03.15-9/1/92-00345

GROUNDWATER CHARACTERIZATION STUDY FOR

CAMP LEJEUNE SANITARY LANDFILL ONSLOW COUNTY, NORTH CAROLINA

MCON PROJECT P-948, LANDFILL

DEPARTMENT OF THE NAVY MARINE CORPS BASE, CAMP LEJEUNE, NORTH CAROLINA

SEPTEMBER, 1992

DEWBERRY & DAVIS 8601 SIX FORKS ROAD SUITE 400 RALEIGH, NORTH CAROLINA 27615 (919) 847-0418 FAX: (919) 847-3723

ARCHITECTS-ENGINEERS-PLANNERS-SURVEYORS

GROUNDWATER CHARACTERIZATION STUDY FOR PROPOSED CAMP LEJEUNE LANDFILL SITE "G" ONSLOW COUNTY, NORTH CAROLINA

Prepared for:

-

Dewberry and Davis 8601 Six Forks Road Suite 400 Raleigh, North Carolina, 27615

Prepared By:

S&ME Inc. 3109 Spring Forest Road (27604) Post Office Box 58069 Raleigh North Carolina 27658-8069 S&ME Project No. 1054-92-003

August 1992

August 17, 1992

Dewberry and Davis 8601 Six Forks Road Suite 400 Raleigh, North Carolina 27615

Attention:

Mr. Frank Stephenson

Reference:

Groundwater Characterization Report Camp Lejeune Landfill Site "G" Camp Lejeune, North Carolina S&ME Project No: 1054-92-003

Dear Mr. Stephenson:

S&ME Inc. has completed the groundwater characterization of the proposed Camp Lejeune landfill site "G". Attached please find the report describing groundwater conditions in the vicinity of the site. We appreciate the opportunity to assist you with this phase of this project. Please call us at 919-872-2660 if you have any questions regarding the information contained within this report or if we can be of service.

Very truly yours,

S&ME INC.

Walte

Walter J. Beckwith, P.G. NC Registration No. 584

Sorden

Ann M. Borden, P.G. NC Registration No. 307

WB/WS/AB/wb/rp92-003.102

S&ME, Inc. 3100 Spring Forest Road, Raleigh, North Carolina 27604, (919) 872-2660, Fax (919) 790-9827 Mailing address: P.O. Box 58069, Raleigh, North Carolina 27658-8069

TABLE OF CONTENTS

SECTIO	ON 1 EXECUTIVE SUMMARY	1
SECTIO	ON 2 LOCATION AND BACKGROUND	2
2.1	SITE LOCATION	2
2.2	PROJECT BACKGROUND	2
SECTIO	ON 3 PURPOSE AND SCOPE	3
3.1	PURPOSE	3
3.2	SCOPE	3
SECTIO	ON 4 PREVIOUS ASSESSMENT ACTIVITIES	4
4.1	REVIEW OF PREVIOUS WORK	4
	4.1.1 IAS Site 6	4
	4.1.2 IAS Site 82	4
		F
4.2	LANDFILL SITE G	
·	4.2.1 Preliminary Siting Work	
	4.2.2 Site Characterization	
	ON 5 GROUNDWATER	
5.1	ANALYTICAL ANALYSIS OF GROUNDWATER	
5.2	FORMER ANALYSIS OF SAMPLES FROM WELLS MW-1 and MW-2	6
5.3	CONFIRMATORY ANALYSIS OF MW-1 and MW-2	6
5.4	LOCALIZED SOURCE ASSESSMENT NEAR MW-1	7
5.5	GROUNDWATER FLOW DIRECTION	7
SECTIO	ON 6 CONTAMINANT FATE AND TRANSPORT	8
6.1	PESTICIDE PROPERTIES	8
6.2	SOIL PROPERTIES	8
6.3	HYPOTHESIS OF DECREASING CONCENTRATIONS	8
y	6.3.1 Water Table Fluctuations	9
	6.3.2 Pesticide Adsorption to Suspended Soil Particles	9
6.4	NOTED VARIATIONS IN SOIL AND GROUNDWATER PESTICIDE CONTAMINATION ON ADJACENT IAS SITES	9

Table of Contents (con't) Page 2

SECTIC	N 7 SUMMARY		•••••	· · · · · · · ·	•••••	
7.1	SUMMARY	••••		•		 10

TABLES

TABLE 1	PESTICIDE CONCENTRATIONS IN GROUNDWATER
TABLE 2	SELECTED PESTICIDE PROPERTIES

FIGURES

FIGURE 1	VICINITY MAP
FIGURE 2	SITE MAP
FIGURE 3	Site "G" GROUNDWATER CONTOUR MAP
FIGURE 4	IAS SITE 6 GROUNDWATER CONTOUR MAP

APPENDICES

APPENDIX I	SITE CHARACTERIZATION FIELD METHODS
APPENDIX II	SUBSURFACE INFORMATION
APPENDIX III	GROUNDWATER INFORMATION AND WELL RECORDS
APPENDIX IV	LABORATORY ANALYTICAL RESULTS (Soil Samples)
APPENDIX V	LABORATORY ANALYTICAL RESULTS (Groundwater)
APPENDIX VI	HYDRAULIC CONDUCTIVITY VALUES

SECTION 1 EXECUTIVE SUMMARY

S&ME was retained by Dewberry and Davis in April 1992, to perform a Site Characterization Study of site "G" for final evaluation of the site for use as a landfill. Previous work performed by Westinghouse Environmental and Geotechnical Services (Westinghouse) on this site indicated slight levels of pesticides present in one groundwater sample obtained from one of two monitor wells (MW-1). Additional assessment activities were required to address the regulatory impact of degraded water quality on the proposed landfill construction.

The recently completed Site Characterization revealed no groundwater contamination above quantitation limits from pesticides, PCBs, or Volatile Organic Compounds in the samples analyzed. No significant source was found in the near surface soils at MW-1 that would explain the presence of pesticides in the groundwater samples obtained in 1991. IAS Sites 6 and 82 are located adjacent to (west of) site "G". It is unlikely that the slight groundwater contamination observed at these sites will have any impact on site "G", since groundwater flows from site "G" toward these sites. Based on the recent analysis of nine groundwater samples, the site groundwater meets North Carolina Groundwater Standards (15 NCAC 2L) for class GA groundwater.

-1-

SECTION 2

SITE LOCATION AND PROJECT BACKGROUND

2.1 SITE LOCATION

Proposed landfill site "G" is located within the Camp Lejeune Marine Corps Base, in Onslow County, approximately 10 miles southeast of Jacksonville, North Carolina. Site "G" encompasses approximately 170 acres and forms a rough triangle, bounded by Piney Green Road to the west, Wallace Creek to the north, and Shell Rock road to the east. Old Bear Creek Road dissects the northern half of the site, intersecting Piney Green Road at the northwest corner of the site and Shell Rock Road near the northeast extent of the site. Figure 1 shows the project area with respect to the Jacksonville, North Carolina area. Figure 2 shows the site, boring and well locations, and existing structures.

2.2 PROJECT BACKGROUND

Several adjacent sites, described as IAS Site 6 (lots 201 and 203), and IAS Site 82, are located west and northwest of the site, across Piney Green Road. Both sites are reported to have been utilized for storage of hazardous materials, including DDT-containing pesticides, and PCB-containing transformers. Environmental assessment work performed at these sites indicates isolated areas of soil and groundwater contamination.

Four monitor wells have been installed previously within the site "G" bounds. Two wells, 82-MW-30 and 6-GW-2, were installed during study of the IAS sites; and two monitor wells, identified as MW-1 and MW-2, were installed by Westinghouse during the site suitability study in August, 1991. Analysis of two samples obtained from well MW-1 indicted the low levels of pesticide compounds to be present in the samples; MW-2 did not show evidence of any pesticides above quantitation limits for method 8080.

SECTION 3 PURPOSE AND SCOPE

3.1 PURPOSE

The purpose of the groundwater study was to allow characterization of the groundwater quality of the water table aquifer. S&ME would then address the regulatory issues that would apply to the site resulting from surficial aquifer water quality not meeting the current North Carolina (15 NCAC 2L) groundwater quality standards.

3.2 SCOPE

The scope of work included the installation of additional wells, with sampling of groundwater for analysis of pesticides, PCBs and volatile organic compounds (VOCs). A number of soil samples were obtained from the vicinity of well MW-1 in an attempt to locate a potential source of the apparent groundwater contamination. Groundwater conditions adjacent to (west and northwest of) Site "G" were evaluated by review of environmental assessment reports prepared by other consulting firms for IAS Sites 6 and 82.

(

SECTION 4

PREVIOUS ASSESSMENT ACTIVITIES

4.1 REVIEW OF PREVIOUS WORK

Previous environmental assessment work has been performed at this (Site "G")and adjacent sites (IAS Sites 6 and 82). Several consultant's reports were reviewed, in order to evaluate the groundwater characteristics of the site area.

4.1.1 IAS Site 6

-

An evaluation of IAS Site 6 was performed by Environmental Science & Engineering, Inc. (ES&S) during the summer 1986. IAS Site 6 includes two parcels of land (Lots 201 and 203) located west of site "G" that have been used for storage of hazardous materials. The work included the installation of monitor wells, soil gas survey, and sampling of the monitor wells and three water supply wells located in the area. Trace levels of Trichloroethene (TCE) and other chlorinated alkenes were detected in water supply wells, HP-651, HP-652, and HP-653. TCE was detected in the soil southwest of well HP-652 by the soil gas survey. No contamination was identified in the monitor wells. TCE and vinyl chloride were found in sediment samples obtained from Wallace Creek. (ES&S, 1990)

4.1.2 IAS Site 82

The presence of VOCs in sediment samples and isolated soil contamination at IAS Site 6, prompted an investigation of surrounding potential source areas. Halliburton NUS performed a field investigation and risk assessment of IAS Site 82, located north of Wallace Creek. The investigation included 6 shallow soil borings and 3 monitor wells. In addition, several wells located in the vicinity of site 6 were resampled. Minimal groundwater contamination was observed. It is our understanding that the risk assessment concluded that as long as the site is not developed for residential land use, neither the soil or groundwater is expected to cause any adverse health effects.

August 17, 1992 S&ME Project No. 1054-92-003

4.2.1 Preliminary siting work

Westinghouse performed a preliminary siting study of site "G" for its suitability for use as a landfill during the summer 1991. Seven soil borings were drilled within the site. Because of potential questions posed by environmental problems that had been observed on the adjacent sites, two monitor wells were installed to evaluate groundwater conditions at site "G". Slight levels of pesticides were found in one of the wells. The wells were resampled approximately two weeks later with similar values of pesticide compounds being observed in the same well. (Westinghouse, 1991)

4.2.2 Site Characterization

S&ME, Inc. performed a Site Characterization Study of site "G" for use as a landfill in the spring 1992, that included the drilling of 11 soil borings, 7 monitor wells, and 2 piezometers. Groundwater conditions were evaluated by obtaining samples from the two existing monitor wells, and the seven new monitor wells. In addition, twelve soil samples were obtained from six locations adjacent to well MW-1 to define a source area for the pesticide compounds noted in MW-1 during the Westinghouse study. Both soil and groundwater were submitted for analysis of pesticides, PCBs and volatile organic compounds (VOC). In addition, the 5 largest non-target VOC peaks, identified by the gas chromatographic analysis were to be identified.

No contamination was identified above the method quantitation limits in either the soil samples or groundwater samples. The results of the characterization is detailed in the S&ME Site Characterization Report. A description of the procedures used during the recent site characterization work, details of the field activities and the various documents generated during the work that are related to groundwater or groundwater quality issues are included in the Appendix sections attached to this report.

SECTION 5 GROUNDWATER

5.1 ANALYTICAL ANALYSIS OF GROUNDWATER

Nine monitor wells were sampled for pesticides, PCBs, and volatile organic compounds by SW-846 Methods 8080 and 8240. In addition, the gas chromatographic peaks were compared with a library of known compounds in order to identify five main non-target volatile organic compounds. The only compound identified by these analyses was found in the sample obtained from well MW-3. Dimethyldisulfide was reported at a concentration of $6\mu g/L$ (parts per billion). Dimethyldisulfide is a naturally-occurring bacterial by-product (Handbook of Environmental Data on Organic Chemicals) and is not considered to be a "contaminant". Well MW-3 was the only well to exhibit a distinct hydrogen sulfide odor during purging and sampling. Analytical results indicate no site impact by compounds targeted by SW-846 Methods 8080 and 8240 or associated non-target compounds detected by identification of GC peaks, above method quantitation limits.

5.2 FORMER ANALYSIS OF SAMPLES FROM WELL MW-1 and MW-2

Two monitor wells (MW-1 and MW-2) were installed by Westinghouse during the initial site study of site "G" in 1991. Analysis of the groundwater sample obtained from well MW-1 indicated slight levels of 6 pesticide or pesticide derivative compounds to be present in the groundwater. The pesticide concentration levels ranged from .28 μ g/I (ppb) for Beta-BHC to .01 μ g/I for Heptachlor Epoxide. Table I shows the concentrations detected as compared to the 15 NCAC 2L Standards. No VOCs were detected. Well MW-2 did not indicate any pesticide, PCB or VOC compounds above the method quantitation limits.

5.3 CONFIRMATORY ANALYSIS OF MW-1 and MW-2

Well MW-1 was resampled approximately two weeks after the initial sampling event and showed similar pesticide concentration values. Five of the compounds previously noted, had decreased in concentration. One compound, Beta-BHC increased slightly. 4,4' DDT was detected at the analysis quantitation limit of .05 μ g/l. The resampling test results are also shown on Table I.

Resampling of well MW-1 during the recent site characterization, confirms the absence compounds (VOCs) detected by SW 846 Method 8240 analysis, including the identification of 5 peaks in the groundwater at MW-1 (and the other 8 well locations). The recent analysis does not confirm that pesticide compounds

Groundwater Characterization Study Camp Lejeune Landfill present in the groundwater at the MW-1 location or in samples obtained from the other on-site wells above the method quantitation limits.

5.4 LOCALIZED SOURCE ASSESSMENT NEAR MW-1

The soils in the vicinity of MW-1 were sampled in conjunction with the recent site characterization in an attempt to identify a source area for the pesticide compounds found in the groundwater. Samples were obtained from 6 locations (location map in Appendix IV) around MW-1, from just below the soil surface and at the water table. Sampling of the soil in the vicinity of MW-1 for pesticides and PCBs did not reveal these compounds in the soil at or above the quantitation limits, which ranged from 8 to 160 μ g/kg (ppb). Although the quantitation limits for soil are higher than those for the water analyses, they do indicate there is not a significant source of pesticides within the immediate vicinity of MW-1.

5.5 GROUNDWATER FLOW DIRECTION

Groundwater surface elevations were determined by measurement in each of the well. Figure 3 shows a contour map prepared from the depth measurements made on May 5, 1992. The positioning of the contours indicates groundwater flow occurs radially away from the center of the site due to the topographic control provided by Wallace Creek and Bear Head Creek, located north and south of the site. Due to the sandy surficial soils, almost all of the precipitation that falls within the center of the site serves to recharge the groundwater through infiltration, which results in mounding of the groundwater in the center of the site. Figure 4 has been reproduced from the report for the IAS Site #6, and shows good correlation with site groundwater contours. The flow direction makes it unlikely that any potential off site impacts will affect site "G". Groundwater flow direction indicates that the source of pesticides in MW-1 would be from the vicinity of the well.

SECTION 6

CONTAMINANT FATE AND TRANSPORT

6.1 **PESTICIDE PROPERTIES**

Selected chemical properties for the pesticide compounds originally found in well MW-1 are shown on Table II. This table shows common properties and selected coefficients for these compounds that can be used to explain their behavior in the environment. Most are not very soluble in water and tend to adsorb to organic matter present within the soil.

The pesticide compounds observed previously in the samples from MW-1 have specific gravities greater than water and tend to sink rather than float on the water table surface when present in necessary concentrations. Solubilities in water range from 31.4 mg/l for delta-BHC to .0055 mg/l for 4,4' DDT. The Organic Carbon Partition Coefficient (Kow) indicates the tendency of the compound to bind to organic carbon within the soil. Compounds with high values generally have low solubilities and are relatively immobile in groundwater. All of the chlorinated hydrocarbon pesticides are persistent in the environment.

6.2 SOIL PROPERTIES

The soil conditions in the vicinity of MW-1 are somewhat unique with respect to the other well locations at the site. The soils are classified as Leon series by the Soil Conservation Series (SCS). They are poorly drained and the subsoils consist of a compact zone which has formed through the concentration of humic organic colloids at the water table. According to SCS information, organic contents of these soils range between 0.5 and 5 percent. Because of the organic content of the soils, which is higher than the better drained portions of the site, these soils could be expected to collect chlorinated pesticide compounds through adsorption to the carbon containing compounds, within the organic matter. Sampling of the organic soil zone at the water table, failed to detect the presence of pesticide compounds.

6.3 HYPOTHESIS OF DECREASING CONCENTRATIONS

The variance in pesticide concentrations noted during sampling of well MW-1, and the apparent lack of a near surface source area within the soil around well MW-1 is difficult to explain. These compounds have relatively long half lives and are persistent in the environment, particularly after they have penetrated the ground surface. The decreasing trend observed between sampling events in August and September, 1991 is not likely due to degradation of all of the compounds, but rather due to events associated with fluctuation of the water table or events associated with the well installation and development, or well purging and sampling.

6.3.1 Water Table Fluctuations

Groundwater levels in the vicinity of MW-1 were 1.6 to 2.3 feet higher in 1991 than during April and May 1992. It is reasonable that low levels of pesticides in the near surface soil may undergo increased leaching activity when submerged, as may occur during periods of higher groundwater. Compounds showing the highest concentrations in 1991 also have higher solubilities. Table II shows Beta-BHC has a higher concentration and correspondingly higher solubility than Dieldrin.

6.3.2 Pesticide adsorption to suspended soil particles

The decreasing concentrations may be due to these compounds being adsorbed to fine grained soil particles that have been carried from an upper soil horizon, or another boring location, to the screen interval by the hollow stem auger drilling process. The decreasing values may be due to removing less soil matter from the filter pack or formation through continued well development (by the purging and sampling process).

This explanation assumes the well was not adequately developed after installation. All of the wells installed during the site characterization (MW-3 through MW-9) were developed by over pumping (discussion in appendix I) until the discharge flow was clear. Approximately 100 gallons of water were removed from each of the wells.

6.4 NOTED VARIANCES IN SOIL AND GROUNDWATER PESTICIDE CONCENTRATIONS ON ADJACENT IAS SITES

The ES&S study concluded that none of the groundwater samples contained DDT or its derivatives, although DDT, DDD, and DDE were found in surface soils. "It is possible that the contaminants may be tightly adsorbed to the soil particles and thus are unlikely to reach the groundwater".

The Halliburton-NUS study found Gamma-BHC and Aroclor 1260 in the groundwater sample in one well. Neither of these chemicals were detected in the soil tested from the well location. The report concluded that the presence of these compounds in the unfiltered samples was related to suspended sediment in the groundwater samples that originated in the surrounding soil.

Groundwater Characterization Study Camp Lejeune Landfill

7.1 SUMMARY

^

In summary, the recent groundwater sampling event indicates that the groundwater quality of the water table aquifer within the areas served by the nine monitor wells (the site "G" area) is within the 15 NCAC 2L guidelines. As groundwater flow occurs radially away from the center of the site, contamination observed within the groundwater, west of site "G", on IAS Sites 6 and 82, will not impact this site. The variance in pesticide levels noted during sampling of well MW-1 cannot be easily explained and several theories are presented in this report. Significant contamination is not evidenced in the surficial soil, and no contamination was detected in the analyses performed on samples from other wells located downgradient of well MW-1. It is probable that the pesticide levels found previously in MW-1 are related to regional application of pesticides in the past, and not due to point sources.

Groundwater Characterization Study Camp Lejeune Landfill August 17, 1992 S&ME Project No. 1054-92-003

TABLE 1

PESTICIDE COMPOUNDS DETECTED IN GROUNDWATER SAMPLES OBTAINED FROM WELL MW-1

PESTICIDE COMPOUND	CONCENTRATION ON 8-25-91 (1)	CONCENTRATION ON 8-10-91 (1)	CONCENTRATION ON 5-5-92 ₍₂₎	N.C. GROUNDWATER 15-NCAC-2L STANDARDS
Beta-BHC	0.28	0.73	BQL	ND
Delta-BHC	0.05	BQL	BQL	ND
Aldrin	0.17	BQL	BQL	ND
Heptachlor Epoxide	0.26	0.01	BQL	.038
Dieldrin	0.08	0.02	BQL	ND
Endrin	ndrin 0.09 BQL		BQL	0.20
4,4'DDT	BQL	0.05	BQL	ND

All concentrations are shown in $\mu g/L$ (parts per billion) All other compounds detected by SW-846-Method 8080 were BQL

Westinghouse - site suitability study 1991.

(2)

(1)

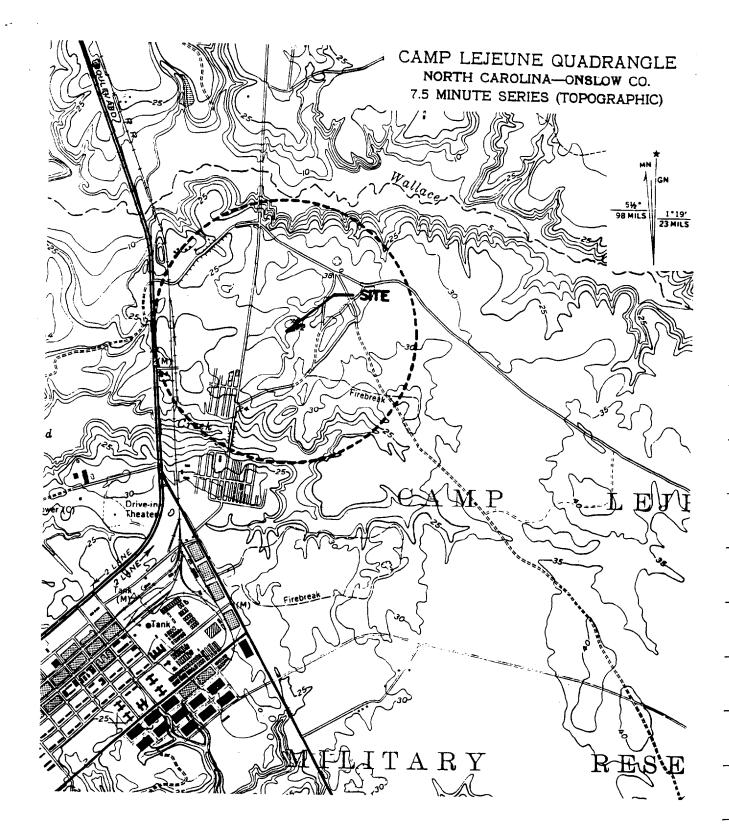
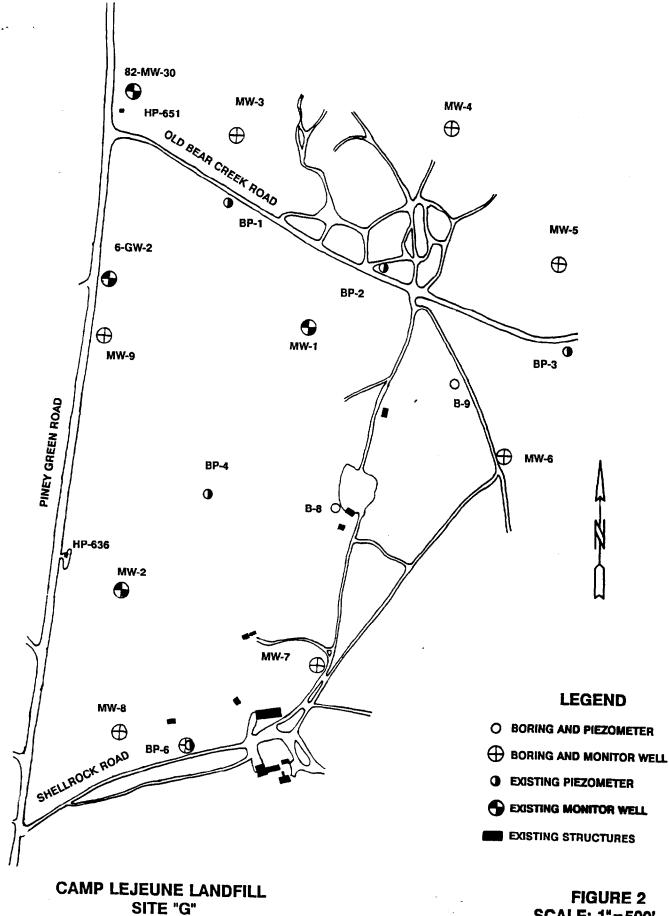

S&ME - site characterization study 1992.

TABLE 2 SELECTED PROPERTIES OF PESTICIDE COMPOUNDS (1)

PESTICIDE COMPOUND	SPECIFIC GRAVITY	SOLUBILITY IN WATER (Mg/L)	ORGANIC CARBON PARTITION COEFFICENT (koc)
Beta-BHC	N/A	0.24	3.8 x 10 ³
Delta-BHC	N/A	31.4	6.6 X 10 ³
Aldrin	1.6	.018	9.6 x 10 ⁴
Heptachlor Epoxide			
Dieldrin	1.75	.0195	1.7 x 10 ³
Endrin			
4,4' DDT	N/A	.0055	3.9 x 10 ⁶

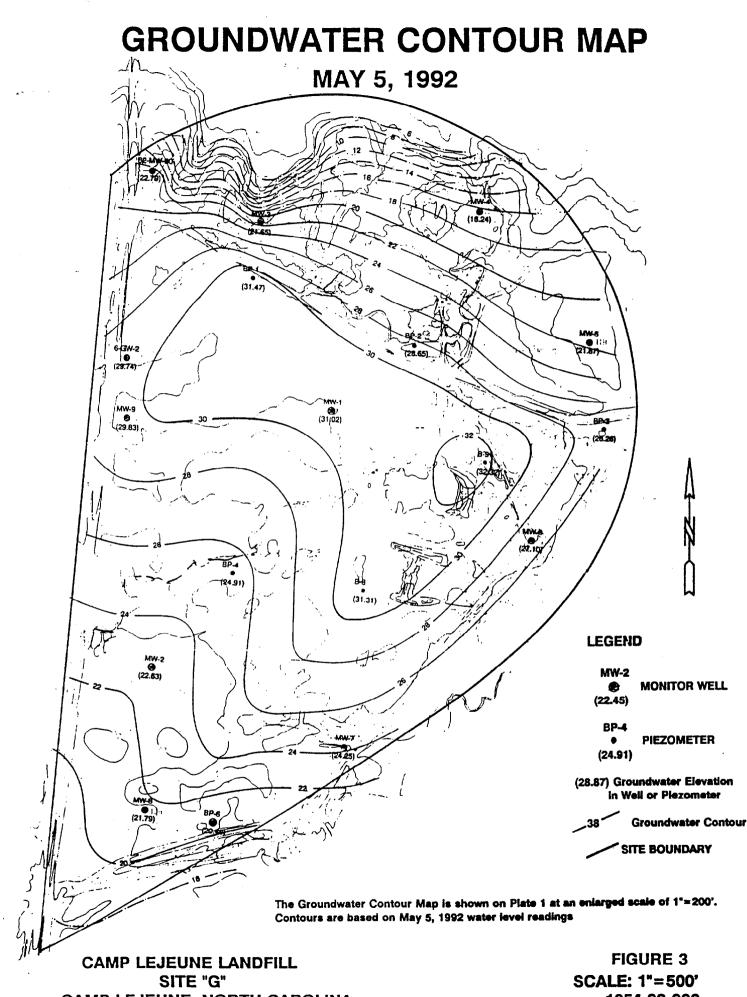
⁽¹⁾ Source: Halliburton - NUS, 1991

VICINITY MAP



CAMP LEJEUNE LANDFILL SITE "G" CAMP LEJEUNE, NORTH CAROLINA

FIGURE 1 SCALE: 1"=2000' 1054-92-003


SITE MAP

.

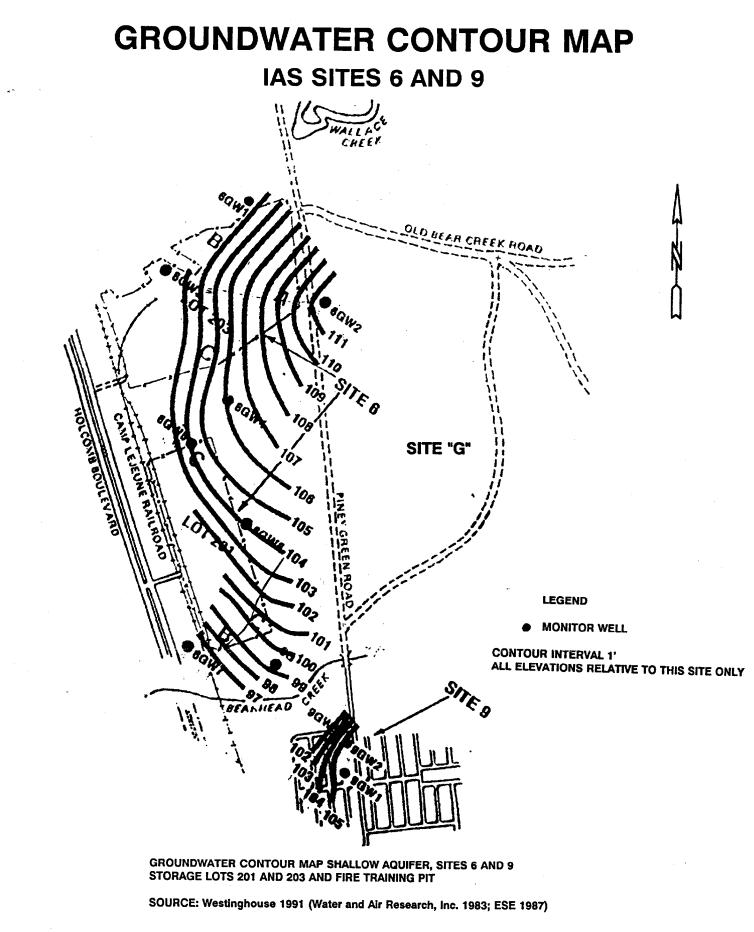

CAMP LEJEUNE, NORTH CAROLINA

FIGURE 2 SCALE: 1"=500' 1054-92-003

CAMP LEJEUNE, NORTH CAROLINA

1054-92-003

CAMP LEJEUNE LANDFILL SITE "G" CAMP LEJEUNE, NORTH CAROLINA

FIGURE 4 SCALE: 1"=875' 1054-92-003 Bouwer H., 1989, The Bouwer and Rice Slug Test - An Update: Ground Water, Volume 27, Number 3, pp. 304-309.

Coffey, S., Rodds Chemistry of Carbon Compounds: Elsevier Publishing Company, 1965, page 83.

Fetter, C. W., 1988, Applied Hydrogeology: Charles E. Merrill Publishing Co., 592 pages.

Halliburton NUS Environmental Corp., Nov.1991, Preliminary Draft, Site Inspection Report IAS Site 82; Piney Green Road.

S&ME, Inc., June 1992, Site Characterization Study for proposed Camp Lejeune Site "G", Raleigh, North Carolina.

U.S. Geological Survey, 1989, Water Resources Investigations Report 89-4096, Assessment of Hydrologic and Hydrogeologic Data at Camp Lejeune Marine Corps Base, North Carolina.

Verschreren, Karel, Handbook of Environmental Data on Organic Chemicals, Second Edition.

Westinghouse Environmental and Geotechnical Services Inc., Sept. 1991, Preliminary Site Characterization Study for Proposed Camp Lejeune Landfill Site "G".

Windholtz, M., Ed., 1983, The Merck Index, Merck and Company, Rahway, New Jersey.

APPENDIX I SITE CHARACTERIZATION FIELD METHODS

ABSTRACT

This appendix contains a description of the procedures utilized for the site characterization. The field procedures included drilling, decontamination, well installation, borehole abandonment, and groundwater sampling.

-1

APPENDIX I

FIELD METHODS

The following attachment describes the field procedures utilized during the recent characterizion of site. These methods have been developed from:

- Guidelines for Remediation of Soil Contaminated by Petroleum, North Carolina Department of Environment, Health, and Natural Resources, Division of Environmental Management, Groundwater Section, August 1990.
- QA/QC and Standard Operation Procedures Manual for Sample Collection, North Carolina Department on Environment, Health, and Natural Resources, Division of Environmental Management, Groundwater Section: Revision No. 6, June 30, 1989.
- North Carolina Water Quality Monitoring Guidance Document for Solid Waste Facilities, North Carolina Department of Environment, Health and Natural Resources, Solid Waste Management Section, 1987.
- American Society for Testing and Materials, Volume 4.08 Soil and Rock; Building Stones; Geotextiles, 1987.

1.0 SOIL TEST BORINGS

Borings were advanced using a combination of drilling techniques. Continuous flight, hollow stem augers with an inside diameter of 3.25 inches, were used to advance the borehole to a depth of 8.5 feet. At which point mud rotary drilling techniques were used to complete the boring. The augers facilitated drilling above the water table, and during the rotary drilling served as temporary casing sealing the top of the borehole and allowing recirculation of the drilling fluid. The mud rotary drilling technique consisted of advancing the drill rod under rotation using a 3 inch diameter bit while pumping the drilling fluid through the center of the drill rod, and displacing the cuttings up to the top of the borehole and into a settling tank.

1.1 Standard Penetration Test (ASTM D-1586)

Formation samples were obtained during the drilling at selected intervals using a Split Spoon Sampler. The sampler consists of a 1.375- inch ID, 2-inch OD, longitudinal, split tube. The tube or sampler is driven into the formation just below the borehole bottom using a 140 lb. hammer falling 30 inches. The sampler is driven 3 six-inch increments and the number a blows required by the hammer to drive the sample each increment are recorded. The number of blows for the last two increments are combined and designated as the Standard Penetration Resistance in blows per foot (bpf). When properly evaluated, these

Groundwater Characterization Study Camp Lejeune Landfill numbers can be used as an index of soil strength and relative density. Each of the samples were visually examined to determine the soil classification according to the Unified Soil Classification System by the visual- manual methods described in ASTM D-2488.

1.2 Shelby Tube Sampling (ASTM D1587)

Undisturbed samples were obtained from selected locations to perform permeability and consolidation testing on the site soils to determine insitu conditions. The Shelby tube consists of a 3 inch thin wall tube that has a sharp cutting edge. The tube is forced into the soil, rotated to shear the sample at the bottom of the tube and withdrawn. The ends of the tube are sealed to prevent moisture and sample disturbances, and the tube is transported to the laboratory in an upright position.

1.3 Organic Vapor Analyzer (OVA)

A portion of the recovered Split Spoon sample was placed in a resealable plastic bag. The sample was gently kneaded while in the sealed bag to aid in volatilization of any organic volatile compounds that may be present in the soil. After approximately 15 minutes the headspace within the sealed bag was sampled with the OVA, by piercing the bag with the tip of the probe and reading the corresponding value on the readout.

The OVA is essentially a flame ionization detector that detects the presence of organic compounds with a sensitivity to measure in the parts per million range. Field screening of samples for organic compounds is a useful means of identifying areas of contamination within subsurface areas defining both vertical and horizontal extent based on apparent concentrations. Readings are displayed on a linearly scaled readout.

1.4 Decontamination

Decontamination procedures were performed prior to the initiation of drilling at each boring or well, and at the completion of site activities. The drill rig and all tools used for drilling (drill rod, bits, samplers, wrenches, etc.) were cleaned. Coarse residual material was removed by scraping or brushing, followed by cleaning with a high pressure steam wash, followed by air drying. Smaller field sampling equipment like the hand augers used in sampling around MW-1 were initially cleaned by scraping or brushing. They were then washed in a non-phosphate detergent solution, rinsed with tap water and allowed to air dry. After drying they were wrapped in plastic or aluminum foil. The decontamination was performed in the south central portion of the site where a source of potable water was available.

1.5 Borehole Abandonment

The soil borings were abandoned by grouting with a cement-bentonite grout at the completion of drilling. The grout was mixed and pumped into the borehole using a Chemgrout grout mixer. The grout mix was apportioned by mixing 1 bag of type I portland cement to approximately 6 gallons of water. Powdered Bentonite was added to the grout mixture to reduce shrinkage of the grout upon hydration and to improve sealing of the borehole.

2.0 MONITOR WELL CONSTRUCTION

2.1 Well installation

The monitor wells were constructed of 2-inch schedule 40 Polyvinyl Chloride (PVC) piping. The screen was constructed using a 10 foot section of pipe that had 0.010" slots cut in the pipe at close intervals. The screen was attached to the riser pipe using square cut flush threads. The screen and riser were placed inside 4.25" I.D. hollow stem augers which had been advanced to approximately 25 feet, positioned so that the bottom of the screen was 25 feet below the existing land surface.

Fine filter sand was poured in the auger as it was withdrawn, filling the annular space between the outside of the screen and the borehole left by the augers. The filter sand serves to prevent fine grained (clay and silt) formation materials from being drawn into the well during sampling. The location of the top of the sand with respect to the screen was monitored by measuring the top of the sand with a measuring tape. The filter sand was extended approximately 2 feet above the top of the screen and sealed with one to two feet of Bentonite pellets.

The pellets were slowly poured into the augers. A weighted rod was used to determine the top of the pellets, to assure that the pellets had not become bridged above the seal, and to lightly tamp the pellets to compact them. The bentonite was allowed to hydrate, forming a tight seal between the walls of the borehole and the well casing. As construction of the bentonite seal was below the water table, additional water was not added for bentonite hydration.

The remaining portion of the borehole was sealed with neat cement grout. the grout was mixed with a paddle type grout mixer (Chemgrout) according to 5.5 gallons of potable water per bag of type I cement. The grout was introduced into the borehole under pressure using a tremie pipe. The grout was pumped into the well annulus until it reached the ground surface, at which point the grouting was stopped and the tremie pipe was removed.

A steel protective casing consisting of 4-inch square steel tubing with a lockable hinged cover was inserted around the riser pipe into the fresh grout and braced in a vertical position until the grout had reached initial set. A 24-inch square concrete pad was later constructed at the ground surface to prevent infiltration of surface water into the well. The auger cuttings, generated during drilling were leveled around the pad to divert local drainage away from the well. Final completion of the well included the installation of three concrete filled guard posts, painting, and attachment of the well identification tag.

2.2 Well development

The wells were developed by over pumping. By withdrawing water from the well at a high rate the sand filter is agitated (by the high velocities around the screen openings) to allow removal of any entrained silt or clay present in the filter pack. The pumping was continued until no increase in water clarity was noted. Approximately 100 gallons were removed from each of the wells.

3.0 GROUND WATER SAMPLING

2.2.1 Well Purging

The wells were measured on May 5, 1992 in preparation for sampling. Measurements were obtained of the depth to groundwater using an electric water level indicator. The indicator detects the top of the water surface by the change in electrical resistance, at which point, the corresponding depth is determined from markings on the outside of the cable. The depth to water is subtracted from the elevation of the top of the well casing to determine groundwater surface elevation. The depth to water is also used to determine the volume of water to be purged from the well.

The wells were purged by removing three well volumes of water, calculated from the quantity of water in the well, using a laboratory decontaminated teflon bailer and new nylon bailer cord. The purge water was containerized and was emptied in the drain at one of the equipment cleaning pads on the Base.

3.2 Well Sampling

Site Characterization Study Camp Lejeune Landfill

3.2 Well Sampling

1

Following purging, the bailers were suspended in each of the wells, and the wells were allowed recharge. Samples were obtained from the well by carefully lowering the bailer below the water surface and withdrawing a sample. Three 40 ml volatile sample vials were filled first using care to prevent any turbulence when transferring the sample to the vial and completely filling the vial to prevent any headspace.

The other sample containers, two 1 liter bottles for the SW-846 Method 8080 analysis were then filled. All of the containers were chilled on ice and delivered to the testing laboratory using standard chain of custody procedures.

- 5 -

August, 1992 S&ME Project No. 1054-92-003

APPENDIX II SUBSURFACE INFORMATION

ABSTRACT

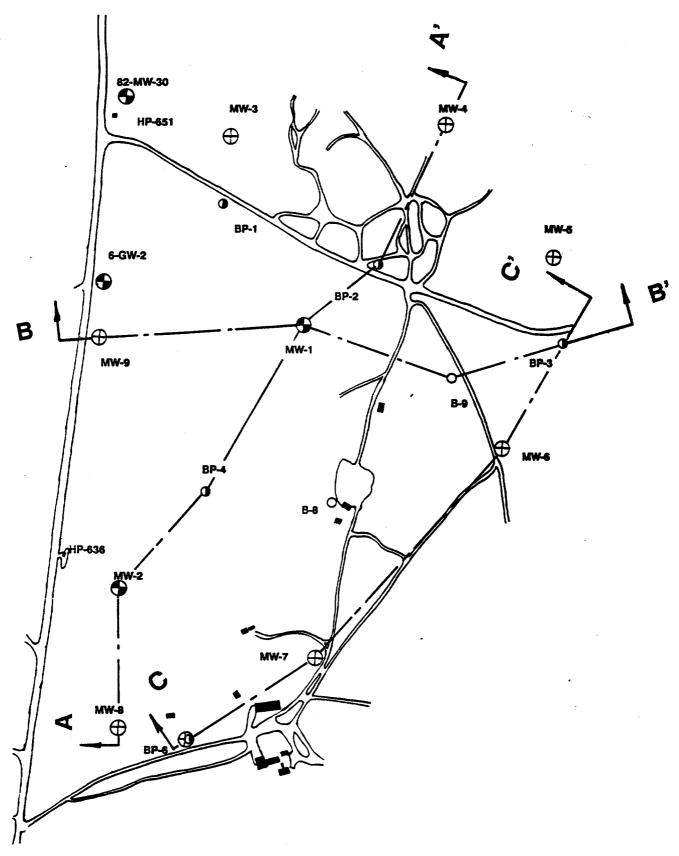

This appendix contains the Test Boring Records for borings MW-3 through MW-9, and B-7 through B-10 and the Geologic Sections developed for the site from the boring information. The location of each of the borings, referenced from the N.C. Plane Coordinate System is shown on Table II-1. The boring and section locations are shown on Figure II-1, the sections are shown on Figures II-2 through II-4. A brief explanation of terms and descriptions used, precedes the Test Boring Records.

Table II-1 Location of Monitor Wells and Piezometers⁽¹⁾ Camp Lejeune Landfill Site "G" Camp Lejeune, North Carolina

Well or Piezometer Number	North	East
MW-3	347849.73880	2504347.65360
MW-4	347924.90100	2505460.15520
MW-5	347274.26340	2506033.37480
MW-6	346260.73040	2505757.25740
MW-7	345187.58890	2504832.34280
MW-8	344849.10920	2503832.59490
MW-9	346831.71000	2503698.92790
B-8	345988.76160	2504913.91700
B-9	346651.40870	2505515.51850

(1) Locations are referenced to the North Carolina Plane Coordinate System.

LOCATION OF GEOLOGIC SECTIONS

CAMP LEJEUNE LANDFILL SITE "G" CAMP LEJEUNE, NORTH CAROLINA FIGURE II-1 SCALE: 1'=500' 1054-92-003

LEGEND TO SOIL CLASSIFICATION AND SYMBOLS

SOIL TYPES

Fine Sand, with little silt or clay (SP)

Silty fine Sand (SM)

Clayey silty fine Sand (SC)

Clay or sandy Clay (CL)

WATER LEVELS

5.0

7.0

Water at termination of boring

Water at 24 hours after completion of well installation

Loss of water or Drilling Fluid while drilling

ORGANIC VAPOR ANALYZER

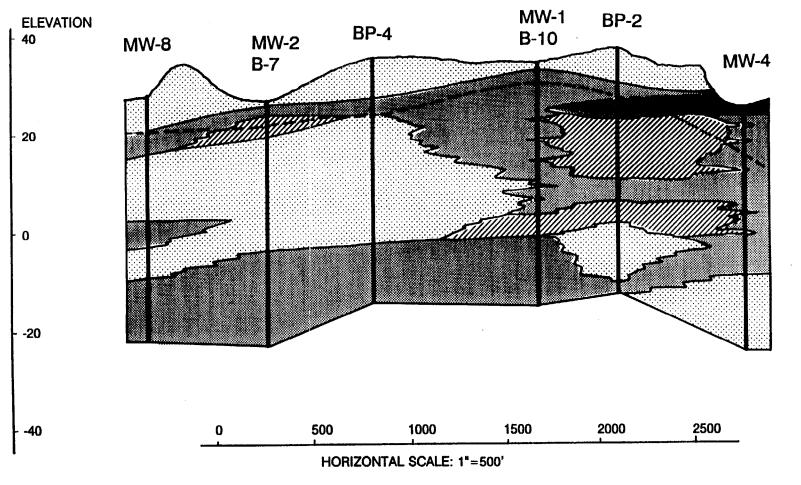
_2.3

Reading in parts per million (PPM) of organic compounds contained within the headspace of the sample container.

STANDARD PENETRATION RESISTANCE

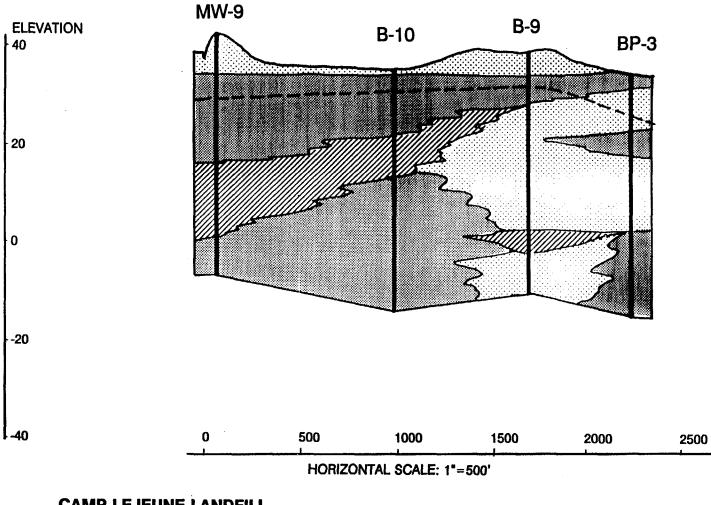
5-2-3 The number of blows of a 140 lb. hammer falling 30 in. required to drive a 2inch O.D. Split Spoon Sampler 3-six inch (6") intervals. As specified in ASTM D-1586

CONSISTENCY OF COHESIVE SOILS


STD. PENETRATION RESISTANCE BLOWS/FOOT 0 to 2 3 to 4 5 to 8 9 to 15 16 to 30 31 to 50 Over 50

CONSISTENCY

Very Soft Soft Firm Stiff Very Stiff Hard Very Hard


RELATIVE	DENSITY OF COHESIONLESS SOILS
STD. PENETRATION	
RESISTENCE	RELATIVE DENSITY
BLOWS/FOOT	
0 to 4	Very Loose
5 to 10	Loose
11 to 30	Medium Dense
31 to 50	Dense
Over 50	Very Dense

GEOLOGIC SECTION A - A'

CAMP LEJEUNE LANDFILL SITE "G" CAMP LEJEUNE, NORTH CAROLINA FIGURE II-2 SCALE: AS SHOWN 1054-92-003

 GEOLOGIC SECTION B - B'

CAMP LEJEUNE LANDFILL SITE "G" CAMP LEJEUNE, NORTH CAROLINA

[

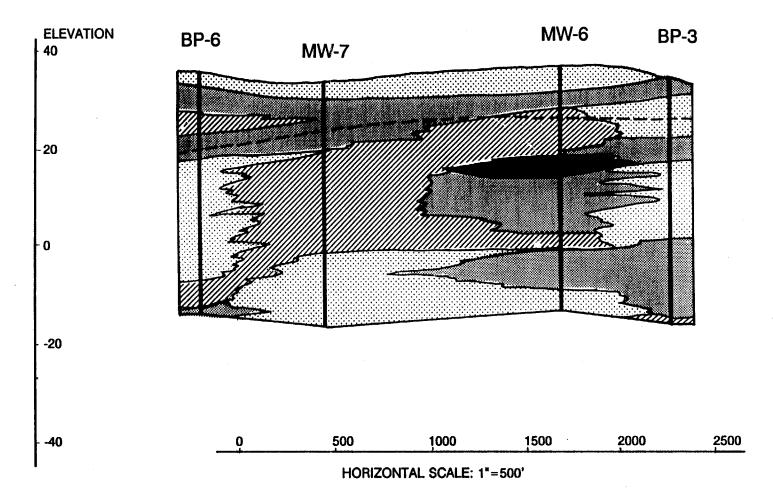

(

FIGURE II-3 SCALE: AS SHOWN 1054-92-003

Concession of the local division of the loca

1

GEOLOGIC SECTION C - C'

CAMP LEJEUNE LANDFILL SITE "G" CAMP LEJEUNE, NORTH CAROLINA

FIGURE II-4 SCALE: AS SHOWN 1054-92-003 TEST BORING RECORD

PTH T.)		ELE	EVATION (FT.)	(PEN: (BL	ows	/F	т.)	1	SIX	S PER IN.	
, L_	Loose Brown Slightly Silty Fine SAND	SP	29.0	1	0 2	20	40	60) 1	00	+	
	Loose brown Stightly Silty File SAND		25.0	•						2-2-3	- 0.5	
	Medium Dense Light Brown Slightly Silty Fine SAND	SP SM		L						5-7-7	- 0.5	:
	Loose to Very Loose Light Gray Silty Slightly Clayey Fine to Very Fine SAND with Clay Lenses	sc	24.0	ø						6-4-2	_ 0.4	(
	-									1-1-2	_ 0.0	
			19.0								• .	
										1-1-2	- 0.0	
			14.0									
										1-1-1	- 0.0	
			9.0									
	Very Loose Green-Tan Slightly Silty Fine SAND	SP SM								2-2-1	- 0.5	
	Medium Dense Gray Fine to Medium SAND	SP	4.0	L	h							
	with Trace of SILT									5-7-10	- 4.0	
,			-1.0									
	Medium Dense to Dense Gray Fine SAND	SP								6-6-6	0.0	
			-6.0		T							
										8-8-7	- 0.0	
<u> </u>		<u> </u>	<u> </u>					1.1.1		OVA	READ	N

REFER TO ATTACHED SHEET FOR EXPLANATIONS AND SYMBOLS

JOB NUMBER Boring Number Date	1054-92-003 MW-3 4-9-92	S&ME
PAGE 1 OF 2		

PTI T.		ELEVATION (FT.)	SIX IN.
, L	Dense to Very Dense Gray Very Fine SAND with some SILT	0 SP -14.0	
		-19.0	23-29-42 3.0
;			35-50/0.0 [,] _ 1.8
	Boring Terminated at 49.5' and Grouted upon completion. Water level from adjacent well (MW-4)	-24.0	
L	· · · · · · · · · · · · · · · · · · ·	<u> </u>	OVA READING

REFER TO ATTACHED SHEET FOR EXPLANATIONS AND SYMBOLS

JOB NUMBER	1054-92-003
BORING NUMBER	MW-4
DATE	4-16-92

5&ME	

8.0	Tan Fine SAND Clayey Fine SAND It Gray Brown and Red SAND	SP SC SC	0 35.3 30.3 25.3 20.3					00 2-2-2 3-2-2 3-3-3 4-4-7	- 0.0 - 0.2 - 0.4 - 0.8	6.8
 .5 Very Loose Brown Very Loose Light .6 Loose Light Brown .0 Medium Dense Ligh Silty Clayey Fine .0 Loose to Medium D Fine to Very Fine 	Tan Fine SAND Clayey Fine SAND It Gray Brown and Red SAND	sc	30.3 25.3					3-2-2 3-3-3	_ 0.2 _ 0.4	6.8
.6 Loose Light Brown .0 Medium Dense Ligh Silty Clayey Fine .0 Loose to Medium D Fine to Very Fine	e Clayey Fine SAND of Gray Brown and Red SAND Sense White Silty	sc	25.3					3-2-2 3-3-3	_ 0.2 _ 0.4	6.8
.0 Medium Dense Ligh Silty Clayey Fine .0 Loose to Medium D Fine to Very Fine	t Gray Brown and Red SAND SAND	sc	25.3	•				3-3-3	- 0.4	6.8
.0 Loose to Medium D Fine to Very Fine	ense White Silty		25.3	•						6.1
.0 Loose to Medium D Fine to Very Fine	ense White Silty			•						0.1
.0 Loose to Medium D Fine to Very Fine	ense White Silty							4-4-7	8.0	
Loose to Medium D Fine to Very Fine										
Loose to Medium D Fine to Very Fine			20.3					1		
Loose to Medium D Fine to Very Fine			20.3							13.:
Loose to Medium D Fine to Very Fine			60.0			_		4-4-5	- 0.8	
	SAND WITH									
		sc						6-5-4	_ 1.4	
			15.3	•						
					$ \rangle $					
								9-10-11	9.8	
			10.3							
					/					
							Щ	6-6-7	_ 1.0	
			5.3							
									. 0.8	
			0.3					4-4-4		
0 Very Loose Orange	Ciltu Eine Chun									
with Occasional S		SM						2-1-0	0.2	
5							Ш			_

REFER TO ATTACHED SHEET FOR EXPLANATIONS AND SYMBOLS

JOB NUMBER	1054-92-003
BORING NUMBER	MW-5
DATE	4-10-92

S&ME	

PAGE 1 OF 2

PTH DESCRIPTION T.)	ELEVATION (FT.) O	PENETRATION (BLOWS/FT.) 10 20 40 60	
Very Loose Dark Gray Silty SAND Loss of Drilling Fluid SM	-4.7		
Medium Dense to Very Dense Gray Slightly Silty Fine to Medium SAND	-9.7		8-10-17
5 Cemented SAND (from drilling)	-9.7		
5 Boring Terminated at 49.5' and Grouted upon completion. Water level	-14.7		^{30-50/5.5} " - 12.0
from adjacent well (MW-5).			
X · · · ·			

REFER TO ATTACHED SHEET FOR EXPLANATIONS AND SYMBOLS

JOB NUMBER	1054-92-003
BORING NUMBER	MW-5
DATE	4-10-92

S&ME	

SP SM SM CL	37.4						4-4-6 3-3-3		0.2 0.4
SM	32.4						3-3-3	-	
	52.4	ł					1.4		
			1				2-3-3	-	0.2
	27.4	•	<u> </u>				3-4-4	-	1.5
	27.3								
	22.4	(5-5-5		0.2
CL									
	17.4	•		$\left \right $			1-1-2	F	0.2
SP SM									0.2
	12.4						2-6-6	-	
							4-5-6		0.2
	7.4		-						
							4-3-3		0. 6
SC SM	2.4	Ţ							
							5-2-3		0.2
	SP SM SP CL CL	CL 17.4 SP SM 12.4 CL 7.4 SC	CL 17.4 SP SM 17.4 CL 17.4 CL 7.4 SC	CL 17.4 SP SM 17.4 CL 17.4 5C 7.4 5C	CL 17.4 SP SM 12.4 CL 7.4 SC	CL 17.4 SP SM 12.4 CL 7.4 SC	CL 17.4 SP SM 12.4 CL 7.4 SC	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

REFER TO ATTACHED SHEET FOR EXPLANATIONS AND SYMBOLS

JOB NUMBER	1054-92-003
BORING NUMBER	MW-6
DATE	4-14-92

		S&I	ME	
the start the start of the star	7			

PAGE 1 OF 2

		EVATION (FT.) O	TRAT WS/F 0 4(т.)	BLOWS PER SIX IN. 00
Loose Gray with Yellow Gray Silty Fine SAND	SM	-2.6			
Medium Dense Light Gray Calcareous SAND and Shell Debris	SM GM	-7.6			11-7-15 _ 0.
Very Dense Gray Fine SAND with some Very Fine Shell Fragments	SP				18-26-33 0
Boring Terminated at 50.0' and Grouted upon completion. Water level from adjacent well (MW-6)		-12.6			
					<i>,</i>

OVA READINGS PPM

REFER TO ATTACHED SHEET FOR EXPLANATIONS AND SYMBOLS

JOB NUMBER	1054-92-003
BORING NUMBER	MW-6
DATE	4-14-92

PAGE 2 OF 2

,

EPTH FT.)	DESCRIPTION	ELI	EVATIO (FT.) 0	PEN (BL 10	ows	5/1	FT	.)	I		BLOWS SIX	
1	edium Dense Light Gray and Yellow ray Slightly Silty Fine SAND	SP SP	-11.5								9-9-10	_ 2.2
			-16.5		T			-				
.0	oring Terminated at 50.0' and		-21.5		•		-+	+		-	7-9-12	_ 28
g	routed upon completion. Water level rom adjacent well (MW-8)		-21.3									
							_					
												EADINGS

REFER TO ATTACHED SHEET FOR EXPLANATIONS AND SYMBOLS

JOB NUMBER	1054-92-003
BORING NUMBER	MW-8
DATE	4-13-92

S&ME	

TH DESCRIPTION						BLOWS PER SIX IN.					
.)			(FT.) 0		(BL) 10 2			r.) 60		IN.	
Very Loose Dark Brow	n Fine SAND SP	SP	42.9	•			Ť	\prod	2-2-2	- 0.2	
Very Loose White Fir Loose Brown to Tan H]							3-2-2	- 0.0	
SAND			37.9						3-3-4	- 0.2	
Medium Dense Gray S Fine SAND	lightly Clayey	SP SC)				2-3-3	0.0	
			32.9								
Medium Dense to Dens Tan Slightly Silty I SAND		SM							9-9-12	0.6	12
			27.9								
									7-7-13	- 0.8	
			22.9			\mathbb{N}			15-17-1	- 0.8	
			17.9				┞┼		4		
Medium Dense White 1 SAND with Gray and (Laminations		SP CL							4-5-6	- 14	
			12.9		$\left \right\rangle$]		
									7-10-14	- 0.5	
Very Loose Light Gra	ay Clayey Silty	SC	7.9	Г				Π]		
Fine SAND with Occas Grains	sional Coarse	SM							5-3-1	- 0.8	
L				<u>т</u>		1.	I		OVA	READI	NG

REFER TO ATTACHED SHEET FOR EXPLANATIONS AND SYMBOLS

JOB NUMBER	1054-92-003
BORING NUMBER	MW-9
DATE	4-14-92

PAGE 1 OF 2

S&ME	
 · · · · · · · · · · · · · · · · · · ·	

DEPTH		ELI	EVATIO (FT.) O	PENE (BLC 10 2)WS	/F]	c.)		BLOWS SIX 00		
40.0	Very Loose Light Gray Clayey Silty Fine SAND with Occasional Coarse Grains SC/SM Medium Dense Light Gray and Yellow Gray Slightly Silty Fine SAND	SM	2.9						12-13-6	INSUFFICE - SAMPLE RECOVER	
50.0	Boring Terminated at 50.0' and grouted upon completion. Water level from adjacent well (MW-9)		-7.1	 					9-11-14	_ 42	
L		<u> </u>						11	OVA RI	EADINGS	

REFER TO ATTACHED SHEET FOR EXPLANATIONS AND SYMBOLS

 JOB NUMBER
 1054-92-003

 BORING NUMBER
 MW-9

 DATE
 4-14-92

S&ME

PTH T.)		ESCRIPTION ELEVATION (FT.)					1)) 1	BLOWS PER SIX IN.
$^{\circ}$	Loose Light Brown Fine SAND SP Loose Brown Silty Fine SAND with	\square	27.7	•				2-2-3 _ 0.2
•	Organic Matter SP/SM Medium Dense Light Gray Slightly							2-3-5 _ 0.8 4.0 5.0
	Clayey Fine to Very Fine SAND		22.7					4-6-8 — 3.5
• –	Medium Dense White to Light Yellow Very Fine SAND	SP						3-7-8 - 1.0
			17.7					
			12.7					7-6-8 — 1.2
								8-12-17 28
			7.7					
			2.7		•			11-13-17 2.8
								13-15-16 - 7.8
			-2.3		╇			
•	Medium Dense White Fine to Medium SAND with some Silt	SP SM						8-8-10 - C.S
•	Medium Dense Light Gray with Yellow Gray Slightly Silty Very Fine SAND	SP SM	-7.3					0.6
								5-4-7

PPM

REFER TO ATTACHED SHEET FOR EXPLANATIONS AND SYMBOLS

JOB NUMBER	1054-92-003							
BORING NUMBER	B-7 (MW-2)							
DATE	4-14-92							

S&ME	

PAGE 1 OF 2

DEPTH		ELEVATION (FT.) O	PENETRATION (BLOWS/FT.) 10 20 40 60	SIX IN.
	Medium Dense Light Gray with Yellow Gray Slightly Silty Very Fine SAND	SP SM -12.3		7-5-9 _ 1.8
		-17.3		9-12-14 - 2.5
	Boring Terminated at 50.0' and Grouted upon completion. Water level from adjacent well (MW-2).	-22.3		
				OVA READINGS PPM

REFER TO ATTACHED SHEET FOR EXPLANATIONS AND SYMBOLS

JOB NUMBER	1054-92-003							
BORING NUMBER	B-7 (MW-2)							
DATE	4-14-92							

SEME	

0.0 Loose Light Brown Fine SAND with some Roots SP 38.0 3-4-4 28.0 2.5 Loose Brown Silty Fine SAND SM SM 2-3-3 0.5 5.5 Loose Light Tap Slightly Silty Fine 33.0 33.0 33.0 33.0)EPTH FT.)		ELF	VATION	(ENE BLO	ws,	/FI	••)		SIX	S PER IN.	
Roots 3-4-4 28.0 Loose Brown Silty Fine SAND SM 2-3-3 0.5 Loose Light Tan Slightly Silty Fine SM 2-3-3 2.5 Loose Light Gray Silty Fine SAND SM 2-3-4 0.8 28.0 28.0 2-3-4 0.8 28.0 28.0 2-3-4 0.8 28.0 28.0 2-3-4 0.8 28.0 28.0 2-3-4 0.4 5.0 Very Loose Light Tan-Gray Silty Fine SM 23.0 2-3-4 0.4 2.0 Very Loose Light Tan-Gray Silty Fine SM 23.0 2-1-1 0.4 2.0 Very Loose to Loose Dark Gray Silty SM 2-1-1 0.4 2.0 Very Loose to Loose Dark Gray Silty SM 2-1-1 0.4 13.0 0 0 0 2-2-3 1.0 2.0 Medium Dense Light Gray Slightly SP SM 3.0 12-13-15 0.2	o.o	Lassa Light During Rive (DWD with	Ical	0		<u>v 2(</u>	<u> </u>	40	<u>60</u>		00	<u> </u>	
Loose Brown Silty Fine SAND SAND SP/SM Loose Light Gray Silty Fine SAND SAND SP/SM Loose Light Gray Silty Fine SAND 2-3-3 - 25 2-3-3 - 25 2-3-4 - 0.8 2-3-4 - 0.8 2-2-2 - 0.2 18.0			SP	38.0	•						3-4-4	- 28.0	
Loose Light Tan Slightly Silty Fine SAND SP/SM Loose Light Gray Silty Fine SAND Very Loose Light Tan-Gray Silty Fine SAND with thin Clayey Lenses Very Loose to Loose Dark Gray Silty Fine SAND with Occasional Clay Lenses 1"-4" thick Medium Dense Light Gray Slightly Silty Fine SAND SMD Medium Dense Light Gray Slightly Silty Fine SAND Medium Dense Light Gray Slightly Silty Fine SAND SMD SMD SMD SMD SMD SMD SMD S		Loose Brown Silty Fine SAND	SM				1				2-3-3	0.5	
.0 SAND SP/SM SM 2-3-3 2.3 Loose Light Gray Silty Fine SAND SM 28.0 2-3-4 0.8 .0 Very Loose Light Tan-Gray Silty Fine SAND with thin Clayey Lenses SM 23.0 4-4-3 0.4 .0 Very Loose to Loose Dark Gray Silty Fine SAND with Occasional Clay Lenses SM 3-2-2 0.2 .0 Very Loose to Loose Dark Gray Silty Fine SAND SM 2-1-1 0.4 .0 Very Loose to Loose Dark Gray Silty Fine SAND SM 2-1-1 0.4 .0 Medium Dense Light Gray Slightly Silty Fine SAND SM 2-2-3 1.0 .0 Medium Dense Light Gray Slightly Silty Fine SAND SM 2-2-3 1.0 .0 Medium Dense Light Gray Slightly Silty Fine SAND SM 2-2-3 1.0	.5 –	Loose Light Tan Slightly Silty Fine	+	33.0						╫		05	
.0 Very Loose Light Tan-Gray Silty Fine SAND with thin Clayey Lenses SM 23.0 4-4-3 0.4 .0 Very Loose Light Tan-Gray Silty Fine SAND with thin Clayey Lenses SM 3-2-2 0.2 .0 Very Loose to Loose Dark Gray Silty Fine SAND with Occasional Clay Lenses SM 2-1-1 0.4 .0 Very Loose to Loose Dark Gray Silty Fine SAND with Occasional Clay Lenses SM 2-1-1 0.4 .0 Medium Dense Light Gray Slightly Silty Fine SAND SP SM 2-2-3 1.0 .0 Medium Dense Light Gray Slightly Silty Fine SAND SP SM 2-1-1 0.4			SM		•						2-3-3	_ 2.9	6.5
.0 Very Loose Light Tan-Gray Silty Fine SAND with thin Clayey Lenses SM 23.0 4-4-3 0.4 .0 Very Loose Light Tan-Gray Silty Fine SAND with thin Clayey Lenses SM 3-2-2 0.2 .0 Very Loose to Loose Dark Gray Silty Fine SAND with Occasional Clay Lenses SM 2-1-1 0.4 .0 Very Loose to Loose Dark Gray Silty Fine SAND with Occasional Clay Lenses SM 2-1-1 0.4 .0 Medium Dense Light Gray Slightly Silty Fine SAND SM SM 2-2-3 1.0 .0 Medium Dense Light Gray Slightly Silty Fine SAND SM SM 2-2-3 1.0		Loose Light Gray Silty Fine SAND									2-3-4	8.0	
.0 Very Loose Light Tan-Gray Silty Fine SAND with thin Clayey Lenses SM 23.0 3-2-2 02 .0 Very Loose to Loose Dark Gray Silty Fine SAND with Occasional Clay Lenses SM CL 18.0 2-1-1 0.4 .0 Very Loose to Loose Dark Gray Silty Fine SAND with Occasional Clay Lenses SM CL 13.0 2-1-1 0.4 .0 Medium Dense Light Gray Slightly Silty Fine SAND SP SM 3.0 12-13-15 02				28.0									
.0 Very Loose Light Tan-Gray Silty Fine SAND with thin Clayey Lenses SM 23.0 3-2-2 02 .0 Very Loose to Loose Dark Gray Silty Fine SAND with Occasional Clay Lenses SM CL 18.0 2-1-1 0.4 .0 Very Loose to Loose Dark Gray Silty Fine SAND with Occasional Clay Lenses SM CL 13.0 2-1-1 0.4 .0 Medium Dense Light Gray Slightly Silty Fine SAND SP SM 3.0 12-13-15 02													
.0 Very Loose Light Tan-Gray Silty Fine SAND with thin Clayey Lenses SM 3-2-2 02 .0 Very Loose to Loose Dark Gray Silty Fine SAND with Occasional Clay Lenses 1"-4" thick SM CL 18.0 2-1-1 0.4 .0 Medium Dense Light Gray Slightly Silty Fine SAND SP SM SM 13.0 13.0 12-13-15 02				23.0	•		_			\parallel	4-4-3	- 0.4	
.0 Very Loose to Loose Dark Gray Silty Fine SAND with Occasional Clay Lenses 1"-4" thick .0 Medium Dense Light Gray Slightly Silty Fine SAND .0 Medium Dense Light Gray Slightly Silty Fine SAND .0 .0 .0 .0 .0 .0 .0 .0 .0 .0			SM	20.0									
.0 Very Loose to Loose Dark Gray Silty Fine SAND with Occasional Clay Lenses 1"-4" thick .0 Medium Dense Light Gray Slightly Silty Fine SAND .0 Medium Dense Light Gray Slightly Silty Fine SAND .0 Medium Dense Light Gray Slightly Silty Fine SAND		SAND WITH THIN CLAYEY LENSES									3-2-2	_ 0.2	
Very Loose to Loose Dark Gray Silty Fine SAND with Occasional Clay Lenses 1"-4" thick				18.0	-					╉			
Fine SAND with Occasional Clay Lenses 1"-4" thick .0 Medium Dense Light Gray Slightly Silty Fine SAND .0 Silt	.•	Very Loose to Loose Dark Gray Silty	SM		┍┤┊│								
.0 Medium Dense Light Gray Slightly Silty Fine SAND 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1		CL								2-1-1	_ 0.4	
.0 Medium Dense Light Gray Slightly Silty Fine SAND 0 3.0 3.0 3.0 2-2-3 12-13-15 0.2				13.0						T			
.0 Medium Dense Light Gray Slightly Silty Fine SAND 0 3.0 3.0 2-2-3 12-13-15- 02													
.0 Medium Dense Light Gray Slightly SP SM 12-13-15 - 0.2											2-2-3	- 1 .0	
Medium Dense Light Gray Slightly SP Silty Fine SAND SM 3.0 3.0				8.0									
3.0	1											0.2	·
				3.0			-	+	-	+	12-13-15		
	.•	Loose Gray Clayey SAND	sc		ſ								
											1-4-3	0.2	
	L	······		· 1						Ц		DEAD	INC

REFER TO ATTACHED SHEET FOR EXPLANATIONS AND SYMBOLS

JOB NUMBER	1054-92-003						
BORING NUMBER	в-8						
DATE	4-16-92						

 S&ME	
	J

PAGE 1 OF 2

(FT.)		ELI	EVATION (FT.) O	(BLC	ETRI DWS,	/F]	.)		BLOWS PER SIX IN. 00
40.0	Loose to Medium Dense Gray with Green Slightly Clayey Silty Fine SAND, with Occasional Coarse Grains and Shell Fragments	SM	-2.0							4-2-3 - 0.5
50.0			-7.0							9-10-7 - 1.5
50.0	Boring Terminated at 50.0' and Grouted upon completion. Water level from adjacent piezometer (B-8).		-12.0							
L		_1	<u>I</u> <u>I</u> .		<u></u>	<u></u>			<u>ل</u> لبل	OVA READINGS

REFER TO ATTACHED SHEET FOR EXPLANATIONS AND SYMBOLS

 JOB NUMBER
 1054-92-003

 BORING NUMBER
 B-8

 DATE
 4-16-92

S&MI	•	
Sam	2	

(FT.			· ·			RAI				S PER	
()		(FT.)		BLOV				SIX	IN.	
0.0		1	0	1	0 20	4	0 60		00	+	
	Loose White Fine SAND	SP	39.5						2-2-4	_ 1.8	
2.0				· · •							
	Loose Tan Fine SAND	SP									
									2-2-3	_ 0.4	
			24.5				╾┼╌╂╼	┼┼┼	4		5.
5.5	Very Loose Gray silty Fine SAND	SM	34.5	Г							
				. e					3-2-2	- 0.4	7.
									3-5-7	- 0.2	
			29.5		T			╏╏╏	4		
11.0	Loose to Medium Dense White to Yellow	SP	27.5								
	Very Fine SAND								1		
									7-6-5	- 24	
1			24.5		T				1		
										_ 1.2	
									5-5-5	- 12	
			19.5]		
				- 1							
				/							
									3-2-3	- 02	
				_ - ₽_	┨────┤			+++	-		
			14.5								
										_ 0.0	
				—					3-3-2		
			9.5					+++	1		
				1							
				1							
				1						_ 0.8	
				è					4-4-4		
			4.5					П]	1	
37.5	Very Loose White Silty Clayey Fine	C.W	ł								
	SAND								4-1-1	- 0.2	
L	עונהפ	JSC		•				Ш	4-1-1		
									OVA	READ	N۲

REFER TO ATTACHED SHEET FOR EXPLANATIONS AND SYMBOLS

JOB NUMBER	1054-92-003
BORING NUMBER	в-9
DATE	4-15-92

S&ME	
	<u> </u>

PAGE 1 OF 2

DEPTH (FT.)		ELI	EVATION (FT:) 0	PENE (BLC LO 2	ws,	/FT	.)	BLOWS SIX	
42.0	Very Loose White Silty Clayey Fine SAND SM/SC Very Loose White Very fine SAND with some SILT	SP	-0.5 -5.5					2-0-1	_ 0.2
	Medium Dense Dark Gray Fine to Medium SAND with trace of SILT	SP						5-6-10	- 0.8
	Boring Terminated at 50.0' and Grouted upon completion. Water level from adjacent piezometer (B-9).		-10.5						
								OVA F	EADINGS PPM

REFER TO ATTACHED SHEET FOR EXPLANATIONS AND SYMBOLS

JOB NUMBER	1054-92-003
BORING NUMBER	B-9
DATE	4-15-92

S&ME	
Same	

DEPT		ELI	EVATION (FT.) O	(BL(ETRI DWS, 20	/F]	•••)	SIX	S PER IN.	
0.0	Loose Light Gray Fine SAND SP Loose Brown Silty Fine SAND with	SM	35.9							2-2-8	- 0.4	
3.0	Organic Staining Loose Gray Slightly Clayey Silty Fine	SM SC								3-4-4	_ 1.4	3.5
	SAND with Occasional Clay Laminations		30.9							3-4-6	4.0	
			25.9	-						3-3-4	- 0.6	
11.0	Loose Gray Clayey Silty Fine SAND	SM SC	23.7	ſ								
14.5	Loose Light Gray Silty Fine SAND with layers of Soft Light Gray Sandy CLAY		20.9		!					3-2-4	_ 3.0	
										2-1-4	_ 0.2	
22.0			15.9							1		
22.0	Loose Light Gray Silty Slightly Clayey Fine SAND with Occasional Coarse Grains	SM)					1-4-5	_ 3.4	
26.0 -	Medium Dense Gray with Yellow Gray Fine Slightly Silty SAND with Occasional Coarse Grains	SP SM	10.9	-						9-6-8	- 12.0	
			5.9									
33.0	Very Loose Green-Gray Silty Slightly Clayey Fine SAND	SM	0.9		J					2-1-1	22	
										9-10-6	- 0.8	
L		1_1								OVA	READII PPM	VGS

REFER TO ATTACHED SHEET FOR EXPLANATIONS AND SYMBOLS

JOB NUMBER	1054-92-003
BORING NUMBER	B-10 (MW-1)
DATE	4-15-92

S&ME		
	•	

PAGE 1 OF 2

DEPTH (FT.) 40.0		ELI	EVATIC (FT.) C	1	PEN (BLC 10 2	OWS	/F.	r.])	BLOWS SIX	
40.0	Medium Dense Gray with Yellow Gray Fine Slightly Silty SAND with Occasional Coarse Grains	SP SM	-4.1							6-7-13	_ 0.6
			-9.1							8-12-11	_ 20
50.0	Boring Terminated at 50.0' and Grouted upon completion. Water level from adjacent well (MW-1)		-14.1								
											-
											-
											<u> </u>

REFER TO ATTACHED SHEET FOR EXPLANATIONS AND SYMBOLS

JOB NUMBER	1054-92-003
BORING NUMBER	B-10 (MW-1)
DATE	4-15-92

Table 1 Location of Monitor Wells and Piezometers⁽¹⁾ Camp Lejeune Landfill Site "G" Camp Lejeune, North Carolina

Well or Piezometer Number	North	East
MW-3	347849.73880	2504347.65360
MW-4	347924.90100	2505460.15520
MW-5	347274.26340	2506033.37480
MW-6	346260.73040	2505757.25740
MW-7	345187.58890	2504832.34280
MW-8	344849.10920	2503832.59490
MW-9	346831.71000	2503698.92790
B-8	345988.76160	2504913.91700
B-9	346651.40870	2505515.51850

(1) Locations are referenced to the North Carolina Plane System.

APPENDIX III GROUNDWATER INFORMATION and MONITOR WELL RECORDS

ABSTRACT

This appendix includes a summary of water table readings shown on Table III-1, that was obtained from the monitor wells and piezometers during the Site Characterization. These readings are compared to readings obtained in 1991. Figure III-1 shows the seasonal variation (hydrograph) for two wells located south of Jacksonville, N.C. The seasonal high water table occurs in January and August.

Monitor well construction data for each of the monitor wells, MW-3 through MW-9, and BP-6, are shown on the schematic drawings and Well Completion Records (Form GW-1). The Well Completion Records describe the installation in greater detail, and are a required submittal to NCDEHNR following construction of the well.

Table III-1Summary of Groundwater Elevation DataCamp Lejeune Landfill Site "G"Camp Lejeune, North Carolina

	Elevation of Groundwater at Well or Piezometer on Date Shown										
Well or Piezometer	Ground Surface Elevation	August 29 1991 ₀₀	September 9 1991 _m	April 22 1992	April 23 1992	April 24 1992	April 28 1992	May 5 1992			
MW-1	35.87	33.31	33.22				31.64	31.02			
MW-2	27.73	23.85	24.11			23.25	23.11	22.63			
MW-3	28.98						22.29	21.65			
MW-4	26.05			÷			16.39	16.24			
MW-5	35.29						22.18	21.87			
MW-6	37.36			28.60		28.53	27.55	27.10			
MW-7	34.22			24.68		24.85	24.75	24.25			
MW-8	28.55			22.02		22.01	21.97	21.79			
MW-9	42.94					30.13	30.01	29.83			
BP-1	35.7 ₍₂₎	34.38	33.5		32.37		32.05	31.47			
BP-2	38.5 ₍₂₎	30.78	30.39		29.06		29.06	28.65			
BP-3	34.8 ₍₂₎	28.06	27.86		25.84		25.84	26.26			
BP-4	36.8 ₍₂₎	26.31	26.36					24.91			
BP-6	36.4 ₍₂₎	26.21	25.92		22.38		20.72 ₍₃₎	20.48 ₍₃₎			
B-8	38.04				31.55		31.51	31.31			
B-9	39.55				32.62		32.62	32.32			
82-MW-30	30.08			22.91	23.04		22.94	22.79			
6-GW-2	41.08			29.99	29.99		29.93	29.74			

(1) Groundwater levels measured in 1991 are 5.7 to 1.2 feet higher than recent May 1992 readings. Elevations shown are based on revised top of casing elevations determined by survey (Dewberry and Davis - April 1992).

(2) Elevation determined by measurement from top of well casing to ground surface.

(3) Groundwater elevation obtained from replacement well BP-6.

. . .

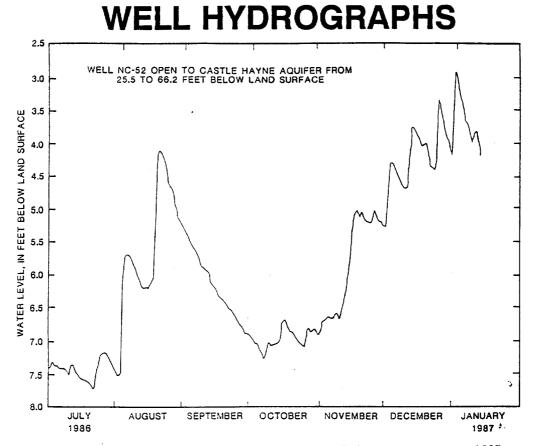
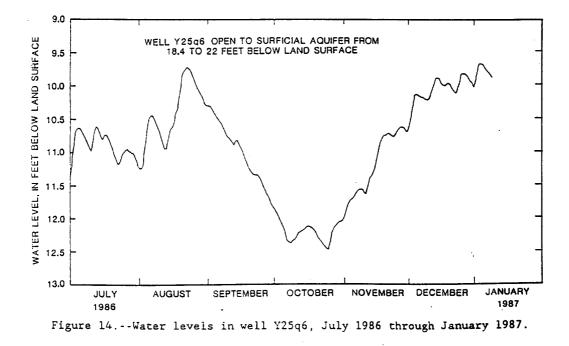



Figure 13.--Water levels in well NC-52, July 1986 through January 1987.

Well NC 52 is located approximately 0.5 mile east of Highway 17, 1 mile south of Highway 24 Well Y25q6 is located east of Highway 17, approximately 10 miles south of Highway 24

Source of Well Hydrographs: U.S. Geological Survey, Water Resources Investigation Report 89-4096; page 28, Figures 13 and 14

CAMP LEJEUNE LANDFILL SITE "G" CAMP LEJEUNE, NORTH CAROLINA

FIGURE III-1 NO SCALE 1054-92-003 NORTH CAROLINA DEPARTMENT OF NATURAL RESOURCES AND COMMUNITY DEVELOPMENT DIVISION OF ENVIRONMENTAL MANAGEMENT - GROUNDWATER SECTION

P.O. BOX 27687 - RALEIGH.N.C. 27611, PHONE (919) 733-5083

WELL CONSTRUCTION RECORD

MW-3

	FOR OFFICE USE ONLY	
Quad. No	Serial No.	
Lat	Long	_ Pc _
Minor Basin _		
	GW-1 (Ent

DRILLING CONTRACTOR S&ME Environmental

412 DRILLER REGISTRATION NUMBER

1.	WELL LOCATION	I: (Show sketc	h of the loca	tion below)		
Citable	Nearest Town: _	Camp Leje	une Landf	ill Site	G	
	east of Pi					Road

(Road,	Community,	or	Subdivision	and	Lot No.)	

United States Marine Corps 2. OWNER _

	ADDRESS Marine Corp	Base	
		(Street or Route No.	.)
, marine	Camp Lejeune	NC	28542
	City or Tow	n State	Zip Code
3.	DATE DRILLED 4-22-92	USE OF WELL	Monitoring
~ 4.	TOTAL DEPTH	CUTTINGS COLLECT	ED 🗌 Yes 🖾 No
	DOES WELL REPLACE EXIST		
6.	STATIC WATER LEVEL: 8.	3FT. □ above	TOP OF CASING.

TOP OF CASING IS _____ FT. ABOVE LAND SURFACE.

7. YIELD (gpm): ______ METHOD OF TEST _____ Pump WATER ZONES (denth)

8.	WATER	ZUNES	(depuil).	

To_

9. CHLORINATION:	Type <u>N/A</u>	Amo	ount _	N/A	
10. CASING:			Wall -	Thickness	
	Death	Diamotor			Matorial

		Depth	Diameter	or weight/rt.	Materia
Fre		_ To <u>15.0</u>	_Ft. <u>2</u>	<u>sch 40</u>	PVC
Fre	om	To	_Ft		
Fr	om mc	To	_Ft		

GROUT:				
		Depth	Material	Method
From	0.0	To_9.4	Ft. <u>Cement</u>	Tremie
			Postander	Pellets

Ft.

12	SCREEN:	

12. 301				
	Depth	Diamet	er Slot S	ize Material
	From <u>15.0</u> To <u>2</u>	25.0 Ft. 2	in. <u>•01(</u>) in
	From To	Ft	in	in
	From To	Ft	in	in
13. GR/	AVEL PACK:			
	Depth	S	ize	Material
	From <u>12.3</u> To	25.0 Ft. Fine	<u> </u>	Sand

County:Onslo)W
Depth	DRILLING LOG
From To	Formation Description
0.0 - 2.5	Brown slightly fine sand
	light brown slightly silty
	fine sand
4.0 - 23.0	Light gray silty slightly
	<u>clayey fine to very fine same same same same same same same sam</u>
	with clay lenses
23.0 - 25.0	Green tan slightly silty fir
	sand

If additional space is needed use back of form.

LOCATION SKETCH

(Show direction and distance from at least two State Roads, or other map reference points)

See Attached Site Map.

Well installed through hollow stem augers. Lithology from adjacent soil boring.

I DO HEREBY CERTIFY THAT THIS WELL WAS CONSTRUCTED IN ACCORDANCE WITH 15 NCAC 2C, WELL CONSTRUCTION STANDARDS, AND THAT A COPY OF THIS RECORD HAS BEEN PROVIDED TO THE WELL OWNER.

From_

14. REMARKS: _

	FOR OFFICE U		
Quad. No		Serial No.	
	Long.		
			nt

STATE WELL CONSTRUCTION PERMIT NUMBER: 66-0135-WM-0272

NORTH CAROLINA DEPARTMENT OF NATURAL RESOURCES AND COMMUNITY DEVELOPMENT
DIVISION OF ENVIRONMENTAL MANAGEMENT - GROUNDWATER SECTION
P.O. BOX 27687 - RALEIGH.N.C. 27611, PHONE (919) 733-5083

WELL CONSTRUCTION RECORD

MW-4

DRILLING	CONTRACTOR	S&ME	Environmental

- DRILLER REGISTRATION NUMBER _____

t. WELL LOCATION: (Show sketch of the location below)	
Nearest Town:Camp Lejeune Landfill Site G	County: <u>Onslow</u>
east of Piney Green Road and Old Bear Creek Ro	ad Depth DRILLING LOG
(Road, Community, or Subdivision and Lot No.)	From To Formation Description
2. OWNERUnited States Marine Corps	
ADDRESS Marine Corp Base (Street or Route No.)	0.0 - 1.5 Brown Silty Clayey Fine San
Camp Lejeune NC 28542	
City or Town State Zip Code	
3. DATE DRILLED 4-22-92 USE OF WELL Monitoring	with sandy clay and silt le
-4. TOTAL DEPTH CUTTINGS COLLECTED Yes X N	
5. DOES WELL REPLACE EXISTING WELL? 🗌 Yes 🖾 No	<u>16.0' - 25.0'</u> Orange and Gray silty fine
6. STATIC WATER LEVEL: <u>11.7</u> FT. □ above TOP OF CASING	
TOP OF CASING IS FT. ABOVE LAND SURFACE.	clay_lenses
7. YIELD (gpm): 0.5 METHOD OF TEST Pump	
8. WATER ZONES (depth):	
9. CHLORINATION: Type <u>N/A</u> Amount <u>N/A</u>	
10. CASING:	If additional space is needed use back of form.
Wall Thickness Depth Diameter or Weight/Ft. Materia	
From <u>+2.0</u> To <u>15.0</u> Ft. <u>2</u> sch <u>40</u> PVC	<u>LOCATION SKETCH</u> (Show direction and distance from at least two State Roads
From To Ft	or other map reference points)
From To Ft	
- 11. GROUT:	See Attached Site Map.
Depth Material Method	
From 0.0 To 10.8 Ft. Cement Tremie	
From 10.8 To 13.0 Ft. Bentonite Pellet	<u>s</u>
12. SCREEN:	
Depth Diameter Slot Size Materia	at
From <u>15.0</u> To <u>25.0</u> Ft. <u>2</u> in. <u>.010</u> in. <u>PVC</u>	
From To Ft in	
13. GRAVEL PACK:	
Depth Size Material	
From <u>13.0 To 25.0 Ft. Fine</u> <u>Sand</u>	
From To Ft Well installed through hollow stem au	gers. Lithology from adjacent soil boring.
14. HEMARKS.	
I DO HEREBY CERTIFY THAT THIS WELL WAS CONSTRUCT STANDARDS, AND THAT A COPY OF THIS RECORD HAS BEEN	ED IN ACCORDANCE WITH 15 NCAC 2C, WELL CONSTRUCTION
- Wa	

Submit original to Division of Environmental Management and copy to well owner.

DATE

	FOR OFFICE USE ONLY
Quad. No	Serial No
Lat	Long Pc
Minor Basin _	
Basin Code _	
	GW-1 Ent

NORTH CAROLINA DEPARTMENT OF NATURAL RESOURCES AND COMMUNITY DEVELOPMENT
DIVISION OF ENVIRONMENTAL MANAGEMENT - GROUNDWATER SECTION
P.O. BOX 27687 - RALEIGH.N.C. 27611, PHONE (919) 733-5083

DRILLING CONTRACTOR S&ME Environmental

DRILLER REGISTRATION NUMBER

WELL CONSTRUCTION RECORD

412

MW--5

STATE WELL CONSTRUCTION PERMIT NUMBER: 66-0135-WM-0272

1. WELL LOCATION: (Show sketch of	the location below)	2			
Nearest Town:Camp Lejeune			County:	Onslo	W
east of Piney Green Roa		Creek Road	De	pth	DRILLING LOG
(Road, Community, or Subdivision a			From	То	Formation Description
2. OWNER United States Man		······································	0.0 -	0.5	Very loose brown fine sand
ADDRESS <u>Marine Corp Base</u> (Str	eet or Route No.)		0.0 -	<u>U.</u>	very toose brown time sand
Camp Lejeune	<u>NC</u>	28542	0.5 -	3.6	Very loose light tan fine sa
City or Town 3. DATE DRILLED <u>4-22-92</u>	State Non Mon	2.0 0000	<u></u>	<u> </u>	Verjandobe infine can sime e.
3. DATE DRILLED			3.6 -	8.0	Loose light brown clavey fir
5. DOES WELL REPLACE EXISTING W					sand
6. STATIC WATER LEVEL: <u>15.0</u> TOP OF CASING IS <u>2.0</u>			8.0 -	16.0	Medium dense light grav brow
					and red silty clayey fine sa
7. YIELD (gpm): <u>4gpm</u> MET					
8. WATER ZONES (depth):		······································	16.0'	- 25.0'	Loose to medium dense white
	N / A	······································			silty fine to very fine sand
9. CHLORINATION: Type <u>N/A</u>	Amount <u>77</u>	<u> </u>			with occasional clay laminat
10. CASING:	Wall Thick	ness		f additiona	I space is needed use back of form.
	Diameter or Weight				LOCATION SKETCH
From <u>+2.0</u> To <u>15.0</u> F					nd distance from at least two State Roads, rence points)
From To			0. 01.0		
From To	=t			See At-	tached Site Map
-11. GROUT: Depth	Material	Method		Dee At	
From 0.0 To 10.6					
From <u>10.6</u> To <u>12.8</u>	Bentonite	Pellets			
12. SCREEN:					
	0.0	ize Material			
From 15.0 To 25.0					
From To I	1 () () () () () () () () () (in			
From To	Ft in	in			
13. GRAVEL PACK:					
Depth	Size	Material			
From <u>12.8</u> To <u>25.0</u>		Sand			
Well installe	Ft. <u>.</u> d through hollow	w stem auger	s. Li	thology	from adjacent soil boring.
14. REMARKS:					
DO HEREBY CERTIFY TH	AT THIS WELL WAS	CONSTRUCTED IN	N ACCOF		ITH 15 NCAC 2C, WELL CONSTRUCTION
		Watte	[] Bu	lint O	2/28/92
e	SI	GNATURE OF COM	TRACTO	R OR AGEN	T DATE

Submit original to Division of Environmental Management and copy to well owner.

P0. BOX 27687 - FALEBOACC 27811, PROME (918) 733-5083 Couch No	NORTH CAROLINA DEPARTMENT OF NATURAL RESOURCES AND COMMUNITY DEVELOPME	INT		FOR OFFICE USE ONLY
WELL CONSTRUCTION RECORD WELL CONSTRUCTION RECORD Massin Code DRILLING CONTRACTOR SAME Environmental STATE WELL CONSTRUCTION DRILLER REGISTRATION NUMBER 412 STATE WELL CONSTRUCTION DRILLER REGISTRATION NUMBER 412 STATE WELL CONSTRUCTION Nearest Town: Camp Lejeune Landfill Site G assis of Pincy Crean Read and Old Bear Creak Read County: Onslow Gaag Lejeune Sort Rouge NO.1 Orwen State Zo Corps . WARE United States Martine Corps O.0 - 4.5 Basin Corp Base O.0 - 4.5 Chy or town State Zo Corps . Total DEPTH _25.0 Currown State Zo Code S. DATE DRILED 4-17-92 USE OF WELL Monitoring S. DATE DRILED 4-17-92 USE OF WELL Monitoring S. DATE DRILED 4-17-92 USE OF WELL NO COT CASING. S. STATE WATER LEVEL: I.2 S. STATE WATER LEVEL: I.2 S. STATE WATER LEVEL: I.2 S. OCEN WELL State State ZONE Grown Z.5-12.0 TOP OF CASING IS 2.3 FT ABOVE LAND SUBFACE. T. WELD Gomin Too FT. Babow TOP OF CASING. State ZONES (Geom) Maternal Method From _10.0	DIVISION OF ENVIRONMENTAL MANAGEMENT - GROUNDWATER SECTION		Quad. No	Serial No
WELL CONSTRUCTION RECORD MW-6 Basin Code DRILLING CONTRACTOR SAME Environmental				
MW-6 Header Ent. GW-1 Ent. DRILLING CONTRACTOR SAME Environmental			Minor Ba	sin
ORILLING CONTRACTOR SAME Environmental	WELL CONSTRUCTION RECORD			
DRILLER REGISTRATION NUMBER 412 DRILLER REGISTRATION NUMBER 412 I WELL LOCATION: (Show sketch of the location below) Nearest Town: Camp Lejeune Landfill Site G east of Pincy Crean Road and Old Bear Creek Road Road. Community. of Subdivision and Lot No.) County: Onslow Deptime To Promator Description County: Onslow County: Onslow Deptime To Promator Description County: Onslow C	M	N-6	Header (Ent GW-1 Ent
DRILLER REGISTRATION NUMBER 412 DRILLER REGISTRATION NUMBER 412 I WELL LOCATION: (Show sketch of the location below) Nearest Town: Camp Lejeune Landfill Site G east of Pincy Crean Road and Old Bear Creek Road Road. Community. of Subdivision and Lot No.) County: Onslow Deptime To Promator Description County: Onslow County: Onslow Deptime To Promator Description County: Onslow C				
DRLLER REGISTRATION NUMBER 412 PERMIT NUMBER: 66-0135-WM-0272 1. WELL LOCATION: (Show sketch of the location below) Nearest Town: Camp Lejeune Landfill Site G County: Onslow 1. WELL COCATION: (Show sketch of the location below) Nearest Town: Camp Lejeune Landfill Site G County: Onslow 1. WELL COCATION: (Show sketch of the location below) Depth Dislumed Location below) Depth Dislumed Location below) 1. WELL COCATION: (Show sketch of the location below) County: Onslow Depth Dislumed Location below) 1. WELL COCATION: (Show sketch of the location below) County: Onslow Depth Dislumed Location below) 2. OWER United States Marine Corps County: One of the sand Docation below Docation below 3. OWER Marine Corp Base County: County: Dislumed Location below County: Dislumed Location below 3. DATE DRUED 4-17-92 USE OF WELL Monitoring file sand file sand file sand 4. Top CF CASING 18: 2.2.3 FT. Below TOP OF CASING. 7.5-17.0. Tan and orange silty file 3. OATE DRUED 4-17-92 USE OF WELL Mone Top Marenal Marence clay		STATE V	NELL C	ONSTRUCTION
. WELL LOCATION: (Show sketch of the location below) Nearest Towm: Camp Lejeune Landfill Site G east of Pinew Green Road and Old Baar Creek Road Doom (Road. Community, or Subdivision and Lot No.) Doom 2. OWNER United States Marine Corps ADGRESS Marine Corp Base Q.Q 4.5 Brown To Form To Camp Lejeune NC State Zip or Town State Site Site Or Well, Monitoring file sand TOAL DEPTH 25.0 CUITINGS COLLECTED [Yes X] No S. STATC WATER LEVEL, 11.2 FT. Dishow TOP OF CASING. S. STATC WATER LEVEL, 11.2 FT. Dishow TOP OF CASING. S. STATC WATER LEVEL, 11.2 FT. Dishow TOP OF CASING. S. STATC WATER LEVEL, 11.2 FT. Dishow TOP OF CASING. S. STATC WATER LEVEL, 11.2 FT. Dishow TOP OF CASING. TOP OF CASING IS 2.3 FT. ABOVE LAND SURFACE. 7. WIELD CORNIN Siggam METHOD OF TEST Pump ACORNIN IS 2.3 OCASING. Death Death Diameer of WeightPL. Material Method From	-DRILLER REGISTRATION NUMBER	PERMIT	NUMBE	R: <u>66-0135-WM-0272</u>
Nearest Town: Camp Lejeune Landfill Site G County: Onslow east of Piney Green Road and Old Bear Creek Road Depin DmitLing LOG (Road, Community of Subdivision and Lot No.) Depin DmitLing LOG 0.0WRE United States Marine Corps 0.0 - 4.5 Brown fine sand - Camp Lejeune NC 28542 4.5 - 7.5 Light gray slightly clayes - Camp Lejeune NC 28542 4.5 - 7.5 Light gray slightly clayes - Camp Lejeune NC 28542 4.5 - 7.5 Light gray slightly clayes - Camp Lejeune NC 28542 4.5 - 7.5 Light gray slightly clayes - Camp Lejeune NC 28542 4.5 - 7.5 Light gray slightly clayes - Camp Lejeune NC 28542 4.5 - 7.5 Light gray slightly clayes - Soloss well Replace Existing Well? Yes El No 7.5 - 17.0 Tan and orange silty fine - State Road Size F. Bobow Bolow 7.5 - 17.0 Dark gray slightly slity slity size - To CASING Is 2.3 - F. Above LAND SURFACE. - 17.0 - 21.0				
ast of Pincy Green Road and Old Bear Creek Road (Road Community, or Suddivision and Lot No.) Depth Depth DRILLING LOG 0.00000000000000000000000000000000000	1. WELL LOCATION: (Show sketch of the location below)			
east of Pincy Green Road and Old Bear Creek Road (Road, Community, or Subdivision and Loi No.) Depth DBHLING LOG 0. Owner	Camp Lejeune Landfill Site G	County:	Onslow	
International control of the second		Denth		DBILLING LOG
?. OWNER United States Marine Corps ADDRESS Marine Corp Base (Camp Lejeune NC 2. Date DRILLED (Street of Route No.) 2. DATE DRILLED 4-17-92 3. DATE DRILLED 4-17-92 4. TOTAL DEPTH 25.0 5. DOES WELL REPLACE EXISTING WELL? FT. © ablow 7. YIELD (gam): 52.3 7. YIELD (gam): 52.3 9. CHLORINATION: Type 10. CASING: Depth 10. CASING: Diameter of Weight/FL Material Method From To From 15.0 From 11.3 From 15.0 From 15.			То	
ADDRESS Marine Corp Base 0.0 - 4.5 Brown fine sand Camp Lejeune City or Town State Zip Code 4.5 - 7.5 Light gray slightly clayes J. DATE DRILLED 4-17-92 USE OF Well Monitoring fine sand fine sand J. DATE DRILLED 4-17-92 USE OF Well Monitoring fine sand fine sand J. TOTAL DEPTH 25.0 CUTTINGS COLLECTED Yes IX No 7.5- 17.0 Tan and orange silty fine sand S. DOES WELL REPLACE EXISTING WELL? II.2 FT. Diabove TOP OF CASING. very fine sand with some file TOP OF CASING IS 2.3 FT. ABOVE LAND SURFACE. clay lenses clay lenses 7. YIELD (spm): Spm METHOD OF TEST Pump 17.0 - 21.0 Dark gray slightly silty: 9. CHLORINATION: Type N/A Amount N/A mount N/A 9. CHLORINATION: Type N/A Amount N/A It additional space is needed use back of tom. 9. CHLORINATION: Type N/A Amount N/A It additional space is needed use back of tom. 10. CASING: Depth Diameter or weight/Ft. Materia	OWNER United States Marine Corps			
Camp Lejeune NC 28542 City or Town State Zip Code 3. DATE DRILLED 4-17-92 USE OF WELL Monitoring fine sand	Marine Corp Base	0.0 - 4	.5	Brown fine sand
City or Town State Zip Code 4.5 - 7.5 Light gray slightly clayes 3. DATE DRILLED 4-17-92 USE OF WELL Monitoring file sand 4. TOTAL DEPTH 25.0 CUTTINGS COLLECTED Yes X No 7.5 - 17.0 Tan and orange silty fine 5. DOES WELL REPLACE EXISTING WELL? If a blow TOP OF CASING, Yes X No 7.5 - 17.0 Tan and orange silty fine 6. STATIC WATER LEVEL: 11.2 FT. gabow TOP OF CASING, Yes X Date Yes X Date 7. YIELD (gom): 5gpm METHOD OF TEST Pump 17.0 - 21.0 Dark gray silty clay 9. CHLORINATION: Type N/A Amount N/A 21.0' - 25.0' Dark gray slightly silty: 9. CHLORINATION: Type N/A Amount N/A 21.0' - 25.0' Dark gray slightly silty: 9. CHLORINATION: Type N/A Amount N/A 21.0' - 25.0' Dark gray slightly silty: 9. CHLORINATION: Type N/A Amount N/A 21.0' - 25.0' Dark gray slightly silty: 9. CHLORINATION: Type N/A Amount N/A See Attached Site Map <	(Street of Houte No.)			
3. DATE DRILLED 6.17-92 USE OF WELL Monitoring fine sand 4. TOTAL DEPTH 25.0 CUITINGS COLLECTED Yes X No 7.5-17.0 5. DOES WELL REPLACE EXISTING WELL? Yes X No 7.5-17.0 Tan and orange silty fine 6. STATIC WATER LEVEL: 11.2 FT. above TOP OF CASING. very fine sand with some f 7. YIELD (gpm): 52pm METHOD OF TEST Pump 17.0 - 21.0 Dark gray silty clay 3. WATER ZONES (deeth):		4.5 - 7	• 5	Light gray slightly clayey
TOTAL DEPTH 25.0 CUTTINGS COLLECTED Yes X No S. DOES WELL REPLACE EXISTING WELL? Yes X No S. STATIC WATER LEVEL: 11.2 FT. D above TOP OF CASING. TOP OF CASING IS 2.3 FT. ABOVE LAND SURFACE. TOP OF CASING IS 2.3 FT. ABOVE LAND SURFACE. T. YIELD (gpm): Sgpm METHOD OF TEST Pump S. CHLORINATION: Type M/A Amount N/A O. CASING: Depth Diameter or Weight/FL. Material From 10.0 Ft. 2 Sch 40 PVC From 10.0 To 11.3 Ft. Cement Tremie From 11.3 To 12.5 Ft. Bentonite Pellets I.S. SCREEN: Depth Diameter Slot Size Material From 15.0 To 25.0 Ft. 2 in .010 in. PVC From 10.0 To 11.3 Ft. Cement In. ScreEN: Depth Diameter Slot Size Material From 15.0 To 25.0 Ft. 2 in .010 in. PVC From 12.5 To 25.0 Ft. Fine Sand	•			
5. DOES WELL REPLACE EXISTING WELL? Yes X No 7.5-17.0 Tan and orange silty fine 6. STATIC WATER LEVEL: 11.2 FT. Bolow COP OF CASING, very fine sand with some f 7. YIELD (gom): Sgpm METHOD OF TEST Pump 17.0 - 21.0 Dark gray silty clay .a. WATER ZONES (depth):	3. DATE DHILLED $4-1772$ USE OF WELL MOMENTUM THE			
5. DOES WELL HEREACE EXAMINES WELL? FT. = Balowe TOP OF CASING,		7 5 17	0	Tan and orange silty fine to
6. STATIC WATER LEVEL: 11.2 FI. 2 below TOP OF CASNG. TOP OF CASING IS2.3 FT. ABOVE LAND SURFACE. 7. YIELD (gpm): <u>Sgpm</u> METHOD OF TEST _Pump			<u>• U</u>	
7. YIELD (gpm): <u>5gpm</u> METHOD OF TEST <u>Pump</u> 8. WATER ZONES (depth):	6. STATIC WATER LEVEL: <u>11.2</u> FT. Dabove TOP OF CASING,			
	TOP OF CASING IS FT. ABOVE LAND SURFACE.			<u>cray renses</u>
	7. YIELD (gpm): <u>5gpm</u> METHOD OF TEST <u>Pump</u>	17.0 -	21 0	Dark gray silty clay
9. CHLORINATION: Type N/A Amount N/A 10. CASING: Depth Diameter or Weight/Ft. Material Sand with some thin clay. 10. CASING: Depth Diameter or Weight/Ft. Material If additional space is needed use back of form. Prom +2.3 To 15.0 Ft. 2	8 WATER ZONES (depth):		21.0	baik gitty billoy billy
9. CHLORINATION: Type N/A Amount N/A sand with some thin clay Image: Solution of the soluticline of the solution of the solution of the solution o			<u> </u>	D. 1
Depth Diameter Wall Thickness If additional space is needed use back of form. From +2.3 To 15.0 Ft. 2 sch 40 PVC Shid Wall space is needed use back of form. From		21.0' -	25.0	
Depth Diameter Waight/Rs. Material From +2.3 To 15.0 Ft. 2 sch 40 PVC (Show direction and distance from at least two State Road or other map reference points) From To Ft.				
From ± 2.3 To ± 5.0 Ft. ± 2.5 Sch 40 PVC (Show direction and distance from at least two State Road or other map reference points) From To Ft. See Attached Site Map -11. GROUT: Depth Material Method From 0.0 To ± 1 See Attached Site Map See Attached Site Map See Attached Site Map See Attached Site Map 11. GROUT: Depth Material Method From 0.0 To ± 1 See Attached Site Map 12. SCREEN: Depth Diameter Slot Size Material From ± 5.0 To 25 Ft. ± 0.010 in. PVC From To ± 5 ± 0.010 in. PVC ± 0.010 ± 0.010 ± 0.010 ± 0.010 ± 0.010 13. GRAVEL PACK: Depth Size Material ± 5 ± 5 ± 5 ± 5 Depth Size Depth Size Depth Size Materi	10. CASING. Wall Thickness Depth Diameter of Weight/Et Material			
From To Ft. or other map reference points) From To Ft. See Attached Site Map -11. GROUT: Depth Material Method From 0.0 To 11.3 Ft. Cement Tremie From 11.3 To 12.5 Ft. Bentonite Pellets 12. SCREEN: Depth Diameter Slot Size Material From 15.0 To 25.0 Ft. 2 in. .010 in. PVC From To Ft. in. in. in. 13. GRAVEL PACK: Depth Size Material From 12.5 To 25.0 Ft.		(-)		
From 10 Ft. See Attached Site Map From To Ft. See Attached Site Map -11. GROUT: Depth Material Method From 0.0 To 11.3 Ft. Gement Tremie From 11.3 To 12.5 Ft. Bentonite Pellets 12. SCREEN: Depth Diameter Slot Size Material From 15.0 To 25.0 Ft. 2 in .010 in. PVC From To Ft. in in. in.				
Depth Material Method From 0.0 To 11.3 Ft. Cement Tremie From 11.3 To 12.5 Ft. Bentonite Pellets 12. SCREEN: Depth Diameter Slot Size Material From 15.0 To 25.0 Ft. 2 in .010 in PVC From To Ft. in				
I.1. GROUT: Depth Material Method From 0.0 To 11.3 Ft. <u>Cement</u> Tremie From 11.3 To 12.5 Ft. <u>Bentonite</u> Pellets 12. SCREEN: Depth Diameter Slot Size Material From 15.0 To 25.0 Ft. 2 in. 010 in. PVC From To Ft. in. in. in. in. in. From To Ft. in. in. in. in. in. I3. GRAVEL PACK: Depth Size Material From 12.5 To 25.0 Ft. Fine Sand	From To Ft	See Att	tached	Site Man
From 0.0 To 11.3 Ft. Gement Tremie From 11.3 To 12.5 Ft. Bentonite Pellets 12. SCREEN: Depth Diameter Slot Size Material From 15.0 To 25.0 Ft. 2 in 010 in. PVC From To 25.0 Ft. 2 in. 010 in. PVC From To Ft. 10.010 in. PVC $13.$ GRAVEL PACK: Depth Size Material From 12.5 To 25.0 Ft. Fine Sand	-11. GROUT:	000 46	Lacited	bite map
From 11.3 To 12.5 Ft. Bentonite Pellets 12. SCREEN: Depth Diameter Slot Size Material From 15.0 To 25.0 Ft. 2 in. .010 in. PVC From To To Ft. 2 in. .010 in. PVC From To Ft. in. in.				
12. SCREEN: Depth Diameter Slot Size Material From 15.0 To 25.0 Ft. 2 in. .010 in. PVC From To Ft. 2 in. .010 in. PVC From To Ft. in. in. I3. GRAVEL PACK: Depth Size Material From 12.5 To 25.0 Ft. Fine Sand	From U.U. To 11.5 Ft. Cement Iremie Pellets			
Depth Diameter Slot Size Material From 15.0 To 25.0 Ft. 2 in. .010 in. PVC From To Ft. in. .010 in. PVC From To Ft. in.	From <u>11.3</u> To <u>12.5</u> Ft. <u>Soliton120</u> <u>1011003</u>			
From 15.0 To 25.0 Ft. 2 in. PVC From	12. SCREEN:			
From To Ft in From To Ft in 13. GRAVEL PACK: Depth Size Material From 12.5 To 25.0 Ft Fine	Depth Diameter Slot Size Material			
From To Ft in From To Ft in 13. GRAVEL PACK: Depth Size Material From 12.5 To 25.0 Ft Fine	From 15.0 To 25.0 Ft. 2 in010 in. PVC			
From To Ft. in. in. 13. GRAVEL PACK: Depth Size Material From12.5 To25.0 Ft				
13. GRAVEL PACK: Depth Size Material From <u>12.5 To 25.0 Ft. Fine Sand</u>				
Depth Size Material From <u>12.5 To 25.0 Ft. Fine Sand</u>				
From <u>12.5</u> To <u>25.0 Ft.</u> Fine <u>Sand</u>	- · · · · · · · · · · · · · · · · · · ·			
FromToFt Well installed through hollow stem augers. Lithology from adjacent soil boring.	FromToFt	re Iitha		rom adjacent soil horing
- 14. REMARKS: HISCAILED CHIOUGH HOLLOW SCEM AUGELS. LICHOLOGY From adjacent soll boring.	- 14. REMARKS: AUT INSCALLED CHIOUGH HOLLOW SLEM AUGE	LO. LILIO	TORA I	tom aujacent sorr burnig.

I DO HEREBY CERTIFY THAT THIS WELL WAS CONSTRUCTED IN ACCORDANCE WITH 15 N STANDARDS, AND THAT A COPY OF THIS RECORD HAS BEEN PROVIDED TO THE WELL OWNER.

	Wa	Ha (But	ith
SIGNATU	RE OF	CONTRA	CTOR	OR AGENT

DATE

Submit original to Division of Environmental Management and copy to well owner.

NORTH CAROLINA DEPARTMENT OF NATURAL RESOURCES AND COMMUNITY DEVELOPMENT DIVISION OF ENVIRONMENTAL MANAGEMENT - GROUNDWATER SECTION P.O. BOX 27687 - RALEIGHLN.C. 27611, PHONE (919) 733-5083

WELL CONSTRUCTION RECORD

412

DRILLING CONTRACTOR S&ME Environmental

-DRILLER REGISTRATION NUMBER -

	FOR OFFICE USE ONLY
Quad. No.	Serial No
Lat	Long Pc
Minor Basin _	
Basin Code _	
	GW-1 Ent

MW--7

STATE WELL CONSTRUCTION PERMIT NUMBER: 66-0135-WM-0272

1. WELL LOCATION: (Show sketch of the location below) Nearest Town: Camp Lejeune Landfill Site G east of Piney Green Road and Old Bear Creek Road (Road, Community, or Subdivision and Lot No.) 2. OWNER United States Marine Corps ADDRESS Marine Corp Base (Street or Route No.) Camp Lejeune NC	County: <u>Onsic</u> Depth From To	DRILLING LOG
<u>east of Piney Green Road and Old Bear Creek Road</u> (Road. Community, or Subdivision and Lot No.) 2. OWNER United States Marine Corps ADDRESS Marine Corp Base (Street or Route No.)	Depth From To	DRILLING LOG
(Road. Community, or Subdivision and Lot No.) 2. OWNER United States Marine Corps ADDRESS Marine Corp Base (Street or Route No.)	From To	
2. OWNER United States Marine Corps ADDRESS Marine Corp Base (Street or Route No.)		Formation Description
ADDRESS Marine Corp Base (Street or Route No.)		
	0.0 - 2.0	White fine sand
Camp Lejeune NC 28542		Mille line band
	2.0 - 5.0	Brown silty fine sand
City or Town State Zip Code		DIOWN DITEY TIME Dana
3. DATE DRILLED <u>4-21-92</u> USE OF WELL <u>Monitoring</u>	5.0 - 7.5	Light brown slightly clayey
TOTAL DEPTH CUTTINGS COLLECTED Yes X No		silty fine sand
5. DOES WELL REPLACE EXISTING WELL? 🗌 Yes 🖾 No		Silly line sand
6. STATIC WATER LEVEL: <u>11.5</u> FT. D above TOP OF CASING,	7.5 - 12.0	Light gray with orange slight
TOP OF CASING ISFT. ABOVE LAND SURFACE.	<u></u>	
7. YIELD (gpm): <u>5gpm</u> METHOD OF TEST <u>Pump</u>		clayey silty fine sand
8. WATER ZONES (depth):	12.0 - 21.0	Light gray to tan silty very
·		fine sand with clay lenses
9. CHLORINATION: Type <u>N/A</u> Amount <u>N/A</u>	21.0 - 25.0	* Gray fine to medium silty sa
10. CASING:		I space is needed use back of form.
Depth Diameter or Weight/Ft. Material		LOCATION SKETCH
From <u>+2.2</u> To <u>15.0</u> Ft. <u>2</u> sch <u>40</u> <u>PVC</u>	(Show direction a	nd distance from at least two State Roads.
From To Ft	or other map refe	rence points)
From To Ft		* with clay lenses
-11. GROUT:		
Depth Material Method	See Att	ached Site Map.
From 0.0 to 11.3 Ft. Cement Tremie		- -
From <u>11.3</u> To <u>12.8</u> Ft. Bentonite Pellets		
12. SCREEN:		
Depth Diameter Slot Size Material		
From <u>15.0</u> To <u>25.0</u> Ft. <u>2</u> in <u>.010</u> in. <u>PVC</u>		
From To Ft in in		
From To Ft in in		
13. GRAVEL PACK:		
Depth Size Material		
From <u>12.8</u> To <u>25.0</u> Ft. Fine <u>Sand</u>		
From To Ft		
Well installed through hollow stem auge	ers. Lithology	from adjacent soil boring.
- 14. REMARKS:	IN ACCORDANCE W	

DATE

Submit original to Division of Environmental Management and copy to well owner.

NORTH CAROLINA DEPARTMENT OF NATURAL RESOURCES AND COMMUNITY DEVELOF DIVISION OF ENVIRONMENTAL MANAGEMENT - GROUNDWATER SECTION	PMENT		FOR OFFICE USE ONLY
P.O. BOX 27687 - RALEIGH.N.C. 27611, PHONE (919) 733-5083	•	Quad. N	No Serial No
		Lat	Long Pc
			asin
WELL CONSTRUCTION RECORD		Basin C	Code GW-1 Ent
M	W-8	neauer	Ent Gw-1 Citt
DRILLING CONTRACTOR Same Environmental			
	STATE	WELL C	CONSTRUCTION
_DRILLER REGISTRATION NUMBER412	. PERMI		ER: 66-0135-WM-0272
1. WELL LOCATION: (Show sketch of the location below)			
Nearest Town: Camp Lejeune Landfill Site G	_ County: _	Onslo	W
east of Piney Green Road and Old Bear Creek Road (Road, Community, or Subdivision and Lot No.)	d Dept	in	DRILLING LOG
• • • •	From	То	Formation Description
2. OWNER <u>United States Marine Corps</u>	0.0 -	1.8	Very loose white fine sand
ADDRESS Marine Corp Base (Street or Route No.)	- 0.0 -	1.0	very roose white rine sand
Camp Lejeune NC 28542	- 10	7 0	Jesse light have fine cond
City or Town State Zip Code	1.8 -	/.0	Loose light brown fine sand
3. DATE DRILLED 4-21-92 USE OF WELL Monitoring		11 0	
TOTAL DEPTH CUTTINGS COLLECTED Yes X No	7.0 -	11.0	Medium dense light brown
5. DOES WELL REPLACE EXISTING WELL? 🗌 Yes 🖾 No			slightly silty fine sand
6. STATIC WATER LEVEL: 8.6 FT. Dabove TOP OF CASING,			
TOP OF CASING IS FT. ABOVE LAND SURFACE.	<u>11.0 -</u>	25.0	Medium dense white to yellow
7. YIELD (gpm): <u>5gpm</u> METHOD OF TEST Pump			very fine sand
8. WATER ZONES (depth):			
9. CHLORINATION: Type N/A Amount N/A			
TIO. CASING: Wall Thickness Depth Diameter or Weight/Ft. Material		additional	space is needed use back of form.
From ± 2.1 To ± 15.0 Ft. 2 sch 40 PVC			LOCATION SKETCH
			d distance from at least two State Roads, ence points)
From To Ft			
From To Ft	- c		shad Site Man
Lit. GROUT: Depth Material Method	·د	ee Alla	iched Site Map.
From 0.0 To 11.2 Ft. Cement Tremie			
From <u>11.2</u> To <u>13.0</u> Ft. <u>Bentonite</u> <u>Pellets</u>			
From <u>11.2</u> To <u>13.0</u> Ft	_		
12. SCREEN:			
Depth Diameter Slot Size Material			
From <u>15.0</u> To <u>25.0</u> Ft. <u>2</u> in. <u>.010</u> in. <u>PVC</u>	_		
From To Ft in in.	_		
From To Ft in in	_		
13. GRAVEL PACK:			
Depth Size Material			
From 13.0 To 25.0 Ft. Fine Sand			
	- '		
Well installed through hollow stem aug	ers. Lith	nology	from adjacent soil boring.
14. HEMARKS:	· · · · · · · · · · · · · · · · · · ·		
I DO HEREBY CERTIFY THAT THIS WELL WAS CONSTRUCTE STANDARDS, AND THAT A COPY OF THIS RECORD HAS BEEN P	UIN ACCORD	HE WELL	OWNER.
Wa	Itic B	hat	5/28/92

SIGNATURE OF CONFRACTOR OR AGENT	ł	DATE	
Submit original to Division of Environmental Management at	nd	copy to	we

ll owner. mit original to Division of Environmental Management and copy το 50

NORTH CAROLINA DEPARTMENT OF NATURAL RESOURCES AND COMMUNITY DEVELOPMENT DIVISION OF ENVIRONMENTAL MANAGEMENT - GROUNDWATER SECTION P.O. BOX 27687 - RALEIGH.N.C. 27611, PHONE (919) 733-5083

WELL CONSTRUCTION RECORD

412

DRILLING CONTRACTOR S&ME Environmental

DRILLER REGISTRATION NUMBER

	FOR OFFICE USE ONLY
Quad. No	Serial No
Lat	Long Pc
Minor Basin _	
	GW-1 Ent

MW-9

STATE WELL CONSTRUCTION PERMIT NUMBER: 66-0135-WM-0272

1. WELL LOCATION: (Show sketch of the location below)		
Nearest Town: <u>Camp Lejeune Landfill Site G</u> <u>east of Piney Green Road and Old Bear Creek Road</u> (Road. Community, or Subdivision and Lot No.) 2. OWNER <u>United States Marine Corps</u>	County: <u>Onslo</u> Depth From To	DRILLING LOG Formation Description
Marine Corp Baco	0.0 - 0.8	Dark brown fine sand
Camp LejeuneNC28542City or TownStateZip Code	0.8 - 1.5	White fine sand
3. DATE DRILLED <u>4-22-92</u> USE OF WELL <u>Monitoring</u> 4. TOTAL DEPTH <u>25.0</u> CUTTINGS COLLECTED Yes X No	1.5 - 8.0	Brown to tan fine to very fi
5. DOES WELL REPLACE EXISTING WELL? Yes X No		sand
6. STATIC WATER LEVEL: <u>14.9</u> FT. Dabove TOP OF CASING, TOP OF CASING IS <u>2.1</u> FT. ABOVE LAND SURFACE.	8.0 - 12.0	Gray slightly clayey fine sau
7. YIELD (gpm): <u>4gpm</u> METHOD OF TEST <u>Pump</u> 8. WATER ZONES (depth):	12.0 - 25.0	
		silty fine to very fine sand
9. CHLORINATION: Type N/A Amount N/A		
10. CASING: Wall Thickness	If additiona	I space is needed use back of form.
Depth Diameter or Weight/Ft. Material From To To To To To To To Ft To	(Show direction a or other map refe See Attached	•
DepthMaterialMethodFrom0.0To9.9Ft. CementTremieFrom9.9To11.9Ft.BentonitePellets		
12. SCREEN:		
Depth Diameter Slot Size Material		
From <u>15.0</u> To <u>25.0</u> Ft. <u>2</u> in. <u>.010</u> in. <u>PVC</u>		
From To Ft in in		
- From To Ft in in		
13. GRAVEL PACK:		
Depth Size Material		
From <u>11.9</u> To <u>25.0</u> Ft. Fine Sand		
From To Ft Well installed through hollow stem auge	rs. Lithology	from adjacent soil boring.
DO HEREBY CERTIFY THAT THIS WELL WAS CONSTRUCTED STANDARDS, AND THAT A COPY OF THIS RECORD HAS BEEN PR Walt	IN ACCORDANCE W OVIDED TO THE WELL	TH 15 NCAC 2C, WELL CONSTRUCTION OWNER. 5/18/92

SIGNATURE OF CONTRACTOR OR AGENT Submit original to Division of Environmental Management and copy to well owner.

DATE

North Caroli	na
Department of Natural Resources a	nd Community Development
Division of Environment	al Management
P.O. Box 27687 - Raleig	
Well Abandonment	Record
Contractor S&ME, Inc.	Reg. No. 412
1. Well Location: (Show a sketch of the loc	ation on back of form.)
Nearest Town: Camp Lejeune	
east of Piney Green Road and Shell Ro (Road, Community, Subdivision, Lo	ock Road Quadrangle No.: <u>Camp Lejeune</u>
2. Owner: United States Marine Corps	
3. Address:Marine Corp Base; Camp Lejeune,	Well Diagram: Draw a detailed sketch of
4. Topography: draw,slope,hilltop,valley, flat.	well showing total depth, screen depth an diameter remaining in well, gravel interv intervals of casing perforations, and
5. Use of Well: <u>piezometer</u> Date:	depths and types of fill materials used.
6. Total Depth: <u>25</u> Dia.: <u>1.25</u> "	-
7.Casing Removed:	
feet diameter	
161.25	
	1.25" PVC
	SCH. 40 Riser
8. Sealing Material:	Soil Backfill+
Neat Cement Sand Cement	
bags of cement <u>1.0</u> bags of cement	
gals. of water 5.5 yds. of sand gals. of water	
	Bentonite Seal $-11.0'\pm$ $-13.0'\pm$
Other Type Material:) 15.0'
Amount:	
9. Explain Method of emplacement of material	Slotted Screen
Pull casing and screen. Pump grout through	
tremie pipe set on bottom of remaining hole.	
	[1] [1] [1] [1] [1] [1] [1] [1] [1] [1]
	Fine Filter
	Sand
I do hereby certify that this well	
abandonment record is true and exact.	(1)_25.0
Walter Predito 5/28/92	
Signature of Contractor or Agent Date	
	I

Submit original to the Divesion of Environmental Management, one copy to the Driller, and one copy to the Owner.

	FOR OFFICE USE ONLY
Quad. No	Serial No
Lat	Long Pc
Minor Basin	
	GW-1 Ent

-	NORTH CAROLINA DEPARTMENT OF NATURAL RESOURCES AND COMMUNITY DEVELOPMENT
	DIVISION OF ENVIRONMENTAL MANAGEMENT - GROUNDWATER SECTION
	P.O. BOX 27687 - RALEIGH.N.C. 27611, PHONE (919) 733-5083

WELL CONSTRUCTION RECORD

BP-6

DRILLING CONTRACTO	S&ME	Environmental

412 DRILLER REGISTRATION NUMBER

1.	WELL LOCATION: (Show sketch of the location below Nearest Town:Camp Lejeune Landfill Sit) te G
(Constants)		
	east of Piney Green Road and Old Be	<u>ar Creek Road</u>
	(Road, Community, or Subdivision and Lot No.)	
	OWNER United States Marine Corps	
	ADDRESS Marine Corp Base (Street or Route No.)	
	Camp Lejeune NC	28542
1.000 (C	City or Town State	Zip Code
3.	DATE DRILLEDUSE OF WELL	Monitoring
	TOTAL DEPTH CUTTINGS COLLECTE	
	DOES WELL REPLACE EXISTING WELL?	
б. /	STATIC WATER LEVEL: <u>16.7</u> FT. D above TOP OF CASING IS <u>2.0</u> FT. ABOVE LAN	D SUBEACE
	-	
	YIELD (gpm): <u>N/A</u> METHOD OF TEST	Pump
.8	WATER ZONES (depth):	
	·	
9.	CHLORINATION: Type N/A Amount	N/A
10.	CASING:	
	Wall T Depth Diameter or We	hickness eight/Ft. Material
	From +2.0 To 15.0 Ft. 2 sc	h 40 PVC
to and the second	From To Ft	
	From To Ft	
	Prom 10P(P	
	GROUT: Depth Material	Method
	From 0.0	
	From 11.0 To 12.5 Ft. Bentonite	Pellets
/200910	From $11 \cdot V$ To $14 \cdot J$ FL	

		Depth		Diameter	Slot Size	e Material
	From <u>15.0</u>	To	<u>25.0</u> Ft		in. <u>.010</u>	in. <u>PVC</u>
	From	To	Ft	•	in	in
starring .	From	To	Ft.		in	_ in
	13. GRAVEL PACK:					
		Depth		Size		Material
	From 12	.5_To_	25.0 Ft	Fine		Sand

Ft.

To,

STATE	WELL CON	ISTRUCTION 66-0135-WM-0272
PERMIT	NUMBER:	<u>66-0135-WM-0272</u>

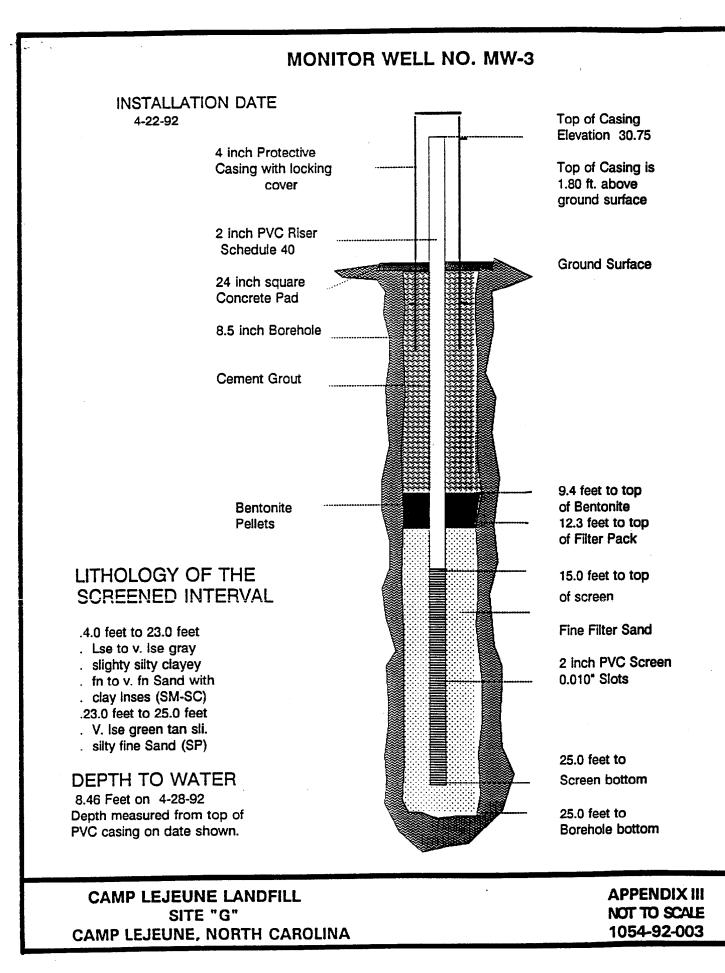
County: <u>Onslo</u>	DW.
Depth	DRILLING LOG
From To	Formation Description
0.0 - 1.0	Brown tan silty fine sand
1.0 - 3.0	White slightly silty fine sa
3.0 - 8.0	Dark brown slightly fine sam
8.0 - 12.5	Gray and tan slightly clayey
	fine
12.5 - 18.0	Gray and tan silty fine sand
18.0 - 25.0	Light gray slightly silty fi sand
If additiona	I space is needed use back of form.

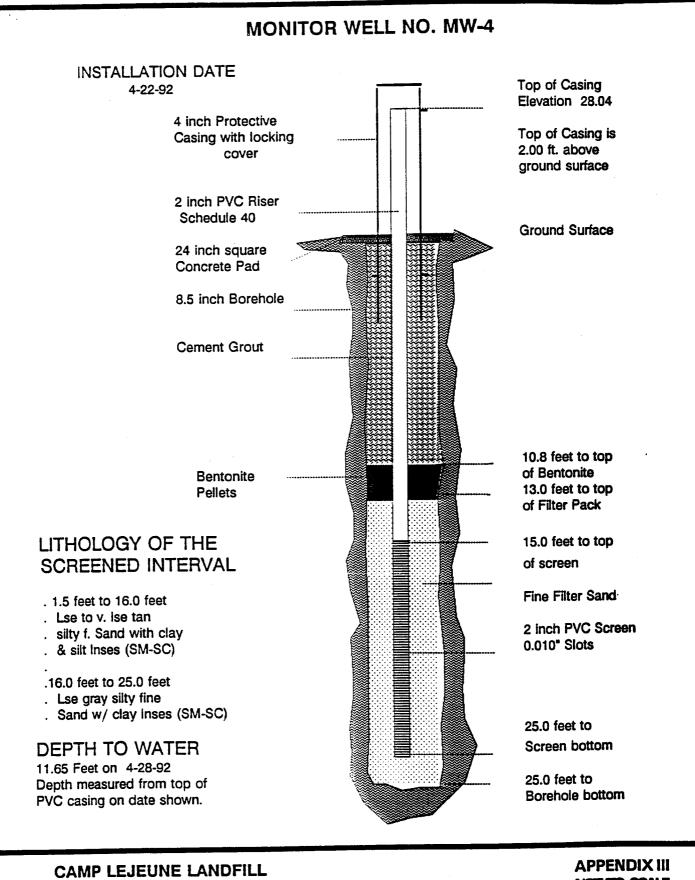
LOCATION SKETCH

(Show direction and distance from at least two State Roads, or other map reference points)

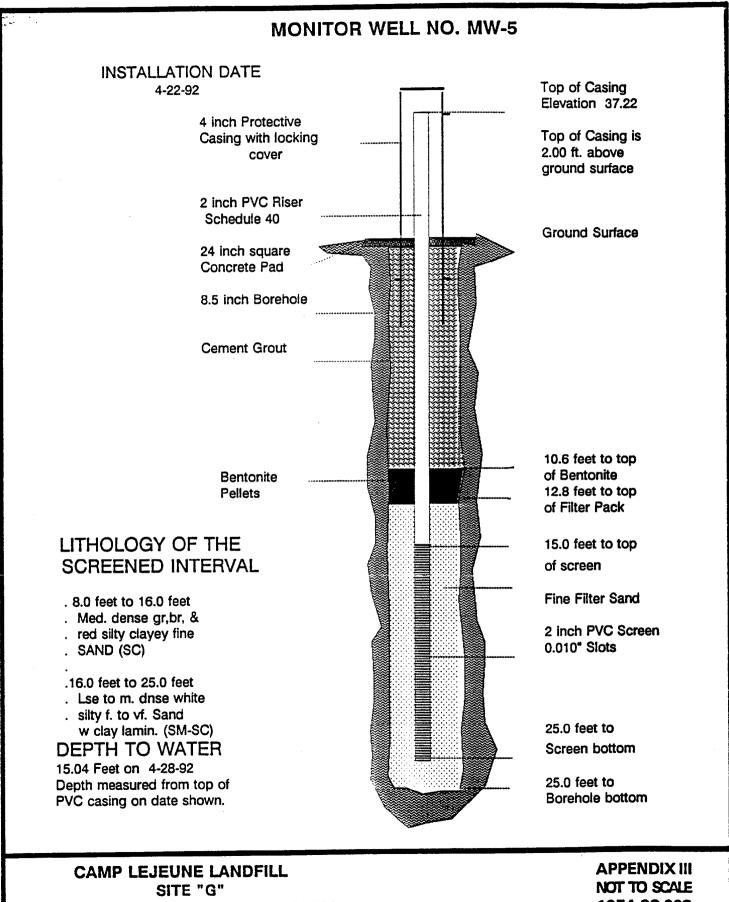
See Attached Site Map.

	14	REMARKS:	
_	1.44	LICHWAR CONTRACT	

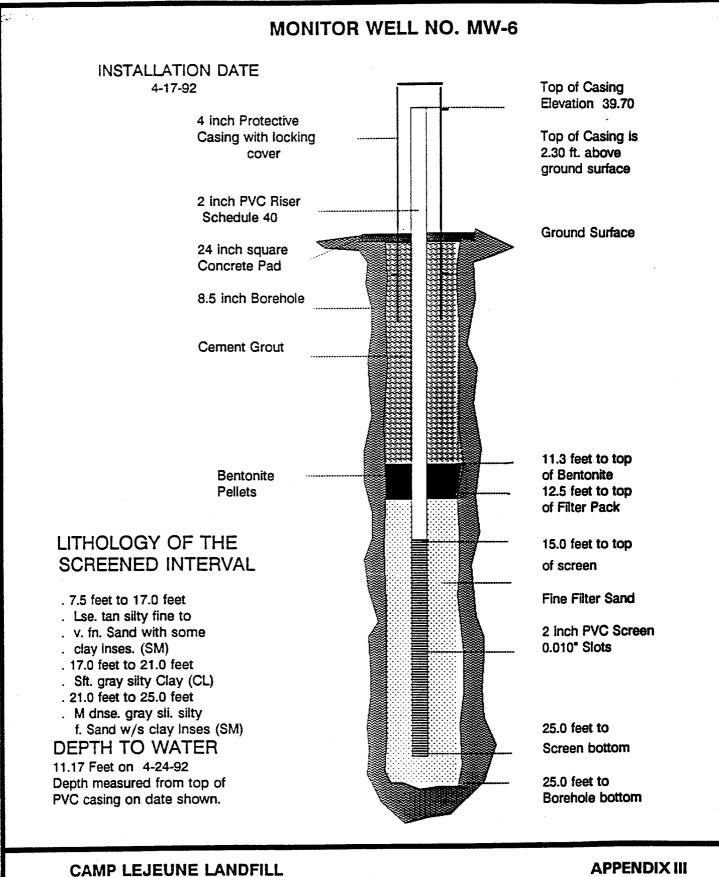

I DO HEREBY CERTIFY THAT THIS WELL WAS CONSTRUCTED IN ACCORDANCE WITH 15 NCAC 2C. WELL CONSTRUCTION STANDARDS. AND THAT A COPY OF THIS RECORD HAS BEEN PROVIDED TO THE WELL OWNER.


Well installed through hollow stem augers. Lithology from adjacent soil boring.

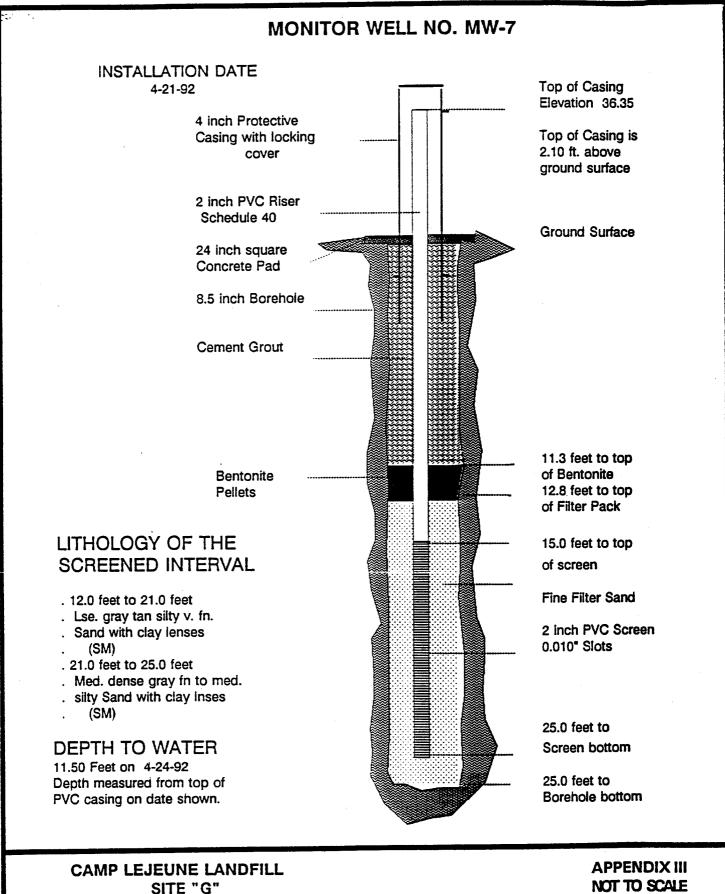
Buttert Walter (92 SIGNATURE OF CONTRACTOR OR AGENT DATĖ


From_

From

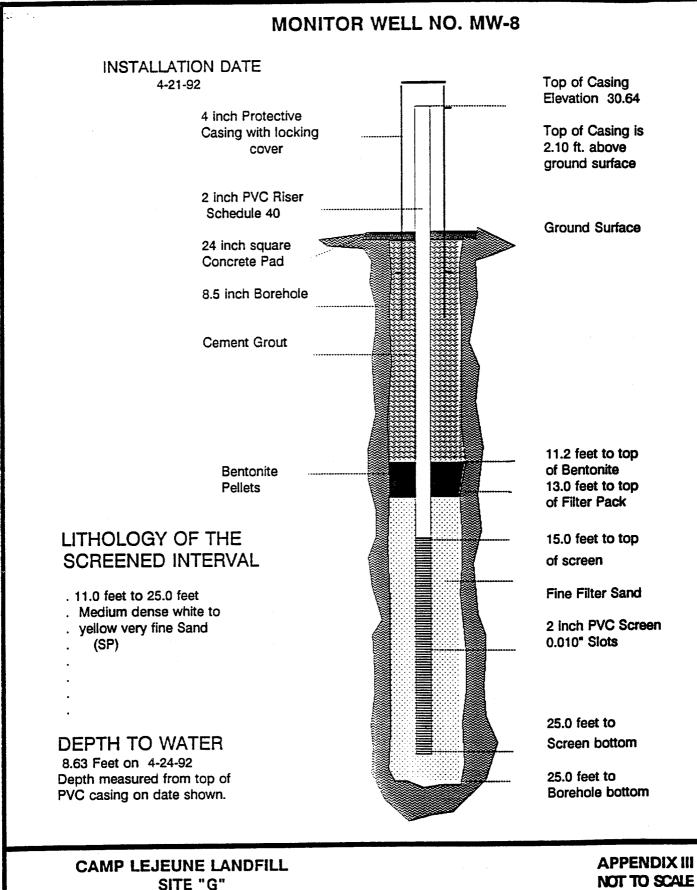


SITE "G" CAMP LEJEUNE, NORTH CAROLINA APPENDIX III NOT TO SCALE 1054-92-003

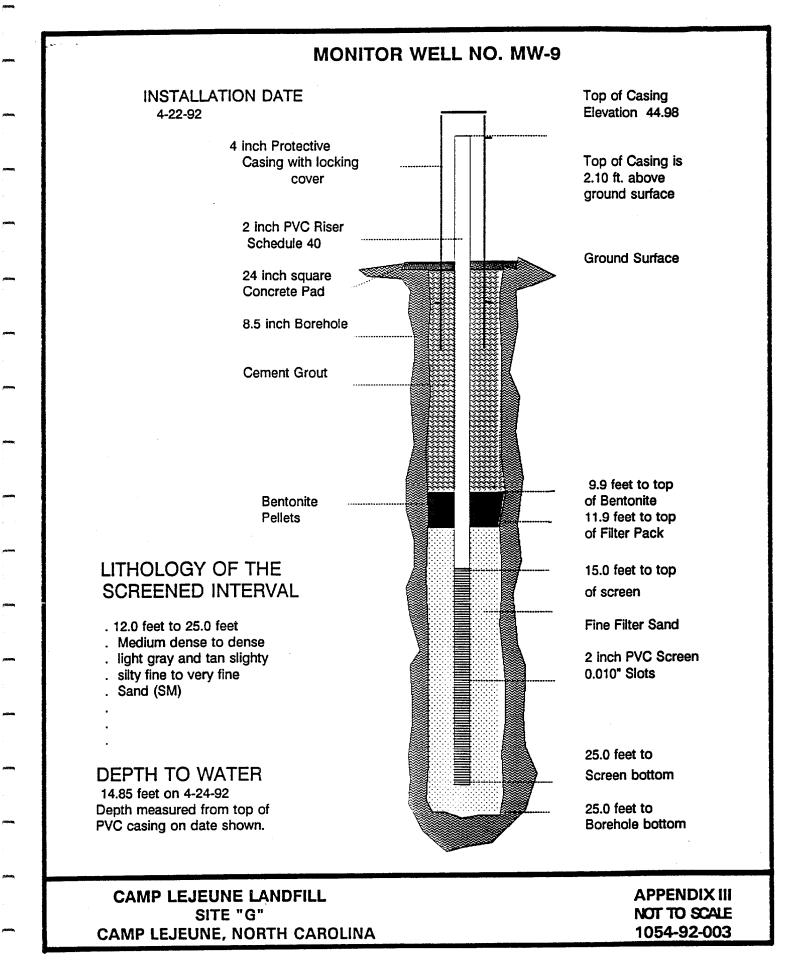


CAMP LEJEUNE, NORTH CAROLINA

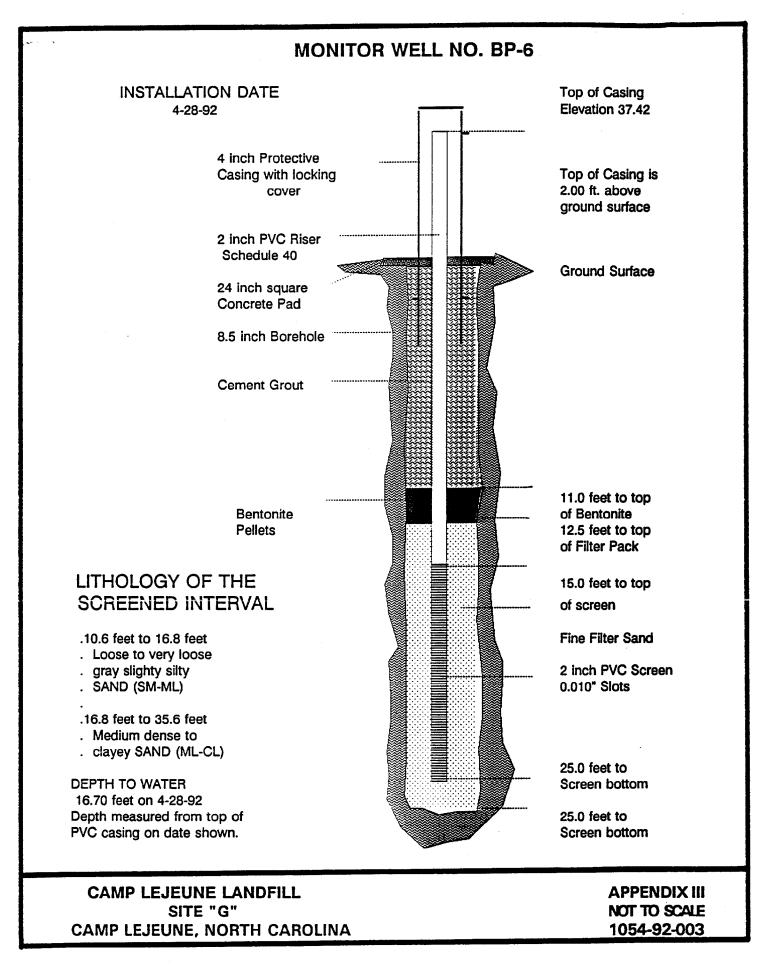
1054-92-003



SITE "G" CAMP LEJEUNE, NORTH CAROLINA APPENDIX III NOT TO SCALE 1054-92-003


CAMP LEJEUNE, NORTH CAROLINA

NOT TO SCALE 1054-92-003



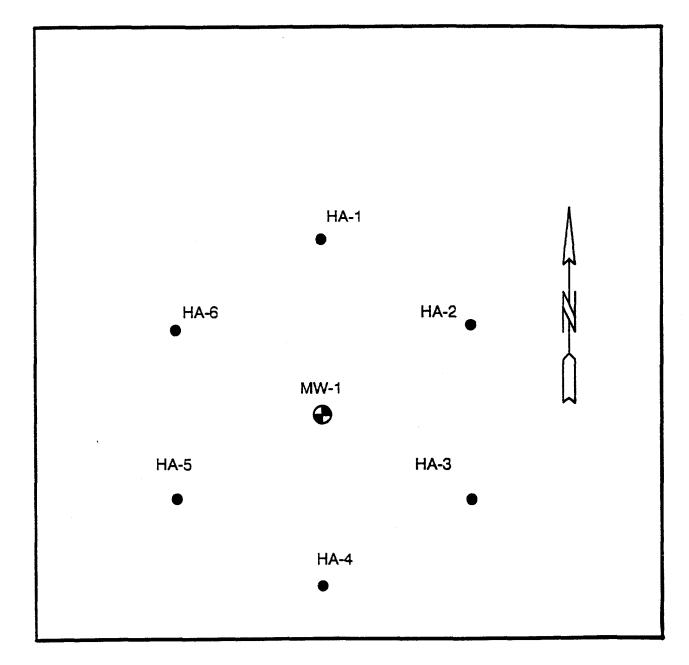
CAMP LEJEUNE, NORTH CAROLINA

NOT TO SCALE 1054-92-003

SCHEMATIC OF WELL CONSTRUCTION

APPENDIX IV

LABORATORY ANALYTICAL RESULTS (Soil Samples)


ABSTRACT

,

This appendix contains the laboratory analytical reports and Chain of Custody Report for the twelve soil samples obtained from the hand auger borings, HA-1 through HA-6, located, as shown on Figure IV-1, in the vicinity of monitor well MW-1. The samples were submitted for analysis of Pesticides and PCBs by SW-846 Method 8080.

Slight levels of pesticides were found in the groundwater sample obtained from well MW-1 during previous work at the site (Westinghouse 1991) prompted efforts to locate a source area adjacent to the well.

SOIL SAMPLE LOCATIONS (MW-1 Vicinity)

LEGEND

Hand Auger Boring Location

Monitor Well Location

CAMP LEJEUNE LANDFILL SITE "G" CAMP LEJEUNE, NORTH CAROLINA

•_____

FIGURE IV-1 SCALE: 1"=20' 1054-92-003

An Environmental Testing Company Post Office Box 12846 Research Triangle Park, NC 27709 Phone 919 • 677 • 0090 Fax 919 • 677 • 0427

May 1, 1992

Walt Beckwith SEME Raleigh 3109 Spring Forest Road Raleigh, NC 2550 27

 IEA Project No.:
 170072

 IEA Reference No.:
 W9204224

 Client Project I.D.:
 1054-92-003

Dear Mr. Beckwith,

Transmitted herewith are the results of analyses on 12 samples submitted to our laboratory.

The sample(s) were received chilled and intact.

Analyses were performed according to approved methodologies and meet the requirements of the IEA Quality Assurance Program. Please see the enclosed reports for your results and a copy of the Chain of Custody documentation.

Please do not hesitate to call your Client Account Representative should you have any questions regarding this report.

Very truly yours,

IEA, Inc.

usiah Finit Smith

Linda F. Mitchell

State Certification: Georgia - #816 New Jersey - #67719 California - #I-1002

Tennessee - #00296 Virginia - #00179 West Virginia - **#5**0 Alabama - **#40210** South Carolina - **#99021** North Carolina - **#37720 #84**

Monroe, Connecticut 203-261-4458 Sunrise, Florida 305-846-1730 Schaumburg, Illinois 708-705-0740 N. Billerica, Massacnusetts 617-272-5212 Whippany, New Jersey 201-428-8181 Essex Junction, Vermont 802-878-5138

. .

PESTICIDES / PCBs SW-846 METHOD 8080

IEA Sample Number:	170-072-1	Date Received:	Ø 4/ 16/92
Client Name:	S&ME Raleigh	Date Sampled:	Ø 4/ 15/92
Client Project ID:	1054-92-003	Date Extracted:	Ø 4/2Ø/9 2
Sample Identification:	HA-1 Ø.Ø'-Ø.5'	Date Analyzed:	04/25/92
Matrix:	Soil	Analysis By:	Willey
Moisture Correction Factor	: 1.1	Dilution Factor:	1.ø

		Quantitation	Results
		Limit	Concentration
Number	Compound	(ug/kg)	(ug/kg)
1	alpha-BHC	8.0	BQL
2	beta-BHC	8.0	BQL
3	delta-BHC	8.0	BQL
4	gamma-BHC (Lindane)	8.Ø	BQL
5	Heptachlor	8.Ø	BQL
6	Aldrin	8.Ø	BQL
7	Heptachlor epoxide	8.0	BQL
8	Endosulfan I	8.Ø	BQL
9	Dieldrin	16	BQL
10	4,4'DDE	16	BQL
11	Endrin	16	BQL
12	Endosulfan II	16	BQL
13	4,4'-DDD	16	BQL
14	Endosulfan sulfate	16	BQL
15	4,4'-DDT	16	BQL
16	Methoxychlor	80	BQL
17	Toxaphene	16Ø	BQL
18	Aroclor 1016	8Ø	BQL.
19	Aroclor 1221	80	BQL
2Ø	Aroclor 1232	8Ø	BQL
21	Aroclor 1242	80	BQL
22	Aroclor 1248	80	BQL
23	Aroclor 1254	16Ø	BQL
24	Aroclor 1260	160	BQL
25	Chlordane (technical)	80	BQL
26	Endrin aldehyde	16	BQL

Additional Compounds:

Endrin ketone

27

BQL

16

Comments: Sample specific quantitation limits may be calculated by multiplying the quantitation limit by the dilution factor. BQL = Below Quantitation Limit Adjust quantitation limit for % moisture.

PESTICIDES / PCBs SW-846 METHOD 8080

IEA Sample Number:	170-072-2	Date Received:	Ø 4/16/9 2
Client Name:	S&ME Raleigh	Date Sampled:	Ø 4/ 15/92
Client Project ID:	1054-92-003	Date Extracted:	Ø 4/2Ø/92
Sample Identification:	HA-1 2.5'-3.0'	Date Analyzed:	Ø 4/ 25/92
Matrix:	Soil	Analysis By:	Willey
Moisture Correction Factor	: 1.3	Dilution Factor:	1.0

		Quantitation	Results
		Limit	Concentration
Number	Compound	(ug/kg)	(ug/kg)
1	alpha-BHC	. 8.0	BQL
2	beta-BHC	8.0	BQL
3	delta-BHC	8.0	BQL
4	gamma-BHC (Lindane)	8.0	BQL
5	Heptachlor	8.0	BQL
6	Aldrin	8.0	B <u>Q</u> L
7	Heptachlor epoxide	8.0	BQL
8	Endosulfan I	8.0	BQL
9	Dieldrin	16	BQL
10	4,4'-DDE	16	BQL
11	Endrin	16	BQL
12	Endosulfan II	16	BQL
13	4,4'-DDD	16	BQL
14	Endosulfan sulfate	16	BQL
15	4,4'-DDT	16	BQL
16	Methoxychlor	80	BQL
17	Toxaphene	16Ø	BQL
18	Aroclor 1016	80	BQL
19	Aroclor 1221	80	BQL
20	Aroclor 1232	80	BQL
21	Aroclor 1242	80	BQL
22	Aroclor 1248	80	BQL
23	Aroclor 1254	169	BQL
24	Aroclor 1260	16Ø	BQL.
25	Chlordane (technical)	80	BQL
26	Endrin aldehyde	16	BQL

Additional Compounds:

Endrin ketone

27

16

BQL

Comments: Sample specific quantitation limits may be calculated by multiplying the quantitation limit by the dilution factor. BQL = Below Quantitation Limit Adjust quantitation limit for % moisture.

PESTICIDES / PCBs SW-846 METHOD 8080

	ture Correction Factor		Dilution Factor:	-
Matr		Soil	Analysis By:	Willey
Samp	le Identification:	HA-2 Ø.Ø'-Ø.5'	Date Analyzed:	Ø 4/ 25/92
Clie	nt Project ID:	1054-92-003		04/20/92
Clie	nt Name:	S&ME Raleigh	Date Sampled:	Ø 4/ 15/92
IEA	Sample Number:	170-072-3	Date Received:	Ø4/16/92

	Compound	Quantitation Limit (ug/kg)	Results Concentration (ug/kg)
Number	Compound	(29/29)	(49/29)
1	alpha-BHC	8.0	BQL
2	beta-BHC	8.0	BQL
3	delta-BHC	8.0	BQL
4	gamma-BHC (Lindane)	8.0	BQL
5	Heptachlor	8.0	BQL
6	Aldrin	8.0	BQL
7	Heptachlor epoxide	8.0	BQL
8	Endosulfan I	8.0	BQL
9	Dieldrin	16	BQL
10	4,4'-DDE	16	BQL
11	Endrin	16	BQL
12	Endosulfan II	16	BQL
13	4,4'-DDD	16	BQL
14	Endosulfan sulfate	16	BQL
15	4,4'-DDT	16	BQL
16	Methoxychlor	80	BQL
17	Toxaphene	16Ø	BQL
18	Aroclor 1016	8Ø	BQL
19	Aroclor 1221	8Ø	BQL
20	Aroclor 1232	80	BQL
21	Aroclor 1242	80	BQL
22	Aroclor 1248	80	BQL
23	Aroclor 1254	160	BQL
24	Aroclor 1260	16Ø	BQL
25	Chlordane (technical)	8Ø	BQL
26	Endrin aldehyde	16	BQL

Additional Compounds:

27 Endrin ketone

16

Comments: Sample specific quantitation limits may be calculated by multiplying the quantitation limit by the dilution factor. BQL = Below Quantitation Limit Adjust quantitation limit for % moisture.

FORM 8080 Rev. 101891

BQL

PESTICIDES / PCBs SW-846 METHOD 8080

IEA Sample Number:	170-072-4	Date Received:	Ø4/16/92
Client Name:	S&ME Raleigh	Date Sampled:	Ø4/15/92
Client Project ID:	1054-92-003	Date Extracted:	Ø 4/2Ø/9 2
Sample Identification:	HA-2 2.5'-3.Ø'	Date Analyzed:	Ø 4/ 26/92
Matrix:	Soil	Analysis By:	Willey
Moisture Correction Factor	: 1.2	Dilution Factor:	1.0

Number	Compound	Quantitation Limit (ug/kg)	Results Concentration (ug/kg)
1	alpha-BHC	8.0	BQL
2	beta-BHC	8.0	BQL
3	delta-BHC	8.0	BQL
4	gamma-BHC (Lindane)	8.0	BQL.
5	Heptachlor	8.0	BQL
6	Aldrin	8.0	BQL
7	Heptachlor epoxide	8.0	BQL
8	Endosulfan I	8.0	BQL
9	Dieldrin	16	BQL
10	4,4'-DDE	16	BQL
11	Endrin	16	BQL
12	Endosulfan II	16	BQL
13	4,4'-DDD	16	BQL
14	Endosulfan sulfate	16	BQL
15	4,4'-DDT	16	BQL
16	Methoxychlor	80	BQL
17	Toxaphene	16Ø	BQL
18	Aroclor 1016	80	BQL
19	Aroclor 1221	80	BQL
2Ø	Aroclor 1232	80	BQL
21	Aroclor 1242	80	BQL
22	Aroclor 1248	80	BQL
23	Arcclor 1254	160	BQL
24	Aroclor 1260	160	BQL.
25	Chlordane (technical)	8Ø	BQL
26	Endrin aldehyde	16	BQL

Additional Compounds:

27

Endrin ketone

16

BOL

يەت ،

Comments: Sample specific quantitation limits may be calculated by multiplying the quantitation limit by the dilution factor. BQL = Below Quantitation Limit Adjust quantitation limit for % moisture.

· · · ·

PESTICIDES / PCBs SW-846 METHOD 8080

IEA Sample Number:	170-072-5	Date Received:	Ø 4/ 16/92
Client Name:	S&ME Raleigh	Date Sampled:	Ø4/15/92
Client Project ID:	1054-92-003	Date Extracted:	Ø 4/2Ø/92
Sample Identification:	HA-3 0.0'-0.5'	Date Analyzed:	Ø4/26/92
Matrix:	Soil	Analysis By:	Willey
Moisture Correction Factor	: 1.1	Dilution Factor:	1.0

	-	Quantitation Limit (ug/kg)	Results Concentration
Number	Compound	(49/29)	(ug/kg)
1	alpha-BHC	8.0	BQL
2	beta-BHC	8.0	BQL
3	delta-BHC	8.0	BQL
4	gamma-BHC (Lindane)	8.0	BQL
5	Heptachlor	8.0	BQL
6	Aldrin	8.0	BQL
7	Heptachlor epoxide	8.0	BQL
8	Endosulfan I	8.0	BQL
9	Dieldrin	16	BQL
10	4,4'-DDE	· 16	BQL
11	Endrin	16	BQL
12	Endosulfan II	16	BQL
13	4,4'-DDD	16	BQL
14	Endosulfan sulfate	16	BQL
15	4,4'-DDT	16	BQL
16	Methoxychlor	80	BQL
17	Toxaphene	16Ø	BQL
18	Aroclor 1016	8Ø	BQL
19	Aroclor 1221	80	BQL
2Ø	Aroclor 1232.	8Ø	BQL
21	Aroclor 1242	8Ø	BQL
22	Aroclor 1248	80	BQL
23	Aroclor 1254	160	BQL
24	Aroclor 1260	16Ø	BQL
25	Chlordane (technical)	80	BQL
26	Endrin aldehyde	16	BQL

Additional Compounds:

27 Endrin ketone

16

BQL

•

Comments: Sample specific quantitation limits may be calculated by multiplying the quantitation limit by the dilution factor. BQL = Below Quantitation Limit Adjust quantitation limit for % moisture.

PESTICIDES / PCBs SW-846 METHOD 8080

IEA Sample Number:	170-072-6	Date Received:	Ø4/16/92
Client Name:	S&ME Raleigh	Date Sampled:	Ø4/15/92
Client Project ID:	1054-92-003	Date Extracted:	04/20/92
Sample Identification:	HA-3 2.5'-3.Ø'	Date Analyzed:	Ø4/26/92
Matrix:	Soil	Analysis By:	Willey
Moisture Correction Factor	or: 1.1	Dilution Factor:	1.0

Number	Compound	Quantitation Limit (ug/kg)	Results Concentration (ug/kg)
1	alpha-BHC	8.Ø	BQL
2	beta-BHC	8.0	BQL
3	delta-BHC	8.0	BQL
4	gamma-BHC (Lindane)	8.0	BQL
5	Heptachlor	8.0	BQL
6	Aldrin	8.0	BQL
7	Heptachlor epoxide	8.0	BQL
8	Endosulfan I	8.0	BQL
9	Dieldrin	16	BQL
10	4,4'-DDE	16	BQL
11	Endrin	16	BQL
12	Endosulfan II	16	BQL
13	4,4'-DDD	16	BQL
14	Endosulfan sulfate	16	BQL
15	4,4'-DDT	16	BQL
16	Methoxychlor	8Ø	BQL
17	Toxaphene	16Ø	BQL
18	Aroclor 1016	80	BQL
19	Aroclor 1221	80	BQL
2Ø	Aroclor 1232	80	BQL
21	Aroclor 1242	80	BQL
22	Aroclor 1248	8Ø	BQL
23	Aroclor 1254	16Ø	BQL
24	Aroclor 1260	160	BQL
25	Chlordane (technical)	8Ø	BQL
26	Endrin aldehyde	16	BQL

Additional Compounds:

27 Endrin ketone

BQL

76

16

Comments: Sample specific quantitation limits may be calculated by multiplying the quantitation limit by the dilution factor. BQL = Below Quantitation Limit Adjust quantitation limit for % moisture.

PESTICIDES / PCBs SW-846 METHOD 8080

IEA Sample Number:	170-072-7	Date Received:	Ø4/16/92
Client Name:	S&ME Raleigh	Date Sampled:	Ø4/15/92
Client Project ID:	1054-92-003	Date Extracted:	Ø4/2Ø/92
Sample Identification:	HA-4 Ø.Ø'-Ø.5'	Date Analyzed:	Ø4/26/92
Matrix:	Soil	Analysis By:	Willey
Moisture Correction Factor	: 1.1	Dilution Factor:	1.0

Number	Compound	Quantitation Limit (ug/kg)	Results Concentration (ug/kg)
1	alpha-BHC	8.0	BQL
2	beta-BHC	8.0	BQL
3	delta-BHC	8.0	BQL
4	gamma-BHC (Lindane)	8.0	BQL
5	Heptachlor	8.0	BQL
6	Aldrin	8.0	BQL
7	Heptachlor epoxide	8.0	BQL
8	Endosulfan I	8.0	BQL
9	Dieldrin	16	BQL
1Ø	4,4'-DDE	16	BQL
11	Endrin	16	BQL
12	Endosulfan II	16	BQL
13	4,4'-DDD	16	BQL.
14	Endosulfan sulfate	16	BQL
15	4,4'-DDT	16	BQL
16	Methoxychlor	8Ø	BQL
17	Toxaphene	16Ø	BQL
18	Aroclor 1016	80	BQL
19	Aroclor 1221	80	BQL
2Ø	Aroclor 1232	80	BQL
21	Aroclor 1242	80	BQL
22	Aroclor 1248	80	BQL
23	Arcelor 1254	16Ø	BQL
24	Aroclor 1260	16Ø	BQL
25	Chlordane (technical)	8Ø	BQL
26	Endrin aldehyde	16	BQL

Additional Compounds:

Endrin ketone

27

16

BQL

.

Comments: Sample specific quantitation limits may be calculated by multiplying the quantitation limit by the dilution factor. BQL = Below Quantitation Limit Adjust quantitation limit for % moisture.

PESTICIDES / PCBs SW-846 METHOD 8080

IEA Sample Number:	170-072-8	Date Received:	Ø 4/ 16/92
Client Name:	S&ME Raleigh	Date Sampled:	Ø 4/ 15/92
Client Project ID:	1054-92-003	Date Extracted:	Ø4/2Ø/92
Sample Identification:	HA-4 2.5'-3.0'	Date Analyzed:	Ø4/26/92
Matrix:	Soil	Analysis By:	Willey
Moisture Correction Factor	r: 1.2	Dilution Factor:	1.0

		Quantitation Limit	Results Concentration
Number	Compound	(ug/kg)	(ug/kg)
1	alpha-BHC	8.0	BQL
2	beta-BHC	8.0	BQL
3	delta-BHC	8.0	BQL
4	gamma-BHC (Lindane)	8.0	BQL
5	Heptachlor	8.Ø	BQL
6	Aldrin	8.0	BQL
7	Heptachlor epoxide	8.0	BQL
8	Endosulfan I	8.0	BQL
9	Dieldrin	16	BQL
10	4,4'-DDE	16	BQL
11	Endrin	16	BQL
12	Endosulfan II	16	BQL
13	4,4'-DDD	16	BQL
14	Endosulfan sulfate	16	BQL
15	4,4'-DDT	16	BQL
16	Methoxychlor	80	BQL
17	Toxaphene	160	BQL
18	Aroclor 1016	80	BQL
19	Aroclor 1221	80	BQL
2Ø	Aroclor 1232	8Ø	BQL
21	Aroclor 1242	8Ø	BQL
22	Aroclor 1248	80	BQL
23	Aroclor 1254	16Ø	BQL
24	Aroclor 1260	16Ø	BQL
25	Chlordane (technical)	80	BQL
26	Endrin aldehyde	16	BQL.

Additional Compounds:

- 27
- Endrin ketone . 16 BQL

Comments: Sample specific quantitation limits may be calculated by multiplying the quantitation limit by the dilution factor. BQL = Below Quantitation Limit Adjust quantitation limit for % moisture.

PESTICIDES / PCBs SW-846 METHOD 8080

IEA Sample Number:	170-072-9	Date Received:	Ø 4/ 16/92
Client Name:	S&ME Raleigh	Date Sampled:	Ø 4/ 15/92
Client Project ID:	1054-92-003	Date Extracted:	Ø4/2Ø/92
Sample Identification:	HA-5 0.0'-0.5'	Date Analyzed:	Ø4/26/92
Matrix:	Soil	Analysis By:	Willey
Moisture Correction Factor	: 1.3	Dilution Factor:	1.0

		Quantitation Limit	Results Concentration
Number	Compound	(ug/kg)	(ug/kg)
1	alpha-BHC	8.0	BQL
2	beta-BHC	8.Ø	BQL
3	delta-BHC	8.0	BQL
4	gamma-BHC (Lindane)	8.0	BQL
5	Heptachlor	8.0	BQL
6	Aldrin	8.Ø	BQL
7	Heptachlor epoxide	8.0	BQL
8	Endosulfan I	8.0	BQL
9	Dieldrin	16	BQL
10	4,4'-DDE	16	BQL
11	Endrin	16	BQL
12	Endosulfan II	16	BQL
13	4,4'-DDD	16	BQL
14	Endosulfan sulfate	16	BQL
15	4,4'-DDT	16	BQL
16	Methoxychlor	80	BQL
17	Toxaphene	16Ø	BQL
18	Aroclor 1016	80	BQL
19	Aroclor 1221	8Ø	BQL
2Ø	Aroclor 1232	8Ø	BQL
21	Aroclor 1242	80	BQL
22	Aroclor 1248	8Ø	BQL
23	Aroclor 1254	160	BQL
24	Aroclor 1260	16Ø	BQL
25	Chlordane (technical)	8Ø	BQL
26	Endrin aldehyde	16	BQL

Additional Compounds:

27 Endrin ketone

BQL

λ.

16

Comments: Sample specific quantitation limits may be calculated by multiplying the quantitation limit by the dilution factor. BQL = Below Quantitation Limit Adjust quantitation limit for % moisture.

PESTICIDES / PCBs SW-846 METHOD 8080

IEA Sample Number:	170-072-10	Date Received:	Ø4/16/92
Client Name:	S&ME Raleigh	Date Sampled:	Ø4/15/92
Client Project ID:	1054-92-003	Date Extracted:	Ø4/2Ø/92
Sample Identification:	HA-5 2.5'-3.0'	Date Analyzed:	Ø4/26/92
Matrix:	Soil	Analysis By:	Willey
Moisture Correction Factor:	1.2	Dilution Factor:	1.0

Number	Compound	Quantitation Limit (ug/kg)	Results Concentration (ug/kg)
		8.0	BQL
1 2	alpha-BHC beta-BHC	8.0	BQL
2 3	delta-BHC	8.0	BQL
		8.0	
4	gamma-BHC (Lindane)	8.Ø	BQL
5	Heptachlor		BQL
6	Aldrin	8.0	BQL
7	Heptachlor epoxide	8.0	BQL
8	Endosulfan I	8.0	BQL
9	Dieldrin	16	BQL
1Ø	4,4'-DDE	16	BQL
11	Endrin	16	BQL
12	Endosulfan II	16	BQL
13	4,4'-DDD	16	BQL
14	Endosulfan sulfate	16	· BQL
15	4,4'-DDT	16	BQL
16	Methoxychlor	80	BQL
17	Toxaphene	16Ø	BQL.
18	Aroclor 1016	8Ø	BQL
19	Aroclor 1221	80	BQL
2Ø	Aroclor 1232	8Ø	BQL
21	Aroclor 1242	80	BQL
22	Aroclor 1248	80	BQL
23	Aroclor 1254	16Ø	BQL
24	Aroclor 1260	16Ø	BQL
25	Chlordane (technical)	80	BQL .
26	Endrin aldehyde	16	BQL

Additional Compounds:

BQL

16

Comments: Sample specific quantitation limits may be calculated by multiplying the quantitation limit by the dilution factor. BQL = Below Quantitation Limit Adjust quantitation limit for % moisture.

.

`.

PESTICIDES / PCBs SW-846 METHOD 8080

IEA Sample Number:	170-072-11	Date Received:	Ø4/16/92
Client Name:	S&ME Raleigh	Date Sampled:	Ø4/15/92
Client Project ID:	1054-92-003	Date Extracted:	Ø4/2Ø/92
Sample Identification:	HA-6 0.0'-0.5'	Date Analyzed:	Ø4/26/92
Matrix:	Soil	Analysis By:	Willey
Moisture Correction Facto	r: 1.1	Dilution Factor:	1.0

		Quantitation Limit	Results Concentration
Number	Compound	(ug/kg)	(ug/kg)
1	alpha-BHC	8.0	BQL
2	beta-BHC	8.0	BQL
3	delta-BHC	8.0	BQL
4	gamma-BHC (Lindane)	8.0	BQL
5	Heptachlor	8.0	BQL
6	Aldrin	8.0	BQL
7	Heptachlor epoxide	8.0	BQL
. 8	Endosulfan I	8.0	BQL
9 .	Dieldrin	16	BQL
10	4,4'-DDE	16	BQL
11	Endrin	16	BQL
12	Endosulfan II	16	BQL
13	4,4'-DDD	16	BQL
14	Endosulfan sulfate	16	BQL
15	4,4'-DDT	16	BQL
16	Methoxychlor	8Ø	BQL
17	Toxaphene	160	BQL
18	Aroclor 1016	80	BQL
19	Aroclor 1221	80	BQL
20	Aroclor 1232	80	BQL
21	Aroclor 1242	80	BQL
22	Aroclor 1248	8Ø	BQL
23	Aroclor 1254	160	BOL
24	Aroclor 1260	160	BQL
25	Chlordane (technical)	80	BQL
26	Endrin aldehyde	16	BQL

Additional Compounds:

27 Endrin ketone

16

BOL

Comments: Sample specific quantitation limits may be calculated by multiplying the quantitation limit by the dilution factor. BQL = Below Quantitation Limit Adjust quantitation limit for % moisture.

PESTICIDES / PCBs SW-846 METHOD 8080

IEA Sample Number:	170-072-12	Date Received:	Ø 4/ 16/92
Client Name:	S&ME Raleigh	Date Sampled:	Ø 4/ 15/92
Client Project ID:	1054-92-003	Date Extracted:	Ø 4/2Ø/92
Sample Identification:	HA-6 2.5'-3.Ø'	Date Analyzed:	Ø4/26/92
Matrix:	Soil	Analysis By:	Willey
Moisture Correction Factor	: 1.3	Dilution Factor:	1.0

		Quantitation	Results
		Limit	Concentration
Number	Compound	(ug/kg)	(ug/kg)
1	alpha-BHC	8.0	BQL
2	beta-BHC	8.0	BQL
3	delta-BHC	8.0	BQL
4	gamma-BHC (Lindane)	8.0	BQL
5	Heptachlor	8.0	BQL
6	Aldrin	8.0	BQL
7	Heptachlor epoxide	8.0	BQL
8	Endosulfan I	8.0	BQL
9	Dieldrin	16	BQL
10	4,4'-DDE	16	BQL
11	Endrin	16	BQL
12	Endosulfan II	16	BQL
13	4,4'-DDD	16	BQL
14	Endosulfan sulfate	16	BQL
15	4,4'-DDT	16	BQL
16	Methoxychlor	80	BQL
17	Toxaphene	16Ø	BQL
18	Aroclor 1016	8Ø	BQL.
19	Aroclor 1221	80	BQL
20	Aroclor 1232	80	BQL
21	Aroclor 1242	8Ø	BQL
22	Aroclor 1248	8Ø	BQL
23	Aroclor 1254	160	BQL
24	Aroclor 1260	160	BQL
25	Chlordane (technical)	80	BQL
26	Endrin aldehyde	16	BQL

Additional Compounds:

27 Endrin ketone

BQL

16

Comments: Sample specific quantitation limits may be calculated by multiplying the quantitation limit by the dilution factor. BQL = Below Quantitation Limit Adjust quantitation limit for % moisture.

PESTICIDES / PCBs SW-846 METHOD 8080

IEA Sample Number:	170-072	Date Received:	N/A
Client Name:	S&ME Raleigh	Date Sampled:	N/A
Client Project ID:	1054-92-003	Date Extracted:	Ø4/2Ø/92
Sample Identification:	QC Blank (PB525)	Date Analyzed:	Ø4/25/92
Matrix:	Solid	Analysis By:	Willey
Moisture Correction Facto	or: 1.Ø	Dilution Factor:	1.Ø

		Quantitation Limit	Results Concentration
Number	Compound	(ug/kg)	(ug/kg)
1	alpha-BHC	8.0	BQL
2	beta-BHC	8.0	BQL.
3	delta-BHC	8.Ø	BQL
4	gamma-BHC (Lindane)	8.0	BQL
5	Heptachlor	8.0	BQL
6 .	Aldrin	8.0	BQL
7	Heptachlor epoxide	8.0	BQL
8	Endosulfan I	8.Ø	BQL
9	Dieldrin	16	BQL
10	4,4'-DDE	16	BQL
11	Endrin	16	BQL
12	Endosulfan II	16	BQL
13	4,4'-DDD	16	BQL
14	Endosulfan sulfate	16	BQL
15	4,4'-DDT	16	BQL
16	Methoxychlor	80	BQL
17	Toxaphene	16Ø	BQL.
18	Aroclor 1016	8Ø	BQL
19	Aroclor 1221	80	BQL
2Ø	Aroclor 1232	8Ø	BQL
21	Aroclor 1242	80	BQL
22	Aroclor 1248	80	BQL
23	Aroclor 1254	160	BQL
24	Aroclor 1260	160	BQL
25	Chlordane (technical)	80	BQL
26	Endrin aldehyde	16	BQL

Additional Compounds:

Endrin ketone

27

BQL

-4.21

16

Comments: Sample specific quantitation limits may be calculated by multiplying the quantitation limit by the dilution factor. BQL = Below Quantitation Limit N/A = Not ApplicableCorresponding Samples: 170-072-1 through 170-072-12

an environmental testing company 3000 WESTON PKWY. CARY, N.C. 27513	REGULATO	DF CUSTODY	EASE SPECIFY	NO: 29694
STME Environinental		· ·		Pageof2
1054-92 -003 CAMPLEVEDNE SAMELERBIGIONATURES Walter (Bulatto) (Juna)	DITE G" # We June OF	A A A A A A A A A A A A A A A A A A A		
1 4/15 15.05 * HA-1	0.0-0.5	1 × *	510	TOENAROUND
2 4/15 15:20 * HA-1	2.5-3.0	* *	SENT	> RESULTS TO:
3 4115 15:30 * HA-Z	0,0-0.5	* *	WAC	- BECKWITH C/p
4 4115 15:37 * HA-2	2.5'-3.0'	1 * *		ME ENVIRONMENTAL
5 4115 15:45 * HA-3	0.0'-0.5'	<u>* * </u>	312	O SPENG FORESTED
6 4115 15:55 * HA-3	2.5'-3.6'	1 * *	PA	KEILH , U.C. 27653
		2 and		
			F/	x No: 770-9627
			PA	DINE: 872-2660
	A MARINA CAL		Lines I	The state of the state of the state
	No.		IEA QUOTE NO. BIO4224 PROJECT MANAGER (PLEASE PRIN VALTER BECKUITH	
BOTTLE INTACT CUSTODY SEALS PRESERVED SEALS INTACT CHILLED SEE REMARKS	TEA	# 170-072		

) ENVI (STS,	} RONMENTAL INC.	°C	HAIN) OF	Ċ	U	ST	OD'	YR	EC	OR	RD	})		})		
E		3000 WE CARY, N	ISTO	N PK	WY		REGUL SCEIDEINK		11		1					an a			l I	10:		468	4
								C O (I N		service service					i de la constanción de la constanci de la constanción de la constanción de la constanción de la consta			and and a second s		с то _д о 	e contra		
		ar un autor d'anna anna anna anna anna anna anna an			/Mat			" T A OF I N E R S	S O I	W A T								//					
544	4/15	1410		*		D.D	-0.5	S	*		/ 9), +	9 											
8 5	4/15	16:25	-	*	HA-4 HA-5		· · ·		* *		*			*14 ≴			清 集						
<u>10</u> 11	4/15 4/15			*	HA-5	,2.5	- 3.0	1	*		*			•									
12	4/15	1		*	1-1A - 6			1	*		*												
	. 4. 5	4		•								-											
RELINCU Ause RELINCU	1.1	23			ATE MANE		RECEIVED	•									EASE P				RUSH		
	· .:	•			IL ILARE	VARKS	· Ha		estary N	¥/1	1/9:2	15							ARKS				۸. ۲ <u>۶</u> .۰۰
	# ()				Ť	= A # 170	- 072	-	($\mathbf{)}$								•	4 .	,C)	

APPENDIX V

LABORATORY ANALYTICAL RESULTS (Groundwater)

ABSTRACT

—

This appendix contains the laboratory analytical reports and Chain of Custody for the nine groundwater samples obtained from monitor wells, MW-1 through MW-9. The samples were submitted for analysis of Pesticides and PCB's by SW-846 Method 8080, and Volatile Organic Compounds (VOCs) by SW-846 Method 8240. The analysis included tentative identification of non-target VOC gas chromatographic peaks.

Only one naturally occurring compound, dimethyldisulfide, was identified in one well (MW-3). All other parameters were below the quantitative limits of the analyses.

.

An Environmental Testing Company Post Office Box 12846 Research Triangle Park, NC 27709 Phone 919 • 677 • 0090 Fax 919 • 677 • 0427

May 27, 1992

Susan Laughinghouse S&ME Raleigh 3109 Spring Forest Road Raleigh, NC 27568

> IEA Project No.: 170077 IEA Reference No.: W9205043 Client Project I.D.: 1054-92-003 Camp Lejeune

Dear Ms. Laughinghouse,

Transmitted herewith are the results of analyses on nine samples submitted to our laboratory.

The sample(s) were received chilled and intact.

Analyses were performed according to approved methodologies and meet the requirements of the IEA Quality Assurance Program. Please see the enclosed reports for your results and a copy of the Chain of Custody documentation.

Please do not hesitate to call your Client Account Representative should you have any questions regarding this report.

Very truly yours,

IEA, Inc.

line R. Braneff 12

Linda F. Mitchell Director, Technical Support Services

State Certification: Georgia - #816 New Jersey - #67719 California - #I-1002

Tennessee - #00296 Virginia - #00179 West Virginia - #50

Alabama - #40210 South Carolina - #99021 North Carolina - #37720 #84

Monroe, Connecticut 203-261-4458 Sunrise, Florida 305-846-1730 Schaumburg, Illinois 708-705-0740 N. Billerica, Massachusetts 617-272-5212 Whippany, New Jersey 201-428-8181 Essex Junction, Vermont 802-878-5138

🔬 Secaration (Sec.), se

An Aquarion Company

GC/MS PURGEABLES SW-846 METHOD 8240

IEA Sample Number:	170-077-1	Date Received:	Ø5/Ø7/92
 Client Name:	S&ME Raleigh	Date Sampled:	Ø5/Ø5/92
Client Project ID:	1054-92-003 Camp Lej.	Date Analyzed:	Ø5/19/92
Sample Identification:	MW-1	Analysis By:	Stephenson
Matrix:	Water	Dilution Factor:	- 1.0

Number	Compound	Quantitation	Results
		Limit	Concentration
		(ug/L)	(ug/L)
1	Acetone	100	BQL
2	Benzene	5	BQL
3	Bromodichloromethane	5	BQL
4	Bromoform	5	BQL
5	Bromomethane	1Ø	BQL
6	2-Butanone	100	BQL
7	Carbon disulfide	5	BQL
8	Carbon tetrachloride	5	BQL
9	Chlorobenzene	5	BQL
1Ø	Dibromochloromethane	5	BQL
11	Chloroethane	10	BQL
12	2-Chloroethylvinyl ether	1Ø	BQL
13	Chloroform	5	BQL
14	Chloromethane	1Ø	BQL
15	1,1-Dichloroethane	5	BQL
16	1,2-Dichloroethane	5	BQL
17	1,1-Dichloroethene	5	BQL
18	1,2-Dichloroethene (total)	5	BQL
19	1,2-Dichloropropane	5	BQL
2Ø	cis-1,3-Dichloropropene	5	BQL
21	trans-1,3-Dichloropropene	5	BQL
22	Ethylbenzene	5	BOL
23	2-Hexanone	50	BQL
24	Methylene chloride	5	BQL
25	4-Methyl-2-pentanone	50	BQL
26	Styrene	5	BQL
27	1,1,2,2-Tetrachloroethane	5	BQL
28	Tetrachloroethene	5	BQL
29	Toluene	5	BQL
3Ø	1,1,1-Trichloroethane	5	BQL
31	1,1,2-Trichloroethane	5	BQL
32	Trichloroethene	5	BQL
33	Vinyl acetate	5Ø	BQL
34	Vinyl chloride	10	BQL
35	Xylenes (total)	5	BQL

Comments:

Sample specific quantitation limits may be calculated by multiplying the quantitation limit by the dilution factor. BQL = Below Quantitation Limit

in the particular

TENTATIVELY IDENTIFIED COMPOUNDS

IEA Sample Number:	170-077-1					
Sample Identification:	MW-1					
Applicable Fraction:	Volatile	_x	Base/Neutral	 Acid	Other	

Tentatively Identified Compounds (TIC's) are compounds which are not in the specific target compound list but may be present in the sample. An attempt to identify such compounds is made through comparison of the mass spectra of these unknown compounds in the sample with approximately 50,000 spectra contained in the computer's mass spectral library. Analytical standards are not utilized in this procedure and therefore, compounds identified in this manner are referred to as "Tentative" identifications.

IEA personnel identify and classify these compounds using identification guidelines provided by the USEPA under the Contract Laboratory Program (CLP). A gross estimation of concentration is accomplished by comparing the response of the unknown compound versus the nearest internal standard in the total ion chromatogram. As per EPA CLP guidance, TIC's are identified and quantitated only if the response is equal to or greater than 10% of the nearest internal standard. Compounds identified as "unknown" are not uncommon utilizing these guidelines since the requirements for even a tentative identification are quite stringent.

> Estimated Concentration (ug/L)

TIC Compound Name

1. None detected per above criteria.

5

Comments:

FORM TIC Rev. 120491

GC/MS PURGEABLES SW-846 METHOD 8240

An Aquai	non Company		
TEA	Sample	Number:	

IEA Sample Number:	170-077-2	Date Received:	Ø5/Ø7/92
Client Name:	S&ME Raleigh	Date Sampled:	Ø5/Ø5/92
Client Project ID:	1054-92-003 Camp Lej.	Date Analyzed:	Ø5/16/92
Sample Identification:	MW-2	Analysis By:	Butler
Matrix:	Water	Dilution Factor:	1.Ø

Number	Compound	Quantitation Limit (ug/L)	Results Concentration (ug/L)
1	Acetone	100	BQL
2	Benzene	5	BQL
3	Bromodichloromethane	5	BQL
4	Bromoform	5	BQL
5	Bromomethane	10	BQL
6	2-Butanone	100	BQL
7	Carbon disulfide	5	BQL
8	Carbon tetrachloride	5	BQL
9	Chlorobenzene	5	BQL
10	Dibromochloromethane	5	BQL
11 ·	Chloroethane	1Ø	BQL
12	2-Chloroethylvinyl ether	1Ø	BQL
13	Chloroform	5	BQL
14	Chloromethane	1Ø	BQL
15	1,1-Dichloroethane	5	BQL
16	1,2-Dichloroethane	5	BQL
17	1,1-Dichloroethene	5	BQL
· 18	1,2-Dichloroethene (total)	5	BQL
19	1,2-Dichloropropane	5	BQL
2Ø	cis-1,3-Dichloropropene	5	BQL
21	trans-1,3-Dichloropropene	5	BQL
22	Ethylbenzene	5	BQL
23	2-Hexanone	5Ø	BQL
24	Methylene chloride	5	BQL
25	4-Methyl-2-pentanone	5Ø	BQL
26	Styrene	5	BQL
27	1,1,2,2-Tetrachloroethane	5	BQL
28	Tetrachloroethene	5	BQL
29	Toluene	5	BQL
3Ø	1,1,1-Trichloroethane	5	BQL
31	1,1,2-Trichloroethane	5	BQL
32	Trichloroethene	5	BQL
33	Vinyl acetate	5Ø	BQL
34	Vinyl chloride	10	BQL
35	Xylenes (total)	5	BQL

Comments:

Sample specific quantitation limits may be calculated by multiplying the quantitation limit by the dilution factor. BQL = Below Quantitation Limit

.

TENTATIVELY IDENTIFIED COMPOUNDS

IEA Sample Number:	170-077-2	
Sample Identification:	MW-2	
Applicable Fraction:	Volatile XBase/NeutralAcidOther	

Tentatively Identified Compounds (TIC's) are compounds which are not in the specific target compound list but may be present in the sample. An attempt to identify such compounds is made through comparison of the mass spectra of these unknown compounds in the sample with approximately 50,000 spectra contained in the computer's mass spectral library. Analytical standards are not utilized in this procedure and therefore, compounds identified in this manner are referred to as "Tentative" identifications.

IEA personnel identify and classify these compounds using identification guidelines provided by the USEPA under the Contract Laboratory Program (CLP). A gross estimation of concentration is accomplished by comparing the response of the unknown compound versus the nearest internal standard in the total ion chromatogram. As per EPA CLP guidance, TIC's are identified and quantitated only if the response is equal to or greater than 10% of the nearest internal standard. Compounds identified as "unknown" are not uncommon utilizing these guidelines since the requirements for even a tentative identification are quite stringent.

> Estimated Concentration (ug/L)

> > 5

TIC Compound Name

1. None detected per above criteria.

Comments:

FORM TIC Rev. 120491

• • . .

GC/MS PURGEABLES SW-846 METHOD 8240

An Aquarion Company

IEA Sample Number: 170-077-3 Date Received: 05/07/92 Client Name: S&ME Raleigh Date Sampled: 05/05/92 1054-92-003 Camp Lej. Date Analyzed: Client Project ID: Ø5/19/92 Analysis By: Sample Identification: MW-3 Stephenson Matrix: Water Dilution Factor: 1.Ø

Number	Compound	Quantitation Limit	Results Concentration
		(ug/L)	(ug/L)
1	Acetone	100	BQL
2	Benzene	5	BQL
3	Bromodichloromethane	5	BQL
4	Bromoform	5	BQL
5	Bromomethane	10	BQL
6	2-Butanone	100	BQL
7	Carbon disulfide	5	BQL
8	Carbon tetrachloride	5	BQL
9	Chlorobenzene	5	BQL
10	Dibromochloromethane	5	BQL
11	Chloroethane	10	BQL
12	2-Chloroethylvinyl ether	10	BQL
13	Chloroform	5	BQL
14	Chloromethane	1Ø	BQL
15	1,1-Dichloroethane	5	BQL
16	1,2-Dichloroethane	5	BQL
17	1,1-Dichloroethene	5	BQL
18	1,2-Dichloroethene (total)	5	BQL
19	1,2-Dichloropropane	5	BQL
2Ø	cis-1,3-Dichloropropene	5	BQL
21	trans-1,3-Dichloropropene	5	BQL
22	Ethylbenzene	5	BQL
23	2-Hexanone	50	BQL
24	Methylene chloride	5	BQL
25	4-Methyl-2-pentanone	5Ø	BQL
26	Styrene	5	BQL
27	1,1,2,2-Tetrachloroethane	5	BQL
28	Tetrachloroethene	5	BQL
29	Toluene	5	BQL
3Ø	1,1,1-Trichloroethane	5	BQL
31	1,1,2-Trichloroethane	5	BQL
32	Trichloroethene	5	BQL
33	Vinyl acetate	5Ø	BQL
34	Vinyl chloride	1Ø	BQL
35	Xylenes (total)	5	BQL

Comments:

Sample specific quantitation limits may be calculated by multiplying the quantitation limit by the dilution factor. BQL = Below Quantitation Limit

.

TENTATIVELY IDENTIFIED COMPOUNDS

IEA Sample Number:	170-077-3	k				
Sample Identification:	MW-3					
Applicable Fraction:	Volatile	X	Base/Neutral	 Acid	Other	

Tentatively Identified Compounds (TIC's) are compounds which are not in the specific target compound list but may be present in the sample. An attempt to identify such compounds is made through comparison of the mass spectra of these unknown compounds in the sample with approximately 50,000 spectra contained in the computer's mass spectral library. Analytical standards are not utilized in this procedure and therefore, compounds identified in this manner are referred to as "Tentative" identifications.

IEA personnel identify and classify these compounds using identification guidelines provided by the USEPA under the Contract Laboratory Program (CLP). A gross estimation of concentration is accomplished by comparing the response of the unknown compound versus the nearest internal standard in the total ion chromatogram. As per EPA CLP guidance, TIC's are identified and quantitated only if the response is equal to or greater than 10% of the nearest internal standard. Compounds identified as "unknown" are not uncommon utilizing these guidelines since the requirements for even a tentative identification are quite stringent.

> Estimated Concentration (ug/L)

TIC Compound Name

1. Dimethyldisulfide

6

Comments:

FORM TIC Rev. 120491

GC/MS PURGEABLES SW-846 METHOD 8240

An Aquanon Company IEA Sample Numbe

IEA Sample Number:	170-077-4	Date Received:	Ø5/Ø7/92
Client Name:	S&ME Raleigh	Date Sampled:	Ø5/Ø5/92
Client Project ID:	1054-92-003 Camp Lej.	Date Analyzed:	Ø5/16/92
Sample Identification:	MW-4	Analysis By:	Butler
Matrix:	Water	Dilution Factor:	1.Ø

Number	Compound	Quantitation Limit (ug/L)	Results Concentration (ug/L)
1	Acetone	100	BQL
2	Benzene	5	BQL
3	Bromodichloromethane	5	BQL
4	Bromoform	5	BQL
5	Bromomethane	10	BQL
6	2-Butanone	100	BQL
7	Carbon disulfide	5	BQL
8	Carbon tetrachloride	5	BQL
9	Chlorobenzene	5	BQL
10	Dibromochloromethane	5	BQL
11	Chloroethane	1Ø	BQL
12	2-Chloroethylvinyl ether	1Ø	BQL
13	Chloroform	5	BQL.
14	Chloromethane	1Ø	BQL
15	1,1-Dichloroethane	5	BQL
16	1,2-Dichloroethane	5	BQL
17	1,1-Dichloroethene	5	BQL
18	1,2-Dichloroethene (total)	5	BQL
19	1,2-Dichloropropane	5	BQL
2Ø	cis-1,3-Dichloropropene	5	BQL
21	trans-1,3-Dichloropropene	5	BQL.
22	Ethylbenzene	5	BQL
23	2-Hexanone	5Ø	BQL
24	Methylene chloride	5	BQL
25	4-Methyl-2-pentanone	5Ø	BQL
26	Styrene	5	BQL
27	1,1,2,2-Tetrachloroethane	5	BQL
28	Tetrachloroethene	5	BQL
29	Toluene	5	BQL
3Ø	1,1,1-Trichloroethane	5	BQL
31	1,1,2-Trichloroethane	5	BQL.
32	Trichloroethene	5	BQL
33	Vinyl acetate	5Ø	BQL
34	Vinyl chloride	lø	BQL
35	Xylenes (total)	5	BQL

Comments:

Sample specific quantitation limits may be calculated by multiplying the quantitation limit by the dilution factor. BQL = Below Quantitation Limit

TENTATIVELY IDENTIFIED COMPOUNDS

Applicable Fraction:	Volatile	X	Base/Neutral	 Acid	_ Other	
Sample Identification:	MW-4					
IEA Sample Number:	170-077-4	1				

Tentatively Identified Compounds (TIC's) are compounds which are not in the specific target compound list but may be present in the sample. An attempt to identify such compounds is made through comparison of the mass spectra of these unknown compounds in the sample with approximately 50,000 spectra contained in the computer's mass spectral library. Analytical standards are not utilized in this procedure and therefore, compounds identified in this manner are referred to as "Tentative" identifications.

IEA personnel identify and classify these compounds using identification guidelines provided by the USEPA under the Contract Laboratory Program (CLP). A gross estimation of concentration is accomplished by comparing the response of the unknown compound versus the nearest internal standard in the total ion chromatogram. As per EPA CLP guidance, TIC's are identified and quantitated only if the response is equal to or greater than 10% of the nearest internal standard. Compounds identified as "unknown" are not uncommon utilizing these guidelines since the requirements for even a tentative identification are guite stringent.

> Estimated Concentration (ug/L)

> > 5

TIC Compound Name

1. None detected per above criteria.

Comments:

FORM TIC Rev. 120491

GC/MS PURGEABLES SW-846 METHOD 8240

An Aquarion Company

IEA Sample Number:	170-077-5	Date Received:	Ø5/Ø7/92
Client Name:	S&ME Raleigh	Date Sampled:	Ø5/Ø5/92
Client Project ID:	1054-92-003 Camp Lej.	Date Analyzed:	Ø5/14/92
Sample Identification:	MW-5	Analysis By:	Butler
Matrix:	Water	Dilution Factor:	1.0

Number	Compound	Quantitation Limit (ug/L)	Results Concentration (ug/L)
1	Acetone	100	BQL
2	Benzene	5	BQL
3	Bromodichloromethane	5	BQL
4	Bromoform	5	BQL
5	Bromomethane	10	BQL
6	2-Butanone	100	BQL
7	Carbon disulfide	5	BQL
8	Carbon tetrachloride	5	BQL
9	Chlorobenzene	5	BQL
1Ø	Dibromochloromethane	5	BQL
11	Chloroethane	1Ø	BQL
12	2-Chloroethylvinyl ether	10	BQL
13	Chloroform	5	BQL
14	Chloromethane	10	BQL
15	1,1-Dichloroethane	5	BQL
16	1,2-Dichloroethane	5	BQL
17	1,1-Dichloroethene	5	BQL
18	1,2-Dichloroethene (total)	5	BQL
19	1,2-Dichloropropane	5	BQL
2Ø	cis-1,3-Dichloropropene	5	BQL
21	trans-1,3-Dichloropropene	5	BQL
22	Ethylbenzene	5	BQL
23	2-Hexanone	5Ø	BQL
24	Methylene chloride	5	BQL
25	4-Methy1-2-pentanone	50	BQL
26	Styrene	5	BQL
27	1,1,2,2-Tetrachloroethane	5	BQL
28	Tetrachloroethene	5	BQL
29	Toluene	5	BQL
3Ø	1,1,1-Trichloroethane	5	BQL
31	1,1,2-Trichloroethane	5	BQL
32	Trichloroethene	5	BQL
33	Vinyl acetate	5Ø	BQL
34	Vinyl chloride	10	BQL
35	Xylenes (total)	5	BQL

Comments:

Sample specific quantitation limits may be calculated by multiplying the quantitation limit by the dilution factor. BQL = Below Quantitation Limit

.

TENTATIVELY IDENTIFIED COMPOUNDS

IEA Sample Number:	170-077-5			
Sample Identification:	1W-5			
Applicable Fraction:	Volatile XBa	se/Neutral	Acid	Other

Tentatively Identified Compounds (TIC's) are compounds which are not in the specific target compound list but may be present in the sample. An attempt to identify such compounds is made through comparison of the mass spectra of these unknown compounds in the sample with approximately 50,000 spectra contained in the computer's mass spectral library. Analytical standards are not utilized in this procedure and therefore, compounds identified in this manner are referred to as "Tentative" identifications.

IEA personnel identify and classify these compounds using identification guidelines provided by the USEPA under the Contract Laboratory Program (CLP). A gross estimation of concentration is accomplished by comparing the response of the unknown compound versus the nearest internal standard in the total ion chromatogram. As per EPA CLP guidance, TIC's are identified and quantitated only if the response is equal to or greater than 10% of the nearest internal standard. Compounds identified as "unknown" are not uncommon utilizing these guidelines since the requirements for even a tentative identification are quite stringent.

> Estimated Concentration (ug/L)

TIC Compound Name

1. None detected per above criteria

5

Comments:

FORM TIC Rev. 120491

.

GC/MS PURGEABLES SW-846 METHOD 8240

Date Received: IEA Sample Number: 170-077-6 05/07/92 S&ME Raleigh Date Sampled: Ø5/Ø5/92 Client Name: 1054-92-003 Camp Lej. Date Analyzed: Client Project ID: Ø5/14/92 Sample Identification: MW-6 Analysis By: Butler Dilution Factor: Water 1.0 Matrix:

Number	Compound	Quantitation	Results
		Limit	Concentration
		(ug/L)	(ug/L)
1	Acetone	100	BQL
2	Benzene	5	BQL
3	Bromodichloromethane	5	BQL
4	Bromoform	5	BQL
5	Bromomethane	1Ø	BQL
6	2-Butanone	100	BQL
7	Carbon disulfide	5	BQL
8	Carbon tetrachloride	5	BQL
9	Chlorobenzene	5	BQL
10	Dibromochloromethane	5	BQL
11	Chloroethane	10	BQL
12	2-Chloroethylvinyl ether	10	BQL
13	Chloroform	5	BQL
14	Chloromethane	10	BQL
15	1,1-Dichloroethane	5	BQL
16	1,2-Dichloroethane	5	BQL
17	1,1-Dichloroethene	5	BQL
18	1,2-Dichloroethene (total)	5	BQL
19	1,2-Dichloropropane	5	BQL
2Ø	cis-1,3-Dichloropropene	5	BQL
21	trans-1,3-Dichloropropene	5	BQL
22	Ethylbenzene	5	BQL
23	2-Hexanone	5Ø	BQL
24	Methylene chloride	5	BOL
25	4-Methy1-2-pentanone	5Ø	BQL
26	Styrene	5	BQL
27	1,1,2,2-Tetrachloroethane	5	BQL
28	Tetrachloroethene	5	BQL
29	Toluene	5	BQL
3Ø	1,1,1-Trichloroethane	5	BQL
31	1,1,2-Trichloroethane	5	BQL
32	Trichloroethene	5	BQL
33	Vinyl acetate	5Ø	BQL
34	Vinyl chloride	10	BQL
35	Xylenes (total)	5	BQL

Comments:

Sample specific quantitation limits may be calculated by multiplying the quantitation limit by the dilution factor. BQL = Below Quantitation Limit

TENTATIVELY IDENTIFIED COMPOUNDS

IEA Sample Number:	170-077-6					
Sample Identification:	MW-6					
Applicable Fraction:	Volatile	X	Base/Neutral	 Acid	Other	

Tentatively Identified Compounds (TIC's) are compounds which are not in the specific target compound list but may be present in the sample. An attempt to identify such compounds is made through comparison of the mass spectra of these unknown compounds in the sample with approximately 50,000 spectra contained in the computer's mass spectral library. Analytical standards are not utilized in this procedure and therefore, compounds identified in this manner are referred to as "Tentative" identifications.

IEA personnel identify and classify these compounds using identification guidelines provided by the USEPA under the Contract Laboratory Program (CLP). A gross estimation of concentration is accomplished by comparing the response of the unknown compound versus the nearest internal standard in the total ion chromatogram. As per EPA CLP guidance, TIC's are identified and quantitated only if the response is equal to or greater than 10% of the nearest internal standard. Compounds identified as "unknown" are not uncommon utilizing these guidelines since the requirements for even a tentative identification are quite stringent.

> Estimated Concentration (ug/L)

> > 5

TIC Compound Name

1. None detected per above criteria

Comments:

GC/MS PURGEABLES SW-846 METHOD 8240

An Aquanon Company

IEA Sample Number:	170-077-7	Date Received:	Ø5/Ø7/92
Client Name:	S&ME Raleigh	Date Sampled:	Ø5/Ø5/92
Client Project ID:	1054-92-003 Camp Lej.	Date Analyzed:	Ø5/14/92
Sample Identification:	MW-7	Analysis By:	Butler
Matrix:	Water	Dilution Factor:	

Number	Compound	Quantitation Limit (ug/L)	Results Concentration (ug/L)
1.	Acetone	100	BQL
2	Benzene	5	BQL
3	Bromodichloromethane	5	BQL
4	Bromoform	5	BQL
5	Bromomethane	1Ø	BQL
6	2-Butanone	100	BQL
7	Carbon disulfide	5	BQL
8	Carbon tetrachloride	5	BQL
9	Chlorobenzene	5	BQL
10	Dibromochloromethane	5	BQL
11	Chloroethane	10	BQL
12	2-Chloroethylvinyl ether	10	BOL
13	Chloroform	5	BQL
14	Chloromethane	10	BQL
15	1,1-Dichloroethane	5	BQL
16	1,2-Dichloroethane	5	BQL
17	1,1-Dichloroethene	5	BQL
18	1,2-Dichloroethene (total)	5	BOL
19	1,2-Dichloropropane	5	BOL
2Ø	cis-1,3-Dichloropropene	5	BQL
21	trans-1,3-Dichloropropene	5	BOL
22	Ethylbenzene	5	BOL
23	2-Hexanone	5Ø	BQL
24	Methylene chloride	5	BQL
25	4-Methyl-2-pentanone	5Ø	BQL
26	Styrene	5	BOL
27	1,1,2,2-Tetrachloroethane	5	BQL
28	Tetrachloroethene	5	BOL
29	Toluene	5	BQL
3Ø	1,1,1-Trichloroethane	5	BQL
31	1,1,2-Trichloroethane	5	BQL
32	Trichloroethene	5	BQL
33	Vinyl acetate	5Ø	BQL
34	Vinyl chloride	10	BQL
35	Xylenes (total)	5	BQL

Comments:

Sample specific quantitation limits may be calculated by multiplying the quantitation limit by the dilution factor. BQL = Below Quantitation Limit

14 J. 1 1

TENTATIVELY IDENTIFIED COMPOUNDS

IEA Sample Number:	170-077-7	r				
Sample Identification:	MW-7					
Applicable Fraction:	Volatile	X	Base/Neutral	 Acid	Other	

Tentatively Identified Compounds (TIC's) are compounds which are not in the specific target compound list but may be present in the sample. An attempt to identify such compounds is made through comparison of the mass spectra of these unknown compounds in the sample with approximately 50,000 spectra contained in the computer's mass spectral library. Analytical standards are not utilized in this procedure and therefore, compounds identified in this manner are referred to as "Tentative" identifications.

IEA personnel identify and classify these compounds using identification guidelines provided by the USEPA under the Contract Laboratory Program (CLP). A gross estimation of concentration is accomplished by comparing the response of the unknown compound versus the nearest internal standard in the total ion chromatogram. As per EPA CLP guidance, TIC's are identified and quantitated only if the response is equal to or greater than 10% of the nearest internal standard. Compounds identified as "unknown" are not uncommon utilizing these guidelines since the requirements for even a tentative identification are quite stringent.

> Estimated Concentration (ug/L)

TIC Compound Name

1. None detected per above criteria

5

Comments:

FORM TIC Rev. 120491

panta

GC/MS PURGEABLES SW-846 METHOD 8240

IEA Sample Number:	170-077-8	Date Received:	Ø5/Ø7/92
Client Name:	S&ME Raleigh	Date Sampled:	Ø5/Ø5/92
Client Project ID:	1054-92-003 Camp Lej.	Date Analyzed:	Ø5/14/92
Sample Identification:	MW-8	Analysis By:	Butler
Matrix:	Water	Dilution Factor:	1.0

Number	Compound	Quantitation Limit (ug/L)	Results Concentration (ug/L)
		(-5, -)	(49,2)
1	Acetone	100	BQL
2	Benzene	5	BQL
3	Bromodichloromethane	5	BQL
4	Bromoform	5	BQL
5	Bromomethane	10	BQL
6	2-Butanone	100	BQL
7	Carbon disulfide	5	BQL
8	Carbon tetrachloride	5	BQL
9	Chlorobenzene	5	BQL
10	Dibromochloromethane	5	BQL
11	Chloroethane	10	BQL
12	2-Chloroethylvinyl ether	10	BQL
13	Chloroform	5	BQL
14	Chloromethane	10	BQL
15	1,1-Dichloroethane	5	BQL
16	1,2-Dichloroethane	5	BQL
17	1,1-Dichloroethene	5	BQL
18	1,2-Dichloroethene (total)	5	BQL
19	1,2-Dichloropropane	5	BQL
2Ø	cis-1,3-Dichloropropene	5	BQL
21	trans-1,3-Dichloropropene	5	BQL
22	Ethylbenzene	5	BQL
23	2-Hexanone	5Ø	BQL
24	Methylene chloride	5	BQL
25	4-Methy1-2-pentanone	5Ø	BQL
26	Styrene	5	BQL
27	1,1,2,2-Tetrachloroethane	5	BQL
28	Tetrachloroethene	5	BQL
29	Toluene	5	BQL
3Ø	1,1,1-Trichloroethane	5	BQL
31	1,1,2-Trichloroethane	5	BQL
32	Trichloroethene	5	BQL
33	Vinyl acetate	50	BQL
34	Vinyl chloride	1Ø	BQL
35	Xylenes (total)	5	BQL

Comments:

Sample specific quantitation limits may be calculated by multiplying the quantitation limit by the dilution factor. BQL = Below Quantitation Limit

TENTATIVELY IDENTIFIED COMPOUNDS

IEA Sample Number:	170-077-8	
Sample Identification:	MW-8	
Applicable Fraction:	Volatile X Base/Neutral Acid Othe	er

Tentatively Identified Compounds (TIC's) are compounds which are not in the specific target compound list but may be present in the sample. An attempt to identify such compounds is made through comparison of the mass spectra of these unknown compounds in the sample with approximately 50,000 spectra contained in the computer's mass spectral library. Analytical standards are not utilized in this procedure and therefore, compounds identified in this manner are referred to as "Tentative" identifications.

IEA personnel identify and classify these compounds using identification guidelines provided by the USEPA under the Contract Laboratory Program (CLP). A gross estimation of concentration is accomplished by comparing the response of the unknown compound versus the nearest internal standard in the total ion chromatogram. As per EPA CLP guidance, TIC's are identified and quantitated only if the response is equal to or greater than 10% of the nearest internal standard. Compounds identified as "unknown" are not uncommon utilizing these guidelines since the requirements for even a tentative identification are quite stringent.

> Estimated Concentration (ug/L)

-

TIC Compound Name

1. None detected per above criteria

5

Comments:

FORM TIC Rev. 120491

(1+1) = (1+1)

GC/MS PURGEABLES SW-846 METHOD 8240

IEA Sample Number:	170-077-9	Date Received:	Ø5/Ø7/92
Client Name:	S&ME Raleigh	Date Sampled:	Ø5/Ø6/92
Client Project ID:	1054-92-003 Camp Lej.	Date Analyzed:	Ø5/14/92
Sample Identification:	MW-9	Analysis By:	Butler
Matrix:	Water	Dilution Factor:	1.Ø

Number	Compound	Quantitation Limit	Results Concentration
		(ug/L)	(ug/L)
1	Acetone	100	BQL
2	Benzene	5	BQL
3	Bromodichloromethane	5	BQL
4	Bromoform	5	BQL
5	Bromomethane	10	BQL
6	2-Butanone	100	BQL
7	Carbon disulfide	5	BQL
8	Carbon tetrachloride	5	BQL
9	Chlorobenzene	5	BQL
10	Dibromochloromethane	5	BQL
11	Chloroethane	1Ø	BQL
12	2-Chloroethylvinyl ether	1Ø	BQL
13	Chloroform	5	BQL
14	Chloromethane	1Ø	BQL
15	1,1-Dichloroethane	5	BQL
16	1,2-Dichloroethane	5	BQL
17	1,1-Dichloroethene	5	BQL
18	1,2-Dichloroethene (total)	5	BQL
19	1,2-Dichloropropane	5	BQL
2Ø	cis-1,3-Dichloropropene	5	BQL
21	trans-1,3-Dichloropropene	5	BQL
22	Ethylbenzene	5	BQL
23	2-Hexanone	5Ø	BQL
24	Methylene chloride	5	BQL
25	4-Methy1-2-pentanone	5Ø	BQL
26	Styrene	5	BQL
27	1,1,2,2-Tetrachloroethane	5	BQL
28	Tetrachloroethene	5	BQL
29	Toluene	5	BQL
3Ø	1,1,1-Trichloroethane	5	BQL
31	1,1,2-Trichloroethane	5	BQL
32	Trichloroethene	5	BQL
33	Vinyl acetate	5Ø	BQL
34	Vinyl chloride	10	BQL
35	Xylenes (total)	5	BQL

Comments:

TENTATIVELY IDENTIFIED COMPOUNDS

IEA Sample Number:	170-077-9	•				
Sample Identification:	MW-9					
Applicable Fraction:	Volatile	X	Base/Neutral	 Acid	_ Other	

Tentatively Identified Compounds (TIC's) are compounds which are not in the specific target compound list but may be present in the sample. An attempt to identify such compounds is made through comparison of the mass spectra of these unknown compounds in the sample with approximately 50,000 spectra contained in the computer's mass spectral library. Analytical standards are not utilized in this procedure and therefore, compounds identified in this manner are referred to as "Tentative" identifications.

IEA personnel identify and classify these compounds using identification guidelines provided by the USEPA under the Contract Laboratory Program (CLP). A gross estimation of concentration is accomplished by comparing the response of the unknown compound versus the nearest internal standard in the total ion chromatogram. As per EPA CLP guidance, TIC's are identified and quantitated only if the response is equal to or greater than 10% of the nearest internal standard. Compounds identified as "unknown" are not uncommon utilizing these guidelines since the requirements for even a tentative identification are quite stringent.

> Estimated Concentration (ug/L)

> > 5

TIC Compound Name

1. None detected per above criteria

Comments:

FORM TIC Rev. 120491

GC/MS PURGEABLES SW-846 METHOD 824Ø

IEA Sample Number:	170-077	Date Received:	N/A
Client Name:	S&ME Raleigh	Date Sampled:	N/A
Client Project ID:	1054-92-003 Camp Lej.	Date Analyzed:	Ø5/15/92
Sample Identification:	QC Blank (VBLK56)	Analysis By:	Butler
Matrix:	Water	Dilution Factor:	1.Ø

1Acetone100BQL2Benzene5BQL3Bromodichloromethane5BQL4Bromodichloromethane10BQL5Bromomethane10BQL62-Butanone100BQL7Carbon disulfide5BQL9Chlorobenzene5BQL10Dibromochloromethane5BQL11Chloroethane10BQL122-Chloroethylvinyl ether10BQL13Chloroform5BQL14Chloromethane5BQL151,1-Dichloroethane5BQL161,2-Dichloroethane5BQL181,2-Dichloroethane5BQL20cis-1,3-Dichloropropene5BQL21trans-1,3-Dichloropropene5BQL22Ethylbenzene5BQL232-Hexanone50BQL24Methylene chloride5BQL254-Methyl-2-pentanone50BQL26Styrene5BQL271,1,2,2-Tetrachloroethane5BQL28Tetrachloroethane5BQL28Tetrachloroethane5BQL	Number	Compound	Quantitation Limit (ug/L)	Results Concentration (ug/L)
2Benzene5BQL3Bromodichloromethane5BQL4Bromoform5BQL5Bromomethane10BQL62-Butanone100BQL7Carbon disulfide5BQL8Carbon tetrachloride5BQL9Chlorobenzene5BQL10Dibromochloromethane5BQL11Chloroethane10BQL122-Chloroethylvinyl ether10BQL13Chloroform5BQL14Chloromethane10BQL151,1-Dichloroethane5BQL161,2-Dichloroethane5BQL181,2-Dichloroethene5BQL20cis-1,3-Dichloropropene5BQL21trans-1,3-Dichloropropene5BQL22Ethylbenzene5BQL232-Hexanone50BQL24Methylene chloride5BQL254-Methyl-2-pentanone50BQL26Styrene5BQL271,1,2,2-Tetrachloroethane5BQL28Tetrachloroethene5BQL				(
2Benzene5BQL3Bromodichloromethane5BQL4Bromoform5BQL5Bromomethane10BQL62-Butanone100BQL7Carbon disulfide5BQL8Carbon tetrachloride5BQL9Chlorobenzene5BQL10Dibromochloromethane5BQL11Chlorobethane10BQL122-Chloroethylvinyl ether10BQL13Chloroform5BQL14Chloromethane10BQL151,1-Dichloroethane5BQL161,2-Dichloroethane5BQL181,2-Dichloroethene5BQL20cis-1,3-Dichloropropene5BQL21trans-1,3-Dichloropropene5BQL22Ethylbenzene5BQL232-Hexanone50BQL24Methylene chloride5BQL254-Methyl-2-pentanone50BQL26Styrene5BQL271,1,2,2-Tetrachloroethane5BQL28Tetrachloroethene5BQL	1	Acetone	100	BQL
4Bromoform5BQL5Bromomethane10BQL62-Butanone100BQL62-Butanone100BQL7Carbon disulfide5BQL8Carbon tetrachloride5BQL9Chlorobenzene5BQL10Dibromochloromethane5BQL11Chloroethane10BQL122-Chloroethylvinyl ether10BQL13Chloroform5BQL14Chloromethane10BQL151,1-Dichloroethane5BQL161,2-Dichloroethane5BQL181,2-Dichloroethene5BQL20cis-1,3-Dichloropropane5BQL21trans-1,3-Dichloropropene5BQL22Ethylbenzene5BQL232-Hexanone50BQL24Methyl-2-pentanone50BQL254-Methyl-2-pentanone50BQL26Styrene5BQL271,1,2,2-Tetrachloroethane5BQL28Tetrachloroethene5BQL	2	Benzene	5	_
SBromomethane10BQL62-Butanone100BQL7Carbon disulfide5BQL8Carbon tetrachloride5BQL9Chlorobenzene5BQL10Dibromochloromethane5BQL11Chlorobethane10BQL122-Chloroethylvinyl ether10BQL13Chlorobethane10BQL14Chloromethane10BQL151,1-Dichloroethane5BQL161,2-Dichloroethane5BQL171,1-Dichloroethane5BQL181,2-Dichloroethene (total)5BQL20cis-1,3-Dichloropropene5BQL21trans-1,3-Dichloropropene5BQL22Ethylbenzene50BQL232-Hexanone50BQL24Methylene chloride5BQL254-Methyl-2-pentanone50BQL26Styrene5BQL271,1,2,2-Tetrachloroethane5BQL28Tetrachloroethene5BQL	3	Bromodichloromethane	5	BQL
62-Butanone100BQL7Carbon disulfide5BQL8Carbon tetrachloride5BQL9Chlorobenzene5BQL10Dibromochloromethane10BQL11Chloroethane10BQL122-Chloroethylvinyl ether10BQL13Chloroform5BQL14Chloromethane10BQL151,1-Dichloroethane10BQL161,2-Dichloroethane5BQL171,1-Dichloroethane5BQL181,2-Dichloroethene (total)5BQL20cis-1,3-Dichloropropene5BQL21trans-1,3-Dichloropropene5BQL22Ethylbenzene5BQL232-Hexanone50BQL24Methylene chloride5BQL254-Methyl-2-pentanone50BQL26Styrene5BQL271,1,2,2-Tetrachloroethane5BQL28Tetrachloroethene5BQL	4	Bromoform	5	BQL
7Carbon disulfide5BQL8Carbon tetrachloride5BQL9Chlorobenzene5BQL10Dibromochloromethane5BQL11Chloroethane10BQL122-Chloroethylvinyl ether10BQL13Chloroform5BQL14Chloromethane10BQL151,1-Dichloroethane5BQL161,2-Dichloroethane5BQL181,2-Dichloroethene5BQL191,2-Dichloroethene (total)5BQL20cis-1,3-Dichloropropane5BQL21trans-1,3-Dichloropropene5BQL22Ethylbenzene5BQL232-Hexanone50BQL24Methylene chloride5BQL254-Methyl-2-pentanone50BQL26Styrene5BQL271,1,2,2-Tetrachloroethane5BQL28Tetrachloroethene5BQL	5	Bromomethane	lø	BQL
8Carbon tetrachloride5BQL9Chlorobenzene5BQL10Dibromochloromethane5BQL11Chloroethane10BQL122-Chloroethylvinyl ether10BQL13Chloroform5BQL14Chloromethane10BQL151,1-Dichloroethane5BQL161,2-Dichloroethane5BQL171,1-Dichloroethane5BQL181,2-Dichloroethene (total)5BQL20cis-1,3-Dichloropropene5BQL21trans-1,3-Dichloropropene5BQL22Ethylbenzene5BQL232-Hexanone50BQL24Methylene chloride5BQL254-Methyl-2-pentanone50BQL26Styrene5BQL271,1,2,2-Tetrachloroethane5BQL28Tetrachloroethene5BQL	6	2-Butanone	100	BQL
9Chlorobenzene5BQL10Dibromochloromethane5BQL11Chloroethane10BQL122-Chloroethylvinyl ether10BQL13Chloroform5BQL14Chloromethane10BQL151,1-Dichloroethane5BQL161,2-Dichloroethane5BQL171,1-Dichloroethane5BQL181,2-Dichloroethene5BQL20cis-1,3-Dichloropropene5BQL21trans-1,3-Dichloropropene5BQL22Ethylbenzene5BQL232-Hexanone50BQL24Methylene chloride5BQL254-Methyl-2-pentanone50BQL26Styrene5BQL28Tetrachloroethene5BQL	7	Carbon disulfide	5	BQL
10Dibromochloromethane5BQL11Chloroethane10BQL122-Chloroethylvinyl ether10BQL13Chloroform5BQL14Chloromethane10BQL151,1-Dichloroethane5BQL161,2-Dichloroethane5BQL171,1-Dichloroethane5BQL181,2-Dichloroethene (total)5BQL20cis-1,3-Dichloropropene5BQL21trans-1,3-Dichloropropene5BQL22Ethylbenzene5BQL232-Hexanone50BQL24Methylene chloride5BQL254-Methyl-2-pentanone50BQL26Styrene5BQL271,1,2,2-Tetrachloroethane5BQL28Tetrachloroethene5BQL	8	Carbon tetrachloride		BQL
11Chloroethane10BQL122-Chloroethylvinyl ether10BQL13Chloroform5BQL14Chloromethane10BQL151,1-Dichloroethane5BQL161,2-Dichloroethane5BQL171,1-Dichloroethene5BQL181,2-Dichloroethene (total)5BQL20cis-1,3-Dichloropropane5BQL21trans-1,3-Dichloropropene5BQL22Ethylbenzene5BQL232-Hexanone50BQL24Methylene chloride5BQL254-Methyl-2-pentanone50BQL26Styrene5BQL271,1,2,2-Tetrachloroethane5BQL28Tetrachloroethene5BQL	9	Chlorobenzene		BQL
122-Chloroethylvinyl ether10BQL13Chloroform5BQL14Chloromethane10BQL151,1-Dichloroethane5BQL161,2-Dichloroethane5BQL171,1-Dichloroethene5BQL181,2-Dichloroethene (total)5BQL191,2-Dichloropropane5BQL20cis-1,3-Dichloropropene5BQL21trans-1,3-Dichloropropene5BQL22Ethylbenzene5BQL232-Hexanone50BQL24Methylene chloride5BQL254-Methyl-2-pentanone50BQL26Styrene5BQL271,1,2,2-Tetrachloroethane5BQL28Tetrachloroethene5BQL	1Ø	Dibromochloromethane	5	BQL
13Chloroform5BQL14Chloromethane10BQL151,1-Dichloroethane5BQL161,2-Dichloroethane5BQL171,1-Dichloroethene5BQL181,2-Dichloroethene (total)5BQL191,2-Dichloropropane5BQL20cis-1,3-Dichloropropene5BQL21trans-1,3-Dichloropropene5BQL22Ethylbenzene5BQL232-Hexanone50BQL24Methylene chloride50BQL254-Methyl-2-pentanone50BQL26Styrene5BQL271,1,2,2-Tetrachloroethane5BQL28Tetrachloroethene5BQL	11	Chloroethane	1Ø	BQL
14Chloromethane10BQL151,1-Dichloroethane5BQL161,2-Dichloroethane5BQL171,1-Dichloroethene5BQL181,2-Dichloroethene (total)5BQL191,2-Dichloropropane5BQL20cis-1,3-Dichloropropene5BQL21trans-1,3-Dichloropropene5BQL22Ethylbenzene5BQL232-Hexanone50BQL24Methylene chloride5BQL254-Methyl-2-pentanone50BQL26Styrene5BQL271,1,2,2-Tetrachloroethane5BQL28Tetrachloroethene5BQL	12	2-Chloroethylvinyl ether	10	BQL
151,1-Dichloroethane5BQL161,2-Dichloroethane5BQL171,1-Dichloroethene5BQL181,2-Dichloroethene (total)5BQL191,2-Dichloropropane5BQL20cis-1,3-Dichloropropene5BQL21trans-1,3-Dichloropropene5BQL22Ethylbenzene5BQL232-Hexanone50BQL24Methylene chloride5BQL254-Methyl-2-pentanone50BQL26Styrene5BQL271,1,2,2-Tetrachloroethane5BQL28Tetrachloroethene5BQL	13	Chloroform	5	BQL
161,2-Dichloroethane5BQL171,1-Dichloroethene5BQL181,2-Dichloroethene (total)5BQL191,2-Dichloropropane5BQL20cis-1,3-Dichloropropene5BQL21trans-1,3-Dichloropropene5BQL22Ethylbenzene5BQL232-Hexanone50BQL24Methylene chloride5BQL254-Methyl-2-pentanone50BQL26Styrene5BQL271,1,2,2-Tetrachloroethane5BQL28Tetrachloroethene5BQL	14	Chloromethane	10	BQL
171,1-Dichloroethene5BQL181,2-Dichloroethene (total)5BQL191,2-Dichloropropane5BQL20cis-1,3-Dichloropropene5BQL21trans-1,3-Dichloropropene5BQL22Ethylbenzene5BQL232-Hexanone50BQL24Methylene chloride5BQL254-Methyl-2-pentanone50BQL26Styrene5BQL271,1,2,2-Tetrachloroethane5BQL28Tetrachloroethene5BQL	15	1,1-Dichloroethane	5	BQL
181,2-Dichloroethene (total)5BQL191,2-Dichloropropane5BQL20cis-1,3-Dichloropropene5BQL21trans-1,3-Dichloropropene5BQL22Ethylbenzene5BQL232-Hexanone50BQL24Methylene chloride5BQL254-Methyl-2-pentanone50BQL26Styrene5BQL271,1,2,2-Tetrachloroethane5BQL28Tetrachloroethene5BQL	16	1,2-Dichloroethane		BQL
191,2-Dichloropropane5BQL20cis-1,3-Dichloropropene5BQL21trans-1,3-Dichloropropene5BQL22Ethylbenzene5BQL232-Hexanone50BQL24Methylene chloride5BQL254-Methyl-2-pentanone50BQL26Styrene5BQL271,1,2,2-Tetrachloroethane5BQL28Tetrachloroethene5BQL	17	1,1-Dichloroethene	5	BQL
2Øcis-1,3-Dichloropropene5BQL21trans-1,3-Dichloropropene5BQL22Ethylbenzene5BQL232-Hexanone5ØBQL24Methylene chloride5BQL254-Methyl-2-pentanone5ØBQL26Styrene5BQL271,1,2,2-Tetrachloroethane5BQL28Tetrachloroethene5BQL	18	• • •	5	BQL
21trans-1,3-Dichloropropene5BQL22Ethylbenzene5BQL232-Hexanone50BQL24Methylene chloride5BQL254-Methyl-2-pentanone50BQL26Styrene5BQL271,1,2,2-Tetrachloroethane5BQL28Tetrachloroethene5BQL	19	1,2-Dichloropropane	5	BQL
22Ethylbenzene5BQL232-Hexanone50BQL24Methylene chloride5BQL254-Methyl-2-pentanone50BQL26Styrene5BQL271,1,2,2-Tetrachloroethane5BQL28Tetrachloroethene5BQL	2Ø	cis-1,3-Dichloropropene	5	BQL
232-Hexanone50BQL24Methylene chloride5BQL254-Methyl-2-pentanone50BQL26Styrene5BQL271,1,2,2-Tetrachloroethane5BQL28Tetrachloroethene5BQL	21	trans-1,3-Dichloropropene	5	BQL
24Methylene chloride5BQL254-Methyl-2-pentanone50BQL26Styrene5BQL271,1,2,2-Tetrachloroethane5BQL28Tetrachloroethene5BQL	22	Ethylbenzene	5	BQL
254-Methyl-2-pentanone50BQL26Styrene5BQL271,1,2,2-Tetrachloroethane5BQL28Tetrachloroethene5BQL	23	2-Hexanone	5Ø	BQL
26Styrene5BQL271,1,2,2-Tetrachloroethane5BQL28Tetrachloroethene5BQL	24	-	5	BQL
271,1,2,2-Tetrachloroethane5BQL28Tetrachloroethene5BQL	25	4-Methyl-2-pentanone	5Ø	BQL
28 Tetrachloroethene 5 BQL	26	-	5	BQL
	27	1,1,2,2-Tetrachloroethane	5	BQL
29 Toluene 5 Bot.	28	Tetrachloroethene	5	BQL
	29	Toluene	5	BQL
30 1,1,1-Trichloroethane 5 BQL	3Ø	1,1,1-Trichloroethane	5	BQL
31 1,1,2-Trichloroethane 5 BQL	31	1,1,2-Trichloroethane	5	BQL
32 Trichloroethene 5 BQL	32		5	BQL
33 Vinyl acetate 50 BQL	33	Vinyl acetate	5Ø	BQL
34 Vinyl chloride 10 BOL		-	10	BQL
35 Xylenes (total) 5 BQL	35	Xylenes (total)	5	BQL

Comments:

Sample specific quantitation limits may be calculated by multiplying the quantitation limit by the dilution factor. BQL = Below Quantitation Limit N/A = Not ApplicableCorresponding Samples: 170-077-2,4 Filename: Ø515eØ2

×

FORM 8240 Rev. 100391

·

TENTATIVELY IDENTIFIED COMPOUNDS

IEA Sample Number:	170-077				
Sample Identification:	QC Blank	VBLK56)			
Applicable Fraction:	Volatile	XBase/	Neutral	Acid	Other

Tentatively Identified Compounds (TIC's) are compounds which are not in the specific target compound list but may be present in the sample. An attempt to identify such compounds is made through comparison of the mass spectra of these unknown compounds in the sample with approximately 50,000 spectra contained in the computer's mass spectral library. Analytical standards are not utilized in this procedure and therefore, compounds identified in this manner are referred to as "Tentative" identifications.

IEA personnel identify and classify these compounds using identification guidelines provided by the USEPA under the Contract Laboratory Program (CLP). A gross estimation of concentration is accomplished by comparing the response of the unknown compound versus the nearest internal standard in the total ion chromatogram. As per EPA CLP guidance, TIC's are identified and quantitated only if the response is equal to or greater than 10% of the nearest internal standard. Compounds identified as "unknown" are not uncommon utilizing these guidelines since the requirements for even a tentative identification are quite stringent.

> Estimated Concentration (ug/L)

> > 5

TIC Compound Name

1. None detected per above criteria.

Comments:

FORM TIC Rev. 120491

. . . .

1

GC/MS PURGEABLES SW-846 METHOD 824Ø

n Aquanon Company

IEA Sample Number:	17 0-077	Date Received:	N/A
Client Name:	S&ME Raleigh	Date Sampled:	N/A
Client Project ID:	1054-92-003 Camp Lej.	Date Analyzed:	Ø5/19/92
Sample Identification:	QC Blank (VBLK75)	Analysis By:	Stephenson
Matrix:	Water	Dilution Factor:	1.Ø

Number	Compound	Quantitation Limit	Results Concentration
		(ug/L)	(ug/L)
1	Acetone	100	BQL
2	Benzene	5	BQL
3	Bromodichloromethane	5	BQL
4	Bromoform	5	BQL
5	Bromomethane	10	BQL
6	2-Butanone	100	BQL
7	Carbon disulfide	5	BQL
8	Carbon tetrachloride	5	BQL
9	Chlorobenzene	5	BQL
1Ø	Dibromochloromethane	5	BQL
11	Chloroethane	1Ø	BQL
12	2-Chloroethylvinyl ether	1Ø	BQL
13	Chloroform	5	BQL
14	Chloromethane	1Ø	BQL
15	1,1-Dichloroethane	5	BQL
16	1,2-Dichloroethane	5	BQL
17	1,1-Dichloroethene	5	BQL
18	1,2-Dichloroethene (total)	5	BQL
19	1,2-Dichloropropane	5	BQL
2Ø	cis-1,3-Dichloropropene	5	BQL
21	trans-1,3-Dichloropropene	5	BQL
22	Ethylbenzene	5	BQL
23	2-Hexanone	5Ø	BQL
24	Methylene chloride	5	BQL
25	4-Methyl-2-pentanone	5Ø	BQL
26	Styrene	5	BQL
27	1,1,2,2-Tetrachloroethane	5	BQL.
28	Tetrachloroethene	5	BQL
29	Toluene	5	BQL
3Ø	1,1,1-Trichloroethane	5	BQL
31	1,1,2-Trichloroethane	5	BQL
32	Trichloroethene	5	BQL
33	Vinyl acetate	5Ø	BQL
34	Vinyl chloride	10	BQL
35	Xylenes (total)	5	BQL

Comments:

Sample specific quantitation limits may be calculated by multiplying the quantitation limit by the dilution factor. BQL = Below Quantitation Limit N/A = Not Applicable Corresponding Samples: 170-077-1,3Filename: 0519702

FORM 824Ø Rev. 100391

TENTATIVELY IDENTIFIED COMPOUNDS

IEA Sample Number:	170-077		
Sample Identification:	QC Blank	(VBLK75)	
Applicable Fraction:	Volatile	XBase/NeutralAcidOthe	r

Tentatively Identified Compounds (TIC's) are compounds which are not in the specific target compound list but may be present in the sample. An attempt to identify such compounds is made through comparison of the mass spectra of these unknown compounds in the sample with approximately 50,000 spectra contained in the computer's mass spectral library. Analytical standards are not utilized in this procedure and therefore, compounds identified in this manner are referred to as "Tentative" identifications.

IEA personnel identify and classify these compounds using identification guidelines provided by the USEPA under the Contract Laboratory Program (CLP). A gross estimation of concentration is accomplished by comparing the response of the unknown compound versus the nearest internal standard in the total ion chromatogram. As per EPA CLP guidance, TIC's are identified and quantitated only if the response is equal to or greater than 10% of the nearest internal standard. Compounds identified as "unknown" are not uncommon utilizing these guidelines since the requirements for even a tentative identification are quite stringent.

> Estimated Concentration (ug/L)

> > 5

TIC Compound Name

1. None detected per above criteria.

Comments:

GC/MS PURGEABLES SW-846 METHOD 8240

IEA Sample Number:	170-077	Date Received:	N/A
Client Name:	S&ME Raleigh	Date Sampled:	N/A
Client Project ID:	1054-92-003 Camp Lej.	Date Analyzed:	Ø5/13/92
Sample Identification:	QC Blank (VBLK54)	Analysis By:	Butler
Matrix:	Water	Dilution Factor:	1.Ø

Number	Compound	Quantitation	Results
		Limit	Concentration
		(ug/L)	(ug/L)
1	Acetone	100	BQL
2	Benzene	5	BQL
3	Bromodichloromethane	5	BQL
4	Bromoform	5	BQL
5	Bromomethane	lø	BQL
6	2-Butanone	100	BQL
7	Carbon disulfide	5	BQL
8	Carbon tetrachloride	5	BQL
9	Chlorobenzene	5	BQL
1Ø	Dibromochloromethane	5	BQL
11	Chloroethane	10	BQL
12	2-Chloroethylvinyl ether	1Ø	BQL
13	Chloroform	5	BQL
14	Chloromethane	10	BQL
15	1,1-Dichloroethane	.5	BQL
16	1,2-Dichloroethane	5	BQL
17	1,1-Dichloroethene	5	BQL
18	1,2-Dichloroethene (total)	5	BQL
19	1,2-Dichloropropane	5	BQL
2Ø	cis-1,3-Dichloropropene	5	BQL
21	trans-1,3-Dichloropropene	5	BQL
22	Ethylbenzene	5	BQL
23	2-Hexanone	50	BQL
24	Methylene chloride	5	BQL
25	4-Methyl-2-pentanone	5Ø	BQL
26	Styrene	5	BQL
27	1,1,2,2-Tetrachloroethane	5	BQL
28	Tetrachloroethene	5	BQL
29	Toluene	5	BQL
3Ø	1,1,1-Trichloroethane	5	BOL
31	1,1,2-Trichloroethane	5	BQL
32	Trichloroethene	5	BQL
33	Vinyl acetate	5Ø	BOL
34	Vinyl chloride	1Ø	BOL
35	Xylenes (total)	5	BQL
			-

Comments:

Sample specific quantitation limits may be calculated by multiplying the quantitation limit by the dilution factor. BQL = Below Quantitation Limit N/A = Not ApplicableCorresponding Samples: 170-077-5,6,7,8,9

TENTATIVELY IDENTIFIED COMPOUNDS

IEA Sample Number:	170-077		
Sample Identification:	QC Blank	(VBLK54)	
Applicable Fraction:	Volatile	XBase/Neutral Acid	Other

Tentatively Identified Compounds (TIC's) are compounds which are not in the specific target compound list but may be present in the sample. An attempt to identify such compounds is made through comparison of the mass spectra of these unknown compounds in the sample with approximately 50,000 spectra contained in the computer's mass spectral library. Analytical standards are not utilized in this procedure and therefore, compounds identified in this manner are referred to as "Tentative" identifications.

IEA personnel identify and classify these compounds using identification guidelines provided by the USEPA under the Contract Laboratory Program (CLP). A gross estimation of concentration is accomplished by comparing the response of the unknown compound versus the nearest internal standard in the total ion chromatogram. As per EPA CLP guidance, TIC's are identified and quantitated only if the response is equal to or greater than 10% of the nearest internal standard. Compounds identified as "unknown" are not uncommon utilizing these guidelines since the requirements for even a tentative identification are quite stringent.

> Estimated Concentration (ug/L)

> > 5

TIC Compound Name

1. None detected per above criteria

Comments:

FORM TIC Rev. 120491

.

PESTICIDES / PCBs SW-846 METHOD 8080

1.Ø

IEA Sample Number: 170-077-1 Date Received: Ø5/Ø7/92 Client Name: S&ME Raleigh Date Sampled: Ø5/Ø5/92 Client Project ID: 1054-92-003 Date Extracted: Ø5/Ø8/92 Sample Identification: MW-1 Date Analyzed: Ø5/16/92 Matrix: Water Analysis By: Travis Dilution Factor:

		Quantitation	Results
		Limit	Concentration
Number	Compound	(ug/L)	(ug/L)
1	alpha-BHC	0.050	BQL
2	beta-BHC	Ø.Ø5Ø	BQL
3	delta-BHC	Ø.Ø5Ø	BQL
4	gamma-BHC (Lindane)	Ø.Ø5Ø	BQL
5	Heptachlor	Ø.Ø5Ø	BQL
6	Aldrin	Ø.Ø5Ø	BQL
7	Heptachlor epoxide	Ø.Ø5Ø	BQL
8	Endosulfan I	Ø.Ø5Ø	BQL
9	Dieldrin	Ø.1Ø	BQL
10	4,4'-DDE	Ø.1Ø	BQL
11	Endrin	Ø.1Ø	BQL
12	Endosulfan II	Ø.1Ø	BQL
13	4,4'-DDD	Ø.1Ø	BQL
14	Endosulfan sulfate	Ø.1Ø	BQL
15	4,4'-DDT	Ø.1Ø	BQL
16	Methoxychlor	Ø.5Ø	BQL
17	Toxaphene	1.0	BQL
18	Aroclor 1016	Ø.5Ø	BQL
19	Aroclor 1221	Ø.5Ø	BQL
29	Aroclor 1232	Ø.5Ø	BQL
21	Aroclor 1242	Ø.5Ø	BQL
22	Aroclor 1248	Ø.5Ø	BQL
23	Aroclor 1254	1.0	BQL
24	Aroclor 1260	1.0	BOL
25	Chlordane (technical)	Ø.5Ø	BQL
26	Endrin aldehyde	Ø.1Ø	BQL

Additional Compounds:

27	Endrin ketone	Ø.1Ø	BQL
----	---------------	------	-----

PESTICIDES / PCBs SW-846 METHOD 8080

IEA Sample Number: 170-077-2 Date Received: Ø5/Ø7/92 Client Name: S&ME Raleigh Date Sampled: Ø5/Ø5/92 Client Project ID: 1054-92-003 Date Extracted: Ø5/Ø8/92 Sample Identification: MW-2 Date Analyzed: Ø5/16/92 Matrix: Water Analysis By: Travis Dilution Factor: 1.0

Number	Compound	Quantitation Limit (ug/L)	Results Concentration (ug/L)
1	alpha-BHC	0.050	BQL
2	beta-BHC	0.050	BQL
3	delta-BHC	0.050	BQL
4	gamma-BHC (Lindane)	0.050	BQL
5	Heptachlor	0.050	BQL
6	Aldrin	0.050	BQL
7	Heptachlor epoxide	Ø.Ø5Ø	BQL
8	Endosulfan I	Ø.Ø5Ø	BQL
9	Dieldrin	Ø.1Ø	BQL.
1Ø	4,4'-DDE	Ø.1Ø	BQL
11	Endrin	Ø.1Ø	BOL
12	Endosulfan II	Ø.1Ø	BQL
13	4,4'-DDD	Ø.1Ø	BQL
14	Endosulfan sulfate	Ø.1Ø	BQL
15	4,4'-DDT	Ø.1Ø	BQL
16	Methoxychlor	Ø.5Ø	BQL
17	Toxaphene	1.0	BQL
18	Aroclor 1016	Ø.5Ø	BQL
19	Aroclor 1221	Ø.5Ø	BQL
2Ø	Aroclor 1232	Ø.5Ø	BQL
21	Aroclor 1242	Ø.5Ø	BQL
22	Aroclor 1248	Ø.5Ø	BQL
23	Aroclor 1254	1.Ø	BQL
24	Aroclor 1260	1.0	BQL
25	Chlordane (technical)	Ø.5Ø	BQL
26	Endrin aldehyde	Ø.1Ø	BQL

Additional Compounds:

27 Endrin ketone Ø.1Ø BQL

PESTICIDES / PCBs SW-846 METHOD 8080

IEA Sample Number:170-077-3Client Name:S&ME RaleighClient Project ID:1054-92-003Sample Identification:MW-3Matrix:Water

Date Received:	Ø5/Ø7/92
Date Sampled:	Ø5/Ø5/92
Date Extracted:	Ø5/Ø8/92
Date Analyzed:	Ø5/16/92
Analysis By:	Travis
Dilution Factor:	1.0

		Quantitation	Results
		Limit	Concentration
Number	Compound	(ug/L)	(ug/L)
1	alpha-BHC	Ø.Ø5Ø	505
	beta-BHC	Ø.050	BQL
2 3			BQL
	delta-BHC	Ø.050	BQL
4	gamma-BHC (Lindane)	Ø.Ø5Ø	BQL
5	Heptachlor	Ø.Ø5Ø	BQL
6	Aldrin	Ø.Ø5Ø	BQL
7	Heptachlor epoxide	Ø.Ø5Ø	BQL
8	Endosulfan I	Ø.Ø5Ø	BQL
9	Dieldrin	Ø.1Ø	BQL
10	4,4'-DDE	Ø.1Ø	BQL
11	Endrin	Ø.1Ø	BQL
12	Endosulfan II	Ø.1Ø	BQL
13	4,4'-DDD	Ø.1Ø	BQL
14	Endosulfan sulfate	Ø.1Ø	BQL
15	4,4'-DDT	Ø.1Ø	BQL
16	Methoxychlor	0.50	BQL
17	Toxaphene	1.0	BQL
18	Aroclor 1016	Ø.5Ø	BQL
19	Aroclor 1221	Ø.5Ø	BQL
20	Aroclor 1232	Ø.5Ø	BQL
21	Aroclor 1242	Ø.5Ø	BQL
22	Aroclor 1242		
23	Aroclor 1254	Ø.5Ø	BQL
		1.0	BQL
24	Aroclor 1260	1.0	BQL
25	Chlordane (technical)	Ø.5Ø	BQL
26	Endrin aldehyde	Ø.1Ø	BQL

Additional Compounds:

27	Endrin ketone	Ø.1Ø	BQL
----	---------------	------	-----

PESTICIDES / PCBs SW-846 METHOD 8080

IEA Sample Client Name Client Proj Sample Iden Matrix:	e:	170-077-4 S&ME Raleigh 1054-92-003 MW-4 Water	Date Received: Date Sampled: Date Extracted Date Analyzed: Analysis By: Dilution Facto	05/05/92 1: 05/08/92 05/17/92 Travis
			Quantitation	Results
			Limit	Concentration
Number	Compound	1	(ug/L)	(ug/L)
1	alpha-BHC		0.050	BQL
2	beta-BHC		Ø.Ø5Ø	BOL
· 3	delta-BHC		Ø.Ø5Ø	BQL
4	gamma-BHC (Li	Indane)	Ø.Ø5Ø	BQL
5	Heptachlor		Ø.Ø5Ø	BQL
6	Aldrin		Ø.Ø5Ø	BQL
7	Heptachlor ep	poxide	Ø.050	BQL
8	Endosulfan I		Ø.Ø5Ø	BQL
9	Dieldrin		Ø.1Ø	BQL
10	4,4'-DDE		Ø.1Ø	BQL
11	Endrin		Ø.1Ø	BQL
12	Endosulfan II	[Ø.1Ø	BQL
13	4,4'-DDD		Ø.1Ø	BQL
14	Endosulfan su	lfate	Ø.1Ø	BQL
15	4,4'-DDT		Ø.1Ø	BQL
16	Methoxychlor		Ø.5Ø	BQL
17	Toxaphene		1.0	BQL
18	Aroclor 1016		Ø.5Ø	BQL
19	Aroclor 1221		Ø.5Ø	BQL
2Ø	Aroclor 1232		Ø.5Ø	BQL
21	Aroclor 1242		Ø.5Ø	BQL
22	Aroclor 1248		Ø.5Ø	BQL
23	Aroclor 1254		1.Ø	BQL
24	Aroclor 1260		1.Ø	BQL
25	Chlordane (te	-	Ø.5Ø	BQL
26	Endrin aldehy	yde	Ø.1Ø	BQL

Additional Compounds:

27 Endrin ketone Ø.1Ø BQL

· • · · · ·

PESTICIDES / PCBs SW-846 METHOD 8080

170-077-5 Date Received: Ø5/Ø7/92 IEA Sample Number: Client Name: S&ME Raleigh Date Sampled: Ø5/Ø5/92 Client Project ID: 1054-92-003 Date Extracted: Ø5/Ø8/92 Sample Identification: MW-5 Date Analyzed: Ø5/17/92 Water Analysis By: Matrix: Travis Dilution Factor: 1.Ø

		Quantitation	Results
		Limit	Concentration
Number	Compound	(ug/L)	(ug/L)
1	alpha-BHC	Ø.05Ø	BQL
2	beta-BHC	Ø.Ø5Ø	BQL
3	delta-BHC	0.050	BQL
4	gamma-BHC (Lindane)	0.050	BQL
5	Heptachlor	0.050	BQL
6	Aldrin	Ø.Ø5Ø	BQL
7	Heptachlor epoxide	0.050	BQL
8	Endosulfan I	Ø.Ø5Ø	BQL
9	Dieldrin	Ø.1Ø	BQL
1Ø	4,4'-DDE	Ø.1Ø	BQL
11	Endrin	Ø.1Ø	BQL
12	Endosulfan II	Ø.1Ø	BQL
13	4,4'-DDD	Ø.1Ø	BQL
14	Endosulfan sulfate	Ø.1Ø	BQL
15	4,4'-DDT	0.10	BQL
16	Methoxychlor	Ø.5Ø	BQL
17	Toxaphene	1.0	BQL
18	Aroclor 1016	Ø.5Ø	BQL
19	Aroclor 1221	Ø.5Ø	BQL
2Ø	Aroclor 1232	Ø.5Ø	BQL
21	Aroclor 1242	Ø.5Ø	BQL
22	Aroclor 1248	Ø.5Ø	BQL
23	Aroclor 1254	1.Ø	BQL
24	Aroclor 1260	1.0	BQL
25	Chlordane (technical)	Ø.5Ø	BQL
26	Endrin aldehyde	Ø.10	BQL

Additional Compounds:

27 En	drin ketone	Ø.1Ø	BQL
-------	-------------	------	-----

. . . .

PESTICIDES / PCBs SW-846 METHOD 8080

IEA Sample Number: 170-077-7 Date Received: Ø5/Ø7/92 Client Name: S&ME Raleigh Date Sampled: Ø5/Ø5/92 Client Project ID: 1054-92-003 Date Extracted: Ø5/Ø8/92 Sample Identification: MW-7 Date Analyzed: Ø5/17/92 Water Analysis By: Matrix: Travis Dilution Factor: 1.Ø

		Quantitation	Results
		Limit	Concentration
Number	Compound	(ug/L)	(ug/L)
1	alpha-BHC	0.050	BQL
2	beta-BHC	0.050	BQL
3	delta-BHC	0.050	BQL
4	gamma-BHC (Lindane)	0.050	BQL
5	Heptachlor	Ø.Ø5Ø	BQL
6	Aldrin	Ø.Ø5Ø	BQL
7	Heptachlor epoxide	Ø.Ø5Ø	BQL
8	Endosulfan I	Ø.Ø5Ø	BQL
9	Dieldrin	Ø.1Ø	BQL
10	4,4'-DDE	Ø.1Ø	BQL
11	Endrin	Ø.1Ø	BQL
12	Endosulfan II	Ø.1Ø	BQL
13	4,4'-DDD	Ø.1Ø	BQL
14	Endosulfan sulfate	Ø.1Ø	BQL
15	4,4'-DDT	Ø.1Ø	BQL
16	Methoxychlor	Ø.5Ø	BQL
17	Toxaphene	1.0	BQL
18	Aroclor 1016	Ø.5Ø	BQL
19	Aroclor 1221	Ø.5Ø	BQL
20	Aroclor 1232	Ø.5Ø	BQL
21	Aroclor 1242	Ø.5Ø	BQL
22	Aroclor 1248	Ø.5Ø	BQL
23	Aroclor 1254	1.0	BQL
24	Aroclor 1260	1.0	BQL
25	Chlordane (technical)	Ø.5Ø	BQL
26	Endrin aldehyde	Ø.1Ø	BQL

Additional Compounds:

27	Endrin ketone	Ø.1Ø	BOL
		V • 10	

PESTICIDES / PCBs SW-846 METHOD 8080

IEA Sample Number: 170-077-6 Date Received: Ø5/Ø7/92 Client Name: S&ME Raleigh Date Sampled: Ø5/Ø5/92 Date Extracted: Client Project ID: 1054-92-003 Ø5/Ø8/92 MW-6 Sample Identification: Date Analyzed: Ø5/17/92 Water Analysis By: Matrix: Travis Dilution Factor: 1.0

		Quantitation	Results
		Limit	Concentration
Number	Compound	(ug/L)	(ug/L)
1	alpha-BHC	Ø.Ø5Ø	BQL
2	beta-BHC	Ø.Ø5Ø	BQL
3	delta-BHC	0.050	BQL
4	gamma-BHC (Lindane)	Ø.Ø5Ø	BQL
5	Heptachlor	0.050	BQL
6	Aldrin	Ø.Ø5Ø	BQL
7	Heptachlor epoxide	0.050	BQL
8	Endosulfan I	0.050	BQL
9	Dieldrin	Ø.1Ø	BQL
10	4,4'-DDE	Ø.1Ø	BQL
11	Endrin	Ø.1Ø	BQL
12	Endosulfan II	Ø.1Ø	BQL
13	4,4'-DDD	Ø.1Ø	BQL
14	Endosulfan sulfate	0.10	BQL
15	4,4'-DDT	Ø.1Ø	BQL
16	Methoxychlor	Ø.5Ø	BQL
17	Toxaphene	1.0	BQL
18	Aroclor 1016	Ø.5Ø	BQL
19	Aroclor 1221	Ø.5Ø	BQL
2Ø	Aroclor 1232	Ø.5Ø	BQL
21	Aroclor 1242	Ø.5Ø	BQL
22	Aroclor 1248	Ø.5Ø	BQL
23	Aroclor 1254	1.0	BQL
24	Aroclor 1260	1.0	BQL
25	Chlordane (technical)	Ø.5Ø	BQL
26	Endrin aldehyde	Ø.1Ø	BQL

Additional Compounds:

27	Endrin	ketone	Ø.1Ø	BOL
<u> </u>		Vecoue	D • T D	DUL

PESTICIDES / PCBs SW-846 METHOD 8080

Ø5/Ø7/92

Ø5/Ø5/92

Ø5/Ø8/92

Ø5/17/92

Travis

IEA Sample Number: 170-077-8 Date Received: Client Name: S&ME Raleigh Date Sampled: 1054-92-003 Date Extracted: Client Project ID: Sample Identification: MW-8 Date Analyzed: Water Analysis By: Matrix:

		Dilution Fac	tor: 1.0
		Quantitation	Results
		Limit	Concentration
Number	Compound	(ug/L)	(ug/L)
l	alpha-BHC	Ø.Ø5Ø	BQL
2	beta-BHC	Ø.Ø5Ø	BQL
3	delta-BHC	Ø.Ø5Ø	BQL
4	gamma-BHC (Lindane)	0.050	BQL
5	Heptachlor	0.050	BQL
6	Aldrin	0.050	BQL
7	Heptachlor epoxide	0.050	BQL
8	Endosulfan I	0.050	BQL
9	Dieldrin	Ø.1Ø	BQL
10	4,4'-DDE	Ø.1Ø	BQL
11	Endrin	Ø.1Ø	BQL
12	Endosulfan II	Ø.1Ø	BQL
13	4,4'-DDD	Ø.1Ø	BQL
14	Endosulfan sulfate	0.10	BQL
15	4,4'-DDT	Ø.1Ø	BQL
16	Methoxychlor	Ø.5Ø	BQL
17	Toxaphene	1.0	BQL
18	Aroclor 1016	Ø.5Ø	BQL
19	Aroclor 1221	Ø.5Ø	BQL
2Ø	Aroclor 1232	Ø.5Ø	BQL
21	Aroclor 1242	Ø.5Ø	BQL
22	Aroclor 1248	Ø.5Ø	BQL
23	Aroclor 1254	1.Ø	BQL
24	Aroclor 1260	1.Ø	BQL
25	Chlordane (technical)	Ø.5Ø	BQL
26	Endrin aldehyde	0.10	BQL

Additional Compounds:

27 Endrin ketone Ø.1Ø BQL

PESTICIDES / PCBs SW-846 METHOD 8080

IEA Sample Number:	170-077-9	Date Received:	Ø5/Ø7/92
Client Name:	S&ME Raleigh	Date Sampled:	Ø5/Ø5/92
Client Project ID:	1054-92-003	Date Extracted:	Ø5/Ø8/92
Sample Identification:	MW-9	Date Analyzed:	Ø5/17/92
Matrix:	Water	Analysis By:	Travis
		Dilution Factor:	1.0

		Quantitation	Results
		Limit	Concentration
Number	Compound	(ug/L)	(ug/L)
1	alpha-BHC	Ø.Ø5Ø	BQL
2	beta-BHC	Ø.Ø5Ø	BQL
3	delta-BHC	0.050	BQL
4	gamma-BHC (Lindane)	Ø.Ø5Ø	BQL
5	Heptachlor	Ø.Ø5Ø	BQL
6	Aldrin	0.050	BQL
7	Heptachlor epoxide	Ø.Ø5Ø	BQL
8	Endosulfan I	0.050	BQL
9	Dieldrin	Ø.1Ø	BQL
1Ø	4,4'-DDE	Ø.1Ø	BQL
11	Endrin	Ø.1Ø	BQL
12	Endosulfan II	Ø.1Ø	BQL
13	4,4'-DDD	Ø.1Ø	BQL
14	Endosulfan sulfate	Ø.1Ø	BQL
15	4,4'-DDT	Ø.1Ø	BQL
16	Methoxychlor	Ø.5Ø	BQL
17	Toxaphene	1.Ø	BQL
18	Aroclor 1016	Ø.5Ø	BQL
19	Aroclor 1221	Ø.5Ø	BQL
2Ø	Aroclor 1232	Ø.5Ø	BQL
21	Aroclor 1242	Ø.5Ø	BQL
22	Aroclor 1248	Ø.5Ø	BQL
23	Aroclor 1254	1.Ø	BQL
24	Aroclor 1260	1.0	BQL
25	Chlordane (technical)	Ø.5Ø	BQL
26	Endrin aldehyde	Ø.1Ø	BQL

Additional Compounds:

27 Endrin ketone

Ø.1Ø

BQL

Comments:

•

PESTICIDES / PCBs SW-846 METHOD 8080

170-077 Date Received: IEA Sample Number: N/A S&ME Raleigh Client Name: Date Sampled: N/A Date Extracted: Ø5/Ø8/92 Client Project ID: 1054-92-003 QC Blank Date Analyzed: Sample Identification: Ø5/16/92 Water Matrix: Analysis By: Travis Dilution Factor: 1.0

		Quantitation	Results
		Limit	Concentration
Number	Compound	(ug/L)	(ug/L)
1	alpha-BHC	Ø.Ø5Ø	BQL
2	beta-BHC	Ø.Ø5Ø	BQL
3	delta-BHC	Ø.Ø5Ø	BQL
4	gamma-BHC (Lindane)	Ø.05Ø	BQL
5	Heptachlor	Ø.05Ø	BQL
6	Aldrin	Ø.05Ø	BQL
7	Heptachlor epoxide	0.050	BQL
8	Endosulfan I	Ø.05Ø	BQL
9	Dieldrin	Ø.1Ø	BQL
10	4,4'-DDE	Ø.1Ø	BQL
11	Endrin	Ø.1Ø	BQL
12	Endosulfan II	Ø.1Ø	BQL
13	4,4'-DDD	Ø.1Ø	BQL
14	Endosulfan sulfate	Ø.1Ø	BQL
15	4,4'-DDT	Ø.1Ø	BQL
16	Methoxychlor	Ø.5Ø	BQL
17	Toxaphene	1.Ø	BQL
18	Aroclor 1016	Ø.5Ø	BQL
- 19	Aroclor 1221	Ø.5Ø	BQL
20	Aroclor 1232	Ø.5Ø	BQL
21	Aroclor 1242	0.50	BQL
22	Aroclor 1248	Ø.5Ø	BQL
23	Aroclor 1254	1.Ø	BQL
24	Aroclor 1260	1.0	BQL
25	Chlordane (technical)	Ø.5Ø	BQL
26	Endrin aldehyde	Ø.1Ø	BQL

Additional Compounds:

27 Endrin ketone Ø.1Ø BQL

Comments: Sample specific quantitation limits may be calculated by multiplying the quantitation limit by the dilution factor. BQL = Below Quantitation Limit N/A = Not Applicable Corresponding Samples: 170-077-1 through 170-077-9

	testin	vironr Ig con	npany	V									D			N	10:	20	97 7	2
		(, N.C.					-													
,	COMF	PANY																		
SAME	INC														Ρ	age_		_of_		
PROJECT #	·			PROJECT NAME	— с					ng d	i i	REQL	IESTE	D PA	RÀM	ETER	S		 _ •	·. ·
103 12.003			L	ETEUNE	C O N # T	MAT	TRIX	7	1	, ,	<u> </u>	/			<u> </u> 		<u> </u>	1		<u>·</u>
SAMPLERS: (S	GNATUR	E)	, ,		A A	1 4	З., м/		Has Inde	3										
Ansar . YA	ughin) Kine	.U			S 0 - L	W A T W R	024C												
SAMPLE DAT	E TIME	COMP	GRAB	STATION LOCATION	R S	Ļ	E R	$\sqrt{2}$	/ a) a)	/			/	/	/		/		/	
	2:25		X	mw/3	3		X	X		<u></u>							1			
1 17'	v 2'30		X	nuu3	2.		X		X				1	\sim	E					
1 1	1 321		x	11105	3		x	×				P	0	4	20.	00	200	25	6,	
	2 3 30		x	mus	2		X		X			V								
5/ 1	4.21		X	mus 4	3		x	×			-1	E		20.	U) (92	05	04	2
10 7.14	1			nu 4	2		x		X				- -	1.0						
	12 5:20		X	1110 2 1	3		\mathbf{x}	×												
	2 5 23		X	n	2		×		×									1		
	LLIS	·	×	nitila	3		<	×		÷ *										
10 1/5/9	6.18		X	mrul	Z		×		×											
REMOVISHE	AY (SIGN	ATUR		ATEM ATIMES AND AND RECEIVE	DEX	THE PARTY	÷, , , , ,					A QUO	TE NO	• •			IEA	RUSH	NO.	
Sucon X	upint	in and		1/4 B:33 Ocha	1		5-[-		37 Me.	PRO	IECT	ANAG		ASE DI				P.O. NO		
D.L.		18 1 8 Jul # 1		El Han A	T.		1/1/	/	3501											
A REMARKS	ON SAMP	LE RE	CEIPT		IEA REMA	AKS	<i>i</i> /i	6.				运动 的时候。	a an	NR J+R	FIELD	REMA	RKS			

		an envi testing 3000 W	con	npan	У										RD.			Ņ	10:	2	977	'3
		CARY,	N.C.	. 2751	13		KING WAT	rer		CRA [] OTHE	R										
		COMPA	NY							<u></u>												
	ME,														ü		۲	'age_		ot	·	
PROJ	ECT #	No Serger			PROJECT	AME	- C C		FRIX					REQL	IEŞŢI	ED PA	RAM	ETER	S			
54-12		<u> </u>	ν <mark>ν</mark>	LET	TEUNE		C 0 # T			1		+ c. i		1	1					1	1	
SAMPLE	<u>RS: (SIGI</u>	NATURE)		<u> </u>		· .	OF I	S	W													
Allow	- they	the sk.	.w				OF N ER S	S 0 - L	WATER	1	1	1										
SAMPLE	DATE	TIME	COMP	GRAB	STA	TION LOCATION	S	L	нR		0000	/	/	/	/	/	/	/	/	/	/	/+
	\$1/42	7 110		×	mort	, <u>, , , , , , , , , , , , , , , , , , </u>	3		X	×					[1	1	1	[1
14	St. Jan	70'3					2		X		×			Δ.	n A			1	2			
	1. J.	105			INT C	4					,			, , , , , , , , , , , , , , , , , , ,			n		1			-
12					11108		3. 		× ×	~	·				1.1.01	<u>k - 2</u>	lan	15th	1620	L		
14	1/12	ون زن بر		<u> </u>	mad 8		ົາ.				<u>×</u>			-7	ل د	4 m	E					
15		3 50 [°] A		<u> ×</u>	muz		3		×	×				PO	BI	45	20	69	65	a		-
16		8.33	÷	X	muz.		2		À.		<u>×</u>			Ka	eve	h.	oc	2	65	6		
17	5/6/92	8:30	\$ } }	-×	nwa		3		x	X						1		, ,				•
18	\$16/12	8 231	m	X	mija		.7		x		X	Fe	n -	6.	بر9	250	43					
-		7							*	,			Øn	0	200	25	8					
17		•.			· · · · · ·		i'					¥	<u> </u>	<u> </u>					·			1
			2								1	· · · · · ·		A QUO	TE NO				IEA	RUSH	NO.	
Silve	I. Ka	ughing	hi	- 5	6 8 33	Delascan	<u> </u>		56.9	2 8.								/	4) 1		1	₽.1 • •
133 S		-ANTI-IAC	KS/-:	Alex M			ki dokozo.	4		1. 1			ECTN	IANAG	ER (PL	EASE PE	RINT)		P	.O. NC).	
1		WANEN		1	<u>人</u>	plat fail	IDENISTRUM		11/	28.	350 0		() MT T	47.2 A. 49		80.095		REMA		inger ing wi	nana (***	12 (S. 1.5)
🗆 вотт,			STOD	Y SEAL	.S			99 (A. 1)	1.27) <u>k</u>	YC SAS	15 . Norman.	RX 7240	A. 86.92 60	4 4 6 6 4 16 6 7	Radia G	ê litarêkî.	23 W	DENN	ID SEC	1089 - 14 - 315		
	RVED		ALS IN	ITACT		IE	# #	'E	70	7-1	22	2								t.	1	

APPENDIX VI HYDRAULIC CONDUCTIVITY VALUES

ABSTRACT

and the second second

This appendix contains a summary of hydraulic conductivity values for the water table aquifer. Table V-1 shows a summary of hydraulic conductivity values for both, the near surface site soils and the saturated portion of the aquifer. This appendix also contains the laboratory permeability tests; a brief discussion of the Bouwer and Rice Analysis of hydraulic conductivities from slug tests, the graphs of the change in water level with time, intercept points and values used in the calculations, copies of the data recorded, and calculation of hydraulic conductivity by the Hazen Method.

Table VI - 1Summary of Surface Aquifer Hydraulic Conductivity Values (1)Camp Lejeune Landfill Site "G"Camp Lejeune, North Carolina

HYDRAU		TY OF THE UNSA		ON (2)		
Well Location	Screen	Interval	Hydraulic Conductivity			
	Dept (Ft)	Elevation (MSL)	Centimeters per second	Feet per Day		
MW-4	0.5 - 2.5	26.6 - 23.6	1.5 X 10 ⁻³	4.32		
MW-5	5.0 - 7.0	30.3 -28.3	3.0 X 10⁴	0.86		
MW-7	5.0 - 7.0	29.2 - 27.2	1.4 X 10 ⁻³	4.04		
MW-9	10.0 - 12.0	32.9 - 30.9	6.0 X 10 ⁻⁴	1.73		
B-8	5.0 - 7.0	33.0 - 31.0	1.9 X 10 ⁻³	5.48		
B-9	4.0 - 6.0	35.6 - 33.6	3.4 X 10 ⁻³	9.80		
	Geometric Me	ean of Values:	1.16 x 10 ⁻³	3.34		

HYDRA		ITY OF THE SAT	URATED PORTIO	N (2)		
Well Location	Screen	Interval	Hydraulic Conductivity			
	Dept (Ft)	Elevation (MSL)	Centimeters per second	Feet per day		
MW-1	15.0 - 25.0	20.9 - 10.9	3.44 X 10 ⁻⁴	0.98		
MW-2	15.0 - 25.0	12.7 - 2.7	3.10 X 10 ⁻⁴	0.88		
MW-3	15.0 - 25.0	14.0 - 4.0	1.78 X 10 ⁻⁴	0.51		
MW-4	15.0 - 25.0	11.1 - 1.1	2.46 X 10 ⁻⁴	0.70		
MW-5	15.0 - 25.0	20.3 - 10.3	2.13 X 10 ⁻³	6.03		
MW-6	15.0 - 25.0	22.4 - 12.4	5.12 X 10 ⁻³	1.45		
MW-7	15.0 - 25.0	19.2 - 9.2	3.76 X 10 ⁻⁴	1.06		
MW-8	15.0 - 25.0	13.6 - 3.6	2.09 X 10 ⁻⁴	0.59		
MW-9	15.0 - 25.0	28.0 - 18.0	1.07 X 10 ⁻³	3.04		
6-GW-2	15.7 - 25.7	25.4 - 15.4	2.48 X 10 ⁻⁴	0.70		
	Geometric Mear	ns of Values:	4.0 x 10 ⁻⁴	1.13		

(1) (2)

۰.

Hydraulic Conductivity values are determined from laboratory permeability tests of undisturbed samples.

Hydraulic Conductivity values are determined form Slug Tests performed in the wells, using the Bower and Rice Analysis PROCEDURE FOR DETERMINING THE HYDRAULIC CONDUCTIVITY (K) OF AN AQUIFER FROM SLUG TEST DATA USING THE BOUWER AND RICE ANALYSIS

Reference: <u>The Bouwer and Rice Slug Test - An Update</u> by H. Bouwer, pp. 304-309, Ground Water, May - June 1989.

Conditions: The well can be partially penetrating and partially screened. The test may be performed by either adding or evacuating water. Consult the reference for further information.

- Step 1: Determine the well dimensions required for this analysis and complete Figure 1.
- Step 2: The elevational difference in feet between the static water level and the water level at time t seconds during the test is defined as (Y_t). Plot Y_t versus t on the semilog paper provided, following the example shown on Figure 3.
- Step 3: Determine the natural (static) ground water elevation relative to the top of the well screen and the top of the gravel pack. If the slug test is expected to either drain or flood the gravel pack, a double straight line effect may appear in the data plot due to the relatively high K values of the gravel pack or developed zone versus the formation, as shown on Figure 4. Draw a "best fit" straight line through the "B-C" segment of the data and extrapolate this line to the log Y_t axis and the t axis, as shown in Figures 3 and 4.
- Step 4: Having ascertained the values of Y_0 (line intersection with Y axis), t (line intersection with t axis), and Y_t (y coordinate with t value) from the extrapolated line drawn in Step 3, calculate the value of 1/tln (Y_0/Y_t)
- Step 5: Using well construction and hydrogeologic information (Figure 1) ascertain the values of r_u , r_c , L_e , L_u , and H (saturated thickness). From the information, calculate the value of L_e/r_u . If $L_u < H$ (Partially penetrating well), ascertain the values of A and B from Figure 2 and substitute them into the following equation to determine the value of $\ln(R_e/r_u)$. The values of L_u , r_u , H and \tilde{L}_e are all expressed in inches.

$$\ln (R_e/r_u) = \frac{1}{\ln (L_u/r_u)} + \left(\frac{A + B \ln(H-L_u)}{L_e/r_u}\right)$$

If $L_{\mu} = H$, ascertain the value of C from Figure 2 and substitute it into the following equation to determine the value of ln (R_{μ}/r_{μ})

$$\ln (R_{e}/r_{u}) - \frac{1}{\ln (L_{u}/r_{u})} + \frac{C}{(L_{e}/r_{u})}$$

Step 6: Substitute the values of $(1/t \ln (Y_0/Y_t))$ and $(\ln (R_0/r_u))$, determined in Steps 4 and 5, respectively, along with r_c^2 and $2L_e$ into the following equation to determine the hydraulic conductivity (K) in inches per second:

$$K = \frac{r^2 \ln (R_c/r_u)}{2L_e} \frac{1}{t} \ln (Y_o/Y_t)$$

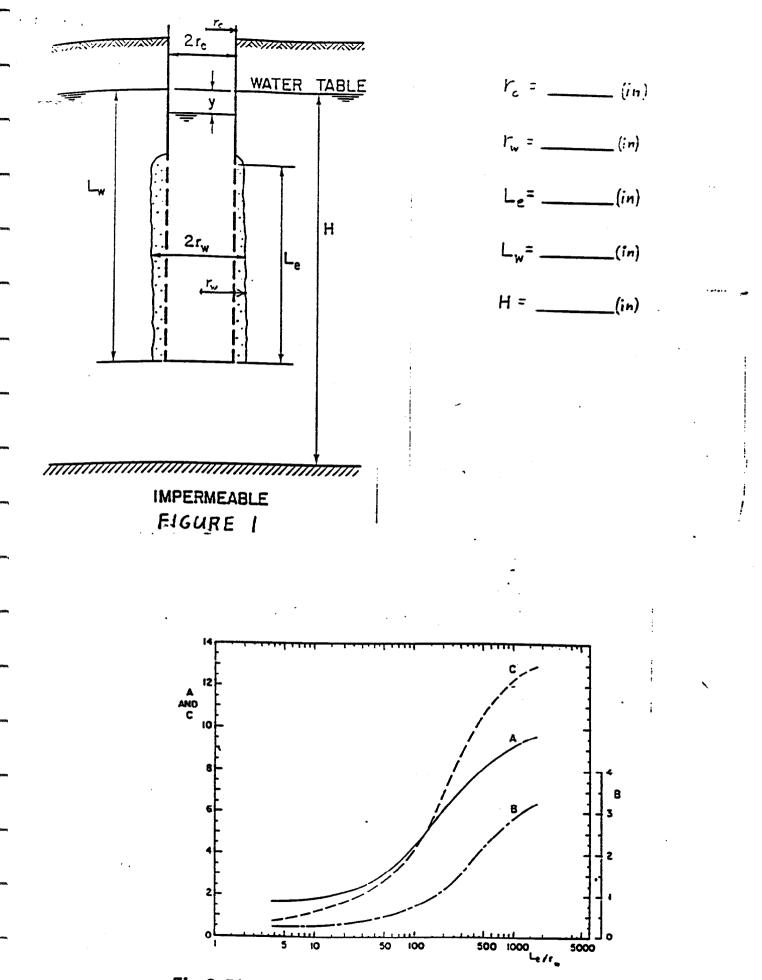
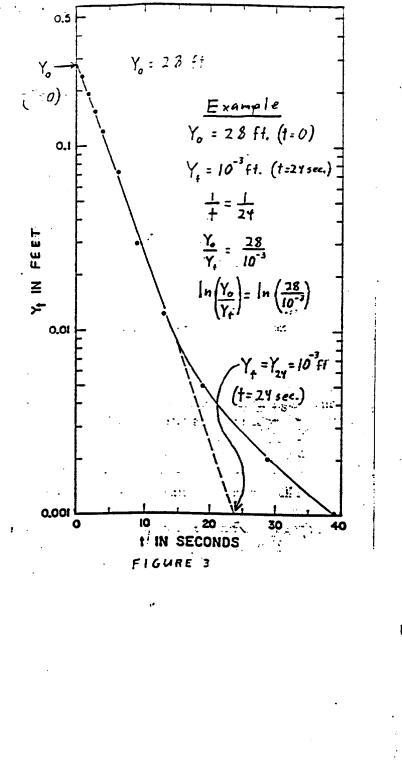
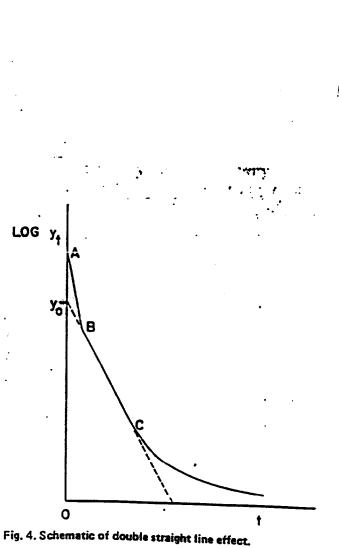




Fig. 2. Dimensionless parameters A, B, and C as a function of L_e/r_W for calculation of $\ln (R_e/r_W)$.

۰.		(Inc	ING HEAD reasing T I C 5084	ailwate!	r Pressui		
JOB #:	1054-92-0	03	JOB NAME:	CAMP	LEJEUNE I	LANDFILL	
DATE:	5-27-92		SAMPLE #	MW-4	DEPTH	.5 - 2.5	FT.
SOIL DESC	RIPTION:		TAN-ORANG	E BROWN	SILTY	SAND	
NOTES :	Sample	cut fro	m bottom	6" of t	ube.	Test Cell	L #3
	Test samp	le took	c 15.0 ml				
_~~	Final Moi	sture	22.5 %				
UNDISTURB	ED (X)		REMOLDED MAX DRY I OPTIMUM N % COMPACT	() DENSITY MOISTURE TION		STANDARD lbs./cu.1 % %	PROCTOR ft.
SAMPLE DA Wet Dry WATER TE CORRECTIO	TA : Length Diameter Area Volume Weight Weight MP. (C) N FACTOR	7.37 7.16 40.26 296.75 516.76 474.09 27.0 0.850	cm. cm. sq.cm. cu.cm. grams grams	Mois Wet Dry Init Fina Init Poro Spec	ture Cont Density Density ial Saturat ial Void sity c. G. (app	cent cation tion Ratio parent)	9 % 108.7 lb/ft3 99.7 lb/ft3 35.8 % 100.0 % 0.671 0.402 2.67
			TEST DATA				
k = (aL/-RATIO = H) $(hvl-hcl=(hv2-hc2=i = h2/L)$	2At) X Ir v1-Hv2 / h1)INITIA h2)FINAL	h(h1/h2) HC2 AL LOSS LOSS	k = L = A = t = i =	Elapsed	LIC CONDUC Cm. sq.cm. sq.cm. time of LIC GRADII	test (se	f sample sample ourett econds)
Elapsed t/sec.	Hvl	Hcl	Hv2	Hc2	hl	h2	RATIO (i) Out/In H.G.
30	50.0	0.0	36.5	14.1	50.0	22.4	0.96 3.0
30	50.0	0.0	36.7	14.1	50.0	22.6	0.94 3.1
30	50.0	0.0	36.6	14.2	50.0	22.4	0.94 3.0
30	50.0	0.0	36.7	14.1	50.0	22.6	0.94 3.1
3. k =	1.8E-03 1.7E-03 1.8E-03 1.7E-03	cm./sec cm./sec	c. c.	AVERAGE	:: k = i = RATIO =	3.1	cm./sec.

FINAL (k) VALUE AVERAGE WITH WATER TEMPERATURE CORRECTION.

tested by: D. CARVER

-

			S & M	ſΕ				
· · ·		(Inc		ailwate	BILITY TES Pressur (C)			
JOB #:	1054-92-0							
DATE:	5-27-92	;	SAMPLE #	MW-5		: 5 - 7		
	CRIPTION:	YELL		SILTY C		NE SAND		
NOTES :	Sample	cut from	m bottom	6" of t	ube.	Test Cell	l #12	
		ole took		of H20	to satura			
	Final Mo:						ه دی بند بید بند ها ان ا	، هنه هيه هيه هيه ه
UNDISTUR	BED (X)		REMOLDED MAX DRY I OPTIMUM N % COMPACT	DENSITY MOISTURE	I	STANDARD lbs./cu.: %	PROCTOP	2
Wei Dry WATER TI CORRECTIO	ATA : Length Diameter Area Volume t Weight Weight EMP. (C) ON FACTOR	7.09 39.48 283.47 539.20 473.81 27.0 0.850	cm. sq.cm. cu.cm. grams grams	Wet Dry Init Fina Init Porc Spec	Density Density Lial Saturat Lial Void Sity C. G. (app	tent ration tion Ratio parent)	118.7 1 104.3 1 61.7 4 99.9 4 0.597 0.374 2.67	lb/ft lb/ft } }
RATIO = 1 $(hv1-hc1)$	-2At) X In Hv1-Hv2 / =h1)INITIA =h2)FINAL	h(h1/h2) Hc2 AL LOSS	L = A = a = t =	HYDRAUI 7.18 39.48 0.72 Elapsed	CT.	length of area of a area of b test (se	sample burett	2
Elapsed t/sec.	Hvl	Hcl	Hv2	Hc2	• h1	h2	RATIO Out/In	(i) H.G
120	50.0	0.0	38.5	12.1	50.0	26.4	0.95	3.
120	50.0	0.0	38.4	12.1	50.0	26.3	0.96	3.
120	50.0	0.0	38.4	12.1	50.0	26.3	0.96	3.
	50.0	0.0	38.3		50.0	26.1	0.96	
120				AVERAGE				_

,0000m

i conta

tested by: D. CARVER

			5 & M	LE				
`		(Inc:	ING HEAD reasing T C 5084	ailwate:	r Pressur			
JOB #:	1054-92-0	03 .	JOB NAME:	CAMP	LEJEUNE I	ANDFILL		
DATE:	5-27-92		SAMPLE #	MW-7	DEPTH:	5 - 7	FT.	
	CRIPTION:	LIGH	T BROWN C	LAYEY S	ILTY FINE	E SAND		
	U.D. Samp	le had	a small p	iece of	wax runr	ing thoug	phtout s	sample
Total	H20 used							
	Final Moi	.sture	24.7%			Test Cell		
UNDISTURI	BED (X)	-	REMOLDED MAX DRY I OPTIMUM N % COMPACI	() DENSITY MOISTURE		lbs./cu.1 %	PROCTOR	2
Wet Dry WATER TI	ATA : Length Diameter Area Volume t Weight y Weight EMP. (C) ON FACTOR	7.10 39.59 283.08 439.29 391.87 27.0	cm. sq.cm. cu.cm. grams grams	Wet Dry Init Fina Init Poro	Density Density ial Satur l Saturat ial Void sity	cation Lion Ratio	96.9 1 86.4 1 35.1 9 99.7 9 0.914 0.478	Lb/ft Lb/ft k
nu en a co a a en 49 en 4			TEST DATA	1	• • • • • • • • • • • •			
RATIO = I (hvl-hcl=	-2At) X Ir Hv1-Hv2 / =h1)INITIA =h2)FINAL	HC2 AL LOSS	L = A = a = t =	7.15 39.59 0.72 Elapsed	cm. sq.cm. sq.cm.	length of area of s area of l test (se	sample ourett	2
Elapsed t/sec.	Hv1	Hcl	Hv2	Hc2	hl	h2	RATIO Out/In	• •
60	50.0	0.0	30.9	20.0	50.0	10.9	0.96	1.
60	50.0	0.0	31.0	20.0	50.0	11.0	0.95	1.
60	50.0	0.0	31.0	20.0	50.0	11.0	0.95	1.
60	50.0	0.0	30.9	19.9	50.0		0.96	1.
	1.7E-03 1.6E-03		:.	AVERAGE		1.4E-03 1.5	cm./se	3.

,00400

FINAL (k) VALUE AVERAGE WITH WATER TEMPERATURE CORRECTION.

tested by: D. CARVER

		S & M E
an an		FALLING HEAD PERMEABILITY TEST (Increasing Tailwater Pressure) ASTM C 5084 METHOD (C)
JOB #:	1054-92-003	JOB NAME: CAMP LEJEUNE LANDFILL
DATE:	5-27-92	SAMPLE # B - 8 DEPTH: 5 - 7 FT.
SOIL DES	CRIPTION:	ORANGE-BROWN SLIGHTLY CLAYEY SILTY FINE SAND

NOTES : Small Amount of Organic Material in Sample.

Total H20 used to saturate sample----11.0 ml. Test Cell #4 Final Moisture 27.5 _____ REMOLDED () MAX DRY DENSITY UNDISTURBED (X) STANDARD PROCTOR lbs./cu.ft.

OPTIMUM MOISTURE

		% COMPACTION	* *	
SAMPLE DATA :				
Length	7.75	cm.	Moisture Content	12.1 %
Diameter	7.10	cm.	Wet Density	95.7 lb/ft3
Area	39.59		Dry Density	85.4 lb/ft3
Volume	306.84	cu.cm.	Initial Saturation	34.2 %
Wet Weight	470.40	grams	Final Saturation	97.7 %
Dry Weight	419.63	grams	Initial Void Ratio	0.938
WATER TEMP. (C)	27.0		Porosity	0.484
CORRECTION FACTOR	0.850		Spec. G. (apparent)	2.65

TEST DATA

$k = (aL/-2At) \times In(h1/h2)$	k =	HYDRAU
RATIO = Hv1-Hv2 / Hc2	L =	7.75
(hv1-hc1=h1) INITIAL LOSS	A =	39.59
(hv2-hc2=h2) FINAL LOSS	a =	0.72
i = h2/L	t =	Elapse
	•	

· . · .

k =	HYDRAUL	C CONDUC	CTIVITY	
L =	7.75	cm.	length	of sample
A =	39.59	sq.cm.	area o	f sample
a =	0.72	sq.cm.	area o	f burett
t =	Elapsed	time of	test	(seconds)
i -	HYDRAULI	IC GRADII	ENT	-

ક્ર

Elapsed t/sec.	Hv1	Hcl	Hv2	Hc2	h1	h2	RATIO Out/In	(i) H.G.
20	50.0	0.0	38.7	12.2	50.0	26.5	0.93	3.4
60	50.0	0.0	29.5	22.1	50.0	7.4	0.93	1.0
60	50.0	0.0	29.5	22.1	50.0	7.4	0.93	1.0
60	50.0	0.0	29.5	22.1	50.0	7.4	0.93	1.0
1. k = 2. k = 3. k = 4. k =	2.2E-03	cm./sec cm./sec cm./sec	•	AVERAGE	E : k = i = RATIO =	1.9E-03 1.6 0.93	cm./se	2.

FINAL (k) VALUE AVERAGE WITH WATER TEMPERATURE CORRECTION.

tested by: D. CARVER

			5 & P.	1 12				
		(Inc	LING HEAD reasing 1 I C 5084	[ailwate:	r Pressur			
JOB #:	1054-92-0	03	JOB NAME:	CAMP	LEJEUNE I	ANDFILL		
DATE:	5-27-92	به جنه هي جي هي جي خ	SAMPLE #	B -9	DEPTH:	4 - 6	ft.	
SOIL DESC					به خه خه خه ها ها ها بو			
NOTES :								
Total	H20 used		irate samp	ple	26.6 ml	و هي چيه دي خل اين حل کا ک		
	Final Moi		27.5			Test Cell		
UNDISTURE			REMOLDED MAX DRY I OPTIMUM M % COMPACT	() DENSITY 40ISTURE		STANDARD lbs./cu.1 % %	PROCTO ft.	R
SAMPLE DA Wet Dry WATER TH CORRECTIO	ATA : Length Diameter Area Volume Weight Weight MP. (C) DN FACTOR	7.35 7.15 40.15 295.11 484.34 441.92 27.0 0.850	cm. cm. sq.cm. cu.cm. grams grams	Mois Wet Dry Init Fina Init Poro Spec	ture Cont Density Density ial Satur 1 Saturat ial Void sity . G. (app	cent cation cion Ratio parent)	9.6 102.4 93.5 33.1 98.6 0.770 0.435 2.65	% 1b/ft3 1b/ft3 %
			TEST DATA					
k = (aL/-RATIO = H) $(hv1-hc1=(hv2-hc2=i = h2/L)$	-2At) X Ir Iv1-Hv2 / =h1)INITIZ =h2)FINAL	h(h1/h2) HC2 AL LOSS LOSS	k = L = A = t = i =	7.35 40.15 0.72 Elapsed	IC CONDUC Cm. sq.cm. sq.cm. time of IC GRADIN	length of area of s area of l test (se	f sample sample ourett econds)	e
Elapsed t/sec.	Hvl	Hcl	Hv2	Hc2	hl	h2	RATIO Out/In	
30	50.0	1.0	30.1		49.0	7.9		1.1
30	50.0	1.0	30.1	22.2	49.0	7.9	0.90	1.1
30	50.0	1.0	30.1	22.2	49.0	7.9	0.90	1.1
30	50.0	1.0	30.1		49.0	7.9		1.1
2. k =	4.0E-03 4.0E-03 4.0E-03	cm./sec	.	AVERAGE	k = i =	3.4E-03 1.1	cm./se	

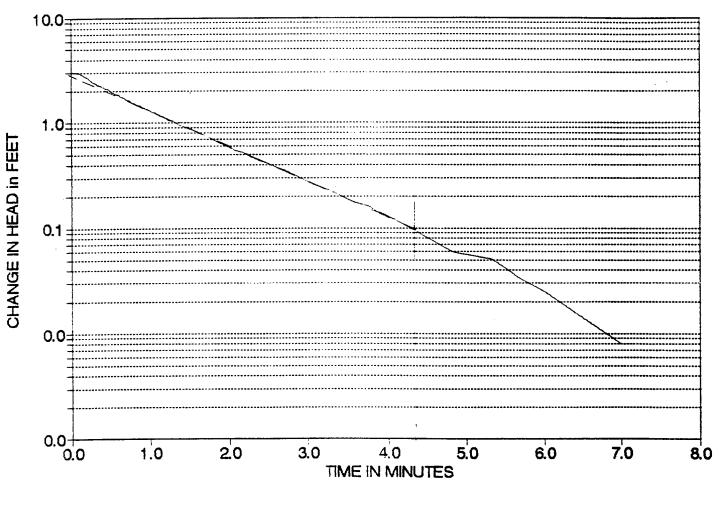
FINAL (k) VALUE AVERAGE WITH WATER TEMPERATURE CORRECTION.

tested by: D. CARVER

S & M E

S & M E

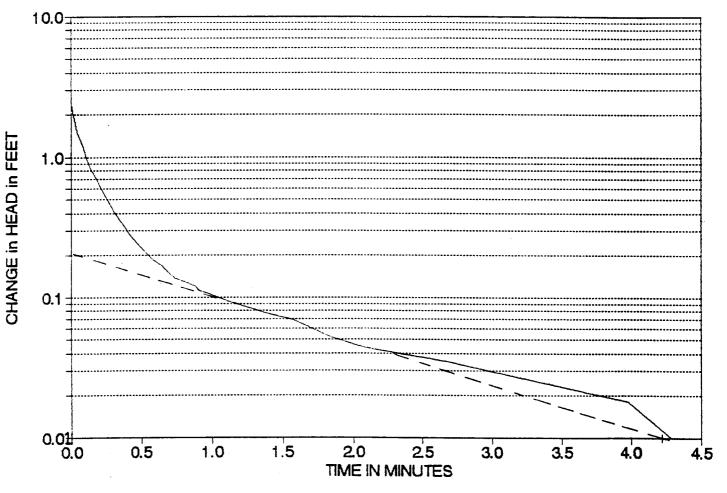
. .

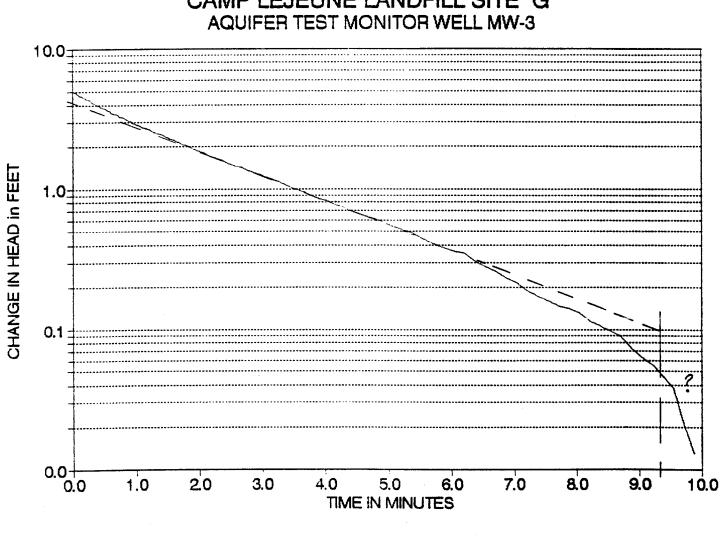

FALLING HEAD PERMEABILITY TEST (Increasing Tailwater Pressure) ASTM C 5084 METHOD (C)

JOB #:	1054-92-0		JOB NAME:	CAMP	LEJEUNE L	ANDFILL		
DATE:	5-27-92		SAMPLE #					
SOIL DESC	RIPTION:			ROWN SL		LTY CLAYP	Y FINE	SAND
NOTES :	Sample	cut fro	m bottom		ube.			
Total	H20 used	to satu	rate samp)le	21.0 ml			
	Final Moi	sture	21.9%			Test Cell	L #8	
UNDISTURB	ED (X)			() DENSITY NOISTURE		STANDARD	PROCTOR	
SAMPLE DA						ont	10 6 9	
Wet Dry WATER TE CORRECTIO	Diameter Area Volume Weight Weight MP. (C) N FACTOR	7.10 39.59 289.42 562.13 473.97 31.5 0.772	cm. cm. sq.cm. cu.cm. grams grams	Wet Dry Init Fina Init	Density Density ial Satur l Saturat ial Void	ation ion Ratio	121.2 1 102.2 1 79.3 % 100.0 % 0.624	b/ft3 b/ft3
			TEST DATA	 \	ه هه بینه خته که خته خته که که د	ه چه که چه که خته نند خت د		
k = (aL/-RATIO = H) $(hv1-hc1=(hv2-hc2=i = h2/L)$	v1-Hv2 / h1)INITIA	HC2 L LOSS	L = A = a = t =	7.31 39.59 0.72 Elapsed	cm. sg.cm.	length of area of s area of l test (se	sample	
Elapsed t/sec.	Hvl	Hcl	Hv2	Hc2	hl	h2	RATIO Out/In	
120	50.0	0.0	31.0	18.7	50.0	12.3	1.02	1.7
	50.0	0.0	30.9	18.7	50.0	12.2	1.02	1.7
120	50.0	0.0	31.0	່ 18.8່	50.0	12.2	1.01	1.7
 120			31.0				1.02	1.7
2. $k = 3$. $k = 1$	7.8E-04 7.8E-04 7.8E-04 7.8E-04 7.8E-04	cm./sec cm./sec	2.	AVERAGE	k =	6.0E-04 1.7 1.02	•	 :.

FINAL (k) VALUE AVERAGE WITH WATER TEMPERATURE CORRECTION.

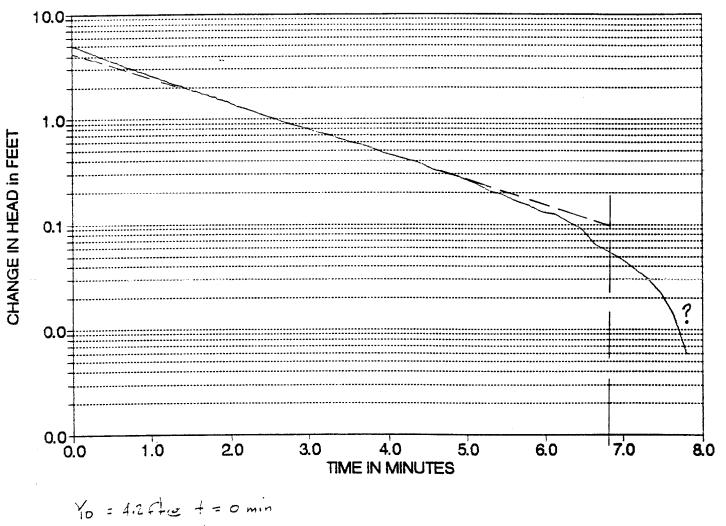
tested by: D. CARVER


CAMP LEJEUNE LANDFILL SITE "G" AQUIFER TEST MONITOR WELL MW-1

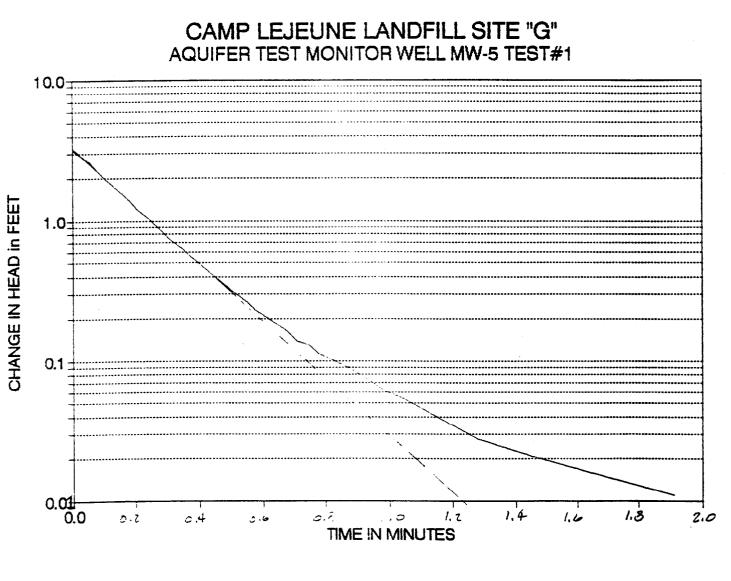

 $Y_0 = 2.95 \neq 0 \neq = 0 min$ $Y_1 = 0.1 \neq 0 \neq = 4.36 min$

•• •

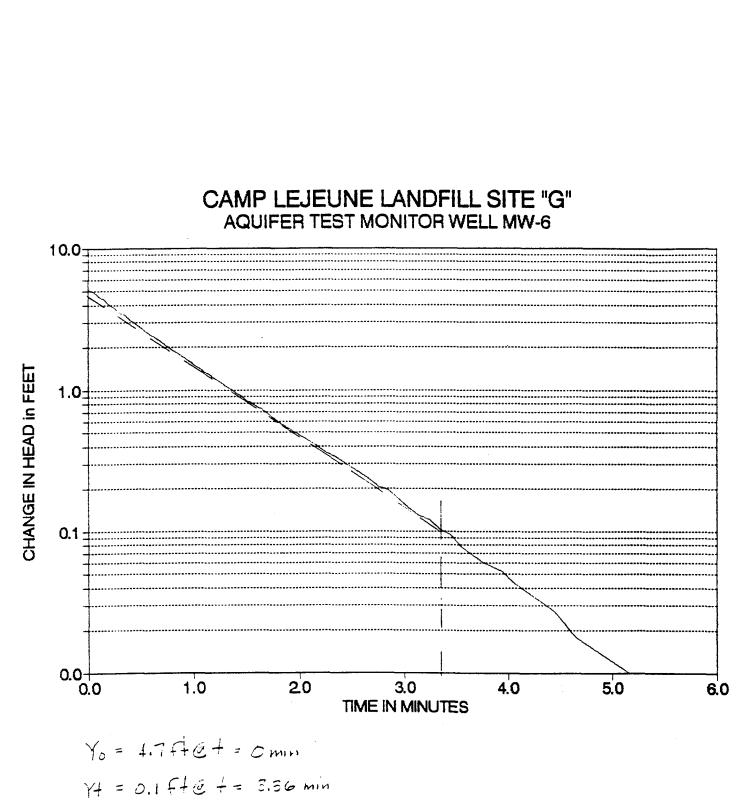
CAMP LEJEUNE LANDFILL SITE "G" AQUIFER TEST MONITOR WELL MW-2


 $Y_0 = 0.20 \text{ ff } = 0 \text{ min}$ $Y_1 = 0.01 \text{ ff } = 4.23 \text{ min}$

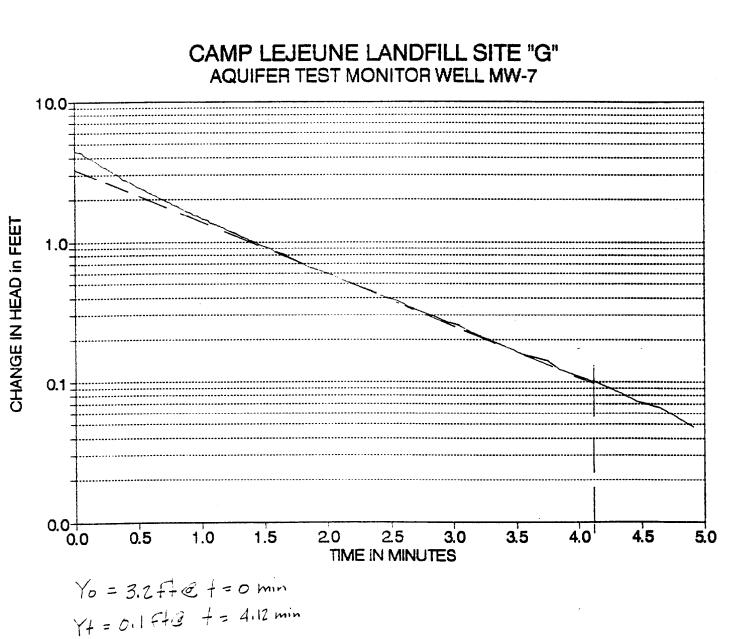
CAMP LEJEUNE LANDFILL SITE "G"


Yo = 4.2 ft@ + = 0 min Y4 = 0.10+7@ += 9.33 min

CAMP LEJEUNE LANDFILL SITE "G" AQUIFER TEST MONITOR WELL MW-4

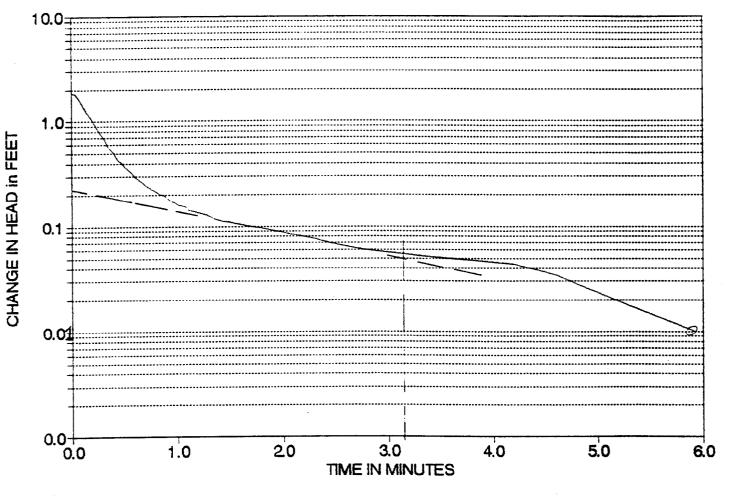

 $Y_{t} = 0.1 f + 0.1 f + 0.80 min$

ST (

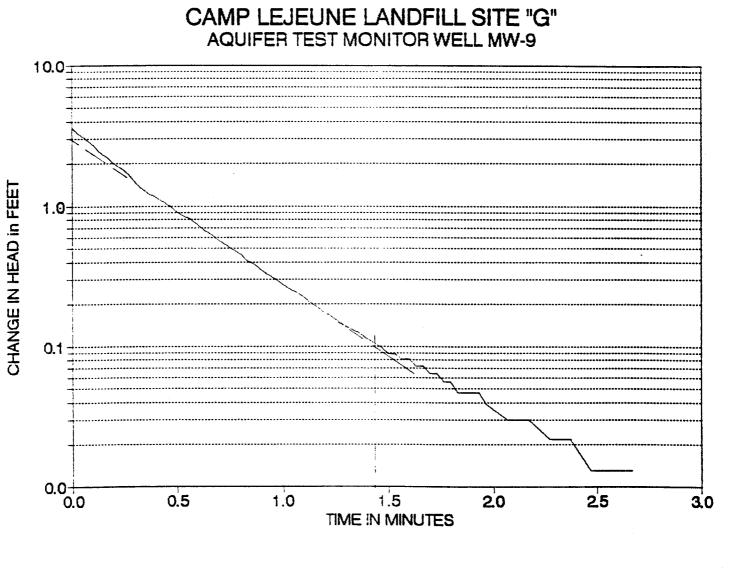


 $Y_0 = 3.3 f + @ + = 0 min$ $Y_1 = .01 f + @ + = 1.23 min$

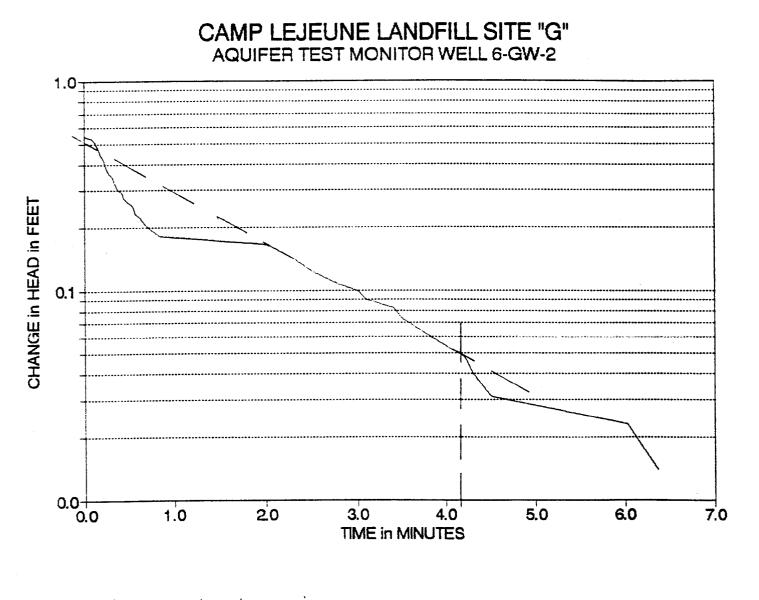
1997 - 1997 1997 - 1997 - 1997 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1 1997 - 1997



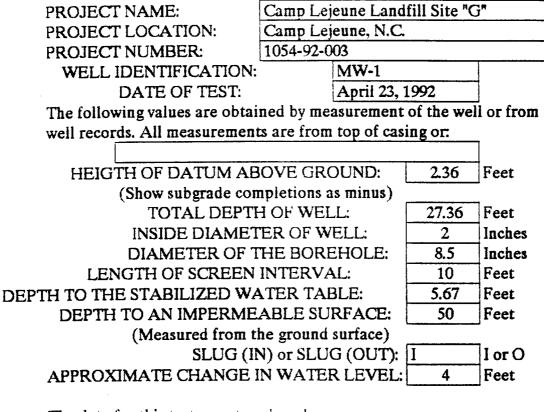
- · · ·


·-

CAMP LEJEUNE LANDFILL SITE "G" AQUIFER TEST MONITOR WELL MW-8


 $Y_0 = 0.22 \text{ fref} = 0 \text{ min}$ $Y_1 = 0.05 \text{ free} + = 5.15 \text{ min}$

• •



 $Y_0 = 3.0 \pm 0.1 \pm 0.0 \text{ min}$ $Y_1 = 0.1 \pm 0.$

· · · .

 $Y_0 = 0.5 \ F + C + = 0 \ min$ Y = 0.05 F + C + = 4.16 min

The data	tor this test	t was stored as show	' n:
BLOCK	1	CHANNEL:	1

The following values are obtained from the Semi-log graph of the change in water level with time. Both intercepts are required.

Intercept with the Y axis (Yo): Yo at time (t1): Intercept with the X axis (Xt): Yt at time (t2):

The Hydraulic Conductivity (K) for the aquifer within the screen interval using Bouwer and Rice Analysis is shown to the right:

-

2.95	Feet
0	Minutes
0.1	Feet
4.36	Minutes

3.44E-04	cm/sec
0.297247	m/day
355.9416	ft/yr
7.29469	gal/day/sq ft

Bouwer and Rice Analysis for the Hydraulic Conductivity of well no.: MW-1

÷. .

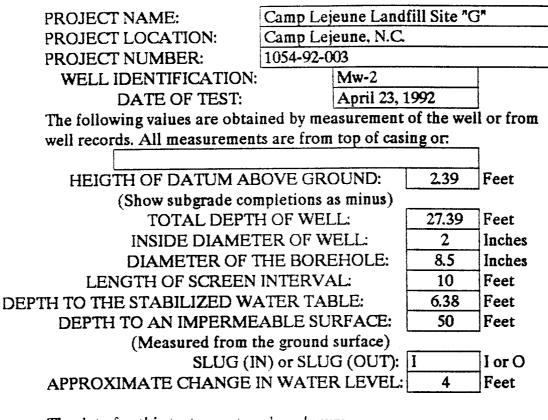
Camp Lejeune Landfill Site "G" Camp Lejeune, N.C. 1054-92-003 April

April 23, 1992

The following intermediate values were used or calculated for the determination of K:

Rc (cm)	2.54	
Rw (cm)	10.795	
Le (cm)	304.8	
Lw (cm)	661.1112	
H (cm)	1423.111	
Le/Rw	28.23529	
Lw/Rw	61.24235	
Α	2.2	
В	0.3	
0		
C	1.8	Value not used
-		Value not used
C	1.8	Value not used
C Yo	1.8 2.95	Value not used
C Yo Yt	1.8 2.95 0.1	Value not used
C Yo Yt t (sec)	1.8 2.95 0.1 261.6	Value not used
C Yo Yt t (sec) Ln((H-Lw)/Rw))	1.8 2.95 0.1 261.6 4.256863	Value not used
C Yo Yt t (sec) Ln((H-Lw)/Rw)) Ln(Lw/Rw)	1.8 2.95 0.1 261.6 4.256863 4.114839	Value not used

K (cm/sec) 0.000344


The following conditions were specified for this test:

The well is partially penetrating as the impermeable layer is below the screen

The screen is completely submerged

The siug was added to the well

Page2

The data	tor this tes	t was stored as show	n:
BLOCK	1	CHANNEL:	1

The following values are obtained from the Semi-log graph of the change in water level with time. Both intercepts are required.

Intercept with the Y axis (Yo): Yo at time (t1): Intercept with the X axis (Xt): Yt at time (t2):

0.2	Feet
0	Minutes
0.01	Feet
4.28	Minutes

The Hydraulic Conductivity (K)
for the aquifer within the
screen interval using
Bouwer and Rice Analysis
is shown to the right:

· · · ·

3.10E-04	cm/sec
0.268252	m/day
321.2213	ft/yr
6.58313	gal/day/sq ft

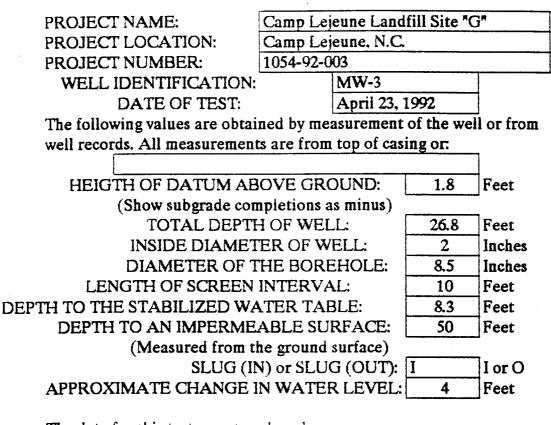
Bouwer and Rice Analysis for the Hydraulic Conductivity of well no.: Mw-2

2000 - N

Camp Lejeune Landfill Site "G" Camp Lejeune, N.C. 1054-92-003 April 23, 1992

The following intermediate values were used or calculated for the determination of K:

Rc(cm)	2.54	
Rw (cm)	10.795	
Le (cm)	304.8	
Lw (cm)	640.3848	
H (cm)	1402.385	
Le/Rw	28.23529	
Lw/Rw	59.32235	
Α	2.2	
В	0.3	
С	1.8	Value not used
Yo	0.2	
Yt	0.01	
t (sec)	256.8	
Ln((H-Lw)/Rw))	4.256863	
Ln(Lw/Rw)	4.082986	
Ln(Re/Rw)	2.51464	
Ln(Yo/Yt)	2.995732	
K (cm/sec)	0.00031	


The following conditions were specified for this test:

The well is partially penetrating as the impermeable layer is below the screen

The screen is completely submerged

The slug was added to the well

Page4

The data	tor this	test was stored as show	/ n :
BLOCK	1	CHANNEL:	1

The following values are obtained from the Semi-log graph of the change in water level with time. Both intercepts are required.

Intercept with the Y axis (Yo): Yo at time (t1): Intercept with the X axis (Xt): Yt at time (t2):

4.2	Feet
0	Minutes
0.1	Feet
9.33	Minutes

The Hydraulic Conductivity (K)
for the aquifer within the
screen interval using
Bouwer and Rice Analysis
is shown to the right:

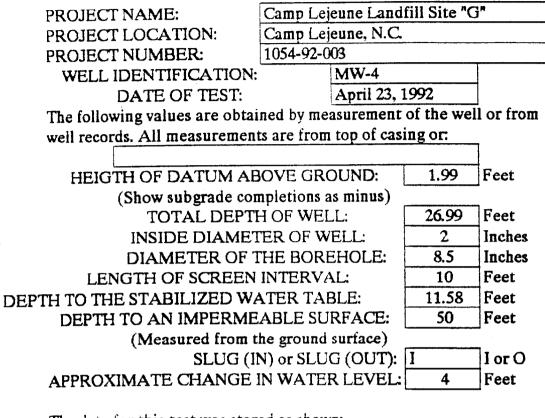
÷. .

1.78E-04	cm/sec
0.154062	m/day
184.4838	ft/yr
3.780824	gal/day/sq ft

Bouwer and Rice Analysis for the Hydraulic Conductivity of well no.: MW-3

Camp Lejeune Landfill Site "G" Camp Lejeune, N.C. 1054-92-003 April 23, 1992

The following intermediate values were used or calculated for the determination of K:


Rc(cm)	2.54	
Rw (cm)	10.795	
Le (cm)	304.8	
Lw (cm)	563.88	
H (cm)	1325.88	
Le/Rw	28.23529	
Lw/Rw	52.23529	
Α	2.2	
В	0.3	
С	1.8	Value not used
Yo	4.2	
Yt	0.1	
t (sec)	559.8	
Ln((H-Lw)/Rw))	4.256863	
Ln(Lw/Rw)	3.955758	
Ln(Re/Rw)	2.523305	
Ln(Yo/Yt)	3.73767	
K (cm/sec)	0.000178	

The following conditions were specified for this test:

The well is partially penetrating as the impermeable layer is below the screen

> The screen is completely submerged The slug was added to the well

Page6

The data	for this tes	t was stored as snow	<u>n:</u>
BLOCK	1] CHANNEL:	1

The following values are obtained from the Semi-log graph of the change in water level with time. Both intercepts are required.

Intercept with the Y axis (Yo): Yo at time (t1): Intercept with the X axis (Xt): Yt at time (t2):

4.2	Feet
0	Minutes
0.1	Feet
6.8	Minutes

The Hydraulic Conductivity (K) for the aquifer within the screen interval using Bouwer and Rice Analysis is shown to the right:

2.46E-04	cm/sec	
0.212511	m/day	
254.4738	ft/yr	
5.215203	gal/day/sq ft	

Bouwer and Rice Analysis for the Hydraulic Conductivity of well no.: MW-4

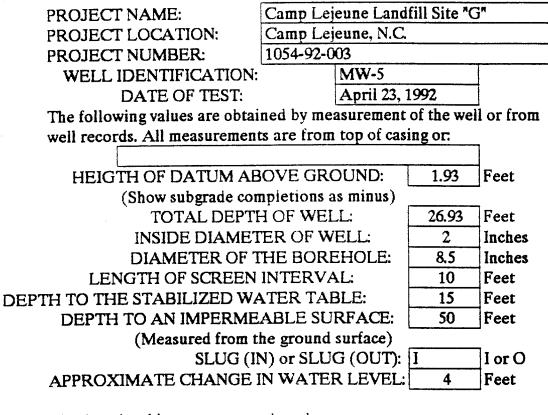
. .

Camp Lejeune Landfill Site "G" Camp Lejeune, N.C. 1054-92-003 April 23, 1992

The following intermediate values were used or calculated for the determination of K:

Rc(cm)	2.54	
Rw (cm)	10.795	
Le (cm)	304.8	
Lw (cm)	469.6968	
H (cm)	1231.697	
Le/Rw	28.23529	
Lw/Rw	43.51059	
Α	2.2	
В	0.3	
—		
Ċ	1.8	Value not used
—	1.8 4.2	Value not used
Ċ		Value not used
C Yo	4.2	Value not used
C Yo Yt	4.2 0.1	Value not used
C Yo Yt t (sec)	4.2 0.1 408	Value not used
C Yo Yt t (sec) Ln((H-Lw)/Rw))	4.2 0.1 408 4.256863	Value not used
C Yo Yt t (sec) Ln((H-Lw)/Rw)) Ln(Lw/Rw)	4.2 0.1 408 4.256863 3.773004	Value not used

The following conditions were specified for this test:


0.000246

K (cm/sec)

The well is partially penetrating as the impermeable layer is below the screen

The screen is completely submerged

The slug was added to the well

The data	for this tes	t was stored as show	vn:
BLOCK	1	CHANNEL:	1

The following values are obtained from the Semi-log graph of the change in water level with time. Both intercepts are required.

Intercept with the Y axis (Yo): Yo at time (t1): Intercept with the X axis (Xt): Yt at time (t2):

3.3	Feet
0	Minutes
0.01	Feet
1.23	Minutes

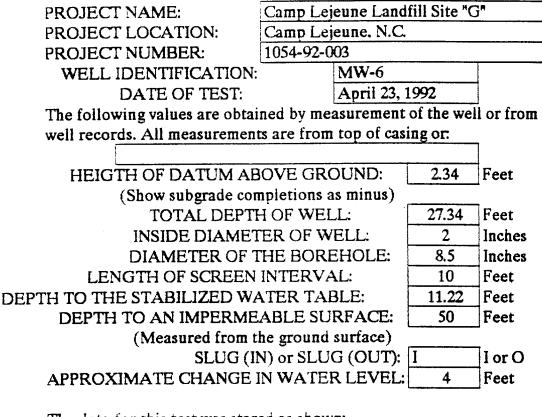
The Hydraulic Conductivity (K)
for the aquifer within the
screen interval using
Bouwer and Rice Analysis
is shown to the right:

2.13E-03	cm/sec
1.83807	m/day
2201.017	ft/yr
45.10779	gal/day/sq ft

Bouwer and Rice Analysis for the Hydraulic Conductivity of well no.: MW-5

Camp Lejeune Landfill Site "G" Camp Lejeune, N.C. 1054-92-003 April 23, 1992

The following intermediate values were used or calculated for the determination of K:


Rc (cm)	2.54	
Rw (cm)	10.795	
Le (cm)	304.8	
Lw (cm)	363.6264	
H (cm)	1125.626	
Le/Rw	28.23529	
Lw/Rw	33.68471	
Α	2.2	
В	0.3	
C	1.8	Value not used
Yo	3.3	
Yt	0.01	
t (sec)	73.8	
Ln((H-Lw)/Rw))	4.256863	
Ln(Lw/Rw)	3.517044	
Ln(Re/Rw)	2.557992	
Ln(Yo/Yt)	5.799093	
K (cm/sec)	0.002127	

The following conditions were specified for this test:

The well is partially penetrating as the impermeable layer is below the screen

The screen is completely submerged

The slug was added to the well

The data	for this tes	t was stored as snow	a:
BLOCK	1	CHANNEL:	1

The following values are obtained from the Semi-log graph of the change in water level with time. Both intercepts are required.

Intercept with the Y axis (Yo): Yo at time (t1): Intercept with the X axis (Xt): Yt at time (t2):

4.7	Feet
0	Minutes
0.1	Feet
3.36	Minutes

The Hydraulic Conductivity (K)
for the aquifer within the
screen interval using
Bouwer and Rice Analysis
is shown to the right:

· · ·

5.12E-04	cm/sec
0.442424	m/day
529.7854	ft/yr
10.85746	gal/day/sq ft

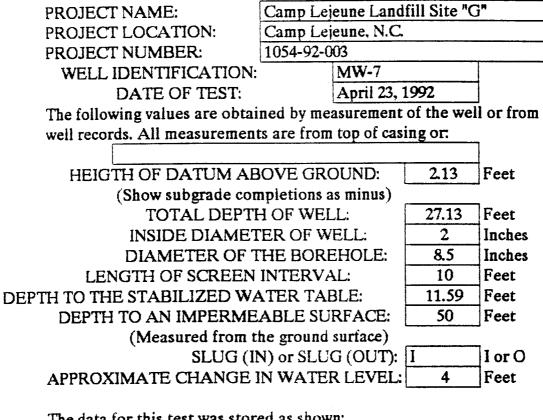
Bouwer and Rice Analysis for the Hydraulic Conductivity of well no.: MW-6

×".,

Camp Lejeune Landfill Site "G" Camp Lejeune, N.C. 1054-92-003

April 23, 1992

The following intermediate values were used or calculated for the determination of K:


Rc(cm)	2.54	
Rw (cm)	10.795	
Le (cm)	304.8	
Lw (cm)	491.3376	
H (cm)	1253.338	
Le/Rw	28.23529	
Lw/Rw	45.51529	
Α	2.2	
В	0.3	
С	1.8	Value not used
Yo	4.7	
Yt	0.1	
t (sec)	201.6	
Ln((H-Lw)/Rw))	4.256863	
Ln(Lw/Rw)	3.818048	
Ln(Re/Rw)	2.533334	
Ln(Yo/Yt)	3.850148	
K (cm/sec)	0.000512	

The following conditions were specified for this test:

The well is partially penetrating as the impermeable layer is below the screen

The screen is completely submerged

The slug was added to the well

i ne data	for this lesi	l was stored as show	11.
BLOCK	1	CHANNEL:	1

The following values are obtained from the Semi-log graph of the change in water level with time. Both intercepts are required.

Intercept with the Y axis (Yo): Yo at time (t1): Intercept with the X axis (Xt): Yt at time (t2):

The Hydraulic Conductivity (K)
for the aquifer within the
screen interval using
Bouwer and Rice Analysis
is shown to the right:

· · · ·

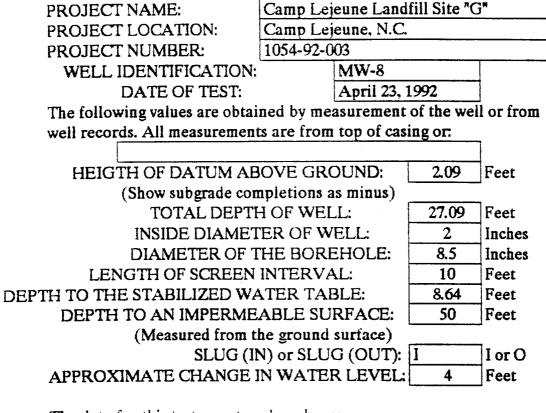
3.2	Feet
0	Minutes
0.1	Feet
4.12	Minutes

3.76E-04	cm/sec
0.325145	m/day
389.3485	ft/yr
7.979332	gal/day/sq ft

Bouwer and Rice Analysis for the Hydraulic Conductivity of well no.: MW-7

Camp Lejeune Landfill Site "G" Camp Lejeune, N.C. 1054-92-003 April 23, 1992

The following intermediate values were used or calculated for the determination of K:


Rc (cm)	2.54	
Rw (cm)	10.795	
Le (cm)	304.8	
Lw (cm)	473.6592	
H (cm)	1235.659	
Le/Rw	28.23529	
Lw/Rw	43.87765	
Α	2.2	
В	0.3	
С	1.8	Value not used
Yo	3.2	
Yt	0.1	
t (sec)	247.2	
Ln((H-Lw)/Rw))	4.256863	
Ln(Lw/Rw)	3.781405	
Ln(Re/Rw)	2.536126	
Ln(Yo/Yt)	3.465736	
K (cm/sec)	0.000376	

The following conditions were specified for this test:

The well is partially penetrating as the impermeable layer is below the screen

The screen is completely submerged

The slug was added to the well

The data	tor this	test was stored as sn	iown:
BLOCK	1	CHANNEL:	1

The following values are obtained from the Semi-log graph of the change in water level with time. Both intercepts are required.

Intercept with the Y axis (Yo): Yo at time (t1): Intercept with the X axis (Xt): Yt at time (t2):

0.22	Feet
0	Minutes
0.05	Feet
3.15	Minutes

The Hydraulic Conductivity (K)
for the aquifer within the
screen interval using
Bouwer and Rice Analysis
is shown to the right:

- .

2.09E-04	cm/sec
0.180897	m/day
216.6175	ft/yr
4.439373	gal/day/sq ft

Bouwer and Rice Analysis for the Hydraulic Conductivity of well no.: MW-8

Camp Lejeune Landfill Site "G"

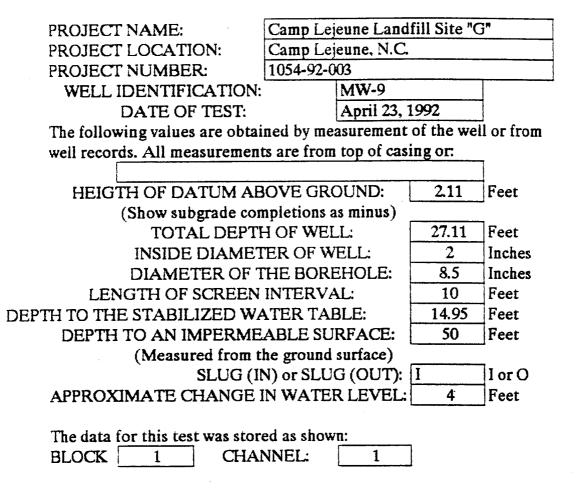
-

Bouwer and Rice Analysis for the Hydraulic Conductivity of well no.: **MW-8**

·· · · ·

Camp Lejeune Landfill Site "G" Camp Lejeune, N.C. 1054-92-003 April 23, 1992

The following intermediate values were used or calculated for the determination of K:


Rc(cm)	2.54	
Rw (cm)	10.795	
Le (cm)	304.8	
Lw(cm)	562.356	
H (cm)	1324.356	
Le/Rw	28.23529	
Lw/Rw	52.09412	
Α	2.2	
В	0.3	
С	1.8	Value not used
Yo	0.22	
Yt	0.05	
t (sec)	189	
Ln((H-Lw)/Rw))	4.256863	
Ln(Lw/Rw)	3.953052	
Ln(Re/Rw)	2.523495	
Ln(Yo/Yt)	1.481605	
K (cm/sec)	0.000209	

The following conditions were specified for this test:

The well is partially penetrating as the impermeable layer is below the screen

> completely submerged The screen is

The slug was added to the well Page2

The following values are obtained from the Semi-log graph of the change in water level with time. Both intercepts are required.

Intercept with the Y axis (Yo): Yo at time (t1): Intercept with the X axis (Xt): Yt at time (t2):

3	Feet
0	Minutes
0.1	Feet
1.43	Minutes

The Hydraulic Conductivity (K) for the aquifer within the screen interval using Bouwer and Rice Analysis is shown to the right:

÷. · .

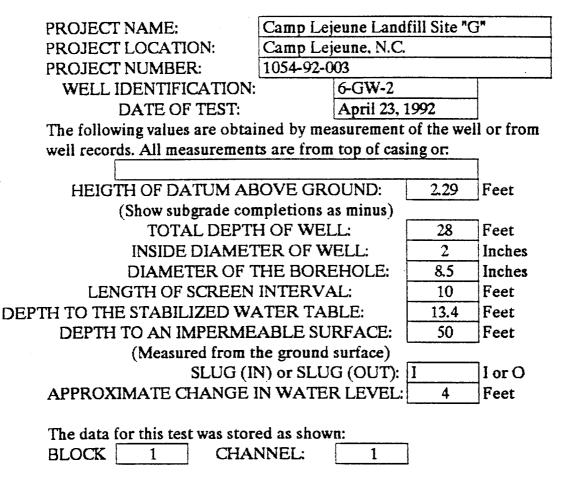
1.07E-03	cm/sec
0.92665	m/day
1109.628	ft/yr
22.74079	gal/day/sq ft

Page3

Bouwer and Rice Analysis for the Hydraulic Conductivity of well no.: MW-9

Camp Lejeune Landfill Site "G" Camp Lejeune, N.C. 1054-92-003 April 23, 1992

The following intermediate values were used or calculated for the determination of K:


Rc(cm)	2.54	
Rw (cm)	10.795	
Le (cm)	304.8	
Lw (cm)	370.6368	
H (cm)	1132.637	
Le/Rw	28.23529	
Lw/Rw	34.33412	
Α	2.2	
В	0.3	
С	1.8	Value not used
Yo	3	
Yt	0.1	
t (sec)	85.8	
Ln((H-Lw)/Rw))	4.256863	
Ln(Lw/Rw)	3.53614	
Ln(Re/Rw)	2.556303	
Ln(Yo/Yt)	3.401197	
K (cm/sec)	0.001072	

The following conditions were specified for this test:

The well is partially penetrating as the impermeable layer is below the screen

The screen is completely submerged

The siug was added to the weil

The following values are obtained from the Semi-log graph of the change in water level with time. Both intercepts are required.

Intercept with the Y axis (Yo): Yo at time (t1): Intercept with the X axis (Xt): Yt at time (t2):

0.5	Feet
0	Minutes
0.05	Feet
4.16	Minutes

The Hydraulic Conductivity (K) for the aquifer within the screen interval using Bouwer and Rice Analysis is shown to the right:

·' .

2.48E-04	cm/sec
0.21433	m/day
256.6523	ft/yr
5.259849	gal/day/sq ft

Page5

Bouwer and Rice Analysis for the Hydraulic Conductivity of well no.: 6-GW-2

÷-.

Camp Lejeune Landfill Site "G" Camp Lejeune, N.C. 1054-92-003 April 23, 1992

The following intermediate values were used or calculated for the determination of K:

Rc (cm)	2.54	
Rw (cm)	10.795	
Le (cm)	304.8	
Lw (cm)	445.008	
H (cm)	1185.367	
Le/Rw	28.23529	
Lw/Rw	41.22353	
Α	2.2	
B	0.3	
С	1.8	Value not used
Yo	0.5	
Yt	0.05	
t (sec)	249.6	
Ln((H-Lw)/Rw))	4.228052	
Ln(Lw/Rw)	3.719009	
Ln(Re/Rw)	2.540701	
Ln(Yo/Yt)	2.302585	
K (cm/sec)	0.000248	

The following conditions were specified for this test:

The well is partially penetrating as the impermeable layer is below the screen

The screen is completely submerged

The slug was added to the weil

- · · ·

Camo Lejeune Landfill Site (5) Monicar Well MW-1 H/M BDEE-WSA-8N-7 32 Floom . Program: STEP FEST Peacings: 112 Start Time: 15:12:06 Start Date: 04/23 -19 Chni i Chnl Time . 20 +22.340 3.47 +21.16-+22.297 +21,148 Range: 0015 PGI 3.57 +21.13: -22.263 3.67 Charaels: - 22, 230 +21.11 J.77 -3.87 +21.097 -221.94 -22.162 3.97 +21.02~ itap 1 12 ¹ -22 :22 4.07 +21,081 n --- - --- NOBOOR (1) -32.394 4.17 +21.06s sa inga safé -22.069 • 4.27 +21.055 - 31 . S35 4.37 +21.04 Tine Chai 1 -11.02 4<u>20</u>...... +21.030 4.47 -----11.776 4.57 +21.02. 202 -22.742 -21,951). OT 4.67 +21.010 i a sher +23.8tB 30 -21.917 4.77 +21.00% 1.1021.392 4.87 +21.000 in internet. The second -11.366 +21,710 4.97 +20.996 0.17 +23.943 -21.241 :.<u>2</u>0 . <u>2</u>3 -23.741 -21.324 Step 3 . BO -23. 55. -21.7**79** Interval 00:00:10 0.27 -21.790 +23, 175 Readings 30 : <u>2</u>3 +21.773 +23.415 +31.748 Chnl 1 Time and and a -11.714 · · · · · · 5.13 +20.975 -21.697 +12.77 5.30 +20.974 n, 4<u>0</u> +20.97= 5.47 5.63 +20.97 :.<u>.</u>:0 - <u>57</u> tterrei C:JO:OA 5.80 +20.962 -2<u>2,</u>237 Readyodd 30 5.97 +20.954 1.57 in a serie de la companya de la comp Companya de la company 6.13+20.95% i . 121. ime Christ 107 +21,530 6.30 +20.941 - 22 +23.173 +21.630 6.47 +20.943 1. 70 +23.103 5.63 +20.937 +27.049 یں اور جس ، ارزہ ور در ارزہ -21.528 6.80 +20.937 +20,937 -01.478 6**.97** -2**2**, 850 7.13 +20.937 +32.873 - 40<u>2</u> 7.30 +20,923 . . . -22.30× 7.47 -3...348 +20,928 - 37 -0112543 7.63 +20.93 . *≓€* سری سر ایرانی ۲۰۱۰ میلیکه 7.80 +20.937 -21.309 -21/283 7.97 +20.93").**97**. -11.259 +20.937 1.00 8.13 -<u>22</u>.501 -**32**.571 8,30 +20.937 1.03 -21.207 1.07 +20.937 +22.509 8.47 -31,192 +20.928 8.63 t, te +22.449 ه در مهر ا -**22**. 21. +22.077 1.7

	STEP TEST		
Peacincs:			Chn
	e: 07:34:09	1.07	-21.
Start Date		Nio	-21.
rance:	ooif 78I	· • • • •	
levenælæi		· · · · · ·	
Jaita:			-312
			-21.
Etan 1			
plee : Socqeval :	erica e la Bara de la	•••	-11.
		. .	
Reactings			• •
- <u>i</u> ne		in a substation a substation station	ه بله بين بر من ا د بين ا
	+Z11704		- 11-
	-22.041		
	+23.218	a di tanà ina ina mandritra dia mandritra dia mandritra dia mandritra dia mandritra dia mandritra dia mandritra Ny INSEE dia mandritra dia m	
	749:429 4 <u>7</u> 2,004		-21.
्.ः्	+2 <u>-</u> 2	and the second	د د ده ۱۳۳۵ -
2.13	+22.821	· 77	
<u>. 17</u>		1.50 1.50	
0. <u>20</u>	-22,401		
	+72.44*		-21. -21.
0. <u>2</u> 7	میشود. با این این این این این این این این این ای		
in in the second se			-21.
			1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.
· · · · · · · ·			-21-
·)::(_)	<u>22</u> -027		
en e	-21.942		
	_		
	+21.383	interval	- 121(2)
17. KUT 17. 199 Xut 2	+11 335	Peac mo	4 .
	-21,241		
563			ិឯក
> . 67	-21.507	أساهمه الاستناب	· . * 21.
N. 70	+212799		<u>-21</u> ,
	-31, 276		- 14.2
2	-211773 -211735		
	-211765		- <u>-</u>
0. GT		······	·· <u>21</u> -
		· · ·	
	-21:748		
014 <u>5</u>	+31.748		
	and a set of the		

-21.740 +21.75: +21.751

., 97 0.00 1. ŬĒ

Time	Chnl .
3.27	+21.650
3.37	+21.647
3.47	+21.647
3.57	+21.647
3.67	+21.647
4.27	+21.647
4.37	+21.6 30

0:00:06 -----Chni i

 .:	27			4		o55
 			2	1	a	664
			•		-	635
				-	-1	655
		• .			:1	555
	·			<u>ï</u> .	-	564
		·•				a35

Chnl 1 -21.731 -21.723 -11.723 -31.714 -21.706 -11.706 -31.697 -11.697 -21.697 -21.697 -11.697 -21.697 -21.689 -21.089 -21.689 -31.689 -21.689 -21.689 -21.689 -21.689 -11.672 -21.630

s. .

Camp Lejeune Lancfill Sits "3" Monitor Well MW-7 0/N 8DEE-034-8N-3132 3155K Time Chnl 1 Program: STEP TEST 3.77 +20.472 Readings: 120 Chnl t 3.87 +20.430 Start Time: 13:03:22 +22.289 +20.396 3.97 Start Sate: 04/CC -22.247 +20.362 4.07 0015 =5I -----22.204 4.17 +20.329 Ranget in a sure of +20.295 ~32.162 4.27 Channeisi +22.128 4.37 +20.269 +20.236 -32. **86** 4.47 -22.052 4.57 +20.210 Ble**n** : -32.018 imervel 10:00: 1 4.67 +20.185. . . . -21.976 4.77 +20.160 Aeseloga 22 -21,74**2** 4.87 +20.143 Time Chrl 1 0.00 -22.177 +21.70**9** 4.97 +20.117
 0.00
 -22.173

 0.03
 -23.463

 0.07
 +24.136

 0.10
 -24.533

 0.13
 -24.677
 -11, E75 _____ +21.833 Step 3 i.c.T +21.307 Interval 00:00:10 1.57 +21.7**73** Readings 30 --31,**740** +21.706 -24,339 Time Chnl 1 <u>ः २</u>7 +24.241 +21.672 5.13 +20.075 <u>ಿ.</u>⊇≎ 0. ZZ +24.139 +21.647 5.30 +20.041 +24.033 +21.613 5.47 +20.016 \odot . \Box Zi <u>s</u> -23.034 +19.974 0.JO +21.598 5.63 1, j. 40) -21.554 0.33 +23.852 5.80 +19.940 . . . -----21.328 5.97 +19.915 1.07 +21.303 6.13 +19.889 -23.67E () ()~ . 4코 +23.398 -----6.30 +19.881 er en reg 6.47 -23.822 +19.839 latoryal (0:00:06 Readiate (0 4<u>23</u>, 46 +19.813 : <u> </u>: 6.63 0,5<u>5</u> +23.077 6.80 +19.788 6.97 +19.762 0.57 <u>+</u>27, 144 Oht. 1 7.13 +19.746 . e0 +23.074 +21.402 7.30 +19.720 ి.ఎర్ -21/3**26** +23.017 7.47 +19.703 $C \sim Z$ -27.049 +21,250 7.63 +19.695 0.70 422. °°° ~21.182 ्रा 🔁 7.80 +19.678 -71.114 0.77 -22.771 7.97 +19.670 . . -22.360 -81.047 8.13 +19.661 0.20 -22.821 -30, 988 8.30 +19.644 0.8I -22.770 -22.720 -30.9**28** 8.47 +19.636 0.87 0.70 -20.378 8.63 +19.627 -20.327 8.80 +19.619 ्.7उ +22.007 _+19.602 +22.377 -20.2**76** 8.97 0.97 ःः-7**26** 1,00 +22.559 9.13 +19.593 +22.509 1.Ĵ -30.683 -10.641 +22.466 1.07 9.63 +19.568 +22.424 1.10 -∴∴.**Ξ48** 9.80 **19.55**1

-11.306

9.97

+19.543

1.17

-22.382

+22.031

· . · · .

Camp Lejeune Landfill Site 'G" Monitor Well MW-5 Sluc Test -3132 Block S/N SDEE-03A 1 Program: STEP TEST Readings: 61 Start Time: Date: 0.173913 Start Range: 15 PSI ·* ... Channels: Unite: Ft 1 Step Interval Readings 60 Time Chnl 0.7 if Chnl Time 0 15.71 12.78 N. 73 <u>ः ः उ</u> 15.77 12.76 0.77 0.07 15.28 12.75 ം. ദ 0.1 14.87 12.73).13 14.54 े. 93 12.72 12.71 14.26 ୁ . ବ 0.17 12.70 0.2 14.02 0.93 0.97 0.23 13.81 12.69 ି**.**27 13.64 1 12.68 ្.ភ 13.49 1.07 12.67 े. 33 13.36 12.66 1.13o.37 13.25 1.3 12.65 1.5 **.**.4 13.16 12.64 **.4**3 13.09 .93 12.63 **ି. 47** 13.02 12.97 . క).53 12.93 5.57 12.88 12.85 0.6 ം. 63 :2.83 0.67 12.80

Merel 1

ترمدنه

27, 41,

.

Camo Lejeune Landfill Site "S" Monitor Well MW-4 Slug Test

50

-TITI Block Ξ/N 9055-03A

Program: STEP TEST Readings: 107 Start Time: Date: ** Start 15 PEI Rance: Channels: $=\pm$ Unite:

Ster Interval Readings

1.1

1.13

1.17

18.43

:S.38

18.33

Ibni Time 2 n**r** 1 Time Chnl Time 13.27 18.23 20.97 0 3.87 16.49 IO.72 IO.81 :.oz 3.97 16.46 in a company ______ ______ <u>ः</u> . ७७ 13.18 4.07 16.43 147 20.69 18.14 4.17 16.41 0.1 4.27 16.39 _.13 20.59 18.10 19.06 4.37 0.17 20.48 16.37 17.79 5.13 16.22 ം.2 20,38 1.53 17.74 5.3 े, 23 20.28 16.19 t a 🕁 Z 17.71 5.47 <u>. 27</u> 20.18 16.17 20.09 :7.67 5.63 े.उ 16.15 , internet The second second 17.64 5.8 0.33 20:00 16.13 17.61 19.915.97 3.37 16.11 17.53 :9.82 1.1.2 6.13 16.10 \bigcirc . a1.33 17.55 <u>.43</u> 19.74 6.3 16.09 17,52 1.57 **.47** 19.65 6.47 16.07 17.49 ្. ទ 19.59 6.63 16.05 17.46 <u>. 5</u>उ 19.50 16.04 6.8 1.97 17.43 ം ട7 19.42 6.97 16.03 _____ :7.33 19.35 7.13 16.02 <u>ಿ.</u> 6 17.25 19.23 16.01 0.63 7.3 19.18 17.18 7.47 16.00 ି <u>.</u> 67 21 57 21 47 19.13 17.12 7.63 15.99 0.7 े.7उ 19.06 17.05 15.99 7.8 1.2 17.00 0.77 13.99 19.73 14.94 <u>э.</u> 9).83 .9.38 . 6. 39 18.32 3.87 4 o. 34 1.5.30 3.73).9 े. 93 18.69 is.75 0.97 13.64 16.71 1 :8.57 16.68 3.07 15.54 18.53 1.03 18.48 1.07 .5.60

____**58**

. . 3**3**

to.23

ing ing mag Lata is

Camp Lejeune Landfill Site "5" Monitor Weil MW-6 Slug Test SDEE-03A -SiZ2 Block 1 S/N Program: STEP TEST Readings: QΔ Time: Start 淡菜 Start Date: 15 PSI Range: 1 Channels: Unite: Ft Step latervai Reacings ± 0 Time 1111 1127 Chnl Chnl Time 17.37 \odot 16.45 17.JO 16.45 0.03 17.24 0.07 16.45 1.33 16.46 17.18 0.1 1.57 0.13 16.45 17.12 1.4 17.07 0.1716.45 1.43 17.02 0.2 16.84 1.47 16.97 0.23 19.70 0.27 20.16 16.92 - .53 16.86 °.3 20.65 20.78 1.37 16.82 0.33 I).82 16.75 <u>ः उ</u>त 1. a 🍐 16.74 0.4 20.40 ...óS 20.20 20.01 0.43 1.57 16.70 . 1.7 1.75 <u>.47</u> 16.66 :9.82 ្.ទ 16.62 1.77 16.59 ଼, ଅଅ 19.65 8-1 2011 0.57 19.48 16.55 19.33 16.52 ்.6 1.37 16.49 19.19). 63 1.7 ം. 67 19.04 16.46 1.93 0.7 18.91 16.43 1.77 12.78 16.41 े.73 0.77 16.32 13.66 :8.54 16.25 j.8 ing in the second secon 0.83 16.17 18.43 16.14 ं.उ7 18.27 197 197 197 0.9 18.18 .5.09

୍କ ୨୦

े. 97

1.07

1.1

1.13

1.17

1. 🚍

1 1.03 13.11

17.91

17.84

17.74

17.67 17.58

17.51

17.44

13.01

16.05

:6.01

15.98

:≝.94

15.92

.S.38

15.68

15.35

15.32

2.77 2.37

1197 7107

Z.17

Time	Chnl
3.47	15.81
3.57	15.80
3.67	15.78
3.77	15.77
3.87	15.76
3.97	15.75
4.07	15.74
4.27	15.73
4.37	15.72
4.77	15.71
4.97	15.70
5.47	15.69

Monitor We S/N SDEE+3		Block 1		a sana a sa
	STEP TEBT			
Program:	9 <u>7</u>			
Feadings:				
	. 08:24:03			
Start Data	0015 PSI	Time	Chnl 1	Time Chnl
Range:			+17.579	3.27 +16.34
Channels:			÷17.549	
lnits:	Ft-H20		+17.507	3.37 +16.33
				3.47 +16.2
Sted 1	e en les parties de les		+17.456	3.57 +16.28
Interva. '		ing in the second se Second second second Second second	+17.414	3.67 +16.20
Readings :	20	in and a second s	-17.371	3.77 +16.24
			-7.338	3.87 +16.23
- i m e	Thei i		-:/.295	3.97 +16.23
	+14:0P5	13 1999 13 1 2 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1	-17.2 41	4.07 +16.2
ः.ः≾	+16.095		-17.228	4.17 +16.20
o.07	-14.095	er en	-17.194	4.27 +16.19
0.10	-16.273	· · · · · · · · · · · · · · · · · · ·	-17.152	4.37 +16.18
0.13	+17.439	د	-17.126	4.47 +16.18
0.17	+19,425		-17.092	4.57 +16.13
0.20	+20.312	47	-17.067	4.67 +16.10
े.23	+20.506	1. TO	+17.033	4.77 +16.10
0.27	+20.371		+17.08	4.87 +16.15
0.30	+20.193		-16.983	4.97 +16.14
्,उट	+20.024	1.30	+16.957	
<u>∴</u> .37	-19.864		-34.932	
0.4C	+19.712	57	+16.907	
4 3	-19.548		+16.881	Step 3
0.47	+19.430		+16.856	Interval 00:00:10
o,eo	+19.276	, n, ning , r , r , r , r	-16.831	Readings 30
	+19.179			
o.37	+19.041			Time Chnl
0.60	+18.392	··· ·		5.13 +16.13
0.6 3	+18. 71	Ster 1		5.30 +16.13
0.67	+18.578	Intervel.		
0.70	+19.5	Reacings		
○ <u>,</u> 7 <u>3</u>	+18.312			
	+18.427		Chnl 1	
0.8 <u>0</u>	+18.343	<u> </u>	+16.763	,
े. 83	+18.257		-16.712	
3.67	-18.179		-16.662	
<u>् २०</u>	+18.123	a and an and a second and a s	-15-611	· · · ·
0.93	+19.056		-16.569	17 () () () () ()
0.77	+17 -38		- 6.535	
t.OO	+17,729	a da anti-anti-anti-anti-anti-anti-anti-anti-	-16.493	
1.03	+17.370	janaj esta kanan Sana na si jana sana sa	-14.467	
1.07	+17.311	<u> </u>	-16.433	مى مەركى ئىرىكى ئەركى بىرى بىرى بىرى بىرى بىرى بىرى بىرى ب
1.10	+17.752	1. 77 1. 77	-14.408	
1.13	+17.701	.	-16.383	
1.4.1.7	+17.550		-la.357	

Came Lejeune Landfill Site "S" Monitor Well MW-8 Slug Test

S/N SDEE-OJA

1

-3132 Block

1

Program: STEP TEST Readings: 100 Start Time: Date: 0.156667 Start 15 PSI Range: 1 Channels: Units: Ft

Step Interval Readings

· . · .

60 Time Chni 0 19.12 े,03 19.90 0.07 20.28 0.1 20.54 0.13 20.70 20.79 0.17 0.2 20.82 0.23 20.77 0.27 20.54 े. उ 20.35 0.33 20.18 0.37 20.04 ं.4 19.92 0.43 19.80 19.70 0.47 <u>о.</u> 5 19.63 0.53 19.53 े. 57 19.48 19,44 **0.**6 19.39 S.63 19.36 0.67 0.7 19.32 0.73 19.30 0.77 19.27 ្.ខ 19.25 19.23 0.83 0.87 19.21 ்.9 19.20 0.93 19.19 0.97 19.17 1 19.16 1.03 19.15 1.07 19.15 1.1 19.14 19.13 1.13 19.12 1.17

Time	Chnl
1.2	19.11
1.27	19.10
i e terretaria. La cui	19.10
1.47	19.08
	19.07
1.63	19.06
1.67	19.06
1.8	19.05
2.07	19.04
2.47	19.03
2.67	19.02
2.97	19.01
3.57	19.00
4.37	18.99
4.77	18.98
5.47	18.97
6.13	18.96
6.63	18.95

				•
Camp Lejeune Landfi Monitor Well MW-9	ll Site "G"			LINE
8/N SDEE-03A-8N-313	2 Plock i			
Program: STEP TE	- ST			
Readings: 61	-			
Start Time: 11:35:3	0			
Start D ate: 04/24	Time	Chnl I	Time	Chnl
			3.37	
Range: 0015 PS Channels: 1	است است است. در ۱۳۵۹ میں اینداز اینداز ای		3.47	
			3.57	
Unite: Ft-H2D		+12.910	3.67	
	್ ಎಂದು ಬಿಂದಿ ಎಂದು ಕಾರ್ಯ ಎಂದು ಸ್ವಾಗವನ್		3.77	
Step 1 Interval 00:00:02		+12.893	3.87	
	ana ser 11 ⊒ 440			
Reacin gs 60	u = 1712 - u - com 2 - com			+12.76
		+12.976	4.07	+12.76
Time Chol 1		+12.868		
⊃. <u></u> ⊙0 +16.332	1.30	+12.859		
0.03 +1 6. 011	1.55			
0.07 +15.741		+12.851		
.10 +15 .470	1.50			
0.13 +15.183	1.53			
o.17 +14.980		+12.842		
0.20 +14.769	1.70			
୍ <u>.</u> 23 +14.642	1.75			
0.27 +14.465				
c,30 +14.270	1.30			
0.33 +14.110		+12.817		•
0.37 +14.000		+12.817		
.40 + 13.724		+12.817		
o.43 +13.6 5 6	1.93			
0.47 ÷13.780	. 1297	+12.809		
0.50 +13.679				
0.53 +13.620				
0.37 +13.569				an gang range a saint a
o_60 +13.502	Step 2			. :
o_63 +13.442		ःः ः		
0.67 +13.392	Readinçs			
0.70 +13.341				
0.73 +13.299	Time	Chnl 1		
0.77 +13.256	2.07	+12.800		
.so +13.223	2.17	+12.800		•
0.83 +13.180		+12.792		
0.87 +13.155	2157	+12.792		
0.70 +13.121		+12,783	:	
0.73 +13.076	5.37	+12.783	* · · · · ·	and the second second
0.97 +13.071		+12.783		
1.00 +13.045	2.67 2.77	+12.775		
1.03 +13.028	2.67	-12.775		
1.03 + 13.011	2.97	+12.775		
1.10 + 12.995	3.07	+12 .766		
1.13 +12.978	J.17	+12.766		
is see the second se	·_* = _ /	·		
1.17 +12.961		+12.766	5 A. H.	A CONTRACTOR

.

Camp Lejeune Landfill Site "G" Monitor Well 6-GW-2 Slug Test

SDEE-03A Block S/N

Program: STEP Readings: 105 Start Time: Start Date: 15 Range: Channels: 1 Ft Units:

Step	1	
Time	Chnl	
Õ	14.35	
0.03		
0.07	14.48	
O. 1	14.62	
0.13	14.72	
0.17	14.79	
o.2	14,80	
0.23	14.83	
0.27	14.84	
0.3	14.83	
े.उउ	14.82	
<u>. उ</u> 7	14.80	
. 4	14.77	
0.43	14.74	
0,47	14.71	
្.5	14.68	
0.53	14.65	
े.57	14.64	
o.6	14.61	
0.63	14.59	
0.67	14.58	
0.7	14.57	
0.73	14.56	
0.77	14.55	
.ខ	14.54	
0.83	14.52	

Time Chnl 0.87 14.51 0.9 14.51 0.93 14.50 0.97 14.49 1.03 14.48 1.1 14.47 2.27 14.46 2.37 14.45 2.47 14.44 2.57 14.43 2.67 14.42 2.77 14.41 3.07 14.40 3.27 14.39 3.37 14.38 3.67 14.37 3.77 14.36 3.97 14.35 14.34 4.47 4.57 14.33 4.77 14.32 6.3 14.31 6.63 14.30

Hazen Method to Estimate hydraulic Conductivity from Grain Size Information, Reference; Feller, C.W. Applied Hydrogeology, 1988 pg. 81

The hydraulic conductivity of sondy sediments can be estimated From the groin Size distribution by the Nazen Method. The method Is applicable to sands where the effective grain Size (D10) is between approximately Oil mm and 3.0 mm. The Hazen approximation is:

$K = C \left(D_{IO} \right)^{Z}$	where
	K is hydroulic conductivity in cun/sec
	Dib is the effective grain size in cm.
	C is a coefficient (40 to 80 for fine Sand)

From Table

DID	Yange = ,0004 mm to ,14 mm		.00004 to .014 mm	
Dio	average = ,052 mm	=	,0052cm	•

Low Value	K=	6.4×10-8			
High Value	K =	7.8×10-3 to	1.6×10-2		
Mean Value	K =	1.08×10-3 to	2.1×10-3	USE. Average	= 1.6×10-3 cm/

COMPARISON OF THE MEAN VALUES TO LAB DATA

SAMPLE	LABORATORI (K)Cm/4C	HAZEN METHOD (K) Cm/SIC	DEGEEE OF COELELATION
MW-4	1.5×10-3	116 ×10-3	GOOD
MW-5	3.0×10-4		FAIR
MW-7	1.4×10-4		6000
MW-9	6.0×10-4		FAIR
В-в	1.9×10-3		600D
B-9	3.4×10-3		FAIR