03.12-05/31/95-01542

FINAL

REMEDIAL INVESTIGATION AT OPERABLE UNIT NO. 10 (SITE 35, CAMP GEIGER AREA FUEL FARM)

MARINE CORPS BASE CAMP LEJEUNE, NORTH CAROLINA

CONTRACT TASK ORDER 0232

MARCH 10, 1995

Prepared For:

DEPARTMENT OF THE NAVY ATLANTIC DIVISION NAVAL FACILITIES ENGINEERING COMMAND Norfolk, Virginia

Under:

LANTDIV CLEAN Program Contract N62470-89-D-4814

Prepared by:

BAKER ENVIRONMENTAL, INC Coraopolis, Pennsylvania

TABLE OF CONTENTS

i

÷,

.

		I	Page
LIST	OF AC	RONYMS AND ABBREVIATIONS	. xii
EXE	CUTIVE	E SUMMARY l	ES-1
1.0	INTR	ODUCTION	1-1
	1.1	Background	1-2
		1.1.1 Site Description	1-2
		1.1.2 Site History	1-3
	1.2	Summary of Previous Investigations	1-4
		1.2.1 Initial Assessment Study	1-4
		1.2.2 Confirmation Study	1-4
		1.2.3 Focused Feasibility Study	1-5
		1.2.4 Comprehensive Site Assessment	1-3
		1.2.5 Interim Remedial Action RI/FS	1-7
	1.2	1.2.0 Other Investigations	1-7
	1.5	Report Organization	1-9
2.0	STUI	Y AREA INVESTIGATION	2-1
	2.1	RI Field Program	. 2-1
		2.1.1 Soil Gas Survey and Groundwater Screening Investigation	2-1
		2.1.2 Soil Investigation	. 2-3
		2.1.3 Groundwater Investigation	. 2-5
		2.1.4 Surface Water/Sediment Investigation	. 2-7
		2.1.5 Ecological Investigation	. 2-9
	2.2	Decontamination Procedures	2-14
	2.3	Investigative Derived Waste (IDW) Handling	2-15
3.0	PHY	SICAL CHARACTERISTICS OF THE STUDY AREA	. 3-1
	3.1	Surface Features	. 3-1
	3.2	Climatology	. 3-1
	3.3	Surface Water Hydrology	. 3-2
	3.4	Geology	. 3-3
		3.4.1 Regional Geology	. 3-3
		3.4.2 Site Geology	. 3-3
	3.5	Surface Soils	、 <i>3-</i> 2
	3.6	Hydrogeology	. 3-3 2 5
		3.6.1 Regional Hydrogeology	. 3-3 2 6
	27	3.6.2 Site Hydrogeology	. 5-0
	5.1 20	Regional Ecology	. 3-7
	3.0 2 0	Site-Specific Ecology	. 3-9
	3 10	Sensitive Environments	3-11
	5.10	3.10.1 Wetlands	3-11
		3.10.2 Threatened and Endangered Species	3-11
		3.10.3 Other Sensitive Environments	3-13
•	3.11	Identification of Water Supply Wells	3-14

ii

TABLE OF CONTENTS (Continued)

4.0	NATU	TRE AND EXTENT OF CONTAMINATION 4-1
	4.1	Non-Site Related Analytical Results 4-1
		4.1.1 Laboratory Contaminants 4-1
		4.1.2 Naturally Occurring Inorganic Elements 4-2
	4.2	Summary of Analytical Results 4-4
		4.2.1 Soil Investigation
		4.2.2 Groundwater Investigation 4-7
		4.2.3 Sediment Investigation 4-13
		4.2.4 Surface Water Investigation
		4.2.5 Ecological Investigation
	4.3	Extent of Contamination
	,	4.3.1 Soil
		4.3.2 Groundwater Contamination
		4.3.3 Surface Water and Sediment
5.0	CONI	FAMINANT FATE AND TRANSPORT 5-1
	5.1	Chemical and Physical Properties Impacting Fate and Transport 5-1
	5.2	Contaminant Transport Pathways 5-2
		5.2.1 Erosion of Contaminated Soils and Transportation to Surface Water and
		Sediment 5-3
		5.2.2 On-Site Deposition of Windblown Dust 5-3
		5.2.3 Leaching of Sediment Contaminants to Surface Water 5-3
		5.2.4 Leaching of Soil Contaminants to Groundwater 5-3
		5.2.5 Migration of Groundwater Contaminants 5-4
		5.2.6 Groundwater Discharge to Surface Water 5-6
		5.2.7 Groundwater Infiltration from the Shallow to the Deep Aquifer 5-6
	5.3	Fate and Transport Summary 5-6
		5.3.1 Volatile Organic Compounds 5-6
		5.3.2 Polynuclear Aromatic Hydrocarbons 5-6
		5.3.3 Pesticides/PCBs 5-7
		5.3.4 Inorganics 5-7
6.0	BASE	LINE HUMAN HEALTH RISK ASSESSMENT
	6.1	Introduction
	6.2	Contaminants of Potential Concern
		6.2.1 Criteria for Selecting Contaminants of Potential Concern
	<i>(</i>)	6.2.2 Selection of Contaminants of Potential Concern
	6.3	Exposure Assessment
		6.3.1 Site Conceptual Model of Potential Exposure
		6.3.2 Exposure Pathways
		6.5.5 Quantification of Exposure
	<i>.</i>	0.5.4 Calculation of Unronic Daily intakes
	6.4	1 OXICITY ASSESSMENT
		6.4.1 I OXICOlOgical Evaluation
		0.4.2 Dose-Response Evaluation 0-27

×

TABLE OF CONTENTS (Continued)

÷

÷

7.0

6.5	Risk C	haracterization
	6.5.1	Human Health Risks 6-30
6.6	Source	s of Uncertainty
	6.6.1	Analytical Data 6-31
	6.6.2	Exposure Assessment
	6.6.3	Sampling Strategy 6-33
	6.6.4	Toxicity Assessment
	6.6.5	Compounds Not Quantitatively Evaluated
6.7	Conclu	sions of the BRA for OU No. 10 6-34
FCO		T DICK ASSESSMENT 7.1
ECO	LUGICA Intende	AL RISK ASSESSIVIENT
7.1		Objectives 7-1
	7.1.1	Objectives
	7.1.2	Scope
7 0	7.1.3	Drganization
7.2	Proble	m Formulation
	/.2.1	Stressor Characteristics
	7.2.2	Ecosystems Potentially at Kisk
	7.2.3	
	7.2.4	Ecological Endpoints
	7.2.5	The Conceptual Model
7.3	Analy	Sis Phase
	7.3.1	Characterization of Exposure
	7.3.2	Ecological Effects Characterization
7.4	Risk C	Characterization
	7.4.1	Surface Water
	7.4.2	Sediment
	7.4.3	Fish Community
	7.4.4	Fish Tissue
	7.4.5	Benthic Macroinvertebrate
	7.4.6	Surface Soil
	7.4.7	Terrestrial Chronic Daily Intake Model
	7.4.8	Other Sensitive Environments
7.5	Ecolo	gical Significance
	7.5.1	Aquatic Endpoints
	7.5.2	Terrestrial Endpoints
	7.5.3	Threatened and Endangered Species
	7.5.4	Wetlands
	7.5.5	Other Sensitive Environments
7.6	Uncer	rtainty Analysis
7.7	Concl	lusions
	7.7.1	Aquatic Ecosystem
	7.7.2	Terrestrial Ecosystem 7-43

TABLE OF CONTENTS (Continued)

Page

8.0	CON	CLUSIONS AND RECOMMENDATIONS 8-1
	8.1	Conclusions 8-1
	8.2	Recommendations

-1-11-11-11-11-1

LIST OF TABLES

<u>Number</u>

`

1-1	Summary of Existing Well Construction Details 1992 Underground Storage Tank Assessment Near the Former Mess Hall Heating Plant 1990 Field Investigation of Camp Geiger Fuel Spill Site 1986 Site Assessment of Camp Geiger Fuel Farm
1-2	Summary of Existing Well Construction Details
1-3	Summary of Existing Well Construction Details 1994 Underground Storage Tank Assessment Near Building TC341
2-1	Summary of Shallow and Intermediate Well Construction Details
2-2	Summary of Deep Well Construction Details
2-3	Summary of Water Level Measurements from Shallow Wells
2-4	Summary of Water Level Measurements from Intermediate Wells
2-5	Summary of Water Level Measurements from Deep Wells
3-1	Climatic Data Summary for MCAS New River
3-2	Geologic and Hydrogeologic Units in the Coastal Plain of North Carolina
3-3	Summary of Hydraulic Conductivity Tests
3-4	Summary of Water Supply Wells Within a One-Mile Radius
4-1	Positive Detection Summary, Surface Soils, TCL Organics
4-2	Positive Detection Summary, Surface Soils, TAL Inorganics
4-3	Positive Detection Summary, Subsurface Soils, TCL Organics
4-4	Positive Detection Summary, Subsurface Soils, TAL Inorganics
4-5	Base Background, Surface Soil, TAL Inorganics
4-6	Base Background, Subsurface Soil, TAL Inorganics
4-7	Positive Detection Summary, Groundwater, Organics
4-8	Positive Detection Summary, Groundwater, Total Inorganics
4-9	Positive Detection Summary, Groundwater, Dissolved Inorganics
4-10	Positive Detection Summary, Sediments, TCL Organics
4-11	Positive Detection Summary, Sediments, TAL Inorganics
4-12	Positive Detection Summary, Surface Water, TAL Inorganics
4-13	Summary of Biota Samples Sent to Laboratory for Tissue Analysis
4-14	Positive Detection Summary, Fillet Samples, Volatile Organic Compounds
4-15	Positive Detection Summary, Whole Body Samples, Volatile Organic Compounds
4-16	Positive Detection Summary, Fillet Samples, Pesticides
4-17	Positive Detection Summary, Whole Body Samples, Pesticides
4-18	Positive Detection Summary, Fillet Samples, TAL Inorganics
4-19	Positive Detection Summary, Whole Body Samples, TAL Inorganics
5-1	Organic Physical and Chemical Properties

5-2 Relative Mobilities of Inorganics as a Function of Environmental Conditions (Eh, pH)

LIST OF TABLES (Continued)

Number

- 6-1 Organic Data Summary, Surface Soil
- 6-2 Inorganic Data Summary, Surface Soil
- 6-3 Organic Data Summary, Subsurface Soil
- 6-4 Inorganic Data Summary, Subsurface Soil
- 6-5 Groundwater Data Summary
- 6-6 Surface Water Data Summary
- 6-7 Sediment Data Summary
- 6-8 Organic and Inorganic Fish Fillet Data Summary
- 6-9 Summary of COPCs in Environmental Media of Concern
- 6-10 Matrix of Potential Human Exposure
- 6-11 Exposure Assessment Summary, Incidental Ingestion of Soil Contaminants
- 6-12 Exposure Assessment Summary, Dermal Contact with Soil Contaminants
- 6-13 Exposure Assessment Summary, Inhalation of Fugitive Particulates
- 6-14 Exposure Assessment Summary, Ingestion of Groundwater Contaminants
- 6-15 Exposure Assessment Summary, Dermal Contact with Groundwater Contaminants
- 6-16 Exposure Assessment Summary, Inhalation of Groundwater Volatile Contaminants
- 6-17 Exposure Assessment Summary, Ingestion of Surface Water
- 6-18 Exposure Assessment Summary, Dermal Contact with Surface Water
- 6-19 Exposure Assessment Summary, Ingestion of Sediment
- 6-20 Exposure Assessment Summary, Dermal Contact with Sediment
- 6-21 Exposure Assessment Summary, Fish Fillet Ingestion
- 6-22 Toxicity Factors
- 6-23 Incremental Lifetime Cancer Risks (ICRs) and Hazard Indices (HIs), Soil
- 6-24 Incremental Lifetime Cancer Risks (ICRs) and Hazard Indices (HIs), Groundwater
- 6-25 Incremental Lifetime Cancer Risks (ICRs) and Hazard Indices (HIs), Surface Water
- 6-26 Incremental Lifetime Cancer Risks (ICRs) and Hazard Indices (HIs), Sediment
- 6-27 Incremental Lifetime Cancer Risks (ICRs) and Hazard Indices (HIs), Fish
- 6-28 Total Site Risk
- 7-1 Surface Water Data Summary
- 7-2 Physical/Chemical Characteristics of the COPCs
- 7-3 Field Chemistry From Biological Samples
- 7-4 Total Number of Aquatic Species Identified Per Station
- 7-5 Fish Distribution and Characterization
- 7-6 Systematic List of Benthic Macroinvertebrate Species at Sites 35 and 36
- 7-7 Biotic Index, USEPA Tolerance to Organic Waste, and Sensitivity to Metals
- 7-8 Summary Statistics of Benthic Macroinvertebrate Species
- 7-9 Frequency and Range of Detection Compared to Saltwater North Carolina WQSs, USEPA WQSVs, and USEPA AWQC
- 7-10 Comparison of Biota Tissue Data Collected in Brinson Creek to Biota Tissue Collected in Other Studies
- 7-11 Frequency and Range of Detection Compared to Sediment Screening Values

LIST OF TABLES (Continued)

Number

- 7-12 Results of the Jaccard Coefficient (Sj) of Community Similarity and SΦrenson Index (Ss) of Community Similarity Between Benthic Macroinvertebrate Stations, Brinson Creek and Hadnot Creek
- 7-13 Results of the Jaccard Coefficient (Sj) of Community Similarity and SΦrenson Index (Ss) of Community Similarity Between Benthic Macroinvertebrate Stations, Brinson Creek and Webb Creek
- 7-14 Terrestrial Reference Values
- 7-15 Soil to Plant Transfer Coefficients and Beef Bioconcentration Factors
- 7-16 Terrestrial Chronic Daily Intake Model Exposure Parameters
- 7-17 Surface Water Quotient Index
- 7-18 Sediment Screening Values Quotient Index
- 7-19 Terrestrial Quotient Index Ratios

- LIST OF FIGURES

<u>Number</u>

- 1-1 Location Map
- 1-2 Site Plan
- 1-3 Location of Proposed Highway Right-of-Way
- 1-4 Pre RI/FS Wells and Sampling Locations
- 2-1 Soil Gas Survey and Groundwater Screening Sample Locations
- 2-2 Soil Gas Survey Results
- 2-3 Groundwater Screening Results
- 2-4 Post RI/FS Sampling Locations
- 2-5 Surface Water, Sediment, Benthic and Fish Sample Location Map
- 2-6 Off-Site Background Sampling Locations in the White Oak River Basin
- 2-7 Fish and Benthic Macroinvertebrate Sampling Location in Webb Creek
- 2-8 Fish and Benthic Macroinvertebrate Sampling Location in Holland Mill Creek
- 2-9 Fish and Benthic Macroinvertebrate Sampling Location in Hadnot Creek
- 3-1 Location of Hydrogeologic Cross-Sections, Marine Corps Base, Camp Lejeune
- 3-2 Hydrogeologic Cross-Sections of MCB, Camp Lejeune Area
- 3-3 Cross-Section Locations at Site 35
- 3-4 Hydrogeologic Cross-Section A-A'
- 3-5 Hydrogeologic Cross-Section B-B'
- 3-6 Hydrogeologic Cross-Section C-C'
- 3-7 Groundwater Contour Map Depicting Flow in The Surficial Aquifer
- 3-8 Groundwater Contour Map Depicting Flow in the Upper-Most Portion of the Castle Hayne Aquifer
- 3-9 Biohabitat Map
- 3-10 Supply Well Location Map

4-1 Detected Organics in Surface Soil

- 4-2 Detected Inorganics and Organics in Subsurface Soil
- 4-3 Detected Inorganics in Surface Soil
- 4-4 Detected Organics in Upper Portion of Surficial Aquifer
- 4-5 Detected Total Inorganics in Upper Portion of Surficial Aquifer
- 4-6 Detected Dissolved Inorganics in Upper Portion of Surficial Aquifer
- 4-7 Detected Organics in Lower Portion of Surficial Aquifer
- 4-8 Detected Total Inorganics in Lower Portion of Surficial Aquifer
- 4-9 Detected Dissolved Inorganics in the Lower Portion of the Surficial Aquifer
- 4-10 Detected Organics and Total Dissolved Inorganics in Upper Portion of Castle Hayne Aquifer
- 4-11 Detected Organics in Sediment
- 4-12 Detected Inorganics in Surface Water
- 4-13 Detected Inorganics in Sediment
- 6-1 Conceptual Site Model

LIST OF APPENDICES

Volume 2

- A SITE SUMMARY REPORT (ESE, 1990)
- B COMPREHENSIVE SITE ASSESSMENT REPORT (LAW, 1992)
- C ADDENDUM TO REPORT OF UNDERGROUND FUEL INVESTIGATION AND COMPREHENSIVE SITE ASSESSMENT (LAW, 1993)
- D INTERIM REMEDIAL ACTION REMEDIAL INVESTIGATION (BAKER, 1994)
- E UST REPORT, FORMER MESS HALL HEATING PLANT (ATEC, 1992)
- F LEAKING UNDERGROUND STORAGE TANK SITE ASSESSMENT REPORT (LAW, 1994)
- G SHALLOW SOIL GAS AND GROUNDWATER INVESTIGATION (TRACER, 1994)
- H RI/FS TEST BORING AND WELL CONSTRUCTION RECORDS
- I RI/FS SAMPLING SUMMARY
- J SUMMARY OF PID MEASUREMENTS FROM RI/FS SOIL BORINGS
- K RI/FS CHAIN OF CUSTODY RECORDS

Volume 3

- L RI/FS FIELD WELL DEVELOPMENT RECORDS
- M RI/FS IDW MANAGEMENT AND DISPOSAL INFORMATION
- N RI/FS HYDRAULIC CONDUCTIVITY DATA
- O SUMMARY OF GROUNDWATER DATA AND AQUIFER CHARACTERISTICS AT MCB CAMP LEJEUNE
- P CRITICAL SPECIES LIST CAMP LEJEUNE ENDANGERED SPECIES AND SPECIAL - INTEREST COMMUNITIES SURVEY
- Q RESULTS OF ENGINEERING PARAMETERS
- R RI/FS FISH TISSUE STATISTICAL SUMMARIES
- S WHITE OAK RIVER BASIN REFERENCE DATA
- T RI/FS COPC SELECTION WORKSHEETS
- U RI/FS DATA AND FREQUENCY SUMMARIES
 - U.1 SURFACE SOIL ORGANICS
 - U.2 SURFACE SOIL INORGANICS
 - U.3 SUBSURFACE SOIL ORGANICS
 - U.4 SUBSURFACE SOIL INORGANICS
 - U.5 GROUNDWATER ORGANICS
 - U.6a GROUNDWATER TOTAL INORGANICS
 - U.6b GROUNDWATER DISSOLVED INORGANICS
 - U.7 SURFACE WATER ORGANICS
 - U.8 SURFACE WATER INORGANICS
 - U.9 SEDIMENT ORGANICS
 - U.10 SEDIMENT INORGANICS

LIST OF APPENDICES (Continued)

- V RI/FS STATISTICAL SUMMARIES
 - V.1 SURFACE SOIL ORGANICS
 - V.2 SURFACE SOIL INORGANICS
 - V.3 SUBSURFACE SOIL ORGANICS
 - V.4 SUBSURFACE SOIL INORGANICS
 - V.5 GROUNDWATER ORGANICS
 - V.6a GROUNDWATER TOTAL INORGANICS
 - V.6b GROUNDWATER DISSOLVED INORGANICS
 - V.7 SURFACE WATER ORGANICS
 - V.8 SURFACE WATER INORGANICS
 - V.9 SEDIMENT ORGANICS
 - V.10 SEDIMENT INORGANICS
- W CDI RISK SPREADSHEETS
- X RI/FS BIOTA POPULATION DATA
 - X.1 FISH AND CRAB SPECIES
 - X.2 BENTHIC MACROINVERTEBRATE SPECIES
- Y RI/FS FIELD DUPLICATE SUMMARIES
- Z RI/FS QA/QC SUMMARIES
- Volume 4
 - AA EVALUATION OF METALS IN GROUNDWATER
 - BB DATA VALIDATION REPORTS

LIST OF ACRONYMS AND ABBREVIATIONS

198

ABS	adsorption factor
AF	soil to skin adherence factor
AQTESOLV	Aquifer Test Solver Program
AQUIRE	Aquatic Information Retrieval Database
ARARs	Applicable or Relevant and Appropriate Requirements
ARL	Aquatic Reference Level
AST	aboveground storage tank
ASTM	American Society for Testing and Materials
AT	averaging time
ATc	averaging time carcinogen
ATnc	averaging time noncarcinogen
ATEC	ATEC Associates, Inc.
AWQC	Federal Ambient Water Quality Criteria
Baker	Baker Environmental, Inc.
BCF	bioconcentration factor
bgs	below ground surface
BI	biotoxic index
BOD	biological oxygen demand
BRA	baseline risk assessment
BTEX	benzene, toluene, ethylbenzene, xylenes
BW	body weight
CAMA	Coastal Area Management Act
CDI	chronic daily intake
CERCLA	Comprehensive Environmental Response, Compensation, and Liability
Act	
CF	conversion factor
CFR	Code of Federal Regulations
CLEAN	Comprehensive Long-Term Environmental Action Navy
CLP	Contract Laboratory Program
COPC	contaminant of potential concern
COD	chemical oxygen demand
CRAVE	Carcinogen Risk Assessment Verification Endeavor
CRQL	Contract Required Quantitation Limit
CSA	Comprehensive Site Assessment
CSF	Cancer Slope Factor
DoN	Department of the Navy
1,2-DCE	1,2-dichloroethene
DEM	Division of Environmental Management
DDE	dichlorodiphenyldichloroethylene
DDT	diphenyltrichloroethane

.

· · · · · · · · ·

ECD	electron capture detector
ED	exposure duration
EF	exposure frequency
EL	exposure level
ERA	ecological risk assessment
ER-L	Effects Range-Low
ER-M	Effects Range-Median
ESE	Environmental Science and Engineering, Inc.
ET	exposure time
FAWQC	Federal Ambient Water Quality Criteria
FFA	Federal Facilities Agreement
FFS	Focused Feasibility Study
F _i	fraction ingested from source
FID	flame ionization detector
f_{oc}	sediment particle grain size
FSAP	Field Sampling and Analysis Plan
FWS	Fish and Wildlife Service
FWQSV	Freshwater Water Quality Screening Values
gpd/ft	gallons per day per foot
gpm	gallons per minute
Н	mean species diversity
HA	health advisory
HEAST	Health Effects Assessment Summary Tables
HHAG	Human Health Assessment Group
HHRA	Human Health Risk Assessment
HI	hazard index
HO	hazard quotient
HQW	high quality water
i	hydraulic gradient
IAS	Initial Assessment Study
ICR	incremental cancer risk
ID	inside diameter
IDW	investigative derived wastes
IR	ingestion rate
IRA	interim remedial action
IRIS	Integrated Risk Information System
IRP	Installation Restoration Program
K	hydraulic conductivity
K _d	soil sorption coefficient
K _{oc}	organic carbon partition coefficient
TZ	octanol-water partition coefficient

.

2

.

•

`

.

LANTDIV	Naval Facilities Engineering Command, Atlantic Division
LAW	Law Engineering
LOAEL	lowest observed adverse effect level
LUST	leaking underground storage tank
MBI	Macroinvertebrate Biotic Index
MCAS	Marine Corps Air Station
MCB	Marine Corps Base
MCL	maximum contaminant level
mg/kg	milligram per kilogram
mg/L	milligram per liter
MF	modifying factor
MI	mobility index
ml	milliliter
mL/g	milliliters per gram
msl	mean sea level
MTBE	methyl-tertiary-butyl-ether
MW	monitoring well
	C C
NACIP	Navy Assessment and Control of Installation Pollutants
NC DEHNR	North Carolina Department of Environment, Health and Natural
Resources	-
NC DOT	North Carolina Department of Transportation
NCMFC	North Carolina Marine Fisheries Commission
NCSPCS	North Carolina State Plane Coordinate System
NCP	National Oil and Hazardous Substances Contingency Plan
NCWP	Near Coastal Waters Program
NCWOC	North Carolina Water Quality criteria
NCWOS	North Carolina Water Quality Standards
NCWRC	North Carolina Wildlife Resources Commission
N	effective porosity
NEESA	Naval Energy and Environmental Support Activity
NEP	National Estuary Program
NOAA	National Oceanic and Atmospheric Administration
NOAEL or NOEL	No observed adverse effect level
NPL	National Priorities List
NIPS	National Park Service
NSW	nutrient sensitive waters
NUS	NUS Corporation
NWI	national wetlands inventory
T 7 41 T	
O&G	oil and grease
OU	Operable Unit
~ ~	
РАН	polynuclear aromatic hydrocarbon
PC	permeability constant
PCBs	polychlorinated biphenyls

xiv

1.1. 4.2

PCE	tetrachloroethene
PEF	particulate emissions factor
PHA	public health assessment
PID	photoionization detector
POL	petroleum, oil, lubricants
ppb	parts per billion
ppm	parts per million
psi	pounds per square inch
PVC	polyvinyl chloride
pw	pumping well
QA/QC	quality assurance/quality control
QI	quotient index
RA	risk assessment
RBC	risk based concentrations
RCRA	Resource Conservation and Recovery Act
RfD	reference dose
RI/FS	remedial investigation/feasibility study
ROD	record of decision
RMC	RMC Environmental Services, Inc.
S	storativity, water solubility
SA	site assessment or surface area
SAP	Sample and Analysis Plan
SARA	Superfund Amendments and Reauthorization Act
SB	soil boring
SCS	Soil Conservation Service
SD	sediment
SMCL	Secondary Drinking Water Regulations
SQC	sediment quality criteria
SOPs	standard operating procedures
SSV	sediment screening value
SU	standard units
SVOCs	semivolatile organic compounds
SW	surface water
SWQSVs	surface water quality screening values
Т	transmissivity
TAL	target analyte list
TBC	to be considered
TCE	trichloroethene
TCL	target compound list
TCLP	toxicity characteristic leaching procedure
TDS	total dissolved solids
TEF	toxicity equivalency factor

TICa	tentatively identified compounds
TOC	total organic carbon
трн	total petroleum hydrocarbons
Tracer	Tracer Research Corporation
trans 12 DCE	trans-1 2-dichloroethene
	terrestrial reference values
	total suspended solids
155	total suspended solids
UCL	upper confidence limit
UF	uncertainty factor
μg/g	micrograms per gram
μg/L	micrograms per liter
USDI	United States Department of the Interior
USEPA	United States Environmental Protection Agency
USCS	Unified Soil Classification System
USGS	United States Geological Survey
USMC	United States Marine Corps
UST	underground storage tank
VOCs	volatile organic compounds
VP	vapor pressure
V _x	average seepage velocity
WAR	Water and Air Research, Inc.
WOE	weight of evidence
WOS	water quality standards
WOSV	water quality screening values
WC .	Wilderness Society
44.12	The the book of the second sec

DRAFT

EVALUATION OF METALS IN GROUNDWATER

MARINE CORPS BASE, CAMP LEJEUNE, NORTH CAROLINA

CONTRACT TASK ORDER 0177

JUNE 3, 1994

Prepared for:

DEPARTMENT OF THE NAVY ATLANTIC DIVISION NAVAL FACILITIES ENGINEERING COMMAND Norfolk, Virginia

Under the:

LANTDIV CLEAN Program Contract N62470-89-D-4814

Prepared by:

BAKER ENVIRONMENTAL, INC. Coraopolis, Pennsylvania

TABLE OF CONTENTS

1.0	INTRODUCTION	1
2.0	STUDY OBJECTIVES	1
3.0	SCOPE OF WORK	2
4.0	DATA ANALYSIS	3
5.0	ANALYSIS OF STUDY OBJECTIVES	8
6.0	CONCLUSIONS	10
7.0	RECOMMENDATIONS	10

FIGURES

1 Site Location	Map
-----------------	-----

- 2 Positive Detections Above Applicable Federal and State Standards for Total and Filtered Inorganic Analytes in Groundwater-Site 2
- 3 Positive Detections of Total Metals Above Federal MCLs and NCWQS in Shallow Wells-Site 78
- 4 Positive Detections of Total Metals Above Federal MCLs and NCWQS in Intermediate Wells-Site 78
- 5 Positive Detections of Total Metals Above Federal MCLs and NCWQS in Deep Wells-Site 78

TABLES

- 1 Summary of Total Metals in Shallow Wells
- 2 Comparison of Repeat Sampling in Shallow Wells
- 3 Summary of Dissolved Metals in Shallow Wells
- 4 Summary of Total Metals in Upgradient Wells
- 5 Comparison of Inorganic Subsurface Soil Concentrations in "Clean" and "Contaminated" Wells
- 6 Total Metals in Deep Monitoring Wells
- 7 Summary of Field Parameters in Shallow, Deep, and Supply Wells

1.0 INTRODUCTION

Numerous groundwater investigations have been conducted at Marine Corps Base (MCB), Camp Lejeune under the Department of the Navy (DON) Installation Restoration Program (IRP). These studies have identified elevated levels of total metals in shallow groundwater at almost every site. The degree of contamination, based on dissolved metals analysis of groundwater samples, is limited. It is believed that the presence of elevated metals are not always related to past disposal activities for several reasons, which is the basis of this study.

Currently, Records of Decision (ROD) are being prepared for Operable Units No. 1 (Sites 21, 24, and 78) and No. 5 (Site 2). Both RODs are proposing to not remediate shallow groundwater which contains elevated levels of total metals above State groundwater standards (i.e., North Carolina Water Quality Standards) and/or Federal drinking water standards (i.e., Maximum Contaminant Levels). Specifically, remediation of shallow groundwater due to elevated total metals is not cost effective, or practical, due to the following: (1) the shallow aquifer is not - used for potable supply; (2) the source of metals in groundwater cannot be correlated with soil data or previous disposal practices; (3) the extent of shallow groundwater contamination (based on total metals analysis) is widespread and in many cases undefinable, since there are no apparent contaminant plumes or patterns associated with the metals; and (4) deep groundwater, which is the source of potable water, is not significantly contaminated with metals above the standards.

2.0 STUDY OBJECTIVES

The DON/Marine Corps initiated a study on inorganics in groundwater throughout MCB Camp Lejeune to assess whether total metals in groundwater are related to disposal practices or to other factors. The overall goal of this study is to provide information that would be used in consideration of not remediating shallow groundwater at Operable Units No. 1 and No. 5, and possibly other operable units where total metals are elevated without cause. The following study objectives were identified:

- (1) Determine whether the elevated total metals detected in the shallow aquifer are related to past disposal practices, well construction factors, sampling techniques, or suspended particulates in the samples;
- (2) Determine whether total metals in shallow groundwater are elevated throughout the region or MCB Camp Lejeune;
- (3) Determine whether there is a correlation between elevated total metals in groundwater and metals in soil; and

(4) Determine whether the concentrations of total metals (i.e., low versus high) is related to shallow and deep aquifer characteristics.

3.0 SCOPE OF WORK

Groundwater and soil data from a total of 21 sites were compiled as part of the overall study. Three of the 21 sites are located outside the boundary of the base. These sites include the ABC Cleaners Superfund Site, located along Route 24 in Jacksonville, and two sites located along Highway 17 (Off-site Properties No. 1 and No. 2). The two sites along Route 17 were investigated by the DON/Marine Corps as part of a real estate survey. The other 18 sites are located throughout various portions of MCB Camp Lejeune (see Figure 1).

Information from studies conducted by Baker and other consultants were obtained to evaluate metal concentrations in groundwater. The study focused on 14 metals of potential concern to human health and the environment. Some of the information was collected under the IR Program whereas other information was obtained during other investigations (e.g., ABC Cleaners RI/FS). The following data tables were then prepared to determine why total metals are generally elevated in shallow groundwater.

- Table 1 Total Metal Concentrations in Shallow Groundwater by Site
- Table 2 -Summary of Repeat Sampling of Shallow Wells (Sites 2 and 78)
- Table 3 Dissolved Metal Concentrations in Shallow Groundwater by Site
- Table 4 Summary of Total Metal Concentrations in Upgradient Wells
- Table 5 Comparison of Subsurface Metal Concentrations in Uncontaminated and Contaminated Wells
- Table 6 Total Metal Concentrations in Deep Groundwater by Site
- Table 7 Summary of Field Parameters in Shallow Monitoring Wells, Deep Monitoring

 Wells, and Supply Wells
 Vells

The tables are presented at the end of this report.

4.0 DATA ANALYSIS

The following discussion represents an analysis of the information contained in each of the previously mentioned tables.

Table 1 (Total Metal Concentrations in Shallow Groundwater)

All of the sites had at least one (and in most cases several) metal which exceeded either State water quality standards or Federal drinking water standards. The most frequently detected metals included chromium, lead, and manganese, which were detected at almost every site above drinking water standards. Other frequently detected metals which exceeded drinking water standards included arsenic, beryllium, cadmium, and nickel.

An analysis of the data from Table 1 indicates that elevated total metals are present in _ shallow groundwater at every site, including the three sites which are located off base. The two sites which did not exhibit significant contamination include the ABC Cleaners site (only chromium exceeded the standards) and Site 48 (only manganese exceeded the standards).

Total metals detected in shallow groundwater at Site 2 exceeded State and/or Federal standards in seven of the 11 shallow monitoring wells. Manganese was the most frequently detected metal (7/11). Lead (3/11), chromium (2/11), and cadmium (1/11) were also detected above the standards,, but less frequently (see Figure 2).

With the exception of Wells 78GW03 and 78GW19, total metals were detected at Site 78 (Hadnot Point Industrial Area) above Federal MCLs or NCWQS in every shallow well (see Figure 3). The extent of elevated total metals in groundwater is widespread, encompassing approximately one square mile (or approximately 660 acres) in total area. The distribution and concentration of total metals in shallow groundwater makes it virtually impossible to identify or illustrate contaminant plumes (see Figure 3).

An analysis of the total metals results indicates the following pattern. Samples exhibiting elevated levels of lead, chromium, or other contaminants of concern, also exhibited elevated levels of other metals such as aluminum, antimony, iron, and zinc. Samples which did not exhibit elevated levels of lead, chromium, or manganese also did not exhibit elevated levels of other metals. This pattern indicates that the elevated total metals are not limited to one or two contaminants, which would be the case if a lead or chromium plume in the groundwater truly existed. In other words, if a site is impacted by a particular metal due to disposal activities (say chromium for example), then other metals such as aluminum, lead, or zinc should not be consistently elevated as in the case of samples collected from the shallow aquifer at MCB Camp Lejeune. This point is depicted in the data summary tables provided in Appendix A for Sites 2 and 78. These tables were taken from the Remedial Investigation Reports for Operable Units No. 1 and No. 5. As an example, note that sample numbers 78-MW08, 78-MW10, 78-MW11, and 78-MW12 all had elevated levels of total metals when compared to samples 78-MW09-2 and 78-MW09-3. It is clear that most of the metal concentrations in a particular sample follow a consistent pattern throughout.

Table 2 (Comparison of Repeat Sampling of Shallow Wells

Five wells from Sites 2 and 78 were randomly chosen to evaluate total metals concentrations between sampling rounds. The comparison was limited to only chromium, lead, and manganese since these contaminants were frequently detected throughout MCB Camp Lejeune. In several cases, metal concentrations were significantly different between the sampling rounds. If the shallow aquifer was impacted due to former disposal activities, a contaminant plume would be present and concentrations would not significantly deviate. The deviation in metal concentrations may indicate that sampling results are biased due to suspended particulates in the samples.

Table 3 (Dissolved Metal Concentration in Shallow Groundwater by Site)

The data base for Table 3 was limited to 12 sites since many of the previous investigations (i.e., prior to Navy CLEAN) did not analyze for dissolved metals. Nevertheless, an analysis of the 12 sites revealed that elevated levels of dissolved metals in groundwater is limited. Manganese was the most frequently detected metal above drinking water standards (10 of 12 sites exhibited elevated levels). Lead was detected at only one site (Site 21) above drinking water standards. Chromium was also detected at only one site (Site 78) above drinking water standards. No other metal was detected above the standards.

Literature searches have indicated that manganese is a naturally occurring metal in North Carolina. Therefore, the presence of manganese may not be attributable to site-related activities (Greenhorne & O'Mara, 1992).

4

An analysis of the data from Table 3 clearly shows a significant reduction in metal concentrations when compared to Table 1 (total metals in shallow groundwater). One possible reason for this reduction is that suspended solids or particles are not being introduced into the analysis of the sample due to filtering. A second possibility is that the metals are not significantly present in a dissolved state in shallow groundwater due to the species of metals under site conditions. It should be noted that calcium and sodium did not exhibit such a pattern since the salts of these metals are more soluble in water. For example, the concentrations of total calcium and total sodium versus dissolved calcium and dissolved sodium are similar and are not affected by the removal of the particulates during filtering. The fact that these salts do not exhibit the pattern that the other metals show supports the possibility that total metal concentrations are influenced by particulates in the sample.

Table 4 (Total Metals in Upgradient Shallow Wells)

The data base for Table 4 consists of groundwater results from 14 upgradient shallow monitoring wells (i.e., one well per site). These wells were installed to determine baseline groundwater quality to which on-site groundwater conditions could be compared. In some cases, the upgradient wells were located in areas where other base activities may have influenced groundwater quality.

The analysis of this data shows that manganese was the most frequently detected metal above Federal or State standards in upgradient shallow wells. Manganese was detected in 7 of the 14 upgradient wells above drinking water standards. Chromium and lead were also frequently detected above drinking water standards in upgradient (background) wells. These contaminants were detected in 6 of the 14 upgradient wells. At Site 2, samples collected from an upgradient well (2GW9) exhibited elevated levels of chromium (83 μ /l), lead (27.2 μ /l) and manganese (747 μ /l). At Site 78, samples collected from upgradient wells 96W4 and 78GW26 did not exhibit elevated levels of total metals. The concentration range for metals detected above NC WQS and/of Federal MCLs in upgradient wells is provided below:

- beryllium (ND-46.5 μ /l)
- cadmium (ND-10 µ/l)
- chromium (ND-198 µ/l)
- lead (ND-78.8 μ/l)
- manganese (ND-747 µ/l)
- mercury (ND-1.6J μ/l)

Based on the above range representing upgradient wells, none of the on-site wells at Site 2 exhibited total metals above the maximum background concentrations. However, at Site 78, lead and chromium were detected above the maximum background in several on-site wells.

An analysis of the data from Table 4 indicates that shallow groundwater upgradient of some sites contains total metals above drinking water standards. A comparison of Table 4 data against Table 1 data indicates that shallow groundwater samples from upgradient wells are less contaminated than samples collected from on-site monitoring wells. However, it should be noted that the data base for Table 4 consists of only 14 wells whereas the data base for Table 1 consists of over 130 wells. Therefore, to assume that upgradient groundwater quality is better than on-site groundwater quality may not be justified due to the different data bases.

<u>Table 5 (Comparison of Subsurface Metal Concentrations in Uncontaminated and</u> <u>Contaminated Wells)</u>

The purpose of this table is to determine whether metal concentrations in soils correlate with the elevated levels of metals in shallow groundwater.

To evaluate this, metals in subsurface soils, representing an area of groundwater contamination, were compared to metals in subsurface soil in areas which did not exhibit groundwater contamination. If the elevated total metals in shallow groundwater are present due to former disposal activities, subsurface metals in soil representing an area of groundwater contamination would be expected to be elevated or higher than metals in subsurface soil representing a non-contaminated area. This evaluation assumes that the well exhibiting elevated total metals is within a source area and that the soil sample is representative of soil impacted by metal contamination.

As shown on Table 5, there is no clear pattern or correlation which indicates that elevated total metals are due to soil contamination. Note that in many cases, the concentration of metals which represent "non-contaminated" areas are greater than the metals which represent "contaminated" areas. Also note that the metals in subsurface soil are within or close to background subsurface metal concentrations. Therefore, this supports the possibility that in many cases at MCB Camp Lejeune, the elevated total metals in shallow groundwater cannot be attributable to a source or to past disposal practices.

Table 6 (Total Metals in Deep Monitoring Wells)

Table 6 presents total metal concentrations in deep groundwater for each site. The data base is limited to only 8 sites. Metal concentrations in supply wells were also included for comparison purposes.

As shown on Table 6, total metals in deep groundwater are below drinking water standards with a few exceptions. Arsenic and cadmium were detected above the standards in one deep monitoring well at Site 78 (see Figure 4). Manganese was detected in deep groundwater at three sites and a few of the supply wells. Lead was detected in one supply well at 16 μ /l, which is slightly above the drinking water standard of 15 μ /l.

Elevated total metals are not widespread in deep groundwater for two possible reasons. First, most metals are not very mobile in the environment. Second, deep groundwater samples may not have significant amounts of suspended particulates due to different geologic conditions. Soils in the deeper aquifer are more compacted and consist primarily of calcareous sands, clays, and limestone fragments. Soils in the shallow aquifer are loosely compacted and consist primarily of fine-grained sands, silts, and clays. This classification may support the possibility that suspended solids are collected during sampling, thereby influencing the analysis for total metals.

Table 7 (Summary of Field Parameters in Shallow, Deep, and Supply Wells)

Table 7 provides a range of pH and specific conductivity values representative of shallow and deep groundwater. In general, lower pH values were noted more often in shallow wells than in deep wells (including the supply wells). This condition may influence the leachability and speciation of metals in groundwater.

Deep groundwater usually exhibited higher specific conductivity values. High specific conductivity values are representative of high dissolved conditions. The fact that deep groundwater generally exhibited higher specific conductivity values indicates that most of the metals, if present, are in a dissolved state. The high specific conductivity values could also indicate less suspended particulates due to the geologic conditions of the deep aquifer. The lower specific conductivity values observed in shallow wells indicates that the metals in the shallow aquifer are not in a dissolved state. This also supports the possibility that suspended particulates in the shallow aquifer are influencing the analysis of total metals.

7

5.0 ANALYSIS OF THE STUDY OBJECTIVES

Each of the objectives identified for this study are analyzed below based on the information collected.

<u>Objective No. 1 (Determine whether the elevated total metals in the shallow aquifer are</u> related to past disposal practices, well construction factors, sampling techniques, or suspended particulates in the samples)

Based on the analysis of information provided in Tables 1 through 7 and Appendix A, it appears that suspended particulates in groundwater samples could influence the concentration of total metals in groundwater. Well construction factors and sampling techniques are probably not a significant factor since the data base is representative of data obtained by Baker, ESE (Site 28 and 30), Roy F. Weston (ABC Cleaners), and Halliburton NUS (Site 7). No particular pattern was noted between sites which Baker obtained the samples versus sites in which other consultants obtained the data. Sampling methods were also considered. For Sites 63 and 65 for example, samples were collected with a bailer. At Sites 2 and 78, samples were collected with a low flow pump. All four sites exhibited elevated levels of total metals in groundwater samples. In addition, due to the fact that deep groundwater quality is not significantly impacted with metals indicates that well construction or sampling techniques are probably not factors related to elevated total metals in groundwater.

With respect to past disposal practices, Table 5 clearly shows that soil concentrations do not correlate with elevated total metals in groundwater. Based on this analysis, and on many of the sites previously investigated, the source of total metals in groundwater cannot be attributable to soil contamination or disposal practices in many cases. This is based on both the history of the site as well as the analytical soil results. In some cases, total metals were detected at elevated levels even when the site history did not correlate with the contaminants found. For example, Sites 2 and 21 have a history of pesticide storage and handling, and there are no known disposal areas (i.e., buried debris) within the site boundary. Nevertheless, both of these sites exhibited several metals above drinking water standards that would not be expected to be present at high concentrations based on the historical use of the site. These metals included lead, chromium, beryllium, cadmium, and manganese.

<u>Objective No. 2 (Determine whether total metals in shallow groundwater are elevated</u> throughout the region or MCB Camp Lejeune)

Based on groundwater data obtained from both upgradient wells and off base wells, total metals were detected above drinking water standards in shallow groundwater in areas that would not be influenced by former disposal activities at the sites. Given that some of the upgradient wells are contaminated, it is apparent that total metals in shallow groundwater are elevated in certain areas of the base outside of the influence of site-related disposal activities. However, it is unknown whether the shallow aquifer upgradient of the sites is contaminated due to other base-related activities or whether the levels in groundwater samples are also elevated due to the influence of suspended fines in the samples.

<u>Objective No. 3 (Determine whether there is a correlation between elevated total metals in</u> groundwater and metals in soil)

An evaluation of the data presented in Table 5 shows that metals in soil samples collected in areas of groundwater contamination are not elevated when compared to metals in soil samples collected in areas that did not exhibit groundwater contamination. This supports the possibility that in many cases, elevated levels of total metals in shallow groundwater are not related to the disposal history at the site. As previously mentioned, sites which did not exhibit soil contamination (when compared to background soil levels) or did not have a history of disposal indicative of metals contamination still exhibited elevated levels of total metals in soil and total metals in groundwater, then the possibility exists that the elevated total metals in groundwater are biased high due to suspended particulates.

<u>Objective No. 4 (Determine whether the concentrations of total metals in groundwater is</u> related to shallow and deep aquifer characteristics)

There is some evidence that the geologic conditions of the shallow and deep aquifers influence the amount of total metals detected in groundwater samples. The fact that the deep aquifer generally exhibited higher specific conductivity values indicates that there is more dissolved constituents in the deep aquifer when compared to the shallow aquifer. This was evident when comparing Table 1 (total metals in shallow groundwater) to Table 6 (total metals in deep groundwater). Table 6 did not indicate significant levels of total metals in deep groundwater throughout MCB Camp Lejeune. The geologic conditions of the shallow aquifer would tend to result in samples that may contain suspended particulates. The suspended particulates could influence the total metals concentrations in the samples.

th, si≩a

6.0 CONCLUSIONS

- 1. Elevated levels of total metals in the shallow aquifer are probably influenced to some degree by the geologic conditions of the site.
- There is no correlation between metal levels in soil and total metals in groundwater. Therefore, elevated total metals in groundwater cannot be attributable to soil contamination of past disposal practices.
- 3. Elevated levels of total metals in the shallow aquifer may be biased high due to suspended particulates in the samples.
- 4. Dissolved metals in groundwater were generally below Federal MCLs and NC WQS and therefore, do not present a significant problem at MCB Camp Lejeune.
- 5. Total and dissolved metal concentrations in the Castle Hayne aquifer were generally below drinking water standards and therefore, do not present a significant problem at MCB Camp Lejeune.
- 6. The presence of manganese in shallow and deep groundwater may be due to naturally occurring geologic conditions.

7.0 RECOMMENDATIONS

- 1. Remediation of total metals in the shallow aquifer at Operable Units 1 and 5 is not recommended based on the following:
 - Elevated metals in groundwater at both operable units does not appear to be related to soil contamination or past disposal practices;
 - The distribution of total metals in groundwater is not characteristic of a plume that would be present due to a source of contamination;
 - Remediation of total metals would not be practical from an engineering or cost standpoint; and
 - Currently, there is no human or environmental exposure to shallow groundwater.
- 2. Additional background wells should be installed at all sites in order to provide a baseline for comparing on-site groundwater quality.

. -

Tables

TABLE 1 TOTAL METALS BY SITE SHALLOW MONITORING WELLS MCB, CAMP LEJEUNE, NORTH CAROLINA

Site Number Units	NCWQS ug/L	FEDERAL MCL ug/L	Site 1 ug/L	Site 2 ug/L	Site 6 ug/L	Site 7 ug/L	Site 9 ug/L	Site 21 ug/L	Site 24 ug/L	Site 28 ug/L	Site 30 ug/L	Site 41 ug/L	Site 43 ug/L	Site 44 ug/L
Arsenic	50	50	7.2 - 57.4	2.2 - 23.6	ND • 23.3	ND - 43.4J	ND	ND - 101	ND - 116J	5.4 - 13J	6.4 - 12J	2.4 - 36.3	ND - 23.4	ND - 570
Barium	2000	2000	335 - 833	46 - 1420	ND - 1020	427 - 641	ND - 1060	ND - 647	ND - 1120	78.8 - 576	60.1 - 396	55.2 - 999	220 - 745	315-3180
Beryllium	NE	4	2.7 J - 43.4	1 - 3	ND - 7.5	ND - 10.3J	ND	ND - 8	ND - 19	ND - 1.2)	ND - 2.4	0.80 - 42.8	1.5 - 4.2	1.4 - 36.6
Cadmium	5	5	ND - 12.9	7	ND	ND	ND	ND	ND - 12	3.3J - 17.3J	ND - 10.7J	3.2 - 110	ND - 6.9	ND - 32
Calcium	NA	NA	8850 - 726000	5710 - 450000	5430 - 64900	5050 - 51300	16100 - 90700	6130J - 63000J	ND - 151000	20200 - 160000	1730 - 11900	8750 - 828000	10300 - 91900	2430 - 191000
Chromium	50	100	172 - 627	11 - 117	ND - 201	47.8 - 220	ND - 214	ND - 348J	19 - 316	9.0J - 140	42.8 - 106J	10.5 - 244	161 - 249	126 - 895
Copper	1000	1300	44.6 - 117	3 - 23	ND - 175	17.7 - 36.4	ND - 39.7	ND - 84	ND - 52	18.8J - 75.4	15.8 - 42.5	16.3 - 1030	64.2 - 104	28.6 - 313
Lead	15	15	40.81 - 1761	2.7 - 44.8	ND - 200	23 - 37.3	ND - 127	ND - 2000J	5.1 - 89	20.3J - 234J	7.7J - 115J	4.8 - 9340	16.5 - 28.8	15.8 - 508
Manganese	50	50 (1)	125 - 1720	21 - 190	ND - 362	56.9 - 220	ND - 91.3	59 - 276J	29 - 518	82.2 - 304	78.5 - 578	56.6 - 2110	72.6 - 297	88 - 1730
Mercury	1.1	2	ND - 1.2J	ND	ND46	0.2 - 0.36	ND - 1.4	ND - 2.4J	ND - 3.2	ND - 1.4J	0.88J - 0.9J	0.13 - 0.92	ND - 0.24	ND - 1.1
Nickel	100	100	28.5 - 426	ND	ND - 41.9	ND	ND	ND - 123	ND - 140	ND - 59.8	17.1J - 52.6J	28.8 - 137	20.5 - 143	21.9 - 486
Sodium	NA	NA	9090 - 19000	ND - 103000	1110 - 68700	7040 - 156000	1390 - 4170	7950 - 15700	5230 - 19200	9480 - 74700	5320 - 8100	2080 - 40200	9160 - 22100	4060 - 12600
Vanadium	NE	NE	214 - 640	9 - 184	ND - 330	37.8 - 423	ND - 175	ND - 419	ND - 408	6.1 - 164	57 - 101	20.4 - 244	122 - 233	184 - 759
Zine	2100	5000 (1)	ND - 1110	6 - 146	ND - 1620	83.6 - 133	ND - 118	27J - 487J	20 - 650	ND	79.2 - 104	25.7 - 5180	19 J - 661J	87.3 - 2800J

Site Number Units	Site 48 ug/L	Site 63 ug/L	Site 65 ug/L	Site 69 ug/L	Site 78 ug/L	Site 82 ug/L	ABC Cleaners ug/L	Offsite Property #1 ug/L	Offsite Property #2 ug/L
Arsenic	ND	ND - 23.4	ND - 308	2.9 - 29.0	ND - 405J	ND - 67.8	ND - 12	10.3 - 160	ND
Banum	18 - 51.3	56.1 - 5410	105 - 638	46.5 - 850	ND - 1250	ND - 540	35 - 220	ND - 468	ND
Beryllium	ND	ND - 3.1	ND	1.3 - 10.6	ND - 19	ND	NA	ND - 8.5	ND
Cadmium	2.2 • 3.3	ND	ND	2.4 - 11.4	ND - 21	ND	NA	ND	ND
Calcium	30600 - 115000	2830 - 24300	33300 - 181000	2010 - 38700	ND - 642000	6580 - 60800	790 - 16000	ND - 22800	ND - 5200
Chromium	5.8 - 17.5	4.4 - 134	50.1 - 364	15.1 - 159	ND - 858J	ND - 174	ND - 57	52.8 - 636	ND - 94
Соррет	3.1 - 13.5	10.7 - 126	28.2 - 127	16.2 - 70.8	ND - 699	ND - 29.3	ND - 89	ND - 140	ND
Lead	ND	4.3 J - 369	19.1 - 132	7.8 - 188	ND - 360J	ND - 89	ND - 10	12.3 - 345	6.3 - 62.3
Manganese	38.1 - 585	50.3 - 1020	56.2 - 474	13.0 - 912	26 - 714	26.9 - 283	4 - 44	56 - 973	ND - 60.1
Mercury	0.04 - 0.09	ND - 0.20	ND - 0.29	0.10 - 0.94	ND - 1.5	ND - 0.66	NA	DM	ND
Nickel	ND	19.8 - 54.2	19.4 - 84.3	13.6 - 99.8	ND - 234	ND - 34.6	ND - 77	40.2 - 380	ND
Sodium	5750 - 8760	3150 - 7100	3850 - 11700	4790 - 41300	ND - 42500	5670 - 36500	5800 - 33000	ND - 9390	ND - 7630
Vanadium	3.4 - 12.8	7.9 - 163	59.8 - 433	17.3 - 210	ND - 1700	ND - 256	ND - 45	70 - 739	ND - 64.7
Zinc	ND - 30.3	58.5J - 1110J	148J - 406J	36.2 - 12100	6J - 967J	ND - 204	14 - 220	ND - 736	ND - 40.8

> NOTES: J - Value is estimated. JB - Value is estimated below the CRDL, but greater than the IDL. NE - Not established. NA - Not analyzed. ND - Not detected.

- NCWQS North Carolina Water Quality Standard MCL - Maximum Contaminant Level
- (1) Secondary MCL

TABLE1.XLS /Page 1 of 1

8

Well	2GW01		2G'	W03	2G	W06	2G'	₩08	2GW09		
Date	5/1993 3/1994		5/1993 3/1994		5/1993	3/1994	5/1993	3/1994	5/1993	3/1994	
Chromium	18	ND	11	ND	15	ND	ND	ND	25	83	
Lead	15.5 J	ND	3.5 J	ND	6.7 J	ND	ND	3.4	27.2 J	23.6	
Manganese	55	47	21	ND	79	140	53	415	290	747	

TABLE 2 COMPARISON OF REPEAT SAMPLING OF SHALLOW WELLS MCB, CAMP LEJEUNE, NORTH CAROLINA

Well	Vell 78GW05		78G	W08	78G	W15	78G	W16	78GW19		
Date	1/1991	4/1994	1/1991	4/1994	1/1991	4/1994	1/1991	4/1994	1/1991	4/1994	
Chromium	ND	17 J	91.8	491 J	21.4	215 J	209	353 J	13.8	ND	
Lead	13.6	13.1 J	54.1	131 J	16.6	53	100	224	31.7	8.3	
Manganese	162	161 J	46.5	213 J	18.3	115	98.3	150	79	26	

NOTES:

J - Value is estimated.. ND - Not detected.

TABLE2.XLS Page 1 of 1

TABLE 3 DISSOLVED METALS BY SITE SHALLOW MONITORING WELLS MCB, CAMP LEJEUNE, NORTH CAROLINA

Site Number Units	NCWQS ∎¢/L	FEDERAL MCL ug/L	Site 1 ug/L	Site 2 ug/L	Site 6 ng/L	Site 7 ng/1.	Site 9 2g/L	Site 21 mg/L	Site 24 ug/L	Site 28 ng/L	Stie 30 ug/L	Stie 41 wg/L	Site 43 ng/L	Site 44 ng/L
Amenic	50	50	NA	2.2 - 7.1	ND	NA	ND	ND - 10.6	ND - 16.3	NA	NA	2.2 - 4.7	NA	NA
Barium	2000	2000	NA	25 - 149	ND	NA	ND	ND	ND	NA	NA	12.4 - 451	NA	NA
Beryllium	NE	4	NA	1	ND	NA	ND	ND	ND	NA	NA	0.80 - 3.2	NA	NA
Cadmium	5	5	NA	ND	ND	NA	ND	ND-5	ND	NA	NA	3.2 - 4.2	NA	NA
Calcium	NA	NA	NA	5800 - 441000	6230 - 57400	NA	15800 - 82400	35900	ND - 113000	NA	NA	4710 - 138000	NA	NA
Oronium	50	100	NA	10	ND	NA	ND	ND	ND	NA	NA	8.3 - 9.6	NA	NA
Corner	1000	1300	NA	2-9	ND	NA	ND	ND	ND	NA	NA	16.3 - 23.9	NA	NA
Lead	15	15	NA	2.1	ND	NA	ND	ND - 94	ND	NA	NA	1.0	NA	NA
Manganese	50	50 (1)	NA	17 - 129	ND - 92.7	NA	ND	40 - 134	ND - 320	NA	NA	7.1 - 521	NA	NA
Mercury	1.1	2	NA	ND	ND	NA	ND	ND	ND - 0.5	NA	NA	0.13 - 0.20	NA	NA
Nickel	100	100	NA	ND	ND	NA	ND	ND	ND - 57	NA	NA	28.8 - 31.2	NA	NA
Sodium	NA	NA	NA	ND - 103000	1420 - 70500	NA	1280 - 3860	16200	ND - 183000	NA	NA	2500 - 34200	NA	NA
Vanadium	NE	NE	NA	43	ND	NA	ND	ND	ND	NA	NA	20.4	NA	NA
Zinc	2100	5000 (1)	NA	8-35	ND-350	NA	ND	6B - 50	ND - 437	NA	NA	10.6 - 125	NA	NA

Site Number Units	Site 48 ≣g/L	Site 63 ng/L	Site 65 ug/L	Site 69 ug/L	Site 78 ug/L	Site 82 ug/L	ABC Cleaners ug/L	Offisite Property #1 ug/L	Offstte Property #2 ug/L	
Amenic	ND	NA	NA	2.9	ND - 21.6	ND	NA	ND • 18.8	ND	NOTES:
Barium	16.8 - 27.6	NA	NA	13.7 - 35.8	ND	ND	NA	DND	ND	J - Value is estimated.
Beryllium	ND	NA	NA	1.3	ND	ND	NA	ND	ND	JB - Value is estimated
Cadmium	ND-3.1	NA	NA	2.4	ND	ND	NA	ND	ND	NA - Not analyzed
Calcium	72600 - 80700	NA	NA	764 - 10600	ND - 296000	15200 - 58500	NA	ND - 7710	ND	ND - Not detected.
Chromium	D	NA	NA	7.2	ND - 59	ND	NA	ND - 30.0	ND	NCWQS - North Caroli
Copper	2.6 - 7.6	NA	NA	16.2	ND - 121	ND	NA	ND - 10.7	ND	MCL - Maximum Cont
Lead	DND	NA	NA	1	ND - 17.2	ND	NA	ND-15.8	ND	(I) · Secondary MCL
Manganese	39.7 - 539	NA	NA	8.5 - 139	ND - 152	21 - 127	NA	ND - 63.8	ND - 21.3	
Mercury	0.05 - 0.09	NA	NA	0.1	ND - 0.6	ND	NA	ND	ND	
Nickel	ND	NA	NA	13.6	ND	ND	NA	ND	ND	
Sodium	6430 - 8920	NA	NA	5170 - 41100	ND - 42200	5980 - 36000	NA	ND-9540	ND-6750	
Vanadium	ND	NA	NA	16.6	ND	ND	NA	DM	. ND	1
Zinc	ND	NA	NA	7.0 - 7670	ND - 58	ND - 119	NA	ND - 468	ND - 222	J

. . . below the CRDL, but greater than the IDL.

lina Water Quality Standard taminant Level

٢

TABLE3.XLS/Page 1 of 1

i.

TABLE 4
SUMMARY OF TOTAL METALS IN UPGRADIENT WELLS
SHALLOW MONITORING WELLS
MCB, CAMP LEJEUNE, NORTH CAROLINA

- -

...

			Upgradient of Site	Upgradient of Sites	Upgradient of Site									
		FEDERAL	1	2	6	7	,	21 and 78	24	28	30	41	43	44
Well Number	NCWQS	MCL	1GW06	2GW09	6BP6S	7GW03	9GW4S	78GW26	24GW07	28GW04		41GW05		
Units	ng/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	≡g/L		ug/L		
Amenic	50	50	17.8 J	12.9	ND	ND	ND	ND	3.7 J	7.4 J	L	13.1	- n	~ ~ _
Barium	2000	2000	548	328	257	428	71.3	ND	ND	\$76	£	55.7	£	ii
Bervilium	NE	4	3.2 J	3	ND	ND	ND	ND	ND	9.3 J	s	1.6	s –	L S L
Cadmium	5	5	ND	ND	ND	ND	ND	not reported	ND	3.3 J	_ 2 _	10	- 3 -	- S -
Chromium	50	100	193	75	198	124	ND	13	37	122	_ × _	54.4	<u> </u>	×
Correr	1000	1300	64.8	25	35.6	36.4	ND	ND	ND	20.7 J	L_ i _	27	<u> </u>	
Lead	15	15	78.8 J	27.2	64.4	30.3 J	ND	9	11.4	22.4 J	iš	23.7	- . .	ii
Manganese	50	50 (1)	202	747	84.5	56.9 J	ND	ND	39	206	<u> </u>	203	<u>E</u>	<u> </u>
Mercury	1.1	2	1.6 J	ND	ND	0.36	ND	ND	ND	ND	L ⁸⁸	0.16	&	b8
Nickel	100	100	51.6	ND	ND	ND	ND	ND	ND	59.8		38	<u> </u>	
Vanadium	NE	NE	214	86	209	152	ND	149	64	85.3	∟ ž -	38.1	∟ ž -	– 2 –
Zinc	2100	5000 (1)	ND	103	56.6	86.4 J	ND	68.1	41	ND		173	l	1

	Upgradient of Stte 48	Upgradient of Site 63	Upgradient of Site 65	Upgradient of Site 69	Upgradient of Site 78	Upgradient of Site 82	Upgradient of ABC Cleaners	Upgradient of Offsite Property #1	Upgradient of Offsite Property #2
Well Number	48GW1			69GW07	9GW04	6MW3S	MW-\$01		
Units	ug/L			ug/L	ug/L	ug/L	ug/L		
Arsenic	ND			2.9	ND	ND	ND		L
Barium	29.4 J	- <u>s</u> -	5	46.5	ND	ND	35	<u> </u>	te
Bervilium	ND	- ii -	- si -	1.3	ND	ND	NA	ⁱ S	
Cadmium	2.5 J			2.4	ND	ND	NA		
Chromium	ND	⊢ š −	- <u>s</u> -	15.8	ND	ND	ND	≩	_ ≩ _
Cooper	ND		1	16.2	ND	ND	ND		t
Lead	ND	<u> </u>	lie –	7.8	ND	ND	3	lie –	iii —
Manganese	70.6	p		13	ND	ND	10		
Mercury	ND	18	180	0.1	ND	ND	NA	68	80
Nickel	ND	- 5 -		13.6	ND	ND	ND		5 [_]
Vanadium	3.4 J	<u> </u>		17.3	ND	ND	9	2	<u> </u>
Zinc	ND	- ~ -	- ~ -	36.2	ND	ND	23	~~~ <i>/</i> ~	—

NOTES:

J - Value is estimated. JB - Value is estimated below the CRDL, but greater than the IDL.

NE - Not established. NA - Not analyzed.

2

ı.

ND - Not detected. NCWQS - North Carolina Water Quality Standard MCL - Maximum Contaminant Level

(1) - Secondary MCL

TABLE 5
COMPARISON OF INORGANIC SUBSURFACE SOIL CONCENTRATIONS IN "CLEAN" AND "CONTAMINATED" WELLS
MCB, CAMP LEJEUNE, NORTH CAROLINA

	Camp Lejeune Background	amp Lejeune Background Site 1			Site 2	1	Site 6		Site 7		Site 9		Site 21
	Subsurface Soil Data	"Clean"	"Contaminated"	"Clean"	"Contaminated"	"Clean"	"Contaminated"	"Clean"	"Contaminated"	"Clean"	"Contaminated"	"Clean"	"Contaminated"
Units	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
Well Number		-	-	2GW07	2GW09	6GW18	6GW15	7GW03	7GW02	9GW5	9GW1	21GW03	21GW02
Soil Sample Number		-	-	2-GW07-01	2 - GW09-02	6-GW18-0303	6-GW15-03	GW03-002	GW02-7595	9-GW5-03	9-SB35-03	21-GW03	21-GW02
Arsenic	0.03 - 0.47	NA	NA	1. 7 J	ND	ND	ND	1.5	ND	ND	ND	ND	0.55 J
Barium	2-11	NA	NA	12.5 J	ND	ND	ND	6.6	71	ND	ND	ND	4,4 5
Beryllium	0.03 - 0.23	NA	NA	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Cadmium	0.17 • 1.2	NA	NA	ND	ND	ND	ND	13	4.5	DM	סא	ND	ND
Chromium	2-9	NA	NA	10.9 J	4.6	םא	3.6	5.2	6	ND	263	15.2	3.2.7
Copper	0.47 - 2	NA	NA	0.97 J	ND	ND	ND	ND	ND	ND		ND	ND
Lead	1 - 12	NA	NA .	8 J	4.3	3.3 J	3.2	2.5	34.4	1.6	83	7.1	6.91
Manganese	0.40 - \$	NA	NA	4.3 J	4.1	ND	1.8 B	3	11.54.444	ND	3.7 J	9.8	3.43
Mercury	0.01 - 0.11	NA	NA	0.3 J	ND	ND	ND	10.13	0,48	ND	ND	ND	ND
Nickel	0.70 - 5.0	NA	NA	ND	ND	DM	ND	3.4	11.8	ND	ND	ND	ND
Vanadium	0.75 - 13	NA	NA	13.8 J	ND	ND	2.9 B	5.5	4.5	ND	ND	15.5	4.4 J
7 inc	. 0.40 - 12	NA	NA	ND	ND	ND	ND	1.3	ND	ND	6.1 J	5.7	3 J

NOTES:

and the second state

Shaded area indicates inorganic which exceeded a MCL and/or NCWQS in groundwater sample.

J - Value is estimated.

JB - Value is estimated below the CRDL, but greater than the IDL.

NA - No available wells to compare OR compound was not analyzed.

ND - Not detected.

NCWQS - North Carolina Water Quality Standard

MCL - Maximum Contaminant Level

(1) - Secondary MCL

TABLES XLS / Page 1 of 4

TABLE 5
COMPARISON OF INORGANIC SUBSURFACE SOIL CONCENTRATIONS IN "CLEAN" AND "CONTAMINATED" WELLS
MCB, CAMP LEJEUNE, NORTH CAROLINA

	Site 24		Site 28		Site 30		Site 41		Site 43		Site 44	
1	"Clean"	"Contaminated"	"Clean"	"Contaminated"	"Clean"	"Contaminated"	"Clean"	"Contaminated"	"Clean"	"Contaminated"	"Clean"	"Contaminated"
Units	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
Well Number	24GW10	24GW02	-	-	-	-	41GW04	41-GW11	43GW01	43GW02	44GW02	44GW01
Soll Sample Number	24-GW10	24-BDA-SB09	-	-	-	-	41-GW04-DW	41-GW11-01	43-GW01-00	43-GW02-00	44-GW02-035	
Amenic	ND	ND	NA	NA	NA	NA	0.51	1.6	ND	ND	ND	1.7
Barium	ND	ND	NA	NA	NA	NA	9.4	22.6	ND	ND	D	17.9
Beryllium	ND	ND	NA	NA	NA	NA	0.18	0.18	ND	ND	ND	ND
Cadmium	ND	ND	NA	NA	NA	NA	0.73	0.73	8.3	ND	ND	ND
Chromium	11.2	91	NA	NA	NA	NA	3.6	11.2	8.3	6.7	5.63	101
Copper	ND	ND	NA	NA	NA	NA	3.7	22.5	3.4	ND	6.2 J	25.4 J
Lead	4.6 J	621	NA	NA	NA	NA	4.8	110	9.8	6.1	55	10.7
Manganese	4.7	8.4 J	NA	NA	NA	NA	3.7	75.9	31.2	8.2	3.5	20.4
Marcury	ND	ND	NA	NA	NA	NA	0.06	0.31	ND	ND	ND	ND
Nickel	ND	ND	NA	NA	NA	NA	6.6	6.6	7.6	7.3	3.1	5.4
Vanadium	18.4	10	NA	NA	NA	NA	6.8	9.3	7.2	5.8	<u>s</u>	14.7
Zinc	ND	7.8	NA	NA	NA	NA	7.7	130	20.1	3	3.2	34.9

NOTES:

1.1.1

Shaded area indicates inorganic which exceeded a MCL and/or NCWQS in groundwater sample.

J - Value is estimated.

JB - Value is estimated below the CRDL, but greater than the IDL.

NA - No available wells to compare OR compound was not analyzed.

ND - Not detected.

NCWQS - North Carolina Water Quality Standard MCL - Maximum Contaminant Level (1) - Secondary MCL
TABLE 5	
COMPARISON OF INORGANIC SUBSURFACE SOIL CONCENTRATIONS IN "CLEAN" AND "CONTAMINATED" WE	LLS
MCB, CAMP LEJEUNE, NORTH CAROLINA	

<u>,</u>___

	s	ite 48	S	ite 63	8	itte 65	8	Site 69		Site 78		Site 82
	"Clean"	"Contaminated"	"Clean"	"Contaminated"	"Clean"	"Contaminated"	"Clean"	"Contaminated"	"Clean"	"Contaminated"	"Clean"	"Contaminated"
Units	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
Well Number	48-GW01	48-GW03	63MW03	63MW02	65MW03	65MW02	69-GW11	69-GW03	78GW34	78GW24-1	6-GW28	82MW3
Soil Sample Number	48-GW1A-01	48-C3-03	63-MW03-04	63-MW02-06	65-MW03-11	65-MW02-06	69-GW11-04	69-CSA-SB23-00	78-GW34	78-B903-SB03	6-GW28-09	6-GW27D-06
Arsenic	1.3	0.77 J	ND	ND	ND	10	0.68	0.63	ND	ND	0.31	15.9
Barium	21.1	15	ND	D	3.4	6.8	5.6	3	DN	ND	ND	ND
Beryllium_	0.2	0.19	DN	ND	ND	ND	0.3	0.28	ND	ND	ND	ND
Cadmium	1.4	1.8 J	ND	ND	NA	NA	0.56	0.52	ND	ND	DN_	ND
Chromium	18.2	18.6	7.7	ND	3.9	5,7	6.8	1.7	18.5	91	2.6	3
Copper	3.5	3.8	ND	ND	1.5	3.1	3,8	3.5	3.4 B	ND	DM	ND
Lcad	32.3	14.3	4.2	2.6	1.7	3,7	43	1.1	4,5 J	2.6 J	2.7	4.3
Manganese	411	7	4.9	18.8	3.5 ·	6.9	4	12	9.2	ND	DM	ND
Mercury	ND	ND	ND	ND	NA	NA	0.06	0.05	ND	ND	ND	ND
Nickel	2.2	1.9 J	ND	ND	ND	ND	3.2	3	ND	ND	ND	ND
Vanadium	28.3	20.8 J	ND	ND	4.4	3	4.4	3.6	18.7	19.2	ND	ND
Zinc	ND	ND	ND	ND	2.7	5	3.2	1.5	7.9	ND	_DM	ND

۰.

NOTES:

Shaded area indicates inorganic which exceeded a MCL and/or NCWQS in groundwater sample.

J - Value is estimated.

JB - Value is estimated below the CRDL, but greater than the IDL.

NA - No available wells to compare OR compound was not analyzed.

ND - Not detected.

NCWQS - North Carolina Water Quality Standard

MCL - Maximum Contaminant Level (1) - Secondary MCL

TABLES XLS / Page 3 of 4

TABLE 5 COMPARISON OF INORGANIC SUBSURFACE SOIL CONCENTRATIONS IN "CLEAN" AND "CONTAMINATED" WELLS MCB, CAMP LEJEUNE, NORTH CAROLINA

	AI	3C Cleaners	Offs	te Property #1	Offst	te Property #2
Units	"Clean" mg/kg	"Contaminated" mg/kg	"Clean" mg/kg	"Contaminated" mg/kg	"Clean" mg/kg	"Contaminated" mg/kg
Well Number		-	-	-	+	-
Soil Sample Number	-	1	-			
Arsenic	NA	NA	NA	NA	NA	NA
Barium	NA	NA	NA	NA	NA	NA
Beryllium	NA	NA	NA	NA	NA	NA
Cadmium	NA	NA	NA	NA	NA	NA
Chromium	NA	NA	NA	NA	NA	NA
Copper	NA	NA	NA	NA	NA	NA
Lead	NA	NA	NA	NA	NA	NA
Manganese	NA	NA	NA	NA	NA	NA
Mercury	NA	NA	NA	NA	NA	NA
Nickel	NA	NA	NA	NA	NA	NA
Vanadium	NA	NA	NA	NA	NA	NA
Zioc	NA	NA	NA	NA	NA	NA

NOTES:

Shaded area indicates inorganic which exceeded a MCL and/or NCWQS in groundwater sample.

J - Value is estimated.

JB . Value is estimated below the CRDL, but greater than the IDL.

NA - No available wells to compare OR compound was not analyzed.

ND - Not detected.

NCWQS - North Carolina Water Quality Standard

MCL - Maximum Contaminant Level

(1) - Secondary MCL

TABLES.XLS / Page 4 of 4

TABLE 6 TOTAL METALS BY SITE DEEP MONITORING WELLS MCB, CAMP LEJEUNE, NORTH CAROLINA

-1

	Site 1	Site 2	Site 6	Site 7	Site 9	Site 21	Site 24	Site 28	Site 30	Site 41	Site 43	Site 44	Site 48	Site 63	Site 65	Site 69	Site 78	Site 82	ABC Cleaners	Base Supply Wells (1)
Arsenic		ND	ND		ND					2.2 - 9.6						2.2 - 3.5	2-118J	ND	ND - 14	ND
Berium	F -	1420	ND	F -	ND	Γ -	Γ -	Ţ- –		22.6 - 186						42.3 - 58.0	ND - 547	ND	4-36	ND
Berytlium		ND	ND	<u>⊢</u> -	ND		Γ	Γ]		3.2	E I		Γ]	E I		0.80 - 0.89	ND	ND	NA	NA
Cadmium	- <u>ه</u> ا	ND	ND	1 2 1	ND	∏ ≝]	- a -	_ ₩ _	- sa -	4.2 - 4.7		[1	[#]	[#]	_ s	3.2	ND - 21	ND	NA	ND
Chromium		16	ND		ND	- × -	_ × _	_ ×	_ × 	9.6 - 40.5	[š]	₩.	. ¥_	Š.	Ne	8.3 - 20.7	ND - 10	ND	ND - 32	ND
Conner	- a -	ND	ND		ND	T a			a -	23.9					L a .	16.3	ND	ND	ND · 41	ND - 130
Lad	- 2 -	ND	ND	T 🕺 -	ND	- ق -	- م -	႞ႜၓၟ႞	- <u>8</u> -	1.0 - 11.1	5	မီ	ြ မီ ၂	6	Dee	3.1 - 6.8	ND	ND	ND - 10	ND • 16
Manganese		ND	ND-33.5		ND	2	9	T 🧕 -	6	16.9 - 101	9	9	2			53.7 - 114	ND - 591	ND - 21.6	ND - 45	10 - 120
Mercury	† z -	ND	ND	+ z -	ND	- z -			- 2 -	0.15 - 0.17	[4]				[4]	0.16 - 0.17	ND-0.3	ND	NA	ND
Nickel	f	ND	ND	F -	ND	- -	T -	T T	Γ -	31.2	T I			\Box	Γ	28.8	ND	ND	ND - 14	NA
Vanadium	t -	ND	ND	t	ND	- -	T -		Γ -	20.4 - 49.8	E Ĩ	Γ.	E I	Γ.	Ε]	20.4	ND - 24 J	ND	ND - 15	NA
Zinc	+ -	ND	ND	† -	ND		T	- -		17.8 - 83.8			Γ	Γ	Γ	31.1 - 48.7	ND - 181 J	· ND	58 - 390	ND - 120

NOTES:

ŝ

î

J - Value is estimated. NA - Not analyzed. ND - Not detected.

(1) - Range is based on 67 supply wells located throughout MCB, Camp Lejeune, NC.

TABLES.XLS / Page 1 of 1

))

TABLE 7 SUMMARY OF FIELD PARAMETERS IN SHALLOW, DEEP, AND SUPPLY WELLS MCB, CAMP LEJEUNE, NORTH CAROLINA

	Shallor	v Wells	Deep	W <u>ells</u>	Supply Wells		
	Range (1)	Average Maximum	Range (2)	Average Maximum	Range (3)	Average Maximum	
pH (standard units)	4.5 - 7.28	6.08	7. <u>52 - 11</u> .34	8.88	6.91 - 7.45	7.32	
Specific Conductivity (micromhos/cm)	40 - 580	267	149 - 525	350	212 - 511	353	

(1) - Based on data from 11 sites.

(2) - Based on data from 6 sites.

(3) - Based on data from 9 supply wells.

TABLE7.XLS / Page 1 of 1

Figures

;)

j.

10 B A

Appendix A Data Summary Tables for Sites 2 and 78

	MINIMUM	MAXIMUM	MINIMUM	MAXIMUM	LOCATION OF	FREQUENCY
	NONDETECTED	NONDETECTED	DETECTED	DETECTED	MAXIMUM	OF
	UG/L	UG/L	UG/L	UG/L	DETECTED	DETECTION
ALUMINUM	NA	NA	68 J	542000 J	78-GW06-01	59 / 59
ANTIMONY	3 U	20 U	3.3 B	169 J	78-GW02-01	7 / 33
ARSENIC	2 U	10 U	2.3 J	405 J	78-GW02-01	44 / 48
BARIUM	NA	NA	17 B	1250	78-GW07-01	59 / 59
BERYLLIUM	1 U	4 U	1 B	19	24-GW02-01	52 / 59
CADMIUM	5 U	25 U	5	21	78-GW04-3-01	9 / 59
CALCIUM	NA	. NA	2420 B	642000	78-GW04-1-01	59 / 59
CHROMIUM	10 U	50 U	10	858 J	78-GW06-01	46 / 59
COBALT	8 U	8 U	8 B	170	78-GW22-2-01	25 / 59
COPPER	2 U	2 U	3 B	699	78-GW39-01	58 / 59
IRON	NA	NA	32 B	523000	78-OW04-3-01	59 / 59
LEAD	1.8 U	4.9 U	2.9 B	2000 J	21-GW0B-01	50 / 59
MAGNESIUM	NA	NA.	88 B	37100	24-GW03-01	59 / 5 9
MANGANESE	2 U	2 U	2 B	714	78-GW24-1-01	57 / 59
MERCURY	0.2 U	0.2 U	0.23 J	3.2	24-GW06-01	24 / 52
NICKEL	20 U	20 U	20 B	234	78-GW22-2-01	31 / 59
POTASSIUM	NA	NA	982 B	67300	78-GW32-3-01	59 / 59
SELENIUM	1 U	5 U	1.1 J	99.5 J	78-GW32-2-01	41 / 54
SILVER	3 U	15 U	5 J	5 J	78-GW09-3-01	1 / 59
SODIUM	NA	NA	2450 B	42500	78-GW32-3-01	59 / 59
THALLIUM	ľU	1 U	1 B	7.3 J	78-GW32-2-01	16 / 59
VANADIUM	4 U	4 U	4 J	1700	78-GW08-01	55 / 59
ZINC	6 U	6 U	6 J	967 J	78-GW22-2-01	57 / 59
CYANIDE	10 U	10 U	ND	ND	ND	0 / 54

Page

11

4

ίĻ.

	SAMPLE NO.	21-GW01-01	21-GW02-01	21-GW03-01	21-GW04-01	21-GW0A-01	21-GW0B-01
	UNITS	UG/L	UG/L	UG/L	UG/L	UG/L	UG/L
ALUMINUM		4910 J	319000 J	4820 J	20100 J	16900 J	118000 J
ANTIMONY		7 UJ	7 U	7 U	7 U	7 R	7 U
ARSENIC		15	10	2 U	11.8	45.2 J	30.4
BARIUM		32 B	647	51 B	119 B	100 B	386
BERYLLIUM		1 B	5	1 B	1 B	1 B	6
CADMIUM		5 U	10 U	5 U	5 U	5 U	10 U
CALCIUM		63000 J	24100 J	6130 J	21700 J	23800	6250 J
CHROMIUM		10 UJ	348 J	10 UJ	33 J	21 J	192 J
COBALT		8 U	18 B	8 U	10 B	8 U	36 B
COPPER		4 B	79	7 B	28	24 B	38
IRON		9920 J	122000 J	13400 J	24900 J	38900 J	72900 J
LEAD		1.8 UJ	214 J	4.9 UJ	33 J	29	· 2000 J
MAGNESIUM		5070	15400	4550 B	5490	4850 B	11600
MANGANESE		64 J	179 J	134 J	193 J	59	276 J
MERCURY		0.2 R	2.4 J	0.2 R	0.2 R	0.2 U	0.2 R
NICKEL		20 U	86	. 20 U	20 U	20 U	60
POTASSIUM		2390 B	10500	2240 B	3800 B	2360 B	9520
SELENIUM-		1 U	11 J	1 U	1 U	រ បរ	3.7 J
SILVER		3 U	3 U	3 U	3 U	3 UJ	3 U
SODIUM		15700	12600	7950	14400	12600	14400
THALLIUM		1 U	1 UJ	1 U	1 UJ	1 UJ	1 U
VANADIUM		30 B	281	11 B	42 B	48 B	243
ZINC		65 J	136 J	27 J	57 J	41 J	175 J
CYANIDE		10 U					

.

 \sim

	SAMPLE NO.	21-GW0C-01	24-GW01-01	24-GW02-01	24-GW03-01	24-GW04-01	24-GW06-01
	UNITS	UG/L	UG/L	UG/L	UG/Ĺ	UG/L	UG/L
ALUMINUM		209000 J	262000	93700	50200	58900	19800
ANTIMONY		7 U	3 U	3 UJ	3 U	4.6 B	3.5 B
ARSENIC		101	· 10 UJ	2.3 J	4.7 J	116 J	10.1 J
BARIUM		467	380	1120	480	290	159 B
BERYLLIUM		8	3 B	19	5	2 B	9
CADMIUM		10 U	5 U	12	5 U	\$ U	5
CALCIUM		35200 J	4120 B	2420 B	124000	65600	151000
CHROMIUM		291 J	296	316	110	153	78
COBALT		60	8 U	41 B	66	8 U	35 B
COPPER		. 84	49	52	22 B	31	15 B
IRON	,	106000 J	58600	395000	16300	70500	69500
LEAD		92.5 J	89	17.9	21.6	23.6	7.4
MAGNESIUM		16300	12200	7240	37100	7690	4320 B
MANGANESE		273 J	117	518	393	66	431
MERCURY		0.23 J	0.23	2.6	0.2 U	0.2 U	3.2
NICKEL	,	123	38 B	140	85	20 U	93
POTASSIUM		11800	12000	7550	15400	6130	3370 B
SELENTUM		4.3 B	1.3 J	1.1 J	16.2 J	4.3 J	1 UJ
SILVER		3 U	3 UJ	15 UJ	3 UJ	3 UI	3 UJ
SODIUM		15200	6030	11600	19200	5230	7280
THALLIUM		1 U	1 U	1 U	2.4 B	1 U	1 B
VANADIUM		419	304	408	. 92	202	83
ZINC		487 J	118	461	650	80	489
CYANIDE		10 U			<u></u>		

6. S. M.

	SAMPLE NO.	24-GW07-01	24-GW08-01	24-GW09-01	24-GW10-01	78-GW02-01	78-GW03-01
	UNITS	UG/L	UG/L	UG/L	UG/L	UG/L	UG/L
ALUMINUM	1	36000	61100	12800	23300	29200 J	23900 J
ANTIMONY		3 U	3 U	3.3 B	5.7 B	169 J	38.5 J
ARSENIC		3.7 J	8 J	4.3 J	2.5 J	405 J	5.7 J
BARIUM		85 B	112 B	164 B	59 B	109 B	36 B
BERYLLIUM		1 B	2 B	1 B	1 U	12	2 B
CADMIUM		5 U	5 U	5 U	5 U	8	5 U
CALCIUM		4960 B	27000	9530	3820 B	37000	32900
CHROMIUM		37	85	19	21	18 J	10 UJ
COBALT		8 U	8 ប	11 B	8 U	8 U	8 U
COPPER	•	19 B	24 B	11 B	13 B	20 B	8 B
IRON		13700	27500	13100	7010	427000 J	5020 J
LEAD		11.4	23.8	5.1	7.3	19.6	3.4
MAGNESIUM		2670 B	5050	7630	1760 B	36 50 B	2210 B
MANGANESE		39	47	180	29	141	27
MERCURY		0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U
NICKEL		20 U	20 U	20 U	20 U	20 U	20 U
POTASSIUM		3870 B	5580	4280 B	2620 B	2770 B	1320 B
SELENIUM		2.1 J	1.9 J	2.6 J	រ បរ	19.8 J	2.4 J
SILVER		3 UJ	3 UJ	3 UJ	3 UJ	15 UJ	3 UJ
SODIUM		6520	6550	6010	6650	5120	4270 B
THALLIUM		1 U	1 U	1 U	1 U	1 UJ	1 UJ
VANADIUM		64	129	26 B	34 B	1660	50
ZINC		41	47	50	20	58 J	5 12 J
CYANIDE		10 U	10 U	10 U	10 U	<u>10</u> U	10 U

۰.

١.

	SAMPLE NO.	78-GW04-1-01	78-GW04-2-01	78-GW04-3-01	78-GW05-01	78-GW06-01	78-GW07-01
	UNITS	UG/L	UG/L	UG/L	UG/L	UG/L	UG/L
ALUMINUM		297000 J	286	115 B	23000 J	542000 J	207000 J
ANTIMONY		7 R	7 R	7 R	7 U	7 U	7 U
ARSENIC		18.6 J	2 R	118 J	5.2 J	26 B	16.2
BARIUM		728	519	547	54 B	1200	1250
BERYLLIUM		19	1 B	1 B	2 B	9	5
CADMIUM		12	5 U	21	\$ U	5 U	5 U
CALCIUM		642000	170000	105000	90200 J	7180 J	18700 J
CHROMIUM		496 J	10 U	50 U	17 J	858 J	400 J
COBALT		28 B	8 U	8 U	8 U	11 B	20 B
COPPER		87	4 B	7 B	8 B	127	53
IRON		267000 J	32 B	523000	14900 J	142000 J	96700 J
LEAD		126	2 U	2 U	13.1 J	155 J	61.5 J
MAGNESIUM		25500	88 B	3210 B	12700	24000	20000
MANGANESE		703	51	591	161 J	184 J	135 J
MERCURY		0.75	0.2 U	0,3	0.2 R	1.1 J	0.44 J
NICKEL	,	136	20 B	20 U	20 U	86	54
POTASSIUM		18800	21800	11300	4770 B	25600	13200
SELENIUM		9 J	1 R	1 R	6.4	5.5 B	9.1
SILVER		6 UJ	3 U	15 U	3 U	3 U	3 U
SODIUM		8870	11500	9290	23900	5090	9260
THALLIUM		1.2 J	1 U	1 U	1 UJ	1.1 B	1 UJ
VANADIUM		591	4 UJ	24 J	28 B	811	406
ZINC		373 J	7 J	79 J	32 J	223 J	158 J
CYANIDE		10 U	10 U	10 U	<u>10 U</u>	10 U	10 U

Pag

11

MP.XLS

	SAMPLE NO.	78-GW08-01	78-GW09-2-01	78-GW09-3-01	78-GW10-01	78-GW11-01	78-GW12-01
	UNITS	UG/L	UG/L	UG/L	UG/L	UG/L	UG/L
ALUMINUM		483000 J	68 J	2710 J	404000 J	332000	108000. J
ANTIMONY		7 U	7 R	7 R	7 R	7 R	7 R
ARSENIC		60.5	2 R	2 R	43 J	10 R	9.6 J
BARIUM		740	27 B	41 B	582	631	155 B
BERYLLIUM		9	1 U	1 B	\$	5	2 B
CADMIUM		25 U	5 U	5 U	10 U	25 U	10 U
CALCIUM		28200 J	114000	99100	54400	9130	31200
CHROMIUM		491 J	10 UJ	10 UJ	362 J	412	114 J
COBALT		29 B	8 U	8 U	31 B	8 U	8 U
COPPER		86	4 B	4 B	91	84	30
IRON		138000 J	955 J	99 J	157000 J	120000	26400 J
LEAD		131 J	2 U	2 U	257	195	35.5
MAGNESIUM		18500	2550 B	249 B	17400	15400	7220
MANGANESE		213 J	19	2 U	326	174	47
MERCURY		1.3 J	0.2 U	0.2 U	1.5	0.75	0.2 U
NICKEL		89	20 U	20 U	108	79	20 U
POTASSIUM		14700	1220 B	7820	15800	13000	6090
SELENIUM		25.3	1 ឃ	1 UJ	18 J	12 J	3.6 J
SILVER		3 U	3 UJ	5 J	3 UJ	3 U	3 UJ
SODIUM		4710 B	5820	7280	3340 B	3490 B	5420
THALLIUM		1.3 J	1 UJ	1 UJ	1 UJ	1 U	1 UJ
VANADIUM		1700	4 U	9 B	499	526	145
ZINC		200 J	11 Ĵ	181 J	217 J	120 J	64 J
CYANIDE		10 U	10 U	<u>10 U</u>	10 U	10 U	10 U

GWMP.XLS

1

	SAMPLE NO.	78-GW13-01	78-GW14-01	78-GW15-01	78-GW16-01	78-GW17-1-01	78-GW17-2-01
	UNITS	UGAL	UG/L	UG/L	UG/L	UG/L	UG/L
ALUMINUM		61800 J	103000 J	205000 J	341000 J	168000 J	541 J
ANTIMONY		7 U	7 R	7 R	7 R	7 R	7 R
ARSENIC		38.3	18.4 J	4 R	19 J	11.6 J	2 R
BARIUM		236	321	469	511	261	57 B
BERYLLIUM		3 B	1 B	4 B	6	4 B	1 B
CADMIUM		5 U	10 U	5 U	5 U	10 U	5 U
CALCIUM		4040 J	5300	29100	62700	86900	144000
CHROMIUM		222 J	113 J	215 J	353 J	200 J	10 UJ
COBALT		20 B	8 U	9 B	13 B	9 B	8 U
COPPER		18 B	33	49	80	40	5 B
IRON		61800 J	49600 J	43300 J	80900 J	48700 J	2120 J
LEAD		26.4 J	63	53	224	81	5.9
MAGNESIUM	,	11800	10600	13400	10800	9940	2570 B
MANGANESE		57 J	68	115	150	96	33
MERCURY		0.3 J	0.38	, 0.2 U	0.38	0.2 U	0.2 U
NICKEL	,	40	34 B	29 B	61	30 B	20 U
POTASSIUM		8210	6460	12000	14000	11600	1630 B
SELENIUM		4.7 B	12.4 J	2.1 J	14.5 J	5 UJ	1 UJ
SILVER		3 U	3 UJ	3 UJ	3 UJ	3 UJ	3 UJ
SODIUM		15000	15400	6410	4120 B	3180 B	9480
THALLIUM		1 U	1 UJ	1 J	1.4 J	1 J	· 1 UJ
VANADIUM		158	122	248	371	289	4 U
ZINC		96 J	51 J	116 J	157 J	t 89	6 UJ
CYANIDE		10 U	10 U				

	SAMPLE NO.	78-GW19-01	78-GW20-01	78-GW21-01	78-GW22-01	78-GW22-1-01	78-GW22-2-01
	UNITS	UG/L	UG/L	UG/L	UG/L	UG/L	UG/L
ALUMINUM	_,	4110 J	149000 J	23800 J	78900 J	257000	19000 0 J
ANTIMONY		7 R	7 U	7 U	14 J	7 R	7 UJ
ARSENIC		3.1 J	30.3	6.3 J	10 J	59.5 J	75.6
BARIUM		101 B	430	382	107 B	411	471
BERYLLIUM		1 B	4 B	2 B	1 B	4 B	12
CADMIUM		5 U	5 U	5 U	10 U	25 U	6
CALCIUM		3700 B	5450 J	32900 J	90100	44500	118000 J
CHROMIUM		10 UJ	231 J	22 J	83 J	238	389 J
COBALT		8 U	35 B	10 B	8 U	8 U	170
COPPER		3 B	61	11 B	34	54	92
IRON		8500 J	101000 J	26400 J	27600 J	62300	140000 J
LEAD		8.3	119 J	19.1 J	37.2	272	360 J
MAGNESIUM		5740	13100	9110	5500	12000	13000
MANGANESE		26	93 J	85 J	70	158	348 J
MERCURY		0.2 U	0.37 J	0.2 R	0,3	0.45	0.2 R
NICKEL	1.	20 U	75	20 U	21 B	99	234
POTASSIUM		2130 B	9100	4100 B	6180	12000	10200
SELENIUM		រ បរ	4.2 B	1.1 B	4.2 J	7.5 J	45
SILVER		3 UJ	3 U	3 U	3 UJ	3 U	3 U
SODIUM		24000	11900	9480	12100	9910	8230
THALLIUM		1 UJ	1.8 B	1 U	1.7 J	1 U	3 B
VANADIUM		9 B	236	86	114	269	547
ZINC		6 J	250 J	108 J	50 J	150 J	967 J
CYANIDE		10 U	10 U				

ι.

4

	SAMPLE NO.	78-GW23-01	78-GW24-1-01	78-GW24-2-01	78-GW24-3-01	78-GW25-01	78-GW29-01
	UNITS	UG/L	UG/L	UG/L	UG/L	UG/L	UG/L
ALUMINUM		111000 J	160000	1340	304	101000 J	78800 J
ANTIMONY		7 R	7 R	7 R	7 R	7 R	7 R
ARSENIC		7.6 J	100 J	2 R	2 R	. 11.4 J	19 J
BARIUM		230	396	34 B	17 B	119 B	1070
BERYLLIUM		2 B	7	· · 1 B	1 U	2 B	12
CADMIUM		5 U	5 U	5	5	5 U	5 U
CALCIUM		10800	34400	107000	73400	37800	41600
CHROMIUM		101 J	264	10	10 U	82 J	252 J
COBALT		8 B	39 B	8 U	8 U	8 U	17 B
COPPER		25	71	6 B	5 B	26	34
IRON		30800 J	159000	2320	2370	26300 J	125000 J
LEAD		50	152	3.3	2.9 B	30.5	25.5
MAGNESIUM		7110	11600	1740 B	1500 B	4500 B	21900
MANGANESE		87	714	21	41	33	341
MERCURY		0.3	0.75	0.2 U	0.2 U	0.2 U	0.2 U
NICKEL		42	91	20 U	20 U	20 U	125
POTASSIUM		5450	9090	1050 B	982 B	4950 B	11600
SELENIUM		4.4 J	17.6 J	1 R	1 R	1.6 J	2.5 J
SILVER		3 UJ	3 U	3 U	3 U	3 UJ	3 UJ
SODIUM		7450	10800	8350	7050	16400	21200
THALLIUM		1.7 J	1.5 B	1 U	1 U	1.3 J	נט ו
VANADIUM		108	436	4 J	4 UJ	144	183
ZINC		67 J	291 J	11 J	16 J	34 J	330 J
CYANIDE		10 U	10 U	10 U	10 U	10 U	10 U

11

Pa

'n.

	SAMPLE NO.	78-GW31-2-01	78-GW31-3-01	78-GW32-2-01	78-GW32-3-01	78-GW33-01	78-GW34-01
	UNITS	UG/L	UG/L	UG/L	UG/L	UG/L	UG/L
ALUMINUM		110 B	1200	112000 J	539 J	78200	6870
ANTIMONY		7 R	7 R	7 R	7 R	3 U	3 U
ARSENIC		2 R	2 R	21.6 J	2 R	5.6 J	4.4 Ĵ
BARIUM		17 B	415	476	42 B	162 B	173 B
BERYLLIUM		1 B	1 B	10	1 B	1 B	1 U
CADMIUM		5 U	5 U	10	5 U	5 U	5 U
CALCIUM		77600	308000	94600	5440	64800	10400
CHROMIUM		10 U	21	215 J	10 UJ	65	10 U
COBALT		8 U	8 U	84	8 U	8 U	8 U
COPPER		3 B	5 B	87	2 U	20 B	11 B
IRON		280	72 B	98500 J	112 J	14900	7250
LEAD		2 U	2 U	146	2 U	18.1	5.5
MAGNESIUM		2200 B	' 151 B	13700	319 B	7290	2880 B
MANGANESE		8 B	2 B	328	2 U	86	96
MERCURY		0.3	0.2 U	0.3	0.2 U	0.2 U	0.2 U
NICKEL		20 U	20 U	166	20 U	20 B	20 U
POTASSIUM		1640 B	61600	8460	67300	6900	2620 B
SELENIUM		1 R	1.7 J	99.5 J	1 UJ	12.8 J	1 UJ
SILVER		3 U	3 U	3 UJ	3 UJ	3 UJ	3 UJ
SODIUM		10400	26100	7510	42500	7030	4070 B
THALLIUM		1 U	1 UJ	7.3 J	1.3 J	1 U	1 U
VANADIUM		4 J	10 J	462	5 B	74	15 B
ZINC		23 J	10 J	826 J	6 UI	37	59
CYANIDE		10 U	10 U	10 U	10 U	10 U	10 U

	SAMPLE NO.	78-GW35-01	78-GW36-01	78-GW37-01	78-GW38-01	78-GW39-01	
	UNITS	UG/L	UG/L	UG/L	UG/L	UG/L,	
ALUMINUM		47100	120000	73500	102000	60000	
ANTIMONY		3 U	20 U	3 U	20 U	20 U	
ARSENIC		2 UJ	3.1 J	4 J	33.6 J	4 UJ	,
BARIUM		. 261	152 B	123 B	420	256	
BERYLLIUM		1 B	2 U	2 B	4 U	1 U	
CADMIUM		5 U	5 U	. 5 U	25 U	5 U	
CALCIUM		7480	35400	10100	62200	16800	
CHROMIUM		55	111	65	201	60	
COBALT		8 U	8 U	8 U	8 U	10 B	
COPPER		15 B	29	22 B	110	699	
IRON		11800	21200	18800	67500	28800	
LEAD		13.2	30.2	21.8	41.2	186	
MAGNESIUM		5680	5740	4600 B	17500	14300	
MANGANESE		57	62	62	106	84	
MERCURY		0.2 U	0.3	0.2 U	0.2 U	0.52	
NICKEL		20 U	24 B	20 U	32 B	32 B	
POTASSIUM		6150	5820	5990	8180	3840 B	
SELENIUM		. 3.5 J	1.7 J	1.1 J	1.3 J	4.3 J	
SILVER		3 UJ					
SODIUM		10300	2450 B	7270	10300	19500	
THALLIUM		1 U	1 U	1 U	1 U	1 U	
VANADIUM		59	98.	106	235	67	
ZINC		30	57	58	134	138	
CYANIDE		10 U					

11

OPERABLE UNIT NO. 5 - SITE 2 SHALLOW AND DEEP MONITORING WELLS GROUNDWATER STATISTICAL SUMMARY REMEDIAL INVESTIGATION CTO - 19174 MCB CAMP LEJEUNE, NORTH CAROLINA TAL METALS AND CYANIDE

	SAMPLE NO.	2-GW01-01	2-GW02-01	2-GW03-01	2-GW03DW-01	2-GW04-01	2-GW05-01
	UNITS	UG/L		UG/L	UG/L	UG/L	UG/L
ALUMINUM		36000		5200	269	16800	4050
ANTIMONY		10 U		10 U	3.5 U	10 U	10 U
ARSENIC		21.2		2.5 B	1 UJ	23.6	2.2 B
BARIUM		52 B		46 B	1420	95 B	100 B
BERYLLIUM		· 1 B		0.5 U	0.5 U	2 B	0.5 U
CADMIUM		7		2.5 U	2.5 U	2.5 U	2.5 U
CALCIUM		23700		. 8460	450000	11100	21000
CHROMIUM		18		11	16	5 U	5 U
COBALT		10 B		4 U	4 U	4 U	4 U
COPPER		10 B		4 B	8 B	5 B	3 B
IRON		10300		7190	127	28100	12700
LEAD		15.5 L		3.5 J	1.1 UJ	2.7 J	0.5 UJ
MAGNESIUM		2000		1600 B	75 B	1920 B	4800 B
MANGANESE		55		21	2 U	21	46
MERCURY		0.1 U		0.1 U	0.1 U	0.1 U	0.1 U
NICKEL		10 U		10 U	10 U	10 U	10 U
POTASSIUM		2560 B		1030 B	187000	1210 B	2130 B
SELENIUM		4.2 B		0.5 U	0.5 U	0.5 U	0.5 U
SILVER		1.5 U		1.5 U	1.5 U	1.5 U	1.5 U
SODIUM		4040 B		5490	103000	5560	10100
THALLIUM		0.5 U		0.5 U	0,5 UJ	0.5 U	0.5 U
VANADIUM		72		10 B	2 U	89	9 B
ZINC		146		13 B	9 B	16 B	6 B
CYANIDE		5 U		5 U	5 U	5 U	5 U

ſ

2

(GWI.XLS

OPERABLE UNIT NO. 5 - SITE 2 SHALLOW AND DEEP MONITORING WELLS GROUNDWATER STATISTICAL SUMMARY REMEDIAL INVESTIGATION CTO - 19174 MCB CAMP LEJEUNE, NORTH CAROLINA TAL METALS AND CYANIDE

	SAMPLE NO.	2-GW06-01	2-GW07-01	2-GW08-01	2-GW09-01	
	UNITS	UG/L	UG/L	UG/L	UG/L	
ALUMINUM		13600	8550	6380	56300	
ANTIMONY		10 U	10 U	3.5 UJ	10 U	
ARSENIC		5.4 B	5.7 B	9.2 B	12.9	
BARIUM		173 B	98 B	98 B	· 328	
BERYLLIUM		0.5 U	0.5 U	0.5 U	3 B	
CADMIUM		2.5 U	2.5 U	2.5 U	2.5 U	
CALCIUM		7940	9350	5710	22100	
CHROMIUM		15	15	5 U	75	
COBALT		12 B	4 U	4 U	10 B	
COPPER		5 B	7 B	6 B	25	
IRON		11700	12500	9150	42000	
LEAD		6.7 J	8.3 J	1.8 UJ	27.2 1	
MAGNESIUM		4120 B	3620 B	2020 B	998 <u>0</u>	
MANGANESE		7 9	72 -	53	290	
MERCURY	,	0.1 U	0.1 U	0.1 U	0.1 U	
NICKEL		10 U	10 U	10 U	25 B	
POTASSIUM		2570 B	1940 B	1550 B	6610	
SELENIUM		0.5 U	0.5 U	0.5 U	0.5 U	
SILVER		1.5 U	1.5 U	1.5 U	1.5 U	
SODIUM		21900	8180	11800	18300	4- ,
THALLIUM		0.5 U	0.5 U	0.5 U	0.5 U	
VANADIUM		15 B	18 B	12 B	86	
ZINC		26	22	27	103	
CYANIDE		5 U	5 U	5 U	5 U	

යා

OPERABLE UNIT NO. 5 - SITE 2 SHALLOW AND DEEP MONITORING WELLS GROUNDWATER STATISTICAL SUMMARY REMEDIAL INVESTIGATION CTO - 19174 MCB CAMP LEJEUNE, NORTH CAROLINA DISSOLVED METALS

	SAMPLE NO.	2-GW01D-01	2-GW02D-01	2-GW03D-01	2-GW03DWD-01	2-GW04D-01	2-GW05D-01
·····	UNITS	UG/L		UG/L	UG/L	UG/L	UG/L
ALUMINUM		1930		66 B	89 B	60 B	1990
ANTIMONY		10 U .		10 U	3.5 UJ	10 U	10 U
ARSENIC		2.2 B		1 U	1 UJ	6.1 B	1 U
BARIUM		42 B		25 B	1400	64 B	98 B
BERYLLIUM		1 B		0.5 U	0.5 U	0.5 U	1 B
CADMIUM		2.5 U		2.5 U	2.5 U	2.5 U	2.5 U
CALCIUM		24400		7100	441000	11300	21800
CHROMIUM		5 U		5 U	11	5 U	5 U
COBALT		4 U		4 U	4 U	4 U	4 U
COPPER		4 B		2 B	6 B	9 B	4 B
IRON		2560		2170	10 U	2720	7400
LEAD		2.1 J		0.5 UJ	0.5 UJ	0.5 UJ	0.5 UJ
MAGNESIUM		5220		1030 B	26 B	1840 B	4900 B
MANGANESE		51		4.5 U	1 U	17	46
MERCURY		0.1 U		0.1 U	0.1 U	0.1 U	0.1 U
NICKEL		10 U		10 U	10 U	10 U	10 U
POTASSIUM		2140 B		589 B	188000	1130 B	2170 B
SELENIUM		0.5 U		0.5 U	0.5 U	0.5 U	0,5 U
SILVER		1.5 U		1.5 U	1.5 U	1.5 U	1,5 U
SODIUM		3590 B		5400	103000	5710	9970
THALLIUM		0.5 U		0.5 U	0.5 U	0.5 U	0,5 U
VANADIUM		2 U		2 U	2 U	2 U	2 U
ZINC		28		' 3 U	3 U	8 B	9 B
CYANIDE							

117475-527-75

OPERABLE U. O. 5 - SITE 2 SHALLOW AND DEEP MONITORING WELLS GROUNDWATER STATISTICAL SUMMARY REMEDIAL INVESTIGATION CTO - 19174 MCB CAMP LEJEUNE, NORTH CAROLINA DISSOLVED METALS

.

 \sim

 \sim

	SAMPLE NO.	2-GW06D-01	2-GW07D-01	2-GW08D-01	2-GW09D-01	
	UNITS	UG/L	UG/L	· . UG/L	UG/L	
ALUMINUM		149 B	43 B	95 B	1230	
ANTIMONY		10 U	10 U	3.5 U	10 U	
ARSENIC		2.9 B	1 U	7.1 B	1 U	
BARIUM		126 B	49 B	62 B	149 B	
BERYLLIUM		0.5 U	0.5 U	0.5 U	1 B	
CADMIUM		2.5 U	2.5 U	2.5 U	2.5 U	
CALCIUM		8080	9590	5800	20800	
CHROMIUM		\$ U	5 U	5 U	10	
COBALT		10 B	8 B	4 U	14 B	
COPPER		2 B	5 B	4 B	5 B	
IRON		7070	4660	6180	7040	
LEAD		0.5 UJ	0.5 UJ	0.5 UJ	0,5 UJ	
MAGNESIUM		3610 B	3060 B	1730 B	6890	
MANGANESE		65	48	40	129	
MERCURY		0.1 U	0.1 U	0.1 U	0,1 U	
NICKEL		10 U	10 U	10 U	10 U	
POTASSIUM		1970 B	1490 B	1150 B	2790	
SELENIUM		0.5 U	0.5 U	0.5 U	0.5 U	
SILVER .		1.5 U	1.5 U	1.5 U	1.5 U	
SODIUM		22600	8720	12100	17200	
THALLIUM		0.5 U	0.5 U	0.5 U	0.5 U	
VANADIUM		2 U	2 U	2 U	2 U	
ZINC		12 B	13. B	19 B	35	
CYANIDE						

2MGW1D.XLS

1 WESTON WAY WEST CHESTER, PA 19380-1449 PHONE: 215-692-3030 FAX: 215-430-3124

ORGANIC QUALITY ASSURANCE REVIEW BAKER ENVIRONMENTAL, INC. - NAVY CLEAN SITE: MCB CAMP LEJEUNE REPORT NO.: D94-4917

REVIEW PERFORMED BY THE ANALYTICS DIVISION OF ROY F. WESTON, INC.

Britter PREPARED BY: Kelly Muir Spittler

VERIFIED BY:

Kelly Muir Spittler // Unit Leader - Data Validation

06-16-94 Date

Date

Zohreh Hamid, Ph.D. Section Manager - Data Validation

BAKER ENVIRONMENTAL, INC. - NAVY CLEAN SITE: MCB CAMP LEJEUNE REPORT NO.: D94-4917

INTRODUCTION

This quality assurance review is based upon a review of all data generated from six water samples collected on 04-26-94. The samples were analyzed according to criteria set forth in MethodS 601 and 602 for specific Volatile target compounds by NDRC Laboratories, Inchscape Testing Services.

This review has been performed in accordance with the confirmation method. The reported analytical results are presented as a summary of the data in Attachment II. All of the analytical data were examined to determine the usability of the analytical results and also to determine contractual compliance relative to the analytical requirements and deliverables specified in the Method and Sampling and Chemical Analysis Quality Assurance requirements for the Navy Installation Restoration Program (NEESA 20.2-047B). The applicable qualifier codes have been placed next to the results in the data summary to indicate the qualitative and/or quantitative reliability. The details of this evaluation review are presented in the narrative section of this report.

All data have been validated with regard to usability according to the quality assurance set forth in the Method. If you have any questions or comments on this data review, please call Zohreh Hamid or Kelly Spittler at (610) 701-3745.

QUALITY ASSURANCE REVIEW

The findings offered in this report are based upon a review of the following criteria:

- Data Completeness
- Holding Time
 - Calibration
- * Blank
 - Surrogate Recoveries
- Matrix Spike/Spike Duplicate
- Laboratory Control Sample
- Instrument Performance
 - Field Duplicate Results
- Compound Identification
- * Compound Quantitation
- * All criteria were met; therefore, a narrative section is not provided for this classification.

Baker Environmental, Inc. Report No.: D94-4917

Page 2

DATA COMPLETENESS

The raw data (chromatograms) were not provided for the sample and QC analysis results. The laboratory was contacted and confirmed that the laboratory contract did not require submission of the information; therefore, the sample results cannot be verified. However, no action has been taken on this basis since the contract requirements were fulfilled.

CALIBRATION

The calibration data met the requirements established in the method. Also, the correlation coefficients were above 0.99 in the initial calibration.

SURROGATE RECOVERIES

All surrogate recoveries were within 75-125%. It is the validator's opinion that this range of surrogate QC criteria is acceptable and represents the data adequately.

FIELD DUPLICATE RESULTS

A field duplicate analysis was not identified with this batch of samples. The sample data are not adversely affected due to the lack of this QC analysis.

CONCLUSION

The sample data package was complete based on the laboratory contract and applied method. All positive results and detection limits are considered representative, and the sample data are accepted without qualification.

INFORMATION REGARDING DATA

The data have been reviewed according to the USEPA National Functional Guidelines for Organic Data Review. All data are validated with regard to usability.

If you have any questions or comments on this data review, please call Kelly Spittler or Zohreh Hamid at (215) 344-3745.

ATTACHMENTS

- 1. Attachment I Glossary of Data Qualifier Codes
- 2. Attachment II Sample Result Summary. This includes:
 - a) A summary of all positive results for the target analytes with the qualifier codes, if applicable;
 - b) All qualified and usable detection limits.
- 3. Attachment III Resubmissions (if applicable)

ATTACHMENT I GLOSSARY OF DATA QUALIFIER CODES

GLOSSARY OF DATA QUALIFIERS

CODES RELATING TO IDENTIFICATION

(confidence concerning presence or absence of compounds):

- U = NOT DETECTED SUBSTANTIALLY ABOVE THE LEVEL REPORTED IN LABORATORY OR FIELD BLANKS. [Substantially is equivalent to a result less than 10 times the blank level for common contaminants (methylene chloride, acetone and 2-butanone in the VOA analyses, and common phthalates in the BNA analyses, along with tentatively identified compounds) or less than 5 times the blank level for other target compounds.]
- **R** = UNUSABLE RESULT. THE PRESENCE OR ABSENCE OF THIS ANALYTE CANNOT BE VERIFIED. SUPPORTING DATA NECESSARY TO CONFIRM RESULT.
- N = NEGATED COMPOUND. THERE IS PRESUMPTIVE EVIDENCE TO MAKE A TENTATIVE IDENTIFICATION.

CODES RELATING TO QUANTITATION

(can be used for both positive results and sample quantitation limits):

- J = ANALYTE WAS POSITIVELY IDENTIFIED. REPORTED VALUE MAY NOT BE ACCURATE OR PRECISE.
- UJ = ANALYTE WAS NOT DETECTED ABOVE THE CRQL. THE REPORTED QUANTITATION LIMIT IS QUALIFIED ESTIMATED.

OTHER CODES

 \mathbf{Q} = NO ANALYTICAL RESULT.

ATTACHMENT II SAMPLE RESULT SUMMARY

.

. .

METHOD: EPA 601

_

Bromodichloromethane Bromoform Bromomethane Carbon Tetrachloride Chlorobenzene Chlorobenzene Chloroform Chloromethane Dibromochloromethane 1,2 - Dichlorobenzene 1,3 - Dichlorobenzene 1,4 - Dichlorobenzene Dichlorodifluoromethane 1,1 - Dichloroetherne 1,2 - Dichloroetherne 1,2 - Dichloroethane Cis - 1,2 - Dichloroethene Trans - 1,2 - Dichloroethene 1,2 - Dichloropropane Cis - 1,3 - Dichloropropene Trans - 1,3 - Dichloropropene Trans - 1,3 - Dichloropropene Methylene Chloride 1,1,2 - Tetrachloroethane 1,1,1 - Trichloroethane 1,1,2 - Trichloroethane Trichloroethene Trichloroethene Trichloroethene Trichloroethene Trichloroethene Vinyl Chloride					· · · · · · · · · · · · · · · · · · ·	
METHOD: EPA 602 Benzene Chlorobenzene 1,2 – Dichlorobenzene 1,3 – Dichlorobenzene Ethylbenzene Ethylbenzene Methyl Tertiary Butyl Ether Toluene Xylenes	1.0	0.4 0.8	6 44 * 12 50	0.8 0.9 2.0	0.2 0.4 0.6	1.8
<u>METHOD: EPA 602</u> Benzene Ethylbenzene Toluene Xylenes	NA NA NA	NA NA	12 15 17 36	NA 0.3 0.4 1.0	NA 0.3	NA NA NA 0.8

1 WESTON WAY WEST CHESTER, PA 19380-1449 PHONE: 215-692-3030 FAX: 215-430-3124

ORGANIC QUALITY ASSURANCE REVIEW BAKER ENVIRONMENTAL, INC. - NAVY CLEAN SITE: MCB CAMP LEJEUNE SDG: B4120

REVIEW PERFORMED BY THE ANALYTICS DIVISION OF ROY F. WESTON, INC.

ter PREPARED BY:

Kelly Muir Spittler V Unit Leader - Data Validation

06-16-94 Date

VERIFIED BY:

Zohreh Hamid, Ph.D. Section Manager - Data Validation

6-16-94 Date

BAKER ENVIRONMENTAL, INC. - NAVY CLEAN SITE: MCB CAMP LEJEUNE SDG: B4120

INTRODUCTION

This quality assurance review is based upon a review of all data generated from seven water samples, eight trip blanks, one rinsate blank, and one duplicate analysis collected on 04-12,13,14-94. The samples were analyzed according to criteria set forth in the contract laboratory program (CLP) for TCL Volatile, Semivolatile and Pesticide/PCB target compounds by NDRC Laboratories, Inchscape Testing Services.

This review has been performed in accordance with the confirmation method. The reported analytical results are presented as a summary of the data in Attachment II. All of the analytical data were examined to determine the usability of the analytical results and also to determine contractual compliance relative to the analytical requirements and deliverables specified in the CLP method and Sampling and Chemical Analysis Quality Assurance requirements for the Navy Installation Restoration Program (NEESA 20.2-047B). The applicable qualifier codes have been placed next to the results in the data summary to indicate the qualitative and/or quantitative reliability. The details of this evaluation review are presented in the narrative section of this report.

All data have been validated with regard to usability according to the quality assurance set forth in USEPA Laboratory Data Validation Functional Guidelines for Evaluating Organics Analyses. If you have any questions or comments on this data review, please call Zohreh Hamid or Kelly Spittler at (610) 701-3745.

OUALITY ASSURANCE REVIEW

The findings offered in this report are based upon a review of the following criteria:

- Data Completeness
- Holding Time
- GC/MS Tuning
- Calibration
- Blank
 - Surrogate Recoveries
 - Matrix Spike/Spike Duplicate
 - Laboratory Control Sample
- Internal Standard
- Instrument Performance
 - Field Duplicate Results
 - Compound Identification
- * Compound Quantitation
- * All criteria were met; therefore, a narrative section is not provided for this classification.

Baker Environmental SDG: B4120

DATA COMPLETENESS

Semivolatiles

The incorrect sample IDs were reported on all the forms for samples 35-SW05, 35-SW06, 35-SW02, and 35-SW01. The laboratory has been contacted for resubmission.

Pesticide/PCBs

The Form IX Pest-1 (florisil check) was missing from the data package. The laboratory had been contacted for resubmission.

General

The chain-of-custody for soil/sediment samples were included in this data package; however, the sample analyses were not provided with this SDG.

GC/MS TUNING

Semivolatile

The incorrect dates and times for the instrument performance check and calibrations were listed on the Form V, page 216. The laboratory has been contacted for resubmission.

CALIBRATION

Volatiles and Semivolatiles

The following %RSD and %D results in the initial and continuing calibrations exceeded the 30% and 25% QC limits, respectively. These calibrations are considered acceptable since less than two (VOA) or four (BNA) check (*) compounds had %RSD/%Ds outside the criteria. However, all associated non-detected values for the compounds listed below are qualified as estimated and flagged "UJ". All RRFs were above 0.05; therefore, no qualification is required on this basis.

CALIBRATION	INSTRUMENT ID	<u>COMPOUND</u>	<u>%RSD/%D</u>
VOLATILES			
CC 04-21-94	HP4	2-Butanone	41.5

Page 2
Page 3

CALIBRATION	INSTRUMENT ID	COMPOUND	<u>%RSD/%D</u>
SEMIVOLATILES			
CC 04-26-94	HP1	Bis(2-ethylhexyl)phthalate Di-n-octylphthalate	-34.5 -29.1

Pesticide/PCBs

The percent resolution for endosulfan sulfate (56.7) was below the 60% requirement in the resolution check mixture on the DB1701 column and the percent recovery for alpha-BHC (76%) was below the QC limits of 80-120% in the Florisil cartridge check. Since these compounds were not detected in the samples and no specific validation criteria have been established, the sample results are accepted unqualified for these compounds.

The %RPD for beta-BHC (25.1) and decachlorobiphenyl (31.0) in PEMB exceeded the 25% QC limit on the DB1701 column. Since this compound was not detected in the associated samples, no qualification is applied on this basis.

SURROGATE RECOVERIES

Semivolatiles

The following surrogate recoveries were below the QC limits in the analysis of sample 35-SW03:

SURROGATE COMPOUND	<u>RECOVERY</u>	LIMITS
2-Chlorophenol-d ₄	30	33-110
Nitrobenzene-d ₅	26	35-114
2-Fluorobiphenyl	32	43-116
Teryphenyl-d ₁₄	24	33-141

Since this sample was not re-extracted/reanalyzed, the base neutral fraction for this sample has all non-detects qualified estimated, "UJ"; positive results were not detected in this sample.

Pesticide/PCBs

All surrogate recoveries were within the requirement limits, except for the following:

<u>SAMPLE NO.</u>	TCX RECOVERY DB608/DB1701	REASON
35-SW06	55/47	Advisory Criteria 60-150%

Since the requirement limits are advisory and there is no qualification criteria established in Functional Guidelines or NEESA for surrogate outliers in the pesticide/PCB fraction, no action is taken.

MATRIX SPIKE/SPIKE DUPLICATE

Volatiles

The matrix spike/spike duplicate recoveries for benzene (74/70%) were slightly below the QC limits of 76-127% in the analyses of 35-SW04 MS/MSD. This compound was not detected in the unspiked sample; therefore, no qualification was applied.

Semivolatiles

The following MS/MSD recoveries were below the QC limits in the analyses of 35-SW04 MS/MSD:

SPIKE COMPOUND	RECOVERY (MS/MSD)	<u>LIMITS</u>
Phenol	10/10	12-110
2-Chlorophenol	10/11	27-123
4-Chloro-3-methylphenol	7/8	23-97
4-Nitrophenol	0/0	10-80
Pentachlorophenol	8/8	9-103

These compounds were not detected in the unspiked sample; therefore, no qualification was applied.

Page 4

LABORATORY CONTROL SAMPLE

An LCS analysis was performed in order to fulfill the blank spike analysis requirements as established in the NEESA guidelines.

Semivolatiles

The following LCS recoveries were below the QC limits in the analysis of SLCSA:

SPIKE COMPOUND	RECOVERY	<u>LIMITS</u>
Phenol	10	12-110
2-Chlorophenol	11	27-123
1,4-Dichlorobenzene	104	36-97
1,2,4-Trichlorobenzene	112	39-98
4-Chloro-3-methylphenol	6	23-97
4-Nitrophenol	0	10-80
Pentachlorophenol	7	9-103

These compounds were not detected in any of the samples; therefore, no qualification is required.

FIELD DUPLICATE RESULTS

Sample 35-SW02D is a duplicate analysis of sample 35-SW02. Target compound results were not detected in any of the parameters; therefore, the sample result reproducibility is considered satisfactory.

INFORMATION REGARDING DATA

The data have been reviewed according to the USEPA National Functional Guidelines for Organic Data Review. All data are validated with regard to usability.

If you have any questions or comments on this data review, please call Kelly Spittler or Zohreh Hamid at (215) 344-3745.

ATTACHMENTS

- 1. Attachment I Glossary of Data Qualifier Codes
- 2. Attachment II Sample Result Summary. This includes:
 - a) A summary of all positive results for the target analytes with the qualifier codes, if applicable;
 - b) All qualified and usable detection limits.
- 3. Attachment III Resubmissions (if applicable)

ATTACHMENT I GLOSSARY OF DATA QUALIFIER CODES

GLOSSARY OF DATA QUALIFIERS

CODES RELATING TO IDENTIFICATION

(confidence concerning presence or absence of compounds):

- U = NOT DETECTED SUBSTANTIALLY ABOVE THE LEVEL REPORTED IN LABORATORY OR FIELD BLANKS. [Substantially is equivalent to a result less than 10 times the blank level for common contaminants (methylene chloride, acetone and 2-butanone in the VOA analyses, and common phthalates in the BNA analyses, along with tentatively identified compounds) or less than 5 times the blank level for other target compounds.]
- **R** = UNUSABLE RESULT. THE PRESENCE OR ABSENCE OF THIS ANALYTE CANNOT BE VERIFIED. SUPPORTING DATA NECESSARY TO CONFIRM RESULT.
- N = NEGATED COMPOUND. THERE IS PRESUMPTIVE EVIDENCE TO MAKE A TENTATIVE IDENTIFICATION.

CODES RELATING TO QUANTITATION

(can be used for both positive results and sample quantitation limits):

- J = ANALYTE WAS POSITIVELY IDENTIFIED. REPORTED VALUE MAY NOT BE ACCURATE OR PRECISE.
- UJ = ANALYTE WAS NOT DETECTED ABOVE THE CRQL. THE REPORTED QUANTITATION LIMIT IS QUALIFIED ESTIMATED.

OTHER CODES

 \mathbf{Q} = NO ANALYTICAL RESULT.

ATTACHMENT II SAMPLE RESULT SUMMARY

CLIENT: BAKER ENVIRONMENTA SITE: MCB CAMP LEJEUNE	AL.						
Client Sample ID:	35-SW03	35-SW04	35-SW05	35-SW06	35-TB01	35-TB02	35-TB03
Matrix:	WATER						
Dilution Factor:	1.0	1.0	1.0	1.0	1.0	1.0	1.0
Units:	ug/L						
COMPOUND							
Chloromethane							
Bromomethane							
Vinvl Chloride							
Chloroethane							
Methylene Chloride							
Acetone							
Carbon Disulfide							
1,1-Dichloroethene							
1,1-Dichloroethane							
1,2-Dichloroethene							
Chloroform							
1,2-Dichloroethane							
2-Butanone	UJ	UJ	UJ	UJ	UJ	ŲJ	UJ
1,1,1-Trichloroethane							
Carbon Tetrachloride							
Bromodichloromethane							
1,2-Dichloropropane							
Cis-1,3-Dichloropropene							
Trichloroethene							
Dibromochloromethane							
1,1,2-Trichloroethane							
Benzene							
Trans-1,3-Dichloropropene							
Bromoform							
4-Methyl-2-Pentanone							
2-Hexanone							
Tetrachloroethene							
1,1,2,2-Tetrachloroethane							
Toluene							
Chlorobenzene							
Ethylbenzene							
Styrene							
Xylene (total)							
Chloromethane							

CLIENT: BAKER ENVIRONMENTA SITE: MCB CAMP LEJEUNE SDG NO.: B4120	AL.						
Client Sample ID:	35-SW01	35-SW02	35SW02D	35-TB04	35-TB05	35-SDER01	35-TB06
Matrix: Dilution Factor: Units:	WATER 1.0 ug/L						
COMPOUND							
Chloromethane Bromomethane Vinyl Chloride Chloroethane Methylene Chloride Acetone Carbon Disulfide 1,1-Dichloroethene 1,2-Dichloroethene Chloroform 1,2-Dichloroethane 2-Butanone 1,1,1-Trichloroethane	υJ	UJ	IJ	υJ	IJ	5 J UJ	IJ
Carbon Tetrachloride Bromodichloromethane 1,2-Dichloropropane Cis-1,3-Dichloropropene Trichloroethene Dibromochloromethane 1,1,2-Trichloroethane Benzene Trans-1,3-Dichloropropene Bromoform 4-Methyl-2-Pentanone 2-Hexanone Tetrachloroethene 1,1,2,2-Tetrachloroethane Toluene Chlorobenzene Ethylbenzene Styrene Xylene (total)							
Chlorome 3							(,

CLIENT: BAKER ENVIRONMENTAL SITE: MCB CAMP LEJEUNE SDG NO : B4120	L				
Client Sample ID:	35-RB01	35-TB07	35-TB08	 	
Matrix:	WATER	WATER	WATER		
Dilution Factor:	1.0	1.0	1.0		
Units:	ug/L	ug/L	ug/L		
COMPOUND		·		 	
Chloromethane					
Bromomethane					
Vinyl Chloride					
Chloroethane			5 J		
Methylene Chloride					
Acetone					
Carbon Disulfide					
1,1-Dichloroethene					
1,1-Dichloroethane					
1,2-Dichloroethene					
Chloroform					
1.2-Dichloroethane					
2-Butanone	UJ	UJ	UJ		
1.1.1 – Trichloroethane					
Carbon Tetrachloride					
Bromodichloromethane					
1.2-Dichloropropane					
Cis-1.3-Dichloropropene					
Trichloroethene					
Dibromochloromethane				•	
1 1 2-Trichloroethane					
Benzene					
Trans-13-Dichbronronene					
Bromoform					
4-Methyl-2-Pentanone					
Tetrachbroathana					
1 1 2 2 Tetrachloroothana					
Chlerabanzana					
Unioropenzene Ethylhonzono					
otyrene Vulana (totol)					
Juoromethane					

CLIENT: BAKER ENVIRONMENTAL SITE: MCB CAMP LEJEUNE

SDG NO.: B4120

Matrix: WATER Ual 10 <th>Client Sample ID:</th> <th>35-SW03</th> <th>35-SW04</th> <th>35-SW05</th> <th>35-SW06</th> <th>35-SW01</th> <th>35-SW02</th> <th>35-SW02D</th>	Client Sample ID:	35-SW03	35-SW04	35-SW05	35-SW06	35-SW01	35-SW02	35-SW02D
Dilution Pactor: 1.0 <th1.0< th=""> <th1.0< th=""></th1.0<></th1.0<>	Matrix:	WATER						
Units: ug/L <	Dilution Factor:	1.0	1.0	1.0	1.0	1.0	1.0	1.0
Phenol UJ bis(2-Chicrosethylpether) UJ 2-Chicrophenol UJ 1.3 – Dishborobenzene UJ 1.4 – Dishborobenzene UJ 2-Dishborobenzene UJ 2-Methylphenol Z 2-Methylphenol UJ 2-Methylphenol UJ 4-Methylphenol UJ 4-Methylphenol UJ 4-Methylphenol UJ 2-Methylphenol UJ 2-Norkjöl(-Chicropropane) UJ Pitroso-dii-n-propylamine UJ Nitrobenzene UJ 2-Nitrophenol UJ 2-Nitrophenol UJ 2.4 - Diskrokorotenxoxyinethane UJ 2.4 - Diskrokorotenxoxyinethane UJ 2.4 - Diskrokorotenzene UJ 4-Chicropaniline UJ 4-Chicropaniline UJ 4-Stororaniline UJ 2.45 - Tichkicrophenol Z 2.45 - Tichkicrophenol Z 2.45 - Tichkicrophenol Z	Units:	ug/L						
bis/2-ChioroethyletherUU2-ChiorophenolUI1.4-DichlorobenzeneUU1.4-DichlorobenzeneUU2-MethylphenolU2-MethylphenolUU2-MethylphenolUU2-MethylphenolUU4-MethylphenolUU2-NorobenzeneUU2-NorobenzeneUUNitroso-di-n-propylamineUUNitroso-di-n-propylamineUU2-NorobenzeneUU2-NorobenzeneUU2-NitrophenolUU2-NitrophenolUU2.4-DirichorobenzeneUU2.4-TirichbrobenzeneUU2.4-TirichbrobenzeneUU2.4-TirichbrobenzeneUU2.4-TirichbrobenzeneUU2.4-TirichbrobenzeneUU2.4-TirichbrobenzeneUU2.4-TirichbrobenzeneUU4-ChioroanilineUU4-ChioroanilineUU2.4.5-TirichbrophenolUU2.4.5-TirichbrophenolUU2.4.5-TirichbrophenolUU2.4.5-TirichbrophenolUU2.4.5-TirichbrophenolUU2.4.5-TirichbrophenolUU2.4.5-TirichbrophenolUU2.4.5-TirichbrophenolUU2.4.5-TirichbrophenolUU2.4.5-TirichbrophenolUU2.4.5-TirichbrophenolUU2.4.5-TirichbrophenolUU2.4.5-TirichbrophenolUU2.4.5-TirichbrophenolUU2.5.6-TirichbrophenolUU2.6-DirichbrophenolUU <td>Phenol</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	Phenol							
2-Chirophenol 1.3-Dichkorobenzene UJ 1.4-Dichkorobenzene UJ 2-Methylphenol - 2.2'-oxybis(1-Chkoropropane) UJ 2-Methylphenol - 2.2'-oxybis(1-Chkoropropane) UJ 4-Methylphenol - 2.2'-oxybis(1-Chkoropropane) UJ 4-Methylphenol UJ 2.A'oxybis(1-Chkoropropane) UJ 1krobenzene UJ 2.A'oxybis(horophenol UJ 2.A'Direthylphenol UJ 2.A'Direthylphenol UJ 2.A'Direthylphenol UJ 2.A'Direthylphenol UJ 2.A'Direthylphenol UJ 2.4-Direthylphenol UJ 2.4-D	bis(2-Chloroethyl)ether	UJ						
1,3-DichiorobenzeneUJ1,4-DichiorobenzeneUJ2-MitchiorobenzeneUJ2-MitchiorobenzeneUJ2-MitchiorobenzeneUJ2-MitchiorobenzeneUJ4-MethyliphenolUJ4-MethyliphenolUJ1/100000000000000000000000000000000000	2-Chlorophenol							
1.4 - DichlorobenzeneUJ1.2 - DichlorobenzeneUJ2-Methylphenol2.2' - oxybis(1 - Chloropropane)UJ4-MethylphenolUJNitrobenzeneUJIsroberoneUJ2-NitrophenolUJ2-NitrophenolUJ2-NitrophenolUJ2-NitrophenolUJ2-NitrophenolUJ2-NitrophenolUJ2-NitrophenolUJ2-Ar DichlorophenolUJ2-Ar DichlorophenolUJ2-Ar DichlorophenolUJ1.2,4 - TrichlorobenzeneUJ4-ChloroanilineUJ4-ChloroanilineUJ4-ChloroanilineUJ2,4 5- TrichlorophenolUJ2,4,5 - TrichlorophenolUJ2,4,5 - TrichlorophenolUJ2,4,5 - TrichlorophenolUJ2,4,6 - TrichlorophenolUJ2,4,6 - TrichlorophenolUJ2,4,5 - TrichlorophenolUJ2,4,5 - TrichlorophenolUJ2,4,5 - TrichlorophenolUJ2,4,5 - TrichlorophenolUJ2,4,5 - TrichlorophenolUJ2-NitroanilineUJDimethylphthalaneUJ2-NitroanilineUJ2-NitroanilineUJ2-NitroanilineUJ2-NitroanilineUJ2-NitroanilineUJ2-NitroanilineUJ2-NitroanilineUJ2-NitroanilineUJ2-NitroanilineUJ2-NitroanilineUJ	1,3-Dichlorobenzene	UJ						
1.2-Dichlorobenzene UJ 2-Methylphenol UJ 2-Methylphenol UJ 4-Methylphenol UJ 4-Methylphenol UJ hyltoso-di-n-propylamine UJ Nitroso-di-n-propylamine UJ bisoborone UJ 2-Nitrophenol UJ 2-Nitrophenol UJ 2-A-Dichlorothoxymethane UJ 2,4-Dichlorothoxymethane UJ 2,4-Dichlorothoxymethane UJ 2,4-Dichlorothoxymethane UJ 2,4-Dichlorothoxymethane UJ 2,4-Dichlorothoxymethane UJ 4-Choroaniline UJ 4-Choroaniline UJ 4-Choroaniline UJ 4-Choroaniline UJ 4-Choroaniline UJ 2,4,6-Trichlorophenol U 2,4,6-Trichlorophenol U 2,4,6-Trichlorophenol U 2,4,6-Trichlorophenol U 2,4,6-Trichlorophenol U 2,4,6-Trichlorophenol U	1,4-Dichlorobenzene	UJ						
2-Methylphenol U 4-Methylphenol U N-Nitroso-di-n-propylamine U Hexachoroethane U Nitrobenzene U Isophorone U 2-Nitrophenol U 2-Nitrophenol U 2-Nitrophenol U 2-Nitrophenol U 2-Loinerthylphenol U 2-Loinerthylphenol U 2-Loinerthylphenol U 2-Loinerthylphenol U 2,4-Dinethylphenol U 2,4-Dinethylphenol U 2,4-Dinethylphenol U 4-Chlorophenol U 4-Chlorophenol U 4-Chlorophenol U 2,4-Dinethylphenol U 2,4-Dinethylphenol U 2,4-S-Trichlorophenol U 2,4-S-Trichlorophenol U 2,4-S-Trichlorophenol U 2-Nitroaniline U 2-Nitroaniline U 2-Nitroaniline U 2-S	1,2-Dichlorobenzene	UJ						
2.2' oxybis(1-Chloropropane)UJ4-MethylphenolUJNNitroso-oi-n-propylamineUJHexachloroethaneUJSophoroneUJ2-NitrophenolUJ2-NitrophenolUJ2-NitrophenolUJ2,4-DimethylphenolUJ2,4-DichlorophenolUJ2,4-DichlorophenolUJ2,4-DichlorophenolUJ2,4-DichlorophenolUJ2,4-DichlorophenolUJ2,4-DichlorophenolUJ4-Chloro-a-methylphenolUJ4-Chloro-a-methylphenolUJ2-AfthylaphthaleneUJ4-Chloro-a-methylphenolUJ2-AfthylaphthaleneUJ2-AfthylaphthaleneUJ2-AfthylaphthaleneUJ2-AfthylaphthaleneUJ2-AfthylaphthaleneUJ2-AfthylaphthaleneUJ2-AfthylaphthaleneUJ2,4-5-TichlorophenolUJ2-AfthylaphthaleneUJ2-AfthylphthalateUJ2-NitroanlineUJ2-NitroanlineUJAcenaphthyleneUJ3-NitroanlineUJ3-NitroanlineUJ3-NitroanlineUJ3-NitroanlineUJ3-NitroanlineUJ3-NitroanlineUJ3-NitroanlineUJ3-NitroanlineUJ3-NitroanlineUJ3-NitroanlineUJ3-NitroanlineUJ3-NitroanlineUJ3-NitroanlineUJ <td>2-Methylphenol</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	2-Methylphenol							
4-Mstrylphenol U N-Nitroso-di-n-propylamine U Hexachlorosthane UU Nitrobenzene UU Isophorone UU 2-Nitrophenol U 2,4-Dimethylphenol U 2,4-Dintehylphenol U 2,4-Dintehylphenol U 2,4-Dichlorophenol U 2,4-Dichlorophenol U 2,4-Dichlorophenol U 2,4-Dichlorobenzene UU Naphtalene UU 4-Chloro-3-methylphenol U 4-Chloro-3-methylphenol U 2,4-Erichlorophenol U 2-Nitrophinel U 2-Nitrophinel U 2-Nitrophinel U 2-Nitrophinel U 2-Nitrophinel U	2,2'-oxybis(1-Chloropropane)	UJ						
N-Nitroso-di-n-propylamine UJ Hexachkoroethane UJ Isophorone UJ Isophorone UJ 2-Nitrophenol UJ 2-Altrophenol UJ 2,4-Dinethylphenol UJ 2,4-Dinethylphenol UJ 2,4-Dirokhorophenol UJ 2,4-Dirokhorophenol UJ 2,4-Dirokhorophenol UJ 4,2-Trichkorobenzene UJ Naphthalene UJ 4-Chioro-alinine UJ 2,4,5-Trichkorophenol UJ 2,4,5-Trichkorophenol UJ 2,4,5-Trichkorophenol UJ 2,-Nitroaniline UJ 2,-Nitroaniline UJ 2,-Dinitrotoluene UJ 2,-Dinitrotoluene <td< td=""><td>4-Methylphenol</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>	4-Methylphenol							
HexachkoroethaneUJNitrobenzeneUJSophoroneUJ2-Nitrophenol	N-Nitroso-di-n-propylamine	UJ						
NitrobenzeneUJIsophoroneUJ2-Nitrophenol	Hexachloroethane	UJ						
Isophorone UJ 2-Nitrophenol	Nitrobenzene	UJ						
2-Nitrophenol 2,4-Dirkthylphenol bis(2-Chloroethoxy)methane UJ 2,4-Dirkthorophenol 1,2,4-Trichlorobenzene UJ Naphthalene UJ 4-Chloroaniline UJ 4-Chloro-3-methylphenol UJ 4-Chloro-3-methylphenol UJ 2,4,6-Trichbrophenol UJ 2,4,6-Trichbrophenol UJ 2,4,5-Trichbrophenol UJ 2,4,5-Trichbrophenol UJ 2,4,5-Trichbrophenol UJ 2,4,5-Trichbrophenol UJ 2,4,5-Trichbrophenol UJ 2,-Chloronaphthalene UJ 2,-Chloronaphthalene UJ 2,4,5-Trichbrophenol UJ 2,5-Dirichorophenol UJ 2,5-Dirichorophenol UJ 2,5-Dirichorophenol UJ 2,6-Diricroluene UJ 2,6-Diricroluene UJ 2,6-Diricroluene UJ 2,6-Diricroluene UJ 2,6-Diricroluene UJ 2,6-Diricroluene UJ 2,6-Diritroluene UJ <tr td=""></tr>	Isophorone	UJ						
2,4-Dimethylphenol UJ 2,4-Dichoroethoxy)methane UJ 2,4-Dichorophenol UJ 1,2,4-Trichlorobenzene UJ Naphthalene UJ 4-Chloroaniline UJ 4-Chloro-3-methylphenol UJ 2-Methylnaphthalene UJ 4-Chloro-3-methylphenol UJ 2,4,6-Trichlorophenol UJ 2,6-Dinitrotoluene UJ	2-Nitrophenol							
bis(2Chloroethoxy)methane UJ 2,4-Dichlorophenol 1,2,4-Trichlorobenzene UJ Naphthalene UJ 4-Chloroaniline UJ Hexachlorobutadiene UJ 4-Chloro-3-methylphenol 2-Methylnaphthalene UJ 2,4,6-Trichlorophenol 2,4,5-Trichlorophe	2,4-Dimethylphenol							
2,4-Dichlorophenol 1,2,4-Trichlorobenzene UJ Naphthalene UJ 4-Chloroaniline UJ 4-Chloro-3-methylphenol UJ 2-Methylnaphthalene UJ 4-Chlorophenol UJ 2,4,6-Trichlorophenol UJ 2,6-Dinitrotoluene UJ 2,6-Dinitrotoluene UJ 2,6-Dinitrotoluene UJ 2,6-Dinitrotoluene UJ 3-Nitroaniline UJ 3-Nitroaniline UJ	bis(2-Chloroethoxy)methane	UJ						
1,2,4 - TrichlorobenzeneUJNaphthaleneUJ4-ChloroanilineUJ4-ChloroonJ-a-methylphenolUJ2-MethylnaphthaleneUJ4-ChlorocyclopentadieneUJ2,4,6 - TrichlorophenolUJ2,4,5 - TrichlorophenolUJ2-NitroanilineUJ2-ChloronaphthaleneUJ2,4,5 - TrichlorophenolUJ2,4,5 - TrichlorophenolUJ2,6,6 - DinitrotolueneUJ2,6 - DinitrotolueneUJ3-NitroanilineUJ2,6 - DinitrotolueneUJ3 - NitroanilineUJ3 - NitroanilineUJ	2.4-Dichlorophenol							
NaphthaleneUJ4-ChloroanilineUJHexachlorobutadieneUJ4-Chloro-3-methylphenol22-MethylnaphthaleneUJ2-MethylnaphthaleneUJ2,4,6-Trichlorophenol22,4,5-Trichlorophenol22-ChloronaphthaleneUJ2-NitroanilineUJ2-NitroanilineUJ2,6-DinitrotolueneUJ2,6-DinitrotolueneUJ2,6-DinitrotolueneUJ2,6-DinitrotolueneUJ2,6-DinitrotolueneUJ2,6-DinitrotolueneUJ2,6-DinitrotolueneUJ2,6-DinitrotolueneUJ2,6-DinitrotolueneUJ2,6-DinitrotolueneUJ3-Nitroaniline <td>1.2.4-Trichlorobenzene</td> <td>UJ</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	1.2.4-Trichlorobenzene	UJ						
4-ChloroanilineUJHexachlorobutadieneUJ4-Chloro-3-methylphenolUJ2-MethylnaphthaleneUJ2-MethylnaphthaleneUJ2,4,6-Trichlorophenol2,4,5-Trichlorophenol2,4,5-TrichlorophenolUJ2-ChloronaphthaleneUJ2-NitroanilineUJDimethylphthalateUJ2,6-DinitrotolueneUJ2,6-DinitrotolueneUJ3-NitroanilineUJ	Naphthalene	UJ						
Hexachkorobutadiene UJ 4-Chloro-3-methylphenol J 2-Methylnaphthalene UJ 2-Methylnaphthalene UJ 2,4,6-Trichkorophenol J 2,4,5-Trichkorophenol J 2-Chloronaphthalene UJ 2-Nitroaniline UJ Dimethylphthalate UJ 2,6-Dinitrotoluene UJ 2,6-Dinitrotoluene UJ 3-Nitroaniline UJ	4-Chloroaniline	UJ						
4-Chloro-3-methylphenol UJ 2-Methylnaphthalene UJ 2-Achorocyclopentadiene UJ 2,4,6-Trichkorophenol 2 2,4,5-Trichkorophenol 2 2-Chloronaphthalene UJ 2-Nitroaniline UJ Dimethylphthalate UJ 2,6-Dinitrotoluene UJ 2,6-Dinitrotoluene UJ 3-Nitroaniline UJ	Hexachlorobutadiene	UJ						
2-Methylnaphthalene UJ 2-Methylnaphthalene UJ 2,4,6-Trichlorophenol 2,4,5-Trichlorophenol 2,4,5-Trichlorophenol UJ 2-Chloronaphthalene UJ 2-Nitroaniline UJ Dimethylphthalate UJ 2,6-Dinitrotoluene UJ 3-Nitroaniline UJ	4-Chloro-3-methylphenol							
Hexachlorocyclopentadiene UJ 2,4,6 – Trichlorophenol 2,4,5 – Trichlorophenol 2,4,5 – Trichlorophenol UJ 2-Chloronaphthalene UJ 2-Nitroaniline UJ Dimethylphthalate UJ Acenaphthylene UJ 2,6 – Dinitrotoluene UJ 3-Nitroaniline UJ	2-Methylnaphthalene	UJ						
2,4,6 – Trichlorophenol 2,4,5 – Trichlorophenol 2 – Chloronaphthalene UJ 2 – Nitroaniline UJ Dimethylphthalate UJ Acenaphthylene UJ 2,6 – Dinitrotoluene UJ Acenaphthalene UJ	Hexachlorocyclopentadiene	UJ						
2,4,5 – Trichlorophenol 2–Chloronaphthalene UJ 2–Nitroaniline UJ Dimethylphthalate UJ Acenaphthylene UJ 2,6 – Dinitrotoluene UJ Acenaphthylene UJ	2.4.6-Trichlorophenol							
2-Chloronaphthalene UJ 2-Nitroaniline UJ Dimethylphthalate UJ Acenaphthylene UJ 2,6-Dinitrotoluene UJ 3-Nitroaniline UJ	2.4.5-Trichlorophenol							
2-Nitroaniline UJ Dimethylphthalate UJ Acenaphthylene UJ 2,6-Dinitrotoluene UJ 3-Nitroaniline UJ	2-Chloronaphthalene	1.1						
Dimethylphthalate UJ Acenaphthylene UJ 2,6-Dinitrotoluene UJ 3-Nitroaniline UJ	2-Nitroaniline							
Acenaphthylene UJ 2,6-Dinitrotoluene UJ 3-Nitroaniline UJ	Dimethylohthalate	111						
2,6-Dinitrotoluene UJ 3-Nitroaniline UJ	Acenaphthylene							
3-Nitroaniline UJ Acenaphthene UJ	2.6-Dinitrotoluene	111						
Acenantities OU Acenantities III		111						
	Acenanhthana	00						

CLIENT: BAKER ENVIRONMENT	AL .						
SITE: MCB CAMP LEJEUNE							
SDG NO.: B4120 Client Sample ID:	35-SW03	35-SW04	35-SW05	35-SW06	35-SW01	35-SW02	35-SW02D
Cheft Sample ID.	00-0000	00-0004	00-01103	00-01100	00-01101	00 01102	00 011020
Matrix:	WATER	WATER	WATER	WATER	WATER	WATER	WATER
Dilution Factor:	1.0	1.0	1.0	1.0	1.0	1.0	1.0
Units:	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
2,4-Dinitrophenol							
4-Nitrophenol							
Dibenzofuran	UJ						
2,4-Dinitrotoluene	UJ						
Diethylphthalate	UJ						
4-Chlorophenyl-phenylether	UJ						
Fluorene	UJ						
4-Nitroaniline	UJ						
4,6-Dinitro-2-methylphenol							
N-Nitrosodiphenylamine	UJ						
4-Bromophenyl-phenylether	UJ						
Hexachlorobenzene	UJ						
Pentachlorophenol							
Phenanthrene	UJ						
Anthracene	UJ						
Carbazole	UJ						
Di-n-butylphthalate	UJ						
Fluoranthene	UJ						
Pyrene	UJ						
Butylbenzylphthalate	UJ						
3,3-Dichlorobenzidine	UJ						
Benzo(a)anthracene	UJ						
Chrysene	UJ						
bis(2-Ethylhexyl)phthalate	UJ	UJ	UJ	UJ	UJ	UJ	UJ
Di-n-octylphthalate	UJ	UJ	UJ	UJ	UJ	UJ	UJ
Benzo(b)fluoranthene	UJ						
Benzo(k)fluoranthene	UJ						
Benzo(a)pyrene	UJ						
Indeno(1,2,3-cd)pyrene	UJ						
Dibenz(a,h)anthracene	UJ						
Benzo(g,h,i)perylene	UJ						

CLIENT: BAKER ENVIRONMENTAL	L	
SITE: MCB CAMP LEJEUNE		
SDG NO.: B4120		
Client Sample ID:	35-SDER01	35-RB01
Matrix:	WATER	WATER
Dilution Factor:	10	1.0
Units	ua/L	ug/L
Orma.	49/2	49/2
Phenol		
bis(2–Chloroethyl)ether		
2-Chlorophenol		
1,3-Dichlorobenzene		
1,4-Dichlorobenzene		
1,2-Dichlorobenzene		
2-Methylphenol		
2,2'-oxybis(1-Chloropropane)		
4-Methylphenol		
N-Nitroso-di-n-propylamine		
Hexachloroethane		
Nitrobenzene		
Isophorone		
2-Nitrophenol		
2.4-Dimethylphenol		
bis(2-Chloroethoxy)methane		
2.4-Dichlorophenol		
1.2.4-Trichbrobenzene		
Naphthalene		
4-Chloroaniline		
Hexachlorobutadiene		
4-Chloro-3-methylphenol		
2-Methylnaphthalene		
Hexachlorocyclopentadiene		
2.4.6-Trichbrophenol		
2.4.5-Trichlorophenol		
2-Chloronaphthalene		
2-Nitroaniline		
Dimethylphthalate		
Acenaphthylene		
2.6-Dinitrotoluene		
3-Nitroaniline		
Acenaphthene		
a a competition on the		

CLIENT: BAKER ENVIRONMENT	AL	
SITE: MCB CAMP LEJEUNE		
SDG NO.: B4120		
Client Sample ID:	35-SDER01	35-RB01
Matrix:	WATER	WATER
Dilution Factor:	10	10
Linite:	1.0 Ug/l	1.0
Orits.	սց/բ	uy/L
2,4-Dinitrophenol	······································	
4–Nitrophenol		
Dibenzofuran		
2,4-Dinitrotoluene		
Diethylphthalate		
4-Chlorophenvl-phenvlether		
Fluorene		
4-Nitroaniline		
46-Dinitro-2-methylphenol		
N–Nitrosodiphenylamine		
4-Bromonhenvl-nhenvlether		
Heyachlorobenzene		
Pentachlorophenol		
Phenanthrono		
Anthropono		
Anthracene		
Pyrene Rotalk angede bab state		
Butyidenzyiphthalate		
3,3-Dichlorobenzialne		
Benzo(a)anthracene		
bis(2-Ethylhexyl)phthalate	UJ	UJ
Di-n-octylphthalate	UJ	UJ
Benzo(b)fluoranthene		
Benzo(k)fluoranthene		
Benzo(a)pyrene		
Indeno(1,2,3-cd)pyrene		
Dibenz(a,h)anthracene		
Benzo(g,h,i)perylene		

ROY F. WESTON, INC. PESTICIDE/PCB ANALYSES - DATA VALIDATION SUMMARY

CLIENT: BAKER ENVIRONMENT	TAL							
SDG NO.: B4120								
Client Sample ID:	35-SW03	35-SW04	35-SW05	35-SW06	35-SW01	35-SW02	35-SW02D	35-SDER01
Matrix:	WATER	WATER						
Dilution Factor:	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
Units:	ug/L	ug/L						
COMPOUND								
alpha-BHC								
betaBHC								
delta-BHC								
gamma-BHC(Lindane)								
Heptachlor								
Aldrin								
Heptachlor Epoxide								
Endosulfan I								
Dieldrin								
Endrin								
4,4								
4,4 -001 Methoxychlor								
Endrin Kotono								
Endrin Aldehyde								
alpha-Chbrdane								
gamma-Chiordane								
Toxanhene								
Aroclor 1016								
Aroclor 1221								
Aroclor 1232								
Aroclor 1242								
Aroclor 1248								
Aroclor 1254								
Arocior 1260								

1 WESTON WAY WEST CHESTER, PA 19380-1449 PHONE: 215-692-3030 FAX: 215-430-3124

INORGANIC QUALITY ASSURANCE REVIEW BAKER ENVIRONMENTAL, INC. SITE: MCB CAMP LEJEUNE SDG: BA4120

REVIEW PERFORMED BY THE ANALYTICS DIVISION OF ROY F. WESTON, INC.

tthe **PREPARED BY:**

Kelly Muir Spittler Unit Leader - Data Validation

16:94 Date

VERIFIED BY:_

<u>6-16-94</u> Date

Zohreh Hamid, Ph.D. Section Manager - Data Validation

BAKER ENVIRONMENTAL, INC. - NAVY CLEAN SITE: MCB CAMP LEJEUNE SDG: BA4120

CASE SUMMARY

This data validation review consists of nine (9) water samples including one rinsate blank collected on 04-12,13,14-94. Laboratory analyses were performed by NDRC Laboratories, Inchcape Testing Services for Target Analyte List (TAL), Molybdenum, and Hardness.

All data have been validated with regard to usability according to the quality assurance guidelines set forth in Inorganic Functional Guidelines and Naval Energy and Environmental Support Activity (NEESA). If you have any questions or comments on this data review, please contact Zohreh Hamid at (610) 701-3745.

The following samples are contained within this report:

35RB01 *	35SW02	35SW05
35SDER *	35SW03	35SW06
35SW01	35SW04	35SW2D

* This sample was not analyzed for Hardness.

QUALITY ASSURANCE REVIEW

The findings offered in this report are based upon a rigorous review of the following criteria. No major problems were encountered during the sample analyses. The minor deficiencies are summarized under each parameter:

- • Holding Times
 - Calibration
 - Contract Required Detection Limit Samples
 - Blank Samples
 - Interference Check Samples
 - Matrix Spike
 - Duplicate Digestion Samples
 - Laboratory Control Sample
- Serial Dilution Sample
- Graphite Furnace Analysis
- Quarterly Verification of Instrument Parameters
- Sample Řesult Verification
- Preparation Logs
- Run Logs
 - Data Package Completeness
- * All criteria were met for this classification.

Page 2

CALIBRATION VERIFICATION

The initial and continuing calibrations met the requirement limits.

CONTRACT REQUIRED DETECTION LIMIT SAMPLE ANALYSES

The CRDL recoveries for Al (20% analyzed by AA), Cr (121% analyzed by GFAA), Co (123.8/132.8% analyzed by ICP) were outside the data validation requirement limits of 80-120%. The positive results greater than IDLs but less than 3X the CRDLs for chromium and cobalt and all data for aluminum are qualified estimated due to the uncertainty near the detection limits.

The recoveries for molybdenum (-70/-120%) were extremely below the requirement limits. This analyte has not been classified as a CLP TAL analyte. Therefore, the data are not rejected and the results near the detection limits and non-detected values are considered biased low and flagged "J" and "UJ", respectively.

BLANK ANALYSES

ANALYTE	CONC. UG/L	ACTION LEVEL UG/L *
Barium	2.467	12
Calcium	357	1785
Copper	3.2	16
Iron	59.3	296.5
Magnesium	137.9	689.5
Sodium	-695	3475
Vanadium	-6.467	**
Zinc	30.267	150 ***

The laboratory blank had the following contaminations:

* Action level = 5X the blank concentration

** The reported sample data are not impacted when the absolute concentration of an analyte is less than 2X the IDL.

*** The analyte was detected in the laboratory blank at a level above the CRDL.

Page 3

BLANK ANALYSES (continued)

The laboratory reanalyzed zinc in samples (35SW06 and 35SW04L). The concentrations for zinc were above the CRDLs in these two samples. The reported sample results for the other samples are contractually rejected due to the blank contaminations. However, it is the data reviewer's opinion that the results should be considered as the detection limits and should be flagged with the "U" qualifier code.

The results for copper are qualified "U" and are considered as not detected in the samples.

The sample results for barium, calcium, iron, and magnesium in all samples, with the exception of samples 35SDER and 35RB01 were above the action levels and were considered as true values.

The reported sample result for sodium up to the action level are qualified "J" and are considered biased low due to the baseline drift in the preparation blank.

One rinsate blank was analyzed with this batch of samples. The reported sample results, with the exception of manganese, are qualified "U" due to the laboratory blank contamination. The reported sample data are not impacted by the rinsate blank contamination.

MATRIX SPIKE

The matrix spike recoveries for Cd (72.4%), Fe (61.5%), and Se (71%) were below the lower control limits of 75%. The reported sample data are biased low.

The post digestion spike analysis was performed for iron as required by CLP. The spike recovery was within the control limits.

DUPLICATE DIGESTION SAMPLES

The RPDs for all analytes in laboratory duplicate sample analysis were within the control limits, with the exception of mercury (79.9%). The reported positive sample results are qualified estimated.

One set of field duplicate samples (35SW02/35SW2D) was analyzed with this batch. The comparison of the reported data gave a satisfactory precision.

Page 4

LABORATORY CONTROL SAMPLE

The percent recovery for cadmium (30%) was below the control limit of 80%. The reported data are considered estimated.

SERIAL DILUTION SAMPLE

The percent differences for all analytes with the concentration above 50X the IDL were within the control limits.

GRAPHITE FURNACE ANALYSIS

The following samples analyzed by graphite furnace had the analytical spike recovery outside the control limits of 85-115%:

SAMPLE ID	ANALYTE	%RECOVERY
35SW03	Be/Se	74/79
35SW04	Be/Se	77/73
35SW05	Be/Se	75/78
35SW06	Be/Se	70/78
35SW01	Be/Se	72/77
35SW02	Be/Se	68.3/82
35SW2D	Be/Se	72/75
35SDER	Be	68
35RB01	Be	71.71

The reported data are qualified estimated.

SAMPLE RESULTS

Aluminum was analyzed by flame AA for all samples, the results obtained by ICP for this analyte were higher than the reported results by flame AA. Antimony, arsenic, beryllium, cadium, chromium, lead, selenium, silver, and thallium were analyzed by graphite furnace.

Page 5

SAMPLE RESULTS (continued)

The results for sodium in all field samples and the corresponding QC samples were recorded incorrectly. The raw data have been reviewed and the sample results are corrected on the data summary. The laboratory should correct and resubmit the entire data package for this element.

DATA PACKAGE COMPLETENESS

The instrument detection limit (IDL) for magnesium was not listed on the Form X. The laboratory has been contacted. This information was found on Form III and listed on the data summary.

The chain-of-custody for soil/sediment samples were included in this data package. However, the sample analysis was not included within this SDG number.

The case number was not identified for the SDG number.

SUMMARY

The data package and quality of the data was fair. Major problems were not encountered during the analyses, with the exception of the laboratory blank contamination. The laboratory reanalyzed the affected samples as recommended by the CLP program. The results for hardness analysis are accepted as reported. The reported sample data could be accepted with the applied qualifier codes.

INFORMATION REGARDING DATA

The data have been reviewed according to the USEPA National Functional Guidelines for Inorganic Data Review. All data are validated with regard to usability.

If you have any questions or comments on this data review, please call Zohreh Hamid at (215) 344-3745.

ATTACHMENTS

- 1. Attachment I Glossary of Data Qualifier Codes
- 2. Attachment II Sample Result Summary. This includes:
 - a) A summary of all positive results for the target analytes with the qualifier codes, if applicable;
 - b) All qualified and usable detection limits.
- 3. Attachment III Resubmissions (if applicable)

WALLERS CONNELLAITS

ATTACHMENT I GLOSSARY OF DATA QUALIFIER CODES

, the dense for the first second second

GLOSSARY OF DATA QUALIFIERS

CODES RELATING TO IDENTIFICATION

(confidence concerning presence or absence of compounds):

- U = NOT DETECTED SUBSTANTIALLY ABOVE THE LEVEL REPORTED IN LABORATORY OR FIELD BLANKS.
- **R** = UNRELIABLE RESULT. ANALYTE MAY OR MAY NOT BE PRESENT IN THE SAMPLE. SUPPORTING DATA NECESSARY TO CONFIRM RESULT.
- N = NEGATED COMPOUND WAS CONSIDERED AS NOT PRESENT IN THE SAMPLE.

(NO CODE) = CONFIRMED IDENTIFICATION

CODES RELATING TO QUANTITATION

(can be used for both positive results and sample quantitation limits):

- J = ANALYTE PRESENT. REPORTED VALUE MAY NOT BE ACCURATE OR PRECISE.
- UJ = THE REPORTED QUANTITATION LIMITS ARE QUALIFIED ESTIMATED.

OTHER CODES

 \mathbf{Q} = NO ANALYTICAL RESULT.

ATTACHMENT II SAMPLE RESULT SUMMARY

_--

ROY F. WESTON, INC. INORGANIC ANALYSES – DATA VALIDATION SUMMARY Units: ug/L

CLIENT: BAKER ENVIRONMENTAL SITE: MCB CAMP LEJEUNE SDG NO.: BA4120

Client Sa	mple ID: Matrix:		35SW03 WATER	35SW04 WATER	35SW05 WATER	35SW06 WATER	35SW01 WATER	35SW02 WATER	35SW2D WATER	35SDER WATER	35RB01 WATER
		IDL									
INORGANIC E	LEMENTS										
Aluminium	А	1.0	IJ	UJ							
Antimony	F	1.0	1.8	1.5							
Arsenic	F	2.0									
Barium	Р	2.0	19.5	19.0	18.2	23.3	16.9	16.7	18.6		
Bervilium	F	1.0	UJ								
Cadmium	F	1.0	UJ								
Calcium	Р	308	59500	59300	58800	63900	58000	58100	60400	550 U	610 U
Chromium	F	1.0	1.0 J			1.2 J					
Cobalt	Р	9.0	9.5 J	11.7 J	16.8 J					13.3 J	
Copper	Р	2.0	6.3 U	6.6 U	3.4 U	10.4 U	6.5 U	4.4 U	5.2 U	6.2 U	8.4 U
Iron	Р	18	1060 J	1230 J	842 J	1750 J	764 J	850 J	886 J	47.9 J	51.4 J
Lead	F	1.0	2.1	2.1		2.4		1.4	1.0	1.0	
Magnesium	P	102	3120	3140	3470	5180	2380	2390	2470	111 U	128 U
Manganese	Р	2.0	36.9	44.9	38.7	77.4	30.1	29.1	29.6		2.3
Mercurv	AV	0.2		3.2 J			3.0 J				
Nickel	Р	10.0									
Potassium	Р	1674	3210	2760	2810	3840	2460	2150	2540		
Selenium	F	1.0	UJ	1.3 J	UJ						
Silver	F	1.0									
Sodium	P	339	57000	59100	57300	68800	47000	42600	44600	2290 J	2457 J
Thallium	F	1.0									
Vanadium	P	4.0									
Zinc	P	2.0	19.8 R	14.0 R	19.1 R	26.3 U	18.3 R	17.9 R	12.8 R	10.2 R	6.5 R
Molybdenum	P	33	UJ	UJ	UJ	UJ	IJ	UJ	UJ	UJ	UJ

٠

P = ICP

A = Flam AA

F = Furnace AA

AV = Automated Cold Vapor AA

ROY F. WESTON, INC. INORGANIC ANALYSES – DATA VALIDATION SUMMARY Units: mg/L CaC03

CLIENT: BAKER ENVIRONMENTAL SITE: MCB CAMP LEJEUNE SDG NO.: BA4120

.

1

Client Sample ID: Matrix:	35SW03 WATER	35SW04 WATER	35SW05 WATER	35SW06 WATER	35SW01 WATER	35SW02 WATER	35SW2D WATER
INORGANIC ELEMENTS							
Hardness	166	174	164	182	142	164	186

1 WESTON WAY WEST CHESTER, PA 19380-1449 PHONE: 215-692-3030 FAX: 215-430-3124

BAKER ENVIRONMENTAL, INC. TCL ORGANIC QUALITY ASSURANCE REVIEW SITE: MCB CAMP LEJEUNE / SDG: B4375

REVIEW PERFORMED BY THE ANALYTICS DIVISION OF **ROY F. WESTON, INC.**

itter PREPARED BY: Kelly Muir Spittler

Unit Leader - Data Validation

06-27-94 Date

VERIFIED BY:__

Zohreh Hamid, Ph.D. Section Manager - Data Validation

6-27-34 Date

BAKER ENVIRONMENTAL, INC. - NAVY CLEAN SITE: MCB CAMP LEJEUNE SDG: B4375

INTRODUCTION

This quality assurance review is based upon a review of all data generated from seven water samples, three trip blanks, four rinsate blanks, and one duplicate analysis collected on 04-16,17,18,19,20-94. The samples were analyzed according to criteria set forth in the contract laboratory program (CLP) for TCL Volatile, Semivolatile and Pesticide/PCB target compounds by NDRC Laboratories, Inchscape Testing Services.

This review has been performed in accordance with the confirmation method. The reported analytical results are presented as a summary of the data in Attachment II. All of the analytical data were examined to determine the usability of the analytical results and also to determine contractual compliance relative to the analytical requirements and deliverables specified in the CLP method and Sampling and Chemical Analysis Quality Assurance requirements for the Navy Installation Restoration Program (NEESA 20.2-047B). The applicable qualifier codes have been placed next to the results in the data summary to indicate the qualitative and/or quantitative reliability. The details of this evaluation review are presented in the narrative section of this report.

All data have been validated with regard to usability according to the quality assurance set forth in USEPA Laboratory Data Validation Functional Guidelines for Evaluating Organics Analyses. If you have any questions or comments on this data review, please call Zohreh Hamid or Kelly Spittler at (610) 701-3745.

OUALITY ASSURANCE REVIEW

The findings offered in this report are based upon a review of the following criteria:

- Data Completeness
- Holding Time
- GC/MS Tuning
- Calibration
- Blank
- Surrogate Recoveries
- Matrix Spike/Spike Duplicate
 - Laboratory Control Sample
- Internal Standard
- Instrument Performance
- Field Duplicate Results
- Compound Identification
- * Compound Quantitation
- * All criteria were met; therefore, a narrative section is not provided for this classification.

Page 2

DATA COMPLETENESS

General

The chain-of-custody for soil/sediment samples were included in this data package; however, the sample analyses were not provided with this SDG.

HOLDING TIME

Volatiles

The technical holding time (7 days from collection), which differs from the contractual holding time (10 days from VTSR), has been exceeded for samples 35-RB03, 35-RB05, 35-TB11, 35-TB12, 36-RB06, 36-SW05, 36-SW07, 36-SW06, and 36-SW05D. The positive results and non-detects are qualified estimated in these analyses.

Pesticide/PCBs

All samples were extracted beyond the technical holding time (7 days from collection), which differs from the laboratory contractual holding time (10 days from VTSR). All positive results and non-detects are qualified estimated.

CALIBRATION

Semivolatiles

The following %D results in the continuing calibrations exceeded the 25% QC limits. These calibrations are considered acceptable since less than four (BNA) check (*) compounds had %Ds outside the criteria. However, all associated non-detected values for the compounds listed below are qualified as estimated and flagged "UJ". All RRFs were above 0.05; therefore, no qualification is required on this basis.

CALIBRATION	INSTRUMENT ID	COMPOUND	<u>%RSD/%D</u>
CC 04-26-94	HP1	Bis(2-ethylhexyl)phthalate	-34.5
		Di-n-octylphthalate	-29.1

Page 3

CALIBRATION	INSTRUMENT ID	COMPOUND	<u>%RSD/%D</u>
CC 05-03-94	HP1	Phenol	-26.7
		Dimethylphthalate	89.7
		4-Nitrophenol	32.9
		N-Nitrosodiphenylamine	92.1
		Butylbenzylphthalate	27.0
		Bis(2-ethylhexyl)phthalate	37.0
		Di-n-octylphthalate	25.5
CC 05-05-94	HP1	Phenol	-26.8
		Bis(2-chloroethyl)ether	28.3
		2,2'-oxybis(1-chloropropane)	34.6
		N-Nitroso-di-n-propylamine	36.3
		2,4-Dinitrophenol	32.5
		4,6-Dinitro-2-methylphenol	25.3

Pesticide/PCBs

The %RSD for endrin aldehyde (28.2%) exceeded the 20% QC limit in the initial calibration analyzed on the DB1701 column. Therefore, the positive result for endrin aldehyde in sample 35-RB05 is qualified estimated. This compound was not detected in the other samples.

The retention time for beta-BHC was below the retention time window for PEME analyzed on the DB1701 column. Since this performance evaluation mix was analyzed at the end of the sequence and this compound was not detected in the samples, no qualification is applied.

The %RPDs for methoxychlor (88.6%) in INDAM03 (column SPB-608) and decachlorobiphenyl (35.0%) in PEMA (column DB1701) exceeded the 25% QC limit. The positive result for methoxychlor in sample 35-RB05 is considered estimated since this sample was analyzed immediately after the standard.

BLANKS

Volatiles

The following trip and rinsate blanks contained common laboratory contaminants. Since these compounds were not detected in any of the samples, no action is required.

Page 4

<u>BLANK</u>	COMPOUND	<u>LEVEL</u>
35-TB11	Acetone	25 ug/L
36-RB06	Methylene Chloride	5 ug/L

Pesticide/PCBs

The following method and rinsate blanks contained target compounds at levels below the CRQLs. All associated positive results less than 5X the blank levels are considered laboratory artifacts, are elevated to the CRQL, and are flagged "U".

<u>BLANK</u>	COMPOUND	<u>LEVEL</u>
35-RB05	Endrin Aldehyde Methoxychlor	0.11 ug/L 0.50 ug/L
36-RB06	Methoxychlor	0.50 ug/L
Method Blank	Methoxychlor	0.39 ug/L

SURROGATE RECOVERIES

Semivolatiles

The following surrogate recoveries were below the QC limits in the analysis of sample 36-SW05:

SURROGATE COMPOUND	RECOVERY	<u>LIMITS</u>
2-Chlorophenol-d ₄	28	33-110
Nitrobenzene-d ₅	28	35-114
2-Fluorobiphenyl	35	43-116

Since this sample was not re-extracted/reanalyzed as a straight sample, the base neutral fraction for this sample has all non-detects qualified estimated, "UJ"; positive results were not detected for this fraction.

Page 5

Pesticide/PCBs

All surrogate recoveries were within the requirement limits, except for the following:

<u>SAMPLE NO.</u>	<u>RECOVERY</u> DB608/DB1701	SURROGATE COMPOUND	REASON
36-SW05 MSD	40/51	DCB	Advisory Criteria 60-150%
36-SW02	39/48	DCB	Advisory Criteria 60-150%
36-SW03	49/59	TCX	Advisory Criteria 60-150%
36-SW05	39/55	DCB	Advisory Criteria 60-150%
36-SW07	44/-	DCB	Advisory Criteria 60-150%
36-SW06	42/-	DCB	Advisory Criteria 60-150%
36-SW04	-/59	TCX	Advisory Criteria 60-150%
36-SW01	-/46 49/0	TCX DCB	Advisory Criteria 60-150% Advisory Criteria 60-150%

DCB = Decachlorobiphenyl TCX = Tetrachloro-m-xylene

Since the requirement limits are advisory and there is no qualification criteria established in Functional Guidelines or NEESA for surrogate outliers in the pesticide/PCB fraction, no action is taken.

LABORATORY CONTROL SAMPLE

An LCS analysis was performed in order to fulfill the blank spike analysis requirements as established in the NEESA guidelines.

Pesticide/PCBs

The percent recovery for aldrin (34%) was outside the QC limits of 40-120% in the LCS analysis. Since the compound was not detected in the samples, no action is required.

Page 6

INTERNAL STANDARD

Semivolatiles

The following internal standard areas were below the control limits in the sample analyses:

<u>SAMPLE</u> 36-RB06	INTERNAL STANDARD Perylene-d ₁₂	<u>AREA</u> 19730	CONTROL LIMITS 378922-1515688

Since these samples were not re-extracted/reanalyzed, the non-detects quantified in reference to perylene are qualified estimated in these samples. Positive results were not detected in these samples.

FIELD DUPLICATE RESULTS

Sample 36-SW05D is a duplicate analysis of sample 36-SW05. Target compound results were not detected in any of the parameters for these samples; therefore, the sample result reproducibility is considered satisfactory.

INFORMATION REGARDING DATA

The data have been reviewed according to the USEPA National Functional Guidelines for Organic Data Review. All data are validated with regard to usability.

If you have any questions or comments on this data review, please call Kelly Spittler or Zohreh Hamid at (610) 701-3745.

ATTACHMENTS

- 1. Attachment I Glossary of Data Qualifier Codes
- 2. Attachment II Sample Result Summary. This includes:
 - a) A summary of all positive results for the target analytes with the qualifier codes, if applicable;
 - b) All qualified and usable detection limits.

ATTACHMENT I GLOSSARY OF DATA QUALIFIER CODES

....

GLOSSARY OF DATA QUALIFIERS

CODES RELATING TO IDENTIFICATION

(confidence concerning presence or absence of compounds):

- U = NOT DETECTED SUBSTANTIALLY ABOVE THE LEVEL REPORTED IN LABORATORY OR FIELD BLANKS. [Substantially is equivalent to a result less than 10 times the blank level for common contaminants (methylene chloride, acetone and 2-butanone in the VOA analyses, and common phthalates in the BNA analyses, along with tentatively identified compounds) or less than 5 times the blank level for other target compounds.]
- **R** = UNUSABLE RESULT. THE PRESENCE OR ABSENCE OF THIS ANALYTE CANNOT BE VERIFIED. SUPPORTING DATA NECESSARY TO CONFIRM RESULT.
- N = NEGATED COMPOUND. THERE IS PRESUMPTIVE EVIDENCE TO MAKE A TENTATIVE IDENTIFICATION.

CODES RELATING TO QUANTITATION

(can be used for both positive results and sample quantitation limits):

- J = ANALYTE WAS POSITIVELY IDENTIFIED. REPORTED VALUE MAY NOT BE ACCURATE OR PRECISE.
- UJ = ANALYTE WAS NOT DETECTED ABOVE THE CRQL. THE REPORTED QUANTITATION LIMIT IS QUALIFIED ESTIMATED.

OTHER CODES

 \mathbf{Q} = NO ANALYTICAL RESULT.

ATTACHMENT II SAMPLE RESULT SUMMARY

.

1 Harris (1997) (1997) (1997)

ROY F. WESTON, INC. VOLATILE ANALYSES – DATA VALIDATION SUMMARY

PAGE 1

CLIENT: BAKER ENVIRONMENTAL SITE: MCB CAMP LEJEUNE

SDG NO .: B4375

Client Sample ID: Matrix: Dilution Factor: Units:	35-RB03 WATER 1.0 ug/L	35–RB05 WATER 1.0 ug/L	35-TB11 WATER 1.0 ug/L	35–TB12 WATER 1.0 ug/L	36–SW01 WATER 1.0 ug/L	36–SW02 WATER 1.0 ug/L	36-SW03 WATER 1.0 ug/L	36–RB06 WATER 1.0 ug/L
COMPOUND					····	·····		
Bromomethane	IJ	UJ	UJ	UJ				UJ
Vinyl Chloride	UJ	UJ	UJ	UJ				UJ
Chloroethane	UJ	LU	UJ	UJ				UJ
Methylene Chloride	IJ	UJ	UJ	UJ				5 J
Acetone	UJ	UJ	25 J	UJ				UJ
Carbon Disulfide	UJ	UJ	UJ	UJ				UJ
1,1-Dichloroethene	UJ	UJ	UJ	UJ				UJ
1.1-Dichloroethane	UJ	UJ	UJ	UJ				UJ
1.2-Dichloroethene	UJ	ŰĴ	UJ	UJ		7		ŰĴ
Chloroform	ŬĴ	ŬĴ	ŬĴ	ŬĴ				UJ
1.2-Dichloroethane	UJ	UJ	UJ	UJ				ŬĴ
2-Butanone	IJ	ŬĴ	ŬĴ	ŰĴ				ŬĴ
1.1.1-Trichloroethane	UJ	ŬĴ	ŬĴ	UJ				UJ
Carbon Tetrachloride	ŪJ	UJ	UJ	UJ				IJ
Bromodichloromethane	ŬĴ	UJ	ŬĴ	ŬĴ				UJ
1.2-Dichloropropane	UJ	ŪJ	ŬĴ	ŪJ				ŬĴ
Cis-1.3-Dichloropropene	ŬĴ	ŬĴ	ŰĴ	ŬĴ				UJ
Trichloroethene	ŬĴ	ŬĴ	ŬĴ	ŬĴ				UJ
Dibromochloromethane	IJ	ŪJ	ŬĴ	ŰĴ				UJ
1.1.2-Trichloroethane	ŪJ	ŬĴ	ŬĴ	ŬĴ				UJ
Benzene	UJ	UJ	ŬĴ	UJ				UJ
Trans-1.3-Dichloropropene	UJ	UJ	UJ	UJ				UJ
Bromoform	UJ	UJ	UJ	UJ				UJ
4-Methyl-2-Pentanone	IJ	ŬĴ	ŬĴ	ŬĴ				ŬĴ
2-Hexanone	IJ	UJ	UJ	UJ				UJ
Tetrachloroethene	UJ	UJ	UJ	UJ				UJ
1.1.2.2-Tetrachloroethane	UJ	UJ	UJ	UJ				UJ
Toluene	UJ	UJ	UJ	UJ				UJ
Chlorobenzene	ŬĴ	ŬĴ	ŪJ	ŬĴ				UJ
Ethvibenzene	UJ	UJ	IJ	IJ				บม
Styrene	UJ	ŪJ	ŬĴ	ŰĴ				ŬĴ
Xylene (total)	UJ	UJ	UJ	UJ				UJ
Chloromethane	UJ	UJ	UJ	UJ				UJ

ROY F. WESTON, INC. VOLATILE ANALYSES - DATA VALIDATION SUMMARY

PAGE 2

CLIENT: BAKER ENVIRONMENTAL SITE: MCB CAMP LEJEUNE SDG NO.: B4375

SDG NO.: B4375								PAGE 2
Client Sample ID: Matrix:	36-SW05 WATER	36-SW07 WATER	36-SW06 WATER	36-SW05D WATER	35-RB07 WATER	36-SW04 WATER	36-TB14 WATER	
Units:	ua/L	1.0 ug/L	ug/L	ug/L	ua/L	ua/L	ua/L	
Crittor.	ug, 2			~9, L	49, E	- 3/ -	~9,-	
COMPOUND								
Bromomethane	UJ	UJ	UJ	UJ				
Vinyl Chloride	UJ	UJ	UJ	UJ				
Chloroethane	UJ	UJ	UJ	UJ				
Methylene Chloride	UJ	UJ	UJ	UJ				
Acetone	UJ	IJ	UJ	UJ				
Carbon Disulfide	UJ	UJ	UJ	UJ				
1,1-Dichloroethene	UJ	UJ	UJ	UJ				
1,1-Dichloroethane	UJ	UJ	UJ	UJ				
1,2-Dichloroethene	UJ	UJ	UJ	UJ				
Chloroform	UJ	UJ	UJ	UJ				
1,2-Dichloroethane	UJ	UJ	UJ	UJ				
2-Butanone	UJ	UJ	UJ	ÚJ				
1,1,1-Trichbroethane	UJ	UJ	UJ	UJ				
Carbon Tetrachloride	UJ	UJ	UJ	UJ				
Bromodichloromethane	UJ	UJ	UJ	UJ				
1,2-Dichloropropane	UJ	UJ	UJ	UJ				
Cis-1,3-Dichloropropene	UJ	UJ	UJ	UJ				
Trichloroethene	UJ	UJ	UJ	UJ				
Dibromochloromethane	UJ	UJ	UJ	UJ				
1.1.2-Trichbroethane	UJ	UJ	UJ	UJ				
Benzene	ŬĴ	ŪJ	ŰĴ	ŬĴ				
Trans-1.3-Dichloropropene	UJ	UJ	UJ	UJ				
Bromoform	UJ	· UJ	UJ	UJ				
4-Methyl-2-Pentanone	UJ	UJ	UJ	UJ				
2-Hexanone	UJ	UJ	UJ	UJ				
Tetrachloroethene	UJ	ŬĴ	ŬĴ	ŪJ				
1.1.2.2-Tetrachloroethane	LU	UJ	UJ	UJ				
Toluene	UJ	IJ	UJ	UJ				
Chlorobenzene	UJ	IJ	IJ	UJ				
Ethvlbenzene	U.J	U.I	U.I	U.I				
Styrene	().(U.I	U.	U.I				
Xviene (total)	11.1			[1.]				
Chloromethane	U.I	0.1	U.I	. 0.1				
(,,								

ROY F. WESTON, INC. SEMIVOLATILE ANALYSES - DATA VALIDATION SUMMARY

CLIENT: BAKER ENVIRONMENTAL SITE: MCB CAMP LEJEUNE

SDG NO.: B4375

Client Sample ID:	35-RB03	35-RB05	36-SW01	36-SW02	36-SW03	36-RB06	36-SW05
Matrix:	WATER						
Dilution Factor:	1.0	1.0	1.0	1.0	1.0	1.0	1.0
Units:	ug/L						
Phenol			UJ	UJ	UJ	UJ	UJ
bis(2-Chloroethyl)ether							UJ
2-Chlorophenol							
1,3-Dichlorobenzene							UJ
1,4-Dichlorobenzene							UJ
1,2-Dichlorobenzene							UJ
2-Methylphenol							
2,2'-oxybis(1-Chloropropane)							UJ
4-Methylphenol							
N-Nitroso-di-n-propylamine							UJ
Hexachloroethane							UJ
Nitrobenzene							UJ
Isophorone							UJ
2-Nitrophenol							
2,4-Dimethylphenol							
bis(2-Chloroethoxy)methane							UJ
2,4-Dichlorophenol							
1,2,4-Trichlorobenzene							UJ
Naphthalene							UJ
4-Chloroaniline							UJ
Hexachlorobutadiene							UJ
4-Chloro-3-methylphenol							
2-Methylnaphthalene							UJ
Hexachlorocyclopentadiene							UJ
2,4,6-Trichlorophenol							
2,4,5-Trichlorophenol							
2-Chloronaphthalene							UJ
2-Nitroaniline							UJ
Dimethylphthalate			UJ	UJ	UJ	UJ	UJ
Acenaphthylene							UJ
2,6-Dinitrotoluene							UJ
3-Nitroaniline							UJ
Acenaphthene							UJ

ROY F. WESTON, INC. SEMIVOLATILE ANALYSES -- DATA VALIDATION SUMMARY

CLIENT: BAKER ENVIRONMENT SITE: MCB CAMP LEJEUNE SDG NO.: B4375	AL						
Client Sample ID:	35-RB03	35-RB05	36-SW01	36-SW02	36-SW03	36-RB06	36-SW05
Matrix: Dilution Factor: Units:	WATER 1.0 ug/L	WATER 1.0 ug/L	WATER 1.0 ug/L	WATER 1.0 ug/L	WATER 1.0 ug/L	WATER 1.0 ug/L	WATER 1.0 ug/L
2,4-Dinitrophenol 4-Nitrophenol Dibenzofuran 2,4-Dinitrotoluene Diethylphthalate 4-Chlorophenyl-phenylether Fluorene 4-Nitroaniline 4,6-Dinitro-2-methylphenol			UJ	UJ	ÛJ	UJ	
N-Nitrosodiphenylamine 4-Bromophenyl-phenylether Hexachlorobenzene Pentachlorophenol Phenanthrene Anthracene Carbazole Di-n-butylphthalate Fluoranthene Pyrene			UJ	UJ	03	65	
Butylbenzylphthalate 3,3-Dichlorobenzidine Benzo(a)anthracene			UJ	UJ	UJ	UJ	01 01 01
bis(2-Ethylhexyl)phthalate Di-n-octylphthalate Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(a)pyrene Indeno(1,2,3-cd)pyrene Dibenz(a,h)anthracene Benzo(g,h,i)perylene	UJ UJ	UJ UJ	n N N	UJ UJ	nn	01 01 01 01 01 01 01 01	

ROY F. WESTON, INC. SEMIVOLATILE ANALYSES - DATA VALIDATION SUMMARY

CLIENT: BAKER ENVIRONMENTAL

SITE: MCB CAMP LEJEUNE

SDG NO.: B4375

Client Sample ID:	36-SW07	36-SW06	36-SW05D	35-RB07	36-SW04	
Matrix: Dilution Factor: Units:	WATER 1.0 ug/L	WATER 1.0 ug/L	WATER 1.0 ug/L	WATER 1.0 ug/L	WATER 1.0 ug/L	
Phenol	UJ	UJ	UJ	UJ	UJ	
bis(2-Chloroethyl)ether					UJ	
2-Chlorophenol						
1,3-Dichlorobenzene						
1,4-Dichlorobenzene						
1,2-Dichlorobenzene						
2-Methylphenol						
2,2'-oxybis(1-Chloropropane)					UJ	
4-Methylphenol						
N-Nitroso-di-n-propylamine					UJ	
Hexachloroethane						
Nitrobenzene						
Isophorone						
2-Nitrophenol						
2,4-Dimethylphenol						
bis(2-Chloroethoxy)methane						
2,4-Dichlorophenol						
1,2,4-Trichlorobenzene						
Naphthalene						
4-Chloroaniline						
Hexachlorobutadiene						
4-Chloro-3-methylphenol						
2-Methylnaphthalene						
Hexachlorocyclopentadiene						
2,4,6-Trichlorophenol						
2,4,5-Trichlorophenol						
2-Chloronaphthalene						
2-Nitroaniline						
Dimethylphthalate	UJ	UJ	UJ	UJ		
Acenaphthylene						
2,6-Dinitrotoluene						
3-Nitroaniline						
Acenaphthene						

ROY F. WESTON, INC. SEMIVOLATILE ANALYSES - DATA VALIDATION SUMMARY

CLIENT: BAKER ENVIRONMENT	AL					
SITE: MCB CAMP LEJEUNE						
SDG NO.: B4375						
Client Sample ID:	36-SW07	36-SW06	36-SW05D	35RB07	36-SW04	
Matrix:	WATER	WATER	WATER	WATER	WATER	
Dilution Factor:	1.0	1.0	1.0	1.0	1.0	
Units:	ug/L	ug/L	ug/L	ug/L	ug/L	
2,4-Dinitrophenol					UJ	
4-Nitrophenol	UJ	UJ	UJ	UJ		
Dibenzofuran						
2,4-Dinitrotoluene						
Diethylphthalate						
4-Chlorophenyl-phenylether						
Fluorene						
4-Nitroaniline						
4,6-Dinitro-2-methylphenol					UJ	
N-Nitrosodiphenylamine	UJ	UJ	UJ	UJ		
4-Bromophenyl-phenylether						
Hexachlorobenzene						
Pentachlorophenol						
Phenanthrene						
Anthracene						
Carbazole						
Di-n-butylphthalate						
Fluoranthene						
Pyrene						
Butylbenzylphthalate	UJ	UJ	UJ	UJ		
3,3-Dichlorobenzidine						
Benzo(a)anthracene						
Chrysene	UJ	UJ	UJ	UJ		
bis(2-Ethylhexyl)phthalate	UJ	UJ	UJ	IJ		
Di-n-octylphthalate						
Benzo(b)fluoranthene						
Benzo(k)fluoranthene						
Benzo(a)pyrene						
Indeno(1,2,3-cd)pyrene						
Dibenz(a,h)anthracene						
Benzo(g,h,i)perylene						

ROY F. WESTON, INC. PESTICIDE/PCB ANALYSES - DATA VALIDATION SUMMARY

CLIENT: BAKER ENVIRONMENTAL

SITE: MCB CAMP LEJEUNE

SDG NO .: B4375

Client Sample ID: Matrix:	35–RB05 WATER	36-SW01 WATER	36-SW02 WATER	36-SW03 WATER	36-RB06 WATER	36-SW05 WATER	36-SW07 WATER
Dilution Factor:	1.0	1.0	1.0	1.0	1.0	1.0	1.0
Units:	ug/L						
COMPOUND				<u>,</u>			
alpha-BHC	UJ						
beta-BHC	UJ						
delta-BHC	UJ	UJ	UJ	UJ	UJ	บม	UJ
gamma-BHC(Lindane)	UJ						
Heptachlor	UJ						
Aldrin	UJ						
Heptachlor Epoxide	UJ						
Endosulfan I	UJ	UJ	LU	UJ	UJ	UJ	UJ
Dieldrin	UJ						
4,4'-DDE	UJ						
Endrin	UJ						
Endosulfan II	UJ						
4,4'-DDD	UJ						
Endosulfan Sulfate	UJ						
4.4'DDT	UJ						
Methoxychlor	0.50 J	UJ	0.50 U	0.50 U	0.50 J	0.50 U	0.50 U
Endrin Ketone	UJ						
Endrin Aldehyde	0.11 J	0.10 U	UJ	UJ	UJ	UJ	UJ
alpha-Chlordane	UJ						
gamma-Chlordane	UJ	UJ	UJ	IJ	UJ	UJ	UJ
Toxaphene	UJ						
Aroclor 1016	UJ	UJ	UJ	UJ	UJ	LU	UJ
Aroclor 1221	UJ						
Aroclor 1232	UJ						
Aroclor 1242	UJ						
Aroclor 1248	UJ						
Aroclor 1254	UJ						
Aroclor 1260	UJ	UJ	UJ	ŪJ	UJ	UJ	UJ

PAGE 1

ROY F. WESTON, INC. PEPESTICIDE/PCB ANALYSES -- DATA VALIDATION SUMMARY

CLIENT: BAKER ENVIRONMENTAL SITE: MCB CAMP LEJEUNE SDG NO.: B4375

Client Sample ID: 3	6-SW06	36-SW05D	36-SW04	
Matrix:	WATER	WATER	WATER	
Dilution Factor:	1.0	1.0	1.0	
Units:	ug/L	ug/L	ug/L	
COMPOUND				
alpha-BHC	UJ	UJ	UJ	J
beta-BHC	UJ	UJ	UJ	J
delta-BHC	UJ	UJ	UJ	J
gamma-BHC(Lindane)	UJ	UJ	UJ	J
Heptachlor	UJ	UJ	UJ	J
Aldrin	UJ	UJ	UJ	J
Heptachlor Epoxide	UJ	UJ	UJ	J
Endosulfan l	UJ	UJ	UJ	j
Dieldrin	UJ	UJ	UJ	J
4,4'-DDE	UJ	UJ	UJ	J
Endrin	UJ	UJ	UJ	J
Endosulfan II	UJ	UJ	UJ	J
4,4'-DDD	UJ	UJ	UJ	J
Endosulfan Sulfate	UJ	UJ	UJ	J
4.4'-DDT	UJ	UJ	UJ	J
Methoxychlor	0.50 U	0.50 U	0.50 U	
Endrin Ketone	UJ	UJ	UJ	J
Endrin Aldehvde	UJ	UJ	UJ	J
alpha-Chlordane	UJ	0.16 J	UJ	J
gamma-Chlordane	IJ	UJ	UJ	J
Toxaphene	UJ	UJ	UJ	J
Aroclor 1016	ŬĴ	UJ	UJ	J
Aroclor 1221	ŰJ	UJ	UJ	j
Aroclor 1232	ŰĴ	UJ	UJ	J
Aroclor 1242	Ú.J	UJ	UJ	J
	~~			
Aroclor 1248	ŬĴ	UJ	UJ	J
Aroclor 1248 Aroclor 1254	UJ UJ	UJ UJ	UJ LU	1 1

END OF DATA VALIDATION REPORT

1 WESTON WAY WEST CHESTER, PA 19380-1449 PHONE: 215-692-3030 FAX: 215-430-3124

INORGANIC QUALITY ASSURANCE REVIEW BAKER ENVIRONMENTAL, INC. SITE: MCB CAMP LEJEUNE SDG NO.: BA4375

REVIEW PERFORMED BY THE ANALYTICS DIVISION OF ROY F. WESTON, INC.

VERIFIED BY:

Zohreh Hamid, Ph.D. Section Manager - Data Validation

- 77-94

Date

BAKER ENVIRONMENTAL, INC. - NAVY CLEAN SITE: MCB CAMP LEJEUNE SDG: BA4375

CASE SUMMARY

This data validation review consists of twelve (12) water samples including four rinsate blank collected on 04-16,17,18,19-94. Laboratory analyses were performed by NDRC Laboratories, Inchcape Testing Services for Target Analyte List (TAL), Molybdenum, and Hardness.

All data have been validated with regard to usability according to the quality assurance guidelines set forth in Inorganic Functional Guidelines and Naval Energy and Environmental Support Activity (NEESA). If you have any questions or comments on this data review, please contact Zohreh Hamid at (610) 701-3745.

The following samples are contained within this report:

35RB03 *	36RB06 *	36SW03	36SW06
35RB05 *	36SW01	36SW04	36SW07
35RB07 *	36SW02	36SW05	35SW5D *

* These samples were not analyzed for Hardness.

OUALITY ASSURANCE REVIEW

The findings offered in this report are based upon a rigorous review of the following criteria. No major problems were encountered during the sample analyses. The minor deficiencies are summarized under each parameter:

- • Holding Times
 - Calibration
 - Contract Required Detection Limit Samples
 - Blank Samples
 - Interference Check Samples
 - Matrix Spike
 - Duplicate Digestion Samples
 - Laboratory Control Sample
- * Serial Dilution Sample
 - Graphite Furnace Analysis
- * Quarterly Verification of Instrument Parameters
- * Sample Řesult Verification
- Preparation Logs
 - Run Logs

*

*

- Data Package Completeness
- * All criteria were met for this classification.

Page 2

CONTRACT REQUIRED DETECTION LIMIT SAMPLE ANALYSES

The CRDL recoveries for lead (160%, 126%, & 153%) and zinc (142%) were outside the data validation requirement limits of 80-120%. The positive results greater than the IDLs but less than 3X the CRDLs for these analytes should be qualified estimated due to the uncertainty near the detection limits. However, due to the laboratory and rinsate blank contamination, the reported results are considered as "non-detect" and are flagged "U" on the data summary.

The CRDL standard was not analyzed for molybdenum. This analyte has not been classified as a TAL metal analyte by CLP.

BLANK ANALYSES

The laboratory blank had the following contaminations at levels above the IDLs, but below the CRDLs:

ANALYTE	CONC. UG/L	ACTION LEVEL UG/L *
Calcium	642	3210
Copper	4.53	22.65
Iron	37.2	186
Lead	1.7	8.5
Magnesium	223.1	1115.5
Мегсигу	0.110	0.55
Nickel	-17.5	**
Sodium	1023	5115
Zinc	5.93	29.65

* Action level = 5X the blank concentration

** The reported sample data are not impacted when the absolute concentration of an analyte is less than 2X the IDL.

The reported sample results up to the action limits are qualified "U" for these analytes due to the laboratory blank contamination.

Page 3

BLANK ANALYSES (continued)

The results up to five times the rinsate blank concentration for antimony, arsenic, barium, calcium, chromium, cobalt, copper, lead, magnesium, manganese, potassium, silver, and zinc are qualified "U" due to the rinsate blank contaminations.

Note: Four rinsate blanks were analyzed with this batch of samples. However, the individual associated samples were not identified. The data are qualified based on the highest contamination levels in rinsate blanks 35RB07 and 36RB06 with collection dates 4-18,19-94.

INTERFERENCE CHECK SAMPLES

The percent recoveries for all TAL analytes analyzed by ICP were within the 80-120% range. This standard was not analyzed for molybdenum.

MATRIX SPIKE

The matrix spike recoveries for Ag (136.5%) and Tl (73.8%) were outside the control limits of 75-125%. The reported sample results for silver are considered biased high and qualified "J". The reported data for Tl are biased low. The positive results and non-detected values are qualified "J" and "UJ", respectively.

DUPLICATE DIGESTION SAMPLES

The RPDs for all analytes in the laboratory duplicate sample analysis were within the control limits, with the exception of iron (20.9%). The reported positive sample results are qualified estimated.

One set of field duplicate samples (36SW05/36SW5D) was analyzed with this batch. The comparison of the reported data demonstrated satisfactory precision for the analytes detected at concentrations above the CRDLs. The field duplicate analysis was not performed for Hardness analysis.

SERIAL DILUTION SAMPLE

ICP serial dilution sample analyses for calcium, potassium, sodium, and molybdenum were performed on the rinsate blank.

Page 4

GRAPHITE FURNACE ANALYSIS

The following samples analyzed by graphite furnace had the analytical spike recoveries outside the control limits of 85-115%:

SAMPLE ID	ANALYTE	%RECOVERY
35RB03	Cd	84
35RB06	Sb	73
35RB07	Sb/Pb/Tl	76/115.1*/117*
36SW01	Sb/Se	77/51
36SW02	Cr/Se	120.5*/77
36SW04	Sb	77
36SW06	As/Cr/Se	121*/135*/83
36SW07	Sb/Cr	84/116.5*
36SW5D	Sb/As/Cr	81/120*/130*

* Only the positive results are qualified estimated.

The reported data are qualified estimated.

The results for chromium and lead are qualified "U" due to the blank contaminations; therefore, no additional qualifier codes have been applied.

SAMPLE RESULTS

Aluminum was analyzed by flame AA for all samples. Antimony, arsenic, beryllium, cadium, chromium, lead, selenium, silver, and thallium were analyzed by graphite furnace.

The lead result in sample 36SW01 was obtained by Method of Standard Addition (MSA). The linearity met the requirement limit of " $r \ge 0.995$ ". The reported results is reliable.

Page 5

SAMPLE RESULTS (continued)

The results for sodium in the organic sample analysis exceeded the calibration range in all field samples. The samples were reanalyzed at five fold dilutions. However the original sample results are reported on the Form I by the laboratory. The reanalysis results are reported on the data validation data summary.

DATA PACKAGE COMPLETENESS

The instrument detection limit (IDL) for molybdenum was not listed on the Form X.

The data for antimony in sample 35RB05 was inadvertently flagged with "W". The analytical spike recovery for Sb in this sample was (105) within the control range. The reported data for Sb in sample 35RB06 should be flagged with "W". The Form I for these two samples are corrected by the data validator.

The case number was not identified for this batch. The sample analyses were only classified under an SDG number.

SUMMARY

The data package and quality of the data were satisfactory. Major problems were not encountered during the analyses. The reported data for molybdenum are considered estimated since the CRDL and ICP interferences check samples were not analyzed for this element. Also, the instrument detection limit was not listed on the Form X. The results for hardness analysis are accepted as reported.

INFORMATION REGARDING DATA

The data have been reviewed according to the USEPA National Functional Guidelines for Inorganic Data Review. All data are validated with regard to usability.

If you have any questions or comments on this data review, please call Zohreh Hamid at (610) 701-3745.

ATTACHMENTS

- 1. Attachment I Glossary of Data Qualifier Codes
- 2. Attachment II Sample Result Summary. This includes:
 - a) A summary of all positive results for the target analytes with the qualifier codes, if applicable;
 - b) All qualified and usable detection limits.

ATTACHMENT I GLOSSARY OF DATA QUALIFIER CODES

GLOSSARY OF DATA QUALIFIERS

CODES RELATING TO IDENTIFICATION

(confidence concerning presence or absence of compounds):

- U = NOT DETECTED SUBSTANTIALLY ABOVE THE LEVEL REPORTED IN LABORATORY OR FIELD BLANKS.
- **R** = UNRELIABLE RESULT. ANALYTE MAY OR MAY NOT BE PRESENT IN THE SAMPLE. SUPPORTING DATA NECESSARY TO CONFIRM RESULT.
- N = NEGATED COMPOUND WAS CONSIDERED AS NOT PRESENT IN THE SAMPLE.

(NO CODE) = CONFIRMED IDENTIFICATION

CODES RELATING TO QUANTITATION

(can be used for both positive results and sample quantitation limits):

- J = ANALYTE PRESENT. REPORTED VALUE MAY NOT BE ACCURATE OR PRECISE.
- UJ = THE REPORTED QUANTITATION LIMITS ARE QUALIFIED ESTIMATED.

OTHER CODES

 \mathbf{Q} = NO ANALYTICAL RESULT.

ATTACHMENT II SAMPLE RESULT SUMMARY

ROY F. WESTON, INC. INORGANIC ANALYSES – DATA VALIDATION SUMMARY Units: ug/L

CLIENT: BAKER ENVIRONMENTAL SITE: MCB CAMP LEJEUNE SDG NO.: BA4375

Client Sa	mole ID:		358B03	358805	358807	368806	36SW01	36SW02	365W03
Oneric da	Matrix:		WATER	WATER	WATER	WATER	WATER	WATER	WATER
	manna	IDL			****				
INORGANIC E	LEMENTS		· · · · · · · · · · · · · · · · · · ·						H = H =
Aluminium	А	1.0							2.4
Antimony	F	1.0	1.7		UJ	UJ	2.0 J		2.8
Arsenic	F	2.0			1				
Barium	Р	2.0	9.8	9.4			12.1	27.3	39.8
Beryllium	F	1.0							
Cadmium	F	1.0	UJ						
Calcium	Р	308	13400	13300	541 U	564 U	19500	44400	44300 U
Chromium	F	1.0	1.2			1.4	1.7 U	1.7 U	5.8 U
Cobalt	Р	9.0				19.1	24.3 U		
Copper	Р	2.0	27.4	30.7	3.4 U	4.5 U	56.5	15.8 U	16.5 U
Iron	Р	18	156 U	112 U	34 U	63.3 U	2710 J	2320 J	4840 J
Lead	F	1.0	2.4 U	7.2 U	11.1 J	1.6 U	15.9 U	8.5 U	20.9 U
Magnesium	Р	102	2280	2310	104 U	99.9 U	719 U	1550	7850
Manganese	Р	2.0	4.3	3.6			58.4	91.2	126
Mercury	AV	0.2	0.21 U	0.23 U	0.3 U	0.18 U	0.14 U	0.11 U	0.22 U
Nickel	Р	10.0					28.3	31.4	16.4
Potassium	Р	1674	2770	2470			18800	5310	8020
Selenium	F	1.0					UJ	UJ	
Silver	F	1.0				1.2 J			
Sodium	Р	339	37000	37700	972 U	1630 U	330000	99500	82000
Thallium	F	1.0	1.1 J	UJ	UJ	UJ	UJ	UJ	UJ
Vanadium	Р	4.0					387	131	79
Zinc	Р	2.0	17 U	12 U	22.3 U	8.6 U	55.8 U	38.2 U	55.4 U
Molybdenum	Р	33	UJ	UJ	UJ	UJ	UJ	UJ	50 J

P = ICP

A = Flam AA

F = Furnace AA

AV = Automated Cold Vapor AA

ROY F. WESTON, INC. INORGANIC ANALYSES - DATA VALIDATION SUMMARY Units: ug/L

CLIENT: BAKER ENVIRONMENTAL SITE: MCB CAMP LEJEUNE SDG NO.: BA4375

Client Sample ID:		36SW04	36SW05	36SW06	36SW07	36SW5D	
	Matrix:		WATER	WATER	WATER	WATER	WATER
		IDL			····	· · · · · · · · · · · · · · · · · · ·	
INORGANIC E	LEMENTS						
Aluminium	А	1.0		1.3	1.2 J	1	
Antimony	F	1.0	1.9 J	3.9		2.4 J	6.8 J
Arsenic	F	2.0	1.3 U	2.4 U			
Barium	Р	2.0	22.2 U	19.6 U	18.2 U	18.3 U	17.4 U
Beryllium	F	1.0					
Cadmium	F	1.0					
Calcium	Р	308	33700	41700	44000	48800	41400
Chromium	F	1.0	3.8 U	1.7 U	1.9 U	2.7 U	2.4 U
Cobalt	Р	9.0					
Copper	Р	2.0	12.3 U	7 U	8 U	5.3 U	4.9 U
Iron	Р	18	1370 J	967 J	1070 J	1380 J	751 J
Lead	F	1.0	21 U	3.3 U	3.1 U	2.9 U	2 U
Magnesium	P	102	6420	17900	13200	9300	18400
Manganese	Р	2.0	12.7 U	31.9	29.5	24.5	25.7
Mercury	AV	0.2	0.33 U	0.17 U	0.35 U	0.33 U	0.36 U
Nickel	Р	10.0	23.2				22.8
Potassium	Р	1674	6170	8210	7490	5920	8380
Selenium	F	1.0			UJ		
Silver	F	1.0					1.3 U
Sodium	Р	339	95500	192000	136000	103000	106500
Thallium	F	1.0	1.1 J	UJ	UJ	UJ	UJ
Vanadium	P	4.0	85	11.2	9	4.5	9.7
Zinc	Р	2.0	42.1 U	28.1 U	14.6 U	16.3 U	9.5 U
Molybdenum	Р	33	35 J	65 J	57 J	46 J	73 J

P = iCP

A = Flam AA

F = Furnace AA

AV = Automated Cold Vapor AA

ROY F. WESTON, INC. INORGANIC ANALYSES – DATA VALIDATION SUMMARY Units: mg/L CaC03

CLIENT: BAKER ENVIRONMENTAL SITE: MCB CAMP LEJEUNE SDG NO.: BA4375

Client Sample ID: Matrix:	36-SW01 WATER	36-SW02 WATER	36-SW03 WATER	36-SW05 WATER	36-SW07 WATER	36-SW06 WATER	36-SW04 WATER
INORGANIC ELEMENTS							
Hardness	74	122	130	194	158	180	116

Roy F. Weston, Inc. 1 Weston Way West Chester, Pennsylvania 19380-1499 ® 610-701-3000 • Fax 610-701-3186

ORGANIC QUALITY ASSURANCE REVIEW BAKER ENVIRONMENTAL, INC. - NAVY CLEAN SITE: MCB CAMP LEJEUNE SDG: B4581

REVIEW PERFORMED BY THE ANALYTICS DIVISION OF **ROY F. WESTON, INC.**

sitte PREPARED BY: IL

Kelly Muir Spittler () Unit Leader - Data Validation

17-13-Date

VERIFIED BY:

C a

Zohreh Hamid, Ph.D. Section Manager - Data Validation

7-13-94 Date

BAKER ENVIRONMENTAL, INC. - NAVY CLEAN SITE: MCB CAMP LEJEUNE SDG: B4581

INTRODUCTION

This quality assurance review is based upon a review of all data generated from one water sample, six trip blanks, six rinsate blanks, and two field blanks collected on 04-20,21,26,28,29,30-94 and 05-02,03,04-94. The samples were analyzed according to criteria set forth in the contract laboratory program (CLP) for TCL Volatile, Semivolatile and Pesticide/PCB target compounds by NDRC Laboratories, Inchscape Testing Services.

This review has been performed in accordance with the confirmation method. The reported analytical results are presented as a summary of the data in Attachment II. All of the analytical data were examined to determine the usability of the analytical results and also to determine contractual compliance relative to the analytical requirements and deliverables specified in the CLP method and Sampling and Chemical Analysis Quality Assurance requirements for the Navy Installation Restoration Program (NEESA 20.2-047B). The applicable qualifier codes have been placed next to the results in the data summary to indicate the qualitative and/or quantitative reliability. The details of this evaluation review are presented in the narrative section of this report.

All data have been validated with regard to usability according to the quality assurance set forth in USEPA Laboratory Data Validation Functional Guidelines for Evaluating Organics Analyses. If you have any questions or comments on this data review, please call Zohreh Hamid or Kelly Spittler at (610) 701-3745.

OUALITY ASSURANCE REVIEW

The findings offered in this report are based upon a review of the following criteria:

- Data Completeness
- Holding Time
- GC/MS Tuning
- Calibration
- Blanks
- Surrogate Recoveries
- Matrix Spike/Spike Duplicate
- Laboratory Control Sample
- Internal Standard
- Instrument Performance
- Field Duplicate Results
- Compound Identification
- Compound Quantitation
- * All criteria were met; therefore, a narrative section is not provided for this classification.

Page 2

DATA COMPLETENESS

General

The chain-of-custody for soil/sediment samples were included in this data package; however, the sample analyses were not provided with this SDG.

Volatiles

Sample LCS was not listed on the Form IV, page 47. The laboratory should correct and resubmit this document.

Sample 35-TB24 was listed twice on the Form II, page 43. The second entry, line 20, should be removed from this form.

The RIC and internal standard summary pages for sample 35-TB15 were missing from the data package. The laboratory should provide these forms.

The first page of the quantitation report for the continuing calibration analyzed on 04-29-94, was missing from the data package. The laboratory should resubmit this page.

HOLDING TIME

Volatiles

The technical holding time established in the Functional Guidelines (7 days from collection to analysis), has been exceeded for all of these water samples. The laboratory's contractual holding time (10 days from VTSR to analysis) established in the CLP SOW differs for these validation requirements; however, the validator is required by functional guidelines to qualify as estimated the positive results and non-detects in these analyses. It is the data validator's opinion that these results can be accepted with the qualifier codes.

CALIBRATION

Volatiles and Semivolatiles

The following %D results in the continuing calibrations exceeded the 25% QC limit. These calibrations are considered acceptable since less than two (VOA) or four (BNA) check (*) compounds had %Ds outside the criteria. Positive results were not detected for these compounds; therefore, all associated non-detected values for the compounds listed below are qualified as estimated and flagged "UJ". All RRFs were above 0.05; therefore, no qualification is required on this basis.

Page 3

CALIBRATION	INSTRUMENT ID	COMPOUND	<u>%RSD/%D</u>
CC 04-29-94	HP4.i	2-Hexanone	27.5
CC 05-11-94	HP4.i	Chloromethane	55.0
		Bromoform	54.6
		2-Hexanone	25.6
• •		Tetrachloroethene	33.2
CC 05-05-94	HP1.i	Bis(2-chloroethyl)ether	28.3
		2,2'-oxybis(1-chloropropane)	34.6
		N-Nitroso-di-n-propylamine	36.3
		2,4-Dinitrophenol	32.5
		4,6-Dinitro-2-methylphenol	25.3
		3-Nitroaniline	46.0
		Benzidine	95.6
CC 05-05-94	HP1	2,2'-oxybis(1-chloropropane)	27.1
		Dimethylphthalate	90.0
		N-Nitrosodiphenylamine	85.1
		Carbazole	86.2
		Butylbenzylphthalate	32.3
		Di-n-octylphthalate	25.6
		2-Nitroaniline	92.4
		3-Nitroaniline	34.1
		4-Nitroaniline	89.8

Pesticide/PCBs

The retention times for all compounds were outside the retention time windows for INDBM04 analyzed on the DB1701 column. All positive results in the samples are qualified estimated and are flagged "J".

The %RPDs for 4,4-DDE (31.2%) in INDBM02 (column SPB-608) and decachlorobiphenyl (46.7%) in INDAM02 (column SPB-608) exceeded the 25% QC limit. Since 4,4-DDE was not detected in any of the samples, no action is required.

BLANKS

Volatiles

The following trip, field, and rinsate blanks contained common laboratory contaminants along with several other target compounds. Since these compounds were not detected in the water sample, no action is required.

<u>BLANK</u>	COMPOUND	<u>LEVEL</u>
35-RB11	Acetone	11 ug/L
35-FB01	Chloroform Bromodichloromethane	8 ug/L 10 ug/L
35-FB02	Dibromochloromethane Acetone	10 ug/L 43 ug/L
35-TB24	Acetone	36 ug/L
35-RB13	Methylene Chloride	5 ug/L

Pesticide/PCBs

The following method blanks contained target compound methoxychlor at levels below the CRQLs. All associated positive results less than 5X the blank levels are considered laboratory artifacts and are flagged "U". This compound was also detected in rinsate blank 35-RB08; however, this result is flagged "U" due to the associated method blank contamination.

BLANK	<u>COMPOUND</u>	LEVEL
Method Blank (PBLKA)	Methoxychlor	0.50 ug/L
Method Blank (PBLKB)	Methoxychlor	0.046 ug/L

SURROGATE RECOVERIES

Volatiles

The following system monitoring compound (SMC) recovery was above the QC limits in the analysis of sample 35-TB15.

SURROGATE COMPOUND	RECOVERY	LIMITS
4-Bromofluorobenzene	118	86-115

Since this sample was not reanalyzed, and the recovery exceeded the QC, all positive results should be qualified estimated; however, target compounds are not detected. Therefore, no additional action is taken.

Page 4

Page 5

Semivolatiles

The following surrogate recovery was above the QC limits in the analysis of sample 35-RB08:

SURROGATE COMPOUND	RECOVERY	LIMITS
2-Fluorobiphenyl	137	43-116

Since only one surrogate recovery was outside the QC limits, no qualification is required due to this surrogate outlier.

Pesticide/PCBs

All surrogate recoveries were within the requirement limits, except for the following:

<u>SAMPLE NO.</u>	RECOVERY DB608/DB1701	<u>SURROGATE</u> COMPOUND	REASON
35-SW07	44/-	DCB	Advisory Criteria 60-150%
35-FB02	6/4	TCX	Advisory Criteria 60-150%
	-/77	DCB	Advisory Criteria 60-150%

DCB = Decachlorobiphenyl TCX = Tetrachloro-m-xylene

Since the requirement limits are advisory and there is no qualification criteria established in Functional Guidelines or NEESA for surrogate outliers in the pesticide/PCB fraction, no action is taken.

MATRIX SPIKE/MATRIX SPIKE DUPLICATES

As per the laboratory case narrative, MS/MSD samples are not included with this batch of samples, since no sample was specified for quality control in this SDG. No qualification is applied due to the lack of these QC samples.

LABORATORY CONTROL SAMPLE

An LCS analysis was performed in order to fulfill the blank spike analysis requirements as established in the NEESA guidelines.

Page 6

Volatiles

The LCS recovery for benzene was inadvertently listed as 39.4%, the correct value is 79.4%, which falls within the QC limits.

Semivolatiles

The percent recoveries for 2-chlorophenol- d_4 (127%) and 1,2-dichlorobenzene (120%) were above the QC limits of 33-110 and 16-110%, respectively. Since these compounds were not detected in the samples, no action is required.

INTERNAL STANDARD

Semivolatiles

The following internal standard areas were outside the control limits in the sample analyses:

<u>SAMPLE</u>	INTERNAL STANDARD	<u>AREA</u>	CONTROL LIMITS
SBLKA	Perylene-d ₁₂	128092	297018-1188074
SBLKB	Perylene-d ₁₂	93980	297018-1188074
35-RB10	Perylene-d ₁₂	199981	256532-1026128

Sample 35-RB10 was re-extracted/reanalyzed, but this analysis was not reported; therefore, the non-detects quantified in reference to perylene in the original analyses are qualified estimated since positive results were not detected. The blanks results quantified in reference to perylene are also considered estimated.

FIELD DUPLICATE RESULTS

A field duplicate analysis was not provided for this batch of samples. No qualification is required due to the lack of this QC sample.

INFORMATION REGARDING DATA

The data have been reviewed according to the USEPA National Functional Guidelines for Organic Data Review. All data are validated with regard to usability.

If you have any questions or comments on this data review, please call Kelly Spittler or Zohreh Hamid at (215) 344-3745.

ATTACHMENTS

- 1. Attachment I Glossary of Data Qualifier Codes
- 2. Attachment II Sample Result Summary. This includes:
 - a) A summary of all positive results for the target analytes with the qualifier codes, if applicable;
 - b) All qualified and usable detection limits.
- 3. Attachment III Sample data (Form I) verified by the laboratory.

ATTACHMENT I GLOSSARY OF DATA QUALIFIER CODES

GLOSSARY OF DATA QUALIFIERS

CODES RELATING TO IDENTIFICATION

(confidence concerning presence or absence of compounds):

- U = NOT DETECTED SUBSTANTIALLY ABOVE THE LEVEL REPORTED IN LABORATORY OR FIELD BLANKS. [Substantially is equivalent to a result less than 10 times the blank level for common contaminants (methylene chloride, acetone and 2-butanone in the VOA analyses, and common phthalates in the BNA analyses, along with tentatively identified compounds) or less than 5 times the blank level for other target compounds.]
- **R** = UNUSABLE RESULT. THE PRESENCE OR ABSENCE OF THIS ANALYTE CANNOT BE VERIFIED. SUPPORTING DATA NECESSARY TO CONFIRM RESULT.
- N = NEGATED COMPOUND. THERE IS PRESUMPTIVE EVIDENCE TO MAKE A TENTATIVE IDENTIFICATION.

CODES RELATING TO QUANTITATION

(can be used for both positive results and sample quantitation limits):

- J = ANALYTE WAS POSITIVELY IDENTIFIED. RÉPORTED VALUE MAY NOT BE ACCURATE OR PRECISE.
- UJ = ANALYTE WAS NOT DETECTED ABOVE THE CRQL. THE REPORTED QUANTITATION LIMIT IS QUALIFIED ESTIMATED.

OTHER CODES

 \mathbf{Q} = NO ANALYTICAL RESULT.

ATTACHMENT II SAMPLE RESULT SUMMARY

.

ROY F. WESTON, INC. VOLATILE ANALYSES - DATA VALIDATION SUMMARY

CLIENT: BAKER ENVIRONMENTAL

SITE: MCB CAMP LEJEUNE SDG NO.: B4581

Client Sample ID: Matrix: Dilution Factor: Units:	35–SW07 WATER 1.0 ug/L	33–RB08 WATER 1.0 ug/L	35-TB15 WATER 1.0 ug/L	35RB09 WATER 1.0 ug/L	35-TB21 WATER 1.0 ug/L	35–TB22 WATER 1.0 ug/L	35-TB23 WATER 1.0 ug/L	35-RB10 WATER 1.0 ug/L
COMPOUND								
Bromomethane	UJ	UJ	UJ	UJ	UJ	UJ	UJ	UJ
Vinyl Chloride	UJ	UJ	UJ	UJ	UJ	UJ	UJ	UJ
Chloroethane	UJ	UJ	UJ	UJ	UJ	UJ	UJ	UJ
Methylene Chloride	UJ	UJ	UJ	UJ	UJ	UJ	UJ	UJ
Acetone	UJ	UJ	UJ	UJ	UJ	UJ	UJ	UJ
Carbon Disulfide	UJ	UJ	UJ	UJ	UJ	UJ	UJ	UJ
1,1-Dichloroethene	ปป	UJ	UJ	UJ	UJ	UJ	UJ	UJ
1,1-Dichloroethane	UJ	UJ	UJ	UJ	UJ	UJ	UJ	UJ
1,2-Dichloroethene	UJ	UJ	UJ	UJ	UJ	IJ	UJ	UJ
Chloroform	UJ	UJ	IJ	LU	UJ	UJ	UJ	UJ
1.2-Dichloroethane	UJ	UJ	UJ	UJ	UJ	UJ	UJ	UJ
2-Butanone	UJ	UJ	UJ	UJ	UJ	UJ	UJ	UJ
1.1.1 – Trichloroethane	UJ	UJ	UJ	UJ	UJ	UJ	UJ	UJ
Carbon Tetrachloride	UJ	UJ	UJ	UJ	UJ	UJ	UJ	UJ
Bromodichloromethane	UJ	UJ	UJ	UJ	UJ	UJ	UJ	UJ
1.2-Dichloropropane	UJ	UJ	UJ	UJ	UJ	UJ	UJ	UJ
Cis-1.3-Dichloropropene	UJ	UJ	UJ	UJ	UJ	UJ	UJ	UJ
Trichloroethene	UJ	UJ	UJ	UJ	UJ	UJ	UJ	UJ
Dibromochloromethane	UJ	UJ	UJ	UJ	UJ	UJ	UJ	UJ
	UJ	UJ	UJ	LU	UJ	UJ	UJ	IJ
Benzene	ŬĴ	ŰĴ	UJ	UJ	UJ	UJ	UJ	UJ
Trans-1.3-Dichloropropene	IJ	ŬĴ	ŪJ	UJ	UJ	UJ	UJ	UJ
Bromoform	IJ	ŬĴ	ŬĴ	UJ	UJ	UJ	UJ	UJ
4-Methyl-2-Pentanone	ŬĴ	UJ	UJ	UJ	UJ	UJ	UJ	UJ
2-Hexanone	ŬĴ	UJ	UJ	UJ	UJ	UJ	UJ	UJ
Tetrachloroethene	UJ	UJ	UJ	UJ	UJ	UJ	UJ	UJ
1.1.2.2-Tetrachloroethane	UJ	UJ	UJ	UJ	. UJ	UJ	UJ	UJ
Toluene	ŰĴ	UJ	UJ	UJ	UJ	UJ	UJ	UJ
Chlorobenzene	UJ	UJ	UJ	UJ	UJ	UJ	UJ	UJ
Ethylbenzene	ŰĴ	UJ	UJ	UJ	LU	UJ	UJ	UJ
Styrene	UJ	UJ	UJ	UJ	UJ	UJ	UJ	UJ
Xylene (total)	UJ	UJ	UJ	UJ	UJ	UJ	UJ	UJ
Chloromethane	UJ	UJ	UJ	UJ	UJ	UJ	UJ	UJ
CLIENT: BAKER ENVIRONMENTAL SITE: MCB CAMP LEJEUNE SDG NO.: B4581

•

COMPOUND	1997			ug/L	ug/L	ug/L	ug/L	
Bromomethane	UJ	UJ	UJ	IJ	UJ	UJ	UJ	
Vinyl Chloride	UJ	UJ	UJ	UJ	UJ	UJ	UJ	
Chloroethane	UJ	UJ	UJ	UJ	UJ	UJ	UJ	
Methylene Chloride	UJ	UJ	UJ	UJ	UJ	5 J	UJ	
Acetone	11 J	UJ	43 J	36 J	UJ	UJ	UJ	
Carbon Disulfide	UJ	UJ	UJ	UJ	UJ	UJ	UJ	
1,1-Dichloroethene	UJ	UJ	UJ	UJ	UJ	UJ	ŬĴ	
1,1-Dichloroethane	UJ	UJ	UJ	UJ	UJ	UJ	UJ	
1,2-Dichloroethene	UJ	UJ	UJ	IJ	UJ	ŰĴ	UJ	
Chloroform	UJ	8 J	UJ	UJ	UJ	UJ	UJ	
1,2-Dichloroethane	UJ	UJ	UJ	UJ	UJ	UJ	UJ	
2-Butanone	UJ	UJ	UJ	UJ	UJ	UJ	UJ	
1,1,1 - Trichloroethane	UJ	UJ	UJ	UJ	UJ	UJ	UJ	
Carbon Tetrachloride 👌	UJ	UJ	UJ	UJ	UJ	UJ	UJ	
Bromodichloromethane	UJ	10 J	UJ	UJ	UJ	UJ	ŬĴ	
1,2-Dichloropropane	UJ	UJ	UJ	UJ	UJ	UJ	ŬĴ	
Cis-1,3-Dichloropropene	UJ	UJ	UJ	UJ	UJ	UJ	UJ	
Trichloroethene	UJ	UJ	UJ	UJ	UJ	UJ	UJ	
Dibromochloromethane	UJ	10 J	UJ	UJ	UJ	UJ	UJ	
1,1,2-Trichloroethane	UJ	UJ	UJ	UJ	UJ	UJ	UJ	
Benzene	UJ	UJ	UJ	UJ	UJ	ŬĴ	ŬĴ	
Trans-1,3-Dichloropropene	UJ	UJ	UJ	UJ	UJ	UJ	IJ	
Bromoform	UJ	UJ	UJ	UJ	UJ	UJ	ŰJ	
4-Methyl-2-Pentanone	UJ	UJ	UJ	UJ	ŬĴ	IJ	UJ	
2-Hexanone	UJ	UJ	UJ	UJ	ŬĴ	ŬĴ	UJ	
Tetrachloroethene	UJ	UJ	UJ	UJ	ŪJ	ŬĴ	IJ	
1,1,2,2-Tetrachloroethane	UJ	UJ	UJ	IJ	U.J	U.I	U.I	
Toluene	UJ	UJ	ŪJ	LŪ	Û.Î	U.I	UJ	
Chlorobenzene	UJ	UJ	ŪJ	UJ	ŬĴ	LU	ŬĴ	
Ethylbenzene	UJ	IJ	UJ	UJ	LU	U,I	UJ	
Styrene	UJ	UJ	ŬĴ	ŪJ	UJ	U.I	UJ	
Kylene (total)	UJ	UJ	IJJ	UJ	U.J	U.	UJ	
Chloromethane	UJ	UJ	UJ	ŰĴ	UJ	ŰĴ	ŰĴ	1

CLIENT: BAKER ENVIRONMENTA SITE: MCB CAMP LEJEUNE SDG NO.: B4581	L						
Client Sample ID: Matrix:	35–SW07 WATER	35-RB08 WATER	35-RB09 WATER	35-RB10 WATER	35-RB11 WATER	35-FB01 WATER	35-FB02 WATER
Dilution Factor:	1.0	1.0	1.0	1.0	1.0	1.0	1.0
Units:	ug/L						
Phenol							
bis(2-Chloroethyl)ether	UJ	UJ	UJ				
2-Chlorophenol							
1,3-Dichlorobenzene							
1,4-Dichlorobenzene							
1,2-Dichlorobenzene							
2-Methylphenol							
2,2'-oxybis(1-Chloropropane)	UJ						
4-Methylphenol							
N-Nitroso-di-n-propylamine	UJ	UJ	UJ				
Hexachloroethane							
Nitrobenzene							
Isophorone							
2-Nitrophenol							
2,4–Dimethylphenol							
bis(2-Chloroethoxy)methane							
2,4-Dichlorophenol							
1,2,4-Trichlorobenzene							
Naphthalene							
4-Chloroaniline							
Hexachlorobutadiene							
4–Chloro–3–methylphenol							
2-Methylnaphthalene							
Hexachlorocyclopentadiene							
2,4,6-Trichlorophenol							
2,4,5—Trichlorophenol							
2-Chloronaphthalene							
2-Nitroaniline				UJ	UJ	UJ	UJ
Dimethylphthalate				UJ	UJ	UJ	UJ
Acenaphthylene							
2,6Dinitrotoluene							
3-Nitroaniline	UJ						
Acenaphthene							

CLIENT: BAKER ENVIRONMENTAL SITE: MCB CAMP LEJEUNE SDG NO.: B4581

Client Sample ID: Matrix: Dilution Factor: Units:	35–SW07 WATER 1.0 ug/L	35–RB08 WATER 1.0 ug/L	35–RB09 WATER 1.0 ug/L	35–RB10 WATER 1.0 ug/L	35–RB11 WATER 1.0 ug/L	35–FB01 WATER 1.0 ug/L	35–FB02 WATER 1.0 ug/L
2,4-Dinitrophenol 4-Nitrophenol Dibenzofuran 2,4-Dinitrotoluene Diethylphthalate 4-Chlorophenyl-phenylether	UJ	UJ	UJ				
4-Nitroaniline 4-Oinitro-2-methylphenol N-Nitrosodiphenylamine 4-Bromophenyl-phenylether Hexachlorobenzene Pentachlorophenol	IJ	UJ	UJ	UJ UJ	UJ UJ	IJ	IJ
Anthracene Carbazole Di-n-butylphthalate Fluoranthene Pyrene				UJ	IJ	IJ	UJ
Butylbenzylphthalate 3,3 – Dichlorobenzidine Benzo(a)anthracene Chrysene bis(2–Ethylhexyl)phthalate				UJ	UJ	UJ	IJ
Di-n-octylphthalate Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(a)pyrene Indeno(1,2,3-cd)pyrene Dibenz(a,h)anthracene Benzo(g,h,i)perylene				UJ UJ UJ UJ UJ UJ UJ	τυ	UJ	IJ

CLIENT: BAKER ENVIRONMENTA	AL.	
SITE: MCB CAMP LEJEUNE		
SDG NO.: B4581		
		· · · · · · · · · · · · · · · · · · ·
Client Sample ID:	35-RB12	35-RB13
Matrix:	WATER	WATER
Dilution Factor:	1.0	1.0
Units:	ua/L	ua/L
		-0
Phenol		
bis(2-Chloroethy)ether		
2-Chlorophenol		
1.3-Dichlorobenzene		
1.4-Dichlorobenzene		
12-Dichlorobenzene		
2-Methylphenol		
2 2'-ovybie(1-Chbropropage)	11.1	11.1
4-Methylphenol	00	00
N-Nitroso-di-n-propylamine		
Hevenbroothene		
Nitrobenzepe		
Isophoropo		
2,4-Dimethyphenol		
Dis(2-Chioroethoxy)methane		
1,2,4 – Irichiorobenzene		
4-Chloroaniline		
Hexachlorobutadiene		
4-Chloro-3-methylphenol		
2-Methylnaphthalene		
Hexachlorocyclopentadiene		
2,4,6-Trichlorophenol		
2,4,5-Trichlorophenol		
2-Chloronaphthalene		
2-Nitroaniline	UJ	UJ
Dimethylphthalate	UJ	UJ
Acenaphthylene		
2,6-Dinitrotoluene		
3-Nitroaniline	UJ	UJ
Acenaphthene		

CLIENT: BAKER ENVIRONMENTAL SITE: MCB CAMP LEJEUNE SDG NO.: B4581

Client Sample ID:	95_DR10	95 DD19
Client Sample ID: Matriv	WATER	WATED
Dilution Factor	10	10
Linite:	1.0	1.0
Offica.	ug/L	ug/L
2,4-Dinitrophenol	·····	······
4-Nitrophenol		
Dibenzofuran		
2,4-Dinitrotoluene		
Diethylphthalate		
4-Chlorophenyl-phenylether		
Fluorene		
4-Nitroaniline	UJ	IJ
4,6-Dinitro-2-methylphenol		
N-Nitrosodiphenylamine	UJ	UJ
4-Bromophenyl-phenylether		
Hexachlorobenzene		
Pentachlorophenol		
Phenanthrene		
Anthracene		
Carbazole	UJ	UJ
Di-n-butylphthalate		
Fluoranthene		
Pyrene		
Butylbenzylphthalate	UJ	UJ
3,3-Dichlorobenzidine		
Benzo(a)anthracene		
Chrysene		
bis(2-Ethylhexyl)phthalate		
Di-n-octylphthalate	UJ	UJ
Benzo(b)fluoranthene		
Benzo(k)fluoranthene		
Benzo(a)pyrene		
Indeno(1,2,3-cd)pyrene		
Dibenz(a,h)anthracene		
Benzo(g,h,i)perylene		

ROY F. WESTON, INC. PESTICIDE/PCB ANALYSES - DATA VALIDATION SUMMARY

CLIENT: BAKER ENVIRONMENTAL SITE: MCB CAMP LEJEUNE SDG NO.: B4581							
Client Sample ID: Matrix: Dilution Factor: Units:	35–SW07 WATER 1.0 ug/L	35–- RB08 WATER 1.0 ug/L	35–FB01 WATER 1.0 ug/L	35–FB02 WATER 1.0 ug/L	35–RB12 WATER 1.0 ug/L	35–RB13 WATER 1.0 ug/L	
COMPOUND					<u> </u>		
alpha – BHC beta – BHC gamma – BHC (Lindane) Heptachlor Aldrin Heptachlor Epoxide Endosulfan I Dieldrin 4,4' – DDE Endrin Endosulfan II 4,4' – DDD Endosulfan Sulfate 4,4' – DDT Methoxychlor Endrin Ketone Endrin Aldehyde alpha – Chlordane gamma – Chlordane Toxaphene Arockor 1016 Arockor 1221 Arockor 1242 Arockor 1248 Arockor 1254	0.59 UJ	0.60 UJ					

Aroclor 1260

Roy F. Weston, Inc. 1 Weston Way West Chester, Pennsylvania 19380-1499 8 610-701-3000 • Fax 610-701-3186

INORGANIC QUALITY ASSURANCE REVIEW BAKER ENVIRONMENTAL, INC. SITE: MCB CAMP LEJEUNE SDG NO.: BA4581

REVIEW PERFORMED BY THE ANALYTICS DIVISION OF ROY F. WESTON, INC.

VERIFIED BY:

Zohreh Hamid, Ph.D. Section Manager - Data Validation

7-14-94

BAKER ENVIRONMENTAL, INC. - NAVY CLEAN SITE: MCB CAMP LEJEUNE SDG: BA4581

CASE SUMMARY

This data validation review consists of one water sample, six rinsate blanks, and two field blanks collected on 04-20,26,29,30-94 and 05-02,03,04-94. Laboratory analyses were performed by NDRC Laboratories, Inchcape Testing Services for Target Analyte List (TAL) and Molybdenum.

All data have been validated with regard to usability according to the quality assurance guidelines set forth in Inorganic Functional Guidelines and Naval Energy and Environmental Support Activity (NEESA). If you have any questions or comments on this data review, please contact Zohreh Hamid at (610) 701-3745.

The following samples are contained within this report:

35FB01	35RB09	35RB12
35FB02	35RB10	35RB13
35RB08	35RB11	35SW07

QUALITY ASSURANCE REVIEW

The findings offered in this report are based upon a rigorous review of the following criteria. No major problems were encountered during the sample analyses. The minor deficiencies are summarized under each parameter:

- Holding Times
- Calibration
- Contract Required Detection Limit Samples
- Blank Samples
- Interference Check Samples
- Matrix Spike
- Duplicate Digestion Samples
- Laboratory Control Sample
 - Serial Dilution Sample
 - Graphite Furnace Analysis
- Quarterly Verification of Instrument Parameters
- Sample Result Verification
 - Preparation Logs
- * Run Logs
 - Data Package Completeness
- * All criteria were met for this classification.

HOLDING TIMES

The preparation/analysis holding time exceeded the requirement limits (28 days from collection) in mercury analysis; therefore, the reported results and non-detected values are qualified estimated.

CALIBRATION

The continuing calibration blank CCB17 was not analyzed after the continuing calibration verification CCV17 in analysis of Ca, K, Na, and Mo. The data are not impacted since the CCBs analyzed prior and after sample analyses were free of contaminations, however, this lack of CCB analysis contractually violates the CLP contract.

CONTRACT REQUIRED DETECTION LIMIT SAMPLE ANALYSES

The CRDL recoveries for lead (163.3%, 183.3%, & 166.7%) and selenium (130%) in graphite furnace and all ICP analytes with the exception of silver were above the upper data validation requirement limits of 120%. The positive results greater than the IDLs but less than 3X the CRDLs for these analytes in the field sample are qualified estimated due to the uncertainty near the detection limits. The field blanks and rinsate blanks were not qualified based on these outliers.

The CRDL standard was extremely below the lower control limit (-185/-180) for molybdenum. This analyte has not been classified as a TAL metal analyte by CLP; therefore, the data are not rejected and the non-detected values and reported results up to 3X the CRDL are accepted with the qualifier codes.

BLANK ANALYSES

The laboratory blank had the following contaminations at levels above the IDLs, but below the CRDLs:

ANALYTE	CONC. UG/L	ACTION LEVEL UG/L *
Copper	7.767	39
Selenium	1.2	6
Sodium	727	3636

Page 2

ANALYTE	CONC. UG/L	ACTION LEVEL UG/L *
Zinc	-9.167	[46]
Molybdenum	-43	**

- * Action level = 5X the blank concentration
- ** The reported sample data are not impacted when the absolute concentration of an analyte is less than 2X the IDL.

The reported sample results and the field QC blanks up to the action limits are qualified "U" for these analytes due to the laboratory blank contamination.

The reported results and non-detected values for zinc are considered estimated and are qualified "J" and "UJ", respectively, due to the baseline drift in the preparation blank.

The results up to five times the associated rinsate blank (35RB08) concentration are qualified "U" in the field sample (35SW07) due to the field contaminations.

The first continuing calibration analysis had silver at a level of CRDL. The data are not rejected since the silver concentration did not exceed the CRDL. The positive results are considered as the detection limits and are qualified "U".

INTERFERENCE CHECK SAMPLES

The percent recoveries for the TAL analytes analyzed by ICP were within the control limits. The true value for molybdenum was not reported. Therefore, the recovery could not be calculated.

Calcium was not included in ICS A standard solution. This element was analyzed along with K, Na, and Mo. The recoveries were 0.0%. The concentration of the analytes were relatively low and the ICP interelement correction factors (Form XIA) for calcium are reported "one" for all elements. It is the validator's opinion that the laboratory did not spike the ICP standard solution with calcium. This should be clarified by the laboratory. Therefore, the data could be accepted without the qualifier codes.

MATRIX SPIKE

Samples 35FB01 and 35RB09 were spiked with elements analyzed by graphite furnace. The spike recovery for arsenic in sample 35RB09S (73.2%) was below the lower control limit. The associated sample data are qualified estimated.

Sample 35RB08 was spiked with elements analyzed by ICP. The spike recoveries were within the control limits.

DUPLICATE DIGESTION SAMPLES

The RPDs for all analytes in the laboratory duplicate sample analysis were within the control limits. The field duplicate was not analyzed with this batch.

SERIAL DILUTION SAMPLE

ICP serial dilution sample analyses for calcium, potassium, sodium, and molybdenum were not reported on Form IX. Also, rinsate blank sample (35RB08) was analyzed as the ICP serial dilution sample which violates the CLP contract. Since the samples were mostly rinsate blanks and field blanks, the data are not impacted.

GRAPHITE FURNACE ANALYSIS

The following samples analyzed by graphite furnace had the analytical spike recoveries outside the control limits of 85-115%:

SAMPLE ID	ANALYTE	%RECOVERY
35FB01	Se	84
35FB02	Cd	121*
35RB08	TI	83
35RB11	Cd	118*
35RB12	Cd	135*
35RB13	Cd/Se	130.5*/82

Page 4

Page 5

SAMPLE ID	ANALYTE	%RECOVERY
35SW07	Cd/Pb/Se/Tl	129.5*/119.8*/60/50

* Only the positive results are qualified estimated.

The reported data are qualified estimated.

The results for selenium are qualified "U" due to the blank contamination, additional qualifier was not applied to the sample result.

SAMPLE RESULTS

Arsenic, cadium, lead, selenium, and thallium were analyzed by graphite furnace. Other elements were analyzed by ICP. Mercury was analyzed by automated cold vapor AA.

DATA PACKAGE COMPLETENESS

The instrument detection limit (IDL) for molybdenum was not listed on the Form X.

The case number was not identified for this batch. The sample analyses were classified under an SDG number.

The ICP interelement correction factor (Form XI, Part II) was not included in this data package.

SUMMARY

The quality of the data was fair. The continuing calibration blank had silver at the CRDL level. The calcium analysis was not performed with the ICP elements in the ICP interference check sample. The reported data for molybdenum are considered estimated since the CRDL recovery was extremely low and ICP interferences check and serial dilution sample analyses were not performed for this element. The results for mercury are qualified estimated since the holding time exceeded the requirement limit. Also, the data for arsenic are qualified estimated due to the low matrix spike recovery. The CRDL recoveries exceeded the upper control limit of 120% for all elements (with the exception of silver) and lead and selenium in graphite furnace.

INFORMATION REGARDING DATA

The data have been reviewed according to the USEPA National Functional Guidelines for Inorganic Data Review. All data are validated with regard to usability.

If you have any questions or comments on this data review, please call Zohreh Hamid at (215) 344-3745.

ATTACHMENTS

- 1. Attachment I Glossary of Data Qualifier Codes
- 2. Attachment II Sample Result Summary. This includes:
 - a) A summary of all positive results for the target analytes with the qualifier codes, if applicable;
 - b) All qualified and usable detection limits.
- 3. Attachment III Sample data (Form I) verified by the laboratory.

ATTACHMENT I GLOSSARY OF DATA QUALIFIER CODES

GLOSSARY OF DATA QUALIFIERS

CODES RELATING TO IDENTIFICATION

(confidence concerning presence or absence of compounds):

- U = NOT DETECTED SUBSTANTIALLY ABOVE THE LEVEL REPORTED IN LABORATORY OR FIELD BLANKS.
- **R** = UNRELIABLE RESULT. ANALYTE MAY OR MAY NOT BE PRESENT IN THE SAMPLE. SUPPORTING DATA NECESSARY TO CONFIRM RESULT.
- N = NEGATED COMPOUND WAS CONSIDERED AS NOT PRESENT IN THE SAMPLE.

(NO CODE) = CONFIRMED IDENTIFICATION

CODES RELATING TO QUANTITATION

(can be used for both positive results and sample quantitation limits):

- J = ANALYTE PRESENT. REPORTED VALUE MAY NOT BE ACCURATE OR PRECISE.
- UJ = THE REPORTED QUANTITATION LIMITS ARE QUALIFIED ESTIMATED.

OTHER CODES

 \mathbf{Q} = NO ANALYTICAL RESULT.

.

ATTACHMENT II SAMPLE RESULT SUMMARY

ROY F. WESTON, INC. INORGANIC ANALYSES - DATA VALIDATION SUMMARY

CLIENT: BAKER ENVIRONMENTAL, INC. SITE: MCB CAMP LEJEUNE SDG # BA4581

CLIENT SA	MPLE ID: MATRIX: UNITS:		35FB01 WATER ug/L	35FB02 WATER ug/L	35RB08 WATER ug/L	35RB09 WATER ug/L	35RB10 WATER ug/L	35RB11 WATER ug/L	35RB12 WATER ug/L
COMPOUND	<u>,</u>	IDL ug/L	<u> </u>					<u> </u>	
Aluminum	Р	72.0	78.1			143			
Antimony	Р	39.0							
Arsenic	F	1.0			UJ	1.2 J	3.3		
Barium	P	2.0	2.1						
Beryllium	Р	5.0							
Cadmium	F	1.0							
Calcium	P	50	14500		370	2900	126	96	94
Chromium	Р	5.0			6.1				
Cobalt	P	9.0							
Copper	Р	2.0	13.7 U	2.7 U	2.5 U	2.6 U	9.4 U	5.7 U	4.9 U
Iron	P	18.0	173			77.7			
Lead	F	1.0			2.1 J	1.1 J			
Magnesium	P	26.0	3730			44.5			
Manganese	Р	2.0				2.9			
Mercury	AV	0.1	UJ						
Nickel	Р	10.0							36.3
Potassium	Р	1674	5450						
Selenium	F	1.0	1.3 U	1.0 U	1 U	1.3 U	1.0 U	1.2 U	
Silver	P	2.0			2.3 U	3.3 U			
Sodium	P	339	45200	402 U	340 U	2040 U	1290 U	906 U	656 U
Thallium	F	1.0			UJ				
Vanadium	Р	4.0				UJ			
Zinc	Р	2.0	UJ						
Molybdenum	Р	33	UJ	IJ	UJ	IJ	UJ	IJ	UJ

ROY F. WESTON, INC. INORGANIC ANALYSES - DATA VALIDATION SUMMARY

CLIENT: BAKER ENVIRONMENTAL, INC. SITE: MCB CAMP LEJEUNE SDG # BA4581

CLIENT SA	MPLE ID: MATRIX:		35RB13 WATER	35SW07 WATER
	UNITS:		ua/L	ug/L
				-9, -
COMPOUND		IDL ug/L		
Aluminum	P	72.0		6580
Antimony	Р	39.0		
Arsenic	F	1.0		2.7 J
Barium	P	2.0		48.5 J
Beryllium	Р	5.0		
Cadmium	F	1.0		
Calcium	Р	50	98	58500
Chromium	P	5.0		17 U
Cobalt	Р	9.0		9 J
Copper	Р	2.0	3.1 U	19.2 U
Iron	Р	18.0		9500
Lead	F	1.0		97 J
Magnesium	P	26.0		4610 J
Manganese	Р	2.0		113
Mercury	AV	0.1	UJ	UJ
Nickel	Р	10.0		
Potassium	P	1674		4780 J
Selenium	F	1.0	1.8 U	4.3 U
Silver	P	2.0		4 Ŭ
Sodium	Р	339	1090 U	59800
Thallium	F	1.0		1 J
Vanadium	P	4.0		14.8 J
Zinc	P	2.0	UJ	129 J
Molybdenum	Р	33	UJ	UJ

Roy F. Weston, Inc. 1 Weston Way West Chester, Pennsylvania 19380-1499 8 610-701-3000 • Fax 610-701-3186

ORGANIC QUALITY ASSURANCE REVIEW BAKER ENVIRONMENTAL, INC. - NAVY CLEAN SITE: MCB CAMP LEJEUNE SDG: B4585

REVIEW PERFORMED BY THE ANALYTICS DIVISION OF ROY F. WESTON, INC.

utter PREPARED BY:

Kelly Muir Spittler^U Unit Leader - Data Validation

VERIFIED BY:

Zohreh Hamid, Ph.D. Section Manager - Data Validation

78-10-Date

Date

BAKER ENVIRONMENTAL, INC. - NAVY CLEAN SITE: MCB CAMP LEJEUNE SDG No.: B4585

INTRODUCTION

This quality assurance review is based upon a review of all data generated from nineteen soil samples collected on 04-20,26,29,30-94 and 05-02-94. The samples were analyzed according to criteria set forth in the contract laboratory program (CLP) for TCL Volatile, Semivolatile and Pesticide/PCB target compounds by NDRC Laboratories, Inchscape Testing Services.

This review has been performed in accordance with the confirmation method. The reported analytical results are presented as a summary of the data in Attachment II. All of the analytical data were examined to determine the usability of the analytical results and also to determine contractual compliance relative to the analytical requirements and deliverables specified in the CLP method and Sampling and Chemical Analysis Quality Assurance requirements for the Navy Installation Restoration Program (NEESA 20.2-047B). The applicable qualifier codes have been placed next to the results in the data summary to indicate the qualitative and/or quantitative reliability. The details of this evaluation review are presented in the narrative section of this report.

All data have been validated with regard to usability according to the quality assurance set forth in USEPA Laboratory Data Validation Functional Guidelines for Evaluating Organics Analyses. If you have any questions or comments on this data review, please call Zohreh Hamid or Kelly Spittler at (610) 701-3745.

OUALITY ASSURANCE REVIEW

The findings offered in this report are based upon a review of the following criteria:

- Data Completeness
- Holding Time
- GC/MS Tuning
 - Calibration
 - Blanks

*

- Surrogate Recoveries
- Matrix Spike/Spike Duplicate
- Laboratory Control Sample
- Internal Standard
- * Instrument Performance
 - Field Duplicate Results
- * Compound Identification
- * Compound Quantitation
- * All criteria were met; therefore, a narrative section is not provided for this classification.

Page 2

DATA COMPLETENESS

Semivolatiles

The mass spectra and mass list were missing for the Form V 06-06-94/10:51 on page 0415. The laboratory should resubmit this document.

Pesticide/PCBs

The florisil check summary Form IX Pest-1 was not included in the data package. The laboratory should provide this form.

CALIBRATION

Volatiles and Semivolatiles

The following %D results in the continuing calibrations exceeded the 25% QC limit. These calibrations are considered acceptable since less than two (VOA) or four (BNA) check (*) compounds had %Ds outside the criteria. All associated positive results and non-detected values for the compounds listed below are qualified as estimated and flagged, "J" and "UJ". All RRFs were above 0.05; therefore, no qualification is required on this basis.

CALIBRATION	INSTRUMENT ID	COMPOUND	<u>%RSD/%D</u>
CC 04-30-94	HP3.i	Acetone	60.8
(08:56)		2-Butanone	69.5
		Bromoform	31.9
		4-Methyl-2-pentanone	40.1
		2-Hexanone	38.2
CC 04-30-94	HP3.i	Acetone	30.3
(18:53)		2-Butanone	35.2
		4-Methyl-2-pentanone	33.6
		2-Hexanone	36.0
		1,1,2,2-Tetrachloroethane	28.8
CC 05-01-94	HP3.i	Acetone	25.9
		2-Butanone	33.1
		4-Methyl-2-pentanone	35.1
		2-Hexanone	39.3
CC 05-12-94	HP3.i	Carbon Tetrachloride	25.7

CALIBRATION	INSTRUMENT ID	COMPOUND	<u>%RSD/%D</u>
CC 05-13-94	HP3.i	Acetone	36.8
		2-Butanone	33.6
		4-Methyl-2-pentanone	33.1
		2-Hexanone	29.1
CC 05-17-94	HP1.i	3-Nitroaniline	35.5
		4-Nitroaniline	42.7
		3,3-Dichlorobenzidine	26.1
		2,2-Oxybis(1-chloropropane)	99.7
		N-Nitroso-di-n-propylamine	31.8
		2,4-Dinitrophenol	26.6
		4-Nitrophenol	36.9
		Bis(2-ethylhexyl)phthalate	30.3
CC 05-21-94	HP1.i	3-Nitroaniline	41.9
		4-Nitroaniline	34.8
		3,3-Dichlorobenzidine	29.9
		4-Nitrophenol	42.9
		Bis(2-ethylhexyl)phthalate	27.8
CC 06-03-94	HP1.i	4-Chloroaniline	68.8
		3-Nitroaniline	37.5
		4-Nitroaniline	25.5
		3,3-Dichlorobenzidine	33.1
		2,6-Dinitrotoluene	28.8
		2,4-Dinitrophenol	26.3
		4-Nitrophenol	40.9
		Bis(2-ethylhexyl)phthalate	35.0

BLANKS

Semivolatiles

The following method blank contained a common laboratory contaminant at a level less than the CRQL. Since this compound was not detected in the other water samples, no action is required.

<u>BLANK</u>	<u>COMPOUND</u>	<u>LEVEL</u>
SBLKB	Bis(2-ethylhexyl)phthalate	298 ug/kg

Page 3

Page 4

SURROGATE RECOVERIES

Volatiles

The following system monitoring compound recoveries were outside the QC limits:

SAMPLE	SURROGATE COMPOUND	RECOVERY	<u>QC LIMITS</u>
35SD04612	1,2-Dichloroethane- d_4	53	70-121
35SD0206	Toluene-d ₈	139	84-138
35SD0206MSD	1,2-Dichloroethane-d ₄	144	70-121
35SD02612	1,2-Dichloroethane- d_4	143	70-121
35SD02612DL	1,2-Dichloroethane-d ₄	158	70-121

Samples 35SD0206 and 35SD2612 are exhibiting matrix effects. Results are reported from all analyses; therefore, in the case that the recovery was below the QC limits, all sample results are qualified estimated, but if the recovery exceeded the QC limits, only the positive results are qualified.

Semivolatiles

The following surrogate recoveries were outside the QC limits. Also, several of the 2chlorophenol-d4 and 1,2-dichlorobenzene-d₄ recoveries were outside the limits; however, since these surrogates are advisory; the outliers are not used to qualify the data.

SAMPLE NO.	SURROGATE COMPOUND	RECOVERY	<u>QC LIMITS</u>
35- SS 08-00	All compounds	<23	Various
35-SD02-612	2-Fluorophenol	17	25-121
SBLKB	Nitrobenzene-d ₅	15	23-120
	2-Fluorobiphenyl	26	30-115
	Phenol-d ₅	10	24-113
	2-Fluorophenol	6	25-121
	2,4,6-Tribromophenol	11	19-122
GWDS05-3	Nitrobenzene-d ₅	19	23-120
	Phenol-d ₅	18	24-113
	2-Fluorophenol	10	25-121
GWDS05-3MS	2-Fluorophenol	20	25-121

SAMPLE NO.SURROGATE COMPOUNDRECOVERYQC LIMITSSLCS2-Fluorophenol1025-12135-SD04-062-Fluorophenol1925-121

These compounds were not reanalyzed; therefore, a matrix effect can not be determined. Analyses LCS, 35-SD04-06, 35-SD02-612, and GWDS05-3MS only have one outlier per fraction; therefore, no action is taken. Sample 35-SS08-00 had all recoveries diluted out and since a straight analysis was not provided, all positive results and non-detects are quantified estimated. Sample GWDS05-3 has only the acid-extractable results qualified estimated. Due to the number of blank outliers, this is believed to be an associated problem; therefore, the sample results are unaffected.

Pesticide/PCBs

All surrogate recoveries were within the requirement limits, except for the following:

SAMPLE NO.	<u>RECOVERY</u> DB608/DB1701	SURROGATE COMPOUND	REASON
35-SD02-06	52/52	TCX	Advisory Criteria 60-150%
35-SD02-06 MS	46/51	TCX	Advisory Criteria 60-150%
35-SD02-06 MSD	53/-	TCX	Advisory Criteria 60-150%
35-SD02-612	50/-	TCX	Advisory Criteria 60-150%
35-SD07-06	54/59	TCX	Advisory Criteria 60-150%
35-SD07-612	52/53	TCX	Advisory Criteria 60-150%

TCX = Tetrachloro-m-xylene

Since the requirement limits are advisory and there is no qualification criteria established in Functional Guidelines or NEESA for surrogate outliers in the pesticide/PCB fraction, no action is taken.

Page 6

MATRIX SPIKE/SPIKE DUPLICATE

Volatiles

The following MS/MSD recoveries and RPD results were outside the QC limits. Since positive results were not detected in these samples and no action is required due to MS/MSD outliers, no qualification is applied to the sample data on this basis.

SAMPLE	COMPOUND	RESULT	LIMITS
35SD0206 RPD	1,1-Dichloroethene	15	14
RPD	Trichloroethene	20	14
MSD/RPD	Benzene	145/35	76-125/11
MS/MSD	Toluene	153/160	76-125
MSD/RPD	Chlorobenzene	146/19	75-130/13
35GWDS0503 MSD	Benzene	135	76-127
	Toluene	140/142	76-125

Semivolatile

The following MS/MSD recoveries were outside the QC limits:

SAMPLE	COMPOUND	RECOVERY/RPD	<u>LIMITS</u>
35-SD02-06 MSD	2,4-Dinitrotoluene	92	28-89
MSD/RPD	Pyrene	152/44	35-142/36
35-GWDS05-03 MS/RPD	1,4-Dichlorobenzene	17/61	28-104/27
MS/MSD/RPD	N-nitroso-di-n-propylamine	26/34/43	41-126/38
MS/RPD	1,2,4-Trichlorobenzene	26/54	38-107/23
RPD	4-Chloro-3-methylphenol	38	33

Since these compounds were not detected in the unspiked sample, and no qualification is required based on MS outliers, the sample data are accepted unqualified.

LABORATORY CONTROL SAMPLE

An LCS analysis was performed in order to fulfill the blank spike analysis requirements established in the NEESA guidelines.

Page 7

Volatiles

The LCS recovery for benzene (128.77%) in VLCSA was above the QC limits of 76-125. Since the compound was not detected in most samples and no action is required based on this outlier, no qualification is applied on this basis.

INTERNAL STANDARD

Volatiles

The following internal standard areas were outside the laboratory's control limits:

<u>SAMPLE</u>	<u>INTERNAL</u> STANDARD	AREA	<u>CONTROL</u> <u>LIMITS</u>
35SD0406	BCM	112757	200582-802330
	DFB	238736	541163-2164652
	CBZ	627021	685584-2742334
35SD04612	DFB	403495	541163-2164652
35SD0106	DFB	180397	541163-2164652
	CBZ	323547	685584-2742334
35SD0206 MSD	DFB	535232	541163-2164652
	CBZ	518137	685584-2742334
35SD02612DL	BCM	186513	218330-873322
35880600	CBZ	524697	532987-2131948
35880500	DFB	497316	530232-2120926
	CBZ	437634	532987-2131948
35MW3502	DFB	496326	530232-2120926
	CBZ	518509	532987-2131948

BCM	=	Bromochloromethane
DFB	=	1,4-Difluorobenzene
CBZ	=	Chlorobenzene-d ₅

All reported results quantified in reference to the internal standard outliers are qualified estimated, since all IS outliers were below the control limits.

Semivolatiles

The following internal standard areas were outside the control limits in the sample analyses:

<u>SAMPLE</u>	INTERNAL STANDARD	<u>AREA</u>	CONTROL LIMITS
SBLKA	Perylene-d ₁₂	739030	816468-3265870

The blank results quantified in reference to perylene are considered estimated; however, since all of the sample internal standard areas were within QC limits, no qualification is applied to the sample data on this basis.

FIELD DUPLICATE RESULTS

Two sets of field duplicate analyses were provided with this batch of samples (35-SD04-06/35-SD04-06D) and (35-SD02-06/35-SD02-06D). The sample result reproducibility was satisfactory except for the following:

Volatiles

The %RPD between acetone results in analyses 35-SD02-06/D exceed 50%; therefore, the results in the samples are qualified estimated.

Pesticide/PCBs

The %RPD between 4,4-DDE results in analyses 35-SD04-06/D and 4,4-DDE, 4,4-DDD, alpha-chlordane and gamma-chlordane in samples 35-SD02-06/D, exceed 50%; therefore, these positive results are flagged "J".

COMPOUND QUANTITATION

Volatiles

Samples 35SD07612, 35SD0406D, and 35SD04612 were analyzed at 50, 10, and 50-fold dilutions, respectively. Since target compounds were not detected in these analyses, all sample data are qualified estimated.

Semivolatiles

Sample 35-SS08-00 was analyzed at a 10-fold dilution. Positive results were not detected for this analysis; therefore, all sample data are qualified estimated.

INFORMATION REGARDING DATA

The data have been reviewed according to the USEPA National Functional Guidelines for Organic Data Review. All data are validated with regard to usability.

If you have any questions or comments on this data review, please call Kelly Spittler or Zohreh Hamid at (215) 344-3745.

ATTACHMENTS

- 1. Attachment I Glossary of Data Qualifier Codes
- 2. Attachment II Sample Result Summary. This includes:
 - a) A summary of all positive results for the target analytes with the qualifier codes, if applicable;
 - b) All qualified and usable detection limits.
- 3. Attachment III Sample data (Form I) verified by the laboratory.

ATTACHMENT I GLOSSARY OF DATA QUALIFIER CODES

- -

GLOSSARY OF DATA QUALIFIERS

CODES RELATING TO IDENTIFICATION

(confidence concerning presence or absence of compounds):

- W = NOT DETECTED SUBSTANTIALLY ABOVE THE LEVEL REPORTED IN LABORATORY OR FIELD BLANKS.
 [Substantially is equivalent to a result less than 10 times the blank level for common contaminants (methylene chloride, acetone and 2-butanone in the VOA analyses, and common phthalates in the BNA analyses, along with tentatively identified compounds) or less than 5 times the blank level for other target compounds.]
- **R** = UNUSABLE RESULT. THE PRESENCE OR ABSENCE OF THIS ANALYTE CANNOT BE VERIFIED. SUPPORTING DATA NECESSARY TO CONFIRM RESULT.
- **N** = NEGATED COMPOUND. THERE IS PRESUMPTIVE EVIDENCE TO MAKE A TENTATIVE IDENTIFICATION.

CODES RELATING TO QUANTITATION

(can be used for both positive results and sample quantitation limits):

- J = ANALYTE WAS POSITIVELY IDENTIFIED. REPORTED VALUE MAY NOT BE ACCURATE OR PRECISE.
- UJ = ANALYTE WAS NOT DETECTED ABOVE THE CRQL. THE REPORTED QUANTITATION LIMIT IS QUALIFIED ESTIMATED.

OTHER CODES

 \mathbf{Q} = NO ANALYTICAL RESULT.

MANGERS DESCRETING

ATTACHMENT II SAMPLE RESULT SUMMARY

CLIENT: BAKER ENVIRONMENTAL	L, INC.							
3DG NO.: D4000	<u>X.</u>	\checkmark	\mathbf{v}	N/	× /	10	Δ.	k .
	· · · · ·		N	W	X	X	X	y
Client Sample ID:	35SD0706	35SD07612	35GWDS0103	35MW29B03	35GWD80503	35880800	35880600	35880500
Matrix:	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL
Dilution Factor:	1.0	50.0	1.0	1.0	1.0	1.0	1.0	1.0
Units:	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG
COMPOUND					- 7.7 · Matrix.			99-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-
Bromomethane		UJ						
Vinyl Chloride		UJ						
Chloroethane		UJ						
Methylene Chloride		UJ						
Acetone	UJ	UJ				UJ		
Carbon Disulfide		UJ						
1.1-Dichloroethene		UJ						
1.1-Dichloroethane		UJ						
1.2-Dichloroethene (TOTAL)		UJ						
Chloroform		UJ						
1.2-Dichloroethane		UJ						
2-Butanone	UJ	UJ				UJ		
1.1.1-Trichloroethane		UJ						UJ
Carbon Tetrachloride		UJ	UJ	UJ	UJ		UJ	UJ
Bromodichloromethane		UJ						UJ
1,2-Dichloropropane		UJ						UJ
cis-1.3-Dichloropropene		UJ						UJ
Trichloroethene		UJ						UJ
Dibromochloromethane		UJ		·				UJ
1.1.2-Trichloroethane		UJ						UJ
Benzene		UJ						UJ
Trans-1,3-Dichloropropene		UJ						UJ
Bromoform		UJ						UJ
4-Methyl-2-Pentanone	UJ	UJ				UJ	UJ	UJ
2-Hexanone	UJ	UJ				UJ	IJ	UJ
Tetrachloroethene		UJ					UJ	UJ
1.1.2.2-Tetrachloroethane		UJ					UJ	UJ
Toluene		UJ					UJ	19 J
Chlorobenzene		UJ					UJ	UJ
Ethylbenzene		UJ					UJ	UJ
Styrene		UJ					UJ	UJ
Xvlene (total)		UJ					UJ	UJ
Chloromethane		UJ					UJ	UJ

.

)

CLIENT: BAKER ENVIRONMENTA	L, INC. /	1						
SDG NO.: B4585	\checkmark	Xnee		``	/		\sim	12
	/	VUKE	X		X		X	
Client Sample ID:	35SD0406D	35SD04060RE	35SD04612	35SD0106	35SD01612	35SD0206D	35SD0206	35500261201
Matrix:	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL
Dilution Factor:	10.0	1.0	50.0	1.0	1.0	1.0	1.0	1.0
Units:	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG
COMPOUND								
Bromomethane	UJ		UJ					UJ
Vinvl Chloride	UJ		UJ					U.I
Chloroethane	UJ		UJ					00
Methviene Chloride	IJ		11.1					1.1
Acetone	UJ	IJ	UJ		128 .1	16 J	11.1	
Carbon Disulfide	U.I				120 0	10 0	00	111
1.1-Dichloroethene	111		U.J					11.1
1 1 – Dichloroethane	11.1		111					111
1 2-Dichloroethene (TOTAL)	U.I		00					111
Chloroform	11.1		11.1					111
1 2-Dichloroethane	U.I		1.1					111
2-Butanone	1.1	11.1	11.1		11.1	11.1	111	
1 1 1-Trichloroethane	0.0	00	111	11.1	00	00	00	00
Carbon Tetrachloride			11.1	1.1				
Bromodichloromethane	U.I		111	111				
1.2-Dichloronronane	1.1		(1.1	111				
cis-1.3-Dichloropropene	1.1		111	11				
Trichloroethene	U.J		00	1.1				
Dibromochloromethane	111		111					
1.1.2-Trichloroethane	U.I		111					
Benzene			111					
Trans-1.8-Dichloronronene	1.1		00	111				
Bramoform	111			111	111	111		
4-Methyl-2-Pentanone	111	111	111	00	00	00	00	114
	111	111		(1)	111		111	
Totrachloroethane	00	03	11	111	05	00	03	00
	00		00	00				
			111	00				
Chlorobanzana	00		00	00				
	00		00	00				
	UJ		UJ	01				
	UJ		01	00				
Aylene (total)	0.1		01	UJ				
Chloromethane	UJ		UJ	UJ				

1

SDG NO.: B4585				
Client Sample ID: Matrix:	لم 355\$50300 SOIL	35MW4003D SOIL	35MW3103 SOIL	35MW3502 SOIL
Dilution Factor: Units:	UG/KG	UG/KG	UG/KG	UG/KG
COMPOUND	· · · · · · · · · · · · · · · · · · ·			
Bromomethane				
Vinyl Chloride				
Chloroethane				
Methylene Chloride			44 1	94
Acetone			11 J	31
Carbon Disulfide				
1,1-Dichloroethane (TOTAL)				
Chloroform				
1.2 Dichleroothana				
1 1 1 - Trichloroethane				UJ
Carbon Tetrachloride	UJ	UJ	UJ	ÛJ
Bromodichloromethane				UJ
1.2-Dichloropropane				UJ
cis-1.3-Dichloropropene				IJ
Trichloroethene				ni
Dibromochloromethane				UJ
1,1,2-Trichloroethane				UJ
Benzene				UJ
Trans-1,3-Dichloropropene				UJ
Bromoform				UJ
4-Methyl-2-Pentanone				UJ
2-Hexanone				'nŋ
Tetrachloroethene				UJ
1,1,2,2-Tetrachloroethane				UJ
Toluene				UJ
Chlorobenzene				UJ
Ethylbenzene				UJ
Styrene				UJ
Xylene (total)				UJ
Chloromethane				UJ

)

.

CLIENT: BAKER ENVIRONMENTAL							
SDG NO.: B4585					1		/
	· · · · · · · · · · · · · · · · · · ·	V			· · · · · · · · · · · · · · · · · · ·	V	
Client Sample ID: Matrix:	35-SD02-612 SOIL	35-SD07-06 SOIL	35-SD07-612 SOIL	35-GWDS01-03 SOIL	GWDS05-3 SOIL	35-SS08-00 SOIL	35-SS06-00 SOIL
Dilution Factor:	1.0	1.0	1.0	1.0	1.0	10.0	1.0
Units:	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG
Phenol			8780 (B) (·····	UJ		
bis(2-Chloroethvi)ether						UJ	
2-Chlorophenol					UJ	UJ	
1.3-Dichlorobenzene						UJ	
1 4-Dichlorobenzene						UJ	
1.2-Dichlorobenzene						ŬĴ	
2-Methylphenol					UJ	UJ	
2 2'-oxybis(1-Chloropropane)	U.J					ŬĴ	
4-Methylphenol					UJ	UJ	
N-Nitroso-di-n-propylamine	(1.1					UJ.	
Hexachloroethane						UJ	
Nitrobenzene						UJ	
Isonhorone						UJ	
2-Nitrophenol					UJ	UJ	
2 4-Dimethylphenol					ŬĴ	UJ	
his(2-Chloroethoxy)methane						U.J	
2 4-Dichlorophenol					UJ	UJ	
124-Trichbrobenzene					••	ŰĴ	
Naphthalene						UJ	
4-Chloroaniline				UJ	UJ	UJ	UJ
Hexachlorobutadiene						IJ	
4-Chloro-3-methylphenol					UJ	UJ	
2-Methylnaphthalene						UJ	
Hexachlorocyclopentadiene						UJ	
2.4.6-Trichlorophenol					UJ	UJ	
2,4,5-Trichlorophenol					UJ	UJ	
2-Chloronaphthalene						UJ	
2-Nitroaniline						UJ	
Dimethylphthalate						UJ	
Acenaphthylene						UJ	
2.6-Dinitrotoluene				UJ	UJ	UJ	UJ
3-Nitroaniline	UJ	UJ	UJ	UJ	UJ	UJ	UJ
Acenaphthene						UJ	

CLIENT: BAKER ENVIRONMENTAL						1	
SDG NO.: B4585				hund	~	\sim	L
Client Sample ID: Matrix: Dilution Factor: Units:	35-SD02-612 SOIL 1.0 UG/KG	35-SD07-06 SOIL 1.0 UG/KG	35-SD07-612 SOIL 1.0 UG/KG	35-GWDS01-03 SOIL 1.0 UG/KG	GWDS05-3 SOIL 1.0 UG/KG	35-S\$08-00 SOIL 10.0 UG/KG	35-SS06-00 SOIL 1.0 UG/KG
2,4-Dinitrophenol	UJ			UJ	UJ	UJ	UJ
Dibenzofuran						UJ	
4-Nitrophenol	UJ	UJ	UJ	UJ	UJ	UJ	UJ
2.4-Dinitrotoluene						UJ	
Diethylphthalate						UJ	
Eluorene						ŰJ	
A_Chlorophenyl-phenylether						Ū.I	
	11.1	11.1	U.I	U.I	().)	U.I	U.I
4 = Nicioariante 4 = Dinitro - 2 - methylphenol	00				U.I	U.I	
4,0-Dimito-2 methylphenol						11.1	
A Bromonhonyl-nhonylether						0.0	
						ů.	
Destachioropenzerie					11.1	11	
Pentachiorophenoi					00		
						111	
Anthracene							
						00	
Di-n-butyiphthalate						00	
Fluoranthene						11	
Pyrene						00	
Butyibenzyiphthalate						00	
Benzo(a)anthracene		114				00	111
3,3-Dichlorobenzialne	. 00	00	00	00	00	00	00
Chrysene			040		111	00	
bis(2-Ethylhexyl)phthalate	00	UJ	310 J	00	00	00	00
Di-n-octylphthalate						00	
Benzo(b)fluoranthene						05	
Benzo(k)fluoranthene						00	
Benzo(a)pyrene						UJ	
Indeno(1,2,3-cd)pyrene						UJ	
Dibenz(a,h)anthracene						01	
Benzo(g,h,i)perylene						UJ	
ROY F. WESTON, INC. SEMIVOLATILE ANALYSES – DATA VALIDATION SUMMARY

.

CLIENT: BAKER ENVIRONMENTAL SDG NO.: B4585		\checkmark	\checkmark		\checkmark		
Client Sample ID: Matrix: Dilution Factor: Units:	35-SD04-06 SOIL 1.0 UG/KG	35-SD04-06D SOIL 1.0 UG/KG	35-SD04-612 SOIL 1.0 UG/KG	35-SD01-06 SOIL 1.0 UG/KG	35-SD01-612 SOIL 1.0 UG/KG	35-SD02-06 SOIL 1.0 UG/KG	35SD02-06D SOIL 1.0 UG/KG
Phenol bis(2-Chloroethyl)ether 2-Chlorophenol 1,3-Dichlorobenzene 1,4-Dichlorobenzene 1,2-Dichlorobenzene 2-Methylphenol							
2,2'-oxybis(1-Chloropropane)	UJ	UJ	UJ		UJ	UJ	UJ
N-Nitroso-di-n-propylamine Hexachloroethane Nitrobenzene Isophorone 2-Nitrophenol 2,4-Dimethylphenol bis(2-Chloroethoxy)methane 2,4-Dichlorophenol 1,2,4-Trichlorobenzene Naphthalene 4-Chloroaniline Hexachlorobutadiene 4-Chloro-3-methylphenol 2-Methylnaphthalene Hexachlorocyclopentadiene 2,4,6-Trichlorophenol 2,4,5-Trichlorophenol 2-Chloronaphthalene 2-Nitroaniline	UJ	UJ	UJ		UJ	UJ	UJ
Dimethylphthalate							
Acenaphthylene 2,6-Dinitrotoluene 3-Nitroaniline	UJ	UJ	IJ	UJ	UJ	IJ	UJ
3–Nitroaniline Acenaphthene	UJ	UJ	UJ	UJ	UJ	UJ	UJ

ROY F. WESTON, INC. SEMIVOLATILE ANALYSES - DATA VALIDATION SUMMARY

CLIENT: BAKER ENVIRONMENTAL							
SDG NO.: B4585		/	\sim	<u> </u>	\checkmark	\checkmark	\mathbf{V}^{\prime}
Client Sample ID: Matrix: Dilution Factor: Units:	35-SD04-06 SOIL 1.0 UG/KG	35–SD04–06D SOIL 1,0 UG/KG	35-SD04-612 SOIL 1.0 UG/KG	35-SD01-06 SOIL 1.0 UG/KG	35SD01612 SOIL 1.0 UG/KG	35SD02-06 SOIL 1.0 UG/KG	35SD02-06D SOIL 1.0 UG/KG
2,4-Dinitrophenol	UJ	UJ	UJ		UJ	UJ	UJ
Dibenzofuran 4 - Nitrophenol 2,4 - Dinitrotoluene	UJ	UJ	UJ	UJ	UJ	UJ	UJ
Fluorene 4-Chlorophenyl-phenylether 4-Nitroaniline 4.6-Dinitro-2-methylphenol N-Nitrosodiphenylamine 4-Bromophenyl-phenylether	IJ	UJ	UJ	UJ	ίIJ	IJ	UJ
Hexachlorobenzene Pentachlorophenol Phenanthrene Anthracene Carbazole							
Di-n-butylphthalate Fluoranthene Pyrene Butylbenzylphthalate Benzo(a)anthracene							
3,3-Dichlorobenzidine	UJ	UJ	UJ	UJ	UJ	UJ	UJ
Chrysene bis(2-Ethylhexyl)phthalate Di-n-octylphthalate Benzo(b)fluoranthene	UJ	UJ	625 J	UJ	UJ	UJ	UJ
Benzo (K) filuorantnene Benzo (a) pyrene Indeno (1,2,3 – cd) pyrene Dibenz (a,h) anthracene Benzo (g,h,i) perylene							

ROY F. WESTON, INC. SEMIVOLATILE ANALYSES -- DATA VALIDATION SUMMARY

CLIENT: BAKER ENVIRONMENTAL		
SDG NO.: B4585		
	han.	<u> </u>
Client Rompio ID:	25 8805-00	25 8802-00
Client Sample ID:	35-3505-00	33-3303-00
	SUIL	SUL
Dilution Factor:	1.0	1.0
Units:	UG/KG	UG/KG
Phenol		
bis(2-Chloroethyl)ether		
2-Chlorophenol		
1,3-Dichlorobenzene		
1,4-Dichlorobenzene		
1,2-Dichlorobenzene		
2-Methylphenol		
2.2'-oxybis(1-Chloropropane)		
4-Methylphenol		
N-Nitroso-di-n-propylamine		
Hexachloroethane		
Nitrobenzene		
Isophorone		
2-Nitrophenol		
2 4-Dimethylphenol		
his (2-Chloroethovy) methane		
1,2,4 - Inchorobenzene		
	14.1	
	UJ	00
2-methylnaphthalene		
Hexachiorocyclopentadiene		
2,4,6-Irichlorophenol		
2,4,5-Trichlorophenol		
2-Chloronaphthalene		
2-Nitroaniline		
Dimethylphthalate		
Acenaphthylene		
2,6-Dinitrotoluene	UJ	UJ
3–Nitroaniline	UJ	UJ
Acenaphthene		

ROY F. WESTON, INC. SEMIVOLATILE ANALYSES – DATA VALIDATION SUMMARY

CLIENT: BAKER ENVIRONMENTAL SDG NO.: B4585		/	
	v	✓	
Client Sample ID:	35-SS05-00	35-8803-00	
Matrix:	SOIL	SOIL	
Dilution Factor:	1.0	1.0	
Units:	UG/KG	UG/KG	
2,4-Dinitrophenol	UJ	UJ	
Dibenzofuran			
4–Nitrophenol	UJ	UJ	
2,4-Dinitrotoluene			
Diethylphthalate			
Fluorene			
4–Chlorophenyl–phenylether			
4 – Nitroaniline	UJ	· UJ	
4,6-Dinitro-2-methylphenol			
N-Nitrosodiphenylamine			
4-Bromophenyl-phenylether			
Hexachlorobenzene			
Pentachlorophenol			
Phenanthrene	1186		
Anthracene			
Carbazole	183 J		
Di-n-butylphthalate			
Fluoranthene	1567		
Pyrene	1173		
Butylbenzylphthalate			
Benzo(a)anthracene	566		
3,3-Dichlorobenzidine	UJ	UJ	
Chrysene	683		
bis(2-Ethylhexyl)phthalate	UJ	UJ	
Di-n-octylphthalate			
Benzo(b)fluoranthene	1186		
Benzo(k)fluoranthene			
Benzo(a)pyrene	625		
Indeno(1,2,3-cd)pyrene	381		
Dibenz(a,h)anthracene	184 J		
Benzo(g,h,i)perylene	366		

)

ROY F. WESTON, INC. PESTICIDE/PCB ANALYSES - DATA VALIDATION SUMMARY

CLIENT: BAKER ENVIRONMENTAL SDG NO.: B4585

Client Sample ID: Matrix:	35-SD02-612 SOIL	35-SD07-06 SOIL	35-SD07-612 SOIL			
Dilution Factor:	1.0	1.0	1.0			
Units:	UG/KG	UG/KG	UG/KG			
COMPOUND				,,	····	
alpha-BHC						
beta-BHC		0.59 J				
delta-BHC			0.92 J			
gamma-BHC(Lindane)						
Heptachlor		0.91 J				
Aldrin						
Heptachlor Epoxide	1.2 J	0.78 J	1.4 J			
Endosulfan I						
Dieldrin	1.7 J	1.4 J	2.6 J			
4,4'-DDE	38	34	57			
Endrin	0.44 J		0.7 J			
Endosulfan II	1.4 J	1.3 J	0.88 J			
4,4'-DDD	40	40	60			
Endosulfan Sulfate						
4,4'-DDT	1.6 J	2.3 J	2.1 J			
Methoxychlor	2.2 J		3.4 J			
Endrin Ketone						
Endrin Aldehyde						
alpha-Chlordane	6	7	8.5			
gamma-Chlordane	6.7	6.1	9.7			
Toxaphene						
Aroclor 1016						
Aroclor 1221						
Aroclor 1232						
Aroclor 1242						
Aroclor 1248			,			
Aroclor 1254						
Aroclor 1260						

ROY F. WESTON, INC. PESTICIDE/PCB ANALYSES - DATA VALIDATION SUMMARY

CLIENT: BAKER ENVIRONMENTAL

SDG NO.: B4585

Client Sample ID: Matrix: Dilution Factor: Units:	35-SD04-06 SOIL 1.0 UG/KG	35SD0406D SOIL 1.0 UG/KG	35-SD04-612 SOIL 1.0 UG/KG	35SD0106 SOIL 1.0 UG/KG	35-SD01-612 SOIL 1.0 UG/KG	35-SD02-06 SOIL 1.0 UG/KG	35-SD02~06D SOIL 1.0 UG/KG
COMPOUND		·····			·····		
alpha-BHC							
beta-BHC							
delta-BHC							0.5 J
gamma–BHC(Lindane)							
Heptachlor							
Aldrin							
Heptachlor Epoxide		2.6 J	1.2 J	0.74 J		0.43 J	0.46 J
Endosulfan I							
Dieldrin	1.6 J		3.1 J				0.94 J
4,4'-DDE	31 J	170 J	82		1 J	1.8 J	27 J
Endrin		1.8 J	0.59 J				
Endosulfan II	1.3 J	4.4 J	3.5 J				1.1 J
4,4'DDD	43	128	111		1.1 J	2.3 J	31 J
Endosulfan Sulfate							
4,4'-DDT	4.9 J	13	5.2		0. 73 J	0.66 J	2.6 J
Methoxychlor	0.86 J	3.5 J		2.7 J	0.65 J	0.49 J	
Endrin Ketone			2.8 J				
Endrin Aldehyde							
alpha-Chlordane	4	8.8	5.6			0.51 J	4.9 J
gamma-Chlordane	3.6	10	7.6			UJ	4.8 J
Toxaphene							
Aroclor 1016							
Aroclor 1221							
Aroclor 1232							
Aroclor 1242							
Aroclor 1248							
Aroclor 1254							

Aroclor 1260

Roy F. Weston, Inc. 1 Weston Way West Chester, Pennsylvania 19380-1499 610-701-3000 • Fax 610-701-3186

INORGANIC QUALITY ASSURANCE REVIEW BAKER ENVIRONMENTAL, INC. - NAVY CLEAN SITE: CAMP LEJEUNE SDG: BA4585

REVIEW PERFORMED BY THE ANALYTICS DIVISION OF ROY F. WESTON, INC.

PREPARED BY:

8-10-94 Date

Zohreh Hamid, Ph.D. Section Manager - Data Validation

BAKER ENVIRONMENTAL, INC. - NAVY CLEAN SITE: MCB CAMP LEJEUNE SDG: BA4585

CASE SUMMARY

This data validation review consists of sixteen (16) soil samples received on 04-22,28-94 and 05-03-94. Laboratory analyses were performed by NDRC Laboratories, Inchscape Testing Services for TAL metals.

All data have been validated with regard to usability according to the quality assurance set forth in Inorganic Functional Guidelines and Naval Energy and Environmental Support Activity (NEESA). If you have any questions or comments on this data review, please contact Zohreh Hamid at (610) 701-3745.

The following samples are contained within this report:

D01612	D07612	SD0106	SD0406	SS0300	SS0600
D02612	DS0103	SD0206	SD046D	SS0500	SS0800
D04612	DS0503	SD026D	SD0706		

QUALITY ASSURANCE REVIEW

The findings offered in this report are based upon a rigorous review of the following criteria.

- Holding Time
 - Calibration
 - Contract Required Detection Limit Samples
 - Blank Samples
 - Interference Check Samples
 - Matrix Spike
 - Duplicate Digestion Samples
 - Laboratory Control Sample
- Serial Dilution Sample
- Graphite Furnace Analysis
- * Quarterly Verification of Instrument Parameters
- * Sample Result Verification
- * Preparation Logs
 - Run Logs

*

*

- Data Package Completeness
- * All criteria were met; therefore, a narrative section is not provided for this classification.

Page 2

HOLDING TIME

The analysis holding time for mercury in sample SD02-06 and the corresponding QC samples exceeded the requirement limit. The reported sample data is qualified estimated.

CONTRACT REQUIRED DETECTION LIMIT SAMPLE ANALYSES

The CRDL recovery for lead (163.7%, 163.3%, 16.3%, and 156.7%) in four different analysis runs, As (126%), Se (130%) in graphite furnace and Sb (171.9/162.9%) in ICP were above the upper data validation requirement limits of 120%. The positive results greater than the IDLs but less than 3X the CRDLs for these analytes are qualified estimated due to the uncertainty near the detection limits.

Note: The additional qualifier code is not applied if the sample result has already been qualified "U" due to blank contamination.

BLANK ANALYSES

The laboratory blank had the following contaminations at levels above the IDLs, but below the CRDLs.

ANALYTE	<u>CONC. MG/KG</u>	ACTION LEVEL MG/KG *
Al	10	50
Be	-0.107	**
Cr	0.91	5
Со	-1.7	**
Cu	0.353	1.6
Fe	5.7	30
РЪ	0.13	0.6
Mg	9.28	50
Ni	1.73	9
Ag	-0.02	**

Page 3

* Action level = 5X the blank concentration.

** The reported sample data are not impacted when the absolute concentration of an analyte is less than 2X the IDL.

The reported sample results and the field QC blanks up to the action limits are qualified "U" for these analytes due to the laboratory blank contamination.

Zinc was detected in the preparation blank at a level above the CRDL. The reported sample results up to 10X the blank contamination level are rejected. The reported sample results above 10X the blank levels are accepted unqualified.

Antinomy was detected in the initial calibration blank at a level above the CRDL. The reported sample results are rejected.

Beryllium was detected in the continuing calibration blank at a level above the CRDL. The reported sample results are below 10X the blank contamination. The reported positive results are rejected.

Mercury was detected in the continuing calibration blank at a level below the negative CRDL. The reported sample results are considered estimated and the non-detected values are rejected due to the extremely baseline drift in the calibration blank.

In the second laboratory preparation blank, mercury was detected at a level above the CRDL. The reported sample data for mercury is considered unreliable. Other target analytes, Ba, Be, Cu, Fe, Pb, Mn, and Ag were detected at levels below the CRDLs. The corresponding sample data were qualified "U" and considered as the laboratory artifacts.

INTERFERENCE CHECK SAMPLES

The percent recoveries for the TAL analytes analyzed by ICP were within the control limits.

Calcium was not included in ICS A standard solution. The ICP interference could not be evaluated; therefore, the reported sample data for Ca are qualified estimated.

Page 4

MATRIX SPIKE SAMPLE ANALYSIS

The matrix spike recoveries for As (58%), Cd (0.0%), and Se (73.1%) in matrix spike sample SD0206 and the matrix spike recoveries for Sb (19.9%), As (66.5%), Cd (0.0%), Pb (11.0%), and Se (47%) in matrix spike sample DS0503 were below the requirement limit of 75%. The reported positive sample results and non-detected values for As and Se are qualified estimated. The reported sample data are biased low.

The positive results for Cd, Sb, and Pb are qualified estimated and the non-detected values are rejected, due to the extremely low matrix spike recovery. The reported results are biased low and the possibility of false negatives exist.

LABORATORYDUPLICATE SAMPLES

Two sets of laboratory duplicate sample analyses were performed. The RPDs for Fe (30%) and Zn (57%) in SD0206D and Cr (60.2%), Fe (102%), Pb (126.5%), Mn (172%), V (122%), and Zn (63.1%) in sample DS0503 were above the analysis and the data validation requirement limits. The reported positive results are qualified estimated, due to the very poor reproducibility.

Two sets of field duplicate analyses were analyzed with this batch of samples. The RPDs for Zn and Fe in field duplicate SD020616D and Al, Cr, Fe, Pb, Mn, and Zn in SD040616D were above the 50% requirement. The results for all analytes, with the exception of Al, have already been qualified. The reported results for Al in the field sample and the corresponding field duplicate are qualified estimated.

LABORATORYCONTROL SAMPLE ANALYSIS

The percent recoveries for Cd (0.0%) were below the lower control limit of 80% in two LCS analyses. The reported sample data have already been rejected, due to the 0.0% matrix spike recovery. The reported data are unreliable.

Page 5

GRAPHITE FURNACE ANALYSIS

The following samples analyzed by graphite furnace had the analytical spike recoveries outside the control limits of 85-115%:

<u>SAMPLE ID</u>	ANALYTE	<u>% RECOVERY</u>
D01612	Ag/Tl	128*/116*
D02612	As/Ag/T1	82.5/127*/117.5*
D04612	As/Pb/Ag	69.0/79.7/118.5*
D07612	Se/Ag/T1	66/132.5*/120.5*
DS0103	Ag/Tl	130.5*/118*
DS0503	Ag	116*
SD0106	As/Ag/Tl	80.4/129.5*/116.5*
SD026D	Ag/Tl	135/116.5*
SD0406	As/Pb/Ag/Tl	79.5/81.9/116*/118*
SD046D	As/Pb/Se/Ag	72.5/78.3/76/118*
SD0706	As/Se/Ag/T1	75/74/130.5*/118*
SS0300	Pb/Ag/T1	81.5/136*/118.5*
SS0500	As/Se/Ag	81.5/77/125*
SS0600	Se/Ag	78/128.5*
SS0800	Se/Ag/T1	84/129*/122.5*
SD0206	Cd/Ag	126.5*/117*

* Only the positive results are qualified estimated.

The reported data are qualified estimated.

Page 6

SAMPLE RESULTS

Arsenic, cadium, lead, selenium, silver and thallium were analyzed by graphite furnace. Other elements were analyzed by ICP. Mercury was analyzed by automated cold vapor AA.

Arsenic in sample D07612, lead in samples D01612, DS0503, DS0503D, SD0106, and selenium in samples D01612, DS0503, and DS0503D were analyzed by Method of Standard Addition (MSA).

DATA PACKAGE COMPLETENESS

The case number was not identified for this batch. The sample analyses were classified under an SDG number.

The ICP interelement correction factor (Form XI, Part II) was not included in this data package. Also, the analysis was performed after the sample analysis.

The CRDL analysis for As in the 3rd analysis run was not analyzed/reported. Affected sample D07612. The analysis time for As in sample SD0206 was not correctly identified on Form XIV.

The result for As in samples D01612 and SD0206D were incorrectly qualified with "W". The analytical spike recoveries 95.8% and 85%, respectively, were within the control limits. The results for Cd in sample SD0206, Se in sample SS0500, 600, and 800 and Ag in sample SD0206 should be flagged by "W".

The result for calcium in sample SD0206 was not reported on the Form I.

SUMMARY

The results for Hg, Zn, Sb, and Be were rejected due to the laboratory blank contaminations above the CRDLs. The reported non-detected results for Cd, Sb, and Pb are rejected due to the low matrix spike recovery. The laboratory duplicate analyses demonstrated very poor reproducibility. The result for cadmium are unreliable, due to the 0.0% recovery in the laboratory control sample analysis.

Overall, the data are not satisfactory and are summarized in the data summary with the applied qualifier codes.

INFORMATION REGARDING DATA

The data have been reviewed according to the USEPA National Functional Guidelines for Inorganic Data Review. All data are validated with regard to usability.

If you have any questions or comments on this data review, please call Zohreh Hamid at (215) 344-3745.

ATTACHMENTS

- 1. Attachment I Glossary of Data Qualifier Codes
- 2. Attachment II Sample Result Summary. This includes:
 - a) A summary of all positive results for the target analytes with the qualifier codes, if applicable;
 - b) All qualified and usable detection limits.
- 3. Attachment III Sample data (Form I) verified by the laboratory.

WANGERS DESCRIPTION AND A

ATTACHMENT I GLOSSARY OF DATA QUALIFIER CODES

GLOSSARY OF DATA QUALIFIERS

CODES RELATING TO IDENTIFICATION

(confidence concerning presence or absence of compounds):

- U = NOT DETECTED SUBSTANTIALLY ABOVE THE LEVEL REPORTED IN LABORATORY OR FIELD BLANKS.
- **R** = UNRELIABLE RESULT. ANALYTE MAY OR MAY NOT BE PRESENT IN THE SAMPLE. SUPPORTING DATA NECESSARY TO CONFIRM RESULT.
- N = NEGATED COMPOUND WAS CONSIDERED AS NOT PRESENT IN THE SAMPLE.

(NO CODE) = CONFIRMED IDENTIFICATION

CODES RELATING TO QUANTITATION

(can be used for both positive results and sample quantitation limits):

- J = ANALYTE PRESENT. REPORTED VALUE MAY NOT BE ACCURATE OR PRECISE.
- **UJ** = THE REPORTED QUANTITATION LIMITS ARE QUALIFIED ESTIMATED.

OTHER CODES

 \mathbf{Q} = NO ANALYTICAL RESULT.

ATTACHMENT II SAMPLE RESULT SUMMARY

ROY F. WESTON, INC. INORGANIC ANALYSES -- DATA VALIDATION SUMMARY

CLIENT: BAKER ENVIRONMENTAL, INC. SDG NO.: BA4585

Client Samı M % S	ole ID: Matrix: Solids: Units:		D01612 SOIL 67.4 MG/KG	D02612 SOIL 82.5 MG/KG	D04612 SOIL 64 MG/KG	D07612 SOIL 58.1 MG/KG	DS0103 SOIL 84.1 MG/KG	DS0503 SOIL 74.5 MG/KG	SD0106 SOIL 51.7 MG/KG	
INORGANIC ELE	MENTS									
Aluminium	D	1DE (UY/L) 20	19200	903	4240	8820	2010	6210	97900	
Antimony	Þ	46	13200 R	57 R	10.3 R	84 B	2910 R	67 B	37300 P	
Arconic	F	10		0.34 .1	10.011	23	11	271	201	
Barium	P	1.2	58.8	65	30.1	48.6	55	158	120	
Benyllium	P	1.0	1 B	0.0	0 16 B	04 B	0.0	10.0	168	
Cadmium	F	0.2	R	R	R	R	R	B	1.0 M	
Calcium	P	1700	3160 J	4970 J	4110 J	3800 J	456 .1	1040 .1	5040	
Chromium	P	7.0	17 J	3.3 U	14.8 J	20 .1	4411	14.4	28.4 .1	
Cobalt	P	11	3.2		1 110 0	3.2		14.4 0	66	•
Copper	P	2.0	0.98 U	24.8	8.4	10.6	1.1 U	2.2 11	4.1	
Iron	P	13	6210 J	1970 J	7110 J	7220 J	442 J	10500 J	10400 J	
Lead	F	0.6	12.4 J	26.3 J	34.4 J	79 J	8,1 J	16.7 J	21.1 J	
Magnesium	Р	13	480	145	405	359	63.5	403	685	
Manganese	Р	2	13.1 J	5.2 J	15.9 J	37 J	5.6 J	3.8 J	29.7 J	
Mercury	CV	0.1	R	R	R	R	R	R	R	
Nickel	Р	11	5.3 U	1.6 U	3,8 U	7.3 U	2.1 U	1.7 U	9.5 U	
Potassium	Р	2440						562	498	
Selenium	F	1.4	UJ	UJ	UJ	0.28 J	UJ	0.67 J	1.6 J	
Silver	F	0.2	0.03 U			0.03 U	0.39 J		0.04 U	
Sodium	Р	2370			461					
Thallium	F	0.5	0.43 J		0.22 J	0.38		0.51	0.66 J	
Vanadium	P	11	14.5 J	1.9 J	8.8 J	15.9 J	3 J	19.9 J	24.2 J	
Zinc	Р		14.2 R	17.7 R	101 J	104 J	5.2 R	9 R	21.3 R	

ROY F. WESTON, INC. INORGANIC ANALYSES - DATA VALIDATION SUMMARY

.

•

.

CLIENT: BAKER ENVIRONMENTAL, INC. SDG NO.: BA4585

		······································		
Client Sam	ple ID:		SS0600	SS0800
enone ourn	Matrix		200000	500000
0/ 1	Nalitz.			SUL
%	Solids:		94.6	44.9
	Units:		MG/KG	MG/KG
INORGANIC EL	EMENTS			
		IDL (ug/L)		
Aluminium	Р	20	6510	3600
Antimony	Р	46	10.5 R	R
Arsenic	F	1.2	0.89 J	66.1 J
Barium	P	1.0	13.6	20
Bervllium	P	1.0	0.12 B	
Cadmium	F	02	B	B
Calcium	P	1700	1330	621
Chromium	, D	70	1000 0	701
Coholt		7.0	0.0 J	7.9 0
Cobalt	P	11		
Copper	P	2.0	20	4.0
Iron	Р	13	3470 J	29900 J
Lead	F	0.6	13.2 J	36.1 J
Magnesium	Р	13	255	194
Manganese	Р	2	6.7 J	32.9 J
Mercury	CV	0.1	R	R
Nickel	Р	11		
Potassium	Р	2440		
Selenium	F	1.4	61	0.94 .1
Silver	F	02		0.0,0
Sodium	Þ	2370		
Thellium		05	0.14	0.52
Vanadium	, D	11	105 1	15 1
Zine	г D		12.0 0	
ZINC	P		12.5 H	24.9 H

ROY F. WESTON, INC. INORGANIC ANALYSES ~ DATA VALIDATION SUMMARY

CLIENT: BAKER ENVIRONMENTAL, INC. SDG NO.: BA4585

Client Sample ID: SD0206 SD026D SD0406 SD046D Matrix: SOIL SOIL SOIL SOIL SOIL % Solids: 78.3 80.5 56.9 39.8	SD0706 SOIL 63.5 MG/KG	SS0300 SOIL 98.4	SS0500 SOIL
	MG/KG	00.1	96.9
Units: MG/KG MG/KG MG/KG MG/KG	majita	MG/KG	MG/KG
IDL (ug/L)			
Aluminium P 20 484 333 1950 J 8310 J	J 3960	2260	3550
Antimony P 46 R 6.6 R R R	R R	4.9 R	7.5 R
Arsenic F 1.2 0.46 J UJ 0.97 J 2 J	J 1.2 J	0.5 J	0.74 J
Barium P 1.0 3.8 3.3 10 39.3	19.5	9.1	13.5
Beryllium P 1.0 0.18 R 0.33 R	0.2 R		
Cadmium F 0.2 R R R R	I R	R	R
Calcium P 1700 3831 J 1900 J 4940 J 6100 J	J 2530 J	1420 J	3030 J
Chromium P 7.0 1.7 U 1.9 U 5.7 U 27.4 J	J 7.1 J	3.8 U	5.1 U
Cobalt P 11 1.8 3.5	7.8	1.7	
Copper P 2.0 1.2 U 0.44 U 4.2 20.6	9.4	1.7 U	4.1
Iron P 13 1050 J 558 J 3560 J 14600 J	J 5340 J	1750 J	1950 J
Lead F 0.6 4.7 J 4 J 32 J 52 J	J 42 J	6.4 J	67.6 J
Magnesium P 13 88.1 46.8 U 260 1000	227	148	241
Manganese P 2 3.2 J 2 J 11 J 23.4 J	l 28.8 J	9.6 J	13.1 J
Mercury (CV 0.1 0.07 J R R R	i R	R	R
Nickel P 11 1.4U 1.9U 2.4U 6.5U	J 6.4 U	1.4 U	2.2 U
Potassium P 2440			
Selenium F 1.4 0.23 J UJ UJ 0.45 J	0.25 J	UJ	UJ
Silver F 0.2 0.03 U	0.14 U	0.19 J	
Sodium P 2370 518 875			
Thallium F 0.5 0.33	0.22 J		0.12
Vanadium P 11 0.94 J 0.91 J 4.8 J 17.7 J	8.7 J	4.2 J	6.1 J
Zinc P 17.3 R 9.1 R 45 R 213 J	60.4 J	17.2 R	15.6 R

END OF DATA VALIDATION REPORT

.

Roy F. Weston, Inc. 1 Weston Way West Chester, Pennsylvania 19380-1499 8 610-701-3000 • Fax 610-701-3186

ORGANIC QUALITY ASSURANCE REVIEW BAKER ENVIRONMENTAL, INC. - NAVY CLEAN SITE: MCB CAMP LEJEUNE SDG NO.: B4970

REVIEW PERFORMED BY THE ANALYTICS DIVISION OF ROY F. WESTON, INC.

PREPARED BY: Killy cittic

Kelly Muir Spittler[®] Unit Leader - Data Validation

VERIFIED BY:_

Zohreh Hamid, Ph.D. Section Manager - Data Validation

<u>08-22-</u>54 Date

<u>8-27-94</u> Date

BAKER ENVIRONMENTAL, INC. - NAVY CLEAN SITE: MCB CAMP LEJEUNE SDG No.: B4970

INTRODUCTION

This quality assurance review is based upon a review of all data generated from twenty soil samples collected on 04-14,15,17-94. The samples were analyzed according to criteria set forth in the contract laboratory program (CLP) for TCL Volatile, Semivolatile and Pesticide/PCB target compounds by NDRC Laboratories, Inchscape Testing Services.

This review has been performed in accordance with the confirmation method. The reported analytical results are presented as a summary of the data in Attachment II. All of the analytical data were examined to determine the usability of the analytical results and also to determine contractual compliance relative to the analytical requirements and deliverables specified in the CLP method and Sampling and Chemical Analysis Quality Assurance requirements for the Navy Installation Restoration Program (NEESA 20.2-047B). The applicable qualifier codes have been placed next to the results in the data summary to indicate the qualitative and/or quantitative reliability. The details of this evaluation review are presented in the narrative section of this report.

All data have been validated with regard to usability according to the quality assurance set forth in USEPA Laboratory Data Validation Functional Guidelines for Evaluating Organics Analyses. If you have any questions or comments on this data review, please call Zohreh Hamid or Kelly Spittler at (610) 701-3745.

OUALITY ASSURANCE REVIEW

The findings offered in this report are based upon a review of the following criteria:

- Data Completeness
- Holding Time
- GC/MS Tuning
- Calibration
- Blanks

*

- Surrogate Recoveries
- Matrix Spike/Spike Duplicate
- Laboratory Control Sample
- Internal Standard
- Instrument Performance
 - Field Duplicate Results
 - Compound Identification
 - Compound Quantitation
- * All criteria were met; therefore, a narrative section is not provided for this classification.

Page 2

DATA COMPLETENESS

General

The sample IDs reported throughout the data package were abbreviated versions of the revised sample numbers provided from Baker Environmental. Due to the complexity of the changes and to alleviate confusion, the complete revised sample IDs are provided in the data validation report.

Semivolatiles

Samples 35-FS02-AE-WB01, 35-FS03-AE-WB01, 35-FS03-PS-WB01, 35-FS03-PS-WB01, and 35-FS03-MC-F01 were not listed on the Form IV or Form V. The laboratory should correct and resubmit these forms.

HOLDING TIME

Volatiles

The technical holding time established in the Functional Guidelines (14 days from collection to analysis), has been exceeded for all samples. The laboratory's contractual holding time (10 days from VTSR to analysis) established in the CLP SOW differs for these validation requirements; however, the validator is required by Functional Guidelines to qualify as estimated the positive results and non-detects in these analyses. It is the data validator's opinion that these results can be accepted with the qualifier codes.

Semivolatiles and Pesticide/PCBs

The technical holding time established in the Functional Guidelines (14 days from collection to extraction), has been exceeded for all samples. The laboratory's contractual holding time (10 days from VTSR to extraction) established in the CLP SOW differs for these validation requirements; however, the validator is required by Functional Guidelines to qualify as estimated the positive results and non-detects in these analyses. It is the data validator's opinion that these results can be accepted with the qualifier codes.

Page 3

CALIBRATION

Volatiles and Semivolatiles

The following %D results in the continuing calibrations exceeded the 25% QC limit. These calibrations are considered acceptable since less than two (VOA) or four (BNA) check (*) compounds had %Ds outside the criteria. All associated positive results and non-detected values for the compounds listed below are qualified as estimated and flagged, "J" and "UJ". All RRFs were above 0.05; therefore, no qualification is required on this basis.

CALIBRATION	INSTRUMENT ID	COMPOUND	<u>%RSD/%D</u>
CC 05-12-94	HP3.i	2-Butanone	30.1
		4-Methyl-2-pentanone	34.8
		2-Hexanone	30.9
CC 06-15-94	HP3.i	Acetone	26.7
		1,2-Dichloroethane	32.0
CC 06-16-94	HP3.i	2-Butanone	92.8
		4-Methyl-2-pentanone	35.0
		2-Hexanone	33.5
CC 06-16-94	HP1.i	4-Chloroaniline	65.5
		3-Nitroaniline	30.8
		3,3-Dichlorobenzidine	29.5
		2,6-Dinitrotoluene	29.9
		2,4-Dinitrophenol	31.4
		4-Nitrophenol	36.5
CC 06-17-94	HP1.i	4-Chloroaniline	36.9
		3-Nitroaniline	46.4
		3,3-Dichlorobenzidine	28.9
		2,6-Dinitrotoluene	32.1
		2,4-Dinitrophenol	42.8
		Diethylphthalate	25.2
CC 07-17-94	HP1.i	4-Chloroaniline	37.3
		4-Nitroaniline	57.9
		Phenol	39.6
		2-Methylphenol	32.4
		2,2-Oxysis(1-chloropropane)	89.8
		Hexachloroethane	40.2
		Carbazole	34.1

Page 4

Pesticide/PCBs

The percent resolutions for endosulfan I and endosulfan sulfate (44.2/58.1%), respectively, were below the 60% requirement limit. Since these compounds were not detected in the samples, no action is required on this basis.

BLANKS

Pesticide/PCBs

The following method blank contained several target compounds at levels below the CRQL. All results less than 5X the blank level are considered laboratory artifacts and are flagged "U".

<u>BLANK</u>	COMPOUND	<u>LEVEL</u>
PBLKA	Beta-BHC	0.50 ug/kg
	Aldrin	1.3 ug/kg
	Methoxychlor	2.5 ug/kg

SURROGATE RECOVERIES

Volatiles

The following system monitoring compound recoveries were outside the QC limits:

<u>SAMPLE</u>	SURROGATE COMPOUND	RECOVERY	<u>QC LIMITS</u>
35-FS03-PS-WB01	1,2-Dichloroethane- d_4	122	70-121
35-FS03-LG-F01	1,2-Dichloroethane-d₄	130	70-121
35-FS03-LG-F02	1,2-Dichloroethane-d ₄	140	70-121
35-FS03-MC-WB01	1,2-Dichloroethane-d ₄	149	70-121
35-FS03-SM-F01	1,2-Dichloroethane-d ₄	147	70-121
35-FS03-LG-WB01	1,2-Dichloroethane- d_4	124	70-121
36-FS01-SM-F01	1,2-Dichloroethane-d₄	129	70-121

Most of the samples were not reanalyzed straight; therefore, since all of the outliers exceeded the QC limits, only the positive results are qualified estimated in these analyses.

Semivolatiles

The following surrogate recoveries were outside the QC limits. Since there was only one outlier per fraction, no qualification is applied on this basis.

••• ••• •

SAMPLE NO.	SURROGATE COMPOUND	<u>RECOVERY</u>	<u>QC LIMITS</u>
35-FS01-SM-WB01	2,4,6-Tribromophenol	17	19-122
35-FS01-SM-F01	2-Fluorophenol	24	25-121

Pesticide/PCBs

All surrogate recoveries were within the requirement limits, except for the following:

<u>SAMPLE NO.</u>	RECOVERY SPB608/DB1701	SURROGATE COMPOUND	REASON
PBLKA	207/249	DCB	Advisory Criteria 60-150%
PLCSA	237/250	DCB	Advisory Criteria 60-150%
	170/180	TCX	Advisory Criteria 60-150%
35-FS02-AE-WB01	181/158	TCX	Advisory Criteria 60-150%
	207/340	DCB	Advisory Criteria 60-150%
35-FS03-AE-WB01	355/338	TCX	Advisory Criteria 60-150%
	393/469	DCB	Advisory Criteria 60-150%
35-FS03-PS-WB01	313/311	TCX	Advisory Criteria 60-150%
	335/574	DCB	Advisory Criteria 60-150%
35-FS03-PS-WB01	213/188	TCX	Advisory Criteria 60-150%
	248/407	DCB	Advisory Criteria 60-150%
35-FS03-PS-WB02	-/270	DCB	Advisory Criteria 60-150%
35-FS01-LG-F01	-/251	DCB	Advisory Criteria 60-150%
35-FS03-LG-F01	156/154	TCX	Advisory Criteria 60-150%
	176/277	DCB	Advisory Criteria 60-150%
35-FS03-LG-F02	190/182	TCX	Advisory Criteria 60-150%
	206/322	DCB	Advisory Criteria 60-150%
35-FS03-LG-WB02	-/193	DCB	Advisory Criteria 60-150%
35-FS02-MC-F01	180/160	TCX	Advisory Criteria 60-150%
	170/338	DCB	Advisory Criteria 60-150%

RECOVERY SURROGATE SAMPLE NO. SPB608/DB1701 COMPOUND REASON 35-FS03-MC-F01 -/219 DCB Advisory Criteria 60-150% 35-FS03-MC-WB01 -/223 DCB Advisory Criteria 60-150% 35-FS02-CFWB01 348/335 TCX Advisory Criteria 60-150% 371/490 DCB Advisory Criteria 60-150% 35-FS03-WM-F01 163/-TCX Advisory Criteria 60-150% -/0 DCB Advisory Criteria 60-150% 35-FS03-SM-F01 -/176 DCB Advisory Criteria 60-150% 35-FS03-BG-F01 -/450 DCB Advisory Criteria 60-150% 36-FS01-SM-WB01 -/356 DCB Advisory Criteria 60-150% 36-FS01-SM-F01 156/242 DCB Advisory Criteria 60-150%

DCB = Decachlorobiphenyl

TCX = Tetrachloro-m-xylene

Since the requirement limits are advisory and there is no qualification criteria established in Functional Guidelines or NEESA for surrogate outliers in the pesticide/PCB fraction, no action is taken.

MATRIX SPIKE/SPIKE DUPLICATE

Volatiles and Semivolatiles

As requested by the client and due to the lack of specified QC sample, MS/MSD analyses were not performed for this batch of samples. No action is required due to the lack of these QC analyses.

LABORATORY CONTROL SAMPLE

An LCS analysis was performed in order to fulfill the blank spike analysis requirements established in the NEESA guidelines.

Pesticide/PCBs

All LCS recoveries exceeded the QC limits. Since these compounds were not detected in the samples and no action is required based on LCS outliers, no qualification is required on this basis.

Page 6

INTERNAL STANDARD

Volatiles

The following internal standard areas were outside the laboratory's control limits:

<u>SAMPLE</u>	INTERNAL STANDARD	<u>AREA</u>	CONTROL LIMITS
35-FS03-PS-WB01	BCM	92160	138617-554468
	DFB	191949	394862-1579448
	CBZ	151124	432562-1730250
35-FS03-PS-WB02	BCM	102277	138617-554468
	DFB	173203	394862-1579448
	CBZ	156984	432562-1730250
35-FS01-LG-F01	DFB	378989	394862-1579448
	CBZ	320980	432562-1730250
35-FS03-LG-F01	DFB	359098	394862-1579448
	CBZ	314289	432562-1730250
35-FS03-LG-F02	BCM	94790	138617-554468
	DFB	225390	394862-1579448
	CBZ	168065	432562-1730250
35-FS02-MC-F01	BCM	80767	138617-554468
	DFB	109212	394862-1579448
	CBZ	93029	432562-1730250
35-FS03-MC-F01	BCM	66699	138617-554468
	DFB	89613	394862-1579448
	CBZ	67726	432562-1730250
35-FS03-MC-WB01	BCM	52086	138617-554468
	DFB	151791	394862-1579448
	CBZ	91087	432562-1730250
35-FS03-SM-F01	BCM	62268	138617-554468
	DFB	128948	394862-1579448
	CBZ	75499	432562-1730250
36-FS01-SM-F01	CBZ	386622	441626-1766502

BCM	=	Bromochloromethane
DFB	=	1,4-Difluorobenzene
CBZ	=	Chlorobenzene-d₅

Page 8

All reported results quantified in reference to the internal standard outliers are qualified estimated, since all IS outliers were below the control limits.

Semivolatiles

The following internal standard areas were outside the control limits:

SAMPLE	INTERNAL STANDARD	<u>AREA</u>	CONTROL LIMITS
35-FS03-PS-WB02	Perylene-d ₁₂	1023366	1050094-4200376
35-FS03-LG-WB01	Perylene-d ₁₂	1026059	1277113-5108452
35-FS02-MC-F01	Phenathrene-d ₁₀	2486238	2510114-10040458
35-FS03-MC-WB01	Perylene-d ₁₂	1083331	1277113-5108452
35-FS03-WM-F01	Perylene-d ₁₂	1040921	1277113-5108452
35-FS03-B6-F01	Perylene-d ₁₂	1249743	1277113-5108452
35-FS01-SM-WB01	Phenathrene- d_{10} Chrysene- d_{12}	424050 785582	2510114-10040458 1649548-6598190
35-FS02-SM-F01	Phenathrene- d_{10} Perylene- d_{12}	1785424 1219698	2510114-10040458 1277113-5108452

Since all these internal standard areas were below the control limits, all sample results quantified in reference to these outliers are qualified estimated.

FIELD DUPLICATE RESULTS

A set of field duplicate analyses was not provided with this batch of samples. No qualification is required due to the lack of field QC samples.

COMPOUND QUANTITATION

General

The matrix for most of these samples were fish tissue; therefore, the higher content of moisture in these tissue resulted in elevated detection limits.

Page 9

Volatiles

The following compound results were reported on the Form I's; however, they were not reported on the quantitation reports and library search spectra were not provided. These results are reported as the CRQLs on the data validation summary. Also, there was much confusion with the results for 35-FS03-SM-F01. Acetone was not reported on the original or dilution quantitation reports and carbon disulfide in the dilution Form I. The actual values are reported on the summaries.

SAMPLE

COMPOUND

2-Butanone

35-FS03-PS-WB01

35-FS03-PS-WB02 35-FS03-LG-F02 35-FS03-MC-WB01 4-Methyl-2-hexanone 2-Hexanone 2-Butanone

Acetone

2-Butanone

Samples 35-FS03-LG-F01, 35-FS03-LG-F02, 35-FS03-LG-WB01, 35-FS02-MC-F01, 35-FS03-MC-F01, 35-FS03-SM-F01, and 36-FS01-SM-F01 were either analyzed or reanalyzed at 5-fold dilutions due to the high levels of target compounds. No qualification is applied on this basis.

Pesticide/PCBs

All samples were analyzed a 2-fold dilutions due to high levels of target compounds. No qualification is required on this basis.

INFORMATION REGARDING DATA

The data have been reviewed according to the USEPA National Functional Guidelines for Organic Data Review. All data are validated with regard to usability.

If you have any questions or comments on this data review, please call Kelly Spittler or Zohreh Hamid at (215) 344-3745.

ATTACHMENTS

- 1. Attachment I Glossary of Data Qualifier Codes
- 2. Attachment II Sample Result Summary. This includes:
 - a) A summary of all positive results for the target analytes with the qualifier codes, if applicable;
 - b) All qualified and usable detection limits.
- 3. Attachment III Sample data (Form I) verified by the laboratory.

ATTACHMENT I GLOSSARY OF DATA QUALIFIER CODES

GLOSSARY OF DATA QUALIFIERS

CODES RELATING TO IDENTIFICATION

(confidence concerning presence or absence of compounds):

- U = NOT DETECTED SUBSTANTIALLY ABOVE THE LEVEL REPORTED IN LABORATORY OR FIELD BLANKS. [Substantially is equivalent to a result less than 10 times the blank level for common contaminants (methylene chloride, acetone and 2-butanone in the VOA analyses, and common phthalates in the BNA analyses, along with tentatively identified compounds) or less than 5 times the blank level for other target compounds.]
- **R** = UNUSABLE RESULT. THE PRESENCE OR ABSENCE OF THIS ANALYTE CANNOT BE VERIFIED. SUPPORTING DATA NECESSARY TO CONFIRM RESULT.
- **N** = NEGATED COMPOUND. THERE IS PRESUMPTIVE EVIDENCE TO MAKE A TENTATIVE IDENTIFICATION.

CODES RELATING TO QUANTITATION

(can be used for both positive results and sample quantitation limits):

- J = ANALYTE WAS POSITIVELY IDENTIFIED. REPORTED VALUE MAY NOT BE ACCURATE OR PRECISE.
- **UJ** = ANALYTE WAS NOT DETECTED ABOVE THE CRQL. THE REPORTED QUANTITATION LIMIT IS QUALIFIED ESTIMATED.

OTHER CODES

 \mathbf{Q} = NO ANALYTICAL RESULT.

ATTACHMENT II SAMPLE RESULT SUMMARY

ROY F. WESTON, INC. VOLATILE ANALYSES – DATA VALIDATION SUMMARY

CLIENT: BAKER ENVIRONMENTAL, INC. SDG NO.: B4970		2 /	\checkmark	\checkmark
Client Sample ID:	35-FS03-65-WB01	35-FS03-FS-WB02	35FS01LGF01	35-FS03-LG-F01
Matrix:	SOIL	SOIL	SOIL	SOIL
Dilution Factor:	1.0	1.0	1.0	1.0/5.0*
Units:	UG/KG	UG/KG	UG/KG	UG/KG
COMPOUND				
Bromomethane	UJ	UJ	UJ	UJ
Vinyl Chloride	UJ	UJ	UJ	UJ
Chloroethane	UJ	UJ	UJ	IJ
Methylene Chloride	17 J	UJ	26 J	UJ
Acetone	39 J	UJ	263 J	465 J
Carbon Disulfide	467 J	835 J	502 J	2036 *J
1,1-Dichloroethene	UJ	UJ	UJ	UJ
1,1-Dichloroethane	UJ	UJ	UJ	UJ
1,2-Dichloroethene (TOTAL)	UJ	UJ	UJ	UJ
Chloroform	UJ	UJ	UJ	UJ
1,2-Dichloroethane	UJ	UJ	UJ	UJ
2-Butanone	31 UJ	35 UJ	UJ	UJ
1,1,1–Trichloroethane	UJ	UJ	UJ	UJ
Carbon Tetrachloride	UJ	UJ	UJ	UJ
Bromodichloromethane	UJ	UJ	UJ	UJ
1,2-Dichloropropane	UJ	UJ	UJ	UJ
cis-1,3-Dichloropropene	UJ	UJ	UJ	UJ
Trichloroethene	UJ	UJ	LU	UJ
Dibromochloromethane	UJ	UJ	UJ	UJ
1,1,2-Trichloroethane	UJ	UJ	UJ	UJ
Benzene	UJ	UJ	UJ	UJ
Trans-1,3-Dichloropropene	UJ	UJ	UJ	UJ
Bromoform	UJ	UJ	UJ	UJ
4-Methyl-2-Pentanone	31 UJ	UJ	UJ	UJ
2-Hexanone	31 UJ	· UJ	UJ	UJ
Tetrachloroethene	UJ	LU	IJ	UJ
1,1,2,2-Tetrachloroethane	UJ	UJ	UJ	UJ
Toluene	UJ	UJ	UJ	UJ
Chlorobenzene	UJ	UJ	UJ	UJ
Ethylbenzene	UJ	UJ	UJ	UJ
Styrene	UJ	UJ	UJ	UJ
Xylene (total)	UJ	56 J	UJ	UJ
Chloromethane	UJ	UJ	UJ	UJ

)
ROY F. WESTON, INC. VOLATILE ANALYSES – DATA VALIDATION SUMMARY

CLIENT: BAKER ENVIRONMENTAL, INC. SDG NO.: B4970	\checkmark		\checkmark	
Client Sample ID:	35-FS03-LG-F02	35-FS03-LG-WB01	35FS02-MC-F01	35-FS03-MC-F01
Matrix:	SOIL	SOIL	SOIL	SOIL
Dilution Factor:	1.0/5.0*	5.0	1.0/5.0*	1.0
Units:	UG/KG	UG/KG	UG/KG	UG/KG
COMPOUND				
Bromomethane	UJ	UJ	UJ	UJ
Vinyl Chloride	UJ	UJ	UJ	UJ
Chloroethane	UJ	UJ	UJ	UJ
Methylene Chlaride	UJ	UJ	UJ	UJ
Acetone	42 UJ	137 J	303 J	UJ
Carbon Disulfide	424 *J	469 J	850 *J	196 J
1,1-Dichloroethene	UJ	UJ	UJ	UJ
1,1-Dichloroethane	UJ	UJ	UJ	UJ
1,2-Dichloroethene (TOTAL)	UJ	UJ	UJ	UJ
Chloroform	UJ	UJ	UJ	UJ
1,2-Dichloroethane	UJ	UJ	UJ	IJ
2-Butanone	26 J	UJ	UJ	UJ
1,1,1-Trichloroethane	UJ	UJ	UJ	UJ
Carbon Tetrachloride	UJ	IJ	UJ	UJ
Bromodichloromethane	UJ	UJ	UJ	UJ
1,2—Dichloropropane	UJ	UJ	UJ	UJ
cis-1,3-Dichloropropene	ບງ	ŊĴ	UJ	UJ
Trichloroethene	UJ	UJ	UJ	UJ
Dibromochloromethane	UJ	nj	UJ	UJ
1,1,2-Trichloroethane	UJ	UJ	UJ	UJ
Benzene	LU	UJ	UJ	UJ
Trans-1,3-Dichloropropene	UJ	UJ	UJ	UJ
Bromoform	UJ	UJ	UJ	UJ
4–Methyl–2–Pentanone	UJ	UJ	LU	UJ
2-Hexanone	UJ	UJ	UJ	UJ
Tetrachloroethene	UJ	UJ	UJ	UJ
1,1,2,2-Tetrachloroethane	UJ	UJ	UJ	UJ
Toluene	UJ	UJ	UJ	UJ
Chlorobenzene	UJ	UJ	UJ	UJ
Ethylbenzene	UJ	UJ	UJ	UJ
Styrene	UJ	UJ	UJ	UJ
Xylene (total)	UJ	UJ	UJ	UJ
Chloromethane	UJ	UJ	UJ	UJ

ROY F. WESTON, INC. VOLATILE ANALYSES – DATA VALIDATION SUMMARY

CLIENT: BAKER ENVIRONMENTAL, INC. SDG NO.: B4970				
Client Sample ID:	35-FS03-MC-WB01	35-FS03-SM-F01	35-FS01-SM-F01	
Matrix:	SOIL	SOIL	SOIL	
Dilution Factor:	1.0	1 0/5 0*	10	
Units:	UG/KG	UG/KG	UG/KG	
COMPOUND				
Bromomethane	UJ	UJ	UJ	
Vinyl Chloride	UJ	UJ	UJ	
Chloroethane	UJ	UJ	IJ	
Methylene Chloride	UJ	UJ	UJ	
Acetone	24684 EJ	36 UJ	UJ	
Carbon Disulfide	1064 EJ	1370 *J	1006 J	
1.1-Dichloroethene	UJ	UJ	UJ	
1,1-Dichloroethane	37 J	UJ	UJ	
1,2-Dichloroethene (TOTAL)	UJ	UJ	UJ	
Chloroform	UJ	UJ	ŪJ	
1,2-Dichloroethane	UJ	UJ	UJ	
2-Butanone	38 UJ	UJ	ŬĴ	
1,1,1 – Trichloroethane	UJ	UJ	IJ	
Carbon Tetrachloride	UJ	UJ	ŬĴ	
Bromodichloromethane	UJ	UJ	UJ	
1,2-Dichloropropane	LU	UJ	UJ	
cis-1,3-Dichloropropene	UJ	U	UJ	
Trichloroethene	UJ	UJ	UJ	
Dibromochloromethane	UJ	LD	LU	
1,1,2–Trichloroethane	UJ	UJ	UJ	
Benzene	UJ	UJ	UJ	
Trans-1,3-Dichloropropene	UJ	UJ	UJ	
Bromoform	LU	UJ	UJ	
4-Methyl-2-Pentanone	LU	UJ	UJ	
2-Hexanone	UJ	UJ	UJ	
Tetrachloroethene	UJ	UJ	IJ	
1,1,2,2–Tetrachloroethane	UJ	ŬĴ	UJ	
Toluene	ŊĴ	24 J	 UJ	
Chlorobenzene	LU	<u> </u>	ŰĴ	
Ethvibenzene	IJ	U.1	0.1	
Styrene	t).J	U.1	111	
Xvlene (total)	11.1	50 .1	00	
Chloromethane	U.J	11.1		

)

ROY F. WESTON, INC. SEMIVOLATILE ANALYSES - DATA VALIDATION SUMMARY

CLIENT: BAKER ENVIRONMENTAL SDG NO.: B4970	\checkmark		/	/ one of the se is FSO2-PS-WB
Client Sample ID:	35-FS01-AE-WB01	35-FS02-AE-WB01	35-FS03-AE-WB01	35-FS03-PS-WB01
Matrix: Dilution Factor: Units:	SOIL 1.0 ug/Kg	SOIL 1.0 ug/Kg	SOIL 1.0 ug/Kg	SOIL 1.0 ug/Kg
COMPOUND				
Phenol bis(2-Chloroethyl)ether 2-Chlorophenol 1,3-Dichlorobenzene 1,4-Dichlorobenzene 1,2-Dichlorobenzene 2-Methylphenol 2,2'-oxybis(1-Chloropropane) 4-Methylphenol N-Nitroso-di-n-propylamine Hexachloroethane Nitrobenzene Isophorone 2-Nitrophenol 2,4-Dimethylphenol bis(2-Chloroethoxy)methane 2,4-Dichlorophenol 1,2,4-Trichlorobenzene Naphthalene 4-Chloroaniline Hexachlorobutadiene				
2-Methylnaphthalene Hexachlorocyclopentadiene 2,4,6-Trichlorophenol 2,4,5-Trichlorophenol			03 03 03	03 03
2-Childronaphthalene 2-Nitroaniline Dimethylphthalate Acenaphthylene 2,6-Dinitrotoluene 3-Nitroaniline Acenaphthene			LU LU LU LU LU	

ROY F. WESTON, INC. SEMIVOLATILE ANALYSES – DATA VALIDATION SUMMARY

CLIENT: BAKER ENVIRONMENTAL		<i>,</i>	į	<i>,</i>
		N	V	<u> </u>
Client Sample ID:	35-FS01-AE-WB01	35-FS02-AE-WB01	35-FS03-AE-WB01	35-FS03-PS-WB01
Matrix:	SOIL	SOIL	SOIL	SOIL
Dilution Factor:	1.0	1.0	1.0	1.0
Units:	ug/Kg	ug/Kg	ug/Kg	ug/Kg
COMPOUND				
2,4-Dinitrophenol	UJ	UJ	UJ	UJ
Dibenzofuran	UJ	UJ	UJ	UJ
4-Nitrophenol	UJ	UJ	UJ	UJ
2,4-Dinitrotoluene	UJ	UJ	UJ	UJ
Diethylphthalate	UJ	UJ	UJ	UJ
Fluorene	UJ	UJ	UJ	UJ
4-Chlorophenyl-phenylether	UJ	UJ	UJ	UJ
4-Nitroaniline	UJ	UJ	UJ	UJ
4,6-Dinitro-2-methylphenol	UJ	UJ	UJ	UJ
N-Nitrosodiphenylamine	UJ	UJ	UJ	ŪJ
4-Bromophenyl-phenylether	UJ	UJ	UJ	UJ
Hexachlorobenzene	UJ	UJ	UJ	UJ
Pentachlorophenol	UJ	UJ	UJ	UJ
Phenanthrene	UJ	UJ	UJ	UJ
Anthracene	UJ	UJ	UJ	UJ
Carbazole	UJ	UJ	UJ	UJ
Di-n-butylphthalate	UJ	UJ	UJ	UJ
Fluoranthene	UJ	UJ	UJ	UJ
Pyrene	UJ	UJ	UJ	UJ
Butylbenzylphthalate	UJ	UJ	UJ	UJ
Benzo(a)anthracene	UJ	IJ	UJ	UJ
3,3-Dichlorobenzidine	UJ	UJ	UJ	UJ
Chrysene	UJ	UJ	UJ	UJ
bis(2-Ethylhexyl)phthalate	UJ	UJ	U.J	ŪJ
Di-n-octvlphthalate	ŬĴ	ŬĴ	ŰĴ	ŬĴ
Benzo(b)fluoranthene	UJ	ŬĴ	UJ	U.J
Benzo(k)fluoranthene	UJ	ŰĴ	UJ	
Benzo(a)pyrene	UJ	ŰĴ	UJ	U.I
Indepo(123-cd)pyrepe		U.J		00
Dibenz(a,h)anthracene	1.1		11.1	111
Benzo(a.h.i)pervlene	U.J	U.I	U.I	11.1
(3), (1) + -)	ŬĴ	IJ	U.J	111

ROY F. WESTON, INC. SEMIVOLATILE ANALYSES - DATA VALIDATION SUMMARY

CLIENT: BAKER ENVIRONMENTAL	,			
SDG NO.: B4970				/
	······································	<u> </u>	V	V
Client Sample ID:	35-FS03-MC-WB01	35-FS02-CF-WB01	35-FS03-WM-F01	35-FS03-SM-F01
Matrix:	SOIL	SOIL	SOIL	SOIL
Dilution Factor:	1.0	1.0	1.0	1.0
Units:	ug/Kg	ug/Kg	ug/Kg	ug/Kg
COMPOUND	<u></u>		<u> </u>	
Phenol	UJ	UJ	UJ	UJ
ois(2-Chloroethyl)ether	UJ	UJ	. UJ	ŰĴ
2-Chlorophenol	UJ	UJ	UJ	ŬĴ
3-Dichlorobenzene	UJ	UJ	UJ	ŬĴ
,4-Dichlorobenzene	UJ	UJ	ŰĴ	UJ
2-Dichlorobenzene	ŪJ	ŰĴ	ŬĴ	UJ
2-Methylphenol	UJ	ŰĴ	ŬĴ	IJ
2,2'-oxybis(1-Chloropropane)	UJ	UJ	ŰĴ	ŰĴ
-Methylphenol	UJ	UJ	UJ	ŬĴ
-Nitroso-di-n-propylamine	UJ	UJ	ŪJ	ŰĴ
lexachloroethane	ŰĴ	ŰĴ	UJ	IJ
litrobenzene	ŰĴ	ŬĴ	ŬĴ	UJ
ophorone	UJ	ŰĴ	UJ	UJ
-Nitrophenol	UJ	UJ	UJ	ŬĴ
4-Dimethylphenol	UJ	ŬĴ	IJ	UJ
is(2-Chloroethoxy)methane	UJ	ŪJ	ŬĴ	ŰĴ
,4–Dichlorophenol	UJ	UJ	UJ	ŰĴ
2,4-Trichbrobenzene	UJ	UJ	UJ	UJ
laphthalene	UJ	UJ	UJ	UJ
-Chloroaniline	UJ	UJ	UJ	UJ
lexachlorobutadiene	UJ	UJ	UJ	UJ
-Chloro-3-methylphenol	UJ	UJ	UJ	UJ
-Methylnaphthalene	UJ	UJ	UJ	UJ
lexachlorocyclopentadiene	UJ	UJ	UJ	UJ
,4,6-Trichlorophenol	UJ	UJ	UJ	UJ
,4,5-Trichlorophenol	UJ	UJ	UJ	ŬĴ
-Chloronaphthalene	UJ	UJ	UJ	ŪJ
-Nitroaniline	UJ	UJ	UJ	ŬĴ
Pimethylphthalate	UJ	UJ	UJ	UJ
cenaphthylene	ŬĴ	ŪJ	UJ	UJ
.6-Dinitrotoluene	UJ	UJ	UJ	ŰĴ
-Nitroaniline	IJ	UJ	ŬĴ	UJ
المعام ^{ية م} ene	IJ	Jan UJ	IJ	ŪJ

ROY F. WESTON, INC. SEMIVOLATILE ANALYSES – DATA VALIDATION SUMMARY

CLIENT: BAKER ENVIRONMENTAL SDG NO.: B4970	\checkmark	\checkmark		V
Client Sample ID:	35-FS03-MC-WB01	35-FS02-CF-WB01	35-FS03-WM-F01	35-FS03-SM-F01
Matrix:	SOIL	SOIL	SOIL	SOIL
Dilution Factor:	1.0	1.0	1.0	1.0
Units:	ug/Kg	ug/Kg	ug/Kg	ug/Kg
COMPOUND				
2,4-Dinitrophenol	UJ	UJ	UJ	UJ
Dibenzofuran	UJ	UJ	UJ	UJ
4–Nitrophenol	UJ	UJ	UJ	UJ
2,4–Dinitrotoluene	UJ	UJ	UJ	UJ
Diethylphthalate	UJ	IJ	UJ	UJ
Fluorene	UJ	UJ	UJ	UJ
4-Chlorophenyl-phenylether	UJ	UJ	UJ	UJ
4–Nitroaniline	UJ	UJ	UJ	UJ
4,6-Dinitro-2-methylphenol	UJ	UJ	UJ	UJ
N-Nitrosodiphenylamine	UJ	UJ	UJ	UJ
4–Bromophenyl–phenylether	UJ	UJ	UJ	UJ
Hexachlorobenzene	UJ	UJ	UJ	UJ
Pentachlorophenol	UJ	UJ	UJ	UJ
Phenanthrene	UJ	UJ	UJ	UJ
Anthracene	UJ	UJ	UJ	UJ
Carbazole	UJ	UJ	UJ	UJ
Di-n-butylphthalate	UJ	UJ	UJ	UJ
Fluoranthene	UJ	UJ	UJ	UJ
Pyrene	UJ	UJ	UJ	UJ
Butylbenzylphthalate	UJ	UJ	UJ	UJ
Benzo(a)anthracene	UJ	UJ	UJ	UJ
3,3-Dichlorobenzidine	UJ	UJ	UJ	UJ
Chrysene	UJ	UJ	UJ	UJ
bis(2-Ethylhexyl)phthalate	UJ	UJ	UJ	UJ
Di-n-octylphthalate	UJ	UJ	UJ	UJ
Benzo(b)fluoranthene	UJ	UJ	UJ	UJ
Benzo(k)fluoranthene	UJ	UJ ·	UJ	UJ
Benzo(a)pyrene	UJ	UJ	UJ	UJ
Indeno(1,2,3-cd)pyrene	UJ	UJ	UJ	UJ
Dibenz(a,h)anthracene	UJ	UJ	UJ	UJ
Benzo(g,h,i)perylene	UJ	UJ	UJ	UJ
	UJ	UJ	UJ	UJ

)

ROY F. WESTON, INC. SEMIVOLATILE ANALYSES – DATA VALIDATION SUMMARY

CLIENT: BAKER ENVIRONMENTAL		,		
SDG NO.: B4970		\checkmark	1	\checkmark
Client Sample ID:	35-FS03-LG-F02	35-FS03-LG-WB02)	35-FS02-MC-F01	35-FS03-MC-F01
Matrix:	SOIL	SOIL	SOIL	SOIL
Dilution Factor:	1.0	1.0	1.0	1.0
Units:	ug/Kg	ug/Kg	ug/Kg	ug/Kg
COMPOUND				
Phenol	UJ	UJ	UJ	UJ
bis(2-Chloroethyl)ether	UJ	UJ	UJ	UJ
2-Chlorophenol	UJ	UJ	UJ	UJ
1.3-Dichlorobenzene	ບມ	ບມ	ບມ	ບມ
1,4-Dichlorobenzene	UJ	UJ	UJ	UJ
1,2-Dichlorobenzene	ŬĴ	UJ	UJ	UJ
2-Methylphenol	UJ	UJ	UJ	UJ
2,2'-oxybis(1-Chloropropane)	UJ	UJ	UJ	UJ
4-Methylphenol	UJ	UJ	UJ	UJ
N-Nitroso-di-n-propylamine	UJ	UJ	UJ	UJ
Hexachloroethane	UJ	UJ	UJ	UJ
Nitrobenzene	UJ	UJ	UJ	UJ
Isophorone	UJ	UJ	UJ	UJ
2-Nitrophenol	UJ	UJ	UJ	UJ
2,4-Dimethylphenol	UJ	UJ	UJ	UJ
bis(2-Chloroethoxy)methane	UJ	UJ	UJ	UJ
2,4-Dichlorophenol	UJ	UJ	UJ	UJ
1,2,4-Trichlorobenzene	UJ	UJ	UJ	UJ
Naphthalene	UJ	UJ	UJ	UJ
4-Chloroaniline	UJ	UJ	UJ	UJ
Hexachlorobutadiene	UJ	UJ	UJ	UJ
4-Chloro-3-methylphenol	UJ	ບງ	UJ	UJ
2-Methylnaphthalene	UJ	UJ	UJ	UJ
Hexachlorocyclopentadiene	UJ	UJ	UJ	UJ
2.4.6-Trichlorophenol	ŬĴ	UJ	ŬĴ	ŬĴ
2.4.5-Trichlorophenol	LU	U.J	U.J	UJ
2-Chloronaphthalene	UJ	UJ	UJ	IJ
2-Nitroaniline	ŰĴ	UJ	ŪJ	ŬĴ
Dimethylphthalate	ŰĴ	IJ	IJ	IJ
Acenaphthylene	ŰĴ	IJ	ŬĴ	IJ
2.6-Dinitrotoluene	U.J	U.I	U.I	U.I
3–Nitroaniline		0.1	1.1	U.I
Acenar	UJ	C Ü	UJ	ŰĴ 🌘

ROY F. WESTON, INC. SEMIVOLATILE ANALYSES - DATA VALIDATION SUMMARY

CLIENT: BAKER ENVIRONMENTAL SDG NO.: B4970		\checkmark		N
Client Sample ID:	35-FS03-LG-F02	35-FS03-LG-WB02	35-FS02-MC-F01	35-FS03-MC-F01
Matrix:	SOIL	SOIL	SOIL	SOIL
Dilution Factor:	1.0	1.0	1.0	1.0
Units:	ug/Kg	ug/Kg	ug/Kg	ug/Kg
COMPOUND		<u> </u>		
2,4-Dinitrophenol	UJ	UJ	UJ	UJ
Dibenzofuran	UJ	UJ	UJ	UJ
4-Nitrophenol	UJ	UJ	UJ	UJ
2,4-Dinitrotoluene	UJ	UJ	UJ	UJ
Diethylphthalate	UJ	UJ	UJ	UJ
Fluorene	UJ	UJ	UJ	UJ
4-Chlorophenyl-phenylether	UJ	UJ	UJ	UJ
4-Nitroaniline	UJ	UJ	UJ	UJ
4,6-Dinitro-2-methylphenol	UJ	UJ	UJ	UJ
N-Nitrosodiphenylamine	UJ	UJ	UJ	UJ
4-Bromophenyl-phenylether	UJ	UJ	UJ	UJ
Hexachlorobenzene	UJ	UJ	UJ	UJ
Pentachlorophenol	UJ	UJ	UJ	UJ
Phenanthrene	UJ	UJ	UJ	UJ
Anthracene	UJ	UJ	UJ	UJ
Carbazole	UJ	UJ	UJ	UJ
Di-n-butylphthalate	UJ	UJ	UJ	UJ
Fluoranthene	UJ	UJ	UJ	UJ
Pyrene	UJ	UJ	UJ	UJ
Butylbenzylphthalate	UJ	UJ	` UJ	UJ
Benzo(a)anthracene	UJ	UJ	UJ	UJ
3,3-Dichlorobenzidine	UJ	UJ	UJ	UJ
Chrysene	UJ	UJ	UJ	UJ
bis(2-Ethylhexyl)phthalate	UJ	UJ	UJ	UJ
Di-n-octylphthalate	UJ	UJ	UJ	ŰĴ
Benzo(b)fluoranthene	UJ	UJ	UJ	UJ
Benzo(k)fluoranthene	UJ	ŬJ	UJ	UJ
Benzo(a)pyrene	UJ	UJ	ŪJ	UJ
Indeno(1,2,3-cd)pyrene	UJ	ŪJ	IJ	UJ
Dibenz(a,h)anthracene	ŰĴ	ŬĴ	ŪJ	UJ
Benzo(a,h,i)pervlene	UJ	ŬĴ	ŬĴ	UJ
	UĴ	UJ	UJ	ŰĴ

	SEMIVOLATILE AN	ROY F. WESTON, INC. ALYSES - DATA VALIDATIO	ON SUMMARY	
	mendulase is f	502 -PS-WBOI		
SDG NO.: B4970	on of the second			\checkmark
Client Sample ID:	35-FS03-PS-WB01	35-F803 PS-WB02	35-FS01-LG-F01	35-FS03-LG-F01
Matrix:	SOIL	SOIL	SOIL	SOIL
Dilution Factor:	1.0	1.0	1.0	10
Units:	ug/Kg	ug/Kg	ug/Kg	ug/Kg
COMPOUND				
Phenol	U.I	0.1	111	111
bis(2-Chloroethyl)ether	ŰĴ		00	00
2-Chlorophenol	U.I	11.1	HI	00
1.3-Dichlorobenzene	1.1			03
1.4-Dichlorobenzene	1.1	111		00
12-Dichlorobenzene	11	00	03	00
2-Methylphenol	00	00	00	UJ
2 2'-oxybis(1-Chloropropage)	55	00	00	UJ
A-Methylnhenol	00	03	UJ	UJ
	00	00	UJ	UJ
Heveobloroothano	03	01	UJ	UJ
Nitrobenzene	UJ III	UJ	UJ	UJ
	00	UJ	UJ	UJ
2 Nitrophonel	UJ	UJ	UJ	UJ
	UJ	UJ	UJ	UJ
	UJ	UJ	UJ	UJ
bis(2-Chloroethoxy)methane	UJ	UJ	UJ	UJ
	UJ	UJ	UJ	UJ
	UJ	UJ	UJ	UJ
Naphthalene	UJ	UJ	UJ	UJ
4-Chloroaniline	UJ	UJ	UJ	UJ
Hexachiorobutaciene	UJ	UJ	UJ	UJ
4-Chloro-3-methylphenol	UJ	UJ	UJ	UJ
2-Methylnaphthalene	UJ	UJ	UJ	UJ
Hexachlorocyclopentadiene	UJ	UJ	UJ	UJ
2,4,6-Trichlorophenol	UJ	UJ	UJ	UJ
2,4,5-Irichlorophenol	UJ	UJ	UJ	UJ
2-Chloronaphthalene	UJ	. UJ ·	UJ	UJ
2-Nitroaniline	UJ	UJ	UJ	UJ
Dimethylphthalate	UJ	UJ	UJ	UJ
Acenaphthylene	UJ	UJ	UJ	UJ
2,6-Dinitrotoluene	UJ	UJ	UJ	UJ
3–Nitroaniline	UJ	UJ	UJ	UJ
Acenan' Shene	UJ	y UJ	UJ	UJ 🥒

.

ROY F. WESTON, INC. SEMIVOLATILE ANALYSES - DATA VALIDATION SUMMARY

CLIENT: BAKER ENVIRONMENTAL SDG NO.: B4970	V	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	\checkmark	\checkmark
Client Sample ID:	35-FS03-PS-WB01	35-FS03-PS-WB02	35-FS01-LG-F01	35-FS03-LG-F01
Matrix:	SOIL	SOIL	SOIL	SOIL
Dilution Factor:	1.0	1.0	1.0	1.0
Units:	ug/Kg	ug/Kg	ug/Kg	ug/Kg
COMPOUND				
2,4-Dinitrophenol	UJ	UJ	UJ	UJ
Dibenzofuran	UJ	UJ	UJ	UJ
I–Nitrophenol	UJ	UJ	UJ	UJ
2,4–Dinitrotoluene	UJ	UJ	UJ	UJ
Diethylphthalate	UJ	UJ	UJ	UJ
Fluorene	UJ	UJ	UJ	UJ
4-Chlorophenyl-phenylether	UJ	UJ	UJ	UJ
1-Nitroaniline	UJ	UJ	UJ	UJ
1,6-Dinitro-2-methylphenol	UJ	UJ	UJ	UJ
N-Nitrosodiphenylamine	UJ	UJ	UJ	UJ
I-Bromophenyl-phenylether	UJ	UJ	UJ	UJ
lexachlorobenzene	UJ	UJ	UJ	UJ
Pentachlorophenol	UJ	UJ	UJ	UJ
Phenanthrene	UJ	UJ	UJ	UJ
Anthracene	UJ	UJ	UJ	UJ
Carbazole	UJ	UJ	UJ	UJ
Di-n-butylphthalate	UJ	UJ	UJ	UJ
Fluoranthene	UJ	UJ	UJ	UJ
^o yrene	UJ	UJ	UJ	UJ
Butylbenzylphthalate	UJ	UJ	UJ	UJ
Benzo(a)anthracene	UJ	UJ	UJ	UJ
3,3-Dichlorobenzidine	UJ	UJ	UJ	UJ
Chrysene	UJ	UJ	UJ	ÛĴ
bis(2-Ethylhexyl)phthalate	UJ	UJ	UJ	UJ
Di-n-octylphthalate	UJ	UJ	UJ	UJ
Benzo(b)fluoranthene	UJ	UJ	UJ	UJ
Benzo(k)fluoranthene	UJ	UJ	UJ	UJ
Benzo(a)pyrene	UJ	UJ	UJ	UJ
ndeno(1,2,3-cd)pyrene	UJ	UJ	UJ	UJ
Dibenz(a,h)anthracene	UJ	UJ	UJ	UJ
Benzo(g,h,i)perylene	UJ	UJ	UJ	UJ
	UJ	UJ	UJ	UJ

ROY F. WESTON, INC. SEMIVOLATILE ANALYSES - DATA VALIDATION SUMMARY

CLIENT: BAKER ENVIRONMENTAL SDG NO.: B4970	~			
Client Sample ID:	35-FS03-BG-F01	35-FS03) SM-WB01	35-FS01-SM-F01	35-FS02-SM-F01
Matrix:	SOIL	SOIL	SOIL	SOIL
Dilution Factor:	1.0	1.0	1.0	1.0
Units:	ug/Kg	ug/Kg	ug/Kg	ug/Kg
COMPOUND				
Phenol	UJ	UJ	UJ	UJ
bis(2-Chloroethyl)ether	UJ	UJ	UJ	UJ
2-Chlorophenol	UĴ	UJ	UJ	ŰĴ
1.3-Dichlorobenzene	UJ	UJ	UJ	IJ
1.4-Dichlorobenzene	 UJ	ŪJ	 UJ	ŪJ
1.2-Dichlorobenzene	UJ	IJ	UJ	UJ
2-Methylphenol	UJ	IJ	UJ	UJ
2.2'-oxybis(1-Chloropropane)	UJ	ŰĴ	UJ	UJ
-Methylphenol	UJ	UJ	ŬJ	UJ
N-Nitroso-di-n-propylamine	ŰĴ	UJ	ŬĴ	IJ
lexachloroethane	UJ	ŰĴ	ŬĴ	UJ
Nitrobenzene	IJ	ŬĴ	ŬĴ	UJ
sophorone	UJ	IJ	ŬĴ	UJ
2-Nitrophenol	ŰĴ	ŰĴ	ŬĴ	UJ
2.4-Dimethylphenol	ŰĴ	ŬĴ	ŬĴ	Ū.J
ois(2-Chloroethoxy)methane	 UJ	ŰĴ	ŬĴ	UJ
2.4-Dichlorophenol	ŰĴ	ŰĴ	UJ	UJ
.2,4-Trichlorobenzene	UJ	ŰĴ	ŰĴ	UJ
Naphthalene	UJ	UJ	UJ	UJ
1-Chloroaniline	ŰĴ	ŰĴ	ŬĴ	ŰĴ
lexachlorobutadiene	UJ	Ū.	UJ	UJ
-Chloro-3-methylphenol	ŪJ	ŪJ	 UJ	ŪJ
2-Methylnaphthalene	UJ	UJ	ŪJ	UJ
lexachlorocyclopentadiene	UJ	UJ	ŰJ	UJ
2.4.6 – Trichlorophenol	UJ	UJ	ŰĴ	ŰĴ
2.4.5-Trichlorophenol	UJ	UJ	ŪJ	UJ
2-Chloronaphthalene	ŪĴ	ŬĴ	ŬĴ	ŪĴ
2-Nitroaniline	UJ	UJ	UJ	UJ
Dimethylphthalate	UJ	ŪJ	ŪJ	ŪJ
Acenaphthylene	UJ	ŬĴ	ŰĴ	ŰĴ
2.6-Dinitrotoluene	ŬĴ	IJ	ŬĴ	ŬĴ
3-Nitroaniline	UJ	ŰĴ	ŬĴ	ŪJ
Acena	UJ	J UJ	ŰĴ	ŪJ 🖌

ROY F. WESTON, INC. SEMIVOLATILE ANALYSES – DATA VALIDATION SUMMARY

CLIENT: BAKER ENVIRONMENTAL SDG NO.: B4970		1		/
	/	<u>t</u> ¥	V	V
Client Sample ID:	35-FS03-BG-F01	35-FS03-SM-WB01	35-FS01-SM-F01	35-FS02-SM-F01
Matrix:	SOIL	SOIL	SOIL	SOIL
Dilution Factor:	1.0	1.0	1.0	1.0
Units:	ug/Kg	ug/Kg	ug/Kg	ug/Kg
COMPOUND				
2,4-Dinitrophenol	UJ	UJ	UJ	UJ
Dibenzofuran	UJ	UJ	UJ	UJ
4–Nitrophenol	UJ	UJ	UJ	UJ
2,4-Dinitrotoluene	UJ	· UJ	UJ	UJ
Diethylphthalate	UJ	UJ	UJ	UJ
Fluorene	UJ	UJ	UJ	UJ
4Chiorophenyl-phenylether	UJ	UJ	UJ	UJ
4-Nitroaniline	UJ	UJ	UJ	UJ
4,6-Dinitro-2-methylphenol	UJ	UJ	UJ	UJ
N-Nitrosodiphenylamine	UJ	UJ	UJ	UJ
4-Bromophenyl-phenylether	UJ	UJ	UJ	UJ
Hexachlorobenzene	UJ	UJ	UJ	UJ
Pentachlorophenol	UJ	UJ	UJ	UJ
Phenanthrene	UJ	UJ	UJ	UJ
Anthracene	UJ	UJ	. UJ	UJ
Carbazole	UJ	UJ	UJ	UJ
Di-n-butylphthalate	UJ	UJ	UJ	UJ
Fluoranthene	UJ	UJ	UJ	UJ
Pvrene	UJ	UJ	UJ	UJ
Butylbenzylphthalate	UJ	UJ	UJ	UJ
Benzo(a)anthracene	UJ	UJ	UJ	UJ
3,3-Dichlorobenzidine	UJ	UJ	UJ	UJ
Chrysene	UJ	UJ	UJ	UJ
bis(2-Ethylhexyl)phthalate	UJ	UJ	UJ	UJ
Di-n-octylphthalate	UJ	UJ	UJ	UJ
Benzo(b)fluoranthene	UJ	UJ	ບງ	UJ
Benzo(k)fluoranthene	UJ	UJ	UJ	UJ
Benzo(a)pyrene	LU	UJ	UJ	UJ
Indeno(1,2,3-cd)pyrene	LU	UJ	UJ	UJ
Dibenz(a,h)anthracene	UJ	UJ	UJ	UJ
Benzo(g.h.i)pervlene	UJ	UJ	UJ	UJ
	UJ	UJ	UJ	UJ

Roy F. Weston, Inc. 1 Weston Way West Chester, Pennsylvania 19380-1499 610-701-3000 • Fax 610-701-3186

INORGANIC QUALITY ASSURANCE REVIEW BAKER ENVIRONMENTAL, INC. SITE: MCB CAMP LEJEUNE SDG NO.: BA4970

a nasati

a de <mark>l'este des la seconda de la seconda</mark> La seconda de la seconda de

> REVIEW PERFORMED BY THE ANALYTICS DIVISION OF ROY F. WESTON, INC.

VERIFIED BY:

<u>3-27-94</u> Date

Zohreh Hamid, Ph.D. Section Manager - Data Validation

œ

BAKER ENVIRONMENTAL, INC. - NAVY CLEAN SITE: MCB CAMP LEJEUNE SDG: BA4970

CASE SUMMARY

This data validation review consists of eighteen (18) soil samples received on 04-25-94. Laboratory analyses were performed by NDRC Laboratories, Inchscape Testing Services for TAL metals.

All data have been validated with regard to usability according to the quality assurance set forth in Inorganic Functional Guidelines and Naval Energy and Environmental Support Activity (NEESA). If you have any questions or comments on this data review, please contact Zohreh Hamid at (610) 701-3745.

The following samples are contained within this report:

FS01F0	FS02AE	FS03PS	FS03LG	FS03SM	FSLG01
FS01LG	FS02CF	FS02SM	FS03MC	FS03WB	FSLG02
FS01SM	FS02MC	FS03B6	FS03PS	FS03WM	PSWB02

OUALITY ASSURANCE REVIEW

The findings offered in this report are based upon a rigorous review of the following criteria.

- Holding Time
- Calibration
 - Contract Required Detection Limit Samples
 - Blank Samples
 - Interference Check Samples
- Matrix Spike
- Duplicate Digestion Samples
- Laboratory Control Sample
- Serial Dilution Sample
- Graphite Furnace Analysis
- * Quarterly Verification of Instrument Parameters
- * Sample Result Verification
- * Preparation Logs
- * Run Logs
- * Data Package Completeness
- * All criteria were met; therefore, a narrative section is not provided for this classification.

Baker Environmental, Inc. SDG No.: BA4970

Page 2

HOLDING TIME

The analysis holding time for mercury in all the samples and the corresponding QC samples exceeded the requirement limit. The reported sample data is qualified estimated.

CONTRACT REQUIRED DETECTION LIMIT SAMPLE ANALYSES

The CRDL recovery for As (126.0%) and Pb (130.0%) in graphite furnace and Sb (129.7%) in ICP were above the upper data validation requirement limits of 120%. The positive results greater than the IDLs but less than 3X the CRDLs for these analytes are qualified estimated due to the uncertainty near the detection limits.

Note: The additional qualifier code is not applied if the sample result has already been qualified "U" due to blank contamination.

The CRDL recovery for Se (72.0%) in graphite furnace were below the data validation requirement limit of 80%. The positive results greater than the IDLs but less than 3X the CRDLs and non-detected values for Se are qualified estimated due to the uncertainty near the detection limit.

BLANK ANALYSES

The laboratory blank had the following contaminations at levels above the IDLs, but below the CRDLs.

<u>ANALYTE</u>	CONC. MG/KG	ACTION LEVEL MG/KG *
Al	4.42	22.1
Cd	0.044	0.22
Cu	0.40	2.00
Fe	7.143	36
Mg	6.62	33
Tl	0.06	0.3

* Action level = 5X the blank concentration.

Baker Environmental, Inc. SDG No.: BA4970

Page 3

The reported sample results up to the action limits are qualified "U" for these analytes due to the laboratory blank contamination.

Zinc was detected in the preparation blank at a level above the CRDL. The reported sample results up to 10X the blank contamination level are rejected. The reported sample results above 10X the blank levels are accepted unqualified.

Silver was detected in the continuing calibration blank at a level above the CRDL. The reported sample results are rejected.

Mercury was detected in the continuing calibration blank at a level below the negative CRDL. The reported sample results are considered estimated and the non-detected values are rejected due to the extremely baseline drift in the calibration blank.

INTERFERENCE CHECK SAMPLES

The percent recoveries for the TAL analytes analyzed by ICP were within the control limits.

Calcium was not included in ICS A standard solution. The ICP interference could not be evaluated; therefore, the reported sample data for Ca are qualified estimated.

MATRIX SPIKE SAMPLE ANALYSIS

The matrix spike recoveries for As (53.1%) and Se (60.5%) in matrix spike sample FS03WM were below the requirement limit of 75%. The reported positive sample results and nondetected values for As and Se are qualified estimated. The reported sample data are biased low.

GRAPHITE FURNACE ANALYSIS

The following samples analyzed by graphite furnace had the analytical spike recoveries outside the control limits of 85-115%:

SAMPLE ID	ANALYTE	% RECOVERY
FS01FO	As/Se	72.5/42.0
FS01LG	As/Se	60.0/42.0

WESTER

.

Baker Environmental, Inc. SDG No.: BA4970

Page 4

SAMPLE ID	ANALYTE	% RECOVERY
FS02SM	As/Se	40.0/57.0
FS02AE	As/Se/T1	51.5/44.6/83.0
FS02CF	As/Cd/Se	71.5/115.5*/52.0
FS02MC	As/Se	46.5/50.0
FS03PS	As/Se	34.0/43
FS02SM	As/Se/Tl	50.0/59.0/80.0
FS03B6	As/Se/Tl	66.0/41.0
FS03LG	As/Se	60.0/49.0/80.0
FS03MC	As/Se	56.5/67.0
FS03PS	As/Se	42.5/43.0
FS03SM	As/Se/Tl	48.0/43.6/72.0
FS03WB	As/Se	57.0/58.0
FS03WM	As/Se	74.5/36.0
FSLG01	As/Se	61.5/63.0
FSLG02	As/Se	72.5/53.0
PSWB02	As/Se	46.0/50

* Only the positive results are qualified estimated.

The reported data are qualified estimated.

Baker Environmental, Inc. SDG No.: BA4970

Page 5

SUMMARY

The data package completeness was fair. The results for lead in samples FS02CF and FS03SM were not reported on the Forms I and XIV. The raw data indicated that the insufficient sample remained to reanalyzed the sample.

The quality of the data was fair. The reported non-detected values for mercury are rejected due to the baseline drift in the blanks. Also, the results for zinc in some samples were rejected, due to the high level of blank contamination.

The minor issues have been discussed. The data are presented with the applied qualifer codes.

INFORMATION REGARDING DATA

The data have been reviewed according to the USEPA National Functional Guidelines for Inorganic Data Review. All data are validated with regard to usability.

If you have any questions or comments on this data review, please call Zohreh Hamid at (215) 344-3745.

ATTACHMENTS

- 1. Attachment I Glossary of Data Qualifier Codes
- 2. Attachment II Sample Result Summary. This includes:
 - a) A summary of all positive results for the target analytes with the qualifier codes, if applicable;
 - b) All qualified and usable detection limits.
- 3. Attachment III Sample data (Form I) verified by the laboratory.

MIN

elandi eta di elimenta da secondo de secondo

and the second second

ATTACHMENT I GLOSSARY OF DATA QUALIFIER CODES

and the second second

GLOSSARY OF DATA QUALIFIERS

CODES RELATING TO IDENTIFICATION

(confidence concerning presence or absence of compounds):

- U = NOT DETECTED SUBSTANTIALLY ABOVE THE LEVEL REPORTED IN LABORATORY OR FIELD BLANKS.
- **R** = UNRELIABLE RESULT. ANALYTE MAY OR MAY NOT BE PRESENT IN THE SAMPLE. SUPPORTING DATA NECESSARY TO CONFIRM RESULT.
- **N** = NEGATED COMPOUND WAS CONSIDERED AS NOT PRESENT IN THE SAMPLE.

(NO CODE) = CONFIRMED IDENTIFICATION

CODES RELATING TO QUANTITATION

(can be used for both positive results and sample quantitation limits):

- J = ANALYTE PRESENT. REPORTED VALUE MAY NOT BE ACCURATE OR PRECISE.
- **UJ** = THE REPORTED QUANTITATION LIMITS ARE QUALIFIED ESTIMATED.

OTHER CODES

 \mathbf{Q} = NO ANALYTICAL RESULT.

WESTER

.

ATTACHMENT II SAMPLE RESULT SUMMARY

ROY F. WESTON, INC. INORGANIC ANALYSES - DATA VALIDATION SUMMARY

CLIENT: BAKER ENVIRONMENTAL, INC. SDG NO.: BA4970

Client San	nple ID: Matrix:		FS01F0 SOIL	FS01LG SOIL	FS01SM SOIL	FS02AE SOIL	FS02CF SOIL	FS02MC SOIL	FS03PS SOIL
% Solids: Units:			MG/KG	MG/KG	MG/KG	MG/KG	25.7 22.9 MG/KG		MG/KG
INORGANIC EL	EMENTS		······································					,	
A 1	D	IDL (ug/L)	10 5 11	05.9	45.9	22.7	53.2	21711	24.4
Aluminium	Р Р	20	10.5 0	25.0	45.0	20.7	55.2	21.7 0	24.4
Antimony	Р С	40	111	111	111	11.1	111	11.1	1.1
Parium	г D	1.2	0.41	0.52	50	0.89	33	00	16
Bondlium	P	1.0	0.41	0.0L	0.0	0.00	0.0		
Cadmium	Ë	0.2	0.08.U	0.35	0.08 U	0.88	0.21 U	0.10 U	0.11 U
Calcium	P	1700	839 J	878 J	11000 J	21600 J	17800 J	UJ	35200 J
Chromium	P	70	000 0	0.00	2.7				2.3
Cobalt	P	11							
Conner	P	20	3.3	3.3	10.9	6.6	70.3	3.9	3.3
Iron	P	13	40.6	29.4 U	145	113	244	38.2	99.5
lead	, F	0.6			0.73 UJ	2.5			0.63 UJ
Magnesium	P	13	929	1330	832	1100	705	1190	1270
Magnesiam	· P	2	1.0	1.9	3.6	2.4	11.2	3.1	4.3
Mercury	cv	0.1	R	0.98 J	R	R	0.70 J	R	R
Nickel	Р	11							
Potassium	P	2440	12400	14200	8970	10100	9970	16400	9630
Selenium	F	1.4	UJ	UJ	UJ	UJ	UJ	UJ	UJ
Silver	F	0.2		2.9 R	2.3 R			1.3 R	
Sodium	Р	2370	2160	2550	2710	17200	7090	2770	3150
Thallium	F	0.6				0.20 U			
Vanadium	Р	0.5				1			
Zinc	Р	11	32.0 R	32.7 R	54.0	83.8	102	27.5 R	86.7

ROY F. WESTON, INC. INORGANIC ANALYSES - DATA VALIDATION SUMMARY

CLIENT: BAKER ENVIRONMENTAL, INC. SDG NO.: BA4970

Client	Sample ID: Matrix: % Solids: Units:		FS02SM SOIL 26 MG/KG	FS03B6 SOIL 24.6 MG/KG	FS03LG SOIL 21.3 MG/KG	FS03MC SOIL 20.1 MG/KG	FS03PS SOIL 31.8 MG/KG	FS03SM SOIL 28 MG/KG	FS03WB SOIL 26.3 MG/KG
						14234	-[35		
INORGANIC	ELEMENTS						······································		<u> </u>
		IDL (ug/L)							
Aluminium	P	20	24.7	20.0	22.1 U	25.9	11.2 U	27.3	35.5
Antimony	Р	46							
Arsenic	F	1.2	UJ	UJ	UJ	UJ	UJ	UJ	UJ
Barium	Р	1.0	2.2	0.64	0.53	0.54	1	0.76	1.1
Beryllium	Р	1.0							
Cadmium	F	0.2	0.18 U	0.11 U	0.5	0.19 U	0.19 U	0.14 U	0.12 U
Calcium	Р	1700	7070 J	13200 J	995 J	925 J	50800 J	1140 J	20400 J
Chromium	Р	7.0					2.6		
Cobalt	Р	11							
Copper	P	2.0	3.5	2.8	3.1	4.5	3.2	5,6	4.8
Iron	Р	13	41.7	32.4 U	28.8 U	48	72	39.1	160
Lead	F	0.6		2.0 U		1.2 U	0.47 UJ		0.49 U
Magnesium	P	13	1070	1260	1230	1420	1540	833	1250
Manganese	Р Р	2	1.1	2.1	1.6	1.1	3.4		7.3
Mercury	CV	0.1	R	R	0.49 J	R	R	R	0.68 J
Nickel	Р	11							
Potassium	Р	2440	12300	13500	13900	19000	8970	12500	11600
Selenium	F	1.4	UJ	UJ	UJ	·UJ	0.43 J	UJ	UJ
Silver	F	0.2	1.1 R				0.87 R		
Sodium	P	2370	2480	5720	2900	2920	3600	21900	4260
Thallium	F	0.6	UJ	UJ				UJ	
Vanadium	Р	0.5							•
Zinc	Р	11	38.0	40.5	31.7 R	33.2 R	77.9	28.7 R	58.3

ROY F. WESTON, INC. INORGANIC ANALYSES - DATA VALIDATION SUMMARY

.

CLIENT: BAKER ENVIRONMENTAL, INC.

١

SDG NO .: BA4970

Client Sam %	ple ID: Matrix: Solids: Units:		FS03WM SOIL 33.8 MG/KG	FSLG01 SOIL 24.3 MG/KG	FSLG02 SOIL 23.9 MG/KG	PSWB02 SOIL 28.9 MG/KG
INORGANIC EL	EMENTS		· · · · · · · · · · · · · · · · · · ·			
		IDL (ug/L)				
Aluminium	Р	20	11.9 U	18.5 U	17.8 U	10.9 U
Antimony	Р	46				
Arsenic	F	1.2	UJ	UJ	UJ	UJ
Barium	Р	1.0	0.43			1
Beryllium	Р	1.0				
Cadmium	F	0.2	0.08 U	0.16 U	0.33	0.25
Calcium	Р	1700	13300 J	1910 J	676 J	49700 J
Chromium	Р	7.0				2.3
Cobalt	Р	11				
Copper	P	2.0	2.3	3.9	2.7	3.8
Iron	Р	13	17 U	392	25.8 U	60.9
Lead	F	0.6	0.86 U			0.8 U
Magnesium	Р	13	1000	1130	1160	1370
Manganese	Р	2	1.5	1.6	1.5	4.5
Mercury	CV	0.1	0.33 J	R	0.3 J	R
Nickel	Р	11				
Potassium	P	2440	9180	11000	12200	9310
Selenium	F	1.4	UJ	UJ	UJ	UJ
Silver	F	0.2	0.75 R	1.2 R		UJ
Sodium	Р	2370	1970	3730	2660	3460
Thallium	F	0.6		0.22 U		
Vanadium	Р	0.5				
Zinc	Р	11	30.2 R	42.3	18.9 R	87.1

Roy F. Weston, Inc. 1 Weston Way West Chester, Pennsylvania 19380-1499 610-701-3000 • Fax 610-701-3186

ORGANIC QUALITY ASSURANCE REVIEW BAKER ENVIRONMENTAL, INC. - NAVY CLEAN SITE: MCB CAMP LEJEUNE SDG NO.: B4971

REVIEW PERFORMED BY THE ANALYTICS DIVISION OF ROY F. WESTON, INC.

PREPARED BY: Kelly Muir Spittler

Unit Leader - Data Validation

Date

ł

VERIFIED BY:_

8-24-94

Zohreh Hamid, Ph.D. Section Manager - Data Validation

 $\textcircled{\blue}{\blue}$

BAKER ENVIRONMENTAL, INC. - NAVY CLEAN SITE: MCB CAMP LEJEUNE SDG No.: B4971

INTRODUCTION

This quality assurance review is based upon a review of all data generated from twelve soil samples collected on 04-18,20-94. The samples were analyzed according to criteria set forth in the contract laboratory program (CLP) for TCL Volatile, Semivolatile and Pesticide/PCB target compounds by NDRC Laboratories, Inchscape Testing Services.

This review has been performed in accordance with the confirmation method. The reported analytical results are presented as a summary of the data in Attachment II. All of the analytical data were examined to determine the usability of the analytical results and also to determine contractual compliance relative to the analytical requirements and deliverables specified in the CLP method and Sampling and Chemical Analysis Quality Assurance requirements for the Navy Installation Restoration Program (NEESA 20.2-047B). The applicable qualifier codes have been placed next to the results in the data summary to indicate the qualitative and/or quantitative reliability. The details of this evaluation review are presented in the narrative section of this report.

All data have been validated with regard to usability according to the quality assurance set forth in USEPA Laboratory Data Validation Functional Guidelines for Evaluating Organics Analyses. If you have any questions or comments on this data review, please call Zohreh Hamid or Kelly Spittler at (610) 701-3745.

OUALITY ASSURANCE REVIEW

The findings offered in this report are based upon a review of the following criteria:

- Data Completeness
- Holding Time
- GC/MS Tuning
- Calibration
- Blanks
- Surrogate Recoveries
- Matrix Spike/Spike Duplicate
- Laboratory Control Sample
- Internal Standard
- Instrument Performance
- Field Duplicate Results
- Compound Identification
 - Compound Quantitation
- * All criteria were met; therefore, a narrative section is not provided for this classification.

DATA COMPLETENESS

General

Due to composite of samples and length of sample IDs, the IDs reported in the data package are abbreviated versions. To alleviate confusion, the full sample IDs are used in the data validation reports.

Raw data was not provided for sample 35-FS03-LG-F01 and undiluted analyses were not performed for samples 36-FS03-LMB-F01DL and 36-FS03-WM-F01DL. The laboratory should provide this documentation.

HOLDING TIME

Volatiles

The technical holding time established in the Functional Guidelines (14 days from collection to analysis), has been exceeded for all samples. The laboratory's contractual holding time (10 days from VTSR to analysis) established in the CLP SOW differs for these validation requirements; however, the validator is required by functional guidelines to qualify as estimated the positive results and non-detects in these analyses. It is the data validator's opinion that these results can be accepted with the qualifier codes.

Semivolatiles and Pesticide/PCBs

The technical holding time established in the Functional Guidelines (14 days from collection to extraction), has been exceeded for all samples. The laboratory's contractual holding time (10 days from VTSR to extraction) established in the CLP SOW differs for these validation requirements; however, the validator is required by functional guidelines to qualify as estimated the positive results and non-detects in these analyses. It is the data validator's opinion that these results can be accepted with the qualifier codes.

GC/MS TUNING

Volatiles

The continuing calibration standards were not listed on the Form V's, pages 057 and 059. The laboratory should correct and resubmit these forms.

Page 3

The mass spectra and mass list for the tune file ID BA7909D1009D (Form V, page 056) were missing from the data package. The laboratory should provide these documents.

CALIBRATION

Volatiles and Semivolatiles

The following %D results in the continuing calibrations exceeded the 25% QC limit. These calibrations are considered acceptable since less than two (VOA) or four (BNA) check (*) compounds had %Ds outside the criteria. All associated positive results and non-detected values for the compounds listed below are qualified as estimated and flagged "J" and "UJ". All RRFs were above 0.05; therefore, no qualification is required on this basis.

CALIBRATION	INSTRUMENT ID	COMPOUND	<u>%RSD/%D</u>
CC 04-25-94	HP3.i	2-Butanone	30.1
		4-Methyl-2-pentanone	34.8
		2-Hexanone	30.9
CC 06-15-94	HP3.i	Acetone	26.7
		1,2-Dichlorethane	32.0
CC 06-16-94	HP3.i	2-Butanone	92.8
		4-Methyl-2-pentanone	35.0
		2-Hexanone	33.5
CC 06-17-94	HP1.i	4-Chloroaniline	36.9
		3-Nitroaniline	46.4
		3,3-Dichlorobenzidine	28.9
		2,6-Dinitrotoluene	32.1
		2,4-Dinitrophenol	42.8
		Diethylphthalate	25.2
CC 06-20-94	HP1.i	4-Chloroaniline	45.6
		3-Nitroaniline	38.5
		3,3-Dichlorobenzidine	37.2
		2,6-Dinitrotoluene	38.0
		2,4-Dinitrophenol	67.4
X		4-Nitrophenol	29.7
		2,4-Dinitrotoluene	27.0
		Diethylphthalate	25.4

Page 4

BLANKS

Pesticide/PCBs

The following method blank contained several target compounds at levels below the CRQLs. All associated positive results less than 5X the blank levels are considered laboratory artifacts and are flagged "U".

BLANK	COMPOUND	LEVEL
Method Blank (PBLK)	4,4-DDT	0.35 ug/Kg
	Methoxychlor	0.53 ug/Kg

SURROGATE RECOVERIES

Volatiles

The following system monitoring compound recoveries were outside the QC limits:

SAMPLE NO.	SURROGATE	RECOVERY	<u>QC LIMITS</u>
VLCSA	1,2-Dichloroethane-d ₁₄	123	70-121
36-FS03-SM-F01MS	1,2-Dichloroethane-d ₁₄ Toluene-d ₂	130 139	70-121 84-138
36-FS03-SM-F01MSD	1,2-Dichloroethane- d_{14} Toluene- d_8	135 139	70-121 84-138
36-FS03-SM-F01	1,2-Dichloroethane-d ₁₄	228	70-121
36-FS01-WC-F01	1,2-Dichloroethane-d ₁₄	129	70-121
36-FS02-WC-F01	1,2-Dichloroethane-d ₁₄	124	70-121
36-FS02-WC-WB01	1,2-Dichloroethane-d ₁₄ Toluene-d ₈	131 148	70-121 84-138
36-FS02-WC-WB02	1,2-Dichloroethane-d ₁₄ Toluene-d ₃ 4-Bromofluorobenzene	126 139 53	70-121 84-138 59-113
36-FS03-WC-F01245	1,2-Dichloroethane-d ₁₄	130	70-121
36-FS03-WC-F01187	Toluene-d ₈ 1,2-Dichloroethane-d ₁₄	141 123	84-138 70-121

Page 5

SAMPLE NO.	SURROGATE	RECOVERY	<u>QC LIMITS</u>
36-FS03-WC-WB01	1,2-Dichloroethane-d ₁₄	138	70-121
	Toluene-d ₈	181	84-138
	4-Bromofluorobenzene	46	59-113
36-FS02-LMB-F01	1,2-Dichloroethane-d ₁₄	131	70-121
	Toluene-d ₈	150	84-138
36-FS03-LG-F01	1,2-Dichloroethane-d ₁₄	134	70-121
	Toluene-d ₈	142	84-138
36-FS01-WC-F01DL	1,2-Dichloroethane-d ₁₄	132	70-121
36-FS03-WC-F01245DL	1,2-Dichloroethane-d ₁₄	128	70-121
VBLKC	1,2-Dichloroethane-d ₁₄	229	70-121
36-FS02-LMB-F01DL	1,2-Dichloroethane-d ₁₄	122	70-121
36-FS03-LMB-F01DL	1,2-Dichloroethane-d ₁₄	138	70-121
	Toluene-d ₈	57	84-138
36-FS03-WM-F01DL	Toluene-d ₈	153	84-138

Some of these samples are exhibiting matrix effects. If the surrogate recovery exceeded the QC limits, only positive results are qualified estimated. If the recovery was below the QC limit, both positive results and non-detects are qualified estimated.

Pesticide/PCBs

All surrogate recoveries were within the requirement limits, except for the following:

	RECOVERY	SURROGATE	DEACON
<u>SAMPLE NO.</u>	SPB608/DB1/01	COMPOUND	<u>REASON</u>
PBLK	161/192	DCB	Advisory Criteria 60-150%
PLCS	178/209	DCB	Advisory Criteria 60-150%
36-FS03-SM-F01	-/233	DCB	Advisory Criteria 60-150%
36-FS01-WC-F01	-/258	DCB	Advisory Criteria 60-150%
36-FS02-WC-F01	-/246	DCB	Advisory Criteria 60-150%
36-FS02-WC-WB01	164/-	TCX	Advisory Criteria 60-150%
	-/424	DCB	Advisory Criteria 60-150%

SAMPLE NO.	RECOVERY SPB608/DB1701	SURROGATE COMPOUND	REASON	
36-FS02-WC-WB02	152/- -/344	TCX DCB	Advisory Criteria 60-150% Advisory Criteria 60-150%	
36-FS03-WC-F01245	-/222	DCB	Advisory Criteria 60-150%	
36-FS03-WC-F01187	-/264	DCB	Advisory Criteria 60-150%	
36-FS03-WC-WB01	160/- 152/240	TCX DCB	Advisory Criteria 60-150% Advisory Criteria 60-150%	
36-FS02-LMB-F01	-/162 -/271	TCX DCB	Advisory Criteria 60-150% Advisory Criteria 60-150%	
36-FS03-LMB-F01	-/297	DCB	Advisory Criteria 60-150%	
36-FS03-WM-F01	-/311	DCB	Advisory Criteria 60-150%	
36-FS03-LG-F01	-/246	DCB	Advisory Criteria 60-150%	

DCB = Decachlorobiphenyl

TCX = Tetrachloro-m-xylene

Since the requirement limits are advisory and there is no qualification criteria established in Functional Guidelines or NEESA for surrogate outliers in the pesticide/PCB fraction, no action is taken.

MATRIX SPIKE/SPIKE DUPLICATE

General

As per the laboratory's case narrative MS/MSD analyses were not performed since no sample was specified for these QC analyses. No action is required, due to the lack of these QC samples.

LABORATORY CONTROL SAMPLE

An LCS analysis was performed in order to fulfill the blank spike analysis requirements established in the NEESA guidelines.

Pesticide/PCBs

All LCS recoveries exceeded the QC limits, since these compounds were not detected in the samples, no action is taken on this basis.

Page 6

Page 7

INTERNAL STANDARD

Volatiles

The following internal standard areas were below the laboratory's control limits:

SAMPLE	STANDARD	AREA	CONTROL LIMITS
36-F S03-SM-F 01	BCM	108857	138617-554468
	CBZ	393288	432562-1730250
36-FS01-WC-F01	CBZ	355288	432562-1730250
36-FS02-WC-F01	CBZ	355856	432562-1730250
36-FS02-WC-WB01	BCM	137923	138617-554468
	CBZ	275210	432562-1730250
36-FS02-WC-WB02	BCM	132931	138617-554468
	DFB	380046	394862-1579448
	CBZ	248157	432562-1730250
36-FS03-WC-F01187	CBZ	330219	432562-1730250
36-FS03-WC-F01245	CBZ	428305	432562-1730250
36-FS03-WC-WB01	BCM	135390	138617-554468
	CBZ	202895	432562-1730250
36-FS02-LMB-F01	CBZ	256761	432562-1730250
36-FS03-LMB-F01	BCM	0	138617-554468
	DFB	0	394862-1579448
	CBZ	134787	432562-1730250
36-FS03-LG-F01	BCM	29048	138617-554468
	DFB	42424	394862-1579448
	CBZ	215070	432562-1730250
36-FS03-SM-F01DL	BCM	48706	143278-573114
	DFB	274417	327406-1309624
36-FS03-LG-F01DL	CBZ	368006	441626-1766502
36-FS03-LG-F01DL	BCM	111843	118866-475462
	DFB	157918	245369-981476

BCM	=	Bromochloromethane
CBZ	=	Chlorobenzene-d ₅
DFB	=	1,4-Difluorobenzene

All sample results quantified in reference to these outliers are qualified estimated.

Semivolatiles

The following internal standard areas were outside the control limits in the sample analyses:

<u>SAMPLE</u>	STANDARD	<u>AREA</u>	CONTROL LIMITS
36-FS03-WC-WB01	Perylene-d ₁₂	963524	1038966-4155866
36-FS03-WC-WB01	Perylene-d ₁₂	959977	1038966-4155866
36-FS03-WM-F01	Perylene-d ₁₂	1000469	1038966-4155866

The non-detects quantified in reference to perylene in the analyses are qualified estimated, since positive results were not detected.

FIELD DUPLICATE RESULTS

A set of field duplicate analyses was not provided with this batch of samples; however, no action is required due to the lack of this field QC sample.

COMPOUND QUANTITATION

Volatiles

Several compound results were missing from the quantitation reports an library spectra were not provided; therefore, results are reported as the CRQLs in the data validation summary.

SAMPLE	COMPOUND RESULT
36-FS03-SM-F01	1,1-Dichloroethane 2-Butanone
	Toluene
36-FS02-WC-F01	Methylene Chloride 2-Butanone
36-FS02-WC-WB01	2-Butanone Ethylbenzene
36-FS02-WC-WB02	Methylene Chloride 2-Butanone

Page 9

SAMPLE

36-FS03-WC-F01245

36-FS03-WC-F01187 36-FS03-WC-WB01

36-FS03-LG-F01DL

COMPOUND RESULT

Methylene Chloride 4-Methyl-2-pentanone 2-Hexanone

2-Butanone

Trichloroethene 1,1,2,2-Tetrachloroethane Ethylbenzene

> Acetone 2-Butanone

INFORMATION REGARDING DATA

The data have been reviewed according to the USEPA National Functional Guidelines for Organic Data Review. All data are validated with regard to usability.

If you have any questions or comments on this data review, please call Kelly Spittler or Zohreh Hamid at (215) 344-3745.

ATTACHMENTS

- 1. Attachment I Glossary of Data Qualifier Codes
- 2. Attachment II Sample Result Summary. This includes:
 - a) A summary of all positive results for the target analytes with the qualifier codes, if applicable;
 - b) All qualified and usable detection limits.
- 3. Attachment III Sample data (Form I) verified by the laboratory.
WESTERN.

ATTACHMENT I GLOSSARY OF DATA QUALIFIER CODES

GLOSSARY OF DATA QUALIFIERS

CODES RELATING TO IDENTIFICATION

(confidence concerning presence or absence of compounds):

- U = NOT DETECTED SUBSTANTIALLY ABOVE THE LEVEL REPORTED IN LABORATORY OR FIELD BLANKS. [Substantially is equivalent to a result less than 10 times the blank level for common contaminants (methylene chloride, acetone and 2-butanone in the VOA analyses, and common phthalates in the BNA analyses, along with tentatively identified compounds) or less than 5 times the blank level for other target compounds.]
- **R** = UNUSABLE RESULT. THE PRESENCE OR ABSENCE OF THIS ANALYTE CANNOT BE VERIFIED. SUPPORTING DATA NECESSARY TO CONFIRM RESULT.
- N = NEGATED COMPOUND. THERE IS PRESUMPTIVE EVIDENCE TO MAKE A TENTATIVE IDENTIFICATION.

CODES RELATING TO QUANTITATION

(can be used for both positive results and sample quantitation limits):

- J = ANALYTE WAS POSITIVELY IDENTIFIED. REPORTED VALUE MAY NOT BE ACCURATE OR PRECISE.
- UJ = ANALYTE WAS NOT DETECTED ABOVE THE CRQL. THE REPORTED QUANTITATION LIMIT IS QUALIFIED ESTIMATED.

OTHER CODES

 \mathbf{Q} = NO ANALYTICAL RESULT.

ATTACHMENT II SAMPLE RESULT SUMMARY

CLIENT: BAKER ENVIRONMENTAL, INC. SDG NO.: B4971	X		Y-FOI	
Client Sample ID:	36-FS02-LMB-F01	36-FS03-LG-F01) / 30	6-FS03-IMB-F010	36-ES03-WM-E01
Matrix:		SOIL		
Dilution Factor:	1.0/5.0*	1.0/5.0*	1.0/5.0	1.0/5.0
Units:	UG/KG	UG/KG	UG/KG	UG/KG
COMPOUND				
Bromomethane	UJ	UJ	UJ	UJ
Vinyl Chloride	UJ	UJ	UJ	UJ
Chloroethane	UJ	LU	UJ	UJ
Methylene Chloride	UJ	UJ	UJ	UJ
Acetone	1550 J*	58 J	2788 J	IJ
Carbon Disulfide	1145 J	752 J*	752 J	796 J
1.1 – Dichloroethene	UJ	UJ	UJ	IJ
1.1-Dichloroethane	UJ	UJ	UJ	UJ
1.2-Dichloroethene (TOTAL)	UJ	UJ	UJ	UJ
Chloroform	UJ	UJ	UJ	UJ
1.2-Dichloroethane	UJ	UJ	ŬĴ	IJ
2-Butanone	LU	63 J	5108 J	IJ
1.1.1 – Trichloroethane	UJ	UJ	UJ	UJ
Carbon Tetrachloride	UJ	UJ	UJ	UJ
Bromodichloromethane	UJ	UJ	UJ	ŬĴ
1.2-Dichloropropane	UJ	UJ	ŪŪ	L L
cis-1.3-Dichloropropene	UJ	UJ	UJ	LU
Trichloroethene	UJ	ŪJ	UJ	UJ
Dibromochloromethane	UJ	UJ	UJ	U.I
1,1,2-Trichloroethane	UJ	ŰĴ	UJ	ŰĴ
Benzene	UJ	UJ	UJ	UJ
Trans-1,3-Dichloropropene	UJ	· UJ	UJ	LU
Bromoform	UJ	UJ	UJ	LU
4-Methyl-2-Pentanone	UJ	UJ	IJ	UJ
2-Hexanone	ŬJ	LU	LU	UJ
Tetrachloroethene	UJ	UJ	UJ	UJ
1,1,2,2-Tetrachloroethane	UJ	UJ	UJ	UJ
Toluene	IJ	IJ	UJ	UJ
Chlorobenzene	UJ	UJ	UJ	UJ
Ethylbenzene	UJ	UJ	UJ	ŬĴ
Styrene	UJ	UJ	UJ	UJ
Xvlene (total)	UJ	IJ	IJ	IJ
Chloromethane	UJ	UJ	UJ	UJ

CLIENT: BAKER ENVIRONMENTAL SDG NO.: B4971

Client Sample ID: Matrix: Dilution Factor	36FS03SMF01 SOIL	36-FS01-WC-F01 SOIL	36-FS02-WC-F01 SOIL	36-FS02-WC-WB01 SOIL
Units:	ug/Kg	ug/Kg	ug/Kg	ug/Kg
COMPOUND	···· <u></u>			
Phenol	UJ	UJ	UJ	UJ
ois(2-Chloroethyl)ether	UJ	UJ	UJ	UJ
2-Chlorophenol	UJ	UJ	UJ	UJ
,3-Dichlorobenzene	UJ	UJ	UJ	UJ
4-Dichlorobenzene	UJ	UJ	UJ	UJ
,2-Dichlorobenzene	UJ	UJ	UJ	UJ
e-Methylphenol	UJ	UJ	UJ	UJ
2,2'-oxybis(1-Chloropropane)	UJ	UJ	IJ	UJ
-Methylphenol	UJ	UJ	UJ	UJ
I-Nitroso-di-n-propylamine	UJ	IJ	UJ	UJ
lexachloroethane	UJ	UJ	UJ	UJ
litrobenzene	UJ	UJ	UJ	UJ
ophorone	UJ	UJ	UJ	UJ
-Nitrophenol	UJ	UJ	UJ	UJ
,4–Dimethylphenol	UJ	UJ	UJ	UJ
is(2-Chloroethoxy)methane	UJ	LU	UJ	UJ
4-Dichlorophenol	UJ	UJ	UJ	UJ
,2,4-Trichlorobenzene	UJ	UJ	UJ	UJ
laphthalene	UJ	UJ	UJ	UJ
-Chloroaniline	UJ	UJ	UJ	UJ
lexachlorobutadiene	UJ	UJ	UJ	UJ
-Chloro-3-methylphenol	UJ	UJ	UJ	UJ
-Methylnaphthalene	UJ	UJ	UJ	UJ
lexachlorocyclopentadiene	UJ	UJ	UJ	UJ
,4,6-Trichlorophenol	UJ	UJ	UJ	UJ
,4,5-Trichbrophenol	UJ	UJ	UJ	UJ
-Chloronaphthalene	UJ	UJ	UJ	UJ
-Nitroaniline	UJ	UJ	UJ	UJ
imethylphthalate	UJ	UJ	UJ	UJ
cenaphthylene	UJ	UJ	UJ	ŰĴ
.6-Dinitrotoluene	UJ	UJ	UJ	 UJ
-Nitroaniline	UJ	IJ	IJ	U.J
cenaphthene	UJ	IJ	ŬĴ	U.I
		,		

.

CLIENT: BAKER ENVIRONMENTAL SDG NO.: B4971

Client Sample ID: Matrix: Dilution Factor: Units:	36-FS03-SM-F01 SOIL 1.0 ug/Kg	36-FS01-WC-F01 SOIL 1.0 ug/Kg	36-FS02-WC-F01 SOIL 1.0 ug/Kg	36-FS02-WC-WB01 SOIL 1.0 ug/Kg
COMPOUND				· · · · · · · · · · · · · · · · · · ·
2,4–Dinitrophenol	UJ	UJ	UJ	UJ
Dibenzofuran	UJ	UJ	UJ	UJ
4-Nitrophenol	UJ	UJ	UJ	UJ
2,4-Dinitrotoluene	IJ	IJ	IJ	IJ
Diethylphthalate	UJ	UJ	UJ	UJ
Fluorene	IJ	UJ	UJ	UJ
4-Chlorophenyl-phenylether	UJ	UJ	UJ	IJ
4-Nitroaniline	UJ	UJ	UJ	UJ
4,6-Dinitro-2-methylphenol	UJ	UJ	UJ	UJ
N-Nitrosodiphenylamine	UJ	UJ	UJ	UJ
4-Bromophenyl-phenylether	UJ	UJ	UJ	UJ
Hexachlorobenzene	UJ	UJ	UJ	UJ
Pentachlorophenol	UJ	UJ	UJ	UJ
Phenanthrene	UJ	UJ	UJ	UJ
Anthracene	UJ	UJ	UJ	IJ
Carbazole	UJ	UJ	UJ	UJ
Di-n-butylphthalate	UJ	UJ	UJ	UJ
Fluoranthene	UJ	UJ	UJ	UJ
Pyrene	UJ	UJ	UJ	IJ
Butylbenzylphthalate	UJ	UJ	UJ	UJ
Benzo(a)anthracene	UJ	UJ	UJ	UJ
3,3-Dichlorobenzidine	UJ	UJ	UJ	UJ
Chrysene	UJ	UJ	UJ	UJ
bis(2-Ethylhexyl)phthalate	UJ	UJ	UJ	UJ
Di-n-octylphthalate	UJ	UJ	UJ	UJ
Benzo(b)fluoranthene	UJ	UJ	UJ	UJ
Benzo(k)fluoranthene	UJ	UJ	. UJ	UJ
Benzo(a)pyrene	UJ	UJ	UJ	UJ
Indeno(1,2,3-cd)pyrene	UJ	UJ	UJ	UJ
Dibenz(a,h)anthracene	UJ	UJ	UJ	UJ
Benzo(g,h,i)perylene	UJ	IJ	UJ	UJ

CLIENT: BAKER ENVIRONMENTAL SDG NO.: B4971

Client Sample ID: Matrix: Dilution Factor: Units:	36-FS02-WC-WB02 SOIL 1.0 ug/Kg	36-FS03-WC-F01245 SOIL 1.0 ug/Kg	36-FS03-WC-F01187 SOIL 1.0 ug/Kg	36-FS03-WC-WB01 SOIL 1.0 ug/Kg
COMPOUND				
Phenol	UJ	UJ	UJ	UJ
bis(2–Chloroethyl)ether	UJ	UJ	UJ	UJ
2-Chlorophenol	UJ	UJ	UJ	UJ
1,3-Dichlorobenzene	UJ	UJ	UJ	UJ
1,4-Dichlorobenzene	UJ	UJ	LU	UJ
1,2-Dichlorobenzene	UJ	UJ	UJ	UJ
2-Methylphenol	UJ	UJ	LU	UJ
2,2'-oxybis(1-Chloropropane)	UJ	UJ	UJ	UJ
4-Methylphenol	UJ	UJ	UJ	UJ
N-Nitroso-di-n-propylamine	UJ	UJ	UJ	UJ
Hexachloroethane	UJ	UJ	UJ	UJ
Nitrobenzene	ιIJ	UJ	LU	UJ
Isophorone	UJ	UJ	UJ	UJ
2-Nitrophenol	UJ	UJ	UJ	UJ
2.4-Dimethylphenol	UJ	UJ	UJ	UJ
bis(2-Chloroethoxy)methane	UJ	UJ	ŰĴ	ŬĴ
2.4-Dichlorophenol	UJ	UJ	UJ	UJ
1,2,4-Trichlorobenzene	UJ	UJ	UJ	UJ
Naphthalene	UJ	UJ	UJ	UJ
4-Chloroaniline	UJ	UJ	UJ	UJ
Hexachlorobutadiene	UJ	UJ	UJ	ŰĴ
4-Chloro-3-methylphenol	UJ	UJ	LU	UJ
2-Methvinaphthalene	ŪJ	ŬĴ	ŪĴ	ŪJ
Hexachlorocyclopentadiene	UJ	UJ	UJ	UJ
2.4.6-Trichlorophenol	UJ	UJ	ŰĴ	UJ
2.4.5-Trichlorophenol	UJ	UJ	ŬĴ	ŪĴ
2-Chloronaphthalene	UJ	UJ	UĴ	UJ
2-Nitroaniline	ບງ	UJ	UJ	ŬĴ
Dimethylphthalate	UJ	UJ	UJ	ŪJ
Acenaphthylene	UJ	UJ	UJ	UJ
2,6-Dinitrotoluene	UJ	UJ	ŰĴ	ŪJ
3-Nitroaniline	UJ	UJ	UJ	UJ
Acenaphthene	UJ	UJ	UJ	UJ

CLIENT: BAKER ENVIRONMENTAL SDG NO.: B4971

Client Sample ID: Matrix: Dilution Factor: Units:	36-FS02-WC-WB02 SOIL 1.0 ug/Kg	36-FS03-WC-F01245 SOIL 1.0 ug/Kg	36-FS03-WC-F01187 SOIL 1.0 ug/Kg	36-FS03-WC-WB01 SOIL 1.0 ug/Kg
COMPOUND		• •••		
2,4-Dinitrophenol	UJ	UJ	UJ	UJ
Dibenzofuran	UJ	UJ ·	UJ	UJ
4-Nitrophenol	UJ	UJ	. UJ	UJ
2,4-Dinitrotoluene	UJ	UJ	UJ	UJ
Diethylphthalate	UJ .	UJ	UJ	UJ
Fluorene	UJ	UJ	UJ	UJ
4-Chlorophenyl-phenylether	UJ	UJ	UJ	UJ
4-Nitroaniline	UJ	UJ	UJ	UJ
4,6-Dinitro-2-methylphenol	UJ	UJ	UJ	UJ
N-Nitrosodiphenylamine	UJ	UJ	UJ	UJ
4-Bromophenyl-phenylether	UJ	UJ	UJ	UJ
Hexachlorobenzene	UJ	UJ	UJ	UJ
Pentachlorophenol	UJ	UJ	UJ	UJ
Phenanthrene	UJ	UJ	UJ	UJ
Anthracene	UJ	UJ	UJ	UJ
Carbazole	UJ	UJ	UJ	UJ
Di-n-butylphthalate	UJ	UJ	UJ	UJ
Fluoranthene	UJ	UJ	UJ	UJ
Pyrene	UJ	UJ	UJ	UJ
Butyibenzylphthalate	UJ	UJ	UJ	UJ
Benzo(a)anthracene	UJ	UJ	IJ	IJ
3,3-Dichlorobenzidine	UJ	UJ	UJ	UJ
Chrysene	UJ	UJ	UJ	UJ
bis(2-Ethylhexyl)phthalate	UJ	UJ	UJ	UJ
Di-n-octylphthalate	UJ	UJ	UJ	UJ
Benzo(b)fluoranthene	UJ	UJ	UJ	UJ
Benzo(k)fluoranthene	UJ	UJ	UJ	UJ
Benzo(a)pyrene	UJ	UJ	UJ	UJ
Indeno(1,2,3-cd)pyrene	UJ	UJ	UJ	UJ
Dibenz(a,h)anthracene	UJ	UJ	UJ	UJ
Benzo(g,h,i)perylene	UJ	UJ	UJ	UJ

ş.

CLIENT: BAKER ENVIRONMENTAL SDG NO.: B4971

_

Client Sample ID: Matrix: Dilution Factor: Units:	36FS02LMBF01 SOIL 1.0 ug/Kg	36-FS03-LMB-F01 SOIL 1.0 ug/Kg	36-FS03-WM-F01 SOIL 1.0 ug/Kg	36-FS03-LG-F01 SOIL 1.0 ug/Kg
COMPOUND			<u></u>	
Phenol	UJ	UJ	UJ	UJ
bis(2-Chloroethyl)ether	UJ	UJ	UJ	UJ
2-Chlorophenol	UJ	LU	UJ	UJ
1,3-Dichlorobenzene	UJ	UJ	UJ	UJ
1,4-Dichlorobenzene	UJ	LU	UJ	UJ
1,2-Dichlorobenzene	UJ	LU	UJ	UJ
2-Methylphenol	UJ	UJ	UJ	UJ
2,2'-oxybis(1-Chloropropane)	UJ	UJ	UJ	UJ
4-Methylphenol	UJ	UJ	UJ	UJ
N-Nitroso-di-n-propylamine	UJ	UJ	UJ	UJ
Hexachloroethane	UJ	UJ	UJ	UJ
Nitrobenzene	UJ	UJ	UJ	UJ
Isophorone	UJ	UJ	UJ	UJ
2-Nitrophenol	UJ	UJ	UJ	UJ
2,4-Dimethylphenol	UJ	LU	UJ	UJ
bis(2-Chloroethoxy)methane	UJ	UJ	UJ	UJ
2,4-Dichlorophenol	UJ	UJ	UJ	UJ
1,2,4-Trichbrobenzene	UJ	UJ	IJ	UJ
Naphthalene	UJ	UJ	UJ	UJ
4-Chloroaniline	UJ	UJ	IJ	UJ
Hexachlorobutadiene	UJ	UJ	UJ	UJ
4-Chloro-3-methylphenol	UJ	UJ	UJ	UJ
2-Methylnaphthalene	UJ	UJ	UJ	UJ
Hexachlorocyclopentadiene	UJ	UJ	UJ	UJ
2,4,6-Trichlorophenol	UJ	UJ	UJ	UJ
2,4,5-Trichlorophenol	UJ	UJ	UJ	UJ
2-Chloronaphthalene	UJ	UJ	UJ	UJ
2-Nitroaniline	UJ	UJ	UJ	UJ
Dimethylphthalate	UJ	ບມ	UJ	UJ
Acenaphthylene	UJ	UJ	UJ	UJ
2,6-Dinitrotoluene	ບງ	UJ	UJ	UJ
3-Nitroaniline	UJ	UJ	UJ	UJ
Acenaphthene	UJ	UJ	UJ	UJ

CLIENT: BAKER ENVIRONMENTAL SDG NO.: B4971

Client Sample ID: Matrix:	36-FS02-LMB-F01 SOIL	36-FS03-LMB-F01 SOIL	36-FS03-WM-F01 SOIL	36-FS03-LG-F01 SOIL
Dilution Factor:	1.0	1.0	1.0	1.0
Units:	ug/kg	ug/Kg	ug/Kg	ug/Kg
COMPOUND				
2,4-Dinitrophenol	UJ	UJ	UJ	UJ
Dibenzofuran	UJ	UJ	IJ	UJ
4-Nitrophenol	UJ	UJ	UJ	UJ
2,4Dinitrotoluene	UJ	UJ	UJ	UJ
Diethylphthalate	UJ	UJ	IJ	UJ
Fluorene	UJ	UJ	UJ	UJ
4-Chlorophenyl-phenylether	UJ	UJ	UJ	UJ
4-Nitroaniline	UJ	IJ	UJ	UJ
4,6-Dinitro-2-methylphenol	UJ	UJ	UJ	UJ
N-Nitrosodiphenylamine	UJ	UJ	UJ	UJ
4-Bromophenyl-phenylether	UJ	UJ	UJ	UJ
Hexachlorobenzene	UJ	UJ	UJ	UJ
Pentachlorophenol	UJ	UJ	UJ	UJ
Phenanthrene	UJ	UJ	UJ	UJ
Anthracene	UJ	UJ	UJ	UJ
Carbazole	UJ	UJ	UJ	UJ
Di-n-butylphthalate	UJ	UJ	UJ	UJ
Fluoranthene	UJ	UJ	UJ	UJ
Pyrene	UJ	UJ	UJ	IJ
Butylbenzylphthalate	IJ	UJ	UJ	UJ
Benzo(a)anthracene	UJ	UJ	UJ	UJ
3,3-Dichlorobenzidine	UJ	UJ	UJ	UJ
Chrysene	UJ	UJ	UJ	UJ
bis(2-Ethylhexyl)phthalate	UJ	UJ	UJ	UJ
Di-n-octylphthalate	UJ	UJ	UJ	UJ
Benzo(b)fluoranthene	UJ	UJ	UJ	UJ
Benzo(k)fluoranthene	LU	UJ	UJ	UJ
Benzo(a)pyrene	UJ	UJ ·	UJ	UJ
Indeno(1,2,3-cd)pyrene	UJ	UJ	UJ	UJ
Dibenz(a,h)anthracene	UJ	UJ	UJ	UJ
Benzo(g.h.i)pervlene	LU	UJ	UJ	UJ

ă,

ROY F. WESTON, INC. PESTICIDE/PCB ANALYSES - DATA VALIDATION SUMMARY

CLIENT: BAKER ENVIRONMENTAL

SDG NO.: B4971

Client Sample ID:	36-FS03-WM-F01	36-FS03-LG-F01
Matrix:	SOIL	SOIL
Dilution Factor:	2.0	2.0
Units:	UG/KG	UG/KG
COMPOUND		
alpha-BHC	UJ	UJ
beta-BHC	11 J	UJ
delta-BHC	UJ	UJ
gamma–BHC(Lindane)	4.9 J	UJ
Heptachlor	UJ	LU
Aldrin	UJ	UJ
Heptachlor Epoxide	UJ	UJ
Endosulfan I	UJ	UJ
Dieldrin	40 J	UJ
4.4'-DDE	394 J	186 J
Endrin	4.6 J	UJ
Endosulfan II	4,5 J	UJ
4.4'-DDD	133 J	47 J
Endosulfan Sulfate	UJ	UJ
4.4'-DDT	26 UJ	26 UJ
Methoxychlor	UJ	UJ
Endrin Ketone	UJ	UJ
Endrin Aldehvde	UJ	UJ
alpha-Chlordane	27 J	14 J
gamma-Chlordane	UJ	UJ
Toxaphene	UJ	UJ
Aroclor 1016	UJ	UJ
Aroclor 1221	UJ	UJ
Aroclor 1232	UJ	UJ
Aroclor 1242	UJ	UJ
Aroclor 1248	UJ	UJ
Aroclor 1254	UJ	UJ
Aroclor 1260	UJ	UJ

ROY F. WESTON, INC. PESTICIDE/PCB ANALYSES - DATA VALIDATION SUMMARY

CLIENT: BAKER ENVIRONMENTAL

SDG NO.: B4971

Client Sample ID: Matrix:	36-FS03-WC-F01 245 SOIL	2 36FS03-WCF04 167 SOIL	36-FS03-WC-WB01 SOIL	36-FS02-LMB-F01 SOIL	36-FS03-LMB-F01 SOIL
Dilution Factor:	2.0	2.0	2.0	2.0	2.0
Units:	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG
COMPOUND		· · · · · · · · · · · · · · · · · · ·			
alpha-BHC	UJ	UJ	UJ	UJ	UJ
beta-BHC	UJ	UJ	UJ	UJ	UJ
delta-BHC	UJ	UJ	UJ	UJ	UJ
gamma-BHC(Lindane)	UJ	UJ	UJ	UJ	UJ
Heptachlor	UJ	UJ	UJ	ÛJ	UJ
Aldrin	UJ	5.7 J	2.6 J	UJ	UJ
Heptachlor Epoxide	UJ	UJ	UJ	UJ	UJ
Endosulfan I	IJ	UJ	UJ	UJ	UJ
Dieldrin	13 J	11 J	3.2 J	L 0.8	5.2 J
4,4'-DDE	110 J	80 J	39 J	45 J	39 J
Endrin	UJ	UJ	UJ	UJ	UJ
Endosulfan II	UJ	UJ	UJ	UJ	UJ
4,4'DDD	70 J	22 J	18 J	50 J	22 J
Endosulfan Sulfate	UJ	UJ	UJ	UJ	UJ
4,4'-DDT	33 UJ	38 UJ	22 UJ	31 UJ	34 UJ
Methoxychlor	UJ	IJ	UJ	UJ	UJ
Endrin Ketone	UJ	UJ	UJ	UJ	UJ
Endrin Aldehyde	UJ	UJ	UJ	UJ	UJ
alpha-Chlordane	10 J	14 J	5.0 J	UJ	3.5 J
gamma-Chlordane	UJ	UJ	UJ	UJ	UJ
Toxaphene	UJ	UJ	UJ	UJ	UJ
Aroclor 1016	UJ	UJ	UJ	UJ	UJ
Aroclor 1221	UJ	UJ	UJ	UJ	IJ
Aroclor 1232	UJ	UJ	UJ	UJ	UJ
Aroclor 1242	UJ	UJ	UJ	UJ	ŪJ
Aroclor 1248	UJ	UJ	UJ	UJ	ŬĴ
Aroclor 1254	UĴ	ŬĴ	UJ	ŬĴ	ŬĴ
Aroclor 1260	UJ	UJ	UJ	UJ	ŰĴ

ROY F. WESTON, INC. PESTICIDE/PCB ANALYSES - DATA VALIDATION SUMMARY

CLIENT:BAKER ENVIRONMENTAL

SDG NO.: B4971

Client Sample ID: Matrix:	36-FS03-SM-F01 SOIL	36-FS01-WC-F01 SOIL	36-FS02-WC-F01 SOIL	36-FS02-WC-WB01 SOIL	36-FS02-WC-WB02 SOIL
Dilution Factor:	2.0	2.0	2.0	2.0	2.0
Units:	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG
COMPOUND					
alpha-BHC	UJ	UJ	UJ	UJ	UJ
beta-BHC	UJ	9.6 J	4.2 J	4.8 J	8.3 J
delta-BHC	UJ	UJ	UJ	UJ	UJ
gamma–BHC(Lindane)	UJ	UJ	IJ	UJ	UJ
Heptachlor	UJ	UJ	UJ	UJ	UJ
Aldrin	6.6 J	UJ	UJ	UJ	UJ
Heptachlor Epoxide	UJ	UJ	UJ	UJ	UJ
Endosulfan I	UJ	UJ	UJ	UJ	UJ
Dieldrin	48 J	7.8 J	10 J	10 J	31 J
4,4'-DDE	444 J	148 J	72 J	239 J	208288 J 1 4 4 1
Endrin	17 J	8,8 J	UJ	23 J	12 J
Endosulfan II	UJ	UJ	UJ	3.4 J	UJ
4,4'-DDD	256 J	40 J	22 J	74 J	138 J
Endosulfan Sulfate	UJ	UJ	UJ	UJ	UJ
4,4'-DDT	26 UJ	36 UJ	32 UJ	26 UJ	27 UJ
Methoxychlor	UJ	IJ	UJ	130 UJ	UJ
Endrin Ketone	UJ	UJ	UJ	UJ	UJ
Endrin Aldehyde	13 J	UJ	UJ	UJ	UJ
alpha-Chlordane	46 J	22 J	12 J	42 J	30 J
gamma-Chlordane	UJ	UJ	UJ	UJ	UJ
Toxaphene	UJ	UJ	UJ	UJ	UJ
Aroclor 1016	UJ	UJ	UJ	UJ	UJ
Aroclor 1221	UJ	UJ	UJ	UJ	UJ
Aroclor 1232	UJ	UJ	UJ	UJ	UJ
Aroclor 1242	· UJ	UJ	UJ	UJ	UJ
Aroclor 1248	UJ	UJ	UJ	UJ	ŬĴ
Aroclor 1254	UJ	UJ	UJ	UJ	UJ
Aroclor 1260	UJ	ŰĴ	UĴ	UJ	UJ

Client Sample ID: Matrix: 66-FS02-WC-WB02 SOIL 36-FS03-WC-P01M2 SOIL 36-FS03-WC-D0M2 36-FS03-WC-D0M2 Dilution Factor: 1.0/5.0* 1.0/5.0* 1.0/5.0* 1.0/5.0* SOIL SOIL <th>NT: BAKER ENVIRONMENTAL, INC. NO.: B4971</th>	NT: BAKER ENVIRONMENTAL, INC. NO.: B4971
Client Sample ID: Metrix: S6-FS02-WC-WB02 SOIL S6-FS03-WC-F0149 SOIL S6-FS03-WC-F0149 SOIL S6-FS03-WC-F0149 SOIL S6-FS03-WC-WB02 SOIL Dilution Factor: 1.0/5.0* 1.0/5.0* 1.0 1.0/5.0* Dilution Factor: 1.0/5.0* 1.0/5.0* 1.0 1.0/5.0* COMPOUND UG/KG UG/KG UG/KG UG/KG UG/KG Vnyl Chloride UJ UJ UJ UJ UJ C Vnyl Chloride UJ UJ UJ UJ 28 Acetone 938 J 413 J 255 J 22600 Carbon Disulfide 1367 J* 348 J* 278 J 348 1,1-Dichloroethane UJ UJ UJ UJ UJ UJ 1,1-Dichloroethane UJ UJ UJ UJ UJ UJ UJ UJ UJ 1,1-Dichloroethane UJ <	
Matrix: SOIL DI Off.or Units: UG/KG	Client Sample ID:
Dilution Factor: 1.0/5.0* 1.0/5.0* 1.0 1.0/5.0* Units: UG/KG UG/KG UG/KG UG/KG UG/KG COMPOUND UJ UJ UJ UJ UJ UJ UJ UJ Bromomethane UJ UJ <t< td=""><td>Matrix:</td></t<>	Matrix:
Drits: DG/KG DG/KG DG/KG DG/KG DG/KG COMPOUND Bromomethane UJ	Dilution Factor:
COMPOUND Bromomethane UJ	Units:
BromomethaneUJUJUJUJVinj ChlorideUJUJUJUJUJChloroethaneUJUJUJUJUJMethylene Chloride 42 J 50 JUJ28Acetone938 J413 J255 J2360.Carbon Disulfide1367 J*348 J*278 J3481,1-DichloroethaneUJUJUJUJ1,2-Dichloroethane (TOTAL)UJUJUJUJChloroformUJUJUJUJUJ1,2-DichloroethaneUJUJUJUJUJChloroformUJUJUJUJU1,1-TrichloroethaneUJUJUJUJU1,1,1-TrichloroethaneUJUJUJUUCarbon TetrachlorideUJUJUJUJUCarbon TetrachlorideUJUJUJUJUBromodichloropropaneUJUJUJUJUCarbon TetrachlorideUJUJUJUUDibloroethaneUJUJUJUUUI,2-DichloropropaneUJUJUJUUUUJUJUJUJUUIcis-1,3-DichloropropeneUJUJUJUJUDibromochloromethaneUJUJUJUJUDibromochloromethaneUJUJUJUUIthl	COMPOUND
Vinyl Chloride UJ UJ UJ UJ UJ Chloroethane UJ UJ UJ UJ UJ UJ Methylene Chloride 42 J 50 J UJ 280 Acetone 988 J 413 J 255 J 2360 Carbon Disulfide 1367 J* 348 J* 278 J 348 1,1-Dichloroethane UJ UJ UJ UJ 10 1,1-Dichloroethane UJ UJ UJ UJ 01	iomethane
Chloroethane UJ UJ UJ UJ UJ UJ Methylene Chloride 42 J 50 J UJ 28 Acetone 938 J 413 J 255 J 2860 Carbon Disulfide 1367 J* 348 J* 278 J 348 $1, 1$ – Dichloroethane UJ UJ UJ UJ UJ 11 $11, -$ Dichloroethane UJ UJ UJ UJ $11, -$ Dichloroethane $11, -$	Chloride
Methylene Chloride 42 J 50 J UJ 28 Acetone 938 J 413 J 255 J 2360 J Carbon Disulfide 1367 J* 348 J* 278 J 348 1,1Dichloroethene UJ UJ UJ UJ 348 1,1Dichloroethene UJ UJ UJ UJ 04	roethane
Acetone 938 J 413 J 255 J 2360 J Carbon Disulfide 1367 J* 348 J* 278 J 348 1,1 – Dichloroethene UJ UJ UJ UJ 10 1,1 – Dichloroethene UJ UJ UJ UJ UJ 10 1,2 – Dichloroethene (TOTAL) UJ UJ UJ UJ UJ UJ 10 Chloroferm UJ UJ UJ UJ UJ UJ 10 1,2 – Dichloroethane UJ UJ UJ UJ UJ UJ UJ UJ 10 1,2 – Dichloroethane UJ UJ UJ UJ UJ UJ UJ 10 UJ UJ <td< td=""><td>ylene Chloride</td></td<>	ylene Chloride
Carbon Disutifie $1367 J^*$ $348 J^*$ $278 J$ $348 J^*$ $1,1 - Dichloroethene$ UJUJUJUJ $1,1 - Dichloroethane$ UJUJUJUJ $1,2 - Dichloroethene (TOTAL)$ UJUJUJUJ $1,2 - Dichloroethane$ UJUJUJUJ $1,2 - Dichloroethane$ UJUJUJUJ $2 - Butanone$ UJUJUJUJ $2 - Butanone$ 42 UJUJ33 UJU $2 - Butanone$ UJUJUJUJ $3 - Dichloropropane$ UJUJUJUJ $3 - Dichloropropane$ UJ <td< td=""><td>ono</td></td<>	on o
1,1-DichloroetheneUJUJUJUJ $1,1-DichloroethaneUJUJUJUJ1,2-Dichloroethene (TOTAL)UJUJUJUJChloroformUJUJUJUJUJ1,2-DichloroethaneUJUJUJUJ2-Butanone42 UJUJUJUJUJ2-ButanoneUJUJUJUJUJ1,1,1-TrichloroethaneUJUJUJUJUJCarbon TetrachlorideUJUJUJUJUJBromodichloromethaneUJUJUJUJUJ1,2-DichloropropaneUJUJUJUJUJ1,2-DichloropropaneUJUJUJUJUJ1,1,2-TrichloroethaneUJUJUJUJUJ1,1,2-TrichloroethaneUJUJUJUJUJ1,1,2-TrichloroethaneUJUJUJUJUJ1,1,2-TrichloroethaneUJUJUJUJUJ1,1,2-TrichloroethaneUJUJUJUJUJ1,1,2-TrichloroethaneUJUJUJUJUJ1,1,2-TrichloroethaneUJUJUJUJUJ$	on Disulfide
1,1-DichloroethaneUJUJUJUJ $1,2-$ Dichloroethane (TOTAL)UJUJUJUJChloroformUJUJUJUJ $1,2-$ DichloroethaneUJUJUJUJ $2-$ Butanone42 UJUJ33 UJU $2-$ Butanone42 UJUJUJUJ $1,1,1-$ TrichloroethaneUJUJUJUJCarbon TetrachlorideUJUJUJUJBromodichloromethaneUJUJUJUJ $1,2-$ DichloropropaneUJUJUJUJ $1,2-$ DichloropropeneUJUJUJUJ $1,1,2-$ TrichloroethaneUJUJUJ42 UDibromochloromethaneUJUJUJUJUJ $1,1,2-$ TrichloroethaneUJUJUJUJ $1,1,2-$ Trichloro	Dichloroethene
1,2-Dichloroethane (TOTAL) UJ UJ UJ UJ Chloroform UJ UJ UJ UJ UJ 1,2-Dichloroethane UJ UJ UJ UJ UJ UJ 1,2-Dichloroethane UJ UJ </td <td>Dichloroethane</td>	Dichloroethane
Chloroform UJ	Dichloroethene (TOTAL)
1,2-Dichloroethane UJ UJ UJ UJ 2-Butanone 42 UJ UJ 33 UJ U 1,1,1-Trichloroethane UJ UJ UJ UJ U Carbon Tetrachloride UJ UJ UJ UJ U U Bromodichloromethane UJ UJ UJ UJ U U U 1,2-Dichloropropane UJ UJ UJ UJ U <td>roform</td>	roform
2-Butanone 42 UJ UJ 33 UJ U 1,1,1-Trichloroethane UJ UJ UJ UJ UJ Carbon Tetrachloride UJ UJ UJ UJ UJ UJ Bromodichloromethane UJ UJ UJ UJ UJ UJ UJ UJ 1,2-Dichloropropane UJ	Dichloroethane
1,1,1 - Trichloroethane UJ UJ UJ UJ Carbon Tetrachloride UJ UJ UJ UJ Bromodichloromethane UJ UJ UJ UJ 1,2 - Dichloropropane UJ UJ UJ UJ cis - 1,3 - Dichloropropane UJ UJ UJ UJ Trichloroethane UJ UJ UJ UJ UJ Dibromochloromethane UJ UJ UJ UJ 42 U Dibromochloromethane UJ UJ UJ UJ UJ	utanone
Carbon Tetrachloride UJ UJ <td>-Trichloroethane</td>	-Trichloroethane
Bromodichloromethane UJ UJ UJ U 1,2-Dichloropropane UJ UJ UJ U cis-1,3-Dichloropropene UJ UJ UJ U Trichloroethene UJ UJ UJ 42 U Dibromochloromethane UJ UJ UJ 42 U 1,1,2-Trichloroethane UJ UJ UJ UJ	on Tetrachloride
1,2-DichloropropaneUJUJUJUJcis-1,3-DichloropropeneUJUJUJUJTrichloroetheneUJUJUJ42 UDibromochloromethaneUJUJUJUJ1,1,2-TrichloroethaneUJUJUJUJ	odichloromethane
Cis-1,3-DichloropropeneUJUJUJCis-1,3-DichloropropeneUJUJUJTrichloroethaneUJUJUJDibromochloromethaneUJUJUJ1,1,2-TrichloroethaneUJUJUJ	Dichloropropane
Trichloroethane UJ UJ UJ 42 U Dibromochloromethane UJ UJ UJ UJ U 1,1,2-Trichloroethane UJ UJ UJ U	1.3-Dichloropropene
Dibromochloromethane UJ UJ UJ U 1,1,2-Trichloroethane UJ UJ UJ U	loroethene
1,1,2-Trichloroethane UJ UJ UJ UJ	mochloromethane
	-Trichloroethane
Benzene UJ UJ UJ I	ene
Trans-13-Dichloropropene UJ UJ UJ U	s-1.3-Dichloropropene
	oform
A-Methyl=2-Pentanone UJ 50UJ UJ U	ethyl-2-Pentanone
Tetrachlorosthene III III III III	chloroethene
1122—Tetrachorosthane III III III III 421	2-Tetrachlorgethane
Toluene UJ UJ UJ UJ 33	
Chlorobenzene UJ UJ UJ 11.1 I	obenzene
Ethylhenzene [1,] [1,] [1,] 421	henzene
Styrene (1.) (1.) (1.) (1.) (1.)	na
Stylene St St <t< td=""><td>ne (total)</td></t<>	ne (total)
Chloromethane UJ UI UI UI	(omethane

i

CLIENT: BAKER ENVIRONMENTAL, INC.			7		
SDG NO.: B4971	\mathbf{X}		\checkmark		
	X		\sim	X	
Client Sampio ID:	36-ES03-SM-E01)	RE-ESO1-WC-EOT	36-ES02-WC-EOP	36- FS02-WC-WB01	
Matrix:		SOIL	00-1002-W0-101	50-1502-WC-WB01)	
Dilution Factor:	1.0	1 0/5 0*		10	
Units:	UG/KG	UG/KG	UG/KG	UG/KG	
COMPOUND					
Bromomethane	UJ	UJ	UJ	ບງ	
Vinyl Chloride	UJ	UJ	UJ	UJ	
Chloroethane	UJ	UJ	UJ	UJ	
Methylene Chloride	UJ	28 J	48 UJ	35 J	
Acetone	UJ	312 J	198 J	1794 J	
Carbon Disulfide	579 J	875 J*	456 J	402 J	
1.1-Dichloroethene	UJ	UJ	UJ	UJ	
1.1-Dichloroethane	40 UJ	UJ	IJ	UJ	
1.2-Dichloroethene (TOTAL)	UJ	UJ	ŪJ	UJ	
Chloroform	UJ	ŪJ	UJ	UJ	
1.2-Dichloroethane	UJ	ŪJ	UJ	UJ	
2-Butanone	40 UJ	ÜJ	48 UJ	48 UJ	
1.1.1 – Trichloroethane	UJ	IJ	- UJ	UJ	
Carbon Tetrachloride	UJ	UJ	UJ	UJ	
Bromodichloromethane	UJ	UJ	UJ	UJ	
1.2-Dichloropropane	IJ	UJ	บม	UJ	
cis-1.3-Dichloropropene	UJ	UJ	U.J.	UJ	
Trichloroethene	UJ	UJ	UJ	UJ	
Dibromochloromethane		1.1	U.I	11.1	
1 1 2 – Trichloroethane				00	
Benzene		1.1			
Trans – 1.3 – Dichloropronene	11.1	11	111	111	
Bromoform	11				
4 – Methyl - 2 - Pentanone		111	00	111	
Tetrachloroethene	11.1	11.1		1.1	
1 1 2 2-Tetrachloroethane	111	111			
	40111	111		111	
Chlorobenzene	-000	55			
			00	00 /0111	
		00	00	40 00	
Stylene (tetal)		03	05	00	
		UJ	00	00	
Unioromethane	UJ	UJ	UJ	0.0	

Roy F. Weston, Inc. 1 Weston Way West Chester, Pennsylvania 19380-1499 8 610-701-3000 • Fax 610-701-3186

INORGANIC QUALITY ASSURANCE REVIEW BAKER ENVIRONMENTAL, INC. SITE: MCB CAMP LEJEUNE SDG NO.: BA4971

REVIEW PERFORMED BY THE ANALYTICS DIVISION OF ROY F. WESTON, INC.

VERIFIED BY:

Zohreh Hamid, Ph.D. Section Manager - Data Validation

22-94

Date

B

BAKER ENVIRONMENTAL, INC. - NAVY CLEAN SITE: MCB CAMP LEJEUNE SDG No.: BA4971

CASE SUMMARY

This data validation review consists of twelve (12) soil samples received on 04-25-94. Laboratory analyses were performed by NDRC Laboratories, Inchscape Testing Services for TAL metals.

All data have been validated with regard to usability according to the quality assurance set forth in Inorganic Functional Guidelines and Naval Energy and Environmental Support Activity (NEESA). If you have any questions or comments on this data review, please contact Zohreh Hamid at (610) 701-3745.

The following samples are contained within this report:

FS01WC	FS02W2	FS02WC	FS03LG	FS03SM	FS03WC
FS02LM	FS02WB	FS03F1	FS03LM	FS03WB	FS03WM

QUALITY ASSURANCE REVIEW

The findings offered in this report are based upon a rigorous review of the following criteria.

- * Holding Time
- * Calibration
 - Contract Required Detection Limit Samples
 - Blank Samples
 - Interference Check Samples
 - Matrix Spike
 - Duplicate Digestion Samples
 - Laboratory Control Sample
- * Serial Dilution Sample
 - Graphite Furnace Analysis
 - Quarterly Verification of Instrument Parameters
- * Sample Result Verification
- * Preparation Logs
- * Run Logs
 - Data Package Completeness

* All criteria were met; therefore, a narrative section is not provided for this classification.

Baker Environmental, Inc. SDG No.: BA4971

Page 2

CONTRACT REQUIRED DETECTION LIMIT SAMPLE ANALYSES

The CRDL recoveries for Sb (129.7%) in ICP analysis and As (125%), Pb (183.3/123.3%), and Se (130/130%) in graphite furnace analysis were above the upper data validation requirement limits of 120%. The positive results greater than the IDL but less than 3X the CRDL should be qualified estimated due to the uncertainty near the detection limits.

BLANK ANALYSES

The laboratory blank had the following contaminations at levels above the IDLs, but below the CRDLs.

ANALYTE	CONC. MG/KG	ACTION LEVEL MG/KG *
Al	3.57	18
As	0.18	0.9
Cd	0.021	0.1
Cu	0.243	1.2
Na	237	1185
TI	0.07	0.35

* Action level = 5X the blank concentration.

The results for all these elements are qualified "U" in the data summary due to the blank concentration.

The calibration and preparation blanks had lead at levels above the CRDL. The reported sample results are rejected in the samples.

MATRIX SPIKE SAMPLE ANALYSIS

The matrix spike recovery for Hg (51.5%) and Se (51.5%) were below the requirement limit of 75%. The reported positive sample result is qualified estimated. The reported sample data are biased low.

Baker Environmental, Inc. SDG No.: BA4971

Page 3

LABORATORYDUPLICATE SAMPLES

The RPD for all analytes were within the analysis and the data validation requirement limits. The field duplicate was not identified for this batch of samples.

GRAPHITE FURNACE ANALYSIS

The following samples analyzed by graphite furnace had the analytical spike recoveries outside the 85-115%.

SAMPLE ID	ANALYTE	% RECOVERY
FS03SM	As/Cd/Pb/Tl	73.5/130*/66.5/77.5
FS01WC	As/Pb/Se/T1	70.51/400.5**/50/81
FS02WC	As/Pb/Se/T1	74.5/65/64/82
FS02WB	As/Pb/Se	53.5/79.5/55
FS02W2	As/Pb/Se	56/76.5/47
FS03WC	As/Se/T1	70.5/65/83
FS03F1	As/Pb/Se	80.5/77.5/76
FS03WB	As/Se	65/42
FS02LM	As/Pb/Se/Tl	73/73.5/42/80.5
FS03LM	As/Pb/Tl	84/77.5/78
FS03WM	As/Se/T1	79.5/71/79.5
FS03LG	As/Cd/Se	69/116.5*/42

* Only the positive results are qualified estimated.

** The positive result should be rejected due to the extremely high analytical spike recovery.

Baker Environmental, Inc. SDG No.: BA4971

Page 4

The results and non-detected values are qualified estimated. However, the additional qualifier codes are not applied if the sample results are qualified based on the blank contamination.

The linearity did not meet the requirement of " $r \ge 0.995$ "in standard calibration analyzed for cadmium on 06-15-94 at 12:00. The affected sample results (all samples with the exception of sample FS03SM) are considered estimated. Cadmium results have already been flagged with "U" and the results are considered as the non-detected values due to the blank contaminations. The additional qualifier code was not applied.

DATA PACKAGE COMPLETENESS

Sample FS03WC was not listed on the Form XIV for selenium analysis. The analytical spike recoveries for selenium in samples FS02W2 and FS03WB were 47% and 42%, respectively. The data for these two samples should be flagged "W" by the laboratory.

SUMMARY

The data package completeness is fair. The sample results for Pb are rejected due to the blank contamination. The minor issues have been discussed. The reported sample data are considered representative with the applied qualifier codes.

INFORMATION REGARDING DATA

The data have been reviewed according to the USEPA National Functional Guidelines for Inorganic Data Review. All data are validated with regard to usability.

If you have any questions or comments on this data review, please call Zohreh Hamid at (215) 344-3745.

ATTACHMENTS

- 1. Attachment I Glossary of Data Qualifier Codes
- 2. Attachment II Sample Result Summary. This includes:
 - a) A summary of all positive results for the target analytes with the qualifier codes, if applicable;
 - b) All qualified and usable detection limits.
- 3. Attachment III Sample data (Form I) verified by the laboratory.

ATTACHMENT I GLOSSARY OF DATA QUALIFIER CODES

GLOSSARY OF DATA QUALIFIERS

CODES RELATING TO IDENTIFICATION

(confidence concerning presence or absence of compounds):

- U = NOT DETECTED SUBSTANTIALLY ABOVE THE LEVEL REPORTED IN LABORATORY OR FIELD BLANKS.
- **R** = UNRELIABLE RESULT. ANALYTE MAY OR MAY NOT BE PRESENT IN THE SAMPLE. SUPPORTING DATA NECESSARY TO CONFIRM RESULT.
- N = NEGATED COMPOUND WAS CONSIDERED AS NOT PRESENT IN THE SAMPLE.

(NO CODE) = CONFIRMED IDENTIFICATION

CODES RELATING TO QUANTITATION

(can be used for both positive results and sample quantitation limits):

- **J** = ANALYTE PRESENT. REPORTED VALUE MAY NOT BE ACCURATE OR PRECISE.
- **UJ** = THE REPORTED QUANTITATION LIMITS ARE QUALIFIED ESTIMATED.

OTHER CODES

 \mathbf{Q} = NO ANALYTICAL RESULT.

ATTACHMENT II SAMPLE RESULT SUMMARY

· •

ROY F. WESTON, INC. INORGANIC ANALYSES -- DATA VALIDATION SUMMARY

CLIENT: BAKER ENVIRONMENTAL, INC. SDG NO.: BA4971

			· · · · · · · · · · · · · · · · · · ·					
Client Sample Mat % Soli Un	ID: rix: ds: its:		FS03SM SOIL 25.2 mg/Kg	FS01WC - F0l SOIL 18.1 mg/Kg	FS02WC ~FØI SOIL 20.7 mg/Kg	FS02W b C-W ^{DD1} SOIL 25.5 mg/Kg	FS02W 10 - ^{w B4} SOIL 24.2 mg/Kg	FS03WC SOIL 20.2 mg/Kg
INORGANIC ELEMENTS	·····							
		IDL (ug/L)						
Aluminium	Ρ	20	21.6 U	31.0 U	23.8 U	68,6 U	33.7 U	23.6 U
Antimony	Р	46						
Arsenic	F	2.0	1.3 U	2.0 U	1.8	1.8 U	1.7 U	1.6 U
Barium	Р	1.0	1.2	1.0	1.0 U	1.3	1.2	0.86
Bervllium	Р	1.0						
Cadmium	F	1.0	0.12 U	0.12 U	0.13 U	0.11 U	0.15 U	0.12 U
Calcium	Р	1700	1570			8070	23100	1090
Chromium	P	7.0	3				3,6	
Cobalt	P	11						
Copper	P	2.0	4 U	3.8 U	3.9 U	4.2 U	4.7 U	4.2 U
lron	P	13	41.7	52.0	45.0	106	96.5	39.8
Lead	F	1.0	UJ		UJ	0.43 R	0.41 R	
Magnesium	P	13	994	1250	1310	1100	1270	1220
Manganese	Р	2.0	0.86	2.5	2.1	9.6	10.3	2.3
Mercury	AV	0.1	UJ	0.33 J	UJ	UJ	UJ	UJ
Nickel	Ρ	11						
Potassium	Р	2440	14000	18900	16000	10400	12100	17600
Selenium	F	1.4	UJ	0.99 J	UJ	0.63 J	1.0 J	UJ
Silver	P	3.0				2.1		3.3
Sodium	P	2370	2270 U	4010 U	2990 U	3220 U	4050 U	3500 U
Thallium	F	0.6	0.32 U	0.94 U	0.39 U	0.39 U	0.33 U	0.40 U
Vanadium	P	5.0						
Zinc	Р	11	28.8	58.3	34.9	62.1	56.5	35.2

ROY F. WESTON, INC. INORGANIC ANALYSES - DATA VALIDATION SUMMARY

CLIENT: BAKER ENVIRONMENTAL, INC. SDG NO.: BA4971

Client Sar %	nple ID: Matrix: 5 Solids: Units:		wе-ғог FS03 р SOIL 17.4 mg/Kg	د سالات FSo3W SOIL 29.8 mg/Kg	FS02LM1) - 1 ⁵⁰¹ SOIL 21.5 mg/Kg	FS03LM &-F0 SOIL 19.6 mg/Kg	FS03WM - F0 SOIL 29.2 mg/Kg	FS03LG - F01 SOIL 25.1 mg/Kg
INORGANIC ELEME	NTS			·				
		IDL (ug/L)						
Aluminium	Р	20	22.5 U	30.8 U	22.1 U	21.7 U	18.6 U	22.3.11
Antimony	P	46		0010 0	22.1 0	2117 0	10.0 0	22.00
Arsenic	F	2.0	1.5 U	1.2 U	1.7 U	1.8 U	0.96 U	201
Barium	P	1.0	0.79	0.94	0.60	0.65	0.62	0.52
Bervilium	P	1.0				0.00	0.02	0.02
Cadmium	F	1.0	0.14 U	0.13 U	0.11 U	0 20 U	0.08 U	0.2211
Calcium	P	1700	1590	9100	6750	1440	7060	678
Chromium	P	7.0		2.5	4.0			0.0
Cobalt	P	11						
Copper	Р	2.0	3.8 U	3.2 U	3.2 U	3.9 U	2.5 U	2.3 U
Iron	Р	13	53.6	80.3	43.3	40.2	34.6	28.0
Lead	F	1.0	0.63 R		UJ	UJ	0.51 R	0.56 R
Magnesium	Р	13	1380	983	1400	1470	981	1210
Manganese	Р	2.0	1.8	5.8	1.3		2.0	1.7
Mercury	AV	0.1	LU	UJ	1.2 J	1.3 J	U.J	0.29 J
Nickel	Р	11						
Potassium	Р	2440	17900	9480	15000	20200	11800	12100
Selenium	F	1.4	UJ	0.91 J	UJ	5.8 J	UJ	0.60 J
Silver	Р	3.0	2.2	1.0				1.3
Sodium	Р	2370	3910 U	2790 U	4820 U	3440 U	2510 U	2530 U
Thallium	F	0.6	0.34 U		0.37 U	0.41 U	0.38 U	0.28 U
Vanadium	Р	5.0						
Zinc	Р	11	39.0	51.4	26.8	22.9	33.1	18.2

Roy F. Weston, Inc. 1 Weston Way West Chester, Pennsylvania 19380-1499 © 610-701-3000 • Fax 610-701-3186

ORGANIC QUALITY ASSURANCE REVIEW BAKER ENVIRONMENTAL, INC. - NAVY CLEAN SITE: MCB CAMP LEJEUNE SDG: B5057

REVIEW PERFORMED BY THE ANALYTICS DIVISION OF ROY F. WESTON, INC.

uttles PREPARED BY:_

Kelly Muir Spittler Unit Leader - Data Validation

Date

VERIFIED BY:

Zohreh Hamid, Ph.D. Section Manager - Data Validation

Date

BAKER ENVIRONMENTAL, INC. - NAVY CLEAN SITE: MCB CAMP LEJEUNE SDG: B5057

INTRODUCTION

This quality assurance review is based upon a review of all data generated from nineteen soil samples collected on 05-04,06,08,10,11,13,14,15,16-94. The samples were analyzed according to criteria set forth in the contract laboratory program (CLP) for TCL Volatile, Semivolatile and Pesticide/PCB target compounds by NDRC Laboratories, Inchscape Testing Services.

This review has been performed in accordance with the confirmation method. The reported analytical results are presented as a summary of the data in Attachment II. All of the analytical data were examined to determine the usability of the analytical results and also to determine contractual compliance relative to the analytical requirements and deliverables specified in the CLP method and Sampling and Chemical Analysis Quality Assurance requirements for the Navy Installation Restoration Program (NEESA 20.2-047B). The applicable qualifier codes have been placed next to the results in the data summary to indicate the qualitative and/or quantitative reliability. The details of this evaluation review are presented in the narrative section of this report.

All data have been validated with regard to usability according to the quality assurance set forth in USEPA Laboratory Data Validation Functional Guidelines for Evaluating Organics Analyses. If you have any questions or comments on this data review, please call Zohreh Hamid or Kelly Spittler at (610) 701-3745.

QUALITY ASSURANCE REVIEW

The findings offered in this report are based upon a review of the following criteria:

- Data Completeness
- Holding Time
- GC/MS Tuning
- Calibration
- Blanks
- Surrogate Recoveries
- Matrix Spike/Spike Duplicate
- Laboratory Control Sample
- Internal Standard
- Instrument Performance
- Field Duplicate Results
- Compound Identification
- Compound Quantitation
- * All criteria were met; therefore, a narrative section is not provided for this classification.

Page 2

DATA COMPLETENESS

Volatiles

Sample 35-SS04-000 RE was inadvertently listed as 35-DD04-000 RE throughout the data package. The laboratory should correct and resubmit all of the affected forms.

The complete sample IDs were not listed for this fraction; however, the full IDs are reported in the validation report.

HOLDING TIME

Volatiles

The technical holding time established in the Functional Guidelines (14 days from collection to analysis), has been exceeded for the re-analyses of HC-SD02-612 RE and HC-SD04-612 RE. The laboratory's contractual holding time (10 days from VTSR to analysis) established in the CLP SOW differs for these validation requirements; however, the validator is required by functional guidelines to qualify as estimated the positive results and non-detects in these analyses. However, these analyses are not reported as the representative results.

GC/MS TUNING

Volatiles

Several percent relative abundance results reported on Form V, pages 0068 and 0071 differ slightly from the results reported on the mass spectra/mass list. In either case, the precise percent relative abundance results are within the QC criteria. The laboratory should clarify this discrepancy. Also, the re-analyses were inadvertently listed on the Form V, page 0071. The laboratory should correct this form.

CALIBRATION

Volatiles and Semivolatiles

The following %D results in the continuing calibrations exceeded the 25% QC limit. These calibrations are considered acceptable since less than two (VOA) or four (BNA) check (*) compounds had %Ds outside the criteria. Positive results were not detected for these compounds; therefore, all associated non-detected values for the compounds listed below are qualified as estimated and flagged "UJ". All RRFs were above 0.05; therefore, no qualification is required on this basis.

Page 3

CALIBRATION	INSTRUMENT ID	COMPOUND	<u>%RSD/%D</u>
CC 05-13-94	HP3.i	Acetone	36.8
		2-Butanone	33.6
		4-Methyl-2-Butanone	33.1
		2-Hexanone	29.1
CC 05-20-94	HP3.i	Chloromethane	27.8
		Bromoform	32.4
		Acetone	53.4
		Carbon Disulfide	25.2
		2-Butanone	44.0
		4-Methyl-2-Pentanone	36.0
		2-Hexanone	33.4
CC 05-23-94	HP3.i	Bromomethane	25.8
(10:59)		Acetone	39.3
• · ·		2-Butanone	39.1
		Vinyl Acetate	25.5
		4-Methyl-2-Pentanone	26.9
		2-Hexanone	28.0
CC 05-23-94	HP3.i	Acetone	40.1
(16:10)		1,1-Dichloroethane	43.4
		2-Butanone	38.6
		4-Methyl-2-pentanone	39.3
		2-Hexanone	35.7
CC 06-03-94	HP1.i	4-Chloroaniline	68.8
		3-Nitroaniline	37.5
		4-Nitroaniline	25.5
		3,3-Dichlorobenzidine	33.1
		2,6-Dinitrotoluene	28.8
		2,4-Dinitrophenol	26.3
		4-Nitrophenol	40.9
		Bis(2-ethylhexylphthalate)	35.0
CC 06-07-94	HP1.i	4-Chloroaniline	64.4
		3-Nitroaniline	28.3
		4-Nitroaniline	35.9
		3,3-Dichlorobenzidine	29.6
		2,6-Dinitrotoluene	31.7
		4-Nitrophenol	29.9
		Bis(2-ethylhexylphthalate)	32.5

14.14

Page 4

CALIBRATION	INSTRUMENT ID	COMPOUND	<u>%RSD/%D</u>
CC 06-08-94	HP1.i	4-Chloroaniline	48.5
		3-Nitroaniline	49.4
		Bis(2-chloroethyl)ether	35.9
		Isophorane	27.5
		2,6-Dinitrotoluene	31.8
		2,4-Dinitrophenol	49.7
		Carbazole	31.2

Pesticide/PCBs

The %RSD for decachlorobiphenyl (22.6) exceeded the 20% QC in the initial calibration analyzed on the DB1701 column. Since the %RSDs for the pesticide compounds were within criteria, no qualification is applied on this basis.

The percent resolution for endosulfan sulfate (55.2) for RESCB1 was below the 60% QC limit. Since this compound was not detected in the samples, no action is taken on this basis.

The endrin percent breakdown (46.8) exceeded 20% in the analysis of PEMA3 on the SPB-608 column. Also, the retention time for alpha-BHC was outside the retention time window. Since these performance evaluation mixes were analyzed at the end of the analytical sequence, no qualification is applied on this basis.

The %RPD for endrin ketone in INBMA2 (SPB-608) and INDBMA3 (SPB-608) exceeded the 25% QC limit and the retention times for alpha-BHC in INDAMB2 (DB1701) and INDAMB3 (DB1701) were outside the established windows. Neither of these compounds were detected in the samples; therefore, no qualification is applied on this basis.

BLANKS

Semivolatiles

The following method blank contained a common laboratory contaminant at a level below the CRQL. This compound was not detected in the samples; therefore, no action is required.

<u>BLANK</u>	<u>COMPOUND</u>	<u>LEVEL</u>	
SBLKA	Bis(2-ethylhexyl)phthalate	298 ug/kg	

Pesticide/PCBs

The following method blank contained target compounds at levels below the CRQLs. All associated positive results less than 5X the blank levels are considered laboratory artifacts and are flagged "U".

BLANK

COMPOUND

LEVEL

Method Blank (PBLK)

Delta-BHC Methoxychlor 4,4-DDT

0.70 ug/kg 1.2 ug/kg 0.81 ug/kg

SURROGATE RECOVERIES

Volatiles

The following system monitoring compound recoveries were above the QC limits:

<u>SAMPLE</u>	<u>SURROGATE</u> <u>COMPOUND</u>	<u>RECOVERY</u>	<u>OC LIMITS</u>
35-MW36B-03	1,2-Dichloroethane-d ₄	123	70-121
HC-SD02-612	1,2-Dichloroethane-d ₄	155	70-121
HC-SD01-06	1,2-Dichloroethane-d ₄	122	70-121
35-MW34B-03	4-Bromofluorobenzene	116	59-113
35-SS04-00	1,2-Dichloroethane- d_4	123	70-121
35-SS04-00D	Toluene-d ₈	143	84-138
35-MW37BS-03	1,2-Dichloroethane-d ₄	124	70-121
HC-SD02-612RE	1,2-Dichloroethane-d ₄	225	70-121
35-SS04-00RE	1,2-Dichloroethane-d ₄ Toluene-d ₈	129 148	70-121 59-113
35-SS04-00DRE	1,2-Dichloroethane-d ₄ Toluene-d ₈	271 149	70-121 59-113

Page 5

Page 6

Several of the samples listed above were reanalyzed and similar results were obtained for HC-SD02-612RE, 35-SS04-00RE, and 35-SS04-00DRE; therefore, the original analysis can be used as the representative results. All samples with surrogate outliers have positive results qualified estimated due to exceeded surrogate recovery.

Semivolatiles

The following surrogate recoveries were outside the QC limits. Also, one of the 2chlorophenol-d4 recoveries was outside the limits; however, since this surrogate is advisory; this outlier is not used to qualify the data.

SAMPLE NO.	SURROGATE COMPOUND	RECOVERY	<u>QC LIMITS</u>
SBLKA	Nitrobenzene-d ₅	15	23-120
	2-Fluorobiphenyl	26	30-115
	Phenol-d₅	10	24-113
	2-Fluorophenol	6	25-121
	2,4,6-Tribromophenol	11	19-122
SBLKB	2-Fluorophenol	14	25-121

As for the blanks, since the surrogate recovery criteria were met in the samples, these outliers are believed to be isolated incidents. The sample data are accepted without qualification.

Pesticide/PCBs

All surrogate recoveries were within the requirement limits, except for the following:

SAMPLE NO.	RECOVERY DB608/DB1701	<u>SURROGATE</u> <u>COMPOUND</u>	REASON
HC-SD02-06	6/0	TCX	Advisory Criteria 60-150%
	238/256	DCB	Advisory Criteria 60-150%
HC-SD02-612	9/7	TCX	Advisory Criteria 60-150%
	239/252	DCB	Advisory Criteria 60-150%
HC-SD04-06	47/38	TCX	Advisory Criteria 60-150%
	250/258	DCB	Advisory Criteria 60-150%
HC-SD04-612	13/11	TCX	Advisory Criteria 60-150%
	238/243	DCB	Advisory Criteria 60-150%
HC-SD01-06	166/152	TCX	Advisory Criteria 60-150%
	224/241	DCB	Advisory Criteria 60-150%

Page 7

<u>SAMPLE NO.</u>	<u>RECOVERY</u> <u>DB608/DB1701</u>	<u>SURROGATE</u> COMPOUND	REASON
HC-SD01-612	205/397	DCB	Advisory Criteria 60-150%
PBLK	250/282	DCB	Advisory Criteria 60-150%
PLCS	155/- 270/274	TCX DCB	Advisory Criteria 60-150% Advisory Criteria 60-150%

DCB = Decachlorobiphenyl

TCX = Tetrachloro-m-xylene

Since the requirement limits are advisory and there is no qualification criteria established in Functional Guidelines or NEESA for surrogate outliers in the pesticide/PCB fraction, no action is taken.

MATRIX SPIKE/SPIKE DUPLICATE

Per the laboratory's case narrative, MS/MSD analysis results are not included in this data package, since no sample had been specified on the chain-of-custody for this SDG. No qualification is required due to the lack of MS/MSD analyses.

LABORATORYCONTROL SAMPLE

Volatiles

An LCS analysis was performed in order to fulfill the blank spike analysis requirements established in the NEESA guidelines.

Semivolatiles

An LCS analysis was not performed with this batch of samples. No qualification is required due to the lack of this QC analysis.

Pesticide/PCBs

All LCS recoveries were above the QC limits. No specific qualification is required due to LCS outliers; therefore, no qualification has been applied to the sample data on this basis.

Page 8

INTERNAL STANDARD

Volatiles

The following internal standard areas were outside the control limits:

<u>SAMPLE</u>	<u>INTERNAL</u> STANDARD	AREA	<u>CONTROL</u> <u>LIMITS</u>
HC-SD02-612	BCM	86523	91690-366758
	CBZ	239916	271046-1084182
HC-SD02-612RE	BCM	63009	142652-570610
	DFB	334258	381616-1526466
	CBZ	252755	406259-1625036
HC-SD04-612	CBZ	250601	271046-1084182
HC-SD04-612RE	BCM	140496	142652-570610
	DFB	345284	381616-1526466
	CBZ	290687	406259-1625036
HC-SD01-612	CBZ	243159	271046-1084182
35-SS04-00	DFB	287819	293316-1173266
	CBZ	198797	271046-1084182
35-SS04-00RE	BCM	53896	142652-570610
	DFB	173467	381616-1526466
	CBZ	98536	406259-1625036
35-SS04-00D	BCM	89166	91690-366758
	DFB	244457	293316-1173266
	CBZ	139950	271046-1084182
35-SS04-00DRE	BCM	28723	142692-570610
	DFB	149794	381616-1526466
	CBZ	88136	406259-1625036

BCM = Bromochloromethane DFB = 1,4-Difluorobenzene $CBZ = Chlorobenzene-d_5$

Page 9

All of these samples were re-analyzed and similar internal standard outliers were obtained. These samples are exhibiting matrix effects. Sample analyses HC-SD02-612, HC-SD04-612, HC-SD01-612, 35-SS04-00, and 35-SS04-00D are reported as the representative results; however, all positive results and non-detects quantified in reference to these internal standard outliers are qualified estimated.

Semivolatiles

The following internal standard areas were outside the control limits in the analyses:

<u>SAMPLE</u>	INTERNAL STANDARD	<u>AREA</u>	CONTROL LIMITS
SBLKA	Perylene-d ₁₂	739030	816468-3265870
SBLKC	Perylene-d ₁₂	917663	986700-3946802

All sample internal standard areas were within the control limits; therefore, only the blank results quantified in reference to perylene are considered estimated.

FIELD DUPLICATE RESULTS

One set of field duplicate analyses was provided with this batch of samples (SS04-00/SS04-00D). The sample result reproducibility was satisfactory.

COMPOUND QUANTITATION

Volatiles

The following sample results were inadvertently reported on the Form I's. These compounds were not reported on the quantitation reports and library search spectra were not provided; therefore, these results are reported as the CRQLs on the data validation summary.

<u>SAMPLE</u>

COMPOUND

35-MW34B-03

35-SS04-00

2-Butanone

2-Butanone 4-Methyl-2-pentanone 2-Hexanone

35-MW30BS-04

Dibromochloromethane

INFORMATION REGARDING DATA

The data have been reviewed according to the USEPA National Functional Guidelines for Organic Data Review. All data are validated with regard to usability.

If you have any questions or comments on this data review, please call Kelly Spittler or Zohreh Hamid at (215) 344-3745.

ATTACHMENTS

- 1. Attachment I Glossary of Data Qualifier Codes
- 2. Attachment II Sample Result Summary. This includes:
 - a) A summary of all positive results for the target analytes with the qualifier codes, if applicable;
 - b) All qualified and usable detection limits.
- 3. Attachment III Sample data (Form I) verified by the laboratory.

WILLS IN

ATTACHMENT I GLOSSARY OF DATA QUALIFIER CODES

12

GLOSSARY OF DATA QUALIFIERS

CODES RELATING TO IDENTIFICATION

(confidence concerning presence or absence of compounds):

- W = NOT DETECTED SUBSTANTIALLY ABOVE THE LEVEL REPORTED IN LABORATORY OR FIELD BLANKS.
 [Substantially is equivalent to a result less than 10 times the blank level for common contaminants (methylene chloride, acetone and 2-butanone in the VOA analyses, and common phthalates in the BNA analyses, along with tentatively identified compounds) or less than 5 times the blank level for other target compounds.]
- **R** = UNUSABLE RESULT. THE PRESENCE OR ABSENCE OF THIS ANALYTE CANNOT BE VERIFIED. SUPPORTING DATA NECESSARY TO CONFIRM RESULT.
- **N** = NEGATED COMPOUND. THERE IS PRESUMPTIVE EVIDENCE TO MAKE A TENTATIVE IDENTIFICATION.

CODES RELATING TO QUANTITATION

(can be used for both positive results and sample quantitation limits):

- J = ANALYTE WAS POSITIVELY IDENTIFIED. REPORTED VALUE MAY NOT BE ACCURATE OR PRECISE.
- UJ = ANALYTE WAS NOT DETECTED ABOVE THE CRQL. THE REPORTED QUANTITATION LIMIT IS QUALIFIED ESTIMATED.

OTHER CODES

 \mathbf{Q} = NO ANALYTICAL RESULT.

.

ATTACHMENT II SAMPLE RESULT SUMMARY

.

CLIENT: BAKER ENVIRONMENTAL, INC. SDG NO.: B5057

Client Sample ID: Matrix: Dilution Factor: Units:	35-MW36B-3 SOIL 1.0 UG/KG	HC-SD02-06 SOIL 1.0 UG/KG	HC-SD02-612 SOIL 1.0 UG/KG	HC-SD04-06 SOIL 1.0 UG/KG	HC-SD04-612 SOIL 1.0 UG/KG	HC-SD01-06 SOIL 1.0 UG/KG	HC-SD01-612 SOIL 1.0 UG/KG
COMPOUND							
Bromomethane Vinyl Chloride Chloroethane Methylene Chloride			LU LU UJ				
Acetone Carbon Disulfide 1,1 – Dichloroethene 1,1 – Dichloroethane 1,2 – Dichloroethene (TOTAL)	119 J	UJ 14	UJ 19 J UJ UJ UJ	UJ	UJ	70 J	U.
Chloroform 1,2 – Dichloroethane 2 – Butanone 1,1,1 – Trichloroethane Carbon Tetrachloride	UJ	IJ	րդ Մ1 Մ1	IJ	IJ	7 J	UL
Bromodichloromethane 1,2-Dichloropropane cis-1,3-Dichloropropene Trichloroethene Dibromochloromethane 1,1,2-Trichloroethane							
Benzene Trans – 1,3 – Dichloropropene Bromoform							
4-Methyl-2-Pentanone 2-Hexanone Tetrachloroethene 1,1,2,2Tetrachloroethane Toluene Chlorobenzene Ethylbenzene Styrene Xylene (total)	UJ UJ	UJ	11 11 11 11 11 11 11 11 11 11	UJ	11 12 12 12 13 13 13 13 13 13 13 13 13	μ	U. U. U. U. U. U. U. U.

.

CLIENT: BAKER ENVIRONMENTAL, INC. SDG NO.: B5057

		······································				and the second sec	
Client Sample ID; Matrix: Dilution Factor: Units:		35-MW34B-03 SOIL 1.0 UG/KG	35-SS04-00 SOIL 1.0 UG/KG	35-SS04-00D SOIL 1.0 UG/KG	35 MW30B01 SOIL 1.0 UG/KG	35 MW35B01 SOIL 1.0 UG/KG	35-MW29B-01 SOIL 1.0 UG/KG
COMPOUND						<u> </u>	
Bromomethane Vinyl Chloride Chloroethane Methylene Chloride				רח הח חח חח			
Acetone Carbon Disulfide 1,1-Dichloroethene 1,1-Dichloroethane 1,2-Dichloroethene (TOTAL) Chloroform 1,2-Dichloroethane	J	144 J	311 J	358 J UJ UJ UJ UJ UJ	UJ	UJ	UJ
2-Butanone 1,1,1-Trichloroethane Carbon Tetrachloride Bromodichloromethane 1,2-Dichloropropane cis-1,3-Dichloropropene Trichloroethene Dibromochloromethane 1,1,2-Trichloroethane Benzene	J	13 UJ	43 U UJ UJ UJ UJ UJ UJ UJ UJ UJ	01 01 01 01 01 01 01 01 01	ΓU	L	ſIJ
Trans-1,3-Dichloropropene			UJ	UJ			
4-Methyl-2-Pentanone 2-Hexanone Tetrachloroethene) } }	LU LU	43 UJ 43 UJ 43 UJ UJ		. UJ	UJ UJ	UJ UJ
Toluene Chlorobenzene Ethylbenzene Styrene	, , , , , , , , , , , , , , , , , , ,		01 01 01 01 01 02	01 01 01 01 01			
Chloromethane	r I		UJ	UJ			

ii.

CLIENT: BAKER ENVIRONMENTAL, INC. SDG NO.: B5057

Client Sample ID: Matrix: Dilution Factor: Units:	35-MW30BS-04 SOIL 1.0 UG/KG	35-MW33BS-05 SOIL 1.0 UG/KG	35-MW26BS-04 SOIL 1.0 UG/KG	35MW32BS-03 SOIL 1.0 UG/KG	35-MW38BS-03 SOIL 1.0 UG/KG	35–MW37BS–03 SOIL 1.0 UG/KG	
COMPOUND							
Bromomethane Vinyl Chloride Chloroethane	UJ	UJ	UJ	UJ	IJ	UJ	
Methylene Chloride	7 J	7			7 J	7 J	
Acetone		UJ	UJ	UJ	UJ	UJ	
Carbon Disulfide	U.J	ŬĴ	UJ	UJ	UJ	UJ	
1,1-Dichloroethene 1,1-Dichloroethene 1,2-Dichloroethene (TOTAL) Chloroform 1,2-Dichloroethane							
2-Butanone 1,1,1-Trichloroethane Carbon Tetrachloride Bromodichloromethane 1,2-Dichloropropane cis-1,3-Dichloropropene Trichloroethane	UJ	UJ ,	ΓIJ	UJ	LU	UJ	
Dibromochloromethane 1,1,2-Trichloroethane Benzene Trans-1,3-Dichloropropene	12 U						
Bromotorm	113	11.1	U. 1	U.J	UJ	UJ	
4-Methyl-2-Pentanone		00	UJ	UJ	UJ	UJ	
2-Hexanone Tetrachloroethene 1,1,2,2-Tetrachloroethane Toluene Chlorobenzene Ethylbenzene Styrene	60	8		10		23 J	
Xylene (total) Chloromethane	UJ	UJ	IJ	UJ	UJ	UJ	

.

CLIENT: BAKER ENVIRONMENTAL SDG NO.: B5057

Client Sample ID: Matríx: Dilution Factor: Units:	HC-SD02-06 SOIL 1.0 ug/Kg	HC-SD02-612 SOIL 1.0 ug/Kg	HC-SD04-06 SOIL 1.0 ug/Kg	HC-SD04-612 SOIL 1.0 ug/Kg	HC-SD01-612 SOIL 1.0 ug/Kg	35-SS04-00 SOIL 1.0 ug/Kg
COMPOUND						
Phenol						
bis(2-Chloroethyl)ether			UJ	UJ	UJ	UJ
2-Chlorophenol						
1,3-Dichlorobenzene						
1,4-Dichlorobenzene						
1,2-Dichlorobenzene						
2-Methylphenol				-		
2,2'-oxybis(1-Chloropropane)						
4-Methylphenol						
N-Nitroso-di-n-propylamine						
Hexachloroethane						
Nitrobenzene						
Isophorone			UJ	UJ	UJ	UJ
2-Nitrophenol						
2,4-Dimethylphenol						
bis(2-Chloroethoxy)methane						
2,4-Dichlorophenol						
1,2,4-Trichlorobenzene						
Naphthalene						
4-Chloroaniline	UJ	UJ	UJ	UJ	UJ	UJ
Hexachlorobutadiene						
4-Chloro-3-methylphenol						
2-Methylnaphthalene						
Hexachlorocyclopentadiene						
2,4,6-Trichbrophenol						
2,4,5-Trichlorophenol						
2-Chloronaphthalene						
2–Nitroaniline						
Dimethylphthalate						
Acenaphthylene						
2,6-Dinitrotoluene	UJ	UJ	UJ	UJ	UJ	UJ
3-Nitroaniline	UJ	UJ	UJ	UJ	UJ	UJ
Acenaphthene						
(C.

CLIENT: BAKER ENVIRONMENTAL SDG NO.: B5057

Client Sample ID: Matrix: Dilution Factor: Units:	HC-SD02-06 SOIL 1.0 ug/Kg	HC-SD02-612 SOIL 1.0 ug/Kg	HC-SD04-06 SOIL 1.0 ug/Kg	HC-SD04-612 SOIL 1.0 ug/Kg	HC-SD01-612 SOIL 1.0 ug/Kg	35-SS04-00 SOIL 1.0 ug/Kg
COMPOUND						
2,4-Dinitrophenol Dibenzofuran 4-Nitrophenol 2,4-Dinitrotoluene Diethylphthalate Fluorene	UJ	UJ	UJ	UJ	UJ	UJ
4-Chlorophenyl-phenylether 4-Nitroaniline 4,6-Dinitro-2-methylphenol N-Nitrosodiphenylamine 4-Bromophenyl-phenylether Hexachlorobenzene Pentachlorophenol Phenanthrene	UJ	UJ				
Anthracene Carbazole Di-n-butylphthalate Fluoranthene Pyrene Butylbenzylphthalate Benzo(a)anthracene			UJ	UJ	UJ	UJ
3,3-Dichlorobenzidine	UJ	UJ				
bis(2-Ethylhexyl)phthalate Di-n-octylphthalate Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(a)pyrene Indeno(1,2,3-cd)pyrene Dibenz(a,h)anthracene Benzo(g,h,i)perylene	LU	UJ				

CLIENT: BAKER ENVIRONMENTAL SDG NO.: B5057

Client Sample ID: Matrix: Dilution Factor: Units:	35SS0400D SOIL 1.0 ug/Kg	35-MW30B-01 SOIL 1.0 ug/Kg	35-MW29B-01 SOIL 1.0 ug/Kg	
COMPOUND				
Phenol				
bis(2-Chloroethyl)ether	UJ	UJ	UJ	
2-Chlorophenol				
1.3-Dichlorobenzene				
1,4-Dichlorobenzene				
1,2-Dichlorobenzene				
2-Methylphenol				
2,2'-oxybis(1-Chloropropane)				
4-Methylphenol				
N-Nitroso-di-n-propylamine				
Hexachloroethane				
Nitrobenzene				
Isophorone	UJ	UJ	UJ	
2-Nitrophenol				
2,4-Dimethylphenol				
bis(2-Chloroethoxy)methane				
2,4-Dichlorophenol				
1,2,4-Trichlorobenzene				
Naphthalene				
4-Chloroaniline	UJ	UJ	UJ	
Hexachlorobutadiene				
4-Chloro-3-methylphenol				
2-Methylnaphthalene				
Hexachlorocyclopentadiene				
2,4,6-Trichlorophenol				
2,4,5-Trichlorophenol				
2-Chloronaphthalene				
2-Nitroaniline				
Dimethylphthalate				
Acenaphthylene				
2,6-Dinitrotoluene	UJ	UJ	UJ	
3-Nitroaniline	UJ	UJ	UJ	
Acenaphthene				
1. Contract (1. Co				اله

CLIENT: BAKER ENVIRONMENTAL SDG NO.: B5057

Client Sample ID: Matrix: Dilution Factor: Units:	35–SS04–00D SOIL 1.0 ug/Kg	35MW30B01 SOIL 1.0 ug/Kg	35MW29B01 SOIL 1.0 ug/Kg		
COMPOUND				 	
2,4 – Dinitrophenol Dibenzofuran 4 – Nitrophenol 2,4 – Dinitrotoluene Diethylphthalate Fluorene	UJ	UJ	UJ		
4-Chlorophenyl-phenylether 4-Nitroaniline 4,6-Dinitro-2-methylphenol N-Nitrosodiphenylamine 4-Bromophenyl-phenylether Hexachlorobenzene					
Pentachlorophenol Phenanthrene					
Anthracene Carbazole Di $-n$ -butylphthalate Fluoranthene	UJ	UJ	UJ		
Pyrene Butylbenzylphthalate Benzo(a)anthracene 3,3-Dichlorobenzidine Chrysene bis(2-Ethylhexyl)phthalate Di-n-octylphthalate Benzo(b)fluoranthene Benzo(a)pyrene Indero(1,2,3-cd)pyrene Dibenz(a,h)anthracene Benzo(g,h,i)perylene					

.

ROY F. WESTON, INC. PESTICIDE/PCB ANALYSES - DATA VALIDATION SUMMARY

CLIENT: BAKER ENVIRONMENTAL

Client Sample ID:	HC-SD02-06	HC-SD02-612	HC-SD04-06	HC-SD04-612	HC-SD01-06	HC-SD01-612
Matrix:	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL
Dilution Factor:	1.0	1.0	1.0	1.0	1.0	1.0
Units:	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg
COMPOUND	,				n - L - , ,	
alpha-BHC						
beta-BHC				1.7 J		
delta-BHC	4.2 U	2.8 U	2.3 U		2.4 U	
gamma-BHC(Lindane)						
Heptachlor				2 J	0.48 J	
Aldrin						
Heptachlor Epoxide						
Endosulfan I						
Dieldrin						
4,4'-DDE						
Endrin						
Endosulfan II						
4,4'-DDD	1.5 J					
Endosulfan Sulfate						
4,4'-DDT						
Methoxychlor	42 U		0.94 J		24 U	
Endrin Ketone						
Endrin Aldehyde	7.1 J	0.77 J			0.59 J	
alpha-Chlordane						
gamma-Chlordane						
Toxaphene						
Aroclor 1016						
Aroclor 1221						
Aroclor 1232						
Aroclor 1242						
Aroclor 1248						
Aroclor 1254						
Aroclor 1260						

Roy F. Weston, Inc. 1 Weston Way West Chester, Pennsylvania 19380-1499 8 610-701-3000 • Fax 610-701-3186

INORGANIC QUALITY ASSURANCE REVIEW BAKER ENVIRONMENTAL, INC. SITE: MCB CAMP LEJEUNE SDG NO.: BA5057

REVIEW PERFORMED BY THE ANALYTICS DIVISION OF ROY F. WESTON, INC.

VERIFIED BY:

NO

Zohreh Hamid, Ph.D. Section Manager - Data Validation

8-10-94

Date

BAKER ENVIRONMENTAL, INC. - NAVY CLEAN SITE: MCB CAMP LEJEUNE SDG: BA5057

CASE SUMMARY

This data validation review consists of eleven (11) soil samples received on 05-07,10,11-94. Laboratory analyses were performed by NDRC Laboratories, Inchscape Testing Services for TAL metals.

All data have been validated with regard to usability according to the quality assurance set forth in Inorganic Functional Guidelines and Naval Energy and Environmental Support Activity (NEESA). If you have any questions or comments on this data review, please contact Zohreh Hamid at (610) 701-3745.

The following samples are contained within this report:

35MW29	358804	HCSD01	SD0612
35MW30	35SS4D	HCSD02	SD4612
35MW35	HCS612	HCSD04	

QUALITY ASSURANCE REVIEW

The findings offered in this report are based upon a rigorous review of the following criteria.

- Holding Time
- Calibration
- Contract Required Detection Limit Samples
- Blank Samples
- Interference Check Samples
- Matrix Spike
- Duplicate Digestion Samples
- Laboratory Control Sample
- Serial Dilution Sample
 - Graphite Furnace Analysis
- * Quarterly Verification of Instrument Parameters
 - Sample Result Verification
- * Preparation Logs
 - Run Logs

*

*

*

*

- Data Package Completeness
- * All criteria were met; therefore, a narrative section is not provided for this classification.

Page 2

HOLDING TIMES

The preparation/analysis holding time exceeded the requirement limits (28 days from collection) in mercury analysis; therefore, the reported results and non-detected values are qualified estimated. Affected samples: 35MW29, 35MW30, 35MW35, 35SS04D, and 35SS04.

CALIBRATION

The percent recoveries for mercury (120.4%) in the initial calibration were above the 120% requirement limit. The reported sample results are not qualified based on this outlier since the deviation is marginal.

CONTRACT REQUIRED DETECTION LIMIT SAMPLE ANALYSES

The CRDL recovery for lead (143.3% & 136.7%), Sb (121%), Be (130%), Se (130%), and Zn (126%) were above the upper data validation requirement limits of 120\%. The positive results greater than the IDLs but less than 3X the CRDLs for these analytes are qualified estimated due to the uncertainty near the detection limits.

Note: The additional qualifier code was not applied if the sample result has already been qualified "U" due to blank contamination.

BLANK ANALYSES

The laboratory blank had the following contaminations at levels above the IDLs, but below the CRDLs.

ANALYTE	CONC. MG/KG	ACTION LEVEL MG/KG *
Al	9	45
Fe	5.4	27
Mg	8.5	42.5
Zn	1.8	9

* Action level = 5X the blank concentration.

Page 3

The reported sample results for Al and Fe were above the action levels. The results for Mg and Zn up to the action levels are qualified "U" for these analytes due to the laboratory blank contamination.

The preparation and initial calibration blanks had lead (0.34 mg/kg) and mercury (0.2 & 0.4 ug/L) at levels above the CRDL, respectively. The results up to 10X the blank contaminations are rejected in the samples. The results above the 10X the blank level are considered as true values and are accepted unqualified.

Affected samples: mercury in all samples lead in samples HCS612, HCSD01, HCSD02, HCSD04, BD0612, and SD4612

INTERFERENCE CHECK SAMPLES

The percent recoveries for the TAL analytes analyzed by ICP were within the control limits. Calcium was not included in ICS A standard solution. The ICP interference could not be evaluated; therefore, the reported sample data for Ca are qualified estimated.

MATRIX SPIKE SAMPLE ANALYSIS

The spike recoveries for Sb (68.6%), As (70.4%), and Se (74.4%) were below the lower control limit of 75%. The reported sample results and non-detected values are qualified estimated (J and UJ) due to the possible matrix interferences.

DUPLICATE DIGESTION SAMPLES

The RPDs for all analytes in the laboratory duplicate sample analysis were within the control limits, with the exception of zinc. However, the limit was within the $(\pm 2 \text{ x CRDL})$ data validation requirement limit. Therefore, the data are not qualified based on this outlier. One set of field duplicates (35SS04/4D) was analyzed for this batch. The RPDs were within the control limits for the analytes detected at levels above the corresponding CRDLs.

Page 4

SERIAL DILUTION SAMPLE ANALYSIS

The %Difference for Al (19.1%) and Ba (207%) were above the analysis and data validation requirement limits. The reported sample results are considered biased and are qualified estimated due to the possible matrix and/or the physical interferences.

GRAPHITE FURNACE ANALYSIS

The following samples analyzed by graphite furnace had the analytical spike recoveries outside the control limits of 85-115%:

SAMPLE ID	ANALYTE	<u>% RECOVERY</u>
35MW29	As/Se	78.5/76
35MW30	As/Se	73.5/73
35MW35	As/Se	75.5/80
35SS04	Se	70
HCS612	Se	60
HCSD01	Se	68.8
HCSD02	As/Se	77.5/70
HCSD04	As	83.5
SD0612	Se	77

The reported data are qualified estimated.

Arsenic in samples 35SS04 and 35SS4D were analyzed by the Method of Standard Addition (MSA). The linearity did not meet the control limit of " $r \ge 0.995$ " in the original and reanalysis of sample 35SS04. The reported result is rejected in the sample.

The linearity did not meet the requirement limit of " $r \ge 0.995$ "in the cadmium standard curve analysis performed by graphite furnace. The reported data are considered estimated.

Page 5

SAMPLE RESULTS

Arsenic, cadium, lead, selenium, and thallium were analyzed by graphite furnace. Other elements were analyzed by ICP. Mercury was analyzed by automated cold vapor AA.

DATA PACKAGE COMPLETENESS

The case number was not identified for this batch. The sample analyses were classified under an SDG number.

The ICP interelement correction factor (Form XI, Part II) was not included in this data package.

SUMMARY

The quality of the data was fair. The % recovery for one element exceeded the requirement limit in calibration curve analysis. The initial and continuing calibration blanks had mercury at a level above the CRDL. The calcium analysis was not performed with the ICP elements in the ICP interference check sample. The holding time exceeded the requirement limit for mercury analysis. The CRDL recoveries exceeded the upper control limit of 120% for some elements. The matrix spike recovery for three elements were below the lower control limit of 75%.

INFORMATION REGARDING DATA

The data have been reviewed according to the USEPA National Functional Guidelines for Inorganic Data Review. All data are validated with regard to usability.

If you have any questions or comments on this data review, please call Zohreh Hamid at (215) 344-3745.

ATTACHMENTS

- 1. Attachment I Glossary of Data Qualifier Codes
- 2. Attachment II Sample Result Summary. This includes:
 - a) A summary of all positive results for the target analytes with the qualifier codes, if applicable;
 - b) All qualified and usable detection limits.
- 3. Attachment III Sample data (Form I) verified by the laboratory.

ATTACHMENT I GLOSSARY OF DATA QUALIFIER CODES

GLOSSARY OF DATA QUALIFIERS

CODES RELATING TO IDENTIFICATION

(confidence concerning presence or absence of compounds):

- U = NOT DETECTED SUBSTANTIALLY ABOVE THE LEVEL REPORTED IN LABORATORY OR FIELD BLANKS.
- **R** = UNRELIABLE RESULT. ANALYTE MAY OR MAY NOT BE PRESENT IN THE SAMPLE. SUPPORTING DATA NECESSARY TO CONFIRM RESULT.
- N = NEGATED COMPOUND WAS CONSIDERED AS NOT PRESENT IN THE SAMPLE.

(NO CODE) = CONFIRMED IDENTIFICATION

CODES RELATING TO QUANTITATION

(can be used for both positive results and sample quantitation limits):

- J = ANALYTE PRESENT. REPORTED VALUE MAY NOT BE ACCURATE OR PRECISE.
- **UJ** = THE REPORTED QUANTITATION LIMITS ARE QUALIFIED ESTIMATED.

OTHER CODES

 \mathbf{Q} = NO ANALYTICAL RESULT.

•.

ATTACHMENT II SAMPLE RESULT SUMMARY

.....

dan ing kanalagan ka

-

.

ROY F. WESTON, INC. INORGANIC ANALYSES - DATA VALIDATION SUMMARY

CLIENT: BAKER ENVIRONMENTAL, INC. SDG NO.: BA5057

Ň

Client Sam	ple ID: Matrix: Solide:		35MW29 SOIL 88.6	35MW30 SOIL 87.8	35MW35 SOIL	35SS04 SOIL	35SS4D SOIL	HCS612 SOIL	HCSD01 SOIL
/0 (Units:		MG/KG	MG/KG	MG/KG	MG/KG	MG/KG	MG/KG	MG/KG
INORGANIC ELE	EMENTS							·····	
	_	IDL (ug/L)							
Aluminium	P	20	2860 J	3510 J	1870 J	9550 J	12700 J	10100 J	2940 J
Antimony	P	46	UJ	UJ	UJ	UJ	UJ	UJ	UJ
Arsenic	F	1.2	0.68 J	0,82 J	0.4 J	9.8 J	9.3 J	1.9 J	0.46 J
Barium	P	1.0	8.6 J	12.5 J	5.4 J	34.8 J	38.8 J	8.7 J	16.3 J
Beryllium	Р	1.0				1.3 J		0.32 J	0.14 J
Cadmium	F	0.2	0.07 J	0.09 J	0.04 J	0.43 J	0.42 J	0.04 J	0.03 J
Calcium	Р	1700	1990 J	2420 J	361 J	6900 J	6500 J	1610 J	3620 J
Chromium	Р	7.0	3.6	4	3.4	18.5	22.4	6	2.3
Cobait	Р	11							
Copper	P	2.0	2.9	8.5	1.2	13.3	12.1	0.81	1
Iron	Р	13	1390	1850	1170	6220	6490	4630	648
Lead	F	0.6	144	11	10	82.8	74.6	7.1 R	0.77 R
Magnesium	Р	13	188	200	58.3 U	2680	2660	1040	87.7
Manganese	Р	2	7.1	7.5	3.2	15	15.5	4.9	6.9
Mercury	CV	0.1	0.16 R	0.14 R	0.14 R	0.69 R	0.73 R	0.24 R	0.19 R
Nickel	Р	11			1.2	5.6	5.2	1.8	
Potassium	Р	2440							
Selenium	F	1.4	0.17 J	0.28 J	UJ	0.86 R	UJ	0.47 J	0.27 J
Silver	Р	0.2							
Sodium	Р	2370				2200	2140	1630	
Thallium	F	0.5		0.15		0.52	0.43	0.28	0,14
Vanadium	Р	11	5.5	5.5	4.4	26.2	27.2	7	2.6
Zinc	Р		16.3	10.8 U	6.3 U	46.4	62.9	6.6 U	4,9 U

ROY F. WESTON, INC. INORGANIC ANALYSES - DATA VALIDATION SUMMARY

CLIENT: BAKER ENVIRONMENTAL, INC. SDG NO.: BA5057

Client Sam	ple ID:		HCSD02	HCSD04	SD0612	SD4612		
i	Matrix:		SOIL	SOIL	SOIL	SOIL		
% \$	Solids:		40.3	75.3	61.6	68.8		
	Units:		MG/KG	MG/KG	MG/KG	MG/KG		
INORGANIC ELE	EMENTS						 	
		IDL (ug/L)						
Aluminium	Р	20	7820 J	780 J	1880 J	1260 J		
Antimony	Р	46	UJ	UJ	UJ	UJ		
Arsenic	F	1.2	1.1 J	0.45 J	0.28 J	0.26 J		
Barium	Р	1.0	9.2 J	4.1 J	14.6 J	5.5 J		
Beryllium	Р	1.0	0.25 J					
Cadmium	F	0.2	0.1 J	0.03 J	0.03 J	ÚJ		
Calcium	Р	1700	2030 J	1030 J	3330 J	2150 J		
Chromium	Р	7.0	6	2	3.2	1.3		
Cobalt	Р	11						
Copper	Р	2.0	1.5	0.66	1.1	0.73		
Iron	Р	13	3660	382	586	583		
Lead	F	0.6	1.1 R	1 R	0.88 R	1.1 R		
Magnesium	Р	13	1450	48.2 U	77.1	62.5 U		
Manganese	Р	2	6.5	3.7	6,5	3.5		
Mercury	CV	0.1	0.42 R	0.11 R	0.13 R	0.08 R		
Nickel	Р	11						
Potassium	Р	2440	623					
Selenium	F	1.4	0.6 J	0.21 J	0.34 J	UJ		
Silver	Р	0.2						
Sodium	Р	2370	2750					
Thallium	F	0.5	0.42		0.16			
/anadium	Р	11	8.4	1.5	2.8	1.9		
Zinc	Р		9.7 U	4.5 U	4.5 U	8.3 U		

Roy F. Weston, Inc. 1 Weston Way West Chester, Pennsylvania 19380-1499 © 610-701-3000 • Fax 610-701-3186

ORGANIC QUALITY ASSURANCE REVIEW BAKER ENVIRONMENTAL, INC. - NAVY CLEAN SITE: MCB CAMP LEJEUNE SDG: B5167

REVIEW PERFORMED BY THE ANALYTICS DIVISION OF ROY F. WESTON, INC.

rittle PREPARED BY: 9 11

Kelly Mur Spittler Unit Leader - Data Validation

VERIFIED BY:

Zohreff Hamid, Ph.D. Section Manager - Data Validation

08-02-94 Date

08-02-94 Date

Date

BAKER ENVIRONMENTAL, INC. - NAVY CLEAN SITE: MCB CAMP LEJEUNE SDG: B5167

INTRODUCTION

This quality assurance review is based upon a review of all data generated from ten water samples, three trip blanks and four rinsate blanks collected on 05-06,07,08,09,10-94. The samples were analyzed according to criteria set forth in the contract laboratory program (CLP) for TCL Volatile, Semivolatile and Pesticide/PCB target compounds and SW846 Methods 60/602 for Benzene, Toluene, Ethylbenzene and Xylene by NDRC Laboratories, Inchscape Testing Services.

This review has been performed in accordance with the confirmation method. The reported analytical results are presented as a summary of the data in Attachment II. All of the analytical data were examined to determine the usability of the analytical results and also to determine contractual compliance relative to the analytical requirements and deliverables specified in the CLP method and Sampling and Chemical Analysis Quality Assurance requirements for the Navy Installation Restoration Program (NEESA 20.2-047B). The applicable qualifier codes have been placed next to the results in the data summary to indicate the qualitative and/or quantitative reliability. The details of this evaluation review are presented in the narrative section of this report.

All data have been validated with regard to usability according to the quality assurance set forth in USEPA Laboratory Data Validation Functional Guidelines for Evaluating Organics Analyses. If you have any questions or comments on this data review, please call Zohreh Hamid or Kelly Spittler at (610) 701-3745.

QUALITY ASSURANCE REVIEW

The findings offered in this report are based upon a review of the following criteria:

- Data Completeness
- Holding Time
- GC/MS Tuning
- Calibration
- Blanks
- Surrogate Recoveries
- Matrix Spike/Spike Duplicate
- Laboratory Control Sample
- Internal Standard
- Instrument Performance
- Field Duplicate Results
- * Compound Identification
- * Compound Quantitation
- * All criteria were met; therefore, a narrative section is not provided for this classification.

Page 2

DATA COMPLETENESS

General

The chain-of-custody for the soil/sediment samples were included in this data package; however, the sample analyses were not provided with this SDG.

Volatiles

The raw data was missing for the analysis of 35-RB18. The laboratory should provide this documentation.

HOLDING TIME

Volatiles

The technical holding time established in the Functional Guidelines (7 days from collection to analysis), has been exceeded for samples HC-SW03, HC-SW03D, HC-SW02, HM-SW02, HM-SW03, WC-SW02, WC-SW03, 35-SW12, 35-RB13, 35-TB26. The laboratory's contractual holding time (10 days from VTSR to analysis) established in the CLP SOW differs for these validation requirements; however, the validator is required by functional guidelines to qualify as estimated the positive results and non-detects in these analyses. It is the data validator's opinion that these results can be accepted with the qualifier codes.

CALIBRATION

Volatiles and Semivolatiles

The following %D results in the continuing calibrations exceeded the 25% QC limit. These calibrations are considered acceptable since less than two (VOA) or four (BNA) check (*) compounds had %Ds outside the criteria. Positive results were not detected for these compounds; therefore, all associated non-detected values for the compounds listed below are qualified as estimated and flagged "UJ". All RRFs were above 0.05; therefore, no qualification is required on this basis.

Page 3

CALIBRATION	INSTRUMENT ID	COMPOUND	<u>%RSD/%D</u>
CC 05-15-94	HP4.i	Chloromethane	34.1
		Bromoform	48.1
		Tetrachloroethene	40.0
CC 05-16-94	HP1.i	2,2'-oxybis(1-chloropropane)	55.4
		N-Nitroso-di-n-propylamine	27.3
		Hexachlorobutadiene	28.6
		Hexachlorocyclopentadiene	28.2
		Dimethylphthalate	91.3
		4-Nitrophenol	53.3
		Butylbenzylphthalate	28.5
		Bis(2-ethylhexyl)phthalate	26.9
		Di-n-octylphthalate	41.1
		3,3-Dichlorobenzidine	50.8
CC 05-17-94	HP1.i	2.2'-oxybis(1-chloropropane)	99.7
		N-Nitroso-di-n-propylamine	31.8
		2.4-Dinitrophenol	26.6
		4-Nitrophenol	36.9
		Bis(2-ethylhexyl)phthalate	30.3
		3-Nitroaniline	35.5
		4-Nitroaniline	42.7
		3,3-Dichlorobenzidine	26.1
CC 05-18-94	HP1.i	N-Nitroso-di-propylamine	37.0
		4-Nitrophenol	36.1
		Bis(2-ethylhexyl)phthalate	25.1
		3-Nitroaniline	38.2
		4-Nitroaniline	39.7
		3,3-Dichlorobenzidine	30.7

.

Volatiles (601/602)

The calibration data met the requirements established in the method. Also, the correlation coefficients were above 0.99 in the initial calibration.

Page 4

<u>BLANKS</u>

Volatiles

The following trip blank contained a common laboratory contaminant at a level above the CRQL. Since this compound was not detected in the other water samples, no action is required.

BLANK	COMPOUND	<u>LEVEL</u>
35-TB28	Methylene Chloride	32 ug/L

Pesticide/PCBs

The following method blanks contained target compound methoxychlor at levels below the CRQLs. All associated positive results less than 5X the blank levels are considered laboratory artifacts and are flagged "U".

BLANK	<u>COMPOUND</u>	<u>LEVEL</u>
Method Blank (PBLKA)	Delta-BHC Methoxychlor	0.12 ug/L 0.045 ug/L
Method Blank (PBLKB)	Delta-BHC	0.011 ug/L

SURROGATE RECOVERIES

Semivolatiles

The following surrogate recoveries were outside the QC limits. Also, several of the 2chlorophenol-d4 recoveries were outside the limits; however, since this surrogate is advisory; the outliers are not used to qualify the data.

<u>SAMPLE NO.</u>	SURROGATE COMPOUND	RECOVERY	<u>QC LIMITS</u>
SBLKB	Phenol-d5	9	30-110
	2-Fluorophenol	9	30-120
	2,4,6-Tribromophenol	9	25-135
HC-SW02	2-Fluorophenol	27	30-120

Page 5

Since only one surrogate recovery was outside the QC limits in sample analysis HC-SW02, no qualification is required due to this surrogate outlier. As for the blank, since the surrogate recovery criteria were met in the samples, these outliers are believed to be an isolated incident. The sample data are accepted without qualification.

Pesticide/PCBs

All surrogate recoveries were within the requirement limits, except for the following:

SAMPLE NO.	<u>RECOVERY</u> DB608/DB1701	SURROGATE COMPOUND	REASON
HC-SW03	59/-	DCB	Advisory Criteria 60-150%
HC-SW03D	54/-	DCB	Advisory Criteria 60-150%
HC-SW02	57/-	DCB	Advisory Criteria 60-150%
HM-SW02	46/-	DCB	Advisory Criteria 60-150%
HM-SW03	58/-	DCB	Advisory Criteria 60-150%
WC-SW02	48/-	DCB	Advisory Criteria 60-150%
WC-SW03	41/-	DCB	Advisory Criteria 60-150%
HC-SW01MS	15/14 58/-	TCX/TCX DCB	Advisory Criteria 60-150% Advisory Criteria 60-150%
35-RB14	55/-	DCB	Advisory Criteria 60-150%

DCB = Decachlorobiphenyl

TCX = Tetrachloro-m-xylene

Since the requirement limits are advisory and there is no qualification criteria established in Functional Guidelines or NEESA for surrogate outliers in the pesticide/PCB fraction, no action is taken.

MATRIX SPIKE/SPIKE DUPLICATE

Pesticide/PCBs

The following MS/MSD recoveries were outside the QC limits in the analyses of HC-SW01 MS/MSD.

Page 6

SAMPLE	<u>COMPOUND</u>	RECOVERY	LIMIT
MS/MSD	Gamma-BHC	41/42	56-123
MSD	Heptachlor	35	40-131

Since these compounds were not detected in the unspiked sample, and no qualification is required based on MS outliers, the sample data are accepted unqualified.

Volatiles (601/602)

Most of the spike recoveries were within the 60-140% QC range, with the exception of those listed below. Since these compounds were not detected in the samples, no action is required.

SAMPLE	SPIKE COMPOUND	RECOVERY
MSD	Bromodichloromethane	147
MS	1,2-Dichlorobenzene	168
MSD	1,2-Dichlorobenzene	183
LCS	1,2-Dichlorobenzene	169

LABORATORY CONTROL SAMPLE

An LCS analysis was performed in order to fulfill the blank spike analysis requirements established in the NEESA guidelines.

INTERNAL STANDARD

Semivolatiles

The following internal standard areas were outside the control limits in the sample analyses:

<u>SAMPLE</u>	INTERNAL STANDARD	<u>AREA</u>	CONTROL LIMITS
HM-SW02	Perylene-d ₁₂	7154	364798-1459192

Page 7

SAMPLE	INTERNAL STANDARD	<u>AREA</u>	CONTROL LIMITS
SBLKB	Perylene-d ₁₂	296248	307352-1229406
SBLKC	Perylene-d ₁₂	151031	327343-1309372

Sample HM-SW02 was not re-extracted/reanalyzed; therefore, the non-detects quantified in reference to perylene in the original analyses are qualified estimated since positive results were not detected. The blank results quantified in reference to perylene are also considered estimated.

FIELD DUPLICATE RESULTS

One set of field duplicate analyses was provided with this batch of samples (HC-SW03/HC-SW03D). The sample result reproducibility was satisfactory.

INFORMATION REGARDING DATA

The data have been reviewed according to the USEPA National Functional Guidelines for Organic Data Review. All data are validated with regard to usability.

If you have any questions or comments on this data review, please call Kelly Spittler or Zohreh Hamid at (215) 344-3745.

ATTACHMENTS

- 1. Attachment I Glossary of Data Qualifier Codes
- 2. Attachment II Sample Result Summary. This includes:
 - a) A summary of all positive results for the target analytes with the qualifier codes, if applicable;
 - b) All qualified and usable detection limits.
- 3. Attachment III Sample data (Form I) verified by the laboratory.

ATTACHMENT I GLOSSARY OF DATA QUALIFIER CODES

GLOSSARY OF DATA QUALIFIERS

CODES RELATING TO IDENTIFICATION

(confidence concerning presence or absence of compounds):

- U = NOT DETECTED SUBSTANTIALLY ABOVE THE LEVEL REPORTED IN LABORATORY OR FIELD BLANKS. [Substantially is equivalent to a result less than 10 times the blank level for common contaminants (methylene chloride, acetone and 2-butanone in the VOA analyses, and common phthalates in the BNA analyses, along with tentatively identified compounds) or less than 5 times the blank level for other target compounds.]
- **R** = UNUSABLE RESULT. THE PRESENCE OR ABSENCE OF THIS ANALYTE CANNOT BE VERIFIED. SUPPORTING DATA NECESSARY TO CONFIRM RESULT.
- N = NEGATED COMPOUND. THERE IS PRESUMPTIVE EVIDENCE TO MAKE A TENTATIVE IDENTIFICATION.

CODES RELATING TO QUANTITATION

(can be used for both positive results and sample quantitation limits):

- J = ANALYTE WAS POSITIVELY IDENTIFIED. REPORTED VALUE MAY NOT BE ACCURATE OR PRECISE.
- UJ = ANALYTE WAS NOT DETECTED ABOVE THE CRQL. THE REPORTED QUANTITATION LIMIT IS QUALIFIED ESTIMATED.

OTHER CODES

 \mathbf{Q} = NO ANALYTICAL RESULT.

.

ATTACHMENT II SAMPLE RESULT SUMMARY
.

CLIENT: BAKER ENVIRONMENTA	L, INC.	1						
SDG NO.: B5167					_		1	
	V	V	V					V
Client Sample ID:	HC-SW03	HC-SW03D	HC-SW02	HM-SW02	HM-SW03	WC-SW02	WC-SW03	35-RB12
Matrix:	WATER	WATER	WATER	WATER	WATER	WATER	WATER	WATER
Dilution Factor:	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
Units:	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
COMPOUND	<u></u>							
Chloromethane	UJ	IJ	LÜ	UJ	LU	LU	IJ	IJ
Bromomethane	UJ	UJ	UJ	UJ	UJ	UJ	UJ	UJ
	UJ	UJ	UJ	IJ	UJ	UJ	UJ	IJ
Chioroethane	UJ	UJ	UJ	UJ	IJ	UJ	UJ	UJ
Methylene Chloride	UJ	UJ	UJ	UJ	UJ	UJ	UJ	UJ
Acetone	UJ	UJ	UJ	UJ	UJ	UJ	UJ	UJ
Carbon Disulfide	UJ	UJ	UJ	UJ	UJ	UJ	UJ	UJ
1,1-Dichloroethene	UJ	UJ	UJ	UJ	UJ	UJ	UJ	UJ
1,1-Dichloroethane	UJ	UJ	UJ	UJ	UJ	UJ	UJ	UJ
1.2-Dichloroethene (TOTAL)	UJ	UJ	UJ	UJ	UJ	UJ	UJ	UJ
Chloroform	UJ	UJ	UJ	UJ	UJ	UJ	UJ	UJ
1,2-Dichloroethane	UJ	UJ	UJ	UJ	UJ	UJ	UJ	UJ
2-Butanone	UJ	UJ	UJ	UJ	UJ	UJ	UJ	UJ
1,1,1–Trichioroethane	UJ	UJ	UJ	UJ	UJ	UJ	UJ	UJ
Carbon Tetrachloride	UJ	UJ	UJ	UJ	UJ	UJ	UJ	UJ
Bromodichloromethane	UJ	UJ	UJ	UJ	UJ	UJ	UJ	UJ
1,2-Dichloropropane	UJ	UJ	UJ	UJ	UJ	UJ	UJ	UJ
cis-1,3-Dichloropropene	UJ	UJ	UJ	UJ	UJ	UJ	UJ	UJ
Trichloroethene	UJ	UJ	UJ	UJ	UJ	UJ	UJ	UJ
Dibromochloromethane	UJ	UJ	UJ	UJ	UJ	UJ	UJ	UJ
1,1,2-Trichloroethane	UJ	UJ	UJ	UJ	UJ	UJ	UJ	UJ
Benzene	UJ	UJ	UJ	UJ	UJ	UJ	UJ	UJ
Trans-1,3-Dichloropropene	UJ	UJ	UJ	UJ	UJ	UJ	UJ	UJ
Bromoform	UJ	UJ	UJ	UJ	UJ	UJ	UJ	UJ
4-Methyl-2-Pentanone	UJ	UJ	UJ	UJ	UJ	IJ	UJ	UJ
2-Hexanone	UJ	UJ	UJ	UJ	UJ	UJ	UJ	UJ
Tetrachloroethene	UJ	UJ	UJ	UJ	UJ	UJ	UJ	UJ
1,1,2,2-Tetrachloroethane	UJ	UJ	UJ	UJ	UJ	UJ	UJ	UJ
Toluene	UJ	UJ	UJ	UJ	UJ	UJ	UJ	UJ
Chlorobenzene	IJ	UJ	UJ	UJ	UJ	UJ	UJ	UJ
Ethylbenzene	UJ	UJ	UJ	UJ	UJ	UJ	UJ	UJ
Styrene	UJ	UJ	UJ	UJ	UJ	UJ	UJ	UJ
Xylene (total)	UJ	UJ	UJ	UJ	UJ	UJ	UJ	UJ
	UJ	UJ	UJ	UJ	UJ	UJ	UJ	UJ

CLIENT: BAKER ENVIRONMENTA SDG NO.: B5167						~		
		<u> </u>	•	•	V	~	V	V
Client Sample ID:	35-RB13	35-TB26	HC-SW04	HC-SW01	HM-SW01	35-RB14	35 TB27	35-RB18
Matrix:	WATER	WATER	WATER	WATER	WATER	WATER	WATER	WATER
Dilution Factor:	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
Units:	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
COMPOUND				· · · · · · · · · · · · · · · · · · ·				
Chioromethane	UJ	IJ	UJ	UJ	UJ	UJ	IJ	UJ
Bromomethane	UJ	ŰĴ						
Vinyl Chloride	IJ	UJ						
Chloroethane	UJ	UJ						
Methylene Chloride	UJ	UJ						
Acetone	UJ	UJ						
Carbon Disulfide	UJ	UJ						
1,1-Dichloroethene	UJ	UJ						
1,1-Dichloroethane	UJ	UJ						
1,2-Dichloroethene (TOTAL)	UJ	UJ						
Chloroform	UJ	UJ						
1,2-Dichloroethane	UJ	UJ						
2-Butanone	UJ	UJ						
1,1,1-Trichloroethane	UJ	UJ						
Carbon Tetrachloride	UJ	UJ						
Bromodichloromethane	UJ	UJ						
1,2-Dichtoropropane	UJ	UJ						
cis-1,3-Dichloropropene	UJ	UJ						
Trichloroethene	UJ	UJ						
Dibromochloromethane	UJ	UJ						
1,1,2-Trichloroethane	UJ	UJ						
Benzene	UJ	UJ						
Trans-1,3-Dichloropropene	UJ	UJ						
Bromoform	UJ	UJ	UJ	UJ	UJ	UJ	UJ	UJ
4-Methyl-2-Pentanone	UJ	UJ						
2-Hexanone	UJ	UJ						
Tetrachioroethene	UJ	UJ	UJ	UJ	UJ	UJ	UJ	UJ
1,1,2,2-Tetrachloroethane	UJ	UJ						
Toluene	UJ	IJĴ						
Chlorobenzene	ŪJ	ŬĴ						
Ethylbenzene	UJ	UJ						
Styrene	UJ	UJ						
Xylene (total)	UJ	IJ						
	UJ	UJ						

й

CLIENT: BAKER ENVIRONMENTA	IL, INC.	· · · ·
SDG NO.: B5167		
	, V	
Client Sample ID:	33-1828	
Matrix:	WAICH	
Dilution Factor:	1.0	
Units:	սց/բ	
COMPOUND		
Chloromethane	UJ	
Bromomethane		
Vinvi Chloride		
Chloroethane		
Methylene Chloride		
Acetone	32	
Carbon Disulfide		
1,1-Dichloroethene		
1,1-Dichloroethane		
1,2-Dichloroethene (TOTAL)		
Chloroform		
1,2-Dichloroethane		
2-Butanone		
1,1,1-Trichloroethane		
Carbon Tetrachloride		
Bromodichloromethane		
1,2-Dichloropropane		
cis-1,3-Dichloropropene		
Trichloroethene		
Dibromochloromethane		
1,1,2-Trichloroethane		
Benzene		
Trans-1,3-Dichloropropene		
Bromoform	UJ	
4-Methyl-2-Pentanone		
2-Hexanone		
Tetrachloroethene	UJ	
1,1,2,2-Tetrachloroethane		
Toluene		
Chlorobenzene		
Ethylbenzene		
Styrene		
Xviene (total)		

·· .

CLIENT: BAKER ENVIRONMENTAL, INC.

SDG NO.: B5167			
Client Sample ID:	35-BB18		
Matrix	WATER		
Dilution Ecotor	4		
Diluion racior.	1		
	uy/L	 	
METHOD: EPA 601			
Denne a dishla yana tha an			
Bromodichioromethane			
Bromotorm			
Bromomethane	ŕ		
Carbon Tetrachloride			
Chlorobenzene			
Chlorcethane			
Chloroform			
Chloromethane			
Dibromochloromothana			
1.2 Dichlorohonzono			
1,3-Dichloropenzene			
1,4-Dichlorobenzene			
Dichlorodifluoromethane			
1,1-Dichloroethene			
1,2-Dichloroethane			
1.1-Dichlorcethane			
Cis-12-Dichloroethene			
Trans_12_Dichloroethene			
Us-1,3-Dichloropropene			
Trans-1,3-Dichloropropene			
Methylene Chloride			
1,1,2,2-Tetrachloroethane			
Tetrachloroethene			
1.1.1 – Trichloroethane			
1.1.2-Trichloroethane			
Trichloroethene		·	
Trichlorofluoromethane			
Vinvi Chlorida			
METHOD: EPA OUZ			
Benzene			
Chlorobenzene			
1.2 - Dichlorobanzena			
1,4-LICHIOFODENZENE			
Ethylbenzene	0.6		
Toluene	0.4		
Xylenes	1.6		

CLIENT: BAKER ENVIRONMENTAL SDG NO.: B5167			,				1
	V	V		V	V	V	V
Client Sample ID: Matrix:	35-RB12 WATER	35-RB13 WATER	HC-SW04 WATER	HC-SW01 WATER	HM-SW01 WATER	35-RB14 WATER	35-RB18 WATER
Dilution Factor:	1.0	1.0	1.0	1.0	1.0	1.0	10
Units:	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
Phenol			······································				
bis(2-Chloroethyl)ether							
2-Chlorophenol							
1.3-Dichlorobenzene							
1.4-Dichlorobenzene							
1.2-Dichlorobenzene							
2-Methylphenol							
2.2'-oxybis(1-Chloropropane)							
4-Methylphenol							
N-Nitroso-di-n-propylamine	UJ	UJ	UJ	UJ	UJ	UJ	ЦJ
Hexachloroethane							
Nitrobenzene							
Isophorone							
2-Nitrophenol							
2,4-Dimethylphenol							
bis(2-Chloroethoxy)methane							
2,4-Dichlorophenol							
1,2,4-Trichlorobenzene							
Naphthalene							
4-Chloroaniline							
Hexachlorobutadiene							
4-Chloro-3-methylphenol							
2-Methylnaphthalene							
Hexachlorocyclopentadiene							
2,4,6-Trichlorophenol							
2,4,5-Trichlorophenol							
2-Chioronaphthalene							
2-Nitroaniline							
Dimethylphthalate							
Acenaphthylene							
2,6-Dinitrotoluene							
3-Nitroaniline	UJ	UJ	UJ	UJ	UJ	UJ	UJ
Acenaphthene							

)

CLIENT: BAKER ENVIRONMENTAL SDG NO.: B5167		1	1				
		V		v	V		
Client Sample ID: Matrix: Dilution Factor:	35-RB12 WATER 1.0	35-RB13 WATER 1.0	HC-SW04 WATER 1.0	HC-SW01 WATER 1.0	HM-SW01 WATER 1.0	35–RB14 WATER 1.0	35-RB18 WATER 1.0
onita.	ug/L	ug/c	ug/L	ug/c	ug/L	ug/L	ug/c
2,4 – Dinitrophenol 4 – Nitrophenol Dibenzofuran 2,4 – Dinitrotoluene Diethylphthalate 4 – Chlorophenyl – phenylether	W	IJ	UJ	UJ	UJ	UJ	IJ
Fluorene 4-Nitroaniline 4,6-Dinitro-2-methylphenol N-Nitrosodiphenylamine 4-Bromophenyl-phenylether Hexachlorobenzene Pentachlorophenol Phenanthrene Anthracene Carbazole Di-n-butylphthalate	UJ	UJ	UJ	UJ	IJ	μ	UJ
Pyrene Butylbenzylphthalate 3,3 – Dichlorobenzidine Benzo(a)anthracene	IJ	ω	IJ	UJ	UJ	UJ	UJ
bis $(2-Ethylhexyl)$ phthalate Di-n-octylphthalate Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(a)pyrene Indeno(1,2,3-cd)pyrene Dibenz(a,h)anthracene Benzo(g,h,i)perylene	UJ	UJ	UJ	τΩ	UJ	UJ	UJ

.

CLIENT: BAKER ENVIRONMENTAL SDG NO.: B5167	\sim		V	V			
Client Sample ID: Matrix: Dilution Factor: Units:	HC-SW03 WATER 1.0 ug/L	HC-SW03D WATER 1,0 ug/L	HC-SW02 WATER 1.0 ug/L	HM-SW02 WATER 1.0 ug/L	HM–SW03 WATER 1.0 ug/L	WC-SW02 WATER 1.0 ug/L	WC-SW03 WATER 1.0 ug/L
Phenol bis(2-Chloroethyl)ether 2-Chlorophenol 1,3-Dichlorobenzene 1,4-Dichlorobenzene 1,2-Dichlorobenzene 2-Methylphenol 2,2'-oxybis(1-Chloropropane) 4-Methylphenol N-Nitroso-di-n-propylamine Hexachloroethane Nitrobenzene Isophorone 2-Nitrophenol 2,4-Dimethylphenol bis(2-Chloroethoxy)methane 2,4-Dichlorophenol 1,2,4-Trichlorobenzene Naphthalene	UJ	IJ	IJ	IJ	IJ	IJ	IJ
4-Chloroaniline Hexachlorobutadiene 4-Chloro-3-methylphenol	w	ω		w	ω	w	ω
2 – Metnyinaphinalene Hexachlorocyclopentadiene 2,4,6 – Trichlorophenol 2,4,5 – Trichlorophenol 2 – Chloronaphthalene	UJ	UJ		IJ	UJ	UJ	UJ
2-Nitroaniline Dimethylphthalate Acenaphthylene 2,6-Dinitrotoluene 3-Nitroaniline Acenaphthene	IJ	UJ	ω	. UJ	UJ	UJ	IJ

÷

.

CLIENT: BAKER ENVIRONMENTAL		1		A. C.			
SDG NO.: B5167	1	\checkmark		\checkmark		17	
Client Sample ID: Matrix: Dilution Factor: Units:	HC-SW03 WATER 1.0 ug/L	HC-SW03D WATER 1.0 ug/L	HC-SW02 WATER 1.0 ug/L	HM-SW02 WATER 1.0 ug/L	HM-SW03 WATER 1.0 ug/L	WC-SW02 WATER 1.0 ug/L	WC-SW03 WATER 1.0 ug/L
2,4-Dinitrophenol							
4-Nitrophenol Dibenzofuran 2,4-Dinitrotoluene Diethylphthalate 4-Chlorophenyl-phenylether Fluorene	UJ	UJ	ω	UJ	LU	UJ	IJ
4-Nitroaniline 4,6-Dinitro-2-methylphenol N-Nitrosodiphenylamine 4-Bromophenyl-phenylether Hexachlorobenzene Pentachlorophenol Phenanthrene Anthracene			W				
Carbazole Di-n-butylphthalate Fluoranthene Pyrene							
Butylbenzylphthalate 3,3-Dichlorobenzidine Benzo(a)anthracene Chrysene	U) UJ	U) UJ	W	UJ UJ	UJ UJ	UJ LU	UJ UJ
bis(2Ethylhexyl)phthalate Di-n-octylphthalate Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(a)pyrene Indeno(1,2,3-cd)pyrene Dibenz(a,h)anthracene Benzo(g,h,i)perylene	U) UJ	IJ	W	ເບ ເບ ເບ ເບ ເບ ເບ ເບ ເບ	UJ UJ	LU LU	UJ UJ

ROY F. WESTON, INC. PESTICIDE/PCB ANALYSES - DATA VALIDATION SUMMARY

CLIENT:BAKER ENVIRONMENTAL SDG NO.: B5167	\checkmark						
Client Sample ID: Matrix: Dilution Factor: Units:	HCSW03 WATER 1.0 ug/L	HC-SW03D WATER 1.0 ug/L	HC-SW02 WATER 1.0 ug/L	HM-SW02 WATER 1.0 ug/L	HM-SW03 WATER 1.0 ug/L	WC-SW02 WATER 1.0 ug/L	WC-SW03 WATER 1.0 ug/L
COMPOUND					· · ·· ·· ·· ·		
alpha-BHC beta-BHC gamma-BHC (Lindane) Heptachlor Aldrin Heptachlor Epoxide Endosulfan I Diekdrin 4,4'-DDE Endrin Endosulfan II 4,4'-DDD Endosulfan Sulfate 4,4'-DDT Methoxychlor Endrin Ketone Endrin Aldehyde alpha-Chlordane gamma-Chlordane Toxaphene Aroclor 1016 Aroclor 1221 Aroclor 1248 Aroclor 1254 Aroclor 1260	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.035 J	0.05 U

ROY F. WESTON, INC. PESTICIDE/PCB ANALYSES -- DATA VALIDATION SUMMARY

CLIENT: BAKER ENVIRONMENTAL		,					
SDG NO.: B5167	/					/	
······	V	·		V	/		
Client Sample ID:	35-RB12	35-RB13	HC-SW04	HC-SW01	HM-SW01	35-RB14	
Matrix:	WATER	WATER	WATER	WATER	WATER	WATER	
Dilution Factor:	1.0	1.0	1.0	1.0	1.0	1.0	
Units:	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	
COMPOUND						······	<u> </u>
alpha-BHC							
beta-BHC							
delta-BHC							
gamma—BHC (Lindane)							
Heptachlor							
Aldrin							
Heptachlor Epoxide							
Endosulfan I							
Dieldrin							
4,4'-DDE							
Endrin							
Endosulfan II							
4,4'-DDD							
Endosulfan Sulfate							
4,4'-DDT							
Methoxychlor							
Endrin Ketone							
Endrin Aldehyde							
alpha-Chlordane							
gamma–Chlordane							
Toxaphene							
Aroclor 1016							
Aroclor 1221							
Aroclor 1232							
Aroclor 1242							
Aroclor 1248							
Aroclor 1254							
Aroclor 1260							

Roy F. Weston, Inc. 1 Weston Way West Chester, Pennsylvania 19380-1499 © 610-701-3000 • Fax 610-701-3186

INORGANIC QUALITY ASSURANCE REVIEW BAKER ENVIRONMENTAL, INC. - NAVY CLEAN SITE: MCB CAMP LEJEUNE SDG: BA5167

REVIEW PERFORMED BY THE ANALYTICS DIVISION OF ROY F. WESTON, INC.

PREPARED BY:

<u>8-</u>2-94 Date

Zohreh Hamid, Ph.D. Section Manager - Data Validation

BAKER ENVIRONMENTAL, INC. - NAVY CLEAN SITE: MCB CAMP LEJEUNE SDG: BA5167

CASE SUMMARY

This data validation review consists of fourteen (14) water samples including 4 rinsate blanks collected on 5-6,7,8,10-94. Laboratory analyses were performed by NDRC Laboratories, Inchscape Testing Services for TAL metals.

All data have been validated with regard to usability according to the quality assurance set forth in Inorganic Functional Guidelines and Naval Energy and Environmental Support Activity (NEESA). If you have any questions or comments on this data review, please contact Zohreh Hamid at (610) 701-3745.

The following samples are contained within this report:

35RB12	35RB18	HCSW03	HMSW01	WCSW02
35RB13	HCSW01	HCSW04	HMSW02	WCSW03
35RB14	HCSW02	HCSW3D	HMSW03	

QUALITY ASSURANCE REVIEW

The findings offered in this report are based upon a rigorous review of the following criteria.

- Holding Time
- Calibration
- Contract Required Detection Limit Samples
- Blank Samples
- Interference Check Samples
- Matrix Spike
 - Duplicate Digestion Samples
 - Laboratory Control Sample
 - Serial Dilution Sample
 - Graphite Furnace Analysis
- Quarterly Verification of Instrument Parameters
- Sample Result Verification
- * Preparation Logs
- * Run Logs

×

- Data Package Completeness
- * All criteria were met; therefore, a narrative section is not provided for this classification.

Page 2

HOLDING TIMES

The preparation/analysis holding time exceeded the requirement limits (28 days from collection) in mercury analysis; therefore, the reported results and non-detected values are qualified estimated.

CALIBRATION

The percent recoveries for Na, Ca, and K in the continuing calibrations were above the 110% requirement limit. The reported sample results are qualified estimated and non-detected values are accepted unqualified.

CONTRACT REQUIRED DETECTION LIMIT SAMPLE ANALYSES

The CRDL recovery for lead (126.7) and cadmium (121.6/125.6%) in graphite furnace and all ICP analytes were above the upper data validation requirement limits of 120%. The positive results greater than the IDLs but less than 3X the CRDLs for these analytes are qualified estimated due to the uncertainty near the detection limits.

Note: The additional qualifier code was not applied if the sample result has already been qualified "U" due to blank contamination.

BLANK ANALYSES

The laboratory blank had the following contaminations at levels above the IDLs, but below the CRDLs.

ANALYTE	CONC. UG/L	ACTION LEVEL UG/L *
Al	95	475
As	2.7	13.5
Cr	5.0	25
Cu	4.0	20
Fe	41	205
Pb	1.2	6
Mg	97	485

Page 3

ANALYTE	<u>CONC. UG/L</u>	ACTION LEVEL UG/L *
Ag	6.0	30
Zn	-5.0	**

- * Action level = 5X the blank concentration.
- ** The reported sample data are not impacted when the absolute concentration of an analyte is less than 2X the IDL. However, this analyte was detected in the continuing calibration blanks (CCBs) at levels above the CRDL. The reported sample results are rejected and the non-detected values are accepted unqualified.

The reported sample results and the field QC blanks up to the action limits are qualified "U" for these analytes due to the laboratory blank contamination.

INTERFERENCE CHECK SAMPLES

The percent recoveries for the TAL analytes analyzed by ICP were within the control limits, with the exception of Cr (124.2/130.4) and Mn (76.6%). The positive sample results are qualified estimated.

Calcium was not included in ICS A standard solution. The ICP interference could not be evaluated; therefore, the reported sample data for Ca are qualified estimated.

LABORATORY CONTROL SAMPLE ANALYSIS

The percent recovery for Be (122%) exceeded the upper control limit of 120%. The reported positive sample results should be qualified estimated, however, this analyte was not detected in the samples; therefore, the data are accepted unqualified.

DUPLICATE DIGESTION SAMPLES

The RPDs for all analytes in the laboratory duplicate sample analysis were within the control limits. One set of field duplicates was analyzed for this batch. The RPDs were within the control limits for the analytes detected at levels above the corresponding CRDLs.

GRAPHITE FURNACE ANALYSIS

The following samples analyzed by graphite furnace had the analytical spike recoveries outside the control limits of 85-115%:

SAMPLE ID	ANALYTE	<u>% RECOVERY</u>
35RB12	As/Se	75.5/77
35RB13	Se/Tl	81/64
35RB14	As	80.5
HCSW01	TI	67.5
HCSW02	As/Pb/Se/Tl	79/72/165*/39.5*
HCSW03	Pb/Se/Tl	59.2/133*/36.5**
HCSW04	Se/Tl	78/76.5
HCSW3D	As/Cd/Pb/Se/Tl	82.5/116.2*/33.4**/67/56
HMSW01	Se/Tl	71/75
HMSW02	As/Pb/Se/Tl	69/69/156*/27.5**
HMSW03	As/Pb/Se/Tl	117.5*/35.5**/32**/65
WCSW02	Pb/Se/Tl	71.5/228*/44
WCSW03	As/Pb/Se/Tl	83.7/55/43/69.5

* Only the positive results are qualified estimated.

** The reported results are qualified estimated and non-detected values are rejected due to the extremely low analytical spike recovery.

The reported data are qualified estimated.

Page 4

Page 5

The linearity did not meet the requirement limit of " $r \ge 0.995$ " in the cadmium analysis performed by graphite furnace. The reported data are considered estimated.

SAMPLE RESULTS

Arsenic, cadium, lead, selenium, and thallium were analyzed by graphite furnace. Other elements were analyzed by ICP. Mercury was analyzed by automated cold vapor AA.

DATA PACKAGE COMPLETENESS

The case number was not identified for this batch. The sample analyses were classified under an SDG number.

The ICP interelement correction factor (Form XI, Part II) was not included in this data package.

The percent recoveries for chromium were above the 120% QC limit in the ICP interference check sample. This outlier was not reported on the case narrative.

SUMMARY

The quality of the data was fair. The % recovery for some elements exceeded the requirement limit in calibration analysis. The continuing calibration blank had zinc at a level above the CRDL. The calcium analysis was not performed with the ICP elements in the ICP interference check sample. The results for mercury are qualified estimated since the holding time exceeded the requirement limit. The CRDL recoveries exceeded the upper control limit of 120% for all ICP elements, including lead and selenium. The laboratory control sample recovery for beryllium exceeded the upper control limits.

INFORMATION REGARDING DATA

The data have been reviewed according to the USEPA National Functional Guidelines for Inorganic Data Review. All data are validated with regard to usability.

If you have any questions or comments on this data review, please call Zohreh Hamid at (215) 344-3745.

ATTACHMENTS

- 1. Attachment I Glossary of Data Qualifier Codes
- 2. Attachment II Sample Result Summary. This includes:
 - a) A summary of all positive results for the target analytes with the qualifier codes, if applicable;
 - b) All qualified and usable detection limits.
- 3. Attachment III Sample data (Form I) verified by the laboratory.

ATTACHMENT I GLOSSARY OF DATA QUALIFIER CODES

10.12

GLOSSARY OF DATA QUALIFIERS

CODES RELATING TO IDENTIFICATION

(confidence concerning presence or absence of compounds):

- U = NOT DETECTED SUBSTANTIALLY ABOVE THE LEVEL REPORTED IN LABORATORY OR FIELD BLANKS.
- **R** = UNRELIABLE RESULT. ANALYTE MAY OR MAY NOT BE PRESENT IN THE SAMPLE. SUPPORTING DATA NECESSARY TO CONFIRM RESULT.
- N = NEGATED COMPOUND WAS CONSIDERED AS NOT PRESENT IN THE SAMPLE.

(NO CODE) = CONFIRMED IDENTIFICATION

CODES RELATING TO QUANTITATION

(can be used for both positive results and sample quantitation limits):

- J = ANALYTE PRESENT. REPORTED VALUE MAY NOT BE ACCURATE OR PRECISE.
- UJ = THE REPORTED QUANTITATION LIMITS ARE QUALIFIED ESTIMATED.

OTHER CODES

 \mathbf{Q} = NO ANALYTICAL RESULT.

ATTACHMENT II SAMPLE RESULT SUMMARY

·÷ -

CLIENT: BAKER E SDG NO.: BA5167	NVIRONMENT	AL, INC.	\checkmark						\checkmark	
Client St	ample ID: Matrix: Units:		35RB12 WATER ug/L	35RB13 WATER ug/L	35RB14 WATER ug/L	35RB18 WATER ug/L	HCSW01 WATER ug/L	HCSW02 WATER ug/L	HCSW03 WATER ug/L	
INORGANIC ELEM	ENTS									-
		IDL (ug/L)								
Auminium	Р	72					356 U	303 U	301 L	J
Antimony	Р	39								
Arsenic	F	1.0	1 U		UJ	1.6 U		UJ	20	
Barium	Р	2.0		7 J		2 J	19 J	20 J	26 、	J
Beryllium	Р	5.0								
Cadmium	F	1.0	UJ	UJ	UJ	UJ	UJ	UJ	U.	J
Caldum	Р	308		15900			27000	36600	86600	
Chromium	Р	5.0	9 U	10 U	5 U	7 U	9 U e	19 U	130 .	J
Cobalt	Р	9.0								
Copper	Р	2.0	6 U	15 U	8 U	5 U	9 U	9 U	21 L	J
Iron	Р	18		66 U			746	528	339	
Lead	F	1.0		1.2 U			1.1 U	IJ	5.5 L	J
Magnesium	Р	26	71	1920			1450	44800	633000	
Manganese	Р	2.0					6 U	8 U	17 L	J
Mercury	CV	0.1	UJ	1.8 J	UJ	UJ	UJ	UJ	U.	J
Nickel	Р	10								
Potassium	Р	1674						14500	203000	
Selenium	F	1.0	UJ	UJ					6.	J
Silver	Р	2.0	10 U	11 U		7 U	11 U	10 U	28 L	J
Sodium	Р	339	2210	59000	1330	1420	6900	383000	2090000	
Thallium	F	1.0		UJ			UJ	R	P	ł
Vanadium	Р	4.0								
Zinc	Р	2.0	4 R	4 R		7 R		2 R	5 F	ł

)

CLIENT: BAKER EN SDG NO.: BA5167	VIRONMENT	AL, INC.			\checkmark			V	1
Client Sa	mple ID: Matrix: Units:		HCSW04 WATER ug/L	HCSW3D WATER ug/L	HMSW01 WATER ug/L	HMSW02 WATER ug/L	HMSW03 WATER ug/L	WCSW02 WATER ug/L	WCSW03 WATER ug/L
INORGANIC ELEME	NTS								
		IDL (ug/L)							
Aluminium	P	72	692	187 U	259 U	535 J	288 U	251 U	220 U
Antimony	Р	39							
Arsenic	F	1.0	1 U	UJ	1.4 U	1.2 U		1.2 U	UJ
Barium	P	2.0	9 J	24 J	49 J	38 J	20 J	29 .1	27 .1
Beryllium	Р	5.0							
Cadmium	F	1.0	UJ	UJ	UJ	UJ	UJ	UJ	U.I
Calcium	Р	308	11600	107000	14100	40200	302000	46900	40500
Chromium	P	5.0	9 U e	125 J	10 U	36 J	158 J	15 U	97 J
Cobalt	Р	9.0							••• •
Copper	Р	2,0	20 U	19 U	9 U	18 U	17 U	14 U	22 U
Iron	Р	18	556	291	425	559	320	660	321
Lead	F	1.0	1.3 U	5.4 U		2.5 U	58.1	1.9 U	4.2 U
Magnesium	Р	26	954	613000	2830	109000	754000	29000	44800
Manganese	Р	2.0	4 U	16 U	14 U	20 U	10 U	33 U	21 U
Mercury	CV	0.1	UJ	UJ	ŪJ	IJ	ŰIJ	UJ	LU UJ
Nickel	Р	10							
Potassium	Р	1674		202000		41100	288000	10900	136000
Selenium	F	1.0	UJ	UJ	1.5 J		41 J		100000
Silver	Р	2.0	10 U	26 U	10 U	17 U	37 .1	7 []	25 11
Sodium	P	339	6090	2560000	16500	739000	6750000	202000	895000
Thallium	F	1.0	UJ	UJ	UJ	R	U.I	L.I	
Vanadium	, P	4.0				••	50	50	
Zinc	Р	2.0	14 R		3 R	9 R			6 R

Roy F. Weston, Inc. 1 Weston Way West Chester, Pennsylvania 19380-1499 610-701-3000 • Fax 610-701-3186

ORGANIC QUALITY ASSURANCE REVIEW BAKER ENVIRONMENTAL, INC. - NAVY CLEAN SITE: MCB CAMP LEJEUNE SDG NO.: B5243

REVIEW PERFORMED BY THE ANALYTICS DIVISION OF ROY F. WESTON, INC.

PREPARED BY:

Kelly Muir Spittler ^U Unit Leader - Data Validation

08-24-94 Date

VERIFIED BY:

Zohreh Hamid, Ph.D. Section Manager - Data Validation

1-94 Date

FX.

BAKER ENVIRONMENTAL, INC. - NAVY CLEAN SITE: MCB CAMP LEJEUNE SDG NO.: B5243

INTRODUCTION

This quality assurance review is based upon a review of all data generated from fourteen soil samples collected on 05-06,07,08-94. The samples were analyzed according to criteria set forth in the contract laboratory program (CLP) for TCL Volatile, Semivolatile and Pesticide/PCB target compounds and SW846 Methods 60/602 for Benzene, Toluene, Ethylbenzene and Xylene by NDRC Laboratories, Inchscape Testing Services.

This review has been performed in accordance with the confirmation method. The reported analytical results are presented as a summary of the data in Attachment II. All of the analytical data were examined to determine the usability of the analytical results and also to determine contractual compliance relative to the analytical requirements and deliverables specified in the CLP method and Sampling and Chemical Analysis Quality Assurance requirements for the Navy Installation Restoration Program (NEESA 20.2-047B). The applicable qualifier codes have been placed next to the results in the data summary to indicate the qualitative and/or quantitative reliability. The details of this evaluation review are presented in the narrative section of this report.

All data have been validated with regard to usability according to the quality assurance set forth in USEPA Laboratory Data Validation Functional Guidelines for Evaluating Organics Analyses. If you have any questions or comments on this data review, please call Zohreh Hamid or Kelly Spittler at (610) 701-3745.

QUALITY ASSURANCE REVIEW

The findings offered in this report are based upon a review of the following criteria:

- Data Completeness
- Holding Time
- GC/MS Tuning
- Calibration
- Blanks

ж

- Surrogate Recoveries
- Matrix Spike/Spike Duplicate
- Laboratory Control Sample
- Internal Standard
- Instrument Performance
 - Field Duplicate Results
- Compound Identification
 - Compound Quantitation
- * All criteria were met; therefore, a narrative section is not provided for this classification.

Page 2

DATA COMPLETENESS

Pesticide/PCBs

The LCS Form III was not provided with this batch of samples. The laboratory should supply this missing document.

HOLDING TIME

Volatiles

The technical holding time established in the Functional Guidelines (14 days from collection to analysis), has been exceeded for samples HM-SD03-06RE, HM-SD03-612RE, HC-SD03-612RE, WC-SD03-612RE, HM-SD01-06DRE, and HM-SD01-612RE. The laboratory's contractual holding time (10 days from VTSR to analysis) established in the CLP SOW differs for these validation requirements; however, since these analyses are not reported as the representative results, no qualification is applied to the reported original results.

GC/MS TUNING

Volatiles

The incorrect Form V was provided for the initial calibration on page 051. The laboratory should submit the correct form.

CALIBRATION

Volatiles and Semivolatiles

The following %D results in the continuing calibrations exceeded the 25% QC limit. These calibrations are considered acceptable since less than two (VOA) or four (BNA) check (*) compounds had %Ds outside the criteria. Positive results were not detected for these compounds; therefore, all associated non-detected values for the compounds listed below are qualified as estimated and flagged "UJ". All RRFs were above 0.05; therefore, no qualification is required on this basis.

CALIBRATION	INSTRUMENT ID	COMPOUND	<u>%RSD/%D</u>
CC05-16-94	HP3.i	Acetone	43.3
		2-Butanone	49.2
		4-Methyl-2-pentanone	34.4
		2-Hexanone	30.5

Page 3

CALIBRATION	INSTRUMENT ID	COMPOUND	<u>%RSD/%D</u>
CC 05-24-94	HP3.i	Chloromethane	26.2
		Acetone	37.8
		2-Butanone	47.5
		Carbon Tetrachloride	27.9
		4-Methyl-2-pentanone	46.2
		2-Hexanone	49.1
CC 06-06-94	HP1.i	4-Chloroaniline	66.7
		3-Nitroaniline	35.3
		2.6-Dinitrotoluene	30.9
		2,4-Dinitrophenol	28.1
		4-Nitrophenol	30.0
CC 06-07-94	HP1.i	4-Chloroaniline	64.4
		3-Nitroaniline	28.3
		4-Nitroaniline	35.9
		3,3-Dichlorobenzidine	29.6
		2,6-Dinitrotoluene	31.7
		4-Nitrophenol	29.9
		Bis(2-ethylhexyl)phthalate	32.5
CC 06-09-94	HP1.i	4-Chloroaniline	76.4
		3-Nitroaniline	33.1
		4-Nitroaniline	44.6
		Bis(2-chloroethyl)ether	35.5
		Isophorone	38.0
		2,6-Dinitrotoluene	28.6
		4-Nitrophenol	28.7
		Bis(2-ethylhexyl)phthalate	26.5
CC 07-07-94	HP1.i	4-Chloroaniline	37.3
		4-Nitroaniline	57.9
		Phenol	39.6
		2-Methylphenol	32.4
		2,2-Oxybis(1-chloropropane)	89.8
		Hexachloroethane	40.2
		Carbazole	34.1

Pesticide/PCBs

The %RPD for endosulfan sulfate (26%) exceeded the 25% QC limit in the analysis of INDBMA2. Since this compound was not detected in the samples, no action is required.

SURROGATE

Volatiles

The following system monitoring compound recoveries were above the QC limits. Since these recoveries were above the QC limits, only the positive results should be qualified estimated; however, target compounds were not detected in the original representative analyses.

<u>SAMPLE</u>	SURROGATE	RECOVERY	OC LIMITS
HM-SD02-612	1,2-Dichloroethane-d ₄	126	70-121
HM-SD03-06	1,2-Dichloroethane-d₄	131	70-121
HM-SD03-612	1,2-Dichloroethane- d_4	122	70-121
HC-SD03-06D	1,2-Dichloroethane-d ₄	124	70-121
HC-SD03-612	1,2-Dichloroethane-d ₄	125	70-121
WC-SD02-06	1,2-Dichloroethane-d₄	238	70-121
WC-SD02-612	1,2-Dichloroethane-d ₄	127	70-121
HM-SD01-06	1,2-Dichloroethane-d₄	126	70-121
HM-SD01-06MS	1,2-Dichloroethane-d ₄	124	70-121
HM-SD01-06MSD	1,2-Dichloroethane-d ₄	122	70-121
HM-SD01-06D	1,2-Dichloroethane-d ₄	132	70-121
HM-SD01-612	1,2-Dichloroethane-d ₄	130	70-121
HM-SD03-06RE	1,2-Dichloroethane-d ₄	397	70-121
	Toluene-d ₈	369	84-138
	4-Bromonuorobenzene	502	59-115
HM-SD03-612RE	1,2-Dichloroethane-d ₄	0	70-121
	1 Oluene-a _s	280	84-138
	4-DIOINOITUOIODENZENE	220	59-115
HC-SD03-612RE	1,2-Dichloroethane- d_4	427	70-121
	Toluene-d ₈	415	84-138
	4-Bromofluorobenzene	280	59-113
WC-SD03-612RE	1,2-Dichloroethane-d₄	160	70-121
	Toluene-d ₈	351	84-138
	4-Bromofluorobenzene	261	59-113
HM-SD01-06DRE	1,2-Dichloroethane-d ₄	135	70-121

Page 5

<u>SAMPLE</u>	<u>SURROGATE</u>	RECOVERY	<u>QC LIMITS</u>
HM-SD01-612RE	1,2-Dichloroethane-d ₄	145	70-121
	4-Bromofluorobenzene	138	59-113

-4 -5

BLANKS

Pesticide/PCBs

The following method blank contained target compound methoxychlor at a level below the CRQL. All associated positive results less than 5X the blank levels are considered laboratory artifacts and are flagged "U".

	<u>BLANK</u>	COMPOUND	LEVEL
Method	Blank (PBLKA)	Methoxychlor	2.1 ug/kg

SURROGATE RECOVERIES

Pesticide/PCBs

All surrogate recoveries were within the requirement limits, except for the following:

SAMPLE NO.	<u>RECOVERY</u> SPB608/DB1701	<u>SURROGATE</u> COMPOUND	REASON
PBLKA	280/314 288/421	TCX DCB	Advisory Criteria 60-150% Advisory Criteria 60-150%
PLCS	176/229	DCB	Advisory Criteria 60-150%
HM-SD01-06	-/194	DCB	Advisory Criteria 60-150%
HM-SD01-06D	-/192	DCB	Advisory Criteria 60-150%
HM-SD02-06	-/190	DCB	Advisory Criteria 60-150%
HM-SD02-612	-/187	DCB	Advisory Criteria 60-150%
HM-SD03-06	0/0 9/61	TCX DCB	Advisory Criteria 60-150% Advisory Criteria 60-150%
HM-SD03-612	-/178	DCB	Advisory Criteria 60-150%
HC-SD03-06	-/152 165/208	TCX DCB	Advisory Criteria 60-150% Advisory Criteria 60-150%
HC-SD03-06D	184/210	DCB	Advisory Criteria 60-150%

SAMPLE NO.	<u>RECOVERY</u> SPB608/DB1701	SURROGATE COMPOUND	REASON
HC-SD03-612	161/244	DCB	Advisory Criteria 60-150%
WC-SD03-06	174/252	DCB	Advisory Criteria 60-150%
WC-SD03-612	165/208	DCB	Advisory Criteria 60-150%
WC-SD02-06	-/55	TCX	Advisory Criteria 60-150%
WC-SD02-612	30/23 -/49	TCX DCB	Advisory Criteria 60-150% Advisory Criteria 60-150%
HM-SD01-06	-/240	DCB	Advisory Criteria 60-150%
PBLKB	162/309	DCB	Advisory Criteria 60-150%
HM-SD01-06	216/242 284/328	TCX DCB	Advisory Criteria 60-150% Advisory Criteria 60-150%
HM-SD01-612	274/286 366/451	TCX DCB	Advisory Criteria 60-150% Advisory Criteria 60-150%

DCB = Decachlorobiphenyl

TCX = Tetrachloro-m-xylene

Since the requirement limits are advisory and there is no qualification criteria established in Functional Guidelines or NEESA for surrogate outliers in the pesticide/PCB fraction, no action is taken.

MATRIX SPIKE/SPIKE DUPLICATE

Pesticide/PCBs

The spike recoveries were not detected in the analyses of HM-SD01-06 MS/MSD. As per the laboratory narrative, these compounds were not spiked in the QC sample; no action is required on this basis.

LABORATORY CONTROL SAMPLE

An LCS analysis was performed in order to fulfill the blank spike analysis requirements established in the NEESA guidelines.

Page 6

Page 7

INTERNAL STANDARD

Volatiles

The following internal standard areas were below the laboratory's control limits. Most of these samples are exhibiting matrix effects; therefore, all reported results in the original analyses (representative) quantified in reference to the internal standard outliers are qualified estimated.

SAMPLE	INTERNAL	AREA	CONTROL LIMITS
	STANDARD		
HM-SD03-06	CBZ	343590	357658-1430632
HM-SD03-612	CBZ	344892	357658-1430632
HC-SD03-612	CBZ	355867	357658-1430632
WC-SD03-612	CBZ	308322	357658-1430632
WC-SD02-06	BCM	79926	108770-435082
HM-SD01-06D	CBZ	325450	357658-1430632
HM-SD01-612	BCM	100845	108770-435082
	DFB	266836	322266-1289062
	CBZ	273497	357658-1430632
HM-SD03-06RE	CBZ	547495	548440-2193760
HM-SD03-612RE	BCM	0	178452-713810
	DFB	353459	577468-2309870
	CBZ	287325	548440-2193760
HC-SD03-612RE	BCM	152909	178452-713810
	DFB	421040	577468-2309870
	CBZ	373507	548440-2193760
WC-SD03-612RE	BCM	107522	178452-713810
	DFB	263256	577468-2309870
	CBZ	233109	548440-2193760
HM-SD01-06DRE	BCM	172053	178452-713810
	DFB	397663	577468-2309870
	CBZ	358239	548440-2193760
HM-SD01-612RE	DFB	547564	577468-2309870

Semivolatiles

The following internal standard area was outside the control limits in the analyses:

<u>SAMPLE</u>	INTERNAL STANDARD	<u>AREA</u>	CONTROL LIMITS
SBLKB	Perylene-d ₁₂	961678	994647-3978588

Since all sample internal standard areas were within control limits; this outlier does not affect the sample data.

FIELD DUPLICATE RESULTS

Two sets of field duplicate analyses were provided with this batch of samples (HC-SD03-06/HC-SD03-06D) and (HM-SD01-06/HM-SD01-06D). The sample result reproducibility was satisfactory, except for the following.

Pesticide/PCBs

In reference to positive results > CRQL, beta-BHC was detected in the duplicate analysis of HM-SD01-06D. This compound was not detected in sample HM-SD01-06; therefore, the positive result and non-detect are qualified estimated in these analyses.

COMPOUND QUANTITATION

Volatiles

The quantitation report did not identify carbon disulfide, dibromochloromethane, and 1,1,2trichloroethane in sample WC-SD03-612-RE, and library search spectra were not provided. Since reanalysis is not reported as the representative results, no action is taken on this basis.

INFORMATION REGARDING DATA

The data have been reviewed according to the USEPA National Functional Guidelines for Organic Data Review. All data are validated with regard to usability.

If you have any questions or comments on this data review, please call Kelly Spittler or Zohreh Hamid at (215) 344-3745.

ATTACHMENTS

- 1. Attachment I Glossary of Data Qualifier Codes
- 2. Attachment II Sample Result Summary. This includes:
 - a) A summary of all positive results for the target analytes with the qualifier codes, if applicable;
 - b) All qualified and usable detection limits.
- 3. Attachment III Sample data (Form I) verified by the laboratory.

WALLERS DESKORERS CONSULTANTS

ATTACHMENT I GLOSSARY OF DATA QUALIFIER CODES

...

.

GLOSSARY OF DATA QUALIFIERS

CODES RELATING TO IDENTIFICATION

(confidence concerning presence or absence of compounds):

- U = NOT DETECTED SUBSTANTIALLY ABOVE THE LEVEL REPORTED IN LABORATORY OR FIELD BLANKS. [Substantially is equivalent to a result less than 10 times the blank level for common contaminants (methylene chloride, acetone and 2-butanone in the VOA analyses, and common phthalates in the BNA analyses, along with tentatively identified compounds) or less than 5 times the blank level for other target compounds.]
- **R** = UNUSABLE RESULT. THE PRESENCE OR ABSENCE OF THIS ANALYTE CANNOT BE VERIFIED. SUPPORTING DATA NECESSARY TO CONFIRM RESULT.
- **N** = NEGATED COMPOUND. THERE IS PRESUMPTIVE EVIDENCE TO MAKE A TENTATIVE IDENTIFICATION.

CODES RELATING TO QUANTITATION

(can be used for both positive results and sample quantitation limits):

- J = ANALYTE WAS POSITIVELY IDENTIFIED. REPORTED VALUE MAY NOT BE ACCURATE OR PRECISE.
- **UJ** = ANALYTE WAS NOT DETECTED ABOVE THE CRQL. THE REPORTED QUANTITATION LIMIT IS QUALIFIED ESTIMATED.

OTHER CODES

 \mathbf{Q} = NO ANALYTICAL RESULT.

ATTACHMENT II SAMPLE RESULT SUMMARY

CLIENT: BAKER ENVIRONMENTAL, INC. SDG NO.: B5243

Client Sample ID: Matrix: Dilution Factor: Units:	HM-SD02-06 SOIL 1.0 UG/KG	HM-SD02-612 SOIL 1.0 UG/KG	HM-SD03-06 SOIL 1.0 UG/KG	HM-SD03-612 SOIL 1.0 UG/KG	HC-SD03-06 SOIL 1.0 UG/KG	HC-SD03-06D SOIL 1.0 UG/KG	HC-SD03-612 SOIL 1.0 UG/KG	WC-SD03-06 SOIL 1.0 UG/KG
COMPOUND								
Bromomethane Vinyl Chloride Chloroethane Methylene Chloride Acetone	UJ	IJ	IJ	UJ	IJ	IJ	IJ	UJ
Carbon Disulfide 1,1 – Dichloroethene 1,1 – Dichloroethane 1,2 – Dichloroethene (TOTAL) Chloroform 1,2 – Dichloroethane								
2-Butanone 1,1,1-Trichloroethane Carbon Tetrachloride Bromodichloromethane 1,2-Dichloropropane cis-1,3-Dichloropropene Trichloroethene Dibromochloromethane 1,1,2-Trichloroethane Benzene Trans-1,3-Dichloropropene Bromoform	UJ	UJ	UJ	UJ	UJ	ΓIJ	UJ	UJ
4-Methyl-2-Pentanone 2-Hexanone Tetrachloroethene 1,1,2,2-Tetrachloroethane Toluene Chlorobenzene Ethylbenzene Styrene Xylene (total) Chloromethane	nî Nî	n) N	10 10 10 10 10 10 10 10 10 10	LU LU LU LU LU LU LU LU LU LU	ΩJ	UJ UJ	11 11 11 11 11 11 11 11 11	UJ UJ

)
ROY F. WESTON, INC. VOLATILE ANALYSES - DATA VALIDATION SUMMARY

CLIENT: BAKER ENVIRONMENTAL, INC. SDG NO.: B5243

Client Sample ID: Matrix: Dilution Factor: Units:	WC-SD03-612 SOIL 1.0 UG/KG	WC-SD02-06 SOIL 1.0 UG/KG	WC-SD02-612 SOIL 1.0 UG/KG	HM-SD01-06 SOIL 1.0 UG/KG	HM-SD01-06D SOIL 1.0 UG/KG	HM-SD01-612 SOIL 1.0 UG/KG
COMPOUND						
Bromomethane		LU				UJ
Vinyl Chloride		UJ				UJ
Chloroethane		UJ				UJ
Methvlene Chloride		UJ				UJ
Acetone	UJ	UJ	UJ	UJ	UJ	UJ
Carbon Disulfide		UJ				UJ
1.1-Dichloroethene		UJ				UJ
1.1-Dichloroethane		υJ				UJ
1.2-Dichloroethene (TOTAL)		ŬĴ				UJ
Chloroform		UJ				UJ
1.2-Dichloroethane		ŬĴ				UJ
2-Butanone	UJ	ŬĴ	UJ	UJ	UJ	UJ
1.1.1-Trichloroethane						UJ
Carbon Tetrachloride						UJ
Bromodichloromethane						UJ
1.2-Dichloropropane						UJ
cis-1.3-Dichloropropene						UJ
Trichlorgethene						UJ
Dibromochloromethane						UJ
1 1 2-Trichloroethane						UJ
Benzene				1		UJ
Trans-13-Dichloropropage						UJ
Promoform						U.J
4 Methyl 2 Pontanene	111	11.1	11.1	11.1	U.I	UJ
		111				U.I
Z-nexanone Tetraphorosthono	111	00	00	00	U.I	U.I
	00				11.1	1.1
Taluana	11					1.1
Chlerobonzono	00				11.1	U.J
	00					
	00				00	111
Styrene	UJ				00	00
Xylene (total)	01				00	00
Chloromethane	UJ				01	05

ROY F. WESTON, INC. SEMIVOLATILE ANALYSES -- DATA VALIDATION SUMMARY

CLIENT: BAKER ENVIRONMENTAL SDG NO.: B5243

Client Sample ID: Matrix: Dilution Factor: Units:	HM-SD02-06 SOIL 1.0 ug/Kg	HM-SD02-612 SOIL 1.0 ug/Kg	HM-SD03-06 SOIL 1.0 ug/Kg	HM-SD03-612 SOIL 1.0 ug/Kg	HC-SD03-06 SOIL 1.0 ug/Kg
COMPOUND					
Phenol					
bis(2-Chloroethyl)ether					
2-Chlorophenol					
1,3-Dichlorobenzene					
1,4-Dichlorobenzene					
1,2-Dichlorobenzene					
2-Methylphenol					
2,2'-oxybis(1-Chloropropane)					
4-Methylphenol					
N-Nitroso-di-n-propylamine					
Hexachloroethane					
Nitrobenzene					
Isophorone					
2-Nitrophenol					
2,4–Dimethylphenol					
bis(2-Chloroethoxy)methane					
2,4-Dichlorophenol					
1,2,4-Trichlorobenzene					
Naphthalene					
4-Chloroaniline	UJ	UJ	UJ	UJ	UJ
Hexachlorobutadiene					
4-Chloro-3-methylphenol					
2-Methylnaphthalene					
Hexachlorocyclopentadiene					
2,4,6-Trichlorophenol					
2,4,5-Trichlorophenol					
2-Chloronaphthalene					
2-Nitroaniline					
Dimethylphthalate					
Acenaphthylene					
2,6-Dinitrotoluene	UJ	UJ	UJ	UJ	UJ
3-Nitroaniline	UJ	UJ	UJ	UJ	UJ
Acenaphthene					

ROY F. WESTON, INC. SEMIVOLATILE ANALYSES - DATA VALIDATION SUMMARY

CLIENT: BAKER ENVIRONMENTAL SDG NO.: B5243

Client Sample ID: Matrix: Dilution Factor: Units:	HM-SD02-06 SOIL 1.0 ug/Kg	HM-SD02-612 SOIL 1.0 ug/Kg	HM-SD03-06 SOIL 1.0 ug/Kg	HM-SD03-612 SOIL 1.0 ug/Kg	HC-SD03-06 SOIL 1.0 ug/Kg
COMPOUND					
2,4-Dinitrophenol Dibenzofuran 4-Nitrophenol 2,4-Dinitrotoluene Diethylphthalate Fluorene 4-Chlorophenyl-phenylether 4,6-Dinitro-2-methylphenol N-Nitrosodiphenylamine 4-Bromophenyl-phenylether Hexachlorobenzene Pentachlorophenol Phenanthrene	υJ	UJ UJ	UJ UJ	UJ UJ	υJ
Anthracene Carbazole Di $-n$ -butylphthalate Fluoranthene Pyrene Butylbenzylphthalate Benzo(a)anthracene 3,3-Dichlorobenzidine Chrysene bis(2-Ethylhexyl)phthalate Di $-n$ -octylphthalate Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(a)pyrene Indeno(1,2,3-cd)pyrene Dibenz(a,h)anthracene Benzo(g,h,i)perylene	614 J	619 J	·	534 J 454 J	

ROY F. WESTON, INC. SEMIVOLATILE ANALYSES -- DATA VALIDATION SUMMARY

CLIENT: BAKER ENVIRONMENTAL SDG NO.: B5243

Client Sample ID: Matrix: Dilution Factor: Units:	HC-SD03-06D SOIL 1.0 ug/Kg	HC-SD03-612 SOIL 1.0 ug/Kg	WC-SD03-06 SOIL 1.0 ug/Kg	WC-SD03-612 SOIL 1.0 ug/Kg	WC-SD02-06 SOIL 1.0 ug/Kg
COMPOUND					
Phenol		UJ			
bis(2-Chloroethyl)ether					
2-Chlorophenol					
1.3-Dichlorobenzene					
1.4-Dichlorobenzene					
12-Dichlorobenzene					
2-Methylphenol		UJ			
2.2'-oxybis(1-Chloropropane)		UJ			
4-Methylphenol					
N-Nitroso-di-n-propylamine					
Hexachloroethane		UJ			
Nitrobenzene					
Isophorone					
2-Nitrophenol					
2.4-Dimethylphenol					
bis(2-Chloroethoxy)methane					
2.4-Dichlorophenol					
1.2.4-Trichlorobenzene					
Naphthalene					
4-Chloroaniline	UJ	UJ	UJ	UJ	UJ
Hexachlorobutadiene					
4-Chloro-3-methylphenol					
2-Methvinaphthalene					
Hexachlorocyclopentadiene					
2.4.6-Trichlorophenol					
2.4.5-Trichlorophenol					
2-Chloronaphthalene					
2-Nitroaniline					
Dimethylphthalate					
Acenaphthylene					
2.6-Dinitrotoluene	UJ		UJ	UJ	UJ
3-Nitroaniline	UJ		UJ	UJ	UJ
Acenaphthene					

4

ROY F. WESTON, INC. SEMIVOLATILE ANALYSES – DATA VALIDATION SUMMARY

CLIENT: BAKER ENVIRONMENTAL SDG NO.: B5243

······································					
Client Sample ID: Matrix: Dilution Factor: Units:	HC-SD03-06D SOIL 1.0 ug/Kg	HC-SD03-612 SOIL 1.0 ug/Kg	WC-SD03-06 SOIL 1.0 ug/Kg	WC-SD03-612 SOIL 1.0 ug/Kg	WC-SD02-06 SOIL 1.0 ug/Kg
COMPOUND	<u> </u>				
2,4-Dinitrophenol Dibenzofuran 4-Nitrophenol 2,4-Dinitrotoluene Diethylphthalate Fluorene	υJ		IJ	UJ	IJ
4-Chlorophenyl-phenylether 4-Nitroaniline 4,6-Dinitro-2-methylphenol N-Nitrosodiphenylamine 4-Bromophenyl-phenylether Hexachlorobenzene Pentachlorophenol Phenanthrene		UJ	UJ	UJ	UJ
Anthracene Carbazole Di $-n$ -butylphthalate Fluoranthene Pyrene Butylbenzylphthalate Benzo(a)anthracene		UJ			
3,3 – Dichlorobenzidine Chrysene bis(2 – Ethylhexyl)phthalate Di – n – octylphthalate Benzo (b)fluoranthene			ບມ ບຸນ	ບມ ບນ	υJ
Benzo(k)riuorantnene Benzo(a)pyrene Indeno(1,2,3-cd)pyrene Dibenz(a,h)anthracene Benzo(g,h,i)perylene				544 J	

ROY F. WESTON, INC. SEMIVOLATILE ANALYSES - DATA VALIDATION SUMMARY

1.4.4

CLIENT: BAKER ENVIRONMENTAL SDG NO.: B5243

Client Sample ID:WC-SD02-Matrix:SOIDilution Factor:1Units:ug/k	12 SD01–06 SOIL 1.0 ug/Kg	HM-SD01-06D SOIL 1.0 ug/Kg	HM-SD01-612 SOIL 1.0 ug/Kg	
--	------------------------------------	-------------------------------------	-------------------------------------	--

COMPOUND

Phenol bis(2-Chloroethyl)ether 2-Chlorophenol 1,3-Dichlorobenzene 1,4-Dichlorobenzene 2-Dichlorobenzene 2-Methylphenol 2,2'-oxybis(1-Chloropropane) 4-Methylphenol N-Nitroso-di-n-propylamine Hexachloroethane Nitrobenzene				
bis(2-Chloroethory)methane				
24-Dichlorophenol				
Nanhthalene				
	U.I	UJ	UJ	UJ
2-Methylpaphthalene				
Hexachlorocyclopentadiene				
246-Trichbronbenol				
245-Trichbronbenol				
2_Chloronaphthalene				
2-Nitroaniline				
Dimethylphthalate				
Acenaphthylene				
26-Dinitrotoluene	UJ	UJ	UJ	UJ
3-Nitroaniline	UJ	UJ	UJ	UJ
Acenaphthene				

ROY F. WESTON, INC. SEMIVOLATILE ANALYSES - DATA VALIDATION SUMMARY

CLIENT: BAKER ENVIRONMENTAL SDG NO.: B5243

Client Sample ID: Matrix: Dilution Factor: Units:	WC-SD02-612 SOIL 1.0 ug/Kg	SD01-06 SOIL 1.0 ug/Kg	HM-SD01-06D SOIL 1.0 ug/Kg	HM-SD01-612 SOIL 1.0 ug/Kg	
COMPOUND					
2,4-Dinitrophenol Dibenzofuran 4-Nitrophenol 2,4-Dinitrotoluene Diethylphthalate Fluorene 4-Chlorophenyl-phenylether	UJ	υJ	UJ	IJ	
4-Chiorophenyl-phenylether 4-Nitroaniline 4,6-Dinitro-2-methylphenol N-Nitrosodiphenylamine 4-Bromophenyl-phenylether Hexachlorobenzene Pentachlorophenol Phenanthrene Anthracene Carbazole Di-n-butylphthalate Fluoranthene Pyrene Butylbenzylphthalate	UJ	UJ	UJ	UJ	
Benzo(a)anthracene 3,3-Dichlorobenzidine	IJ	UJ	υJ	UJ	
bis(2-Ethylhexyl)phthalate Di-n-octylphthalate Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(a)pyrene Indeno(1,2,3-cd)pyrene Dibenz(a,h)anthracene Benzo(g,h,i)perylene	UJ	UJ	UJ	UJ	

ROY F. WESTON, INC. PESTICIDE/PCB ANALYSES - DATA VALIDATION SUMMARY

CLIENT: BAKER ENVIRONMENTAL

SDG NO.: B5243

		104 0000 040					
Client Sample ID:	HM-SD02-06	HM-SD02-612	HM-SD03-06	HM-SD03-612	HC-SD03-06	HC-SD03-06D	HC-SD03-612
Matrix:	SOIL	SOIL	SUIL	50IL	SOIL	SUIL	. SUIL
Dilution Factor:							
Units:	UG/KG	UG/KG	UG/KG	UG/NG	UG/KG	UG/NG	UG/KG
COMPOUND							
alpha-BHC							
beta-BHC							
delta-BHC							
gamma-BHC(Lindane)							
Heptachlor							
Aldrin							
Heptachlor Epoxide							
Endosulfan I							
Dieldrin							
4,4'-DDE							
Endrin							
Endosulfan II							
4,4'-DDD			2.5 J	1.1 J		2.0 J	4.0 J
Endosulfan Sulfate							
4,4'-DDT						1.2 J	
Methoxychlor			60 U		58 U	49 U	
Endrin Ketone							
Endrin Aldehyde							
alpha-Chlordane							
gamma-Chlordane							
Toxaphene							
Aroclor 1016							
Aroclor 1221							
Aroclor 1232							
Aroclor 1242							
Aroclor 1248							
Aroclor 1254							
Aroclor 1260							

ROY F. WESTON, INC. PESTICIDE/PCB ANALYSES - DATA VALIDATION SUMMARY

CLIENT: BAKER ENVIRONMENTAL

SDG NO.: B5243

Client Sample ID: Matrix: Dilution Factor:	WC-SD03-06 SOIL 1.0	WC-SD03-612 SOIL 1.0	WCSD0206 SOIL 1.0	WC-SD02-612 SOIL 1.0	HM-SD01-06 SOIL 1.0	HM-SD01-06D SOIL 1.0	HM-SD01-612 SOIL 1,0
Units:	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG
COMPOUND							
alpha-BHC							
beta-BHC					UJ	7.3 J	3.8
delta-BHC				0.79 J			
gamma-BHC(Lindane)							
Heptachlor							_
Aldrin			1.2 J			0.56 J	0.72 J
Heptachlor Epoxide							
Endosultan I Dialdain			07.1				
			3.7 3			0.58 J	1,5 J
			10			1.0 J	4,3
Endonulfan li							
			10			0.87 1	9.4
Fndosulfan Sulfate			12			0.07 0	0.1
	0.76 .1		26.1	11.1			17.1
Methoxychlor	37 U	54 U	52 U	39 U		21 U	22 U
Endrin Ketone	0. 0						
Endrin Aldehvde							
alpha-Chlordane							1.3 J
gamma-Chlordane							3.0
Toxaphene							
Aroclor 1016							
Aroclor 1221							
Aroclor 1232							
Aroclor 1242							
Aroclor 1248							
Aroclor 1254							
Aroclor 1260							

Roy F. Weston, Inc. 1 Weston Way West Chester, Pennsylvania 19380-1499 @ 610-701-3000 • Fax 610-701-3186

INORGANIC QUALITY ASSURANCE REVIEW BAKER ENVIRONMENTAL, INC. SITE: MCB CAMP LEJEUNE SDG NO.: BA5243

REVIEW PERFORMED BY THE ANALYTICS DIVISION OF ROY F. WESTON, INC.

VERIFIED BY:

Zoh

Zohreh Hamid, Ph.D. Section Manager - Data Validation

-22-94 Date

œ

BAKER ENVIRONMENTAL, INC. - NAVY CLEAN SITE: MCB CAMP LEJEUNE SDG No.: BA5243

CASE SUMMARY

This data validation review consists of fourteen (14) soil samples received on 05-09,10-94. Laboratory analyses were performed by NDRC Laboratories, Inchscape Testing Services for TAL metals.

All data have been validated with regard to usability according to the quality assurance set forth in Inorganic Functional Guidelines and Naval Energy and Environmental Support Activity (NEESA). If you have any questions or comments on this data review, please contact Zohreh Hamid at (610) 701-3745.

The following samples are contained within this report:

HC0306	HM0106	HM0306	HM3612	WC2612
HC036D	HM016D	HM1612	WC0206	WC3612
HC3612	HM0206	HM2612	WC0306	

QUALITY ASSURANCE REVIEW

The findings offered in this report are based upon a rigorous review of the following criteria.

* • Holding Time

*

*

- Calibration
 - Contract Required Detection Limit Samples
 - Blank Samples
 - Interference Check Samples
 - Matrix Spike
 - Duplicate Digestion Samples
- Laboratory Control Sample
- Serial Dilution Sample
 - Graphite Furnace Analysis
- Quarterly Verification of Instrument Parameters
- Sample Result Verification
- * Preparation Logs
 - Run Logs
 - Data Package Completeness
- * All criteria were met; therefore, a narrative section is not provided for this classification.

Page 2

CONTRACT REQUIRED DETECTION LIMIT SAMPLE ANALYSES

The CRDL recovery for arsenic (125% & 151%) in two different analysis runs, lead (126.7%) in graphite furnace and Sb (171.9/150.4%) and Be (125.5%) in ICP were above the upper data validation requirement limits of 120\%. The positive results greater than the IDLs but less than 3X the CRDLs for these analytes are qualified estimated due to the uncertainty near the detection limits.

BLANK ANALYSES

The laboratory blank had the following contaminations at levels above the IDLs, but below the CRDLs.

ANALYTE	CONC. MG/KG	ACTION LEVEL MG/KG *
Al	6.284	31
As	1.4	7
Ba	0.17	0.85
Be	0.231	1.6
Cu	1.046	5.0
Fe	6.046	30
Mg	2.475	12

* Action level = 5X the blank concentration.

The results for Al, Fe, and Mg were above the action levels. The reported sample results for other analytes up to the action limits are qualified "U", due to the laboratory blank contamination.

Sodium was detected in the preparation blank at a level above the CRDL. The reported sample results up to 10X the blank contamination level are rejected. The reported sample results above 10X the blank levels are accepted unqualified.

Note: The additional qualifier code is not applied if the sample result has already been qualified "U" due to blank contamination.

Page 3

Antinomy and beryllium were detected in the initial and continuing calibration blanks, respectively, at levels above the CRDL. The reported sample results are rejected.

INTERFERENCE CHECK SAMPLES

The percent recoveries for the TAL analytes analyzed by ICP were within the control limits.

The calcium recovery (0.0%) in ICSA solution was below the 80% requirement limit. The ICP interference could not be evaluated; therefore, the reported sample data for Ca are qualified estimated.

MATRIX SPIKE SAMPLE ANALYSIS

The matrix spike recovery for Sb (72%) in the matrix spike sample was below the requirement limit of 75%. The reported positive sample results and non-detected values should be qualified estimated. The reported sample data are biased low. However, the positive results are rejected due to the laboratory blank contaminations. Therefore, the non-detected values are qualified estimated.

LABORATORYDUPLICATE SAMPLES

The RPDs for Al (42.8%) and Fe (27.4%) were above the analysis requirement limits. The reported positive results for Al are qualified estimated. The results for iron are accepted unqualified since the RPD was within the data validation requirement limit.

Two sets of field duplicate analyses were analyzed with this batch of samples. The RPD for Al in field duplicates HC0306/306D was above the 50% requirement. The results for Al are qualified estimated. The RPDs for all analytes were within the control limits in field duplicates HM0106/106D.

SERIAL DILUTION ANALYSIS

The %Ds for Al (216.1%) and Fe (77.6%) were above the validation requirements. The reported positive sample results are qualified estimated in the samples.

Page 4

GRAPHITE FURNACE ANALYSIS

The following samples analyzed by graphite furnace had the analytical spike recoveries outside the control limits of 85-115%:

SAMPLE ID	ANALYTE	<u>% RECOVERY</u>
HC0306	Se	80
HC036D	Se	78
HC3612	Se	61
HM0106	As/Pb	118*/75
HM016D	As/Pb	119*/75
HM0206	Se	53
HM0306	Se	62
HM1612	Se	72
HM2612	Se	80
HM3612	Se	49
WC0206	As/Se	116.5*/60
WC0306	Se	73
WC3612	Se	45

* Only the positive results are qualified estimated.

The reported data are qualified estimated.

The analytical spike recovery for Se in sample WC2612 was 107%. The result was inadvertently flagged with "W" by the laboratory.

Page 5

SAMPLE RESULTS

Arsenic, cadium, lead, selenium, silver and thallium were analyzed by graphite furnace.

The results for As in sample HM0206 and Pb in samples HC0301, HC036D, HC3612, HM1612, WC0306, and WC3612 were obtained by Method of Standard Addition. The linearity met the requirements for all samples with the exception of lead analysis in sample HC3612. The reported sample result for lead in this sample is rejected due to the matrix interferences and/or the analytical problems.

SUMMARY

The data package completeness was satisfactory. The quality of the analyses was fair. The results for Sb, Be, and Na are rejected due to the high level of contaminations in the laboratory blanks. Other minor problems have been discussed. The reported sample data are accepted with the applied qualifier codes.

INFORMATION REGARDING DATA

The data have been reviewed according to the USEPA National Functional Guidelines for Inorganic Data Review. All data are validated with regard to usability.

If you have any questions or comments on this data review, please call Zohreh Hamid at (215) 344-3745.

ATTACHMENTS

- 1. Attachment I Glossary of Data Qualifier Codes
- 2. Attachment II Sample Result Summary. This includes:
 - a) A summary of all positive results for the target analytes with the qualifier codes, if applicable;
 - b) All qualified and usable detection limits.
- 3. Attachment III Sample data (Form I) verified by the laboratory.

ATTACHMENT I GLOSSARY OF DATA QUALIFIER CODES

GLOSSARY OF DATA QUALIFIERS

CODES RELATING TO IDENTIFICATION

(confidence concerning presence or absence of compounds):

U = NOT DETECTED SUBSTANTIALLY ABOVE THE LEVEL REPORTED IN LABORATORY OR FIELD BLANKS.

render an er

- **R** = UNRELIABLE RESULT. ANALYTE MAY OR MAY NOT BE PRESENT IN THE SAMPLE. SUPPORTING DATA NECESSARY TO CONFIRM RESULT.
- N = NEGATED COMPOUND WAS CONSIDERED AS NOT PRESENT IN THE SAMPLE.

(NO CODE) = CONFIRMED IDENTIFICATION

CODES RELATING TO QUANTITATION

(can be used for both positive results and sample quantitation limits):

- J = ANALYTE PRESENT. REPORTED VALUE MAY NOT BE ACCURATE OR PRECISE.
- **UJ** = THE REPORTED QUANTITATION LIMITS ARE QUALIFIED ESTIMATED.

OTHER CODES

 \mathbf{Q} = NO ANALYTICAL RESULT.

WISSIGN.

ATTACHMENT II SAMPLE RESULT SUMMARY

ROY F. WESTON, INC. INORGANIC ANALYSES - DATA VALIDATION SUMMARY

CLIENT: BAKER ENVIRONMENTAL, INC. SDG NO.: BA5243

N

Client Sam I % S	ple ID: Matrix: Solids: Units:		HC0306 SOIL 29.4 MG/KG	HC036D SOIL 34.4 MG/KG	HC3612 SOIL 27.2 MG/KG	HM0106 SOIL 82.2 MG/KG	HM016D SOIL 80.2 MG/KG	HM0206 SOIL 35 MG/KG	HM0306 SOIL 28.2 MG/KG
INORGANIC ELE	MENTS		·				······		
		IDL (ug/L)							
Aluminium	Р	20	3210 J	7310 J	14000 J	457 J	337 J	13600 J	8760 J
Antimony	Р	46	15.9 R	14 R	UJ	6.4 R	7.7 R	13 R	UJ
Arsenic	F	1.2	7.5 U	6.5 U	7.9 U	1.3 U		16.8 U	9.5 U
Barium	Р	1.0	3.9 U	10.2	17.2	3.4 U	2.1 U	18.7	11
Beryllium	Р	1.0	0.95 R	0.92 R	1.3 R	0.29 R	0.12 R	1.2 R	1.2 R
Cadmium	F	0.2	0.66	0.08		0.03	0.11	0.08	0.05
Calcium	Р	1700	3380 J	3350 J	3310 J	282 J	508 J	4250 J	2920 J
Chromium	Р	7.0	16.1	18.8	41.6	1.6	1.1	38.4	30.7
Cobait	P	11		4.5	5			4.4	
Copper	Р	2.0	4.9 U	4.3 U	3.5 U	0.89 U	1.2 U	5.4 U	4.9 U
Iron	Р	13	7280 J	11100 J	17700 J	262 J	225 J	15800 J	16900 J
Lead	F	0.6	5.3	3.7	8.6 R	0.62 J	0.74 J	6	9.2
Magnesium	Р	13	4420	4130	6540	35.5	26.7	4940	5700
Manganese	Р	2	17.1	35.1	64.7	1.9	1.3	67.2	50.2
Mercury	AV	0.1	0.34	0.25	0.42	0.09	0.16	0.27	0.35
Nickel	Р	11	9.9	5.5	12.1		,	11.2	14.2
Potassium	Р	2440	1420	1250	1840			1510	1720
Selenium	F	1.4	UJ	UJ	UJ			0.4 J	UJ
Silver	F	0.2				0.49			
Sodium	Р	2370	14100 R	9860 R	6620 R	R	R	3750 R	15100 R
Thallium	F	0.5		0.29	0.44			0.37	
Vanadium	Р	11	20.5	18.4	36.9	0.84		27.1	28.4
Zinc	Р		20.8	34.3	40	9.7	6.7	43.1	34.1

.

ROY F. WESTON, INC. INORGANIC ANALYSES - DATA VALIDATION SUMMARY

CLIENT: BAKER ENVIRONMENTAL, INC. SDG NO.: BA5243

Client Sam	ple ID:		HM1612	HM2612	HM3612	WC0206	WC0306	WC2612	WC3612
	Matrix:		SUL	SUL	SOIL	SUIL	SUL	SUL	SUIL
%	Solias:			31.2	37.6	33	46.2 MO/KC	48	31.0
	Units:		MG/KG	MG/KG	MG/KG	MG/KG	MG/KG	MG/KG	MG/KG
INORGANIC ELE	EMENTS		- <u> </u>			<u> </u>			
		IDL (ug/L)							
Aluminium	Р	20	505 J	9850 J	9760 J	14800 J	11500 J	8200	14600 J
Antimony	P	46	UJ	ÛĴ	UJ	22.4 R	18.4 R	LU	15.3 R
Arsenic	F	1.2	0.77 U	9.6 U	24.1 U	2.8 U	2.9 U	2.2 U	3.7 U
Barium	Р	1.0	3.9 U	13.7	12.9	28.2	14.6	13.3	19.2
Beryllium	P	1.0	0.13 R	1 R	1 R	1.1 R	0,88 R	0.61 R	1.2 R
Cadmium	F	0.2	0.03	0.06	0.03	0.26	0,06	0.12	0.07
Calcium	Р	1700	2850 J	7860 J	2000 J	4060 J	2190 J	3260 J	3380 J
Chromium	P	7.0	1.5	28.1	36	18.1	30.3	8.7	42.6
Cobalt	Р	11			4	3.5			3.9
Copper	Р	2.0	1.4 U	3.7 U	4.1 U	8.7 U	3.6 U	4.4 R	4 U
Iron	Р	13	350 J	32400 J	19900 J	14600 J	12500 J	8120	20700 J
Lead	F	0.6	1	7.2	5.7	16.9	5.1	11.9	5.5
Magnesium	Р	13	34.4	3000	4300	1690	4420	618	6060
Manganese	Р	2	1.6	55.5	61.3	40.2	43	26	47.8
Mercury	AV	0.1	0.18	0.32	0.27	0.4	0.23	0.36	0.26
Nickel	Р	11		9.6	10.3	5.7	8.1	3.8	11.4
Potassium	Р	2440		1600	1760		1410		1590
Selenium	F	1.4	0.25 J	UJ	UJ	UJ	UJ		UJ
Silver	F	0.2							
Sodium	Р	2370		985 R	8980 R	1540 R	4800 R	585 R	12200 R
Thallium	F	0.5	0.13	0.32			0.24	11.9	•
Vanadium	Р	11	0.66	30	29.5	21	21.4	27.8	31
Zinc	Р		8.3	33.2	29.9	52	28.3		27.2

Roy F. Weston, Inc. 1 Weston Way West Chester, Pennsylvania 19380-1499 8 610-701-3000 • Fax 610-701-3186

ORGANIC QUALITY ASSURANCE REVIEW BAKER ENVIRONMENTAL, INC. - NAVY CLEAN SITE: MCB CAMP LEJEUNE SDG NO.: B5296

REVIEW PERFORMED BY THE ANALYTICS DIVISION OF ROY F. WESTON, INC.

atte **PREPARED BY:**

Kelly Muir Spittler ⁹ Unit Leader - Data Validation

23-94 Date

VERIFIED BY: ____

Zohreh Hamid, Ph.D. Section Manager - Data Validation

<u>8-24-9</u>24 Date

BAKER ENVIRONMENTAL, INC. - NAVY CLEAN SITE: MCB CAMP LEJEUNE SDG No.: B5296

INTRODUCTION

This quality assurance review is based upon a review of all data generated from sixteen water samples, two trip blanks and one rinsate blank collected on 05-10,11,12,13-94. The samples were analyzed according to criteria set forth in the contract laboratory program (CLP) for TCL Volatile, Semivolatile and Pesticide/PCB target compounds and SW846 Methods 601/602 for specific Volatile compounds by NDRC Laboratories, Inchscape Testing Services.

This review has been performed in accordance with the confirmation method. The reported analytical results are presented as a summary of the data in Attachment II. All of the analytical data were examined to determine the usability of the analytical results and also to determine contractual compliance relative to the analytical requirements and deliverables specified in the CLP method and Sampling and Chemical Analysis Quality Assurance requirements for the Navy Installation Restoration Program (NEESA 20.2-047B). The applicable qualifier codes have been placed next to the results in the data summary to indicate the qualitative and/or quantitative reliability. The details of this evaluation review are presented in the narrative section of this report.

All data have been validated with regard to usability according to the quality assurance set forth in USEPA Laboratory Data Validation Functional Guidelines for Evaluating Organics Analyses. If you have any questions or comments on this data review, please call Zohreh Hamid or Kelly Spittler at (610) 701-3745.

QUALITY ASSURANCE REVIEW

The findings offered in this report are based upon a review of the following criteria:

- Data Completeness
- Holding Time
- GC/MS Tuning
 - Calibration
 - Blanks
 - Surrogate Recoveries
 - Matrix Spike/Spike Duplicate
 - Laboratory Control Sample
- Internal Standard
- * Instrument Performance
 - Field Duplicate Results
 - Compound Identification
- * Compound Quantitation
- * All criteria were met; therefore, a narrative section is not provided for this classification.

Page 2

DATA COMPLETENESS

General

The chain-of-custody for the soil/sediment samples were included in this data package; however, the sample analyses were not provided with this SDG.

HOLDING TIME

Volatiles

The technical holding time established in the Functional Guidelines (7 days from collection to analysis), has been exceeded for both samples. The laboratory's contractual holding time (10 days from VTSR to analysis) established in the CLP SOW differs for these validation requirements; however, the validator is required by functional guidelines to qualify as estimated the positive results and non-detects in these analyses. It is the data validator's opinion that these results can be accepted with the qualifier codes.

CALIBRATION

Volatiles and Semivolatiles

The RRFs, for the semivolatile 20 ng standard in the initial calibration, were reported incorrectly. However, the RRFs were calculated versus the actual 20 ng standard values and are correct. The laboratory should resubmit the Form VI.

The following %D results in the continuing calibrations exceeded the 25% QC limit. These calibrations are considered acceptable since less than two (VOA) or four (BNA) check (*) compounds had %Ds outside the criteria. Positive results were not detected for these compounds; therefore, all associated non-detected values for the compounds listed below are qualified as estimated and flagged "UJ". All RRFs were above 0.05; therefore, no qualification is required on this basis.

CALIBRATION	INSTRUMENT ID	COMPOUND	<u>%RSD/%D</u>
CC 05-21-94	HP4.i	Chloroethane	32.0
		Acetone	37.4
		2-Butanone	30.3

Page 3

CALIBRATION	INSTRUMENT ID	COMPOUND	<u>%RSD/%D</u>
CC 05-16-94	HP1.i	3,3-Dichlorobenzidine	50.8
		2,2'-oxybis(1-chloropropane)	55.4
		N-Nitroso-di-n-propylamine	27.3
		Hexachlorobutadiene	28.6
		Hexachlorocyclopentadiene	28.2
		Dimethylphthalate	91.3
		4-Nitrophenol	53.3
		Butylbenzylphthalate	28.5
		Bis(2-ethylhexyl)phthalate	26.9
		Di-n-octylphthalate	41.1
CC 05-20-94	HP1.i	4-Chloroaniline	29.7
		3-Nitroaniline	40.8
		3,3-Dichlorobenzidine	34.6
		2,4-Dinitrophenol	32.8
		4-Nitrophenol	35.3
		Bis(2-ethylhexyl)phthalate	27.6
CC 05-21-94	HP1.i	3-Nitroaniline	41.9
		4-Nitroaniline	34.8
		3,3-Dichlorobenzidine	29.9
		4-Nitrophenol	42.9
		Bis(2-ethylhexyl)phthalate	27.8
CC 05-23-94	HP1.i	3-Nitroaniline	36.9
		4-Nitroaniline	29.4
		4-Nitrophenol	34.2
CC 05-24-94	HP1.i	3-Nitroaniline	32.3
		4-Nitroaniline	39.1
		4-Nitrophenol	44.8
		Butylbenzylphthalate	27.8
		bis(2-ethylhexyl)phthalate	40.0

- 14

Volatiles (601/602)

The calibration data met the requirements established in the method. Also, the correlation coefficients were above 0.99 in the initial calibration.

Page 4

BLANKS

Semivolatile

The following method blank contained a common contaminant at a level below the CRQL. Since this compound was not detected in the associated samples, no action is required on this basis.

<u>BLANK</u>	COMPOUND	<u>LEVEL</u>
SBLKA	Diethylphthalate	5 ug/L

Pesticide/PCBs

The following method blank contained several target compounds at levels below the CRQLs. All associated positive results less than 5X the blank levels are considered laboratory artifacts and are flagged "U".

BLANK	COMPOUND	<u>LEVEL</u>
Method Blank (PBLKA)	Delta-BHC	0.12 ug/L
	Methoxychlor	0.016 ug/L

SURROGATE RECOVERIES

Semivolatiles

The following surrogate recovery was outside the QC limits.

<u>SAMPLE NO.</u>	SURROGATE COMPOUND	RECOVERY	<u>QC LIMITS</u>
35-MW21S-02	2-Fluorobiphenyl	27	43-116

Since only one surrogate recovery was outside the QC limits in this sample analysis no qualification is required due to this surrogate outlier.

Page 5

Pesticide/PCBs

All surrogate recoveries were within the requirement limits, except for the following:

SAMPLE NO.	<u>RECOVERY</u> DB608/DB1701	SURROGATE COMPOUND	REASON
35-MW-29A-01	52/- 21/58	TCX DCB	Advisory Criteria 60-150%
35-MW29BW-01	43/-	DCB	Advisory Criteria 60-150%
35-MW21S-02	55/-	DCB	Advisory Criteria 60-150%
35-MW21D-02	48/-	DCB	Advisory Criteria 60-150%

DCB = Decachlorobiphenyl

TCX = Tetrachloro-m-xylene

Since the requirement limits are advisory and there is no qualification criteria established in Functional Guidelines or NEESA for surrogate outliers in the pesticide/PCB fraction, no action is taken.

Volatiles (601/602)

The bromofluorobenzene surrogate recovery (72%) was below the 75-125% QC limits in the analysis of sample 35-MB29BW-01. Since no action is required based on this outlier, no qualification has been applied. All other recoveries were within the QC limits.

MATRIX SPIKE/SPIKE DUPLICATE

Volatiles and Pesticide/PCBs

MS/MSD analyses were not performed with these samples, since the QC sample was not identified on the chain-of-custody. No qualification is required due to the lack of these QC samples.

Semivolatile

The MS/MSD recoveries for 4-nitrophenol (85/88%) were outside the QC limits of 10-80% in the analyses of 35-MW09S-02 MS/MSD. Since this compound was not detected in the unspiked sample, no action is required on this basis.

Page 6

Volatiles (601/602)

Most of the spike recoveries were within the 60-140% QC range, with the exception of those listed below. Since these compounds were not detected in the samples, no action is required.

SAMPLE	SPIKE COMPOUND	RECOVERY
MSD	Bromodichloromethane	147
MS	1,2-Dichlorobenzene	168
MSD	1,2-Dichlorobenzene	183
LCS	1,2-Dichlorobenzene	169
MS	Chlorobenzene	148
MSD	Chlorobenzene	150
MS/MSD/LCS	1,2-Dichlorobenzene	155/150/160

LABORATORYCONTROL SAMPLE

An LCS analysis was performed in order to fulfill the blank spike analysis requirements established in the NEESA guidelines.

INTERNAL STANDARD

Semivolatiles

Sample 35-MW09S-02 was not listed on the Form VIII, page 161. The laboratory should correct and resubmit this page.

The following internal standard areas were outside the control limits in the sample analyses:

<u>SAMPLE</u>	<u>INTERNAL</u> STANDARD	<u>AREA</u>	CONTROL LIMITS
35-MW09D-02	Perylene-d ₁₂	339476	416089-1664356
35-MW09S-02	Perylene-d ₁₂	51467	416089-1664356

Page 7

SAMPLE	<u>INTERNAL</u> STANDARD	<u>AREA</u>	CONTROL LIMITS
35-MW19S-02	Perylene-d ₁₂	341625	416089-1664356
35-MW09S-02RE	Perylene-d ₁₂	21185	441788-1767154
35-MW09D-02RE	Perylene-d ₁₂	268488	441788-1767154
35-MW19S-02RE	Perylene-d ₁₂	330658	441788-1767154

in des

These samples are exhibiting matrix effects; therefore the non-detects quantified in reference to perylene in the original analyses are qualified estimated since positive results were not detected.

FIELD DUPLICATE RESULTS

Semivolatile

Two sets of field duplicate analyses were provided with this batch of samples (35-10D-02/35-10D-02D) and (35-19S-02/35-19S-02D). The sample result reproducibility was satisfactory.

Volatiles/Pesticide/PCBs

A set of field duplicate analyses was not provided with this batch of samples, no action is required due to the lack of the field QC sample.

INFORMATION REGARDING DATA

The data have been reviewed according to the USEPA National Functional Guidelines for Organic Data Review. All data are validated with regard to usability.

If you have any questions or comments on this data review, please call Kelly Spittler or Zohreh Hamid at (215) 344-3745.

ATTACHMENTS

- 1. Attachment I Glossary of Data Qualifier Codes
- 2. Attachment II Sample Result Summary. This includes:
 - a) A summary of all positive results for the target analytes with the qualifier codes, if applicable;
 - b) All qualified and usable detection limits.
- 3. Attachment III Sample data (Form I) verified by the laboratory.

ATTACHMENT I GLOSSARY OF DATA QUALIFIER CODES

GLOSSARY OF DATA QUALIFIERS

CODES RELATING TO IDENTIFICATION

(confidence concerning presence or absence of compounds):

- W = NOT DETECTED SUBSTANTIALLY ABOVE THE LEVEL REPORTED IN LABORATORY OR FIELD BLANKS.
 [Substantially is equivalent to a result less than 10 times the blank level for common contaminants (methylene chloride, acetone and 2-butanone in the VOA analyses, and common phthalates in the BNA analyses, along with tentatively identified compounds) or less than 5 times the blank level for other target compounds.]
- **R** = UNUSABLE RESULT. THE PRESENCE OR ABSENCE OF THIS ANALYTE CANNOT BE VERIFIED. SUPPORTING DATA NECESSARY TO CONFIRM RESULT.
- **N** = NEGATED COMPOUND. THERE IS PRESUMPTIVE EVIDENCE TO MAKE A TENTATIVE IDENTIFICATION.

CODES RELATING TO QUANTITATION

(can be used for both positive results and sample quantitation limits):

- J = ANALYTE WAS POSITIVELY IDENTIFIED. REPORTED VALUE MAY NOT BE ACCURATE OR PRECISE.
- UJ = ANALYTE WAS NOT DETECTED ABOVE THE CRQL. THE REPORTED QUANTITATION LIMIT IS QUALIFIED ESTIMATED.

OTHER CODES

 \mathbf{Q} = NO ANALYTICAL RESULT.

MANAGERS CONSULTANTS

ATTACHMENT II SAMPLE RESULT SUMMARY

ROY F. WESTON, INC. VOLATILE ANALYSES – DATA VALIDATION SUMMARY

CLIENT: BAKER ENVIRONMENTAL, INC. SDG NO.: B5296

Client Sample ID:	35-TB30	35-TB31			
Matrix:	WATER	WATER			
Dilution Factor:	1.0	1.0			
Units:	ug/L	ug/L			
		-			
COMPOUND					
Chloromethane	UJ	UJ			
Bromomethane	UJ	UJ			
Vinvl Chloride	UJ	UJ			
Chloroethane	UJ	UJ			
Methylene Chloride	UJ	UJ			
Acetone	UJ	UJ			
Carbon Disulfide	UJ	UJ			
1.1-Dichloroethene	IJ	ŬĴ			
1.1 - Dichloroethane	ŬĴ	ŬĴ			
1.2-Dichloroethene (TOTAL)	UJ	UJ			
Chloroform	 UJ	IJ			
1.2-Dichloroethane	UJ	UJ			
2-Butanone	UJ	ŬĴ			
1.1.1 – Trichloroethane	UJ	ŬJ			
Carbon Tetrachloride	UJ	UJ			
Bromodichloromethane	UJ	ŬĴ			
1.2-Dichloropropane	UJ	UJ			
cis-1.3-Dichloropropene	UJ	ŬĴ			
Trichloroethene	UJ	UJ			
Dibromochloromethane	ŬĴ	ŬĴ			
1,1,2-Trichloroethane	UJ	IJ			
Benzene	UJ	UJ			
Trans-1.3-Dichloropropene	UJ	IJ			
Bromoform	UJ 20	. UJ			
4-Methyl-2-Pentanone	IJ	11			
2-Hexanone	ŬĴ	00			
Tetrachloroethene	UJ	U.J			
1.1.2.2-Tetrachloroethane	U.I	U.I			
Toluene	(1.)	U.1			
Chlorobenzene	U.J	00			
Fthylbenzene	1.1	11.1			
Styrene					
Xviene (totai)		11			
giorio (rotal)	00	00			

3

ROY F. WESTON, INC. SEMIVOLATILE ANALYSES - DATA VALIDATION SUMMARY

CLIENT: BAKER ENVIRONMENTAL SDG NO.: B5296

Client Sample ID: Matrix: Dilution Factor: Units:	35-MW29A-01 WATER 1.0 ug/L	35MW29BW-01 WATER 1.0 ug/L	35-MW09S-02 35-MW09D-02 WATER WATER 1.0 1.0 ug/L ug/L		35-MW10D-02D WATER 1.0 ug/L	
Phenol bis(2–Chloroethyl)ether 2–Chlorophenol 1,3–Dichlorobenzene 1,4–Dichlorobenzene						
1,2-Dichlorobenzene 2-Methylphenol 2,2'-oxybis(1-Chloropropane)	17 UJ	UJ				
N-Nitroso-di-n-propylamine Hexachloroethane Nitrobenzene Isophorone	UJ	UJ				
2,4-Dimethylphenol bis(2-Chloroethoxy)methane 2,4-Dichlorophenol 1,2,4-Trichlorobenzene	74					
Naphthalene 4-Chloroaniline Hexachlorobutadiene 4-Chloro-3-methylphenol 2-Methylpaphthalene	71 UJ 81. J	UJ	UJ	UJ	UJ	
Hexachlorocyclopentadiene 2,4,6-Trichlorophenol 2,4,5-Trichlorophenol 2-Chloronaphthalene 2-Nitroaniline Dimethylphthalate Acenaphthylene	UJ	UJ				
3-Nitroaniline Acenaphthene			UJ	UJ	UJ	

ROY F. WESTON, INC. SEMIVOLATILE ANALYSES - DATA VALIDATION SUMMARY

CLIENT: BAKER ENVIRONMENTAL

SDG NO.: B5296

Client Sample ID: Matrix: Dilution Factor: Units:	35-MW29A-01 WATER 1.0 ug/L	35-MW29BW-01 WATER 1.0 ug/L	35-MW09S-02 WATER 1.0 ug/L	35MW09D-02 WATER 1.0 ug/L	35MW10D02D WATER 1.0 ug/L		
2,4-Dinitrophenol			UJ	UJ	UJ		
Dibenzofuran							
4–Nitrophenol	UJ	UJ	UJ	UJ	UJ		
2,4-Dinitrotoluene							
Diethylphthalate	UJ	UJ					
Fluorene							
4-Chlorophenyl-phenylether							
4-Nitroaniline							
4,6-Dinitro-2-methylphenol							
N-Nitrosodiphenylamine							
4-Bromophenyl-phenylether							
Hexachlorobenzene		•					
Pentachlorophenol							
Phenanthrene							
Anthracene							
Carbazole							
Di-n-butylphthalate							
Fluoranthene							
Pyrene							
Butyibenzyiphthalate	UJ	UJ					
Benzo(a)anthracene							
3,3-Dichlorobenzidine	UJ	UJ	UJ	UJ	UJ		
Chrysene							
bis(2-Ethylhexyl)phthalate	UJ	UJ					
Di-n-octylphthalate	UJ	UJ	UJ	UJ			
Benzo(b)fluoranthene			UJ	UJ			
Benzo(k)fluoranthene			UJ	UJ			
Benzo(a)pyrene			UJ	UJ			
Indeno(1,2,3–cd)pyrene			UJ	UJ			
Dibenz(a,h)anthracene			UJ	UJ			
Benzo(g,h,i)perylene			UJ	UJ			
CLIENT: BAKER ENVIRONMENTAL SDG NO.: B5296

Client Sample ID: Matrix: Dilution Factor: Units:	35-MW10D-02 WATER 1.0 ug/L	35-MW14S-02 WATER 1.0 ug/L	35-MW14D-02 WATER 1.0 ug/L	35-MW16D-02 WATER 1.0 ug/L	35MW10S02 WATER 1.0 ug/L
Phenol					
bis(2-Chloroethvi)ether					
2-Chlorophenol					
1,3-Dichlorobenzene					
1,4-Dichlorobenzene					
1,2-Dichlorobenzene					
2-Methylphenol					
2,2'-oxybis(1-Chloropropane)					
4-Methylphenol					
N-Nitroso-di-n-propylamine					
Hexachloroethane					
Nitrobenzene					
Isophorone					
2-Nitrophenol					
2,4-Dimethylphenol					
bis(2-Chloroethoxy)methane					
2,4-Dichlorophenol					
1,2,4-Trichbrobenzene					
Naphthalene					
4–Chloroaniline	UJ	UJ	UJ	UJ	UJ ·
Hexachlorobutadiene					
4-Chloro-3-methylphenol					
2-Methyinaphthalene					
Hexachlorocyclopentadiene					
2,4,6-Trichlorophenol					
2,4,5 - Trichlorophenol					
2-Chloronaphthalene					
2-Nitroaniline					
Dimethylphthalate					
Acenaphthylene					
Acenaphthene	UJ	UJ	UJ	UJ	UJ
(C			

CLIENT: BAKER ENVIRONMENTAL

SDG NO.: B5296

Client Sample ID: Matrix: Dilution Factor: Units:	35-MW10D-02 WATER 1.0 ug/L	35-MW14S-02 WATER 1.0 ug/L	35-MW14D-02 WATER 1.0 ug/L	35-MW16D-02 WATER 1.0 ug/L	35-MW10S-02 WATER 1.0 ug/L
2,4–Dinitrophenol Dibenzofuran	UJ	IJ	UJ	IJ	UJ
 4-Nitrophenol 2,4-Dinitrotoluene Diethylphthalate Fluorene 4-Chlorophenyl-phenylether 4,6-Dinitro-2-methylphenol N-Nitrosodiphenylamine 4-Bromophenyl-phenylether Hexachlorobenzene Pentachlorophenol Phenanthrene Anthracene Carbazole Di-n-butylphthalate Fluoranthene Purene 	UJ	UJ	UJ	UJ	UJ
Butylbenzylphthalate Benzo(a)anthracene 3,3-Dichlorobenzidine Chrysene bis(2-Ethylhexyl)phthalate Di-n-octylphthalate Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(a)pyrene Indeno(1,2,3-cd)pyrene Dibenz(a,h)anthracene Benzo(g,h,i)perylene	UJ	IJ	UJ	IJ	UJ

CLIENT: BAKER ENVIRONMENTAL SDG NO.: B5296

Client Sample ID: Matrix:	35-RB20 WATER	35-MW16S-02 WATER	35MW19S02 WATER	35-MW19S-02D WATER	35-MW19D-02 WATER
Dilution Factor:	1.0	1.0	1.0	1.0	1.0
Units:	ug/L	ug/L	ug/L	ug/L	ug/L
Phenol		11	anaganggi gu - t - t - t - t - t - t - t - t - t -		
bis(2-Chloroethyl)ether					
2-Chlorophenol					
1,3-Dichlorobenzene					
1,4-Dichlorobenzene					
1,2-Dichlorobenzene					
2-Methylphenol					
2,2'-oxybis(1-Chloropropane)					
4-Methylphenol		6 J			
N-Nitroso-di-n-propylamine					
Hexachloroethane					
Nitrobenzene					
Isophorone					
2-Nitrophenol					
2,4-Dimethylphenol					
bis(2-Chloroethoxy)methane					
2,4-Dichlorophenol					
1,2,4-Trichlorobenzene					
Naphthalene		75			
4-Chloroaniline	UJ	UJ	UJ	UJ	
Hexachlorobutadiene					
4-Chloro-3-methylphenol					
2-Methylnaphthalene		70			
Hexachlorocyclopentadiene					
2,4,6-Trichbrophenol					
2,4,5-Trichlorophenol					
2-Chloronaphthalene					
2-Nitroaniline					
Dimethylphthalate					
Acenaphthylene					
2,6-Dinitrotoluene					
3-Nitroaniline	UJ	UJ	UJ	UJ	IJ
Acenaphthene					

CLIENT: BAKER ENVIRONMENTAL SDG NO.: B5296

Client Sample ID: Matrix: Dilution Factor: Units:	35–RB20 WATER 1.0 ug/L	35–MW16S–02 WATER 1.0 ug/L	35–MW19S–02 WATER 1.0 ug/L	35-MW19S-02D WATER 1.0 ug/L	35-MW19D-02 WATER 1.0 ug/L
2,4Dinitrophenol	UJ	UJ	UJ	IJ	
4-Niliophenol	03	UJ	00	UJ	UJ
Z,4-Dimilioloidene Diethylphthalate					
Fluorene					
4-Chlorophenyl-phenylether					
4-Nitroaniline					11.1
4,6-Dinitro-2-methylphenol					00
N-Nitrosodiphenylamine					
4-Bromophenyl-phenylether					
Hexachlorobenzene					
Pentachlorophenol					
Phenanthrene					
Anthracene					
Carbazole					
Di-n-butylphthalate					
Fluoranthene					
Pyrene Rutulbonzulobthalato					
Benzo(a)anthracene					
3.3-Dichlorobenzidine	111	11.1	111	111	111
Chrysene		00	00	00	00
bis(2-Ethylhexyl)phthalate	56				D.I ·
Di-n-octylphthalate			UJ		00
Benzo(b)fluoranthene			UJ		
Benzo(k)fluoranthene			UJ		
Benzo(a)pyrene			UJ		
Indeno(1,2,3-cd)pyrene			UJ		
Dibenz(a,h)anthracene			UJ		
Benzo(g,h,i)perylene			UJ		

CLIENT: BAKER ENVIRONMENTAL SDG NO.: B5296

Client Sample ID: Matrix: Dilution Factor: Units:	35-MW21S-02 WATER 1.0 ug/L	35-MW21D-02 WATER 1.0 ug/L		
Phenol				
bis(2-Chloroethyl)ether				
2-Chlorophenol				
1,3-Dichlorobenzene				
1,4-Dichlorobenzene				
1,2-Dichlorobenzene				
2-Methylphenol				
2,2'-oxybis(1-Chloropropane)				
4-Methylphenol				
N-Nitroso-di-n-propylamine				
Hexachloroethane				
Nitrobenzene				
Isophorone				
2-Nitrophenol				
2,4-Dimethylphenol				
bis(2-Chloroethoxy)methane				
2,4-Dichlorophenol				
1,2,4 – Trichbrobenzene				
Naphthalene	499			
4-Chloroaniline				
Hexachlorobutadiene				
4–Chloro–3–methylphenol				
2-Methylnaphthalene	668			
Hexachlorocyclopentadiene				
2,4,6-Trichlorophenol				
2,4,5-Trichbrophenol				
2-Chloronaphthalene				
2-Nitroaniline				
Dimethylphthalate				
Acenaphthylene				
2,6-Dinitrotoluene				
3–Nitroaniline	UJ	UJ		
Acenaphthene				

CLIENT: BAKER ENVIRONMENTAL SDG NO.: B5296

· · · · · · · · · · · · · · · · · · ·		
Client Sample ID: Matrix:	35-MW21S-02 WATER	35–MW21D–02 WATER
Dilution Factor:	10	10
	1.0	ud/l
	uy/L	uy/L
2,4-Dinitrophenol		
Dibenzofuran		
4-Nitrophenol	UJ	UJ
2,4-Dinitrotoluene		
Diethylphthalate		
Fluorene	22	
4-Chlorophenyl-phenylether		
4-Nitroaniline	UJ	UJ
4.6-Dinitro-2-methylphenol		
N-Nitrosodiphenvlamine		
4-Bromophenyl-phenylether		
Hexachlorobenzene		
Pentachlorophenol		
Phenanthrene	52	
Anthracene	7 J	
Carbazole	12	
Di-n-butylphthalate		
Eluoranthene		
Pyrene		
Butvibenzviphthalate		
Benzo(a)anthracene		
3.3-Dichlorobenzidine	LU	UJ
Chrvsene		
bis(2-Ethylhexyl)phthalate	UJ	UJ
Di-n-octviphthalate		
Benzo(b)fluoranthene		
Benzo(k)fluoranthene		
Benzo(a)pyrepe		
Indeno(1,2,3-cd)pyrene		
Dibenz(a,h)anthracene		
Benzo(a h.i)pervlene		
Deuro/Annihheiliteine		

ROY F. WESTON, INC. PESTICIDE/PCB ANALYSES - DATA VALIDATION SUMMARY

CLIENT:BAKER ENVIRONMENTAL SITE: MCB CAMP LEJEUNE

SDG NO.: B5296

Client Sample ID: Matrix: Dilution Factor: Units:	35-MW29A-01 WATER 1.0 ug/L	35-MW29BW-01 WATER 1.0 ug/L	35-MW21S-02 WATER 1.0 ug/L	35-MW21D-02 WATER 1.0 ug/L	
COMPOUND					
alpha-BHC					
beta-BHC	0.022 J		0.023 J		
delta-BHC		0.05 J			
gamma–BHC(Lindane)					
Heptachlor	0.011 J				
Aldrin	0.017 J		0.013 J		
Heptachlor Epoxide					
Endosulfan I					
Dieldrin					
4,4'-DDE					
Endrin					
Endosulfan II					
4,4'-DDD		0.21 J			
Endosultan Sulfate					
	0.5 0				
Endrin Ketone					
elaba Chlordana					
aipha-Chiordane					
Aroclor 1016					
Aroclor 1221					
Aroclor 1232					
Aroclor 1242					
Aroclor 1248					
Aroclor 1254					
Aroclor 1260					

CLIENT: BAKER ENVIRONMENTAL, INC. SDG NO.: B5296

Client Sample ID: Matrix: Dilution Factor: Units:	35 MW29A01 WATER 1 ug/L	35MW29BW-01 WATER 10 ug/L	35–MW09S–02 WATER 1 ug/L	35–MW09D–02 WATER 1 ug/L	35MW10D02D WATER 50 ug/L	35–MW10D–02 WATER 50 ug/L
METHOD: EPA 601/1						
Bromodichloromethane Bromoform Bromomethane Carbon Tetrachloride Chlorobenzene Chloroethane Chloroform Chloromethane Dibromochloromethane 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene						
1,1 – Dichloroethene 1,2 – Dichloroethane						
1,1-Dichloroethane Cis-1,2-Dichloroethene Trans-1,2-Dichloroethene 1,2-Dichloropropane Cis-1,3-Dichloropropene Trans-1,3-Dichloropropene Methylene Chloride 1,1,2,2-Tetrachloroethane Tetrachloroethene 1,1,1-Trichloroethane		53 6		3.3	894 100	973 102
1,1,2 Trichloroethane Trichloroethene Trichlorofluoromethane Vinyl Chloride		255		6.1	591	649
METHOD: EPA 601/2						
Bromodichloromethane Bromoform Bromomethane Carbon Tetrachloride Chlorobenzene Chloroethane Chloroethane Chloromethane Dibromochloromethane 1,2-Dichlorobenzene 1,3-Dichlorobenzene	NA NA NA NA NA NA NA NA NA NA		NA NA NA NA NA NA NA NA NA			

CLIENT: BAKER ENVIRONMENTAL, INC. SDG NO.: B5296

Client Sample ID:	35-MW29A-01	35-MW29BW-01	35-MW09S-02	35-MW09D-02	35-MW10D-02D	35-MW10D-02
Matrix:	WATER	WATER	WATER	WATER	WATER	WATER
Dilution Factor:	f	10	1	1	50	50
Units:	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
/IETHOD: EPA 601/2 (continued)						
,4 – Dichlorobenzene	NA		NA			
) Dichlorodifluoromethane	NA		NA			
.1-Dichloroethene	NA		NA			
2-Dichloroethane	NA		NA			
1-Dichloroethane	NA					
is - 1 2-Dichloroethene	NA	70		2.0	1500	1140
raps – 1.2 – Dichloroethene		70	NA NA	3.8	1530	1140
	1975 818	3			174	228
ie 13 Dichloropropene			INA NA			
	NA NA		NA			
rans – 1,3 – Dichloropropene	NA		NA			
	NA		NA			
,1,2,2- letrachioroethane	NA		NA			
etrachioroethene	NA		NA			
,1,1-Irichloroethane	NA		NA			
,1,2- Trichloroethane	NA		NA			
richloroethene	NA	468	NA	10.9	1420	855
richlorofluoromethane	NA		NA			
inyl Chloride	NA		NA			
ETHOD: EPA 602/1						
enzene	4.1	2.5		1.2		
hlorobenzene						
,2-Dichlorobenzene						
,3 – Dichlorobenzene						
4-Dichlorobenzene						
thylbenzene	2.4	0.9	0.7	16	85	36
oluene	2.2	1.6	0.3	1.2	41	50
vlenes	66	19	20	33	90	125
ethyl Tertiary Butyl Ether		22.3	E .V	0.0	250	241
IETHOD: EPA 602/2						
enzene	3.6	2.8		1.5		
hlorobenzene						
2-Dichlorobenzene						
3-Dichlorobenzene						
4 – Dichlorobenzene						
thy lhon zono	13		0.4	0.5	12	00
Invidenzene				V.J	16	20
pluene	1 4	13	0.7	0.6	17	04

3.1

6.3

NA

CLIENT: BAKER ENVIRONMENTAL, INC.

SDG NO.: B5296

1,3-Dichlorobenzene

Client Sample ID:	35–TB29	35–MW14S–02	35–MW14D–02	35–MW16D–02	35-MW108-02	35–RB20
Matrix:	WATER	WATER	WATER	WATER	WATER	WATER
Dilution Factor:	1	25	1	1	1	1
Units:	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
Matrix:	WATER	WATER	WATER	WATER	WATER	WATER
Dilution Factor:	1	25	1	1	1	1
Units:	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L

METHOD: EPA 601/1					
Bromodichloromethane					
Bromoform					
Bromomethane					
Carbon Tetrachloride					
Chlorobenzene					
Chioroethane					
Chloroform					
Chloromethane					
Dibromochloromethane					
1,2-Dichlorobenzene					
1,3-Dichlorobenzene					
1,4-Dichlorobenzene					
Dichlorodifluoromethane					
1,1-Dichloroethene					
1,2-Dichloroethane					
1,1–Dichloroethane					
Cis-1,2-Dichloroethene		682	185		32.0
Trans-1,2-Dichloroethene		47	18		2.6
1,2–Dichloropropane					
Cis-1,3-Dichloropropene					
Trans-1,3-Dichloropropene					
Methylene Chloride					
1,1,2,2-Tetrachloroethane					
Tetrachloroethene					
1,1,1–Trichloroethane					
1,1,2-Trichloroethane		000	180		00
Trichloroethene		299	180		3.0
Trichlorofluoromethane					
Vinyl Chloride					
METHOD: EPA 601/2					
Bromodichloromethane	NA			NA	
Bromoform	NA			NA	
Bromomethane	NA			NA	
Carbon Tetrachloride	NA			NA	
Chlorobenzene	NA			NA	
Chloroethane	NA			NA	
Chloroform	NA			NA	
Chloromethane	NA			NA	
Dibromochloromethane	NA			NA	
1,2-Dichlorobenzene	NA			NA	

NA

CLIENT: BAKER ENVIRONMENTAL, INC. SDG NO.: B5296

Client Sample ID: Matrìx:	35–TB29 WATER	35-MW14S-02 WATER	35-MW14D-02 WATER	35-MW16D-02 WATER	35–MW10S–02 WATER	35–RB20 WATER
Dilution Factor:	1	25	1	. 1	1	1
Units:	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
METHOD: EPA 601/2 (continued)						
1.4-Dichlorobenzene	NA			NA		
Dichlorodifluoromethane	NA			NA		
1 1-Dichloroethene	NA			NA		
1.2-Dichloroethane	NA			NA NA		
	INA			INA		
Cis-1,2-Dichloroethene	NA			NA		
Irans-1,2-Dichloroethene	NA			NA		
1,2-Dichloropropane	NA			NA		
Cis-1,3-Dichloropropene	NA	942	256	NA	35.1	
Trans – 1,3 – Dichloropropene	NA	49	20	NA	1.8	
Methylene Chloride	NA			NA		
1,1,2,2–Tetrachloroethane	NA			NA		
Tetrachloroethene	NA			NA		
1,1,1–Trichloroethane	NA			NA		
1,1,2-Trichloroethane	NA			NA		
Trichloroethene	NA	548	270	NA	5.9	
Trichlorofluoromethane	NA			NA		
Vinyl Chloride	NA			NA		
METHOD: EPA 602/1						
Benzene	NA			0.5	3.4	
Chlorobenzene	NA					
1.2-Dichlorobenzene	NA					
1.3-Dichlorobenzene	NA					
1 4-Dichlorobenzene	NA					
Ethylbenzene	NA	18	6	1.1	0.9	
Toluene	NA	17	19	10	0.6	0.6
Yvlanes	NA	54	10	25	0.0	1.4
Methyl Tertiary Butyl Ether	NA	92.5	43.9	2.0	2.0	1.4
METHOD: EPA 602/2						
Benzene	NA			0.6	2.9	
Chlorobenzene	NA					
1.2-Dichlorobenzene	NA					
1 3-Dichlorobenzene	NΔ					
1 4 - Dichlorobenzene	NA					
	11/4 514	•	~	0.0	0.0	
Eurywenzene Telvene	INA.	0	2	0.2	0.3	
	NA NA	10	3	0.3	0.5	0.3
Aylenes	NA	23	7	0.5	1.0	0.7

CLIENT: BAKER ENVIRONMENTAL, INC. SDG NO.: B5296

Client Sample ID: Matrix:	35-MW16S-02 WATER	35-MW19S-02 WATER	35-MW19S-02D WATER	35–MW19D–02 WATER	35-MW21S-02 WATER	35-MW21D-02 WATER
Dilution Factor:	1	1	1	25	1	1
Units:	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L

METHOD: EPA 601/1						
METHOD: EPA 601/1 Bromodichloromethane Bromoform Bromomethane Carbon Tetrachloride Chlorobenzene Chloroethane Chloroform Chloromethane Dibromochloromethane 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene						
Dichlorodifluoromethane						
1,1 - Dichloroethene						
1 1 – Dichloroethane						
Cis-1,2-Dichloroethene		26.0	26.4	664		13.9
Trans-1,2-Dichloroethene		6.0	6.1	176		1.5
1,2-Dichloropropane						
Cis-1,3-Dichloropropene						
Trans – 1,3 – Dichloropropene						
Methylene Chloride						
Tetrachloroethene			0.8			
1,1,1-Trichloroethane						
1,1,2-Trichloroethane						
Trichloroethene		26.8	26.1	900		8.3
Trichlorofluoromethane						
Vinyl Chloride						
METHOD: EPA 601/2						
Bromodichloromethane	NA				NA	
Bromoform	NA				NA	
Bromomethane	NA				NA	
Carbon Tetrachloride	NA				NA	
Chlorobenzene	NA				NA	
Chloroethane	NA				NA	
Chlorotorm					NA NA	
Chioromethane					INA NA	
Dipromocniorometnane	NA NA				NA	
					NΔ	
1,3-Dichlorobenzene	NM.				11/4	

CLIENT: BAKER ENVIRONMENTAL, INC. SDG NO.: B5296

Client Sample ID: Matrix: Dilution Factor: Units:	35–MW16S–02 WATER 1 ug/L	35~MW19S-02 WATER 1 ug/L	35–MW19S–02D WATER 1 ug/L	35–MW19D–02 WATER 25 ug/L	35-MW21S-02 WATER 1 ug/L	35–MW21D–02 WATER 1 ug/L
METHOD: EPA 601/2 (continued)						
1,4-Dichlorobenzene Dichlorodifluoromethane 1,1-Dichloroethane 1,2-Dichloroethane 1,1-Dichloroethane Cis - 1,2-Dichloroethane Trans - 1,2-Dichloroethane 1,2-Dichloropropane Cis - 1,3-Dichloropropene Trans - 1,3-Dichloropropene	NA NA NA NA NA NA NA NA NA	31.1 6.3	33.9 7.9	835 171	NA NA NA NA NA NA NA NA NA	18.2 3.1
Methylene Chloride 1,1,2,2-Tetrachloroethane Tetrachloroethene 1,1,1-Trichloroethane 1,1,2-Trichloroethane Trichloroethene Trichlorofluoromethane	NA NA NA NA NA NA	44.1	0.7 48.3	1360	NA NA NA NA NA NA	13.9
	NA				NA	
Benzene Chlorobenzene 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene	698				210	
Ethylbenzene Toluene Xylenes Methyl Tertiary Butyl Ether	420 984 1700 34.1	0.8 0.6 1.8	0.5 0.5 1,5	29 12 50 319	824 45 1320	0.7 0.6 2.1
METHOD: EPA 602/2 Benzene Chlorobenzene 1,2- Dichlorobenzene 1,3- Dichlorobenzene 1,4- Dichlorobenzene	550				217	
Ethylbenzene Toluene Xylenes	232 647 899	0.2 0.6 0.8	0.2 0.3 0.7	6 7 18	507 45 994	0.4 0.5 2.2

Roy F. Weston, Inc. 1 Weston Way West Chester, Pennsylvania 19380-1499 8 610-701-3000 • Fax 610-701-3186

INORGANIC QUALITY ASSURANCE REVIEW BAKER ENVIRONMENTAL, INC. SITE: MCB CAMP LEJEUNE SDG NO.: BA5296

> REVIEW PERFORMED BY THE ANALYTICS DIVISION OF ROY F. WESTON, INC.

VERIFIED BY:

Zohreh Hamid, Ph.D. Section Manager - Data Validation

27-94 Date

BAKER ENVIRONMENTAL, INC. - NAVY CLEAN SITE: MCB CAMP LEJEUNE SDG No.: BA5296

CASE SUMMARY

This data validation review consists of seventeen (17) water samples received on 05-12,13,14-94. Laboratory analyses were performed by NDRC Laboratories, Inchscape Testing Services for TAL metals.

All data have been validated with regard to usability according to the quality assurance set forth in Inorganic Functional Guidelines and Naval Energy and Environmental Support Activity (NEESA). If you have any questions or comments on this data review, please contact Zohreh Hamid at (610) 701-3745.

The following samples are contained within this report:

19S02D	35RB20	MW1002	MW16D2	MW21D2	MW29BW
35MW4D	MW09D2	MW102D	MW16S2	MW21S2	W19D02
35MW4S	MW09S2	MW10S2	MW19S2	MW29A 1	

QUALITY ASSURANCE REVIEW

The findings offered in this report are based upon a rigorous review of the following criteria.

- Holding Time
- Calibration
- Contract Required Detection Limit Samples
- Blank Samples
- Interference Check Samples
- Matrix Spike
- Duplicate Digestion Samples
- Laboratory Control Sample
- Serial Dilution Sample
- Graphite Furnace Analysis
- Quarterly Verification of Instrument Parameters
- Sample Result Verification
- Preparation Logs
 - Run Logs

*

*

*

- Data Package Completeness
- * All criteria were met; therefore, a narrative section is not provided for this classification.

Page 2

HOLDING TIME

The analysis holding time for mercury in all samples and the corresponding QC samples exceeded the requirement limit. The reported sample data is qualified estimated.

CALIBRATION ANALYSIS

The percent recovery for Be (80%) in initial calibration analyzed by graphite furnace was below the requirement limit of 90%. The reported sample data for the corresponding samples are qualified estimated.

The percent recovery for Se (87.6%) was below the 90% requirement in the continuing calibration. The data are not impacted since this calibration was analyzed after the sample analysis.

CONTRACT REQUIRED DETECTION LIMIT SAMPLE ANALYSES

The CRDL recovery for lead (143.3%/143.3%) in two different analysis runs, As (126%), Cd (62%), Se (122%) in graphite furnace and Sb (133.5/148%), Be (130%), Cr (132.5%), and Zn (123.6%) in ICP analysis were outside the data validation requirement limits of 80-120%. The positive results greater than the IDLs but less than 3X the CRDLs for these analytes are qualified estimated due to the uncertainty near the detection limits. The non-detected values for Cd are also qualified estimated.

In the second analysis, the CRDL recoveries for Sb (124.5%) and Pb (143.3%) analyzed by graphite furnace and all ICP elements were outside the requirement limits. The reported sample data for the affected samples (MW29A1 and MW29BW) are qualified estimated.

Note: The additional qualifier code is not applied if the sample result has already been qualified "U" due to blank contamination.

BLANK ANALYSES

The laboratory blank had the following contaminations at levels above the IDLs, but below the CRDLs.

Page 3

ANALYTE	CONC. UG/L	ACTION LEVEL UG/L *
Ba	1.0	5
Cu	4	20
РЪ	1.3	6.5
Mg	19	195
Ag	-6	**

* Action level = 5X the blank concentration.

** The reported sample data are not impacted when the absolute concentration of an analyte is less than 2X the IDL.

The reported sample results up to the action limits are qualified "U" for these analytes due to the laboratory blank contamination.

Zinc was detected in the calibration blank at a level above the CRDL. The reported sample results up to 10X the blank contamination level are rejected. The reported sample results above 10X the blank levels are accepted unqualified.

The second blanks had Sb, As, Cr, Cu, Fe, Mg, Mn, Hg, Ni, and Ag at levels below the CRDLs. The reported affected sample results (MW29A1 and MW29BW) up to 5X the blank contamination are qualified "U".

INTERFERENCE CHECK SAMPLES

The percent recoveries for the TAL analytes analyzed by ICP were within the control limits.

Calcium was not included in ICS A standard solution in second analysis run. The ICP interference could not be evaluated; therefore, the reported sample data for Ca are qualified estimated.

Also, the recoveries for Cr (124/133.8%) were above 120% requirement limits in the initial and final ICP check sample analyses. The reported sample data are qualified.

Page 4

MATRIX SPIKE SAMPLE ANALYSIS

The matrix spike recoveries for Sb (0.0%), As (16.2%), and Se (52.0%) in matrix spike sample MW19S2 and the matrix spike recovery for Sb (73.3%) in matrix spike sample MW29A1 were below the requirement limit of 75%. The worse case has been applied. The reported positive sample results for Se, As, and Se are qualified estimated and the non-detected values are rejected, due to the extremely low matrix spike recovery. The reported results are biased low and the possibility of false negatives exist.

LABORATORYDUPLICATE SAMPLES

Two sets of laboratory duplicate sample analyses were performed. The RPDs for Pb were above the analysis requirement limits. The reported positive results are not qualified based on this outlier, since the RPD was within the data validation requirement limit.

One set of field duplicate analyses was analyzed with this batch of samples. The RPDs were within the requirement limits.

SERIAL DILUTION ANALYSIS

The %D for Ba (11.3%) was above the analysis requirement limits. The %D was within the data validation control limits. Therefore, the data are accepted unqualified.

GRAPHITE FURNACE ANALYSIS

The following samples analyzed by graphite furnace had the analytical spike recoveries outside the control limits of 85-115%:

SAMPLE ID	ANALYTE	% RECOVERY
19S02D	As	42
25MW4D	As/Se	80/55
MW09D2	As/Se	72.5/31**

Page 5

SAMPLE ID	ANALYTE	% RECOVERY
MW09S2	Se	18**
MW1002	Se	7.9
MW102D	As	71
MW10S2	Se/Tl	41/83.5
MW16D2	As/Se	73.5/66
MW16S2	As/Cd/Se	60.5/118.5*/46
MW19S2	As/Se	51/70
MW21D2	As/Se	74/77
MW21S2	Se	48
MW29A1	Sb/Ag	75/120*
MW29BW	Se	63
W19D02	As	60

* Only the positive results are qualified estimated.

** The positive results are qualified and the non-detected values are rejected due to the extremely low analytical spike recovery.

The reported data are qualified estimated.

The analytical spike recovery for Sb (93.5%) was within the control limits in sample MW29BW. The result was inadvertently flagged with "W" by the laboratory. Cadmium in samples MW29BW and 35MW4S and chromium in sample MW29A1 were inadvertently flagged with "W".

Page 6

SAMPLE RESULTS

The result for aluminum in sample MW29A1 was not reported on the Form I.

Results for Sb, Be, Cr, and Ag in samples MW29A1 and MW29BW were obtained by graphite furnace.

Results for As in samples 35MW4S, MW09S2, MW1002, MW10S2, and MW21S2 and Cd in samples MW10S2, MW21S2, and W19D02 were obtained by Method of Standard Addition. The linearity met the requirement limits with the exception of cadmium in sample MW10S2. The data are not qualified since the deviation was marginal.

SUMMARY

The data package completeness was fair. The quality of the data was poor. The sample data are presented in the data summary with the applied qualifier codes.

INFORMATION REGARDING DATA

The data have been reviewed according to the USEPA National Functional Guidelines for Inorganic Data Review. All data are validated with regard to usability.

If you have any questions or comments on this data review, please call Zohreh Hamid at (215) 344-3745.

ATTACHMENTS

- 1. Attachment I Glossary of Data Qualifier Codes
- 2. Attachment II Sample Result Summary. This includes:
 - a) A summary of all positive results for the target analytes with the qualifier codes, if applicable;
 - b) All qualified and usable detection limits.
- 3. Attachment III Sample data (Form I) verified by the laboratory.

ATTACHMENT I GLOSSARY OF DATA QUALIFIER CODES

եր համանացին է երեն անգանությունը։ Մի

.

GLOSSARY OF DATA QUALIFIERS

CODES RELATING TO IDENTIFICATION

(confidence concerning presence or absence of compounds):

- U = NOT DETECTED SUBSTANTIALLY ABOVE THE LEVEL REPORTED IN LABORATORY OR FIELD BLANKS.
- **R** = UNRELIABLE RESULT. ANALYTE MAY OR MAY NOT BE PRESENT IN THE SAMPLE. SUPPORTING DATA NECESSARY TO CONFIRM RESULT.
- N = NEGATED COMPOUND WAS CONSIDERED AS NOT PRESENT IN THE SAMPLE.

(NO CODE) = CONFIRMED IDENTIFICATION

CODES RELATING TO QUANTITATION

(can be used for both positive results and sample quantitation limits):

- J = ANALYTE PRESENT. REPORTED VALUE MAY NOT BE ACCURATE OR PRECISE.
- **UJ** = THE REPORTED QUANTITATION LIMITS ARE QUALIFIED ESTIMATED.

OTHER CODES

 \mathbf{Q} = NO ANALYTICAL RESULT.

ATTACHMENT II SAMPLE RESULT SUMMARY

···· = · · · ·

ROY F. WESTON, INC. INORGANIC ANALYSES - DATA VALIDATION SUMMARY

CLIENT: BAKER ENVIRONMENTAL, INC. SDG NO.: BA5296

X

Client Sam	ple ID: Matrix: Units:		MW1002 WATER UG/L	MW102D WATER UG/L	MW10S2 WATER UG/L	MW16D2 WATER UG/L	MW16S2 WATER UG/L	MW19S2 WATER UG/L
INORGANIC EL	EMENTS			-,,,				
		IDL (ug/L)						
Aluminium	Р	20	24600	21000	218000	8870	158000	101000
Antimony	Р	46	R	R	R	R	R	R
Arsenic	F	1.2	20.3 J	9.5 J	165 J	R	6.0 J	6.3 J
Barium	Р	1.0	271	249	2230	82.0	870	287
Beryllium	Р	1.0	6.0	5.0 J	40.0	4.0	34.0	11.0
Cadmium	F	0.2	3.6 J	3.0	19.7 R	1.3 J	8.2 J	10.2 J
Calcium	Р	1700	443000	430000	2050000	131000	886000	104000
Chromium	Р	7.0	206	181	1120	81.0	735	301
Cobalt	Р	11			60.0		33.0	168
Copper	Р	2.0	25.0	23.0	140	16.0	70.0	38.0
Iron	Р	13	20900	18100	111000	31300	137000	139000
Lead	F	0.6	9.7 J	9.7 J	57.6	5.3 J	29.9	64.0
Magnesium	Р	13	9690	8940	42600	5390	27200	9650
Manganese	Р	2	83.0	77.0	462	344	408	684
Mercury	AV	0.1	UJ	UJ	UJ	UJ	UJ	UJ
Nickel	Р	11	29.0	18.0	221	30.0	127	174
Potassium	Р	2440	4670	3660	12800		8300	10900
Selenium	F	1.4	R	R	R	R	R	1,4 J
Silver	F	0.2			20.0		4.0	
Sodium	Р	2370	9070	8970	45400	7540	4470	14600
Thallium	F	0.6	1.1		4.8 J		2.5	2.8
Vanadium	Р	5.0	90.0	73.0	537	48.0	466	228
Zinc	Р	11	147 R	146 R	947	138 R	689	714

.

`)

ROY F. WESTON, INC. INORGANIC ANALYSES - DATA VALIDATION SUMMARY

CLIENT: BAKER ENVIRONMENTAL, INC. SDG NO.: BA5296

Client San	nple ID: Matrix: Units:		19S02D WATER UG/L	35MW4D WATER UG/L	35MW4S WATER UG/L	35RB20 WATER UG/L	MW09D2 WATER UG/L	MW09S2 WATER UG/L
	EMENTS			,				
		IDL (ug/L)						
Aluminium	Р	20	91500	5110	114000	64.0	10800	93000
Antimony	Р	46	R	R	R	R	R	R
Arsenic	F	1.2	4.3 J	2.9 J	30.2 J	2.0 J	7.8 J	86.5 J
Barium	Р	1.0	252	118	2210	2.0	132	706
Beryllium	Р	1.0	10.0	1.0	30.0		3.0	14.0
Cadmium	F	0.2	8.1 J	1.1 J	6.8 J	UJ	1.3 J	4.4 J
Calcium	Р	1700	86900	164000	896000		202000	256000
Chromium	Р	7.0	263	64.0	743		96.0	451
Cobalt	P	11	129		17.0			19.0
Copper	Р	2.0	36.0	12.0	78.0	8.0	15.0	41.0
Iron	Р	13	118000	5530	77700	74.0	10200	55300
Lead	F	0.6	58.1	4.4 J	23.6		10.7 J	35.7
Magnesium	Р	13	8840	3970	25300	144	5180	13200
Manganese	Р	2	523	32.0	195		49.0	273
Mercury	A	0.1	UJ	UJ	UJ	UJ	UJ	UJ
Nickel	Р	11	120		85.0		18.0	62.0
Potassium	Р	2440	9990	3090	5590			9140
Selenium	F	1.4	R	2.0 J	13.5 J	R	1.7 J	2.1 J
Silver	F	0.2			4.0			
Sodium	Р	2370	13300	8450	10500		9450	68200
Thallium	F	0.6	1.9		3,3			2.3
Vanadium	Р	5.0	207	26.0	302		37.0	246
Zinc	Р	11	589 R	151 R	493 R		91.0 R	867

ROY F. WESTON, INC. INORGANIC ANALYSES - DATA VALIDATION SUMMARY

CLIENT: BAKER ENVIRONMENTAL, INC. SDG NO.: BA5296

Client Sam I	ple ID: Matrix: Units:		MW21D2 WATER UG/L	MW21S2 WATER UG/L	MW29A1 WATER UG/L	MW29BW WATER UG/L	W19D02 WATER UG/L	
INORGANIC ELE	MENTS							
		IDL (ug/L)						
Aluminium	Р	20	4350	119000	113822	1880	23000	
Antimony	Р	46	R	R	10.2 J	3.8 J	R	
Arsenic	F	1.2	1.9 J	103 J	14.9 J	2.9 J	4.5 J	
Barium	Р	1.0	77.0	1400	3440	93.0	99.0	
Beryllium	P	1.0	1.0	29.0	3.8 J	0.14 J	12.0	
Cadmium	F	0.2	1.0 J	11.1	11.0	0.31	15.0	
Calcium	Р	1700	330000	1200000	18900	132000	210000	
Chromium	Р	7.0	81.0	1050	292	4.6	201	
Cobalt	Р	11		32.0	168 J	12.0 J	118	
Copper	Р	2.0	11.0	83.0	38.0 J	4.0 J	21.0	
Iron	Р	13	9730	255000	117000	2260	63300	
Lead	F	0.6	3.2 J	31.0	4.2 J	3.9 J	13.1	
Magnesium	Р	13	8590	33300	10700	3210	10200	
Manganese	Р	2	65.0	121	662	52.0 J	1420	
Mercury	A۷	0.1	UJ	UJ	UJ	UJ	UJ	
Nickel	Р	11		138	294	28.0 J	148	
Potassium	Р	2440		9000	8880			
Selenium	F	1.4	R	7.0 J	R	R	R	
Silver	F	0.2			1.2 U	1.1 U		
Sodium	Р	2370	23100	10900	14200	8450		
Thallium	F	0.6		4.5	5.0		1.6	
Vanadium	Р	5.0	33.0	447	425	8.0 J	99.0	
Zinc	Р	11	42.0 R	622	415	42.0 J	707	

Roy F. Weston, Inc. 1 Weston Way West Chester, Pennsylvania 19380-1499 © 610-701-3000 • Fax 610-701-3186

ORGANIC QUALITY ASSURANCE REVIEW BAKER ENVIRONMENTAL, INC. - NAVY CLEAN SITE: MCB CAMP LEJEUNE SDG NO.: B5361

REVIEW PERFORMED BY THE ANALYTICS DIVISION OF ROY F. WESTON, INC.

PREPARED BY:

elly Muir Spittler Unit Leader - Data Validation

18-23-941 Date

VERIFIED BY:

8-24 Date

Zohreh Hamid, Ph.D. Section Manager - Data Validation

BAKER ENVIRONMENTAL, INC. - NAVY CLEAN SITE: MCB CAMP LEJEUNE SDG No.: B5361

INTRODUCTION

This quality assurance review is based upon a review of all data generated from eighteen water samples and two trip blanks collected on 05-13,14,15,16-94. The samples were analyzed according to criteria set forth in the contract laboratory program (CLP) for TCL Volatile, Semivolatile and Pesticide/PCB target compounds and SW846 Methods 601/602 for Specific Volatile Compounds by NDRC Laboratories, Inchscape Testing Services.

This review has been performed in accordance with the confirmation method. The reported analytical results are presented as a summary of the data in Attachment II. All of the analytical data were examined to determine the usability of the analytical results and also to determine contractual compliance relative to the analytical requirements and deliverables specified in the CLP method and Sampling and Chemical Analysis Quality Assurance requirements for the Navy Installation Restoration Program (NEESA 20.2-047B). The applicable qualifier codes have been placed next to the results in the data summary to indicate the qualitative and/or quantitative reliability. The details of this evaluation review are presented in the narrative section of this report.

All data have been validated with regard to usability according to the quality assurance set forth in USEPA Laboratory Data Validation Functional Guidelines for Evaluating Organics Analyses. If you have any questions or comments on this data review, please call Zohreh Hamid or Kelly Spittler at (610) 701-3745.

OUALITY ASSURANCE REVIEW

The findings offered in this report are based upon a review of the following criteria:

- Data Completeness
- Holding Time
- GC/MŠ Tuning
 - Calibration
 - Blanks
 - Surrogate Recoveries
 - Matrix Spike/Spike Duplicate
 - Laboratory Control Sample
- Internal Standard
- Instrument Performance
 - Field Duplicate Results
- Compound Identification
- Compound Quantitation
- All criteria were met; therefore, a narrative section is not provided for this classification.

DATA COMPLETENESS

Volatiles

The Form I VOA-TIC was missing for sample 35-EMW03-03. The laboratory should provide this document.

Semivolatiles

Sample 35-MW22S-02 is not listed on the Form IV, page 169. The laboratory should correct and resubmit this document.

CALIBRATION

Volatiles and Semivolatiles

The following %D results in the continuing calibrations exceeded the 25% QC limit. These calibrations are considered acceptable since less than two (VOA) or four (BNA) check (*) compounds had %Ds outside the criteria. All associated positive results and non-detected values for the compounds listed below are qualified as estimated and flagged, "J" and "UJ". All RRFs were above 0.05; therefore, no qualification is required on this basis.

CALIBRATION	INSTRUMENT ID	COMPOUND	<u>%RSD/%D</u>
CC 05-21-94	HP4.i	Chloroethane	32.0
		Acetone	37.4
		2-Butanone	30.3
CC 05-24-94	HP1.i	4-Nitrophenol	44.8
		Butylbenzylphthalate	27.8
		Bis(2-ethylhexyl)phthalate	40.0
		3-Nitroaniline	32.3
		4-Nitroaniline	39.1

Volatiles

The calibration data met the requirements established in the method. Also, the correlation coefficients were above 0.99 in the initial calibration.

Semivolatiles

The 20 ng RRFs reported on the Form VI, page 309 are incorrect as per the raw data. The average RRFs are correct; however, the laboratory must resubmit this form.

Page 3

BLANKS

Pesticide/PCBs

The method and instrument blanks contained several target compounds at levels below the CRQLs. Since target compounds were not detected in the associated samples, no action is taken on this basis.

SURROGATE RECOVERIES

Volatiles

The following system monitoring compound recoveries were outside the QC limits:

SAMPLE	SURROGATE COMPOUND	<u>RECOVERY</u>	<u>QC LIMITS</u>
VBLK	1,2-Dichloroethane- d_4	74	76-121
RWMS	1,2-Dichloroethane- d_4	73	76-114
RWMSD	1,2-Dichloroethane- d_4	74	76-114
35-EMW03-03	1,2-Dichloroethane-d ₄	75	76-114

The analyses were not reanalyzed. Since the SMC recoveries were below the QC limits, both the positive results and non-detects are qualified estimated and flagged "J" and "UJ". The blank outlier does not affect the other samples which met the SMC recovery criteria. These MS/MSD analyses are from another SDG.

Pesticide/PCBs

All surrogate recoveries were within the requirement limits, except for the following:

SAMPLE NO.	RECOVERY SPB608	SURROGATE COMPOUND	REASON
35-GWDW5-01D	58	DCB	Advisory Criteria 60-150%
35-GWDW5-01	34	DCB	Advisory Criteria 60-150%

DCB = Decachlorobiphenyl

Page 4

Since the requirement limits are advisory and there is no qualification criteria established in Functional Guidelines or NEESA for surrogate outliers in the pesticide/PCB fraction, no action is taken.

MATRIX SPIKE/SPIKE DUPLICATE

Volatiles

The MS/MSD provided with this batch of samples were not part of this SDG; therefore, a Form III and raw data are not provided. These QC samples do not affect the sample analyses.

Semivolatile and Pesticide/PCBs

MS/MSD analyses were not provided with this batch of samples. No qualification is required due to the lack of the QC analyses.

Volatiles (601/602)

Most of the spike recoveries were within the 60-140% QC range, with the exception of those listed below. Since these compounds were not detected in the samples, no action is required.

SAMPLE	SPIKE COMPOUND	RECOVERY
MS/MSD/LCS	1,2-Dichlorobenzene	148/167/155
LCS	Ethylbenzene	142

LABORATORY CONTROL SAMPLE

An LCS analysis was performed in order to fulfill the blank spike analysis requirements established in the NEESA guidelines.

FIELD DUPLICATE RESULTS

Volatiles

A set of field duplicate analyses was not provided with this batch of samples. No qualification is required due to the lack of this field QC sample.

Page 5

Semivolatile and Pesticide/PCBs

One set of field duplicate analyses was provided with this batch of samples (35-6WDW5-01D). The sample result reproducibility was satisfactory.

INFORMATION REGARDING DATA

The data have been reviewed according to the USEPA National Functional Guidelines for Organic Data Review. All data are validated with regard to usability.

If you have any questions or comments on this data review, please call Kelly Spittler or Zohreh Hamid at (215) 344-3745.

ATTACHMENTS

- 1. Attachment I Glossary of Data Qualifier Codes
- 2. Attachment II Sample Result Summary. This includes:
 - a) A summary of all positive results for the target analytes with the qualifier codes, if applicable;
 - b) All qualified and usable detection limits.
- 3. Attachment III Sample data (Form I) verified by the laboratory.

ATTACHMENT I GLOSSARY OF DATA QUALIFIER CODES

GLOSSARY OF DATA QUALIFIERS

CODES RELATING TO IDENTIFICATION

(confidence concerning presence or absence of compounds):

- W = NOT DETECTED SUBSTANTIALLY ABOVE THE LEVEL REPORTED IN LABORATORY OR FIELD BLANKS.
 [Substantially is equivalent to a result less than 10 times the blank level for common contaminants (methylene chloride, acetone and 2-butanone in the VOA analyses, and common phthalates in the BNA analyses, along with tentatively identified compounds) or less than 5 times the blank level for other target compounds.]
- **R** = UNUSABLE RESULT. THE PRESENCE OR ABSENCE OF THIS ANALYTE CANNOT BE VERIFIED. SUPPORTING DATA NECESSARY TO CONFIRM RESULT.
- N = NEGATED COMPOUND. THERE IS PRESUMPTIVE EVIDENCE TO MAKE A TENTATIVE IDENTIFICATION.

CODES RELATING TO QUANTITATION

(can be used for both positive results and sample quantitation limits):

- J = ANALYTE WAS POSITIVELY IDENTIFIED. REPORTED VALUE MAY NOT BE ACCURATE OR PRECISE.
- **UJ** = ANALYTE WAS NOT DETECTED ABOVE THE CRQL. THE REPORTED QUANTITATION LIMIT IS QUALIFIED ESTIMATED.

OTHER CODES

 \mathbf{Q} = NO ANALYTICAL RESULT.
ATTACHMENT II SAMPLE RESULT SUMMARY

ROY F. WESTON, INC. VOLATILE ANALYSES - DATA VALIDATION SUMMARY

.

CLIENT: BAKER ENVIRONMENTAL SITE: MCB CAMP LEJEUNE SDG NO.: B5361

Client Sample ID: Matrix: Dilution Factor: Units:	35-EMW05-03 WATER 1.0 ug/L	35-MW22D-02 WATER 1.0 ug/L	35–MW25 5 –02 WATER 1.0 ug/L	35–EMW03–03 WATER 1.0 ug/L	35–TB33 WATER 1.0 ug/L	35–TB32 WATER 1.0 ug/L
COMPOUND					and the second sec	
Bromomethane				UJ		
Vinyl Chloride				UJ		
Chloroethane	UJ	UJ	UJ	UJ	UJ	UJ
Methylene Chloride				UJ		
Acetone	UJ	UJ	UJ	UJ	UJ	UJ
Carbon Disulfide				UJ		
1,1-Dichloroethene				UJ		
1,1-Dichloroethane				UJ		
1,2-Dichloroethene	17	20		46 J		
Chloroform				UJ		
1,2-Dichloroethane				UJ		
2-Butanone	UJ	UJ	UJ	UJ	UJ	UJ
1,1,1-Trichloroethane				UJ		
Carbon Tetrachloride				UJ		
Bromodichloromethane				UJ		
1,2-Dichloropropane				UJ		
Cis-1,3-Dichloropropene				UJ		
Trichloroethene	8			12 J		
Dibromochloromethane				UJ		
1.1.2-Trichloroethane				UJ		
Benzene			11	IJJ		
Trans-1.3-Dichloropropene				UJ		
Bromoform				U.J		
4-Methyl-2-Pentanone				U.J		
2-Hexanone				11		
Tetrachloroethene				U.J		
1 1 2 2-Tetrachloroethane						
Toluene			73	().1		
Chlorobenzene			, .	U.1		
Ethylbenzene			128			
Styrene				U.I		
Xylene (total)			270			
Chloromethane			210			

CLIENT: BAKER ENVIRONMENTAL SDG NO.: B5361

Client Sample ID:	35-EMW05-03	35- MW22D-02	35-MW25S-02	35-EMW03-03
Matrix:	WATER	WATER	WATER	WATER
Dilution Factor:	1.0	1.0	1.0	1.0
Units:	ug/L	ug/L	ug/L	ug/L

COMPOUND

Phenol bis(2-Chloroethyl)ether 2-Chlorophenol 1,3-Dichlorobenzene 1,4-Dichlorobenzene 1,2-Dichlorobenzene 2-Methylphenol 2,2'-oxybis(1-Chloropropane) 4-Methylphenol N-Nitroso-di-n-propylamine Hexachloroethane Nitrobenzene Isophorone 2-Nitrophenol 2,4-Dimethylphenol bis(2-Chloroethoxy)methane				
2,4-Dichlorophenol 1,2,4-Trichlorobenzene				
Naphthalene	7 J		123	
4-Chloroaniline				
Hexachlorobutadiene				
4-Chloro-3-methylphenol			101	
2-Methylnaphthalene			131	
Hexachlorocyclopentadiene				
2,4,6 – Trichlorophenol				
2,4,5 – Trichlorophenol				
2-Chioronaphthalene				
2-Nitroanline				
Accompanyiphinalate				
26-Dipitrotoluene				
2_O-Dimitoloidene	t I.J	UJ	UJ	UJ
Acena®		-		1

CLIENT: BAKER ENVIRONMENTAL SDG NO.: B5361

35-EMW05-03 **Client Sample ID:** 35-MW22D-02 35-MW25S-02 35-EMW03-03 Matrix: WATER WATER WATER WATER **Dilution Factor:** 1.0 1.0 1.0 1.0 Units: ug/L ug/L ug/L ug/L COMPOUND 2,4-Dinitrophenol Dibenzofuran 8 J 4-Nitrophenol UJ UJ UJ UJ 2,4-Dinitrotoluene Diethylphthalate Fluorene 8 J 4-Chlorophenyl-phenylether UJ UJ 4-Nitroaniline UJ UJ 4,6-Dinitro-2-methylphenol N-Nitrosodiphenylamine 4-Bromophenyl-phenylether Hexachlorobenzene Pentachlorophenol Phenanthrene 10 J Anthracene Carbazole Di-n-butylphthalate Fluoranthene Pyrene UJ Butylbenzylphthalate UJ UJ UJ Benzo(a)anthracene 3,3-Dichlorobenzidine Chrysene UJ UJ bis(2-Ethylhexyl)phthalate UJ UJ Di-n-octylphthalate Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(a)pyrene Indeno(1,2,3-cd)pyrene Dibenz(a,h)anthracene Benzo(g,h,i)perylene

CLIENT: BAKER ENVIRONMENTAL SDG NO.: B5361

Client Sample ID:	35 EMW 7-03	35-6WDW5-01D	35-6WDW5-01	35-FS03-LG-F01
Matrix:	WATER	WATER	WATER	WATER
Dilution Factor:	1.0	1.0	1.0	1.0
Units:	ug/L	ug/L	ug/L	ug/L

COMPOUND

.

Phenol bis(2-Chloroethyl)ether 2-Chlorophenol 1,3-Dichlorobenzene 1,4-Dichlorobenzene 2-Dichlorobenzene 2-Methylphenol 2,2'-oxybis(1-Chloropropane) 4-Methylphenol N-Nitroso-di-n-propylamine Hexachloroethane Nitrobenzene		6 J		23
2–Nitrophenol				
2,4-Dimethylphenol				
bis(2-Chloroethoxy)methane				
2,4-Dichlorophenol				
1,2,4-Trichbrobenzene				
Naphthalene				118
4-Chloroaniline				
Hexachlorobutadiene				
4-Chloro-3-methylphenol				
2-Methylnaphthalene				152
Hexachiorocyclopentadiene				
2,4,6 – Trichblerenhand				
2-Milloannine Dimothylphthalata				
Acononthylono				
2.6-Dinitrotoluene				
3-Nitroaniline	Útl	11.1	111	111
Acenar ane			~~	00
	4			

CLIENT: BAKER ENVIRONMENTAL SDG NO.: 85361

Client Sample ID:	35-EMW7-03	35~6WDW5-01D	35-6WDW5-01	35-FS03-LG-F01
Matrix:	WATER	WATER	WATER	WATER
Dilution Factor:	1.0	1.0	1.0	1.0
Units:	ug/L	ug/L	ug/L	ug/L
			· · · · · · · · · · · · · · · · · · ·	-
COMPOUND				
2,4-Dinitrophenol				
Dibenzofuran				14
4-Nitrophenol	UJ	UJ	UJ	UJ
2,4-Dinitrotoluene				
Diethylphthalate				
Fluorene				21
4-Chlorophenyl-phenylether				
4-Nitroaniline	UJ	UJ	UJ	UJ
4,6-Dinitro-2-methylphenol				
N-Nitrosodiphenylamine				
4-Bromophenyl-phenylether				
Hexachlorobenzene				
Pentachlorophenol				
Phenanthrene				31
Anthracene				
Carbazole				13
Di-n-butylphthalate				
Fluoranthene				
Pyrene				
Butylbenzylphthalate	UJ	UJ	UJ	UJ
Benzo(a)anthracene				
3,3-Dichlorobenzidine				
Chrvsene				
bis(2-Ethylhexyl)phthalate	UJ	UJ	UJ	UJ
Di-n-octvlphthalate				
Benzo(b)fluoranthene				
Benzo(k)fluoranthene				
Benzo(a)pyrene				
Indeno(1,2,3-cd)pyrene				
Dibenz(a,h)anthracene				
Benzo(g,h,i)perylene				

CLIENT: BAKER ENVIRONMENTAL SDG NO.: B5361

Client Sample ID:	35-MW25D-02
Matrix:	WATER
Dilution Factor:	1.0
Units:	ug/L
	0

COMPOUND

Phenol bis(2-Chloroethyl)ether 2-Chlorophenol 1,3-Dichlorobenzene 1,4-Dichlorobenzene 1,2-Dichlorobenzene 2-Methylphenol 2,2'-oxybis(1-Chloropropane) 4-Methylphenol N-Nitroso-di-n-propylamine Hexachloroethane Nitrobenzene Isophorone 2-Nitrophenol 2,4-Dimethylphenol bis(2-Chloroethoxy)methane 2,4-Dichlorophenol 1,2,4-Trichlorobenzene Naphthalene 4-Chloroaniline Hexachlorobutadiene 4-Chloro-3-methylphenol 2-Methylnaphthalene Hexachlorocyclopentadiene 2,4,6-Trichlorophenol 2,4,5-Trichlorophenol 2-Chloronaphthalene 2-Nitroaniline Dimethylphthalate Acenaphthylene 2,6-Dinitrotoluene 3-Nitroaniline Acenag" ne

CLIENT: BAKER ENVIRONMENTAL SDG NO.: B5361

Client Sample ID:	35-MW25D-02
Matrix [.]	WATER
Dilution Factor:	10
Linite:	1.0
orna.	ug/L
COMPOUND	
2,4-Dinitrophenol	
Dibenzofuran	
4-Nitrophenol	UJ
2,4-Dinitrotoluene	
Diethylphthalate	
Fluorene	
4-Chlorophenyl-phenylether	
4-Nitroaniline	UJ
4,6-Dinitro-2-methylphenol	
N-Nitrosodiphenylamine	
4-Bromophenyl-phenylether	
Hexachlorobenzene	
Pentachlorophenol	
Phenanthrene	
Anthracene	
Carpazole Di n butulnottoaloto	
DI-II-butyiphinalate	
r yiciic Rutylbonzylphthalato	
Benzo(a)anthracene	85
3 3-Dichlorobenzidine	
Chrysene	
bis(2-Fthylhexyl)phthalate	UJ
Benzo(b)fluoranthene	
Benzo(k)fluoranthene	
Benzo(a)pyrene	
Indeno(1,2,3-cd)pyrene	
Dibenz(a,h)anthracene	
Benzo(g,h,i)perylene	

ROY F. WESTON, INC. PESTICIDE/PCB ANALYSES - DATA VALIDATION SUMMARY

CLIENT: BAKER ENVIRONMENTAL

SDG NO.: B5361

Client Sample ID: Matrix: Dilution Factor: Units:	35–GWDW5–01D WATER 1.0 ug/L	35-GWDW5-01 WATER 1.0 ug/kg		
COMPOUND				
alpha-BHC beta-BHC delta-BHC gamma-BHC(Lindane) Heptachlor Aldrin Heptachlor Epoxide Endosulfan I Dieldrin 4,4'-DDE Endrin Endosulfan II 4,4'-DDD Endosulfan Sulfate 4,4'-DDT Methoxychlor Endrin Ketone Endrin Aldehyde alpha-Chlordane gamma-Chlordane Toxaphene Aroclor 1016 Aroclor 1221 Aroclor 1242 Aroclor 1248				
Aroclor 1254 Aroclor 1260				

.

CLIENT: BAKER ENVIRONMENTAL, INC. SDG NO.: B5361

Client Sample ID:	35-EMW05-03	35-MW22D-02	35 MW36BW-01	35~MW25S-02	35-EMW03-03	35-GWDW1-01
Matrix:	WATER	WATER	WATER	WATER	MAICA	WAIEN
Dilution Factor:	1	1	1	10	1	1
Units:	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L

METHOD: EPA 601/1				
Bromodichloromethane Bromoform Bromomethane Carbon Tetrachloride Chlorobenzene Chloroethane Chloroform Chloromethane				
Dibromochloromethane				
1,3-Dichlorobenzene				
1,4 – Dichlorobenzene				
Dichlorodifluoromethane			6 9	
1,1 – Dichloroethene			0.8	
1.1 – Dichloroethane			7.6	
Cis-1,2-Dichloroethene				
Trans – 1,2–Dichloroethene				
1,2-Dichloropropane	0 5 4			00 E
Cis-1,3-Dichloropropene	35.4	38.3		6 4
Mathylene Chloride	3,4			0.4
1 1 2 2-Tetrachloroethane				
Tetrachloroethene				
1,1,1 – Trichloroethane				
1,1,2-Trichloroethane				
Trichloroethene	13.8	0.4		23.4
Trichlorofluoromethane				
Vinyi Chloride				
METHOD: EPA 601/2				
Bromodichloromethane				NA
Bromoform				NA
Bromomethane				NA
Carbon Tetrachloride			•	NA
Chlorobenzene				
Chloroform				NA
Chloromethane				NA
Dibromochloromethane				NA
1.2-Dichlorobenzene				NA
1,3-Dichlorobenzene				NA

CLIENT: BAKER ENVIRONMENTAL, INC. SDG NO.: B5361

Client Sample ID: Matrix:	35-EMW05-03 WATER	35-MW22D-02 WATER	35-MW36BW-01 WATER	35-MW25S-02 WATER	35-EMW03-03 WATER	35-GWDW1-01 WATER
Dilution Factor:	1	1	1	10	1	1
Units:	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
ETHOD: EPA 601/2 (continued)						
4 – Dichlorobenzene						NA
chlorodifluoromethane						NA
I – Dichloroethene			9.7			NA
2–Dichloroethane						NA
I – Dichloroethane			13.4			NA
s-1,2-Dichloroethene	36.7	44.8			96.4	NA
ans – 1,2 – Dichloroethene	4				6.2	NA
2 – Dichloropropane						NA
s – 1,3 – Dichloropropene						NA
ans – 1,3 – Dichloropropene						NA
ethylene Chloride						NA
1,2,2–Tetrachloroethane						NA
trachloroethene						NA
1,1 – Trichloroethane						NA
1,2-Trichloroethane						NA
chloroethene	21.2	0.2			36.7	NA
ichlorofluoromethane						NA
nyl Chloride						NA
ì						
ETHOD: EPA 602/1						
nzene	0.6	1.7	0.5	25	0.3	
lorobenzene					••••	
2-Dichlorobenzene						
3-Dichlorobenzene						
-Dichlorobenzene						
ylbenzene	0.7	0.5	0.6	259	0.4	0
luene	0.5	0.5	0.7	122	0.4	·
lenes	1,9	1.4	1.9	561	1.5	2
ethyl Tertiary Butyl Ether					12.7	-
ETHOD: EPA 602/2						
nzene	1	2.1	0.3	18	0.3	
lorobenzene						
2-Dichlorobenzene						
I–Dichlorobenzene						
-Dichlorobenzene						
ıylbenzene	0.4	0.4	0.3	156	0.3	0
luene	0.4	0.4	0.4	95	0.4	·
lan a.	4.4	1.0			÷.,	

CLIENT: BAKER ENVIRONMENTAL, INC.

SDG NO.: 85361

Client Sample ID: Matrix: Dilution Factor: Units: 	35-MW34BW-01 WATER 1 ug/L	35–MW34AW–01 WATER 1 ug/L	35–EMW7–03 WATER 25 ug/L	35-MW30BW-01 WATER 25 ug/L	35-GWDW5-01D WATER 1 ug/L	35–GWDW5–01 WATER 1 ug/L	
Bromodichloromethane Bromoform Bromomethane Carbon Tetrachloride Chlorobenzene Chloroethane Chloroform Chloroform							

Dibromochloromethane				
1,2-Dichlorobenzene				
1,3-Dichlorobenzene				
1,4–Dichlorobenzene				
Dichlorodifluoromethane				
1,1–Dichloroethene				
1,2-Dichloroethane				
1,1–Dichloroethane				
Cis-1,2-Dichloroethene	11.6	353	485	
Trans-1,2-Dichloroethene		44	115	•
1,2—Dichloropropane				
Cis-1,3-Dichloropropene				
Trans-1,3-Dichloropropene				
Methylene Chloride				
1,1,2,2-Tetrachloroethane				
Tetrachloroethene				
1,1,1-Trichloroethane				
1,1,2-Trichloroethane				
Trichloroethene	0.6	137	217	
Trichlorofluoromethane				
Vinyl Chloride				
METHOD: EPA 601/2				

Bromodichloromethane	NA	NA
Bromoform	NA	NA
Bromomethane	NA	NA
Carbon Tetrachloride	NA	NA
Chlorobenzene	NA	NA
Chloroethane	NA	NA
Chloroform	NA	NA
Chloromethane	NA	NA
Dibromochloromethane	NA	NA
1,2-Dichlorobenzene	NA	NA
1,3-Dichlorobenzene	NA	NA

NA NA NA NA NA NA NA NA NA NA

CLIENT: BAKER ENVIRONMENTAL, INC. SDG NO.: B5361

Client Sample ID: Matrix: Dilution Factor:	35–MW34BW–01 WATER 1	35–MW34AW–01 WATER 1	35-EMW7-03 WATER 25	35–MW30BW–01 WATER 25	35–GWDW5–01D WATER 1	35GWDW5-01 WATER 1
Units:	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
METHOD: EPA 601/2 (continued)						
1,4-Dichlorobenzene		NA			NA	NA
Dichlorodifluoromethane		NA			NA	NA
1,1-Dichloroethene		NA			NA	NA
1,2-Dichloroethane		NA			NA	NA
1,1-Dichloroethane		NA			NA	NA
Cis-1,2-Dichloroethene	14.4	NA	385	584	NA	NA
Trans-1,2-Dichloroethene		NA	33	121	NA	NA
1,2-Dichloropropane		NA			NA	NA
Cis-1,3-Dichloropropene		NA			NA	NA
Trans - 1,3 - Dichloropropene		NA			NA	NA
Methylene Chloride		NA			NA	NA
1,1,2,2-Tetrachloroethane		NA			NA	NA
Tetrachloroethene		NA			NA	NA
1.1.1 – Trichloroethane		NA			NA	NA
1,1,2-Trichloroethane		NA			NA	NA
Trichloroethene	1.0	NA	171	347	NA	NA
Trichlorofluoromethane		NA			NA	NA
Vinyl Chloride		NA			NA	NA
METHOD: EPA 602/1						
Benzene	0.4		16	16		
Chlorobenzene						
1.2-Dichlorobenzene						
1.3-Dichlorobenzene						
1.4-Dichlorobenzene						
Ethylbenzene	0,6		11	11	0.7	1
Toluene	0.4		9	15	0.9	0.8
Xvlenes	1.8	1.7	40	40	2.4	1.6
Methyl Tertiary Butyl Ether			86.8	223		
METHOD: EPA 602/2						
Benzene	0.3		6	9		
Chlorobenzene			-			
1.2-Dichlorobenzene						
1.3-Dichlorobenzene						
1 4-Dichlorobenzene						
Fthylbenzene	0.3		a	q	0.5	0.5
Toluene	0.4		9	11	0.5	0.5
Yulanae	1.9	07	20	29	15	15
A hered	1.4	0.7	29	29	1.5	1.0

CLIENT: BAKER ENVIRONMENTAL, INC. SDG NO.: B5361

1,3-Dichlorobenzene

NA

Client Sample ID: Matrix: Dilution Factor: Units:	35–GWDW4–01 WATER 1 ug/L	35–MW31BW–01 WATER 25 ug/L	35–MW35BW–01 WATER 1 ug/L	35–MW22S–02 WATER 25 ug/L	35–MW25D–02 WATER 1 ug/L	35–MW36AW-0 WATER 1 ug/L
METHOD: EPA 601/1						
Bromodichloromethane Bromoform Bromomethane Carbon Tetrachloride Chlorobenzene Chloroethane Chloroform Chloromethane Dibromochloromethane 1,2 – Dichlorobenzene 1,3 – Dichlorobenzene						
,4 – Dichlorobenzene)ichlorodifluoromethane						
,1 – Dichloroethene ,2 – Dichloroethane			5.7			2.1
,1 – Dichloroethane is – 1,2–Dichloroethene rans – 1,2–Dichloroethene 2– Diehloropronane			3.2 0.4			2.5
is – 1,3 – Dichloropropene rans – 1,3 – Dichloropropene lethylene Chloride ,1,2,2 – Tetrachloroethane etrachloroethene ,1,1 – Trichloroethane ,1,2 – Trichloroethane		234 26				
richloroethene irichlorofluoromethane inyl Chloride			0.6			
IETHOD: EPA 601/2						
Bromodichloromethane Bromoform Bromomethane Carbon Tetrachloride Chlorobenzene Chlorotenane Chloroform Chloromethane Dibromochloromethane	NA NA NA NA NA NA NA			NA NA NA NA NA NA NA	NA NA NA NA NA NA NA	

NA

NA

CLIENT: BAKER ENVIRONMENTAL, INC. SDG NO.: B5361

Client Sample ID:	35-GWDW4-01	35-MW31BW-01	35-MW35BW-01	35-MW22S-02	35-MW25D-02	35-MW36AW-01
Matrix: Dilution Footor:	WATER	WATER	WATER	WATER	WATER	WATER
Linite:	1	25	1	25	1	1
Units.	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
METHOD: EPA 601/2 (continued)						
1.4Dichlorobenzene	NA			NΔ	NA	
Dichlorodifluoromethane	NA			NA	NA NA	
1-Dichloroethene	NA		57		NA NA	1.0
2-Dichlorosthane			5,7	INA	NA NA	1.3
	INA NA			. NA	NA	
	NA NA		4	NA	NA	2.6
JIS-1,2-Dichloroethene	NA	264	3.4	NA	NA	
rans-1,2-Dichloroethene	NA	19	0.2	NA	NA	
,2–Dichloropropane	NA			NA	NA	
Cis – 1,3 – Dichloropropene	NA			NA	NA	
Trans-1,3-Dichloropropene	NA			NA	NA	
/lethylene Chloride	NA			NA	NA	
,1,2,2-Tetrachloroethane	NA			NA	NA	
etrachloroethene	NA			NA	NA	
1.1-Trichloroethane	NA			NA	NA	
1.2-Trichloroethane	NA			NA		
richioroethene	814		0.0			
richlorofluoromathano	NA		0.2	INA	NA	
				NA	NA	
Any Chionde	NA			NA	NA	
AETHOD: EPA 602/1						
3enzene		15		1660	0.3	1.7
Shlorobenzene						
,2-Dichlorobenzene						
.3-Dichlorobenzene						
4-Dichlorobenzene						
thylbenzene	0.7	21	0.0	06	0.6	0.9
oluene	0.7	21	0.8	90	0.8	0.8
	1	14	0.5	86	0.7	0.8
yienes teating Teatiens Duck (1745	1.8	66	1.9	100	1.6	3
lethyl Tertiary Butyl Ether		76.3		13.4		
IETHOD: EPA 602/2						
enzene		10		1910	0.5	1.2
hlorobenzene						
2-Dichlorobenzene						
.3 – Dichlorobenzene						
4-Dichlorobenzene						
thulhenzene	0.5	10	0.5			^ -
	0.5	13	0.5	60	0.9	0.6
	0.5	16	0.6	74	0.8	0.7
yienes	1,5	47	1.5	98	2.5	2.1

Roy F. Weston, Inc. 1 Weston Way West Chester, Pennsylvania 19380-1499 8 610-701-3000 • Fax 610-701-3186

INORGANIC QUALITY ASSURANCE REVIEW BAKER ENVIRONMENTAL, INC. SITE: MCB CAMP LEJEUNE SDG NO.: BA5361

REVIEW PERFORMED BY THE ANALYTICS DIVISION OF ROY F. WESTON, INC.

VERIFIED BY:

Ľ

Zohreh Hamid, Ph.D. Section Manager - Data Validation

8-18-94

Date

 $\textcircled{\blue}{\blue}$

BAKER ENVIRONMENTAL, INC. - NAVY CLEAN SITE: MCB CAMP LEJEUNE SDG No.: BA5361

CASE SUMMARY

This data validation review consists of nine (9) water sample received on 05-17-94. Laboratory analyses were performed by NDRC Laboratories, Inchscape Testing Services for TAL metals.

All data have been validated with regard to usability according to the quality assurance set forth in Inorganic Functional Guidelines and Naval Energy and Environmental Support Activity (NEESA). If you have any questions or comments on this data review, please contact Zohreh Hamid at (610) 701-3745.

The following samples are contained within this report:

GW0501MW0202MW0303MW0703MW250DGW051DMW020SMW0501MW2502

QUALITY ASSURANCE REVIEW

The findings offered in this report are based upon a rigorous review of the following criteria.

- * Holding Time
- * Calibration
 - Contract Required Detection Limit Samples
 - Blank Samples
 - Interference Check Samples
- Matrix Spike
 - Duplicate Digestion Samples
 - Laboratory Control Sample
- Serial Dilution Sample
 - Graphite Furnace Analysis
- Quarterly Verification of Instrument Parameters
- * Sample Result Verification
- * Preparation Logs
- * Run Logs
 - Data Package Completeness

* All criteria were met; therefore, a narrative section is not provided for this classification.

Baker Environmental, Inc. SDG No.: BA5361

Page 2

CONTRACT REQUIRED DETECTION LIMIT SAMPLE ANALYSES

The CRDL recoveries for antimony (133.6/137.5%) in ICP analysis and lead (143.3%), arsenic (129%), and selenium (136%) in graphite furnace analysis were above the upper data validation requirement limit of 120%. The positive results greater than the IDL but less than 3X the CRDL are qualified estimated due to the uncertainty near the detection limits.

BLANK ANALYSES

The laboratory blank had the following contaminations at levels above the IDLs, but below the CRDLs.

ANALYTE	CONC. UG/L	ACTION LEVEL UG/L *
Ba	1.1	5.5
Cd	0.1	0.5
Fe	38.5	192.5 ·
Mg	88.6	443

* Action level = 5X the blank concentration.

The results for cadmium are qualified "U". The reported sample results for barium, iron, and magnesium are above the action levels; therefore, the data are not impacted.

INTERFERENCE CHECK SAMPLES

The percent recoveries for the TAL analytes analyzed by ICP were within the control limits.

Calcium was not included in ICS A standard solution. The ICP interference could not be evaluated; therefore, the reported sample data for Ca are qualified estimated.

LABORATORYDUPLICATE SAMPLES

The RPD for mercury was above the analysis and the data validation requirement limits. The reported positive results are qualified estimated, due to the poor reproducibility.

Baker Environmental, Inc. SDG No.: BA5361

Page 3

Two sets of field duplicate analyses were performed. The RPDs for Hg in field duplicate samples GW0501/GW051D and Ca, Cr, Fe, Mn, and Hg in field duplicate samples MW2502/MW250D were above 50%. The data for these elements are qualified estimated in the corresponding field duplicate samples.

GRAPHITE FURNACE ANALYSIS

The following samples analyzed by graphite furnace had analytical spike recoveries outside the 85-115% range.

SAMPLE ID	ANALYTE	% RECOVERY
GW0501	Se/Tl	84/54.5
GW051D	Se/T1	81/58.5
MW0202	As/Pb/Se	75/541.5*/43
MW020S	Se	40
MW0303	As/Se/Tl	81/77/80.5
MW0501	Pb/T1	557*/72
MW0703	Pb/Se	545*/63
MW2502	Se/Tl	71/76.5
MW250D	As/Se	79/47

* The positive results are rejected due to the extremely high analytical spike recovery.

The reported sample results are qualified estimated.

The result for arsenic in sample MW0205 was flagged with "W". The analytical spike recovery (109.5%) was within the limit in this sample.

The analytical spike recovery for Tl in sample MW0303 was below the 85% control limit. This sample should be flagged "W" by the laboratory.

Baker Environmental, Inc. SDG No.: BA5361

Page 4

DATA PACKAGE COMPLETENESS

Samples GW051D and MW0703 were not listed prior to the corresponding analytical spike samples on the Form XIV in the thallium analysis. The raw data showed that these samples were analyzed correctly.

The calibration curve standards in ICP analysis reported after ICV, ICB, and other required QC samples on the Form XIV. The raw data showed that the standards analyzed prior to the ICV/ICB analyses.

The CCV14 for calcium was not listed on the Form II.

The Form III for ICB and CCB in the second analysis run was not included in the data package. Also, the frequency of CCV/CCB listed on Form III does not match the Form XIV.

The Form XI (Part II) was not included in the data package.

SUMMARY

Overall, no major problems were encountered during the sample analysis. The reported data are accepted with the applied qualifier code.

INFORMATION REGARDING DATA

The data have been reviewed according to the USEPA National Functional Guidelines for Inorganic Data Review. All data are validated with regard to usability.

If you have any questions or comments on this data review, please call Zohreh Hamid at (215) 344-3745.

ATTACHMENTS

- 1. Attachment I Glossary of Data Qualifier Codes
- 2. Attachment II Sample Result Summary. This includes:
 - a) A summary of all positive results for the target analytes with the qualifier codes, if applicable;
 - b) All qualified and usable detection limits.
- 3. Attachment III Sample data (Form I) verified by the laboratory.

VXLSTERN

ATTACHMENT I GLOSSARY OF DATA QUALIFIER CODES

GLOSSARY OF DATA QUALIFIERS

CODES RELATING TO IDENTIFICATION

(confidence concerning presence or absence of compounds):

- U = NOT DETECTED SUBSTANTIALLY ABOVE THE LEVEL REPORTED IN LABORATORY OR FIELD BLANKS.
- **R** = UNRELIABLE RESULT. ANALYTE MAY OR MAY NOT BE PRESENT IN THE SAMPLE. SUPPORTING DATA NECESSARY TO CONFIRM RESULT.
- N = NEGATED COMPOUND WAS CONSIDERED AS NOT PRESENT IN THE SAMPLE.

(NO CODE) = CONFIRMED IDENTIFICATION

CODES RELATING TO QUANTITATION

(can be used for both positive results and sample quantitation limits):

- **J** = ANALYTE PRESENT. REPORTED VALUE MAY NOT BE ACCURATE OR PRECISE.
- **UJ** = THE REPORTED QUANTITATION LIMITS ARE QUALIFIED ESTIMATED.

OTHER CODES

 \mathbf{Q} = NO ANALYTICAL RESULT.

ATTACHMENT II SAMPLE RESULT SUMMARY

.

a state of the second second

ROY F. WESTON, INC. INORGANIC ANALYSES - DATA VALIDATION SUMMARY

CLIENT: BAKER ENVIRONMENTAL, INC. SDG NO.: BA5361

Client Sa	mple ID: Matrix: Units:		GW0501 WATER UG/L	GW051D WATER UG/L	MW0202 WATER UG/L	MW020S WATER UG/L	MW0303 WATER UG/L	MW0501 WATER UG/L	MW0703 WATER UG/L
INORGANIC E	LEMENTS			<u></u>					·····
		IDL (ug/L)							
Aluminium	Р	20	215	177	34100	380000	4960	43800	81000
Antimony	Р	46							
Arsenic	F	1.2	2.6		2.6 J	26.2	3.5	23.4	10.7
Barium	Р	1.0	20.7	20.3	300	2280	60.4 J	114	1410
Bervilium	Р	1.0			11.8	63.5	1.5	2.5	16.7
Cadmium	F	0.2	0.3 U	0.23 U	6.1	340	1.6	1.8	4.7
Calcium	Р	1700	49300	49500	825000	787000	215000	47400	834000
Chromium	Р	7.0			268	1540	25.6	91.4	283
Cobait	Р	11			56.1	281	26		67,9
Copper	Р	2.0	2.7	2,9	26.4	94.7	5	20.4	32.8
iron	Р	13	310	286	57500	239000	10400	36500	81000
Lead	F	0.6	1.6		14.9 R	6.9	2.7	35.6 R	22.3 B
Magnesium	P	13	2560	2540	16700	35400	4880	5990	20500
Manganese	P	2	13.3	14	299	497	45.7	75.8	281
Mercurv	AV	0.1	0.46 J		0.84 J	0.15 J			0.17 J
Nickel	Р	11			119	524	28.8	18.8	104
Potassium	Р	2440	5730	5220	7150	22300		4540	7370
Selenium	F	1.4	IJ	IJ	UJ	11.5 J	UJ		UJ
Silver	F	0.2							
Sodium	P	2370	33900	34500	7960	5030	6930	12300	7750
Thallium	F	0.6	IJ	UJ		2.7	UJ	2 J	1.3
Vanadium	P	5.0			141	886	35.5	92.6	185
Zinc	P	11			424	1850	81.1	148	383

ROY F. WESTON, INC. INORGANIC ANALYSES - DATA VALIDATION SUMMARY

CLIENT: BAKER ENVIRONMENTAL, INC. SDG NO.: BA5361

Client Sam	ple ID:		MW2502	MW250D
	Matrix:		WATER	WATER
	Units:		UG/L	UG/L
INORGANIC ELL	EMENTS			······································
		IDL (ug/L)		
Aluminium	Р	20	7810	8880
Antimony	Р	46		
Arsenic	F	1.2	6.1	3.7 J
Barium	Р	1.0	150	205
Beryllium	Р	1.0	2.3	3.9
Cadmium	F	0.2	0.56	0.96
Calcium	Р	1700	138000 J	262000 J
Chromium	Р	7.0	40.1 J	74.2 J
Cobalt	Р	11		
Copper	Р	2.0	2	7.7
Iron	P	13	65900 J	9820 J
Lead	F	0.6	2.2	2
Magnesium	Р	13	6220	4960
Manganese	Р	2	735 J	55 J
Mercurv	AV	0.1	0.44 J	
Nickel	Р	11		13.4
Potassium	P	2440		4050
Selenium	F	1.4	U.I	
Silver	F	0.2	50	00
Sodium	Р	2370	10700	7140
Thallium	, F	0.6	15.1	7170
Vanadium	P	5.0	25.1	32.4
Zinc	P	11	43.6	41 9
2	4	••	-0,0	2112

6

Roy F. Weston, Inc. 1 Weston Way West Chester, Pennsylvania 19380-1499 8 610-701-3000 • Fax 610-701-3186

ORGANIC QUALITY ASSURANCE REVIEW BAKER ENVIRONMENTAL, INC. - NAVY CLEAN SITE: MCB CAMP LEJEUNE SDG NO.: B5529

REVIEW PERFORMED BY THE ANALYTICS DIVISION OF ROY F. WESTON, INC.

Soittle PREPARED BY: Tilly Muin

いもーヤラ ベリ Date

Kelly/Muir Spittler[#] Unit Leader - Data Validation

VERIFIED BY:

<u>8-77-</u>94 Date

Zohreh Hamid, Ph.D. Section Manager - Data Validation

BAKER ENVIRONMENTAL, INC. - NAVY CLEAN SITE: MCB CAMP LEJEUNE SDG No.: B5529

INTRODUCTION

This quality assurance review is based upon a review of all data generated from eleven water samples, four trip blanks and three rinsate blanks collected on 05-17,18,19-94. The samples were analyzed according to criteria set forth in the contract laboratory program (CLP) for TCL Volatile, Semivolatile and Pesticide/PCB target compounds and SW846 Methods 601/602 for specific volatile target compounds by NDRC Laboratories. Inchscape Testing Services.

This review has been performed in accordance with the confirmation method. The reported analytical results are presented as a summary of the data in Attachment II. All of the analytical data were examined to determine the usability of the analytical results and also to determine contractual compliance relative to the analytical requirements and deliverables specified in the CLP method and Sampling and Chemical Analysis Quality Assurance requirements for the Navy Installation Restoration Program (NEESA 20.2-047B). The applicable qualifier codes have been placed next to the results in the data summary to indicate the qualitative and/or quantitative reliability. The details of this evaluation review are presented in the narrative section of this report.

All data have been validated with regard to usability according to the quality assurance set forth in USEPA Laboratory Data Validation Functional Guidelines for Evaluating Organics Analyses. If you have any questions or comments on this data review, please call Zohreh Hamid or Kelly Spittler at (610) 701-3745.

QUALITY ASSURANCE REVIEW

The findings offered in this report are based upon a review of the following criteria:

- Data Completeness
- Holding Time GC/MS Tuning
- Calibration
- Blanks
- Surrogate Recoveries
- Matrix Spike/Spike Duplicate
- Laboratory Control Sample
- Internal Standard
- Instrument Performance
 - Field Duplicate Results
- Compound Identification
- Compound Quantitation
- All criteria were met; therefore, a narrative section is not provided for this classification.

Page 2

DATA COMPLETENESS

General

The chain-of-custody for the soil/sediment samples were included in this data package; however, the sample analyses were not provided with this SDG.

Volatiles

Sample 35-RB36 was inadvertently listed as 35-RE36 throughout this package. The laboratory should correct all documents affected by the discrepancy.

Pesticide/PCBs

The raw data for PEMA3/PEMB3 were missing for both columns. The laboratory should provide this missing information.

GC/MS TUNING

The continuing calibration standard was not listed on the Form V, page 055. The laboratory should correct and resubmit this form.

Semivolatiles

The LCS analysis was not reported on a Form V. The laboratory should add this analysis and resubmit the corrected form.

HOLDING TIME

Volatiles

The technical holding time established in the Functional Guidelines (7 days from collection to analysis), has been exceeded for sample TB-TB38. The laboratory's contractual holding time (10 days from VTSR to analysis) established in the CLP SOW differs for these validation requirements; however, the validator is required by functional guidelines to qualify as estimated the positive results and non-detects in these analyses. It is the data validator's opinion that these results can be accepted with the qualifier codes.

Page 3

CALIBRATION

Volatiles and Semivolatiles

The following %D results in the continuing calibrations exceeded the 25% QC limit. These calibrations are considered acceptable since less than two (VOA) or four (BNA) check (*) compounds had %Ds outside the criteria. All associated positive results and non-detected values for the compounds listed below are qualified as estimated and flagged "J" and "UJ". All RRFs were above 0.05; therefore, no qualification is required on this basis.

ي. اس

CALIBRATION	INSTRUMENT ID	COMPOUND	<u>%RSD/%D</u>
CC 05-21-94	HP4.i	Chloroethane	32.0
		Acetone	68.0
		1,1-Dichloroethane	25.1
		1,2-Dichloroethane	26.1
		2-Butanone	30.3
CC 05-30-94	HP4.i	Chloroethane	29.7
		Methylene Chloride	26.8
		Acetone	44.4
		1,1-Dichloroethane	25.1
		2-Butanone	25.8
CC 06-02-94	HP1.i	4-Chloroaniline	70.5
		3-Nitroaniline	40.0
		3,3-Dichlorobenzidine	25.8
		2,6-Dinitrotoluene	33.7
		2,4-Dinitrophenol	29.3
		4-Nitrophenol	34.1
		N-Nitrosodiphenylamine	33.5
		Butylbenzylphthalate	28.0
		Bis(2-ethylhexyl)phthalate	37.8
		Di-n-octylphthalate	33.9
CC 06-03-94	HP1.i	2,6-Dinitrophthalate	28.8
		2,4-Dinitrotoluene	26.3
		4-Nitrophenol	40.9
		Bis(2-ethylhexyl)phthalate	35.0

Pesticide/PCBs

The percent recovery in the florisil check for alpha-BHC (79%) was below the 80-120% QC limit; however, since this compound was not detected in the samples, no action is taken on this basis.

Page 4

Volatiles (601/602)

The calibration data met the requirements established in the method. Also, the correlation coefficients were above 0.99 in the initial calibration.

BLANKS

Semivolatiles

Rinsate blank 35-RB36 contained common contaminant bis(2-ethylhexyl)phthalate at a level less than the CRQL (5 ug/L). Since this compound was not detected in the other samples, no action is required.

Pesticide/PCBs

The following method blank contained target compound methoxychlor at levels below the CRQLs. All associated positive results less than 5X the blank levels are considered laboratory artifacts and are flagged "U".

<u>BLANK</u>	COMPOUND	<u>LEVEL</u>
Method Blank (PBLKB)	Alpha-BHC	0.013 ug/L
	4,4-DDT	0.025 ug/L
	Endrin Aldehyde	0.022 ug/L

SURROGATE RECOVERIES

Volatiles

The following system monitoring compound recoveries were below the QC limits; therefore, all positive results and non-detects in these analyses are considered estimated.

<u>SAMPLE</u>	SURROGATE	RECOVERY	<u>OC LIMITS</u>
VBLKA	1,2-Dichloroethane- d_4	74	76-114
RWMS	1,2-Dichloroethane-d ₄	73	76-114
RWMSD	1,2-Dichloroethane-d ₄	74	76-114

Page 5

SAMPLE	SURROGATE	RECOVERY	<u>QC LIMITS</u>
35-TB34	1,2-Dichloroethane- d_4	75	76-114
35-TB35	1,2-Dichloroethane-d ₄	75	76-114

Semivolatiles

The following surrogate recoveries were outside the QC limits. Also, several of the advisory surrogate recoveries were outside the limits; however, since this surrogate is advisory; the outliers are not used to qualify the data.

<u>SAMPLE NO.</u>	<u>SURROGATE</u>	<u>RECOVERY</u>	<u>OC LIMITS</u>
35-RB34	2-Fluorobyphenyl	154	43-116
	Terphenyl-d ₁₄	168	33-141
SBLKB	All	High	Various
35-MW33AW-01	Nitrobenzene	158	35-114
	2-Fluorobiphenyl	174	43-116
	Phenol-d ₅	123	30-110
	2,4,6-Tribromophenol	149	25-135
35-RB34RE	2-Fluorobiphenyl	190	43-116
	Terphenyl-d ₁₄	174	33-141
	2,4,6-Tribromophenol	194	25-135

These samples were reanalyzed and a matrix effect was demonstrated in sample 35-RB34. Sample 35-MW33AW-01 was not reanalyzed. Therefore, if positive results were in this analysis they would have been qualified estimated. Sample 35-RB34 should have all base neutral positive results qualified estimated in the reanalysis; however, no target compounds were detected.

Pesticide/PCBs

All surrogate recoveries were within the requirement limits, except for the following:

Page 6

SAMPLE NO.	RECOVERY DB608/DB1701	SURROGATE	REASON
PBLKA	15/14	TCX	Advisory Criteria 60-150%
35-MW33BW-01	59/-	DCB	Advisory Criteria 60-150%
35-MW33AW-01	49/-	DCB	Advisory Criteria 60-150%

DCB = Decachlorobiphenyl TCX = Tetrachloro-m-xylene

Since the requirement limits are advisory and there is no qualification criteria established in Functional Guidelines or NEESA for surrogate outliers in the pesticide/PCB fraction, no action is taken.

MATRIX SPIKE/SPIKE DUPLICATE

General

MS/MSD samples were not specified on the chain-of-custody; therefore, a sample from this batch was not run as the QC samples. No qualification is applied on this basis.

Volatiles (601/602)

Most of the spike recoveries were within the 60-140% QC range, with the exception of those listed below. Since these compounds were not detected in the samples, no action is required.

SAMPLE	SPIKE COMPOUND	RECOVERY
MSD	Bromodichloromethane	143
MS	1,2-Dichlorobenzene	154
MSD	1,2-Dichlorobenzene	152
LCS	1,2-Dichlorobenzene	175

Page 7

LABORATORY CONTROL SAMPLE

An LCS analysis was performed in order to fulfill the blank spike analysis requirements established in the NEESA guidelines.

a menderate and

.....

INTERNAL STANDARD

Semivolatiles

The following internal standard areas were outside the control limits in the sample analyses:

SAMPLE	INTERNAL STANDARD	<u>AREA</u>	CONTROL LIMITS
35-RB34	DCB	155071	701396-2805586
	NPT	572797	2479514-9918056
	ANT	250882	1513672-6054686
	PHN	441120	2673712-10694846
	CRY	150357	1341820-5367278
	PRY	15624	875850-35037402
35-RB32	PRY	823690	875850-35037402
SBLKB	PRY	698824	875850-35037402
35-RB34RE	ANT	944724	1144809-4579236
	CRY	762241	1133054-4532214
	PRY	44920	816468-3265870
35-MW33BW-01	PRY	736998	816468-3265870

DCB	=	1,4-Dichlorobenzene-d ₄
NPT	=	Naphthalene-d ₈
ANT	=	Acenyphthene-d ₁₀
PHN	=	Phenanthrene-d ₁₀
CRY	=	Chrysene-d ₁₂

 $PRY = Perylene_{12}$

 $\overline{}$

Page 8

Sample 35-RB34 is exhibiting a matrix effect, the reanalysis is reported. All sample results quantified in reference to the internal standard outliers in these analyses listed above are qualified estimated. The blank outlier does not affect the sample results.

FIELD DUPLICATE RESULTS

Volatiles, Semivolatiles, and Pesticide/PCBs

A set of field duplicate analyses was not provided with this batch of samples. No qualification is required due to the lack of these QC samples.

Volatiles (601/602)

One set of field duplicate analyses was performed with this batch of samples (35-MW26BW-01/35-MW26BW-01D). The sample result reproducibility was satisfactory.

INFORMATION REGARDING DATA

The data have been reviewed according to the USEPA National Functional Guidelines for Organic Data Review. All data are validated with regard to usability.

If you have any questions or comments on this data review, please call Kelly Spittler or Zohreh Hamid at (215) 344-3745.

ATTACHMENTS

- 1. Attachment I Glossary of Data Qualifier Codes
- 2. Attachment II Sample Result Summary. This includes:
 - a) A summary of all positive results for the target analytes with the qualifier codes, if applicable;
 - b) All qualified and usable detection limits.
- 3. Attachment III Sample data (Form I) verified by the laboratory.
ATTACHMENT I GLOSSARY OF DATA QUALIFIER CODES

GLOSSARY OF DATA QUALIFIERS

CODES RELATING TO IDENTIFICATION

(confidence concerning presence or absence of compounds):

- W = NOT DETECTED SUBSTANTIALLY ABOVE THE LEVEL REPORTED IN LABORATORY OR FIELD BLANKS.
 [Substantially is equivalent to a result less than 10 times the blank level for common contaminants (methylene chloride, acetone and 2-butanone in the VOA analyses, and common phthalates in the BNA analyses, along with tentatively identified compounds) or less than 5 times the blank level for other target compounds.]
- **R** = UNUSABLE RESULT. THE PRESENCE OR ABSENCE OF THIS ANALYTE CANNOT BE VERIFIED. SUPPORTING DATA NECESSARY TO CONFIRM RESULT.
- **N** = NEGATED COMPOUND. THERE IS PRESUMPTIVE EVIDENCE TO MAKE A TENTATIVE IDENTIFICATION.

CODES RELATING TO QUANTITATION

(can be used for both positive results and sample quantitation limits):

- J = ANALYTE WAS POSITIVELY IDENTIFIED. REPORTED VALUE MAY NOT BE ACCURATE OR PRECISE.
- **UJ** = ANALYTE WAS NOT DETECTED ABOVE THE CRQL. THE REPORTED QUANTITATION LIMIT IS QUALIFIED ESTIMATED.

OTHER CODES

 \mathbf{Q} = NO ANALYTICAL RESULT.

ATTACHMENT II SAMPLE RESULT SUMMARY

-

a **a t**

ROY F. WESTON, INC. VOLATILE ANALYSES - DATA VALIDATION SUMMARY

CLIENT: BAKER ENVIRONMENTAL, INC. SDG NO.: B5529

Client Sample ID: Matrix:	35–TB34 WATER	35RB36 WATER	35–TB35 WATER	35TB36 WATER	TBTB38 WATER	
Dilution Factor:	1.0	1.0	1.0	1.0	1.0	
Units:	UG/L	UG/L	UG/L	UG/L	UG/L	
COMPOUND						
Bromomethane	UJ		UJ		UJ	
Vinyl Chloride	UJ		UJ		UJ	
Chloroethane	UJ	UJ	UJ	UJ	UJ	
Methylene Chloride	UJ		UJ		UJ	
Acetone	UJ	UJ	UJ	UJ	UJ	
Carbon Disulfide	UJ		UJ		UJ	
1,1-Dichloroethene	UJ		UJ		UJ	
1,1 – Dichloroethane	UJ	UJ	UJ	UJ	UJ	
1,2-Dichloroethene (TOTAL)	UJ		UJ		UJ	
Chloroform	UJ		UJ		UJ	
1,2-Dichloroethane	ŲJ	UJ	UJ	UJ	UJ	
2-Butanone	UJ	UJ	UJ		UJ	
1,1,1–Trichloroethane	UJ		UJ		UJ	
Carbon Tetrachloride	UJ		IJ		UJ	
Bromodichloromethane	UJ		UJ		UJ	
1,2 – Dichloropropane	UJ		UJ		UJ	
cis-1,3-Dichloropropene	UJ		UJ		UJ	
Trichloroethene	UJ		UJ		UJ	
Dibromochloromethane	UJ		UJ		UJ	
1,1,2-Trichloroethane	UJ		UJ		UJ	
Benzene	UJ		UJ		UJ	
Trans-1,3-Dichloropropene	UJ		UJ		UJ	
Bromoform	UJ		UJ		UJ	
4-Methyl-2-Pentanone	UJ		UJ		UJ	
2-Hexanone	IJ		UJ		UJ	
Tetrachloroethene	UJ		UJ		UJ	
1,1,2,2-Tetrachloroethane	UJ		UJ		UJ	
Toluene	UJ		UJ		JJ	
Chlorobenzene	UJ		UJ		UJ	
Ethylbenzene	UJ		UJ		UJ	
Styrene	UJ		UJ		UJ	
Xvlene (total)	UJ		UJ		UJ	
Chloromethane	UJ		UJ		UJ	

)

ROY F. WESTON, INC. SEMIVOLATILE ANALYSES - DATA VALIDATION SUMMARY

CLIENT: BAKER ENVIRONMENTAL SDG NO.: B5529

Client Sample ID: Matrix: Dilution Factor: Units:	35–RB32 WATER 1.0 ug/L	35–RB34RE WATER 1.0 ug/L	35–MW33BW–01 WATER 1.0 ug/L	35–RB36 WATER 1.0 ug/L	35–MW33AW–01 WATER 1.0 ug/L	
COMPOUND						
Phenol						
bis(2-Chloroethyl)ether						
2-Chlorophenol						
1,3-Dichlorobenzene						
1,4-Dichlorobenzene						
1,2-Dichlorobenzene						
2-Methylphenol						
2,2'-oxybis(1-Chloropropane)						
4-Methylphenol						
N-Nitroso-di-n-propylamine						
Hexachloroethane						
Nitrobenzene						
Isophorone						
2-Nitrophenol						
2,4-Dimethylphenol						
bis(2-Chloroethoxy)methane						
2.4-Dichlorophenol						
1.2.4-Trichlorobenzene						
Naphthalene						
4-Chloroaniline	UJ			U.I	11.1	
Hexachlorobutadiene						
4-Chloro-3-methviphenol						
2-Methylnaphthalene						
Hexachlorocyclopentadiene		UJ				
2,4,6-Trichlorophenol		ŬĴ				
2.4.5-Trichlorophenol		IJ				
2-Chloronaphthalene		UJ				
2-Nitroaniline		ŰĴ				
Dimethylphthalate		UJ				
Acenaphthylene		U.I				
2.6-Dinitrotoluene	UJ	U.	U.I	11.1	1.1	
3-Nitroaniline	UJ	UJ		ŰĴ	U.J	
Acenaphthene		UJ				

ROY F. WESTON, INC. SEMIVOLATILE ANALYSES – DATA VALIDATION SUMMARY

CLIENT: BAKER ENVIRONMENTAL

SDG NO.: B5529

<u>.</u>						
Client Sample ID: Matrix: Dilution Factor: Units:	35–RB32 WATER 1.0 ug/L	35–RB34RE WATER 1.0 ug/L	35–MW33BW–01 WATER 1.0 ug/L	35–RB36 WATER 1.0 ug/L	35–MW33AW–01 WATER 1.0 ug/L	
COMPOUND						
2,4 – Dinitrophenol Dibenzofuran	UJ	UJ		UJ	UJ	
4 Nitrophenol 2,4 Dinitrotoluene Diethylphthalate	UJ	UJ UJ UJ	UJ UJ	UJ	UJ	
Fluorene 4 – Chlorophenyl – phenylether 4 – Nitroaniline 4 6 – Dinitro – 2 – methylphenol						
N-Nitrosodiphenylamine 4-Bromophenyl-phenylether Hexachlorobenzene Pentachlorophenol	UJ			UJ	UJ	
Phenanthrene Anthracene Carbazole						
Di-n-butylphthalate Fluoranthene						
Butylbenzylphthalate Benzo(a)anthracene	UJ	UJ UJ		UJ	UJ	
3,3-Dichlorobenzidine Chrysene	UJ	UJ UJ		UJ	UJ	
bis(2-Ethylhexyl)phthalate	UJ	UJ	UJ LLI	5 J	UJ	
Benzo(b)fluoranthene	IJ	UJ	UJ	65	60	
Benzo(k)fluoranthene Benzo(a)pyrene	UJ	U) UJ	U) UJ			
Indeno(1,2,3-cd)pyrene Dibenz(a,h)anthracene	UJ U.I	UJ LLI	UJ UJ			
Benzo(g,h,i)perylene	UJ	UJ	UJ			

ROY F. WESTON, INC. PESTICIDE/PCB ANALYSES - DATA VALIDATION SUMMARY

CLIENT: BAKER ENVIRONMENTAL SDG NO.: B5529

Client Sample ID:	35-RB34	35-MW33BW-01	35 RB 36	35-MW33AW-01	
Matrix:	WATER	WATER	WATER	WATER	
Dilution Factor:	1.0	1.0	1.0	1.0	
Units:	ug/L	ug/L	ug/L	ug/L	
COMPOUND			· · · · · · · · · · · · · · · · · · ·		
alpha-BHC					
beta-BHC		0.022 J			
delta-BHC					
gamma–BHC(Lindane)					
Heptachlor		0.013 J			
Aldrin					
Heptachlor Epoxide					
Endosulfan I					
Dieldrin					
4,4'-DDE					
Endrin					
Endosulfan II					
4,4'-DDD					
Endosulfan Sulfate					
4,4'-DDT		0.014 J			
Methoxychior					
Endrin Ketone					
Endrin Aldehyde		0.1 U			
alpha-Chlordane					
gamma-Chlordane					
Toxaphene	,				
Aroclor 1016					
Aroclor 1221					
Aroclor 1232					
Aroclor 1242					
Aroclor 1248					
Aroclor 1254					
Aroclor 1260					

CLIENT: BAKER ENVIRONMENTAL, INC.

SDG NO.: B5529

Client Sample ID: Matrix: Dilution Factor: Units:	35–GWDW2–01 WATER 1 ug/L	35–GWDW3–01 WATER 1 ug/L	35–MW35AW–01 WATER 1 ug/L	35–MW30AW–01 WATER 1 ug/L	35–RB32 WATER 1 ug/L	35–RB34 WATER 1 ug/L
METHOD: EPA 601/1						
Bromodichloromethane Bromoform Bromomethane Carbon Tetrachloride Chlorobenzene						
Chloroform Chloromethane Dibromochloromethane 1,2 – Dichlorobenzene 1,3 – Dichlorobenzene 1,4 – Dichlorobenzene			0.6			
Dichlorodifluoromethane 1,1 – Dichloroethene 1,2 – Dichloroethane 1 – Dichloroethane			0.8			
Cis – 1,2-Dichloroethene Trans – 1,2-Dichloroethene 1,2-Dichloropropane Cis – 1,3-Dichloropropene Trans – 1,3-Dichloropropene			14.8 3.7			
Methylene Chloride 1,1,2,2–Tetrachloroethane Tetrachloroethene 1,1,1–Trichloroethane			64.7 1.9			
1,1,2-Trichloroethane Trichloroethene Trichlorofluoromethane Vinyl Chloride			1 79			
METHOD: EPA 601/2						
Bromodichloromethane Bromoform Bromomethane Carbon Tetrachloride Chlorobenzene Chloroethane Chloroform Chloromethane Dibromochloromethane 1,2-Dichlorobenzene 1,3-Dichlorobenzene	NA NA NA NA NA NA NA NA NA	NA NA NA NA NA NA NA NA NA NA	0.8	NA NA NA NA NA NA NA NA NA	NA NA NA NA NA NA NA NA NA	NA NA NA NA NA NA NA NA NA

CLIENT: BAKER ENVIRONMENTAL, INC. SDG NO.: B5529

Client Sample ID: Matrix: Dilution Factor:	35-GWDW2-01 WATER	35-GWDW3-01 WATER	35-MW35AW-01 WATER	35-MW30AW-01 WATER	35-RB32 WATER	35-RB34 WATER
Units:	ug/L	ug/L	ug/L	ug/L	ug/L	ו ug/L
METHOD: EPA 601/2 (continued)						
1.4. Disblorebenzene	NIA					
1,4-Dichlorobenzene Dichlorodifluoromethana		NA		NA	NA	NA
1 1 - Dichloroethene				NA	NA	NA
1 2-Dichloroethane		NA NA	0.3	INA NA	NA NA	NA
1 1-Dichloroethane				NA NA	NA	NA
Cis-12-Dichloroethene	NA		17.0	INA NA	NA NA	NA
Trans - 1 2-Dichloroethene		1N/A N/A	17.3	INA	INA NA	NA
1 2-Dichloropropage		INA NA	4,3	NA	NA	NA
Cis-1.3-Dichloropropene				NA	NA	NA
Traps - 1 3- Dichloropropene		NA NA		NA NA	INA NA	NA
Methylene Chloride	NA			NA NA	INA NA	NA NA
1 1 2 2- Tetrachloroethane	NA	NA NA	22.2	NA	IN/A	INA NA
Tetrachloroethene	NA	NA	33.3	NA NA	NA NA	NA NA
1 1 1-Trichloroethane	NA	NA	5		NA NA	
1 1 2-Trichloroethane	NA				NA NA	NA NA
Trichloroethene	NA	NA	75.0			INA NA
Trichlorofluoromethane	NA	NA NA	75.2		INA NA	NA NA
Vinyl Chloride	NA	NA		NA	NA	NA
METHOD: EPA 602/1						
Benzene	0.7	0.7	0.4			
Chlorobenzene	0.7	0.1	0.4			
1.2-Dichlorobenzene						
1.3-Dichlorobenzene						
1.4-Dichlorobenzene						
Ethylbenzene	1.4	2	0.7	0.9		
Toluene	0.9	1	1.1	13		
Xvlenes	4.5	47	17	17		
Methyl Tertiary Butyl Ether						
METHOD: EPA 602/2						
Benzene	0.6	0.5	0.6		NA	NA
Chlorobenzene			0.0		NA	NA
1,2-Dichlorobenzene					NA	NA
1,3-Dichlorobenzene					NA	NA
1,4-Dichlorobenzene					NA	NA
Ethylbenzene	1.2	1.2	0.7	0.4	NA	NA
Toluene	1.1	1	0.8	0.8	NA	NΔ
Xylenes	3.5	4	1.3	0.8	NA	NA
•			1.0	0.0	(3/3	

•

CLIENT: BAKER ENVIRONMENTAL, INC. SDG NO.: B5529

Client Sample ID: Matrix: Dilution Factor: Units:	35–MW33BW–01 WATER 25 ug/L	35–MW26AW–02 WATER 1 ug/L	35-MW33AW-01 WATER 1 ug/L	35-MW32AW-01 WATER 1 ug/L	35–MW38BW–01 WATER 1 ug/L	35–MW26BW–01 WATER 10 ug/L
METHOD: EPA 601/1						
Bromodichloromethane Bromoform Bromomethane Carbon Tetrachloride Chlorobenzene Chloroethane Chloroethane Chloromethane Dibromochloromethane 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene Dichlorodifluoromethane 1,1-Dichloroethene						
1,2-Dichloroethane						
Cis $- 1,2-$ Dichloroethene Trans $- 1,2-$ Dichloroethene 1,2-Dichloropropane Cis $- 1,3-$ Dichloropropene Trans $- 1,3-$ Dichloropropene	788 130			96.2 39.8		260
Methylene Chloride 1,1,2,2–Tetrachloroethane Tetrachloroethene				20.5		
1,1,1 – Trichloroethane 1,1,2 – Trichloroethane Trichloroethene Trichlorofluoromethane Vinyl Chloride	574			1.9 25.8		
METHOD: EPA 601/2						
Bromodichloromethane Bromoform Bromomethane Carbon Tetrachloride Chlorobenzene Chloroethane Chloroform Chloromethane Dibromochloromethane 1,2 – Dichlorobenzene 1,3 – Dichlorobenzene	·	NA NA NA NA NA NA NA NA	NA NA NA NA NA NA NA NA NA		NA NA NA NA NA NA NA NA	

CLIENT: BAKER ENVIRONMENTAL, INC. SDG NO.: B5529

		· · · ·				
Client Sample ID: Matrix: Dilution Factor: Units:	35–MW33BW–01 WATER 25 ug/L	35–MW26AW~02 WATER 1 ug/L	35–MW33AW–01 WATER 1 ug/L	35–MW32AW–01 WATER 1 ug/L	35MW38BW-01 WATER 1 ug/L	35–MW26BW–01 WATER 10 ug/L
METHOD: EPA 601/2 (continued)						
1,4 – Dichlorobenzene Dichlorodifluoromethane 1,1 – Dichloroethene 1,2 – Dichloroethane 1,1 – Dichloroethane Cis – 1,2 – Dichloroethene Trans – 1,2 – Dichloroethene 1,2 – Dichloropropane Cis – 1,3 – Dichloropropene Trans – 1,3 – Dichloropropene	919 208	NA NA NA NA NA NA NA	NA NA NA NA NA NA NA	106 50.8	NA NA NA NA NA NA NA	265
Methylene Chloride 1,1,2,2-Tetrachloroethane 1,1,1-Trichloroethane 1,1,2-Trichloroethane 1,1,2-Trichloroethane Trichloroethene Trichlorofluoromethane Vinyl Chloride	688	NA NA NA NA NA NA NA NA	NA NA NA NA NA NA NA NA	8.3 1.1 35.9	NA NA NA NA NA NA NA NA	
METHOD: EPA 602/1						
Benzene Chiorobenzene 1,2Dichlorobenzene 1,3Dichlorobenzene 1,4Dichlorobenzene	22	0.7		1		
Ethylbenzene Toluene Xylenes Methyl Tertlary Butyl Ether	41 30 95 265	1.8 1.3 3.7	1.1 1.7 3.9	1.3 1.1 4.2 72.9		
METHOD: EPA 602/2 Benzene Chlorobenzene 1,2-Dichlorobenzene 1,3-Dichlorobenzene	16	0.6		0.9	NA NA NA NA	NA NA NA
1,4 Dichlorobenzene Ethylbenzene Toluene Xylenes	35 31 113	1.4 1.2 4.8	1.5 1.5 5.8	1.4 1.4 4.7	NA NA NA NA	NA NA NA NA

٩

CLIENT: BAKER ENVIRONMENTAL, INC. SDG NO.: B5529

METHOD: EPA 601/1

Bromodichloromethane		
Bromoform		
Bromomethane		
Carbon Tetrachloride		
Chlorobenzene		
Chloroethane		
Chloroform		
Chloromethane		
Dibromochloromethane		
1.2-Dichlorobenzene		
1.3-Dichlorobenzene		
1.4-Dichlorobenzene		
Dichlorodifluoromethane		
1,1–Dichloroethene		
1.2-Dichloroethane		
1,1-Dichloroethane		
Cis-1,2-Dichloroethene	267	
Trans-1,2-Dichloroethene		
1,2-Dichloropropane		
Cis – 1,3 – Dichloropropene		
Trans-1,3-Dichloropropene		
Methylene Chloride		
1,1,2,2-Tetrachloroethane		
Tetrachloroethene		
1,1,1–Trichloroethane		
1,1,2Trichloroethane		
Trichloroethene		
Trichlorofluoromethane		
Vinyl Chloride		
•		
METTOD. ETABOTZ		
Bromodichloromethane		
Bromoform		
Bromomethane		
Carbon Tetrachloride		
Chlorobenzene		
Chioroethane		
Chloroform		
Chloromethane		
Dibromochloromethane		
1.2-Dichlorohenzene		

-

1,3-Dichlorobenzene

CLIENT: B	AKER ENVIRONMENTAL,	INC.
SDG NO .:	B5529	

Client Sample ID: Matrix:	35-MW26BW-01D WATER	
Dilution Factor:	10	
Units:	ug/L	

METHOD: EPA 601/2 (continued)

METHOD. EFA 001/2 (continued)	
1.4-Dichlorobenzene	
Dichlorodifluoromethane	
1.1 – Dichloroethene	
1.2-Dichloroethane	
1.1-Dichloroethane	
Cis-1.2-Dichloroethene	318
Trans-1.2-Dichloroethene	
1.2-Dichloropropane	
Cis-1.3-Dichloropropene	
Trans-1.3-Dichloropropene	
Methylene Chloride	
1,1,2,2-Tetrachloroethane	
Tetrachioroethene	
1.1.1 – Trichloroethane	
1,1,2-Trichloroethane	
Trichloroethene	
Trichlorofluoromethane	
Vinyl Chloride	
•	
METHOD: EPA 602/1	
Benzene	
Chlorobenzene	
1,2-Dichlorobenzene	
1,3-Dichlorobenzene	
1,4-Dichlorobenzene	
Ethylbenzene	
Toluene	
Xylenes	
Methyl Tertiary Butyl Ether	
METHOD: EPA 602/2	
Benzene	NA
Chlorobenzene	NA
1.2-Dichlorobenzene	NA
1.3-Dichlorobenzene	ΝΑ
1.4 – Dichlorobenzene	NA
Ethvibenzene	NA
Toiuene	NA
Xvienes	NA

 Roy F. Weston, inc.

 1 Weston Way

 West Chester, Pennsylvania 19380-1499

 © 610-701-3000 • Fax 610-701-3186

INORGANIC QUALITY ASSURANCE REVIEW BAKER ENVIRONMENTAL, INC. SITE: MCB CAMP LEJEUNE SDG NO.: BA5529

REVIEW PERFORMED BY THE ANALYTICS DIVISION OF ROY F. WESTON, INC.

VERIFIED BY:

o - 90 Date

Zohreh Hamid, Ph.D. Section Manager - Data Validation

BAKER ENVIRONMENTAL, INC. - NAVY CLEAN SITE: MCB CAMP LEJEUNE SDG No.: BA5529

CASE SUMMARY

This data validation review consists of five (5) water samples received on 05-18,19,21-94. Laboratory analyses were performed by NDRC Laboratories, Inchscape Testing Services for TAL metals.

All data have been validated with regard to usability according to the quality assurance set forth in Inorganic Functional Guidelines and Naval Energy and Environmental Support Activity (NEESA). If you have any questions or comments on this data review, please contact Zohreh Hamid at (610) 701-3745.

The following samples are contained within this report:

3533AW 3533BW 35RB32 35RB34 35RB36

OUALITY ASSURANCE REVIEW

The findings offered in this report are based upon a rigorous review of the following criteria.

- * Holding Time
- Calibration
 - Contract Required Detection Limit Samples
 - Blank Samples
 - Interference Check Samples
 - Matrix Spike
 - Duplicate Digestion Samples
 - Laboratory Control Sample
- Serial Dilution Sample
 - Graphite Furnace Analysis
 - Quarterly Verification of Instrument Parameters
- Sample Result Verification
- * Preparation Logs
- Run Logs
 - Data Package Completeness
- * All criteria were met; therefore, a narrative section is not provided for this classification.

Page 2

CONTRACT REQUIRED DETECTION LIMIT SAMPLE ANALYSES

The CRDL recoveries for Pb (126.7%) and Se (122%) in graphite furnace and Sb (133.6/154.2%) in ICP analyses were above the upper data validation requirement limits of 120%. The positive results greater than the IDLs but less than 3X the CRDLs for these analytes are qualified estimated due to the uncertainty near the detection limits.

The recovery for Cr (79.2%) was below the 80% requirement limit in final CRDL analysis. The data are not qualified based on this outlier, since the deviation is marginal.

BLANK ANALYSES

The laboratory blank had the following contaminations at levels above the IDLs, but below the CRDLs.

ANALYTE	CONC. ug/L	ACTION LEVEL ug/L *
Al	23.5	117.5
Cu	3.5	17.5
Mg	24.5	122.5

* Action level = 5X the blank concentration.

The reported sample results up to the action levels are qualified "U" and are considered as the laboratory artifacts.

Antimony was detected in the preparation blank at a level above the CRDL. The nondetected values are accepted and the positive results are rejected in the samples.

INTERFERENCE CHECK SAMPLES

The percent recoveries for the TAL analytes analyzed by ICP were within the control limits.

Calcium was not included in ICS A standard solution. The ICP interference could not be evaluated; therefore, the reported sample data for Ca are qualified estimated.

Page 3

MATRIX SPIKE SAMPLE ANALYSIS

Sample 35RB32 was analyzed as the spike sample. This sample is considered as the reagent blank and the QC analysis should not be performed on this sample.

LABORATORYDUPLICATE SAMPLES

Sample 35RB32 was analyzed as the laboratory duplicate sample. This sample is considered as the reagent blank and should not be used as the QC sample.

GRAPHITE FURNACE ANALYSIS

The following samples analyzed by graphite furnace had the analytical spike recoveries outside the control limits of 85-115%:

SAMPLE ID	ANALYTE	% RECOVERY
3533AW	As/Cd/Se	80/121.5*/69
3533BW	Cd/Se	126.5*/82
35RB32	As/Cd/Se/T1	81/128.5*/75/80
35RB34	Cd	125*
35RB36	Cd	122.5*

* Only the positive results are qualified estimated.

The reported data are qualified estimated.

Lead in sample 3533AW was analyzed by Method of Standard Addition. The linearity met the requirement limits of " $r \ge 0.995$.

The linearity did not meet the requirement of " $r \ge 0.995$ " in arsenic calibration standard analyzed prior to the sample analysis. The reported data are qualified estimated.

Page 4

SUMMARY

The data package completeness was fair. The Form XI (Part II) was not included. Samples 3533BW and 3533AW were analyzed for dissolved metal analysis. The data are not elevated since the data package deliverable format did not follow the CLP requirements.

The pH of the samples were not reported. The reported positive result for antimony is rejected due to the high level of the blank contamination.

The other minor issues have been discussed. The reported sample data are accepted with the applied qualifier codes.

INFORMATION REGARDING DATA

The data have been reviewed according to the USEPA National Functional Guidelines for Inorganic Data Review. All data are validated with regard to usability.

If you have any questions or comments on this data review, please call Zohreh Hamid at (215) 344-3745.

ATTACHMENTS

- 1. Attachment I Glossary of Data Qualifier Codes
- 2. Attachment II Sample Result Summary. This includes:
 - a) A summary of all positive results for the target analytes with the qualifier codes, if applicable;
 - b) All qualified and usable detection limits.
- 3. Attachment III Sample data (Form I) verified by the laboratory.

ATTACHMENT I GLOSSARY OF DATA QUALIFIER CODES

÷

GLOSSARY OF DATA QUALIFIERS

CODES RELATING TO IDENTIFICATION

(confidence concerning presence or absence of compounds):

- U = NOT DETECTED SUBSTANTIALLY ABOVE THE LEVEL REPORTED IN LABORATORY OR FIELD BLANKS.
- **R** = UNRELIABLE RESULT. ANALYTE MAY OR MAY NOT BE PRESENT IN THE SAMPLE. SUPPORTING DATA NECESSARY TO CONFIRM RESULT.
- N = NEGATED COMPOUND WAS CONSIDERED AS NOT PRESENT IN THE SAMPLE.

(NO CODE) = CONFIRMED IDENTIFICATION

CODES RELATING TO QUANTITATION

(can be used for both positive results and sample quantitation limits):

- J = ANALYTE PRESENT. REPORTED VALUE MAY NOT BE ACCURATE OR PRECISE.
- **UJ** = THE REPORTED QUANTITATION LIMITS ARE QUALIFIED ESTIMATED.

OTHER CODES

 \mathbf{Q} = NO ANALYTICAL RESULT.

ATTACHMENT II SAMPLE RESULT SUMMARY

.

-

na na tanàna amin'ny tanàna dia kaominina dia kaominina dia kaominina dia kaominina dia kaominina dia kaominina

ROY F. WESTON, INC. INORGANIC ANALYSES - DATA VALIDATION SUMMARY

CLIENT: BAKER ENVIRONMENTAL, INC. SDG NO.: BA5529

· Client Sa	imple ID: Matrix: Units:		3533AW WATER ug/L	3533BW WATER ug/L	35RB32 WATER ug/L	35RB34 WATER ug/L	35RB36 WATER ug/L	
INORGANIC ELEME	INTS							
		IDL (ug/L)						
Aluminium Antimony	P P	20 46	78200 83.5 R	25.3 U 49 R	52.4 U 47.9 R	37.9 U	134 U	
Arsenic	F	2.0	UJ	UJ	2.6 J	UJ	UJ	
Barium	Р	1.0	898	43.9	7	1	2.5	
Beryllium	Р	1.0	3.5					
Cadmium	F	1.0	0.31 J	0.49 J	0.13 J	0.1 J	0.12 J	
Calcium	P	1700	13510	92100	13500			
Chromium	Р	7.0	194					
Cobalt	Р	11						
Copper	Р	2.0	13.4 U	7.4 U	8.8 U	4.5 U	4.3 U	
Iron	Р	13	70100	67.7	69.3	42,9	119	
Lead	F	1.0	18.2 J	1.2 J	1 J			
Magnesium	Р	13	8260	2650	1790	69 U	119 U	
Manganese	Р	2.0	58.8	23.3			2.6	
Mercury	AV	0.1						
Nickel	Р	11	34.1					
Potassium	Р	2440	5690	2740	2660			
Selenium	F	1.4	1.8 J	UJ	UJ			
Silver	Р	3.0						
Sodium	Р	2370	8070	10800	47700			
Thallium	F	0.6	0.9		UJ			
Vanadium	Р	5.0	176					
Zinc	Р	11	65,8					

Roy F. Weston, Inc. 1 Weston Way West Chester, Pennsylvania 19380-1499 610-701-3000 • Fax 610-701-3186

ORGANIC QUALITY ASSURANCE REVIEW BAKER ENVIRONMENTAL, INC. - NAVY CLEAN SITE: MCB CAMP LEJEUNE SDG NO.: B5608

REVIEW PERFORMED BY THE ANALYTICS DIVISION OF ROY F. WESTON, INC.

PREPARED BY:

Kelly Mair Spittler ^U Unit Leader - Data Validation

VERIFIED BY:

Zohréh Hamid, Ph.D. Section Manager - Data Validation

08-24-94 Date

8-75-94 Date

 $\textcircled{\blue}{\blue}$

BAKER ENVIRONMENTAL, INC. - NAVY CLEAN SITE: MCB CAMP LEJEUNE SDG No.: B5608

INTRODUCTION

This quality assurance review is based upon a review of all data generated from twenty soil samples collected on 05-17,18-94. The samples were analyzed according to criteria set forth in the contract laboratory program (CLP) for TCL Volatile, Semivolatile and Pesticide/PCB target compounds by NDRC Laboratories, Inchscape Testing Services.

This review has been performed in accordance with the confirmation method. The reported analytical results are presented as a summary of the data in Attachment II. All of the analytical data were examined to determine the usability of the analytical results and also to determine contractual compliance relative to the analytical requirements and deliverables specified in the CLP method and Sampling and Chemical Analysis Quality Assurance requirements for the Navy Installation Restoration Program (NEESA 20.2-047B). The applicable qualifier codes have been placed next to the results in the data summary to indicate the qualitative and/or quantitative reliability. The details of this evaluation review are presented in the narrative section of this report.

All data have been validated with regard to usability according to the quality assurance set forth in USEPA Laboratory Data Validation Functional Guidelines for Evaluating Organics Analyses. If you have any questions or comments on this data review, please call Zohreh Hamid or Kelly Spittler at (610) 701-3745.

OUALITY ASSURANCE REVIEW

The findings offered in this report are based upon a review of the following criteria:

- * Data Completeness
- * Holding Time
 - GC/MS Tuning
 - Calibration
 - Blanks
 - Surrogate Recoveries
 - Matrix Spike/Spike Duplicate
 - Laboratory Control Sample
 - Internal Standard
 - Instrument Performance
 - Field Duplicate Results
- * Compound Identification
- Compound Quantitation
- * All criteria were met; therefore, a narrative section is not provided for this classification.

Page 2

CALIBRATION

Volatiles and Semivolatiles

The following %D results in the continuing calibrations exceeded the 25% QC limit. These calibrations are considered acceptable since less than two (VOA) or four (BNA) check (*) compounds had %Ds outside the criteria. All associated positive results and non-detected values for the compounds listed below are qualified as estimated and flagged "J and UJ". All RRFs were above 0.05; therefore, no qualification is required on this basis.

CALIBRATION	INSTRUMENT ID	COMPOUND	<u>%RSD/%D</u>
CC 05-26-94	HP3.i	Bromomethane	27.0
		Acetone	65.2
		2-Butanone	80.8
		Bromoform	26.6
		4-Methyl-2-pentanone	54.9
		2-Hexanone	52.2
CC 05-27-94	HP3.i	Acetone	25.2
		Carbon Disulfide	65.0
		Styrene	27.6
CC 05-30-94	HP3.i	Carbon Tetrachloride	25.4
CC 05-31-94	HP3.i	Bromomethane	28.1
		Acetone	44.0
		2-Butanone	47.6
		4-methyl-2-pentanone	39.2
		2-Hexanone	33.6
CC 06-08-94	HP1.i	Bis(2-chloroethyl)ether	35.9
		Isophorone	27.5
		2,6-Dinitrotoluene	31.8
		2,4-Dinitrophenol	49.7
		Carbazole	31.2
		4-Chloroaniline	48.5
		3-Nitroaniline	49.4
CC 06-09-94	HP1.i	Bis(2-chloroethyl)ether	35.5
		Isophorone	38.0
		2,6-Dinitrotoluene	28.6
		4-Nitrophenol	28.7
		Bis(2-ethylhexyl)phthalate	26.5
		4-Chloroaniline	76.4
		3-Nitroaniline	33.1
		4-Nitroaniline	44.6

Page 3

CALIBRATION	INSTRUMENT ID	COMPOUND	<u>%RSD/%D</u>
CC 06-13-94	HP1.i	Bis(2-chloroethyl)ether	28.7
		Isophorone	28.4
		2,6-Dinitrotoluene	32.7
		2,4-Dinitrophenol	50.3
		4-Nitrophenol	25.7
		Bis(2-ethylhexyl)phthalate	26.8
		4-Chloroaniline	74.8
		3-Nitroaniline	30.5
		4-Nitroaniline	29.3
		3,3-Dichlorobenzidine	34.2
CC 06-16-94	HP1.i	2,6-Dinitrotoluene	29.9
		2,4-Dinitrophenol	31.4
		4-Nitrophenol	36.5
		4-Chloroaniline	65.6
		3-Nitroaniline	30.8
		3,3-Dichlorobenzidine	29.5
CC 07-07-94	HP1.i	Phenol	39.6
		2-Methylphenol	32.4
		2,2-oxybis(1-chloropropane)	89.8
		Hexachloroethane	40.2
		Carbazole	34.1
		4-Chloroaniline	37.3
		4-Nitroaniline	57.9

Pesticide/PCBs

The percent resolution for endosulfan sulfate (58.6%) was slightly below the QC limit of 60% in the resolution check analysis. Since this compound was not detected in the samples, no action is required.

The percent breakdown for endrin exceeded the QC limits in the analysis of PEMA3. Also the retention time for B-BHC in PEMB3 was outside the window and the % RPD for Heptachlor (25.4%) for INDAMA2 exceeded 25%. All positive results for these compounds are considered estimated.

Page 4

BLANKS

Volatiles

The following method blank contained a target compound at a level above the CRQL. Since this compound was detected above the CRQL, all associated results for this compound are rejected "R".

<u>BLANK</u>	COMPOUND	LEVEL
VBLKB	Carbon Disulfide	41 ug/kg

Pesticide/PCBs

The following method blank contained target compounds at levels below the CRQLs. All associated positive results less than 5X the blank levels are considered laboratory artifacts and are flagged "U".

BLANK	COMPOUND	LEVEL
Method Blank (PBLK)	Aldrin	0.73 ug/kg
	4,4-DDE	0.37 ug/kg
	4,4-DDD	0.54 ug/kg
	Methoxychlor	1.3 ug/kg

SURROGATE RECOVERY

Volatiles

The following system monitoring compound recoveries were above the QC limits; therefore all positive results in these analyses are qualified estimated.

SAMPLE	SURROGATE	RECOVERY	QC LIMITS
36-SD02-06D	4-Bromofluorobenzene	120	59-113
36-SD02-612	1,2-Dichloroethane-d4	129	70-121
35-SS07-00MS	4-Bromofluorobenzene	124	59-113
36-S006-612	4-Bromofluorobenzene	148	59-113

Pesticide/PCBs

All surrogate recoveries were within the requirement limits, except for the following:

SAMPLE NO.	RECOVERY SPB608/DB1701	SURROGATE COMPOUND	REASON
PBLKA	152/156	TCX	Advisory Criteria 60-150%
	199/234	DCB	Advisory Criteria 60-150%
PLCS	155/-	TCX	Advisory Criteria 60-150%
	201/209	DCB	Advisory Criteria 60-150%
36-SD05-06	-/159	TCX	Advisory Criteria 60-150%
	182/205	DCB	Advisory Criteria 60-150%
36-SD05-06D	-/190	TCX	Advisory Criteria 60-150%
	174/203	DCB	Advisory Criteria 60-150%
35-SD05-06	171/187	DCB	Advisory Criteria 60-150%
35-SD05-612	162/174	DCB	Advisory Criteria 60-150%
35-SD06-06	157/-	TCX	Advisory Criteria 60-150%
	260/262	DCB	Advisory Criteria 60-150%
35-SD06-612	198/199	DCB	Advisory Criteria 60-150%
36-SD01-06	161/168	DCB	Advisory Criteria 60-150%
36-SD05-06	-/167	DCB	Advisory Criteria 60-150%
36-SD06-612	176/206	DCB	Advisory Criteria 60-150%
36-SD07-06	180/206	DCB	Advisory Criteria 60-150%
36-SD07-612	208/188	TCX	Advisory Criteria 60-150%
	269/296	DCB	Advisory Criteria 60-150%
35-SD03-06	0/0	DCB	Advisory Criteria 60-150%
35-SD03-612	166/-	TCX	Advisory Criteria 60-150%
	0/0	DCB	Advisory Criteria 60-150%
36-SD02-06	196/162	TCX	Advisory Criteria 60-150%
	0/0	DCB	Advisory Criteria 60-150%
36-SD02-06	175/194	TCX	Advisory Criteria 60-150%
	0/-	DCB	Advisory Criteria 60-150%
36-SD02-612	152/-	TCX	Advisory Criteria 60-150%
	0/0	DCB	Advisory Criteria 60-150%

Page 5

RECOVERY SURROGATE SAMPLE NO. SPB608/DB1701 COMPOUND REASON 36-SD03-06 228/-TCX Advisory Criteria 60-150% 169/0 DCB Advisory Criteria 60-150% 36-SD03-612 176/170 TCX Advisory Criteria 60-150% Advisory Criteria 60-150% 0/0 DCB 36-SD05-612 -/0 DCB Advisory Criteria 60-150%

DCB = Decachlorobiphenyl TCX = Tetrachloro-m-xylene

Since the requirement limits are advisory and there is no qualification criteria established in Functional Guidelines or NEESA for surrogate outliers in the pesticide/PCB fraction, no action is taken.

MATRIX SPIKE/SPIKE DUPLICATE

Volatiles

Several RPD results were outside the Qc limits in the analyses of 35-SS07-00 MS/MSD. Since the MS/MSD recoveries were within the QC limits, no action is taken on this basis.

LABORATORYCONTROL SAMPLE

An LCS analysis was performed in order to fulfill the blank spike analysis requirements established in the NEESA guidelines.

INTERNAL STANDARD

Volatiles

The following internal standard areas were below the laboratory's control limits. All reported sample results quantified in reference to these outliers are qualified estimated.

SAMPLE	INTERNAL STANDARD	AREA	CONTROL LIMITS
36-SD03-06	CBZ	244338	252024-1008094

Page 6

Page 7

36-SD05-06	BCM	25114	97464-389858
	DFB	71460	223746-894982
	CBZ	106715	252024-1008094
35-SS07-00MS	DFB	242153	335456-1341822
	CBZ	330172	332068-1328570
35-SS07-00MSD	DFB	329052	335456-1341822
36-SD05-06	BCM	98854	110819-443276
	DFB	232400	281582-1126330
	CBZ	276467	324218-1296872
36-SD02-612RE	BCM	49880	110819-443276
	DFB	125444	281582-1126330
	CBZ	208238	324218-1296872
36-SD06-612	BCM	11473	110819-443276
	DFB	42157	281582-1126330
	CBZ	151754	324218-1296872

BCM = Bromochloromethane DFB = 1,4-Difluorobenzene CBZ = Chlorobenzene-d5

Semivolatiles

The following internal standard areas were outside the control limits in the sample analyses:

SAMPLE	INTERNAL STANDARD	<u>AREA</u>	CONTROL LIMITS
SBLK	Perylene-d12	923293	986700-3946802
35-SD05-612	Phenanthrene-d10 Perylene-d12	1871807 853623	2080474-8321898 966286-3865144
36-SD02-06D	Chrysene-d12 Perylene-d12	1177978 803155	1219762-4879048 966286-3865144
36-SD02-612	Perylene-d12	864833	966286-3865144
36-SD05-06	Phenanthrene-d10	2494253	2634430-10537720
36-SD06-06	Acenaphthene-d10 Phenanthrene-d10	1238212 1802715	1304470-5217880 2415966-9663866

Page 8

The non-detects quantified in reference to the internal standard outlier in the original analyses are qualified estimated since positive results were not detected. The blank results quantified in reference to perylene are also considered estimated.

FIELD DUPLICATE RESULTS

Two sets of field duplicate analyses were provided with this batch of samples (36-SD02-06/36-SD02-06D) & (36-SD05-06/36-SD05-06D). The sample result reproducibility was satisfactory, except for the following:

Volatiles

Carbon Disulfide was detected in sample 36-SD05-06, but not in the duplicate analysis; therefore, these results are considered estimated.

Semivolatiles

Diethylphthalate was detected in sample 36-SD05-06, but not in the duplicate analysis; therefore, these results are considered estimated.

Pesticide/PCBs

%RPD for 4,4-DDE for 36-SD02-06/D & 4,4-DDE, 4,4-DDD, 4,4-DDT in 36-SD05-061D were outside the requirement. The results are qualified estimated.

COMPOUND QUANTITATION

Volatiles

Compounds 4-methyl-2-pertanone and 2-hexanone were not reported on the quantitative report for sample 35-SD05-612 and library search spectra were not provided. Therefore, these results are reported as the CRQLs in the sample analysis.

Also, TIC spectra were not provided for samples 35-SD06-612 and 35-SD06-06. The missing pages should be supplied from the laboratory.

INFORMATION REGARDING DATA

The data have been reviewed according to the USEPA National Functional Guidelines for Organic Data Review. All data are validated with regard to usability.

If you have any questions or comments on this data review, please call Kelly Spittler or Zohreh Hamid at (215) 344-3745.

ATTACHMENTS

- 1. Attachment I Glossary of Data Qualifier Codes
- 2. Attachment II Sample Result Summary. This includes:
 - a) A summary of all positive results for the target analytes with the qualifier codes, if applicable;
 - b) All qualified and usable detection limits.
- 3. Attachment III Sample data (Form I) verified by the laboratory.

ATTACHMENT I GLOSSARY OF DATA QUALIFIER CODES

GLOSSARY OF DATA QUALIFIERS

CODES RELATING TO IDENTIFICATION

(confidence concerning presence or absence of compounds):

- W = NOT DETECTED SUBSTANTIALLY ABOVE THE LEVEL REPORTED IN LABORATORY OR FIELD BLANKS.
 [Substantially is equivalent to a result less than 10 times the blank level for common contaminants (methylene chloride, acetone and 2-butanone in the VOA analyses, and common phthalates in the BNA analyses, along with tentatively identified compounds) or less than 5 times the blank level for other target compounds.]
- **R** = UNUSABLE RESULT. THE PRESENCE OR ABSENCE OF THIS ANALYTE CANNOT BE VERIFIED. SUPPORTING DATA NECESSARY TO CONFIRM RESULT.
- **N** = NEGATED COMPOUND. THERE IS PRESUMPTIVE EVIDENCE TO MAKE A TENTATIVE IDENTIFICATION.

CODES RELATING TO QUANTITATION

(can be used for both positive results and sample quantitation limits):

- J = ANALYTE WAS POSITIVELY IDENTIFIED. REPORTED VALUE MAY NOT BE ACCURATE OR PRECISE.
- **UJ** = ANALYTE WAS NOT DETECTED ABOVE THE CRQL. THE REPORTED QUANTITATION LIMIT IS QUALIFIED ESTIMATED.

OTHER CODES

 \mathbf{Q} = NO ANALYTICAL RESULT.

ATTACHMENT II SAMPLE RESULT SUMMARY

.
CLIENT: BAKER ENVIRONMENTAL, INC.

SDG NO.: B5608	V	/			
Client Sample ID:	35-SD03-06	35-SD03-612	35-SD05-06	35-SD05-612	35-SD06-06
Matrix:	SOIL	SOIL	SOIL	SOIL	SOIL
Dilution Factor:	1.0	1.0	1.0	1.0	1.0
Units:	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG
COMPOUND	44-96V				
Bromomethane	UJ		UJ	UJ	
Vinyl Chloride			UJ		
Chloroethane			UJ		
Methylene Chloride			UJ		
Acetone	UJ		UJ	UJ	
Carbon Disulfide			UJ		
1,1-Dichloroethene			UJ		
1,1–Dichloroethane			UJ		
1,2-Dichloroethene (TOTAL)			UJ		
Chloroform			UJ		
1,2-Dichloroethane			UJ		
2-Butanone	UJ		UJ	UJ	
1,1,1–Trichloroethane			UJ		
Carbon Tetrachloride			UJ		
Bromodichloromethane			UJ		
1,2—Dichloropropane			UJ		
cis-1,3-Dichloropropene			UJ		
Trichloroethene			UJ		
Dibromochloromethane			UJ		
1,1,2-Trichloroethane			UJ		
Benzene			UJ		
Trans-1,3-Dichloropropene			UJ		
Bromoform			UJ		
4-Methyl-2-Pentanone	UJ		UJ	15 UJ	
2-Hexanone	UJ		UJ	15 UJ	
Tetrachloroethene	UJ		UJ		
1,1,2,2-Tetrachloroethane	UJ		UJ		
Toluene	8 J		UJ		
Chlorobenzene	UJ		UJ		
Ethylbenzene	UJ		UJ		
Styrene	UJ		UJ		
Xylene (total)	UJ		UJ		
Chloromethane	UJ		UJ		

)

ii.

CLIENT: BAKER ENVIRONMENTAL, INC.	and the second				
SDG NO.: B3608			harris		
Client Sample ID:	26-5006-06	26 SD06 612	86 8D07 06	86 SD07 610	
Matrix:	SOII	30-3000-012 SOII	30-3007-06 SOII	30-3D07-612 SOII	
Dilution Factor:	1.0	1.0	10	10	
Units:	UG/KG	UG/KG	UG/KG	UG/KG	
COMPOUND			·		
Bromomethane		UJ			
Vinyl Chloride		UJ			
Chloroethane		UJ			
Methylene Chloride		UJ			
Acetone	UJ	IJ		UJ	
Carbon Disulfide	35 R	UJ		156 R	
1,1–Dichloroethene		UJ			
1,1-Dichloroethane		UJ			
1,2-Dichloroethene (TOTAL)		UJ			
Chloroform		UJ			
1,2-Dichloroethane		ÛĴ			
2-Butanone		UJ			
1,1,1–Trichloroethane		LU			
Carbon Tetrachloride		UJ	UJ		
Bromodichloromethane		UJ			
1,2–Dichloropropane		UJ			
cis-1,3-Dichloropropene		UJ			
Trichloroethene		UJ			
Dibromochloromethane		UJ			
1,1,2-Trichloroethane		UJ			
Benzene		UJ			
Trans-1,3-Dichloropropene		UJ			
Bromoform		UJ			
4-Methyl-2-Pentanone		UJ			
2-Hexanone		UJ			
Tetrachloroethene		UJ			
1,1,2,2-Tetrachloroethane		UJ			
Toluene		UJ			
Chlorobenzene		UJ			
Ethylbenzene		UJ			
Styrene	UJ	UJ		UJ	
Xylene (total)		UJ			
Chloromethane		UJ			

CLIENT: BAKER ENVIRONMENTAL, INC.				/	
		V		V	/
	26 5002-06	36-SD03-612	36-5005-6	36-SD05-06D	36-5005-612
Client Sample ID: Matrix	36-3003-08 SOII	SOIL	SOII	SOII	SOIL
Maurx. Dilution Easter:	10	1.0	1.0	1.0	1.0
Units:	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG
COMPOUND					
Bromomethane			UJ	UJ	
Vinvl Chloride			UJ		
Chloroethane			UJ		
Methylene Chloride			UJ		
Acetone	UJ	IJ	UJ	LD	
Carbon Disulfide	103 R	97 R	146 R	UJ	
1.1-Dichloroethene			UJ		
1 1-Dichloroethane			UJ		
1.2-Dichloroethene (TOTAL)			UJ		
Chloroform			UJ		
1.2-Dichloroethane			UJ		
2-Butanone			UJ	UJ	
1.1.1 – Trichloroethane			UJ		
Carbon Tetrachloride			UJ		UJ
Bromodichloromethane			UJ		
1.2-Dichloropropane			IJ		
cis-1.3-Dichloropropene			UJ		
Trichloroethene			UJ		
Dibromochloromethane			UJ		
1.1.2-Trichloroethane			UJ		
Benzene			UJ		
Trans-1.3-Dichloropropene			UJ		
Bromoform			UJ		
4-Methyl-2-Pentanone			UJ	UJ	
2-Hexanone			UJ	UJ	
Tetrachloroethene			UJ		
1.1.2.2-Tetrachloroethane			UJ		
Toluene			UJ		
Chlorobenzene			UJ		
Ethylbenzene			UJ		
Styrene	UJ	UJ	UJ		
Xvlene (total)			· UJ		
Chloromethane			UJ		

Ľ)

CLIENT: BAKER ENVIRONMENTAL, INC.					
SDG NO.: 85608				1 martin	
	V		V	·	V
Client Sample ID:	35-SD06-612	36-SD02-06	36-SD02-06D	36-SD02-612	36-SD01-06
Matrix:	SOIL	SOIL	SOIL	SOIL	SOIL
Dilution Factor:	5.0	1.0	1.0	1.0	1.0
Units:	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG
COMPOUND			·····		
Bromomethane					
Vinyl Chloride					
Chloroethane					
Methylene Chloride					
Acetone			UJ		UJ
Carbon Disulfide			R		67 R
1,1-Dichloroethene					
1,1-Dichloroethane					
1,2-Dichloroethene (TOTAL)					
Chloroform					
1,2–Dichloroethane					
2-Butanone					
1,1,1-Trichloroethane					
Carbon Tetrachloride					
Bromodichloromethane					
1,2-Dichloropropane					
cis-1,3-Dichloropropene					
Trichloroethene					
Dibromochloromethane					
1,1,2-Trichloroethane					
Benzene					
Trans-1,3-Dichloropropene					
Bromoform					
4-Methyl-2-Pentanone					
2–Hexanone					
Tetrachloroethene					
1,1,2,2-Tetrachloroethane					
Toluene					
Chlorobenzene					
Ethylbenzene					
Styrene			UJ		UJ
Xylene (total)					
Chloromethane					

Client Sample ID: 36-SD05-06 36-SD05-06D 36-SD05-612 36-SD06-06 Matrix: SOIL	
Dilution Factor: 1.0 1.0 1.0 1.0	
Units: ug/Kg ug/Kg ug/Kg ug/Kg	
COMPOUND	
Phenol	
bis(2-Chloroethyl)ether UJ UJ UJ UJ UJ	
2-Chlorophenol	
1,3-Dichlorobenzene	
1,4-Dichlorobenzene	
1,2-Dichlorobenzene	
2-Methylphenol	
2,2'-oxybis(1-Chloropropane)	
4-Methylphenol	
N-Nitroso-di-n-propylamine	
Hexachloroethane	
Nitrobenzene	
Isophorone UJ UJ UJ UJ UJ	
2-Nitrophenol	
2,4-Dimethylphenol	
bis(2-Chloroethoxy)methane	
2,4-Dichlorophenol	
1,2,4 - Trichlorobenzene	
Naphthalene	
4-Chloroaniline UJ UJ UJ UJ	
Hexachiorobutadiene	
2,4,5 - Inchlorophenol	
Dimethylphthalate	
Acenanbthylene	
26-Dinitrotoluene UJ UJ UJ UJ	
3-Nitroaniline UJ UJ UJ UJ	
Acenaphthene	

CLIENT: BAKER ENVIRONMENTAL SDG NO.: B5608				
Client Sample ID: Matrix: Dilution Factor:	36SD0506 SOIL 1.0	36-SD05-06D SOIL 1.0	36-SD05-612 SOIL 1.0	36-SD06-06 SOIL 1.0
Units:	ug/Kg	ug/Kg	ug/Kg	ug/Kg
COMPOUND				
2,4 – Dinitrophenol Dibenzofuran	UJ	UJ	UJ	UJ UJ
4-Nitrophenol 2.4-Dinitrotoluene	UJ	UJ	UJ	UJ
Diethylphthalate Fluorene	2135 J	UJ		
4-Chlorophenyi-phenylether 4-Nitroaniline 4,6-Dinitro-2-methylphenol	UJ UJ	UJ	UJ	
N-Nitrosodiphenylamine 4-Bromophenyl-phenylether	UJ UJ			
Hexachlorobenzene Pentachlorophenol	UJ UJ			UJ UJ
Phenanthrene Anthracene	UJ UJ			UJ UJ
Carbazole Di-n-butylphthalate	UJ UJ			UJ UJ
Fluoranthene Pyrene Butylbenzylphthalate	UJ			UJ
Benzo(a)anthracene 3,3-Dichlorobenzidine Chrysene	UJ	UJ	UJ	UJ
bis(2–Ethylhexyl)phthalate Di–n–octylphthalate Benzo(b)fluoranthene	UJ	UJ	UJ	UJ
Benzo(k)fluoranthene Benzo(a)pyrene Indeno(1,2,3-cd)pyrene Dibenz(a b)anthracene				
Benzo(g,h,i)perylene				

(

	<i>i</i>	<u>, 1</u>	1	
SDG NO.: 85608	\checkmark	\checkmark		
Client Sample ID: Matrix: Dilution Factor: Units:	36-SD06-612 SOIL 1.0 ug/Kg	36-SD07-06 SOIL 1.0 ug/Kg	36-SD07-612 SOIL 1.0 ug/Kg	
COMPOUND				
Phenol				
bis(2-Chloroethyl)ether 2-Chlorophenol 1,3-Dichlorobenzene 1,4-Dichlorobenzene 1,2-Dichlorobenzene 2-Methylphenol 2,2'-oxybis(1-Chloropropane) 4-Methylphenol N-Nitroso-di-n-propylamine Hexachloroethane Nitrobenzene	UJ	UJ	UJ	
Isophorone 2-Nitrophenol 2,4-Dimethylphenol bis(2-Chloroethoxy)methane 2,4-Dichlorophenol 1,2,4-Trichlorobenzene Naphthalene	UJ	UJ	UJ	
4-Chloroaniline Hexachlorobutadiene 4-Chloro-3-methylphenol 2-Methylnaphthalene Hexachlorocyclopentadiene 2,4,6-Trichlorophenol 2,4,5-Trichlorophenol 2-Chloronaphthalene 2-Nitroaniline Dimethylphthalate	UJ	UJ	UJ	
2,6-Dinitrotoluene 3-Nitroaniline Acenaphthene	U) UJ	U) UJ	ກາ ດາ	

.

.

CLIENT: BAKER ENVIRONMENTAL SDG NO.: B5608	\checkmark			
Client Sample ID: Matrix: Dilution Factor: Units:	36-SD06-612 SOIL 1.0 ug/Kg	36–SD07–06 SOIL 1.0 ug/Kg	36-SD07-612 SOIL 1.0 ug/Kg	
COMPOUND				
2,4-Dinitrophenol Dibenzofuran	UJ	UJ	UJ	
4-Nitrophenol 2,4-Dinitrotoluene Diethylphthalate Fluorene	UJ	UJ	UJ	
4-Chlorophenyl-phenylether 4-Nitroaniline 4,6-Dinitro-2-methylphenol N-Nitrosodiphenylamine 4-Bromophenyl-phenylether Hexachlorobenzene Pentachlorophenol Phenanthrene	UJ	UJ	UJ	
Anthracene Carbazole Di-n-butylphthalate Fluoranthene Pyrene Butylbenzylphthalate	218 J			
3,3-Dichlorobenzidine	UJ	UJ	UJ	
bis(2-Ethylhexyl)phthalate Di-n-octylphthalate Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(a)pyrene Indeno(1,2,3-cd)pyrene Dibenz(a,h)anthracene Benzo(g,h,i)perylene	UJ	UJ	UJ	

~

CLIENT: BAKER ENVIRONMENTAL SDG NO.: B5608			1	
	/	V	<u> </u>	V
Client Sample ID:	35-SD03-06	35-SD03-612	35-SD05-06	35-SD05-612
Matrix:	SOIL	SOIL	SOIL	SOIL
Dilution Factor:	1.0	1.0	1.0	1.0
Units:	ug/Kg	ug/Kg	ug/Kg	ug/Kg
COMPOUND	· · · · · · · · · · · · · · · · · · ·			
2,4-Dinitrophenol				
Dibenzofuran				
4-Nitrophenol	UJ	UJ	UJ	UJ
2,4-Dinitrotoluene				
Diethylphthalate	352 J			
Fluorene				
4-Chlorophenyl-phenylether				
4-Nitroaniline				
4,6-Dinitro-2-methylphenol				UJ
N-Nitrosodiphenylamine				UJ
4–Bromophenyl–phenylether				UJ
Hexachlorobenzene				. UJ
Pentachlorophenol				UJ
Phenanthrene				UJ
Anthracene				UJ
Carbazole				UJ
Di-n-butylphthalate				UJ
Fluoranthene				UJ
Pyrene				
Butylbenzylphthalate				
Benzo(a)anthracene				
3,3-Dichlorobenzidine				
Chrysene				
bis(2-Ethylnexyl)phthalate	UJ	UJ	704 J	469 J
				UJ
Benzo(b)fluoranthene				UJ
Benzo(k)fillorantnene				, UJ
Benzo(a)pyrene				UJ
Indeno(1,2,3-cd)pyrene				UJ
Dibenz(a,h)anthracene				UJ
Benzo(g,h,i)perylene				UJ

DO

ROY F. WESTON, INC. SEMIVOLATILE ANALYSES - DATA VALIDATION SUMMARY						
CLIENT: BAKER ENVIRONMENTAL SDG NO.: B5608	\checkmark					
Client Sample ID: Matrix: Dilution Factor: Units:	35–SD03–06 SOIL 1.0 ug/Kg	35SD03612 SOIL 1.0 ug/Kg	35-SD05-06 SOIL 1.0 ug/Kg	35-SD05-612 SOIL 1.0 ug/Kg		
COMPOUND						
Phenol bis(2-Chloroethyl)ether 2-Chlorophenol 1,3-Dichlorobenzene 1,4-Dichlorobenzene 2-Dichlorobenzene 2-Methylphenol 2,2'-oxybis(1-Chloropropane) 4-Methylphenol N-Nitroso-di-n-propylamine Hexachloroethane	UJ	UJ	UJ	IJ		
Nitrobenzene Isophorone 2-Nitrophenol 2,4-Dimethylphenol bis(2-Chloroethoxy)methane 2,4-Dichlorophenol 1,2,4-Trichlorobenzene	υJ	UJ	τυ	UJ		
Naphthalene 4-Chloroaniline Hexachlorobutadiene 4-Chloro-3-methylphenol 2-Methylnaphthalene Hexachlorocyclopentadiene 2,4,6-Trichlorophenol 2,4,5-Trichlorophenol 2-Chloronaphthalene 2-Nitroaniline Dimethylphthalate Acenaphthylene	UJ	UJ	UJ	UJ		
2,6-Dinitrotoluene 3-Nitroaniline Acenaphthene	IJ	UJ UJ	UJ UJ	UJ UJ UJ		

)						
	SEMIVOLATILE	ROY F. WESTON, INC. ANALYSES — DATA VALIDA	TION SUMMARY			
CLIENT: BAKER ENVIRONMENTAL SDG NO.: B5608						
Client Sample ID: Matrix: Dilution Factor: Units:	35-SD06-06 SOIL 1.0 ug/Kg	35–SD06–612 SOIL 1.0 ug/Kg	36–SD02–06 SOIL 1.0 ug/Kg	36–SD02–06D SOIL 1.0 ug/Kg		
COMPOUND						
Phenol bis(2-Chloroethyl)ether 2-Chlorophenol 1,3-Dichlorobenzene 1,4-Dichlorobenzene 2-Dichlorobenzene 2-Methylphenol 2,2'-oxybis(1-Chloropropane) 4-Methylphenol N-Nitroso-di-n-propylamine Hexachloroethane		IJ	UJ	UJ		
Nitrobenzene Isophorone 2-Nitrophenol 2,4-Dimethylphenol bis(2-Chloroethoxy)methane 2,4-Dichlorophenol 1,2,4-Trichlorobenzene		UJ	UJ	UJ		
Naphthalene 4-Chloroaniline Hexachlorobutadiene 4-Chloro-3-methylphenol 2-Methylnaphthalene Hexachlorocyclopentadiene 2,4,6-Trichlorophenol 2,4,5-Trichlorophenol 2-Chloronaphthalene 2-Nitroaniline Dimethylphthalate Acenaphthylene	UJ	UJ	UJ	UJ		
2,6-Dinitrotoluene 3-Nitroaniline Acenaphthene	UJ UJ	U) UJ	U) UJ	U U		

CLIENT: BAKER ENVIRONMENTAL SDG NO.: B5608			\checkmark	
Client Sample ID: Matrix: Dilution Factor:	35-SD06-06 SOIL 1.0	35-SD06-612 SOIL 1.0	36-SD02-06 SOIL 1.0	36-SD02-06D SOIL 1.0
Units:	ug/Kg	ug/Kg	ug/Kg	ug/Kg
COMPOUND				
2,4 – Dinitrophenol Dibenzofuran	UJ			
4-Nitrophenol 2,4-Dinitrotoluene	UJ	UJ	UJ	UJ
Diethylphthalate Fluorene		398 J	330 J	346 J
4-Chlorophenyl-phenylether 4-Nitroaniline				
4,6-Dinitro-2-methylphenol N-Nitrosodiphenylamine				
Hexachlorophenol				
Phenanthrene Anthracene				
Carbazole Di-n-butylphthalate				
Fluoranthene Pyrene				UJ
Butylbenzylphthalate Benzo(a)anthracene				UJ UJ
3,3-Dichlorobenzidine Chrysene	UJ			UJ UJ
bis(2-Ethylhexyl)phthalate Di-n-octylphthalate			242 J	432 J UJ
Benzo(b)fluoranthene Benzo(k)fluoranthene				UJ UJ
Benzo(a)pyrene Indeno(1,2,3-cd)pyrene				UJ
Dibenz(a,h)anthracene Benzo(g,h,i)perylene				UJ UJ

.

•

•

CLIENT: BAKER ENVIRONMENTAL SDG NO.: B5608	J	/		
	•	<u> </u>		/
Client Sample ID:	36-SD02-612	36-SD01-06	36-SD03-06	36-SD03-612
Matrix:	SOIL	SOIL	SOIL	SOIL
Dilution Factor:	1.0	1.0	1.0	1.0
Units:	ug/Kg	ug/Kg	ug/Kg	ug/Kg
COMPOUND				
Phenol				
bis(2-Chloroethy)ether	UJ	UJ	UJ	11.1
2-Chlorophenol				
1.3-Dichlorobenzene				
1.4-Dichlorobenzene				
1.2-Dichlorobenzene				
2-Methylphenol				
2.2'-oxybis(1-Chloropropane)				
4-Methylphenol				
N-Nitroso-di-n-propylamine				
Hexachloroethane				
Nitrobenzene				
Isophorone	UJ	UJ	UJ	UJ
2-Nitrophenol				
2,4-Dimethylphenol				
bis(2-Chloroethoxy)methane				
2,4-Dichlorophenol				
1,2,4-Trichlorobenzene				
Naphthalene				
4-Chloroaniline	UJ	LU	UJ	UJ
Hexachlorobutadiene				
4-Chloro-3-methylphenol				
2-Methylnaphthalene				
Hexachlorocyclopentadiene				
2,4,6-Trichlorophenol				
2,4,5-Trichlorophenol				
2-Chloronaphthalene				
2–Nitroaniline				
Dimethylphthalate				
Acenaphthylene				
2,6-Dinitrotoluene	UJ	UJ	UJ	UJ
3 – Nitroaniline	UJ	UJ	UJ	UJ
Acenaphthene				

CLIENT: BAKER ENVIRONMENTAL SDG NO.: B5608	✓			\checkmark
Client Sample ID: Matrix: Dilution Factor: Units:	36-SD02-612 SOIL 1.0 ug/Kg	36-SD01-06 SOIL 1.0 ug/Kg	36-SD03-06 SOIL 1.0 ug/Kg	36–SD03–612 SOIL 1.0 ug/Kg
COMPOUND		<u>n with the state state</u>	<u></u>	
2,4-Dinitrophenol Dibenzofuran 4-Nitrophenol	UJ	UJ	UJ UJ	UJ
2,4-Dinitrotoluene Diethylphthalate Fluorene 4-Chlorophenyl-phenylether				896
4-Chiorophenyi-phenyiether 4-Nitroaniline 4,6-Dinitro-2-methylphenol N-Nitrosodiphenylamine 4-Bromophenyl-phenylether Hexachlorobenzene Pentachlorophenol Phenanthrene Anthracene Carbazole Di-n-butylphthalate Fluoranthene			UJ	UJ
Pyrene Butylbenzylphthalate Benzo(a)anthracene 3,3-Dichlorobenzidine	316 J		UJ	UJ
Chrysene bis(2-Ethylhexyl)phthalate Di-n-octylphthalate Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(a)pyrene Indeno(1,2,3-cd)pyrene Dibenz(a,h)anthracene Benzo(g,h,i)perylene	328 J UJ UJ UJ UJ UJ UJ UJ	<i>.</i>	LU	UJ

ROY F. WESTON, INC. PESTICIDE/PCB ANALYSES – DATA VALIDATION SUMMARY

CLIENT: BAKER ENVIRONMENTAL						. /
SDG NO.: B5608	V	V				
Client Sample ID: Matrix:	36-SD02-06 SOIL	36-SD02-06D SOIL	35-SD01-06 SOIL	∽ 36-SD03-06 SOIL	36-SD03-612 SOIL	36-SD05-06 SOIL
Dilution Factor: Units:	1.0 UG/KG	1.0 UG/KG	1.0 UG/KG	1.0 UG/KG	1.0 UG/KG	1.0 UG/KG
COMPOUND						
alpha–BHC beta–BHC delta–BHC gamma–BHC(Lindane) Heptachlor						
Aldrin Heptachlor Epoxide			0.93 J			
Dieldrin 4,4'-DDE Endrin	66 J	154 J	0.80 J 5.3 U	169		242 J
Endosulfan II 4,4' – DDD Endosulfan Sulfate	130	184	15	606	1030	223 J
4,4'DDT Methoxychlor	8.5 J			18 J	11 J	31 J
Endrin Ketone Endrin Aldehyde alpha-Chlordane				11 J		7.6 J
gamma-Chlordane Toxaphene Aroclor 1016						
Aroclor 1221 Aroclor 1232 Aroclor 1242						
Aroclor 1248 Aroclor 1254 Aroclor 1250						

ROY F. WESTON, INC. PESTICIDE/PCB ANALYSES - DATA VALIDATION SUMMARY

r

CLIENT:BAKER ENVIRONMENTAL SDG NO.: B5608			<u> </u>			
	/	V	\checkmark	V	v	
Client Sample ID: Matrix:	36-SD05-06D SOIL	36-SD05-612 SOIL	36-SD06-06 SOIL	36-SD06-612 SOIL	36-SD07-06 SOIL	36-SD07-612 SOIL
Dilution Factor:	1.0	1.0	1.0	1.0	1.0	1.0
Units:	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG
COMPOUND	<u></u>		···- · · · · · · · · · · · · · · · · ·			····
alpha-BHC						
beta-BHC						
delta-BHC						
gamma-BHC(Lindane)						
Heptachlor						
		•		24 U		
Heptachior Epoxide						
Endosultan I Dialatia			50			4.4
	106	1000	52	170	E4	14 J
4,4 - DDE Endrin	196 0	1200	249	179	21	32 J
Endosulfan II						
4 4'-DDD	222 .1	1140	221	159	74	41
Endosulfan Sulfate		1140	221	100		
4.4'-DDT	15 J	46 J	14 J	L 0.8		57.1
Methoxychlor			240 U			
Endrin Ketone						
Endrin Aldehyde	14 J					
alpha-Chlordane					13 J	6.5 J
gamma-Chlordane						
Toxaphene						
Aroclor 1016						
Aroclor 1221						
Aroclor 1232						
Aroclor 1242						
Aroclor 1248						
Aroclor 1254						
Aroclor 1260						

(

ROY F. WESTON, INC. PESTICIDE/PCB ANALYSES - DATA VALIDATION SUMMARY

CLIENT:BAKER ENVIRONMENTAL	1					1
SDG NO.: 85608			1	✓	\checkmark	
Client Sample ID:	35-SD03-06	35-SD03-612	35-SD05-06	35-SD05-612	35-SD06-06	35-SD06-612
Matrix:	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL
Dilution Factor:	1.0	1.0	1.0	1.0	1.0	1.0
Units:	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG
COMPOUND	· · · · · · · · · · · · · · · · · · ·					
alpha-BHC						
beta-BHC						
delta-BHC					1.0 J	
gamma-BHC(Lindane)						
Heptachlor	2.3 J					
Heptachior Epoxide				0.72 J		
Endosultan I Dialatin						
		04.11	80	46	445	7 7
4,4 -DDE Endrin		24 0	00	40	077 1	1.7
Endosulfan II			16	0.05 J	0.77 J	
	23		43	0.04 0	2.2 J 30	5.0
Endosulfan Sulfate	20 0		40	20	0.9	5.5
			37.1	13.1	17.1	
Methoxychlor			0.1 0	26 U	36 U	
Endrin Ketone			3.1 J			
Endrin Aldehvde			1.5 J	1.1 J	2.2 J	1.0 .1
alpha-Chlordane			9.3	4.8		
gamma-Chlordane				5.0		
Toxaphene						
Aroclor 1016						
Aroclor 1221						
Aroclor 1232						
Aroclor 1242						
Aroclor 1248						
Aroclor 1254						
Aroclor 1260						

Roy F. Weston, Inc. 1 Weston Way West Chester, Pennsylvania 19380-1499 © 610-701-3000 • Fax 610-701-3186

INORGANIC QUALITY ASSURANCE REVIEW BAKER ENVIRONMENTAL, INC. SITE: MCB CAMP LEJEUNE SDG NO.: BA5608

> REVIEW PERFORMED BY THE ANALYTICS DIVISION OF ROY F. WESTON, INC.

VERIFIED BY:

Zohreh Hamid, Ph.D. Section Manager - Data Validation

8-23-94 Date

 ${f \mathfrak{B}}$

BAKER ENVIRONMENTAL, INC. - NAVY CLEAN SITE: MCB CAMP LEJEUNE **SDG No.: BA5608**

CASE SUMMARY

This data validation review consists of nineteen (19) soil samples received on 05-19-94. Laboratory analyses were performed by NDRC Laboratories, Inchscape Testing Services for TAL metals.

All data have been validated with regard to usability according to the quality assurance set forth in Inorganic Functional Guidelines and Naval Energy and Environmental Support Activity (NEESA). If you have any questions or comments on this data review, please contact Zohreh Hamid at (610) 701-3745.

The following samples are contained within this report:

350306	350606	362612	360506	366612
353612	356612	360106	36065D	360706
350506	360206	360306	365612	367612
355612	36026D	363612	360606	

QUALITY ASSURANCE REVIEW

The findings offered in this report are based upon a rigorous review of the following criteria.

- Holding Time
 - Calibration
 - Contract Required Detection Limit Samples
 - Blank Samples
 - Interference Check Samples
 - Matrix Spike
 - Duplicate Digestion Samples
- Laboratory Control Sample
- Serial Dilution Sample
- Graphite Furnace Analysis Quarterly Verification of Instrument Parameters
- Sample Result Verification
- Preparation Logs •
- Run Logs ж •
 - Data Package Completeness
- All criteria were met; therefore, a narrative section is not provided for this * classification.

Page 2

CALIBRATION ANALYSIS

The percent recovery for lead (114.7%) was above the 110% requirement limit. The data are not impacted since another CCV/CCB was analyzed immediately after this calibration, and the samples were analyzed under an acceptable calibration standard analysis.

CONTRACT REQUIRED DETECTION LIMIT SAMPLE ANALYSES

The CRDL recovery for lead (136.7%, 166.7%, 156.7%, 143.3%, 136.7%) in five different analysis runs, arsenic (122%) and selenium (124%) in graphite furnace and Sb (120.8/149.6%) in ICP were above the upper data validation requirement limits of 120%. The positive results greater than the IDLs but less than 3X the CRDLs for these analytes are considered qualified estimated due to the uncertainty near the detection limits.

Note: The additional qualifier code is not applied if the sample result has already been qualified "U" due to blank contamination.

BLANK ANALYSES

The laboratory blank had the following contaminations at levels above the IDLs, but below the CRDLs.

ANALYTE	CONC. MG/KG	ACTION LEVEL MG/KG *
Ba	0.157	0.8
Cd	0.031	0.15
Cu	0.373	1.9
Fe	5.21	26
Рb	0.18	0.9
Hg	0.06	3
Se	0.14	0.7

* Action level = 5X the blank concentration.

Page 3

The results for Ba, Fe, and Pb were above the action levels. The reported sample results for the other analytes up to the action limits are qualified "U", due to the laboratory blank contamination.

Zinc was detected in the preparation blank at a level above the CRDL. The reported sample results up to 10X the blank contamination level are rejected. The reported sample results above 10X the blank levels are accepted unqualified.

Mercury was detected in the initial and continuing calibration blanks at levels above the CRDL. The reported sample results are rejected.

INTERFERENCE CHECK SAMPLES

The percent recoveries for the TAL analytes analyzed by ICP were within the control limits.

Calcium was not included in the ICSA solution as required by CLP. The ICP interference could not be evaluated; therefore, the reported sample data for Ca are qualified estimated.

MATRIX SPIKE SAMPLE ANALYSIS

The matrix spike recovery for Sb (34.5%), As(-11.7%), Hg(191.1%) and Se (73%) were outside the requirement limits of 75-125\%. The reported positive sample results and non-detected values are qualified estimated for Sb and Se. The reported sample data are biased low. However, the positive results for Se are qualified "U" due to the laboratory blank contamination. Therefore, the non-detected values are qualified estimated for this analyte. The positive results for mercury have already been rejected due the high level of contamination in the blank. The non-detected values are accepted unqualified.

The positive results for arsenic are qualified estimated and the non-detected values are rejected due to the extremely low matrix spike recovery. The reported results are considered biased low and the possibility of a false negatives exist.

Sample 360706 was spiked with mercury. The recovery (43%) was below the requirement limit of 75%. The data have already been rejected due to the blank contamination.

LABORATORYDUPLICATE SAMPLES

The RPDs for arsenic, lead and mercury were above the analysis requirement limits. The reported positive results for lead are qualified estimated. The results for arsenic and mercury are accepted unqualified since the RPDs were within the data validation requirement limit.

Two sets of field duplicate analyses were analyzed with this batch of samples. The RPDs for Ca, Pb, and Zn in field duplicates 360206/26D were above the 50% requirement. The results for these elements are qualified estimated. The RPDs for the analytes in field duplicates 360506/36056D could not be evaluated because the percent solids were 19% and 34% in the field sample and the field duplicate sample, respectively.

GRAPHITE FURNACE ANALYSIS

The following samples analyzed by graphite furnace had the analytical spike recoveries outside the control limits of 85-115%:

SAMPLE ID	ANALYTE	% RECOVERY
350306	Cd	84
350506	Cd/Pb/Se	83/123/3*/65
355612	Pb/Se	126*/57
350606	Se	67
356612	As/Se	145*/64
360206	Se	80
36026D	Se	82
362612	Se/T1	66/78.5
360306	Se	65
363612	As/Se	81/67

Page 5

SAMPLE ID	ANALYTE	% RECOVERY
360506	Cd/Pb/T1	75.5/118*/54
365612	As/Se	82.5/64
360606	Se	82
366612	Se	65
367612	Pb/Se	82/62
360706	Se	63
36056D	Se	60
360106	Se	46

* Only the positive results are qualified estimated.

The reported data are qualified estimated.

The analytical spike recovery for Cd in samples 360506, 350506 and Se in samples 350506, 360706, 360106, and 36056D were below the control limit of 85%. The results should be qualified "W" by the laboratory.

SAMPLE RESULTS

Arsenic, cadium, lead, selenium, and thallium were analyzed by graphite furnace.

The results for As in samples 360506, 362612 and Pb in samples 356612, 36056D, 360706, 365612 were obtained by Method of Standard Addition. The linearity met the requirements for all samples with the exception of lead analysis in sample 356612 and arsenic in sample 360506. The reported sample results for lead and arsenic in the corresponding samples are rejected due to the matrix interferences and/or the analytical problems. The result for lead in sample 365612 was obtained by "MSA" analysis. The linearity did not meet the requirement in the initial analysis. This sample was not reanalyzed and the reported sample result is rejected.

Page 6

SUMMARY

The data package completeness and the quality of the analyses were fair. The percent solid for some samples were below 30%. The reported results and IDLs are elevated. The results for zinc and mercury are rejected due to the high levels of contaminations in the laboratory blanks. The results for lead in two samples and arsenic in one sample are rejected due to the interference and/or analytical problem in the graphite furnace analysis. The reported non-detected values for arsenic are rejected due to the extremely low matrix spike recovery. The minor problems have been discussed. The reported sample data are summarized with the applied qualifier codes.

INFORMATION REGARDING DATA

The data have been reviewed according to the USEPA National Functional Guidelines for Inorganic Data Review. All data are validated with regard to usability.

If you have any questions or comments on this data review, please call Zohreh Hamid at (215) 344-3745.

ATTACHMENTS

- 1. Attachment I Glossary of Data Qualifier Codes
- 2. Attachment II Sample Result Summary. This includes:
 - a) A summary of all positive results for the target analytes with the qualifier codes, if applicable;
 - b) All qualified and usable detection limits.
- 3. Attachment III Sample data (Form I) verified by the laboratory.

ATTACHMENT I GLOSSARY OF DATA QUALIFIER CODES

GLOSSARY OF DATA QUALIFIERS

CODES RELATING TO IDENTIFICATION

(confidence concerning presence or absence of compounds):

- U = NOT DETECTED SUBSTANTIALLY ABOVE THE LEVEL REPORTED IN LABORATORY OR FIELD BLANKS.
- **R** = UNRELIABLE RESULT. ANALYTE MAY OR MAY NOT BE PRESENT IN THE SAMPLE. SUPPORTING DATA NECESSARY TO CONFIRM RESULT.
- N = NEGATED COMPOUND WAS CONSIDERED AS NOT PRESENT IN THE SAMPLE.

(NO CODE) = CONFIRMED IDENTIFICATION

CODES RELATING TO QUANTITATION

(can be used for both positive results and sample quantitation limits):

- **J** = ANALYTE PRESENT. REPORTED VALUE MAY NOT BE ACCURATE OR PRECISE.
- **UJ** = THE REPORTED QUANTITATION LIMITS ARE QUALIFIED ESTIMATED.

OTHER CODES

 \mathbf{Q} = NO ANALYTICAL RESULT.

ATTACHMENT II SAMPLE RESULT SUMMARY

ROY F. WESTON, INC. INORGANIC ANALYSES - DATA VALIDATION SUMMARY

CLIENT: BAKER ENVIRONMENTAL, INC.		AL, INC.				1	1		
SDG NO.: BA5608			/	_	\sim	√			
Client San	nple ID: Matrix:		365612 360606 366612 SOIL SOIL SOIL		360706 SOIL	367612 SOIL	367612 SOIL		
%	Solids: Units:		20.2 mg/Kg	77.7 mg/Kg	80.3 mg/Kg	12.5 mg/Kg	22.3 mg/Kg		
INORGANIC ELEMEN	ITS				<u>.</u> . <u>.</u> .				
		IDL (ug/L)							
Aluminium	Р	20	17200	2150	1560	31500	10800		
Antimony	Р	46	UJ	UJ	UJ	UJ	UJ		
Arsenic	F	2.0	2.8 J	0.67 J	0.70 J	2.0 J	1.7 J		
Barium	Р	1.0	31.6	3.4	2.4	60.9	19.9		
Beryllium	Р	1.0				1.1			
Cadmium	F	1.0	0.20 U	0.05 U	0.04 U	0.31 U	0.49 U		
Calcium	Р	1700	8340 J	301 J		17500 J	8610 J		
Chromium	Р	7.0	14.6	3.1	2.4	28,6	10.4		
Cobalt	Р	11		1.4					
Copper	Р	2.0	6.8	4.4	3.4	14.4	5.1		
Iron	Р	13	15900	1860	1090	13100	9710		
Lead	F	1.0	15.9 R	15100	7.1	44.9	17.0		
Magnesium	Р	13	2940	305	201	3830	1830		
Manganese	Р	2.0	62.8	5.6	4.9	29.2	15.3		
Mercury	A∖	0.1	1.2 R	0.41 R	0.45 R	8.0 R	3.9 R		
Nickel	P	11	7.8	2.1	2.6	10.0	7.3		
Potassium	Р	2440				2610			
Selenium	F	1.4	1.5 U	0.21 U	0.22 U	2.6 U	1.3 U		
Silver	Р	3.0							
Sodium	Р	2370	1860	548	514	4320	1180		
Thallium	F	0.6	0.59			0.96	0.54		
Vanadium	Р	5.0	19.6	4.6	3.2	28.6	12.4		
Zinc	Р	11	32.9 R	25.9 R	16.6 R	50.9 R	29.2 R		

ROY F. WESTON, INC. INORGANIC ANALYSES - DATA VALIDATION SUMMARY

CLIENT: BAKER EN	IVIRONMEN [®]	TAL, INC.					/	1	
SDG NO.: BA5608			V		J	J	\checkmark	$\overline{\mathbf{A}}$	-
Client Sa	mple ID:		350306	353612	350506	355612	350606	356612	360206
	Matrix:		SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL
%	6 Solids:		73.0	68.3	34.8	65.9	47.2	60.0	80.8
	Units:		mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg
INORGANIC ELEME	NTS						· · · · · · · · · · · · · · · · · · ·		
		IDL (ug/L)							
Aluminium	Р	20	1160	2010	11300	2580	16000	8430	3270
Antimony	Р	46	UJ	UJ	UJ	UJ	UJ	UJ	UJ
Arsenic	F	2.0	R	0.69 R	2.3 J	0.91 J	3.7 J	R	0.99 J
Barium	Р	1.0	7.8	10.9	43.7	15.8	36.7	19.2	11.0
Beryllium	Р	1.0			0.40		0.59	0.27	
Cadmium	F	1.0	0.10 U	0.13 U	0.51 U	0.22 U	0.92 U	0.17 U	0.28 U
Calcium	Р	1700	7 95 J	1360 J	6490 J	5780 J	4500 J	4100 J	1150 J
Chromium	Р	7.0	2.5	3.7	16.3	4.3	20.9	9.1	7.3
Cobalt	Р	11			3.2		2.9	4.0	
Copper	Р	2.0	1.8 U	2.5 U	18.1	5.2	21.2	4.6	3.2
Iron	Р	13	1130	2530	13400	3910	10900	8350	4120
Lead	F	1.0	5.2	77.9	92.0	54.2	82.6	19.8 R	17.9 J
Magnesium	P	13	148	334	1070	446	1140	715	151
Manganese	Р	2.0	4.1	6.6	25.2	10.9	24.3	23.4	4.7
Mercury	A۷	0.1	0.24 R	0.25 R	0.53 R	0.31 R	1.2 R	0.40 R	0.27 R
Nickel	P	11	2.2	2.1	5.5	2.2	6.4	2.6	
Potassium	Р	2440					812		
Selenium	F	1.4	0.41 U	0.60 U	0.98 U	0.46 U	0.59 U	0.45 U	0.28 U
Silver	Р	3.0							
Sodium	Р	2370			729		706	712	
Thallium	F	0.6	0.15		0.63	0.20	0.47	0.35	0.19
Vanadium	Р	5.0	2.1	3.0	21.2	4.7	23.9	10.9	19.0
Zinc	Р	11	21.0 R	31.3 R	124 R	48.2 R	139 R	35.0 R	21.7 B

ROY F. WESTON, INC. INORGANIC ANALYSES - DATA VALIDATION SUMMARY

CLIENT: BAKER EN SDG NO.: BA5608	VIRONMENT	TAL, INC.				/			
Client Sa	mple ID: Matrix:		36026D SOII	362612 SOII	360106 SOII	360306 SOII	363612 SOII	360506 SOII	36056D
%	6 Solids:		73.6	75.0	62.0	34,5	38.1	19.0	39.4
	Units:		mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg
INORGANIC ELEME	NTS								
		IDL (ug/L)							
Aluminium	Р	20	3990	4320	26300	6080	9510	11100	4260
Antimony	Р	46	UJ	UJ	UJ	UJ	UJ	UJ	UJ
Arsenic	F	2.0	2.1 J	2.1 J	R	2.0 J	1.4 J	9.0 R	3.0 J
Barium	Р	1.0	17.5	28.5	79.1	24.3	43.8	25.7	8.4
Beryllium	Р	1.0			1.3	0.81			
Cadmium	F	1.0	0.92 U	8.7	0.08 U	0.86 U	0.25 U	0.88 U	0.29 U
Calcium	Р	1700	3530 J	13600 J	4150 J	3530 J	5710 J	5670 J	2010 J
Chromium	Р	7.0	18.2	23.3	16.9	12.2	9.1	19,4	6.3
Cobalt	Р	11			6.3				
Copper	Р	2.0	8.0	17.7	5.4	45.1	9,9	24.4	11.4
Iron	Р	13	4630	4040	3140	8530	3730	14900	5270
Lead	F	1.0	77.4 J	148	28,5	86.7	23.4	115	29.7
Magnesium	Р	13	238	487	583	1230	1240	2750	1220
Manganese	Р	2.0	7.2	12.4	8.0	35,4	47.5	36,8	14.2
Mercury	A۷	0.1	0.28 R	0.35 R	0.40 R	1.1 R	1.1 R	1.4 R	0.62 R
Nickel	Р	11	2.0	3.1	21.4	77.1	8.5	13.6	10.1
Potassium	Р	2440			1010		839		
Selenium	F	1.4	0.24 U	0.28 U	0.50 U	0.81 U	0.52 U	IJ	0.79 U
Silver	Р	3.0							
Sodium	P	2370			487	985	1130	4980	2330
Thallium	F	0.6	0.20	0.20	0.42	0.32		0.89	0.38
Vanadium	Р	5.0	18.4	10.8	56.8	314	17.7	39.3	18.0
Zinc	Р	1 1	63.3 R	140	28.0 R	142 R	53.6 R	145 R	52.2 R

Roy F. Weston, Inc. 1 Weston Way West Chester, Pennsylvania 19380-1499 610-701-3000 • Fax 610-701-3186

ORGANIC QUALITY ASSURANCE REVIEW BAKER ENVIRONMENTAL, INC. - NAVY CLEAN SITE: MCB CAMP LEJEUNE SDG NO.: B5617

REVIEW PERFORMED BY THE ANALYTICS DIVISION OF ROY F. WESTON, INC.

sitte PREPARED BY:

Kelly Muir Spittler Unit Leader - Data Validation

08.23-94 Date

VERIFIED BY:

<u>8-24-94</u> Date

Zohreh Hamid, Ph.D. Section Manager - Data Validation

Œ

BAKER ENVIRONMENTAL, INC. - NAVY CLEAN SITE: MCB CAMP LEJEUNE SDG No.: B5617

INTRODUCTION

This quality assurance review is based upon a review of all data generated from fourteen soil samples collected on 05-16,17,18-94. The samples were analyzed according to criteria set forth in the contract laboratory program (CLP) for TCL Volatile, Semivolatile and Pesticide/PCB target compounds by NDRC Laboratories, Inchscape Testing Services.

This review has been performed in accordance with the confirmation method. The reported analytical results are presented as a summary of the data in Attachment II. All of the analytical data were examined to determine the usability of the analytical results and also to determine contractual compliance relative to the analytical requirements and deliverables specified in the CLP method and Sampling and Chemical Analysis Quality Assurance requirements for the Navy Installation Restoration Program (NEESA 20.2-047B). The applicable qualifier codes have been placed next to the results in the data summary to indicate the qualitative and/or quantitative reliability. The details of this evaluation review are presented in the narrative section of this report.

All data have been validated with regard to usability according to the quality assurance set forth in USEPA Laboratory Data Validation Functional Guidelines for Evaluating Organics Analyses. If you have any questions or comments on this data review, please call Zohreh Hamid or Kelly Spittler at (610) 701-3745.

OUALITY ASSURANCE REVIEW

The findings offered in this report are based upon a review of the following criteria:

- * Data Completeness
 - Holding Time
 - GC/MS Tuning
 - Calibration
 - Blanks
 - Surrogate Recoveries
 - Matrix Spike/Spike Duplicate
 - Laboratory Control Sample
 - Internal Standard
 - Instrument Performance
 - Field Duplicate Results
- * Compound Identification
- Compound Quantitation
- * All criteria were met; therefore, a narrative section is not provided for this classification.

Page 2

GC/MS TUNING

Volatiles

The Form V for the initial calibration was incorrect since the standard file ID's did not correspond to the raw data. The laboratory should correct and resubmit this document.

Semivolatile

The raw data were missing for the tunes reported on pages 0342 and 0345. The laboratory should provide these missing documents.

CALIBRATION

Volatiles and Semivolatiles

The following %D results in the continuing calibrations exceeded the 25% QC limit. These calibrations are considered acceptable since less than two (VOA) or four (BNA) check (*) compounds had %Ds outside the criteria. Positive results were not detected for these compounds; therefore, all associated non-detected values for the compounds listed below are qualified as estimated and flagged "UJ". All RRFs were above 0.05; therefore, no qualification is required on this basis.

CALIBRATION	INSTRUMENT ID	COMPOUND	<u>%RSD/%D</u>
CC 05-25-94	HP3.i	Chloromethane	33.7
		Bromoform	30.7
		Acetone	39.7
		2-Butanone	56.4
		4-Methyl-2-pentanone	41.5
		2-Hexanone	36.5
CC 05-26-94	HP3.i	Bromomethane	27.0
(09:21)		Acetone	65.2
		2-Butanone	80.8
		Bromoform	26.6
		4-methyl-2-pentanone	54.9
		-2-Hexanone	52.2
CC 05-27-94	HP3.i	Acetone	25.2
		Carbon Disulfide	654.9
		Styrene	27.6

WALLERS DE SKARER COMBLITARE

Page 3

CALIBRATION	INSTRUMENT ID	COMPOUND	<u>%RSD/%D</u>
CC 05-30-94	HP3.i	Carbon Tetrachloride	25.4
CC 05-31-94	HP3.i	Bromomethane	28.1
,		Acetone	44.0
		2-Butanone	47.6
		4-Methyl-2-pentanone	39.2
		2-Hexanone	33.6
CC 06-13-94	HP1.i	4-Chloroaniline	74.8
		3-Nitroaniline	30.5
		4-Nitroaniline	29.3
		3,3-Dichlorobenzidine	34.2
		Bis(2-chloroethyl)ether	28.7
		Isophorone	28.4
		2,6-Dinitrotoluene	32.7
		2,4-Dinitrophenol	50.3
		4-Nitrophenol	25.7
		Bis(2-ethylhexyl)phthalate	26.8
CC 06-14-94	HP1.i	4-Chloroaniline	65.7
		3-Nitroaniline	41.0
		4-Nitroaniline	44.4
		Bis(2-chloroethyl)ether	35.0
		Isophorone	40.8
		2,6-Dinitrotoluene	34.3
		2,4-Dinitrophenol	47.4
		Diethylphthalate	29.5
		4,6-Dinitro-2-methylphenol	26.6
		Carbazole	26.3
		Bis(2-ethylhexyl)phthalate	30.4
CC 06-15-94	HP1.i	4-Chloroaniline	38.0
		3-Nitroaniline	48.1
		3,3-Dichlorobenzidine	28.9
		Isophorone	33.3
		2,6-Dinitrotoluene	39.4
		2,4-Dinitrophenol	53.8
		2,4-Dinitrotoluene	27.5
		Diethylphthalate	28.3
		Carbazole	28.4

CALIBRATION	INSTRUMENT ID	COMPOUND	<u>%RSD/%D</u>
CC 07-07-94	HP1.i	4-Chloroaniline	37.3
		4-Nitroaniline	57.9
		Phenol	39.6
		2-Methylphenol	32.4
		2,2-oxybis(1-chloropropane)	89.8
		Hexachloroethane	40.2
		Carbazole	34.1

Pesticide/PCBs

The percent resolution for endosulfan sulfate (55.2%) was below the 60% QC limit in the resolution check. Since this compound was not detected in the samples, no qualification is applied on this basis.

The percent breakdown for endrin (46.8%) and combined (53.7%) exceeded the QC limits of (20/30%) repectively; therefore, all positive results for endrin or its breakdown products are qualified estimated.

The percent RPD for endrin hetanone exceeded the 25% QC limit in the analyses of INDBMA2 and INDBMA3 on the SPB-608 column and the alpha-BHC retentions were outside the QC limits for INDAMB2, INDAMB3 on the DB 1701 column. Since these compounds were not detected in the samples, no action is required.

BLANKS

Volatiles

The following method blank contained a target compound at a level above the CRQL. Since this compound exceeded the CRQL, all results in the associated samples are considered unusable and are flagged "R".

<u>BLANK</u>	<u>COMPOUND</u>	<u>LEVEL</u>	
VBLKC	Carbon Disulfide	41 ug/kg	

Pesticide/PCBs

The following method blank contained target compounds at levels below the CRQLs. All associated positive results less than 5X the blank levels are considered laboratory artifacts and are flagged "U".

Page 4
<u>COMPOUND</u>

<u>LEVEL</u>

Method Blank (PBLKA)

BLANK

Aldrin Heptachlor Epoxide Methoxychlor 0.84 ug/kg 0.36 ug/kg 0.40 ug/kg

Volatiles

The following system monitoring compound recoveries were above the QC limits. Since the SMC recoveries were within the QC limits for the samples, no action is applied due to these outliers.

<u>BLANK</u>	SURROGATE	RECOVERY	<u>OC LIMITS</u>
VBLKA	4-Bromofluorobenzene	120	59-113
VLCSA	4-Bromofluorobenzene	115	59-113

SURROGATE RECOVERIES

Semivolatiles

One of the 1,2-dichlorobenzene-d4 surrogate recovery was outside the limits in sample 35-GWDS2-03; however, since this surrogate is advisories; the sample data are not affected. Also, sample 35-SS09-00 was inadvertently listed twice on the Form II. The second entry should be disregarded.

Pesticide/PCBs

All surrogate recoveries were within the requirement limits, except for the following:

SAMPLE NO.	<u>RECOVERY</u> SPB608/DB1701	SURROGATE COMPOUND	REASON
PBLKA	160/154	TCX	Advisory Criteria 60-150%
	227/223	DCB	Advisory Criteria 60-150%
PLCSA	200/225	DCB	Advisory Criteria 60-150%
35-SS07-00MS	- /167	TCX	Advisory Criteria 60-150%
	198/0	DCB	Advisory Criteria 60-150%

Page 5

<u>SAMPLE NO.</u>	<u>RECOVERY</u> SPB608/DB1701	SURROGATE COMPOUND	REASON
35-SS07-00MSD	154/154	TCX	Advisory Criteria 60-150%
	204/86	DCB	Advisory Criteria 60-150%
35- SS 07-00D	164/194	DCB	Advisory Criteria 60-150%
35-SS07-00	152/ -	TCX	Advisory Criteria 60-150%
	199/216	DCB	Advisory Criteria 60-150%
35-SS04-00	228/204	DCB	Advisory Criteria 60-150%
35-SS01-00	154/ -	TCX	Advisory Criteria 60-150%
	216/220	DCB	Advisory Criteria 60-150%
35-SS02-00	156/ -	TCX	Advisory Criteria 60-150%
	200/230	DCB	Advisory Criteria 60-150%
35-SS12-00	- /438	DCB	Advisory Criteria 60-150%
			Advisory Criteria 60-150%
35- SS 11-00	174/157	TCX	Advisory Criteria 60-150%
	192/244	DCB	Advisory Criteria 60-150%

DCB = Decachlorobiphenyl

TCX = Tetrachloro-m-xylene

Since the requirement limits are advisory and there is no qualification criteria established in Functional Guidelines or NEESA for surrogate outliers in the pesticide/PCB fraction, no action is taken.

MATRIX SPIKE/SPIKE DUPLICATE

Semivolatile

The following matrix spike duplicate recovery and RPD result were outside the QC limits in analysis of sample 35-SS07-00. Since this compound was ot detected in the unspiked sample, no action is required.

<u>MS/PRD</u>	<u>COMPOUND</u>	<u>RESULT</u>	LIMITS
MSD	Phenol	92	26-90
RPD	Phenol	36	35

Page 7

LABORATORYCONTROL SAMPLE

An LCS analysis was performed in order to fulfill the blank spike analysis requirements established in the NEESA guidelines.

INTERNAL STANDARDS

Volatiles

The following internal standard areas were below the laboratory's control limits. All reported sample results quantified in reference to these outliers are qualified estimated.

SAMPLE	<u>INTERNAL</u> STANDARD	<u>AREA</u>	<u>CONTROL</u> <u>LIMITS</u>
35-GWDS4-02	BCM	133277	143742-574966
	DFB	262887	294194-1176774
35-SS01- 00	CBZ	254101	312548-1250190
35-SS04-00	BCM	94962	112316-449264
	DFB	244450	335456-1341822
	CBZ	197572	332068-1328270
35-SS11-00	DFB	211784	281582-1126330
	CBZ	266639	324218-1296872

BCM = Bromochloromethane DFB = 1,4-Difluorobenzene CBZ = Chlorobenzene-d5

Semivolatiles

The following internal standard areas were outside the control limits in the sample analyses:

SAMPLE	INTERNAL STANDARD	<u>AREA</u>	CONTROL LIMITS
35-GWDS4-02	Acenaphthene-d ₁₀	1405305	1423134-5692538
	Phenanthrene-d ₁₀	1533678	2480244-9920974

Page 8

SAMPLE	INTERNAL STANDARD	AREA	CONTROL LIMITS
35-SS04-00	Phenanthrene-d ₁₀	2360544	2480244-9920974
	Chrysene-d ₁₂	872496	1502667-6010668
	Perylene-d ₁₂	475919	1149502-4598008
35-SS01-00	Perylene-d ₁₂	1079018	1149502-4598008
35-SS10-00	Perylene-d ₁₂	1082218	1149502-4598008
35-SS13-00	Phenanthrene-d ₁₀	10853931	2480244-9920974
	Chrysene-d ₁₂	513317	1502667-6010668
	Perylene-d ₁₂	244699	1149502-4598008
	Perylene-d ₁₂	244699	1149502-4598008

The non-detects quantified in reference to the internal standard outlier in the original analyses are qualified estimated since positive results were not detected.

FIELD DUPLICATE RESULTS

One set of field duplicate analyses was provided with this batch of samples (35-SS07-00/35-SS07-00D. The sample result reproducibility was satisfactory.

INFORMATION REGARDING DATA

The data have been reviewed according to the USEPA National Functional Guidelines for Organic Data Review. All data are validated with regard to usability.

If you have any questions or comments on this data review, please call Kelly Spittler or Zohreh Hamid at (215) 344-3745.

ATTACHMENTS

- 1. Attachment I Glossary of Data Qualifier Codes
- 2. Attachment II Sample Result Summary. This includes:
 - a) A summary of all positive results for the target analytes with the qualifier codes, if applicable;
 - b) All qualified and usable detection limits.
- 3. Attachment III Sample data (Form I) verified by the laboratory.

ATTACHMENT I GLOSSARY OF DATA QUALIFIER CODES

GLOSSARY OF DATA QUALIFIERS

CODES RELATING TO IDENTIFICATION

(confidence concerning presence or absence of compounds):

- U = NOT DETECTED SUBSTANTIALLY ABOVE THE LEVEL REPORTED IN LABORATORY OR FIELD BLANKS. [Substantially is equivalent to a result less than 10 times the blank level for common contaminants (methylene chloride, acetone and 2-butanone in the VOA analyses, and common phthalates in the BNA analyses, along with tentatively identified compounds) or less than 5 times the blank level for other target compounds.]
- **R** = UNUSABLE RESULT. THE PRESENCE OR ABSENCE OF THIS ANALYTE CANNOT BE VERIFIED. SUPPORTING DATA NECESSARY TO CONFIRM RESULT.
- **N** = NEGATED COMPOUND. THERE IS PRESUMPTIVE EVIDENCE TO MAKE A TENTATIVE IDENTIFICATION.

CODES RELATING TO QUANTITATION

(can be used for both positive results and sample quantitation limits):

- J = ANALYTE WAS POSITIVELY IDENTIFIED. REPORTED VALUE MAY NOT BE ACCURATE OR PRECISE.
- UJ = ANALYTE WAS NOT DETECTED ABOVE THE CRQL. THE REPORTED QUANTITATION LIMIT IS QUALIFIED ESTIMATED.

OTHER CODES

 \mathbf{Q} = NO ANALYTICAL RESULT.

MANGERS DESIGNER CONSULTANTS

ATTACHMENT II SAMPLE RESULT SUMMARY

Ξ.

CLIENT: BAKER ENVIRONMENTAL, INC. SDG NO.: B5617

Client Sample ID: Matrix: Dilution Factor: Units:	35-GWDS4-02 SOIL 1.0 UG/KG	35-GWDS3-03 SOIL 1.0 UG/KG	35-GWDS2-03 SOIL 1.0 UG/KG	35-SS12-00 SOIL 1.0 UG/KG	35-SS11-00 SOIL 1.0 UG/KG	35SS0700D SOIL 1.0 UG/KG
COMPOUND						
Bromomethane	UJ	UJ	UJ		UJ	
Vinyl Chloride	UJ					
Chloroethane	UJ					
Methylene Chloride	UJ		7 J			
Acetone	67 J	UJ	UJ	UJ	UJ	
Carbon Disulfide	UJ			39 R		
1,1-Dichloroethene	UJ					
1,1-Dichloroethane	UJ					
1,2-Dichloroethene (TOTAL)	tU					
Chloroform	UJ					
1,2-Dichloroethane	UJ					
2-Butanone	UJ	UJ	UJ		UJ	
1,1,1 – Trichloroethane	UJ				UJ	
Carbon Tetrachloride	UJ				UJ	UJ
Bromodichloromethane	UJ				UJ	
1,2—Dichloropropane	UJ				UJ	
cis-1,3-Dichloropropene	UJ				UJ	
Trichloroethene	UJ				UJ	
Dibromochloromethane	UJ				UJ	
1,1,2-Trichloroethane	UJ				UJ	
Benzene	UJ				UJ	
Trans-1,3-Dichloropropene	UJ				UJ	
Bromoform	UJ	UJ			UJ	
4-Methyl-2-Pentanone	UJ	UJ	UJ		UJ	
2–Hexanone	UJ	UJ	UJ		UJ	
Tetrachloroethene					UJ	
1,1,2,2-Tetrachloroethane					UJ	
Toluene					UJ	
Chlorobenzene					UJ	
Ethylbenzene					UJ	
Styrene				UJ	UJ	
Xylene (total)					UJ	
Chloromethane			UJ		UJ	

)

CLIENT: BAKER ENVIRONMENTAL, INC. SDG NO.: B5617

Client Sample ID: Matrix: Dilution Factor: Units:	35-SS07-00 SOIL 1.0 UG/KG	35SS03-00 SOIL 1.0 UG/KG	35-SS04-00 SOIL 1.0 UG/KG	35 SS09 00 SOIL 1.0 UG/KG	35-SS01-00 SOIL 1.0 UG/KG	35-SS10-00 SOIL 1.0 UG/KG
COMPOUND						
Bromomethane			UJ			
Vinyl Chloride			UJ			
Chloroethane			UJ			
Methylene Chloride			UJ			
Acetone	UJ	UJ	UJ	UJ		
Carbon Disulfide	33 R	36 R	UJ	37 R		
1,1-Dichloroethene			UJ			
1.1-Dichloroethane			UJ			
1,2-Dichloroethene (TOTAL)			UJ			
Chloroform			UJ			
1,2-Dichloroethane			UJ			
2-Butanone			UJ			
1,1,1–Trichloroethane			UJ			
Carbon Tetrachloride			UJ			
Bromodichloromethane			UJ			
1,2–Dichloropropane			UJ			
cis-1,3-Dichloropropene			UJ			
Trichloroethene			UJ			
Dibromochloromethane			UJ			
1,1,2-Trichloroethane			UJ			
Benzene			UJ			
Trans-1,3-Dichloropropene			UJ			
Bromoform			UJ			
4-Methyl-2-Pentanone			UJ		UJ	
2-Hexanone			UJ		UJ	
l etrachioroethene			UJ		UJ	
1,1,2,2- letrachloroethane			UJ		UJ	
loluene			03		03	
			UJ		UJ	
Etnyibenzene			UJ		UJ	
Styrene Video (A. A. N.	UJ	UJ	UJ	UJ	UJ	
Aylene (total)			UJ		UJ	
Chloromethane			UJ		UJ	

CLIENT: BAKER ENVIRONMENTAL, INC. SDG NO.: B5617

.

Client Sample ID: Matrix: Dilution Factor:	35 – SS02 – 00 SOIL 1.0	35-\$\$13-00 SOIL 1.0		
Units:	UG/KG	UG/KG		
COMPOUND				
Bromomethane				
Vinyl Chloride				
Chloroethane				
Methylene Chloride				
Acetone				
Carbon Disulfide				
1,1-Dichloroethene				
1,1–Dichloroethane				
1,2-Dichloroethene (TOTAL)				
Chloroform				
1,2-Dichloroethane				
2-Butanone				
1,1,1-Trichloroethane				
Carbon Tetrachloride		UJ		
Bromodichloromethane				
1,2-Dichloropropane				
cis-1,3-Dichloropropene				
1.1.2. Trichleroothane				
Ponzono				
Trans – 1.3 – Dichloropropene				
Bromoform				
4-Methyl-2-Pentanone				
2-Hexanone				
Tetrachloroethene				
1.1.2.2-Tetrachloroethane				
Toluene				
Chlorobenzene				
Ethvibenzene				
Styrene				
Xylene (total)		43		
Chloromethane				

CLIENT: BAKER ENVIRONMENTAL SDG NO.: 85617

Client Sample ID: Matrix: Dilution Factor: Units:	35–GWDS4–02 SOIL 1.0 ug/Kg	35–GWDS3–03 SOIL 1.0 ug/Kg	35-GWDS2-03 SOIL 1,0 ug/Kg	35-SS12-00 SOIL 1.0 ug/Kg	35-SS11-00 SOIL 1.0 ug/Kg
COMPOUND			· ·		
Phenol					
bis(2-Chloroethyl)ether	UJ	UJ	UJ	UJ	UJ
2-Chlorophenol					
1,3-Dichlorobenzene					
1,4-Dichlorobenzene					
1,2-Dichlorobenzene					
2-Methylphenol					
2,2'-oxybis(1-Chloropropane)					
4-Methylphenol					
N-Nitroso-di-n-propylamine					
Hexachloroethane					
Nitrobenzene					
Isophorone	UJ	UJ	UJ	UJ	UJ
2-Nitrophenol					
2,4–Dimethylphenol					
bis(2-Chloroethoxy)methane					
2,4-Dichlorophenol					
1,2,4-Trichlorobenzene					•
Naphthalene					
4-Chloroaniline	UJ	UJ	UJ	UJ	UJ
Hexachlorobutadiene					
4–Chloro-3–methylphenol					
2-Methylnaphthalene					
Hexachlorocyclopentadiene	UJ				
2,4,6-Trichlorophenol	UJ				
2,4,5-Trichlorophenol	UJ				
2-Chloronaphthalene	UJ				
2-Nitroaniline	UJ				
Dimethylphthalate	UJ				
Acenaphthylene	UJ				
2,6-Dinitrotoluene	UJ	UJ	UJ	UJ	UJ
3–Nitroaniline	UJ	UJ	UJ	UJ	UJ
Acenaphthene	UJ				
C.		((

CLIENT: BAKER ENVIRONMENTAL

Client Sample ID: Matrix: Dilution Factor: Units:	35-GWDS4-02 SOIL 1.0 ug/Kg	35-GWDS3-03 SOIL 1.0 ug/Kg	35-GWDS2-03 SOIL 1.0 ug/Kg	35-SS12-00 SOIL 1.0 ug/Kg	35-SS11-00 SOIL 1.0 ug/Kg
COMPOUND					
2,4-Dinitrophenol	UJ	UJ	UJ	UJ	UJ
Dibenzofuran	UJ				
4–Nitrophenol	UJ				
2,4-Dinitrotoluene	UJ				
Diethylphthalate	UJ	UJ	UJ	UJ	UJ
Fluorene	UJ				
4Chlorophenyl-phenylether	UJ				
4-Nitroaniline	UJ	UJ	UJ	UJ	UJ
4,6-Dinitro-2-methylphenol	UJ	UJ	UJ	UJ	UJ
N-Nitrosodiphenylamine	UJ				
4-Bromophenyl-phenylether	UJ				
Hexachlorobenzene	UJ				
Pentachlorophenol	UJ				
Phenanthrene	UJ				191 J
Anthracene	UJ				
Carbazole	UJ	UJ	UJ	UJ	UJ
Di-n-butylphthalate	UJ				
Fluoranthene	UJ				423
Pyrene					295 J
Butylbenzylphthalate					
Benzo(a)anthracene					
3,3-Dichlorobenzidine					
Chrysene					204 J
bis(2-Ethylhexyl)phthalate	UJ	UJ	UJ	UJ	UJ
Di-n-octylphthalate					
Benzo(b)fluoranthene					J
Benzo(k)fluoranthene					
Benzo(a)pyrene					
Indeno(1,2,3-cd)pyrene					
Dibenz(a,h)anthracene					
Benzo(g,h,i)perylene					

CLIENT: BAKER ENVIRONMENTAL SDG NO.: B5617

Client Sample ID: Matrix: Dilution Factor: Units:	35–SS07–00D SOIL 1.0 ug/Kg	35-SS07-00 SOIL 1.0 ug/Kg	35-SS03-00 SOIL 1.0 ug/Kg	35-SS04-00 SOIL 1.0 ug/Kg	35SS09-00 SOIL 1.0 ug/Kg
COMPOUND					
Phenol					3071
bis(2-Chloroethyl)ether	UJ	UJ	UJ	UJ	
2-Chlorophenol					
1,3-Dichlorobenzene					
1,4-Dichlorobenzene					
1,2-Dichlorobenzene					
2-Methylphenol					
2,2'-oxybis(1-Chioropropane)					
4-Methylphenol					
Nitrahannana					
	111	111		111	111
Sophorone 9. Nitronhonol	00	00	00	00	05
2-Nillophenol					
2,4-Dimensipileror					
2.4-Dioblerophenol					
1.2.4-Trichbrohenzene					
Nanhthalene					
	(1.)	[],]	11.1	[].]	UJ
Hexachlorobutadiene		00			
4-Chloro-3-methylphenol					
2-Methylnaphthalene					
Hexachlorocyclopentadiene					
2.4.6-Trichlorophenol					
2.4.5-Trichlorophenol					
2-Chloronaphthalene					
2-Nitroaniline					
Dimethylphthalate					
Acenaphthylene					
2,6-Dinitrotoluene	UJ	UJ	UJ	UJ	UJ
3-Nitroaniline	UJ	UJ	UJ	UJ	UJ
Acenaphthene					
C.					

CLIENT: BAKER ENVIRONMENTAL

Client Sample ID: Matrix: Dilution Factor: Units:	35–SS07–00D SOIL 1.0 ug/Kg	35–SS07–00 SOIL 1.0 ug/Kg	35 – SS03 – 00 SOIL 1.0 ug/Kg	35-SS04-00 SOIL 1.0 ug/Kg	35-SS09-00 SOIL 1.0 ug/Kg
COMPOUND	·····				
2,4 – Dinitrophenol Dibenzofuran 4 – Nitrophenol	UJ	UJ	UJ	UJ	UJ
2,4 – Dinitrotoluene Diethylphthalate Fluorene	UJ	UJ	UJ	UJ	UJ UJ
4–Chlorophenyl–phenylether 4–Nitroaniline 4.6–Dinitro–2–methylphenol	UJ UJ	UJ UJ	UJ	UJ	
N-Nitrosodiphenylamine 4-Bromophenyl-phenylether Hexachlorobenzene Pentachlorophenol					
Phenanthrene Anthracene Carbazole	IJ	IJ	IJ		141
Di-n-butylphthalate Fluoranthene Pyrene Butylbenzylphthalate Bonzo(a)anthracene					
3,3-Dichlorobenzidine Chrysene					UJ
Dis(2-Ethylnexyl)phthalate Di-n-octylphthalate Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(a)pyrene Indeno(1,2,3-cd)pyrene Dibenz(a,h)anthracene	UJ	UJ	UJ	U 279 J UJ UJ UJ UJ UJ UJ	
Benzo(g,h,i)perylene				208 J	

CLIENT: BAKER ENVIRONMENTAL

Client Sample ID: Matrix: Dilution Factor: Units:	35–SS01–00 SOIL 1.0 ug/Kg	35-SS10-00 SOIL 1.0 ug/Kg	35–SS02–00 SOIL 1.0 ug/Kg	35−SS13−00 SOIL 1.0 ug/Kg	
COMPOUND		·			
Phenol				UJ	
bis(2-Chloroethyl)ether	IJ	UJ	UJ	UJ	
2-Chlorophenol				UJ	
1,3-Dichlorobenzene				UJ	
1.4-Dichlorobenzene				UJ	
1,2-Dichlorobenzene				UJ	
2-Methylphenol				UJ	
2.2'-oxybis(1-Chloropropane)				LU	
4-Methylphenol				UJ	
N-Nitroso-di-n-propylamine				UJ	
Hexachloroethane				UJ	
Nitrobenzene				UJ	
Isophorone	UJ	UJ	UJ	UJ	
2-Nitrophenol				UJ	
2.4-Dimethylphenol				UJ	
bis(2-Chloroethoxy)methane				UJ	
2.4-Dichlorophenol				UJ	
1,2,4-Trichlorobenzene				UJ	
Naphthalene				UJ	
4-Chloroaniline	UJ	UJ	UJ	UJ	
Hexachlorobutadiene				IJ	
4-Chloro-3-methylphenol				UJ	
2-Methylnaphthalene				UJ	
Hexachlorocyclopentadiene				UJ	
2.4.6-Trichlorophenol				UJ	
2.4.5-Trichlorophenol				UJ	
2-Chioronaphthalene				UJ	
2-Nitroaniline				UJ	
Dimethylphthalate				UJ	
Acenaphthylene				UJ	
2 6-Dinitrotoluene	U.I	LU	UJ	UJ	
3-Nitroaniline	UJ	ŬĴ	ŰĴ	UJ	
Acenaphthene			-	UJ	

CLIENT: BAKER ENVIRONMENTAL

Client Sample ID: Matrix: Dilution Factor: Units:	35-SS01-00 SOIL 1.0 ug/Kg	35-SS10-00 SOIL 1.0 ug/Kg	35-SS02-00 SOIL 1.0 ug/Kg	35–SS13–00 SOIL 1.0 ug/Kg	
COMPOUND					
2,4-Dinitrophenol	UJ	UJ	UJ	UJ	
Dibenzofuran				UJ	
4-Nitrophenol				UJ	
2,4-Dinitrotoluene				UJ	
Diethylphthalate	UJ	UJ	UJ	UJ	
Fluorene				UJ	
4-Chlorophenyl-phenylether				UJ	
4-Nitroaniline	UJ	UJ	UJ	UJ	
4,6-Dinitro-2-methylphenol	UJ	UJ	UJ	UJ	
N-Nitrosodiphenylamine				UJ	
4-Bromophenyl-phenylether				UJ	
Hexachlorobenzene				UJ	
Pentachlorophenol				UJ	
Phenanthrene				UJ	
Anthracene				UJ	
Carbazole	UJ	UJ	UJ	UJ	
Di-n-butylphthalate				UJ	
Fluoranthene				UJ	
Pyrene				UJ	
Butylbenzylphthalate				UJ	
Benzo(a)anthracene				UJ	
3,3-Dichlorobenzidine				UJ	
Chrysene				UJ	
bis(2-Ethylhexyl)phthalate	UJ	UJ	UJ	UJ	
Di-n-octylphthalate	UJ	UJ		UJ	
Benzo(b)fluoranthene	UJ	UJ		UJ	
Benzo(k)fluoranthene	UJ	UJ		UJ	
Benzo(a)pyrene	UJ	UJ		UJ	
Indeno(1,2,3-cd)pyrene	UJ	UJ		UJ	
Dibenz(a,h)anthracene	UJ	UJ		UJ	
Benzo(g,h,i)perylene	UJ	UJ		UJ	

ROY F. WESTON, INC. PESTICIDE/PCB ANALYSES - DATA VALIDATION SUMMARY

CLIENT: BAKER ENVIRONMENTAL SDG NO.: B5617

Client Sample ID: Matrix: Dilution Factor: Units:	35-SS12-00 SOIL 5.0 ug/Kg	35-SS11-00 SOIL 2.0 ug/Kg	35–SS07–00D SOIL 1.0 ug/Kg	35S80700 SOIL 1.0 ug/Kg	35-SS03-00 SOIL 1.0 ug/Kg	35-SS04-00 SOIL 1.0 ug/Kg
COMPOUND						
alpha-BHC						
		1.6 J				0.53 J
gamma-BHC (Lindane)						
Heptachior			1011	0.011		1011
Aldrin Mentechler Enevide			1.9 0	2.3 U		1.9 0
Endoculton L						
Dieldrin			10	44	0.25	201
	107	105	12	14	0.00 0	2.90
4,4 -DDE	127	125	10	0.68	20	79
Endoculfan li				0.00 0		20 1
		35 1	21	25	0.86 1	2.90
Fndosulfan Sulfate		0.0 0	2.1	2.0	0.00 0	11
		113	27.1	32.1	80	48
Alter Methory with the second	88 11	110	2.7 0	0.2 0	0.9	-0
Endrin Ketone	000					12.1
Endrin Aldebyde						1.6 J
alpha-Chlordane		36				4.1
damma-Chlordane		27				
Toxaphene						
Aroclor 1016						
Aroclor 1221						
Aroclor 1232						
Aroclor 1242						
Aroclor 1248						
Aroclor 1254						
Aroclor 1260						

ROY F. WESTON, INC. PESTICIDE/PCB ANALYSES - DATA VALIDATION SUMMARY

CLIENT: BAKER ENVIRONMENTAL

Client Sample ID:	35-8809-00	35-SS01-00	35-SS10-000	35-SS02-00	35-\$\$13-00	
Matrix:	SOIL	SOIL	SOIL	SOIL	SOIL	
Dilution Factor:	5.0	1.0	5.0	1.0	10.0	
Units:	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	
COMPOUND						
alpha-BHC						
beta-BHC						
delta-BHC						
gamma–BHC(Lindane)						
Heptachlor						
Aldrin				1.8 U		
Heptachlor Epoxide				1.8 U		
Endosulfan I						
Dieldrin					212 P	
4,4'-DDE	261	12	204	1.6 J	1570	
Endrin	2.0 J					
Endosulfan II						
4,4'-DDD	7.3 J	1.2 J	18	0.56 J	3240	
Endosulfan Sulfate						
4,4'-DDT	262	19	76	1.6 J	154	
Methoxychlor					750 U	
Endrin Ketone						
Endrin Aldehyde				0.37 J		
alpha-Chlordane						
gamma-Chlordane						
Toxaphene						
Aroclor 1016						
Aroclor 1221						
Aroclor 1232						
Aroclor 1242						
Aroclor 1248						
Aroclor 1254						
Aroclor 1260						

Roy F. Weston, Inc. 1 Weston Way West Chester, Pennsylvania 19380-1499 610-701-3000 • Fax 610-701-3186

INORGANIC QUALITY ASSURANCE REVIEW BAKER ENVIRONMENTAL, INC. SITE: MCB CAMP LEJEUNE SDG NO.: BA5617

REVIEW PERFORMED BY THE ANALYTICS DIVISION OF ROY F. WESTON, INC.

VERIFIED BY:

h

Zohreh Hamid, Ph.D. Section Manager - Data Validation

8-22-74

Date

 $\textcircled{\blue}{\blue}$

BAKER ENVIRONMENTAL, INC. - NAVY CLEAN SITE: MCB CAMP LEJEUNE SDG No.: BA5617

CASE SUMMARY

This data validation review consists of fourteen (14) soil samples received on 05-19-94. Laboratory analyses were performed by NDRC Laboratories, Inchscape Testing Services for TAL metals.

All data have been validated with regard to usability according to the quality assurance set forth in Inorganic Functional Guidelines and Naval Energy and Environmental Support Activity (NEESA). If you have any questions or comments on this data review, please contact Zohreh Hamid at (610) 701-3745.

The following samples are contained within this report:

GWDS23	SS0100	SS0400	SS0900	SS1200
GWDS33	SS0200	SS0700	SS1000	SS1300
GWDS42	SS0300	SS070D	SS1100	

QUALITY ASSURANCE REVIEW

The findings offered in this report are based upon a rigorous review of the following criteria.

- Holding Time
- Calibration
 - Contract Required Detection Limit Samples
 - Blank Samples
 - Interference Check Samples
 - Matrix Spike
 - Duplicate Digestion Samples
- Laboratory Control Sample
- * Serial Dilution Sample
- Graphite Furnace Analysis
- Quarterly Verification of Instrument Parameters
- * Sample Result Verification
- * Preparation Logs
- Run Logs
 - Data Package Completeness
- * All criteria were met; therefore, a narrative section is not provided for this classification.

Page 2

HOLDING TIME

The analysis holding time for mercury exceeded the requirement limits. The reported sample data are qualified estimated.

CONTRACT REQUIRED DETECTION LIMIT SAMPLE ANALYSES

The CRDL recoveries for Sb (133.6/150.3%) in ICP analysis and As (144 & 139%), and Pb (126.7 & 166.7%) in graphite furnace analysis were above the upper data validation requirement limits of 120%. The positive results greater than the IDL but less than 3X the CRDL should be qualified estimated due to the uncertainty near the detection limits.

The recovery for Cr (79.8%) was below the lower control limit in the CRDL standard analyzed after the sample analyses. The data are not impacted, since the deviation is marginal.

BLANK ANALYSES

The laboratory blank had the following contaminations at levels above the IDLs, but below the CRDLs.

ANALYTE	CONC. MG/KG	ACTION LEVEL MG/KG *
Al	8.85	44
Ba	0.253	1.26
Cd	0.021	0.1
Cu	1.563	7.8
Fe	9.7	48.5
Pb	0.17	0.85
Mg	7.9	39.5

* Action level = 5X the blank concentration.

The results for all these elements up to the action levels are qualified "U" in the data summary due to the blank concentration.

Page 3

The calibration and preparation blanks had mercury and zinc at levels above the CRDLs. The reported sample results up to 10X the blank contamination are rejected in the samples.

INTERFERENCE CHECK SAMPLES

The percent recoveries for the TAL analytes analyzed by the ICP were within the control limits.

Calcium was not included in the ICSA standard solution. The ICP interference could not be evaluated; therefore, the reported sample data for Ca are qualified estimated.

MATRIX SPIKE SAMPLE ANALYSIS

The matrix spike recovery for Sb (34.8%), As(48.4%), Cd(145%), Pb(-21.3%) and Se (47.5%) were outside the requirement limits of 75-125%. The reported positive sample results for cadmium are qualified estimated. The reported sample results and non-detected values for Sb, As, and Se are qualified estimated and are flagged "J and UJ", respectively.

The positive results for Pb are qualified estimated and the non-detected values are rejected due to the extremely low matrix spike recovery.

LABORATORYDUPLICATE SAMPLES

The RPD for all analytes were within the analysis and the data validation requirement limits of 35% and/or ± 2 CRDLs. One set of field duplicates was analyzed for this batch of samples. The RPDs for Ca, Cu and Fe were above 50%. the reported sample results are qualified estimated in the field duplicate samples.

GRAPHITE FURNACE ANALYSIS

The following samples analyzed by graphite furnace had the analytical spike recoveries outside the 85-115%.

SAMPLE ID	ANALYTE	% RECOVERY
GWDS23	As/Se	71.5/66
GWDS33	Se	75

Page 4

SAMPLE ID	ANALYTE	% RECOVERY
GWDS42	Pb/Se	68/76
SS0100	Cd	121.5*
SS0300	Pb/Se/Tl	128*/81/83.9
SS0400	As/Pb/Se	81.8/123*/59
SS0700	As/Se	73/69
SS070D	Cd/Se/T1	63.5/77/81
SS0900	Se	72
SS1000	Se	65
SS1100	As/Cd/Tl	75/77/84
SS1200	Cd/Se	73/63
SS1300	Pb	117.8*

* Only the positive results are qualified estimated.

The result for Pb in samples (GWDS33,SS1200,SS1100) were inadvertently flagged "W". Also the recovery for lead in sample SS0300 was above the 115% QC limit. The reported sample result was not flagged with a "W".

SAMPLE RESULTS

The results for calcium in samples SS1200, SS0400 and SS0100 were obtained from the 10-fold dilution.

DATA PACKAGE COMPLETENESS

Sample GWDS34 was listed on the Form XIVs for all elements. The sample data (Form I) was not included in the data package.

Page 5

SUMMARY

The data package completeness is fair. The sample results for mercury and zinc are rejected due to the blank contamination. The matrix spike recovery for lead was extremely low. The minor issues have been discussed. The reported sample data are considered representative with the applied qualifier codes.

INFORMATION REGARDING DATA

The data have been reviewed according to the USEPA National Functional Guidelines for Inorganic Data Review. All data are validated with regard to usability.

If you have any questions or comments on this data review, please call Zohreh Hamid at (215) 344-3745.

ATTACHMENTS

- 1. Attachment I Glossary of Data Qualifier Codes
- 2. Attachment II Sample Result Summary. This includes:
 - a) A summary of all positive results for the target analytes with the qualifier codes, if applicable;
 - b) All qualified and usable detection limits.
- 3. Attachment III Sample data (Form I) verified by the laboratory.

WALEFE DESCRIPTION .

ATTACHMENT I GLOSSARY OF DATA QUALIFIER CODES

GLOSSARY OF DATA QUALIFIERS

CODES RELATING TO IDENTIFICATION

(confidence concerning presence or absence of compounds):

- U = NOT DETECTED SUBSTANTIALLY ABOVE THE LEVEL REPORTED IN LABORATORY OR FIELD BLANKS.
- **R** = UNRELIABLE RESULT. ANALYTE MAY OR MAY NOT BE PRESENT IN THE SAMPLE. SUPPORTING DATA NECESSARY TO CONFIRM RESULT.
- N = NEGATED COMPOUND WAS CONSIDERED AS NOT PRESENT IN THE SAMPLE.

(NO CODE) = CONFIRMED IDENTIFICATION

CODES RELATING TO QUANTITATION

(can be used for both positive results and sample quantitation limits):

- **J** = ANALYTE PRESENT. REPORTED VALUE MAY NOT BE ACCURATE OR PRECISE.
- **UJ** = THE REPORTED QUANTITATION LIMITS ARE QUALIFIED ESTIMATED.

OTHER CODES

 \mathbf{Q} = NO ANALYTICAL RESULT.

ATTACHMENT II SAMPLE RESULT SUMMARY

----- i 😑

·

ROY F. WESTON, INC. INORGANIC ANALYSES - DATA VALIDATION SUMMARY

CLIENT: BAKER ENVIRONMENTAL, INC. SDG NO.: BA5617

Client Sample ID:GWDS23GWDS33GWDS42SS010Matrix:SOILSOILSOILSOILSOIL% Solids:82.686.589.994	00 SS0200 SS0300 DIL SOIL SOIL 4.2 94.4 97.4 Kg mg/Kg mg/Kg
Units: mg/Kg mg/Kg mg/Kg mg/Kg	
INORGANIC ELEMENTS	
IDL (ug/L)	
Aluminium P 20 6190 3070 5650 22	20 2420 2300
Antimony P 46 UJ UJ UJ	
Arsenic F 1.2 0.19 J 0.39 J 1.2 J	
Barium P 1.0 10.7 4.8 25.0 15	56 62 79
Beryllium P 1.0	0.E 1.9
Cadmium F 0.2 0.49 J 0.13 J 0.03 J 0.0	04 J 0.06 J 0.14 J
Calcium P 1700 664 J 60	05 J 604 J 5420 J
Chromium P 7.0 5.9 3.1 10.0 1	
Cobalt P 11 1.4	19
Copper P 2.0 2.7 1.9 2.3 3	3.9 2.0 2.6
Iron P 13 2560 1110 4030 125	50 1670 2890
Lead F 0.6 15.4 J 4.0 J 6.5 J 7	7.2 J 7.3 J 107 J
Magnesium P 13 149 93.3 217 71	.6 58.7 212
Manganese P 2 6.4 1.5 3.2 5	5.5 4.1 17.8
Mercury AV 0.1 0.16 R 0.18 R 0.16 R 0.1	13 R 0.11 R 0.24 R
Nickel P 11 1.4 1.5 2.0 1	.3 1.9 1.6
Potassium P 2440	
Selenium F 1.4 UJ UJ 0.23 J	UJ UJ UJ
Silver F 0.2	
Sodium P 2370	
Thallium F 0.6 0.10 2.1 0.0	0.07 J
Vanadium P 5.0 7.6 4.4 13.2 3.	.6 3.6 5.3
Zinc P 11 4.9 R 3.2 R 5.8 R 14.	.8 R 12.9 R 16.7 R

ROY F. WESTON, INC. INORGANIC ANALYSES - DATA VALIDATION SUMMARY

CLIENT: BAKER ENVIRONMENTAL, INC. SDG NO.: BA5617

Client Sar %	nple ID: Matrix: Solids:		SS0400 SOIL 91.6	SS0700 SOIL 89.3	SS070D SOIL 88.5	SS0900 SOIL 93.4	SS1000 SOIL 94.4	SS1100 SOIL 94.1
	Units:		mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg
INORGANIC EL	EMENTS				·····			
		IDL (ug/L)						
Aluminium	Р	20	2330	7870	5520	2570	3230	2400
Antimony	Р	46	8.0 J	7.4 J	UJ	UJ	UJ	UJ
Arsenic	F	1.2	UJ	0.50 J	3.0 J	0.29 J	0.78 J	0.55 J
Barium	Р	1.0	79.5	15.4	19.1	8.9	17.8	9.8
Beryllium	Р	1.0		0.22	0.33			
Cadmium	F	0.2	15.0 J	0.16 J	0.38 J	0.79 J	0.18 J	0.40 J
Calcium	Р	1700	27700 J	4680 J	12200 J	13500 J	49500 J	5650 J
Chromium	Р	7.0	98.1	13.0	10.9	5.1	5.8	3.1
Cobalt	Р	11	4.3					1.3
Copper	Р	2.0	43.0	3.2 J	123 J	4.5	3,3	3.8
Iron	Р	13	4400	10000 J	5770 J	2200	2010	1740
Lead	F	0.6	71.0 J	17.1 J	32.9 J	35.8 J	16.2 J	30.9 J
Magnesium	Р	13	675	346	461	399	951	184
Manganese	Р	2	35.6	6.6	10.7	12.5	11.1	11.3
Mercury	A۷	0.1	0.23 R	0.13 R	0.13 R	0.17 R	0.14 R	0.26 R
Nickel	Р	11	6.8	2.4	3.1	2.8	2.2	1.5
Potassium	Р	2440						
Selenium	F	1.4	UJ	UJ	UJ	UJ	UJ	UJ
Silver	F	0.2						
Sodium	Р	2370						
Thallium	F	0.6		0.20	0.15 J	0.07	0.08	0.10 J
Vanadium	Р	5.0	14.2	18.8	14.4	6.1	7.1	5.1
Zinc	Р	11	430	18.4 R	27.0 R	138	12.5 R	24.5 R

ROY F. WESTON, INC. INORGANIC ANALYSES -- DATA VALIDATION SUMMARY

CLIENT: BAKER ENVIRONMENTAL, INC. SDG NO.: BA5617

Client Sample ID: Matrix:			SS1200	SS1300
			SOIL 96.8	SOIL
% Solids:				
			maKa	maKa
	01110.		mg/ng	mg/ng
INORGANIC EL	EMENTS			
		IDL (ug/L)		
Aluminium	Р	20	2020	5160
Antimony	Р	46	UJ	IJ
Arsenic	F	1.2	0.39 J	0.79 J
Barium	Р	1.0	8.7	86.0
Beryllium	Р	1.0		
Cadmium	F	0.2	0.26 J	0.77 J
Calcium	P	1700	24000 J	7360 J
Chromium	Р	7.0	3.6	9.7
Cobalt	Р	11		
Copper	Р	2.0	4.8	58.3
Iron	Р	13	1720	8280
Lead	F	0.6	26.1 J	43.2 J
Magnesium	Р	13	545	883
Manganese	Р	2	13.9	66.7
Mercury	A٧	0.1	0.18 R	0.70 R
Nickel	Р	11	2.0	17.2
Potassium	Р	2440		
Selenium	F	1.4	UJ	1.2 J
Silver	F	0.2		
Sodium	Р	2370		
Thallium	F	0.6		0.48
Vanadium	Р	5.0	4.0	20.7
Zinc	Р	11	16.2 R	67.5 R

Roy F. Weston, Inc. 1 Weston Way West Chester, Pennsylvania 19380-1499 610-701-3000 • Fax 610-701-3186

ORGANIC QUALITY ASSURANCE REVIEW BAKER ENVIRONMENTAL, INC. - NAVY CLEAN SITE: MCB CAMP LEJEUNE SDG NO.: B5715

REVIEW PERFORMED BY THE ANALYTICS DIVISION OF ROY F. WESTON, INC.

PREPARED BY: 7 utte. Kelly Muir Spittler

Date

Kelly Muir Spittler ¹ Unit Leader - Data Validation

VERIFIED BY:

Zohreh Hamid, Ph.D. Section Manager - Data Validation

8-22-94 Date

(*)

BAKER ENVIRONMENTAL, INC. - NAVY CLEAN SITE: MCB CAMP LEJEUNE SDG No.: B5715

INTRODUCTION

This quality assurance review is based upon a review of all data generated from seven water samples and one rinsate blank collected on 05-19,20-94. The samples were analyzed according to criteria set forth in the contract laboratory program (CLP) for TCL Volatile, Semivolatile and Pesticide/PCB target compounds and SW846 Methods 601/602 for Benzene, Toluene, Ethylbenzene and Xylene by NDRC Laboratories, Inchscape Testing Services.

This review has been performed in accordance with the confirmation method. The reported analytical results are presented as a summary of the data in Attachment II. All of the analytical data were examined to determine the usability of the analytical results and also to determine contractual compliance relative to the analytical requirements and deliverables specified in the CLP method and Sampling and Chemical Analysis Quality Assurance requirements for the Navy Installation Restoration Program (NEESA 20.2-047B). The applicable qualifier codes have been placed next to the results in the data summary to indicate the qualitative and/or quantitative reliability. The details of this evaluation review are presented in the narrative section of this report.

All data have been validated with regard to usability according to the quality assurance set forth in USEPA Laboratory Data Validation Functional Guidelines for Evaluating Organic Analyses. If you have any questions or comments on this data review, please call Zohreh Hamid or Kelly Spittler at (610) 701-3745.

OUALITY ASSURANCE REVIEW

The findings offered in this report are based upon a review of the following criteria:

- Data Completeness
- Holding Time
- GC/MS Tuning
 - Calibration
- Blanks
- Surrogate Recoveries
 - Matrix Spike/Spike Duplicate
 - Laboratory Control Sample
- Internal Standard
- * Instrument Performance
 - Field Duplicate Results
- * Compound Identification
- * Compound Quantitation
- * All criteria were met; therefore, a narrative section is not provided for this classification.

Page 2

DATA COMPLETENESS

General

The sample ID on the chain-of-custody is 35-MW215-02; however, the laboratory reports the ID as TB-MW215-02. The affected documents should be corrected and resubmitted.

The chain-of-custody for soil/sediment samples were included in this data package; however, the sample analyses were not provided with this SDG.

HOLDING TIME

Volatiles

The technical holding time established in the Functional Guidelines (7 days from collection to analysis), has been exceeded for sample 35-MW215-02. The laboratory's contractual holding time (10 days from VTSR to analysis) established in the CLP SOW differs for these validation requirements; however, the validator is required by functional guidelines to qualify as estimated the positive results and non-detects in these analyses. It is the data validator's opinion that these results can be accepted with the qualifier codes.

CALIBRATION

Volatiles and Semivolatiles

The following %D results in the continuing calibrations exceeded the 25% QC limit. These calibrations are considered acceptable since less than two (VOA) or four (BNA) check (*) compounds had %Ds outside the criteria. Positive results were not detected for these compounds; therefore, all associated non-detected values for the compounds listed below are qualified as estimated and flagged "UJ". All RRFs were above 0.05; therefore, no qualification is required on this basis.

CALIBRATION	INSTRUMENT ID	COMPOUND	<u>%RSD/%D</u>
CC 05-30-94	HP4.i	Chloroethane	29.7
		Methylene Chloride	26.8
		Acetone	44.4
		1,1-Dichloroethane	25.1
		2-Butanone	25.8

CALIBRATION	INSTRUMENT ID	COMPOUND	<u>%RSD/%D</u>
CC 06-02-94	HP1.i	4-Chloroaniline	70.5
•		3-Nitroaniline	40.0
		3,3-Dichlorobenzidine	25.8
		2,6-Dinitrotoluene	33.7
		2,4-Dinitrophenol	29.3
		4-Nitrophenol	34.1
		N-Nitrosodiphenylamine	33.5
		Butylbenzylphthalate	28.0
		Bis(2-ethylhexyl)phthalate	37.8
		Di-n-octylphthalate	33.9

Pesticide/PCBs

The percent recovery for alpha-BHC (79%) was slightly below the QC limits of 80-120%. Since this compound was not detected in the samples, no action is required on this basis.

Volatiles (601/602)

The calibration data met the requirements established in the method. Also, the correlation coefficients were above 0.99 in the initial calibration.

BLANKS

Semivolatiles

The following method blank contained a common contaminant at a level less than the CRQL. This compound was not detected in the associated sample; therefore, no action is required.

<u>BLANK</u>	COMPOUND	<u>LEVEL</u>
SBLK	Bis(2-ethylhexyl)phthalate	5 ug/L

MATRIX SPIKE/SPIKE DUPLICATE

Volatiles, Semivolatiles, and Pesticide/PCBs

MS/MSD analyses were not performed with this batch of samples. No qualification is required due to the lack of these QC analyses.

Volatiles (601/602)

Most of the spike recoveries were within the 60-140% QC range with the exception of these listed below. Since these compounds were not detected in the samples, no action is required.

<u>SAMPLE</u>	SPIKE COMPOUND	<u>RECOVERY</u>		
MS	Chlorobenzene	146		
MSD	SD Chlorobenzene			
MSD	1,2-Dichlorobenzene	144		
MS	1,2-Dichlorobenzene	175		
MSD	Ethylbenzene	142		
	Ethylbenzene	145		

LABORATORYCONTROL SAMPLE

An LCS analysis was performed in order to fulfill the blank spike analysis requirements established in the NEESA guidelines.

INTERNAL STANDARD

Semivolatiles

The following internal standards areas were outside the control limits in the sample analyses:

<u>SAMPLE</u>	INTERNAL STANDARD	<u>AREA</u>	<u>CONTROL</u> <u>LIMITS</u>
35-RB37	Perylene-d ₁₂	649889	875850-3503402
SBLK	Perylene-d ₁₂	826585	875850-3503402

Sample 35-RB37 was not re-extracted/re-analyzed; therefore, the non-detects quantified in reference to perylene in the original analysis are qualified estimated since the positive results were not detected. The blank results quantified in reference to perylene are also considered estimated.

Page 4

Page 5

FIELD DUPLICATE RESULTS

A set of field duplicate analyses was not provided with this batch of samples; however, no qualification is required due to the lack of this field QC analysis.

INFORMATION REGARDING DATA

The data have been reviewed according to the USEPA National Functional Guidelines for Organic Data Review. All data are validated with regard to usability.

If you have any questions or comments on this data review, please call Kelly Spittler or Zohreh Hamid at (215) 344-3745.

ATTACHMENTS

- 1. Attachment I Glossary of Data Qualifier Codes
- 2. Attachment II Sample Result Summary. This includes:
 - a) A summary of all positive results for the target analytes with the qualifier codes, if applicable;
 - b) All qualified and usable detection limits.
- 3. Attachment III Sample data (Form I) verified by the laboratory.

ATTACHMENT I GLOSSARY OF DATA QUALIFIER CODES

GLOSSARY OF DATA QUALIFIERS

CODES RELATING TO IDENTIFICATION

(confidence concerning presence or absence of compounds):

- U = NOT DETECTED SUBSTANTIALLY ABOVE THE LEVEL REPORTED IN LABORATORY OR FIELD BLANKS. [Substantially is equivalent to a result less than 10 times the blank level for common contaminants (methylene chloride, acetone and 2-butanone in the VOA analyses, and common phthalates in the BNA analyses, along with tentatively identified compounds) or less than 5 times the blank level for other target compounds.]
- **R** = UNUSABLE RESULT. THE PRESENCE OR ABSENCE OF THIS ANALYTE CANNOT BE VERIFIED. SUPPORTING DATA NECESSARY TO CONFIRM RESULT.
- N = NEGATED COMPOUND. THERE IS PRESUMPTIVE EVIDENCE TO MAKE A TENTATIVE IDENTIFICATION.

CODES RELATING TO QUANTITATION

(can be used for both positive results and sample quantitation limits):

- **J** = ANALYTE WAS POSITIVELY IDENTIFIED. REPORTED VALUE MAY NOT BE ACCURATE OR PRECISE.
- **UJ** = ANALYTE WAS NOT DETECTED ABOVE THE CRQL. THE REPORTED QUANTITATION LIMIT IS QUALIFIED ESTIMATED.

OTHER CODES

 \mathbf{Q} = NO ANALYTICAL RESULT.

ATTACHMENT II SAMPLE RESULT SUMMARY

ROY F. WESTON, INC. VOLATILE ANALYSES - DATA VALIDATION SUMMARY

CLIENT: BAKER ENVIRONMENTAL, INC. SDG NO.: 85715

Client Sample ID:	35-MW215-02	
Matrix:	WATER	
Dilution Factor:	1.0	
Units:	UG/L	
COMPOUND		
Bromomethane	UJ	
Vinyl Chloride	UJ	
Chloroethane	UJ	
Methylene Chloride	UJ	
Acetone	UJ	
Carbon Disulfide	UJ	
1,1-Dichloroethene	UJ	
1,1-Dichloroethane	UJ	
1,2-Dichloroethene (TOTAL)	UJ	
Chloroform	UJ	
1,2-Dichloroethane	UJ	
2-Butanone	UJ	
1,1,1-Trichloroethane	UJ	
Carbon Tetrachloride	UJ	
Bromodichloromethane	UJ	
1,2-Dichloropropane	UJ	
cis-1,3-Dichloropropene	UJ	
Trichloroethene	UJ	
Dibromochloromethane	UJ	
1,1,2-Trichloroethane	UJ	
Benzene	UJ	
Trans-1,3-Dichloropropene	UJ	
Bromoform	UJ	
4-Methvl-2-Pentanone	UJ	
2-Hexanone	UJ	
Tetrachloroethene	UJ	
1.1.2.2-Tetrachloroethane	UJ	
Toluene	UJ	
Chlorobenzene	UJ 22	
Ethylbenzene	UJ	
Styrene	UJ	
Xvlene (total)	UJ 22	
Chioromethane	UJ	

ROY F. WESTON, INC. SEMIVOLATILE ANALYSES - DATA VALIDATION SUMMARY

.

SDG NO.: B5715 Client Sample ID: 35-RB37 Matrix: WATER **Dilution Factor:** 1.0 Units: ug/L Phenol bis(2-Chloroethyl)ether 2-Chlorophenol 1,3-Dichlorobenzene 1,4-Dichlorobenzene 1,2-Dichlorobenzene 2-Methylphenol 2,2'-oxybis(1-Chloropropane) 4-Methylphenol N-Nitroso-di-n-propylamine Hexachloroethane Nitrobenzene Isophorone 2-Nitrophenol 2,4-Dimethylphenol bis (2-Chloroethoxy) methane 2,4-Dichlorophenol 1,2,4-Trichlorobenzene Naphthalene UJ 4-Chloroaniline Hexachlorobutadiene 4-Chloro-3-methylphenol 2-Methylnaphthalene Hexachlorocyclopentadiene 2,4,6-Trichlorophenol 2,4,5-Trichlorophenol 2-Chloronaphthalene 2-Nitroaniline Dimethylphthalate Acenaphthylene

UJ UJ

2,6-Dinitrotoluene

3-Nitroaniline Acenaphthene

CLIENT: BAKER ENVIRONMENTAL

ROY F. WESTON, INC. SEMIVOLATILE ANALYSES - DATA VALIDATION SUMMARY

CLIENT: BAKER ENVIRONMENTAL

SDG NO.: B5715

B37
TER
1.0
ua/L
-9, -
UJ
UJ
UJ
UJ
UJ
UJ

ROY F. WESTON, INC. PESTICIDE/PCB ANALYSES - DATA VALIDATION SUMMARY

CLIENT: BAKER ENVIRONMENTAL SDG NO.: B5715

Client Sample ID: Matrix:	35–RB37 WATER		
Dilution Factor:	1.0		
Units:	UG/L		
COMPOUND			· · · · · · · · · · · · · · · · · · ·
alpha-BHC			
beta-BHC			
delta-BHC			
gamma-BHC(Lindane)			
Heptachlor			
Aldrin			
Heptachlor Epoxide			
Endosulfan I			
Dieldrin			
4,4'-DDE			
Endrin			
Endosulfan II			
4,4'-DDD			
Endosulfan Sulfate			
Methoxychior			
Endrin Ketone			
elaha Chiardana			
aipha-Chlordane			
Jamma-Chiordane			
Arcolor 1016			
Aroclor 1991			
Ároolor 1221			
Arochr 12/2		-	
Aroclor 1242			
Aroclar 1954			
Aroclar 1260			

CLIENT: BAKER ENVIRONMENTAL, INC. SDG NO.: B5715

Client Sample ID: Matrix:	35–RB37 WATER	35-MW31AW-01 WATER	35-MW37BW01 WATER	35–MW32BW–01 WATER	35-MW37AW-01 WATER	35-MW38AW-01 WATER
Dilution Factor:	1	1	1	25	1	1
Units:	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L

Bromodichloromethane Bromoferm Bromomethane Carbon Tetrachloride Chlorobenzene Chloroethane Chloroethane Chloromethane Dibromochloromethane 1,2-Dichlorobenzene 1,3-Dichlorobenzene	METHOD: EPA 601/1						
Bromoform Bromomethane Carbon Tetrachloride Chlorobenzene Chloroethane Chloroethane Chloromethane Dibromochloromethane 1,2-Dichlorobenzene 1,3-Dichlorobenzene	Bromodichloromethane						
Bromomethane Carbon Tetrachloride Chlorobenzene Chloroethane Chloroform Chloromethane Dibromochloromethane 1,2-Dichlorobenzene 1,3-Dichlorobenzene	Bromoform						
Carbon Tetrachloride Chlorobenzene Chloroethane Chloromethane Dibromochloromethane 1,2-Dichlorobenzene 1,3-Dichlorobenzene	Bromomethane						
Chlorobenzene Chloroethane Chloromethane Dibromochloromethane 1,2-Dichlorobenzene 1,3-Dichlorobenzene	Carbon Tetrachloride						
Chloroethane Chloromethane Dibromochloromethane 1,2-Dichlorobenzene 1,3-Dichlorobenzene	Chlorobenzene						
Chloroform Chloromethane Dibromochloromethane 1,2-Dichlorobenzene 1,3-Dichlorobenzene	Chloroethane						
Chloromethane Dibromochloromethane 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1 4-Dichlorobenzene	Chloroform						
Dibromochloromethane 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1.4-Dichlorobenzene	Chloromethane						
1,2-Dichlorobenzene 1,3-Dichlorobenzene 1.4-Dichlorobenzene	Dibromochloromethane						
1,3 – Dichlorobenzene 1.4 – Dichlorobenzene	1,2-Dichlorobenzene						
1 4 – Dichlorobenzene	1,3-Dichlorobenzene						
	1,4-Dichlorobenzene						
Dichlorodifluoromethane	Dichlorodifluoromethane						
1,1 – Dichloroethene	1,1-Dichloroethene						
1,2-Dichloroethane	1,2-Dichloroethane						
1,1 – Dichloroethane	1,1-Dichloroethane						
Cis-1,2-Dichloroethene 594	Cis-1,2-Dichloroethene				594		
Trans – 1,2 Dichloroethene 102	Trans – 1,2 Dichloroethene				102		
1,2-Dichloropropane	1,2-Dichloropropane						
Cis-1,3-Dichloropropene	Cis-1,3-Dichloropropene						
Trans – 1,3 – Dichloropropene	Trans – 1,3 – Dichloropropene						
Methylene Chloride	Methylene Chloride						
1,1,2,2-Tetrachloroethane	1,1,2,2–Tetrachloroethane						
Tetrachloroethene	Tetrachloroethene						
1,1,1 – Trichloroethane	1,1,1—Trichloroethane						
1,1,2-Trichloroethane	1,1,2—Trichloroethane				107		
Trichloroethene 197	Trichloroethene				197		
Trichlorofluoromethane	Trichlorofluoromethane						
Vinyl Chloride	Vinyl Chloride						
METHOD: EPA 601/2	METHOD: EPA 601/2						
Bromodichloromethane NA NA NA NA NA	Bromodichloromethane	NA	NA	NA		NA	NA
Bromouthing NA NA NA NA NA	Bromotorm	NA	NA	NA		NA	NA
Bromothaue NA NA NA NA	Bromomethane	NA	NA	NA		NA	NA
Carbon Fateschoride NA NA NA NA NA	Carbon Tetrachloride	NA	NA	NA		NA	NA
Californational NA NA NA NA		NA	NA	NA		NA	NA
Chlorosthane NA NA NA NA	Chloroothane	NA	NA	NA		NA	NA
Chlordentato NA NA NA NA	Chloroform	NA	NA	NA		NA	NA
Chloromithane NA NA NA NA	Chloromethane	NA	NA	NA		NA	NA
Chloromethane NA NA NA NA	Dibromochloromethane	NA	NA	NA		NA	NA
La Dishorobenzane NA NA NA NA NA	1.2 – Dichlorohenzene	NA	NA	NA		NA	NA
13-Dichlorobenzene NA NA NA NA NA	1.3-Dichlorobenzene	NA	NA	NA		NA	NA

CLIENT: BAKER ENVIRONMENTAL, INC. SDG NO.: B5715

Client Sample ID: Matrix: Dilution Factor:	35-RB37 WATER	35-MW31AW-01 WATER	35-MW37BW-01 WATER	35-MW32BW-01 WATER	35-MW37AW-01 WATER	35-MW38AW-01 WATER
Units:	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
METHOD. EFA 001/2						
	NA	NA	NA		NA	NA
Lichiorodifiuoromethane	NA	NA	NA		NA	NA
	NA NA	NA	NA		NA	NA
1,2-Dichloroethane	NA	NA	NA		NA	NA
	NA	NA	NA	050	NA	NA
Trans 1.0 Disklarashara		NA	NA	653	NA	NA
10 Dishlaranana	INA	INA NA	NA NA	101	NA	NA
1,2-Dichloropropane	NA	INA NA			NA	NA
Trans 1.2 Dishlarananana	NA NA	INA NA			INA NA	NA NA
Methylene Chloride	NA NA	NA NA				NA NA
1.1.2.2 Tetrachioroothana					NA NA	NA NA
Tetraphorosthane						NA NA
1 1 1 - Tripheroethana	NA NA					NA NA
1,1,2-Trichloroethane	NA	ΝA	NA			
Trichloroethene	NA	NA	NA	210	NA	NA
Trichlorofluoromethane	NA	NA	NA	210	NA	NA
Vinyl Chloride	NA	NA	NA		NA	NA
METHOD: EPA 602/1						
Renzene			53			
Chlorobenzene			0.0			
1.2-Dichlorobenzene						
1,3-Dichlorobenzene						
1,4-Dichlorobenzene						
Ethylbenzene			0.3			
Toluene			2.2			
Xylenes			0.6	9		
Methyl Tertiary Butyl Ether				172		
METHOD: EPA 602/2						
Benzene	NA	NA	6		NA	NA
Chlorobenzene	NA	NA	Ŭ,		NA	NA
1.2-Dichlorobenzene	NA	NA		,	NA	NA
1.3-Dichlorobenzene	NA	NA			NA	NA
1.4-Dichlorobenzene	NA	NA			NA	NA
Ethvibenzene	NA	NA	0.3		NA	NA
Toluene	NA	NA	1.7		NA	NA
Xylenes	NA	NA	0.5	9	NA	NA
				-		

CLIENT: BAKER ENVIRONMENTAL, INC. SDG NO.: B5715

Client Sample ID: Matrix:	35-MW38AW-01D WATER	
Dilution Factor:	1	
Units:	ug/L	

METHOD: EPA 601/1

Bromodichloromethane
Bromoform
Bromomethane
Carbon Tetrachloride
Chlorobenzene
Chloroethane
Chloroform
Chloromethane
Dibromochloromethane
1,2-Dichlorobenzene
1,3-Dichlorobenzene
1,4–Dichlorobenzene
Dichlorodifluoromethane
1,1-Dichloroethene
1,2-Dichloroethane
1,1–Dichloroethane
Cis-1,2-Dichloroethene
Trans-1,2-Dichloroethene
1,2 – Dichloropropan e
Cis-1,3-Dichloropropene
Trans-1,3-Dichloropropene
Methylene Chloride
1,1,2,2-Tetrachloroethane
Tetrachloroethene
1,1,1-Trichloroethane
1,1,2-Trichloroethane
Trichloroethene
Trichlorotluoromethane
Vinyl Chloride

METHOD: EPA 601/2

Bromodichloromethane	
Bromoform	NA
Bromomethane	NA
Carbon Tetrachloride	NA
Chlorobenzene	NA
Chloroethane	NA
Chloroform	NA
Chloromethane	
Dibromochloromethane	
1,2-Dichlorobenzene	NA
1,3-Dichlorobenzene	NA

CLIENT: BAKER ENVIRONMENTAL, INC. SDG NO.: B5715

Client Sample ID;	35-MW38AW-01D	
Matrix:	WATER	
Dilution Factor:	1	
Units:	ug/L	

.

METHOD: EPA 601/2

1,4-Dichlorobenzene	NA
Dichlorodifluoromethane	NA
1,1 – Dichloroethene	NA
1,2-Dichloroethane	NA
1,1-Dichloroethane	NA
Cis-1,2-Dichloroethene	NA
Trans-1,2-Dichloroethene	NA
1,2Dichloropropane	NA
Cis-1,3-Dichloropropene	NA
Trans-1,3-Dichloropropene	NA
Methylene Chloride	NA
1,1,2,2-Tetrachloroethane	NA
Tetrachloroethene	NA
1,1,1–Trichloroethane	NA
1,1,2-Trichloroethane	NA
Trichloroethene	NA
Trichlorofluoromethane	NA
Vinyl Chloride	NA

METHOD: EPA 602/1

Benzene
Chlorobenzene
1,2-Dichlorobenzene
1,3-Dichlorobenzene
1,4-Dichlorobenzene
Ethylbenzene
Toluene
Xylenes
Methyl Tertiary Butyl Ether

METHOD: EPA 602/2

Benzene	NA
Chlorobenzene	NA
1,2-Dichlorobenzene	NA
1,3-Dichlorobenzene	NA
1,4-Dichlorobenzene	NA
Ethylbenzene	NA
Toluene	NA
Xylenes	NA

Roy F. Weston, Inc. 1 Weston Way West Chester, Pennsylvania 19380-1499 8 610-701-3000 • Fax 610-701-3186

INORGANIC QUALITY ASSURANCE REVIEW BAKER ENVIRONMENTAL, INC. SITE: MCB CAMP LEJEUNE SDG NO.: BA5715

REVIEW PERFORMED BY THE ANALYTICS DIVISION OF ROY F. WESTON, INC.

VERIFIED BY:

Zohreh Hamid, Ph.D. Section Manager - Data Validation

8-18-94 Date

 $^{\odot}$

BAKER ENVIRONMENTAL, INC. - NAVY CLEAN SITE: MCB CAMP LEJEUNE SDG No.: BA5715

CASE SUMMARY

This data validation review consists of one water sample (reagent blank) received on 05-21-94. Laboratory analyses were performed by NDRC Laboratories, Inchscape Testing Services for TAL metals.

All data have been validated with regard to usability according to the quality assurance set forth in Inorganic Functional Guidelines and Naval Energy and Environmental Support Activity (NEESA). If you have any questions or comments on this data review, please contact Zohreh Hamid at (610) 701-3745.

The following sample is contained within this report:

35RB37

QUALITY ASSURANCE REVIEW

The findings offered in this report are based upon a rigorous review of the following criteria.

- * Holding Time
 - Calibration
 - Contract Required Detection Limit Samples
 - Blank Samples
 - Interference Check Samples
 - Matrix Spike
 - Duplicate Digestion Samples
 - Laboratory Control Sample
- Serial Dilution Sample
 - Graphite Furnace Analysis
- Quarterly Verification of Instrument Parameters
- Sample Result Verification
- * Preparation Logs
 - Run Logs
 - Data Package Completeness
- * All criteria were met; therefore, a narrative section is not provided for this classification.

Page 2

CONTRACT REQUIRED DETECTION LIMIT SAMPLE ANALYSES

The CRDL recoveries for Sb (120.8/126%) in ICP analysis were above the upper data validation requirement limits of 120%. The positive results greater than the IDL but less than 3X the CRDL should be qualified estimated due to the uncertainty near the detection limits. However, this analyte was not detected in the sample. Therefore, the data are not impacted.

BLANK ANALYSES

The laboratory blank had the following contaminations at levels above the IDLs, but below the CRDLs.

ANALYTE	CONC. UG/L	ACTION LEVEL UG/L *
Ва	1.333	7.0
Fe	15.657	78
Pb	1.2	6
Mg	26.3	131.5

* Action level = 5X the blank concentration.

The results for barium and lead are qualified "U". The reported sample results for iron and magnesium are above the action levels; therefore, the data are not impacted.

INTERFERENCE CHECK SAMPLES

The percent recoveries for the TAL analytes analyzed by ICP were within the control limits.

Calcium was not included in ICS A standard solution. The ICP interference could not be evaluated; therefore, the reported sample data for Ca are qualified estimated.

MATRIX SPIKE SAMPLE ANALYSIS

The matrix spike recovery for Hg (37%) was below the requirement limit of 75%. The reported positive sample result is qualified estimated. The reported sample data are biased low.

Page 3

LABORATORYDUPLICATE SAMPLES

The RPD for mercury was above the analysis and the data validation requirement limits. The reported positive results are qualified estimated, due to the poor reproducibility.

ICP SERIAL DILUTION

The %D for Al and Zn exceeded the validation requirement limit. The data are considered estimated.

GRAPHITE FURNACE ANALYSIS

Cadium in the sample analyzed by graphite furnace had the analytical spike recovery (118%) outside the control limits of 85-115%. The reported sample result is qualified estimated.

SUMMARY

This sample is considered as a reagent blank and the QC sample analyses (MS & MD) are not required. This blank should be analyzed and reported with the corresponding field sample. The data package completeness was fair. The pH of the sample was not reported. Also, the frequency of the CCV/CCB listed on the Form II and III, does not match the Form XIV.

Overall, no major problems were encountered during the sample analysis. The reported data are accepted with the applied qualifier code.

INFORMATION REGARDING DATA

The data have been reviewed according to the USEPA National Functional Guidelines for Inorganic Data Review. All data are validated with regard to usability.

If you have any questions or comments on this data review, please call Zohreh Hamid at (215) 344-3745.

ATTACHMENTS

- 1. Attachment I Glossary of Data Qualifier Codes
- 2. Attachment II Sample Result Summary. This includes:
 - a) A summary of all positive results for the target analytes with the qualifier codes, if applicable;
 - b) All qualified and usable detection limits.
- 3. Attachment III Sample data (Form I) verified by the laboratory.

ATTACHMENT I GLOSSARY OF DATA QUALIFIER CODES

- 12 · ·

GLOSSARY OF DATA QUALIFIERS

CODES RELATING TO IDENTIFICATION

(confidence concerning presence or absence of compounds):

- U = NOT DETECTED SUBSTANTIALLY ABOVE THE LEVEL REPORTED IN LABORATORY OR FIELD BLANKS.
- **R** = UNRELIABLE RESULT. ANALYTE MAY OR MAY NOT BE PRESENT IN THE SAMPLE. SUPPORTING DATA NECESSARY TO CONFIRM RESULT.
- N = NEGATED COMPOUND WAS CONSIDERED AS NOT PRESENT IN THE SAMPLE.

(NO CODE) = CONFIRMED IDENTIFICATION

CODES RELATING TO QUANTITATION

(can be used for both positive results and sample quantitation limits):

- J = ANALYTE PRESENT. REPORTED VALUE MAY NOT BE ACCURATE OR PRECISE.
- **UJ** = THE REPORTED QUANTITATION LIMITS ARE QUALIFIED ESTIMATED.

OTHER CODES

 \mathbf{Q} = NO ANALYTICAL RESULT.

ATTACHMENT II SAMPLE RESULT SUMMARY

ROY F. WESTON, INC. INORGANIC ANALYSES - DATA VALIDATION SUMMARY

CLIENT: BAKER ENVIRONMENTAL, INC.

SDG NO.: BA5715

				······································
Client San	nple ID: Matrix: Units:		35RB37 WATER UG/L	
INORGANIC EL	EMENTS			
		IDL (ug/L)		·
Aluminium	Р	20	33.9 J	
Antimony	Р	46		
Arsenic	F	1.2	2.6	
Barium	Р	1.0	6 U	
Beryllium	Р	1.0		
Cadmium	F	0.2	0.23 J	
Calcium	Р	1700	8600 J	
Chromium	Р	7.0		
Cobalt	Р	11		
Copper	Р	2.0	8.9	
Iron	Р	13	110	
Lead	F	0.6	2.9 U	
Magnesium	Р	13	1200	
Manganese	Р	2	3.1	
Mercury	AV	0.1	0.64 J	
Nickel	Р	11		
Potassium	Р	2440		
Selenium	F	1.4		
Silver	F	0.2		
Sodium	Р	2370	29000	
Thallium	F	0.5		
Vanadium	Р	11		
Zinc	Р		16.3 J	

Roy F. Weston, Inc. 1 Weston Way West Chester, Pennsylvania 19380-1499 ® 610-707-3000 • Fax 610-701-3186

ORGANIC QUALITY ASSURANCE REVIEW BAKER ENVIRONMENTAL, INC. - NAVY CLEAN SITE: MCB CAMP LEJEUNE SDG NO.: B5896

REVIEW PERFORMED BY THE ANALYTICS DIVISION OF **ROY F. WESTON, INC.**

PREPARED BY: 2000

Kelly Muir Spittler Unit Leader - Data Validation

08-24-94

ł

Date

VERIFIED BY:__

Zohreh Hamid, Ph.D. Section Manager - Data Validation

Date

BAKER ENVIRONMENTAL, INC. - NAVY CLEAN SITE: MCB CAMP LEJEUNE SDG No.: B5896

INTRODUCTION

This quality assurance review is based upon a review of all data generated from three soil samples collected on 05-09-94. The samples were analyzed according to criteria set forth in the contract laboratory program (CLP) for TCL Volatile, Semivolatile and Pesticide/PCB target compounds by NDRC Laboratories, Inchscape Testing Services.

This review has been performed in accordance with the confirmation method. The reported analytical results are presented as a summary of the data in Attachment II. All of the analytical data were examined to determine the usability of the analytical results and also to determine contractual compliance relative to the analytical requirements and deliverables specified in the CLP method and Sampling and Chemical Analysis Quality Assurance requirements for the Navy Installation Restoration Program (NEESA 20.2-047B). The applicable qualifier codes have been placed next to the results in the data summary to indicate the qualitative and/or quantitative reliability. The details of this evaluation review are presented in the narrative section of this report.

All data have been validated with regard to usability according to the quality assurance set forth in USEPA Laboratory Data Validation Functional Guidelines for Evaluating Organics Analyses. If you have any questions or comments on this data review, please call Zohreh Hamid or Kelly Spittler at (610) 701-3745.

QUALITY ASSURANCE REVIEW

The findings offered in this report are based upon a review of the following criteria:

- Data Completeness
- Holding Time
- GC/MS Tuning
 - Calibration
 - Blanks

*

*

- Surrogate Recoveries
- Matrix Spike/Spike Duplicate
- Laboratory Control Sample
- Internal Standard
- Instrument Performance
 - Field Duplicate Results
 - Compound Identification
 - Compound Quantitation
- * All criteria were met; therefore, a narrative section is not provided for this classification.

Page 2

DATA COMPLETENESS

Volatiles

The mass spectra and mass list for the initial calibration were not provided in the data package. The laboratory should resubmit this documentation.

HOLDING TIME

Volatiles

The technical holding time established in the Functional Guidelines (14 days from collection to analysis), has been exceeded for all samples. The laboratory's contractual holding time (10 days from VTSR to analysis) established in the CLP SOW differs for these validation requirements; however, the validator is required by functional guidelines to qualify as estimated the positive results and non-detects in these analyses. It is the data validator's opinion that these results can be accepted with the qualifier codes.

Semivolatiles, and Pesticide/PCBs

The technical holding time established in the Functional Guidelines (14 days from collection to extraction), has been exceeded for all samples. The laboratory's contractual holding time (10 days from VTSR to extraction) established in the CLP SOW differs for these validation requirements; however, the validator is required by functional guidelines to qualify as estimated the positive results and non-detects in these analyses. It is the data validator's opinion that these results can be accepted with the qualifier codes.

CALIBRATION

Volatiles and Semivolatiles

The following %D results in the continuing calibrations exceeded the 25% QC limit. These calibrations are considered acceptable since less than two (VOA) or four (BNA) check (*) compounds had %Ds outside the criteria. All associated positive results and non-detected values for the compounds listed below are qualified as estimated and flagged, "J" and "UJ". All RRFs were above 0.05; therefore, no qualification is required on this basis.

Page 3

CALIBRATION	INSTRUMENT ID	COMPOUND	<u>%RSD/%D</u>
CC 06-07-94	HP3.i	Acetone	57.7
		2-Butanone	51.2
		4-Methyl-2-pentanone	29.5
		2-Hexanone	27.8
CC 06-08-94	HP3.i	Chloroethane	26.6
		Acetone	52.8
		2-Butanone	31.9
· · · · · · · · · · · · · · · · · · ·		4-Methyl-2-pentanone	37.4
		2-Hexanone	35.9
CC 06-20-94	HP1.i	4-Chloroaniline	45.6
		3-Nitroaniline	38.5
		3,3-Dichlorobenzidine	37.2
		2,6-Dinitrotoluene	38.0
		2,4-Dinitrophenol	67.4
		4-Nitrophenol	29.7
		2,4-Dinitrotoluene	27.0
		Diethylphthalate	25.4
CC 06-22-94	HP1.i	4-Chloroaniline	40.3
		3-Nitroaniline	45.6
		2,2-Oxybis(1-Chloropropane)	52.8
		2,6-Dinitrotoluene	29.7
		2,4-Dinitrophenol	45.3
		4-Nitrophenol	28.8
		2,4-Dinitrotoluene	29.0
		Diethylphthalate	28.8
		Di-n-octylphthalate	28.4
CC 07-07-94	HP1.i	4-Chloroaniline	37.3
		4-Nitroaniline	57.9
		Phenol	39.6
		2-Methylphenol	32.4
		2,2-Oxybis(1-chloropropane)	89.8
		Hexachloroethane	40.2
		Carbazole	34.1

Pesticide/PCBs

The percent resolution for endosulfan sulfate (58.6) was below the QC limit of 60%. Since this compound was not detected in the samples, no action is required on this basis.

The retention time for B-BHC in PEMB3 was below the established window. Since positive results were not identified for this compound, no action is required.

Page 4

SURROGATE RECOVERIES

Volatiles

The following system monitoring compound recoveries were outside the QC limits:

SAMPLE	SURROGATE COMPOUND	RECOVERY	<u>OC LIMITS</u>
VBLK	4-Bromofluorobenzene	116	59-113
VLCS	4-Bromofluorobenzene	116	59-113
36-FS02-BC01	4-Bromofluorobenzene	117	59-113
36-FS03-BC01	1,2-Dichloroethane-d ₁₄ 4-Bromofluorobenzene	69 125	70-121 59-113
36-FS03-BC02	4-Bromofluorobenzene	125	59-113
36-FS02-BC01MS	4-Bromofluorobenzene	117	59-113
36-FS02-BC01DL	4-Bromofluorobenzene	117	59-113
36-FS03-BC01DL	4-Bromofluorobenzene	115	59-113
36-FS03-BC02DL	Toluene- ₈ 4-Bromofluorobenzene	72 141	84-138 59-113

These samples are exhibiting matrix effects. For analyses 03-BC01 and O3BC02DL, both positive results and non-detects are qualified estimated. The remaining analyses only have positive results qualified since the recoveries exceeded the QC limits.

Pesticide/PCBs

All surrogate recoveries were within the requirement limits, except for the following:

SAMPLE NO.	<u>RECOVERY</u> SPB608/DB1701	SURROGATE COMPOUND	REASON
PBLKA	162/257	DCB	Advisory Criteria 60-150%
PLCSA	175/211	DCB	Advisory Criteria 60-150%
36-FS02-BC01	153/- 212/235	TCX DCB	Advisory Criteria 60-150% Advisory Criteria 60-150%

Page 5

SAMPLE NO.	<u>RECOVERY</u> SPB608/DB1701	SURROGATE COMPOUND	REASON
36-FS03-BC01	169/188	DCB	Advisory Criteria 60-150%
36-FS03-BC02	-/151	DCB	Advisory Criteria 60-150%

TCX = Tetrachloro-m-xylene

DCB = Decachlorobiphenyl

Since the requirement limits are advisory and there is no qualification criteria established in Functional Guidelines or NEESA for surrogate outliers in the pesticide/PCB fraction, no action is taken.

MATRIX SPIKE/SPIKE DUPLICATE

General

As per the laboratory's case narrative, MS/MSD analyses were not provided since a sample was not specified for QC analyses. No specific qualification is required due to the lack of these QC analyses.

LABORATORY CONTROL SAMPLE

An LCS analysis was performed in order to fulfill the blank spike analysis requirements established in the NEESA guidelines.

INTERNAL STANDARD

Volatiles

The following internal standard areas were outside the laboratory's control limits:

SAMPLE	INTERNAL STANDARD	AREA/RT	CONTROL LIMITS
36-FS02-BC01	1,4-Difluorobenzene	279882	301078-1204312
36-FS03-BC02	1,4-Difluorobenzene Chlorobenzene-d ₅	171970 312892	301078-1204312 336373-1345492

Page 6

<u>SAMPLE</u>	INTERNAL STANDARD	AREA/RT	CONTROL LIMITS
36-FS02-BC01DL	1,4-Difluorobenzene	279882	301078-1204312
36-FS03-BC02DL	1,4-Difluorobenzene Chlorobenzene-d ₅	171970 312892	301078-1204312 336373-1345492

All reported results quantified in reference to the internal standard outliers are qualified estimated, since all IS outliers were below the control limits. Three retention times were reported as outliers on page 0033; however, these retention times did fall within the criteria. These outliers must have been inadvertently indicated.

Semivolatiles

The following internal standard areas were outside the control limits in the sample analyses:

SAMPLE	INTERNAL STANDARD	<u>AREA</u>	CONTROL LIMITS
36-FS03-BC01	Perylene-d ₁₂	1082431	1119620-4478480
36-FS03-BC02	Perylene-d ₁₂	956237	1119620-4478480

All sample results quantified in reference to the internal standard outliers are qualified estimated. Since the areas were below the control limits.

FIELD DUPLICATE RESULTS

General

A set of field duplicate analyses was not provided with this batch of samples. No qualification is required due to the lack of this field QC sample.

COMPOUND QUANTITATION

General

Since the sample matrix consists of crab tissue, the percent moisture is high; thus resulting in elevated detection limits.

Volatiles

All samples were analyzed at 5-fold dilutions, due to the high levels of common contaminants methylene chloride and acetone. The possibility of false negatives exist; therefore, the non-detects are considered estimated.

INFORMATION REGARDING DATA

The data have been reviewed according to the USEPA National Functional Guidelines for Organic Data Review. All data are validated with regard to usability.

If you have any questions or comments on this data review, please call Kelly Spittler or Zohreh Hamid at (215) 344-3745.

ATTACHMENTS

- 1. Attachment I Glossary of Data Qualifier Codes
- 2. Attachment II Sample Result Summary. This includes:
 - a) A summary of all positive results for the target analytes with the qualifier codes, if applicable;
 - b) All qualified and usable detection limits.
- 3. Attachment III Sample data (Form I) verified by the laboratory.

ATTACHMENT I GLOSSARY OF DATA QUALIFIER CODES

GLOSSARY OF DATA QUALIFIERS

CODES RELATING TO IDENTIFICATION

(confidence concerning presence or absence of compounds):

- U = NOT DETECTED SUBSTANTIALLY ABOVE THE LEVEL REPORTED IN LABORATORY OR FIELD BLANKS. [Substantially is equivalent to a result less than 10 times the blank level for common contaminants (methylene chloride, acetone and 2-butanone in the VOA analyses, and common phthalates in the BNA analyses, along with tentatively identified compounds) or less than 5 times the blank level for other target compounds.]
- **R** = UNUSABLE RESULT. THE PRESENCE OR ABSENCE OF THIS ANALYTE CANNOT BE VERIFIED. SUPPORTING DATA NECESSARY TO CONFIRM RESULT.
- **N** = NEGATED COMPOUND. THERE IS PRESUMPTIVE EVIDENCE TO MAKE A TENTATIVE IDENTIFICATION.

CODES RELATING TO QUANTITATION

(can be used for both positive results and sample quantitation limits):

- J = ANALYTE WAS POSITIVELY IDENTIFIED. REPORTED VALUE MAY NOT BE ACCURATE OR PRECISE.
- **UJ** = ANALYTE WAS NOT DETECTED ABOVE THE CRQL. THE REPORTED QUANTITATION LIMIT IS QUALIFIED ESTIMATED.

OTHER CODES

 \mathbf{Q} = NO ANALYTICAL RESULT.

BESIGHERS CONSULTANTS

ATTACHMENT II SAMPLE RESULT SUMMARY

192.1

ROY F. WESTON, INC. VOLATILE ANALYSES -- DATA VALIDATION SUMMARY

CLIENT: BAKER ENVIRONMENTAL, INC. SDG NO.: B5896

Client Sample ID: 36-FS02-BC01 36-FS03-BC01 S0IL SOIL				
Matrix: SOIL SOIL SOIL SOIL Dilution Factor: 5.0 5.0 5.0 COMPOUND COMPOUND UJ UJ UJ Bromomethane UJ UJ UJ UJ Vinyl Chloroide UJ UJ UJ UJ Chloroethane UJ UJ UJ UJ Acetone 94479 114247 602942 J Carbon Disuffide UJ UJ UJ UJ 1,1 - Dichloroethane UJ UJ UJ UJ 1,1 - Dichloroethane UJ UJ UJ UJ 1,2 - Dichloroethane UJ UJ UJ UJ 1,2 - Dichloroethane UJ UJ UJ UJ 2-Bitanone UJ UJ UJ UJ 2-Bichloroethane UJ UJ UJ UJ 2-Bichloroethane UJ UJ UJ UJ 1,1 - Trichloroethane UJ	Client Sample ID:	36-FS02-BC01	36-FS03-BC01	36-FS03-BC02
Dilution Factor: 5.0 5.0 5.0 Units: UG/KG UG/KG UG/KG COMPOUND Bromomethane UJ UJ UJ UJ Chioroethane UJ UJ UJ UJ Methylene Chloride 13594 J 14205 J 47051 J Acetone 94479 J 114247 J 602942 J Carbon Disulfide UJ UJ UJ UJ 1,1 - Dichloroethane UJ UJ UJ UJ Chloroethane UJ UJ UJ UJ 1,2 - Dichloroethane UJ UJ UJ UJ Chloroform UJ UJ UJ UJ Chloroform UJ UJ UJ UJ 2 - Butanone UJ UJ UJ UJ 1,1,2 - Dichloroethane UJ UJ UJ UJ 1,2 - Dichloroethane UJ UJ UJ UJ 1,2 - Dichloropropene UJ	Matrix:	SOIL	SOIL	SOIL
Units: UG/KG UG/KG UG/KG COMPOUND COMPOUND UJ UJ UJ UJ Bromomethane UJ UJ UJ UJ UJ Vinyl Chloride 13594 J 14205 J 47051 J Acetone 94477 J 602942 J Carbon Disuffide UJ UJ UJ UJ UJ 1,1 - Dichloroethane UJ UJ UJ UJ UJ 1,1 - Dichloroethane UJ UJ UJ UJ UJ 1,2 - Dichloroethane UJ UJ UJ UJ UJ 1,2 - Dichloroethane UJ UJ UJ UJ UJ 2 - Butanone UJ UJ UJ UJ UJ UJ 2 - Butanone UJ UJ UJ UJ UJ UJ UJ 2 - Butanone UJ	Dilution Factor:	5.0	5.0	5.0
COMPOUND Bromomethane UJ UJ UJ Vinyl Chloride UJ UJ UJ Chloroethane UJ UJ UJ Methylene Chloride 13594 J 14205 J 47051 J Acetone 94479 J 114247 J 602942 J Carbon Disuffice UJ UJ UJ 1,1 - Dichloroethane UJ UJ UJ 1,1 - Dichloroethane UJ UJ UJ 1,2 - Dichloroethane UJ UJ UJ 1,2 - Dichloroethane UJ UJ UJ 2 - Butanone UJ UJ </td <td>Units:</td> <td>UG/KG</td> <td>UG/KG</td> <td>UG/KG</td>	Units:	UG/KG	UG/KG	UG/KG
Bromomethane UJ UJ UJ Vinyl Chloride UJ UJ UJ Methylene Chloride 13594 J 14205 J 47051 J Acetone 94479 J 114247 J 602942 J Carbon Disulfide UJ UJ UJ 1,1 - Dichloroethene UJ UJ UJ 1,1 - Dichloroethene UJ UJ UJ 1,2 - Dichloroethene (TOTAL) UJ UJ UJ 1,2 - Dichloroethane UJ UJ UJ 2-Butanone UJ UJ UJ UJ 2-Butanone UJ UJ UJ UJ 2-Butanone UJ UJ UJ UJ 1,1 - Trichloroethane UJ UJ UJ UJ 2-Butanone UJ UJ UJ UJ 1,1,2 - Trichloroethane UJ UJ UJ UJ 1,2 - Dichloropropene UJ UJ UJ UJ 1,2 - Trichloroethane	COMPOUND		·····	
Vinyl Chloride UJ UJ UJ Chloroethane UJ UJ UJ Methylene Chloride 13594 J 14205 J 47051 J Acatone 94479 J 114247 J 602942 J Carbon Disulfide UJ UJ UJ 1,1 - Dichloroethane UJ UJ UJ 1,1 - Dichloroethane UJ UJ UJ 1,2 - Dichloroethane UJ UJ UJ 1,2 - Dichloroethane UJ UJ UJ 2-Butanone UJ UJ UJ UJ 1,1 - Trichloroethane UJ UJ UJ UJ 1,2 - Dichloropropene UJ UJ	Bromomethane	UJ	UJ	UJ
Chloroethane UJ UJ UJ Methylene Chloride 13594 J 14205 J 47051 J Acetone 94479 J 114247 J 602942 J Carbon Disuffide UJ UJ UJ 1,1-Dichloroethene UJ UJ UJ 1,2-Dichloroethane UJ UJ UJ 1,2-Dichloroethane UJ UJ UJ 1,2-Dichloroethane UJ UJ UJ 1,2-Dichloroethane UJ UJ UJ 2-Butanone UJ UJ UJ UJ 2-Butanone UJ UJ UJ UJ 2-Dichloroethane UJ UJ UJ UJ 2-Butanone UJ UJ UJ UJ 2-son Fetrachloride UJ UJ UJ UJ 1,1-Trichloroethane UJ UJ UJ UJ 1,2-Dichloropropane UJ UJ UJ UJ 1,2-Trichloroethane UJ	Vinyl Chloride	UJ	UJ	UJ
Methylene Chloride 13594 J 14205 J 47051 J Acetone 94479 J 114247 J 602942 J Carbon Disulfide UJ UJ UJ Carbon Disulfide UJ UJ UJ (1,1-Dichloroethene UJ UJ UJ 1,1-Dichloroethane UJ UJ UJ 1,2-Dichloroethane UJ UJ UJ (Lhoroform UJ UJ UJ 2-Butanone UJ UJ UJ 2-Butanone UJ UJ UJ 2-Dichloroethane UJ UJ UJ 2-Dichloropethane UJ UJ UJ 2-Butanone UJ UJ UJ 2-Dichloropropane UJ UJ UJ 1,1,1-Trichloroethane UJ UJ UJ 1,2-Dichloropropane UJ UJ UJ 1,2-Dichloropropane UJ UJ UJ 1,2-Trichoroethene UJ UJ UJ <td>Chloroethane</td> <td>UJ</td> <td>UJ</td> <td>UJ</td>	Chloroethane	UJ	UJ	UJ
Acetone 94479 J 114247 J 602942 J Carbon Disulfide UJ UJ UJ 1,1Dichloroethene UJ UJ UJ 1,1Dichloroethene UJ UJ UJ 1,2Dichloroethane UJ UJ UJ 1,2Dichloroethane UJ UJ UJ 2Dichloroethane UJ UJ UJ 2Dichloroethane UJ UJ UJ 2Dichloroethane UJ UJ UJ 2Butanone UJ UJ UJ 2Butanone UJ UJ UJ 2Butanone UJ UJ UJ 1,1,1 - Trichloroethane UJ UJ UJ 2Butanone UJ UJ UJ UJ 1,2Dichloropropane UJ UJ UJ UJ 1,2Dichloropropane UJ UJ UJ UJ 1,2Trichloroethane UJ UJ UJ UJ	Methylene Chloride	13594 J	14205 J	47051 J
Carbon DisulfideUJUJUJUJ1,1-DichloroetheneUJUJUJ1,1-DichloroethaneUJUJUJ1,2-Dichloroethane (TOTAL)UJUJUJ1,2-Dichloroethane (TOTAL)UJUJUJ2-ButanoreUJUJUJUJ2-ButanoneUJUJUJUJ2-ButanoneUJUJUJUJ2-ButanoneUJUJUJUJ2-ButanoneUJUJUJUJ2-ButanoneUJUJUJUJ2-ButanoneUJUJUJUJ1,1-TrichloroethaneUJUJUJ1,2-DichloropropaneUJUJUJ1,2-DichloropropaneUJUJUJ1,2-DichloropropaneUJUJUJ1,2-DichloropropaneUJUJUJ1,2-DichloropropaneUJUJUJ1,2-DichloropropaneUJUJUJ1,2-DichloropropaneUJUJUJ1,1,2-TrichloroethaneUJUJUJ1,1,2-TrichloroethaneUJUJUJ1,1,2-TrichloropropeneUJUJUJ1,1,2-TrichloropropeneUJUJUJ2-HexanoneUJUJUJUJ2-HexanoneUJUJUJUJ1,1,2-TrichloroethaneUJUJUJ2-HexanoneUJUJUJUJ1,1,2,2-Tetrachlor	Acetone	94479 J	114247 J	602942 J
1,1 - DichloroetheneUJUJUJ1,1 - Dichloroethene (TOTAL)UJUJUJ1,2 - Dichloroethene (TOTAL)UJUJUJ1,2 - Dichloroethene (TOTAL)UJUJUJ1,2 - DichloroethaneUJUJUJ2 - ButanoneUJUJUJ2 - ButanoneUJUJUJ3 - DichloroethaneUJUJUJ1,2 - DichloropropaneUJUJUJ1,2 - DichloropropeneUJUJUJ1,1,2 - TrichloroethaneUJUJUJDibromochloromethaneUJUJUJBenzeneUJUJUJParane 1,3 - DichloropropeneUJUJUJParane 1,3 - DichloropropeneUJUJ </td <td>Carbon Disulfide</td> <td>UJ</td> <td>UJ</td> <td>UJ</td>	Carbon Disulfide	UJ	UJ	UJ
1,1-DichloroethaneUJUJUJUJ $1,2-Dichloroethane (TOTAL)UJUJUJUJ2-DichloroethaneUJUJUJUJ2-ButanoneUJUJUJUJ2-ButanoneUJUJUJUJ2-ButanoneUJUJUJUJ1,1,1-TrichloroethaneUJUJUJUJCarbon TetrachlorideUJUJUJUJBromodichloromethaneUJUJUJUJ1,2-Dichloropropane 'UJUJUJUJ1,2-Dichloropropane 'UJUJUJUJ1,2-Dichloropropane 'UJUJUJUJ1,2-Dichloropropane 'UJUJUJUJ1,2-Dichloropropane 'UJUJUJUJ1,2-Dichloropropane 'UJUJUJUJ1,2-TrichloroethaneUJUJUJUJBenzeneUJUJUJUJ1,1,2-TrichloropropeneUJUJUJ2-HexanoneUJUJUJUJ2-HexanoneUJUJUJUJ1,1,2,2-TetrachloroethaneUJUJUJ1,1,2,2-TetrachloroethaneUJUJUJ1,1,2,2-TetrachloroethaneUJUJUJ1,1,2,2-TetrachloroethaneUJUJUJ1,1,2,2-TetrachloroethaneUJUJUJ1,1,2,2-TetrachloroethaneUJUJ<$	1,1 Dichloroethene	UJ	UJ	UJ
1,2 - Dichloroethene (TOTAL) UJ UJ UJ Chloroform UJ UJ UJ 1,2 - Dichloroethane UJ UJ UJ 2 - Butanone UJ UJ UJ 2 - Bothoroethane UJ UJ UJ Bromodichloromethane UJ UJ UJ 1,2 - Dichloropropene UJ UJ UJ Dibromochloromethane UJ UJ UJ Benzene UJ UJ UJ UJ Stornoform UJ UJ UJ UJ 4 - Methyl - 2 - Pentanone UJ UJ UJ UJ 2 - Hexanone UJ UJ UJ UJ	1,1 – Dichloroethane	UJ	UJ	UJ
Chloroform UJ UJ UJ UJ 1,2 - Dichloroethane UJ UJ UJ UJ 2 - Butanone UJ UJ UJ UJ 2 - Butanone UJ UJ UJ UJ 1,1,1 - Trichloroethane UJ UJ UJ UJ Carbon Tetrachloride UJ UJ UJ UJ Bromodichloromethane UJ UJ UJ UJ 1,2 - Dichloropropane UJ UJ UJ UJ richtoroethene UJ UJ UJ UJ pibromochloromethane UJ UJ UJ UJ pibromochloromethane UJ UJ UJ UJ pibromochloropropene UJ UJ UJ UJ pibromochloropropene UJ UJ UJ UJ trichloroethane UJ UJ UJ UJ trichloropropene UJ UJ UJ UJ trans	1,2-Dichloroethene (TOTAL)	UJ	UJ	UJ
1,2-DichloroethaneUJUJUJ2-ButanoneUJUJUJ2-ButanoneUJUJUJ1,1,1-TrichloroethaneUJUJUJCarbon TetrachlorideUJUJUJBromodichloromethaneUJUJUJ1,2-DichloropropaneUJUJUJ1,2-DichloropropeneUJUJUJcis-1,3-DichloropropeneUJUJUJDibromochloromethaneUJUJUJDibromochloromethaneUJUJUJ1,1,2-TrichloroethaneUJUJUJ1,1,2-TrichloropropeneUJUJUJPanzeneUJUJUJ1,1,2-TrichloropropeneUJUJUJPanzeneUJUJUJPansenformUJUJUJPansenformUJUJUJPansenformUJUJUJ2-HexanoneUJUJUJ1,1,2,2-TetrachloroethaneUJUJUJ1,1,2,2-TetrachloroethaneUJUJUJ1,1,2,2-TetrachloroethaneUJUJUJ1,1,2,2-TetrachloroethaneUJUJUJ1,1,2,2-TetrachloroethaneUJUJUJ1,1,2,2-TetrachloroethaneUJUJUJ1,1,2,2-TetrachloroethaneUJUJUJ1,1,2,2-TetrachloroethaneUJUJUJ1,1,2,2-TetrachloroethaneUJUJUJ1,1,2,2	Chloroform	UJ	UJ	UJ
2-ButanoneUJUJUJ1,1,1-TrichloroethaneUJUJUJCarbon TetrachlorideUJUJUJBromodichloromethaneUJUJUJ1,2-DichloropropaneUJUJUJcis-1,3DichloropropeneUJUJUJTrichtoroetheneUJUJUJDibromochloromethaneUJUJUJ1,2-TrichloroethaneUJUJUJPanaeeUJUJUJ1,1,2-TrichloroethaneUJUJUJBenzeneUJUJUJTrans-1,3-DichloropropeneUJUJUJPanaeonUJUJUJPanaeonUJUJUJTrans-1,3-DichloropropeneUJUJUJPanaeonUJUJUJTetrachloroethaneUJUJUJ2-HexanoneUJUJUJ1,1,2,2-TetrachloroethaneUJUJUJ1,1,2,2-TetrachloroethaneUJUJUJ1,1,2,2-TetrachloroethaneUJUJUJ1,1,2,2-TetrachloroethaneUJUJUJ1,1,2,2-TetrachloroethaneUJUJUJ1,1,2,2-TetrachloroethaneUJUJUJChlorobenzeneUJUJUJStyreneUJUJUJStyreneUJUJUJXylene (total)UJUJUJChloromethaneUJUJUJ	1,2 Dichloroethane	UJ	UJ	UJ
1,1,1 - TrichloroethaneUJUJUJCarbon TetrachlorideUJUJUJBromodichloromethaneUJUJUJ1,2 - DichloropropaneUJUJUJcis - 1,3 - DichloropropeneUJUJUJTrichloroetheneUJUJUJDibromochloromethaneUJUJUJ1,1,2 - TrichloroethaneUJUJUJ1,1,2 - TrichloroethaneUJUJUJPaezeneUJUJUJBenzeneUJUJUJTrans - 1,3 - DichloropropeneUJUJUJBromoformUJUJUJUJTrans - 1,3 - DichloropropeneUJUJUJPaezeneUJUJUJUJTrans - 1,3 - DichloropropeneUJUJUJStoroformUJUJUJUJ2 - HexanoneUJUJUJUJ2 - HexanoneUJUJUJUJ1,1,2,2 - TetrachloroethaneUJUJUJ1,1,2,2 - TetrachloroethaneUJUJUJ1,1,2,2 - TetrachloroethaneUJUJUJChlorobenzeneUJUJUJStyreneUJUJUJStyreneUJUJUJXylene (total)UJUJUJChloromethaneUJUJUJChloromethaneUJUJUJChloromethaneUJUJUJ<	2-Butanone	UJ	UJ	UJ
Carbon TetrachlorideUJUJUJBromodichloromethaneUJUJUJ1,2-DichloropropaneUJUJUJcis-1,3-DichloropropeneUJUJUJcis-1,3-DichloropropeneUJUJUJTrichloroetheneUJUJUJDibromochloromethaneUJUJUJ1,1,2-TrichloroetheneUJUJUJBenzeneUJUJUJUJBranceneUJUJUJUJBromoformUJUJUJUJPrenzeneUJUJUJUJPrenzeneUJUJUJUJPrenzeneUJUJUJUJPrenzeneUJUJUJUJPrenzeneUJUJUJUJ2-HexanoneUJUJUJUJ1,1,2,2-TetrachloroethaneUJUJUJ1,1,2,2-TetrachloroethaneUJUJUJ1,1,2,2-TetrachloroethaneUJUJUJ1,1,2,2-TetrachloroethaneUJUJUJ1,1,2,2-TetrachloroethaneUJUJUJChlorobenzeneUJUJUJStyreneUJUJUJStyreneUJUJUJXylene (total)UJUJUJChloromethaneUJUJUJChloromethaneUJUJUJChloromethaneUJUJUJXylene (tota	1,1,1 – Trichloroethane	UJ	UJ	UJ
BromodichloromethaneUJUJUJ $1,2-DichloropropaneUJUJUJcis-1,3-DichloropropeneUJUJUJTrichloroetheneUJUJUJDibromochloromethaneUJUJUJ1,1,2-TrichloroethaneUJUJUJBenzeneUJUJUJTrans-1,3-DichloropropeneUJUJUJBromoformUJUJUJ4-Methyl-2-PentanoneUJUJUJ2-HexanoneUJUJUJ1,1,2,2-TetrachloroethaneUJUJUJ1,1,2,2-TetrachloroethaneUJUJUJ2-HexanoneUJUJUJUJ1,1,2,2-TetrachloroethaneUJUJUJChlorobenzeneUJUJUJUJStyreneUJUJUJUJStyreneUJUJUJUJXylene (total)UJUJUJUJChloromethaneUJUJUJUJ$	Carbon Tetrachloride	UJ	UJ	UJ
1,2-DichloropropaneUJUJUJUJcis - 1,3 - DichloropropeneUJUJUJUJTrichloroetheneUJUJUJUJDibromochloromethaneUJUJUJUJ1,1,2 - TrichloroethaneUJUJUJUJBenzeneUJUJUJUJTrans - 1,3 - DichloropropeneUJUJUJBromoformUJUJUJUJ2 - HexanoneUJUJUJUJ2 - HexanoneUJUJUJUJ1, 1, 2, 2 - TetrachloroethaneUJUJUJTolueneUJUJUJUJChlorobenzeneUJUJUJUJStyreneUJUJUJUJXylene (total)UJUJUJUJViene (total)UJUJUJUJViene (total)UJUJUJUJ	Bromodichloromethane	UJ	UJ	UJ
cis-1,3-DichloropropeneUJUJUJTrichloroetheneUJUJUJDibromochloromethaneUJUJUJ1,1,2-TrichloroethaneUJUJUJBenzeneUJUJUJTrans-1,3-DichloropropeneUJUJUJBromoformUJUJUJ4-Methyl-2-PentanoneUJUJUJ2-HexanoneUJUJUJ1,1,2,2-TetrachloroethaneUJUJUJ1,1,2,2-TetrachloroethaneUJUJUJ1,1,2,2-TetrachloroethaneUJUJUJChlorobenzeneUJUJUJStyreneUJUJUJStyreneUJUJUJXylene (total)UJUJUJUUUUUUUJUJ	1,2-Dichloropropane	UJ	UJ	UJ
TrichloroetheneUJUJUJDibromochloromethaneUJUJUJ1,1,2 - TrichloroethaneUJUJUJBenzeneUJUJUJTrans-1,3 - DichloropropeneUJUJUJBromoformUJUJUJ4 - Methyl - 2 - PentanoneUJUJUJ2 - HexanoneUJUJUJ1,1,2,2 - TetrachloroethaneUJUJUJ1,1,2,2 - TetrachloroethaneUJUJUJChlorobenzeneUJUJUJStyreneUJUJUJStyreneUJUJUJXylene (total)UJUJUJUUUJUJUJ	cis-1.3-Dichloropropene	UJ	UJ	UJ
DibromochloromethaneUJUJUJ $1,1,2-TrichloroethaneUJUJUJBenzeneUJUJUJTrans-1,3-DichloropropeneUJUJUJBromoformUJUJUJ4-Methyl-2-PentanoneUJUJUJ2-HexanoneUJUJUJ1,1,2,2-TetrachloroethaneUJUJUJ1,1,2,2-TetrachloroethaneUJUJUJChlorobenzeneUJUJUJStyreneUJUJUJStyreneUJUJUJXylene (total)UJUJUJVilUJUJUJ$	Trichloroethene	UJ	UJ	UJ
1,1,2-TrichloroethaneUJUJUJBenzeneUJUJUJTrans-1,3-DichloropropeneUJUJUJBromoformUJUJUJ $4-Methyl-2-PentanoneUJUJUJ2-HexanoneUJUJUJTetrachloroetheneUJUJUJ1,1,2,2-TetrachloroethaneUJUJUJTolueneUJUJUJUJChlorobenzeneUJUJUJStyreneUJUJUJXylene (total)UJUJUJUUUJUJUJ$	Dibromochloromethane	UJ	UJ	UJ
NormUJUJUJTrans-1,3-DichloropropeneUJUJUJBromoformUJUJUJ4-Methyl-2-PentanoneUJUJUJ2-HexanoneUJUJUJ1,1,2,2-TetrachloroethaneUJUJUJTolueneUJUJUJChlorobenzeneUJUJUJStyreneUJUJUJStyreneUJUJUJLinuUJ	1.1.2 - Trichloroethane	UJ	UJ	UJ
Trans-1,3-DichloropropeneUJUJUJBromoformUJUJUJ $4-Methyl-2-Pentanone$ UJUJUJ $2-Hexanone$ UJUJUJ $2-Hexanone$ UJUJUJTetrachloroetheneUJUJUJ $1,1,2,2-Tetrachloroethane$ UJUJUJTolueneUJUJUJChlorobenzeneUJUJUJStyreneUJUJUJStyreneUJUJUJXylene (total)UJUJUJUUUUUUUJ	Benzene	UJ	UJ	UJ
BromoformUJUJUJ4-Methyl-2-PentanoneUJUJUJ2-HexanoneUJUJUJ2-HexanoneUJUJUJTetrachloroetheneUJUJUJ1,1,2,2-TetrachloroethaneUJUJUJTolueneUJUJUJChlorobenzeneUJUJUJEthylbenzeneUJUJUJStyreneUJUJUJXylene (total)UJUJUJChloromethaneUJUJUJ	Trans-1.3-Dichloropropene	UJ	ŪJ	ŬĴ
4-Methyl-2-PentanoneUJUJUJ2-HexanoneUJUJUJ2-HexanoneUJUJUJTetrachloroetheneUJUJUJ1,1,2,2-TetrachloroethaneUJUJUJTolueneUJUJUJChlorobenzeneUJUJUJEthylbenzeneUJUJUJStyreneUJUJUJXylene (total)UJUJUJUUUUUJUJ	Bromoform	UJ	UJ	ŬĴ
2-HexanoneUJUJ2-HexanoneUJUJ2-trachloroetheneUJUJ1,1,2,2-TetrachloroethaneUJUJTolueneUJUJChlorobenzeneUJUJEthylbenzeneUJUJStyreneUJUJValee (total)UJUJUUUUUJ	4-Methyl-2-Pentanone	ŪJ	UJ	UJ
TetrachloroetheneUJUJUJ1,1,2,2-TetrachloroethaneUJUJUJ1,1,2,2-TetrachloroethaneUJUJUJTolueneUJUJUJChlorobenzeneUJUJUJEthylbenzeneUJUJUJStyreneUJUJUJXylene (total)UJUJUJUUUUUUUU	2-Hexanone	UJ	UJ	UJ
1,1,2,2-TetrachloroethaneUJUJUJTolueneUJUJUJChlorobenzeneUJUJUJEthylbenzeneUJUJUJStyreneUJUJUJXylene (total)UJUJUJUUUUUUUU	Tetrachloroethene	บม	UJ	UJ
TolueneUJUJUJTolueneUJUJUJChiorobenzeneUJUJUJEthylbenzeneUJUJUJStyreneUJUJUJXylene (total)UJUJUJChioromethaneUJUJUJ	1.1.2.2-Tetrachloroethane	 UJ	 UJ	U.1
ChlorobenzeneUJUJUJEthylbenzeneUJUJUJStyreneUJUJUJXylene (total)UJUJUJUUUUUUUU	Toluene	EU	U.J	0.0
EthylbenzeneUJUJUJStyreneUJUJUJXylene (total)UJUJUJUUUUUUUU	Chlorobenzene	U.I	U.J	11.1
Styrene UJ UJ UJ Xylene (total) UJ UJ UJ	Ethylhenzene	11.1	11.1	
Xylene (total) UJ UJ UJ Chloromethane UJ UJ UJ	Styrene	111	11.1	
Chloromethane UJ UJ UJ	Xvlene (total)	11	U.I	1.1
	Chloromethane	U.J	11	U.J
ROY F. WESTON, INC. SEMIVOLATILE ANALYSES - DATA VALIDATION SUMMARY

CLIENT: BAKER ENVIRONMENTAL SDG NO.: B5896

Client Sample ID: Matrix: Dilution Factor: Units:	35-FS02-BC01 SOIL 1.0 UG/KG	36-FS03-BC01 SOIL 1.0 UG/KG	36FS03-BC02 SOIL 1.0 UG/KG	
Phonol			111	
his/2-Chloroethy/lether		00	00	
	00	00	03	
	00	00	03	
1.4-Dichlorobenzene	00	00	00	
	00	00	00	
2–Methylphenol		111	00	
2 2'-oxybis(1-Chloropropage)		00	00	
4-Methylphenol	111	111	111	
N-Nitroso-di-n-propylamine		1.1	00	
Hexachloroethane		111	00	
Nitrobenzene	111		111	
Isophorope		00	00	
	111	00	00	
2 4-Dimethylphenol	11	00	00	
his(2-Chloroethoxy)methane		111	111	
2 4-Dichlorophenol		05	00	
124-Trichbrohenzene	11	00	00	
Nanhthalene	00	11	00	
	00	00	00	
Hevechlorobutediene	111	00	00	
A-Chloro-3-methylphenol		00	00	
2-Methylpaphthalopo	00	00	00	
Hevachlorocyclonentadiene	11	05	00	
246-Trichbronhenol	00	05		
2,45-Trichbronhenol	00	111	00	
2–Chloronanhthalene		111	0.5	
		00		
2 – Miloannine Dimethylobthalate				
Acenanhthylene	00	00	05	
26-Dinitrotoluono		00		
3-Nitroaniline	111	00	00	
Aconanhthono			00	

ROY F. WESTON, INC. SEMIVOLATILE ANALYSES - DATA VALIDATION SUMMARY

CLIENT: BAKER ENVIRONMENTAL SDG NO.: B5896

Client Sample ID:	35-FS02-BC01	36-FS03-BC01	36-FS03-BC02	
Matrix:	SOIL	SOIL	SOIL	
Dilution Factor:	1.0	1.0	1.0	
Units:	UG/KG	UG/KG	UG/KG	
2,4-Dinitrophenol	UJ	UJ	UJ	
Dibenzofuran	UJ	UJ	UJ	
4-Nitrophenol	UJ	UJ	UJ	
2,4-Dinitrotoluene	UJ	UJ	UJ	
Diethylphthalate	UJ	UJ	UJ	
Fluorene	UJ	UJ	UJ	
4-Chlorophenyl-phenylether	UJ	UJ	UJ	
4-Nitroaniline	UJ	UJ	UJ	
4,6-Dinitro-2-methylphenol	UJ	UJ	UJ	
N-Nitrosodiphenylamine	UJ	UJ	UJ	
4-Bromophenyl-phenylether	UJ	UJ	UJ	
Hexachlorobenzene	UJ	UJ	UJ	
Pentachlorophenol	UJ	UJ	UJ	
Phenanthrene	UJ	UJ	UJ	
Anthracene	UJ	UJ	UJ	
Carbazole	UJ	UJ	UJ	
Di-n-butylphthalate	UJ	UJ	UJ	
Fluoranthene	UJ	UJ	UJ	
Pyrene	UJ	UJ	UJ	
Butylbenzylphthalate	UJ	UJ	UJ	
Benzo(a)anthracene	UJ	UJ	UJ	
3,3-Dichlorobenzidine	UJ	UJ	UJ	
Chrysene	UJ	UJ	UJ	
bis(2-Ethylhexyl)phthalate	UJ	UJ	UJ	
Di-n-octylphthalate	UJ	UJ	UJ	
Benzo(b)fluoranthene	UJ	UJ	UJ	
Benzo(k)fluoranthene	UJ	UJ	UJ	
Benzo(a)pyrene	UJ	UJ	UJ	
Indeno(1,2,3-cd)pyrene	UJ	UJ	UJ	
Dibenz(a,h)anthracene	UJ	UJ	UJ	
Benzo(g,h,i)perylene	UJ	UJ	UJ	

ROY F. WESTON, INC. PESTICIDE/PCB ANALYSES - DATA VALIDATION SUMMARY

CLIENT: BAKER ENVIRONMENTAL SDG NO.: B5896

.

••••			······································
Client Sample ID:	36-FS02-BC01	36-FS03-BC01	36-FS03-BC02
Matrix:	SOIL	SOIL	SOIL
Dilution Factor:	1.0	1.0	1.0
Units:	UG/KG	UG/KG	UG/KG
COMPOUND			
alpha-BHC	UJ	UJ	UJ
beta-BHC	8.9 J	8.4 J	6.8 J
delta-BHC	UJ	UJ	UJ
gamma-BHC(Lindane)	3.6 J	2.1 J	UJ
Heptachlor	2.6 J	UJ	UJ
Aldrin	UJ	2.3 J	UJ
Heptachlor Epoxide	UJ	UJ	UJ
Endosulfan I	UJ	UJ	UJ
Dieldrin	9.4 J	6.0 J	8.8 J
4,4'-DDE	101 J	42 J	48 J
Endrin	IJ	UJ	UJ
Endosulfan II	UJ	UJ	UJ
4,4'-DDD	49 J	19 J	33 J
Endosulfan Sulfate	UJ	UJ	UJ
4,4'-DDT	2.5 J	UJ	ŰĴ
Methoxychlor	UJ	UJ	UĴ
Endrin Ketone	UJ	UJ	UJ
Endrin Aldehyde	UJ	ŪJ	ŬĴ
alpha-Chlordane	3.7 J	3.6 J	UJ
gamma-Chlordane	UJ	UJ	UJ
Toxaphene	UJ	UJ	UJ
Aroclor 1016	UJ	LU	UJ
Aroclor 1221	UJ	ŬĴ	ŬĴ
Aroclor 1232	UJ	U.J	IJJ
Aroclor 1242	ŪJ	UJ	ŰĴ
Aroclor 1248	ŰĴ	UJ	UJ
Aroclor 1254	UJ	UJ	Ū.I
Aroclor 1260	ŪJ	ŪĴ	ŬĴ

.

Roy F. Weston, Inc. 1 Weston Way West Chester, Pennsylvania 19380-1499 610-701-3000 • Fax 610-701-3186

INORGANIC QUALITY ASSURANCE REVIEW BAKER ENVIRONMENTAL, INC. SITE: MCB CAMP LEJEUNE SDG NO.: BA5896

REVIEW PERFORMED BY THE ANALYTICS DIVISION OF ROY F. WESTON, INC.

VERIFIED BY:

Zohreh Hamid, Ph.D. Section Manager - Data Validation

8-27-94 Date

BAKER ENVIRONMENTAL, INC. - NAVY CLEAN SITE: MCB CAMP LEJEUNE **SDG No.: BA5896**

CASE SUMMARY

This data validation review consists of three (3) soil samples received on 05-11-94. Laboratory analyses were performed by NDRC Laboratories, Inchscape Testing Services for TAL metals.

All data have been validated with regard to usability according to the quality assurance set forth in Inorganic Functional Guidelines and Naval Energy and Environmental Support Activity (NEESA). If you have any questions or comments on this data review, please contact Zohreh Hamid at (610) 701-3745.

The following samples are contained within this report:

FS0301 FS0302 FS0201

OUALITY ASSURANCE REVIEW

The findings offered in this report are based upon a rigorous review of the following criteria.

- Holding Time ۲
- Calibration
 - Contract Required Detection Limit Samples
 - Blank Samples
 - Interference Check Samples
 - Matrix Spike
- Duplicate Digestion Samples Laboratory Control Sample
 - - Serial Dilution Sample
 - Graphite Furnace Analysis
 - Quarterly Verification of Instrument Parameters
- Sample Result Verification *
- Preparation Logs *
 - Run Logs

*

- Data Package Completeness
- All criteria were met; therefore, a narrative section is not provided for this * classification.

Page 2

HOLDING TIME

The analysis holding time for mercury in all samples (FS0201, FS0301, and FS0302) and the corresponding QC samples exceeded the requirement limit. The reported sample data are qualified estimated.

CONTRACT REQUIRED DETECTION LIMIT SAMPLE ANALYSES

The CRDL recovery for Sb (133.6%/146.9%) by ICP were above the upper data validation requirement limits of 120%. All sample results are non-detected values. No qualification is required.

BLANK ANALYSES

The laboratory blanks had the following contaminations at levels above the IDLs, but below the CRDLs.

ANALYTE	CONC. MG/KG	ACTION LEVEL MG/KG *
Al	2.71	14
Sb	4.897	25
Ba	0.157	0.8
Cd	0.014	0.07
Cu	0.807	4
Fe	3.803	19
Mg	5.897	30
Ni	1.687	9

* Action level = 5X the blank concentration.

The reported sample results and the field QC blanks up to the action limits are qualified "U" for these analytes due to the laboratory blank contamination.

Page 3

Mercury was detected in the initial, continuing, and preparation blanks at levels above the CRDL. The reported sample results up to 10X the blank contamination level are rejected. The reported sample results above 10X the blank levels are accepted unqualified.

INTERFERENCE CHECK SAMPLES

The percent recoveries for the TAL analytes analyzed by ICP were within the control limits.

Calcium was not included in ICS A standard solution. The ICP interference could not be evaluated; therefore, the reported sample data for Ca are qualified estimated.

MATRIX SPIKE SAMPLE ANALYSIS

The matrix spike recoveries for As (45.0%), Se (62.8%), and Tl (52.2%) were below the requirement limit of 75\%. The reported positive sample results and non-detected values are qualified estimated. The reported sample data are biased low.

The matrix spike recovery for Hg (139.0%) was above the requirement limit of 125%. The reported positive sample results are qualified estimated. The reported sample data are biased high.

SERIAL DILUTION ANALYSIS

The serial dilution percent difference for Mg (298.5%) was above the requirement limit of 10%. The reported positive sample results are qualified estimated.

GRAPHITE FURNACE ANALYSIS

The following samples analyzed by graphite furnace had the analytical spike recoveries outside the control limits of 85-115%:

SAMPLE ID	ANALYTE	<u>% RECOVERY</u>
FS0201	As/Pb/Se/Tl	58.5/78.5/81.0/50.5
FS0301	As/Pb/Se/Tl	48.5/77.0/61.0/59.0
FS0302	As/Pb/Tl	62.5/78.0/57.0

Page 4

* Only the positive results are qualified estimated.

The reported data are qualified estimated.

SUMMARY

The data package completeness is fair. The reported sample results for Hg were rejected due to the high level of blank contaminations. The percent solid was below the 30% for all samples. The reported detection limits are elevated. Also, the percent soil could not be verified, since the raw data are not included in the data package.

The minor issues have been discussed. The results are considered representative with the applied qualifier codes.

INFORMATION REGARDING DATA

The data have been reviewed according to the USEPA National Functional Guidelines for Inorganic Data Review. All data are validated with regard to usability.

If you have any questions or comments on this data review, please call Zohreh Hamid at (215) 344-3745.

ATTACHMENTS

- 1. Attachment I Glossary of Data Qualifier Codes
- 2. Attachment II Sample Result Summary. This includes:
 - a) A summary of all positive results for the target analytes with the qualifier codes, if applicable;
 - b) All qualified and usable detection limits.
- 3. Attachment III Sample data (Form I) verified by the laboratory.

ATTACHMENT I GLOSSARY OF DATA QUALIFIER CODES

GLOSSARY OF DATA QUALIFIERS

CODES RELATING TO IDENTIFICATION

(confidence concerning presence or absence of compounds):

- U = NOT DETECTED SUBSTANTIALLY ABOVE THE LEVEL REPORTED IN LABORATORY OR FIELD BLANKS.
- **R** = UNRELIABLE RESULT. ANALYTE MAY OR MAY NOT BE PRESENT IN THE SAMPLE. SUPPORTING DATA NECESSARY TO CONFIRM RESULT.
- N = NEGATED COMPOUND WAS CONSIDERED AS NOT PRESENT IN THE SAMPLE.

(NO CODE) = CONFIRMED IDENTIFICATION

CODES RELATING TO QUANTITATION

(can be used for both positive results and sample quantitation limits):

- J = ANALYTE PRESENT. REPORTED VALUE MAY NOT BE ACCURATE OR PRECISE.
- **UJ** = THE REPORTED QUANTITATION LIMITS ARE QUALIFIED ESTIMATED.

OTHER CODES

 \mathbf{Q} = NO ANALYTICAL RESULT.

ATTACHMENT II SAMPLE RESULT SUMMARY

.

ROY F. WESTON, INC. INORGANIC ANALYSES - DATA VALIDATION SUMMARY

CLIENT: BAKER ENVIRONMENTAL, INC. SDG NO.: BA5896

Client Sam %	nple ID: Matrix: Solids: Units:		FS0201 SOIL 19.2 MG/KG	FS0301 SOIL 20.1 MG/KG	FS0302 SOIL 19.2 MG/KG	
INORGANIC EL	EMENTS					
		IDL (ug/L)				
Aluminium	Р	20	19.3	11.7 U		
Antimony	Р	46				
Arsenic	F	1.2	UJ	1.4 J	UJ	
Barium	Р	1.0	0.73 U	0.71 U		
Beryllium	Р	1.0				
Cadmium	F	0.2	0.80	0.16	0.07 U	
Calcium	Р	1700	1970 J	2170 J	1740 J	
Chromium	Р	7.0				
Cobalt	Р	11	6.9			
Copper	Р	2.0	26.3	27.5	22.3	
Iron	Р	13	39.9	40.2	20.4	
Lead	F	0.6	0.61 J	0,58 J	0.51 J	
Magnesium	Р	13	1550 J	1500 J	1500 J	
Manganese	P	2	1.4 U	1.6 U	1.7	
Mercury	AV	0.1	1.3 R	0.90 R	0.90 R	
Nickel	P	11				
Potassium	P	2440	13500	13000	14400	
Selenium	F	1.4	0.80 J	0.72 J	UJ	
Silver	F	0.2				
Sodium	P	2370	15300	14200	14900	
Thallium	F	06	UJ	IJ	UJ	
Vanadium	, P	0.5	50			
Zinc	P	11	104	130	93.8	

Roy F. Weston, Inc. 1 Weston Way West Chester, Pennsylvania 19380-1499 8 610-701-3000 • Fax 610-701-3186

ORGANIC QUALITY ASSURANCE REVIEW BAKER ENVIRONMENTAL, INC. - NAVY CLEAN SITE: MCB CAMP LEJEUNE SDG NO.: B8035

REVIEW PERFORMED BY THE ANALYTICS DIVISION OF ROY F. WESTON, INC.

sotte. PREPARED BY:

Kelly Muir Spittler Unit Leader - Data Validation

<u>08-31-94</u> Date

VERIFIED BY: a

 $\frac{g-3/-g}{\text{Date}}$

Zohreh Hamid, Ph.D. Section Manager - Data Validation

BAKER ENVIRONMENTAL, INC. - NAVY CLEAN SITE: MCB CAMP LEJEUNE SDG No.: B8035

INTRODUCTION

This quality assurance review is based upon a review of all data generated from two water samples and one trip blank collected on 07-28-94. The samples were analyzed according to criteria set forth in the contract laboratory program (CLP) for TCL Volatile, Semivolatile and Pesticide/PCB target compounds by NDRC Laboratories, Inchscape Testing Services.

This review has been performed in accordance with the confirmation method. The reported analytical results are presented as a summary of the data in Attachment II. All of the analytical data were examined to determine the usability of the analytical results and also to determine contractual compliance relative to the analytical requirements and deliverables specified in the CLP method and Sampling and Chemical Analysis Quality Assurance requirements for the Navy Installation Restoration Program (NEESA 20.2-047B). The applicable qualifier codes have been placed next to the results in the data summary to indicate the qualitative and/or quantitative reliability. The details of this evaluation review are presented in the narrative section of this report.

All data have been validated with regard to usability according to the quality assurance set forth in USEPA Laboratory Data Validation Functional Guidelines for Evaluating Organics Analyses. If you have any questions or comments on this data review, please call Zohreh Hamid or Kelly Spittler at (610) 701-3745.

QUALITY ASSURANCE REVIEW

The findings offered in this report are based upon a review of the following criteria:

- Data Completeness
- Holding Time
 - GC/MS Tuning
 - Calibration
 - Blanks
 - Surrogate Recoveries
 - Matrix Spike/Spike Duplicate
 - Laboratory Control Sample
 - Internal Standard
- Instrument Performance
 - Field Duplicate Results
- * Compound Identification
- * Compound Quantitation
- * All criteria were met; therefore, a narrative section is not provided for this classification.

Baker Environmental SDG No.: B8035

Page 2

CALIBRATION

Volatiles and Semivolatiles

The following %D results in the continuing calibrations exceeded the 25% QC limit. These calibrations are considered acceptable since less than two (VOA) or four (BNA) check (*) compounds had %Ds outside the criteria. Positive results were not detected for these compounds; therefore, all associated non-detected values for the compounds listed below are qualified as estimated and flagged "UJ". All RRFs were above 0.05; therefore, no qualification is required on this basis.

CALIBRATION	INSTRUMENT ID	COMPOUND	<u>%RSD/%D</u>
CC 08-04-94	HP4.i	Chloromethane	32.9
CC 08-12-94	HP1.i	4-Nitrophenol	43.3
		3.3-Dichorobenzidine	57.3

Pesticide/PCBs

The percent resolutions for endosulfan I (45.2%) and gamma-chlordane (57.5%) were below the 60% QC limit. All associated positive results are qualified estimated.

BLANKS

Pesticide/PCBs

The following method blank contained several target compounds at levels below the CRQLs. All associated positive results less than 5X the blank levels are considered laboratory artifacts. Results \langle CRQL are elevated to the CRQL and are flagged "U", while results \rangle CRQL, but less than 5X the blank are also flagged "U".

BLANK	COMPOUND	LEVEL
Method Blank (PBLK)	Beta-BHC	0.013 ug/L
	Aldrin	0.012 ug/L

Baker Environmental SDG No.: B8035

Page 3

SURROGATE RECOVERIES

Pesticide/PCBs

All surrogate recoveries were within the requirement limits, except for the following:

<u>SAMPLE NO.</u>	<u>RECOVERY</u> SPB608/DB1701	<u>SURROGATE</u> <u>COMPOUND</u>	REASON
35-SWPD02	36/33	DCB	Advisory Criteria 60-150%
35-SWPD01	58/- 47/48	TCX DCB	Advisory Criteria 60-150% Advisory Criteria 60-150%
PLCS	-/55	DCB	Advisory Criteria 60-150%

DCB = Decachlorobiphenyl

TCX = Tetrachloro-m-xylene

Since the requirement limits are advisory and there is no qualification criteria established in Functional Guidelines or NEESA for surrogate outliers in the pesticide/PCB fraction, no action is taken.

MATRIX SPIKE/MATRIX SPIKE DUPLICATE

As per the laboratory case narrative, MS/MSD samples are not included with this batch of samples, since no sample was specified for quality control in this SDG. No qualification is applied due to the lack of these QC samples.

LABORATORY CONTROL SAMPLE

An LCS analysis was performed in order to fulfill the blank spike analysis requirements as established in the NEESA guidelines.

Semivolatiles

The percent recovery for 4-nitrophenol (112.4%) was above the QC limits of 40-80%. Since this compound was not detected in the samples, no action is required.

Baker Environmental SDG No.: B8035

Page 4

INTERNAL STANDARD

Semivolatiles

The following internal standard areas were outside the control limits in the sample analyses:

SAMPLE	INTERNAL STANDARD	<u>AREA</u>	CONTROL LIMITS
SBLKA	Perylene-d ₁₂	0	314316-1256546
SLCS	Perylene-d ₁₂	0	314316-1256546
RWMS	Perylene-d ₁₂	6478	314316-1256546
RWMSD	Perylene-d ₁₂	0	314316-1256546

Since the samples in this batch met the internal standard area criteria and the MS/MSD listed above were not from this SDG, no qualification is applied due to these outliers.

FIELD DUPLICATE RESULTS

A field duplicate analysis was not provided for this batch of samples. No qualification is required due to the lack of this QC sample.

INFORMATION REGARDING DATA

The data have been reviewed according to the USEPA National Functional Guidelines for Organic Data Review. All data are validated with regard to usability.

If you have any questions or comments on this data review, please call Kelly Spittler or Zohreh Hamid at (215) 344-3745.

ATTACHMENTS

- 1. Attachment I Glossary of Data Qualifier Codes
- 2. Attachment II Sample Result Summary. This includes:
 - a) A summary of all positive results for the target analytes with the qualifier codes, if applicable;
 - b) All qualified and usable detection limits.
- 3. Attachment III Sample data (Form I) verified by the laboratory.

ATTACHMENT I GLOSSARY OF DATA QUALIFIER CODES

:<u>.</u>...

GLOSSARY OF DATA QUALIFIERS

CODES RELATING TO IDENTIFICATION

(confidence concerning presence or absence of compounds):

- U = NOT DETECTED SUBSTANTIALLY ABOVE THE LEVEL REPORTED IN LABORATORY OR FIELD BLANKS. [Substantially is equivalent to a result less than 10 times the blank level for common contaminants (methylene chloride, acetone and 2-butanone in the VOA analyses, and common phthalates in the BNA analyses, along with tentatively identified compounds) or less than 5 times the blank level for other target compounds.]
- **R** = UNUSABLE RESULT. THE PRESENCE OR ABSENCE OF THIS ANALYTE CANNOT BE VERIFIED. SUPPORTING DATA NECESSARY TO CONFIRM RESULT.
- **N** = NEGATED COMPOUND. THERE IS PRESUMPTIVE EVIDENCE TO MAKE A TENTATIVE IDENTIFICATION.

CODES RELATING TO QUANTITATION

(can be used for both positive results and sample quantitation limits):

- J = ANALYTE WAS POSITIVELY IDENTIFIED. REPORTED VALUE MAY NOT BE ACCURATE OR PRECISE.
- UJ = ANALYTE WAS NOT DETECTED ABOVE THE CRQL. THE REPORTED QUANTITATION LIMIT IS QUALIFIED ESTIMATED.

OTHER CODES

 \mathbf{Q} = NO ANALYTICAL RESULT.

ATTACHMENT II SAMPLE RESULT SUMMARY

ROY F. WESTON, INC. VOLATILE ANALYSES – DATA VALIDATION SUMMARY

CLIENT: BAKER ENVIRONMENTAL, INC. SDG NO.: B8035

Client Sample ID; Matrix: Dilution Factor: Units:	35SWPD01 WATER 1.0 UG/L	35–SWPD02 WATER 1.0 UG/L	35–TB–100 WATER 1.0 UG/L		
COMPOUND					
Bromomethane Vinyl Chloride Chloroethane Methylene Chloride Acetone Carbon Disulfide 1,1 – Dichloroethene 1,2 – Dichloroethane 1,2 – Dichloroethane 2 – Butanone					
1,1,1-Trichloroethane Carbon Tetrachloride Bromodichloromethane					
1,2-Dichloropropane cis-1,3-Dichloropropene Trichloroethene					
Dibromochloromethane 1,1,2-Trichloroethane Benzene					
Trans-1,3-Dichloropropene Bromoform 4-Methyl-2-Pentanone					
2-Hexanone Tetrachloroethene 1.1.2.2-Tetrachloroethane					
Toluene Chlorobenzene Ethylhenzene					
Styrene Xylene (total)					
Chloromethane	UJ	UJ	UJ		

ROY F. WESTON, INC. SEMIVOLATILE ANALYSES - DATA VALIDATION SUMMARY

CLIENT: BAKER ENVIRONMENTAL SDG NO.: B8035

ð.

Client Sample ID: Matrix: Dilution Factor: Units:	35SWPD01 WATER 1.0 ug/L	35SWPD02 WATER 1.0 ug/L	
Phenol bis (2-Chloroethyl) ether 2-Chlorophenol 1,3-Dichlorobenzene 1,4-Dichlorobenzene 2-Methylphenol 2,2'-oxybis (1-Chloropropane) 4-Methylphenol N-Nitroso-di-n-propylamine Hexachloroethane Nitrobenzene Isophorone 2-Nitrophenol 2,4-Dimethylphenol bis (2-Chloroethoxy) methane 2,4-Dichlorophenol 1,2,4-Trichlorobenzene Naphthalene 4-Chloro-3-methylphenol 2-Methylnaphthalene Hexachlorocyclopentadiene 2,4,6-Trichlorophenol 2,4,5-Trichlorophenol 2,4,5-Trichlorophenol 2,4,5-Trichlorophenol 2,6-Dinitrotoluene 3-Nitroaniline			

١

ROY F. WESTON, INC. SEMIVOLATILE ANALYSES - DATA VALIDATION SUMMARY

CLIENT: BAKER ENVIRONMENTAL SDG NO.: B8035

Client Sample ID: Matrix: Dilution Factor: Units:	35SWPD01 WATER 1.0 ug/L	35SWPD02 WATER 1.0 ug/L	
2,4-Dinitiophenol			
4-Nitrophenol	UJ	UJ	
Dibenzofuran			
2,4-Dinitrotoluene			
Diethylphthalate			
4–Chlorophenyl–phenylether			
Fluorene			
4 – Nitroaniline			
4,6-Dinitro-2-methylphenol			
N-Nitrosodiphenylamine			
4-Bromophenyl-phenylether			
Hexachlorobenzene			
Pentachlorophenol			
Phenanthrene			
Anthracene			
Carbazole			
Di-n-butvlphthalate			
Fluoranthene			
Pyrene			
Butvibenzviphthalate			
Benzo(a)anthracene			
3 3-Dichlorobenzidine	UJ	U.I	
Chrysene			
his (2-Ethylheyyl) nbthalate			
Di_n_octylobtbalate			
Bonzo(b)fluoranthono			
Benzo(b)iluorantilerie			
Benzo (k) nuoranniene			
Dihana (a, 2,3-ca) pyrene			
Benzo(g,n,i)perviene			

.

ROY F. WESTON, INC. PESTICIDE/PCB ANALYSES -- DATA VALIDATION SUMMARY

CLIENT:BAKER ENVIRONMENTAL SDG NO.: B8035

Client Sample ID: Matrix	35-SWPD01 WATER	35-SWPD02 WATER	
Dilution Factor:	10	10	
	1.0		
Offics:	UG/L	UG/L	
COMPOUND			
alpha-BHC	0.012 J	0.037 J	
beta-BHC			
delta-BHC			
gamma-BHC(Lindane)			
Heptachlor			
Aldrin	0.05 U		
Heptachlor Epoxide			
Endosulfan I			
Dieldrin	0.027 J	0.019 J	
4.4'-DDE	0.049 J		
Endrin			
Endosulfan II			
4,4'-DDD			
Endosulfan Sulfate	0.047 J		
4.4'-DDT			
Methoxychlor	0.05 J	0.028 J	
Endrin Ketone			
Endrin Aldehvde	0.08 J		
alpha-Chlordane			
gamma-Chlordane		0.068 J	
Toxaphene			
Aroclor 1016			
Aroclor 1221			
Aroclor 1232			
Aroclor 1242			
Araclar 1248			
Aroclor 1254			
Aroclor 1260			

Roy F. Weston, Inc. 1 Weston Way West Chester, Pennsylvania 19380-1499 © 610-701-3000 • Fax 610-701-3186

INORGANIC QUALITY ASSURANCE REVIEW BAKER ENVIRONMENTAL, INC. SITE: MCB CAMP LEJEUNE SDG NO.: BA8035

REVIEW PERFORMED BY THE ANALYTICS DIVISION OF ROY F. WESTON, INC.

VERIFIED BY:

Zeha Zohreh Hamid, Ph.D.

Section Manager - Data Validation

9-1-94

Date

Ð

BAKER ENVIRONMENTAL, INC. - NAVY CLEAN SITE: MCB CAMP LEJEUNE SDG No.: BA8035

CASE SUMMARY

This data validation review consists of three (3) water samples received on 07-29-94. Laboratory analyses were performed by NDRC Laboratories, Inchcape Testing Services for Target Analyte List (TAL).

All data have been validated with regard to usability according to the quality assurance guidelines set forth in Inorganic Functional Guidelines and Naval Energy and Environmental Support Activity (NEESA). If you have any questions or comments on this data review, please contact Zohreh Hamid at (610) 701-3745.

The following samples are contained within this report:

35PD01 35PD02 A47CWW

QUALITY ASSURANCE REVIEW

The findings offered in this report are based upon a rigorous review of the following criteria. No major problems were encountered during the sample analyses. The minor deficiencies are summarized under each parameter:

- * Holding Times
- Calibration
 - Contract Required Detection Limit Samples
 - Blank Samples
- * Interference Check Samples
 - Matrix Spike
 - Duplicate Digestion Samples
 - Laboratory Control Sample
- * Serial Dilution Sample
 - Graphite Furnace Analysis
- Quarterly Verification of Instrument Parameters
- Sample Result Verification
- * Preparation Logs
- Run Logs
 - Data Package Completeness

* All criteria were met for this classification.

Page 2

CONTRACT REQUIRED DETECTION LIMIT SAMPLE ANALYSES

The CRDL recoveries for Pb (130%), Sb (72.8%), Cr (65.4%), and Cu (127.5%) were outside the data validation requirement limits of 80-120\%. The positive results greater than the IDLs but less than 3X the CRDLs for these analytes should be qualified estimated due to the uncertainty near the detection limits. The non-detected values for antimony and chromium are also qualified estimated.

The results for copper are qualified "U" due to the blank contamination. An additional qualifier code was not applied.

BLANK ANALYSES

ANALYTE	CONC. UG/L	ACTION LEVEL UG/L *		
Aluminum	22.23	111.15		
Barium	1.0	5		
Cobalt	11.267	56		
Copper	3.8	19		
Mercury	0.1	0.5		

The laboratory blank had the following contaminations at levels above the IDLs, but below the CRDLs:

* Action level = 5X the blank concentration

Aluminum and barium were detected in the samples at levels above the action levels and mercury was not detected in the samples. Therefore, the data are not impacted for these two analytes.

The continuing calibration blank had silver at a level above the CRDL. The data are not impacted, since this analyte was not detected in the samples.

MATRIX SPIKE

The matrix spike recovery for Se (74.5%) was outside the control limits of 75-125%. The sample results are not flagged with an "N" as required by CLP. The reported sample data for selenium are considered biased low and are qualified estimated.

Page 3

DUPLICATE DIGESTION SAMPLES

The RPDs for all analytes in the laboratory duplicate sample analysis were within the control limits. The field duplicate was not identified for this batch.

SERIAL DILUTION SAMPLE

The %D for Al (10.3%) was above the analysis requirement. However, the %D was within the data validation control limit of 15%. Therefore, the data are not qualified based on this outlier.

GRAPHITE FURNACE ANALYSIS

The following samples analyzed by graphite furnace had the analytical spike recoveries outside the control limits of 85-115%:

SAMPLE ID	ANALYTE	%RECOVERY
35PD01	Cd	162*
35PD02	Cd	115.5*
A47CWW	As/Cd/Se/T1	81/148*/44.7/152.6

* Only the positive results are qualified estimated.

The reported data are qualified estimated.

The linearity did not meet the requirement of " $r \ge 0.995$ " in the calibration standard analyzed for cadmium. The affected sample (35PD02) was qualified estimated.

SUMMARY

The data package and quality of the data were satisfactory. Major problems were not encountered during the analyses. The minor issues have been discussed. The reported sample data are accepted with the applied qualifier codes.

INFORMATION REGARDING DATA

The data have been reviewed according to the USEPA National Functional Guidelines for Inorganic Data Review. All data are validated with regard to usability.

If you have any questions or comments on this data review, please call Zohreh Hamid at (215) 344-3745.

ATTACHMENTS

- 1. Attachment I Glossary of Data Qualifier Codes
- 2. Attachment II Sample Result Summary. This includes:
 - a) A summary of all positive results for the target analytes with the qualifier codes, if applicable;
 - b) All qualified and usable detection limits.
- 3. Attachment III Sample data (Form I) verified by the laboratory.

ATTACHMENT I GLOSSARY OF DATA QUALIFIER CODES

GLOSSARY OF DATA QUALIFIERS

CODES RELATING TO IDENTIFICATION

(confidence concerning presence or absence of compounds):

- U = NOT DETECTED SUBSTANTIALLY ABOVE THE LEVEL REPORTED IN LABORATORY OR FIELD BLANKS.
- **R** = UNRELIABLE RESULT. ANALYTE MAY OR MAY NOT BE PRESENT IN THE SAMPLE. SUPPORTING DATA NECESSARY TO CONFIRM RESULT.
- N = NEGATED COMPOUND WAS CONSIDERED AS NOT PRESENT IN THE SAMPLE.

(NO CODE) = CONFIRMED IDENTIFICATION

CODES RELATING TO QUANTITATION

(can be used for both positive results and sample quantitation limits):

- **J** = ANALYTE PRESENT. REPORTED VALUE MAY NOT BE ACCURATE OR PRECISE.
- **UJ** = THE REPORTED QUANTITATION LIMITS ARE QUALIFIED ESTIMATED.

OTHER CODES

 \mathbf{Q} = NO ANALYTICAL RESULT.

WLSTERN.

ATTACHMENT II SAMPLE RESULT SUMMARY

ROY F. WESTON, INC. INORGANIC ANALYSES - DATA VALIDATION SUMMARY

CLIENT: BAKER ENVIRONMENTAL SITE: MCB CAMP LEJEUNE SDG NO.: BA8035

Client Sa	mple ID:			25PD01	850000
Cherit Sal	Matrix		WATER	WATER	WATER
	tipite:				
	OTIKS.		49/L	ug/L	uy/L
INORGANIC E	EMENTS				
		IDL ug/L			
Aluminium	Р	20	8010	1310	508
Antimony	F	46	UJ	UJ	UJ
Arsenic	F	1.2	3.5 J	2.3	4.6
Barium	Р	1.0	593	11.3	18.5
Beryllium	P	1.0			
Cadmium	F	0.1	0.20 J	0.12	UJ
Calcium	Р	1700	223000	6610	22800
Chromium	Р	7	33.4 J	UJ	UJ
Cobalt	Р	11	19.7 U		
Copper	Р	2	19.9 U	6.6 U	5.5 U
Iron	Р	13	10000	2340	14200
Lead	F	1.0	16.5	1.7 J	1.6 J
Magnesium	Р	13	6130	1010	2360
Manganese	P	2.0	309	103	382
Mercury	h AV	0.1			
Nickel	Р	11			
Potassium	Р	2440	172000		
Selenium	F	1.4	UJ	UJ	UJ
Silver	Р	3.0			
Sodium	Р	2370	91400		3290
Thallium	F	0.6			
Vanadium	P	5	8.7	5.4	
Zinc	P	11	135	14.5	

P = ICP A = Flam AA F = Furnace AAAV = Automated Cold Vapor AA