01.02 - 10/22/94 - 00290

I ili

ADDENDUM TO REPORT OF UNDERGROUND FUEL INVESTIGATION AND COMPREHENSIVE SITE ASSESSMENT

CAMP GEIGER FUEL FARM MARINE CORPS BASE

CAMP LEJEUNE, NORTH CAROLINA

October 26, 1994

Law Engineering Job No. 475-08135-01

Law Engineering, Inc. Raleigh, North Carolina ENGINEERING AND ENVIRONMENTAL SERVICES

October 26, 1994

Commander Naval Facilities Engineering Command Atlantic Division Norfolk, Virginia 23511-6287

Attention: Mr. Mark Barnes, Code 18215 Engineer-In-Charge

Subject: ADDENDUM TO REPORT OF UNDERGROUND FUEL INVESTIGATION AND COMPREHENSIVE SITE ASSESSMENT CAMP GEIGER FUEL FARM, MARINE CORPS BASE CAMP LEJEUNE, NORTH CAROLINA LAW ENGINEERING JOB NO. 475-08135-01

Dear Mr. Barnes:

In accordance with Naval Facilities Engineering Command Order for Supplies and Services Contract No. N62470-90-D-7625/0002 dated September 29, 1990, Law Engineering is pleased to present this addendum to the report of our environmental services for the above-referenced project site. The scope of our services, as described in the attached report, included drilling of three soil-test borings and collecting soil samples for chemical testing; installing three groundwater monitoring wells and collecting groundwater samples for chemical testing; performing an eight-hour aquifer test using the three newly-installed wells; and interpreting the data from the pump test to estimate the hydraulic characteristics of the aquifer.

This report is intended for the exclusive use of Naval Facilities Engineering Command, Atlantic Division. The contents should not be relied upon by any other parties without the express, written consent of Law Engineering. The findings are relevant to the dates of our site work and should not be relied upon to represent site conditions on other dates.

LAW ENGINEERING, INC.

3301 ATLANTIC AVENUE • RALEIGH, NC 27604 P. O. BOX 18288 • RALEIGH, NC 27619 (919) 876-0416 • FAX (919) 872-3253 ONE OF THE LAW COMPANIES � Camp Geiger Fuel Farm Page 2

111

THEFT I

We appreciate the opportunity to continue to work with you and the Navy on your environmental projects. If any questions arise, please contact us at (919) 876-0416.

Sincerely,

LAW ENGINEERING, INC. Richard A. Kola Richard A. Kolb, P. . W. Douglass Dixon SEAL Principal Engineer 1153RAK/WDD/rak/bro/kk ALM ALM Mark Spangler cc: Kathy Molino

նակել է է իրասեն ներերություններին համան իր

01.02 - 10/26/94 - 00290

TABLE OF CONTENTS

Ϊ

1.0	INTRODUCTION 1 1.1 Purpose of the Investigation 1 1.2 Scope of Work 2							
2.0	SURFACE CONTAMINATION ASSESSMENT2Installation of the Monitoring Wells2Assessment of Soil Contamination42.2.1 Scanning Procedures42.2.2 Collection of Soil Samples52.2.3 Results of the Soil Sampling6Assessment of Groundwater Contamination62.3.1 Procedures for Sampling the Monitoring Wells62.3.2 Results of the Groundwater Sampling7							
3.0	SITE HYDROGEOLOGY 9 3.1 Eight-Hour Pumping Test 9 3.1.1 Pumping-Test Procedures 9 3.1.2 Estimating Aquifer Parameters 10							
4.0	PROCEDURES FOR QUALITY CONTROL134.1Decontaminating Equipment134.2Collecting, Handling and Shipping Samples14							
5.0	REFERENCES							
TABL	ES							
3.1 4.1 4.2 4.4	Summary of Development of Monitoring Wells Summary of Headspace Testing Summary of Laboratory Analyses: Soil Samples Summary of Laboratory Analyses: Groundwater Samples							
DRAV	WINGS							
1.1 3.1 4.3 4.3.1 4.7 4.7.1	Topographic Site Map: Jacksonville South, N.C. Topographic Quadrangle Location of Soil Borings Isopleth Map, TPH Concentrations - Soil Isopleth Map, Highest TPH Concentrations - Soil Isopleth Map, Combined BTEX Concentrations, Shallow Screened Interval - Groundwater Isopleth Map, Benzene Concentrations - Shallow Screened Interval - Groundwater							

DRAWINGS CONTINUED

- 4.7.2 Isopleth Map, Toluene Concentrations Shallow Screened Interval -Groundwater
- 4.7.3 Isopleth Map, Ethylbenzene Concentrations Shallow Screened Interval -Groundwater
- 4.7.4 Isopleth Map, Total Xylenes Concentrations Shallow Screened Interval Groundwater
- 4.13 Isopleth Map, MTBE Concentrations, Shallow Screened Interval -Groundater

APPENDICES

- A Records of Soil-Test Borings
- B Test Data of Grain-Size Distribution
- C Well Construction Records and Groundwater Monitoring-Well Installation Details
- D Chain of Custody Forms
- E Laboratory Analytical Test Reports, Soil Samples
- F Monitoring Well and Sampling Field Data Worksheets
- G Monitoring Well Casing and Water Elevation Worksheets
- H Laboratory Analytical Test Reports, Groundwater Samples
- I Pump Test Calculations

1.0 INTRODUCTION

1.1 <u>Purpose of the Investigation</u>

On September 29, 1990, the Commander of the Atlantic Division Naval Facilities Engineering Command (LANTDIV) in Norfolk, Virginia, contracted with Law Companies Group, Inc. to perform a Comprehensive Site Assessment (CSA) at the Camp Geiger Fuel Farm, Marine Corps Base (MCB), Camp Lejeune, North Carolina (Drawing 1.1). The purpose of the investigation was 1) to identify the presence, magnitude and extent of possible free-product accumulation and groundwater contamination and 2) to assess potential exposure to subsurface contaminants resulting from the release(s) of petroleum fuels. As stated in Law Engineering's CSA Workplan dated July 25, 1991, the objective of the investigation was to provide sufficient data to meet the requirements of Sections 280.63 and 280.65 of 40 CFR Part 280, Federal Technical Standards for Underground Storage Tanks and Sections .0704 and .0706 of Title 15A, Chapter 2, Subchapter 2N, North Carolina Criteria and Standards Applicable to Underground Storage Tanks.

The assessment activities presented in the CSA Workplan were completed and a report, entitled "Final Report, Underground Fuel Investigation, Comprehensive Site Assessment", was issued to the Commander of the Atlantic Division, Naval Engineering Facilities Command on February 8, 1992. Based upon the results of the initial assessment, it was determined that additional assessment was necessary to fully characterize the southern extent of petroleum contamination resulting from the underground fuel release and that performing an aquifer pumping test was necessary to estimate the hydraulic characteristics of the surficial aquifer.

1

140

I

a second a **diffical** p

1.2 <u>Scope of Work</u>

Authorization to proceed with the investigation was granted by the Commander of LANTDIV of Norfolk, Virginia, via Addendum to Contract/Purchase Order No. N62470-90-D-7625/0002. As outlined in the contract, the scope of work included preparing a health and safety plan, advancing three soil borings, installing three monitoring wells, collecting and analyzing soil and groundwater samples, performing an eight-hour pumping test of the surficial aquifer, preparing an addendum to our report of investigation, and presenting our data and conclusions. Specific methods employed while performing the project activities are described in this report, which presents a summary of the additional assessment activities performed during October and November 1992.

2.0 SUBSURFACE CONTAMINATION ASSESSMENT

2.1 Installation of the Monitoring Wells

Law Engineering performed field activities on October 28 and 29, 1992, which consisted of advancing three soil borings. One of these borings was subsequently used to install pumping well 28 (PW-28). The remaining two borings were used to install monitoring wells 26 (MW-26) and MW-27, used as observation wells during the pumping test. The locations of these wells are shown on Drawing 3.1. The numbers of the drawings included in this addendum report correspond with those in our February 1992 report.

2

110

i and a shirth in the state of the state of

Law Engineering accomplished all drilling using hollow-stem augers and techniques described in ASTM D-1452. We steam-cleaned our down-hole drilling equipment prior to work at each drilling location. We used augers with an inside diameter of 6.25 inches for drilling each boring. The site geologist collected soil samples from each of the soil borings for field classification, headspace testing and chemical testing. We generally obtained soil samples for field classification at depths of 0 to 1.5 feet, 1.5 to 3 feet, 3 to 4.5 feet and on 5-foot centers thereafter to boring termination. We collected these soil samples with a split-spoon sampler 24 inches long and with an inside diameter of 1.375 inches (outside diameter of 2 inches). We obtained each soil sample by continually dropping a 140-pound hammer for 30 inches, until the sampler was driven 18 inches into the substrate. We performed split-spoon sampling in general accordance with ASTM D-1586 and recorded on the field boring log the number of blows required to drive the sampler each 6-inch increment. After donning laboratory-grade gloves, we placed representative portions of each sample in two, pre-labeled plastic bags and sealed each bag for subsequent headspace testing.

The site geologist examined in the field the soil sample collected at each interval using visual/manual techniques described in ASTM D-2487 and ASTM D-2488. We classified the soil in general accordance with the United Soil Classification System. We have included a record of each test boring in Appendix A.

We collected one soil sample from the boring for the pumping well to test for grainsize distribution. We used the data from this test in calculations to estimate the hydraulic conductivity of the surficial aquifer. The results of this grain-size test are included in Appendix B.

111

I we are a statistical to

The specifications for each soil boring included decontaminating the drilling equipment with a pressurized steam-cleaning unit, emplacing a silica-sand filter pack and a bentonite seal above the filter pack and grouting the well above the bentonite seal with a cement/bentonite slurry, and developing the well through low-yield pumping. Development water was discharged to the oil/water separator which is located east of the fuel farm, as directed by activity personnel.

The screened intervals of the two observation wells are constructed of Schedule 40 PVC with an inside diameter of two inches. The screened interval of the pumping well is constructed of Schedule 40 PVC with an inside diameter of four inches. The risers for each of the three wells are constructed of Schedule 80 PVC. Each of the wells constructed by Law Engineering has a lockable cap and is protected by a flush-mount cover constructed of steel. Details for installing the monitoring wells are included in Appendix C. Upon installation, each well was developed through low-yield pumping. In Table 3.1, we have summarized the approximate volumes of water removed during well development and our observations of turbidity of the development water. The numbers of the tables included in this report correspond with those in our February 1992 report.

2.2 Assessment of Soil Contamination

2.2.1 Scanning Procedures

Law Engineering monitored all soil-investigation activities with an organic vapor analyzer (OVA) manufactured by Foxboro (Model 128) which had been calibrated using methane. We used the OVA to qualitatively measure total volatile organics in

the borehole, in ambient air, and in the individual soil samples. Values recorded with the OVA are qualitative and are not directly comparable to actual laboratory analytical results. However, the OVA is useful in providing a relative indication of the presence of volatile organics in soil samples.

2.2.2 Collection of Soil Samples

We collected soil samples from each boring for headspace testing and laboratory chemical analysis according to the following procedure:

- Drive the decontaminated split-spoon sampler to the desired depth interval.
- Retrieve and immediately open the split-spoon sampler. Quickly remove portions of sample aliquots from the split-spoon sampler and place the sample into two, pre-labeled, airtight plastic bags. Carefully execute sample handling in an effort to reduce the loss of the volatile organics. Seal and place the bags in a warm location.
- After approximately 10 minutes, test the headspace gas in one of the two bags with the OVA and record the peak value. This procedure was conducted for the soil sample collected at each sample-depth interval.
- From the soil samples collected from each boring, two samples were targeted for chemical testing. For those samples, the paired sample was transferred to a laboratory-supplied glass container, placed into a cooler, packed on ice and shipped to the laboratory for chemical analysis. Law Engineering maintained

custody of the samples until shipment. Chain of custody forms are included in Appendix D.

2.2.3 Results of the Soil Sampling

A summary of headspace testing is presented in Table 4.1. Volatile organics were not detected in the boreholes for MW-26 and MW-27. Volatile organics were detected in excess of the equipment detection limit of 0.2 parts per million (ppm) in samples collected from the borehole for PW-28 at depths below the water table.

We have presented a summary of laboratory analyses of the soil samples collected from MW-26, MW-27 and PW-28 in Table 4.2. Copies of the laboratory test reports are included in Appendix E. The selected soil samples were tested for total petroleum hydrocarbons (TPH) using EPA Methods 3550 (semi-volatiles) and 5030 (volatiles). The laboratory did not detect TPH in the soil samples collected from these three wells.

We have modified two of our isopleth maps (Drawings 4.3 and 4.3.1) to include the locations of MW-26, MW-27 and PW-28. TPH was not detected in the soil samples from these three wells; therefore, the contours on these isopleth maps did not change from those in our February 1992 report.

2.3 Assessment of Groundwater Contamination

2.3.1 Procedures for Sampling the Monitoring Wells

Law Engineering installed three wells during the investigation to complement the 25 wells installed during previous investigations. Prior to sampling each of the three,

newly-installed wells, Law Engineering measured and recorded the depth to groundwater using an electronic, water-level probe. We recorded the data collected and observations made on the Monitoring Well and Sampling Field Data Worksheets (Appendix E). Groundwater elevations relative to sea level for the newly-installed wells are shown on the Monitoring Well Casing and Water Elevation Worksheet (Appendix F).

Law Engineering evacuated the newly-installed wells prior to collecting groundwater samples to remove stagnant water from the well casing and sand pack. We performed this task in an effort to collect samples representative of the water quality in the surficial aquifer. To evacuate the observation wells, we used decontaminated, Teflon bailers attached to new nylon cord; to evacuate the pumping well, we used an Arch Well Development Pump. We measured and recorded specific conductance, pH, and water temperature throughout the evacuation process. We generally evacuated the wells of at least three standing well volumes and until indicator parameters had stabilized.

Prior to sampling the wells, Law Engineering personnel donned laboratory-grade gloves. We collected the water samples and immediately decanted the samples from the bailer into pre-labeled sample containers. We sealed the containers, stored the containers in a chilled cooler, and maintained custody of the samples until shipment at the end of the day.

2.3.2 Results of the Groundwater Sampling

We have presented a summary of laboratory analyses of the groundwater samples collected from all of the monitoring wells, including MW-26, MW-27 and PW-28, in

Table 4.4. Copies of the laboratory test reports are included in Appendix H. We tested the groundwater samples from MW-26, MW-27 and PW-28 for purgeable aromatic hydrocarbons by EPA Method 602, modified to include total xylenes and methyl tertiary butyl ether (MTBE). The laboratory did not detect constituents of petroleum hydrocarbons in the groundwater samples from MW-27 and PW-28. In the sample from MW-26, the laboratory detected total xylenes at a concentration of 1 μ g/L and MTBE at a concentration of 12 μ g/L. The North Carolina Groundwater Quality Standard for total xylenes is 400 μ g/L and for MTBE is 50 μ g/L. Therefore, the concentrations of these constituents in MW-26 are below the state standards.

We have modified six isopleth maps from the February 1992 report (Drawings 4.7, 4.7.1 through 4.7.4 and 4.13) to include the locations of MW-26, MW-27 and PW-28. Benzene, toluene and ethylbenzene were not detected in the groundwater samples from these three wells; therefore, we did not change the contours for these constituents on the isopleth maps (Drawings 4.7.1, 4.7.2 and 4.7.3, respectively). We also did not change the contours of the isopleth maps of total xylenes concentrations (Drawing 4.7.4) and combined BTEX concentrations (Drawing 4.7). Since the concentration of 1 μ g/L of total xylenes detected by the laboratory in the groundwater sample from MW-26 is the same as the laboratory detection limit, it is possible that this concentration is a result of laboratory-induced contamination or handling of the samples during shipment.

Law Engineering documented MTBE at concentrations below the State Standard of $50 \mu g/L$ in the groundwater sample from MW-26 and in the water collected during the pumping test performed on PW-28. MW-26 and PW-28 are hydraulically upgradient of the contaminant source at the Tank Farm; therefore, the MTBE documented in the

groundwater from these wells is possibly not related to activities at the Tank Farm. As we documented in our previous report, we also could not identify a likely source for the MTBE detected in the sample collected from MW-9, which is located west of the Tank Farm and of MW-26/PW-28. Because of the isolated occurrence of MTBE in several of the wells and no discernible pattern of contaminant migration, we are unable to offer an explanation as to other sources of MTBE.

3.0 SITE HYDROGEOLOGY

3.1 <u>Eight-Hour Pumping Test</u>

Law Engineering conducted an eight-hour pumping test during November 1992 at PW-28 to determine the performance characteristics of the well and to estimate the hydraulic parameters of the aquifer. Yield and drawdown were recorded so that the specific capacity of the well could be calculated. These data give a measure of the productive capacity of the well and provide information needed for the selection of appropriately sized pumping equipment which may be necessary during the corrective action phase of the project. The pumping test also provided data from which to determine the transmissivity and storativity of the surrounding aquifer in order to predict the size and shape of capture zones produced during pumping of individual or multiple extraction wells.

3.1.1 Pumping-Test Procedures

Prior to the actual pumping test, PW-28 was pumped for approximately one hour to determine the approximate well yield. This "pre-test" data was necessary to select

111

a second and distributed in

the proper size pump and to establish the pumping rate to be used during the test.

During the pumping test, the groundwater pumped from PW-28 was stored in a tanker. The laboratory tested a water sample collected from this tanker for purgeable aromatics by EPA Method 602, modified to include total xylenes and MTBE. The discharged water was transported off the site by P&W Oil Company, which is storing the water for future disposal.

The eight-hour pumping test was conducted on November 4, 1992. During the test, a constant pumping rate of approximately 4.1 gallons per minute was maintained and the drawdown in each of the surrounding observation wells -- MW-22S, MW-26 and MW-27 -- was measured and recorded at appropriate time intervals. These data are summarized in Appendix I. As summarized, after eight hours of pumping PW-28, approximately 2,360 gallons of groundwater were extracted and drawdowns were as follows:

Observation Well	Distance from PW-28	Drawdown
MW-22S	113 feet	0.08 feet
MW-26	32 feet	0.22 feet
MW-27	88 feet	0.01 feet

3.1.2 Estimating Aquifer Parameters

The data collected during the pumping test were used to calculate the storativity and transmissivity of the surrounding aquifer. These determinations were made by using

144 Lances and the second s Second s Second se

Comprehensive Site Assessment Report Camp Geiger Fuel Farm

type curve matching, time-downdown method, and the In-Situ computer software, TS-Match Theis Curve Automated Matching Program. TS-Match uses relative leastsquares and the Newton-Raphson iterative method to solve the Theis solution, where:

$$s = \underline{O} \int_{u}^{\infty} \frac{e^{-u}}{nT} du,$$

where:

s= drawdown

Q = pumping rate, in gpm

T = Transmissivity, in gpd/ft

 $u = (r^2S)/(4Tt)$, where

- r = radial distance, in feet, from the pumped well to the observation well,
- S = storage coefficient, and
- t= time

The TS-Match program makes the following assumptions:

- the production rate is constant.
- the aquifer is homogeneous, non-leaky, and there is no recharge.
- the aquifer has very large areal extent. If this is not the case, a mechanism has been provided to ignore data which the user considers are strongly influenced by the limited extent of the aquifer.
- water removed from storage is discharged instantaneously with decline in head (i.e., no delayed-yield effects).
- for analyzing production well data, skin (well loss) = 0.
- for analyzing production well data, wellbore storage is not accounted for. However, a mechanism has been provided to ignore data that may be influenced by wellbore storage.

1 11

L

In addition, the data were also analyzed manually by the type-curve matching method and the manual time-drawdown method to confirm the solution presented by TS-Match. We also analyzed grain-size distribution data from well PW-28 to estimate hydraulic conductivity. The field data and calculations are presented in Appendix I.

1 and a dill. 1.2 1

The Type-curve matching, TS-Match, time-drawdown and grain size distribution solutions are as follows:

SUMMARY OF AQUIFER PARAMETER ESTIMATIONS								
AQUIFER PARAMETER	WELL NUMBER							
	MW-22S	MW-26	PW-28					
 I. Transmissivity (ft²/day) by: a) Type Curve Matching b) Time-Drawdown c) Theis Curve Matching (Computer Program) 	3064 3911 4226	1570 1026 988						
 II. Specific Storage by: a) Type Curve Matching b) Time-Drawdown c) Theis Curve Matching 	0.003 0.001 0.0015	0.008 0.006 0.011						
 III. Hydraulic Conductivity (3) (ft/day) by: a) Type Curve Matching b) Time-Drawdown c) Theis Curve Matching d) Grain-Size Analysis 	139 177 192 (4)	71 47 45 (4)	99					

NOTES:

(1) MW-22 and MW-26 were used as observation wells for the pumping test.

(2) PW-28 was the well on which the pumping test was performed.

(3) Aquifer thickness is 22 feet, estimated from boring records in February 7, 1992, report.

(4) Grain-size distribution analysis not performed on soil samples from these wells.

144

i detta i

di di come

From this data, average hydraulic conductivity values would be 169 ft/day for MW-22S, and 54 ft/day for MW-26. The hydraulic conductivity value from grain-size analysis for well PW-28, which is 99 ft/day, falls between these two other values. All three conductivity values fall within the same order of magnitude. The differences between the values may be explained by local heterogeneities in the soil matrix of the aquifer. A regional average of approximately 110 ft/day may be used for hydraulic conductivity in the surficial aquifer beneath the Fuel Farm area.

Similarly, average specific storage calculated from the pumping test ranges from 10^{-3} to 10^{-2} . Specific storage values associated with well MW-26 are higher than those associated with MW-22. The differences may be explained by local heterogeneities in the soil matrix of the aquifer.

4.0 PROCEDURES FOR QUALITY CONTROL

4.1 <u>Decontaminating Equipment</u>

The CSA Workplan details the quality-control procedures followed for handling and decontaminating equipment in the field. Using the procedures described in the

111

I.

i na se dittatt

1

Workplan, we decontaminated our drilling equipment adjacent to the oil/water separator, which is located east of the Fuel Farm.

4.2 <u>Collecting, Handling and Shipping Samples</u>

The CSA Workplan details the quality-control procedures followed for collecting, handling and shipping samples. We utilized rinse blanks and trip blanks as qualitycontrol measures to provide checks on the integrity and quality of our groundwater sampling program.

Law Engineering submitted an equipment rinse blank to the laboratory to evaluate the procedures we used for decontaminating the Teflon bailers. Law Engineering also submitted a trip blank to the laboratory to check the integrity of the sample containers, to determine if contaminants may have entered the sample containers during shipment to and from the job site, and to check for laboratory-induced contamination. Each of the blanks was analyzed for purgeable aromatics. The two blank samples did not contain contaminant levels above the laboratory detection limit. Although, our procedures for bailer decontamination were generally successful in eliminating the introduction of contaminants through the sampling equipment, it is possible that the 1 μ g/L of total xylenes documented in the groundwater sample from

LI

L

a anna an an A**rran** a

MW-26 may have resulted from incomplete decontamination of the bailer used to sample that well or from laboratory-induced contamination.

5.0 REFERENCES

Freeze, R. Allan and Cherry, John A., <u>Groundwater</u>, Prentice-Hall, Inc., Englewood Cliffs, New Jersey, 1979.

North Carolina Administrative Code, Title 15, Subchapter 2L, Classification and Water Quality Standards Applicable to the Groundwaters of North Carolina, North Carolina Environmental Management Commission, Raleigh, North Carolina, August 4, 1989.

Walton, W.C., Practical Aspects of Groundwater Modeling, 2nd Edition, 1984.

Water-Vel, Hydrologic Modeling Division, In-Situ, Inc., Laramie, Wyoming, Version 2.2, July 1989.

TABLES

TABLE 3.1 SUMMARY OF DEVELOPMENT OF MONITORING WELLS								
ADDENDUM TO REPORT OF UNDERGROUND FUEL INVESTIGATION AND COMPREHENSIVE SITE ASSESSMENT CAMP GEIGER FUEL FARM CAMP LEJEUNE,NORTH CAROLINA LAW ENGINEERING JOB NO. 475-08135-01								
MONITORING WELL IDENTIFICATION NUMBER	FINAL TURBIDITY (SUBJECTIVE)*	APPROXIMATE VOLUME OF WATER REMOVED (GAL.)						
MW-26	26 2 13.5							
MW-27	2 20							
PW-28 1 120								

<u>Note:</u>

* (1) Clear; (2) Slight; (3) Moderate; (4) High

111

I

· i -

n orona a shikinga kado k

ADDENDUM T	TABL SUMMARY OF HE O REPORT OF UNDER COMPREHENSIVE CAMP GEIGE CAMP LEJEUNE, I LAW ENGINEERING J0	.E 4.1 ADSPACE TESTING GROUND FUEL INVES SITE ASSESSMENT R FUEL FARM NORTH CAROLINA OB NO. 475-08135-0	TIGATION AND
SAMPLE LOCATION	SAMPLE DEPTH (ft.)	OVA READING	SAMPLE SELECTED FOR LABORATORY ANALYSIS
	0 - 1.5	Not Detected (ND)	
	1.5 - 3	ND	*
	3 - 4.5	ND	
	6 - 7.5	ND	*
MW-26	9.5 - 11	ND	
	14.5 - 16	ND	
	0 - 1.5	ND	
MW-27	1.5 - 3	ND	*
	3 - 4.5	ND	
	6 - 7.5	ND	*
	9.5 - 11	ND	
	14.5 - 16	ND	
	0 - 1.5	ND	
	1.5 - 3	ND	
	3 - 4.5	ND	*
	6 - 7.5	ND	
PW-28	9.5 - 11	ND	*
	14.5 - 16	20	
	19.5 - 21	28	

i arra a d**hila**alad k

_

......

TABLE 4.2 SUMMARY OF LABORATORY ANALYSES OF SOIL SAMPLES ADDENDUM TO REPORT OF UNDERGROUND FUEL INVESTIGATION AND COMPREHENSIVE SITE ASSESSMENT CAMP GEIGER AREA FUEL FARM CAMP LEJEUNE, NORTH CAROLINA LAW ENGINEERING JOB NO. 475-08135-01								
		TOTAL PETROLEU	M HYDROCARBONS					
LOCATION	SAMPLE DEPTH (ft)	VOLATILES (mg/kg)	SEMI-VOLATILES (mg/kg)					
MW-26	1.5-3	N.D,	N.D.					
MW-26	6-7.5	N.D.	N.D.					
MW-27	1.5-3	N.D.	N.D.					
MW-27	6-7.5	N.D.	N.D.					
PW-28	3-4.5	N.D.	N.D.					
PW-28	9.5-11	N.D.	N.D.					

.....

KEY TO SYMBOLS FOR TABLE 4.4

SUMMARY OF LABORATORY ANALYSES

- * Numerical standard has not been established; substances not allowed in detectable concentrations.
- N.D. = Not detected: see laboratory reports for applicable detection limits.
- = Sample not analyzed for this parameter.

1 11

Т

			M ADDENDUM T	TABLE SUMMARY OF ONITORING WE SHALLOW	4.4 (Page 1 of LABORATORY / LL GROUND-WA / SCREENED INT INDERGROUND	3) ANALYSES TER SAMPLES ERVAL FUEL INVESTIG/	ATION AND					<u> </u>
CAMP GEIGER FUEL FARM CAMP LEJEUNE, NORTH CAROLINA LAW ENGINEERING JOB NO. 475-08135-01												
	WELL NUMBER	NC GROUND WATER STANDARD	EMW-1 (CGMW-1)	EMW-2 (CGMW-2)	EMW-3 (CGMW-3)	EMW-4 (CGMW-4)	EMW-5 (35GW-4)	EMW-6 (35GW-5)	EMW-7 (35GW-6)	MW-8S	MW-9S	MW-10S
, , , , , , , , , , , , , , , , , , ,	DATE SAMPLED		9/3/91	9/5/91	9/5/91	9/5/91	9/4/91	9/5/91	9/5/91	9/4/91	9/3/91	9/3/91
PARAMETER (ug/l)	SCREENED INTERVAL (Feet)		8.5-17.5	1.87-10.87	3.06-12.06	2.61-11.61	10.5-24.5	10.5-24.5	10.5-24.5	4.5-13.5	3.5-12.5	4.5-13.5'
BENZENE		1	ND	40	ND	13	0.4	0.3	ND	52	45	3
TOLUENE		1000	ND	12	ND	ND	ND	ND	ND	ND	ND	5
ETHYLBENZENE		29	ND	41	ND	0.7	ND	ND	ND	73	ND	7
XYLENES TOTAL		400	ND	76	ND	2	ND	ND	ND	420	4	ND
METHYL TERTIARY BUTYL ETHER (MTBE)		50	ND	ND	ND	ND	ND	3	ND	ND	46	ND
LEAD		50	14	ND	2	28	75	ND	12	5	ND	3
TRANS-1,2-DICHLOROETHENE 70 ND ND 2 ND 0.7 ND 18 ND						ND	ND	17				
TRICHLOROETHENE	· · ·	2.8	ND	ND	8	0.6	3	0.6	59	ND	ND	170
1-METHYLNAPTHALENE		•	-	-	-	-			-	450	· .	-
2-METHYLNAPTHALENE		*	-	-		-	-	-	-	460	-	-

						<u></u>					<u></u>	<u></u>
TABLE 4.4 (Page 2 of 3) SUMMARY OF LABORATORY ANALYSES MONITORING WELL GROUND-WATER SAMPLES SHALLOW SCREENED INTERVAL ADDENDUM TO REPORT OF UNDERGROUND FUEL INVESTIGATION AND COMPREHENSIVE SITE ASSESSMENT CAMP GEIGER FUEL FARM CAMP LEJEUNE, NORTH CAROLINA LAW ENGINEERING JOB NO. 475-08135-01												
	WELL NUMBER	NC GROUND WATER STANDARD	MW-11S	MW-12S	MW-13S	MW-14S	MW-15S	MW-16S	MW-17S	MW-18S	MW-19S	MW-20S
	DATE SAMPLED		9/4/91	9/4/91	9/4/91	9/4/91	9/4/91	9/5/91	9/5/91	9/5/91	9/4/91	9/4/91
PARAMETER (ug/l)	SCREENED INTERVAL (Feet)		4.5′-13.5′	5′-14′	5.5'-14.5'	3.5'-12.5'	4.5′-13.5′	5.0'-14.0'	7.5'-16.5'	3.0′12.0′	4.5'-13.5'	3.0'-12.0'
BENZENE		1	ND	ND	ND	0.6	4	40	0.5	52	ND	140
TOLUENE		1000	ND	ND	ND	ND	ND	230	ND	ND	ND	280
ETHYLBENZENE		29	80	ND	ND	ND	3	76	ND	ND	ND	320
XYLENES TOTAL		400	170	ND	ND	ND	29	800	ND	ND	ND	830
METHYL TERTIARY BUTYL ETHER (MTBE)		50	ND	ND	ND	ND	ND	ND	1	32	ND	ND
LEAD		50	ND	16	7	2	5	6	6	9	36	ND
CHLOROFORM		0.19	ND	ND	ND	3	ND	ND	ND	ND	ND	ND
TRANS-1,2-DICHLOROETHENE	70	ND	ND	ND	44	ND	ND	ND	ND	5	ND	
TRICHLOROETHENE		2.8	ND	ND	ND	110	ND	ND	0.6	ND	31	ND
1,2-DICHLOROETHANE		•	ND	ND	ND	ND	ND	ND	1	ND	ND	ND
1,1,2,2-TETRACHLOROETHANE		•	ND	ND	ND	ND	ND	ND	ND	ND	12	ND
TETRACHLOROETHENE		•	ND	ND	ND	ND	ND	ND	ND	ND	1	ND

Ξ

.

a ai ki ka dan

	TABLE 4.4 (Page 3 of 3) SUMMARY OF LABORATORY ANALYSES MONITORING WELL GROUND-WATER SAMPLES SHALLOW SCREENED INTERVAL												
	ADDENDUM TO REPORT OF UNDERGROUND FUEL INVESTIGATION AND 7COMPREHENSIVE SITE ASSESSMENT												
	CAMP GEIGER FUEL FARM CAMP LEJEUNE, NORTH CAROLINA LAW ENGINEERING JOB NO. 475-08135-01												
	WELL NUMBER	NC GROUND WATER STANDARD	MW-21S	MW-22S	MW-23S	MW-24S	MW-25S	MW-26S (blind duplicate MW-14S)	MW-27S (blind duplicate MW-24S)	MW-26	MW-27	PW-28	POTABLE WATER
	DATE SAMPLED		9/4/91	9/4/91	9/5/91	9/5/91	9/4/91	9/4/91	9/5/91	11/04/92	11/04/92	11/04/92	10/29/92
PARAMETER (ug/l)	SCREENED INTERVAL (Feet)		4.5-13.5	5.5′-14.5′	2.5-9.5	8.5-17.5	4.5-13.5	3.5-12.5	8.5-17.5	4.5-13.5	55.5-14.5	55.5-24.5	-
BENZENE		1	220	2300	ND	11	26	0.6	12	ND	ND	ND	ND
TOLUENE	····	1000	ND	ND	ND	ND	160	ND	ND	ND	ND	ND	ND
ETHYLBENZENE		29	590	560	ND	10	190	ND	10	ND	ND	ND	ND
XYLENES TOTAL		400	1100	740	ND	43	500	ND	43	1.0	ND	ND	ND
METHYL TERTIARY BUTYL ETHER (MTBE)		50	ND	ND	ND	ND	ND	ND	ND	12.0	ND	ND	ND
LEAD		50	4	3	2	5	1	2	7	-		-	
CHLOROFORM		0.19	ND	ND	ND	ND	ND	3	ND	•	-	-	-
TRANS-1,2-DICHLOROETHENE		70	ND	ND	ND	ND	ND	51	ND	-			-
TRICHLOROETHENE		2.8	ND	ND	0.6	ND	ND	120	ND				
TRICHLOROFLUOROMETHANE		*	ND	ND	0.9	ND	ND	ND	ND	-	•	-	-
BROMODICHLOROMETHANE		*	ND	ND	ND	ND	ND	ND	ND	-	-	-	-
BROMOFORM		0.19	ND	ND	ND	ND	ND	ND	ND	-	-	-	· ·
DIBROMOCHLOROMETHANE		*	ND	ND	ND	ND	ND	ND	ND	- <u>-</u>	-		· ·
ACENAPTHENE		•				ND	ND	ND	0.7	-	-	-	· ·
FLUORENE		*			· .	1	ND	ND	ND	-	-		
1-METHYLNAPTHALENE		•			·	64	190	ND	42	·			
METHYLNAPTHALENE		•				63	270	ND	42	-			
ENE		·	<u> </u>	-	<u> </u>	41	220	ND	31	-		-	

E

į

*

III . I was a distant to distant to

DRAWINGS

EK	NORTH
LAW RALEIGH,	ENGINEERING NORTH CAROLINA
LAW RALEIGH, DRAWN: WBJ	DATE: DEC. 1992
LAW RALEIGH, DRAWN: WB1 DFT CHECK: DCR	DATE: DEC. 1992 SCALE: 1"=150'
LAW RALEIGH, DRAWN: WBJ DFT CHECK: DCA ENG CHECK: BAZ	DATE: DEC. 1992 SCALE: 1"=150' JOB: 475-08135-01

LAW RALEIGH,	ENGINEERING NORTH CAROLINA
DRAWN: WB1	DATE: NOV. 1991
DFT CHECK: DCR	SCALE: 1"=150'
ENG CHECK: THE	JOB: J47590-6014
APPROVAL:	DWG: 4.7

NORTH

REEK	NORTH
19●ND	
LAW RALEIGH,	ENGINEERING NORTH CAROLINA
DRAWN: WB1	DATE: NOV. 1991
DFT CHECK: DR	SCALE: 1"=150'
ENG CHECK: 243	JOB: J47590-6014
APPROVAL: 15 25 1.2005	DWG: 4.13
91	

APPENDIX A

, HELLER

1.14 F

RECORDS OF SOIL-TEST BORINGS

		¥		ISION	15	GROUP SYMBOLS	TYPICAL NAMES	FIELD IDI (Excluding pa fraction	ENTIFICATION PRO	CEDURES
	_		N ON	:		GW	Well-graded gravels, gravel-sand mixtures, little or no fines.	Wide range amounts of	in grain sizes and si all intermediate part	ubstantial Icle sizes.
	No. 200		VELS telf of co ger than teize.	be used	9558 9558	GP	Poorly graded gravels or gravel-sand mixtures. little or no lines.	Predominer some intern	itly one size of a ran vediate sizes missing	ge of sizes with).
SOILS	ger than		GRA GRA Then to The the	eve alze		GM	Silty gravel, gravel-sand-sits mixture	Nonplastic ((for identific	lines or fines with lo ation procedures se	w plasticity a ML below).
AINED	ial is lar	•	Tect	No. 4 al	APA APA APA APA APA APA APA APA APA APA	GC	Clayey gravels, gravel-sand-clay mixtures.	Plastic fines	(for identification p w).	rocedures
RSE-GR	of mater	n nakad	1 ON	ation, th at to the	Sanda e or nes)	SW	Well-graded sands, gravely sands, little or no fines	Wide range of all interm	in grain size and su ediate particle sizes	bstantial Amounts
COA	han half	ble to th	VDS alt of co lier than	classific		SP	Poorly graded sands or gravely sands little or no fines.	Predominan with some is	tly one size or a ran termediate sizes mi	ge of sizes ssing.
	More ti	licle visi	A cart of the second se	or visual	t with cable of of	SM	Silty sands, sand-silt mixtures.	Nonplastic f {for identific	ines or fines with low ation procedures se	w plasticity e ML below).
		liest par	Mor	(F.	Sands Fir Appro-	sc	Clayey sands, sand-clay mixtures.	Plastic lines see CL belo	(for identification p w).	rocedures
		e e						IDENTI On Fraction	FICATION PROCES	DURES) Sieve Size
	No. 200	about th						Dry Strength (Crushing characteristics)	Dilatancy (Reaction to shaking).	Toughness (Consistency near PL)
ILS	ler than	ai evela (9	ML	Inorganic silts and very line sands, rock flour, silty or clayey fine sands or clayey silts with slight plasticity.	None to slight	Quick to slow	None
VED SO	il is emai	#ize • No 200	LTS AN CLAYS	imil biut	as than !	d	Inorganic clays of low to medium plasticity gravely clays, sandy clays, sitty clays, lean clays.	Medium to high	None to very slow	Medium
E-GRAIP	f materia	avela A T	, <u>v</u>	Ľ	2	OL.	Organic silts and organic silty clays of low plasticity.	Slight to medium	Slow	Slight
FIN	n helf o		9		9 C	МН	Inorganic silts, micaceous or distomaceous fine sandy or silty soils, elastic silts	Slight to medium	Slow to none	Slight to medium
	More the		ILTS AL	duid lim	ater the	СН	inorganic clays of high plasticity, fat clays,	High to very High	None	High
	-		S S	1	õ	он	Organic clays of medium to high plasticity, organic silts.	Medium to high	None to very slow	Slight to medium

UNIFIED SOIL CLASSIFICATION

(including identification and Description)

CORRELATION OF PENETRATION RESISTANCE (ASTM D 1586) WITH

•

Readily identified by color, odor, spongy feel and frequently by fibrous texture.

RELATIVE DENSITY AND CONSISTENCY

Peat and other highly organic soils

HIGHLY ORGANIC SOILS

Pt

PENETRAT	TION RESISTANCE. N Blows per foct	RELATIVE DE	ENSITY		ENETR	ATION R	ESIST	ANCE	. N			C	ONSI	STENC	¥
	0 - 4	Very Loose	•			Blows p	er foot								
	5 - 10	Loose				0 —	2						Ver	y Soft	
SANDS AND	11 - 20	Firm				3 —	4						Sof	1	
GRAVELS	21 — 30	Very Firm		SIL	TS AN	ND 5-	8						Fire	n	
	31 — 50	Dense		CL	AYS	9 —	15						Stif	1	
	Over 50	Very Dense	•			16	30						Ver	y Stiff	
	PARTICLE SIZE IDE	NTIFICATION				31	•	LAST	ICIT	Y CH	ART		Har	4	
	- Greater than 12 inches - 3 inches to 12 inches - Coarse - % inch to 3 inches	SAND	- Coarse - 2 mm to 4.76 mm Medium - 0.42 mm to 2 mm	8 7(\square	\downarrow	T	\mathbf{L}]
GRAVEL	- Fine - 4.76 mm to % inch		- Less than 0.074 mm	. 6	•	┝┼╴					СН		\neq	4	
	SOIL LABORATORY TEST DATA	SYMBOLS FOR B	ORING LOGS	y Inde	•	╂╌╂─				-	7	Ť	+	+-	1
γγw = Wet γγd = Dry	Unit Weight Unit Weight	W = Moist LL = Liquid	ure Content (%) d Limit (%)	asticii è						7	\square		T		1
e ≠ Void q ≠ Unco C = Com	i Ratio onfined Compressive Strength ipression Index	PL = Plasti Pl = Plasti (LL-P	c Limit (%) City Index (%) L)	<u>د</u> ع			α		4	мн		"	$\overline{+}$	$\overline{+}$	ļ
c Cohi c C C C C C C C C C C C C C C C C C C	esion, Total Stress esion, Effective Stress ion Angle, Degrees, I Strong		- Triavial Chass Tast	10	•	CL-ML	Mil	and			+	╉	+	╁	
10ua dot'≖ Frict	i otress ion Angle, Degrees,	CONSOL.	Consolidation Test	,	0 1	0 20	30 4	0 50) 60) 7(08 (90	100	110	" 120

		CORRELATION	OF PENETRA		SISTANCE		
	NO. OF BLOWS, N	ELATIVE DEN	SITY	PART	ICAL SIZE I	DENTIFIC	ATION
	0-4 5-10	Very Loose		BOULDE	ERS:	Greater t	han 300 mm
SAI	NDS: 11-30	Firm		COBBLE	S:	75 mm to	300 mm
	OVER 50	Very Dense		GRAVE	L: Coarse - Fine -	19.0 mm 4.75 mm	to 75 mm to 19.0 mm
		CONSISTENC	CY	SANDS:	Coarse - Medium - Fine -	2.00 mm 0.425 mm 0.075 mm	to 4.75 mm to 2.00 mm to 0.425 mm
	0-2 3-4	Very Soft		SILTS &	CLAYS:	Less than	0.075 mm
SI	LTS 5-8	Firm					
CL	AYS: 16-30	Very stiff					
	31-50 OVER 50	Hard Very Hard					
		KEY	TO DRILLING	SYMBOL	S		· · · · · · · · · · · · · · · · · · ·
	Undisturbed Sample	Ţ	Water Table 24	HR.		M=82%	Moisture Content
2	Split Spoon Sample	뵻	Water Table at	Time of D	rilling	◄	Loss of Drilling Water
		KEY T	O SOIL CLASS	SIFICATIO	NS	<u></u>	
	FILL				GW - Well gr	aded grave	ls -
	CL - Low plasticity ino	rganic clays			OL - Low pla	asticity orga	nic silts and clays
	CH - High plasticity in	organic silts			OH - High p clays	lasticity org	anic silts and
	ML - Low plasticity inc very fine sands	organic silts and			SM - Silty sa	ods	
	MH - High plasticity ir	organic silts		Ś	GM - Silty g	ravels	
	SP - Poorly graded san	ds			SC - Clayey a	ands	
	SW - Well graded sand	ls		afjing 1995 Nov.	GC - Clayey	gravels	
	GP - Poorly graded gra	avels			SP-SM - Typ	ical Dual C	lassification
	PARTIALLY WEAT transitional material be which retains the relict parent rock	ERED ROCK - etween soil and ro structure of the	A ck				

:

DEPTH (FT.)	I DESCRIPTION	ELE	VATION	• PENE	FRAT	ION - B	LOWS	/FOOT		
0.0			0	10	20	30 40	60	80 10	0	
1	Loose, tan to light brown, slightly silty, very fine SAND (SM).				•				17	
3.0				•					11	
	Loose, white, tan to light brown, slightly silty very fine to medium SAND (SM).								9	
							╉╼╂╼			
				•					12	
9.5	Loose, light brown to tan to gray, silty fine to	-								
	medium SAND (SM).			•						
14.0										
14.0				•					10	
								+++		
							┞╌┠╴┞	┥┽┥		
1										
L	REMARKS:				<u>_</u>				Ĺ	
- E	BORING TERMINATED AT 14.0'. UPON BORING COMPLETION, SINGLE-CASED			TEST B	ORIN	G RECC	ORD			
N	MONITORING WELL INSTALLED. SEE WELL CONSTRUCTION RECORDS FOR	BO	RING NUMI	BER M	W-26					7
I	DETAILS.	DAT PRO	TE DRILLE DJECT NUM	D Oc IBER 47	tober 5-081	29, 1992 35-01				
		PRO	JECT	CA	AMP (GEIGER	FUEL	FARM		
	SEE KEY SHEET FOR EXPLANATION OF	FAL								깈
SY	MBOLS AND ABBREVIATIONS USED ABOVE			L LAV	V ENG	INEER	ING			

. ...

•

SEE KEY SHEET FOR EXPLANATION OF SYMBOLS AND ABBREVIATIONS USED ABOVE

1 1 1 1

LAW ENGINEERING

ير المتحققة

alleration (

APPENDIX B

. 444.14

 $\mathbf{k} > \mathbf{b}$

i.

TEST DATA OF GRAIN-SIZE DISTRIBUTION

		GF	A	Ι	N	ċ	S	I	ZI	E	<u> </u>	<u> </u>)]	[5	3	T	R	Ι	E	BL	רו	 	Γ(D	N		Т	Έ	20	57	_	F	RE	ΞF	5	0	R	T	•		
	100	 6 in.		a in.	2 In.	1-1/2 ji	1 in.	3/4 In.	1/2 In.	3/8 In.			#4			w10			#20		#40		#60			#140	000														
	90																																								
	80																																				+	_			
	70 또					:								+								-+								_			. <u></u>				_	_	-		
	Щ И Ц Ц С О		_											+								-								+							+	-	-		_
	CENT 00				+									+	_							-																			-
	ш 40 Ц				+			-														_								+							-	-			
	30																					-								+											_
	10																																								
	0																							••••••														•••			
	20	00	100	, 					10	• . ()				<u>.</u>	ا 	1 GR	 A 3) [N	S	IZ	E	_	m	C m).1	L 						0.	01						Ο.	00:
•	0	<u>%+7</u> .0	7 <u>5 m</u> r			%	GF 0	. 0	/EI				-					%	9:	5A1 1.:										%	S 0	I∟ _4	.T				2) ک 8	<u></u>	<u>AY</u> 3	
																															<u>-</u>										
•	LL N/A			PI	Δ	$\overline{+}$	0	De . 2	85 4	-	(ו כ כ	D ₆	0 3		0	D).:	950 16) i		D .	D:	зо 29	-	0	. 1		.5 89	().	ם ספ	10 355	5		1.	С _с 0	7	-	2	Cر 2.1	 1
																_																									
						M	ATE	AI	AL	. [DE	s	CR:	IP	ΤI	10	1												١	JSI	cs						A A	SH	ТС)	
	S-7																												S	P-	SN	1						N//	4		
P	roject	. No	.:	47	75-	-05	313	5-	01																			R	em	ar	ks	:									
Pi ●	noject Locat	:: C :ior	CAMF 1: I	⊃ (₽₩-	-28 -28	IGE 3	R	FU	EL	ר	ΓA	NK																0	UT	LI	NE	R	PC	JIN	١T	s	N	т			
																												I	NC	LU	DE	D	IN	1 0	ŝA	AF	Η	•			
D	ete: 1	1-1	17-9	92																																					
			GRA	AI N	1 S 1	IZ A 4	E I J		STI N14	RI C	81 T	JT NI				ES' TI	T NI4	RE	P	DH.	Т							_			_			_							
					<u> </u>	41	4		IN	J	<u>ተ</u>	I N			.	1		0	_									F	ig	ur	e	NO	•	5							

tente de la companya de la companya

		د د د د د به به د د د د د د د د د د د د د د	
	GRAIN SIZE DISTR	RIBUTION TEST DATA	Test No.: 5
D te: Project No.: Project:	11-17-92 475-08135-01 CAMP GEIGER FUEL 7	FANK	
	~~~~~~		
	Samp]	Le Data	
Location of Sample: Sample Description: U CS Class: A SHTO Class:	PW-28 S-7 SP-SM N/A	Liquid limit: Plasticity index:	N/A N/A
	Nc	otes	
R marks: OUTLINER PO	INTS NOT INCLUDED	IN GRAPH.	
Fig. No.:	5		
	Mechanical	Analysis Data	
D y sample and tare= Tare = Dry sample weight = S nple split on numb S lit sample data: Sample and tare = Cumulative weight T re for cumulative Sieve Cum ret # 10 # 20 # 40 # 60 # 140 # 200	Initial 77.37 0.00 77.37 er 10 sieve 68.59 Tare = 0 S retained tare= 0 weight retained= 0 ul. Wt. Percent ained finer 0.00 100.0 0.12 99.8 1.06 98.5 8.60 87.5 60.50 11.8 62.64 8.7	Sample weight = 68.59	
	Hydrometer	Analysis Data	
S paration sieve is Percent -# 10 based Weight of hydrometer C loulated biased we A_tomatic temperatur Composite correction M niscus correction Specific gravity of Specific gravity cor	number 10 on complete sample= sample: 68.59 ight= 68.59 e correction on at 20 deg C =-3 only=-1 solids= 2.65 rection factor= 1.0	= 100.0 200	

e or in the first of

Hydrometer type: 152H Effective depth L= 16.294964 - 0.164 x Rm Diameter Percent Temp, Actual Corrected K Rm Eff. Elapsed time, min deg C reading reading depth mm finer time, mindeg C readingreadingdepthmmfiner2.018.010.57.00.01409.514.70.038010.35.018.010.06.50.01409.014.80.02419.515.018.09.56.00.01408.514.90.01398.830.018.59.56.10.01398.514.90.00989.060.019.09.05.80.01388.015.00.00698.4250.020.08.55.50.01367.515.10.00157.11347.019.58.04.90.01377.015.10.00157.1_____ Fractional Components  $\frac{1}{2} + 75$  mm. = 0.0  $\frac{1}{2}$  GRAVEL = 0.0  $\frac{1}{2}$  SAND = 91.3 % SILT = 0.4 % CLAY = 8.3 I 5= 0.24 D60= 0.182 D50= 0.163 L_0= 0.1291 D15= 0.10889 D10= 0.08551 Cc = 1.0691 Cu = 2.1330

1.11

#### APPENDIX C

<u>ан</u> П.

#### WELL-CONSTRUCTION RECORDS AND

# **GROUNDWATER MONITORING-WELL INSTALLATION DETAILS**



North Carolina - Department of Division of Environment P.O. Box 2953 Pho <b>WELL CON</b>	Environment, Health, and Natural Resour al Management - Groundwater Section 5 - Raleigh, N.C. 27626-0535 one (919) 733-3221 ISTRUCTION RECORD	COS FOI QUAD. NO Lat L Minor Basin	R OFFICE USE ONLY SERIAL NO
	Law Engineering	Header Ent	GINLI En
DRILLING CONTRACTOR:	STA	TE WELL CONSTRUCTIO	N
DRILLER REGISTRATION NUM	MBER: 332 PER	MIT NUMBER: 66-0	277-WM-0297
1. WELL LOCATION: (Show since the second sec	ketch of the location below) MW-26 pnville County:	Onslow	
(Road, Community, or Subdivisio	on and Lot No.)	DEPTH	DRILLING LOG
2. OWNER * See Addre	ess_Below	From To	Formation Description
ADDRESS			
(Stre	et or Route No.)		See Attached Test
	State Zio Code		Boring Records
3 DATE DBILLED 10/29/9	2 USE OF WELL Monitoring		
4. TOTAL DEPTH14!			
5. CUTTINGS COLLECTED	YES XX NO		
6. DOES WELL REPLACE EX	ISTING WELL? YES NO XX		
7. STATIC WATER LEVEL Be	low Top of Casing: <u>7,47</u> FT.		
8 TOP OF CASING IS 01	FT. Above Land Surface*		
* Casing Terminated at/or below land	surface is illegal unless a variance is issued	) <del></del>	
In accordance with 15A NCAC 2C .I			
9. YIELD (gpm): MA	N/A	······································	
10. WATER ZONES (depm):			
11. CHLOBINATION: Type	N/A Amount	If additional space is a	needed use back of form
12. CASING:			
		LOCAT	TION SKETCH
Depth	Wall I nickness Diameter or Weight/Ft. Material	(Show direction and distar	nce from at least two State
From To	Ft2"SCH 30 PVC	Roads, or other map	reference points)
From To	Ft	•	
FromTo	Ft		
13. GROUT:		See Attached S	Site Location Map
Depth	Material Method		
From $-1.5$ To $-3.0$	Ft. Bentonite Pour		
From To	_Ft	* Commander	
14. SCREEN:		Atlantic Div	vision
Depth	Diameter Slot Size Material	Naval Facili	ities Engineering Command
From <u>4.5</u> To <u>13.5</u> Ft	in. <u>U.010</u> in. <u>PVC</u>	Noriolk, Vin	cginia 23511-628/
From To Ft.	In in	ALCENEI0II:	Seamang
From To Ft.	IN IN		Condity
15. SAND/GRAVEL PACK:			
<b>Depth</b>	Size Material		
From 10	E.		
IC DEMARKS	$- \Gamma I = \frac{1}{5}$		
ID, NEIVIANAD. COLLEC			

I DO HEREBY CERTIFY THAT THIS WELL WAS CONSTRUCTED IN ACCORDANCE WITH 15A NCAC 2C, WELL CONSTRUCTION STANDARDS, AND THAT A COPY OF THIS RECORD HAS BEEN PROVIDED TO THE WELL OWNER.

Richard A. Koll

192 [2

GW-1 REV. 9/91

SIGNATURE OF CONTRACTOR OR AGENT Submit original to Division of Environmental Management and copy to well owner.

DRI	North Carolina - Department of Environment, Health, and Natural Resourc Division of Environmental Management - Groundwater Section P.O. Box 29535 - Raleigh, N.C. 27626-0535 Phone (919) 733-3221 WELL CONSTRUCTION RECORD LLING CONTRACTOR: Law Engineering STAT	es FOR QUAD. NO Lat Lo Minor Basin Basin Code Header Ent E WELL CONSTRUCTION	OFFICE USE ONLY SERIAL NO mgRO GW-1 BM
	LLER REGISTRATION NUMBER: 332 PERN	<b>IIT NUMBER:</b> <u>66-027</u>	<u>7-WM-0297</u>
1.	WELL LOCATION: (Show sketch of the location below) MW-27 Nearest Town:Jacksonville County:	Onslow	
	(Road, Community, or Subdivision and Lot No.)	DEPTH	DRILLING LOG
2.	OWNER * See Address Below	From To	Formation Description
	(Street or Route No.)		Soo Attacked Test
			Boring Records
2	DATE DBILLED 10/20/02 USE OF WELL Monitoring -		
3. 4.	TOTAL DEPTH 15' OSE OF WELL MONITORING		
5.	CUTTINGS COLLECTED YES KX NO		
6.	DOES WELL REPLACE EXISTING WELL? YES NO XX		
7.	STATIC WATER LEVEL Below Top of Casing: 8,22 FT.		
8. • Ca In 9. 10.	TOP OF CASING IS 0' FT. Above Land Surface* sing Terminated at/or below land surface is lilegal unless a variance is issued accordance with 15A NCAC 2C .0118 YIELD (gpm):N/AMETHOD OF TESTN/A WATER ZONES (depth):N/A		
11.	CHLORINATION: TypeN/A Amount	If additional soace is n	eeded use back of form
12.	CASING:		
	Depth         Diameter         or Weight/Ft.         Material           From         0         5.5         Ft.         2"         SCH 30         PVC           From         To         5.5         Ft.         2"         SCH 30         PVC	LOCATI (Show direction and distand Roads, or other map re	ON SKETCH_ ce from at least two State eference points)
40	From To Ft	See Attached S	Site Location Map
13.	GROUT:       Depth       Material       Method         From $1.5$ To $3$ Ft.       Bentonite       Pour         From       To $-$ Ft.       Bentonite       Pour         SCREEN:       Depth       Diameter       Slot Size       Material         From $5.5$ To $14.5$ Ft $2$ in. $0.010$ in.       PVC         From       To       Ft.       in. $0.010$ in.       PVC	* Commander Atlantic Divisio Naval Facilities Norfolk, Virgini Attention: Code Mr.	on s EngingeringgCommand La 23511-6287 e 1821, Trueman Seamans
15. 16 <i>.</i>	From To Ft in in         SAND/GRAVEL PACK:         Depth       Size         Material         From3 To15 Ft Sand         From To Ft         REMARKS: Concrete from 0' - 1.5'		

• • • •

a a 1444-14 a

I DO HEREBY CERTIFY THAT THIS WELL WAS CONSTRUCTED IN ACCORDANCE WITH 15A NCAC 2C, WELL CONSTRUCTION STANDARDS, AND THAT A COPY OF THIS RECORD HAS BEEN PROVIDED TO THE WELL OWNER.

Richard A. Kal

12/14/92 DATE

SIGNATURE OF CONTRACTOR OR AGENT DA Submit original to Division of Environmental Management and copy to well owner.

WELL CONSTRUCTION RECORD       Minor Basin         DRILLING CONTRACTOR:       Law Engineering         DRILLER REGISTRATION NUMBER:       332         PRINT NUMBER:       332         PW-28         Nearest Town:       Jacksonville         (Road, Community, or Subdivision and Lot No.)       PW-28         (Road, Community, or Subdivision and Lot No.)       DEPTH         2. OWNER       * See Address Below         ADDRESS       (Street or Route No.)         City or Town       State         2. DATE DRILLED       10/28/94JSE OF WELL         Pump Test       String Records         4. TOTAL DEPTH       25'         5. CUTTINGS COLLECTED       YES INO[]         6. DOES WELL REPLACE EXISTING WELL?       YES NO[]
Intell construction records       Basin Code         DRILLING CONTRACTOR:       Law Engineering       Header Ent.       Off 1 Extraction of the location below.         DRILLER REGISTRATION NUMBER:       332       STATE WELL CONSTRUCTION         DRILLER REGISTRATION NUMBER:       332       PERMIT NUMBER:       66-0277-WM-0297         1. WELL LOCATION: (Show sketch of the location below)       PW-28         Nearest Town:       Jacksonville       County:       Onslow         (Road, Community, or Subdivision and Lot No.)       DEPTH       DRILLING LOG         2. OWNER       * See Address Below       From To       Formation Description         ADDRESS       (Street or Route No.)       See Attached Te       Boring Records         3. DATE DRILLED       10/28/93USE OF WELL Pump Test       State       Zip Code       Boring Records         3. DATE DRILLED       10/28/93USE OF WELL Pump Test
DRILLING CONTRACTOR:       Law Engineering       Header Ent.       ORVIEW:         DRILLER REGISTRATION NUMBER:       332       STATE WELL CONSTRUCTION         DRILLER REGISTRATION NUMBER:       332       PERMIT NUMBER:       66-0277-WM-0297         1. WELL LOCATION:       (Show sketch of the location below)       PW-28         Nearest Town:       Jacksonville       County:       Onslow         (Road, Community, or Subdivision and Lot No.)       DEPTH       DRILLING LOG         2. OWNER       * See Address Below       From To       Formation Description         ADDRESS       (Street or Route No.)       See Attached Te       Boring Records         3. DATE DRILLED       10/28/92JSE OF WELL       Pump Test       Boring Records         4. TOTAL DEPTH       25'       State       NO       State         5. CUTTINGS COLLECTED       YES XX       NO       NO       State
STATE WELL CONSTRUCTION         DRILLER REGISTRATION NUMBER: 332       STATE WELL CONSTRUCTION         PERMIT NUMBER: 332       92         PERMIT NUMBER: 66-0277-WM-0297         1. WELL LOCATION: (Show sketch of the location below)       PW-28         Nearest Town: Jacksonville       County: Onslow         (Road, Community, or Subdivision and Lot No.)       DEPTH         2. OWNER <u>* See Address Below</u> From To         ADDRESS       (Street or Route No.)
1. WELL LOCATION: (Show sketch of the location below)       PW-28         Nearest Town:       Jacksonville       Onslow         (Road, Community, or Subdivision and Lot No.)       DEPTH       DRILLING LOG         2. OWNER       * See Address Below       From To       Formation Description         ADDRESS       (Street or Route No.)       See Attached Te         City or Town       State       Zip Code       Boring Records         3. DATE DRILLED       10/28/92JSE OF WELL       Pump Test       See Attached Te         4. TOTAL DEPTH       25'
I.       WELL LOCATION: (Show sketch of the location below)       PW-28         Nearest Town:       Jacksonville       Onslow         (Road, Community, or Subdivision and Lot No.)       DEPTH       DRILLING LOG         2.       OWNER       * See Address Below       From       To       Formation Description         ADDRESS       (Street or Route No.)       See Attached Te       Boring Records         City or Town       State       Zip Code       Boring Records         3.       DATE DRILLED       10/28/93USE OF WELL       Pump Test
Invertiest rown:       Other State       Depth       DRILLING LOG         (Road, Community, or Subdivision and Lot No.)       2. OWNER* See Address Below       From To       Formation Description         ADDRESS
(Road, Community, or Subdivision and Lot No.)       DEPTH       DRILLING LOG         2. OWNER* See Address Below       From To       Formation Description         ADDRESS
2. OWNER* See Address Below       From To       Formation Description         ADDRESS
ADDRESS
(Street or Route No.)         City or Town       State       Zip Code       Boring Records         3. DATE DRILLED
City or Town     State     Zip Code
3. DATE DRILLED
4. TOTAL DEPTH
5. CUTTINGS COLLECTED YES XX NO
6. DOES WELL REPLACE EXISTING WELL? YES NO XX
7. STATIC WATER LEVEL Below Top of Casing: <u>8,11</u> FT.
8 TOP OF CASING IS 0' FT Above Land Surface*
Casing Terminated at/or below land surface is illegal unless a variance is issued
in accordance with 15A NCAC 2C .0118
9. YIELD (gpm):N/AMETHOD OF TESTN/A
10. WATER ZONES (depth):N/A
11. CHLOHINATION: Type Amount If additional space is needed use back of form
Wall Thickness LOCATION SKETCH
Erom 0 To 5.5 Et 4" SCH 80 PVC Deate state
From To Ft
From To Et
Denth Material Method
From ² To ³ Ft Bentonite. Pour See Attached Site Location Map
From To Ft
14. SCREEN:
Depth Diameter Slot Size Material * Commander
From 5.5 To 24.5 Ft 4 in. 0.010 in. <u>PVC</u> Atlantic Division
From To Ft in in Naval Facilities Engineering Comma
From To Ft in in Nortolk, Virginia 23511-6287
15. SAND/GRAVEL PACK: Attention: Gode 1821, Mr. Trueman Segmans
Depth Size Material
From _3 To _25 Ft. Torpedo Sand
From To Ft
<b>16. REMARKS:</b> Concrete from $0! = 2!$

I DO HEREBY CERTIFY THAT THIS WELL WAS CONSTRUCTED IN ACCORDANCE WITH 15A NCAC 2C, WELL CONSTRUCTION STANDARDS, AND THAT A COPY OF THIS RECORD HAS BEEN PROVIDED TO THE WELL OWNER.

Richard A. Koll

12/14/92

SIGNATURE OF CONTRACTOR OR AGENT DATE Submit original to Division of Environmental Management and copy to well owner.

# APPENDIX D

a illina a

រោធ រ

.....

# CHAIN-OF-CUSTODY FORMS



		721 PEN (90-	5 PINE ISACOI 1) 944	E FOREST ROAD LA, FLORIDA 32526 -9772	SAMP INFOF NPE	LING RMAT	i TION NUMBE	R	N/ ST	ME C	F FACI	LITY: ESS:	CH Jz	MP KK_	6E Ø/	IG VII	ER. 12.	~7 F	AN	K F	AR II	<u>M</u>
AMPLERO AMPLERO AMPLING TIME	AME (SIG ATE (SVD) BATE	COMP.	PE) PE) SOURCE CODE	JOB NO. FUEL FARM 475-0813 Juym 1992 SAMPLE STATION DESCRIPTION	10TAL NO. OF	CONTAINERS	CONTRACT OF THE	A LING A	ALL CON	1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	a sol	NARCE CON	2 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Maght P	ASSOCIATE A	No P. P.	M RA REAL	THU				LENL LAB NO
1600	X		x	MW-26#	3	3		1	2						_							NA36345
600	×		50	MW-26B		3		1	2							_					_	FIFUELO I
100	×		50	MG-27BA		3		1	2		_				ľ.							PP26347
00	×		50	Mu - 27B		3		1	Z					_	_							PF26348
00	x		So	MW-28A	-	3		1	Ζ							.						PF:26349
00	¥		so	MU-28B		3		1	24.													PF34350
900	$\star$		DW	SUPPLY SOURCE	7		2				_				_		;					PFO6ESI
																						1726353
														_							-	
Hy	SIGN			DATE JIME RECEIVED BY:	GNATURE)			DATE	/ TIME	RI 	LINQUISI	HED BY:		I IE)	- <b>I</b>				NBOMA (SIGA		1	DATE / TIME
TRIBUTK	DN:		GINAL ( COP)	AND YELLOW COPIES ACCOMPANY SAI Y RETAINED BY SAMPLERS. YELLOW C	MPLE SHIPM OPY RETAIN	ENT ED B	TO LAI	BORA	TORY.	Y.			RE RC SC	COVE CRA M	RY WE ONITO	ELL - I RING NT - S	RW WEL	'SOU	IRCE W	CODI NPD DRII HAZ	ES DI NKING ARDC	SCHARGE - ND WATER - DW DUS WASTE - HW

*

NON ADDIEDUS . NA

		LAW EN	VIRONMENTAL, INC.	CHA		= C	US	бТÖ	D	' REC	COF	RD								د81
		7215 PII PENSAC (904) 94	NE FOREST ROAD OLA, FLORIDA 32526 4-9722		SAMPLII INFORM NPDES	NG ATION 6 NUM	<b>I</b> IBER		NAMI	E OF FAC	ility: Iess:									
PROJECT N CAMP SAMPLERS SAMPLING TIME	IAME (SIGN) DATE	TURE) TURE) 111.	Fuel FORM Her 192 E SAMPLE STA	JOB NO. D8135-D1	TOTAL NO. OF CONTAINERS	05 <b>1</b> 5	NIAMES	UPt A HU	WIN COL	1	HARE I	02 10 10 10 10 10 10 10 10 10 10 10 10 10	Maghr	Interest	Hall Hall	REAL STREET	51			1 LENL LAB NO.
0650	-	Mu	nw-	26	3	3											Í			AA26775
0745	-	Mn	MW-	97	3	ઝ														AA26776
0730	-	Mn	) Ρω·	-28	.3	3														AA26777
1600	-	-	STURAC	E. TANKER	3	3														AA26778
0700	~		Rinse	BLANK	3	3														AA26779
			TRIP	BIASK	3	3														AA26780
													_							
RELINQUISHER	BY: (SIGNAT	URE)	14/57 12 1230	RECEIVED BY: (SIGNATU	RE)		C	DATE / TI	ME	RELINQUIS	HED BY	NATUR	Ξ)		HEA	IVED BY			ţ.	- GNOV144
DISTRIBUTIK REMARKS	ON:	ORIGINA PINK CO	L AND YELLOW COPIES PY RETAINED BY SAMP <u>Sh ب</u> A	ACCOMPANY SAMPLI ERS. YELLOW COPY U A. C U A. C C B. L - S R BORNE 21	E SHIPMEN RETAINED 60244 10891 08915	1T TO BY L 8 γ 5 γ 466		DRATO RATOF SS	YRY.			RE RC SO SLI	COVEI RA MC L / SE JDGE	ry we Dnito: Dimen - Sl	ILL - RI RING W IT - SO	* <b>SO</b> V 'ELL - N	URCE #W	E COD NPI DRI HAZ SUF NOI	DES DI DES DI INKINO ZARDO RFACE N-AQU	ISCHARGE - ND 3 WATER - DW DUS WASTE - HW 2 WATER - SW JEOUS - NA

.

.

APPENDIX E

-iii i - i

L di

1 I

# LABORATORY ANALYTICAL TEST REPORTS

SOIL SAMPLES



Law Environmental, Inc. Pensacola Branch 7215 Pine Forest Road Pensacola, Florida 32526

Ŷ

November 23, 1992

--<

Mr. Leland Laymon Law Engineering, Inc. 3301 Atlantic Avenue Raleigh, NC 27604 Clt. #12024 Proj. #475-08135-01

Dear: Mr. Laymon:

Below are the results of analysis of 7 samples received for examination on October 30, 1992:

Sample I.D. AA26345 P.O./Project No.: 47508135 Loc. Desc.: MW-26A Sample collection date: 10/28/92 Lab submittal date: 10/30/92	Location code: ( Client No.: 1202 Sample collector Time: 16:00 Time: 17:19	CAMPGEI 24 r: LAYMON	
TEST PARAMETER	UNITS	TEST RESULT	DETECTION LIMIT
Multicomponent analysis: 2321-TPHV Gasoline 2323-Tot. Pet. Hydro. Prep. Soil	/S Cal-DHS mg/Kg	Not detected Completed	1 0.3 1
Multicomponent analysis: 2321-TPHX Diesel	<pre>{S Cal-DHS mg/Kg</pre>	Not detected	3.0
Sample I.D. AA26346 P.O./Project No.: 47508135 Loc. Desc.: MW-26B Sample collection date: 10/28/92 Lab submittal date: 10/30/92	Location code: 0 Client No.: 1202 Sample collector Time: 16:00 Time: 17:19	CAMPGEI 24 :: LAYMON	
TEST PARAMETER	UNITS	TEST RESULT	DETECTION LIMIT
2323-Tot. Pet. Hydro. Prep. Soil		Completed	
Multicomponent analysis: 2321-TPHX Diesel	KS Cal-DHS mg/Kg	Not detected	l 3.0
Multicomponent analysis: 2321-TPHV Gasoline	/S Cal-DHS mg/Kg	Not detected	0.2

Page: 2 November 23, 1992

Sample I.D. AA26347Location code: CAMPGEIP.O./Project No.: 47508135Client No.: 12024Loc. Desc.: MW-27ASample collector date: 10/29/92Sample collection date: 10/29/92Time: 11:00Lab submittal date: 10/30/92Time: 17:19 ______ UNITS TEST DETECTION TEST TEST DETECT RESULT LIMIT PARAMETER Multicomponent analysis: 2321-TPHVS Cal-DHS mg/Kg Not detected 0.3 Gasoline 2323-Tot. Pet. Hydro. Prep. Soil Completed Multicomponent analysis: 2321-TPHXS Cal-DHS mg/Kg Not detected 3.0 Diesel Sample I.D. AA26348Location code: CAMPGEIP.O./Project No.: 47508135Client No.: 12024Loc. Desc.: MW-27BSample collector: LAYMONSample collection date: 10/29/92Time: 11:00Lab submittal date: 10/30/92Time: 17:19 _____ TEST DETECTION RESULT LIMIT UNITS TEST PARAMETER ______ 2323-Tot. Pet. Hydro. Prep. Soil Completed Multicomponent analysis: 2321-TPHXS Cal-DHS Not detected 4.0 Diesel mg/Kg Multicomponent analysis: 2321-TPHVS Cal-DHS Gasoline mg/Kg Not detected 0.3 Sample I.D. AA26349Location code: CAMPGEIP.O./Project No.: 47508135Client No.: 12024Loc. Desc.: MW-28ASample collector: LAYMONSample collection date: 10/29/92Time: 11:00Lab submittal date: 10/30/92Time: 17:19 Sample I.D. AA26349 TEST UNITS DETECTION TEST PARAMETER RESULT LIMIT Multicomponent analysis: 2321-TPHVS Cal-DHS Not detected 0.3 mg/Kg Gasoline 2323-Tot. Pet. Hydro. Prep. Soil Completed Multicomponent analysis: 2321-TPHXS Cal-DHS Not detected 3.0 mg/Kg Diesel

i ildə əsalı

Page: 3 November 23, 1992

1.6 1.0

Sample I.D. AA26350 P.O./Project No.: 47508135 Loc. Desc.: MW-28B Sample collection date: 10/29/92 Lab submittal date: 10/30/92	Location code: ( Client No.: 120) Sample collecto Time: 11:00 Time: 17:19	CAMPGEI 24 r: Laymon	
TEST PARAMETER	UNITS	TEST RESULT	DETECTION LIMIT
2323-Tot. Pet. Hydro. Prep. Soil		Complete	1
Multicomponent analysis: 2321-TPH Diesel	XS Cal-DHS mg/Kg	Not detected	<b>i</b> 3.0
Multicomponent analysis: 2321-TPH Gasoline	VS Cal-DHS mg/Kg	Not detected	d 0.2
Sample I.D. AA26351 P.O./Project No.: 47508135 Loc. Desc.: Supply Source Sample collection date: 10/29/92 Lab submittal date: 10/30/92	Location code: ( Client No.: 120) Sample collecto: Time: 09:00 Time: 17:19	CAMPGEI 24 r: Laymon	
TEST PARAMETER	UNITS	TEST RESULT	DETECTION LIMIT
Multicomponent analysis: 2321-VOA Benzene Chlorobenzene 1,2-Dichlorobenzene 1,3-Dichlorobenzene Ethylbenzene Toluene Xylenes (total) Methyl tert-butyl ether	W. by GC EPA 603 ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	2 Not detected Not detected Not detected Not detected Not detected Not detected Not detected Not detected Not detected	1       0.2         1       0.3         1       0.3         1       0.3         1       0.3         1       0.5         1       1.0         1       0.6

Please advise should you have questions concerning these data.

Respectfully submitted,

James M.G. Tucci, Laboratory Manager

alitetee kait

#### APPENDIX F

ر المعركة الألف ال

1.16

1

#### MONITORING WELL AND

#### SAMPLING FIELD DATA WORKSHEETS



LAW ENGINEERING 3301 ATLANTIC AVENUE RALEIGH, NORTH CAROLINA 27604 MONITORING WELL AND SAMPLING					
	9125 01				
LAW JOB NUMBER 475-0			NOIVIBLNINV-20		
SITE NAME <u>CAMP GEI</u>	GER FUEL FARM				
DATE (MO/DAY/YR) <u>11/4</u>	/92	TIME (MILITARY)	0642		
FIELD PERSONNEL CO	RNELISSEN	<u> </u>			
WEATHER CONDITIONS	WARM, CLOUDY				
TOTAL WELL DEPTH (TWD)	14.0		1/10 FT. (DEPTH BELOW MEASURING POINT)		
HEIGHT OF MEASURING PO	INT ABOVE LAND SURFAC	E0.0	1/10 FT.		
DESCRIPTION OF MEASURI	NG POINT TOP OF MARK				
DEPTH TO GROUNDWATER	(DGW)		1/100 FT. (DEPTH BELOW MEASURING POINT)		
LENGTH OF WATER COLUM	N (LWC) = TWD - DGW =	6.53	1/100 FT.		
ONE STANDING WELL VOL	JME (SWV) = LWC X	.17 = 1.1	1/10 GAL.		
THREE STANDING WELL VO	DLUMES = 3XSWV =3	.3	1/10 GAL = STANDARD EVACUATION VOLUME		
METHOD OF WELL EVACUA		TEFLON BAILER	OTHER:		
TOTAL VOLUME OF WATEF	R REMOVED1.5	1/10 GAL.	CASING DIAMETER In.		
CASING MATERIAL PVC	XS.S	TEI	FLONOTHER		
SCREENED INTERVAL (FR	OM ID PLATE)	5	(DEPTHS BELOW LAND SURFACE - FT.)		
STEEL GUARD PIPE AROUN	D CASING YES <u>X</u>	NO	COMMENTS		
LOCKING CAP	YES <u>X</u>	NO			
PROTECTIVE POST/ABUTM	ENT YES	NO <u>X</u>			
NONPOTABLE LABEL	YES <u>X</u>	NO			
ID PLATE	YES <u>X</u>	NO			
WELL INTEGRITY SATISFAC	CTORY YES <u>X</u>	NO			
WELL YIELD LOW	XMODERATE	нісн	COMMENTS		
FIELD ANALYSES					
VOLUME (1/10 GAL.)	0.0	1.5			
рН (S.U.)	6.37	5.95			
SP. COND. (µMHOS/CM)	267	284			
WATER TEMP. ('C)**					
TURBIDITY *	1	4			
•VISUAL DETERMINATION (1) CLEAR (2) SLIGHT (3) M •• METER NOT FUNCTION	ONLY IODERATE (4) HIGH AL				

		LAW EN 3301 ATLA RALEIGH, NORTH	GINEERING NTIC AVENUE 1 CAROLINA 27604				
	MONITORING WELL AND SAMPLING FIELD DATA WORKSHEET						
LAW JOB NUMBER475-0	8135-01		L NUMBERMW-27				
SITE NAMECAMP GE							
DATE (MO/DAY/YR) <u>11/4</u>	/92	TIME (MILITARY)_	0737				
	RNELISSEN		<u></u>				
WEATHER CONDITIONS	OVERCAST, WARM						
TOTAL WELL DEPTH (TWD)	15.0		1/10 FT. (DEPTH B	ELOW MEASURING POINT)			
HEIGHT OF MEASURING PO	INT ABOVE LAND SURFAC	E 0.0	1/1	0 FT.			
DESCRIPTION OF MEASURI							
DEPTH TO GROUNDWATER	(DGW) <u>7.53</u>		1/100 FT. (DEPTH B	ELOW MEASURING POINT)			
LENGTH OF WATER COLUN	AN (LWC) = TWD - DGW =	7.47	1/100 FT.				
ONE STANDING WELL VOL	UME (SWV) = LWC X	.17 = 1.3	1/10 G/	AL.			
THREE STANDING WELL VO	)LUMES = 3XSWV = <u>3</u>	.9	1/10 GAL=STANDAR	DEVACUATION VOLUME			
METHOD OF WELL EVACUA		TEFLON BAILER	OTHER:				
TOTAL VOLUME OF WATE	R REMOVED 4.0	1/10 GAL.	CASING DIAMETER2	In.			
CASING MATERIAL PVC	<u> </u>	TE	FLON OT(	(ER			
SCREENED INTERVAL (FR	OM ID PLATE) <u>5.5 - 14.</u>	5	(DEPTHS BELOW	LAND SURFACE - FT.)			
STEEL GUARD PIPE AROUN	D CASING YES <u>X</u>	NO	COMMENTS	·····			
LOCKING CAP	YES <u>X</u>	NO					
PROTECTIVE POST/ABUTM	ENT YES	NO <u>X</u>					
NONPOTABLE LABEL	YES <u>X</u>	NO					
ID PLATE	YES_X	NO					
WELL INTEGRITY SATISFAC	TORY YES X	NO					
WELL YIELD LOW	MODERATE	X HIGH	COMMENTS				
		FIELD ANALYSES					
VOLUME (1/10 GAL.)	0.0	2.0	4.0				
pH (S.U.)	6.31	6.23	6.21				
SP. COND. (µMHOS/CM)	267	251	241				
WATER TEMP. (C)**	*****						
TURBIDITY*	11	2	2				
VISUAL DETERMINATION (1) CLEAR (2) SLIGHT (3) M METER NOT FUNCTIONA	ONLY ODERATE (4) HIGH						

I UI I I

e di se dikkeren i

		LAW ENGIN 3301 ATLANT	IEERING IC AVENUE		
RALEIGH, NORTH CAROLINA 27604					
		FIELD DATA W	AND SAMPLING (ORKSHEET		
LAW JOB NUMBER 475-0	8135-01	MONITORING WELL N	UMBERPW-28		
SITE NAMECAMP_GE	GER FUEL FARM			<u></u>	
DATE (MO/DAY/YR) 11/4	/92	TIME (MILITARY)	0652		
FIELD PERSONNELCO	RNELISSEN				
WEATHER CONDITIONS	OVERCAST, WARM				
TOTAL WELL DEPTH (TWD)	25.0		1/10 FT. (DEPTH B	ELOW MEASURING POINT)	
HEIGHT OF MEASURING PO	INT ABOVE LAND SURFAC	E0.0	1/1	0 FT.	
DESCRIPTION OF MEASURI	NG POINT TOP OF MARK				
DEPTH TO GROUNDWATER	(DGW) <u>8.11</u>		1/100 FT. (DEPTH B	ELOW MEASURING POINT)	
LENGTH OF WATER COLUN	IN (LWC) = TWD - DGW=	16.89	1/100 FT.		
ONE STANDING WELL VOL	JME (SWV) = LWC X	.66 = 11.1	1/10 G	AL.	
THREE STANDING WELL VO	)LUMES = 3XSWV =;	3.3	1/10 GAL=STANDAF	DEVACUATION VOLUME	
METHOD OF WELL EVACUA			OTHER:		
TOTAL VOLUME OF WATE	REMOVED 33.5	1/10 GAL.		<u>4</u> In.	
CASING MATERIAL PVC	<u> </u>	TEFLO	ON OTH	IER	
SCREENED INTERVAL (FR	OM ID PLATE)5.5 - 24.5	5	(DEPTHS BELOW	LAND SURFACE - FT.)	
STEEL GUARD PIPE AROUN	D CASING YES <u>X</u>	NO CO	DMMENTS		
LOCKING CAP	YES <u>X</u>	NO			
PROTECTIVE POST/ABUTM	ENT YES	NO <u>X</u>			
NONPOTABLE LABEL	YESX	NO			
	YESX	NO	. <u></u>	,,	
WELL INTEGRITY SATISFAC	TORY YES X	NO		<u></u>	
WELL YIELD LOW	MODERATE	нісн			
FIELD ANALYSES					
VOLUME (1/10 GAL.)	0.0	16.0	33.5		
рН (S.U.)	6.20	6.24	6.33		
SP. COND. (µMHOS/CM)	308	336	312		
WATER TEMP. (C)**					
TURBIDITY*	1	4	4	<u> </u>	
•VISUAL DETERMINATION (1) CLEAR (2) SLIGHT (3) N •• METER NOT FUNCTION	ONLY IODERATE (4) HIGH AL				

Till I and a state of a

#### APPENDIX G

алан ай<mark>на а</mark>ла

1.4. 1

#### MONITORING-WELL CASING AND

#### WATER-ELEVATION WORKSHEETS



			MONITORIA	LA 3301 RALEIGH, I ENVIRON NG WELL CASIN	AW ENGINEERIA ATLANTIC AV NORTH CAROLI IMENTAL DEPA	ig Enue NA 27604 RTMENT ELEVATION WOR	K\$HEET
PROJECT NA		P GEIGER FUEL FAI	RM			JOB NUMBER	475-08135-01
LOCATION_	CAMP LEJE	UNE, NORTH CAR	OLINA			DATE1	1/19/92
DESCRIPTION	N OF SURVEY [		SEA LEVEL	·····			
FIELD PERSO	NNEL CORN	IELISSEN, ADKINS					
MEASURING		MC OIL-WATER I	NTERFACE PROB	E MODEL D-240	1-201		
	,						
WELL NUMBER	MEASU ROD HEIGHT (FT)	RING POINT CALCI INSTRUMENT HEIGHT (FT)	ELEV OF MEASURING POINT (1) (FT)	DEPTH TO WATER (FT)	ELEV OF WATER (FT)	PRODUCT THICKNESS (FT)	COMMENTS (ODOR, WELL COND., PROTECTIVE COVER CONDITION)
MW-26	5.46	19.93	14.47	7.47	7.00	ND	Good Condition
MW-27	5.47	19.93	14.46	7.53	6.93	ND	Good Condition
PW-28	5.12	19.93	14.81	8.11	6.70	ND	Good Condition
						<u></u>	
(1) Measuring ND = None d	point top of ca letected; equipn	sing unless otherw nent capable of me	vise noted. asuring ≥0.01 fe	et.			

Page _____ of ____

# APPENDIX H

. HIL. . . .

1.1.

1

# LABORATORY ANALYTICAL TEST REPORTS

**GROUNDWATER SAMPLES** 



tititi ti sa satura s

Law Environmental, Inc. Pensacola Branch 7215 Pine Forest Road Pensacola, Florida 32526



November 16, 1992

Mr. Chris Cornelissen Law Engineering, Inc. 3301 Atlantic Avenue Raleigh, NC 27604 Clt. #12024 Proj. #475-08135-01

Dear: Mr. Cornelissen:

Below are the results of analysis of 6 samples received for examination on November 7, 1992:

Sample I.D. AA26775 P.O./Project No.: 47508135 Loc. Desc.: MW-26 Sample collection date: 11/04/92 Lab submittal date: 11/07/92	Location code: 0 Client No.: 1202 Sample collector Time: 06:50 Time: 07:08	CAMPGEI2 24 c: CORNELISSEN	
TEST PARAMETER	UNITS	TEST RESULT	DETECTION LIMIT
Multicomponent analysis: 2321-VOA Benzene Chlorobenzene 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene Ethylbenzene Toluene Xylenes (total) Methyl tert-butyl ether	W. by GC EPA 602 ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	Not detected Not detected Not detected Not detected Not detected Not detected Not detected Not detected 1.0	1       0.2         1       0.3         1       0.3         1       0.3         1       0.3         1       0.5         1       1.0         0       1.0         0       0.6
Sample I.D. AA26776 P.O./Project No.: 47508135 Loc. Desc.: MW-27 Sample collection date: 11/04/92 Lab submittal date: 11/07/92	Location code: 0 Client No.: 1202 Sample collector Time: 07:45 Time: 07:08	CAMPGEI2 24 7: CORNELISSEN	
TEST PARAMETER	UNITS	TEST RESULT	DETECTION LIMIT
Multicomponent analysis: 2321-VOA Benzene Chlorobenzene 1,2-Dichlorobenzene 1,3-Dichlorobenzene	W. by GC EPA 602 ug/L ug/L ug/L ug/L ug/L	Not detected Not detected Not detected Not detected Not detected	1 0.2 1 0.3 1 0.3 1 0.3

Page: 2 November 16, 1992 Mr. Chris Cornelissen Sample I.D. AA26776 (continued)

a i ilitatente e

TEST PARAMETER	UNITS	TEST RESULT	DETECTION LIMIT
Multicomponent analysis: 1,4-Dichlorobenzene Ethylbenzene Toluene Xylenes (total) Methyl tert-butyl ether	2321-VOA W. by GC EPA ug/L ug/L ug/L ug/L ug/L ug/L	602 (continued) Not detected Not detected Not detected Not detected Not detected	l 0.3 l 0.5 l 1.0 l 1.0 l 0.6

Sample I.D. AA26777 P.O./Project No.: 47508135 Loc. Desc.: PW-28 Sample collection date: 11/04/92 Lab submittal date: 11/07/92	Location code: Client No.: 12 Sample collect Time: 07:30 Time: 07:08	CAMPGEI2 2024 Cor: CORNELISSEN	_
TEST PARAMETER	UNITS	TEST RESULT	DETECTION LIMIT
Multicomponent analysis: 2321-VOA Benzene Chlorobenzene 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene Ethylbenzene Toluene Xylenes (total) Methyl tert-butyl ether	W. by GC EPA 6 ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	Not detected Not detected Not detected Not detected Not detected Not detected Not detected Not detected Not detected Not detected	1       0.2         1       0.3         1       0.3         1       0.3         1       0.3         1       0.5         1       1.0         1       1.0         1       0.6

Sample I.D. AA26778	Location co	ode: CAMPGEI2	
P.O./Project No.: 47508135	Client No.	: 12024	
Loc. Desc.: STORAGE TANKER	Sample col	lector: CORNELISSEN	
Sample collection date: 11/04/92	Time: 16:00	0	
Lab submittal date: 11/07/92	Time: 07:00	8	
TEST	UNITS	TEST	DETECTION
PARAMETER		RESULT	LIMIT
Multicomponent analysis: 2321-VO. Benzene Chlorobenzene 1,2-Dichlorobenzene	A W. by GC E ug/L ug/L ug/L ug/L	PA 602 Not detecte Not detecte Not detecte	d 0.2 d 0.3 d 0.3
1,3-Dichlorobenzene	ug/L	Not detecte	d 0.3
1,4-Dichlorobenzene	ug/L	Not detecte	d 0.3
Ethylbenzene	ug/L	Not detecte	d 0.5
Toluene	ug/L	Not detecte	d 1.0

Page: 3 November 16, 1992

1.11

1

Mr. Chris Cornelissen Sample I.D. AA26778 (continued)

s dilla and a

TEST PARAMETER	UNITS	TEST RESULT	DETECTION LIMIT
Multicomponent analysis: 2321-VOA Xylenes (total) Methyl tert-butyl ether	W. by GC EPA 60 ug/L ug/L	2 (continued) Not detected 16.0	d 1.0 0 0.6
Sample I.D. AA26779 P.O./Project No.: 47508135 Loc. Desc.: RINSE BLANK Sample collection date: 11/04/92 Lab submittal date: 11/07/92	Location code: 0 Client No.: 120 Sample collecto Time: 07:00 Time: 07:08	CAMPGEI2 24 r: CORNELISSEN	
TEST PARAMETER 	UNITS	TEST RESULT	DETECTION LIMIT
Multicomponent analysis: 2321-VOA Benzene Chlorobenzene 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene Ethylbenzene Toluene Xylenes (total) Methyl tert-butyl ether	W. by GC EPA 602 ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	2 Not detected Not detected Not detected Not detected Not detected Not detected Not detected Not detected	1       0.2         1       0.3         1       0.3         1       0.3         1       0.3         1       0.5         1       1.0         1       1.0         1       0.6
Sample I.D. AA26780 P.O./Project No.: 47508135 Loc. Desc.: TRIP BLANK Sample collection date: 11/04/92 Lab submittal date: 11/07/92	Location code: ( Client No.: 1202 Sample collector Time: 07:08	CAMPGEI2 24 r: CORNELISSEN	
TEST PARAMETER	UNITS	TEST RESULT	DETECTION LIMIT
Multicomponent analysis: 2321-VOA Benzene Chlorobenzene 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene Ethylbenzene Toluene Xylenes (total) Methyl tert-butyl ether	W. by GC EPA 602 ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	2 Not detected Not detected Not detected Not detected Not detected Not detected Not detected Not detected Not detected	1       0.2         1       0.3         1       0.3         1       0.3         1       0.3         1       0.5         1       1.0         1       1.0         1       0.6

Page: 4 November 16, 1992

Please advise should you have questions concerning these data. Respectfully submitted,

James M.G. Tucci, Laboratory Manager

a data a

# **APPENDIX** I

144.5.5

• • • •

.

# PUMP TEST CALCULATIONS




#### CAMP GEIGER FUEL FARM PUMP TEST, PERFORMED 11/4/92

Theis Curve Automated Matching

i lite i na international de la companya de

T S - M A T C H V3.2

Theis Curve Automated Matching

IN-SITU INC. SOFTWARE SERIES

-CAMP GEIGER FUEL FARM PUMP TEST - PERFORMED 11/4/92

_	Input	File	Name:	c:CGFARMIN.DAT
	Output	File	Name:	c:TSCGFARM.OUT
	Plot	File	Name:	c:CGFARM1.PLT

## The input/output will be in HYDROLOGY terminology

#### TIME VS. DRAWDOWN DATA:

-	Time	Drawdown	(ft)>	
	(min)	Well 1	Well 2	Well 3
		PW-28	MW-26	MW-22s
c.	1.00	3.63	.01	.00
-	2.00	4.63	.01	.00
F	3.00	5.68	.01	.00
	4.00	7.05	.01	.00
_	5.00	7.84	.03	.00
-	6.00	8.28	-1.00	.00
~	7.00	8.58	.04	.00
	8.00	8.88	-1.00	.00
-	10.00	8.94	.05	.00
: · ·	13.00	9.55	-1.00	.00
	15.00	9.70	-1.00	.00
_	17.00	9.90	.07	.00
	20.00	10.00	-1.00	.00
	25.00	10.20	-1.00	.00
_	30.00	10.42	-1.00	.00
	35.00	10.36	-1.00	.04
	40.00	10.44	.15	-1.00
	45.00	10.54	.15	-1.00
	47.00	-1.00	-1.00	.04
	50.00	10.59	-1.00	-1.00

~ ~ ~ ~	10 17	1.5	1 00		
55.00	10.67	.15	-1.00		
60.00	10./4	.16	.04		
70.00	10.80	.16	-1.00		
80.00	10.93	.17	-1.00		
90.00	10.98	.17	.06		
100.00	11.07	-1.00	-1.00		
110.00	11.08	.19	.07		
120.00	11.13	.19	-1.00		
127.00	-1.00	-1.00	.06		
140.00	11.26	.19	-1.00		
145.00	-1.00	-1.00	.06		
160.00	11.28	.20	-1.00		
180.00	11.32	.20	-1.00		
185.00	-1.00	-1.00	.06		
210.00	11.40	.20	-1.00		
216.00	-1.00	-1.00	.06		
240.00	11.46	.20	-1.00		
246.00	-1.00	-1.00	.06		
270.00	11.50	.20	.06		
300.00	11.56	.21	.07		
330.00	11.59	-1.00	-1.00		
360.00	11.60	.22	-1.00		
367.00	-1.00	-1.00	.08		
390.00	11.67	.22	-1.00		
399.00	-1.00	-1.00	.08		
420.00	-1.00	.22	-1.00		
429.00	-1.00	-1.00	.08		
480.00	11.73	.22	.08		
Negative/Zero					
Drawdowns:	10	20	32		
Flow rate			=	4.10 gpm	
Number of Obse	ervation W	ells	-	3	
Number of Time	e-Drawdown	Pairs/Wel	1 = 4	8	
Maximum Number	r of Itera	tions	= 6	0	
Tolerance of 1	Iteration	(Relative)	= 1.	00E-03	
Angular Freque	ency Inter	val	= 1	5.00 deg	
					D. C
Observation We	ell Coordi	nates and	Kadial	DISTANCES	Kelerenced
to Pumping We	11:				

F		X (ft)	Y (ft)	R (ft)
			~~~~~~	
PW-28	Well 1	1.01	.00	1.01
MW-26	Well 2	-28.70	13.10	31.55
MW-22s	Well 3	49.50	101.90	113.29

Well 1	PW-28

− Inti i stational a similational a similational a s

Transmissivity = 43.81 ft**2/d Storage Coefficient = 2.9E-03

•

Time	(min)	Drawdown	(ft)
		Data	Match
-	00	2 (2	1 53
1		3.03	4.53
2	.00	4.0J 5.60	5.50
נ ג	.00	7.05	6.49
	. 00	7.84	6.81
6	. 00	8.28	7.07
7	.00	8,58	7.29
8	.00	8.88	7.48
10	.00	8.94	7.80
13	.00	9.55	8.17
15	.00	9.70	8.38
17	.00	9.90	8.56
20	.00	10.00	8.79
25	.00	10.20	9.11
30	.00	10.42	9.37
35	.00	10.36	9.59
40	.00	10.44	9./8
40	.00	10.54	9.90
4/	.00	-1.00	10 10
50		10.55	10.24
60	. 00	10.74	10.36
70	. 00	10.80	10.59
80	.00	10.93	10.78
90	.00	10.98	10.95
100	.00	11.07	11.10
110	.00	11.08	11.23
120	.00	11.13	11.36
127	.00	-1.00	
140	.00	11.26	11.58
145	.00	-1.00	
160	.00	11.28	11.77
180	.00	11.32	11.94
185	.00	-1.00	10 16
210	.00	11.40	12.10
216	.00	-1.00	12 25
240	.00	-1 00	12.33
240		-1.00	12.52
300	.00	11.56	12.67
330	.00	11.59	12.81
360	.00	11.60	12.93
367	.00	-1.00	
390	.00	11.67	13.05
399	.00	-1.00	~~
420	.00	-1.00	

Talà I a bhair a dùthaidh a

429.00-1.00--480.0011.7313.35

Well 2 MW-26

Transmissivity = 988.10 ft**2/d Storage Coefficient = 1.1E-02

Time	(min)	Drawdown Data	(ft) Match
3	.00	.01	.01
4	.00	.01	.01
5	5.00	.03	.02
e	.00	-1.00	
7	.00	.04	.03
8	.00	-1.00	
10	.00	.05	.05
13	.00	-1.00	
15	5.00	-1.00	
17	.00	.07	.07
20	.00	-1.00	
25	5.00	-1.00	
30	.00	-1.00	
35	5.00	-1.00	
40	.00	.15	.12
45	.00	.15	.12
47	.00	-1.00	
50	0.00	-1.00	
55	.00	.15	• 14
60	1.00	.10	.14
/(0.00	.10	.15
80		• 17	.10
100		-1 00	.10
110		-1.00	
120		.19	18
127	00	-1.00	
140		. 19	. 19
145	5.00	-1.00	
160	0.00	.20	.20
180	.00	.20	.21
185	5.00	-1.00	
210	.00	.20	.22
216	.00	-1.00	
240	.00	.20	.23
246	5.00	-1.00	
270	.00	.20	.23
300	.00	.21	.24

− Lill I still a dillored in

 330.00
 -1.00
 -

 360.00
 .22
 .25

Well 3 MW-22s

Transmissivity = 4225.58 ft**2/d Storage Coefficient = 1.5E-03

Time	(min)	Drawdown Data	(ft) Match
17	.00	.00	
20	.00	.00	
25	5.00	.00	
30	0.00	.00	
35	5.00	.04	.04
40).00	-1.00	
45	5.00	-1.00	
47	7.00	.04	.04
50	.00	-1.00	
55	5.00	-1.00	
60	0.00	.04	.05
70	0.00	-1.00	
80	0.00	-1.00	
90	0.00	.06	.05
100).00	-1.00	
110	.00	.07	.05
120).00	-1.00	
127	.00	.06	.06
140).00	-1.00	
145	5.00	.06	.06
160).00	-1.00	
180	.00	-1.00	
185	5.00	.06	.06
210	0.00	-1.00	
216	5.00	.06	.06
240).00	-1.00	
246	5.00	.06	.07
270	0.00	.06	.07
300).00	.07	.07
330	.00	-1.00	
360		-1.00	
367	.00	.08	.07
390		-1.00	
399	1.00	.08	.07

SUMMARY OF "TS-MATCH" PARAMETERS:

1.6 1

Well	Т	S
#	(ft**2/d)	
PW-28 1	43.81	2.9E-03
MU-26 2	988.10	1.1E-02
MW-22s 3	4225.58	1.5E-03

a ana ana a

SUMMARY OF RESULTS - 3 WELL COMBINATIONS

Well	T-Ma jor	T-Minor	T-mean	Angle of T-Major	Storage
Combination	(ft**2/d)	(ft**2/d)	(ft**2/d)	(degrees)	Coeff.

1 2 3 Probably heterogeneous media

The curve-matches of ALL the observation well data are plotted on frame 1.

TS-MATCH COMPLETED.

CAMP GEIGER FUEL FARM Rump Test, 11/4/92 weil MW-26 = 264Q = 264(4.1) = 7677 and $\Delta S = 0.141 = 7677 and$ $<math>\Delta S = 0.141$ = 1026 44 (Model Predict of 988 A day, which is 3.7% difference, which could be due to graphical error & rounding) S = 0.3Tto = (0.3)(7677)(1440) $= (4x 10^{-3})$ 1,0 (31.6)2 (Model predicted LIXLO², 41% g.t. graphie value This would have given to = 6,8 min, which seems high, but is within some order of magnitude 5.1 18 = 0.172 - 0.031 = 0.141 0.01 ł 1000 100 10 Elapsed Time (min) Job475-00135-01

CXC 1/25/2-Dr 12/17 /12

.

 $\mathbf{L} \subseteq \{1, \dots, n\}$ CAMP GEIGER FLEL FARM Pump Test, 11/4/92 MW-ZZS Well $=\frac{264(4.1)}{0.037}=292549pdf_{2}=3911ft_{my}$ (Model predicted 4225 Friday - a 71. difference, could be due to graphical error 4 rounding) ろ 1,0 S = 0.37 to -(0.3)(29254) 2/1440) = 92×10-4 (113.3)(model Predicie f 1.5×10³, 38% g.t. graphic value. This would have given to = 3.2 min, which is reasonable given entire data set) 0.1 AS= 0.073-0.036 $= 0.037 \, ft$ Q=4,19pm (789 ft/day) 0.01 10 100 100 Elapson Time (min) Job 475-08135-01 11/25/92 12/17/92)AC

JOB NO. 08135 01 SHEET _ OF (rig) Sug 1.7 1 auro JOB NAME 1 3301 ATLANTIC AVE. Surveyoricited P.O. BOX 18288 Localing W ENGINEERING SUBJECT RALEIGH, NC 27619 919-876-0416 11/25 /12 ગિ 8Y QATE GEOTECHNICAL, ENVIRONMENTAL & CONSTRUCTION MATERIALS CHECKED BY DATE CONSULTANTS € MW+55 (-0,207) 15503 MARS :207 MWZZs-(53.3, 90,5 distance) MWZ6 + PW28 = 31.6pt MW225 10 PW28 = 113.3 ft 105 MWZ7 to PW28 - 87,565 208.4 H MW153 to PW28 2 (QQ) MWZG e (-21,9,17 927 MW27 (91.3,-11.2 PW28 (3, 8, -1), 4dis oords, wr Vuili ٤N PW 28 0.0 01 MWZ6 28.7,13,1 MW 225 19.5,101.9)

alda a ai

1.11

		•	
PUMP	TEST	FORM	

e ne dii in dii in ta

1/2

OMPANY :	SW Chranceing	OBS. WELL NO.:
ob:	OND Gener Part - 14 -	DESCRIPTION OF MEASURING POINT:
OB LOCATIO	N:	DISTANCE FROM
NGINEER:	Corning -	PUMPED WELL:
ATE:	11/4/42	STATIC WATER LEVEL AT 1203 AM 7.55
		(PM))

						•
Time of leasurement	Time Since Pumping Began Stopped Minutes	Tape Held at, ft	Tape Wet at, ft	Depth to Water ft	Drawdown ft	Flow peter total Remarks
	100.		· ·	10.38	8	· · · · · · · · · · · · · · · · · · ·
	200			12.18	4 33	
	-300			13.23	5.33	106 501
•	400			14.60	7.05	
	5.00			15.39	7.84	
	600	÷.		15.83	8,28	
	.700		· .	:16,13	2.58	
	800		:	16.43		
	10-			16.79		
	13			17.13	9.55	
	15-20			17 25	9.70	156 501 .
			· ·	17.45	9 90	Jul Span
	19,5			17.55	12.00	
· <u>·</u>	es •••			17:75	10,20	u. I opm
	्रें क्ले			12 -	10.42	
	352			1 7 24	10.35	1 1
	40:00			17.99	10.44	-1, 1 := ; : (>
	15:00 .			18.03	10.54	· · · · · · · · · · · · · · · · · · ·
<u></u>	50.000 55:000			18.12	10.59	294 32 E 51 Mart

PUMP TEST FORM

OMPANY:						
08:	<u>_</u> 2.2.0	Garcet	Ful	frem		
OB LOCATION: 08135-01						
NGINEER:	<u>C</u> .C	ORALISS	en	<u></u>		
ATE:	11/4	192				

.

1.0

085. WELL NO .: _ Pw- 28

DESCRIPTION OF MEASURING POINT: ______C

DISTANCE FROM PUMPED WELL:

STATIC WATER LEVEL AT 1203 AM 7.55

•

ા સંસ્થિતિકારનાં દ

Time of easurement	Time Since Pumping Began Stopped Minutes	Tape Held at, ft	Tape Wet at, ft	Depth to Water ft	Drawdown ft	Remarks
	70°.			18,35	08.61	· · · · · · · · · · · · · · · · · · ·
	80			18.48	10.93	4+ 4-1 ppm
•	ନ୍ତ			18.53	10.98	
•	1100			18.62	11.07	·
	1100			18.63	11.08	546.5 971
	/ 22	:: <u>.</u>		:18.68	11.13	4.1 SPM @ 124 Minutes
	1,40		· .	18.81	11,26	
a:39	159		:	18.83	11.28	
	180			18,87	11.32	
	210			18.95	11,40	YI SPACE 219 MIN
	२५०		:	19,01	11.46	· .
	. 270			19.05	11.50	4.D 9PM (2 378
	300	•		19.11	11.56	
	330			19.14	11.59	1241 "20 @ 341 41 - 740 @ 343
	360			19.15	11.60	
	393			A.22	11:67	TOT21 1710@395
	420			19.22	11.67	· .
						41 GIN @ 462 MIN
から	480			19.28		

2/2

PUMP TEST FORM

_MPANY: _	Law Skineen a	OBS. WELL NO .: 1110-72	
B: _	425-128135-11	DESCRIPTION OF MEASURING POINT:	
TB LOCAT	ION: GERME FILE FALL	DISTANCE FROM	
NGINEER:	PROCTOR / Corvelision		
TE:	11/4/92	AT 13.18	
	12:13 pm		

Time of leasurement	Time Since Pumping Began Stopped Minutes	Tape Held at, ft	Tape Wet at, ft	Depth to Water ft	Drawdown ft	Remarks
-				7:55		
				•		
•	13			13,13	0.00	
•	36			13.32	0.04	
	u 7			13.22	0.00	
	52			: [3.72	لەن ھ	
	-13			: 13.24	0.26	
	1.0			17.25	0.2	
	127		•	1324	ೆ ಬೆತ	
240 i.M	145			13.25	0.00	
	185		:	13, 25	0,06	
	- 216			13.05	0.06	1
	246	•		13.25	0.06	
	275			13,25	0.06	
	305			13:26	0.07	
6220	567			13.27	1.23	1
4:52	: 7'9			7.27	0.03	· .
7:22	429			13.27	1.09	
3:15	482		· · ·	/1	11	

PUMP TEST FORM
OBS. WELL NO .:26
DESCRIPTION OF MEASURING POINT:
DISTANCE FROM
PUMPED WELL:
STATIC WATER LEVEL AT 1203 AM 7.49
PH
-

Time of (leasurement	Time Since Pumping Began Stopped Minutes	Tape Held at, ft	Tape Wet at, ft	Depth to Water ft	Drawdown ft	Remarks
	- 5 .			7.50	0.01	
	1.5	: ·		3- 50	0.01	
•	2.5			50.5	0-21	
•	3.5			7.50	0.01	
	5			7.52	0 03	
	7		÷	:753	0.04	
	9		· .			
	0		• •	2.52	0.15	
	· · ·		•	7.5%	0.07	
	25					
	33		:			
	. 40		·	7.1.4	0.15	1
	45			7.4	0.15	
•	=3			7:64	0.15	
	сC			7.1.5	0.16	
	6			245	0.16	1
	<u>30</u>			7 1.6	0.12	· .
	• ر ا			7.64	012	·

PUMP	TEST	FORM
------	------	------

CHPANY:	OBS. WELL
18•	DESCRIPTI MEASURING
OB LOCATION:	DISTANCE
NGINEER:	STATIC WA
ATE:	AT

1.36 1

NO.: 19/1 20 ON OF TOC POINT: _____ FROM • LL: _ TER LEVEL AM

ા તેમીની ગાળથી ગ

Time of easurement	Time Since Pumping Began Stopped Minutes	Tape Held at, ft	Tape Wet at, ft	Depth to Water ft	Drawdown ft	Remarks
				7.68	0. 19	
	125			7.68	27. ⁷ - 27.	
•	137			7.1.8	0.19 .	
255 Ain	160			7.69	0.30	·
	(83	:		7.69	0,20	
	214			: 7.69	01.0	
	245			: 7,69	0,70	
	274		:	7.69	0.00	
	303			סר,ך	0,21	
	303			11.1	0,22	
616 pm	363		:	7.71	0-2:	•
549	: 76		•	7.27	0.22	·
7:17	. 424	•		7.71	0.22	
8:15.	482			7:71	0.72	
						4
						· .
. <u> </u>						

Start 12:13 PM

2/2

PL	UHP TEST FORM	1/2
OHPANY: Law Engineering	085. WELL NO .: 27	<u></u>
08: Comp General Tuel FILM	DESCRIPTION OF MEASURING POINT:	
OB LOCATION: CONSERVE	DISTANCE FROM	
NGINEER:	STATIC WATER LEVEL	

,

a dilitandi a

1.12 1

Time of leasurement	Time Since Pumping Began Stopped Minutes	Tape Held at, ft	Tape Wet at, ft	Depth to Water ft	Drawdown ft			
	12 .			5.15	0.01			
- <u> </u>	40	·: ·		8.11		Kom worke	Julles num	her acu her - 12:00-
	54'			8.10				
	64			8.10				
	'74'			8.11				
- <u></u>	84'			8-11		-		
	· 924'			8.12				
	104			8.12				
	114			8.12				
- <u></u>	105			8.12				
	14/		:	8.12				
~	. 764			8.12				1
- <u></u>	. 181	•		8.12				
·	212			8.12				
	243			8.14	0.01			
	772			8.13	-			,
	301			8,13	-		•	
<u></u>	332			8.14	0.01			
	362 395		······································	8.14	0.01			

PUMP TEST FORM

OMPANY : Comp Genera tout Form 08: OB LOCATION: 05135-01 NGINEER: Colorbusse - Prochek

. . . .

1

OBS. WELL NO.:	M10 27
DESCRIPTION OF	Tor

n ibilitania e

DISTANCE FROM PUMPED WELL:

STATIC WATER LEVEL 8.13 AT 1202 AM PHY

•

			the second s		and the second	
Time of easurement	Time Since Pumping Began Stopped Minutes	Tape Held at, ft	Tape Wet at, ft	Depth to Water ft	Drawdown ft	Remarks
1915	422 :			8.14	0,01	
		: •		•		
				•		
•	•					·
<u></u> , <u>**</u> , **						
				:		
						
			•			
·						
			:			
						· ·
·				•		
						1
						· .
	,					·
						a second a second s

TYPE CURVE CALCULATIONS NAVY PUMPING TESTS										
TEST	WELL	Q	R	Т	DELH	W(U)	U	т		S
		gpm	ft	min	ft			ft^2/d	gpd/ft^2	-
CHERRY PT	 MW1	5.1	67	4.8	0.285	1	1	274	2051	0.001
1697/98	MW2	5.1	33	5.2	0.62	1	1	126	943	0.002
	MW3	5.1	22	0.22	0.5	1	1	156	1169	0.0002
	N46W04	5.1	28	1.05	0.3	1	1	260	1948	0.001
CAMP GEIGER	MW26	4.1	32	1.9	0.04	1	1	1570	11746	0.008
FUEL FARM	MW22s	4.1	113	3.8	0.020	1	1	3064	22920	0.003
CAMP GEIGER	MW1	6.4	28	7	0.095	1	1	1032	7720	0.026
MINI-C	MW2	6.4	65	22	0.15	1	1	654	4890	0.009
	MW4	6.4	36	3.4	0.054	1	1	1816	13582	0.013
	MW5	6.4	84	520	0.34	1	1	288	2157	0.059
CHERRY PT	9GW01	12.4	28.4	9.6	0.12	1	1	1583	11842	0.052
TF D	9GW02	12.4	108	250	0.21	1	1	905	6767	0.054
	9GW03	12.4	55	7.3	0.028	1	1	6785	50751	0.045
	9GW05	12.4	84.4	5.8	0.132	1	1	1439	10765	0.003
	9GW07	12.4	84.3	105	0.044	1	1	4318	32296	0.177
	9GW09	12.4	16.7	5.3	0.35	1	1	543	4060	0.029
	9GW10	12.4	85.2	2.4	0.19	1	1	1000	7479	0.001
	9GW15	12.4	23.8	1	0.44	1	1	432	3230	0.002
BERKLEY	MW2	8.8	56	1	0.021	1	1	6420	48023	0.006
MANOR	MW3	8.8	54	12.5	0.13	1	1	1037	7758	0.012
	MW4	8.8	84	800	0.59	1	1	229	1709	0.072
	MW6	8.8	25.5	0.76	0.28	1	1	482	3602	0.002
	MW9	8.8	51	1.5	0.062	1	1	2175	16266	0.003

TAB 1 CONTRACTOR CONTRACTOR

JOB NO. 425-08135-0 SHEET ____ OF__ 3 Camp beig JOB NAME 3301 ATLANTIC AVE. P.O. BOX 18288 Ph-28 Conductivi dran LAW ENGINEERING SUBJECT RALEIGH, NC 27619 919-876-0416 42 ΒY DATE 12, GEOTECHNICAL ENVIRONMENTAL & CONSTRUCTION MATERIALS CHECKED BY 701 12/17 192 DATE _ CONSULTANTS 5.5'-24.5' d 16 = 0,1089 MA FARM d 84= 0.24 KRUMBEIN'S & UNITS d5= 0.001 \$ = - log 2d das : 0.35 log 2 (0.1089)= dso= 0,16 1.1087 Ln 0.1089 73 \$=-log 2 (0,24) log ~ (0.24) 1,43 0.72= dyy 2 (0.001) 3,5= ds 0.001) 6.9 : - log 2 (0,35) 0.53: das -log2(0.16) logn (0.16) 1.83 0,92 = 9.58

144

1

1911.1.1

1.1: 1 444.5.54 JOB NO. 475-08135 SHEET 2 OF 3 Camp beiger JOB NAME 3301 ATLANTIC AVE. P.O. BOX 18288 ENGINEERING SUBJECT RALEIGH, NC 27619 919-876-0416 DATE 12/14/92 RA BY ____ GEOTECHNICAL ENVIRONMENTAL 12/17/92 & CONSTRUCTION MATERIALS Zm CHECKED BY DATE _ CONSULTANTS INCLUSIVE STANDARD DEVIATION (SIZE SORTING) dig- dig+ t dis- dis + 3.5-0.53 6.6 1.1087-0,72 = 0.19 + 0.45 = 0.64 min from graph K= cm 24 hr/day . 0,03287 + 1/cm = (99.21 + 1/ day 60 min/hr K= 2,14 cm/min

LAW ENGINEERING	3301 ATLANTIC AVE. P.O. BOX 18288 RALEIGH, NC 27619 919-876-0416	JOB NO. <u>475-08135.01</u> SHEET <u>3</u> OF <u>3</u> JOB NAME <u>Comp Geiger</u> SUBJECT <u>K</u>
GEOTECHNICAL ENVIRONMENTAL & CONSTRUCTION MATERIALS CONSULTANTS		BY DATE/7_/7 CHECKED BY DATE/2/17/9

and a second state of the second s

1.34 1

DETERMINATION OF SATURATED HYDRAULIC CONDUCTIVITY FROM GRAIN SIZE GRADATION CURVES FOR UNCONSOLIDATED SANDS (AFTER MASCH AND DENNY, 1966; FROM FREEZE AND CHERRY, PG. 350)

THE I SEE A AMAGA A

LAW ENGINEERING	3301 ATLANTIC AVE. P.O. BOX 18288 RALEIGH, NC 27619	JOB NO. <u>475-08135-01</u> SHEET <u>3</u> OF <u>3</u> JOB NAME <u>Comp Geiger</u> SUBJECT <u>K</u>
GEOTECHNICAL, ENVIRONMENTAL & CONSTRUCTION MATERIALS CONSULTANTS	919-876-0416	BY DATE CHECKED BY DATE I2/14/92

÷

+

DETERMINATION OF SATURATED HYDRAULIC CONDUCTIVITY FROM GRAIN SIZE GRADATION CURVES FOR UNCONSOLIDATED SANDS (AFTER MASCH AND DENNY, 1966; FROM FREEZE AND CHERRY, PG. 350)

+

+

RESULTS OF INSITU <u>TSMATCH</u> (Automated Theis Curve Matching) for LANTDIV PUMP TESTS

e di a dilla di a

1. CAMP GEIGER FUEL FARM, 11/4/92

Well	R(ft)	T (ft**2/day)	S
 PW-28	0	43.8	2.9E-3
MW-26	32	988.1	1.1E-2
MW-22s	113	4225.6	1.5E-3
MW-27	88	No Data	-

lill i stati

2. CHERRY POINT TANKS 1697/1698, 11/17/92

Well	R(ft)	T (ft**2/day)	S	
PW-1, ALL DATA PW-1, DELETE 2 MIN	0 0	58.7 45.9	6.5E-2 1.5E-2	
MW-1, GRAPHIC METH	H 67	5900	1.2E-3	
MW-2	33	358.7	4.9E-4	
MW-3	22	445.1	5.9E-7	
N46W04	28	281.7	9.9E-4	

3. CAMP GEIGER MINI-C STORE, 11/19/92

	Well	R(ft)	T (ft**2/day)	S
===	PW-8, ALL DATA PW-8, DEL SLOPE RISE	0 0 0	71.3 69.4	1.8E-2 1.8E-2
	MW-1	28	876.5	3.3E-2
	MW-2	6 5	2949.7	8.4E-2
	MW-4	36	1339.8	2.0E-2
	MW-5	84	1001.3	1.3E-1

in the standard t

12-081

Field Data - Camp Geiger Full Farm Rumping Test, 11/4/92, MW-26

Elapsed Time (min)

By: 0 1/13/93

Field Data - Camp Geiger Fuel Farm Pumping Test, 11/4/92, MW225

Elopsed Time (min)

By: Che 1/13/93