04.09 -06/18/93-01518

FINAL BASIS OF DESIGN REPORT FOR THE HADNOT POINT INDUSTRIAL AREA SHALLOW AQUIFER GROUNDWATER TREATMENT SYSTEM

MARINE CORPS BASE, CAMP LEJEUNE, NORTH CAROLINA

CONTRACT TASK ORDER 0134

N62470-92-B-2255

NAVFAC Specification No. 05-92-2255

Prepared For:

DEPARTMENT OF THE NAVY ATLANTIC DIVISION NAVAL FACILITIES ENGINEERING COMMAND Norfolk, Virginia

Under the:

LANTDIV CLEAN Program A/E Contract No. N62470-89-D-4814

Prepared By:

BAKER ENVIRONMENTAL, INC. Coraopolis, Pennsylvania

JUNE 18, 1993

TABLE OF CONTENTS

 $\mathbf{t} \to \mathbf{h}$

Page

1.0	INT	RODUCTION	1-1
	1.1	Purpose of the Basis of Design Report	
	1.2	Basis of Design Report Format	1-1
2.0	SITI	E BACKGROUND INFORMATION	2-1
	2.1	Site Location	2-1
	2.2	Site Description	2-1
	2.3	Hydrology	2-4
	2.4	Nature and Extent of Contamination	2-5
3.0	LAB	ORATORY AND FIELD INVESTIGATIONS	3-1
	3.1	Bench-Scale Treatability Tests	3-3
	3.2	Aquifer Pump Test	3-8
	3.3	Pilot Test	3-9
4.0	CON	CEPTUAL DESIGN	4-1
	4.1	Groundwater Recovery and Pumping System	4-6
	4.2	Groundwater Treatment System	4-7
	4.3	Discharge to Hadnot Point STP	4-8
	4.4	Dewatered Sludge and Waste Oil Disposal	4-8

APPENDICES

- А Aquifer Characteristic Calculations and GWAP Program Data Sheets
- В
- Outline Specifications Preliminary Construction Cost Estimate Proposed Construction Schedule С
- D
- Design Calculations \mathbf{E}
- F Manufacturer's Catalog Data

LIST OF TABLES

Num	ber	Page
2-1	Summary of Contaminants of Concern Detected in the Shallow Groundwater Aquifer, January 1991	2-6
2-2	Summary of Contaminants of Concern Detected in the Shallow Groundwater Aquifer, May 1993	2-9
3-1	Federal and State Criteria for the Contaminants of Concern Identified for the Shallow Aquifer	3-2
3-2	Oil/Water Separation Bench-Scale Test Analytical Results	3-4
3-3	HPIA Groundwater Sample Characterization Analyses: Total and Dissolved Metals	3-5
3-4	Solids Settling Test: Suspended Solids Concentration as a Function of Time	3-7
3-5	Solids Settling Tests: Total Metals and TSS Concentrations	3-7
4-1	Basis of Design Information	4-3
4-2	Summary of Design Data for VOC Contaminants of Concern Detected in the Shallow Groundwater Aquifer	4-5

LIST OF FIGURES

Num	ber	Page
2-1	Location Map	2-2
2-2	Site and Shallow Groundwater Contour Map	2-3
2-3	${\bf Approximate} \ {\bf Area} \ {\bf of} \ {\bf Groundwater} \ {\bf Contamination} \ {\bf in} \ {\bf the} \ {\bf Shallow} \ {\bf Aquifer} .$	2-7
4-1	Hadnot Point Industrial Area Shallow Groundwater Treatment System Schematic	4-2

1.0 INTRODUCTION

The United States Navy, Naval Facilities Engineering Command, Atlantic Division (LANTDIV), has directed Baker Environmental, Inc. (Baker) to conduct a treatability study and remedial design for an Interim Remedial Action (IRA) for the shallow aquifer at the Hadnot Point Industrial Area (HPIA) Operable Unit Site at Marine Corps Base (MCB), Camp Lejeune in Onslow County, North Carolina. This IRA has been documented in a Final IRA Record of Decision (ROD) for the site (Baker, September 17, 1992). The Navy/Marine Corps has obtained concurrence from the State of North Carolina and the United States Environmental Protection Agency (U.S. EPA) Region IV on this IRA.

In accordance with the project tasks identified in the Final Remedial Design Project Plans for the Shallow Aquifer at the Hadnot Point Industrial Area Operable Unit (Baker, January 1993), Baker has initiated the remedial design identified in the ROD.

1.1 Purpose of the Basis of Design Report

The purpose of this Basis of Design Report is to present final design information and drawings for the project.

As noted in Section 3.2.1 of LANTDIV's A&E Guide: "This submittal allows the activity to review and concur with the A&E's interpretation of the functional and organizational requirements of the project. Concurrently, LANTNAVFACENGCOM is reviewing to assure technical features comply with the Department of Defense and Navy policies and regulations."

1.2 Basis of Design Report Format

The basis of design information presented in this document is structured to address the major components of the remedial design, and include the following elements:

- Section 2: Site Background Information
- Section 3: Laboratory and Field Investigations
- Section 4: Conceptual Design
- Appendix A: Aquifer Characteristic Calculations and GWAP Program Data Sheets
- Appendix B: Outline Specifications (The complete set of specifications are bound separately).

• Appendix C: Preliminary Construction Cost Estimate

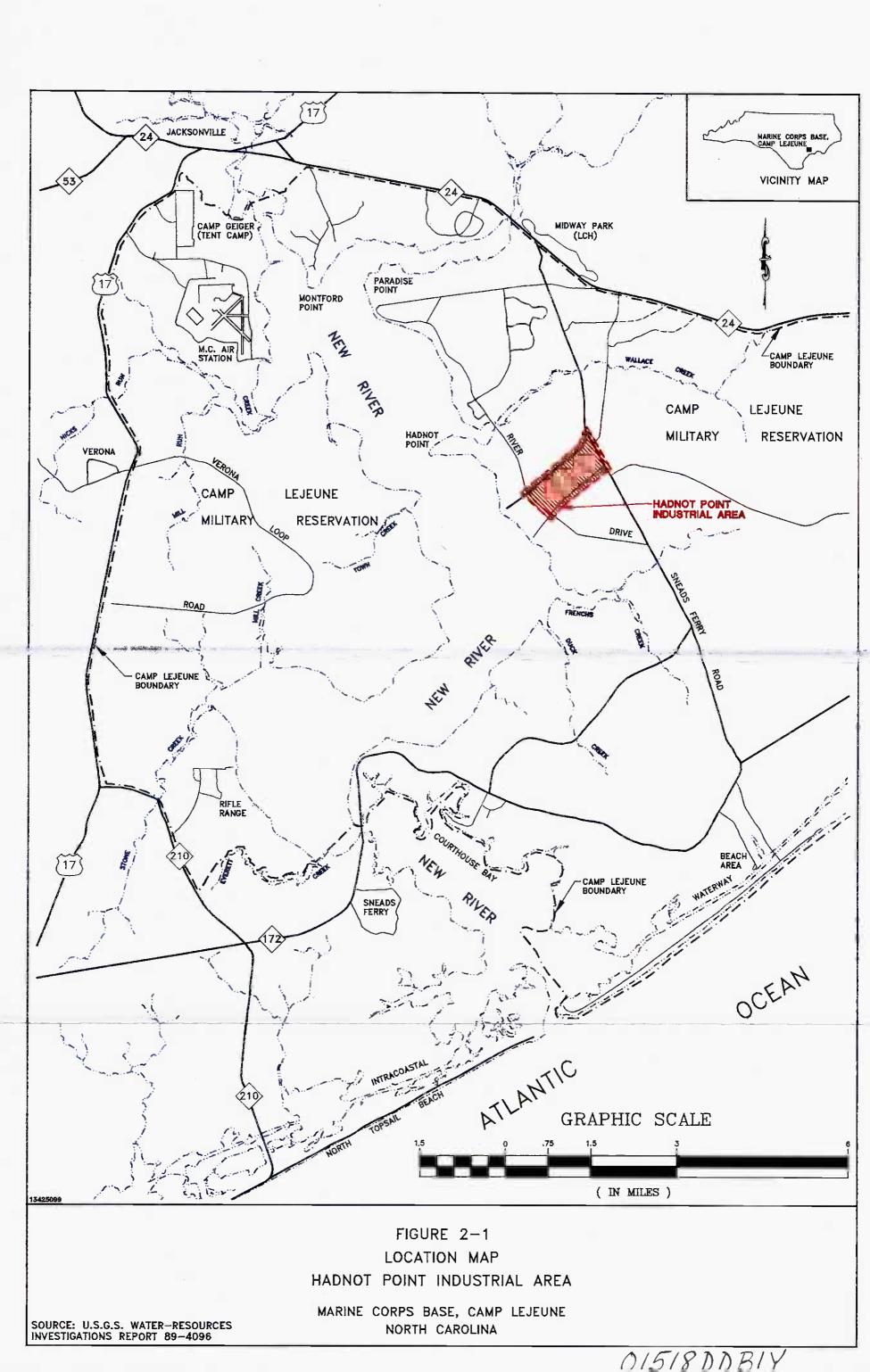
;

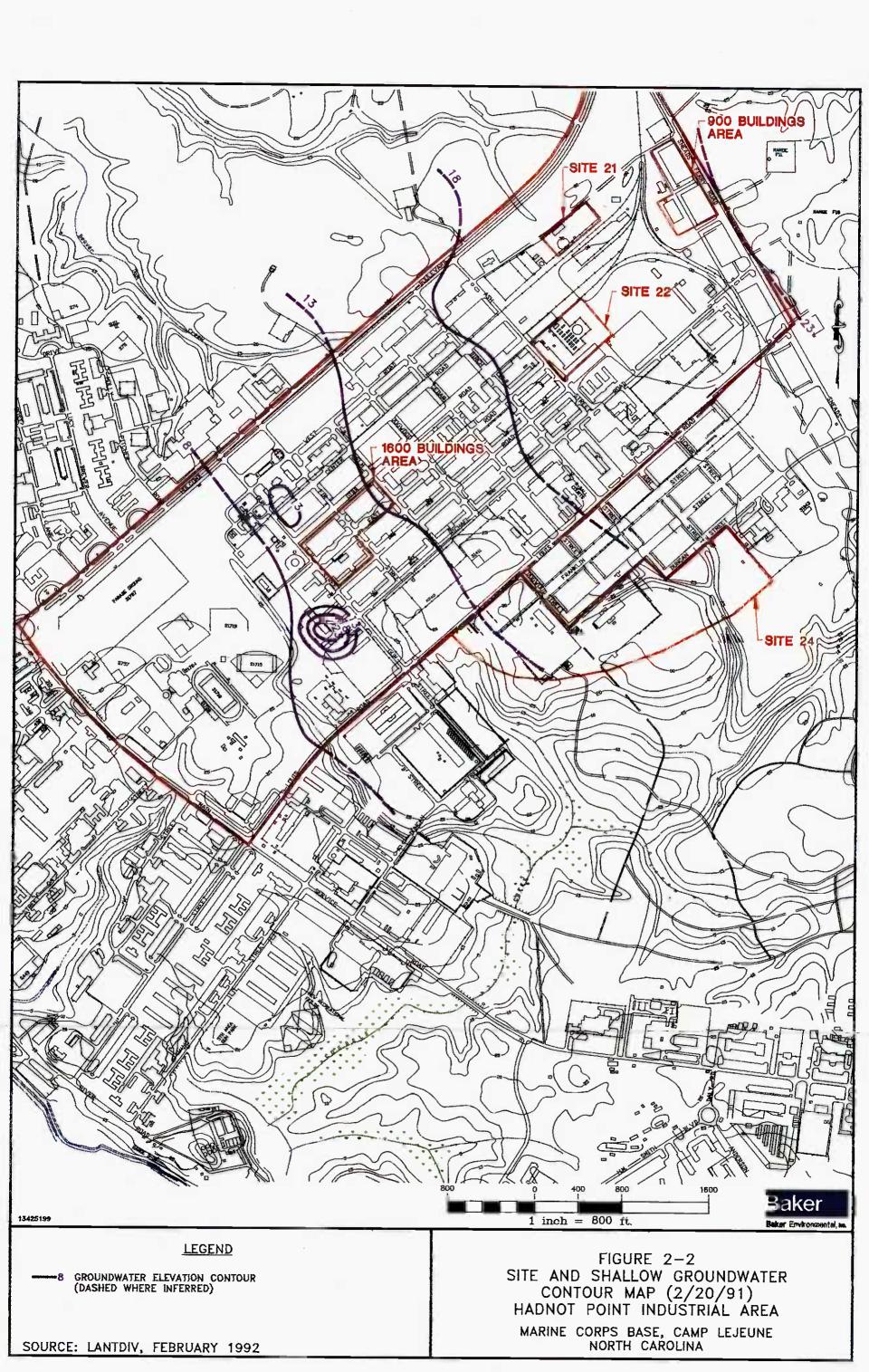
- Appendix D: Proposed Construction Schedule
- Appendix E: Design Calculations
- Appendix F: Manufacturers Catalog Data

2.0 SITE BACKGROUND INFORMATION

The following section provides site background information, and a description of the nature and extent of contamination found at the HPIA. Some of this information is based on that contained in the Interim Remedial Action Feasibility Study for the Shallow Aquifer at the Hadnot Point Industrial Area Operable Unit (Baker, April 1992).

2.1 <u>Site Location</u>


Camp Lejeune is a training base for the Marine Corps, located in Onslow County, North Carolina (see Figure 2-1). The base covers approximately 170 square miles and is bounded to the southeast by the Atlantic Ocean, to the northeast by State Road 24, and to the west by U.S. 17. The town of Jacksonville, North Carolina is north of the base.


The focus of this design is the shallow aquifer in the area of the HPIA. The HPIA is defined as Site 78 at MCB, Camp Lejeune. Site 78, along with Site 21 (Transformer Storage Yard) and Site 24 (Industrial Area Fly Ash Dump), comprise the HPIA Operable Unit at MCB, Camp Lejeune. The HPIA is bounded by Sneads Ferry Road to the north, Holcomb Boulevard to the west, Louis Road to the east, and Main Service Road to the south (see Figure 2-2 and Drawing T-1). Site 21 is also located within this boundary. Site 24 is located along Louis Road across from Site 78.

2.2 Site Description

The HPIA, constructed in the early 1940's was the first facility at MCB, Camp Lejeune. It was comprised of approximately 75 buildings and facilities including: maintenance shops, gas stations, administrative offices, commissaries, snack bars, warehouses, storage yards, and a dry cleaning facility. A steam plant and training facility occupy the southwest portion of the HPIA. A transformer storage yard (Site 21) and an industrial area fly ash dump (Site 24) are part of the overall HPIA Operable Unit. These two areas are not included in the scope of this design report but will be considered at a later time.

In addition to Sites 21 and 24, a fuel tank farm (Site 22) is located within the HPIA operable unit near the 1000 series buildings. The fuel farm is an underground storage tank site which is not being administered under CERCLA regulations. Therefore, Site 22 is not included as part of the HPIA Operable Unit.

A fuel recovery/groundwater treatment system is currently being implemented at the tank farm.

1

Several areas at the HPIA have been investigated for potential soil and groundwater contamination due to Marine operations and activities resulting in the generation of potentially hazardous wastes. The investigations indicate that contamination has resulted at HPIA due to improper waste disposal, underground storage tank leakage, solvent spills, and sludge disposal.

2.3 Hydrology

The hydrologic system at MCB, Camp Lejeune consists of an unconfined (water table) aquifer and underlying semiconfined aquifers. The unconfined aquifer extends from the water table to the first significant confining layer, approximately 25 feet below land surface (bls).

The water table within HPIA was at an elevation ranging between 8.5 feet and 25.5 feet above mean sea level during January 1991. The depth to water table ranged from 6.7 to 23.2 feet bls. This variation in water table elevation is due to variations in water recharge throughout the area. This is caused by manmade features (parking lots, buildings, drainage ditches).

Groundwater flow in the shallow aquifer is predominantly to the southwest in the southern portion of HPIA and to the west-southwest in the northern and central portions of the site. There is some groundwater mounding in the southern corner of the site. Generally, the shallow groundwater flows toward the New River. Figure 2-2 shows a potentiometric surface map of the water table aquifer constructed from water level measurements taken in shallow monitoring wells on February 20, 1991 by Environmental Science and Engineering, Inc. (ESE). Water in the lower water bearing zones trends generally in the same direction (southwest) as that in the surficial.

As determined from February 1991 potentiometric surface maps, the horizontal hydraulic gradient in the shallow aquifer is approximately 0.003 feet per foot (ft/ft). The estimated gradient for the intermediate and deep zones are approximately 0.0015 ft/ft and 0.0021 ft/ft, respectively.

2.4 Nature and Extent of Contamination

Previous studies indicate that the shallow groundwater is contaminated primarily with fuel related compounds, benzene, 1,2-dichloroethene (1,2-DCE), trichloroethene (TCE), vinyl chloride, solvents, and metals, such as antimony, arsenic, beryllium, chromium, iron, lead, manganese, mercury, and nickel. Several compounds were detected at concentrations exceeding the Federal and North Carolina drinking water standards for groundwater.

Prior to the sampling conducted during the Treatability Study Pilot Test, the most recent shallow groundwater data was collected in January 1991 by ESE. This data is similar to the results of the earlier studies with the exception that the compound concentrations from the January 1991 data were generally lower than the concentrations identified in the earlier studies. There is no apparent reason why shallow groundwater concentrations were lower in 1991. However, deep groundwater quality showed an improving trend after the potable supply wells near the HPIA were shut down in the mid-1980s. Groundwater quality in the deep portion of the aquifer may have improved since contaminants from the shallow groundwater were no longer being drawn vertically by the pumping action of the supply wells.

Based upon the results of the January 1991 sampling, the following compounds were identified as potential contaminants of concern for the shallow aquifer at the HPIA: benzene, 1,2-DCE, TCE, antimony, arsenic, beryllium, chromium, iron, lead, manganese, mercury, and nickel. Table 2-1 presents a summary of the 1991 shallow aquifer groundwater data with respect to the contaminants of concern. Oil & grease data is not included on Table 2-1 due to the fact that this analysis was not conducted on any of the 1991 samples. The maximum concentrations of benzene (7900 μ g/L) were detected in a monitoring well immediately adjacent to the fuel tank farm (Site 22). Maximum concentration of 1,2-DCE (42,000 μ g/L) was detected in the northeast corner of the site (near the 900 series buildings) and the maximum concentration of TCE (14,000 μ g/L) was detected in the southwestern portion of the site (near the 1600 series buildings), respectively. Metals concentrations were elevated throughout most of the site, especially near the fuel farm (lead).

Based on review of existing data, two major areas of contaminated groundwater (source areas) have been identified in the shallow aquifer at HPIA as shown on Figure 2-3 and Drawing T-1. The first area or plume is located northeast of Cedar Street near the 900 series buildings. The other plume is located southwest of Cedar Street near the 1600 series buildings.

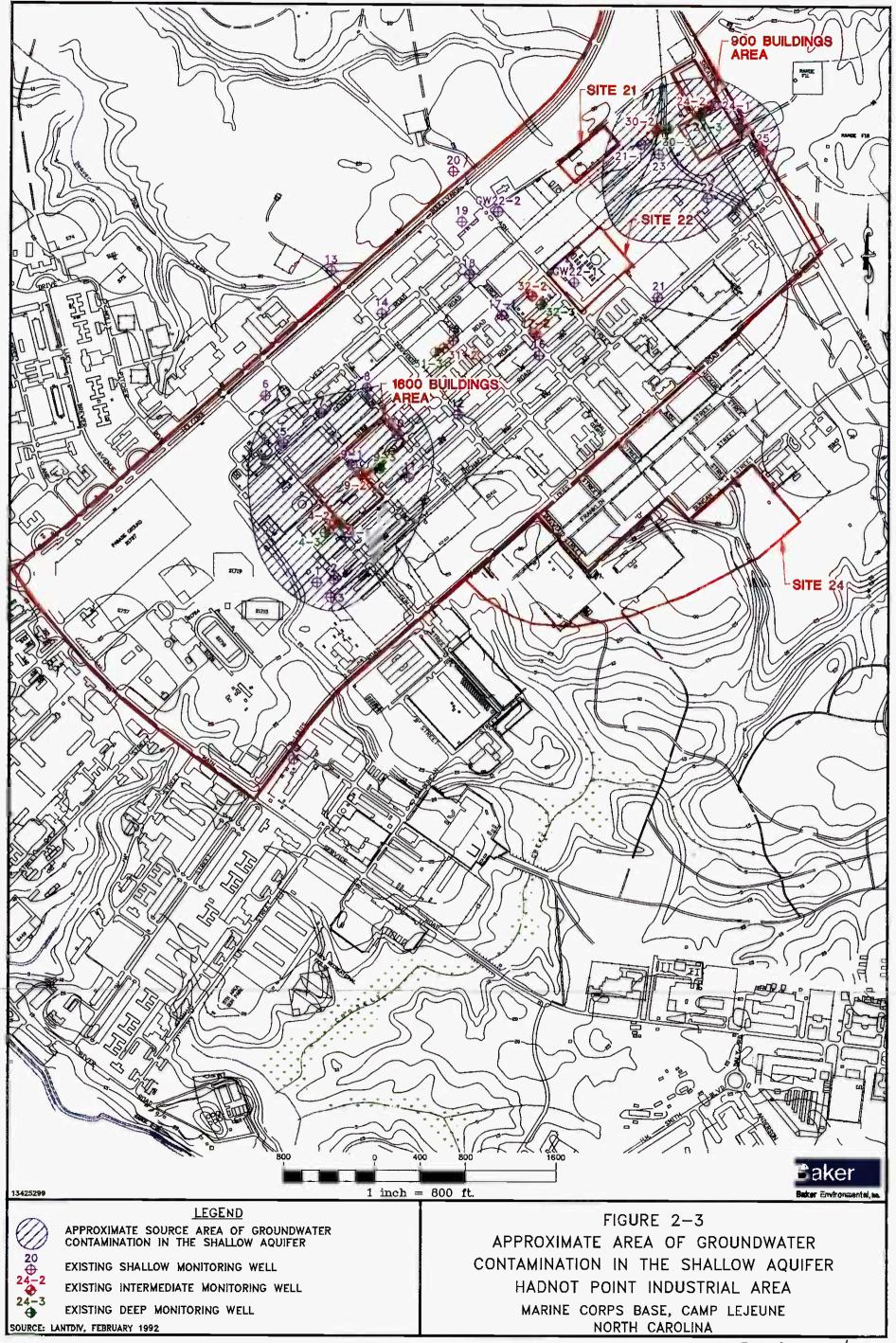
Potential Contaminants of Concern	HPGW1	HPGW2	HPGW3	HPGW4-1	HPGW5	HPGW6	HPGW7	HPGW8	HPGW9-1	HPGW10	HPGW11	HPGW12	HPGW	13 HPC	GW14	HPGW15
VOC (µg/L)	1	1			1			1					-			
Benzene	5 <	5 <	5 <	5 <	5 <	5 <	5 <	5 <	5 <	5 <	5 <	5 <	5	<	5 <	5 <
1,2-Dichloroethene	73	10 <	10 <	5 <	5 <	5 <	5 <	5 <	1200	5 <	5 <	5 <	< 5	<	5 <	7
Trichloroethene	91	5 <	5 <	0.9 J	5 <	5 <	5 <	2 J	14000	5 <	5 <	5 <	5	<	5 <	4 J
Inorganics (µg/L)		1						·····								
Chromium	87	64.3	16.7	187	3.6 B	1590	313	91.8	66.4	310	140	25.0	5 4	8.9	127	21.4
Iron	64100	34800	10400	100000	3100	265000	65700	40900	19800	119000	31800	5600	33	500	87200	4800
Lead	16.6	29.4	11.4	66.6	13.6	60.7	112	54.1	128	186	45.2	15.	7	9	66.5	16.6
Manganese	168	77	53.9	425	162	487	136	46.5	45	255	103	18.3	3 3	0.3	80	18.3
Antimony	13.3 <	15.6 B	46.5 B	21.9 B	13.3 <	13.3 <	22 <	22	17.6 B	22 <	22 <	22 <	13.3	< 13	.3 <	22 <
Arsenic	8 B	24.1	15.6	15.5	1.5 <	31.5	18.3	28.4	3 B	39.9	9.1 B	1.8 <		47	45.6	1.8 <
Beryllium	6	1.7 BG	1.2 B	6.7	0.86 B	20	4.8 B	2.1	0.79 B	5.6	2.1 <	2.1 <	0.59	B	2.7 B	2.1 <
Mercury	0.1 <	0.1 <	0.1 <	0.1 <	0.1 <	1.4	0.25	0.13	0.1 <	0.82	0.1 B	0.1 <	0.1	<	0.26	0.1 <
Nickel	31.3 B	16.9 B	12.1 B	57	5.2 <	161	50.7	25.2	15.1 B	92.2	23.6 B	11 <	21.2	В	41.6	11 <
Potential Contaminants of Concern	HPGW16	HPGW17-1	HPGW18	HPGW19	HPGW20	HPGW21	HPGW22	HPGW23	HPGW24-1	HPGW25	HPGW26	HPGW29	22GW1	22GW2	North Carolin Water Quality Criteria	a Federal Drinking V Water
VOC (µg/L)															1	
Benzene	5 <	5 <	N/A	5 <	5 <	5 <	5 <	24	3 J	5 <	5 <	5 <	7900	5 <	1	5
1,2-Dichloroethene	5 <	5 <	N/A	0.8 J	5 <	5 <	5 <	8900	42000 D	5 <	5 <	5 <	5 <	5 <	70	70
Trichloroethene	5 <	5 <	N/A	2 J	5 <	3 J	5 <	3700	180	5 <	5 <	5 <	5 J	5 <	2.8	5
Inorganics (µg/L)																1
Chromium	209	37	N/A	13.8	424	45	79.8	76.3	26.3	205	13	179	457	26.3	50	100
Iron	47200	10500	N/A	36200	2E+05	56600	24400	23300	19200	46600	19000	76200	1E + 05	16200	300	
Lead	100	23.7	N/A	31.7	20	49.4	39.4	45	21.4	71.6	9	29.1	307	16.2	50	15
Manganese	98.3	31.3	N/A	79	217	136	94.1	68.8	54.8	118	10.6 B	236	284	763	50	
Antimony	22 <	22 <	N/A	13.3	21.9B	13.3 <	24.6 B	24.6 <	22 <	13.3 <	13.3 <	13.3 <	20.9 B	13.3	-	6
Arsenic	17.3	1.8 <	N/A	5 B	49.4	12.1	7.2 B	6.6 B	4.2 B	13.2	1.5 <	25.6	50.3	11		50
Boryllium	5.3	2.1 <	N/A	2.3 B	9.5	3.7 B	0.6 B	1 B	2.1 <	2.8 B	0.5 <	8.7	5.8	0.5	0.5	4
															1	0
Mercury	0.13 B 41	$\frac{0.1}{11.9}$ B	N/A N/A	N/A 7.3 B	0.5	0.1 < 30.8 B	$\frac{0.1}{23.2}$ B	<u>0.1 <</u> 33.2 B	0.1 <	0.1 < 39.2 B	0.1 < 5.2 <	0.1 < 93.5	0.35 186	0.1	1.1 150	2

TABLE 2-1 SUMMARY OF CONTAMINANTS OF CONCERN DETECTED IN THE SHALLOW GROUNDWATER AQUIFER, JANUARY 1991

Notes: < = Compound was analyzed, but not detected at the listed detection limit

J = Value is estimated

B = Reported value is < contract required detection limit (CRDL), but > instrument detection limit (IDL)


D = Compound identified in an analysis at a secondary dilution factor

N/A = Not Analyzed

-- = Not established

MCL = Maximum Contaminant Level

7

01.518 DD014

2.4.1 Results of VOC Sampling, May 1993

In May 1993, groundwater samples were taken by Baker personnel from the monitoring wells in the HPIA. Preliminary results for VOCs from this sampling event are presented in Table 2-2. It should be noted that this data has not been validated.

1.

The maximum concentration of 1,2-DCE detected was 14,190 μ g/L from HPGW23. The highest concentration of 1,2-DCE previously detected from HPGW23 was 8,900 μ g/L in January 1991.

The maximum concentration of TCE detected was 440 μ g/L from HPGW23. The highest concentration of TCE previously detected from HPGW23 was 3,700 μ g/L in January 1991.

TABLE 2-2

)

)

4

)

1

SUMMARY OF VOC CONTAMINANTS OF CONCERN DETECTED IN THE SHALLOW GROUNDWATER AQUIFER, MAY 1993

Potential Contaminants of Concern	HPGW2	HPGW3	HPGW4-1	HPGW5	HPGW6	HPGW7	HPGW8	HPGW9-2	HPGW9-3	HPGW10	HPGW11	HPGW13
<u>VOCs (µg/l):</u> Benzene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Bromomethane	1.2	ND	ND	ND	ND	ND	ND	ND	2.0	ND	ND	ND
1,1-Dichloroethene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Trans-1,2-Dichloroethene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
cis-1,2-Dichloroethene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Ethylbenzene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Methylene Chloride	1.4	ND	ND	2.0	ND	ND	ND	ND	ND	ND	ND	ND
Toluene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Total Xylenes	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Trichloroethene	ND	ND	ND	ND	ND	ND	ND	6.0	ND	ND	ND	ND
Vinyl Chloride	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Trichlorofluoromethane	ND	ND	ND	ND	ND	ND	1.5	ND	ND	ND	ND	ND

2-9

•)

Potential Contaminants of Concern	HPGW14	HPGW15	HPGW16	HPGW17-1	HPGW17-2	HPGW19	HPGW20	HPGW21	HPGW22-1	HPGW22-2	HPGW23	HPGW24-1
VOCs (µg/l): Benzene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	10	1.6
Bromomethane	1.5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1-Dichloroethene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	3.6	6.7
Trans-1,2-Dichloroethene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	190	140
cis-1,2-Dichloroethene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	14,000	3400
Ethylbenzene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5.2	ND
Methylene Chloride	1.4	1.4	ND	ND	1.1	ND	ND	ND	ND	ND	ND	ND
Toluene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	2.3	1.5
Total Xylenes	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	28	1.4
Trichloroethene	ND	1.4	ND	ND	ND	1.4	ND	1.6	ND	ND	440	51
Vinyl Chloride	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	14	97
Trichlorofluoromethane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND

Notes: ND = Not Detected

)

1

3.0 LABORATORY AND FIELD INVESTIGATIONS

This section summarizes the laboratory and field activities conducted in support of the remedial design. These activities included: laboratory bench-scale treatability testing for oil, grease and metals removal, an aquifer pump test, and field pilot-scale treatability testing for volatile organic compounds (VOCs) removal with air stripping and activated carbon.

The objectives of these tests were to evaluate the remedial technologies' performance in meeting the site-specific clean-up goals for this site. The cleanup goals include Federal and North Carolina Groundwater MCLs, as shown on Table 3-1. These goals have been defined by the USEPA Region IV and the North Carolina DEHNR. A more detailed description of the objectives and procedures used in these activities is provided in the Remedial Design Work Plan (Baker, January 1993).

The results of the bench-scale and pilot-scale treatability tests have provided data to support the design of pretreatment components (e.g., metals removal, oil separation) and the air stripping treatment unit. Additionally, the pilot-scale test provided data to evaluate whether liquid phase carbon adsorption is required as part of the groundwater treatment system in order to meet cleanup goals.

The data obtained from the bench-scale and pilot-scale tests supported initial design assumptions regarding gravity oil/water separation and gravity settling of suspended metals. However, because the influent VOC concentrations detected during the pilot test were less than other historical data, alternative methods of predicting VOC removal rates were necessary. These methods are noted in Section 3.3.

The treatability study results were presented in a separate Treatability Study Report which has been submitted to LANTDIV and the Activity.

The following subsections provide a brief description of the laboratory and field activities, and a summary of their results.

TABLE 3-1

 $\mathbf{i} = -\mathbf{i}$

FEDERAL AND STATE CRITERIA FOR THE CONTAMINANTS OF CONCERN IDENTIFIED FOR THE SHALLOW AQUIFER

Contaminant of Concern	North Carolina* Water Quality Criteria for Groundwater (µg/L)	Federal Drinking Water MCLs (µg/L)	North Carolina* Water Criteria for Fresh Surface Water (µg/L) Class C Waters	North Carolina* Water Quality Criteria for Tidal Salt Waters (µg/L) Class SC Waters
TCE	2.8	5	92.4 (4)	92.4 (4)
1,2-DCE		70		
Benzene	1	5	71.4 (4)	71.4 (4)
Antimony		6		
Arsenic	50	50	50 ⁽¹⁾	50 (1)
Beryllium		4	$.117^{(4)}$ $6.5^{(1)}$.117 (4)
Chromium	50	100	50 (1)	20(1)
Iron	300		1000 (5)	
Lead	50	15(3)	25 (1)	25 (1)
Manganese	50			
Mercury	1.1	2	0.012(1)	.025 (1)
Nickel	150	100	88 (1)	

* From NC Administrative Code 15A NCAC 2B.0200

(1) Protection of aquatic life.

(2) - = No standard established.

(3) MCL is action level for public water supply systems.

(4) Protection of Human Health through consumption of fish/shell fish.

(5) NC Action Level for discharge to fresh waters.

3.1 Bench-Scale Treatability Tests

Laboratory bench-scale treatability tests were conducted to determine if oil/water separation and metals removal would be required in the full size treatment system. Groundwater characterization samples collected from monitoring well HPGW 24-1 were used for these tests.

ł

This monitoring well was selected based on a review of the January 1991 sampling data that indicated a high concentration of 1,2-DCE (42,000 μ g/L). Because the treatability study also considered VOCs, a location was selected which had previously shown both VOC and metals contamination. In addition, this monitoring well is located in an area that was accessible for the pilot test.

3.1.1 Oil/Water Separation

As reported in the Treatability Study Report, oil and grease concentrations for samples taken from HPGW 24-1 and the recovery well (RW-1) were all less than 10 mg/L, which is generally accepted as the minimum effluent concentration achievable with a slant rib type oil/water separator. Results of the oil/water separation tests on the sample from HPGW 24-1 showed these concentrations were reduced from 6 mg/L to less than 3 mg/L after the sample settled for approximately 30 minutes. Note that these concentrations are all less than the contract detection limits for oil and grease, which is 3 mg/L. It appears that conventional oil/water separation techniques will remove oil and grease to levels below detection limits. In addition, an oil/water separator will remove some of the suspended solids from the groundwater. Table 3-2 shows the results of the oil/water separation test.

3.1.2 Solids Settling

Based on the groundwater characterization sample analyses, it was determined that chemical treatment (metals precipitation jar tests) were not required because the metals of concern were primarily associated with the suspended solids. Table 3-3 shows the results of the total and dissolved metal characterization sample. Therefore, bench-scale solids settling tests were conducted to determine if gravity settling will provide sufficient physical treatment to remove the suspended metals to levels that will meet discharge criteria. The results of these tests are presented in detail in Section 5.0 of the Treatability Study Report.

TABLE 3-2

.

a gue de Cub

OIL/WATER SEPARATION BENCH-SCALE TEST ANALYTICAL RESULTS

Time (minutes)	Oil and Grease (mg/L)	Sample Temp. (°C)
0	6	NA
15	<3	28
30	4	28
60	<3	28

	Total	Dissolved	Primary/Secondary	NC Ground-	NC Surface
Parameter	Metals	Metals	Drinking Water MCLs	Water Criteria	Water Criteria (3)
	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)
Aluminum	25900	35.0 B	50 to 200	(2)	
Antimony	20 U(1)	20.0 U	6	***	
Arsenic	9.7 B (1)	2.0 U	50	50	50
Barium	78.0 B	146 B	2000	1000	
Beryllium	1.0 B	1.0 U	4	***	65
Cadmium	5.0 U	5.0 U	5	5	2
Calcium	18600	15000			
Chromium	32.0	10.0 U	100	50	50
Cobalt	8.0 U	8.0 U			
Copper	14.0 B	2.0 U	1300	1000	7
Iron	26400	31.0 B	300	300	1000
Lead	22.4	1.0 U	15 (4)	50	25
Magnesium	3100 B	1530 B		+ ==	
Manganese	84.0	24.0	50	50	
Mercury	0.20 U	0.20 U	2	1.1	0.012
Nickel	22.0 B	20.0 U	100	150	88
Potassium	2330 B	830 B		**=	
Selenium	1.5 B	1.0 U	50	10	5
Silver	3.0 U	3.0 U	100	50	0.06
Sodium	8620	9910			
Thallium	2.0 U	2.0 U	2	+	***
Vanadium	73.0	4.0 U			
Zinc	40.0	57.0	5000	5000	50

TABLE 3-3 HPIA GROUNDWATER SAMPLE CHARACTERIZATION ANALYSES: TOTAL AND DISSOLVED METALS

)

)

1

NOTES:

)

3

(1) CONCENTRATION QUALIFIERS:

B = entered if the reported value was obtained from a reading that was less than the Contract Required

Detection Limit (CRDL) but greater than or equal to the Instrument Detection Limit (IDL).

U = entered if the analyte was analyzed for but not detected, quantitation limit reported.

(2) "---" = No standard established.

(3) Protection of Aquatic Life.

(4) MCL is action level for public water supply systems.

After qualitative tests were conducted to determine an adequate polymer and optimum dosage rate, settling tests were conducted using both a raw groundwater sample and groundwater sample that had 2 mg/L of anionic polymer (Armstrong APS) added. The results of these tests are presented in Tables 3-4 and 3-5. Table 3-4 shows that the sample with the polymer increased the settling rate when compared with the raw sample. After 30 minutes of settling, the polymer enhanced sample had a 75 percent suspended solids removal, as compared with a 48 percent suspended solids removal in the raw sample.

Samples were taken for metals analyses (aluminum, arsenic, chromium, iron, and lead) after 60 minutes of settling for the raw sample and 30 minutes for the polymer enhanced sample. These analyses are presented in Table 3-5. This data shows that polymer addition can be used to aid in metals removal, if gravity settling alone does not reduce the metals concentrations to a level that meets discharge requirements. It should be noted that two raw influent samples collected during the pilot-scale test had total suspended solids levels of less than 10 mg/L (as compared with a TSS concentration of 62 mg/L for the bench-scale sample). A description of the pilot test is provided in Section 3.3. Additional information on solids settling can be found in Section 5.1.3 of the Treatability Study.

It was also noted that the metals concentrations in the raw sample used for the bench-scale test were less than many of the sampling results presented in Table 2-1. Because of the quality control procedures used to collect these samples, Baker believes that the samples used for the bench-scale test are representative of actual site conditions at the HPIA. These samples show groundwater conditions in the area that the sample was collected (near HPGW 24-1). This assumption is supported by the fact that the raw sample concentrations for the metals listed in Table 3-5 compare favorably with the concentrations of untreated groundwater collected during the pilot test (see Tables 5-14, 5-16, and 5-17 in the Treatability Study).

One sample, lead, showed an increased concentration after 30 minutes of settling when polymer was added. This results could be due to a reaction between the lead and the polymer. After considering the results of the bench-scale and pilot-scale tests, a solids removal system made up of polymer addition, flocculation, and gravity settling will provide adequate metals removal.

3-6

TABLE 3-4

 $(-\gamma - 1)$ (-1) (-1)

SOLIDS SETTLING TESTS: SUSPENDED SOLIDS CONCENTRATION AS A FUNCTION OF TIME

	Total Suspende	ed Solids (mg/L)
Settling Time (minutes)	Raw Sample	Sample with Polymer at 2 mg/L
0	62	62
5	-	28
10	48	27
15		20
20	35	
30	32	16
60	25	

TABLE 3-5

SOLIDS SETTLING TESTS: TOTAL METALS AND TSS CONCENTRATIONS

			Concentration	
Parameter	Parameter Units		Raw Sample After 60 Min. Settling	Sample with Polymer at 2 mg/L after 30 Min. Settling
Aluminum	µg/L	2780	2290	282
Arsenic	µg/L	<4.0	<4.0	<4.0
Chromium	µg/L	20	14	<10.0
Iron	µg/L	8930	6400	2310
Lead	µg/L	4.4	3.2	11
TSS	μg/L	62	25	16

3.2 Aquifer Pump Test

A shallow aquifer pump test was conducted in the area of the 900 series buildings within HPIA. The purpose of the aquifer pump test was to evaluate aquifer characteristics (hydraulic conductivity, transmissivity, and storativity) and to determine optimum flow rates and recovery well zones of influence in the area.

A 6-inch diameter groundwater recovery well (RW-1) and two 2-inch diameter piezometers (P-1 and P-2) were installed near the southeast corner of Building 902. This location was selected on the basis of its location (near the center of the northern contaminant plume) and the results of previous groundwater sampling activities, which had detected a high concentrations of 1,2-dichloroethene and trichloroethene in monitoring wells HPGW 23-1 and HPGW 24-1. Well construction and boring logs for RW-1, P-1, P-2, HPGW 24-1, HPGW 24-2, and HPGW 24-3 are provided in Appendix L of the Treatability Study Report.

A step drawdown test conducted by Baker on February 1, 1993 determined that the maximum sustainable pumping rate for RW-1 was 1.5 gpm. For comparison, pump tests conducted at the Hadnot Point Fuel Farm (Site 22), produced pumping rates of 2 to 3 gpm. (O'Brien & Gere, 1990). Therefore, Baker does not believe that the 1.5 gpm pumping rate was due to poor well installation or development, but that this rate is representative of the lithology in this area. When the recovery wells are installed, flow rates of 1 to 5 gpm would be expected (see Section 4.1 for a discussion of recovery well installation).

The 72-hour pump test was started on February 2, 1993. During this test the shallow aquifer was pumped at a rate of 1.2 gpm and transducers were used to measure and record the drawdown in the recovery well, piezometers and nearby existing monitoring wells. At the completion of the pump test, the recovery rate of RW-1, P-1, P-2, and the other monitoring wells was recorded.

3.2.1 Aquifer Characteristics

Using the data collected during the pump test, aquifer characteristics were calculated using the "Graphical Well Analysis Package (GWAP)" program designed by Groundwater Graphics of Oceanside, California. Using the Neuman Method for unconfined aquifers with an elastic response, GWAP calculates aquifer transmissivity, hydraulic conductivity, and storativity. Summary pages for the GWAP calculations are provided in Appendix A. The average value of these aquifer characteristics, based on the GWAP program, are as follows:

Transmissivity (T)	450 gpd/ft
Hydraulic Conductivity (K)	12 gpd/sq ft
Storativity (S)	0.05067

Using the Theis nonequilibrium well equation, at a boundary drawdown of 0.25 feet, various pumping radii were calculated:

<u>Flow rate (gpm)</u>	<u>Pumping time (days)</u>	<u>Radius (feet)</u>
1.5	30	250
1.5	60	350
3.0	30	330
3.0	60	470

After reviewing this information, Baker is recommending that the initial group of recovery wells be placed 400 feet apart (200 foot radius), in a configuration along the leading edge of the plume. The wells will be located to insure coverage of the downgradient edge of each plume, with sufficient overlapping of the well capture zones. This recovery well spacing should provide adequate coverage of the plume in the case that pumping rates do not exceed 1.5 gpm.

3.3 Pilot Test

All groundwater extracted during the 72-hour pump test was pumped through an on-site pilotscale treatment system before being discharged to the sanitary sewer system. The pilot-scale system consisted of: an oil/water separator, surge tank, low profile tray type air stripper, and activated carbon contractor. The objectives of the pilot test were to evaluate the remedial technologies' performance in meeting the site-specific clean-up goals for this site.

Samples were collected every 12-hours from three locations on the pilot-scale system during the test: influent to the air stripper, effluent from the air stripper, and the effluent from the activated carbon unit. A total of seven samples (plus one duplicate) was collected at each of these locations. These samples were analyzed for VOCs and metals. In addition, samples collected at the beginning and at the end of the test were analyzed for the following conventional parameters: oil and grease, ammonia, bicarbonate, carbonate, chlorides, total dissolved solids, total suspended solids, hardness, and nitrate/nitrites. One set of samples collected prior to and after the activated carbon unit were tested for whole effluent toxicity.

The analytical results of the pilot test samples demonstrated that an air stripper can effectively remove the VOCs of concern, at the concentrations detected during the test, from the groundwater. The sampling results are presented in Section 5.0 of the Treatability Study Report. In addition, a table will be included in Section 4 that summarizes the VOC sampling data used to design the air stripper.

To address concerns about the ability of the air stripping system to remove higher VOC concentrations, modeling data was obtained from manufactures to predict the removal capabilities of the air stripper system. This information is presented in Section 4.0.

4.0 CONCEPTUAL DESIGN

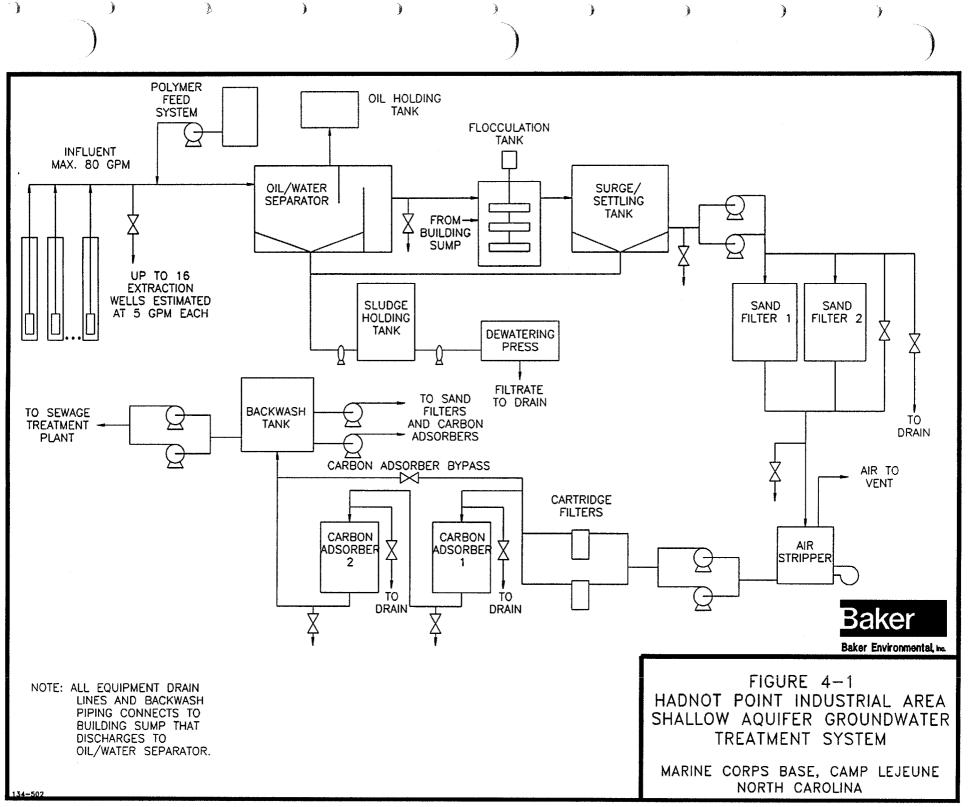
The new treatment system to be installed for remediation of the shallow aquifer at the HPIA site includes: groundwater recovery, treatment, and discharge to the Hadnot Point STP. There will be two on-site treatment systems, each capable of treating up to 80 gpm of groundwater from two separate grids of recovery wells. Details of the three major components of the system (groundwater recovery, groundwater treatment, and treated effluent discharge) are provided in the following subsections and a schematic is shown on Figure 4-1. In addition, Table 4-1 is a summary of the Basis of Design information for the new treatment system. Appendix E contains design calculations and Appendix F contains the manufacturer's catalog information for the major equipment items for the groundwater recovery and treatment system.

1

Following a reviewing of the treatability and pilot test information, and discussions with LANTDIV, USEPA and North Carolina DEHNR, it was determined that additional data was needed to supplement the pilot test data in order to determine the air stripper design parameters. In addition, liquid phase carbon polishing was determined to be necessary as a final treatment step. Therefore, the sampling data presented in Table 2-1 was analyzed to determine maximum, 95th percentile, and average anticipated VOC influent concentrations. Using this information, effluent concentrations from the air stripper were determined using vendor modeling programs. This information is summarized on Table 4-2 and shows that the air stripper should be capable of removing the maximum VOCs detected from previous sampling.

The 95th percentile calculation was based on USEPA's "Supplemental Guidance to RAGS: Calculating the Concentration Term" (USEPA, Publication 9285.7-081, May 1992). The 95th percentile is calculated as follows:

$$\mu_{95} = \overline{x} + t_{n-1, 0.95} \left(s / \sqrt{n} \right)$$


Where:

х

 $\mu_{95} = 95$ th percentile

= mean of the data

- s = standard deviation
- t = Student-t statistic (e.g., from table published in Gilbert, 1987)
- n = number of samples

)

4-2

TABLE 4-1

 $\mathbf{f}_{-1} = -\mathbf{i}_{-1} \mathbf{i}_{-1}$

BASIS OF DESIGN INFORMATION INTERIM REMEDIAL DESIGN FOR THE SHALLOW AQUIFER AT THE HADNOT POINT INDUSTRIAL AREA OPERABLE UNIT

I. GENERAL SYSTEM DESCRIPTION

Two 80 gpm on-site groundwater treatment systems designed for the removal of TCE, DCE, and benzene. Each system will consist of: groundwater recovery wells with individual groundwater pumps (five wells at southern area, four wells at northern area); polymer feed system, oil/water separator; flocculation tank, solids settling tank, multi-media sand filters, low profile air stripper; and related transfer pumps and controls for automatic operation; cartridge filters; carbon adsorbers. The sludge handling system at each site will consist of a solids holding tank, with supernatant drawoff; and a plate and frame dewatering press.

II. GROUNDWATER RECOVERY SYSTEM

1.	Recovery Wells	
	Minimum Number:	4
	Minimum Diameter:	6 inches
	Depth:	35 feet
2.	Pumping System	
	Type: I	neumatic Ejector
	Components: C	Froundwater Recovery Pump (1/well)
	I	Remote Air Valve Assembly (1/well)
	I	Duplex Air Compressor with ASME Stamped Air Tank

3. Piping System
 Components: Schedule 80 PVC Casing Pipe with Schedule 40 HDPE Carrier
 Pipe

Below Grade Concrete Wellhead Vault

III. GROUNDWATER TREATMENT SYSTEM

Well Enclosure:

1.	Polymer Feed System	
	Number:	1
	Capacity:	0.01 to 1.0 gallon per hour

2.	Oil/Water Separator	
	Number:	1
	Capacity:	80 gpm
	Type:	Slant Rib Coalescing
	Coalescing Area:	Approx. 1500 square feet

3.	Flocculation Tank	
	Number:	1
	Capacity:	1,200 gallons
	Accessories:	Adjustable Speed Mixer/Agitator

TABLE 4-1BASIS OF DESIGN INFORMATIONPAGE 2

- 4. Recovered Product Storage Tank Number: 1 Capacity: 250 gallons Accessories: Product Level Gage
- 5. Influent Surge/Settling Tank Number: 1 Capacity: 2,500 gallons Accessories: Level Control Floats

6. Air Stripper

ш	ompher	
	Number:	1
	Capacity:	80 gpm
	Type:	Low Profile
	Material of Constr:	Stainless Steel
	Accessories:	2, 40 gpm Feed Pumps; and 2, 40 gpm Discharge Pumps; 7-1/2 HP,
		900 SCFM Blower Control Panel with Pump Level Controls

900 SCFM Blower, Control Panel with Pump Level Controls; Alarm Interlocks; Motor Starter

7. Multi-Media Sand Filters Number: 2 Capacity: 100 gpm Accessories: Backwash Controls

8.	Carbon Adsorbers	
	Number:	2
	Capacity:	1 00 gpm @ 100 psi
		0 500 11 / 1/

Carbon Capacity:	2,500 lb/unit
Accessories:	Backwash Controls

9. Solids Holding Tank Number: Capacity: Accessories:

1 2,500 gallons Level Control Floats, Supernatant Decanting Piping

10. Dewatering PressNumber:1Type:Plate anCapacity:3.3 cubitAccessories:Automatic

1 Plate and Frame 3.3 cubic feet Automatic Sludge Feed Controls and Sludge Feed Pump

TABLE 4-2

.1

SUMMARY OF SAMPLING DATA FOR VOC CONTAMINANTS OF CONCERN DETECTED IN THE SHALLOW GROUNDWATER AQUIFER

	Benzene	1,2-DCE	TCE	Vinyl Chloride
NC Water Quality				
Criteria for GW	1		2.8	0.015****
(ug/l)				
Federal Drinking				
Water MCLs	5	70	5	2
(ug/l)				
Minimum Conc.				
Detected (ug/l)	<5	<5	<2	270*
(Jan. 1991 Data)				
Average Conc.				
(ug/l)	288	1868	646	325*
(Cal. From Jan. 1991 Data)				
95th Percentile**				
Value (ug/l)	856	4932	1677	***
(Cal. From Jan. 1991 Data)				
Maximum Conc.				
Detected (ug/l)	7900****	42000	14000	360*
(Jan. 1991 Data)				
Estimated Effluent Conc.				
From Air Stripper Based	<1	<1	<1	<1
On Ave. Influent Conc.(ug/l)				
Estimated Effluent Conc.				
From Air Stripper Based	<1	<1	< 1	<1
On 95% Influent Conc.(ug/l)				
Estimated Effluent Conc.				
From Air Stripper Based	2	<1	<1	< 1
On Max. Influent Conc.(ug/l)				
Estimated Effluent Conc.				
From Carbon Unit Based	<1	<1	< 1	<1
On Max. Influent Conc.(ug/l)				

* Feb. 1993 Sample

** 95th percentile value was calculated from 28 samples taken in Jan. 1991, and is based

on "Supplemental Guidance to RAGS : Calculating the Concentration Term" (USEPA, May 1992).

*** 95th percentile not calculated

**** This concentration detected at Site 22, which is a UST site

***** Note that GW criteria for vinyl chloride cannot be detected, use 1 ug/l as GW criteria

Preliminary data from samples collected May 1993 was also reviewed to verify that the air stripping system should be capable of removing the maximum concentrations detected, since these concentrations were less than those previously detected.

1

4.1 Groundwater Recovery and Pumping System

Initially, the system will be designed to extract groundwater from four recovery wells installed into each of the two contaminant plumes. Based on the results of the pump test and pilot test, the radius of influence was determined to be approximately 250 feet for the installed recovery well. Therefore, it is proposed to locate four recovery wells in the north plume and five recovery wells in the south plume in a configuration that is located along the leading edge of the plume, at a spacing of 400 feet, as shown on Drawings C-1 and C-3 of the Contract drawings. These well field configurations will provide for recovery of contaminated groundwater from each of the two plumes as the plumes migrate to the southwest, and will prevent the plumes from migrating further in the direction of the hydraulic gradient. These proposed recovery well locations also allow for construction of the initial wells and the collection piping in locations where fewer conflicts with other utilities would be encountered.

Each of the recovery wells will be a minimum of 6-inches in diameter and will be installed to a depth of approximately 35 feet below the ground surface. The bottom 25 feet of each well will be screened with 20 slot wire wrap stainless steel screen. The added depth of the recovery wells (35 feet versus the pilot test well depth of 25 feet) is intended to improve the groundwater recovery rate of the wells. The design will include provisions for installing additional recovery wells based on the results of monitoring conducted after the system is operating.

An air operated pump with an individual pump controller will be installed in each recovery well. The recovery pump will lift the contaminated groundwater from the well and pump it through a 2-inch HDPE header to the treatment system. This header and the associated air supply tubing will be placed in a PVC casing pipe, which will be installed approximately 3 feet below grade and located to avoid other underground utilities.

4.2 <u>Groundwater Treatment System</u>

A treatment system will be located within the area of each plume (See Drawings C-1 and C-3). Each treatment system will be designed for an ultimate flow capacity of 80 gpm, assuming a maximum of 16 recovery wells (at 5 gpm per well). The treatment systems are designed to produce an effluent that meets NC groundwater standards, as listed in Table 3-1. Each treatment system will consist of the following components:

The groundwater will flow to an oil/water separator for the removal of any floating oils, and settleable solids or oily wastes that are heavier than water. The oil/water separator system will include a 250 gallon holding tank for the storage of the extracted free product. Settled solids will be transferred to a sludge holding tank.

A chemical feed system consisting of a polymer feed pump and a flocculation tank will be used to form a floc to aid in solids and suspected metals removal.

The effluent from the flocculation tank will flow to a surge/settling tank with a capacity of approximately 2,900 gallons. This tank will have a circular divider wall which will separate the tank into a center settling zone and a perimeter holding zone to provide surge storage. The tank will have a sloped or conical bottom to allow for the removal of additional solids that will settle in this tank. Based on the results of the bench-scale tests, this arrangement should provide sufficient detention time for suspended metals removal.

The air stripper influent pumps will transfer groundwater from the surge/settling tank through two multi-media filters, then to the low profile, tray type air stripper for removal of volatile organic contaminants. The low profile air stripper is sized to remove the VOCs of concern at the maximum influent concentrations detected in previous sampling. Table 4-2 shows the minimum and maximum VOC concentrations detected, and the estimated effluent concentrations from the air stripper.

Two air stripper effluents pumps will pump groundwater to two cartridge filters that are designed to remove any suspended solids prior to the liquid phase carbon adsorbers.

Two liquid phase carbon adsorbers will be installed to operate in parallel. Each carbon unit will have a capacity of 80 gpm, and will have a backwash system. The two liquid-phase carbon adsorption units are designed with bypass piping so that the units do not have to run

4-7

continuously. In normal operations, the carbon system will be bypassed and effluent from the air stripper will be pumped through the cartridge filters to the backwash tank. The carbon units will only be used if routine testing shows that effluent concentrations for the contaminants of concern exceed North Carolina groundwater standards, or Federal drinking water MCLs, or are above detection limits, if no standard exists.

Solids generated during the treatment process will be pumped to a conical bottom 2,500 gallon sludge holding tank. The sludge will be dewatered with a plate and frame press; the filtrate water will be pumped back to the head of the treatment system.

4.3 Discharge to Hadnot Point STP

The treated groundwater from each system will be pumped to the sanitary sewer for discharge to the existing biological treatment system at the Hadnot Point STP. The capacity of the existing sewers was evaluated by Baker (see the Treatability Study Report), and was found to have sufficient capacity to carry the additional maximum flow of 80 gpm from each treatment system.

4.4 Dewatered Sludge and Waste Oil Disposal

The dewatered sludge will be tested via the Toxicity Characteristic Leaching Procedure (TCLP) to determine if the sludge is considered a hazardous waste. If the sludge passes the TCLP test, it will be sent to a licensed nonhazardous waste landfill. If the sludge fails the TCLP test and is, therefore, considered hazardous, it will be transported to a licensed hazardous waste landfill for proper disposal.

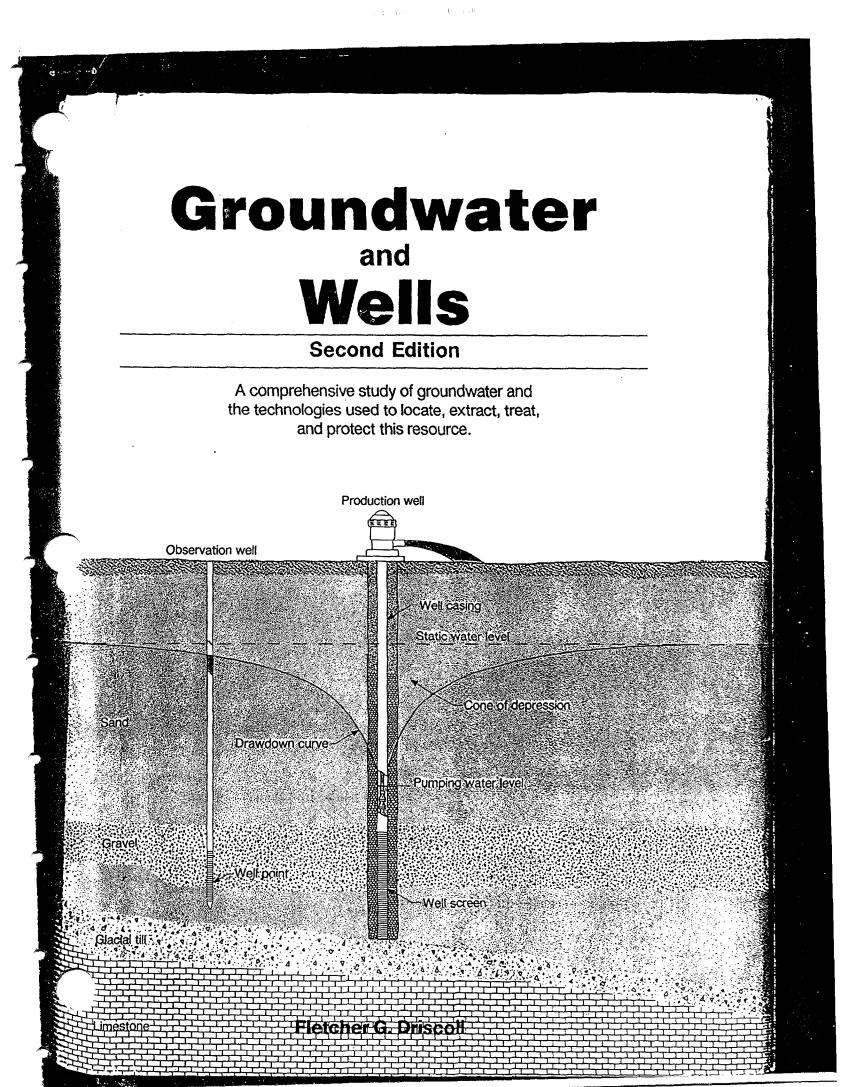
Collected waste oil will be sent to a waste oil recycling or reclamation facility.

Appendix A Aquifer Characteristic Calculations and GWAP Program Data Sheets

	Subject: DETERMINING RAT	JUS OF	<u> </u>	er
r.	INFLUENCE	Sheet No of	2	
	Computed by DPJ Checked By RPA	Drawing No 17 ¹³ Date3-9-9-3		
	USING THE PUMPTEST DOT WERE CALCULATED:	ra, the followin	G AQUIFER PARA	IMETER
	TRANSMISSIN (T) 9Pd/4+		HYDEAULIC CONDULTINITY (K) gpd/sf	
	RW-1 1.429×10	2 6.267×10-2	5.718	
	P-1 7.001×10	, 2 4.156×10-2	2.8×10	
	7 P-2 3.591×10	9.508×10-4	1.436 × 10	
	24-1 5,07×1	0 ² 4.78×10 ⁻³	2.03×10	- - - -
(S= drawdown in ft Q= pumping rate in g T= Transmissivity in W(u) = well function SOLVING THE THEIS EG	gpd/ft n of u	$(u) \rightarrow = (3)$	T)
	A554MPTIONS: 1. Drawdown(5)= 0.2:		/14,6	, (Q)
	z. Transmissivity $(T) =$ 3. $Q = 1.5 qpm$ SOLVING FOR $W(u) =$	4.5 ×102	W-1, P-1 2	24-1
		6.54 × 10-1		
	FROM APPENDIX 9.E -	Groundwater and	Wells, 2 nd Ed	; Drise
	u = 4.3	×10 ⁻¹		

$$u = 4.3 \times 10^{-1}$$

	Sheet No of	Baker
	, Drawing No	
Compu	uted by Checked By PA 3/11 Date 3-9-93	
	In the $\omega(u)$ well function, $u = \frac{1.87 r^2}{7t}$	
	+= radius in ft from center of pumped	well
	to a point where drawdown is meas	ured
	5 = Storativity	
	T = Transmissivity	
	t = time since pumping started, in de	
5	solving the above equation for $r = \sqrt{\frac{u}{1.87}}$	T)(<u>4)</u> 7(5)
A	(GSUMPTIONS:	
	T = AVERAGET FOR RW-1, P-1, E' ZO	4 - 1
	$= 4.5 \times 10^{2}$	
	5 = AVERAGE S FOR KW-1, P-1, & ZO	4-1
	= 5,067×10-2	
TIM	EREFORE, SOLVING FOR RADIUS F @ 1.5	$\dot{\epsilon}$ $\dot{\epsilon}$ $\dot{\epsilon}$ = 300
	$F = \sqrt{\frac{4.3 \times 10^{-1} (4.5 \times 10^{2}) (30)}{1.87 (5.067 \times 10^{-2})}}$	
	r = 247 @ 30 days	
58	ET-UP A TABLE FOR VARIOUS FLOW RATE	ES É PUMPING TI
!		,
	$Q_{(qpm)}$ $W(u)$ u $t(d_{ays})$ $r(fr)$	
	1,5 G,54×10-1 4,3×10-1 30 250 -	
	1.5 6,54×10" 4.3×10" 60 350 -	
	3.0 3.27×10-1 7.7×10-1 30 330-	


7.7×10-1

60

470

3.27×10-1

3.0

roui

zes, 730 Ille dwater and s become a with more t ma use by was logists, en and studen a complete : in 600 page INERY growt ology. Base on Divisior neers and j her recogniz This new cnome(pn nc 101 gh 20 the A .1G ctical conc e to directl aterial is 1 reardless o Difference an on to the iter probler ple, will find essential a ssful desig convenie both Englis national ur will be par irs, as wil stallation, "d well reh will appre ster explor s, the colleand moni -codures. E -Ticials ca any aspec

GROUNDWATER AND WELLS

NONEQUILIBRIUM WELL EQUATION

Theis developed the nonequilibrium well equation in 1935. The Theis equation was the first to take into account the effect of pumping time on well yield. Its derivation was a major advance in groundwater hydraulics. By use of this equation, the drawdown can be predicted at any time after pumping begins. Transmissivity and average hydraulic conductivity can be determined during the early stages of a pumping test rather than after water levels in observation wells have virtually stabilized. Aquifer coefficients can be determined from the time-drawdown measurements in a single observation well rather than from two observation wells as required in Equations 9.3 and 9.4.

Derivation of the Theis equation is based on the following assumptions:

1. The water-bearing formation is uniform in character and the hydraulic conductivity is the same in all directions.

2. The formation is uniform in thickness and infinite in areal extent.

3. The formation receives no recharge from any source.

4. The pumped well penetrates, and receives water from, the full thickness of the water-bearing formation.

5. The water removed from storage is discharged instantaneously when the head is lowered.

6. The pumping well is 100-percent efficient.

7. All water removed from the well comes from aquifer storage.

8. Laminar flow exists throughout the well and aquifer.

9. The water table or potentiometric surface has no slope.

These assumptions are essentially the same as those for the equilibrium equation except that the water levels within the cone of depression need not have stabilized or reached equilibrium.

where

In its simplest form, the Theis equation is:

$$\frac{114.6 \ Q \ W(u)}{T} \qquad \qquad s = \frac{1}{4\pi} \frac{Q}{T} \ W(u)$$

where

the Hawinson

218

s = drawdown, in ft, at any point in the vicinity of a well discharging at a constant rate

Q = pumping rate, in gpm

s =

- T = coefficient of transmissivity of the aquifer, in gpd/ft
- W(u) = is read "well function of u" and represents an exponential integral

In the W(u) function, u is equal to:

$$u = \frac{1.87r^2S}{Tt}$$

where

r = distance, in m, from the center of a

 $u = \frac{r^2 S}{4 T_f}$

s = drawdown, in m, at any point in

T = coefficient of transmissivity of

represents an exponential

at a constant rate

integral

 $Q = pumping rate, in m^3/day$

the aquifer, in m²/day

W(u) = is read "well function of u" and

the vicinity of a well discharging

(9.5)

(9.5a)

r = distance, in ft, from the center of a

WELL HYDRAULICS

pumped well to a point where the drawdown is measured

- S = coefficient of storage (dimensionless)
- T = coefficient of transmissivity, in gpd/ft

i =time since pumping started, in days

S = coefficient of storage (dimensionless) T = coefficient of transmissivity, in m^2/day

drawdown is measured

pumped well to a point where the

t = time since pumping started, in days

The well function of u[W(u)] originated as a term to represent the heat distribution in a flat plate with a heating element at its center. Theis recognized that this same concept could be applied to the regular distribution of the groundwater head around a pumping well even though water flows toward the point source rather than away from it. The mathematical principles remain the same.

Analysis of pumping test data* using the Theis equation can yield transmissivity and storage coefficients for all nonequilibrium situations. In actual practice, however, the Theis method is often avoided because it requires curve-matching interpretation and is somewhat laborious. In fact, the work of applying the Theis method can be avoided in most cases. For example, if the pumping test is sufficiently long or the distance from the well to where the drawdown is measured is sufficiently small, the W(u) function can be replaced by a simpler mathematical function which makes the analysis easier. The Theis method is developed at the end of this chapter, but at this point the simplified version is examined because it serves well in most cases.

MODIFIED NONEQUILIBRIUM EQUATION

In working with the Theis equation, Cooper and Jacob (1946) point out that when u is sufficiently small, the nonequilibrium equation can be modified to the following form without significant error:

$$s = \frac{264Q}{T} \log \frac{0.3 Tt}{r^2 S} \qquad \qquad s = \frac{0.183Q}{T} \log \frac{2.25 Tt}{r^2 S} \qquad (9.6)$$

where the symbols represent the same terms as in Equation 9.5 and 9.5a.

For values of u less than about 0.05, Equation 9.6 gives essentially the same results as Equation 9.5. The value of u becomes smaller as t increases and r decreases. Thus, Equation 9.6 is valid when t is sufficiently large and r is sufficiently small. Equation 9.6 is similar in form to the Theis equation except that the exponential integral function, W(u), has been replaced by a logarithmic term which is easier to work with in practical applications of well hydraulics.

For a particular situation where the pumping rate is held constant, Q, T, and S are all constants. Equation 9.6 shows, therefore, that the drawdown, s, varies with log t/r^2 when u is less than 0.05. From this relationship, two important relationships can be stated:

1. For a particular aquifer at any specific point (where r is constant), the terms s and t are the only variables in Equation 9.6. Thus, s varies as $\log C_1 t$, where C_1 represents all the constant terms in the equation.

2. For a particular formation and at a given value of t, the terms s and r are the

219

^{*}The performance of newly completed wells is often checked by pumping tests. During the test, the drawdown in the pumping well and observation wells is measured at a constant discharge rate. When properly conducted, these tests yield information on transmissivity and storage capability. See Chapter 16 for a detailed analysis of pumping test procedures.

APPENDIX 9.E.

1

)

Values of W(u) Corresponding to Values of u for Theis Nonequilibrium Equation

N	N×10-15	N× 10-14	NX 10-13	N×10-12	N× 10-11	N×10-10	N×10-*	N-10-8	N X 10-7	N× 10-4	N× 10-5	N× 10-4	N× 10-3	N× 10-2	N× 10-1	N	
1.0	33.9616	31.6590	29.3564	27.0538	24.7512	22.4486	20.1460	17.8435	15.5409	13.2383	10.9357	8.6332	6.3315	4.0379	1.8229	0.2194	
1.1	33.8662 33.7792	31.5637	29.2611	26.9585	24.6559	22.3533	20.0507	17.7482	15.4456	13.1430	10.8404	8.5379	6.2363	3.9436	1.7371	.1860	
		31.4767	29.1741	26.8715	24.5689	22.2663	19.9637	17.6611	15.3586	13.0560	10.7534	8.4509	6.1494	3.8576	1.6595	.1584	
1.3	33.6992 33.6251	31.3966	29.0940	26.7914	24.4889	22.1863	19.8837	17.5811	15.2785	12.9759	10.6734	8.3709	6.0695	3,7785	1.5889	.1355	
1.4 1.5	33.5561	31.3225	29.0199	26.7173	24.4147	22.1122	19.8096	17.5070	15.2044	12.9018	10.5993	8.2968	5,9955	3.7054	1.5241	.1162	
		31.2535	28.9509	26.6483	24.3458	22.0432	19.7406	17.4380	15.1354	12.8328	10.5303	8.2278	5.9266	3.6374	1.4645	1000	
1.6	33.4916	31.1890	28.8864	26.5838	24.2812	21.9786	19.6760	17.3735	15.0709	12.7683	10.4657	8.1634	5.8621	3.5739	1.4092	.08631	
1.7	33.4309	31.1283	28.8258	26.5232	24.2206	21.9180	19.6154	17.3128	15.0103	12.7077	10.4051	8.1027	5.8016	3.5143	1.3578	.07465	
1.8	33.3738 33.3197	31.0712	28.7686	26.4660	24.1634	21.8608	19.5583	17.2557	14.9531	12.6505	10.3479	8.0455	5.7446	3.4581	1.3098	.06471	
	33.2684	31.0171 30.9658	28.7145	26.4119	24.1094	21.8068	19.5042	17.2016	14.8990	12.5964	10.2939	7.9915	5.6906	3.4050	1.2649	.05620	
2.0	33.2196	20.9020	28.6632	26.3607	24.0581	21.7555	19.4529	17.1503	14.8477	12.5451	10.2426	7.9402	5.6394	3.3547	1.2227	.04890	
2.2	33.1731	30.9170 30.8705	28.6145 28.5679	26.3119	24.0093	21.7067	19.4041	17.1015	14.7989	12.4964	10.1938	7.8914	5.5907	3.3069	1.1829	.04261	
2.3	33.1286	30.8261	28.5235	26.2653	23.9628	21.6602	19.3576	17.0550	14.7524	12.4498	10.1473	7.8449	5.5443	3.2614	1.1454	.03719	
2.4	33.0861	30.7835	28.4809		23.9183	21.6157	19.3131	17.0106	14.7080	12.4054	10.1028	7.8004	5.4999	3.2179	1.1099	.03250	
2.5	33.0453	30.7427	28.4401	26.1783	23.8758	21.5732	19.2706	16.9680	14.6654	12.3628	10.0603	7.7579	5.4575	3.1763	1.0762	.02844	į
2.6	33.0060	30.7035	28.4009	26.1375	23.8349	21.5323	19.2298	16.9272	14.6246	12.3220	10.0194	7.7172	5.4167	3.1365	1.0443	.02491	
2.7	32.9683	30.6657	28.3631	26.0983	23.7957	21.4931	19.1905	16.8880	14.5854	12.2828	9.9802	7.6779	5.3776	3.0983	1.0139	.02185	
10	32.9319	30.6294	28.3268		23.7580	21.4554	19.1528	16.8502	14.5476	12.2450	9.9425	7.6401	5.3400	3.0615	.9849	.01918	
2.8	32.8968	30.5943	28.2917	26.0242	23.7216	21.4190	19.1164	16.8138	14.5113	12.2087	9.9061	7.6038	5.3037	3.0261	.9573	.01686	
3.0	32.8629	30.5604	28.2578	25.9891	23.6865	21.3839	19.0813	16.7788	14.4762	12.1736	9.8710	7.5687	5.2687	2.9920	.9309	.01482	
3.1	32.8302	30.5276		25.9552	23.6526	21.3500	19.0474	16.7449	14.4423	12.1397	9.8371	7.5348	5.2349	2.9591	.9057	.01305	
3.2	32.7984	30.4958	28.2250 28.1932	25.9224	23.6198	21.3172	19.0146	16.7121	14.4095	12.1069	9.8043	7.5020	5.2022	2.9273	.8815	.01149	1
	32.7676	30.4958	28.1932	25.8907	23.5881	21.2855	18.9829	16.6803	14.3777	12.0751	9.7726	7.4703	\$.1706	2.8965	.8583	.01013	
3.3	32.7378	30.4352	28.1326	25.8599	23.5573	21.2547	18.9521	16.6495	14.3470	12.0444	9.7418	7.4395	5.1399	2.8668	.8361	.008939	ł
3.5	32.7088	30.4062	28.1036	25.8300	23.5274	21.2249	18.9223	16.6197	14.3171	12.0145	9.7120	7.4097	5.1102	2.8379	.8147	.007891	1
3.6	32.6806	30.3780	28.0755	25.8010 25.7729	23.4985	21.1959	18.8933	16.5907	14.2881	11.9855	9.6830	7.3807	5.0813	2.8099	.7942	.006970	1
3.7	32.6532	30.3506	28.0481	25.7455	23.4703	21.1677	18.8651	16.5625	14,2599	11.9574	9.6548	7.3526	5.0532	2.7827	.7745	.006160	1
3.8	32.6266	30.3240	28.0214	25.7188	23.4429	21.1403	18.8377	16.5351	14.2325	11.9300	9.6274	7.3252	5.0259	2.7563	.7554	.005448	-{
3.9	32.6006	30.2980	27.9954	25.6928	23.4162	21.1136	18.8110	16.5085	14.2059	11.9033	9.6007	7.2985	4.9993	2.7306	.7371	.004820	
4.0	32.5753		27.9701	25.6675	23.3649	21.0877	18.7851 18.7598	16.4825	14.1799	11.8773	9.5748	7.2725	4.9735	2.7056	.7194	.004267	
4.1	32.5506		27.9454	25.6428	23.3402	21.0376	18.7351	16.4572	14.1546	11.8520	9.5495	7.2472	4.9482	2.6813	.7024	.003779	
	32.5265		27,9213	25.6187		21.0136	18.7110	16.4084	14.1058	11.8273	9.5248	7.2225	4.9236	2.6576	.6859	.003349	1
	32.5029		27.8978	25.5952	23.2926	20.9900	18.6874	16.3848	14.0823	11.7797	9.3007	7.1749	4.8997	2.6344	.6700	.002969	1
	32.4800		27.8748	25.5722	23.2696	20.9670	18.6644	16.3619	14.0593	11.7567	9,4541	7.1520	4.8762	2.6119	.6546	.002633	
	32.4575		27.8523	25.5497	23.2471	20.9446	18.6420	16.3394	14.0368	11.7342	9.4317	7.1295	4.8533	2.5899	.6397	.002336	1
	32.4355		27.8303	25.5277	23.2252	20.9226	18.6200	16.3174	14.0148	11.7122	9.4097	7.1075	4.8310	2.5684	.6253 .6114	.002073	1
	32.4140	30.1114	27.8088	25.5062	23.2037	20.9011	18.5985	16.2959	13,9933	11.6907	9.3882	7.0860	4.7877	2.5268	.5979	.001841	ł
	32.3929		27.7878	25.4852		20.8800	18.5774	16.2748	13,9723	11.6697	9.3671	7.0650	4.7667	2.5068	.5979	.001635 .001453	1
4.9	32.3723		27.7672	25.4646	23.1620	20.8594	18.5568	16.2542	13.9516	11.6491	9.3465	7.0444	4.7462	2.4871	.5721	.001291	
	32.3521		27.7470	25.4444		20.8392	18.5366	16.2340	13.9314	11.6289	9.3263	7.0242	4.7261	2.4679	.5598	001291	1
	32.3323		27.7271	25.4246		20.8194	18.5168	16.2142	13.9116	11.6091	9.3065	7.0044	4.7064	2.4679	.5598	.001148 .001021	
	52.0525		~		25.1220	~0.0174	10.5100	10.2142	13.7110	11.0001	2.5005	7.0044	/ 004	2.9971	.5470	.001021	

921

APPENDICES

.

Appendix 9.E. Continued

1

N	N× 10-15	N×10-14	N×10-13	N × 10-12	N×10-11	N× 10-10	N×10-9	N×10-8	N×10-7	N×10-4	N×10-5	N×10-4	N×10-3	N×10-1	N × 10-1	N
5.2 5.3	32.3129	30.0103	27.7077 27.6887	25.4051	23.1026	20.8000	18.4974	16.1948	13.8922	11.5896	9.2871	6.9850	4.6871	2.4306	.5362	.0009086
5.4	32.2752	29.9726	27.6700	25.3861	23.0835	20.7809	18.4783	16.1758	13.8732	11.5706	9.2681	6.9659	4.6681	2.4126	.5250	.0008086
5.5	32.2568	29.9542	27.6516	25.3491	23.0465	20.7439	18.4413	16.1387	13.8545	11.5519	9.2494	6.9473 6.9289	4.6495	2.3948	.5140 .5034	.0007198 .0006409
5.6	32.2388	29.9362	27.6336	25.3310	23.0285	20.7259	18.4233	16.1207	13.8181	11.5155	9.2130	6.9109	4.6134	2.3604	.4930	.0005708
5.7	32.2211	29.9185	27.6159	25.3133	23.0108	20.7082	18.4056	16.1030	13.8004	11.4978	9.1953	6.8932	4.5958	2.3437	.4830	.0005085
5.8 5.9	32.2037	29.9011 29.8840	27.5985	25.2959	22.9934	20.6908	18.3882	16.0856	13.7830	11.4804	9.1779	6.8758	4.5785	2.3273	.4732	.0004532
5.9 6.0	32.1698	29.8640	27.5814 27.5646	25.2789 25.2620	22.9763 22.9595	20.6737	18.3711	16.0685 16.0517	13.7659	11.4633	9.1608	6.8588	4.5615	2.3111	.4637	.0004039
6.1	32.1533	29.8507	27.5481	25.2455	22.9429	20.6369	18.3378	16.0352	13.7491	11.4465	9.1440 9.1275	6.8420 6.8254	4.5448 4.5283	2.2953	.4544	.0003601
6.2	32.1370	29.8344	27.5318	25.2293	22.9267	20.6241	18.3215	16.0189	13.7163	11.4138	9.1112	6.8092	4.5285	2.2797 2.2645	.4454 .4366	.0003211 .0002864
6.3	32.1210	29.8184	27.5158	25.2133	22.9107	20.6081	18.3055	16.0029	13.7003	11.3978	9.0952	6.7932	4,4963	2.2494	.4280	.0002555
6.4	32.1053	29.8027	27.5001	25.1975	22.8949	20.5923	18.2898	15.9872	13.6846	11.3820	9.0795	6.7775	4.4806	2.2346	.4197	.0002279
6.5	32.0898	29.7872 29.7719	27.4846 27.4693	25.1820 25.1667	22.8794 22.8641	20.5768 20.5616	18.2742	15.9717	13.6691	11.3665	9.0640	6.7620	4.4652	2.2201	.4115	.0002034
6.7	32.0595	29.7569	27.4543	25.1517	22.8041	20.5616	18.2590 18.2439	15.9564 15.9414	13.6538 13.6388	11.3512 11.3362	9.0487 9.0337	6.7467 6.7317	4.4501	2.2058	.4036	.0001816
6.8	32.0446	29.7421	27.4395	25.1369	22.8343	20.5317	18.2291	15.9265	13.6240	11.3302	9.0337	6.7169	4.4351 4.4204	2.1917 2.1779	.3959 .3883	.0001621
6.9	32.0300	29.7275	27.4249	25.1223	22.8197	20.5171	18.2145	15.9119	13.6094	11.3068	9.0043	6.7023	4.4059	2.1643	.3810	.0001293
7.0	32.0156	29.7131	27.4105	25.1079	22.8053	20.5027	18.2001	15.8976	13.5950	11.2924	8.9899	6.6879	4.3916	2.1508	.3738	.0001155
7.1	32.0015 31.9875	29.6989	27.3963	25.0937	22.7911	20.4885	18.1860	15.8834	13.5808	11.2782	8.9757	6.6737	4.3775	2.1376	.3668	.0001032
7.3	31.9873	29.6849 29.6711	27.3823 27.3685	25.0797 25.0659	22.7771 22.7633	20.4746 20.4608	18.1720 18.1582	15.8694 15.8556	13.5668	11.2642	8.9617	6.6598	4.3636	2.1246	.3599	.00009219
7.4	31.9601	29.6575	27.3549	25.0523	22.7497	20.4608	18.1446	15.8420	13.5530 13.5394	11.2504 11.2368	8.947 <u>9</u> 8.9343	6.6460 6.6324	4.3500 4.3364	2.1118 2.0991	.3532 .3467	.00008239
7.5	31.9467	29.6441	27.3415	25.0389	22.7363	20.4337	18.1311	15.8286	13.5260	11.2234	8.9209	6.6190	4.3231	2.0867	.3403	.00006583
7.6	31.9334	29.6308	27.3282	25.0257	22.7231	20.4205	18.1179	15.8153	13.5127	11.2102	8.9076	6.6057	4.3100	2.0744	.3341	.00005886
7.7	31.9203	29.6178	27.3152	25.0126	22.7100	20.4074	18.1048	15.8022	13.4997	11.1971	8.8946	6.5927	4.2970	2.0623	.3280	.00005263
7.8	31.9074	29.6048	27.3023 27.2895	24.9997	22.6971	20.3945	18.0919	15.7893	13.4868	11.1842	8.8817	6.5798	4.2842	2.0503	.3221	.00004707
8.0	31.8947 31.8821	29.5921	27.2895	24.9869 24.9744	22.6844 22.6718	20.3818 20.3692	18.0792	15.7766	13.4740 13.4614	11.1714	8.8689 8.8563	6.5671 6.5545	4.2716 4.2591	2.0386 2.0269	.3163 .3106	.00004210
8.1	31.8697	29.5671	27.2645	24.9619	22.6594	20.3568	18.0542	15.7516	13.4490	11.1464	8.8439	6.5421	4.2468	2.0155	.3050	.00003370
8.2	31.8574	29.5548	27.2523	24.9497	22.6471	20.3445	18.0419	15.7393	13.4367	11.1342	8.8317	6.5298	4.2346	2.0042	2996	.00003015
8.3	31.8453	29.5427	27.2401	24.9375	22.6350	20.3324	18.0298	15.7272	13.4246	11.1220	8.8195	6.5177	4.2226	1.9930	.2943	.00002699
8.4	31.8333	29.5307	27.2282	24.9256	22.6230	20.3204	18.0178	15.7152	13.4126	11.1101	8.8076	6.5057	4.2107	1.9820	.2891	.00002415
8.5	31.8215 31.8098	29.5189	27.2163 27.2046	24.9137	22.6112	20.3086	18.0060	15.7034	13.4008 13.3891	11.0982	8.7957 8.7840	6.4939 6.4822	4.1990	1.9711	.2840	.00002162
8.7	31.7982	29.4957	27.1931	24.8905	22.5879	20.2853	17.9827	15.6801	13.3776	11.0750	8.7725	6.4707	4.1759	1.9498	.2742	.00001733
8.8	31.7868	29.4842	27.1816	24.8790	22.5765	20.2739	17.9713	15.6687	13.3661	11.0635	8.7610	6.4592	4.1646	1.9393	.2694	.00001552
8.9	31.7755	29.4729	27.1703	24.8678	22.5652	20.2626	17.9600	15.6574	13.3548	11.0523	8.7497	6.4480	4.1534	1.9290	.2647	.00001390
9.0	31.7643	29.4618	27.1592	24.8566	22.5540	20.2514	17.9488	15.6462	13.3437	11.0411	8.7386	6.4368	4.1423	1.9187	.2602	.00001245
9.1	31.7533 31.7424	29.4507 29.4398	27.1481 27.1372	24.8455	22.5429	20.2404	17.9378	15.6352	13.3326 13.3217	11.0300	8.7275 8.7166	6.4258 6.4148	4.1313 4.1205	1.9087	.2557	.00001115
9.3	31.7315	29.4290	27.1264	24.8238	22.5212	20.2186	17.9160	15.6135	13.3109	11.0083	8.7058	6.4040	4.1098	1.8888	.2470	.000008948
9.4	31.7208	29.4183	27.1157	24.8131	22.5105	20.2079	17.9053	15.6028	13.3002	10,9976	8.6951	6.3934	4.0992	1.8791	.2429	.000008018
9.5	31.7103	29.4077	27.1051	24.8025	22.4999	20.1973	17.8948	15.5922	13.2896	10.9870	8.6845	6.3828	4.0887	1.8695	.2387	.000007185
9.6	31.6998	29.3972	27.0946	24.7920	22.4895	20.1869	17.8843	15.5817	13.2791	10.9765	8.6740	6.3723	4.0784	1.8599	.2347	.000006439

A STATE OF A

Letter the second

Appendix 9.E. Continued

	Z/ /=	N× 10-15	N× 10-14	N×10 ⁻¹³	N× 10-12	N×10-11	N×10-10	N×10-9	N×10-8	N×10-7	N×10-6	N×10-5	N×10-4	N×10-3	N×10-2	N×10-1	N
9	.7	31.6894	29.3868	27.0843	24.7817	22,4791	20.1765	17.8739	15.5713	13.2688	10.9662	8.6637	6.3620	4.0681	1.8505	.2308	.000005771

GROUNDWATER AND WELLS

922

20. **1**. 1

Appendix 9.E. Continued

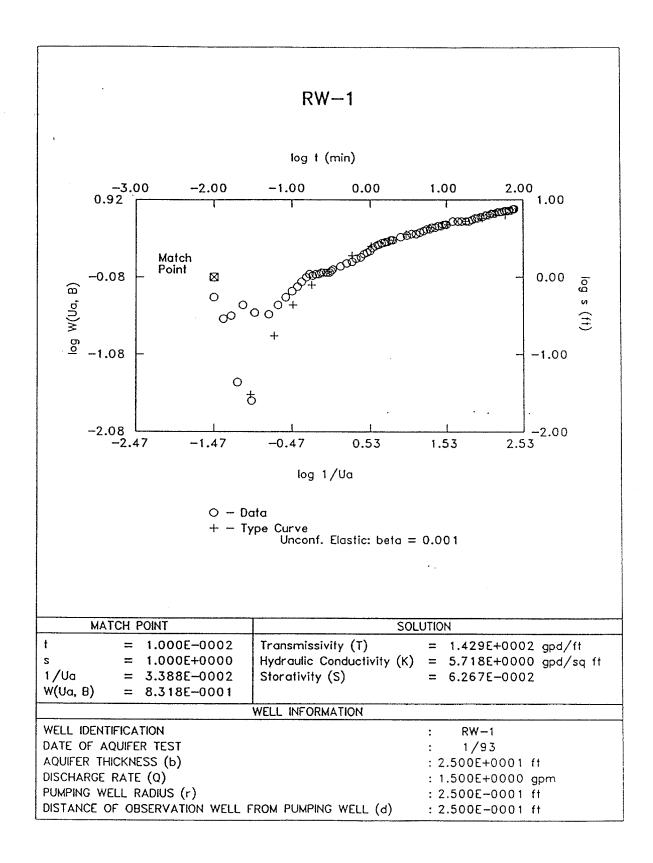
Descenter to a supplication of the second

N N N× 10-15			1					N× 10-7	N× 10-4		N×10-4	N×10-1	N× 10-2	N×10-1	N
9.7 31.6894 9.8 31.6792 9.9 31.6690	1 29.3/00	1 27.0740	24.//14	22 4688	20 1663 1	17 8637	15 5611	1 12 2695	100550	8.6534	6.3517	4.0579	1.8412	.2308 .2269 .2231	.000005771 .000005173 .000004637

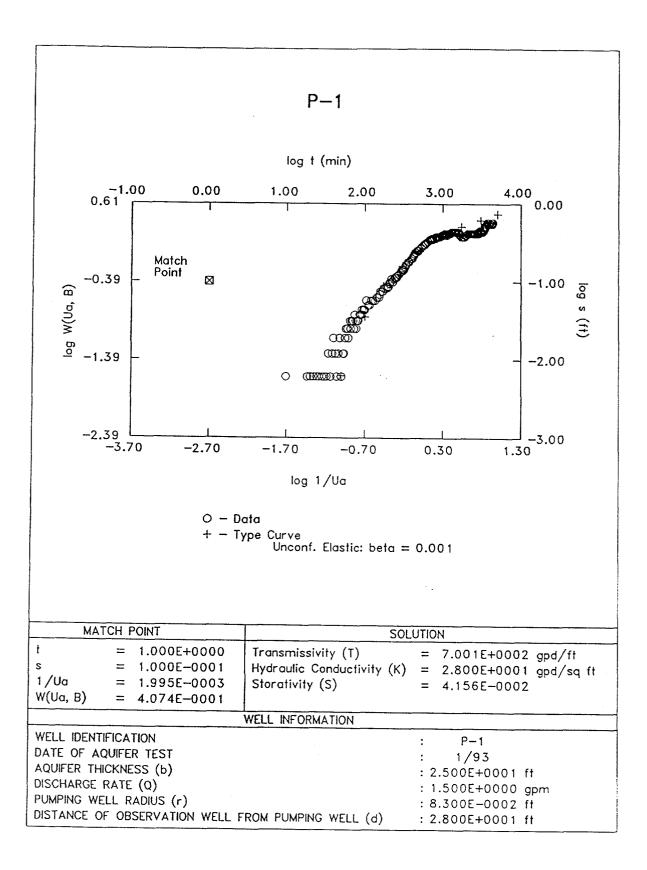
in a second a second a second

× . .

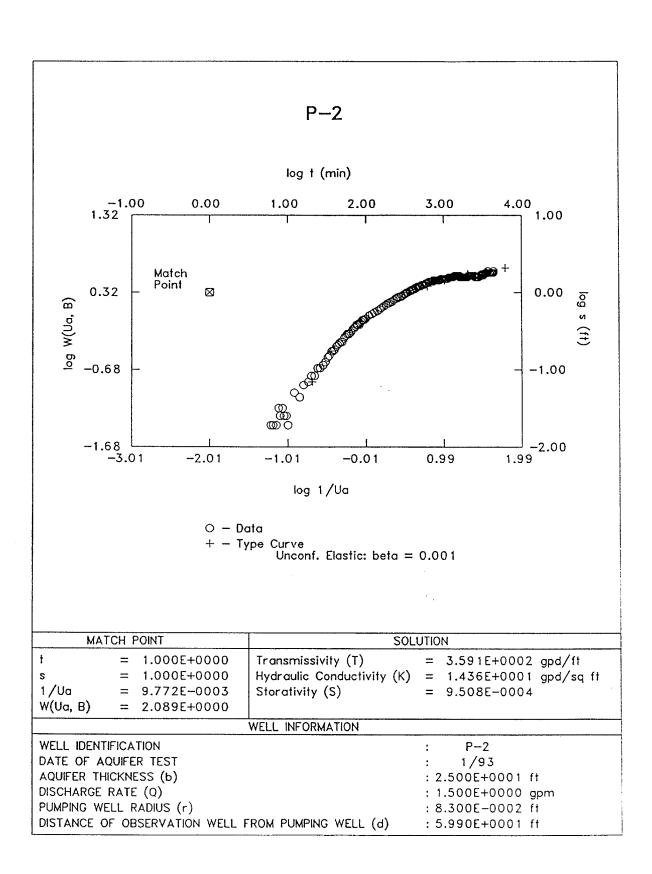
Sec. Destations


NOTE: See page 218 for Theis equation and definitions of terms.

Values of W(u) for u between 1×10^{-15} and 1×10^{-3} computed by R.G. Kazmann assisted by M.M. Evans, U.S. Geological Survey; values for u between 1×10^{-1} and 9.9 adapted from Tables of Exponential and Trigonometric Integrals.


el.

From Water Supply Paper 887, U.S. Geological Survey, 1942.


entre La constanción de la La constanción de la c

2 E I

in industrial de la de

.

.

Appendix B Outline Specifications PROJECT TABLE OF CONTENTS

., <u>i</u>t.

i di

DIVISION 00 -- DOCUMENTS

00101 INSTRUCTIONS TO BIDDERS (CONSTRUCTION CONTRACT)

DIVISION 01 -- GENERAL REQUIREMENTS

01010 GENERAL PARAGRAPHS

01011 ADDITIONAL GENERAL PARAGRAPHS

01300 SUBMITTALS

01400 QUALITY CONTROL

01560 ENVIRONMENTAL PROTECTION

01561 EROSION AND SEDIMENT CONTROL

01730 OPERATION AND MAINTENANCE DATA

DIVISION 02 -- SITE WORK

02050 DEMOLITION AND REMOVAL

02220 EXCAVATION, BACKFILLING, AND COMPACTING FOR UTILITIES

02571 PAVEMENT REMOVAL AND REPLACEMENT

02610 GRAVEL PAVING (VA & NC)

02661 EXTERIOR WATER DISTRIBUTION SYSTEM (MINOR CONSTRUCTION)

02730 EXTERIOR SANITARY SEWER SYSTEM

02900 GROUNDWATER RECOVERY SYSTEM

02901 GROUNDWATER TREATMENT SYSTEM

DIVISION 03 -- CONCRETE

03302 CAST-IN-PLACE CONCRETE (MINOR CONSTRUCTION)

DIVISION 05 -- METALS

05500 METAL FABRICATIONS

05510 MOVABLE OPERATIONS PLATFORM

DIVISION 09 -- FINISHES

09900 PAINTING

DIVISION 11 -- EQUIPMENT

11300 POLYMER FEED SYSTEM

11302 PACKED, GRAVITY OIL/WATER SEPARATOR

11303 PUMPS: WATER, CENTRIFUGAL

11304 FLOCCULATION TANK AND APPURTENANCES

11305 SURGE/SETTLING TANK AND APPURTENANCES

11306 MULTI-LAYER SAND FILTERS

11307 LOW PROFILE AIR STRIPPER PACKAGE

11308 CARTRIDGE FILTER UNITS

11309 CARBON ADSORBERS

11310 BACKWASH TANK AND APPURTENANCES

11311 SLUDGE HOLDING TANK AND APPURTENANCES

11312 DEWATERING PRESS

11313 POSITIVE DISPLACEMENT PUMPS

05922255

HADNOT POINT SHALLOW AQUIFER REMEDIAL DESIGN

11315 PNEUMATIC PUMPING SYSTEM

11347 OIL STORAGE TANK

DIVISION 13 -- SPECIAL CONSTRUCTION

13121 PREENGINEERED METAL BUILDINGS

13321 FLOW MEASURING EQUIPMENT

DIVISION 15 -- MECHANICAL

15011 MECHANICAL GENERAL REQUIREMENTS

NOISE, VIBRATION, [AND SEISMIC] CONTROL 15200

15400 PLUMBING SYSTEMS

15487 COMPRESSED AIR SYSTEM

HEATING, VENTILATING, AND COOLING SYSTEMS 15501

15620

UNIT HEATERS AND INFRARED HEATERS INDUSTRIAL VENTILATION AND EXHAUST SYSTEMS (DUCTS AND FANS) 15871

DUCTWORK AND DUCTWORK ACCESSORIES 15895

TESTING/ADJUSTING/BALANCING: HEATING/VENTILATING/COOLING SYSTEMS 15996

DIVISION 16 -- ELECTRICAL

- ELECTRICAL GENERAL REQUIREMENTS 16011
- OVERHEAD ELECTRICAL WORK 16370

16402 INTERIOR WIRING SYSTEMS

16510 INTERIOR LIGHTING

-- End of Project Table of Contents --

Appendix C Preliminary Construction Cost Estimate

APPENDIX C

)

CAT CODE:

BID DATE:

DATE OF ESTIMATE:

UIC:

Summary Report Work Breakdown Final

)

Printing Date: 06/21/93 Database Use 09/02/91

)

)

3

)

ENGINEERING ESTIMATE

)

PROJECT:Hadnot Point Shallow Aquifer Remedial DesignLOCATION:MCB Camp Lejeune, North CarolinaPROJECT SIZE:1.0 LSAUTHORIZED CONSTRUCTION FUNDS:

)

)

		····						
Account		WBS		COST/WBS	TOTAL	TOTAL	TOTAL	TOTAL
Number	ENVIRONMENTAL	UNITS	U/M	UNIT	MU MATL	MU LABOR	MU EQUIP	CONTRACT
				(\$)	COST (\$)	COST (\$)	COST (\$)	COST (\$)
33.01	Mobilization and Preparatory Work	1	LS		2,850	32,751	6,163	41,763
33.02	Monitoring, Sampling, Testing and Analysis	1	LS		0	6,230	55,250	61,480
33.03	Site Work	1	LS		67,968	22,001	62,650	152,620
33.06	Ground Water Collection and Control	1	LS		42,073	70,936	63,205	176,215
33.13	Physical Treatment	1	LS	329,173.20				329,173
33.18	Disposal (Other than Commercial)	1	LS		0	0	0	O /
33.20	Site Restoration	1	LS		55	1,114	156	1,324
33.21	Demobilization	1	LS		1,000	6,314	5,411	12,725
Subtotal Enviror	nmental		J					775,300
Construction Co	ontingency (20%)	·.						155,060
Total Estimate 0	Contract							930,359
Total Estimate C	Contract (Rounded)							930,000

APPENDIX C

1

Summary Report Work Breakdown Final

)

CAT CODE:

BID DATE:

DATE OF ESTIMATE:

UIC:

)

Printing Date: 06/21/93 Database Used: 09/02/93

)

)

)

.

)

)

....

÷

•

ENGINEERING ESTIMATE

ò

PROJECT: Hadnot Point Shallow Aquifer Remedial Design LOCATION: MCB Camp Lejeune, North Carolina

)

PROJECT SIZE: 1.0 LS

)

AUTHORIZED CONSTRUCTION FUNDS:

Account		WBS	1	COST/WBS	TOTAL	TOTAL	TOTAL	TOTAL
Number	ENVIRONMENTAL	UNITS	U/M	UNIT	MU MATL	MU LABOR	MU EQUIP	CONTRAC
	· · · · · · · · · · · · · · · · · · ·			(\$)	COST (\$)	COST (S)	COST (\$)	COST (\$
3.01	MOBILIZATION AND PREPARATORY WORK							
3.01.01	Mobilization of Construction Equipment and Facilities	1.	18		0	1,217	3,681	4.
3.01.03	Preconstruction Submittals/Implementation Plan		LS		2,850	25,650	0.001	28.
3.01.04	Setup/Construct Temporary Facilities		LS		0	884	2,502	20. 3.
3.01.05	Construct Temporary Utilities	1	LS		0	5,000	2,002	5.
3.02	MONITORING, SAMPLING, TESTING AND ANALYSIS							
3.02.05	Sampling, Surface Water/Groundwater/Liquid Waste	1	LS		0	e 120		6.
13.02.09	Laboratory Chemical Analysis	1	LS		0	6.230 0	0 55,250	55
3.03	SITE WORK							
13.03.02	Clearing and Grubbing	0.25	AC					
13.03.03	Earthwork	0.25	LS		0	205	213	
3.03.04	Roads/Parking/Curbe/Walks		1.5			320	411	
13.03.04	Electrical Distribution		LS	1 1	3,186	520	71	3,
13.03.90	Metal Building (40'x65') and Concrete Foundation	\$200	SF Floor		0 64,782	0 20,947	51,809 10,147	51. 95.
					04,702	20,517	12,147	•3,
13.06	GROUND WATER COLLECTION AND CONTROL			1				
3.06.01	Extraction and Injection Wells	•	EA		\$,000	27,000	9,000	45,
3.06.07	Pumping/Collection	1	LS		33,073	43,936	54,205	131,
9.13	PHYDICAL TREATMENT	1				1		
0 13.01	Pitration/Ultrafiltration	2	EA	16100.12	28,000	4,200		32,
3 13 03	Otraining	2	EA	2163.68	4,800	1.527		6.
3.13.04	Congulation/Flocculation/Precipitation	2	EA	22172.00	39,000	5,346		44,
3.13.07	Air Biripping	2	EA	39562.94	71,680	7,448		79,
3.13.12	O#/Water Separation	2	EA	15791.04	27,000	4,582		31,
3.13.20	Cerbon Adsorption - Liquids	2	EA	17600.12	31,000	4.200		35,
3.13.30	Filter Presses	2	EA	40036.68	69.000	11.073		80,
0.10.90	Flow Metter/Recorder Meter	2	EA	4263.66	7.000	1,527		8;
2 12,91	Bubmersible Sump Pump	2	EA	800.46	1,600	191		17
212 12	Mavahle Öperetians Pletform	2	EA	5000	10,000			10.0
3.18	DISPOBAL (OTHER THAN COMMERCIAL)	·						
3.18.03	Transportation to Storage/Disposal Facility	'	LS		0	0	٥	
3.20	SITE RESTORATION							
3 20 01	Earthwork	1	L8	[]	0	85	117	:
3.20.04	Revegetation and Planting	1	18	1	55	97	36	
3.20.08	Post Construction Maintenance	1	LS		0	931	٥	
0.21	DEMOBILIZATION							
3.21.01	flemoval of Temporary Facilities	1	18		٥	1,397	1,050	2.
3.21.02	Removal of Temporary Utilities	1	LS		0	906	700	1,
3.21.04	Demobilization of Construction Equipment and Facilities	1	LS		•	1,217	3,661	4,
0.21,08	Post-Construction Submittals	1	LS		1.000	2,900	0	3,
ublatel Environi	L		L	L				775,300
	itingency (20%)							155.060
ital Estimate Co				l		1		930,359
tal Estimate Co	ntract (Rounded)							930,00

)

1

)

)

PROJECT: Hadnot Point Shallow Aquifer Remedial Design LOCATION: MCB Camp Lejeune, North Carolina

3.01.01 M	COST ITEM DESCRIPTION MOBILIZATION AND PREPARATORY WORK Mobilization of Construction Equipment and Facilities	QUANTITY	UNIT	COST PER	MATL	LABOR	EQUIP	TOTAL	SUB-	ASSUMPTIONS	SOURCE
3.01 M 3.01.01 M	MOBILIZATION AND PREPARATORY WORK	GOANTIT	UNIT		MAIL	LABOR					
3.01.01 M					0.007	0007			1	ASSOMETIONS	SOURCE
3.01.01 M				UNIT	COST	COST	COST	COST	TOTALS		
	Mobilization of Construction Equipment and Facilities	1							~~~~		
		1									
3.01.01.07 E(4									
	EQUIPMENT										
	1 BACKHOE (80 hp)	1	DAY	310.65			310.65	310.65		1 DAY MOBILIZATION	1993 MEANS, P.454
1	1 DOZER (200 hp)		DAY	915.20			915.20	915.20		1 DAY MOBILIZATION	1993 MEANS, P.453
	2 TRACTOR TRAILER TRUCKS	1	DAY	509.75			1,529.25	1,529.25		1.5 DAY MOBILIZATION, 2 TRUCKS	1993 MEANS, P.457
	2 LOW BED TRAILERS		DAY	301.85			905.55	905.55		1.5 DAY MOBILIZATION, 2 TRAILERS	1993 MEANS, P.457
3.01.01.08 OF	DPERATORS								3,660.65		1000 M.E.A.10, 1.401
	2 EQUIPMENT OPERATORS (MEDIUM)	2	DAY	182.28		364.56		364.56	-,	1 DAY MOBILIZATION, 2 OPERATORS	1993 MEANS, P.457 (62% of cost)
	1 BUILDING LABORER	1	HOUR	9.61		115.32		115.32		1.5 DAY MOBILIZATION	1991 CES (UNBURDENED LABOR)
	2 TRUCK DRIVERS (HEAVY)	1	DAY	147.56		442.68		442.68		1.5 DAY MOBILIZATION, 2 DRIVERS	1993 MEANS, P.457 (62% of cost)
3.01.01.09 IN	NITIAL ASSEMBLY AND SETUP	Ĭ		147.00		442.00		442.00	922.56	TS DAT MODILIZATION, 2 DRIVERS	1993 MEANS, P.457 (62% OI COSI)
	2 BUILDING LABORERS	15	HOUR	9.61		153.76		153.76	522.50	1 DAY SET UP, 2 LABORERS	1991 CES (UNBURDENED LABOR)
	1 PROJECT ENGINEER	1	HOUR	17.60		140.80		140.80		1 DAY SET UP, 1 ENGINEER	1991 CES (UNBURDENED LABOR)
	···· ·····					140.00		140.00	294.56		Instructs (CABCADENED EXBOR)
	, <u>, , , , , , , , , , , , , , , , , , </u>	1									
	SUBTASK TOTAL	1			0.00	1,217,12	3,660,65		4,877.77		
		1									
		1	1								
3.01.03 Pr	Preconstruction Submittals/Implementation Plan]						-			
		T									
3.01.03.04	ENVIRON, PRECONSTRUCTION PLAN		LS	3,000.00	300.00	2,700.00		3,000.00		MAT'L 10% TOTAL \$; >40 HRS TO PREPARE	ENGIN ESTIM.; BAKER P-2 RATE
3.01.03.05	SEDIMENT CONTROL PLAN		LS	4,000.00	400.00	3,600.00		4,000.00		MAT'L 10% TOTAL \$; >60 HRS TO PREPARE	ENGIN ESTIM.; BAKER P-2 RATE
3.01.03.08	SITE H&S PLAN		LS	3,000.00	300.00	2,700.00		3,000.00		MAT'L 10% TOTAL \$; >40 HRS TO PREPARE	ENGIN ESTIM .; BAKER P-2 RATE
3.01.03.13	GENERAL SITE WORK PLAN		LS	8,000.00	800.00	7,200.00		8,000.00		MAT'L 10% TOTAL \$; > 120 HRS TO PREPARE	ENGIN ESTIM.; BAKER P-2 RATE
3.01.03.14	CONSTRUCTION QC PLAN	1	LS	3,000.00	300.00	2,700.00		3,000.00		MAT'L 10% TOTAL \$; >40 HRS TO PREPARE	ENGIN ESTIM.; BAKER P-2 RATE
3.01.03.25	CONSTRUCTION SCHEDULING		LS	1,500,00	150.00	1,350.00		1,500.00		MAT'L 10% TOTAL \$; > 20 HRS TO PREPARE	ENGIN ESTIM.; BAKER P-2 RATE
3.01.03.26	TRAINING CERTIFICATION		LS	500.00	50.00	450.00		500.00		MAT'L 10% TOTAL \$; ~8 HRS TO PREPARE	ENGIN ESTIM.; BAKER P-2 RATE
3.01.03.27	MEDICAL SURVEILLANCE CERTIFICATION		LS	500.00	50.00	450.00		500.00		MAT'L 10% TOTAL \$; ~8 HRS TO PREPARE	ENGIN ESTIM.; BAKER P-2 RATE
3.01.03.28	PERMITS	1	LS	5,000.00	500.00	4,500.00		5,000.00		MAT'L 10% TOTAL \$; >70 HRS TO PREPARE	ENGIN ESTIM.; BAKER P-2 RATE
		1									
	SUBTASK TOTAL				2,850.00	25,650.00	0.00		28,500.00		
	the state of the second st	4									
3.01.04 Se	ietup/Construct Temporary Facilities	4									
	NITIAL ASSEMBLY AND SETUP										
	2 BUILDING LABORERS	48	ноия	9,61		461.28		461.28		3 DAYS FOR SET UP; 2 LABORERS	1991 CES (UNBURDENED LABOR)
ł	1 PROJECT ENGINEER	1	HOUR	17.60		422.40		422.40		3 DAYS FOR SET UP; 1 ENGINEER	1991 CES (UNBURDENED LABOR)
	BAILER RENTAL			17.00		-766-17					
3.01.04.01	1 OFFICE TRAILER (32'x8') - RENT		мо	231.00			1,388.00	1,386.00		ASSUME 6 MONTH RENTAL	1993 MEANS, P. 12
3.01.04.01	1 TOILET - TRAILER - RENT	•	мо	188.00			1,116.00	1,116.00		ASSUME 6 MONTH RENTAL	1993 MEANS, P. 18
3.01.04.10		ľ		150.00			.,. 10.00			· · · · · · · · · · · · · · · · · · ·	•
 											· · · · · · · · · · · · · · · · · · ·
1	SUBTASK TOTAL				0.00	883.68	2,502.00		3,385.68		
							-,		-,		

2

.

2

.

.

)

)

)

)

PROJECT: Hadnot Point Shallow Aquifer Remedial Design LOCATION: MCB Camp Lejeune, North Carolina

Account	·····						······				
Number				COST					1		
Number	COST ITEM DESCRIPTION	QUANTITY	UNIT	PER	MATL	LABOR	EQUIP	TOTAL	SUB-	ASSUMPTIONS	SOURCE
				UNIT	COST	COST	COST	COST	TOTALS		
		1						1			
33.01.05	Construct Temporary Utilities	1				1	1		1		
		7							Í		
33.01.05.02	POWER CONNECTION	1 1	LS			2,500.00	1	2,500.00		ASSUME ALL LABOR	
33.01.05.03	TELEPHONE/COMMUN HOOKUP		LS			2,500.00		2,500.00			ENGIN ESTIMATE
						2,000.00		2,500.00		ASSUME ALL LABOR	ENGIN ESTIMATE
	SUBTASK TOTAL				0.00	5,000.00	0.00		5,000.00		
					0.00	3,000,00	0.00		5,000.00		
	TASK TOTAL				2,850.00	32,750.80	6,162.65		44 700 45		
					2,000,00	32,730.00	0,102.00		41,763.45		
33.02	MONITORING, SAMPLING, TESTING AND ANALYSIS										
L											
33.02.05	Sampling, Surface Water/Groundwater/Liquid Waste	4									
	TREATMENT SYSTEM SAMPLING										
	1 ENVIRON SCIENTIST	160	HR	35.00		5,600.00		5,600.00		20 SAMPLING EVENTS, 8 HOURS EACH	ENGIN ESTIM.; BAKER P-1 RATE
	RECOVERY WELL SAMPLING - 9 WELLS										
	2 ENVIRON SCIENTISTS	18	HR	35,00		630.00		630.00		9 WELLS, 1 HR/WELL, 2 PEOPLE	ENGIN ESTIM.; BAKER P-1 RATE
[]	SUBTASK TOTAL				0.00	6,230.00	0.00		6,230.00		
33.02.09	Laboratory Chemical Analysis	1									
		1									
	TREATMENT SYSTEM START-UP									5 SAMPLES/EVENT: BIWEEKLY SAMPLING	RA WORK PLAN
	VOCs (601/602)	100	EA	180.00			18,000.00	18,000.00		FIRST MONTH; THEN MONTHLY SAMPLING	ENGIN ESTIMATE
	METALS (200 SERIES)	100		225.00			22,500.00	22,500.00		FOR REMAINING 11 MONTHS - FOR A	ENGIN ESTIMATE
	OIL & GREASE	100		65.00			6,500.00	6,500.00		TOTAL OF 20 SAMPLING EVENTS	
	TOS	100		15.00			1,500.00	1,500.00		TOTAL OF AV WARD LITTLETERTY	ENGIN ESTIMATE
	TSS	100		15.00			1,500.00	1,500.00			
	RECOVERY WELL SAMPLING		<u>-</u> "	10.00			1,000.00	1,000.00			LINGIN LOTIMATE
	CLP VOCe AND METALS	10	e.	525.00			5,250.00	5,250.00			
	OLF VOCE AND METALS	10	CA .	025.00			5,200.00	5,250,00			
	SUBTASK TOTAL				0.00	0.00	55,250.00		55,250.00		· ·
	OVDINON I UTAL				0,00	0.00	55,250.00		55,250.00		
· · · · · · · · · · · · · · · · · · ·		r i									***************************************
	TASK TOTAL			1	0.00	6,230.00	55,250.00		61,480.00		•//////////////////////////////////////

)

)

)

)

)

)

)

)

)

.

)

)

.

)

PROJECT: Hadnot Point Shallow Aquifer Remedial Design LOCATION: MCB Camp Lejeune, North Carolina

Account	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	ř.	0007			1	r	r		
Number	COST ITEM DESCRIPTION	QUANTITY	UNIT	PER UNIT	MATL COST	LABOR	EQUIP	TOTAL	SUB-	ASSUMPTIONS	SOURCE
		+		UNIT		COST	COST	COST	TOTALS		
33.03	SITE WORK	1	1								
33.03.02	Clearing and Grubbing	1							[
	CLEAR AND GRUB	0.25	AC	1,669.80		204.95	212.50	417.45		TREATMENT AREAS ONLY	1991 CES, #BEBC
-	SUBTASK TOTAL				0.00	204.95	212.50		417.45		
33.03.03	Earthwork	-									
3.03.03	Carthwork	-									
33.03.03.02	EXCAVATION/FILL	INCLUDED IN	I OTHER SI	I ECTIONS WI	I TH PIPE INST						
33.03.03.07	GRADING	800		0.76		256.00	352.00	608.00		ASSUME 1'DEEP, TWO 60'x60' AREAS	1991 CES, #BGAEA
33.03.03.08	COMPACTION	267	CY	0.46		64.00	58.67	122.67		ASSUME 1'DEEP, TWO 60'x60' AREAS	1991 CES
	SUBTASK TOTAL				0.00	320.00	410.67		730.67		
		4									
33.03.04	Roads/Parking/Curbs/Walks	4									
33.03.04.01	BITUMINOUS SURFACING - NORTH	133	sy	11.20	1,026.67	433.33	33.33	1,493.33		BASED ON 4' WIDE x 300 ' LONG	1991 CES
3.03.04.01	BITUMINOUS SURFACING - SOUTH	18		11.20	136.89	57.78	4.44	199.11		BASED ON 4' WIDE x 40 ' LONG	1991 CES
33.03.04.03	AGGREGATE SUFACING - NORTH ONLY	76		14.67	1,073.88	8.36	32.68	1,114.92		BASED ON 12' x 340' x 0.5' THICK	1991 CES: #57 GRAVEL
33.03.04.08	CURBS AND GUTTERS - SOUTH ONLY	10	LF	6.75	37.00	30.10	0.40	67.50		10' LENGTH IN SOUTHERN AREA	1991 CES
33.03.04.12	BARRELS WITH FLASHERS	20	EA	45.60	912.00			912.00		1 BARREL/10' FOR 200'; 6 MONTH RENTAL	1993 MEANS, #016-420-1620
	SUBTASK TOTAL				3,186.44	529.57	70.86		3,786.86	· · · · · · · · · · · · · · · · · · ·	
					enski je sa konstanti i stalji i sa konstanti je sa konstanti je sa konstanti i sa konstanti i sa konstanti i s						
3.03.06	Electrical Distribution]									
	POWER DISTRIBUTION - 2 BUILDINGS/EQUIPMENT	1	LS				51,809.40			15% OF BUILDING & EQUIP COSTS	1993 MEANS
	SUBTASK TOTAL	<u> </u>			0.00	0.00	51,809.40		0.00		
3.03.90	Metal Building (40'x65') and Concrete Foundation	Ĵ									
	2 BUILDINGS - STEEL/ALUM FRAME 2 CONCRETE FOUNDATIONS	5200 5200		16.21 2.22	58,854.00 5,928.00	15,908.00 5,038.80	9,554.00 592.80	84,316.00 11,559.60		EACH 2600 SF SIMPLE BUILDING FOUNDATION	VENDOR QUOTE 1993 MEANS, #131-207-0800
	SUBTASK TOTAL				64,782.00	20,946.80	10,146.80		95,875.60		
	TASK TOTAL				67,968.44	22,001.32	62,650.22		100,810.58		

)

)

)

)

)

)

COSTING BACKUP FOR FINAL ENGINEERING ESTIMATE

)

)

)

PROJECT: Hadnot Point Shallow Aquifer Remedial Design

LOCATION: MCB Camp Lejeune, North Carolina

Account			1	COST			· · · · · · · · · · · · · · · · · · ·	······	· · · · · · · · · · · · · · · · · · ·	The second s	Y
Number	COST ITEM DESCRIPTION	QUANTITY	UNIT	PER	MATL	LABOR	EQUIP	TOTAL	SUB-	ASSUMPTIONS	SOURCE
				UNIT	COST	COST	COST	COST	TOTALS		1
	GROUND WATER COLLECTION AND CONTROL										
33.06.01	Extraction and Injection Wells										
		Т									
	RECOVERY WELLS - SHALLOW	9	EA	5.000.00	9.000.00	27,000.00	9,000.00	45,000.00		DIVISION OF MATL/LAB/EQUIP ESTIMATED	ENGIN ESTIMATE
1											
								· · · · · · · · · · · · · · · · · · ·			
	SUBTASK TOTAL			{ }	9.000.00	27.000.00	9,000.00		45,000.00	1	
					0,000.00	1,000,00	0,000.00		40,000.00		
33.06.07	Pumping/Collection										
		-									
33.06.07.01	PUMPING - WELL PUMP W/ CONTROLLER		EA	5,600.00		5,400.00	45,000.00	50,400.00			
	-		EA		4 070 00					MAJORITY OF COST IS FOR EQUIPMENT	ENGIN ESTIMATE
33.06.07.02	MANHOLES, VALVES, BOXES			671.73	4,276.08	919.08	850.41	6,045.57		PRECAST, 48" DIA, W/FRAME & COVER	1991 CES, #CGMV
33.06.07.03	PIPING - HPDE 2" DIA	2950		3.50	6,195.00	4,130.00		10,325.00		N-1500'; S-1450'; 60/40 - MATL/LABOR	ENGIN ESTIMATE
	PIPING - PVC (SCH 80) 6" DIA	2950		10.20	18,054.00	12,035.00		30,090.00		N-1500'; S-1450'; 60/40 - MATL/LABOR	ENGIN ESTIMATE
	PIPING - PVC 3" DIA (FORCE MAINS)	1200	LF	1.29	792.00	756.00		1,548.00		N-700'; S-500';	1991 CES, #QLN! .
	CONNECTIONS/FITTINGS	1 1	LS	6,294.45	3,756.15	2,538.30		6,294,45		ASSUME 15% OF PIPING COSTS	ENGIN ESTIMATE
	PIPE TRENCH EXCAV, BACKFILL, COMPACT	922		4.35		2,407.00	1,604.67	4.011.67		3' DEEP x 2' WIDE:	1991 CES. #BQFAP
	3 RAILROAD BORES - NORTH ONLY	150		150.00		15,750.00	6,750.00	22,500.00		EACH 50' WIDE, 70/30 - LAB/EQUIP	ENGIN ESTIMATE
			L 1	100.00		10,100.00	0,700.00	22,000.00			Endit Edition E
					22.070.00		64 005 00				
	SUBTASK TOTAL				33,073.23	43,936.38	54,205.08		131,214.69		
	TASK TOTAL				42,073.23	70,936.38	63,205.08		176,214.69		
					42,073.23	70,930.30	03,205.08		1/0,214.09		
										1	
<u>13.13</u>	PHYSICAL TREATMENT										
	Filtration/Ultrafiltration										· · · ·
	Straining										
		1		1 1	1 1	•	1	1 1	•		
	Coagulation/Flocculation/Precipitation										
	Air Stripping	SEE OTHER E	ACKUP SI	ICCI FUR AL	LL OF IMESE	TOTALS					
	Oil/Water Separation		1				1		ı		
33, 13, 20	Carbon Adsorption - Liquids										
33, 13, 30	Filter Presses	1									1
13.13.90	Flow Metter/Recorder Meter										1
	Submersible Sump Pump										
	Movable Operations Platform										
33,13,82	Niovable Operatoris Francish										
		1	I	1 1	i I	1	1	1	1	1	1

)

)

)

)

PROJECT: Hadnot Point Shallow Aquifer Remedial Design

LOCATION: MCB Camp Lejeune, North Carolina

)

-

Account				COST		1			[······································	1
Number	COST ITEM DESCRIPTION	QUANTITY	UNIT	PER	MATL	LABOR	EQUIP	TOTAL	SUB-	ASSUMPTIONS	SOURCE
l			1	UNIT	COST	COST	COST	COST	TOTALS		SOURCE
		1	1						101/120		
B3.18	DISPOSAL (OTHER THAN COMMERCIAL)										
33.18.03	Transportation to Storage/Disposal Facility	1					******			NOT USED	
		T									
	PUMPING/HAULING OF LIQUIDS/SED/SLUDGE				0.00	0.00	0.00	0.00			
	PIPING - FORCE MAIN	INCLUDED	UNDER GF	ROUNDWAT	ER COLLECT	ION AND CO	NTROL SECTIC	N			
		1	F								
	TASK TOTAL	L			0.00	0.00	0.00		0.00		
		1									
L	SITE RESTORATION										
Charles of the local data and th											
33.20.01	Earthwork			1							
		4									
	00.40.00	1									
	GRADING	267	сү	0.76		85.33	117.33	202.67			
22.00.04		267	сү	0.76		85.33	117.33	202.67			
33.20.04	GRADING Revegetation and Planting	267	сү	0.76		85.33	117.33	202.67			
33.20.04	Revegetation and Planting										
33.20.04		267 8.534		0.76 29.05	54.56	85.33 97.03	117.33 38.22	202.67 189.81			1993 MEANS, #029-308-4800
	Revegetation and Planting SEEDING/MULCH/FERTILIZER				54.56						1993 MEANS, #029-308-4800 °
	Revegetation and Planting				54.56						1993 MEANS, #029-308-4800 °
	Revegetation and Planting SEEDING/MULCH/FERTILIZER Post Construction Maintenance	8.534	MSF		54.56	97.03		189.81			
	Revegetation and Planting SEEDING/MULCH/FERTILIZER Post Construction Maintenance CLEAN-UP	8.534			54.56						1993 MEANS, #029-308-4800 ° NGIN ESTIMATE
33.20.06	Revegetation and Planting SEEDING/MULCH/FERTILIZER Post Construction Maintenance CLEAN-UP	8.534	MSF		54.56	97.03		189.81	1,323.68		

)

)

. .

)

)

. <u>1</u>.

)

)

)

PROJECT: Hadnot Point Shallow Aquifer Remedial Design

LOCATION: MCB Camp Lejeune, North Carolina

Account Number	COST ITEM DESCRIPTION	QUANTITY	UNIT	COST PER UNIT	MATL COST	LABOR COST	EQUIP COST	TOTAL COST	SUB- TOTALS	ASSUMPTIONS	SOURCE
B3.21	DEMOBILIZATION										
	Removal of Temporary Facilities	ļ									
33.21.01	nemoval of remporary raciities	ļ	1								
	OFFICE TRAILER/TOILET/BARRICADES	1	LS			1,396.80	1,050.00	2,446.80			
	SUBTASK TOTAL				0.00	1,396.80	1,050.00		2,446.80		······································
							.,		2,440.00		
33.21.02	Removal of Temporary Utilities SITE LIGHTING/POWER/TELEPHONE	1	LS			800.00	700.00	1,500.00			
								1,000.00			
	SUBTASK TOTAL				0.00	800.00	700.00		1,500.00		
33.21.04	Demobilization of Construction Equipment and Facilities										
	CONSTRUCTION EQUIPMENT/DISASSEMBLY				0.00	1,217.12	3,660.65	4,877.77			
	SUBTASK TOTAL				0.00	1,217.12	3,660.65		4,877.77		
13,21.08	Post-Construction Submittels										
	PUNCH LIST FINAL QA/QC REPORTS CONSTRUCTION DOCUMENTATION REPORT	s 1 1	LS LS		250.00 250.00 250.00	300.00 1,000.00 1,000.00		550.00 1,250.00 1,250.00			
	AS-BUILT DWGS	1	LS		250.00	600.00		850.00			1
	SUBTASK TOTAL				1,000.00	2,900.00	0.00		3,900.00		
	TASK TOTAL				1,000.00	6,313.92	5,410.65		12,724.57		

)

)

)

ò

)

-

)

HADNOT POINT INDUSTRIAL AREA

HPIA GROUNDWATER OPERABLE UNIT LOW PROFILE AIR STRIPPING TREATMENT SYSTEM DIRECT COST BREAKDOWN: DIVISION 11 - EQUIPMENT

+2

 $(x_{i},x_{i}) = (-1)^{i} e_{i} \theta_{i}$

	COST COMPONENT	QUANTITY		UNITOOST	TOTAL COST	
331390		QUALITI	00013	01111 COST	TOTALCOST	REFERENCE/SOURCE
571230		1	EACH	\$3,500.00	\$3,500.00	VENDOR QUOTE
	METER/RECORDER INSTALLATION	16	HOURS	\$47.73	\$763.68	RICHARDSONS ENGINEERING SERVICES, 1986
331304						AND MEANS, 1993 PLUMBER W/ 1.15 H&S FACTOR
LACICS	11B. POLYMER MAKE-UP/FEED SYSTEM POLYMER SYSTEM INSTALLATION	1	EACH	\$4,000.00	\$4,000.00	VENDOR QUOTE
]	TOUTMERSTSTEM INSTALLATION	16	HOURS	\$47.73	\$763.68	RICHARDSONS ENGINEERING SERVICES, 1986
V	11C. FLOCCULATION TANK W/MIXER- 1200 GAL	1	EACH	\$8,000.00	\$8,000.00	AND MEANS, 1993 PLUMBER W/ 1.15 H&S FACTOR VENDOR QUOTE
	TANK/MIXER INSTALLATION	16	HOURS	\$47.73		RICHARDSONS ENGINEERING SERVICES, 1986
				•		AND MEANS, 1993 PLUMBER W/ 1.15 H&S FACTOR
331312	11D. OIL/WATER SEPARATOR	1	EACH	\$12,000.00	\$12,000.00	VENDOR QUOTE
*	SEPARATOR INSTALLATION	24	HOURS	\$47.73	\$1,145.52	RICHARDSONS ENGINEERING SERVICES, 1986
						AND MEANS, 1993 PLUMBER W/ 1.15 H&S FACTOR
	11E. SLUDGE PUMP - AIR OPERATED	1	EACH	\$2,500.00	\$2,500.00	VENDOR QUOTE
	PUMP INSTALLATION	8	HOURS	\$47.73		RICHARDSONS ENGINEERING SERVICES, 1986
721220	11F. SLUDGE HOLDING TANK - 2500 GAL	1	EACH	\$7,500.00	\$7,500.00	AND MEANS, 1993 PLUMBER W/ 1.15 H&S FACTOR VENDOR QUOTE
1000	TANK INSTALLATION	24	HOURS	\$47.73		RICHARDSONS ENGINEERING SERVICES, 1986
						AND MEANS, 1993 PLUMBER W/ 1.15 H&S FACTOR
	11G. PRESS FEED PUMP - AIR OPERATED	1	EACH	\$2,500.00	\$2,500.00	VENDOR QUOTE
	PUMP INSTALLATION	24	HOURS	\$47.73	\$1,145.52	RICHARDSONS ENGINEERING SERVICES, 1986
201221	11H DEWATERING PRESS		RACIT	600 000 00		AND MEANS, 1993 PLUMBER W/ 1.15 H&S FACTOR
221220	11HL DEWATERING PRESS PRESS INSTALLATION	1 60	EACH HOURS	\$22,000.00 \$47.73	\$22,000.00	VENDOR QUOTE
		w	noors	941.13	\$2,863.80	RICHARDSONS ENGINEERING SERVICES, 1986 AND MEANS, 1993 PLUMBER W/ 1.15 H&S FACTOR
331312	11L OIL STORAGE TANK - 250 GAL.	1	EACH	\$1,500.00	\$1,500.00	VENDOR QUOTE
	TANK INSTALLATION	24	HOURS	\$47.73	\$1,145.52	RICHARDSONS ENGINEERING SERVICES, 1986
					-	AND MEANS, 1993 PLUMBER W/ 1.15 H&S FACTOR
331304	11J. SURGE/SETTLING TANK - 2500 GAL.	1	EACH	\$7,500.00	\$7,500.00	VENDOR QUOTE
	TANK INSTALLATION	24	HOURS	\$47.73	\$1,145.52	RICHARDSONS ENGINEERING SERVICES, 1986
32120-	11K. CENTRIFUGAL PUMPS					AND MEANS, 1993 PLUMBER W/ 1.15 H&S FACTOR
	1. PRIMARY FEED PUMP - 40 GPM EA.	2	EACH	_		INCLUDED IN COST OF LOW PROFILE
	PUMP INSTALLATION	-		_	_	AIR STRIPPING UNIT
331307	2. SECONDARY FEED PUMP - 40 GPM EA.	2	EACH	. –		INCLUDED IN COST OF LOW PROFILE
•	PUMP INSTALLATION			-	-	AIR STRIPPING UNIT
331307						AND MEANS, 1993 PLUMBER W/ 1.15 H&S FACTOR
22120	3. EFFLUENT PUMPS - 40 GPM EA. PUMP INSTALLATION	2 48	EACH HOURS	\$2,500.00 \$47.73	\$5,000.00	VENDOR QUOTE
	TOM INSTALLATION	40	noors	341.15	\$2,291.04	RICHARDSONS ENGINEERING SERVICES, 1986 AND MEANS, 1993 PLUMBER W/ 1.15 H&S FACTOR
331320	4. CARBON BACKWASH PUMP - 125 GPM	1	EACH	\$3,500.00	\$3,500.00	VENDOR QUOTE
3 31 2 4 0	PUMP INSTALLATION	24	HOURS	\$47.73	\$1,145.52	RICHARDSONS ENGINEERING SERVICES, 1986
- 7 (7)						AND MEANS, 1993 PLUMBER W/ 1.15 H&S FACTOR
831301	5. FILTER BACKWASH PUMP - 75 GPM	1	EACH	\$3,000.00	\$3,000.00	VENDOR QUOTE
	PUMP INSTALLATION	24	HOURS	\$47.73	\$1,145.52	RICHARDSONS ENGINEERING SERVICES, 1986
						AND MEANS, 1993 PLUMBER W/ 1.15 H&S FACTOR
331391	6. SUBMERSIBLE SUMP PUMP - 10 GPM PUMP INSTALLATION	2 2	EACH HOURS	\$400.00 \$47.73	\$800.00 \$95,46	VENDOR QUOTE RICHARDSONS ENGINEERING SERVICES, 1986
<u> </u>		4	10010	anti-13	473,40	AND MEANS, 1993 PLUMBER W/ L15 H&S FACTOR
330607	11L AIR COMPRESSOR & APPURTANANCES	1	EACH	\$2,500.00	\$2,500.00	MCMASTER-CARR SUPPLY CO. CATALOG, 1993
- , (COMPRESSOR INSTALLATION	24	HOURS	\$47.73	\$1,145.52	RICHARDSONS ENGINEERING SERVICES, 1986
.				i		AND MEANS, 1993 PLUMBER W/ 1.15 H&S FACTOR
331301	11M. MULTI-MEDIA FILTER - DUAL UNIT	1	EACH	\$7,500.00	\$7,500.00	VENDOR QUOTE
	FILTER INSTALLATION	20	HOURS	\$47.73	\$954.60	RICHARDSONS ENGINEERING SERVICES, 1986
	IIN. LOW PROFILE AIR STRIPPING UNITS	1	UNITS	\$30,840.00	\$30,840.00	AND MEANS, 1993 PLUMBER W/ 1.15 H&S FACTOR VENDOR QUOTE FOR PRE-ENGINEERED AND
331301	INC: FEED PUMPS; BLOWER; SUMP;	•	Onitio	200,010.00		PRE-FABRICATED TREATMENT PACKAGE;
	EFFLUENT PUMPS; CONTROLS;					
×	START-UP; TRAINING					
	AIR STRIPPER INSTALLATION	30	HOURS	\$47.73	\$1,431.90	RICHARDSONS ENGINEERING SERVICES, 1986
		i				AND MEANS, 1993 PLUMBER W/ 1.15 H&S FACTOR
331305	110. CARTRIDGE FILTERS	2	UNITS	\$1,200.00	\$2,400.00	VENDOR QUOTE
	CARTRIDGE FILTER INSTALLATION	16	HOURS	\$47.73	\$763.68	RICHARDSONS ENGINEERING SERVICES, 1986
	11P. LIQUID PHASE CARBON UNITS	2	EACH	\$6,000.00	\$12,000.00	AND MEANS, 1993 PLUMBER W/ 1.15 H&S FACTOR VENDOR QUOTE
331320	CARBON UNIT INSTALLATION	20	HOURS	\$47.73	\$954.60	RICHARDSONS ENGINEERING SERVICES, 1986
				••••••		AND MEANS, 1993 PLUMBER W/ 1.15 H&S FACTOR
331301	11Q. BACKWASH TANK - 2500 GAL	1	EACH	\$6,500.00	\$6,500.00	VENDOR QUOTE
100	TANK INSTALLATION	24	HOURS	\$47.73	\$1,145.52	RICHARDSONS ENGINEERING SERVICES, 1986
\frown						AND MEANS, 1993 PLUMBER W/ 1.15 H&S FACTOR
331392	11R. MOVABLE OPERATIONS PLATFORM	1	EACH	\$5,000.00	\$5,000.00	ESTIMATED
シング ジョン	SUBTOTAL DIVISION 11				\$172,377.64	
			<u> </u>	<u></u>	1 4114311.04	

Appendix D Proposed Construction Schedule

APPENDIX D

1

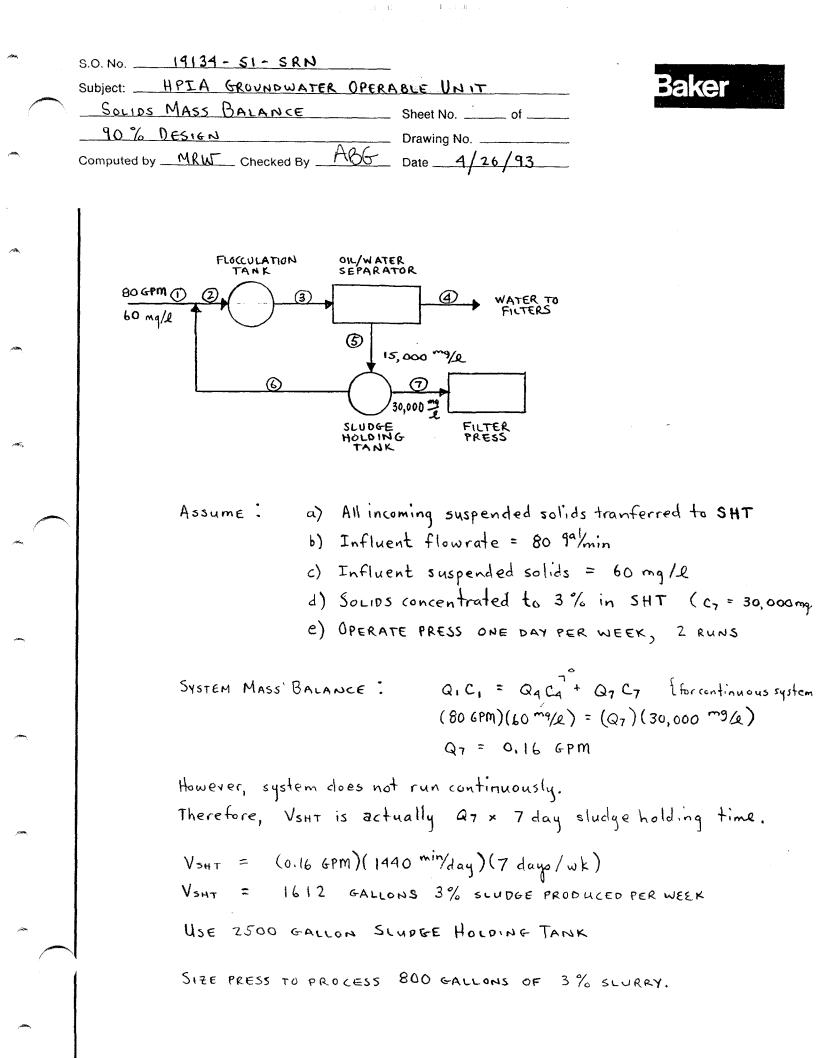
)

)

)

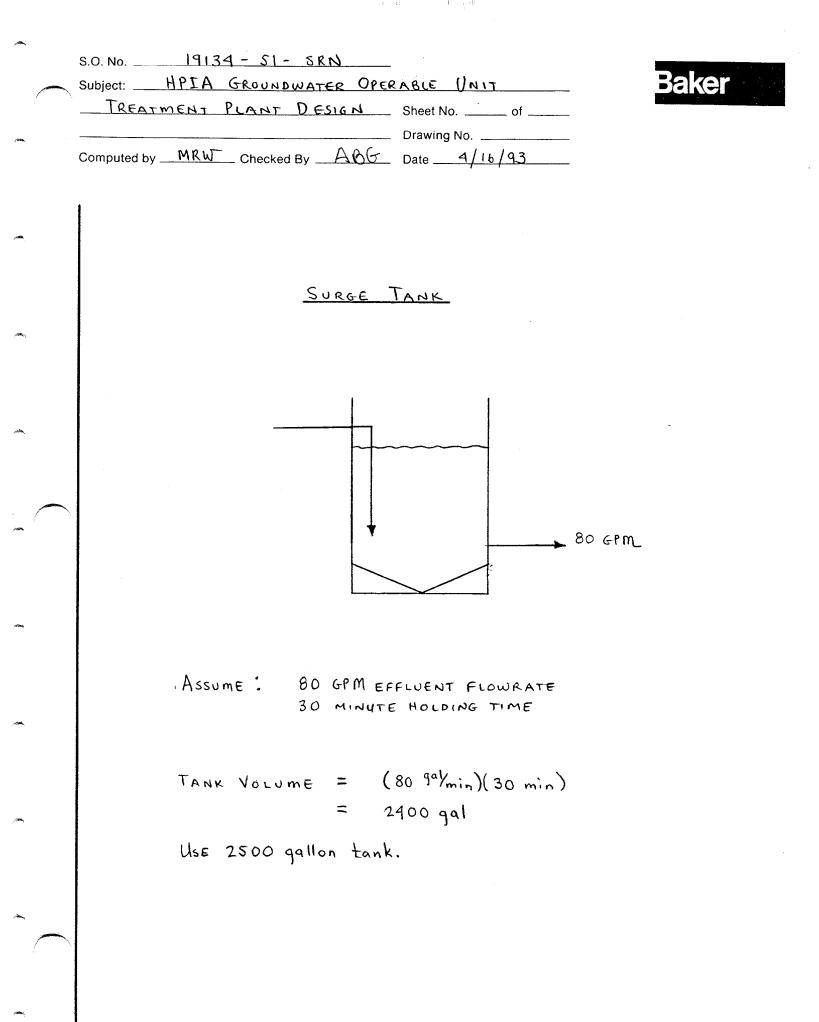
)

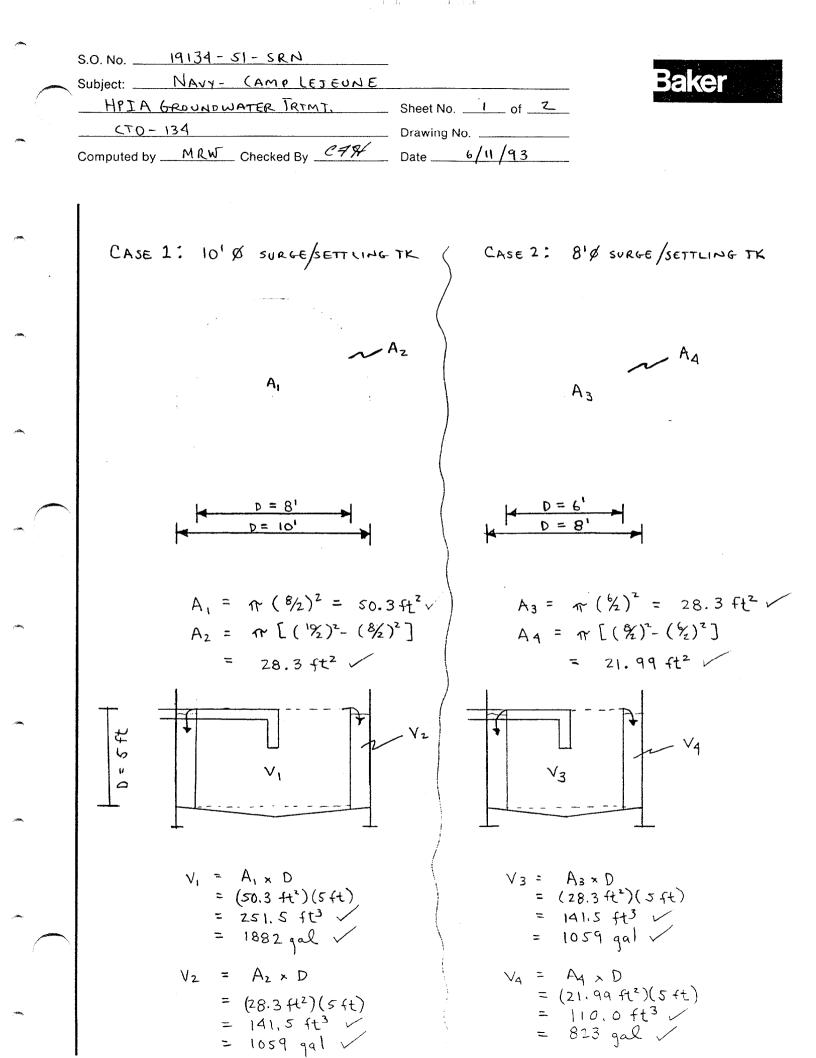
)


		T			Calen	dar Days				
Phas	e No. Task	0	30	60	90 1	120 1	150 1	.80 2	210 2	40
1	Contractor Procurement									
2	Construction Phase									
	Mobilization and Equipment Acquisition									
	Site Preparation and Pad Installation									
	Recovery Well Installation									
	Groundwater Piping Installation									
	Equipment Installation									
	Electric and Control Systems Installation									
3	System Start-Up Phase									

PROPOSED CONSTRUCTION SCHEDULE

Appendix E Design Calculations


Process Design Calculations


 $0 < \varepsilon > 1$

S.O. No. ____ 19134 - 51 - SRN Baker Subject: HPIA GROUNDWATER OPERABLE UNIT TREATMENT PLANT DESIGN Sheet No. ____ of ____ _____ Drawing No. _____ Computed by MRW Checked By ABG Date 4/16/93 FLOCCULATION TANK 80 GPM 80 GPM Assume : 80 GPM flowrate 15 minute holding time = (80 gal/min)(15 min) TANK VOLUME 1200 gal Ξ

latan sata anti-

S.O. No 19134 - 51 - SRN		
Subject: NAVY - CAMP LEJEUNE	<u> </u>	Baker
HPIA GROUNDWATER TREMT	Sheet No of	
<u>(TO-134</u>	Drawing No.	
Computed by Checked By		
1		

$$S0.3 ft^{2} = \frac{F}{A_{3}} = \frac{(80 g^{a} hin)(H40^{min} day)}{(28.3 ft)} = \frac{4071 gpd}{ft^{2}}$$

RECOMMEND	CASE 1:	OF, is not excessive	(OF3 is excessive)
		HRT, is adequate	(HRT2 is too short)
,		HRTz is adaquate	(HRTq is ok, but shorter)

S.O. No1	7134-51-SRN	•		
Subject:H	PIA GROUNDWAT	ER OPERABLE		Baker
		Sheet No Drawing No		
Computed byN	IRW Checked By			
P	ump REQUIREMEN			
1	UMP REGULEMEN			
. /	۰.			
Х А.	PRIMARY FEED PL)mps (2)		
	40 GPM 50' TDH	PACO MODEL	1570 - 1	use air stripper supplied pumps
	SO IDA	1750 rpm 1½ HP		supplied P
		230 V		
		3 Ø		
Х в.	SECONDARY FEED P	umps (z)		
	40 GPM	PACO MODEL	1570 - 1	use air stripper supplied pin
	SO' TDH	1750 rpm		use abled put
		1½ HP 230 V		5~[1
		3 Ø		
\rightarrow C.	BACKWASH PUMP	(1)		
			2005.1	
	125 GPM 81' TDH	PACO MODEL 1750 rpm	2093-1	
		5 HP		
		230 V		
		зø		
	EFFLUENT PUMPS	(z)		
	BO GPM	PACO MODEL	1550 - 5	
	10' TDH	1750 rpm		
		VZ HP		
E Contraction of the second seco		230 V		

CTO 0134

4-19-93 DPJ

PROCESS CONTROL REQUIREMENTS

GROUNDWATER RECOVERY PUMPS

1. These four pumps will be pneumatic, with each pump having a low level liquid level sensor to shut of the pump in the event of low water levels.

Power (probably 110V) and control conduits will need to be provided from a control panel at the treatment system to each well to provide these controls.

GROUNDWATER TREATMENT SYSTEM

1. The primary means of control for the treatment system will be based on level controls in the surge tank. The two sand filter feed pumps (pumps no. 1 and 2) will be enabled and turned on based on liquid level in the surge tank. See the pump control diagram from the Presquile Chemical Co. job for the pump sequence.

2. The air stripper will have its own control panel (provided by the manufacturer) that will be enabled when pumps no. 1 and 2 are enabled. The air stripper control panel will provide control to the two air stripper discharge pumps (pumps 3 and 4).

3. The polymer feed system will be controlled (on or off) based on a control signal received from the flow meter.

4. A control interlock needs to be provided that would allow the operator the option of a control scheme that would turn off the treatment system and annunciate an alarm, if any one of the groundwater pumps turns off.

5. A sand filter backwash cycle will be initiated in one of two ways: via a pressure switch that is set to signal that the backpressure has reached a predetermined value; or via an operator adjustable timer.

6. The controls for the solids handling equipment will be manually set by the operator, these include the solids withdrawal pumps from the oil water separator and surge tank, and the filter press. The filter press will have a control panel supplied by the manufacturer.

S.O. No. 19134 - 51 - SRN	
Subject: HPIA GROUNDWATER OPE	ERABLE UNIT
AIR STRIPPER INFLUENT +	Sheet No of
DISCHARGE (RITERIA	Drawing No.
Computed by MRW Checked By DPJ	Date 4/93

Baker

AIR STRIPPER DESIGN CRITERIA (rev. 4/27/93)

FLOW: 80 GPM

PARAMETER	WORST CASE CONCENTRATION (Mg/L)	DISCHARGE CRITERIA (Mg/L)
BENZENE	7,900	1
cis- 1,2- DICHLOROETHYLENE	42,000	70
TRICHLOROETHYLENE	14,000	2.8
VINYL CHLORIDE	300	ND

ND = Not detectable

Also -

if Benzene is the controlling factor, evaluate as if Benzene = 7 mg/l and other parameters do not change.

S.O. No. 19134-50-5RN Subject: <u>RECOVERY WELL SYSTEM PUMP</u> 2 SYSTEM CALCULATIONS Sheel No. 1 of 4 Drawing No. Computed by DP - Checked By MPW Date <u>3-4-93</u> RECOVERY WELL PUMP & SYSTEM HEAD. ASSUMPTIONS: 1. PUMP TEST RESULTED IN A SUSTAINABLE FLOW OF 1.5 gpm, . OBRIEN & GERE PUMPTEST (DEL. 1989) DETERMINED & WELL HELD OF 3 gpm. 2. SIZE PIPING & PUMPS ON ASSUMED MAXIMUM FLOW OF 5 9pm. 3. CHECK VELOCITIES AT 1.5 2 3 9 pm FROM PUMP STEP 1 DETERMINE TOTAL SUCTION LIFT TEST 7'A. DEPTH TO STATIC WATER LEVEL * B DRAWDOWN* (INCREASE FOR DEEPER WELL NQ'24 C FRICTION LOSSES IN WELL PIPING 1" PVC @ 5 9PM = 1.8' PER 100' 22'+ 100' × 1.8 = 0.4' × 1.20 = 0.5' 0.7 32 27.5 31.7 STATIC DISCHARGE HEAD = 2+++5' = & STEP 2 z'+5+9= 16' 0/W SEP ≈ 1100' MAX PIPERUN GW PUMP

1

S.O. No			
Subject: _			
		Sheet No Drawing No.	
Computed	by Checked By		
STE	P 3 DISCHARGE SYS	TEM FRICTIC	IN LOSSES
A.	1100' e l''PVC = 110	0%,100 X 1.8	= 20' × 1.20 = 24
В.	VALVES & FITTINGS		
	2 - GATE VALVES C	4' =	8'
	1 - CHECK VALVE C		7 [′]
	5 - 90°ELBOW @ 6'	= 3	30'
	4 - COMPLINGS @ 3'	- /	z'
		5	7'
	57' ÷100 X	1.8	$= 1' \times 1.20 = 1'$
			25
	TOTAL PUMPING NEAD		
			, ,
	1. SUCTION LIFT		
	2. STATIC DISCHAR	GENEAD =	\$ 16
	3. Hy (PIPING)		25' 25/73'
		5	4.5' 5AT 55
	: @ 5 gpm -	- TOH = 55	~73 [′]
	,		
		1 φ PUC =	1.049"ID = 0.087'
	$v = \frac{a}{A}$		AREA = 0.006 sf
		•	0.002228 = 0.0111 Ct
	$V = \frac{0.0111}{0.006} = 1.$	86 fps	
RUN	CALCULATIONS @ 3 9pm	through e	3/4" PVC PIPE H= 2.2'/
			~~ x z.z x1.207 = 27.5 32
	$J_{1} \supset u_{0} \neg \neg o N \land L \vdash T = 7 + $	- NG + 120 / 10	00 X Z.Z X1.20 / = 245 27

2. SIATILE DIS. HEAD = $\sqrt{16}$ 3. $H_{f} = 1100/100 \times 2.2 \times 1.20 = 29'$ VALVES 3. FITTURES = (242) + (242)

	S.O. No	
\frown	Subject:	
	Sheet No. <u>3</u> of <u>4</u>	
~ ()	Drawing No	
	Computed by Checked By Date 3-4-93	
	RUN CALCS. AT:	
~	5 gpm THROUGH 34" PVC Hg = 5.7/100'	
	$\frac{24}{1.54cTION LIFT} = \frac{24}{7} + \frac{32}{160} \times 5.7 \times 1.20] = 22.5' 33$	
\sim	2. STATIC DIG. HEAD = & 16	
	3. Hf(piping) = 1100/100 × 5.7 × 1.20 = 75'	
	$H_{LVALVES} = (2X3) + (1X5) + (5X5) + (4X3) = 3'$	
~	=48/100 × 5.7 ×1.20 TOTAL 709' 127	
	$Vel = \frac{Q}{A} = \frac{0.011cfs}{0.0037sf} = 3fps$	
	A 0.003757 1	
\frown		
rates.	3 gpm than 34" PVC @ 500'	
($1. SUCTION LIFT = $4.5'32 VEL = \frac{Q}{A} = \frac{0.0067}{0.0037} = 1.8$	3
	2. STATIC DIS. HEAD = & IG'	
	3. Hepiping =	·
	500/100 × 2:2× 1:20 = 13.2	
	VALVES = 1.3'	
, ,	** 63	
	5 gpm then 34" PVC @ 500'	
~	1, SULTION LIFT = 22.5' 33'	
	2. STATIC DISCHARGE AFAD= 8' 16	
~	3. Hf (piping) =	
	$500/100 \times 5.7 \times 1.2 = 34'$	
t	VALVES = 1.3'	
<i>7</i>	X 85'	

(1) 1 (1) (1)

S.O. No. _____ 19134-50-SRN Subject: Recovery Well System Pump & ______System Calculations______Sheet No. 4 of 4_____ Baker _____ Drawing No. _____ Computed by DRT Checked By _____ Date 5/3/93 HEAD LOSS 1100' OF PIPING SUMMARY PIPESIZE : USE I" MIN DOWNWELL 34 1 FLOW AND DISCHARGE PIPING @ 5gpm 39pm 77 -5 gpm 127'73' LOOK AT ADDED FLOWS WITH 5 WELLS IN SERIES 5 4 3 2 0<u>-59PM</u> 0<u>109PM</u> 0<u>759PM</u> 0<u>209PM</u> 340' 340' 340' 370' 1 ZSGPM GWTP PIPESIZE "" " 1,5"\$=0.12 VELOCITY 1.86 3.7 5.6 fps 7.4 fps = 0.0123(fps) 7.5" 7.5" 1.5" 2.7 fps 3.6 fpz 4.5 fps 2.0" 2.5 fps

~	S.O. No. 19134 Subject: Size of Aircompressor Baker
	Subject: Size of Air Compressor 531(2)
	Computed by DPT Checked By MRW Date 5/10/93
~	1. LOOK AT SOUTHERN SYSTEM SINCE IT HAS LONGER APING RUN OF 1450'
	ASSUME A I" & SCH. 40 PIPE TO CALCULATE AIR FRICTION LOSS.
A	FROM VENDOR INFORMATION, @ 5 gpm output from pump,
	AIR INPUT 15 2 4 Sctm
	TOTAL OF 5 pumps x 4 schm = 20 schm MiN.
<u>~</u>	ALLOW FOR SYSTEM EXPANSION TO 16 PUMPS
	4 × 20scfm = 80 schm MIN. At 125psig
jalan.	PER IVENDOR INFO, THIS WILL PROVIDE & 60 9pm
l	AT MAX HEAD OF 50 (FLUID HTEAD).
~	. THIS SYSTEM WILL NOT SUPPLY ALL WELLS W/O ADDITIONAL
	AIR LOMPRESSOR,
	USE BOSCHM C 125 psigMAX.
	CHECK FRICTION LOSS IN AIR HOSE - 1"\$
	C 125 psig - FREE AIR OF 80 SEFM - FRICTION LOSS=
,* 2 94,	x 1PS1/100'
	Dp125= 1 psi
~	$K = \frac{\Delta p_{125}}{100} \left(P_{1} - \frac{\Delta p_{125}}{2} \right) = \frac{1}{100} \left(\frac{125 - \frac{1}{2}}{2} \right) = 1.25$
	$\Delta pL = P_{125} - V P_{125}^2 - Z(K)L$ $PRESSURE LOSS$
~	Apl = 125-1252-2(1.25)1500' 15 ACCEPTABL
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	= 125 - 109

, i sa di

## RECIPROCATING AIR COMPRESSORS

- MOST COMMONLY USED WITH ESI SYSTEMS
- PRODUCES HIGH PRESSURES(175 PSIG max), BUT LIMITED VOLUMES (100 SCFM max)

d Leeb

- CAN BE MADE EXPLOSION PROOF
- USUALLY OPERATED AT 50%-70% UTILIZATION
- ALWAYS USE COMPRESSORS WITH CAST IRON HEADS (NO ALUM.)
- DESIGNED FOR NON-CONTINUOUS OPERATION
- OVER SIZING THE COMPRESSOR HEADS WILL REDUCE THE RPM'S WHICH WILL DECREASE NOISE LEVEL AND INCREASE COMPRESSOR LIFE.

	SCFM	* ACTUAL	PSIG(max)	H.P.	** APPROX. MAX FLOW
	1-7	11	125	3.0	7 GPM
	8-15	18	125	5.0	13 GPM
	15-25	27	125	7.5	19 GPM
	25-35	35	125	10.0	25 GPM
	35-50	55	125	15.0	39 GPM
	50-70	70	125	20.0	49 GPM
Ð	70-85	88	125	25.0	62 GPM
	85-100	105	125	30.0	74 GPM

### **RECOMMENDED OPTIONS:**

- AUTO START/STOP WITH OIL LEVEL SWITCH
- BELT GUARD
- MAGNETIC STARTER
- SINGLE PHASE IS ONLY AVAILABLE ON 3 AND 5 H.P.
- * REFERS TO AIR VOLUME OUTPUT THAT COMPRESSOR IS CAPABLE OF PRODUCING. HOWEVER, ALWAYS SIZE COMPRESSORS WITH A 50%-70% UTILIZATION FACTOR.
- ** REFERS TO FLOW FOR A TOTAL FLUIDS SYSTEM WITH A MAXIMUM HEAD OF 50 FEET.

# PRESSURE LOSS IN POUNDS FOR EACH 100 FEET OF STRAIGHT PIPE

Starl Trad

)

TABLES AND CHARTS

A A

Be Sure to Read Notes on Page 34-77

Nominal	CFM		·					ine Pressu	re — PSIC	3					
Pipe Size	Free Air	10	15	20	30	40	50	75	100	125	150	200	250	300	350
1/2"	10 15 20 30		1.45	1.24 2.68	.96 2.08 3.60	.79 1.70 2.94	.67 1.43 2.48 5.40	.48 1.04 1.80 3.90	.38 .81 1.41 3.05	.31 .67 1.15 2.50	.26 .57 .98 2.12	.20 .43 .75 1.63	. 16 .35 .61 1.32	.14 .30 .51 1.11	. 12 . 25 . 44 . 96
SCHEDULE 40	40 50 60 80 100							6.80	5.31 8.20 11.7	4.37 6.75 9.61	3.70 5.70 8.16 14.4	2.84 4.37 6.25 11.0 17.1	2.30 3.55 5.08 8.95 13.9	1.94 2.99 4.27 7.52 11.7	1.67 2.58 3.68 6.50 10.1
3/4 ''	10 20 35 50	.42 1.57	.35 1.31	.30 1.12 3.22	.23 .87 2.50 4.95	.19 .71 2.04 4.05	.16 .60 1.72 3.42	.12 .43 1.25 2.47	.34 .98 1.93	.28 .80 1.59	.24 .68 1.35	. 18 .52 1.03	. 15 . 42 . 84	. 12 . 35 . 71	. 11 . 31 . 61
SCHEDULE 40	65 80 100 125						5.71	4,12 6,19 9,60	3.23 4.74 7.53 11.7	2.65 3.98 6.40 9.70	2.25 3.37 5.25 8.12	1.72 2.58 4.02 6.22	1.40 2.10 3.26 5.05	1.18 1.76 2.74 4.25	1.01 1.52 2.37 3.67
	150 200 250									12.6	11.5	8.85 15.6	7.16 12.6 19.7	6.03 10.6 16.6	5.20 9.14 14.3

Nominal	CFM							Line Pressu	vre — PSIC	3					
Pipe Size	Free Air	10	15	20	30	40	50	75	100	125	150	200	250	300	350
1″	20 35 50 75	.45 1.29	.38 1.07	.32 .92 1.81	.25 .71 1.40 3.10	.20 .58 1.15 2.53	.17 .49 .97 2.14	.13 .35 .70 1.54	.10 .28 .55 1.21	.23 .45 7.99	. 19 . 38 . 84	. 15 . 29 . 65	. 12 .24 .52	.10 .20 .44	. 17 . 38
CHEDULE 40	100 125 150 200					4.39	3.70 5.70	2.68 4.10 5.88	2.09 3.22 4.60 8.05	1.72 2.64 3.78 6.61	1.46 2.24 3.20 5.61	1.12 1.72 2.46 4.30	.91 1.39 1.99 3.49	.76 1.17 1.68 2.94	.66 1.01 1.45 2.53
	250 300 400 500									10.3	8.87 12.6	6.72 9.66 17.2	5.45 7.85 14.0 21.8	4.59 6.60 11.7 18.3	3.96 5.70 10.1 15.8
1 1/2″	50 75 100 125	.31 .65 1.13	.25 .54 .94 1.44	.22 .46 .80 1.24	.17 .36 .62 .96	. 14 . 29 . 51 . 78	. 12 .25 .43 .66	. 18 .31 .48	.14 .24 .37	.12 .20 .31	. 10 . 17 . 26	. 13 . 20	.11	. 14	.12
	150 200 250 300		2.04	1.75 3.04	1.35 2.36 3.68	1.11 1.93 3.01 4.29	.94 1.63 2.54 3.62	.68 1.18 1.83 2.62	.53 .92 1.44 2.05	.43 .76 1.18 1.74	.37 .64 1.00 1.43	.28 .49 .77 1.09	.23 .40 .62 .89	. 19 . 34 . 52 . 75	. 17 . 29 . 45 . 64
CHEDULE 40	400 500 600 700						6.35 •	4.58 7.12	3.59 5.59 8.00 10.8	2.94 4.59 6.55 8.89	2.50 3.89 5.55 7.55	1.92 2.98 4.26 5.78	1.55 2.42 3.46 4.70	1.31 2.03 2.91 3.95	1.13 1.76 2.51 3.40
	800 1000 1200 1400									11.6	9.80 15.2	7.50 11.7 16.4 22.9	6.10 9.45 13.3 18.6	5.12 7.95 11.2 15.6	4.42 6.86 9.61 13.5

PRESSURE LOSS IN POUNDS FOR EACH 100 FEET OF STRAIGHT PIPE Be Sure to Read Notes on Page 34-77

)

4

34 - 80

4/4

10

e une de la della del

# Electrical Design Calculations

Subject: LOAD 4 SHORT		Sheet No/	of	
		Drawing No.		
Computed by DST Che	ecked By	Date <u>6/14/93</u>		
IF TOTA: POWER T	ea. Ad	с. Еф Сф		
1. PANEL PPA 120	0/208. 25.25	26.3 27.2		
2. PANEL PP2 27	1/480 21.6	21.6 21.6		
3. PHNEL PP1 2	77/480 156.1	156.1 156.	NOTINCLOUN	G SPREE
	182.2	182.2 182.2	INCLUSING S	Sinces
TOTAL CONNECTED (NITHOUT SPACE	) RUR = 15G.1 Kes)		129,779 WA or: 130 KW.	27
TOTAL PUR IN	KLUDING SPARE: - 18	2.2×480113	- 151,472	or ISZKW
ALLOWING FOR	R EXPANE ON (ALLO	2022)		
	130 K	$W \times 1.25 = 10$		
		$w \times 1.25 = 1$		
	75KVA 1\$ TRAN	15F. = 225	KVA	AUDUFOR
3 、		ия. 18. F. = 225 Ал ВЕ ИЗЕД (	KVA Bot WOULD NOT	
J FROM COOPER/ TREE 5-7-4	75KVA IØ TRAN SOKW TRANSF C MUCH UPDATING	TRICHL PROTECT	KVA BJT WOULD NOT D WATH LARGE NON HANDESSK AILASCE FROM VAN	R EQUIF. COPYRIG-33 OCT GOUS SIZE TRANSF.
3 TI FROM COOPER/ TREE 5-7-4 277/480 3	75KVA 1¢ TRANS SOKW TRANSF C MUCH UPDATING BUSSMAN ELEC SHORT-CIRCUITS SPA KVA 225	FAULT *1 6) IS	KVA BJT WOULD NOT WITH LARGE HUASCE FROM VAN 271, 1.2% IN	R EQUIF. COPYRIGHTS) OCT HOUS SIZE TRANSF. NEDANCE, 25,082
3 TI FROM COOPER/ TREE 5-7-4 277/480 3	75KVA 1¢ TRANS SOKW TRANSF C MUCH UPDATING BUSSMAN ELEC SHORT-CIRCUITS SPA KVA 225	AN BE VIET & OR EXPANSION TRICHE PROTECT GURRENTS AV. FULL LOP: AMOS FAULT * 1 OJ IJ L. M.	KVA BJT WOULD NOT D WITH LARGE DON HANDESSK AILASCE FROM VAN $271$ , $1.275$ IN ECF = 271  A $= \frac{100}{752} = \frac{100}{1.2}$	R EQUIF. COPYRIGHTS) OCT HOUS SIZE TRANSF. NEDANCE, 25,082 2 = 83.3
3 TI FROM COOPER/ TREE 5-7-4 277/480 3 W 2. 4 W 2. 4	75KVA 1\$ TRANSF C SOKW TRANSF C MUCH UPJATING BUSSMAN ELEC SHORT-CIRCUITS PH KVA 225 25KVA 80V 3\$ 11262 -10' 4#3/0	FAULT *1 G, IS	KVA $L_{JT}$ WOULD NOT U W = M LARAE U M = M LARAE U LARAE FROM VAN $271, 1.2%$ Im ELR = 271 A $\frac{100}{\% Z} = \frac{100}{1.2}$ LARAE = 271	R EQUIF. COPYRIGHTS) OCT HOUS SIZE TRANSF. NEDANCE, 25,082 2 = 83.3
3 TI FROM COOPER/ TREE 5-7-4 277/480 3 W 2. 4 W 2. 4	75KVA 1¢ TRANS SOKW TRANSF C MUCH UPDATING BUSSMAN ELEC SHORT-CIRCUITS SPA KVA 225	AND BE VIED & OR EXPANSION TRICH PROFEST CURRENTS AU , FULL LOP: AMOS FAULT #1 GJ II LJ M COR COR COR COR COR COR COR COR	KVA $B_{JT}$ WOULD NOT U W = M LARAE AULASLE FROM VAN $271, 1.2% ThELA = 271 H= \frac{100}{\% Z} = \frac{100}{1.2}EA = 271EA = 271$	R EQUIF. COPYRIG-59 OCT HOUS SIZE TRANSF. NEDANCE, 25,082 2- = 83.3 X 83.3 = 22,574.
3 TI FROM COOPER/ TRICLE 5-7-4 277/480 3 WEDTHONHEAD 22 (FAULT#1)	75KVA 1\$ TRANSF C SOKW TRANSF C MUCH UPJATING BUSSMAN ELEC SHORT-CIRCUITS PH KVA 225 25KVA 80V 3\$ 11262 -10' 4#3/0	AND BE VIED & OR EXPANSION TRICH PROFEST CURRENTS AU , FULL LOP: AMOS FAULT #1 GJ II LJ M COR COR COR COR COR COR COR COR	KVA $B_{JT}$ WOULD NOT U W = M LARAE AULASLE FROM VAN $271, 1.2% ThELA = 271 H= \frac{100}{\% Z} = \frac{100}{1.2}EA = 271EA = 271$	R EQUIF. COPYRIG-59 OCT HOUS SIZE TRANSF. NEDANCE, 25,082 2- = 83.3 X 83.3 = 22,574.
3 TI FROM COOPER/ TREE 5-7-4 277/480 3 W 2. 4 W 2. 4	75KVA 1\$ TRANSF C SOKW TRANSF C MUCH UPJATING BUSSMAN ELEC SHORT-CIRCUITS PH KVA 225 25KVA 80V 3\$ 11262 -10' 4#3/0	PSF. = 225 AND BE USED & OR EXPANSION TRICH PROTECT CURRENTS AU , FULL LOP: AMPS FAULT * 1 6) I L) M L) IS @T DR L) F	KVA 2JT WOULD NOT JJT WOULD NOT JJT WITH LARGE JON HADDESSK 41LASCE FROM VAN $271$ , $1.2%$ In 271, $1.2%$ In 1.2% In 1.2	$\mathcal{K} = E_{QUIF}.$ $C_{QPXK,SS} = O_{2T}$ $E_{10US} = T_{RANSF}.$ $\mathcal{F}_{EDANCE} = 25,082.$ $\mathcal{P}_{-} = 83.3$ $\times 83.3 = 22,574.$ $\frac{\sqrt{3} \times 10 \times 15,082}{11980 \times 480}.$
3 TI FROM COOPER/ TRICLE 5-7-4 277/480 3 WEDTHONHEAD 22 (FAULT#1)	75KVA 1\$ TRANSF C SOKW TRANSF C MUCH UPJATING BUSSMAN ELEC SHORT-CIRCUITS PH KVA 225 25KVA 80V 3\$ 1126 2 -10' 4#3/0	25 F. = 225 And BE ULED & OR EXPANSION TRICHL PROTECT S CURRENTS AU , FULL LOP: Arms FAULT * 1 GJ II L, M L) IS @T OR &) f e) M	KVA $E_{JT}$ WOULD NOT W = M LARAE W = M LARAE W = M LARAE W = M LARAE W = 271 M Z71 , 1.2% Im Z71 , 1.2% Im Z71 = 100 - 100 M = 271 M $E_{A} = 271 M$ $E_{A} = 271 M$ U = 25,072 U = 25,072 U = 25,072 U = 100 - 100 $C \times E$ U = 100 - 100 $C \times E$ $C \times E$	$\mathcal{L} = \mathcal{L}_{3} + $
3 TI FROM COOPER, TFREE 5-7-4 277/480 3 WEATHER HEAD 20 (FAULT#2 FAULT#2 FAULT#2 FAULT#2	75KVA 1\$ TRANSF C 50KW TRANSF C MUCH UPDATING (BUSSMAN) ELEC 1 SHORT-CIRCUITS 574 KVA 225 25KVA 80V 3\$ 1.2862 -10' 4#350MCM	25 F. = 225 And BE ULED & OR EXPANSION TRICHL PROTECT S CURRENTS AU , FULL LOP: Arms FAULT * 1 GJ II L, M L) IS @T OR &) f e) M	KVA $E_{JT}$ WOULD NOT W = M LARAE W = M LARAE W = M LARAE W = M LARAE W = 271 M Z71 , 1.2% Im Z71 , 1.2% Im Z71 = 100 - 100 M = 271 M $E_{A} = 271 M$ $E_{A} = 271 M$ U = 25,072 U = 25,072 U = 25,072 U = 100 - 100 $C \times E$ U = 100 - 100 $C \times E$ $C \times E$	$\mathcal{L} = E_{3,2} + E_{3,2}$
3 TI FROM COOPER/ TREE 5-7-4 277/480 3 WEDTHONHEAD 200 (FAULT#2) FAULT#2 PPI	75KVA 1\$ TRANSF C 50KW TRANSF C MUCH UPDATING (BUSSMAN) ELEC 1 SHORT-CIRCUITS 574 KVA 225 25KVA 80V 3\$ 1.2862 -10' 4#350MCM	25 F. = 225 And BE ULED & OR EXPANSION TRICHL PROTECT S CURRENTS AU , FULL LOP: Arms FAULT * 1 GJ II L, M L) IS @T OR &) f e) M	KVA $E_{JT}$ WOULD NOT W = M LARAE W = M LARAE W = M LARAE W = M LARAE W = 271 M Z71 , 1.2% Im Z71 , 1.2% Im Z71 = 100 - 100 M = 271 M $E_{A} = 271 M$ $E_{A} = 271 M$ U = 25,072 U = 25,072 U = 25,072 U = 100 - 100 $C \times E$ U = 100 - 100 $C \times E$ $C \times E$	$\frac{C_{GUIF}}{C_{OPYK,SF=5}} = 0.7$ $\frac{C_{OPYK,SF=5}}{C_{I0US}} = 0.73$ $\frac{C_{OPYK,SF=5}}{C_{I0US}} = 0.73$
3 TI FROM COOPER, TFREE 5-7-4 277/480 3 WEATHER HEAD 20 (FAULT#2 FAULT#2 FAULT#2 FAULT#2	75KVA $i \phi$ TRAN 50KW TRANSF C MUCH UPDATING (BUSSMAN) ELEC 2 SHORT-CIRCUITS 3 PH KVA 225 25KVA 80V 3 $\phi$ 1.26 Z -10' 4# 3/0 10' 4 # 3/0 10' 51 10' 51 1	25 F. = 225 And BE ULED & OR EXPANSION TRICHL PROTECT S CURRENTS AU , FULL LOP: Arms FAULT * 1 GJ II L, M L) IS @T OR &) f e) M	KVA $E_{JT}$ WOULD NOT W = M LARAE W = M LARAE W = M LARAE W = M LARAE W = 271 M Z71 , 1.2% Im Z71 , 1.2% Im Z71 = 100 - 100 M = 271 M $E_{A} = 271 M$ $E_{A} = 271 M$ U = 25,072 U = 25,072 U = 25,072 U = 100 - 100 $C \times E$ U = 100 - 100 $C \times E$ $C \times E$	$\mathcal{K} = \mathcal{E}_{QU:F},$ $\mathcal{E}_{QPXK,S-=3} = \mathcal{O}_{2T},$ $\mathcal{E}_{QU:S} = \mathcal{E}_{Z}, \mathcal{E}_{Z},$ $\mathcal{E}_{Z}, \mathcal{E}_{Z},$ $\mathcal{E}_{Z},$ $\mathcal{E}_{Z}, \mathcal{E}_{Z},$ $\mathcal{E}_{Z},$ $\mathcal{E}_{Z}, \mathcal{E}_{Z},$ $\mathcal{E}_{Z},$ $$

4 3 - 12

DATE TAKED FROM GOORER/BUSINES ELECTION - PROTECTION HANDBOOK

	DESIGNER: DATE:	JLATIONS HADNOT POINT DST 6/17/93 LTGCALCS.WK1		Baker and Assoc: Airport Office ( 420 Rouser Road Coraopolis, Pa.	Park, Buil	ding
	***********	********	******	*****		
					P	age
1	Room Name:	Bldg 1	2	Room Name:		
	Length:	66		Length:		
	Width:	39		Width:		
	Area:	2574		Area:	0	
	Mtg. Ht.:	12		Mtg. Ht.:		
	Watts/Lamp:	40		Watts/Lamp:		
	Lamps/Fixture:	2		Lamps/Fixture:		
	Lumens/Lamp:	3150		Lumens/Lamp:		
	Maint. Factor:	0.7		Maint. Factor:		
	Footcandles:	40		Footcandles:		
	Type Fixture:	NL-8		Type Fixture:		
	RC:	9.5		RC:	0	
	RCR:	1.9		RCR:	0.0	
	Reflectances:	0.7		Reflectances:		
	CU1:	0.76		CU1:		
	CU2:	0.65		CU2:		
	CU:	0.657		CU: -	0.000	
	Lamps/Fixtures		36	Lamps/Fixtures	0.0	0
	Lamps used:	64		Lamps used:		
	Initial FC:	51.4		Initial FC:	0.0	
	Maint. FC:	36.0		Maint. FC:	0.0	

4 3 6

Engineers	DESIGN PI	RACTICE	Quality Contro Manua
Electrical	A. LIGHTING	SYSTEM	Section:IV
Engineering	Issue Date: November, 1989	Revised Date:	Page: 1

 $a_{1}E_{1} = a_{2}E_{1}$ 

The following "design practice" shall be followed for most lighting design projects. It should be noted that there may be possible exceptions to the following and these exceptions will be resolved as they occur.

# A-Method:

The Zonal Cavity Method of calculation shall be used and the following formulas shall apply:

1

(1) To find RCR required, use:

$$\frac{5 \times (R.C.) \times (L. + W.)}{(A)} = R.C.R.$$

١

(2) To find lamps required:

$$(F.C.) \mathbf{x} \qquad (A) = _ = Lamps Req'd_$$

(3) To find initial and maintained footcandles, use:

$$(Lamps) \times (LPL) \times (C.U.) \times (M.F.) = ____ Main F. C.$$
(A) _____Initial F. C.

Formula Legend:

R.C.	=	Room Cavity
L.	=	Room Length
W.	=	Room Width
Α.	=	Room Area
RCR.	=	Room Cavity Ratio
F.C.	=	Footcandles (Design Value)
C.U.		Footcandles (Design Value) Coefficient of Utilization
M.F.	=	Maintenance Factor
LPL.	=	Lumens Per Lamp.

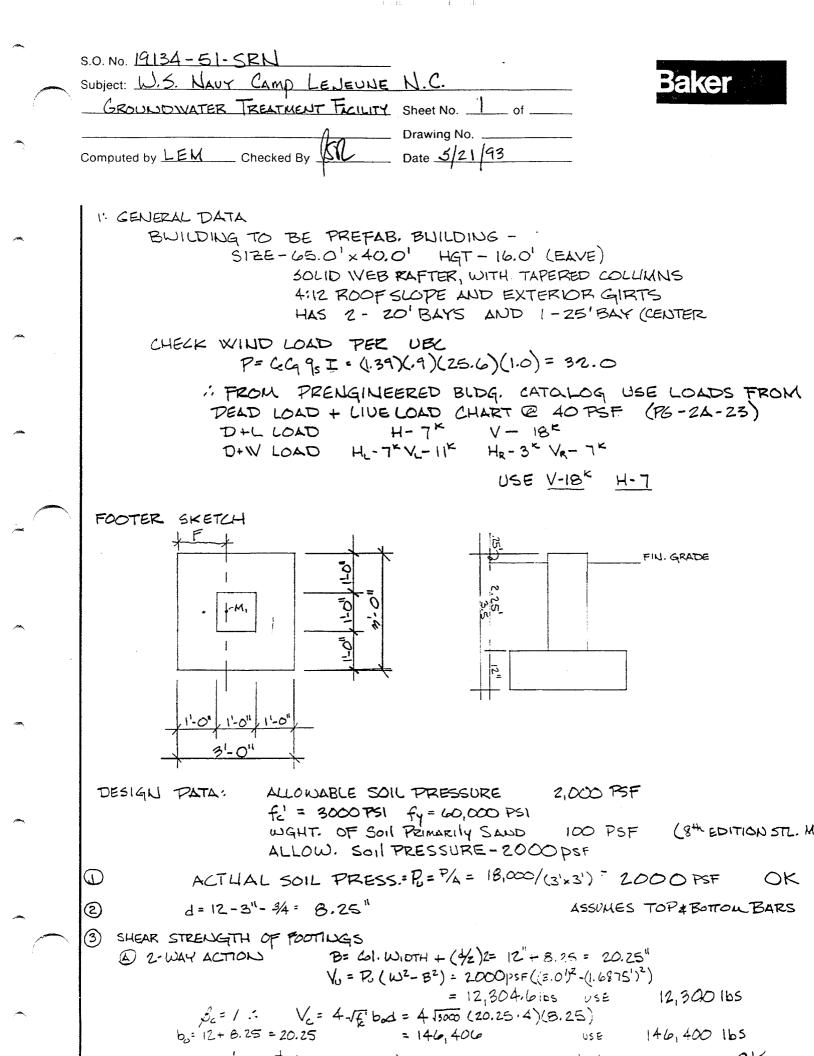
H7: PR [W6] "Page A9: PR [W4] 1 B9: PR [W14] 'Room Name: C9: U 'Bldg 1 E9: PR [W6] +A9+1 F9: PR [W14] 'Room Name: B10: PR [W14] 'Length: C10: U 66 F10: PR [W14] 'Length: B11: PR [W14] 'Width: C11: U 39 F11: PR [W14] 'Width: B12: PR [W14] 'Area: C12: PR +C10*C11 F12: PR [W14] 'Area: G12: PR +G10*G11 B13: PR [W14] 'Mtg. Ht.: C13: U 12 F13: PR [W14] 'Mtg. Ht.: B14: PR [W14] 'Watts/Lamp: C14: U 40 F14: PR [W14] 'Watts/Lamp: B15: PR [W14] 'Lamps/Fixture: C15: U 2 F15: PR [W14] 'Lamps/Fixture: B16: PR [W14] 'Lumens/Lamp: C16: U 3150 F16: PR [W14] 'Lumens/Lamp: B17: PR [W14] 'Maint. Factor: C17: U 0.7 F17: PR [W14] 'Maint. Factor: B18: PR [W14] 'Footcandles: C18: U 40 F18: PR [W14] 'Footcandles: B19: PR [W14] 'Type Fixture: C19: U "NL-8 F19: PR [W14] 'Type Fixture: B20: PR [W14] 'RC: C20: PR @IF(+C13-2.5<0,0,+C13-2.5) F20: PR [W14] 'RC: G20: PR @IF(+G13-2.5(0,0,+G13-2.5) B21: PR [W14] 'RCR: C21: (F1) PR @IF(@ISERR(5*C20*(+C10+C11)/+C12),0,5*C20*(+C10+C11)/+C12) F21: PR [W14] 'RCR: G21: (F1) PR @IF(@ISERR(5*G20*(+G10+G11)/+G12),0,5*G20*(+G10+G11)/+G12) B22: PR [W14] 'Reflectances: C22: U 0.7 'Reflectances: F22: PR [W14] B23: PR [W14] 'CU1: C23: U 0.76 F23: PR [W14] 'CU1: 324: PR [W14] 'CU2: C24: U 0.65 F24: PR [W14] 'CU2: B25: PR [W14] 'CU: C25: (F3) PR (C23-((C21)-@INT(C21))*(C23-C24))

1 . . . 1B

ſ		
	F25:	PR [W14] 'CU:
ÿ.	G25:	(F3) PR (G23-((G21)-@INT(G21))*(G23-G24))
		PR [W14] 'Lamps/Fixtures
	C26:	(F1) PR @IF(@ISERR(+C18*C12/(+C25*C16*C17)),0,+C18*C12/(+C25*C16*C17))
		(F0) PR [W6] @IF(@ISERR(+C26/C15),0,(+C26/C15))
	F26:	PR [W14] 'Lamps/Fixtures
	G26:	(F1) PR @IF(@ISERR(+G18*G12/(+G25*G16*G17)),0,+G18*G12/(+G25*G16*G17))
•	H26:	(F0) PR [W6] @IF(@ISERR(+G26/G15),0,(+G26/G15))
	B27:	PR [W14] 'Lamps used:
	C27:	U 64
		PR [W14] 'Lamps used:
		PR [W14] 'Initial FC:
		(F1) PR @IF(@ISERR(+C27*C16*C25/+C12),0,+C27*C16*C25/+C12)
		PR [W14] 'Initial FC:
		(F1) PR @IF(@ISERR(+G27*G16*G25/+G12),0,+G27*G16*G25/+G12)
		PR [W14] 'Maint. FC:
	C29:	(F1) PR @IF(@ISERR(+C27*C16*C25*C17/+C12),0,+C27*C16*C25*C17/+C12)

.1 31

1 . . . .


- F29: PR [W14] 'Maint. FC:
- G29: (F1) PR @IF(@ISERR(+G27*G16*G25*G17/+G12),0,+G27*G16*G25*G17/+G12)

**Structural Design Calculations** 

.1 чи.

3

 $4 \to \pm 1 h$ 



, **~~**.

NE LA PE

(SCHELK CONCRETE COLUMN (REF. ACI 318 SECT 10.15, 15.8.2) A BEARING STRENGTH TOP COLUMN (WHERE STEEL COLUMN BOLTS) Az = 3'x3'= 95F  $A_{1} = 1^{1} \times 1^{1} = 15F$ BEAR STRENGTH = \$ (.85 fc'A)  $= .7 (.85 (3000 */102) (1 - 12)^{2} = 257,040 *$ USE 257 K 1. 257K > 18K OK

B: BEARING STRENGTH AT FOOTING A,=ISF Az=95F  $\int \frac{A_{2}}{A_{1}} = \int \frac{9}{1} = 3$  372.0 (REF 10.15.)

USE

FOOTING BEARING STRENGTH = \$ (.85 f.'A, 1(2)  $=.7(.85(3)(1.12)^{2}(2)$ = 514:08 K USE 514 K 1. 514 > 17K OK

SINCE ENTIRE LOAD IS CAPABLE OF BEING TRANSFERRED BY THE CONCRETE THE COLUMN NEEDS MIN. REINFORCEMENT. (REF. 15.8.2)

As=.005 Aq=.005 (12"×12")=.72 NZ USE 4-#5 BARS ONE EACH CORNE ,72< As= 1,23  $\underline{O}$ 

CHECK DEVELOPMENT LENGTH FOR COMDRESSION

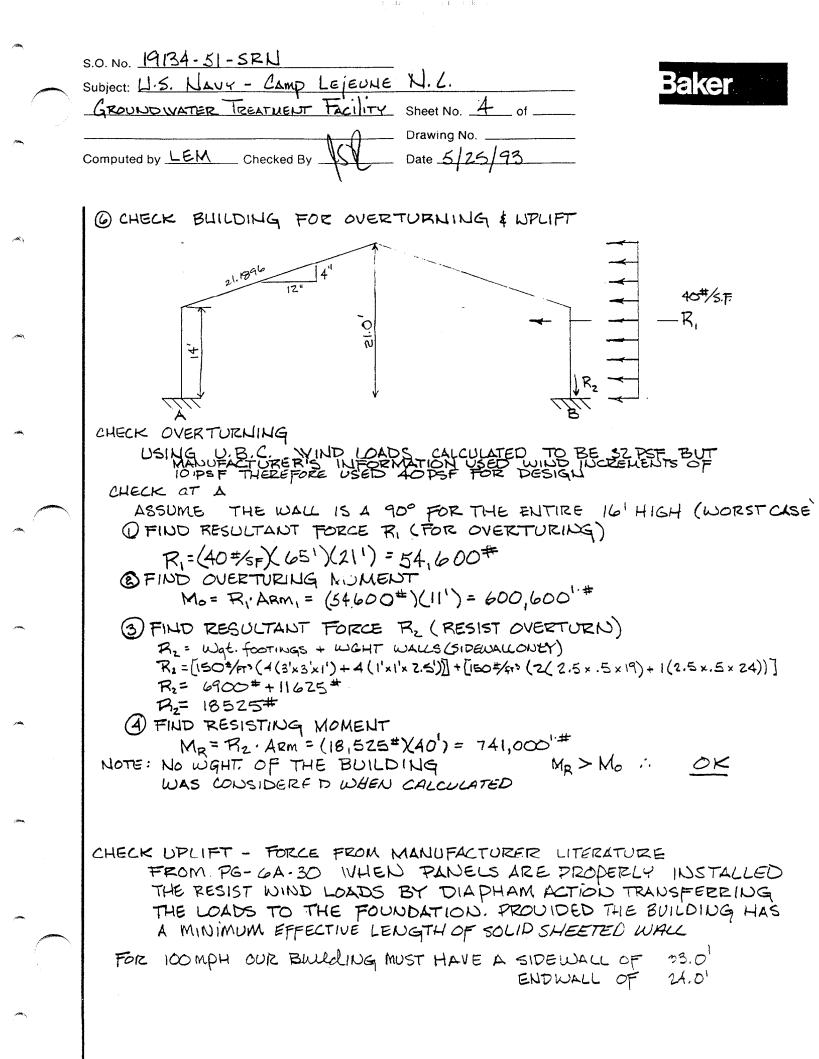
$$L_{db} = .02 d_{b} f_{y} / \sqrt{f_{c}} = (.02) (.625) (6000) / \sqrt{13000} = 13.7 \text{ IN}.$$

MODIFICATION FACTOR (BASED ON STEEL PROVIDED IS IN EXCESS OF STEEL REQUIRI

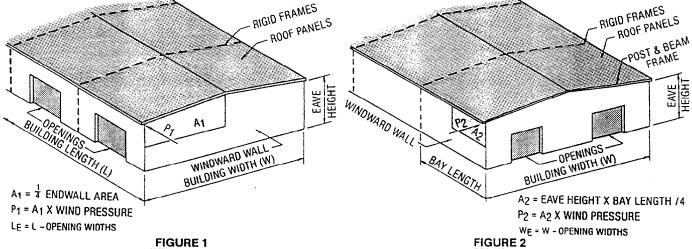
$$FACTOR = \frac{A_{RERNO}}{A_{S}} \frac{A_{S}}{12} \frac{1.23}{1.23} = .59}$$

$$ACTUAL \ l_{4b} = (FACTOR)(l_{4b}) = (.59)(13.7) = 8.083 \text{ IN}$$

$$ACI \ 318.10.9 \qquad \qquad USE \ 8.1 \qquad OK$$


$$A_{S} = .005 \ A_{q} = .72 \quad A_{S} = 1.23 \quad (4^{\pm}58AR) = .008 \quad CR$$

$$USE \ L_{0} - \# 5 \ BAR = A_{S} - 1.84 \text{ IN}^{-1}$$


$$Ratio = \frac{A_{S}}{2} \frac{1.84}{12} \frac{1.84}{12} = 0.18 \quad CF$$

$$USE \ L_{0} - \# 5 \ BAR$$

Ratio = As/n = 1.84/12" 12" = 112







WIND ON ENDWALL

# WIND ON PORTION OF END BAY SIDEWALL

			TABLE	er wi	ND ON	END	WALL		· .	25.21
			Le	(MININ	NUM EFF	ective	LENGTH	IN FEET	n	
EAVE	WIND LOAD				BUILDIN G WIDTH	GS			SLOPE BU DING WI	
HEIGHT	(MPH)	20'	30' 1	40'	50'	60'	70'	401	50' İ	60'
	70	5	7	9	10	12	14	11	13	16
	80	6	9	11	13	16	18	14	17	21
10'	90	7	11	14	17	20	22	18	22	26
	100	9	13	18	21	24	28	21	27	32
	70	5	8	10	12	14	16	12	15	19
101	80	7	10	13	16	18	21	16	20	24
12'	<b>90</b> °	8	13	17	20	23	26	20	25	30
	100	10	15	21	24	28	32	25	31	38
	70	6	9	12	14	16	18	14	18	21
	80	8	12	15	18	21	24	19	23	28
14'	90	10	14	19	23	26	30	24	29	35
	100	_12	18	24	28	33	37	29	36	43
	70		10	14	16	19	21	17	20	24
	80		13	18	21	24	27	21	26	32
16'	90		17	22	26	30	35	27	33	40
	100		21	28	32	37	43	(33)	4108	49
	76 2			18	21	24	27	21	25	30
	<b>80</b>			23	27	32	36	27	33	39
20'	90			29	35	40	45	34	42	50
	100			36	42	49	56	42	51	61
	70				26	30	34	26	31	37
	80				34	39	45	33	40	48
24'	90				43	50	56	42	51	60
	100				53	61	69	52	62	74

		TABLE	11* WI	ND O	N SIDE	WAL	L.		
							I. IN FEET	)	
EAVE	WIND LOAD	%:12 & 1:12 SLOPE BLDGS.				LOPE			
HEIGHT		ALL WIDTHS	40	50 [,]	60'	70'	80'	100	120"
	70	5	7	7	7		1 - <b>1</b>		144
10'	80	7	9	9	9.		1982		1.19
10	90	8	11	11	11		Sec.		
	100	10	14 :	14	14				Sec.
	70	6	9	9	9	9	9		1 (38%) ·
12'	80	8	11	11	11	11	12		200 2
	90 -	10	14 -	14	14 -	14	15		
	100	12	17	17	17名日	18	18		1200
	70	. 7	10	10	10%	11	11	11	11.3
14'	80	9	13	13	13	14	14	14	14
	90	12	16	17	17	17	17	18	18
	100	14	20	21	21	21	21	22	22
	70	8	12	12	12	12	12	13	13
16	80	11	15	16	16	16	16	16	17
	90	13	<b>19</b> :	20	20 📎	20	20	21	21
	100	17	(24)	24	24	25	25	25	26
	70	11	16	16	16 🐭	16	16	16	1 17
201	80	14	20	20	21	21	21	21	22
	90	18	25	_26	26	26	26	27	27
	100	22	31	32	32	32	32	33	33
	70	14	19	20	20	20	20	20	21
24'	80	18	25	25	26	26	26	26	27
27	90 :	22	32	32	32	33	33	33	34
	100	28	39	39	40	40	40	41	42

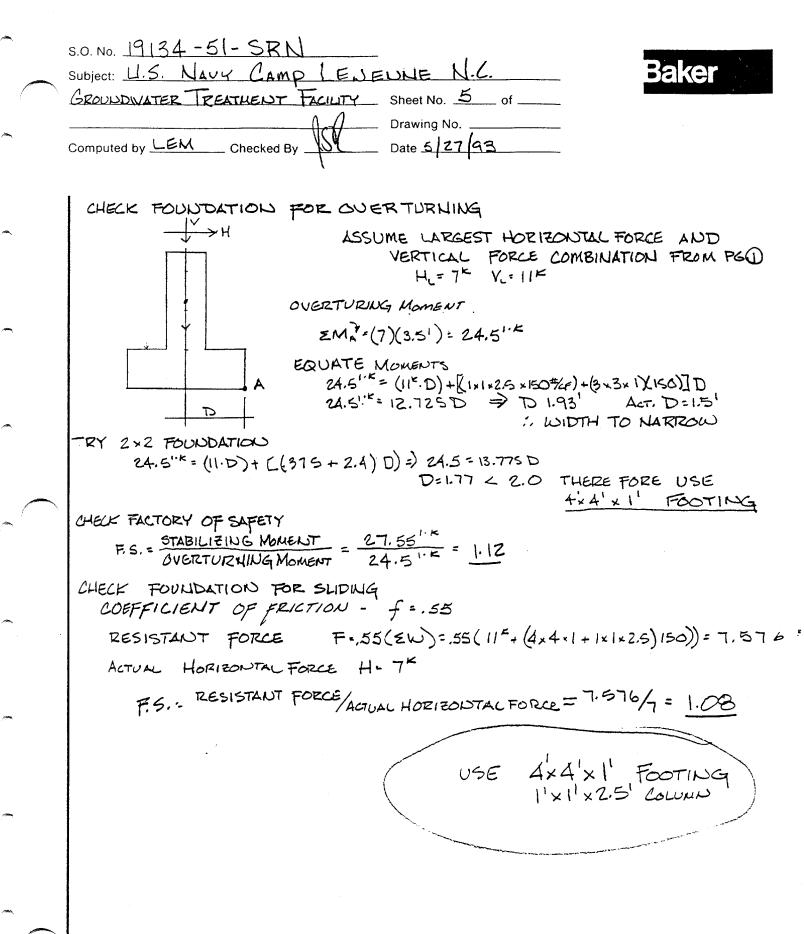
#### NOTES:

- 1. DuraRib panels, when properly fastened to supporting structural framing and using sidelap fasteners at 2.0 on center, form structural units capable of resisting loads through in-plane shear resistance. This shear resistance affects a shear transfer of these loads to the foundation with a minimum amount of deflection. Such resistance is hereafter referred to as "Diaphragm Action".
- 2. The wind forces imposed on the endwall and/or portion of the sidewall can be transferred to foundation by:
  - A) Diaphragm action only for buildings up to 70' wide with 1/2:12 and 1:12 root slopes and for buildings up to 60' wide with 4:12 roof slopes.
  - B) Wind bracing only for all other buildings.
- 3. The tabulated values indicate the minimum effective length of solid sheeted wall required to transfer a design wind load force to the foundation. Values are calculated in accordance with 1981 MBMA design practices.
  - A) Table I is for wind on the endwall of a building and indicates the minimum effective length required for each sidewall.
  - 8) Table II is for wind on a portion of the sidewall end bay and indicates the minimum effective width required for each endwall.
- 4 Figures 1 and 2 are to used in conjunction with Tables I and II respectively.
- 5. The effective length or width does not include the widths of:
  - A) Framed openings for overhead or sliding doors.
  - B) Framed openings for glass walls.
  - C) Panel runs of less than 3'-0" in width.

#### STAR MANUFACTURING, CO.

OKLAHOMA CITY, OKLAHOMA CEDARTOWN, GEORGIA HOMER CITY, PENNSYLVANIA




#### For use with post & peam endwall, Values shown are for 25 bays, for 20 bays multiply value by .8.

- 6. When the effective length is less man the tabulated value the building must be braced by means other than diaphragm action.
- Diaphragm action is not valid for buildings utilizing noid board insulation.
- When endwalls and/or sidewars are constructed entirely or partially of materials other than DuraRib panel, they must be processy engineered to sustain the design wind load.
- 9. All standard interior bents are designed to sustain a specific transverse wind load as outlined in Star building specifications.
- A design load value of 160#/L.F. of wall as determined by structural testing, was used in generating Tables I and II. The design load value includes a 33 1/3% increase for wind load.



# DIAPHRAGM ACTION DURARIB ROOF & WALL





e age in a All Allen.

# Mechanical Design Calculations

S.O. No. _ Baker Subject: MLB CAMP LEVENE CALCULATIONS Sheet No. _____ of ____ _ Drawing No. ____ Computed by Brcs Checked By Date 6-4-93 WALL NORTH MALL 1072 1 GROSS MALL . 1 120 1 GARAGE DOOR Z 17 1 WINDOW 34 EAST 760 & GROSSWALL MARL ZI & DOOR 5 SOUTH WALL 10720 GROSS WALL 120 17 GARAGE DOOR 6 ZIA DOOR 7 17 \$ WINDOW WEST WALL 760# GROSE WALL B 21# DOOR 9 ROOF AREA 2 SIDES = 40.90 FT 6.67 19.33 40-9 × 65,67 L = Z686 \$ ROOF U-VALUES WALLS & ROOF 0.065 WINDOWS DOUBLE PANE CLEAR B'GLASS U=0.70 DOOR 13/4" U=0.45 FLOOR SLAPS ON GRADE 6" U= ZG BTU/H F/FT GARA-GE DOOR 0=0.45

S.O. No. ___ for car Subject: _ Sheet No. ____ of ____ Drawing No. _____ Computed by _____ Checked By _____ Date ____ BUILDING VOLUME BASE = 65.67 × 38.67 × 16.33 = 41469.36 FT 3 ROOF = 1/2 × 6.67 × 38.67 × 65.67 = 8469 FT3 TOTAL VOLUME = 49938 => SAT 50,000 FT-3 MAINTAIN A AC/HR IN WINTER IDAC/HR IN SUMMER 4 AG/x 50,000 FT 3 / 1HR/60mini = 3333 = 3350 CAN WINTER VENT, ADDITIONAL GAL FOR SUMMER GAC/HRX50,000 FT3 XHR/60MIN= 5000 CFM ADDITIONAL SUMMER VENT. EF-Z WINTER EXHAUST FAN 3350 CFM AT 0.125 "SP SELECT COOK MODEL ACRU-B CATALOG#195RAB 1/314P 740 RPM 3811 MAX. T.P. SPEED 10.4 SOALES 119 LBS 1201-1-60 SUMMER EXHAUST FAN EF-3 5000 CEM AT 0.125"SP SELECT COOK MODEL ACRU-B CAT # 195 R7B INP 1070 RAM 5511 MAX. T.P SPEED 21.5 SONES 136 LBS. WINITER ALL BALANICE EXHAUST : WINTER EXH. FAN EF-Z 3350 EF-1 72G AIRSMUPPER 900 4970 CFAR REQ'D MAKEUP ALRUNIT REG'D FOR 4970 CEM

Subject:		Baker
	Sheet No3 of _3	
	Drawing No.	
Computed by BRC Checked By	Date	
MAKE-UP AIR UNIT SEL	Ection	· · · · · · · · · ·
4970 CFM REQUIRED		
SELECT MCQUAR HON U	አባር	
BASE HEATER SELECTE	N ON HEATING AIR FROM	~ 23 (WINTERZDESIG
AT= 73-23= 53°F	· · · · · · · · · · · · · · · · · · ·	
1,085×4970×53 = 285,8	XOO RTUN	· · · · ·
<u>285,000 BTUH = 83,75</u> 3413 BruH/KW	W = BAKW	· · · · · · · · · · · · · · · · · · ·
SPACE MEATING LOAD IS OUTDOOR ALR LOAD IS 1.	65, BA9 BYUH 085x(65-23)x 4970=22	26483 Bruk
TOTAL LOAD = 65, 849	+ 226, 483 - 292,332 BM	214
and the second	+ 226, 483 = 292,332 BM SAFETT FACTOR DUE TO 1	· · ·
USING A 1.Z		arde of load
USING A 1.Z	54FETT FACTOR DUE TO 1 = 356798 => 350800 [	arde of load
USING A 1.2 292,332 × 1.2 48 V UNIT PROVIDES	54FETT FACTOR DUE TO 1 = 356798 => 350800 [	ARGE ON LOAD
USING A 1.2 292,332 × 1.2 48 V UNIT PROVIDES	SAFETT FACTOR DUE TO 1 = 350798 ⇒ 350800 B > 285,800 Brun	ARGE ON LOAD
USING A 1.2 292,332 × 1.2 48 V UNIT PROVIDES 350,800-285,800 REQUIRED	SAFETT FACTOR DUE TO 1 = 350798 ⇒ 350800 B > 285,800 Brun	ARDE OA LOAD
USING A 1.2 292,332 × 1.2 48 V UNIT PROVIDES 350,800-285,800 REQUIRED 65,000 BTUH	SAFETT FACTOR DUE TO $i$ = 350798 => 350800 E 5 285,800 BTUN 0 = 65,000 BTUN ADDITO 2/667 BTUN EA => 220	ARDE OA LOAD
USING A 1.2 292,332 × 1.2 48 V UNIT PROVIDES 350,800 - 285,800 REQUIRED 65,000 BTUH 30NIT WHES -22000 - 6.4 KW 3413 SELECT MARKER EL 208-3-	SAFETT FACTOR DUE TO $i$ = 350798 => 350800 E 5 285,800 BTUN 0 = 65,000 BTUN ADDITO 2/667 BTUN EA => 220	FZF 5107CAIL
USING A 1.2 292,332 × 1.2 48 V UNIT PROVIDES 350,800 - 285,800 REQUIRED 65,000 BTUH 30NIT WHES -22000 - 6.4 KW 3413 SELECT MARKER EL 208-3-	SAFETT FACTOR DUE TO 1 = 350798 => 350800 E = 285,800 BTUH = 65,000 BTUH ADDITU 2/667 BTUH EA => 220 => 7.5 KW EC. UNIT HEATER CAT. H = 60 20.8 AMP 1/50 HF	FZF 5107CAIL

1 1.10

S.O. No Subject:			Baker
	Checked By	Sheet No of Drawing No Date	
MINTERU 4970CF		For sections ELEC. HEAT SECTION R. SECTION	SPLITTER DAMPER
5	ELECT GOX92 L	OGS IN. PRES	
	z VENTILATION ZFAR => PRO	NDE SAME SIZE LOUVER	: : -
	ETZ .1" DIRTY) 1.0" LK . Z	<u>.</u>	

1.1 1.15

Trane Air Conditioning Economics ( By: Trane Castomer Direct Service Network)

V 800 Page 1

 AV
 Dy
 Trane Customer Direct Service Network
 48

 XX
 HLB CAMP LEJEUNE BROUNDWATER TREATMENT CAMP LEJEUNE, NORTH CAROLINA NAVY DLEAN BEINZER

Weather File Code:	<b>GREENSBO</b>					
Location;						
Latitude:	36.8 (deg)					
Longitude;	86.8 (deg)					
lise Zone;	5					
Elevation:	887 (ft)					
Baroaetric Pressure:	28.9 (in. Hg)					
Sugger Mestore Authors	g 35					

246867	01692.00	155 NU10271	8.70	
Winter	Clearne	ess Nusberi	8.95	
Sasser	Design	bry Bulb:	98	(F)
Susser	Design	Wet Bulb:	7 <del>9</del>	(F)
Wister	Design	Bry Bulb:	23	(F)
Susser	Ground	Relectances	8.29	
dinter	Graund	Relectance:	8,28	

Air Density:	0.0735	(Lba/cutt)
Air Specific Heat:	8,2444	(Btu/1bm/F)
Density-Specific Heat Prod:	1.8776	(Btu-mis./bs/cuft/F)
Latent Reat Factor:	4,743.5	(Btu-min./hr/cuft)
Enthaloy Factor:	4,4885	(Lb-sin./hr/cuft)

Design Simulation Period: June – To November System Simulation Period: January – To December Cooling Load Methodology: — FETD/Time Averaging

Time/Date Program	ឌខេ និងពេះ	11:48:40	6/11/93
Dataset Name:		LEJEUNE .	15

By: Irane Customer Direct Bervice Network

AIRFLOW - ALTERNATIVE I

		!	(Design Airf)	.og Buzati	1185/						
			Fair				Auxil.	Rooa			
	Øutsid	de Cooli	na Heatin	ıç Rel	tura E	ihaust	Supply	Exhaust			
Systea Sys	tea Airfle	ow Airfl	ow Airfle	su Airt	flov Ai	rflox	Airtlow	Airflow			
Nusber T	ype (Cfe	s) (Cfi	s) (Cfi	3) ((	Cfs}	(Cfs)	(Cfe)	(Cfs)			
1 08			R 44	13	9 <u>7</u>	ę	8				
Totals		2	8 <b>4</b> 4	13	9	8	ŝ	2			
CAPACITY -	ALTERNATIVE 1										
				(Design	Capacity (	kantities	ŝ				
		Coeli	Aq					Heating			
			pt. Vent Co								
System Sys	tem Capacity	Capacity i	Capacity	ictais Cr	apacity i	lapacit	Capacity	Capacity	Capacity	Capacity	Tota.
Nugber I	yde (Tons)	(Tons)	(Tone) i	(Tans)	(Btuk)	(Étur)	(Btuh)	(Btuh)	(Btub)	(Btuk)	(Btu
	8,8	8.0	8. <b>8</b>	8,8 -	-28,637	8	đ	5	3	(3);r	-28,6
1 11		8.8	8.8 8.6	£, 8 ·	-28,637	Ê	8	ř	Ê	22	-28,6
1 UH Totais	6.8										
lotals											
lotals	B.O Checks - Alte										
fotals Engineering	CHECKS - ALTE	ERNATIVE 1									
lotals Engineering		ERNATIVE 1		EŔING	CHEC	κ 5					
lotals Engineering	CHECKS - ALTE	ERNAJIVE 1									
Totais ENGINEERING 	CHECKS - ALTE	ERNATIVE 1 Perci	ENGINE ent ice Cfm/	Col Cfs/	oling Sq Ft	5ts1;	Kea / Cfa/	tisg Btg-	Floor Area		
lotais ENGINEERING 	CHECKS - ALTE	ERNATIVE 1 Perci	ENGINE ent ice Cfm/	Col Cfs/	oling Sq Ft	5ts1;	Kea / Cfa/	tisg Btg-	Floor Area		

# ive image Costomer Direct Service Network

System 1 Block UH - SNIT HEATERS

*						*****	*****					tetttt HEAD			ă X \$ X \$ X \$ X
		120 ==>								¥r: ≷			ăo∕∦r: 13		
	Ontside A.	17 223	PAD	87₩B/KR:	8/ 8/ 8.	ġ				13; i	é i		64P5: 2	3	
			брасе	Rot. Air	şaf, dir	ŝ	et Fo	K rot X		1/2	I Fornt I	Space Pea	ak Coul-P	<b>22</b> 4	Percat
		Sec	is,fiat.		Latent							Space Ser			
	Envelose											,			
~	Civilia	Solr	(rind) 2	- 2 Culty	(101233)	14:10	0 0	9.00 x	1.0.7	e e e e e e e e e e e e e e e e e e e	8.88 I	(Btui	s) (P. G	40) G	(*) 8.68
	OKJI(8 Chulite	Cond	8	8				6,88 K		0 4	0.55 *				
	OKJIIE Dané (a		5	<b>5</b> 						8	0,00 +	<b>.</b> .	0 19		8.88
		nd - )	90 90	ś				8.88 I		8	5,55 4	-7,3	33 -/. 2	599	25.60
		olar	5	윮				8,88 <b>t</b>		9	0.08 I				6,88
	0:895 L	end	1	8				8,88 1		ř.		-1,8			
-		лĊ		Ŭ				9.88 <b>1</b>			8,98 \$	•	89 -14,		
	Partiti		8												
		Floor	9									-5,4			
	Infiltr		<u>R</u>												
	Sub Tot	3 <b>]==</b> ).	2	8			8	8.98 X		8	8,88. 1	-28.6	37 -28	t 37	188,88
	Internal	Loads						ţ			ţ				
-	Lights,		8	2			8	8.89 X		6	6.68 #		90	8	6.88
	Peccle		8				8	8.88 x		₽	8.88 \$		8	ź	8.88
	Mi BC		8	g	2		£	0100 1		8	8,88 \$		<u>1</u>	Ĵ	8,88
	Sub Jot	2=>	8	8	8						8.88 1		8	â	
		036		8	-			8,98 1			8,88 1		8	è	
_	🔨 Outside A		8	ŝ	4			8,88 1			E.26 1		e e	ê	8.88
	Sug. Fan		÷	U				e,88 x		5	6,68 1		Ŷ	e B	6.88
~	Ret, Fan i			ę.				0.00 (			8,88 i				8,88
	Buct Heat			с Д				0.00 + 0.88			6,88 i			e e	8,88
	OV/UNDR S:		8	v				8.88 i		6	8,88 1		ê	• 8	8,98
	Extaust H	•	υ	2	5					Ð			6		
				8				9.88 1			8.88 1			190	8,88
	7erminal	6Y0839		9	ß		9	8.88 1			8.88 1			ų,	8,82
~	<b>0</b> . 7 .		,					ţ			1				
	Grani Tot	21==>	Ŷ.	ž.	<u>p</u>		<u>9</u>	8.86 I		÷.	6,68 1	-79,6	<b>3</b> 7 -22	: 201	146,89
				6801	ING COIL S	ELECTION-							48545-		
												Prose lot			
												Fice			
	Nain Cla	8,8	2.9	8,8		0.0	2.9	8.8	2,6	8.8	8.8	Part	÷		
	Avx Clo	8.8	8,8	8,8	8	8,8	8,0	3.8		8.9	8.6	EEE.	289		
	0ot Vest	8.8	8.8	0,8	8			8.6		8.2		keet -	2.036		8 8
	Totals	8,6	8,9		·			• • •				4411	3,054		1
			- / -										-(		•••
		HEATING	COLL SELE	CTION			-AIR£.0	k5 ∶cfa	}	{	INGINEERIN	E (HEORE	TERFEF	at aq	: (F)
~		Capacity	Coil Ai	rtl Ent	Lvą	Type	(.oo	liaș	Heating	<u>01</u>	2 CA	3,8	Ĩ⊁ <b>≎e</b>		Htç
		(Moti	(cfa			Vent		2	, i		Crs/Soft				5,611-5
	Main Pto	-28.5		43 65.8	-	lafil		-	3		ET#/Ion			i.	
	Aux Htg	ê.0		8 8.8		Supply		ž	44]		: Saft/lon			2,	
	Prebeat	8,0		8 8.8		dincfr			ŝ		i Bitta/Sof			÷.	
	feheat	8.2		8,8		Return		- <del>2</del>	: 443		Peocle			1, ),	
	HERES. HERIGIT	0.5 8.8		5 5.8 3 8.8		Exhaust		v B	440 3		, 78091 <del>8</del> 1 7 84				
~	Opt Vest	0.6 8.8		8 8.8				e E	2						
	opt vest	е.е -78.6		U 0,6	8.8	Re Eth		đ.	£ F			ele.			
	-21 <b>6</b> 1	-70,0				Auxil		τ. •	1	27	p Btuh∕SaF	t -11,44	En Frici	5.	5 6,5

a contraction of a contraction of the

-

By: Trane Custoner Direct Service Network

MAIN SYSTEM HEATING - ALTERNATIVE 1

τ. 111.

								Space							· (311 ·		
			Floor	Peak Time	Cor	0A 1d.	Ra Bry	Supp, Dry	Space Air	Space Sens.	Peak Time		0A nd.		Supp. Dry	Coil Air	Coil Sens.
Raos Nasber	Desc	riotica	Area (Sa Ft)	Kc/H <b>r</b>			B1b (F)	Bulb (F)	Flow (Cfa)	Load (Rtsh)	No/Hr			Bib (F)		Flox (Cta)	Load (Rtun)
true a	BUILI	ING	2,584	13/ 1	23	28	65	125.0	443	-28,637	13/1	23	12	65	125.8	443	-23,637
Zone	1	lotal/Ave.	2,584		25	28	65	125.8	443	-28,637		23		<b>.</b> (5	125.8	443	-28,637
Zone	1	Bloc∽	2.504	13/ 1	23	28	ėð	125.8	443	-28,637	13/ 1	23	28	65	125.8	443	-28,637
System	1	Total/Ave.	2,584		23	28	65	125.0	443	-28,637		21	28	65	125.ė	423	-25.837
System	1	Block	2,584	13/ 1	23	20	65	125.0	443	-28,637	13/ 1	23	28	65	125.8	443	-28,637

By: Irane Eustomer Direct Service Network

HEAFING LOADS AT COL. PEAK - ALTERNATIVE 1

			Roof		Roaf		of Coil Pea			Skylight	ł	Skylight	
			Return Air	Root			Skylisht	t Skylight	Sky1:			t Space	
			Sensible	8.A.	•			•				. Conduction	
Roas			Load	CLTD	Load	CLID	Solar	Solar	CLI	Loar	i CLI	) Load	113
Nueber		Description	(Btah)	(F)	(Btuh)	(F)	(Ftuh)	) (Btuh)		(Btuh)	) (F	) (Btuh)	(F
į	BUILD	116	8		-7,333	-42.8	f		8,68		8 8.I	8 1	i (),
Zone	1	Total/Ave.	8	8.8	-7,333	-42,8	į	2	0.88	3 (	8 8.	8 i	9,1
Zone	1	Block	. <del>8</del>	8,6	-7,333	-42.8	í	8 6	8.00	-	8 8,	8 (	8.
		Total/Ave.	¢.	8.8				i i				ê i	6.
System	1	Black	ŝ	8.8	-7,333	-42.8	č	8 1	8,88	i I	8 8.	ê î	8.
			· ß U	ILD	ł	(Wall -		AIING	LOAI	)			
••••••••					(ŝt ·	(Wall - time of	Window) Coil Peak)						
			¥311	¥a]]	164 164 164	(Wall - time of Wall	Window) Coil Peak) Glass	61a=5	Glass	31ass	Slass	Glass	61855
Roos			¥all Plenue	Wall Plena	(At Ball Space	(Wall - time of Wall Space	Window) Coil Peak) Glass Space	Glaes Return Air	Glass Solar	Blass Scare	Blass Space	Glass Return Air	Glass R.A.
	Descr		¥311	Wall Piena Clid	(At Wall Space Load	(Wall - time of Wall Space CLTD	Window) Coil Peak) Glass Space Solar	Glaes Return Air Solar	Glass Solar CLF	Blass Boace Conduction	61ass Space CLTD	Glass	Blass R.A. Cuid
Nuaber		istion	¥all Plenum Load	¥all Plena CLTD (F)	(At Wall Space Load (Btuh) -14,889	(Wall - time of Wall Space CLTD (F) -42.8	Window) Coil Peak) Glass Space Solar (Btuh) E	Olaes Return Air Solar (Btuh)	Glass Solar CLF	31ass Scare Conduction (Btub)	Glass Space CLTD (F)	Glass Return Air Conduction	Glass R.A. CLTD (F)
Number 1 Zone	BUILD 1	istion ING Total/Ave.	Kall Plenus Load (Biuh) B B	Wall Plena CLTD (F) B.B B.B	(At Wall Space Load (Btuh) -14,889	(Wall - time of Wall Space CLTD (F) -42.8	Window) Coil Peak) Glass Space Solar (Btuh) E	Glass Return Air Solar (Btuh) B	01455 Solar CLF 0.000 0.000	Blass Scace Conduction (Btub) -1,861 -1,861	61ass Space CLTD (F) -42.0 -42.0	Blass Return Air Conduction (Btuh) B	61ass R.A. CLTD (F) 8.8 8.8
Number 1 Zone Zone	BOILD	istion ING Total/Ave. Block	Wall Plenum Load (Btuh) B B B	Vall Plens CLTD (F) B.B B.B B.B	(At Wall Space Load (Btuh) -14,889 -14,889 -14,889	(Wall - time of Wall Space CLTD (F) -42.8 -42.8 -42.8	Nindon) Coil Peak) Glass Space Solar (Btuh) E B B	Glass Return Air Solar (Btuh) B	01455 Solar CLF 0.000 0.000	Blass Scace Conduction (Btub) -1,861 -1,861	61ass Space CLTD (F) -42.0 -42.0	Blass Return Air Conduction (Btuh) 8	61ass R.A. CLTD (F) 8.8 8.8 8.8
Number 1 Zone Zone System	BUILD 1 1	istion ING Total/Ave. Block	Hall Plenum Load (Biuh) B B B B	¥all Plenn CLTD (F) 8.8 8.8 8.8	(At Wall Space Load (Btuh) -14,889 -14,889 -14,889 -14,889	(Wall - time of Wall Space ELTD (F) -42.0 -42.0 -42.0 -42.0 -42.0	Window) Coil Peak) Space Solar (Btuh) B B B B B	Glass Return Air Solar (Btuh) B	01455 Solar CLF 0.000 0.000 0.000 0.000	31ass Scace Conduction (Btuh) -1,861 -1,861 -1,861 -1,861	61ass Space CLTD (F) -42.8 -42.8 -42.8 -42.8	Blass Return Air Conduction (Btuh) B B B	Glass R.A. CLTD (F) 8.8 8.8 8.8 8.8

- 1 (ili

ι.	Roos Nuster	Descr	iption	Exposed Flocr Sensible (Btuh)	•	Partition Sensible (Btuh)	Part. CLTD (F)	Infilt. Airflow (Cfa:	Infilt. Sensible (Btuh)	Infilt, Latent (Bilt)	Tesp.	Ceiling Sersible Leed (Stuh)	Envelope lotal (Btubi
	1	BUILI	)INS	-5,434	-42.8	8	8.8	ê	6	÷	65.8	· ĝ	-23,637
	Zone	2	Total/Ave.	-5,434	-42,g	8	8.8	Ē	ê	ł	:5.8	9	-28,637
	Zone	i	Block	-5,434	-42,8	8	8,8	2	8	5	65.8	ê	-28,637
	Syster	1	Total/Ave.	-5,434	-42.8	8	8.8	5	6	ć	:5.£	ŝ	-28.632
	System	1	Block	~5,434	-42,8	8	8.8	÷	8	2	<b>:</b> ;,8	?	-28,637

PAGE 5

By: Trane Customer Direct Service Network

HEATING LOADS AT SPACE PEAK - ALTERNATIVE 1

(Reof - Skylight: (At time of Space Peak) koof Roof Skylight Skylight Return Air Roof Sçace Roof Skylight Skylight Skylt Return Air Skylt Space Skylt Sensible R.A. Sensible Space Return Air Space Solar Conduction R.A. Conduction Space Roos Load CLTD Load CLID Solar CLF Load CLTP Load CLTD Solar Nusber (Stud) Description (Btuh) (F) (Btuh) (F) (Btuh) (8teh) (F) (Btuh) (F)

! BUILDING 8.8 -7,333 -42.0 8 8,3 8.8 ą 8 8,888 6 Zone 1 Total/Ave. 8 8.8 -7.333 -42.8 2 8 8.868 £ 8.0 ë 8,2 Zone 1 Block 9 6.8 -7.333 -42.8 8 8 8,8 8 8,008 ê 3.8 System 1 Total/Ave. 8 8,8 -7,333 -42.0 £ 8 8.808 8 8,6 8 8,8 System 1 Block 8 0.8 -7.333 -42.8 8 8 0,888 8 8,8 9 8.8

$\frown$	Roos Nueber	Descr	istion	Wall Plenum Load (Btuh)	Wall Pleng CLTD (F)	Wall Space Load (Btub)	Wall Space CLTD (F)	Glass Space Solar (Btuh)	81ass Return Air Solar (Btuh)	6lass Solar CLF			Class Return Air Conjuction (Bitch)	
	1	BUILD	IXG	8	8.8	-14,809	-42.0	8	8	8.888	-1,861	-42,8	8	8.8
	Zone	1	Jotal/Ave.	8	6.8	-14,889	-42.0	8	ŝ	6.889	-1,861	-42.8	8	8,8
	Zone	1	Block	8	8.8	-14,889	-42.8	95	8	8.068	-1,861	-42.8	8	8.8
	System	1	Total/Ave.	5	8.8	-14,889	-42.8	8	ĉ	6.888	-1,861	-42.8	6	8.8
	System	1	Block	8	0,8	-14.889	-42,9	8	55 10	8,888	-1.861	-42.3	8	8,8

## 

Roo <b>n</b> Number	Descr	iption	Exposed Floor Sensible (Btuh)	Expsd Floor CLTD (F)	fartition Sensible (Btuk)	Part. CLTD (F)	Infilt. Airflog (Cfm)	Infilt. Sensible (Btuh)	Infilt. Latent (Btur)		Ceiling Sensible Load (Btur)	Envelope Total (Btus
1	RVILD	ING	-3,434	-42.8	经 研究	8,8	ş	6		65.8	i.	-28.637
Zone	1	Total/Ave.	-5,434	-42.8	8	8.8	ę	ž	ę	65.8	ð	-25,637
Zone	4	Block	-5,434	-42.8	8	8,8	ę	8	ş	65.8	8	-23,631
System	1	Total/Ave,	-5,434	-42.8	8	8,8	ê	ŝ	) j	65.6	ź	-22,637
System	1	Block	-5,434	-42,8	9	8,8	ê	8	ē	6518	-	-28,637

PAGE &

· -		
	TPACE 608 input file C:\JOBS\LEJE3WE.TH by Trane Customer Direct Service Network Alternative #1	'aqe #1
~	81 Card - Job Information	
<b>~</b>	Project: MLB CAMP LEJEUNE GROUNDWATER TREATMENT Location: CAMP LEJEUNE, NORTH CARDLINA Client: NAVY CLEAN Program User: GEINZER	
	Clisatic Information	
<b>A</b>	Summer Minter Summer Summer Minter Summer Winter Weather Clearness Clearness Design Design Building Ground Ground Code Number Number Dry Bulb Wet Bulb Dry Bulb Drientation Reflect Reflect BREENSBO 98 79 23	
*	Load Section Alternative #1	
	Semeral Roos Paraseters	
	Zone Accustic Floor to Duplicate Duplicate Room Reference Room Floor Floor Const Plenum Ceiling Floor Floors Rooms per humber Number Descrip Length Width Type Height Resistance Height Hultiplier Zone 1 1 BUILDING 38.33 65.33 3 8 19.7	
	Thermostat Parameters	
*	Cooling Room Cooling Cooling Heating Heating Heating Tistat Heasing Cooling Room Room Design Tistat Tistat Room Tistat Tistat Location No. Fre Un Number Design DB RH Driftonint Schedule Design DB Driftpoint Schedule Flag Average Floor 1 63	
×.		
	Roof Parageters	
<b>3</b>	Room Roof Equal to Roof Roof Roof Const Roof Roof Roof Number Number Floor? Length Width U-Value Type Direction Til: Aloha 1 1 48.9 65.67 .665 71	
	Wall Parageters	

٠

201 - C. 10

TRACE 688 input file C:\JC85\LEJEUNE.IN by Trane Customer Direct Service Network _____ Alternative B1

1 . . U

------ Wall Parameters -----Hall Groupd Constuc Wall Wall Wall Reflectance Roon Wall Wall Wall Well Number humber Length Height U-Value Type Direction Tilt Alpha Multiclier i í 952 6 1 2 126 .45 8 1 3 739 98 ł ą 99 21 8.45 į 5 931 188 129 1 6 8,45 188 1 7 21 8,45 186 1 8 739 278

8,45

1

9

21

Roca Nuaber S	¥all Nugber :	Glass Length	Glass Width	Pct Glass or No. of Windows		Shading Coefficient .58	Shading	Solar to	Visible Fransmittance	lnside Visible Reflectero
1	1	17	1	-	917	120				
1	5	17								

27B

				Exposed F	loor Parase	ters				
	Exposed	Slab-		******		{	sposed F	1001		
Roce	Floor	Periceter	Loss	Floor	Floor	Const	Tesp	Cooling	Reating	Adjacent
Nueber	Nueber	Length	Coefficient	Area	U-Value	Type	Flag	lesp	Teap	Roce No
1	1	208.68	.¢2							

------ System Section Alternative #1 -----

------System Type ----------------OPTIONAL VENTILATION SYSTEM------System Ventil Fan Set System Deck Cooling Heating Cooling Heating Static Number Type Location SADBVh SADBVh Schedule Schedule Pressure 1 UH

					Zone A	issignoen	!					
System												
Set	8ef	81	Ref	#2	Ref	<u>92</u>	Ref	<b>#</b> 4	Ref	à S	€e [±]	5ô
Nusber	Beçin	End	Beşin	End	Begin	End	Becin	Enc	heain	Eab	Eesta.	Enc
$\sim 1$	1	1			•				·			

E 0.00

Page #3

Utility Description Reference Table ------

> System: UH UNIT HEATERS

Appendix F Manufacturer's Catalog Data

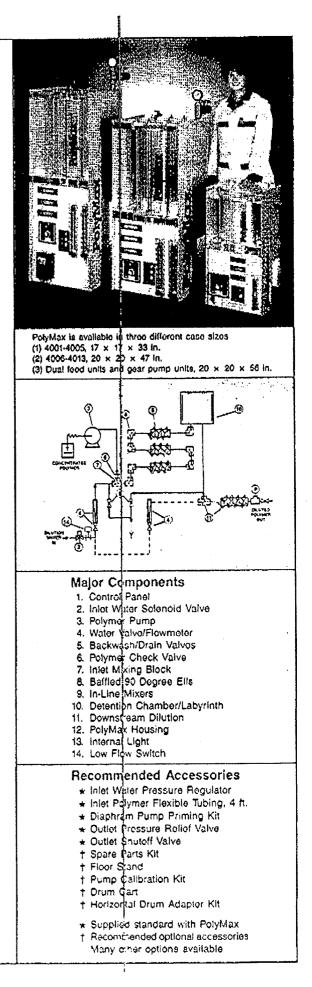
Section 11300 Polymer Feed System

i b

1...: B

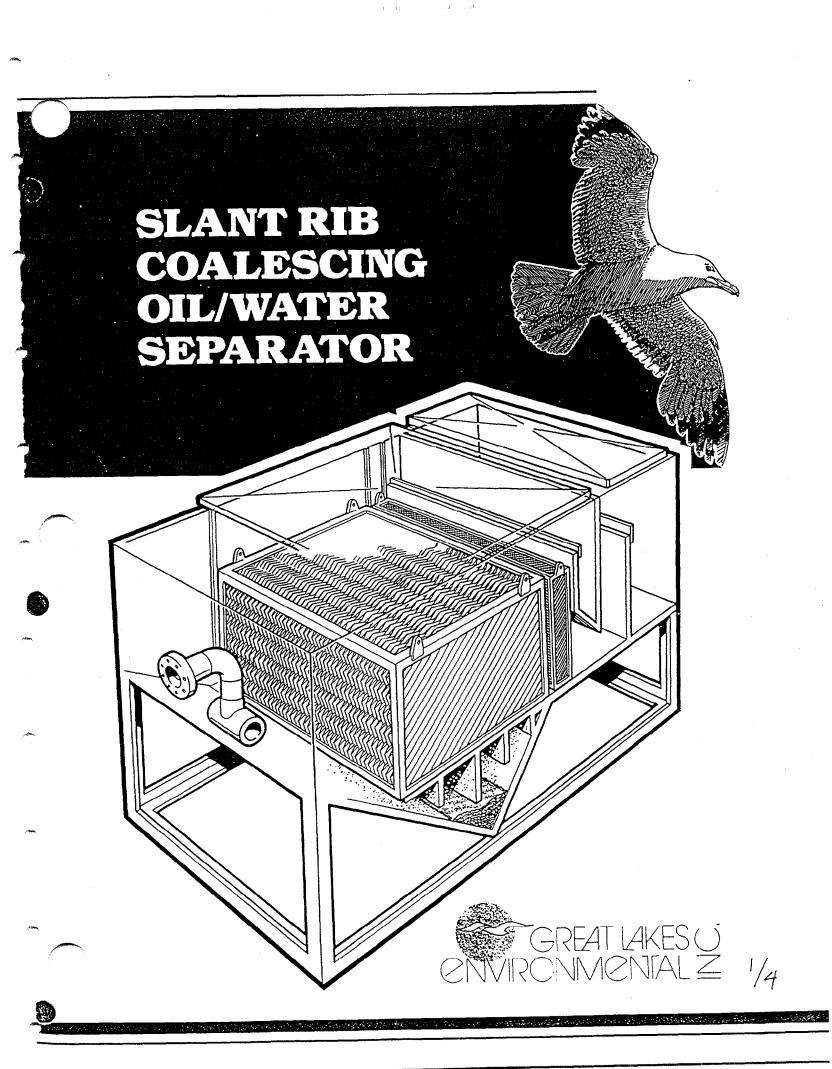
# PolyMax

## Liquid Polymer Blending System


PolyMax is a compact liquid polymer blending unit that mixes, blends and ages polymeric flocculating agents, all in one unit. The use of thin-film technology to introduce the polymer with water followed by several in-line mixing devices, provides the ideal environment for the polymer molecules to disperse into water. The integral aging chamber provides aging time from 1.5 to over 30 minutes (depending on throughput) for the polymer molecules to uncoil and activate.

No other compact blending unit maximizes polymer activation like PolyMax. This results in significantly lower polymer usage and savings in operating costs.

Why does PolyMax work so well? Because, high-energy, highshear devices such as mechanical mixers and centrifugal pumping action are avoided. These devices contribute to fracturing and break-up of the long-chain polymer molecules rendering them less effective, which results in much higher polymer usage. Rather, mixing in PolyMax is accomplished by several in-line elements combining to effect gentle, yet unusually effective and homogeneous blending of polymer and water.


PolyMax mixing elements include an inlet mixing block that spreads the polymer into a thin film for initial combining with dilution water. Multiple 90 degree, specially baffled elements follow the inlet mixing block. Finally, three conventional inline mixers complete the mixing/blending process. The blended polymer then passes into a detention/aging chamber containing an internal labyrinth where detention time and further gentle mixing allows the individual polymer molecules to uncoll and activate, maximizing their effectiveness. PolyMax is available in a wide range of sizes with numerous options to enhance its use. Write, fax, or telephone for Technical Bulletin 700. (See reverse side.)

PolyMax	Stock Solution	Dilute Solution
Model #	<u>GPH</u>	Flow GPH
4001-40/1.0	0.01-1.0	4-40
4002-100/1.0	0.01-1.0	10-100
4003-100/2.5	0.02-2.5	10-100
4004-200/1.0	0.01-1.0	10-200
4005-200/2.5	0.02-2.5	10-200
4006-600/1.0	0.01-1.0	72-600
4007-600/2.5	0.02-2.5	72-600
4008-600/4.5	0.02-4.5	72-600
4009G-600/7	1-7	72-600
4010G-600/20	2-20	72-600
4011G-600/40	4-40	72-600
4012-1200/4.5	0.02-4.5	72-1200
4013-1200/8.0	0.04-8.0	72-1200
4014G-1200/7	1-7	72-1200
4015G-1200/20	2-20	72-1200
4016G-1200/40	4-40	72-1200
4017G-1200/100	10-100	72-1200
4018G-1200/200	20-200	72-1200
4019DF-8/7	0.04-8/1-7	72-1200
4020DF-8/20	0.04-8/2-20	72-1200
4021DF-8/40	0.04-8/4-40	72-1200
4022DF-8/100	0.04-8/10-100	72-1200
4023DF-8/200	0.04-8/20-200	72-1200
Special Lov	w Flow Options Are	Available



13 141 - 14 J - 11

Section 11302 Packed Gravity Oil/Water Separator



The Slant Rib Coalescing Separator is a highly effective gravity separator for the removal of dispersed oil and solids from water.

OT

#### GENERAL INFORMATION

The Great Lakes Slant Rib Coalescing (SRC) Separators are capable of effectively separating oils and solids from water where the oil and solids have a specific gravity differint than that of water. The SRC performance is superior to other gravity, coalescing units for the separation of dispersed oil and settleable solids. Effluent concentrations of dispersed oil are less than 10 mg/L The SRC Separators are y the volume and as little as ½ the length of straight, gravity separators. The Slant Rib Coalescers are

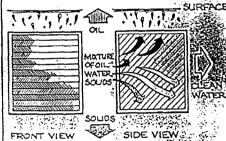
installed in rectangular tanks containing special baffles and weirs designed to direct flow, skim oil and control the liquid levels in the separator. Pitched sludge compartments are provided below the separation chamber for casy sludge removal.

The separators are available in standard models with capacities from 5 GPM to 2000 GPM. They can be installed above grade. flush with grade, or below grade as required. The separators can operate entirely by gravity or pumps can be supplied for product or effluent transfer when required.

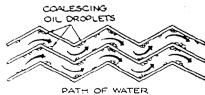
#### DESIGN

When certain materials are placed in the waste water flow, removal efficiencies of oil increase due to impingement on their surfaces. Plastic media is particularly effective because of its oleophilic 'oil attracting) characteristics. As fine oil droplets impinge upon or pass close to the plastic surface, they are attracted to it and adhere. Additional droplets continue to be attracted and coalesce or merge with previous droplets to produce much larger droplets. At a point, the droplets are large enough to break free and rise rapidly to the surface where they are skimmed or decanted. This coalescing action allows removal of smaller droplets than is possible with a straight gravity separator.

The effectiveness of any par ticular coalescing media is governed by several variable density, available surface are velocity and direction of flow a shape of the media. All of these variables influence the potential contact area, so it becomes of particular importance to form the media properly to maximize contact while minimizing blinding. The Slant Rib Coalescing (SRC) media pack was designed with consideration of all these factors. The SRC media provides greater coalescing 👔 and solids separation area than any other media currently available. The patented shape and specific spacing of the plates provides maximum protection from blinding, while providing a series of inclines that enhance solids separation and a tortuous path through which the water must pass. This continuous change of direction insures a high degree of oil droplet contact on the plate surface with resultant coalescence and oil removal. The ribs are slanted toward the surface in the direction of flow, encouraging separated oil to float to the surface along the plates before breaking free.

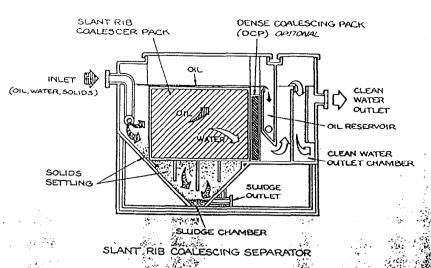

#### OPERATION

Inlet and Diffusion Chamber Flow enters the inlet chamber where it is dispersed through a non-clog diffuser across the width and depth of the media pack. Larger solids drop out here into the sludge chamber before entering the pack.


SLUDGE COMPARTME

#### Separation Chamber The separation chamber is

filled with the SRC media pack. The ribbed plates are arranged vertically in the direction of flow,




spaced %" apart. When looking at the side of the media pack the ribs. run from the bottom of the inlet side to the top of the outlet side on a 45° angle. The depth of the ribs is more than twice the distance of the: spacing creating an overlap condition. This causes the flow to zig-zag around 90° corners throughout the pack, causing resistance to flow; collisions of the droplets 20 microns and larger with the plates and coalescence. The coalesced oil has the least restricted path to exit the waste stream, and slides to the surface on the underside of the rib.



TOP VIEW

An optional Dense Coalescer Pack DOP is available when additional prosting is desired.



Solids entering the pack encounter a 55° angle of inclina-tion created by the ribs which is optimum for solids . settling: The solids slide down the top of the rib and fall to the next rib gathering mass and velocity as they near the bottom of the pack and drop SOLIDS SETTLING into the sludge cham: FRONT VIEW

6X

7

ber. The horizontal projected area

of the top/side of the ribs provides a conservative 0.20 GPM per square foot separation rate at design loadings

Sludge Chamber Thesludge namh directly;beneath)the separation chamber and provides adequate volume for the settled sludge. The sides of the sludge chamber are sloped 45° to insure easy and com-plete removal of the sludge

Oil Removals The separated oil accumulates at the surface of the separation chamber where it displaces the water. As the oil layer increases of spills over a weir into an oil reser, voir where it can how by gravity or be pumped automatically to remote storage tanks, 27 falls

 $(\mathbf{\hat{o}})$ 

Clean Water Chamber

The clean water leaving the SRC media pack passes under an oil retention baffle and into the effluent or clean water chamber From there, the clean water pass over a weir which maintains the liquid level in the separator. The clean water flows by gravity through a "T" pipe outlet or effluent pumps can be provided. The "T" pipe provides an excelle spot for sampling. -78 F

#### Covers

Hatches are provided for eas access into the separator. Sealed vapor tight hatches are available Lifting lugs are provided on the media packs and on the separato

MATERIALSOF CONSTRUCTION

Coalescer Media Packs sold separately for upgrading existing gravity separators.

Materials of construction include ¼" thick Class A carbor steel, stainless steel and fiberglas The standard Slant Rib Coalescing media is fiberglass reinforced plastic (FRP) with special addi tives to make the plates highly oleophilic. The plates can also b supplied in stainless steel. Fiber glass separators are constructed with an exterior welded steel frame encased in fiberglass for corrosion protection. All steel tank welds are Magnaflux tested in accordance with military specifications

#### COATINGS

Above grade carbon steel tanks are coated on the exterior with coal tar epoxy. Flush with grade and below grade carbon steel tanks have asphaltum exterior coatings; Steel separators are supplied with a standard interior coating of zinc primer Special interior and exte rior coatings are available

AVAILABLE OPTIONS

Flow control package Water Pump out system Recovered Oil Pump Out System Effluent Oil Monitor Heaters for freeze protection Dense Coalescing Pack Sludge Pump Out System Design Flexibility to Satisfy You

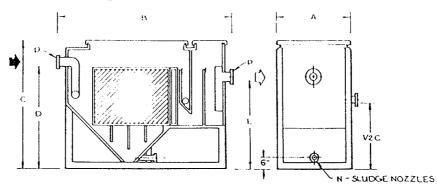
Application

PPLICATIONS Automotive

Airports

- Bus Terminals
- Bulk Plants
- Chemical Plants

*Fabricated Metal Plants


Glass Factories

Military Bases

- Oil Fields
- Petroleum Plants
- Pulp and Paper Mills
  - Parking Lots
  - Railroad Yards Textile Mills
  - Tramp Oil
  - Truck Terminals Utility Companies Wash Racks

For further information contact Great Lakes Environmental, Inc., or Ca our local representative. We will be glad to assist you in selecting a properly'sized unit for your application.

## Slant Rib Coalescing Oil/Water Separator



- E - E - H

**DIMENSIONS, WEIGHTS & CAPACITIES** 

~	MODEL	Α	В	· C	D	E	. <b>P</b>	N	No. Packs	Coalescing Area Sq. Ft.	Settling Area Sq.Ft.	Empty Weight	Operating
	SRC-15	2.4'	7.3'	4.0'	3.3'	2.7'	3″.	2	1	330	82	1260	2700
	SRC-30	2.4'	7.3	5.0'	4.4'	3.8′	3″	. 2	1	670 3	<b>167</b>	1720	4120
_	SRC-50	2.4'	.8.3 <u>(</u>	6.0'	5.4	4.7'	4"	2	ં્રા	1000)	250	1840	5190
<u> </u>	*SRC-75		<8:3'*	6.0'	5.4	4.7'	- 4"	2	1	1510	<b>377</b>	2130	7160
	SRC-100	3.4'	.8.3′	7.1′	6.5′	5.4′	6″	2	1	2010.	502	3380	10650
	SRC-150	.5.4	8.3'	7.1′	6.5'	5.4′	6″	2	1	336015	840	4800	16920
p	_SRC-200	6.5	8.3	7.3'	6.5′	5.4'	6″ ·	2	2	4030	1007	5380	19920
<b>~</b>	RC-250	8.5	8.3	7.3'	6.5'	5.1'	8″	· 2	-2	5370	1342	6540	25930
	SRC-300	×9.5′	<u>.8</u> .3′,	7.3'	6.5'	5.1'	. 8"	2,	3	6040	21518	7251	<u>-</u> 29060 -
	SRC-400	( <u>6</u> 97)	14:0'	7:3'	`5.7'. <del>'</del>	<b>*4.6</b> ′	10" 2	4	4	8060	2014	7700	30500
	SRC-500	8.94	14.0	7.3	5.7/8	4.6	C-10".	4	4	10740	2684	9200	339500
~	SRC-600	-9:9'~	14:0'	7.3	5.7'	4.6'	10"	4	6	12080)	3020	10000	44000
	SRC-800	6.9'	16.7'	11.3'	9.5'	8.2'	14″	6.	8	16120	4028	12100	66000
	SRC-1000	8.9'	16:7	11.3′	9.5′	8.2′	14″ 🗄	6	8	21480'	5368	14600	86000
	SRC-1200	9.9,4	16:7%	11.3'	9.5′ <u>′</u>	·8.2′	14" 😁	6	12	24160	₩6040	15900	96000
	Dimension	s and o	apači	ties an	e for n	eferen	ce only a	nd a	re not	to be used	for const	uction.	and the second second

Model No. represents nominal flow rates in GPM.

## SRC Separators up to 4000 gpm

ġ.

influent flow are available



F. H. TIMBLIN CO. P. O. Box 254 Industry, PA 15052 412-643-1755

4.

10

の一般ななないのを

2

414

#### 1.1.1.100 F.C.376

Section 11303 Centrifugal Pumps



Ô

## END SUCTION CENTRIFUGAL PUMPS

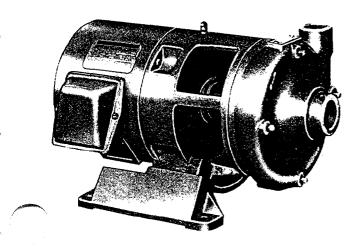
Corriged Fligh Performence Versatile

Parts Interchangeapility Close Coupled Construction Flexible Coupled Construction

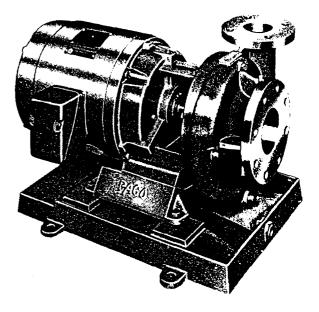
> Capacillas to (100 CPM) flaats to 790 Faat florsepowars = 1/3 to 125 Skas = 1 to 10-Inch Discharge

> > 1/7

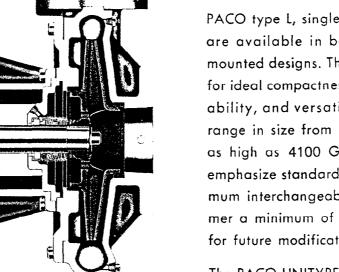
110




## **TYPE L UNITYPE SINGLE STAGE**


a i ente

END SUCTION CENTRIFUGAL PUMPS


an an

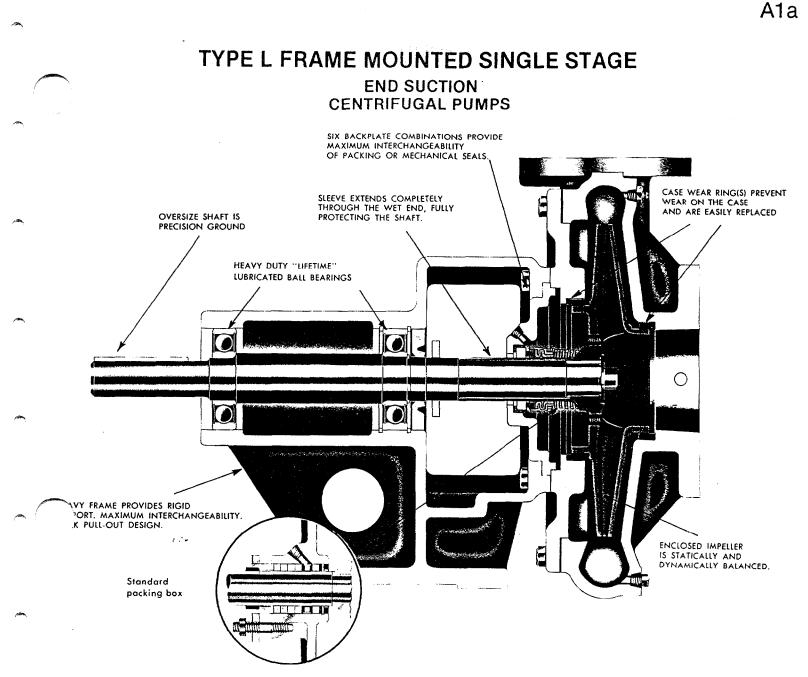


Type L Unitype with threaded connections.



Type L. Unitype with flanged connections. Cast iron base optional extra.




Cut-away shows bracket and backplate detail.

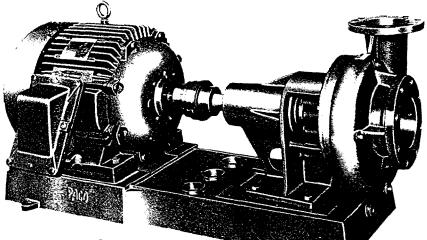
2

PACO type L, single stage, centrifugal pumps are available in both UNITYPE and frame mounted designs. They are designed and built for ideal compactness, high performance, durability, and versatility of application. They range in size from 1" to 10" with capacities as high as 4100 GPM. PACO type L pumps emphasize standardization of parts and maximum interchangeability permitting the customer a minimum of stock parts and flexibility for future modifications.

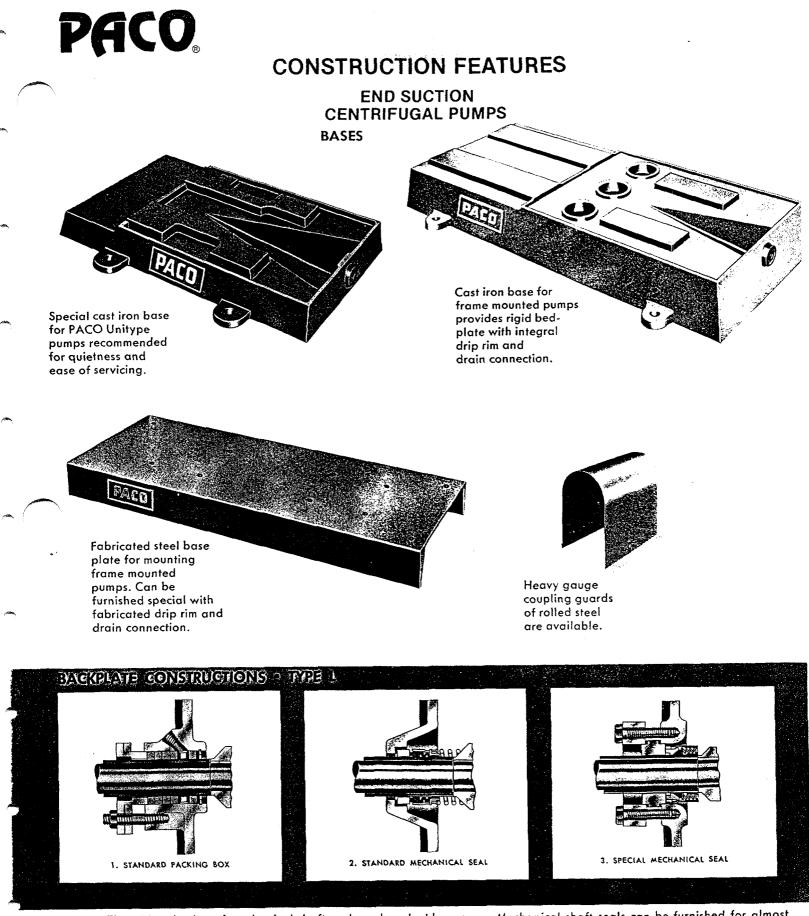
The PACO UNITYPE features a short shaft design for minimum overhang and minimum shaft deflection. UNITYPE and frame mounted mod-

2/7




a a.

1 : . L


els may be mounted vertically or horizontally, with discharge connections available in several positions.

With their heavy frames, shafts and ball bearings, PACO frame mounted pumps are the ideal for reliable heavy duty service. They are available in 6 different frame sizes to match all HP requirements up to 180 HP.

Frame mounted models are available vith cast iron bases with drip-lip and drain tapping or fabricated steel bases.



Frame mounted Type L direct connected through flexible coupling and mounted on cast iron base.



1.

The wide selection of mechanical shaft seals and packed boxes made possible by the backplate interchangeability (as shown above and on page 9), provides PACO Type L pumps with wide versatility. The PACO "quick-apart" 2-piece bronze gland packing box enables pump to be quickly and easily repacked. (see #1 above) Mechanical shaft seals can be furnished for almost any liquid. Special, balanced, double and liquid cooled seals (=2 thru 6) each have special application according to liquid being pumped, temperature, pressure, presence of abrasives or other character-

### TYPES L & OL END SUCTION CENTRIFUGAL PUMPS

All PACO impellers

are dynamically

balanced. (Larger

sizes are hydrau-

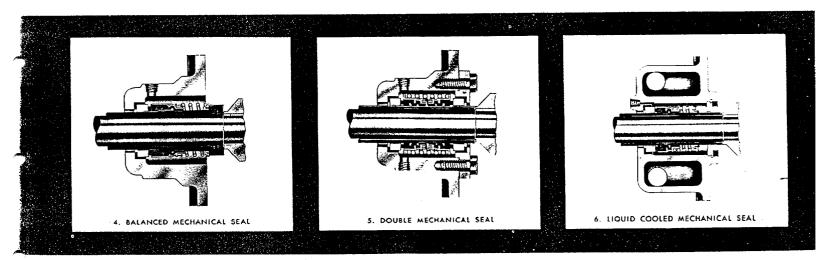
lically balanced.)

available.

Iron and bronze are standard, other alloys

Replaceable bronze shaft sleeve protects shaft from wear or corrosion. Stainless steel, monel, other metals and coatings available.



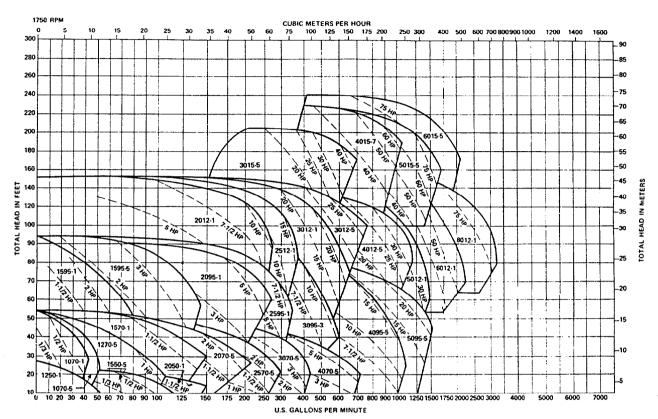

PACO shafts are precision ground stress-proof steel and designed for minimum deflection.



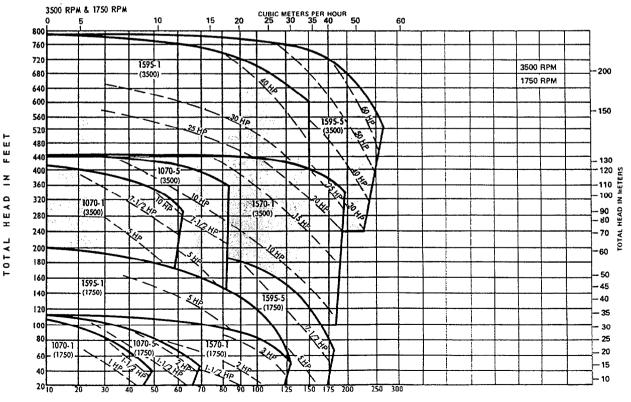
Bronze case wear rings prevent case wear, insure close 'earances and maximum .fficiencies. Other metals available to suit application.



PACO pressurizer for use with double mechanical shaft seal.




istics of the liquid. Double shaft seals has provision or protection against abrasive materials by mainaining seal chamber at a higher pressure than pump pressure. (Construction features of shaft seals shown with table on page 8.)


#### **1750 RPM PUMP SELECTION CHART**

#### END SUCTION CENTRIFUGAL PUMPS

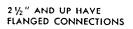
#### INDIVIDUAL PERFORMANCE CURVES MUST BE USED FOR FINAL SELECTION

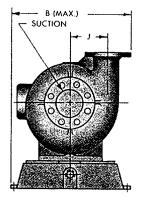


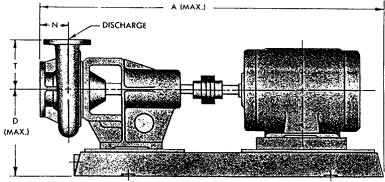
#### TWO STAGE TYPE OL SELECTION CHART



U.S. GALLONS PER MINUTE


## DIMENSIONS - TYPE L FRAME MOUNTED END SUCTION


1 1:

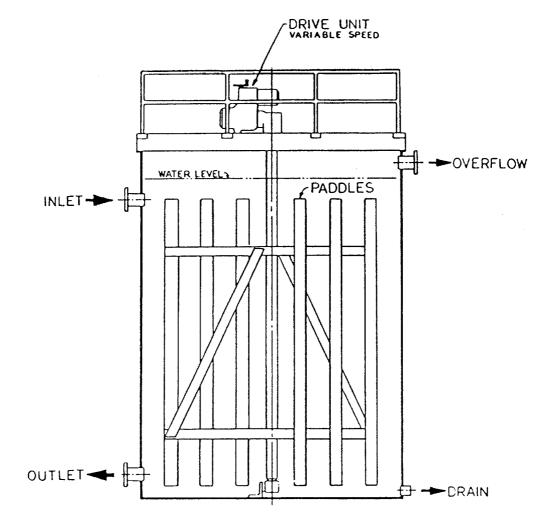

**CENTRIFUGAL PUMPS** 

. **i** . . G

1" THRU 2" HAVE THREADED CONNECTIONS







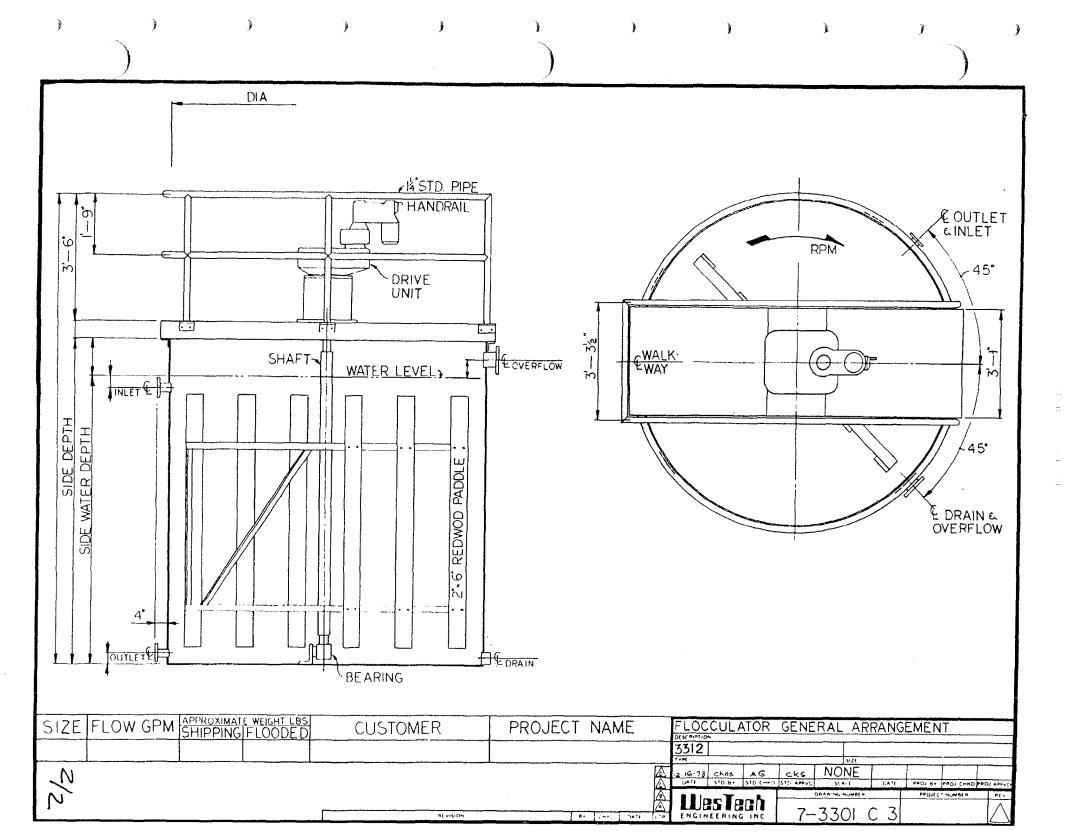

PUMP	DISCH. AND	DIMENSIONS IN INCHES								
MODEL	SUCT. SIZE	A	В	D	L	N	T			
1050	1" x 1 ¼ "									
1070	1″ x 1 ¼″	36 %	17 1/2	8 ³ ⁄4	4	3 1/4	4 1/2			
1250	1¼″×1¼″	26 1/8	13 3/8	7	31/16	2 5/8	3 3/4			
1270	1 ¼ " x 1 ½ "	365/16	17 1/8	8 ³ ⁄4	4 1/4	3 1/4	4 1/2			
1550	1 ½" x 2"	2711/16	13 3/8	7	3 1/4	3 1/4	4			
1570	1 ½ ″ x 2″	41 1/2	21 1/4	9 1/4	4 1/2	3 1/4	5 1/8			
1595	1 ½" x 2"	42 3⁄4	21 1/4	9 1/4	5 3/8	3 5/8	6			
2050	2" x 2 ½"	277/16	13 3/8	7	3 1/2	3	4 1/4			
2070	2″ x 2 ½″	42 1/8	21 1/4	9 1/4	4 1/2	3 5/8	5 3/8			
2095	2" x 2 ½ "	53 1/4	237/16	13	5 ³ / ₄	3 3⁄4	6			
2012	2" x 2 ½"	42 7/8	21 1/4	10	6 3/4	3 7/8	7 3/4			
2570	2 ½ ″ x 3″	43 1/8	217/16	9 1/4	4 1/4	3 1/2	5 ³ /4			
2595	2 1/2 " x 3"	56	28	13	6	4	63/4			
2512	2 ½ ″ x 3″	49 1/2	21 1/4	13	7	3 1/2	8 1/4			
3070	3″ x 4″	49 5/8	217/16	13	4 1/8	4	6			
3095	3″ x 4″	56	28	13	61/4	4	7			
3012	3″ x 4″	52 ½	221/2	13	7 1/4	3 1/8	8 5/8			
3015	3″ x 4″	54 ¾	237/16	14	9	4 1/4	9 3/4			
4070	4" x 5"	53 1/4	237/16	13	5 3/4	4 3/8	7 1/4			
4095	4" x 5"	60 1/8	28 3/8	15	6 1/8	4 3/8	7 V/2			
4012	4" x 5"	5313/16	237/16	13	7 1/2	5 1/8	111/4			
4015	4" x 5"	635/16	28	15	9 1/2	4 1/2	11			
5095	5″ x 6″	51 1/2	217/16	14	7 1/2	5 1/8	8			
5012	5″ x 6″	54 5/8	237/16	14	81/4	51/2	10 1/2			
5015	5" x 6"	6911/16	30 1/8	17	9 1/2	6	111/8			
6012	6" x 8"	65¾	28	15	. 7 3/4	61/4	121/4			
6015	6" x 8"	701/4	30 1/8	17	10	61/4	12 1/2			
8012	8" x 10"	70 1/2	30 1/8	16	8	6	13			
10015	10" x 12"	81 1/8	82 1/8	20	111/4	7 1/2	14			

## Section 11304 Flocculation Tank and Appurtenances

a sau

#### VERTICAL FLOCCULATOR GENERAL DESCRIPTION

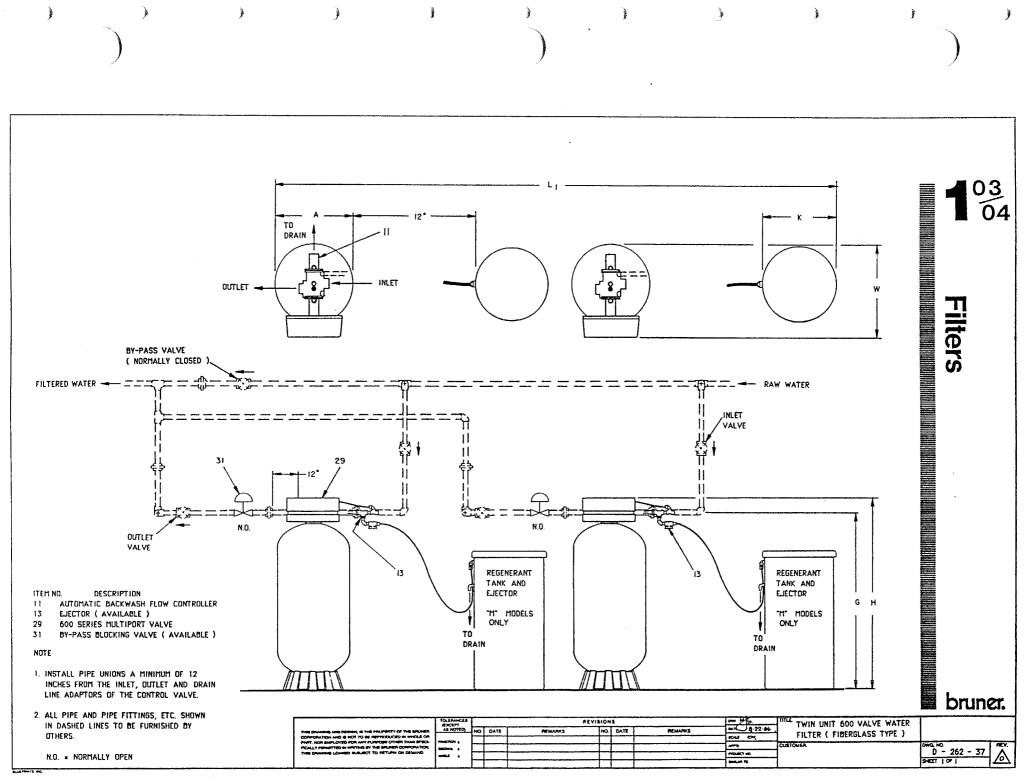



NBA RAN

The WesTech Vertical Flocculator is a highly efficient mechanism that gently, but thoroughly, mixes chemically treated water by means of paddles mounted on a structural frame attached to a rotating shaft.

The action of the paddles brings solids in the water passing through the flocculation basin into contact with chemical additives, so that floc particles are formed that can be readily settled in a sedimentation basin.

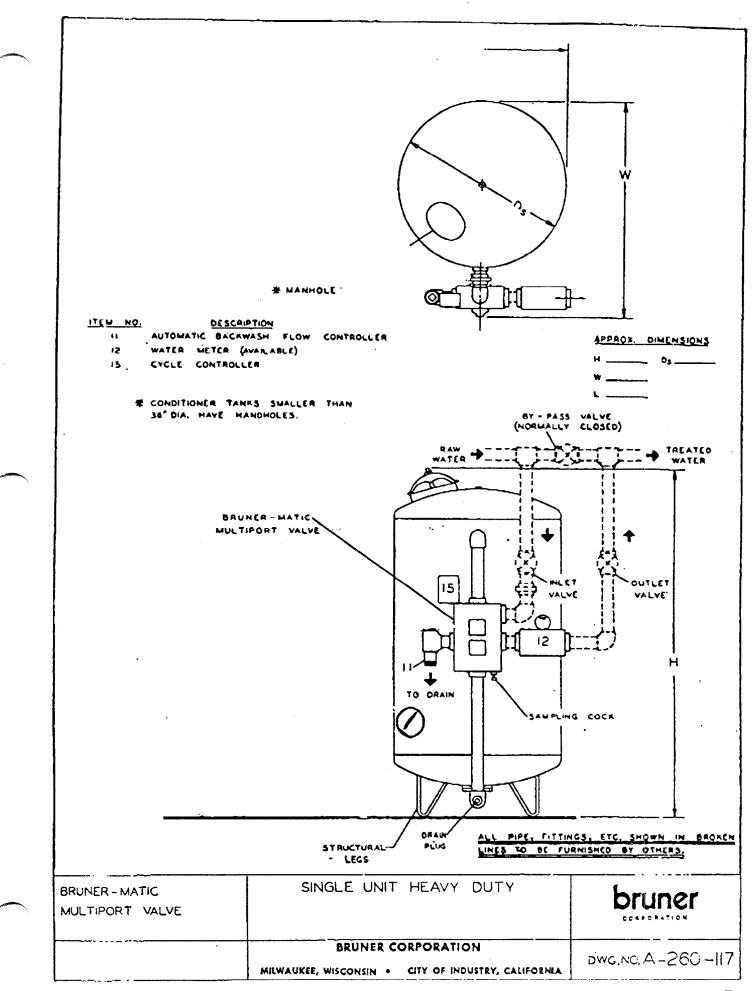
The tip speed of the paddles is variable, so that an optimum speed for floc formation can be selected to suit requirements, and varied to allow for changes in the influent.


WESTECH ENGINEERING INC., P.O.Box 15068 3605 South West Temple Salt Lake City, Utah 84115-0068 (801) 265-1000 WT6/86



Section 11306 Multi-Layer Sand Filters

 $\mathcal{A} = \mathcal{A} \mathcal{A}$ 


is de la se



6-438

-





Z/4



Bruner Corporation 500 West Oklahoma Avenue Milwaukee, Wisconsin 53207 U.S.A.

414-747-3700 Telex: 6878041 Raytec FAX: 414-747-3812 Supplementary Data Sheet

#### SPECIFICATIONS MULTI-LAYERED ML[†]

MODEL N	NUMBER		WATER QUALITY ²						1	TANK				
AUTO- MATIC	MANUAL GATE VALVE	PIPE SIZE '	SUPERIC FLOW RATE	DR PRES- SURE LOSS ³	HIGH FLOW RATE	PRES- SURE LOSS ³	UTILITY FLOW RATE	PRES- SURE LOSS ⁻³	BACK- WASH RATE ⁵	SIZE DIA.x SIDE SHELL	FILTER MEDIA LOAD- ING	FLOOR SPACE REQ'D. L x W	HT. ⁴	OPER- ATING WEIGHT
		IN.	GPM	PSI	GPM	PSI	GPM	PSI	GPM	IN.	CU.FT.	IN.	IN.	LBS.
ML-12HF		1	8	5	12	8	16	12	11.5	12 x 54	2	13 x 21	60	500
ML-14HF		1	11	6	16	11	21	17	15	14 x 60	2.5	15 x 23	66	690
ML-16HF		11/4	14	7	21	12	28	18	20	16 x 60	4	17 x 25	66	850
ML-20HF	==++	11/4	22	6	33	12	44	19	30	20 x 54	5	21 x 29	72	1,800
ML-20HF		11/2	22	3	33	6	44	10	30	20 x 54	5	21 x 30	72	1,850
ML-24HF		11/4	31	9	47	18	63	29	45	24 x 54	7	25 x 33	74	2,350
ML-24HF	1	11/2	31	5	47	9	63	16	45	24 x 54	7	25 x 34	74	2,400
ML-30HF		11/2	49	10	74	19	98	26	75	30 x 54	10	31 x 40	79	3,675
ML-30HF	1	2	49	6	74	13	98	20	75	30 x 54	10	31 x 41 ,	79	3,700
ML-36HF		2	71	9	106	17	141	27	105	36 x 60	15	37 x 46	90	5,550
ML-36HF		21/2	71	5	106	10	141	15	105	36 x 60	15	37 x 48	90	5,650
ML-42HF		21/2	96	7	144	13	192	20	150	42 x 60	21	43 x 53	92	8,295
ML-42HF		3	96	6	144	11	192	16	150	42 x 60	21	43 x 54	92	8,350
ML-48HF		3	126	6	188	11	251	17	180	48 x 60	27	49 x 64	86	10.400
ML-48HF		4	126	3	188	5	251	8	180	48 x 60	27	49 x 66	86	10.500
ML-54HF		3	159	8	239	15	318	22	240	54 x 60	34	55 x 70	87	12.800
ML-54HF		4	159	4	239	6	318	10	240	54 x 60	34	55 x 72	87	12.900
ML-60HF		3	197	10	295	20	393	31	300	60 x 60	43	61 x 76	89	15,800
ML-60HF		4	197	5	295	9	393	13	300	60 x 60	43	61 x 78	89	15,900
ML-72HF		4*	283	5	424	8	565	11	420	72 x 60	61	73 x 90	93	22,750
ML-72HF		6*	283	3	424	6	565	8	420	72 × 60	61	73 x 94	93	25,000
ML-84HF		4`	385	6	578	10	770	16	570	84 x 60	84	85 x 102	97	33.000
ML-84HF		6⁺	385 -	3	578	5	770	7	570	84 x 60	84	85 x 106	97	36.500
ML-96HF		6*	503	4	754	8	1005	12	750	96 x 60	109	97 x 118	101	45.000
ML-96HF	ML-96G	8*	503	2	754	4	1005	6	750	96 x 60	109	97 x 121	101	49.000

† Filter Media Consists of Various Sized, Distinctly Layered Sand.

1.2.3.4.5 Refer to back page for notes.

#### SPECIFICATIONS ACID NEUTRALIZER AN^{††}

MODEL	MODEL NUMBER			WATER QUALITY ²				T	TANK		1			
			SUPERIO	SUPERIOR			UTILITY		1	SIZE	FILTER	FLOOR		
AUTO- MATIC	MANUAL GATE VALVE	ATE PIPE	IPE FLOW IZE ' RATE	PRES- SURE LOSS ³	FLOW RATE GPM	PRES- SURE LOSS ³	FLOW RATE	PRES- SURE LOSS ³	BACK- WASH RATE ⁵	DIA.x SIDE SHELL	MEDIA LOAD- ING	SPACE REQ'D. L x W	HT.⁴ IN.	OPER- ATING WEIGHT
			GPM	PSI		PSI	GPM	PSI	GPM	IN.	CU.FT.			LBS.
AN-12H	FAN-12G	1	3	1	4	1	5	3	10	12 x 54	2	13 x 21	60	425
AN-14HI	AN-14G	1	3	1	5	2	6	3	13.5	14 x 60	3	15 x 23	66	625
AN-16HI	FAN-16G	1	4	1	6	2	8	4	15	16 x 60	1	17 x 25	66	850
AN-20H	FAN-20G	1	7	1	10	1	13	3	25	20 x 54	6	21 x 29	72	1.700
AN-24H	FAN-24G	11/4	9	1	14	2	19	4	35	24 x 54	9	25 x 33	74	2.250
AN-30HI	FAN-30G	11/2	15	2	22	4	29	6	60	30 x 54	14	31 x 40	79	3,500
AN-36H	FAN-36G	2	21	1	32	3	42	5	85	36 x 60	20	:37 x 46	90	5.300
AN-42HI	FAN-42G	2	29	2	43	4	58	7	115	42 x 60	28	43 x 53	92	7,900
AN-42H	FAN-42G	21/2	29	1	43	2	58	4	115	42 x 60	28	43 x 54	92	8.000
AN-48HI	FAN-48G	3	38	1	57	2	75	3	150	48 x 60	:34	49 x 64	86	9,900
AN-54HI	AN-54G	3	48	1	72	2	95	4	190	54x60	44	55 x 70	87	12.200
AN-60H	FAN-60G	3	59	1	88	3	118	5	230	(60 x 60	54	61 x 76	89	15,100
AN-72H	AN-72G*	4 BWA	85	2	127	4	170	-7	330	72×60	78	73 x 88	93	21.700
AN-84H	AN-84G*	4 BWA	116	3	173	7	231	11	450	84 x 60	106	85 x 100	97	31.500
AN-96H	=	6 BWA	151	5	226	9	302	15	600	961.60	138	·97 x 112	101	41.300
AN-96H	AN-96G	6*	151	2	226	3	302	- 4	600	195 x 60	138	97 x 114	101	41 200

tt Filter Media Consists of Crushed and Graded Calcium Carbonate.

1.2.3.4.5 Refer to back page for notes.

'4

01

Bruner Corporation 500 West Oklahoma Avenue Milwaukee, Wisconsin 53207 U.S.A. 414-747-3700 Telex: 6878041 Raytec FAX: 414-747-3812

## Supplementary Data Sheet

NOTES: HF SERIES FILTERS ML & AN  4BWA-Minimum 4" water supply required. Filter manifold connections 3" inlet and outlet and 3" backwash assist. Reference: Drawing series D-262-16 (automatic units only).

6BWA-Minimum 6" water supply required. Filter manifold connections 3" inlet and outlet and 4" backwash assist. Reference: Drawing D-262-16.

4*,6*,8* - Filter manifold is a manual or automatic butterfly valve nest Reference: Drawing series D-262-17.

All other models feature the BRUNERMATIC multiport valve. Reference: Drawing series D-262-13, 14, 15.

2. As a general rule - Lower flows produce higher quality water and larger volume of treated water between backwashing.

#### SUPERIOR

- · Recommended for most filtering applications under all operating conditions.
- · Best quality water
- Maximum time on line between backwashing
- Lowest pressure loss
- · Recommended for influent suspended solids loads up to and greater than 300 ppm.

#### HIGH

- · Well suited for many filtering applications
- Very good quality water
- Moderate time on line between backwashing
- Increased pressure loss
- · Recommended for influent suspended solids loads less than 300 ppm.

#### UTILITY

- Flow rates listed are at peak design operation at higher flow rates not recommended
- · Satisfactory water quality
- · Shorter on line time
- Higher pressure loss
- Recommended for influent suspended solids loads less than 150 ppm.

Multi layered filters are capable of 10 micron effluent water quality or better. All other filter types are capable of 40 micron effluent water quality or better.

- 3. All pressure drop figures are based on new filter media and a water temperature of 60 °F. N.R. not recommended.
- 4. Allow a minimum of 24" above filter for access into top of tank.
- 5. It is recommended that filters be backwashed before the pressure drop increases by 12 p.s.i. over the pressure drop of a clean filter.
  - a. Other special filter media and tank sizes are available through our engineering department.
  - b. Consult factory for applications on water temperatures above 120 °F.
  - c. Refer to HF sales bulletin 2-2200 for further sales information.

hrung

Section 11307 Low Profile Air Stripper Package

1.1.

 $A \rightarrow B$ 

P. 01



April 19, 1993

Alan Larson Baker Environmental, Inc. Airport Office Park, Bldg. 3 420 Rouser Rd. Coraopolis, PA 15108 RE: Proposal #393515-1 SITE ID: Hadnot Point Jacksonville, NC

Dear Alan,

I have revised proposal #393515-1 for our four-tray Model 3641 ShallowTray low profile air stripper for your remediation application.

I understand that the treatment flow rate is 80 gpm and the water temperature is 50°F. ShallowTray systems are more tolerant of inorganics than other types of aeration equipment, however, high concentrations can cause operational difficulties if proper precautions are not taken.

Expected performance for the Model 3641 ShallowTray air stripper operating at 80 gpm (normal operation range is 1-90 gpm) and 50°F is as follows:

Contaminant	Untreated	After 1st	After 2nd	After 3rd	After 4th
	ppb	Tray ppb	Tray ppb	Tray ppb	Tray ppb
Vinyl Chlorlde	300	3	<1	<1	<1
Trichloroethylene	180	9	1	<1	<1
c-1,2-Dichloroethylene	42,000	2,381	135	8	1
Benzene	7,900	1,344	229	39	7

The price for one ShallowTray Model 3641, with optional components, is listed below:

Basic System Model 3641	
Sump tank & 1 tray, 304L stainless steel	
3 Additional tray(s), 304L stainless steel	
Blower, 4 tray, 7.5 hp, 900 cfm @ 18wc, 3 phase, 230V, EXP	
Inlet screen and damper, 304L stainless steel demister, air pressure gauge, spray tube, gaskets, stainless steel latches, Schedule 80 PVC piping, tray cleanout ports,	
Basic System Price	\$22,929

North East Environmental Products 17 Technology Drive West Lebanon NH 03784 (603) 298-7061 Fax (603) 298-7063

_____

APR 19 '93 12:42

16032987063

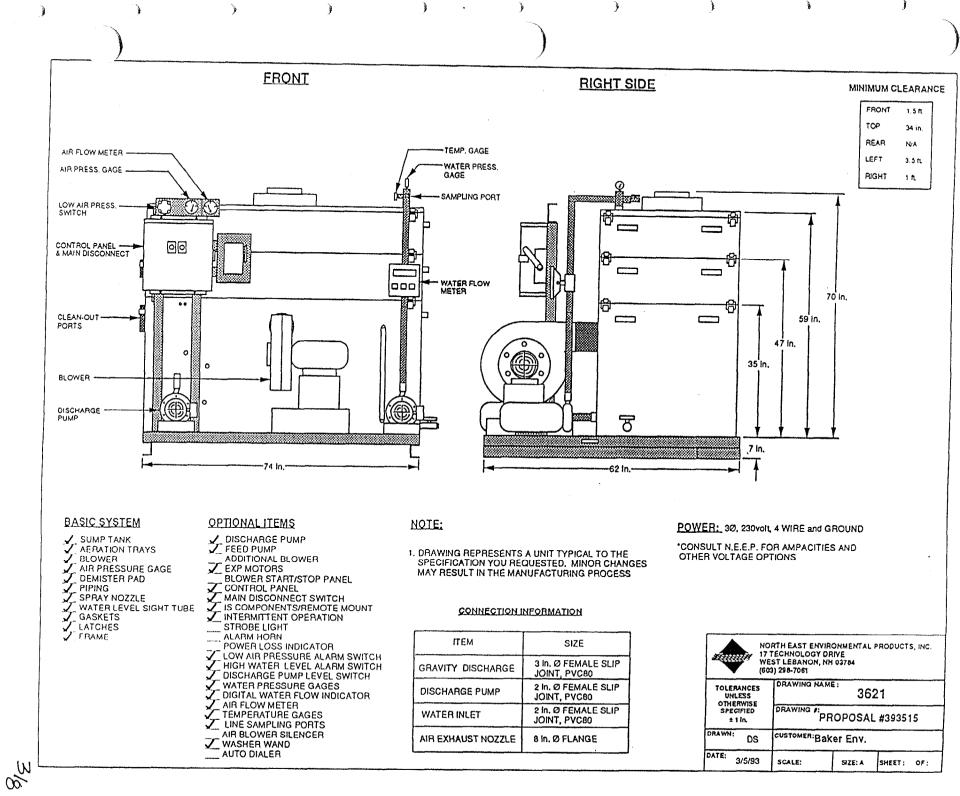
المراجعة المتحصينة مرضيت ستتحدث معداتها والرار

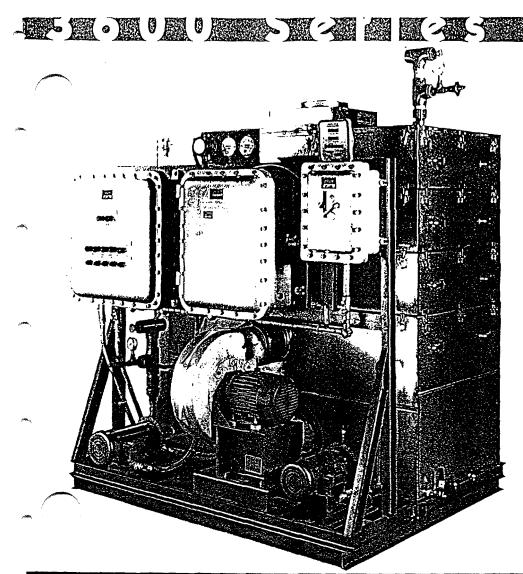
PAGE.001

P. 02

		•
Options		
Oil / Water separator	0	\$ 9
Oil / Water separator options (alarm & hi-level switches, frame)	0	\$ (
Feed pump, 90 gpm, 50 tdh, 3 hp, 3 phase, 230V, EXP	1	\$1,11
Discharge pump, 90 gpm, 50 tdh, 3 hp, 3 phase, 230V, EXP	1	\$1,11
Additional blower	0	\$1
Blower start/stop panel	0	\$
NEMA 3R main disconnect switch	1	\$9
Standard NEMA 3R control panel with alarm interlocks, motor starter, panel light, UL Listed (for remote mount)	0	\$
Standard NEMA 3R control panel with pump level controls, alarm interlocks, motor starter, panel light, UL Listed (for remote mount)	1	\$2,66
Control panel IS components	2	\$64
Intermittent operation	1	\$72
Strobe alarm light	0	\$
Alarm horn	0	\$
Low air pressure alarm switch	1	\$17
High water level alarm switch	1	\$7
Discharge pump level switch	1	\$7
Water pressure gauges	.1	\$4
Digital water flow indicator & totalizer	1	\$96
Air flow meter	1	\$14
Temperature gauges	1	\$3
Line sampling ports	2	\$5
Air blower silencer	0	\$
Washer wand	1	No Charg
Auto dialer	0	\$
Other	0	\$
Options Cost		\$7,90
Price With Options		\$30,83

The system is 7'3" high, 6'2" long and 5' wide and weighs approximately 1,840 lbs. Customer to supply feed pump Hi/Lo probes and Hi/Hi tank alarm probes.

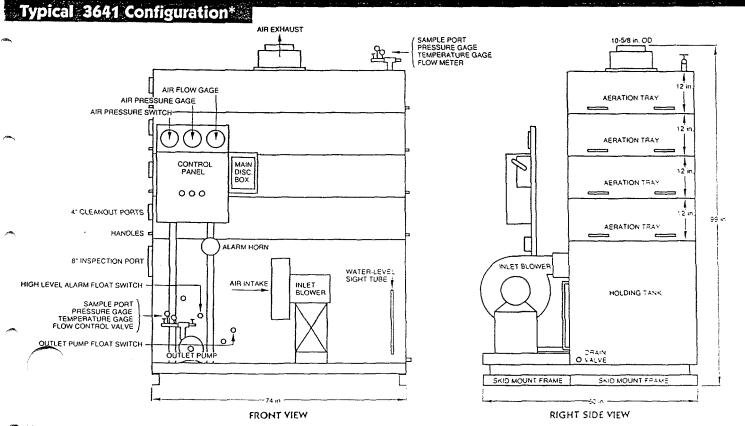

All systems are shipped pre-assembled and factory tested. Normal shipment is approximately 4 weeks from receipt of order. Purchase terms are 30% with the order, 70% net 30 days from delivery. Prices are valid for 90 days only. I look forward to working with you on this project. Once again, thank you for your interest in our products.


Sincerely,

Lavid I

David Steele Customer Service

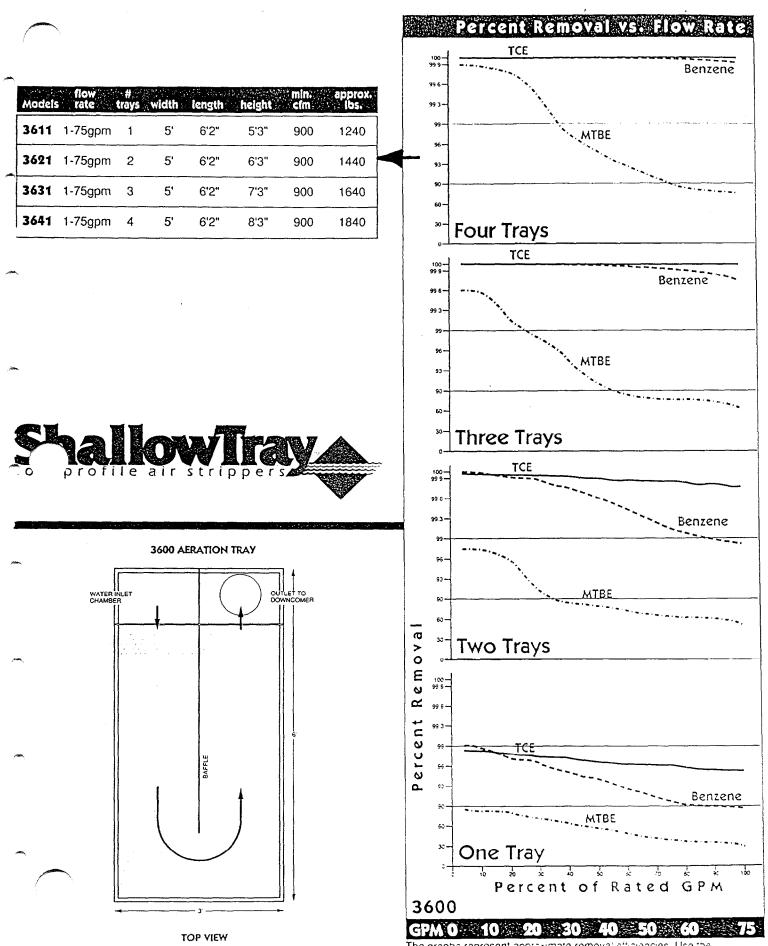
File: Baker Env., Inc.






## Model Pictured: 3631

Options chosen for system pictured:


- SEXP Feed and Discharge pumps
- Two NEMA 7 control panels with alarm interlocks, motor starters and intrinsically safe relays for the ShallowTray system, as well as EXP controls for two well pumps, an oil water separator and surge tank
- **WNEMA 7 main** disconnect switch
- I Low air pressure alarm switch
- High water level alarm switch
- Discharge pump level switch
- Water pressure gauges
- Digital water flow indicator and totalizer
- Z Air flow meter
- Temperature gauges
- D Line sampling ports



; t

1.11

*Use these drawings as a guideline only. Systems are built to your project's specifications.



: 1 - s di

The graphs represent approximate removal efficiencies. Use the Shallow Tray⁵⁴ modeling program to calculate expected performance.

5/

100



#### System Performance Estimate

Client & Proposal Information:

Baker Env.	
393515-2	
Option 1, Avg	

Model chosen:3600Water Flow Rate:80.0 gpmAir Flow Rate:900 cfmWater Temp:63.0 FAir temp:40.0 FA/W Ratio:84.1 cu. ft/ cu. ftSafety FactorNone

P. 02

Contaminant	Untreated Influent	Model 3611 Effluent Water	Model 3621 Effluent Water	Model 3631 Effluent Water	Model 3641 Effluent Water
		Air(lbs/hr) % removal	Air(lbs/hr) % removal	Air(lbs/hr) % removal	Air(lbs/hr) % removal
Benzene	290 ppb	35 ppb 0.010204 88.1978%	<b>5 ppb</b> 0.011405 98.6071%	1 ppb 0.011565 99.8356%	<1 ppb 0.011603 99.9806%
c-1,2-Dichloroethylen	e 1870 ppb	62 ppb 0.072352 96.6985%	<b>3 ppb</b> 0.074713 99.8910%	<1 ppb 0.074830 99.9964%	<1 ppb 0.074833 99.9999%
Trichloroethylene	650 ppb	1 <b>9 ppb</b> 0.025251 97.0993%	1 ppb 0.025971 99.9159%	<1 ppb 0.026011 99.9976%	<1 ppb 0.026011 99.9999%
Vinyl Chloride	325 ppb	<b>2 ppb</b> 0.012926 99.4372%	<1 ppb 0.013005 99.9968%	<1 ppb 0.013006 100.0000%	<1 ppb 0.013006 100.0000%

This report has been generated by ShallowTray Modeler software version 1.3.0. This software is designed to assist a skilled operator in predicting the performance of a ShallowTray air stripping system. The software will accurately predict the system performance when both the equipment and the software are operated according to the written documentation and standard operation. North East Environmental Products, Inc. cannot be responsible for incidental or consequential damages resulting from the improper operation of either the software or the air stripping equipment. Report generated: 4/28/93

© Copyright 1992 North East Environmental Products, Inc. • 17 Technology Drive, West Lebanon, NH 03784 Voice: 603-298-7061 FAX: 603-298-7063 • All Rights Reserved.



### System Performance Estimate

Client & Proposal Information:

Baker Env.
393515-2
Option 1

95%

Model chosen:3600Water Flow Rate:80.0 gpmAir Flow Rate:900 cfmWater Temp:63.0 FAir temp:40.0 FA/W Ratio:84.1 cu. ft/ cu. ftSafety FactorNone

P. 03

Contaminant	Untreated Influent	Model 3611 Effluent Water Air(lbs/hr) % removal	Model 3621 Effluent Water Air(lbs/hr) % removal	Model 3631 Effluent Water Air(lbs/hr) % removal	Model 3641 Effluent Water Air(lbs/hr) % removal
Benzene	770 ppb	<b>91 ppb</b> 0.027172 88.1978%	11 ppb 0.030373 98.6071%	<b>2 ppb</b> 0.030734 99.8356%	<1 ppb 0.030808 99.9806%
c-1,2-Dichloroethylen	ie 4460 ppb	148 ppb 0.172556 96.6985%	5 ppb 0.178279 99.8910%	<pre>&lt;1 ppb 0.178472 99.9964%</pre>	<1 ppb 0.178478 99.9999%
Trichloroethylene	1520 ppb	<b>45 ppb</b> 0.059026 97.0993%	<b>2 ppb</b> 0.060747 99.9159%	<b>&lt;1 ppb</b> 0.060825 99.9976%	<b>&lt;1 ppb</b> 0.060827 99.9999%
Vinyl Chloride	<b>325</b> ppb	<b>2 ppb</b> 0.012926 99.4372%	<1 ppb 0.013005 99.9968%	<b>&lt;1 ppb</b> 0.013006 100.0000%	<1 ppb 0.013006 100.0000%

This report has been generated by ShallowTray Modeler software version 1.3.0. This software is designed to assist a skilled operator in predicting the performance of a ShallowTray air stripping system. The software will accurately predict the system performance when both the equipment and the software are operated according to the written documentation and standard operation. North East Environmental Products, Inc. cannot be responsible for incidental or consequential damages resulting from the improper operation of either the software or the air stripping equipment. Report generated: 4/28/93

© Copyright 1992 North East Environmental Products, Inc. • 17 Technology Drive, West Lebanon, NH 03784 Voice: 603-298-7061 FAX: 603-298-7063 • All Rights Reserved.

16032987063



#### System Performance Estimate

Client & Proposal Information:

Baker Env. 393515-2 Option 1

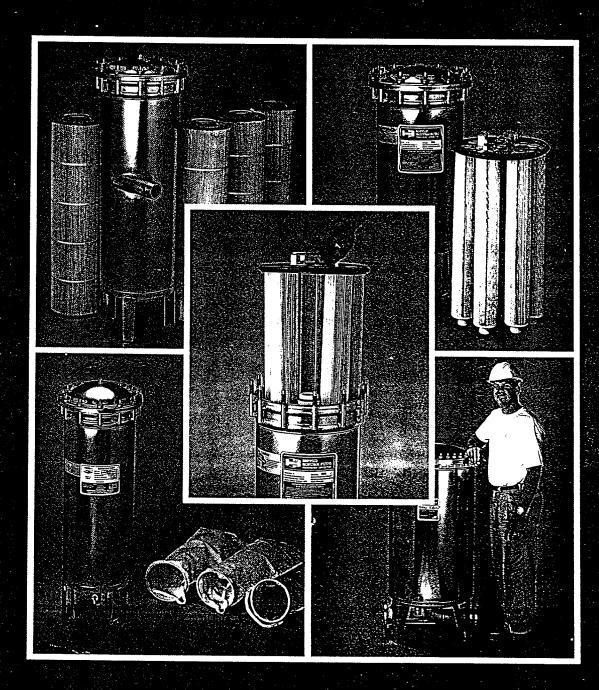
Max.

Model chosen:3600Water Flow Rate:80.0 gpmAir Flow Rate:900 cfmWater Temp:63.0 FAir temp:40.0 FA/W Ratio:84.1 cu. ft/ cu. ftSafety FactorNone

Contaminant	Untreated Influent	Model 3611 Effluent Water Air(lbs/hr) % removal	Model 3621 Effluent Water Air(Ibs/hr) % removal	Model 3631 Effluent Water Air(lbs/hr) % removal	Model 3641 Effluent Water Air(lbs/hr) % removal
Benzene	7900 ppb	933 ppb 0.278803 88.1978%	111 ppb 0.311697 98.6071%	<b>13 ppb</b> 0.315619 99.8356%	2 ppb 0.316059 99.9806%
c-1,2-Dichloroethylen	e <b>42000 ppt</b>	<b>1387 ppb</b> 1.625236 96.6985%	46 ppb 1.678899 99.8910%	<b>2 ppb</b> 1.680660 99.9964%	<1 ppb 1.680738 99.9999%
Trichloroethylene	14000 ppt	0 407 ppb 0.543959 97.0993%	12 ppb 0.559766 99.9159%	1 ppb 0.560207 99.9976%	<b>&lt;1 ppb</b> 0.560246 99.9999%
Vinyl Chloride	360 ppb	<b>3 ppb</b> 0.014286 99.4372%	<1 ppb 0.014406 99.9968%	<1 ppb 0.014406 100.0000%	<1 ppb 0.014406 100.0000%

This report has been generated by ShallowTray Modeler software version 1.3.0. This software is designed to assist a skilled operator in predicting the performance of a ShallowTray air stripping system. The software will accurately predict the system performance when both the equipment and the software are operated according to the written documentation and standard operation. North East Environmental Products, Inc. cannot be responsible for incidental or consequential damages resulting from the improper operation of either the software or the air stripping equipment. Report generated: 4/28/93

© Copyright 1992 North East Environmental Products, Inc. • 17 Technology Drive, West Lebanon, NH 03784 Voice: 603-298-7061 FAX: 603-298-7063 • All Rights Reserved.


P.04

#### jetter alle alle

Section 11308 **Cartridge Filter Units** 

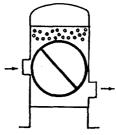
# **P** Harmsco[®] Industrial Filters

Stainless steel filters for water treatment, waste water compliance, parts washing, chemicals, photographic, plating, tool & die, inks, oils, beverages, liquid foods, pharmaceuticals, electronics, waste treatment, ground water remediation, hospitals, HVAC, petro-chemicals & more!



## Harmsco[®] Up-flow Cartridge Filtration ...

A Design so Superior it's Patented!


Harmsco's **up-flow** design out performs nonventional filters! To understand how up-flow filters work, follow the diagram shown below.

Fluid enters the filter under pressure and flows through the filter media, holes in the center tubes and perforations in the rods that hold the cartridges in place. As the fluid continues its path through the filter, it flows *upward* past the

top seal where it spills over into the standpipe as it hits the filter's domed lid. Notice the top of the standpipe is at the high point of the filter. Also, note the filter cartridges are sealed at the bottom and held in place with threaded pipe caps on the Harmsco model shown in this diagram. This unique design offers the following significant advantages:

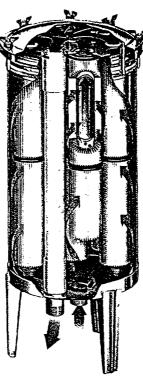
#### **No Air Entrapment During Operation**

Air entrapment during operation is eliminated because the outlet (top of the standpipe) is located at the *high point* of the filter.



**Conventional Filters** Air accumulation is a common problem with conventional filter designs because their outlets are located below the inlets. Reduced efficiency results since the filter media cannot be utilized where air has accumulated.

Because air travels upward with the fluid and exits the filter through the standpipe, vents to discharge accumulated air are not required. (If vents are required, lids with vent fittings are available.)

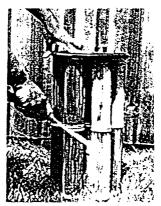

#### **Superior Filtration**

Since 100% of the media is used 100% of the time, superior filtration is assured!

#### Two Filter Types Available: "Cartridge Cluster" filters

Cartridge replacement is made easy with *cartridge cluster* filters since the entire set of cartridges are removed at one time for quick cartridge changeout or cleaning.






#### Twelve Models Available

Harmsco Industrial Filters are available in twelve models for flow rates up to 800 GPM.

#### Harmsco Reusable Filter Cartridges

Harmsco filter cartridges may be cleaned and reused in most applications. Entire cluster can be cleaned without disassembly, as shown below.



#### No Fluid By-pass During Servicing

Fluids cannot by-pass Harmsco filters during servicing because the filter's outlet (top of standpipe) is located **above** the filter's inlet. A significant advantage in critical filtration applications!

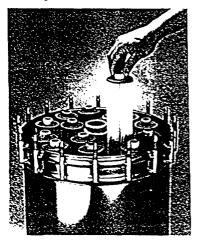
#### **Electro-Polished**

All Harmsco Industrial Filters are electro-polished for increased resistance to corrosion.

#### Fail-Safe Lids

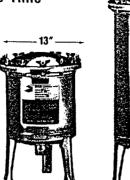
Lids come standard with wing nuts so they may be easily opened without tools. Multiple studs provide fail-safe closure. No single-bolt clamp closure used! (HIF-150-FL and HIF-200-FL filters come standard with hex nuts).

#### Pressure Rated to 150 psi


Filters may be safely used in pressures up to 150 psi.

#### **Compact Design**

Our compact, space saving design requires less floor space than other filters. We have more cartridges with more filter media than anyone!


#### Large Capacity Filters Feature "Cartridge Lifters" for Easy Cartridge Removal

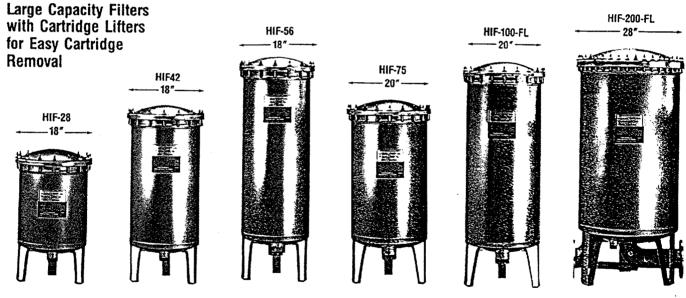
Large capacity Harmsco filters use *cartridge lifters* to remove a stack of cartridges at one time for added convenience. Cartridge lifters can accommodate up to four cartridges, depending on the filter being used.



#### Cartridge Cluster Models to Remove the Entire Set of Cartridges at One Time

NOTE: In high flow applications, two or more cartridge cluster models may be installed in parallel to take advantage of Harmsco's unique cartridge cluster design.










	No.		1. E 1. E
	States and		
			쀠
U = U	l	ľ	IJ

	HIF-7	HIF-14	HIF-16	HIF-21	HIF-24
Flow rate (range in GPM)	up to 30	30-60	60-75	75-90	90-105
No. of std. size cartridges	7	14	16	21	24
Alternative length cartridge	single only	7 doubles	8 doubles	7 triples	8 triples
Pipe size (NPT)	11/2"	11/2″	2″	11/2*	2*
Filter height	19.5" (49.5 cm)	28" (71 cm)	28" (71 cm)	37" (94 cm)	37" (94 cm)
Floor space required	13x13" (33x33 cm)	13x13" (33x33 cm)	13x13" (33x33 cm)	13x13" (33x33 cm)	13x13" (33x33 cm)
Service height clearance	35" (89 cm)	48" (122 cm)	48" (122 cm)	68" (173 cm)	68" (173 cm)
Shipping weight (approx.)	29 lbs. (13 kilos)	39 lbs. (17.6 kilos)	39 lbs. (17.6 kilos)	50 lbs. (22.6 kilos)	50 lbs. (22.6 kilos)



HIF-28	HIF-42	HIF-56	HIF-75	HIF-100	HIF-150-FL	HIF-200-FL
105-125	125-175	175-225	225-300	300-400	400-600	600-800
28	42	56	75 [·]	100	150	200
14 doubles	14 triples	28 doubles	25 triples	50 doubles	50 triples	100 doubles
2″	2″	3″	3″	3″	4" flanged	4" flanged
30″ 76 cm	40" 107 cm	50" 127 cm	42" 107 cm	52″ 132 cm	48" 122 cm	58" 147 cm
18 x 18" 46 x 46 cm	18 x 18" 46 x 46 cm	18 x 18" 46 x 46 cm	20 x 20" 51 x 51 cm	20 x 20" 51 x 51 cm	28 x 28" 71 x 71 cm	28 x 28" 71 x 71 cm
48" (122 cm)	68" (173 cm)	87" (221 cm)	70" (178 cm)	87" (221 cm)	76" (193 cm)	93" (236 cm)
79 lbs. 36 kilos	100 lbs. 45.3 kilos	129 lbs. 58.5 kilos	167 lbs. 75.7 kilos	188 lbs. 86 kilos	274 lbs. 124 kilos	321 lbs. 155.6 kilos
	105-125 28 14 doubles 2" 30" 76 cm 18 x 18" 46 x 46 cm 48" (122 cm) 79 lbs.	105-125         125-175           28         42           14 doubles         14 triples           2"         2"           30"         40"           76 cm         107 cm           18 x 18"         18 x 18"           46 x 46 cm         46 x 46 cm           48" (122 cm)         68" (173 cm)           79 lbs.         100 lbs.	105-125         125-175         175-225           28         42         56           14 doubles         14 triples         28 doubles           2"         2"         3"           30"         40"         50"           76 cm         107 cm         127 cm           18 x 18"         18 x 18"         18 x 18"           46 x 46 cm         46 x 46 cm         46 x 46 cm           48" (122 cm)         68" (173 cm)         87" (221 cm)           79 lbs.         100 lbs.         129 lbs.	105-125         125-175         175-225         225-300           28         42         56         75           14 doubles         14 triples         28 doubles         25 triples           2"         2"         3"         3"           30"         40"         50"         42"           76 cm         107 cm         127 cm         107 cm           18 x 18"         18 x 18"         18 x 18"         20 x 20"           46 x 46 cm         46 x 46 cm         51 x 51 cm           48" (122 cm)         68" (173 cm)         87" (221 cm)         70" (178 cm)           79 lbs.         100 lbs.         129 lbs.         167 lbs.	105-125125-175175-225225-300300-4002842567510014 doubles14 triples28 doubles25 triples50 doubles2"2"3"3"3"30"40"50"42"52"76 cm107 cm127 cm107 cm132 cm18 x 18"18 x 18"18 x 18"20 x 20"20 x 20"46 x 46 cm46 x 46 cm51 x 51 cm51 x 51 cm48" (122 cm)68" (173 cm)87" (221 cm)70" (178 cm)79 lbs.100 lbs.129 lbs.167 lbs.188 lbs.	105-125       125-175       175-225       225-300       300-400       400-600         28       42       56       75       100       150         14 doubles       14 triples       28 doubles       25 triples       50 doubles       50 triples         2"       2"       3"       3"       3"       4" flanged         30"       40"       50"       42"       52"       48"         76 cm       107 cm       127 cm       107 cm       132 cm       122 cm         18 x 18"       18 x 18"       18 x 18"       20 x 20"       20 x 20"       28 x 28"         46 x 46 cm       46 x 46 cm       51 x 51 cm       51 x 51 cm       71 x 71 cm         48" (122 cm)       68" (173 cm)       87" (221 cm)       70" (178 cm)       87" (221 cm)       76" (193 cm)         79 lbs.       100 lbs.       129 lbs.       167 lbs.       188 lbs.       274 lbs.


Standard Filters: Standard filters are 304 stainless steel. Rim gaskets and top seals are EPDM. Bottom seals for large capacity filters are natural gum rubber 0-nngs for cluster filters are Buna-N. Other options available.

NOTE: Flow rates are guidelines only. Filter selection is influenced by the cartridge to be used, viscosity, suspended solids and length of filter run desired. Rates shown are for clean water at ambient temperature. Flow rates vary and typically range between three to six gallons per sediment cartridge.

Patents: Harmsco Industrial Filters are manufactured under one or more of the following patents: U.S. Patents #3720322 and #4187175 Canada: #977693 Great Bottain: #1372014. West Germany: #22618707. France: #7246864. Hurricane #5174896. Other patents pending.

## **Options**


Metal	Cartridge Holders & Caps	Standpipes	
304 Stainless Steel	Э.	<b>PVC</b> (Standard) For temperatures to 160°F.	
316-L Stainless Steel		<b>CPVC</b> (Optional) For temperatures to 200°F.	THE
Coatings Available:	CPVC (Standard)	Stainless (Optional)	
Xylan: Single coat process for excellent resistance to corrosion.		For temperatures to 350°F. Swing-Bolt Models Available:	
<b>Dykor:</b> Triple coat process for excellent resistance to corrosion.	3	SB-8 (8 cartridges) SB-16 (16 cartridges)	
	Stainless (Optional)	SB-24 (24 cartridges)	



#### BetterBag[™] Filters

Select Harmsco's high capacity BetterBag filters when more precise cartridge filtration is not required. Special features include electro-polished stainless steel, 18-gauge stainless steel basket to accommodate large #2 filter bag, easy wing nut lid closure and compact design. Models include:

Product Code	Description		Pipe Size	Max.	Flow Rate	Shipping Wt.
ВВНР	Stainless with	PVC standpipe	11/2"	100 (	GPM	50 lbs.
BBHP-SS	All stainless st		11/2"	100 (	SPM	52 lbs.
BBHP-2	All stainless st	eel	2″	150 (	GPM	54 lbs.
Filter Bags Avai	lable:					
Product Code	Material	Nominal Micron	Product	Code	Material	Nominal Micron
HIF-PF-5	Polyester felt	5	HIF-PP-	50	Polypropylen	e 50
HIF-PF-25	Polyester felt	25	HIF-PP-	100	Polypropylen	
HIF-PF-50	Polyester felt	50	NMO-10	0	Nylon mesh	100
HIF-PF-100	Polyester felt	100	NMO-20	00	Nylon mesh	100



### Introducing the Harmsco HURRICANE.

(Patented Dec. 29, 1992 #5,174,896)

A revolutionary concept in industrial filtration! For heavy solids and when exceptionally long filter runs are desired. The Harmsco Hurricane utilizes patented features to provide dramatically improved filter efficiencies to optimize solids removal and provide exceptionally long filter runs.

Here's how it works: Fluid enters the filter tangentially. A rotational flow is created within the filter to separate heavy solids ising centrifugal force. Much like a particle separator, heavy solids contained in the fluid stream drop to the bottom of the ilter's outer chamber so they may be drained off manually or automatically. The lighter solids rise upward into the filter's nner chamber where they are removed by the filter's cartridge, made with angled pleats which are directed toward the rotaional flow to entrap more solids.

	-
	8 11
Sector Contractor	u: fil in tic
Martin States	36 A.C
	38 TH
	82 EU
	56 C
	29 :
ACCESSION AND CONTRACTOR AND A SECOND	iii 111
STREET, ALLER A	ag
	88
	£≮ †i/
	א נונ
	17
	8
	12 C
	84
	S2
	8
The second s	
	¥1.
· 【【】】 · · · · · · · · · · · · · · · · ·	
	83
a state of the second	2
	26
Sec. 25. 2 1 1 1 2 2 2 2 2 1 1 2 2 2 2 2	24 C
	12
1928 Care 1929	
A CONTRACTOR OF	
State -	

Shown above: Hurricane filter, Model HUR-170 HP for flow rates to 200 GPM.

Ht. 48", Dia. 13", Shiping Wt. 54 lbs.

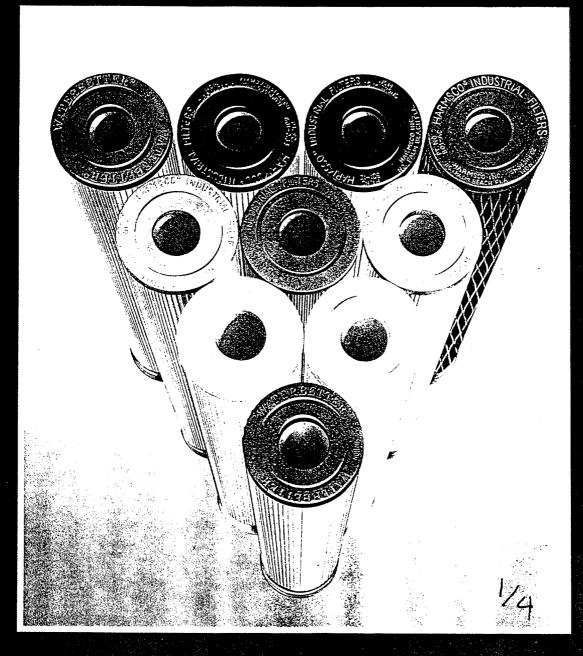
#### The following filter cartridges are available for Hurricane HUR-170-HP filters:

Product Code	Nominal Micron	Filter Area	Shipping Wt
HC/170-0.35	0.35	170 sq. ft.	10 lbs.
HC/170-1	1	170 sq. ft.	10 lbs.
HC/170-5	5	170 sg. ft.	10 lbs.
HC/170-20	20	170 sq. ft.	10 lbs.
HC/170-50	50	170 sq. ft.	10 lbs.

Notice: More Hurricane filters are forecasted. Stay tuned for further reports!

Toll Free: (800)-327-3248 • Fax: (407) 845-2474




Available from:	

©1993 Harmsco, Inc.

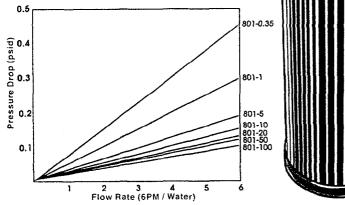
HACE IN USA

# Harmsco[®] Filter Cartridges

Pleated polyester filter cartridges for high flow, low pressure drop, increased contaminant removal, long filter runs, reusability and the lowest cost per gallon filtered.



## Harmsco[®] Filter Cartridges...Compare Our Many Advantages!


1

#### More Filter Area and Pleated Design for Increased Contaminant Removal

Harmsco filter cartridges provide superior filtration because our additional media and pleated design provide more filter area for increased contaminant removal.

#### Low Pressure Drop

High flow and low pressure drop are typical with Harmsco cartridges due to the increased filter area they provide. See chart below:



#### Long Filter Runs and Reduced Labor Costs

Long filter runs and reduced labor costs associated with cartridge replacement are common with Harmsco cartridges, which have more square footage of media than any other brand.

#### Thermally Bonded for Structural Integrity

Harmsco cartridges are thermally bonded to provide an integral union between the PVC end caps, PVC center tubes and filter media for added strength. Due to this unique design, Harmsco cartridges can withstand pressure differentials to 80 psid, providing extended life.

#### Wide Range of Removal Ratings and Color Coding for Easy Identification

Harmsco cartridges are available in the following nominal micron ratings for a wide range of filtration applications.

		Micron*	End Cap	Description
	Q	0.35	Brown	Ultra fine porosity.
		1	Tan	Fine porosity for final filtration.
		5	White	Our most popular final filter.
	$\bigcirc$	10	Red	Medium porosity filter cartridge.
~	0	20	Blue	Our most popular pre-filter.
		50	Yellow	Medium-coarse filter cartridge.
	Ø	100	Green	Coarse filter cartridge.

#### **Highly Efficient**

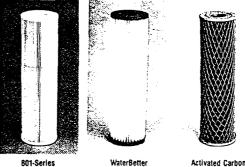
Removal efficiencies are shown below based on tests conducted by the Microtrac Division of Leeds & Northrup Co.

Filter Cartri	dge
801-0.35	
801-1	
801-5	
801-10	
801-20	

Percent	Removal
100	%
99.9	1%
100	%
99.5	%
98.5	5%

#### Reusable

Our proprietary blend of Polyester-Plus[™] filter media is cleanable in most filtration applications. Therefore Harmsco cartridges reduce costs because they are reusable!




cleaned & used four times

### Three Types

Three cartridge types are available for a wide range of applications, including Harmsco "801-Series". Water-BetterTM and Activated Carbon filter cartridges.

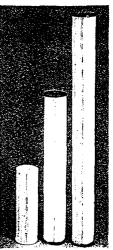
filter cartridge



#### 801-Series

#### Three Lengths

Standard size cartridges are available in three lengths to fit Harmsco Industrial Filters and housings made by other manufacturers. Standard lengths include:


> Single length 93/4"

Double length 191/2"

Triple length 291/4"



Harmsco cartridges may be used for potable water and liquid foods because all materials are FDA approved.

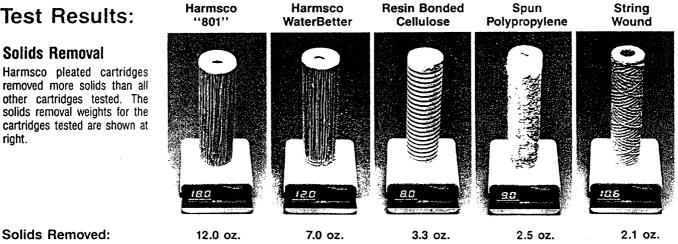


#### **Specifications**

Filter media:	Polyester
End caps:	Plastisol (pliable PVC)
Center tubes:	Rigid PVC, perforated
Temperature:	160°F (standard cartridges)
	200°F (high temp. cartridges)
pH:	3 to 11
Packaging:	Cartridges packed 24 per carton.

Surface area: 801-Series: **Dimensions:** Lengths: Shrink wrap:

6 sq. ft. per 93/4" length WaterBetter: 4 sq. ft. per 93/4" length 2³/₄" O.D.; 1 1/16" I.D. 9³/₄", 19¹/₂", 29¹/₄" Single length 801-Series cartridges are available shrink wrapped.


### Tests Prove Harmsco Cartridges Outperform Depth Type Filter Elements and Reduce Filtration Costs

A test facility was set up to evaluate the performance of various filter cartridges. The objective was to establish which cartridge removes more solids, filters longer and filters more gallons before it reached capacity. Cartridges tested were nominal five microns, and types included string wound, spun polypropylene, rigid resin bonded cellulose, Harmsco "801-Series" and WaterBetter™ cartridges.

Test equipment included a test tank, circulating pump, filter housing, mixer and pressure gauges installed prior and after the filter housing. A mixture of water and AC Coarse Test Duct (3% by weight) was used as the test particulate.

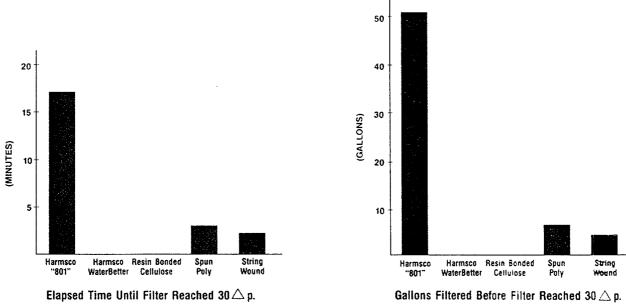
To start the test, each cartridge was weighed (dry) and installed in the filter housing. A flow rate of three gallons per minute was maintained. A mixer was operated to keep the test dust in suspension and a stop watch was used to note start-up and termination times.

Filtration commenced until a thirty psi pressure differential was achieved. The elapsed time was recorded. After each cartridge was allowed to dry, it was again weighed to establish the amount of solids it had removed from the test stream. In all tests the filtered product was equivalent. The test results are shown below:



### Solids Removed:

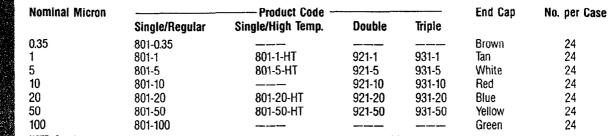
right.


# **Elapsed** Time

Harmsco cartridges provide longer filtration before they reach  $30 \triangle p$ . The chart below shows the lapsed time each cartridge filtered before a 30 psi pressure differential was achieved.

#### Gallons Filtered

Harmsco cartridges filter more gallons because they filter longer before they reach  $30 \triangle p$  as shown below.


3/4

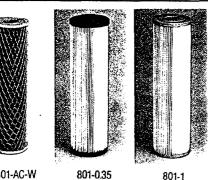


With Harmsco cartridges the more you filter the more you save. With others, the more you filter the more you pay!

# **Product Codes and Cartridge Selection**

### Top-of-the-Line Harmsco "801-Series" cartridges with six sq. ft. of media per 934" length




ł

NOTE: Standard single length 801-Series cartridges available shrink wrapped (designated by "W" following product code.)

### WaterBetter[™] Filter Cartridges with four sq. ft. of media per 9¾" length

	Product Code		End Cap	No. per Case
Single Length	<b>Double Length</b>	<b>Triple Length</b>	·	,
WB-1	WB-921-1	WB-931-1	Tan	24
WB-5	WB-921-5	WB-931-5	White	24
WB-20	WB-921-20	WB-931-20	Blue	24
WB-50	WB-921-50	WB-931-50	Yellow	24
	WB-1 WB-5 WB-20	Single LengthDouble LengthWB-1WB-921-1WB-5WB-921-5WB-20WB-921-20	Single Length         Double Length         Triple Length           WB-1         WB-921-1         WB-931-1           WB-5         WB-921-5         WB-931-5           WB-20         WB-921-20         WB-931-20	Single LengthDouble LengthTriple LengthWB-1WB-921-1WB-931-1TanWB-5WB-921-5WB-931-5WhiteWB-20WB-921-20WB-931-20Blue

### Taste, Odor, Chlorine, Cyst Removal



#### 801-AC-W cartridges for taste, odor, chlorine removal

Polyester felt, impregnated with high quality, coconut shell activated carbon. 50% activated carbon; 50% polyester felt. Grey Plastisol end caps; candle netting for added strength. Recommended flow rate: 0.5 to 1.0 GPM/cartridge. Replaceable after six months or when carbon has expired. Ideal for taste, odor and chlorine removal.

#### 801-0.35 and 801-1 cartridges for Giardia Cysts removal

Harmsco 801-0.35 and 801-1 filter cartridges are Independent Lab Certified for Giardia Cysts removal, up to 99.9%.

801-AC-W

Note: Above cartridges are packaged 24 per carton. 801-AC-W cartridges are individually shrink wrapped as standard.

### **Specialty Products**

Harmsco "Big Blue"		Harmsco "Big Blue" 6" x 18" x 2 5/8"						
Nominal Micron	Width	Length	Code	Nominal Micron	Code	Nominal Micron	Area (sq. ft.)	Code
5	41/2"	93⁄4″	HB-10-5-W	5	8618-5	0.35	170	HC/170-0.35
20	41/2"	9 ³ /4″	HB-10-20-W	10	8618-10	1	170	HC/170-1
50	41/2"	93/4"	HB-10-50-W	20	8618-20	5	170	HC/170-5
-		00/	110.00.5.11/	1		20	170	HC/170-20
5	41/2"	20″	HB-20-5-W			50	170	HC/170-50
20	41/2"	20″	HB-20-20-W					
50	41⁄2″	20″	HB-20-50-W					
Note: Above	cartridges in	dividually shri	nk wrapped.		· · · · · · · · · · · · · · · · · · ·			
larmsco	Industri	al Filter	Housings			<b>1</b> 7	Stainless st	امد
ess steel filt	ers to acco er. For a cor	modate up ; by of our pro	blete line of heavy-duty to 200 filter cartridge duct brochure, please	s and flow rates to	800 GPM	T	Harmsco Fil available for to 200 cartri	ters 7 Made in U.
					Av	ailable from:		······································
Toll Free	e: (800)	-327-32	.48 • Fax: (4	407) 845-24	74			
\	()				•••			
	🕽 Ha	rmsc	o [®] Industr	ial Filter	rs			
			56 / North Palm E					

3 1993 Harmsco, Inc

ere at discussion

Section 11309 Carbon Adsorbers



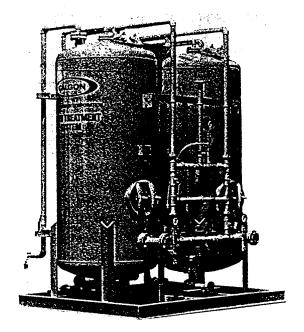
# Granular Activated Carbon Adsorption System

The Calgon Carbon Model 4 is an adsorption system designed specifically for the removal of dissolved organic contaminants from liquids using granular activated carbon. The Model 4 reflects Calgon Carbon's extensive experience in adsorption system design and operation.

The Model 4 system is delivered completely assembled on a steel skid, requiring only site process and utility hookups to be ready for operation. The pre-engineered Model 4 design is available with three piping materials of construction options to satisfy most requirements.

The process piping network for the Model 4 accommodates operation of the adsorbers in parallel or series. In series operation, the first stage can be isolated from the flow, have the granular carbon exchanged, and returned to operation as the second stage without interrupting treatment.

The Model 4 system allows for ease of granular activated carbon exchange. The system is suited for use with Calgon Carbon's Bulk-Back Service in which the granular activated carbon is supplied in containers for convenient transfer to the adsorbers. Bulk-Back units also receive the spent carbon from the adsorbers for return to Calgon Carbon for reactivation services.

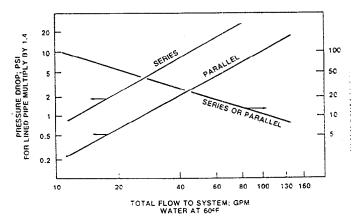

## MATERIALS OF CONSTRUCTION

Adsorbers: Carbon steel ASME code pressure vessels Adsorber internal lining: Vinyl ester lining (nominal 40 mil)

for potable water and most liquid applications System external coating: Epoxy mastic paint system Standard adsorption system piping options:

Solid PVC Piping System

- Schedule 80 PVC pipe and PVC ball valves
- Schedule 80 PVC underdrain and PPL screened nozzles Carbon Steel Piping System
- Schedule 80 steel pipe and ductile iron ball valves
- PPL lined carbon discharge with TFE lined plug valve
  Schedule 80 PVC underdrain and PPL screened nozzles
- Polypropylene Lined Piping System
- PPL lined steel pipe and diaphragm valves
- TFE lined plug valves on carbon fill and discharge
- Solid PPL underdrain and screened nozzles

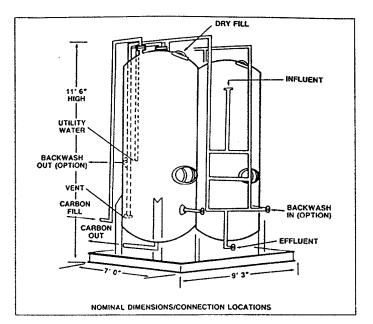



### **OPERATING CONDITIONS**

Carbon per adsorber: Pressure rating: Pressure relief: Vacuum rating: Temperature rating: Backwash rate: Carbon transfer mode: Utility air:

Utility water: Freeze protection: 72 cubic feet (2,000 lbs) 75 psig Rupture disk - 72 psig setting 14 psig 150°F maximum 125 gpm (40% expansion) Pressure slurry transfer 30 scfm at 30 psig (not recommended for PVC pipe) 100 gpm at 30 psig None provided; enclosure or protection recommended

System Bulletin




### DIMENSIONS AND FIELD CONNECTIONS

Wet activated carbon preferentailly removes oxygen from air, In closed or partially closed containers and vessels, oxygen

depletion may reach hazardous levels. If workers are to enter a vessel containing carbon, appropriate sampling and work procedures for potentially low-oxygen spaces should be followed, including all applicable federal and state

- dsorber vessel diameter: rocess pipe: Process pipe connection: Utility water connection: Utility air connection: Carbon hose connection: Carbon dry fill opening: Backwash connections: Drain/vent connection: Adsorber maintenance access: System shipping weight: System operating weight:
- 4 ft 2 in 2 in flange 1 1/2 in flange 3/4 in hose connection 2 in Kamlok type top 11 in x 15 in handhole 3 in flange 2 in flange; unrestricted 14 in x 18 in manway 9,000 lb with carbon 26,000 lb



For more information on the product described in this bulletin, or information on other adsorption equipment, lease contact one of our Regional Sales Offices located nearest to you:

#### SALES OFFICES

**CAUTION** 

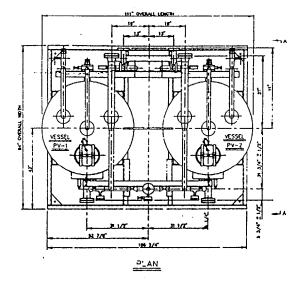
requirements.

#### Region I

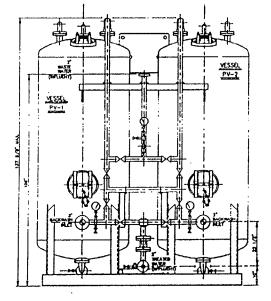
P.O. Box 6768 Bridgewater NJ 08807 Tel (908) 526-4646 Fax (908) 526-2467

Region IA 5600 77 Center Drive Suite 200 Charlotte NC 28217 Tel (704) 527-7580 Fax (704) 523-3550

Region II P.O. Box 717 Pittsburgh PA 15230-0717 Tel (412) 787-6700 800/4-CARBON Fax (412) 787-6676 Region III 4343 Commerce Court Suite 400 Lisle IL 60532 Tel (708) 505-1919 Fax (708) 505-1936

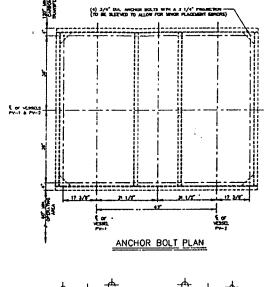

Region IV 2121 South El Camino Real San Mateo CA 94403 Tel (415) 572-9111 Fax (415) 574-4466

Region V Benchmark 1 Building 13430 Northwest Freeway Suite 804 Houston TX 77040-6071 Tel (713) 690-2000 Fax (713) 690-7909

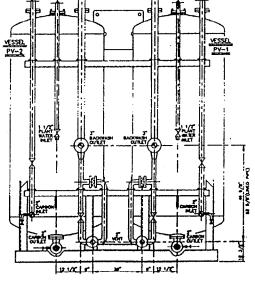



International P.O. Box 717 Pittsburgh PA 15230 Tel (412) 787-4519 Fax (412) 787-4523 Canada Calgon Carbon Canada, Inc. Suite 304 6303 Airport Road Mississauga, Ontario Canada L4V 1R8 Tel (416) 673-7137 Fax (416) 673-8883 Belgium Chemviron Carbon Boulevard de la Woluwe 60 Boite 7 B-1200 Brussels, Belgium Tel 32 2 773 02 11 Fax 32 2 770 93 94

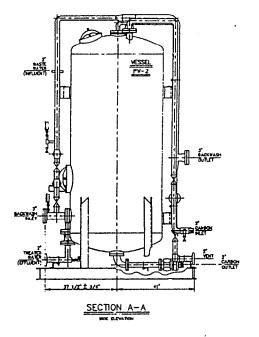





ñ




FRONT ELEVATION

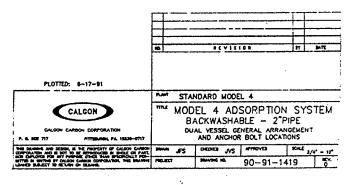

Ś

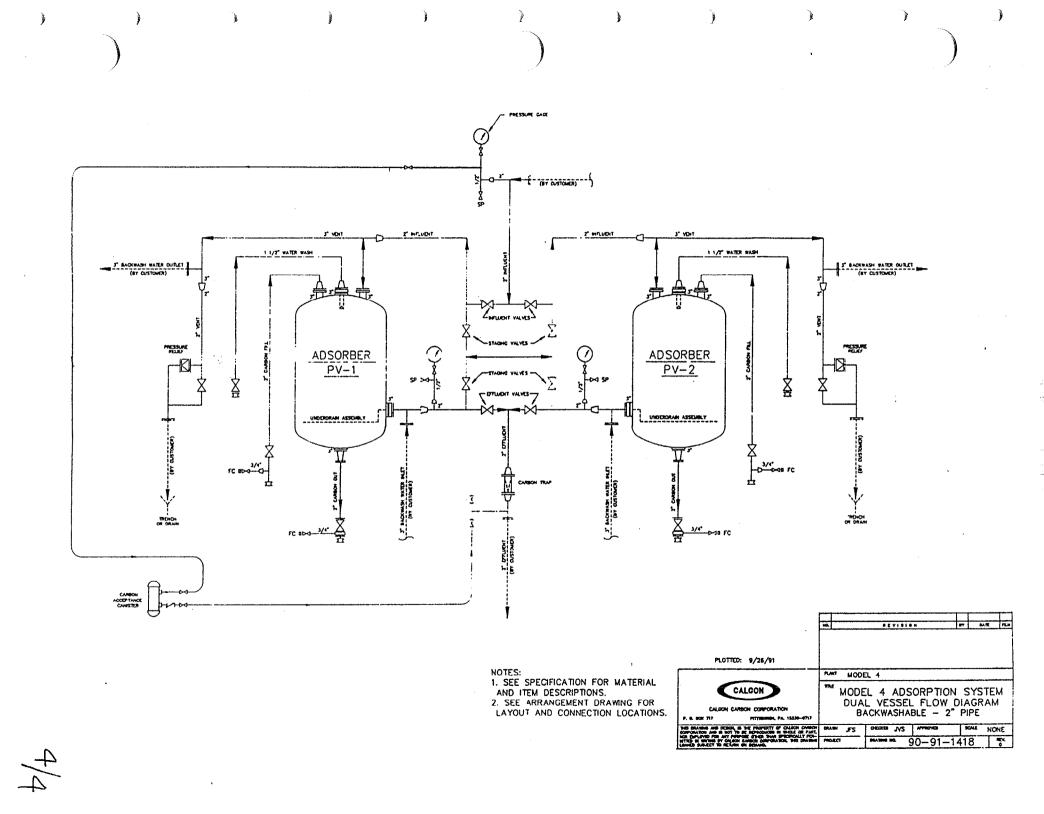


dia.



#### REAR ELEVATION





NOTE: REFER TO SPECIFICATION FOR DESCRIPTION OF PIPE SYSTEM, VALVES AND ACCESSORIES, INCLUDING ALL MATERIALS OF CONSTRUCTION.

1

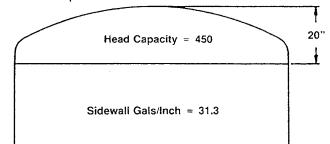
WEIGHTS

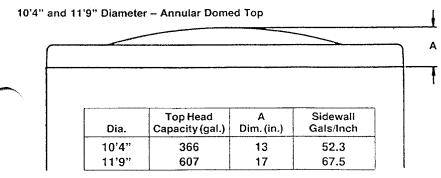
EMPTY______9,000 LBS. w/DRY CARBON______13,000 LBS. W/WET CARBON______16,000 LBS. OPERATING______26,000 LBS.



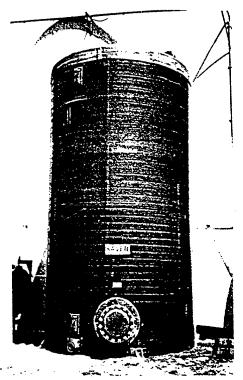


Section 11311 Sludge Holding Tank and Appurtenances


1 : . t.


# Flat Bottom Domed Top

4	Closed Top Part No.	Nominal Capacity (gal.)	Diameter x Height (in.)	Approx. Wall* Thickness (in.)	Approx. Weight (Ibs.)
	F082DT	2000	8' x 6'4"	1/4	840
	F082DT	3000	8 X 6 4 8' X 9'	1/4	840 980
		4000		1/4	1140
	F084DT		8'x11'8"		
	F104DT	4000	10'4' x 7'1"	1/4-9/32	1075 1280
	F085DT	5000	8' x 14'3"	1/4-9/32	
	F105DT	5000	10'4" x 8'8"	1/4-9/32	1206
	F086DT	6000	8'x16'11"	1/4-9/32	1520
	F106DT	6000	10'4" x 10'3"	1/4-11/32	1336
	F126DT	6000	11'9" x 8'1"	1/4-5/16	1375
	F087DT	7000	8' x 19'7"	1/4-9/32	1710
	F107DT	<b>700</b> 0	10'4" x 11'10"	1/4-11/32	1480
	F127DT	7000	11'9" x 9'4"	1/4-5/16	1500
	F088DT	8000	8' x 22'3"	1/4-11/32	1900
	F108DT	8000	10'4" x 13'5"	1/4-11/32	1647
	F128DT	8000	11'9" x 10'7"	1/4-5/16	1625
	F109DT	9000	10'4" x 15'	1/4-11/32	1813
	F129DT	9000	11'9" x 11'10"	1/4-5/16	1768
	F1010DT	10000	10'4" x 16'7"	1/4-7/16	1988
	F1210DT	10000	11'9" x 13'1"	1/4-5/16	1910
-	F1012DT	12000	10'4" x 19'10"	1/4-7/16	2390
	F1212DT	12000	11'9" x 15'6"	1/4-3/8	2215
	F1014DT	14000	10'4" x 23'	1/4-1/2	2820
	F1214DT	14000	11'9" x 18'	1/4-7/16	2565
	F1015DT	15000	10'4" x 24'7"	1/4-1/2	3100
$\frown$	F1215DT	15000	11'9" x 19'2"	1/4-7/16	2750
	F1216DT	16000	11'9" x 20'5"	1/4-7/16	2935
	F1218DT	18000	11'9" x 22'11"	1/4-1/2	3350
	F1220DT	20000	11'9" x 25'5"	1/4-1/2	3580
	F1221DT	21000	11'9" x 26'8"	1/4-1/2	3800
	F1222DT	22000	11'9" x 27'11"	1/4-19/32	4410
	F1225DT	25000	11'9" x 31'7"	1/4-5/8	5550
	F1230DT	30000	11'9" x 37'9"	1/4-23/32	6950


*Walls are tapered

8' Diameter – Domed Top





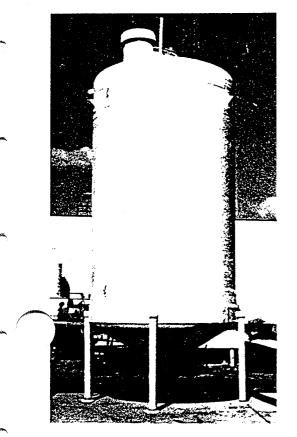
Chop-hoop Filament Wound Flat Bottom Domed Top Fiberglass Tanks



- Domed top tanks are designed for atmospheric pressure only and must be vented. Refer to venting specifications on page D5.
- Standard tank is designed for 1.3 specific gravity material. 1.8 and 2.1 versions are available upon request.
- All filament wound tanks include three lift lugs.
- For accessories refer to pages D1-14.
- For resin selection see pages E1-E4.
- For warranty information see page E5.

	Dia.	Bottom Head Capacity (gal.)	B Dim. (in.)		
	8'	240	8		
	10'4"	366	7		
	11'9"	607	9		
				Ţ	
Bottom Head					

NOTE: Tank bottom must be fully supported and pad must remain level within 1/8" over a ten foot span. Consult a local engineer for specific site requirements.

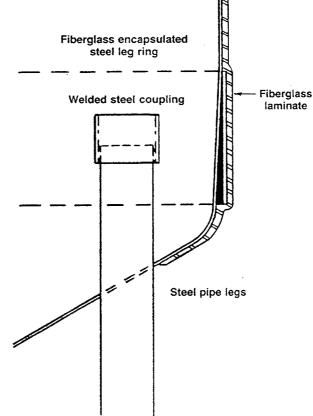

1/7



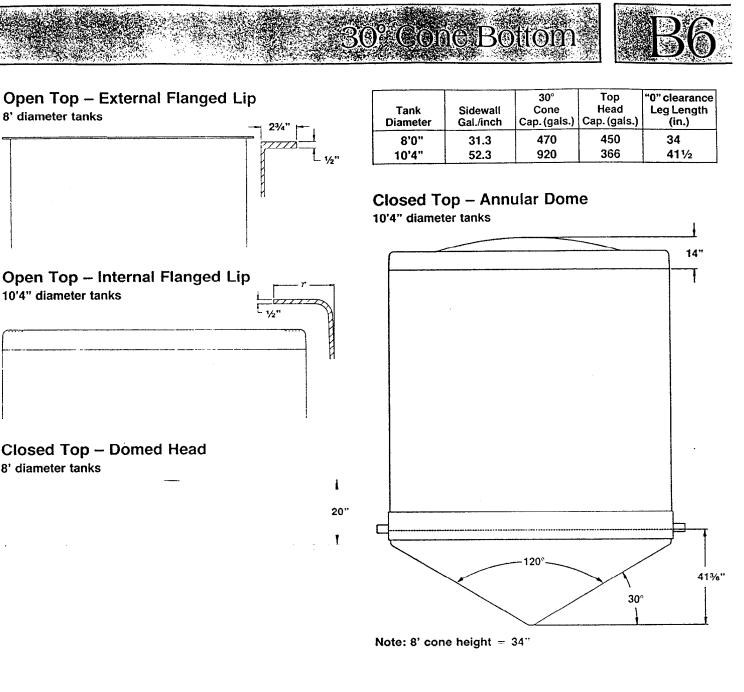




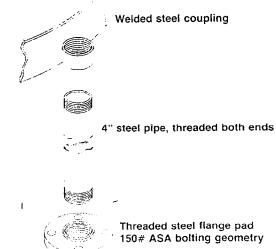
### Chop-hoop Filament Wound 30° Cone Bottom Fiberglass Tanks




- 30° cone bottom tanks are supported by steel pipe legs threaded into a fiberglass encapsulated steel leg ring. Legs must be ordered separately. (See page B6 for detail.)
- 8' diameter open top tanks include an external flanged lip. 10'4" diameter tanks include an internal flange lip. (See page B6 for detail.).
- Closed top tanks are designed for atmospheric pressure only and must be vented. (Refer to venting specifications on D5.)
- Standard tank is designed for 1.3 specific gravity material. 1.8 and 2.1 versions are available upon request.
- · For accessories refer to pages D1-14.
- For resin selection see pages E1-E4.
- · For warranty information see page E5.
- Seismic Zone design requires special consideration. Contact Plastics Engineering for full assistance.


Open Top Part No.	Nominal Capacity (gal.)	Dia. x Height (in.)	Wall* Thick. (in.)	Approx. Weight (Ibs.)	No. of Legs
C38-2MO	2000	8' x 7'1"	1/4	1280	4
C38-3MO	3000	8'x9'9"	1/4	1430	4
C38-4MO	4000	8' x 12'5"	1/4	1570	4
C310-4MO	4000	10'4" x 8'6"	1/4	2230	6
C38-5MO	5000	8' x 15'1"	1/4-5/16	1710	4
C310-5MO	5000	10'4" x 10'1"	1/4	2340	6
C38-6MO	6000	8' x 17'9"	1/4-5/16	1950	4
C310-6MO	6000	10'4" x 11'8"	1/4-5/16	2450	6
C310-7MO	7000	10'4" x 13'3"	1/4-5/16	2560	6
C310-8MO	8000	10'4" x 14'10"	1/4-5/16	2720	8
C310-9MO	9000	10'4" x 16'5"	1/4-5/16	2860	8
C310-10MO	10000	10'4" x 18'0"	1/4-5/16	3010	8

Closed Top Part No.	Nominal Capacity (gal.)	Dia. x Height (in.)	Wall* Thick. (in.)	Approx. Weight (lbs.)	No. of Legs
C38-2MC	2000	8' x 7'8"	1/4	1340	4
C38-3MC	3000	8' x 10'4"	1/4	1480	4
C38-4MC	4000	8' x 13'0"	1/4	1620	4
C310-4MC	4000	10'4" x 9'0"	1/4	2350	6
C38-5MC	5000	8' x 15'8''	1/4-5/16	1760	4
C310-5MC	5000	10'4" x 10'7"	1/4	2460	6
C38-6MC	6000	8' x 18'4"	1/4-5/16	1980	4
C310-6MC	6000	10'4" x 12'2"	1/4	2570	6
C310-7MC	7000	10'4" x 13'9"	1/4	2680	6
C310-8MC	8000	10'4" x 15'4"	1/4-5/16	2830	8
C310-9MC	9000	10'4" x 16'11"	1/4-5/16	2970	8
C310-10MC	10000	10'4" x 18'6"	1/4-5/16	3120	8


*Walls are tapered



RAVEN RAVEN INDUSTRIES, INC. Plastics Division Sioux Falls, SD



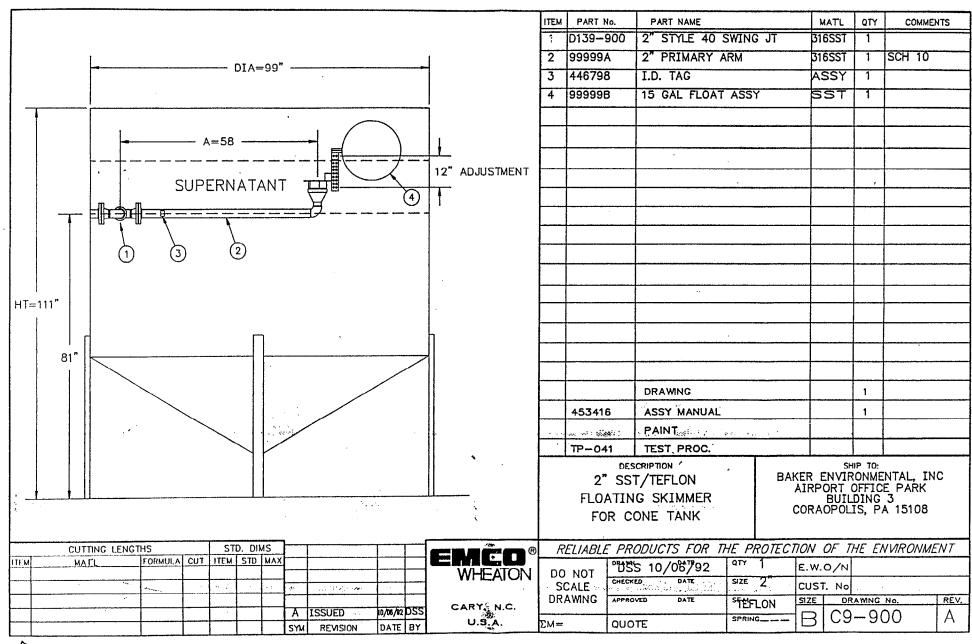
# Steel Pipe Legs



# LEG ORDERING INFORMATION

To order legs, specify number required (found in table on B5) and overall length. Overall leg length is determined by adding amount of leg for "0" clearance (shown above) to desired clearance between the bottom of the cone and the floor. (NOTE: Raven recommends that clearance not exceed 24" unless specific application has been reviewed by the factory.)

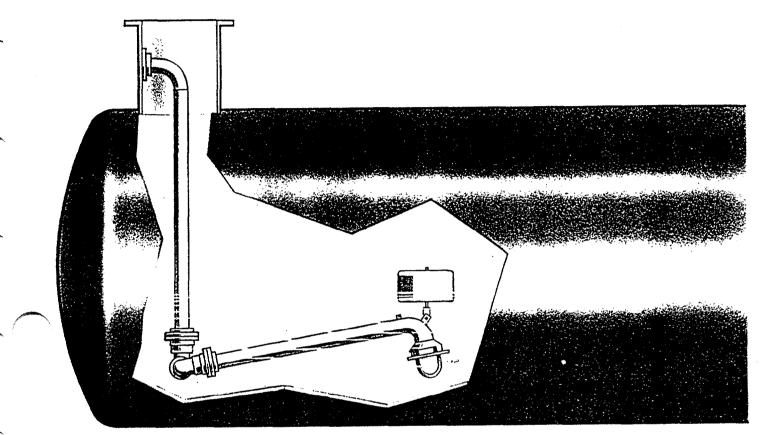
**EXAMPLE:** Legs for an 8' diameter 6000 gallon tank (part #C38-6MC) with a 24⁻ clearance from bottom of cone to the floor would be ordered as follows:


Number of legs required = 4 (page B5)

Leg length = "0" clearance - required clearance.

Correct order would be (4) 58" tall legs.




RAVEN



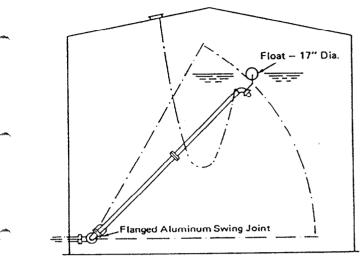
+



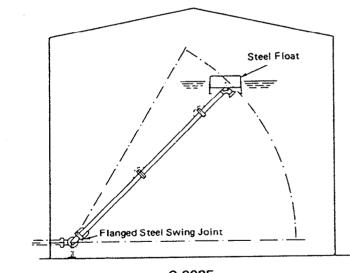
# FLOATING SUCTIONS



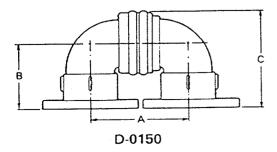
Typical C-21 installaton

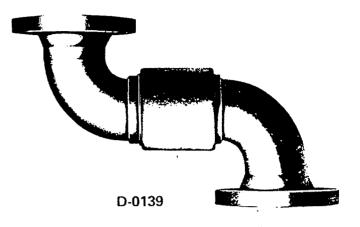

Emco Wheaton Floating Suctions are designed to draw off clean fuel from near the surface of storage tanks. With Emco Wheaton floating suctions, contamination of fuel by water, foreign matter or sediment is reduced. Every part of the floating suction is engineered for long, trouble-free life. Outstanding engineering features include an unsinkable float and a permanently lubricated ball bearing swing joint. Units are available in 10 basic types, in 7 different sizes and 3 metals . . . aluminum, steel or (special) stainless steel.

Swing joints on floating suctions are free-rotating with dual rows of ball bearing raceways for minimum torque. Raceways are double sealed by "O" rings. Each floating suction bellmouth has an oversized inlet with a baffle plate to minimize "Vortexing" at high pumping rates. A pipe foot, welded to the baffle plate maintains an intake level of nine inches minimum (except 2" size). Minimum level for 2" size is 1.75". The unsinkable floats are aluminum cased and foam filled. The standard float is 17" in diameter to fit an 18" manhole, but buoyant enough to power even a six inch floating suction. Provisions can be made for the use of more than one float.


Emco Wheaton floating suctions are made with all aluminum pipe welded to an inlet elbow, with a standard A.S.A. 125 lb. flat-faced flange, with flanged aluminum swing joints in 3", 4", 6", 8", 10" and 12" sizes, with welded aluminum bellmouth. In the 2" size, the swing joint is threaded, unless a flange is specified. Swing joints are also available in steel or stainless steel. Emco Wheaton floating suctions provide the cleanest fuel possible in buried or above-ground horizontal and vertical tanks. When ordering, please specify: type number; size; style of tank (horizontal or vertical); diameter and height or length of tank.




# FLOATING SUCTIONS




C-0024 Aluminum Single Pipe Design for Cone Roof Tank



C-0025 Steel Single Pipe Design for Cone Roof Tank





Type C-0024 and C-0025 Floating Suctions are designed for cone roof tanks of all sizes. Although available in aluminum as well as steel, steel swing ioints are recommended in larger sizes if compatible with product in tank. Type D-0139 Flanged Steel Swing Joint has dual ball bearing raceways, induction hardened. Twenty foot lengths of pipe are flanged together on the larger diameter tanks for correct extension into the vertical tank. Type C-0025 Floating Suction can be supplied in larger sizes with steel float. Available in steel, aluminum, or stainless steel. The recommended alloy will be based on specification depending upon size, diameter, height of tank, and product stored in tank. Be sure to send with order or inquiry, all information for prompt handling.

Type C-0024 and C-0025 Units can be used for swing lines in cone roof tanks, as well as a floating suction.

# BASIC DIMENSIONS (For further information, see Catalog D) *

#### Aluminum (D-0150)

Size	A	в .	С
2''	5-3/4"	4-1/8"	6"
3"	8-1/8"	5-1/8''	7-7/16″
4''	9-1/4"	6-1/4"	10-7/8"
6′′	20-1/8''	8''	12-5/8"
8''	23-3/4"	10″	15-15/16"
Steel (D-01	39)		
Size	А	в	С
6''	20-3/8"	9-1/2"	14-1/8"
8''	24-5/8"	12''	17-15/16"
10''	29-3/4''	14''	21''
12''	37-1/2"	16-1/2"	24-1/2"

* Larger sizes available upon request.

ASSEMBLIES. you can buy.

EMCO WHEATON Emco Wheaton is recognized as a world leader in loading system design. Our loading valves, LOADING ARM swing joints, couplings and arms are the toughest, most precisely engineered components

> Emco Wheaton offers a wide range of available designs. Our Engineers have first-hand experience in loading requirements and offer the design assistance you need.

> For more information about out Loading Arm Assemblies, send for our free catalog.



**Distributed by:** 



Emco Wheaton, Inc. Chamberlain Blvd. Conneaut, Ohio 44030 Phone 216/599-8151 Cable "EMCOWHEAT" Telex: 980436 Buckeye Cout

REV. 6-84

ţ

ł

# Section 11312 Dewatering Press

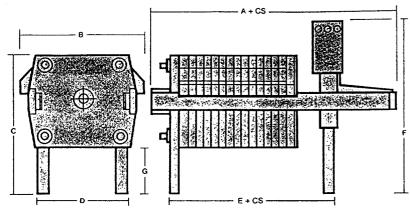
1 > 31

5 **t** - 7 10

Applications	Shriver "FB" Design Filter Presses
<ul> <li>Hazardous and metallic wastes</li> <li>Pharmaceuticals and chemical products</li> <li>Pigments and dyes</li> <li>Precious Metals</li> <li>Ore processing</li> <li>Coal dewatering</li> <li>Water treatment</li> <li>Biological sludges</li> <li>Clarification of liquid</li> <li>Food products and juices</li> </ul>	<ul> <li>Most cost effective sidebar Filter Presses</li> <li>Easy operation and Maintenance Safe pneumatically operated hydraulic controls Complete corrosion resistance</li> <li>Minimal weight and space requirements</li> <li>Maximal area and volume</li> <li>U.S. made and engineered including molded polypropylene plates Factory Service Parts availability</li> <li>80 years experience in process and design 30,000 installed units Qualified experienced technical staff Flexibility in design options (See below)</li> <li>Food grade construction</li> <li>Efficient cake washing</li> <li>Driest cakes with membranes and/or air blow</li> </ul>
	Optional Additions
<ul> <li>Recessed, CGR, Plate a membrane plates</li> <li>Widest media selection</li> <li>Drip travs</li> </ul>	<ul> <li>Plate shifters</li> <li>Temperatures to 200°F in polypropylene construction</li> <li>Air powered</li> </ul>

- Drip trays
- Cake dumpsters or drum discharge

Model 630 FB


24" x 24"

- Filtrate blowdown system
- Core blowback system
- Alternative plate materials
- 100 psi and 225 psi designs

- Air powered
- Cake washing or airblow
- Feed pump combinations
- Eimco Delta-stak inclined plate clarifier combinations
- Precoating and conditioning systems

# Eimco Shriver Model 630 FB

# Iter Press Specifications



Approximate Dimensions (inches) Do not use for construction

Design Pressure (PSIG)	100	225
A B C D E F G	65½ 34¼ 51 22 29½ 66¾ 26	72 341⁄8 51 22 31 691⁄2 26

# **CGR and Recessed Plates Only**

	CS-Chamber	Space (inches)	Cake Volume	Filter Area
Cake Thickness (inches)	1st Chamber	Each Additional Chamber	Per Chamber (Ft ³ )	Per Chamber (Ft ² )
1 1¼ 1½	4¾ 5 5¼	21/16 25/16 29/16	0.22 0.29 0.37	6.09 6.40 6.81

# Press Weights Pounds Empty (Approximate)

Design Pressure	Frame and 1st Chamber	Each Additional Chamber	Max. # of Chambers, Standard Design (Approximate)*
100 PSIG	1900	40	40
225 PSIG	2600	45	45

*Basis 80 lbs./ft3 cakes Note: Cake weight = Wet bulk density times volume

# **Example Calculation**

Find length and weight of Model 630 with 25 chambers having 11/2" cakes of 80 lbs/ft³ bulk density, 100 psig.

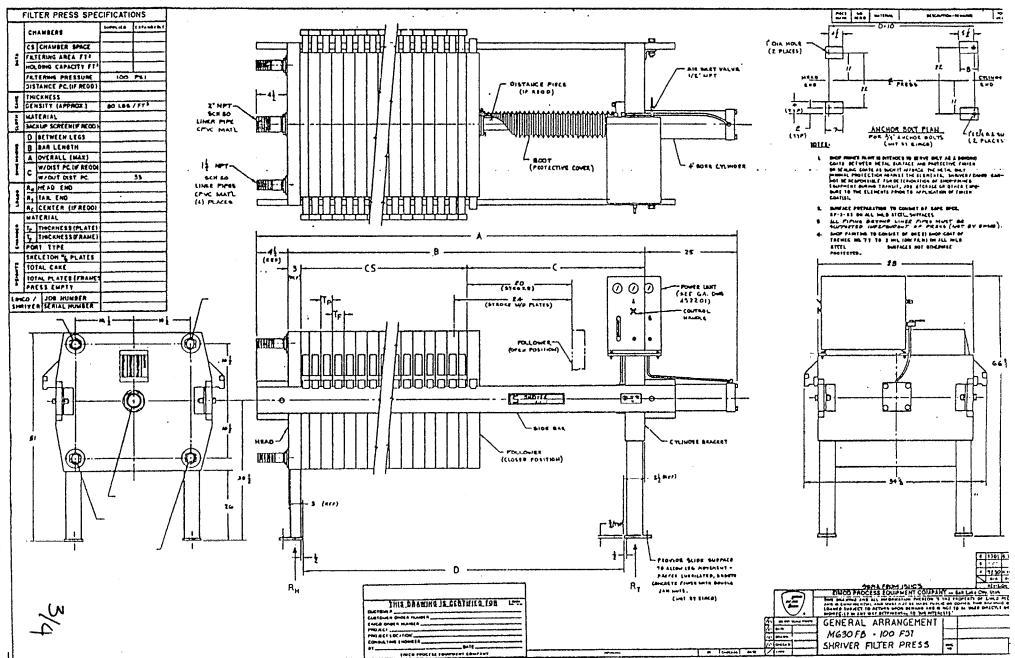
Chamber space =  $5 + (24 \times 2^{5}_{16}) = 60\frac{1}{2}$ " Length = A + chamber space  $65\frac{1}{2} + 60\frac{1}{2} = 126^{\prime\prime}$ 

Empty weight  $= 1900 + (24 \times 40) = 2,860$  lbs. Cake weight =  $80 \times 0.29 \times 25$ = 580 lbs. 3,440 lbs TOTAL WEIGHT

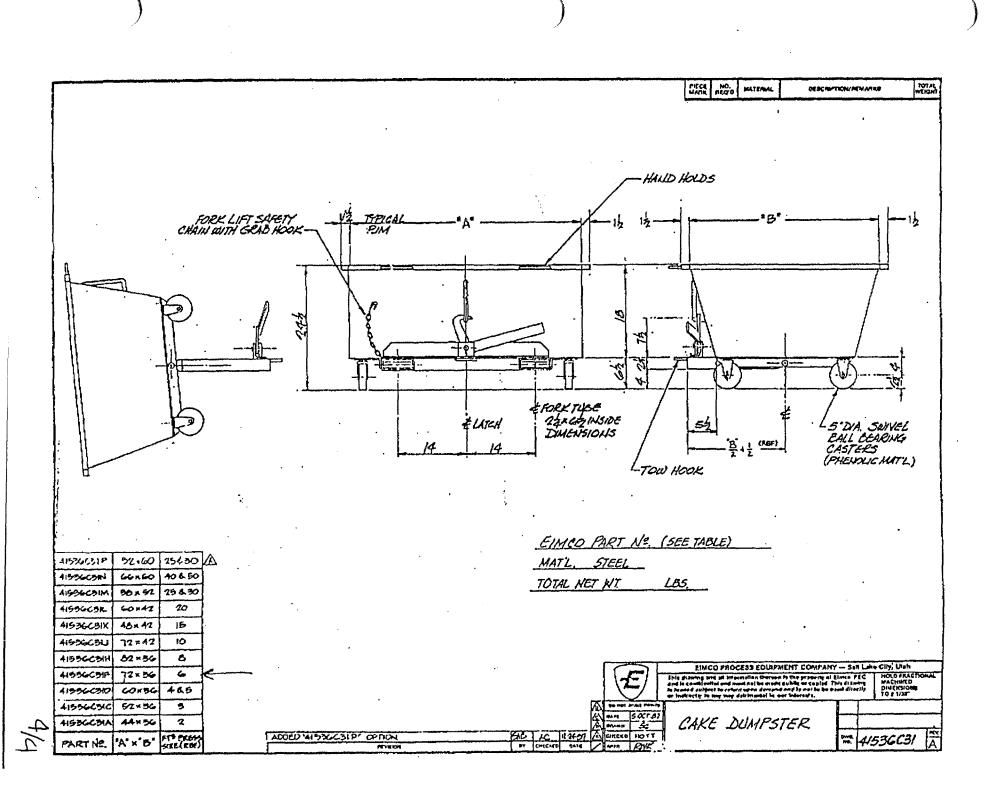
Weight distribution: 55:45% Head: Tail Stand Weight may be greater with added options

Special designs available for presses with different conditions or longer than shown.

Eimco, Shriver,



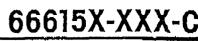

h-Stak, Flexifabric and CGR .rademarks of Eimco Process Equipment Co. P.O. Box 300


Salt Lake City, Utah 84110 (801) 526-2000 Telex: 388-320 Form #2215-630-R.1

In Canada Contact: Eimco Process Equipment Co., Ltd. 5155 Creekbank Rd. Mississauga, Ontario L4W1X2 (416) 625-6070 Telex: 06-961455

For pricing and information contact:




M630F6 -100 PS1



1 .1 (1 / 10

Section 11313 Positive Displacement Pumps

# OPERATOR'S MANUAL



INCLUDING: OPERATION, INSTALLATION & MAINTENANCE

RELEASED: 5-31-88 REVISED 1-18-89 (REV.C) IPP/PSE

# 1-1/2" DIAPHRAGM PUMP

### 1:1 RATIO

## IMPORTANT: READ THIS MANUAL CAREFULLY BEFORE INSTALLING, OPERATING OR SERVICING THIS EQUIPMENT.

MODELS	INLET OUTLET TH'D	BODY MAT'L	AIR SECTION SERVICE KIT (PAGE 6)	FLUID SECTION SERVICE KITS (PAGE 4)	
66615X-XXX-C	1-1/2 NPT	ALUMINUM	637118-C	637124-X	
 66616X-XXX-C	1-1/2 NPT	CAST IRON	637118-C	637124-X	
 66617X-XXX-C	1-1/2 BSP	ALUMINUM	637118-C	637124-X	
66618X-XXX-C	1-1/2 BSP	CAST IRON	637118-C	637124-X	

See Model Description Chart page 3 for -XXX

637155 Abrasion Resistant Conversion Kit is available for use in heavy and abrasive material applications (see page 5).

### PUMP DATA

MODEL — See Chart on page 3 TYPE — Air-Operated Double Diaphragm MAT'L — See Option Chart on page 3 WEIGHT-ALUM. (CTR. BODY) 44 lbs. to 76 lbs. CAST IRON (CTR. BODY) 82 lbs. MAXIMUM AIR INLET PRESSURE - 120 psi max. (8 bar) MAXIMUM FLOW (with Flooded inlet) — 90 gpm MAXIMUM PARTICLE SIZE - 1/4" dia.

See page 3 for dimensional data

#### **GENERAL DESCRIPTION**

The ARO[®] diaphragm pump offers high-volume delivery even at law air pressures, easy self-priming, the ability to pump high-viscosity materials and ability to easily pass solids to 1/4 In. diameter. This pump is highly versatile and is designed to correspond to the needs of the customer. Several "wetted parts" options are available to handle almost any application. See option chort on page 3 for model description.



- 1/

- HEED ALL WARNINGS AND CAUTIONS.
- Use ARO replacement parts to assure compatible pressure rating.
- WARNING: DO NOT EXCEED MAXIMUM INLET AIR PRESSURE OF 120 PSI (8 BAR). OPERATING PUMP AT HIGHER PRESSURE MAY CAUSE PUMP DAMAGE AND/OR PERSONAL INJURY AND/OR PROPERTY DAMAGE.
- WARNING: THE MODELS LISTED BELOW CONTAIN ALUMINUM WET-TED PARTS AND ARE SUBJECT TO THE FOLLOWING WARNING. MODELS: 66615X-XXX-C, 66617X-XXX-C
   DO NOT USE III.-TRICHLOROETHANE, METHYLENE CHLORIDE OR OTHER HALOGENATED HYDROCARBON SOLVENTS IN THIS PUMP. THE PUMP CONTAINS ALUMINUM WHICH MAY REACT WITH THE SOLVENT AND EXPLODE.
- MATERIALS CONTAINING HALOGENATED HYDROCARBON SOL-VENTS SHOULD NOT BE USED WITH THIS EQUIPMENT. CONSULT YOUR MATERIAL SUPPLIER FOR COMPATIBILITY WITH ALUMINUM.
- WARNING: WHEN USING PUMP IN A LOCATION WHERE SUR-ROUNDING ATMOSPHERE IS CONDUCIVE TO SPONTANEOUS COM-BUSTION OR WHEN PUMPING, FLUSHING OR RECIRCULATING INFLAMMABLE SUBSTANCES (E.G., PAINTS, SOLVENTS, LACQUERS, ETC.), FAILURE TO SAFEGUARD AGAINST STATIC SPARK, OPEN FLAME, HEAT AND IMPROPER VENTILATION COULD RESULT IN EX-PLOSION AND/OR FIRE CAUSING SEVERE PERSONAL INJURY OR DEATH AND/OR PROPERTY DAMAGE.
- Sofery precoutions should include:
  - Use of static wire hoses.
  - Proper grounding of pump (at clamps), dispensing valve or device, hoses, any object to which material is being transferred, and containers. After grounding, periodically check to verify continuity of electrical path to ground. Test with ohmmeter from each components (i.e., hoses, pump, clamp, container, spray gun, etc.) to ground to insure continuity. Ohmmeter reading shown should be 10 ohms or less. Consult local electric codes for specific grounding requirements.

- Submersion of outlet hose end, dispensing valve or device within motorial being dispensed whenever possible. (Avoid free streaming of material being dispensed.)
- Piping exhaust to a sofe remote location when pumping hozardous or inflammable substances since the material being pumped is exhausted with the air if the diaphrogm ruptures. Use a grounded 3/4" min. I.D. hose between pump and muffler.
- Proper ventilation of area where pump and containers are located.
- Keeping inflammables away from heat, open flames and sparks.
- Keeping containers closed when not in use.
- Secure pump, connections and all contact points to avoid vibration and generation of contact or static spark.
- Be sure material hoses and other components are able to withstand fluid pressures developed by this pump.
- Disconnect alr line from pump when system sits idle for long periods of time.
- Suction and discharge connections should be flexible connections (such as hose), not rigid piped, and should be compatible with the substance being pumped.
- WARNING: DO NOT SERVICE OR CLEAN PUMP, HOSES OR DISPENS-ING VALVE WHILE THE SYSTEM IS PRESSURIZED AS SERIOUS PER-SONAL INJURY COULD RESULT. First disconnect air line, then relieve pressure from system by opening dispensing valve or device and/or carefully and slowly loosening and removing outlet hose or piping from pump.

(continued on Page 8)

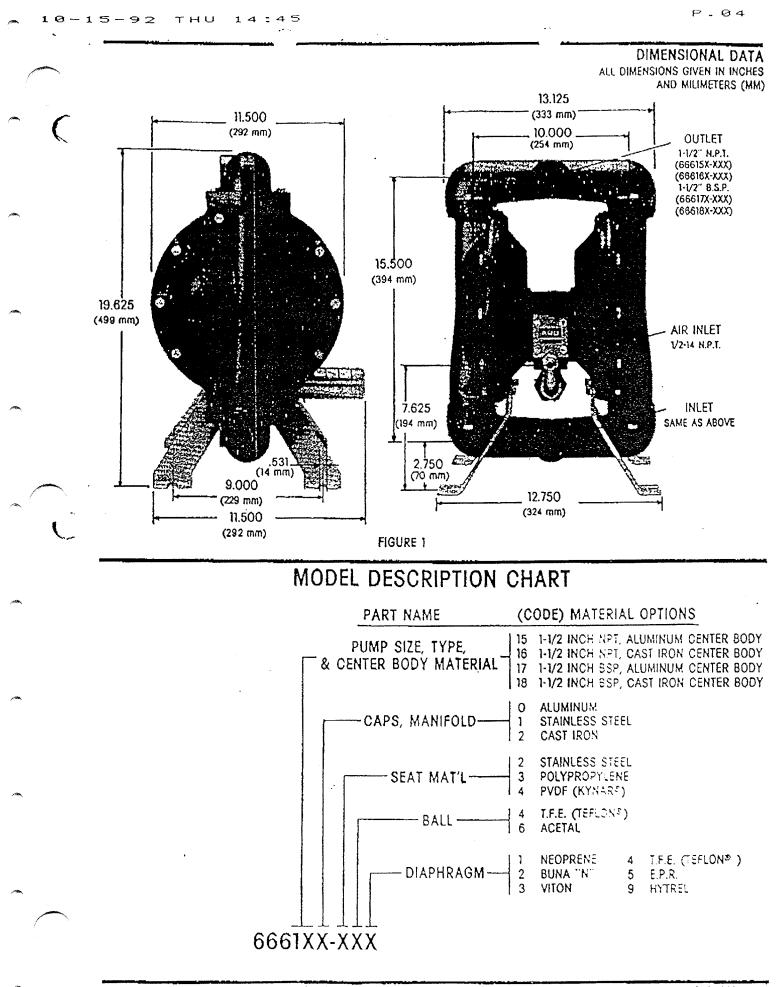
#### AIR AND LUBE REQUIREMENTS

- WARNING: DO NOT EXCEED MAXIMUM INLET AIR PRESSURE OF 120 PSI (8 BAR). OPERATING PUMP AT HIGHER PRESSURE MAY CAUSE PUMP DAMAGE AND/OR PERSONAL INJURY AND/OR PROPERTY DAMAGE.
- A filter copable of filtering out particles larger than 50 microns should be used on the oir supply. In most opplications there is no lubrication required other than the "O" ring lubricant which is applied during assembly or repair. When lubricated air is necessory, supply air lubricator with a good grade of SAE 90 wt. nondetergent oil and set lubricator to a rate not to exceed one drop per minute.

#### INSTALLATION

- Always flush the pump with a solvent compatible with material being pumped if the material being pumped is subject to
  - Thing up" when not in use for a period of time. Disconnect air supom pump if it is to be inactive for a few hours.

The outlet material volume is governed not only by the oir supply but also by the material supply avoilable of the inlet. The material supply tubing should not be too small or restrictive.


When the diaphragm pump is used in a force-feed (flooded Inlet) situation it is recommended that an ARO 104104-CO4 "Check Valve" be installed at the air inlet. Secure diaphragm legs to a suitable surface to Insure against damage by vibration.

#### MAINTENANCE

Part views and descriptions are provided on page 4 through 7 for part identification.

This pump is relatively easy to service and maintain. A clean work surface should be provided to protect sensitive internal moving parts from dirt and foreign matter during service. The service kits are available for the two, separate diaphragm pump functions: 1. FLUID SECTION 2. AIR SECTION. The FLUID SECTION is divided further to match typical active WETTED PARTS OPTIONS, SEE "PARTS LIST/FLUID SECTION" (Page 4).

Before disassembling, turn the pump upside down to drain material from pump, this will empty captured material in outlet manifold.



Tetlan* and Detrin* are registered trademarks of DuPont Company, Kynar* is a registered trademark of Pennwalt Carporation.

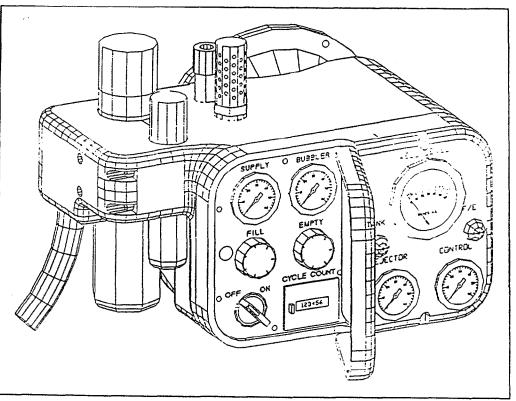
843E.004

2/2

# Section 11315 Pneumatic Pumping System

 $\{1,\dots,n\}$ 




. .

# EJECTOR SYSTEMS, INC.

# S2 SINGLE-WELL PUMPING SYSTEM

EJECTOR SYSTEMS, INC. 910 NATIONAL AVENUE ADDISON, IL 60101 (708) 543-2214 1-800-OIL-LEAK 1/92 EJECTOR SYSTEMS, INC.

Ejector Systems, Inc. presents the most advanced solution yet for groundwater remediation and leachate pumping. The same ingenuity that made ESI the first to use pneumatics for groundwater pumping is now combined with the new S2 single well controller to offer a vast number of options, yet remain amazingly economical.



S2 SINGLE WELL CONTROLLER

Product Only and Total Fluids pumps are both compatible with the new S2 controller. Ejector Systems, Inc.'s pumps are entirely pneumatic and have only two moving parts thereby reducing maintenance. In addition to leachate pumping, they can be used to pump lighterthan-water, phase-separated hydrocarbons, such as gasoline and fuel oils; heavier-than-water hydrocarbons, such as creosote or chlorinated solvents; or dissolved hydrocarbons only. Refer to the chart on page four for flow rate and air consumption.

2

2/7

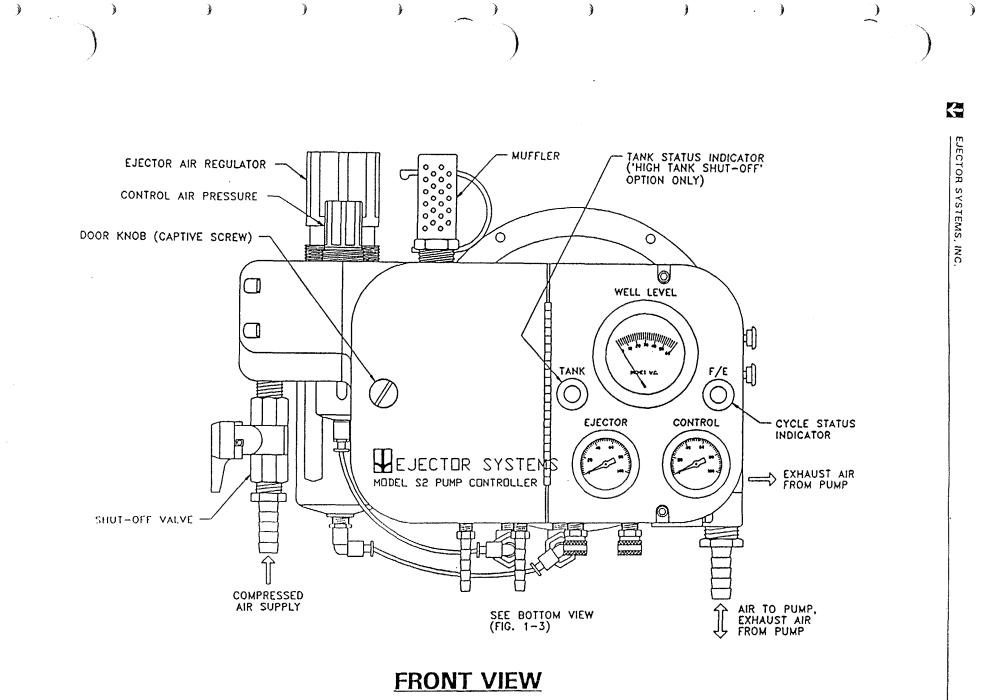
Some standard features on the new S2 single-well controller are:

- The S2 system is totally submersible.
- An extremely rugged 11" high x 14.5" wide x 10" deep casing encloses the S2 so it fits easily into a below grade box.
- Water problems are virtually eliminated with the S2's Pulsed Auto-Drain which eliminates condensate in the compressed air system.
- The Manual Discharge feature allows the pump to fire with the simple push of a button.

# Dependent upon the specific site requirements, optional features are available:

- To ensure accurate level control in sealed well applications with a vacuum, the Differential Pressure option is available.
- The High Tank Shut-Off option will shut down the pumping system in the event of a high level condition.
- A Vacuum Fill Unit which will apply a vacuum to the vent line during the fill cycle is available.
- Product recovery is maximized with the Level Tracking option which ensures that the inlet of the Product Only pump is always at the liquid surface of the well.

3/7


# MAXIMUM FLOW RATE AND APPROXIMATE AIR CONSUMPTION VS. EJECTOR DIAMETER AND LENGTH

	1.5	3	4	5	6	8		
	inches	inches	inches	inches	inches	inches		
1.5 feet	0.5	2.0	3.8	6.5	9.3	17.3		
	1.0	1.8	6.5	4.2	5.7	10.9		
3 feet	1.0	4.1	7.5	12.9	18.6	34.5		
	1.2	2.9	4.8	8.6	11.7	21.5		
4 feet	1.3	5.4	10.0	17.2	24.8	46.0		
	1.4	3.6	7.0	10.5	13.0	27.7		
5 feet	**	6.8	12.5	21.5	31.0	57.5		
	Special	4.4	8.3	13.2	19.6	34.0		
6 feet	**	8.1	15.0	25.8	**	**		
	Special	5.1	9.7	15.6	Special	Special		

### Diameter of Ejector

Length of Ejector

- •Top number in each cell represents maximum flow rate at 5 cpm.
- •Bottom number represents approximate air consumption assuming 25 feet of 1/2 inch ID air line and 1 inch diameter discharge line.
- **Special These pumps must be special ordered.



σ

WELL REFERENCE PRESSURE FROM PNEUMATIC LEVEL PROBE (T2) ("HIGH TANK SHUT-OFF" OPTION ONLY) -("DIFFERENTIAL PRESSURE" OPTION ONLY) (QUICK-CONNECT) ÔR TO TOP OF CYLINDER ("LEVEL TRACKING" OPTION ONLY) --BUBBLER LINE PRESSURE (QUICK-CONNECT) TO PNEUMATIC LEVEL PROBE (T1) ("HIGH TANK SHUT-OFF OPTION ONLY) -TO BOTTOM OF CYLINDER ("LEVEL TRACKING" OPTION OLNY) -O TO TANK @ WELL WELL O  $\langle O \rangle$ 0 Ó 0 0 SEE RIGHT SIDE VIEW (FIG. 1-4) 扣 0 OBUBLRO REG Q  $\bigcirc$ 0 0 0 @ 17 7 - AUTO-DRAIN FILTERS BUBBLER AIR REGULATOR - AUTO-DRAIN EXHAUST PORTS

)

1

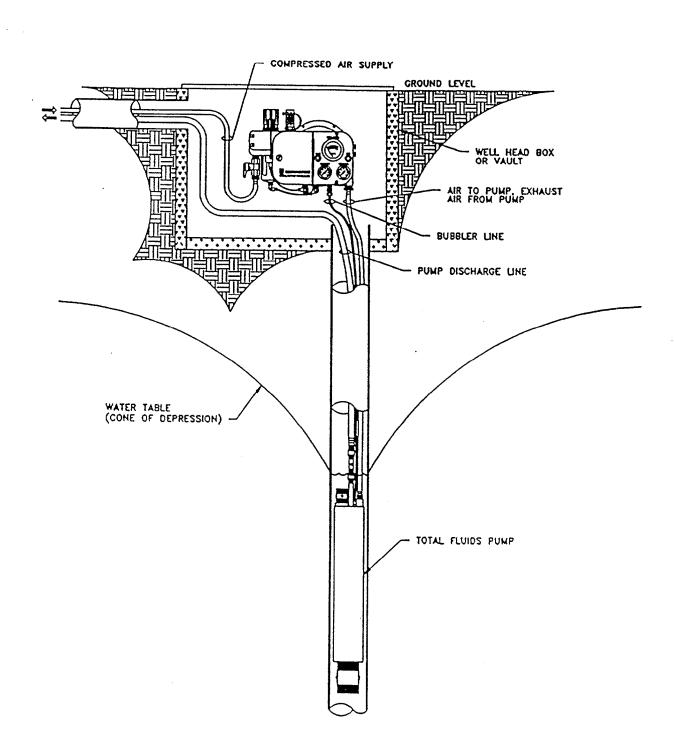
3

EJECTOR SYSTEMS, INC

**BOTTOM VIEW** 

ກ

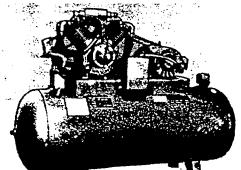
)


•

)

)

# BELOW GRADE WELL HEAD ELEVATION


7



1 40

. . . . .

# PRESS



# Two Stage Tank Mount Compressors

Powerful industrial compressors build air pressure in two steps Powerful industrial compressors build air pressure in two steps-they draw all into a large cylinder where it is compressed to medium pressure, then discharge it into a smaller cylinder for further compres-sion. Maximum operating pressure is 200 psl. Compressors feature an automatic pressure switch for loadless starting. They stop and start automatically to keep pre-determined pressure in tanks. Switch cuts in at 140 psi and cuts off at 175-psl. The National Electrical Manufacturers' Association standard 1800 rpm motor is V-belt driven and operates on 230/460-volts, 3-phase, 60 Hz. Mounted on an American Society of Mechanical. Engineers' (ASME) National Board code air tank. Complete with a totally enclosed belt guard, air gauge. ASME ap-proved safety valve, and an intake filter silencer. On models 3 hp and over a 230-volt magnetic starter is included. Magnetic starter is option-

over a 230-volt magnetic starter is included. Magnetic starter is option-al on 1½ and 2 hp models. On units with magnetic starter specify 230 or 460-volt. Units with 460-volt magnetic starter or 50 Hz are available. Specify No. 4364K999 and hp. Prices on request.

Approx	Comp.	Tank	Bore, In	ches			••		
Disp. Free Air	Speed	Cap.	Low	High	Stroke	Overa	II Inches		NET
cfm cfm thp	- mm	Gals.	Press.	Press.	Inches 4	a <b>la.</b> 🕬	₩d. ⇒Ht.	X No.	EACH
						£66≦	20	4364K32 .	\$1691.11
14.1				21/2			20	4364K43 .	1828.36
12.8								4364K44	2077.26
20.716.5		80	4%	2 2	- 3	.66	20	4364K35	2039.04
			4%	21/2			20		3065.76
-44.634.4			4%	21/2		.66	23		3538.08
61.5. ± 53.7			61/4					4364K38	4777.20
<b>93.077.61</b> 20			61/4	34	4	72 .	DQ 58	ATRAK30	5948 64
109.491.1			61/4		4	.72	58	4364K41	6339.60
A Magnetic starters for '	these como	masons	•* ·			1 A			
11/2 hp (specify 230-volt of	or 460-volt)					· ·	No ABRAKS	S NET EAC	H \$221 87
11/2 hp (specify 230-volt ( 2 hp (230-volt)		7				**************	No ARAKS	S NET EAC	
2 hp (460-volt)							No. 4364K57		
The result of the state						***********	ALLEN TOVEROI		

.

• ....



-pneumatic conveying ser-

sation, film dryers, and agita-stion of fluids and semi-science air. Easily changed from pressure to suction use, and may be mounted in a variety of poshaft impeller provides rellstable performance. No gears, .

Built tough for industrial plants and labora-ories where compressed air up to 100 psig is pm, ¹/₄ hp motor that operates on 115-volts, 1phase; 60 Hz. Equipped with a filter, safety valve, pressure gauge, pre-set adjustable pres-sure switch, and shut-off and check valves.

tories wher required. A Society of less, twin-c	e compress lounted on Mechanica viindered, p	trial plants and sed air up to 100 a 12-galion Au il Engineers' ta ilston_design, air	opsigis rpm merican pha ink. Oil- valv	1, ¼ hp motor i ise; 60 Hz. Eo re, pressure ga	a thermally prote that operates on 1 juipped with a fil uge, pre-set adjust thut-off and check	15-volts, 1- ter, safety lable pres-
Max.	Free	<ul> <li>Pressure</li> </ul>	•			
Working	- Alr	Switch	Overa	all Size, In.		NET
psig	cím	Cuts In	La.	Wd. ~Ht.	» No.	EACH
50				.13"		\$647.71
100	2.0	70 psig		.13 ⁻ 20 ¹ /8"		646.13

### Single-Stage Blower/Compressors

Single Stage Tank Mount Air Compressors—1/4 HP

belts, motor brushes, and sliding vanes that require maintenance. The impel-ler, mounting base, and housing are aluminum alloy for strength and corrosion resistance. Motors are totally enclosed and fan cooled.

	Max. Static	Connec-	Flow	NET
Voltage 🐃 Phase				
200-2303		.1'	.: 27	\$363.79
200-230/460		.11/1*	: 559960K13	446.55
200-230/460		.11/2"	: 98 9960K14	477.59
200-230/4603				
1151				
115 1		.1	. 429960K18	429.31
115/2301		.1 ¹ /2 ¹	94 9960K21	
a da antaria. A da antaria				
يس و الراد ا				

#### **Compressor Heads**

Single and two-stage compressor heads are for replacement and for assembly of complete compressors (motor is not included). Positive splash lubrication system controls No. of Free Suggested	<ul> <li>counter-balanced precision crankshaft, tapere bearings, balanced flywheel, a targe oil reservoi</li> </ul>	d							
Cylin- Alt Motor Bore Size,	. Stroke Overall Inches NE	Т							
ders cim + rpm + hp inches	Inches Lg. Wd. Ht. No. EAC								
SINGLE STAGE-100 PSI MAXIMUM WORKING	PRESSURE	•••							
1 1.80	13/4 53/4 615/4 101/4 4366K11 52321	11							
2 5.378101 to 11/2		7							
TWO STAGE-175 PSI MAXIMUM WORKING PF	RESSURE	•							
2	2	ស							
3 6.75720		12							
2									
A 34 4 785 714 to 10 454 2014		2							

### Multi-Set Oil-less Piston Air Compressor

Plenty of air pressure for air tools-excellent for spraying paint and insecticides, sandblast-

Ing, inflating, cleaning, and stapling. Has five adjustable pressure settings: 10, 30, 50, 70, and 100 psl. UL listed unit has an air delivery of 2.2 cfm at 50 psl, and 1.3 cfm at 100 psi. Maximum operating pressure is 100 psi.

This high-powered compressor is powered by a direct-drive, ½ hp, split-phase, thermal overload protected motor that operates on 115-volts, AC, 60 Hz. Furnished With a 15-foot air hose, bleeder

### McMASTER-CARR

-TSO. 000