth: <u>NE</u> m Est. Stream D d Water Warm Water Open Partly Op Normal Sewage Petrole Absent	epth: <u>NE</u> m Velocity: en um Chemical Slight	Riffle: <u>NE</u> m <u>NE</u> C Partly Shaded Anaerobic Moderate	hannelized: Yes Shac None Other Pr	s No led : ofuse
p.: <u>NE</u> C Dissolved Oxygen: <u>NE</u> mg/L pH: <u>NE</u> S.U. ductivity: <u>NE</u> Micromhos/cm Salinity: <u>NE</u> ppt er Odors: Normal Sewage Petroleum Chemical None Other: er Surface Oils: Slick Sheen None	dominant Surror retation Type: imated Stream V eam Type: Col topy Cover: iment/Substrate iment Odors: I iment Odors: I iment Oils: ar Grab: Numbe	nding Land Use: Fores <u>NE</u> (idth: <u>NE</u> m Est. Stream D d Water Warm Water Open Partly Op Iormal Sewage Petrole Absent of Jars Filled with Sediments	epth: <u>NE</u> _m Velocity: en um Chemical Slight Replicate: #1:	Riffle: <u>NE</u> m <u>NE</u> C Partly Shaded Anaerobic Moderate Replicate	hannelized: Yes Shac None Other Pr	s No led : ofuse
Auctivity: <u>NE</u> Micromhos/cm Salinity: <u>NE</u> ppt er Odors: Normal Sewage Petroleum Chemical None Other: er Surface Oils: Slick Sheen None	dominant Surror retation Type: imated Stream V eam Type: Col topy Cover: iment/Substrate iment Odors: I iment Odors: I iment Oils: ar Grab: Numbe iment Descriptio	nding Land Use: Fores <u>NE</u> (idth: <u>NE</u> m Est. Stream D d Water Warm Water Open Partly Op Iormal Sewage Petrole Absent of Jars Filled with Sediments	epth: <u>NE</u> _m Velocity: en um Chemical Slight Replicate: #1:	Riffle: <u>NE</u> m <u>NE</u> C Partly Shaded Anaerobic Moderate Replicate	hannelized: Yes Shac None Other Pr	s No led : ofuse
er Odors: Normal Sewage Petroleum Chemical None Other:	dominant Surror retation Type: imated Stream V eam Type: Col topy Cover: iment/Substrate iment Odors: I iment Odors: I iment Oils: ar Grab: Numbe ment Descriptio er:	Inding Land Use: Fores NE Idth: <u>NE</u> m Est. Stream D d Water Warm Water Open Partly Op Iormal Sewage Petrole: Absent of Jars Filled with Sediments a: <u>NE</u>	Pepth: <u>NE</u> m Velocity: en um Chemical Slight Replicate: #1:	Riffle: <u>NE</u> m <u>NE</u> C Partly Shaded Anaerobic <u>Moderate</u> Replicate	hannelized: Yes Shac None Other Pr e #2: Repli	s No led : ofuse :cate #3:
er Surface Oils: Slick Sheen None	dominant Surror retation Type: imated Stream V eam Type: Col topy Cover: iment/Substrate iment Odors: I iment Odors: I iment Oils: ar Grab: Numbe iment Descriptio er: p.:	Inding Land Use: Fores NE idth: <u>NE</u> m Est. Stream D d Water Warm Water Open Partly Op Normal Sewage Petrole Absent of Jars Filled with Sediments Absent C Dissolved Oxyge	epth: <u>NE</u> m Velocity: en um Chemical Slight Replicate: #1: en:	Riffle: <u>NE</u> m <u>NE</u> C Partly Shaded Anaerobic Moderate Replicate	hannelized: Yes Shac None Other Pr e #2: Repl: H:	s No led : ofuse :cate #3:
	dominant Surror retation Type: imated Stream V eam Type: Col topy Cover: iment/Substrate iment Odors: I iment Odors: I iment Oils: ar Grab: Numbe iment Descriptio er: p.:	Inding Land Use: Fores          NE       Fores         Yet       Marm Water         Id Water       Warm Water         Open       Partly Op         Iormal       Sewage       Petrole         Absent       Of Jars Filled with Sediments       Sewage          DE	epth: <u>NE</u> m Velocity: en um Chemical Slight Replicate: #1: en: <u></u> n Salinity:	Riffle: <u>NE</u> m <u>NE</u> Cl Partly Shaded Anaerobic Moderate Replicato mg/L p	hannelized: Yes Shac None Other Pr e #2: Repl: H:RE	s No led ofuse cate #3: S.U.
	dominant Surror zetation Type: imated Stream V eam Type: Col topy Cover: iment/Substrate iment Odors: I iment Odors: I iment Descriptio er: p.:NE ductivity: er Odors: N	Inding Land Use: Fores NE idth: NE m Est. Stream D d Water Warm Water Open Partly Op formal Sewage Petrole: Absent of Jars Filled with Sediments a: NE C Dissolved Oxyge NE Micromhos/cr ormal Sewage Petrole	Pepth: <u>NE</u> m Velocity: en um Chemical Slight Replicate: #1: en: <u>NE</u> n Salinity: eum Chemica	Riffle: <u>NE</u> m <u>NE</u> Cl Partly Shaded Anaerobic Moderate Replicato mg/L p	hannelized: Yes Shac None Other Pr e #2: Repl: H:RE	s No led ofuse cate #3: S.U.

•

•

Station Number:	6-WCC	>6A-Fish	Date: 9/	9/92	т	ime: <u>13:0</u>	10
Sample Type:	Fish	Benthic Macroi	1	Sedim	ent	Surface Wa	ater
SAMPLING EQU	IPMENT: Seine	Gill Net Ponar	Kemmerer	Sediment Corer	Spoon	ther: Electr	ashock
			12				
							·
							× 1
•			,	1 QL ha	AN		
		SEE	$6 - \omega$	C06A-			
			• .				
	<b>µ</b>		<del></del>				
•	·		·········				
		<u> </u>					
	•	Format	Inductric	1 Other			
Predominant Surro	ounding Land Use	: Forest	Industrie	l Other:			
Predominant Surro Vegetation Type: _	ounding Land Use NE				<b></b>	E m Pool:	 NE m
Predominant Surro Vegetation Type: _ Estimated Stream V	ounding Land Use <u>NE</u> Width: <u>NE</u> m	Est. Stream Dept	h: <u>NE</u> m	Riffle: <u>NE</u> m	Run:		
Predominant Surro Vegetation Type: _ Sstimated Stream V Stream Type: Co	ounding Land Use NE Width: <u>NE</u> m old Water (War	Est. Stream Deptl	h: <u>NE</u> m Velocity: <u> </u>	Riffle: <u>NE</u> m E C	Run: <u> </u>		
Predominant Surro Vegetation Type: _ Estimated Stream V Stream Type: Co Canopy Cover:	Width: <u>NE</u> Midth: <u>NE</u> Midth: <u>NE</u> Mar Open	Est. Stream Dept	h: <u>NE</u> m Velocity: <u> </u>	Riffle: <u>NE</u> m E C	Run: <u> </u>	Yes N	
Predominant Surro Vegetation Type: _ Estimated Stream V Stream Type: Co Canopy Cover: ediment/Substrate	ounding Land Use NE Width: <u>NE</u> m old Water (War Open e:	Est. Stream Deptl rm Water Partly Open	h: <u>NE</u> m Velocity: <u>N</u>	Riffle: <u>NE</u> m <u>E</u> C Partly Shaded	Run: <u>N</u>	Yes N Shaded	lo
Predominant Surro Vegetation Type: _ Estimated Stream V Stream Type: Co Canopy Cover: Ediment/Substrate ediment Odors:	Width: <u>NE</u> Width: <u>NE</u> old Water War Open <u>e:</u> Normal Sewa	Est. Stream Deptl m Water Partly Open ge Petroleum	h: <u>AE</u> m Velocity: <u>A</u> Chemical	Riffle: <u>NE</u> m <u>E</u> C Partly Shaded Anaerobic	Run: <u>N</u>	Yes N Shaded Other:	lo
Stream Type: Co Canopy Cover: <u>ediment/Substrate</u> ediment Odors: ediment Oils:	Dunding Land Use NE Width: <u>NE</u> m Old Water War Open e: Normal Sewa Absent	Est. Stream Deptl rm Water Partly Open ge Petroleum Slig	h: <u>NE</u> m Velocity: <u>A</u> Chemical	Riffle: <u>NE</u> m <u>E</u> C Partly Shaded Anaerobic Moderate	Run: <u>N</u>	Yes N Shaded Other: Profuse	lo
Predominant Surro Vegetation Type: Estimated Stream V Stream Type: Co Canopy Cover: Canopy Cov	Width: <u>NE</u> Width: <u>NE</u> Midth: <u>NE</u> Mormal Sewa Absent er of Jars Filled w	Est. Stream Dept m Water Partly Open ge Petroleum Slig rith Sediments	h: <u>AE</u> m Velocity: <u>A</u> Chemical ght Replicate: #1:	Riffle: <u>NE</u> m <u>NE</u> C Partly Shaded Anaerobic Moderate Replicat	Run: <u>N</u>	Yes N Shaded Other: Profuse	lo
Predominant Surro Vegetation Type: Estimated Stream V Stream Type: Co Canopy Cover: ediment/Substrate ediment Odors: ediment Oils: onar Grab: Numb	Width: <u>NE</u> Width: <u>NE</u> Midth: <u>NE</u> Mormal Sewa Absent er of Jars Filled w	Est. Stream Deptl rm Water Partly Open ge Petroleum Slig	h: <u>AE</u> m Velocity: <u>A</u> Chemical ght Replicate: #1:	Riffle: <u>NE</u> m <u>NE</u> C Partly Shaded Anaerobic Moderate Replicat	Run: <u>N</u>	Yes N Shaded Other: Profuse	lo
Predominant Surro Vegetation Type: Estimated Stream V Stream Type: Co Canopy Cover: ediment/Substrate ediment Odors: ediment Oils: Vonar Grab: Numb ediment Description	Width: <u>NE</u> Width: <u>NE</u> Midth: <u>NE</u> Mormal Sewa Absent er of Jars Filled w	Est. Stream Dept m Water Partly Open ge Petroleum Slig rith Sediments	h: <u>AE</u> m Velocity: <u>A</u> Chemical ght Replicate: #1:	Riffle: <u>NE</u> m <u>NE</u> C Partly Shaded Anaerobic Moderate Replicat	Run: <u>N</u>	Yes N Shaded Other: Profuse	lo
Predominant Surro Vegetation Type: Estimated Stream V Stream Type: Co Canopy Cover: dediment/Substrate ediment Odors: ediment Oils: onar Grab: Numb ediment Description Vater:	width: <u>AE</u> Width: <u>AE</u> old Water War Open e: Normal Sewa, Absent er of Jars Filled w on: <u>NE</u>	Est. Stream Dept m Water Partly Open ge Petroleum Slig rith Sediments	h: <u>NE</u> m Velocity: <u>N</u> Chemical ght Replicate: #1:	Riffle: <u>NE</u> m <u>NE</u> C Partly Shaded Anaerobic Moderate Replicat	Run: hannelized: None e #2:	YesN Shaded Other: Profuse Replicate #3:	Γο
Predominant Surro Vegetation Type: Estimated Stream V Stream Type: Co Canopy Cover: ediment/Substrate ediment Odors: ediment Oils: onar Grab: Numb ediment Description Vater: emp.:NE	Width: <u>ME</u> Width: <u>ME</u> Midth: <u>ME</u> Mormal Sewa Absent er of Jars Filled won: <u>NE</u>	Est. Stream Dept m Water Partly Open ge Petroleum Slig rith Sediments	h: <u>NE</u> m Velocity: <u>A</u> Chemical ght Replicate: #1:	Riffle: <u>NE</u> m <u>E</u> C Partly Shaded Anaerobic Moderate Replicat	Run: hannelized: None we #2: pH:	YesN Shaded Other: Profuse Replicate #3:	Γο
Predominant Surro Vegetation Type: Estimated Stream V Stream Type: Co Canopy Cover: ediment/Substrate ediment Odors: ediment Oils: onar Grab: Numb ediment Description Vater: emp.:NE	Width: <u>ME</u> Width: <u>ME</u> Midth: <u>ME</u> Mormal Sewa Absent er of Jars Filled w on: <u>NE</u> <u>NE</u>	Est. Stream Dept m Water Partly Open ge Petroleum Slig rith Sediments	h: <u>NE</u> m Velocity: <u>N</u> Chemical ght Replicate: #1: <u>NE</u> Salinity:	Riffle: <u>NE</u> m <u>NE</u> C Partly Shaded Anaerobic Moderate Replicat	Run:	YesN Shaded Other: Profuse Replicate #3:	Γο  U.
Predominant Surro Vegetation Type: Estimated Stream V Stream Type: Co Canopy Cover: ediment/Substrate ediment Odors: ediment Oils: onar Grab: Numb ediment Description Vater: emp.:NE	width: <u>ME</u> Width: <u>ME</u> width: <u>ME</u> old Water War Open e: Normal Sewa Absent er of Jars Filled w on: <u>NE</u> <u>L</u> <u>L</u> Normal Sewa	Est. Stream Dept mWater Partly Open ge Petroleum Slig rith Sediments Dissolved Oxygen: _Micromhos/cm age Petroleum	h: <u>AIE</u> m Velocity: <u>A</u> Chemical ght Replicate: #1: <u>NE</u> Salinity:	Riffle: <u>NE</u> m <u>NE</u> C Partly Shaded Anaerobic Moderate Replicat mg/L I <u>NE</u>	Run:	Yes _ N Shaded Other: Profuse Replicate #3: VE	Γο  U.

-

	WC09-Fi		Date:	Sedin	ient	-	NA urface Water
Sample Type: Fis		enthic Macroin					
SAMPLING EQUIPMEN	II. Seine On	The Tonal	Rennerer	Dealment Our	- optim		
f							
					•		
· []							
	<	DEE L		39- SI	ISD		
	_	) EE U			.,		
	- · ·						
			•				
· · · · ·		/ · · · · · · · · · · · · · · · · ·					
iparian Zone/Instream Fea	itures						
		Forest	Industriel	Other:			
edominant Surrounding L		Forest	Industrial	Other:			
edominant Surrounding L egetation Type: <u>NE</u>	and Use:				Run:	_m P	2001: <u>NE</u> 11
edominant Surrounding L getation Type: <u>NE</u> imated Stream Width: <u> </u>	and Use: NE_m_Est. St	ream Depth:	NE_m 1				
edominant Surrounding L egetation Type: <u>NE</u> timated Stream Width: <u>I</u> ream Type: Cold Water	and Use: NE_m_Est. St	ream Depth: r Vel	<u>NE</u> m I locity:	ище: <u>NE</u> т	annelized:		
redominant Surrounding L egetation Type: <u>NE</u> stimated Stream Width: <u>/</u> ream Type: Cold Water nopy Cover: Open	and Use: NE_m_Est. St Warm Wate	ream Depth: r Vel	<u>NE</u> m I locity:	Riffle: <u>NE</u> m Ch	annelized:	Yes _	
diment/Substrate:	and Use: <u>NE</u> m Est. St Warm Wate Pa	ream Depth: r Vel rtly Open	<u>NE</u> m I locity: F	Riffle: <b>NE</b> m Ch Partly Shaded	annelized:	Yes Shaded	<u>No </u>
edominant Surrounding L getation Type: NE timated Stream Width: <u>I</u> eam Type: Cold Water hopy Cover: Open <u>iment/Substrate</u> : iment Odors: Normal	And Use: <u>NE</u> m Est. St Warm Wate Pa: Sewage I	ream Depth: r Vel rtly Open	<u>NE</u> m 1 locity: F Chemical	Riffle: <b>NE</b> m Ch Partly Shaded Anaerobic	annelized: None	Yes Shaded Other:	No
edominant Surrounding L getation Type: NE timated Stream Width: <u>M</u> eam Type: Cold Water nopy Cover: Open <u>liment/Substrate</u> : iment Odors: Normal iment Oils: Aba	And Use: <u>NE</u> m Est. St Warm Wate Par Sewage I sent	ream Depth: rtly Open Petroleum Slight	<u>NE</u> m 1 locity: F Chemical	Riffle: <b>NE</b> m Ch Partly Shaded Anaerobic Moderate	annelized: None	Yes Shaded Other: Profu:	No se
edominant Surrounding L getation Type: NE imated Stream Width: <u>1</u> eam Type: Cold Water hopy Cover: Open <u>iment Substrate</u> : iment Odors: Normal iment Oils: Abs ar Grab: Number of Jars J	And Use: NE m Est. St Warm Wate Par Sewage I sent Filled with Sedin	ream Depth: r Vel rtly Open Petroleum Slight ments Rep	<u>NE m</u> 1 locity: F Chemical licate: #1:	Riffle: <u>NE</u> m Ch Partly Shaded Anserobic Moderate Replicate	annelized: None	Yes Shaded Other: Profu:	No se
redominant Surrounding L egetation Type: <u>NE</u> timated Stream Width: <u>I</u> ream Type: Cold Water nopy Cover: Open <u>diment/Substrate</u> : liment Odors: Normal liment Oils: Aba nar Grab: Number of Jars J	And Use: NE m Est. St Warm Wate Par Sewage I sent Filled with Sedin	ream Depth: r Vel rtly Open Petroleum Slight ments Rep	<u>NE m</u> 1 locity: F Chemical licate: #1:	Riffle: NE m Ch Partly Shaded Anserobic Moderate Replicate	annelized: None	Yes Shaded Other: Profu:	No se
edominant Surrounding L getation Type: NE timated Stream Width: <u>M</u> ream Type: Cold Water nopy Cover: Open <u>diment/Substrate</u> : liment Odors: Normal diment Oils: Aba ar Grab: Number of Jars J iment Description: <u>NE</u>	And Use: NE m Est. St Warm Wate Par Sewage I sent Filled with Sedin	ream Depth: r Vel rtly Open Petroleum Slight ments Rep	<u>NE m</u> 1 locity: F Chemical licate: #1:	Riffle: NE m Ch Partly Shaded Anserobic Moderate Replicate	annelized: None	Yes Shaded Other: Profu:	No se
edominant Surrounding L getation Type: NE imated Stream Width: <u>I</u> eam Type: Cold Water hopy Cover: Open <u>iment/Substrate</u> : iment Odors: Normal iment Odors: Normal iment Oils: Aba ar Grab: Number of Jars J ment Description: <u>NE</u>	And Use: NE m Est. St Warm Wate Pa: Sewage I sent Filled with Sedin	ream Depth: rtly Open Petroleum Slight ments Repl	<u>NE m</u> locity: F Chemical licate: #1:	Riffle: <u>NE</u> m Ch Partly Shaded Anaerobic Moderate Replicate	annelized: None ( #2:	Yes Shaded Other: Profus Replicato	No se e #3:
edominant Surrounding L getation Type: NE timated Stream Width: <u>1</u> eam Type: Cold Water nopy Cover: Open <u>liment/Substrate</u> : iment Odors: Normal iment Oils: Abs ar Grab: Number of Jars J iment Description: <u>NE</u> er: p.: <u>NE</u>	And Use: <u>NE</u> m Est. St Warm Wate Pa: Sewage I Sent Filled with Sedin C Dissolved	ream Depth: rtly Open Petroleum Slight ments Repl	<u>NE</u> m 1 locity: F Chemical licate: #1:	Riffle: <b>NE</b> m Ch Partly Shaded Anaerobic Moderate Replicate	annelized: None ( #2:	Yes Shaded Other: Profus Replicato	No se e #3:
redominant Surrounding L egetation Type: <u>NE</u> timated Stream Width: <u>I</u> ream Type: Cold Water nopy Cover: Open <u>diment/Substrate</u> : liment Odors: Normal	And Use: ME m Est. St Warm Wate Pa: Sewage H sent Filled with Sedin C Dissolved Microm	ream Depth:	<u>NE m</u> 1 locity: F Chemical licate: #1: <u>NE</u> inity:	Riffle: <u>NE</u> m Ch Partly Shaded Anaerobic Moderate Replicate mg/L pH	annelized: None ( #2: :A	Yes Shaded Other: Profus Replicato	No se e #3: S.U.
edominant Surrounding L getation Type: NE timated Stream Width: <u>I</u> ream Type: Cold Water nopy Cover: Open <u>liment/Substrate</u> : iment Odors: Normal iment Oils: Abe ar Grab: Number of Jars I iment Description: <u>NE</u> <u>er</u> : p.: <u>NE</u> ductivity: <u>NE</u>	And Use: ME m Est. St Warm Wate Pa: Sewage H sent Filled with Sedin C Dissolved Microm	ream Depth: rtly Open Petroleum Slight ments Repl Oxygen: nhos/cm Sali Petroleum	<u>NE m</u> locity: F Chemical licate: #1: <u>NE</u> inity:A Chemical	Riffle: <u>NE</u> m Ch Partly Shaded Anaerobic Moderate Replicate mg/L pH	annelized: None ( #2: :A	Yes Shaded Other: Profus Replicato	No se e #3:
edominant Surrounding L getation Type: NE timated Stream Width: <u>1</u> eam Type: Cold Water nopy Cover: Open <u>liment/Substrate</u> : iment Odors: Normal iment Oils: Abs ar Grab: Number of Jars J iment Description: <u>NE</u> <u>er:</u> p.: <u>NE</u> ductivity: <u>NE</u> ductivity: <u>NE</u> ductivity: <u>NE</u>	And Use: NE m Est. St Warm Wate Pa: Sewage H sent Filled with Sedin C Dissolved Microm Sewage H Sewage H	ream Depth:	<u>NE</u> m I locity: F Chemical licate: #1: <u>NE</u> inity: Chemical	Riffle: NE m Ch Partly Shaded Anaerobic Moderate Replicate mg/L pH	annelized: None ( #2: ppt Other:	Yes Shaded Other: Profus Replicato	No se e #3: S.U.
edominant Surrounding L getation Type: NE imated Stream Width: eam Type: Cold Water hopy Cover: Open iment/Substrate: iment Odors: Normal iment Oils: Abe ar Grab: Number of Jars I ment Description: er: p.:NE uctivity:NE ar Odors: Normal	And Use: NE m Est. St Warm Wate Par Sewage H sent Filled with Sedin C Dissolved Microm Sewage H Sewage H Shee Slightly Turbid	ream Depth:	<u>NE</u> m I locity: F Chemical licate: #1: <u>NE</u> inity: Chemical one	Riffle: NE m Ch Partly Shaded Anaerobic Moderate Replicate IE None	annelized: None ( #2: ppt Other:	Yes Shaded Other: Profus Replicato	No se e #3: S.U.

÷.					
					•
	SAMPLING	STATION CHA	RACTERIZATION	NDATA SHEET	
Netion Mounton	6-WLIAFi	sh	Date: 9/9/9	2	Time: 08:30
Station Number: Sample Type:		enthic Macroinve	1 1	Sediment	Surface Water
	JIPMENT: Seine (Gil	~			Other:
				-	
			• •		
•			6-WCII	Nº QAL	
		See	6-WCII	H - D/V	
			• .		
		•			
				-	
		,			<u></u>
parian Zone/Ins	tream Features				
edominant Surr	ounding Land Use:	Forest	Industrial	Other:	
getation Type:					<u> </u>
	Width Alt m Fat				E_m Pool: <u>NE_</u> m
		ater Velo	city: NE	Channelized	Yes No
еат Туре: С	old Water Warm Wa			-	
eam Type: C	old Water Warm Wa		Partly S	-	Shaded
eam Type: C	old Water Warm Wa Open ]			-	
eam Type: C nopy Cover: iment/Substrat	old Water Warm Wa Open ]	Partly Open	Partly S	haded	Shaded
eam Type: C hopy Cover: <u>iment/Substrat</u> iment Odors:	old Water Warm Wa Open ] <u>e</u> :	Partly Open	Partly S Chemical Anaer	haded	Shaded
eam Type: C nopy Cover: <u>liment/Substrat</u> iment Odors: iment Oils: iar Grab: Numl	old Water Warm Wa Open J <u>e</u> : Normal Sewage Absent per of Jars Filled with Se	Partly Open Petroleum ( Slight	Partly S Chemical Anaer M	haded obic None oderate	Shaded Other:
eam Type: C hopy Cover: <u>iment/Substrat</u> iment Odors: iment Oils: ar Grab: Numl	old Water Warm Wa Open J <u>e:</u> Normal Sewage Absent per of Jars Filled with Se	Partly Open Petroleum ( Slight ediments Repl	Partly S Chemical Anaer M	haded obic None oderate Replicate #2:	Shaded Other: Profuse
eam Type: C nopy Cover: <u>iment/Substrat</u> iment Odors: iment Oils: ar Grab: Numl iment Descript	old Water Warm Wa Open J <u>e:</u> Normal Sewage Absent per of Jars Filled with Se	Partly Open Petroleum ( Slight ediments Repl	Partly S Chemical Anaer M icate: #1: F	haded obic None oderate Replicate #2:	Shaded Other: Profuse
eam Type: C hopy Cover: <u>iment/Substrat</u> iment Odors: iment Oils: ar Grab: Numl iment Descript	old Water Warm Wa Open J e: Normal Sewage Absent Der of Jars Filled with Secon: <u>NE</u>	Partly Open Petroleum ( Slight ediments Repl	Partly S Chemical Anaer M icate: #1: F	haded obic None oderate Replicate #2:	Shaded Other: Profuse Replicate #3:
eam Type: C nopy Cover: <u>liment/Substrau</u> iment Odors: iment Oils: tar Grab: Numl iment Descript ter:	old Water Warm Wa Open J e: Normal Sewage Absent per of Jars Filled with Se on: <u>NE</u> <u>C</u> Dissol	Partly Open Petroleum ( Slight ediments Repl	Partly S Chemical Anaer M icate: #1: H	haded obic None oderate Replicate #2:	Shaded Other: Profuse Replicate #3:
eam Type: C nopy Cover: liment/Substrat liment Odors: liment Oils: lar Grab: Numl iment Descript: ter: ap.:	old Water Warm War Open J e: Normal Sewage Absent ber of Jars Filled with Se on: <u>NE</u> <u>C</u> Dissol	Partly Open Petroleum ( Slight ediments Repl ved Oxygen:	Partly S Chemical Anaer M icate: #1: H <u>NE</u> mg inity:	haded obic None oderate teplicate #2: z/L pH:ppt	Shaded Other: Profuse Replicate #3:
ream Type: C nopy Cover: <u>liment/Substrau</u> liment Odors: liment Oils: har Grab: Numl liment Descript <u>ter</u> : np.:	old Water Warm War Open J e: Normal Sewage Absent ber of Jars Filled with Se on: <u>NE</u> <u>C</u> Dissol <u>ME</u> Mict Normal Sewage	Partly Open Petroleum ( Slight ediments Repl ved Oxygen: romhos/cm Sali Petroleum	Partly S Chemical Anaer M icate: #1: H <u>NE</u> m inity: <u>NE</u>	haded obic None oderate teplicate #2: z/L pH:ppt	Shaded Other: Profuse Replicate #3: S.U.
ream Type: C nopy Cover: <u>liment/Substrat</u> liment Odors: liment Oils: har Grab: Numl liment Descript: <u>ter:</u> np.:	old Water Warm War Open J e: Normal Sewage Absent ber of Jars Filled with Secon: <u>NE</u> C Dissol <u>ME</u> Mice Normal Sewage Slick S Slightly Tu	Partly Open Petroleum O Slight ediments Repl ved Oxygen: romhos/cm Sali Petroleum heen Ka	Partly S Chemical Anaer M icate: #1: H ME minity: Chemical	haded obic None oderate teplicate #2: g/L pH: ppt one Other: _	Shaded         Other:
ream Type: C nopy Cover: <u>diment/Substrat</u> liment Odors: liment Oils: har Grab: Numi liment Descript: <u>ter</u> : np.:	old Water Warm War Open J e: Normal Sewage Absent ber of Jars Filled with Secon: <u>NE</u> C Dissol <u>ME</u> Mice Normal Sewage Slick S Slightly Tu	Partly Open Petroleum O Slight ediments Repl ved Oxygen: romhos/cm Sali Petroleum heen Ka	Partly S Chemical Anaer M icate: #1: H ME minity: Chemical	haded obic None oderate teplicate #2: g/L pH: ppt one Other: _	Shaded         Other:

$\sim$					
Station Number: PCI	-Fish	Date: 9	115/92	Time: <u>13:4</u> /	/ 
Sample Type: Fish	Benthic Macroi		Sediment	Surface Water	the second value of the second
SAMPLING EQUIPMENT:	Seine Gill Net Ponar	Kemmerer	Sediment Corer Spo	on Other: Electro	Sh
			. •		
	·				
	,		N AD F		
	NOT	F AVA	ILABLE		
	- , , , , , , , , , , , , , , , , , , ,				
	•				
•					
- 					
			0.1		
Predominant Surrounding La	nd Use: Forest	Industrial		100015 500 pis	
Predominant Surrounding La Vegetation Type: <u>Nationa</u>	nd Use: Forest	onifers, st	rubs, hard 1		
Predominant Surrounding Las Vegetation Type: <u>Nationa</u> Estimated Stream Width: <u>N</u>	nd Use: Forest L foiest area, Co Em Est. Stream Depth:	<u>NE</u> ™	Riffle: <u>NE</u> m Run	NE m Pool: NE	m
Predominant Surrounding Las Vegetation Type: <u>Nationa</u> Estimated Stream Width: <u>N</u> Stream Type: Cold Water	nd Use: Forest LI foiest area, Co Em Est. Stream Depth: Warm Water	NE_M Velocity:N	rubs, hard 1	NE m Pool: NE	m
Predominant Surrounding Law Vegetation Type: <u>Nahona</u> Estimated Stream Width: <u>N</u> Stream Type: Cold Water Canopy Cover: Open	nd Use: Forest L foiest area, Co Em Est. Stream Depth:	NE_M Velocity:N	Riffle: <u>NE</u> m Run E Channel	NE_m Pool:NE : ized: Yes No	m
Predominant Surrounding Las Vegetation Type: <u>Nationa</u> Estimated Stream Width: <u>N</u> Stream Type: Cold Water Canopy Cover: Open Sediment/Substrate:	nd Use: Forest LI foiest area, Co Em Est. Stream Depth: Warm Water Partly Open	Velocity: <u>N</u>	Riffle: <u>NE</u> m Run <u>E</u> Channel Partly Shaded	NE m Pool: NE ; ized: Yes No Shaded	m
Predominant Surrounding Las Vegetation Type: <u>Nationa</u> Estimated Stream Width: <u>N</u> Stream Type: Cold Water Canopy Cover: Open Sediment/Substrate: Sediment Odors: Normal	nd Use: Forest I fofest a fea, Co Em Est. Stream Depth: Warm Water Partly Open Sewage Petroleum	<i>NE</i> m <i>NE</i> m Velocity:N Chemical	Riffle: <u>NE</u> m Run: E Channel Partly Shaded Anserobic None	NE_m Pool:NE_ ized: YesNo Shaded Other:	m
Predominant Surrounding Las Vegetation Type: <u>Nationa</u> Estimated Stream Width: <u>N</u> Stream Type: Cold Water Canopy Cover: Open <u>Sediment/Substrate</u> : Sediment Odors: Normal Sediment Oils: Abse	nd Use: Forest LI foiest area, Co E m Est. Stream Depth: Warm Water Partly Open Sewage Petroleum ent Sligh	Lelocity:N Chemical	Riffle: <u>NE</u> m Run: <u>E</u> Channel Partly Shaded Anaerobic None Moderate	ME_m Pool: NE ized: Yes No Shaded Other: Profuse	m 
Predominant Surrounding Las Vegetation Type: <u>Nationa</u> Estimated Stream Width: <u>N</u> Stream Type: Cold Water Canopy Cover: Open Sediment/Substrate: Sediment Odors: Normal Sediment Oils: Abse Ponar Grab: Number of Jars F	nd Use: Forest I fofest area Co Em Est. Stream Depth: Warm Water Partly Open Sewage Petroleum ent Sligh Silled with Sediments R	Chemical t ceplicate: #1:	Riffle: <u>NE</u> m Run <u>E</u> Channel Partly Shaded Anaerobic None Moderate Replicate #2:	NE m Pool: NE ized: Yes No Shaded Other: Profuse Replicate #3:	m 
Predominant Surrounding Las Vegetation Type: <u>Nationa</u> Estimated Stream Width: <u>N</u> Stream Type: Cold Water Canopy Cover: Open Sediment/Substrate: Sediment Odors: Normal Sediment Oils: Abse Ponar Grab: Number of Jars F	nd Use: Forest I fofest area Co Em Est. Stream Depth: Warm Water Partly Open Sewage Petroleum ent Sligh Silled with Sediments R	Chemical t ceplicate: #1:	Riffle: <u>NE</u> m Run: <u>E</u> Channel Partly Shaded Anaerobic None Moderate	NE m Pool: NE ized: Yes No Shaded Other: Profuse Replicate #3:	m —
Predominant Surrounding Las Vegetation Type: <u>Nationa</u> Estimated Stream Width: <u>N</u> Stream Type: Cold Water Canopy Cover: Open Sediment/Substrate: Sediment Odors: Normal Sediment Oils: Abse Ponar Grab: Number of Jars F Sediment Description: <u>NE</u>	nd Use: Forest I foiest area, Co E m Est. Stream Depth: Warm Water Partly Open Sewage Petroleum ent Sligh Willed with Sediments R	Chemical t eplicate: #1:_	Riffle: <u>NE</u> m Run: <u>E</u> Channel Partly Shaded Anaerobic None Moderate Replicate #2:	ME_m Pool: NE ized: Yes No Shaded Other: Profuse Replicate #3:	m 
Predominant Surrounding Las Vegetation Type: <u>Nationa</u> Estimated Stream Width: <u>N</u> Stream Type: Cold Water Canopy Cover: Open Sediment/Substrate: Sediment Odors: Normal Sediment Odors: Normal Sediment Oils: Abse Ponar Grab: Number of Jars F Sediment Description: <u>NE</u> Water: Cemp.: <u>Q</u>	nd Use: Forest I foiest area, Co Em Est. Stream Depth: Warm Water Partly Open Sewage Petroleum ent Sligh "Illed with Sediments R C Dissolved Oxygen:	$\frac{ME}{m}$ Velocity: <u>N</u> Chemical t eplicate: #1:	Riffle: <u>NE</u> m Run: <u>E</u> Channel Partly Shaded Anaerobic None Moderate Replicate #2:	ME_m Pool: NE ized: Yes No Shaded Other: Profuse Replicate #3:	m 
Predominant Surrounding Las Vegetation Type: <u>Nationa</u> Estimated Stream Width: <u>N</u> Stream Type: Cold Water Canopy Cover: Open Sediment/Substrate: Sediment Odors: Normal Sediment Odors: Normal Sediment Oils: Abse Ponar Grab: Number of Jars F Sediment Description: <u>NE</u> Vater: Pemp.: <u>Q</u>	nd Use: Forest I foiest area, Co Em Est. Stream Depth: Warm Water Partly Open Sewage Petroleum ent Sligh "Illed with Sediments R C Dissolved Oxygen:	$\frac{ME}{m}$ Velocity: <u>N</u> Chemical t eplicate: #1:	Riffle: <u>NE</u> m Run: <u>E</u> Channel Partly Shaded Anaerobic None Moderate Replicate #2:	ME_m Pool: NE ized: Yes No Shaded Other: Profuse Replicate #3:	m 
Predominant Surrounding Lax Vegetation Type: <u>Nationa</u> Estimated Stream Width: <u>N</u> Stream Type: Cold Water Canopy Cover: Open Sediment/Substrate: Sediment Odors: Normal Sediment Oils: Abso Ponar Grab: Number of Jars F: Sediment Description: <u>NE</u> Sediment Description: <u>NE</u> Sediment Description: <u>NE</u> Sediment Description: <u>NE</u> Sediment Description: <u>NE</u> Sediment Description: <u>NE</u>	nd Use: Forest I foiest area, Co E m Est. Stream Depth: Warm Water Partly Open Sewage Petroleum ent Sligh illed with Sediments R Micromhos/cm S Sewage Petroleum	Chemical t Chemical t Chemical t calinity: Chemical	Riffle: <u>NE</u> m Run: <u>E</u> Channel Partly Shaded Anaerobic None Moderate Replicate #2: mg/L pH: VEppt	ME_m Pool: NE ized: Yes No Shaded Other: Profuse Replicate #3:	
Canopy Cover: Open Sediment/Substrate: Sediment Odors: Normal Sediment Oils: Abse Ponar Grab: Number of Jars F Sediment Description: <u>NE</u> Mater: Temp.: <u>QQ</u> Conductivity: <u>Q7D</u> Vater Odors: Normal Vater Surface Oils: Slick	nd Use: Forest I foiest area, Co E m Est. Stream Depth: Warm Water Partly Open Sewage Petroleum ent Sligh "Illed with Sediments R Micromhos/cm S Sewage Petroleum Sheen	Chemical t chemical t chemical t chemical Salinity: Chemical	Riffle: <u>NE</u> m Run: <u>E</u> Channel Partly Shaded Anaerobic None Moderate Replicate #2: mg/L pH: VEppt None Othe	ME_m       Pool: NE_         ized:       YesNo         Shaded       Shaded         e       Other:         Profuse	
Predominant Surrounding Las Vegetation Type: <u>National</u> Estimated Stream Width: <u>N</u> Stream Type: Cold Water Canopy Cover: Open Sediment/Substrate: Sediment Odors: Normal Sediment Oils: Abso Ponar Grab: Number of Jars F Sediment Description: <u>NE</u> Sediment Description: <u>NE</u> Vater: Cemp.: <u>QQ</u> Vater Odors: Normal Vater Odors: Normal Vater Surface Oils: Slick urbidity: Clear	nd Use: Forest I folest area, Co E m Est. Stream Depth: Warm Water Partly Open Sewage Petroleum ent Slight Yilled with Sediments R Micromhos/cm S Sewage Petroleum Sheen ( Slightly Turbid Tu	Chemical t chemical t chemical t chemical Salinity: Chemical None	Riffle: <u>NE</u> m Run: <u>E</u> Channel Partly Shaded Anserobic None Moderate Replicate #2: <u>mg/L pH:</u> <u>VEppt</u> <u>None</u> Other Opaque Water (	ME_m       Pool: NE         ized:       Yes         Shaded         e       Other:         Profuse	
Predominant Surrounding Las Vegetation Type: <u>Nationa</u> Estimated Stream Width: <u>N</u> Stream Type: Cold Water Canopy Cover: Open Sediment/Substrate: Sediment Odors: Normal Sediment Odors: Normal Sediment Description: <u>NE</u> Sediment Description: <u>NE</u> Vater: Conductivity: <u>270</u> Vater Odors: Normal Vater Odors: Normal	nd Use: Forest I folest area, Co E m Est. Stream Depth: Warm Water Partly Open Sewage Petroleum ent Slight Yilled with Sediments R Micromhos/cm S Sewage Petroleum Sheen ( Slightly Turbid Tu	Chemical t chemical t chemical t chemical Salinity: Chemical None	Riffle: <u>NE</u> m Run: <u>E</u> Channel Partly Shaded Anserobic None Moderate Replicate #2: <u>mg/L pH:</u> <u>VEppt</u> <u>None</u> Other Opaque Water (	ME_m       Pool: NE_         ized:       YesNo         Shaded       Shaded         e       Other:         Profuse          Replicate #3:          NE	

. •

ample Type:	Fish	Benthic Macroin	I CE COLUCE ]	Sedimer		Surface Water
AMPLING EQU	IPMENT: Seine	e Gill Net Ponar	Kemmerer	Sediment Corer	Spoon Othe	r: ·
	<b>0</b>					•
•		<i>.</i> _				
		NOT	AV	AILABLE		
			•			
		· · ·		-		
				· · · · · · · · · · · · · · · · · · ·		
parian Zone/Inst						
edominant Surro	ounding Land Us		Industria			
edominant Surro getation Type:	ounding Land Us Hardwoo	d, both ba	nks	thick w		
edominant Surro getation Type: _ timated Stream	bunding Land Us Hardwood Width: <u>1.65 m</u>	Est. Stream Depth	<u>nKS</u> :a <u>ppya</u> gm	Hick us Riffle: <u>NE</u> m	Run: <u>NE</u>	m Pool: <u>NE</u> m
edominant Surre getation Type: _ timated Stream ream Type: Co	bunding Land Us Hardwee Width: <u>1.5</u> m old Water <b>W</b> a	Est. Stream Depth	<u>nKS</u> :a <u>ppya</u> gm	Hick w Riffle: <u>NE</u> m NE Ch	Run: <u>NE</u> annelized:	m Pool: <u>NE</u> m Kes X No_
edominant Surre getation Type: _ imated Stream eam Type: Co	bunding Land Us Hardwood Width: <u>1.65 m</u>	Est. Stream Depth	<u>nKS</u> :a <u>ppya</u> gm	Hick us Riffle: <u>NE</u> m	Run: <u>NE</u> annelized:	m Pool: <u>NE</u> m (es X No_ uaded
edominant Surro getation Type: _ imated Stream eam Type: Co nopy Cover:	ounding Land Use <u>Hardwood</u> Width: <u>1.65</u> m old Water <b>Wa</b> Open	Est. Stream Depth	<u>nKS</u> :a <u>ppya</u> gm	Hick w Riffle: <u>NE</u> m NE Ch	Run: <u>NE</u> annelized:	m Pool: <u>NE</u> m Kes X No_
edominant Surre getation Type: _ imated Stream eam Type: Co nopy Cover: liment/Substrat	ounding Land Use <u>Hardwood</u> Width: <u>1.65</u> m old Water <b>Wa</b> Open	Est. Stream Depth rm Water Partly Open	<u>тК 5</u> :4 <u>фру р.9</u> т	Hick w Riffle: <u>NE</u> m <u>NE</u> Ch Partly Shaded	Run: <u>NE</u> aannelized: Si	m Pool: <u>NE</u> m (es X No_ uaded
edominant Surre getation Type: _ timated Stream eam Type: Co nopy Cover: liment/Substrat liment Odors:	bunding Land Use Hardwood Width: <u>1.65</u> m old Water <b>Na</b> Open e:	Est. Stream Depth rm Water Partly Open age Petroleum Slight	APPY 0.9 m Velocity: Chemical	HICK W Riffle: <u>NE</u> m <u>NE</u> Ch Partly Shaded Anaerobic Moderate	Run: <u>NE</u> sannelized: Si None Oth	m Pool: $NEm$ Ves X No hadded 90% her: Profuse
edominant Surre getation Type:	bunding Land Use Hardwood Width: <u>J. 5</u> m old Water Wa Open <u>e:</u> Normal Sewa Absent er of Jars Filled	Est. Stream Depth urm Water Partly Open age Petroleum Sligh with Sediments	Chemical Replicate: #1:	HICK U Riffle: <u>NE</u> m <u>NE</u> Ch Partly Shaded Anaerobic Moderate <u>C</u> Replicate	Run: <u>NE</u> sannelized: Si None Oth	m Pool: <u>NE</u> m Xes X No_ maded 90%
edominant Surre getation Type:	bunding Land Use Hardwood Width: <u>J. 5</u> m old Water Wa Open <u>e:</u> Normal Sewa Absent er of Jars Filled	Est. Stream Depth rm Water Partly Open age Petroleum Slight	Chemical Replicate: #1:	HICK U Riffle: <u>NE</u> m <u>NE</u> Ch Partly Shaded Anaerobic Moderate <u>C</u> Replicate	Run: <u>NE</u> aannelized: Si None Oth #2: <u>4</u> Re	m Pool: $NEm$ Ves X No hadded 90% her: Profuse
edominant Surre getation Type:	bunding Land Use Hardwood Width: <u>J. 5</u> m old Water Wa Open <u>e:</u> Normal Sewa Absent er of Jars Filled	Est. Stream Depth urm Water Partly Open age Petroleum Sligh with Sediments	Chemical Replicate: #1:	HICK U Riffle: <u>NE</u> m <u>NE</u> Ch Partly Shaded Anaerobic Moderate <u>C</u> Replicate	Run: <u>NE</u> aannelized: Si None Oth #2: <u>4</u> Re	m Pool: $\underline{NE}$ m Xes $\underline{X}$ No hadded 90% her: Profuse pplicate #3:
edominant Surre getation Type:	bunding Land Use Handwood Width: <u>1.5</u> m old Water Ka Open e: Normal Sewa Absent ver of Jars Filled w on: <u>Sandy</u>	Est. Stream Depth Est. Stream Depth Imm Water Partly Open age Petroleum Slight with Sediments I part 1 ( H	$\frac{\sqrt{S}}{\sqrt{P}}$ $\frac{\sqrt{P}}{\sqrt{P}}$ $\frac{\sqrt{P}}{\sqrt{P}}$ $\frac{\sqrt{P}}{\sqrt{P}}$ $\frac{\sqrt{P}}{\sqrt{P}}$ $\frac{\sqrt{P}}{\sqrt{P}}$ $\frac{\sqrt{P}}{\sqrt{P}}$	HICK W Riffle: <u>NE</u> m <u>NE</u> Ch Partly Shaded Anaerobic Moderate <u>6</u> Replicate	Run: <u>NE</u> sannelized: SI None Oth #2: <u>/</u> Re	m Pool: $NE$ m Ves X No haded 90% her: Profuse eplicate #3:
edominant Surre getation Type:	bunding Land Use Handwood Width: <u>1.5</u> m old Water Wa Open e: Normal Sewa Absent on: <u>Sandy</u> 1.0° c	Est. Stream Depth Est. Stream Depth Imm Water Partly Open age Petroleum Slight with Sediments Leaflith Dissolved Oxygen:	$\frac{mKS}{449709} m$ Velocity: Chemical ht Replicate: #1: $er_{-} + \omega$ 6.4	Hick w Riffle: <u>NE</u> m <u>NE</u> Ch Partly Shaded Anaerobic Moderate <u>C</u> Replicate <u>35</u> mg/L pl	Run: <u>NE</u> sannelized: SI None Oth #2: <u>4</u> Re H: <u>5, 4</u>	m Pool: $NE$ m Ves X No haded 90% her: Profuse eplicate #3:
edominant Surre getation Type: timated Stream eam Type: Control	bunding Land Use Hardwood Width: $1 \cdot 5$ m old Water $Na$ Open e: Normal Sewa Absent ver of Jars Filled von on: Sandy $1 \cdot 0^{\circ}$ c (00)	Est. Stream Depth Est. Stream Depth Imm Water Partly Open age Petroleum Slight with Sediments I part 1 ( H	$\frac{\sqrt{5}}{4 \frac{2}{\sqrt{9}} m}$ $\frac{\sqrt{6} \sqrt{9}}{\sqrt{9}} m$ $\frac{\sqrt{6} \sqrt{9}}{\sqrt{9}} m$ $\frac{\sqrt{6} \sqrt{9}}{\sqrt{9}} m$ $\frac{\sqrt{6} \sqrt{9}}{\sqrt{9}} m$	Hick w Riffle: <u>NE</u> m <u>NE</u> Ch Partly Shaded Anaerobic <u>Moderate</u> <u>6</u> Replicate <u>5</u> mg/L pl ).D	Run: <u>NE</u> mannelized: Si None Oth #2: <u>4</u> Re H: <u>5, 4</u> _ppt	m Pool: $NE$ m Ves X No haded 90% her: Profuse eplicate #3:
edominant Surre getation Type:	bunding Land Use Hardwood Width: $1 \cdot 5$ m old Water Wa Open e: Normal Sewa Absent on: Sandy $1 \cdot 0^{\circ}$ C (00) Normal Sewa	Est. Stream Depth Est. Stream Depth Imm Water Partly Open Age Petroleum Slight with Sediments Leaf I [ 44 Dissolved Oxygen:Micromhos/cm	$\frac{\sqrt{K} \leq \frac{1}{2}}{\frac{2}{2}} m$ Velocity: Chemical ht Replicate: #1: $\frac{2}{2} - \frac{1}{2} w$ Salinity:	Hick w Riffle: <u>NE</u> m <u>NE</u> Ch Partly Shaded Anaerobic <u>Moderate</u> <u>6</u> Replicate <u>5</u> mg/L pl ).D	Run: <u>NE</u> sannelized: SI None Oth #2: <u>4</u> Re H: <u>5, 4</u>	m Pool: $NE$ m Ves X No haded 90% her: Profuse eplicate #3:
edominant Surre getation Type: timated Stream ream Type: Concerned to the second nopy Cover: <u>liment/Substrat</u> liment Odors: liment Odors: liment Odors: liment Description ter: np.: al ductivity: ter Odors: ter Surface Oils:	bunding Land Use Hardwood Width: $1 \cdot 5$ m old Water $\mathcal{M}_{a}$ Open e: Normal Sewa Absent er of Jars Filled w on: $Sandy$ $1 \cdot 0^{\circ}$ C (00) Normal Sewa Slick	Est. Stream Depth Est. Stream Depth Imm Water Partly Open Age Petroleum Slight with Sediments I part I (H) Dissolved Oxygen: Micromhos/cm rage Petroleum Sheen	$\frac{444}{2} \times \frac{1}{2} \times $	Hick us Riffle: <u>NE</u> m <u>NE</u> Ch Partly Shaded Anaerobic <u>Moderate</u> <u>6</u> Replicate <u>5</u> mg/L pl <u>1</u> None	Run: <u>NE</u> sannelized: SI None Oth #2: <u>//</u> Re H: <u>5, 4</u> _ppt Other:	m Pool: $NE$ m Ves X No haded 90% her: Profuse eplicate #3:

	SAMPLING STATION CHARACTERIZATION DATA SHEET
	Station Number: 6-BH 4A-BN Date: 8/24/92 Time: 1500
	Sample Type: Fish Benthic Macroinvertebrate Sediment Surface Water
	SAMPLING EQUIPMENT: Seine Gill Net Ponar Kemmerer Sediment Corer Spoon Other:
	DownStream Riparian Zone/Instream Features
	Predominant Surrounding Land Use: Forest Industrial Other:
	Vegetation Type: Decid UOUS 7 racs
	Estimated Stream Width: <u>3.7</u> m Est. Stream Depth: <u>-1</u> m Riffle: <u>NE</u> m Run: <u>NE</u> m Pool: <u>NE</u> n Stream Type: Cold Water Warm Water Velocity: <u>NE</u> Channelized: Yes X No_ Canopy Cover: Open Partly Open Partly Shaded Shaded Stream
	Sediment/Substrate:
	Sediment Odors: Normal Sewage Petroleum Chemical Anaerobic (None) Other:
	Sediment Oils: Absent Slight Moderate Profuse
	Ponar Grab: Number of Jars Filled with Sediments Replicate: #1: Replicate #2: Replicate #3:
	Sediment Description: 5,14/Sand, mixed with organics
•	Water:
	Temp.: 23° C Dissolved Oxygen: 6,35 mg/L pH: NA S.U.
	Conductivity: 82 Micromhos/cm Salinity: 0,0 ppt
	Water Odors: Normal Sewage Petroleum Chemical None Other:
	Water Surface Oils: Slick Sheen (None)
¢	Turbidity: Clear Slightly Turbid Turbid Opaque Water Color: Brown Tr
۱	Weather Conditions: Junny, appx, 32°C Tide: In Out
	Comments: NE= NO+ EValuated

•

.

•

SAMPLING STATION CHARACTERIZATION DATA SHEET
Station Number: 6-BH6A-BW Date: 8/21/92 Time: 11:35
Sample Type: Fish Benthic Macroinvertebrate Sediment Surface Water
SAMPLING EQUIPMENT: Seine Gill Net (Ponar) Kemmerer Sediment Corer Spoon Other:
UPSTREAM
Riparian Zone/Instream Features
Predominant Surrounding Land Use: Forest Industrial Other:
Vegetation Type: <u>NE</u>
Estimated Stream Width: <u>9.1 m</u> Est. Stream Depth: <u>1.5 m</u> Riffle: <u>NEm</u> Run: <u>NEm</u> Pool: <u>WE</u> m
Stream Type: Cold Water Warm Water Velocity: <u>NE</u> Channelized: Yes No
Canopy Cover: Open Partly Open Partly Shaded Shaded
Sediment/Substrate: 10%
Sediment Odors: Normal Sewage Petroleum Chemical Anaerobic None Other: <u>Slight</u>
Sediment Oils: Absent Slight Moderate Profuse
Ponar Grab: Number of Jars Filled with Sediments Replicate: #1: 11 Replicate #2: 6 Replicate #3: 11
Sediment Description: laves turings Silt (4000); Silt (600); DARK Brown
Water:
Temp.: <u>5=22.9; B=22.8°</u> C Dissolved Oxygen: <u>5=5.0; B= 4.95</u> mg/L pH: <u>5=6.3; B=NE</u> S.U.
Conductivity: $\underline{S = 135' \theta = 140}$ Micromhos/cm Salinity: $S = 0.0' \theta = 0.0$ ppt
Water Odors: Normal Sewage Petroleum Chemical None Other:
Water Surface Oila:Slick Sheen None
Turbidity: Clear Slightly Turbid Turbid Opaque Water Color: Amber Brown Weather Conditions: <u>Cloudy</u> Tide: In Out
comments: S= Surface; B= Bottom; NE= Not Evaluated

Somple Type	<u>lo-WC03</u> Fish	Benthic Macroin	Date:	Sediment	Surface Water
Sample Type: SAMPLING FOIIII				Sediment Corer Spool	•
	Donie				
	1				
•					
		1		I. OUF	
i, =		NO7	AVA	ILABLE	
			•		
					1
	<u> </u>				I
	<del></del>				······································
Riparian Zone/Instrea	m Features				
Predominant Surroun		Forest	Industrial	Other:	
a southerner of the other					
	K lined W/	deciduous s	hrubs; mo	derate number	of shrubs in th
Vegetation Type: <u>Bar</u>					of shrubs in H VE m Pool: NE m
Vegetation Type: <u>Bar</u> Estimated Stream Wie	dth: <u>NE</u> m E	st. Stream Depth:		iffle: <u>NE</u> m Run: <u>N</u>	
Vegetation Type: <u>Bar</u> Estimated Stream Wie Stream Type: Cold	dth: <u>NE</u> m E	St. Stream Depth: Water Vo Partly Open	<u>NE</u> m R elocity: <u>NE</u>	iffle: <u>NE</u> m Run: <u>N</u>	<u>VE</u> m Pool: <u>NE</u> m
Vegetation Type: Bar Estimated Stream Wid Stream Type: Cold Canopy Cover: O	dth: <u>NE</u> m E Water (Warm	St. Stream Depth:	<u>NE</u> m R elocity: <u>NE</u>	iffle: <u>//E_</u> m Run: <u>/</u> Channeliz	<u>VE_</u> m_Pool: <u>A/E_</u> m ed: YesXNo
Vegetation Type: <u>Bar</u> Estimated Stream Wie Stream Type: Cold	dth: <u>NE</u> m E Water Warm Open	St. Stream Depth: Water Vo Partly Open 3090	<u>NE</u> m R elocity: <u>NE</u> P	iffle: <u>//E_</u> m Run: <u>/</u> Channeliz	<u>VE</u> m Pool: <u>NE</u> m ed: YesX No_ Shaded
Vegetation Type: <u>Bar</u> Estimated Stream Wid Stream Type: Cold Canopy Cover: O <u>Sediment/Substrate</u> : Sediment Odors: No Sediment Oils:	dth: <u>NE</u> m E Water Warm Open rmal Sewage	St. Stream Depth: Water Vo Partly Open 3090 Petroleum Slight	<u>NE</u> m R elocity: <u>NE</u> P Chemical	iffle: <u>A/E</u> m Run: <u>A</u> Channeliz artly Shaded Anaerobic None Moderate	VE m Pool: <u>NE</u> m ed: YesX No_ Shaded Other: Profuse
Vegetation Type: <u>Bar</u> Estimated Stream Wid Stream Type: Cold Canopy Cover: O Sediment/Substrate: Sediment Odors: No Sediment Oils:	dth: <u>NE</u> m E Water Warm Open rmal Sewage	St. Stream Depth: Water Vo Partly Open 3090 Petroleum Slight	<u>NE</u> m R elocity: <u>NE</u> P Chemical	iffle: <u>A/E</u> m Run: <u>A</u> Channeliz artly Shaded Anaerobic None Moderate	<u>VE m</u> Pool: <u>NE m</u> ed: YesX No Shaded ) Other:
Vegetation Type: <u>Bar</u> Estimated Stream Wid Stream Type: Cold Canopy Cover: O <u>Sediment/Substrate</u> : Sediment Odors: No Sediment Oils:	dth: <u>NE</u> m E Water Warm Open rmal Sewage <u>Absent</u> of Jars Filled with	St. Stream Depth: Water Vo Partly Open 3090 Petroleum Slight	<u>NE</u> m R elocity: <u>NE</u> P Chemical	iffle: <u>A/E</u> m Run: <u>A</u> Channeliz artly Shaded Anaerobic None Moderate	VE m Pool: <u>NE</u> m ed: YesX No_ Shaded Other: Profuse
Vegetation Type: <u>Bar</u> Estimated Stream Wid Stream Type: Cold Canopy Cover: O <u>Sediment/Substrate</u> : Sediment Odors: No Sediment Oils: Ponar Grab: Number o Sediment Description:	dth: <u>NE</u> m E Water Warm Open rmal Sewage <u>Absent</u> of Jars Filled with	St. Stream Depth: Water Vo Partly Open 3090 Petroleum Slight	<u>NE</u> m R elocity: <u>NE</u> P Chemical	iffle: <u>A/E</u> m Run: <u>A</u> Channeliz artly Shaded Anaerobic None Moderate	VE m Pool: <u>NE</u> m ed: YesX No_ Shaded Other: Profuse
Vegetation Type: <u>Bar</u> Estimated Stream Wid Stream Type: Cold Canopy Cover: O Sediment/Substrate: Sediment Odors: No Sediment Oils: Ponar Grab: Number o Sediment Description: <u>Vater</u> :	dth: <u>NE</u> m E Water Warm Open rmal Sewage Absent of Jars Filled with <u>NE</u>	St. Stream Depth: Water Vo Partly Open 3090 Petroleum Slight Sediments Re	$\frac{NE}{P} m R$ elocity: $\frac{NE}{P}$ Chemical plicate: #1:	iffle: <u>A/E</u> m Run: <u>A</u> Channeliz artly Shaded Anaerobic None Moderate Replicate #2:	VE m Pool: <u>NE m</u> ed: YesX No Shaded ) Other: Profuse 3 Replicate #3: <u>9</u>
Vegetation Type: Bar Estimated Stream Wid Stream Type: Cold Canopy Cover: O Sediment/Substrate: Sediment Odors: No Sediment Odors: No Sediment Oils: Ponar Grab: Number of Sediment Description: Vater: Pemp.:	dth: <u>NE</u> m E Water Warm Open rmal Sewage <u>Absent</u> of Jars Filled with <u>NE</u> <u>E</u> C Disc	Solved Oxygen:	$\frac{NE}{P} m R$ Plocity: $\frac{NE}{P}$ Chemical plicate: #1:	iffle: <u>A/E</u> m Run: <u>A</u> Channeliz artly Shaded Anaerobic None Moderate Replicate #2:	VE m Pool: <u>NE m</u> ed: YesX No Shaded ) Other: Profuse 3 Replicate #3: <u>9</u>
Vegetation Type: Bar Estimated Stream Wid Stream Type: Cold Canopy Cover: O Sediment/Substrate: Sediment Odors: No Sediment Odors: No Sediment Oils: Ponar Grab: Number of Sediment Description: Vater: Pemp.:	dth: <u>NE</u> m E Water Warm Open rmal Sewage <u>Absent</u> of Jars Filled with <u>NE</u> <u>E</u> C Disc <u>VE</u> M	Solved Oxygen:	$\frac{NE}{P} m R$ Plocity: $\frac{NE}{P}$ Chemical plicate: #1:	iffle: <u>A/E</u> m Run: <u>A</u> Channeliz artly Shaded Anaerobic None Moderate Replicate #2:	VE m Pool: <u>NE m</u> ed: YesX No Shaded ) Other: Profuse 3 Replicate #3: <u>9</u> <u>NE S.U.</u>
Vegetation Type: Bar Estimated Stream Wid Stream Type: Cold Canopy Cover: O Sediment/Substrate: Sediment Odors: No Sediment Odors: No Sediment Description: Vater: Cemp.: <u>No</u> Vater Odors: Nor	dth: <u>NE</u> m E Water Warm Open rmal Sewage <u>Absent</u> of Jars Filled with <u>NE</u> <u>E</u> C Disc <u>VE</u> M	Solved Oxygen:	$\frac{NE}{NE}$ m R elocity: $\frac{NE}{P}$ Chemical plicate: #1: NE linity:N	iffle: <u>A/E</u> m Run: <u>A</u> Channeliz artly Shaded Anaerobic None Moderate Replicate #2: mg/L pH: <u>Eppt</u>	VE m Pool: <u>NE m</u> ed: YesX No Shaded ) Other: Profuse 3 Replicate #3: <u>9</u> <u>NE S.U.</u>
Vegetation Type: Bar Estimated Stream Wid Stream Type: Cold Canopy Cover: O Sediment/Substrate: Sediment Odors: No Sediment Odors: No Sediment Oils: Ponar Grab: Number of Sediment Description: Vater: Pemp.:	dth: <u>NE</u> m E Water Warm Open rmal Sewage Absent of Jars Filled with <u>NE</u> <u>C</u> Dise <u>VE</u> M mal Sewage Slick	Solved Oxygen: Getroleum Solved Oxygen: Petroleum Slight Sediments Petroleum	$\frac{NE}{NE}$ m R elocity: $\frac{NE}{P}$ Chemical plicate: #1: NE linity:N Chemical	iffle: <u>A/E</u> m Run: <u>A</u> Channeliz artly Shaded Anaerobic None Moderate Replicate #2: ppt None Other:	VE m Pool: <u>NE m</u> ed: YesX No Shaded ) Other: Profuse 3 Replicate #3: <u>9</u> <u>NE S.U.</u>
Vegetation Type: Bar Estimated Stream Wid Stream Type: Cold Canopy Cover: O Sediment/Substrate: Sediment Odors: No Sediment Odors: No Sediment Description: Vater: emp.: <u>Nd</u> onductivity: <u>M</u> Vater Odors: Nor Vater Surface Oils:	dth: $\underline{NE}$ m E Water Warm Open rmal Sewage $\underline{Absent}$ of Jars Filled with $\underline{NE}$ $\underline{E}$ C Disc $\underline{VE}$ M mal Sewage Slick Slightly T	St. Stream Depth: Water Va Partly Open 3090 Petroleum Slight Sediments Res solved Oxygen: ficromhos/cm Sa Petroleum Sheen Tur	$\frac{NE}{NE} m R$ Plocity: $\frac{NE}{P}$ Chemical plicate: #1: $\frac{A}{P}$ linity: $\frac{NE}{P}$ linity: $\frac{NE}{P}$ linity: $\frac{N}{P}$	iffle: <u>A/E</u> m Run: <u>A</u> Channeliz artly Shaded Anaerobic None Moderate Replicate #2: <u>ppt</u> None Other: paque Water Co	<u>VE m</u> Pool: <u>NE m</u> ed: YesX No Shaded ) Other: Profuse <u>3</u> Replicate #3: <u>9</u> <u>NE S.U.</u>

SAMPLING STATION CHARACTERIZATION DATA SHEET
Station Number: $6 - WCbA - BN$ Date: $8/24/92$ Time: $12.45$ Sample Type:       Fish       Benthic Macroinvertebrate       Sediment       Surface Water         SAMPLING EQUIPMENT:       Seine       Gill Net       Ponar       Kemmerer       Sediment Corer       Spoon       Other:
Downstream
Niparian Zone/Instream Features         Predominant Surrounding Land Use:       Forest       Industrial       Other:

$1 \operatorname{cmp.} = \frac{1}{2} \operatorname{cmp.} $
Conductivity: <u>5=125 B = 145 Micromhos/cm</u> Salinity: <u>5=0.0</u> ; <u>B=0, D</u> ppt
Water Odors: Normal Sewage Petroleum Chemical None Other:
Water Surface Oils: Slick Sheen None
Turbidity: Clear Slightly Turbid Turbid Opaque Water Color: <u>Jannic</u>
Weather Conditions: <u>Sunny</u> , <u>appy</u> , <u>32°C</u> Tide: In Out
Comments: S= Surface B= Bottom ; NE= Not Evaluated

Sample Type:	6-WCOC			<u> 21 92</u>	Time: <u>09!</u> /D Surface Water
	Fish	Benthic Macroi		. Sediment	
SAMPLING EQU	IPMENT: Seine	Gill Net Ponar	) Kemmerer	Sediment Corer Spo	on Other:
	-				f
	1				
		t shire			
	14 St 60				
			٢		
•				<b></b>	
			10-00-00		
			St. Se. 4	ā	
		Ma		HE	
			<b>h</b>		
	Downs	stream			
Riparian Zone/Instr					
Predominant Surrow		Forest	Industrial	Other:	
Vegetation Type:		Foresc	muusutai	Other.	
		Fat Stream Denth	3.7	Riffle: A / A m Run.	<u>NA</u> m Pool: <u>NA</u> m
	d Water (Warm			Channeli	
	Open Open	Partly Open		Partly Shaded	Shaded
	Jen -	Tatuy opon	-		010000
ediment/Substrate:				-	1
ediment Odors: N	formal Sewage	e Petroleum	Chemical	Anaerobic None	Other: Strong
	Absent	Sligh		Moderate	Profuse
ediment Oils:	of Jars Filled wit				/ Replicate #3:/_
onar Grab: Numbe		• I			
onar Grab: Numbe		-ritus; 1	590 Silt	; Dark Br	own
onar Grab: Numbe ediment Description		-ritus ; 1	590 Silt	; Dark Br	own
onar Grab: Numbe ediment Description <u>'ater</u> :	1: <u>590 det</u>	•			
onar Grab: Numbe: ediment Description ater: mp.: <u>5=23.861</u>	1: <u>590 det</u> 3 <i>: 25.5</i> °C Dis	ssolved Oxygen: <u>5</u>	5=5.1; B= 0.	<u>13</u> mg/L pH: <u>5</u>	<u>= 6 3; B: NE</u> s.U.
onar Grab: Numbe. ediment Description ' <u>ater:</u> emp.: <u>5=23. گون (</u> onductivity: <u>S<b>=</b>90</u>	<u>590 det</u> <u>3=25.5°</u> C Dis <u>0; B=11,500 1</u>	ssolved Oxygen: <u>S</u> Micromhos/cm	5-5.1; B= 0. Salinity: <u>5=0</u>	<u>13 mg/L pH: 5</u> .5; <u>B=7 ppt</u>	= 6.3; B: NES.U.
onar Grab: Numbe. ediment Description <u>ater</u> : emp.: <u>5=23.%; (</u> onductivity: <u>5=90</u> ater Odors: N	n: <u>590 det</u> <u>3=25.5°</u> C Dis 0; <b>B=11,500 1</b> ormal Sewage	ssolved Oxygen: <u>S</u> Micromhos/cm & e Petroleum	5=5.1; B= 0. Salinity: <u>5=0</u> Chemical	<u>13 mg/L pH: 5</u> .5; <u>B=7 ppt</u>	
onar Grab: Numbe: ediment Description <u>ater:</u> emp.: <u>5=23. %; (</u> onductivity: <u>S=90</u> ater Odors: N ater Surface Oils:	n: <u>590 det</u> <u>3=25.5°</u> C Dis <u>0'B=11,500 N</u> ormal Sewage Slick	ssolved Oxygen: <u>S</u> Micromhos/cm & e Petroleum Sheen Z	5= <u>5.1; B= O.</u> Salinity: <u>5=D</u> Chemical	<u>13 mg/L</u> pH: <u>5</u> <u>5 ' B = 7</u> ppt None Othe	= <u>6.3; B: NE</u> s.∪.
onar Grab: Numbe. ediment Description <u>ater</u> : emp.: <u>5=23.85 [</u> onductivity: <u>5=90</u> ater Odors: N ater Surface Oils: urbidity: <u>Clea</u>	2: <u>59.5</u> C Dis 3: 25.5 C Dis 0; B: 11, 500 P ormal Sewage Slick Slick	ssolved Oxygen: <u>S</u> Micromhos/cm S e Petroleum Sheen Z Turbid Tu	5=5.1; B= 0. Salinity: <u>5=0</u> Chemical None urbid (	<u>13 mg/L</u> pH: <u>5</u> <u>5' B = 7</u> ppt None Othe	e 6. 3; B: NES.U. 
onar Grab: Numbe. ediment Description <u>ater</u> : emp.: <u>5=23.85 [</u> onductivity: <u>5=90</u> ater Odors: N ater Surface Oils: urbidity: <u>Clea</u> eather Conditions:	$\frac{590 \text{ def}}{3=25.5^{\circ}C}$ Dis $\frac{3=25.5^{\circ}C}{5}C$ Dis 3=25.	ssolved Oxygen: <u>S</u> Micromhos/cm & e Petroleum Sheen Z Turbid Tu 5 <b>+</b>	5=5.1; B= 0. Salinity: <u>5=0</u> Chemical None urbid (	<u>13 mg/L pH: 5</u> <u>5 ' B = 7 ppt</u> <u>None</u> Othe Opaque Water C Tide:	e 6.3; B: NES.U. r: Color: Amber Brown In Out
onar Grab: Number diment Description ater: mp.: $5=23$ , $8_{j}^{\prime}$ [ nductivity: $5=90$ ater Odors: N ater Surface Oils: rbidity: $1ea$ ather Conditions:	$\frac{590 \text{ def}}{3=25.5^{\circ}C}$ Dis $\frac{3=25.5^{\circ}C}{5}C$ Dis 3=25.	ssolved Oxygen: <u>S</u> Micromhos/cm & e Petroleum Sheen Z Turbid Tu 5 <b>+</b>	5=5.1; B= 0. Salinity: <u>5=0</u> Chemical None urbid (	<u>13 mg/L pH: 5</u> <u>5 ' B = 7 ppt</u> <u>None</u> Othe Opaque Water C Tide:	e 6. 3; B: NES.U. 

				WINNIN AMA CHIER	а
				TION DATA SHEET	
Station Number:	6-wc-11	A-BN	Date: 8/2	1/92	Time: <u>10:03</u>
Sample Type:	Fish (	Benthic Macroi	nvertebrate	Sediment	Surface Water
SAMPLING EQU	IPMENT: Seine	Gill Net Ponar	) Kemmerer Se	diment Corer Spoon	Other:
	<b>H</b>				
					• • • • • • • • • •
				and the second	Com States
•					
			JARS STOLLAR		
	the low of				
<u>.</u> ·	Mouth	p Be	arhead	Creek	
			<u>c. 110 occ.</u>		
<u>Riparian Zone/Ins</u>	ream Features				
	ounding Land Use:	Forest	Industrial	Other:	
Vegetation Type:					
	Width: <u>76.2 m</u>	Est. Stream Deptl	a: <u>1.8 m</u> R	iffle: <u>NE</u> m Run:	NE m Pool: NEm
Estimated Stream		1 Water	Velocity: <u>NE</u>	Channeliz	ed: Yes No
	old Water Warn		п		
Stream Type: C	old Water Warn	Partly Open	r	artly Shaded	Shaded 3-4
Stream Type: C Canopy Cover: (	Open	Partly Open	r.	artiy Snaded	Shaded 5-3
Stream Type: C Canopy Cover: ( Sediment/Substrat	Open e:				
Stream Type: C Canopy Cover: ( Sediment/Substrat Sediment Odors:	Open e: Normal Sewage	e Petroleum	Chemical 🤇	Anaerobic None	Other:
Stream Type: C Canopy Cover: ( <u>Sediment/Substrat</u> Sediment Odors: Sediment Oils:	Open e: Normal Sewage Absent	e Petroleum	Chemical 🤇	Anaerobic None Moderate	Other: Profuse
Stream Type: C Canopy Cover: ( Sediment/Substrat Sediment Odors: Sediment Oils: Ponar Grab: Numl	Open e: Normal Sewage Absent per of Jars Filled with	e Petroleum Slig th Sediments	Chemical ( ght Replicate: #1:	Anaerobic None Moderate Replicate #2:	Other: Profuse }Replicate #3: ~
Stream Type: C Canopy Cover: ( Sediment/Substrat Sediment Odors: Sediment Oils: Ponar Grab: Numl	Open e: Normal Sewage Absent per of Jars Filled with	e Petroleum Slig th Sediments	Chemical ( ght Replicate: #1:	Anaerobic None Moderate	Other: Profuse }Replicate #3: ~
Stream Type: C Canopy Cover: ( <u>Sediment/Substrat</u> Sediment Odors: Sediment Oils: Ponar Grab: Numl Sediment Descript <u>Water</u> :	Normal Sewage Absent er of Jars Filled with ion: Dar K (2)	e Petroleum Slig th Sediments	Chemical ( 3ht Replicate: #1: _2 anic Mucl	Anaerobic None Moderate Replicate #2: K, 51149	Other: Profuse ]Replicate #3: 2
Stream Type: C Canopy Cover: ( Sediment/Substrat Sediment Odors: Sediment Oils: Ponar Grab: Numi Sediment Descript Water: Femp.: $\underline{S \neq \partial 3}$	$\frac{e}{Absent}$ Normal Sewage Absent ber of Jars Filled with ion: $Dar K$	e Petroleum Slig th Sediments	Chemical ( sht Replicate: #1: $2$ anic Much 5 = 4.45 B=0	Anaerobic None Moderate Replicate #2:	Other: Profuse ]Replicate #3: 2
Stream Type: C Canopy Cover: ( Sediment/Substrat Sediment Odors: Sediment Oils: Ponar Grab: Numi Sediment Descript Water: Femp.: $\underline{S \neq \partial 3}$	$\frac{e}{Absent}$ Normal Sewage Absent ber of Jars Filled with ion: $Dar K$	e Petroleum Slig th Sediments	Chemical ( sht Replicate: #1: $2$ anic Much 5 = 4.45 B=0	Anaerobic None Moderate Replicate #2:	Other: Profuse ]Replicate #3: 2
Stream Type: C Canopy Cover: ( Sediment/Substrat Sediment Odors: Sediment Oils: Ponar Grab: Numl Sediment Descript: Water: Pemp.: $\sum = \partial 3$ , $\sum$ Conductivity: $\sum =$	$\frac{e}{Absent}$ Normal Sewage Absent ber of Jars Filled with ion: $Dar K$	e Petroleum Slig th Sediments vour Org issolved Oxygen:	Chemical ( sht Replicate: #1: ani' Muc_l Salinity: <u>5 = 0</u>	Anaerobic None Moderate Replicate #2: K, 51149	Other: Profuse Profuse Replicate #3: $2$ 6.3' B = NES.U.
Stream Type: C Canopy Cover: ( Sediment/Substrat Sediment Odors: Sediment Oils: Ponar Grab: Numl Sediment Descript: Water: Pemp.: $\sum = \partial 3$ , $\sum$ Conductivity: $\sum =$	Open         e:         Normal       Sewage         Absent         per of Jars Filled with         ion: $Dar K$ 0 $\beta : 2b P C$ Dis $150 O \beta : 109$ Normal       Sewage	e Petroleum Slig th Sediments vour Org issolved Oxygen:	Chemical ( sht Replicate: #1: ani' Muc_l Salinity: <u>5 = 0</u>	Anaerobic None Moderate Replicate #2: $5_1 + 5_2$ $5_1 + 5_2$ $5_1 + 5_2$ $5_1 + 5_2$ $5_1 + 5_2$ $5_1 + 5_2$ $5_2 + 5_2$ $5_2 + 5_2$ $5_2 + 5_2$ None	Other: Profuse Profuse Replicate #3: $2$ 6.3' B = NES.U.
Stream Type: C Canopy Cover: ( Sediment/Substrat Sediment Odors: Sediment Oils: Ponar Grab: Numl Sediment Descript: Water: Pemp.: $\underline{S} = \overline{\partial S}, \underline{s}$ Conductivity: $\underline{S} =$ Water Odors: Water Surface Oils	Open       Sewage         Normal       Sewage         Absent       Sewage         ber of Jars Filled with       Sewage $0^{0}$ $3 \cdot 2b^{0}$ C       Di $1500$ $8 \cdot 10^{9}$ Normal       Sewage         Slick       Slick       Slick       Slick	e Petroleum Slig th Sediments vour Ore issolved Oxygen: Micromhos/cm ge Petroleum Sheen	Chemical ( sht Replicate: #1: $\underline{a}$ $\underline{a} \underline{a} \underline{i} \underline{c} \underline{M} \underline{c} \underline{L}$ $\underline{a} \underline{a} \underline{i} \underline{c} \underline{M} \underline{c} \underline{L}$ $\underline{a} \underline{c} \underline{f} \underline{c} \underline{f} \underline{f} \underline{c} \underline{f}$ Salinity: $\underline{\int} \underline{c} \underline{f} \underline{f}$ Chemical None	Anaerobic None Moderate Replicate #2: $5_1 + 5_2$ $5_1 + 5_2$ $5_1 + 5_2$ $5_1 + 5_2$ None Other	Other: Profuse $\underline{Profuse}$ $\underline{Replicate #3: 2}$ $\underline{G.3'B = NES.U.}$
Stream Type: C Canopy Cover: ( Sediment/Substrat Sediment Odors: Sediment Oils: Ponar Grab: Numl Sediment Descript: Water: Pemp.: $\sum = \partial 3$ , Conductivity: $\sum =$ Water Odors: Water Surface Oils Furbidity: (C	Open       Sewage         Normal       Sewage         Absent       Absent         per of Jars Filled with       Sewage $30^{\circ}$ ( $3:340^{\circ}$ ) C       Dia $40^{\circ}$ ( $3:340^{\circ}$ ) C       Dia $40^{\circ}$ ( $3:340^{\circ}$ ) C       Dia $450^{\circ}$ (	e Petroleum Slig th Sediments vour Ore issolved Oxygen: OO Micromhos/cm ge Petroleum Sheen y Turbid	Chemical ( the seplicate: #1: $\underline{a}$ $\underline{a} + \underline{i} \leq \underline{M} \leq \underline{c} + \underline{i}$ $\underline{a} + \underline{i} \leq \underline{M} \leq \underline{c} + \underline{i}$ $\underline{a} + \underline{i} \leq \underline{M} \leq \underline{c} + \underline{i}$ Salinity: $\underline{5} \leq \underline{0}$ Chemical None Turbid $\underline{C}$	Anaerobic None Moderate Replicate #2: $5,15$ mg/L pH: $5 = -5, \beta = 7, 5$ ppt None Other Dague Water C	Other: Profuse Profuse Replicate #3: 2 6.3' <u>B = NES.U.</u>     olor: <u>Amber Bro</u>
Stream Type: C Canopy Cover: ( Sediment/Substrat Sediment Odors: Sediment Oils: Ponar Grab: Numl Sediment Descript: Water: Pemp.: $\sum = \partial 3$ , Conductivity: $\sum =$ Water Odors: Water Surface Oils Furbidity: (1)	$\frac{e}{2}$ Normal Sewage Absent ber of Jars Filled with ton: $Dar K = 0$ $\frac{0}{500} + \frac{109}{2}$ Normal Sewage Slick ear Slightly s: UV C a S	e Petroleum Slig th Sediments vour Org issolved Oxygen: Micromhos/cm ge Petroleum Sheen y Turbid	Chemical ( Sht Replicate: #1: $\underline{A}$ $\underline{G: 4.45' B: C}$ Salinity: $\underline{S: 0}$ Chemical None Turbid $\underline{S: 4' C}$	Anaerobic None Moderate Replicate #2: $5_1 + 5_2$ $5_1 + 5_2$ $5_1 + 5_2$ $5_1 + 5_2$ None Other	Other: Profuse <u>1</u> Replicate #3: <u>6.3' B = NES.U.</u> <u>6.3' B = NES.U.</u> <u>1001</u>

SAMPLING STATION CHARACTERIZATION DATA SHEET	
Station Number: PCI - BN Date:Date:	Time: 15:19
Sample Type: Fish Benthic Macroinvertebrate Sediment	Surface Water
SAMPLING EQUIPMENT: Seine Gill Net Ponar Kemmerer Sediment Corer Spoon	Other:
<b>B</b>	
Not AVAILABLE	
Riparian Zone/Instream Features	
Predominant Surrounding Land Use: Forest Industrial Other:	
	hard wood spanish most
Vegetation Type: <u>National Forest area</u> , <u>Conifers</u> , <u>Shrubs</u> Estimated Stream Width: <u>5.0</u> m Est. Stream Depth: <u>1.5</u> m Riffle: <u>NE</u> m Run: <u>1</u>	<u>VE</u> m Pool: <u>NE</u> m
Stream Type: Cold Water Warm Water Velocity: <u>WE</u> Channelized:	
Canopy Cover: Open Partly Open Partly Shaded	Shaded
Sediment/Substrate:	
Sediment Odors: Normal Sewage Petroleum Chemical Anaerobic None	Other:
Sediment Oils: Absent Slight Moderate	Profuse
Ponar Grab: Number of Jars Filled with Sediments Replicate: #1: Replicate #2:	
Sediment Description: Hard; 5090 Silty - Sand; 5090 Org	anics
Water:	/
Temp.: C Dissolved Oxygen: 7.95 mg/L pH: N	E
Conductivity: <u>270</u> Micromhos/cm Salinity: <u>1.5</u> ppt	
Water Odors: Normal Sewage Petroleum Chemical None Other:	· · · · · · · · · · · · · · · · · · ·
Water Surface Oils: Slick Sheen None	A1
Turbidity: Clear Slightly Turbid Turbid Opaque Water Color	
Weather Conditions: <u>Sunny</u> Tide:	(In) Out
Comments: NE = Not Evaluated	
	· ·

·····

APPENDIX H BENTHIC MACROINVERTEBRATES RAW DATA TABLES

## **APPENDIX H**

Species	6-WC3A- BN1	6-WC3A- BN2	6-WC3A- BN3	6-WC3A	6-WC6A- BN1	6-WC6A- BN2	6-WC6A- BN3	6-WC6A	6-WC9A- BN1	6-WC9A- BN2	6-WC9A- BN3	6-WC9A	6-WC11A- BN1	6-WC11A- BN2	6-WC11A- BN3	6-WC11A	Total
ARTHROPODA																	
Insecta																	
Pterygota																	
Diptera																	
Chironomidae																	
Chironomus decorus	12			12		3		3									15
Krenopelopia sp.			4	4													4
Paramerina sp.	4			4													4
Pentaneura sp.		4		4	1												4
Polypedilum scalaenum							1	1									1
Stenochironomus sp.	4			4													4
Tanytarsus sp.							1	1									1
Tribelos jucundum	36	68	44	148	17	10	7	34									182
Trichoptera		-															
Polycentropodidae																	
Phylocentropus sp.	4			4													4

Species	6-WC3A- BN1	6-WC3A- BN2	6-WC3A- BN3	6-WC3A	6-WC6A- BN1	6-WC6A- BN2	6-WC6A- BN3	6-WC6A	6-WC9A- BN1	6-WC9A- BN2	6-WC9A- BN3	6-WC9A	6-WC11A- BN1	6-WC11A- BN2	6-WC11A- BN3	6-WC11A	Total
Odonata																	
Anisoptera																	
Corduliidae	4			4													4
Zygoptera	4			4													4
Coleoptera																	
Elmidae																	
Dubiraphia sp.		4		4													4
Crustacea																	
Malacostraca																	
Amphipoda																	
Gammaridae																	
Gammarus fasciatus					51	24	38	113									113
Isopoda																	
Idoteidae													<u> </u>				
Caecidotea sp.		4		4													4
ANNELIDA																	
Polychaeta																	
Phyllodocida																	
Nereidae						•••											

Species	6-WC3A- BN1	6-WC3A- BN2	6-WC3A- BN3	6-WC3A	6-WC6A- BN1	6-WC6A- BN2	6-WC6A- BN3	<del>6</del> -WC6A	6-WC9A- BN1	6-WC9A- BN2	6-WC9A- BN3	6-WC9A	6-WC11A- BN1	6-WC11A- BN2	6-WC11A- BN3	6-WC11A	Total
Nereis succinea													3	1	1	4	4
Capitellida								-								-	
Capitellidae														÷			
Capitella capitata													- -		1	1	1
Terebellida																	
Ampharetidae																	
Hypaniola grayi							1	1									1
Oligochaeta																	
Tubificida																	
Tubificidae																	
Limnodrilus hoffmeisteri					8	12	4	24						2	1	3	27
NEMATODA		4		4													4
TOTAL SPECIES	7	5	2	12	3	4	6	7	0	0	0	0	1	2	2	3	19
TOTAL INDIVIDUALS	68	84	48	200	76	49	52	177	0	0	0	0	3	3	2	8	385
SPECIES DENSITY (#/M^2)	433	535	306	1275	484	312	331	1128	0	0	0	0	19	19	13	51	2454
SPECIES DIVERSITY	0.641	0.326	0.125	0.510	0.365	0.517	0.401	0.448	0	0	0	0	0	0.276	0.301	0.423	NA

Species	6-BH2A- BN1	6-BH2A- BN2	6-BH2A- BN3	6-BH2A	6-BH4A- BN1	6-BH4A- BN2	6-BH4A- BN3	6-BH4A	6-BH6A- BN1	6-BH6A- BN2	6-BH6A- BN3	6-BH6A	Total
ARTHROPODA													
Insecta											[		
Pterygota													
Diptera													
Ceratopogonidae							2	2	······································				2
Ceratopogon sp.	1	1	1	3									3
Chironomidae													
Clinotanypus pinguis	3	3	1	7									7
Crytochironomous sp.			1	1				· · ·					1
Krenopelopia sp.	4	1		5									5
Pentaneura sp.	1			1									1
Polypedilum falax	2			2			6	6					8
Polypedilum scalaenum			1	1		1	1	2					3
Procladius sp.		1		1									1
Tribelos jucundum	4		9	13									13
Tipulidae													
Hexatoma sp.	2	1		3		1	6	7					10
Ormosia sp.	. 7	1		8					· ·				8

## APPENDIX rd (continued)

Species	6-BH2A- BN1	6-BH2A- BN2	6-BH2A- BN3	6-BH2A	6-BH4A- BN1	6-BH4A- BN2	6-BH4A- BN3	6-BH4A	6-BH6A- BN1	6-BH6A- BN2	6-BH6A- BN3	6-BH6A	Total
Dolichopodidae													
Paraphrosylus sp.	7	1		8	,								8
Syrphidae						······································							
Eristalis sp.	1			1									1
Tabanidae													
Chrysops sp.	10	9	2	21	- 1	2	1	4					25
Trichoptera													
Polycentropodidae												· · · · ·	
Phylocentropus sp.			3	3			4	4					7
Leptoceridae													
Oecetis sp.					1			1					1
Hemiptera													
Nepomorpha													
Corixidae										7.00.1			
Sigara sp.	16			16							``		16
Odonata													
Anisoptera													
Corduliidae	1 ·			1									1
Zygoptera													

Species	6-BH2A- BN1	6-BH2A- BN2	6-BH2A- BN3	6-BH2A	6-BH4A- BN1	6-BH4A- BN2	6-BH4A- BN3	6-BH4A	6-BH6A- BN1	6-BH6A- BN2	6-BH6A- BN3	6-BH6A	Total
Coenagrionidae													
Enallagma sp.		1		1									1
Gomphidae													
Stylurus sp.			1	1									1
Megaloptera													
Sialidae													
Sialis sp.		1		1									1
Coleoptera													
Elmidae													
Dubiraphia sp.	5	12	8	25			1	1					26
Stenelmis sp.							· 1	1					1
Crustacea													
Malacostraca													
Amphipoda													
Gammaridae													
Gammarus fasciatus		1	1	2	2	5	41	48					50
Isopoda													
Idoteidae													
Caecidotea sp.		1		1									1

Species	6-BH2A- BN1	6-BH2A- BN2	6-BH2A- BN3	6-BH2A	6-BH4A- BN1	6-BH4A- BN2	6-BH4A- BN3	6-BH4A	6-BH6A- BN1	6-BH6A- BN2	6-BH6A- BN3	6-BH6A	Total
Decapoda													
Palaemonidae									X				
Palaemonetes paludosus	1			1									1
ANNELIDA													
Polychaeta													
Phyllodocida													
Nereidae													
Nereis succinea										4		4	4
Capitellida													
Capitellidae													
Capitella capitata	1			1									1
Oligochaeta											-		
Tubificida													
Tubificidae			2	2									2
Isochaetides curvisetosus	121	126	14	261									261
Limnodrilus hoffmeisteri	31	12	5	48	13	12	13	38					86
Limnodrilus udekemianus	6	8	12	26	2	3	1	6					32
Quistadrilus multisetosus	1			1									1
Sparganophilidae											-		

Species	6-BH2A- BN1	6-BH2A- BN2	6-BH2A- BN3	6-BH2A	6-BH4A- BN1	6-BH4A- BN2	6-BH4A- BN3	6-BH4A	6-BH6A- BN1	6-BH6A- BN2	6-BH6A- BN3	6-BH6A	Total
Sparganophilus sp.	48	7	5	60									60
Haplotaxida													
Lumbriculidae								· · · ·					
Eclipidrilus sp.							1	1					1
PLATYHELMINTHES							[						
Turbellaria													
Tricladida													
Planariidae													
Dugesia tigrina							4	4					4
MOLLUSCA													
Gastropoda													
Mesogastropoda													
Viviparidae													
Campeloma decisum	5	4	3	12		1	4	5					17
Bivalvia													
Veneroida													
Sphaeriidae													
Pisidium casertanum	8	32	4	44	11	158	132	301					345
TOTAL SPECIES	23	19	17	33	6	8 .	15	16	0	1	0	1	39

## 

Species	6-BH2A- BN1	6-BH2A- BN2	6-BH2A- BN3	6-BH2A	6-BH4A- BN1	6-BH4A- BN2	6-BH4A- BN3	6-BH4A	6-BH6A- BN1	6-BH6A- BN2	6-BH6A- BN3	6-BH6A	Total
TOTAL INDIVIDUALS	286	223	73	582	30	183	218	431	0	4	0	4	1017
SPECIES DENSITY (#/M^2)	1823	1421	465	3709	191	1166	1389	2747	0	25	0	25	6482
SPECIES DIVERSITY	0.896	0.715	1.065	0.932	0.572	0.263	0.606	0.514	0	0	0	0	NA

Species	PC-BN1	PC-BN2	PC-BN3	PC
ARTHROPODA				
Insecta				
Pterygota				
Diptera				
Chironomidae				
Microtendipes pedellus			1	1
Tribelos jucundum	4	2	1	7
Crustacea				
Malacostraca				
Amphipoda				
Gammaridae				
Gammarus fasciatus	1		1	2
ANNELIDA				
Oligochaeta				
Tubificida				
Tubificidae				
Limnodrilus hoffmeisteri	5	9	9	23
TOTAL SPECIES	3	2	4	4
TOTAL INDIVIDUALS	10	11	12	33
SPECIES DENSITY (#/M^2)	64	70	76	210
SPECIES DIVERSITY	0.410	0.206	0.363	0.372