04.11-11/12/96-00161

# Draft

# Supplemental Groundwater Investigation Report

Operable Unit No. 10 Site 35 - Camp Geiger Area Fuel Farm Marine Corps Base Camp Lejeune, North Carolina

> Volume II of III Appendices



Prepared For:

Department of the Navy Atlantic Division Naval Facilities Engineering Command Norfolk, Virginia

Under the

LANTDIV CLEAN Program

**Comprehensive Long-Term Environmental Action Navy** 

### LIST OF APPENDICES

- A Remedial Investigation Report, Operable Unit No.10, Camp Geiger Fuel Farm
- B Interim Action Feasibility Study for Shallow Groundwater in the Vicinity of the Former Fuel Farm
- C Treatability Study Work Plan, Pilot-scale Evaluation of In-situ Air Sparging
- D Test Boring and Well Construction Records
- E SGI Sample Summary
- F Soil and Groundwater Screening Results, Mobile Laboratory Data
- G SGI Chain-of Custody Records
- H SGI Well Development Records
- I SGI IDW Management and Disposal Information
- J SGI Hydraulic Conductivity Data
- K FSAP and Work Plan Amendments
- L QA/QC Sample Summaries
- M Base Background Data
- N Interim Record of Decision for Surficial Groundwater
- O Data and Frequency Summaries
- P Statistical Summaries
- Q CDI Risk Calculations
- R Data Validation Report for Round 3
- S Data Validation Report for Round 4

APPENDIX A REMEDIAL INVESTIGATION REPORT, OPERABLE UNIT NO. 10, CAMP GEIGER FUEL FARM

# FINAL

# REMEDIAL INVESTIGATION AT OPERABLE UNIT NO. 10 (SITE 35, CAMP GEIGER AREA FUEL FARM)

MARINE CORPS BASE CAMP LEJEUNE, NORTH CAROLINA

CONTRACT TASK ORDER 0232

MAY 31, 1995

Prepared For:

DEPARTMENT OF THE NAVY ATLANTIC DIVISION NAVAL FACILITIES ENGINEERING COMMAND Norfolk, Virginia

Under;

LANTDIV CLEAN Program Contract N62470-89-D-4814

Prepared by BAKER ENVIRONMENTAL, INC

Coraopolis, Pennsylvania

# TABLE OF CONTENTS

|      |            | Page                                                              |
|------|------------|-------------------------------------------------------------------|
| LIST | OF AC      | RONYMS AND ABBREVIATIONS xii                                      |
| EXE  | CUTIVI     | E SUMMARY ES-1                                                    |
| 1.0  | INTR       | ODUCTION                                                          |
|      | 1.1        | Background 1-2                                                    |
|      |            | 1.1.1 Site Description                                            |
|      |            | 1.1.2 Site History 1-3                                            |
|      | 1.2        | Summary of Previous Investigations 1-4                            |
|      |            | 1.2.1 Initial Assessment Study 1-4                                |
|      |            | 1.2.2 Confirmation Study 1-4                                      |
|      |            | 1.2.3 Focused Feasibility Study 1-5                               |
|      |            | 1.2.4 Comprehensive Site Assessment 1-5                           |
|      |            | 1.2.5 Interim Remedial Action RI/FS 1-7                           |
|      |            | 1.2.6 Other Investigations 1-8                                    |
|      | 1.3        | Report Organization 1-9                                           |
| 2.0  | STUI       | OY AREA INVESTIGATION                                             |
|      | 2.1        | RI Field Program                                                  |
|      |            | 2.1.1 Soil Gas Survey and Groundwater Screening Investigation 2-1 |
|      |            | 2.1.2 Soil Investigation 2-3                                      |
|      |            | 2.1.3 Groundwater Investigation 2-5                               |
|      |            | 2.1.4 Surface Water/Sediment Investigation 2-7                    |
|      |            | 2.1.5 Ecological Investigation 2-9                                |
|      | 2.2        | Decontamination Procedures 2-14                                   |
|      | 2.3        | Investigative Derived Waste (IDW) Handling 2-15                   |
| 3.0  |            | SICAL CHARACTERISTICS OF THE STUDY AREA                           |
|      | 3.1        | Surface Features                                                  |
|      | 3.2        | Climatology 3-1                                                   |
|      | 3.3        | Surface Water Hydrology 3-2                                       |
|      | 3.4        | Geology                                                           |
|      |            | 3.4.1 Regional Geology 3-3                                        |
|      |            | 3.4.2 Site Geology 3-3                                            |
|      | 3.5        | Surface Soils                                                     |
|      | 3.6        | Hydrogeology                                                      |
|      |            | 3.6.1 Regional Hydrogeology                                       |
|      | ~ <b>7</b> | 3.6.2 Site Hydrogeology                                           |
|      | 3.7        | Land Use and Demography 3-7                                       |
|      | 3.8        | Regional Ecology                                                  |
|      | 3.9        | Site-Specific Ecology                                             |
|      | 3.10       | Sensitive Environments                                            |
|      |            | 3.10.2 Threatened and Endangered Species                          |
|      |            | 3.10.2 Threatened and Endangered Species                          |
|      | 3.11       | Identification of Water Supply Wells                              |
|      | J          | reconcentration of matter cupping in one                          |

ţ

# TABLE OF CONTENTS (Continued)

÷

)

i,

i

| 4.0 | NATU       | JRE AND EXTENT OF CONTAMINATION 4-1                                         |
|-----|------------|-----------------------------------------------------------------------------|
|     | 4.1        | Non-Site Related Analytical Results 4-1                                     |
|     |            | 4.1.1 Laboratory Contaminants 4-1                                           |
|     |            | 4.1.2 Naturally Occurring Inorganic Elements 4-2                            |
|     | 4.2        | Summary of Analytical Results 4-4                                           |
|     |            | 4.2.1 Soil Investigation 4-4                                                |
|     |            | 4.2.2 Groundwater Investigation 4-7                                         |
|     |            | 4.2.3 Sediment Investigation 4-13                                           |
|     |            | 4.2.4 Surface Water Investigation 4-15                                      |
|     |            | 4.2.5 Ecological Investigation 4-15                                         |
|     | 4.3        | Extent of Contamination 4-19                                                |
|     |            | 4.3.1 Soil 4-19                                                             |
|     |            | 4.3.2 Groundwater Contamination 4-21                                        |
|     |            | 4.3.3 Surface Water and Sediment 4-25                                       |
|     |            |                                                                             |
| 5.0 | CON        | TAMINANT FATE AND TRANSPORT    5-1                                          |
|     | 5.1        | Chemical and Physical Properties Impacting Fate and Transport 5-1           |
|     | 5.2        | Contaminant Transport Pathways 5-2                                          |
|     |            | 5.2.1 Erosion of Contaminated Soils and Transportation to Surface Water and |
|     |            | Sediment 5-3                                                                |
|     |            | 5.2.2 On-Site Deposition of Windblown Dust 5-3                              |
|     |            | 5.2.3 Leaching of Sediment Contaminants to Surface Water 5-3                |
|     |            | 5.2.4 Leaching of Soil Contaminants to Groundwater 5-3                      |
|     |            | 5.2.5 Migration of Groundwater Contaminants 5-4                             |
|     |            | 5.2.6 Groundwater Discharge to Surface Water 5-6                            |
|     |            | 5.2.7 Groundwater Infiltration from the Shallow to the Deep Aquifer 5-6     |
|     | 5.3        | Fate and Transport Summary 5-6                                              |
|     |            | 5.3.1 Volatile Organic Compounds 5-6                                        |
|     |            | 5.3.2 Polynuclear Aromatic Hydrocarbons 5-6                                 |
|     |            | 5.3.3 Pesticides/PCBs 5-7                                                   |
|     |            | 5.3.4 Inorganics 5-7                                                        |
|     |            |                                                                             |
| 6.0 |            | ELINE HUMAN HEALTH RISK ASSESSMENT       6-1         Introduction       6-1 |
|     | 6.1        | Contaminants of Potential Concern                                           |
|     | 6.2        |                                                                             |
|     |            |                                                                             |
|     |            | 6.2.2 Selection of Contaminants of Potential Concern                        |
|     | 6.3        | Exposure Assessment                                                         |
|     |            | 6.3.1 Site Conceptual Model of Potential Exposure                           |
|     |            | 6.3.2 Exposure Pathways                                                     |
|     |            | 6.3.3 Quantification of Exposure                                            |
|     | <i>.</i> . | 6.3.4 Calculation of Chronic Daily Intakes                                  |
|     | 6.4        | Toxicity Assessment                                                         |
|     |            | 6.4.1 Toxicological Evaluation                                              |
|     |            | 6.4.2 Dose-Response Evaluation                                              |

# TABLE OF CONTENTS (Continued)

# Page

|     | 6.5  | Risk Characterization                        |
|-----|------|----------------------------------------------|
|     |      | 6.5.1 Human Health Risks 6-30                |
|     | 6.6  | Sources of Uncertainty                       |
|     |      | 6.6.1 Analytical Data                        |
|     |      | 6.6.2 Exposure Assessment                    |
|     |      | 6.6.3 Sampling Strategy 6-33                 |
|     |      | 6.6.4 Toxicity Assessment                    |
|     |      | 6.6.5 Compounds Not Quantitatively Evaluated |
|     | 6.7  | Conclusions of the BRA for OU No. 10         |
| 7.0 | ECOL | OGICAL RISK ASSESSMENT 7-1                   |
|     | 7.1  | Introduction                                 |
|     |      | 7.1.1 Objectives                             |
|     |      | 7.1.2 Scope                                  |
|     |      | 7.1.3 Organization                           |
|     | 7.2  | Problem Formulation                          |
|     |      | 7.2.1 Stressor Characteristics               |
|     |      | 7.2.2 Ecosystems Potentially at Risk         |
|     |      | 7.2.3 Ecological Effects                     |
|     |      | 7.2.4 Ecological Endpoints 7-9               |
|     |      | 7.2.5 The Conceptual Model 7-14              |
|     | 7.3  | Analysis Phase                               |
|     |      | 7.3.1 Characterization of Exposure           |
|     |      | 7.3.2 Ecological Effects Characterization    |
|     | 7.4  | Risk Characterization                        |
|     |      | 7.4.1 Surface Water                          |
|     |      | 7.4.2 Sediment                               |
|     |      | 7.4.3 Fish Community 7-35                    |
|     |      | 7.4.4 Fish Tissue                            |
|     |      | 7.4.5 Benthic Macroinvertebrate 7-36         |
|     |      | 7.4.6 Surface Soil                           |
|     |      | 7.4.7 Terrestrial Chronic Daily Intake Model |
|     |      | 7.4.8 Other Sensitive Environments           |
|     | 7.5  | Ecological Significance                      |
|     |      | 7.5.1 Aquatic Endpoints                      |
|     |      | 7.5.2 Terrestrial Endpoints                  |
|     |      | 7.5.3 Threatened and Endangered Species      |
|     |      | 7.5.4 Wetlands 7-39                          |
|     |      | 7.5.5 Other Sensitive Environments           |
|     | 7.6  | Uncertainty Analysis                         |
|     | 7.7  | Conclusions                                  |
|     |      | 7.7.1 Aquatic Ecosystem                      |
|     |      | 7.7.2 Terrestrial Ecosystem                  |

# TABLE OF CONTENTS (Continued)

# <u>Page</u>

| 8.0 | CONC | LUSIONS AND RECOMMENDATIONS | 8-1 |
|-----|------|-----------------------------|-----|
|     | 8.1  | Conclusions                 | 8-1 |
|     | 8.2  | Recommendations             | 8-7 |

# LIST OF TABLES

)

)

•

| Numbe      |                                                                                                                                      |
|------------|--------------------------------------------------------------------------------------------------------------------------------------|
| 1-1        | Summary of Existing Well Construction Details<br>1992 Underground Storage Tank Assessment Near the Former Mess Hall Heating Plant    |
|            | 1990 Field Investigation of Camp Geiger Fuel Spill Site                                                                              |
|            | 1986 Site Assessment of Camp Geiger Fuel Farm                                                                                        |
| 1-2        | Summary of Existing Well Construction Details                                                                                        |
| 1-3        | 1991 Assessment of a Suspected Fuel Leak Originating From the Camp Geiger Fuel Farm<br>Summary of Existing Well Construction Details |
| 1-5        | 1994 Underground Storage Tank Assessment Near Building TC341                                                                         |
|            | · · · · · · · · · · · · · · · · · · ·                                                                                                |
| 2-1        | Summary of Shallow and Intermediate Well Construction Details                                                                        |
| 2-2        | Summary of Deep Well Construction Details                                                                                            |
| 2-3        | Summary of Water Level Measurements from Shallow Wells                                                                               |
| 2-4        | Summary of Water Level Measurements from Intermediate Wells                                                                          |
| 2-5        | Summary of Water Level Measurements from Deep Wells                                                                                  |
| 3-1        | Climatic Data Summary for MCAS New River                                                                                             |
| 3-2        | Geologic and Hydrogeologic Units in the Coastal Plain of North Carolina                                                              |
| 3-3        | Summary of Hydraulic Conductivity Tests                                                                                              |
| 3-4        | Summary of Water Supply Wells Within a One-Mile Radius                                                                               |
| 3-5        | Protected Species Within MCB Camp Lejeune                                                                                            |
| 4-1        | Positive Detection Summary, Surface Soils, TCL Organics                                                                              |
| 4-1<br>4-2 | Positive Detection Summary, Surface Solls, TCL Organics                                                                              |
| 4-2<br>4-3 | Positive Detection Summary, Subsurface Soils, TCL Organics                                                                           |
| 4-4        | Positive Detection Summary, Subsurface Soils, TAL Inorganics                                                                         |
| 4-5        | Base Background, Surface Soil, TAL Inorganics                                                                                        |
| 4-6        | Base Background, Subsurface Soil, TAL Inorganics                                                                                     |
| 4-7        | Positive Detection Summary, Groundwater, Organics                                                                                    |
| 4-8        | Positive Detection Summary, Groundwater, Total Inorganics                                                                            |
| 4-9        | Positive Detection Summary, Groundwater, Dissolved Inorganics                                                                        |
| 4-10       | Positive Detection Summary, Sediments, TCL Organics                                                                                  |
| 4-11       | Positive Detection Summary, Sediments, TAL Inorganics                                                                                |
| 4-12       | Positive Detection Summary, Surface Water, TAL Inorganics                                                                            |
| 4-13       | Summary of Biota Samples Sent to Laboratory for Tissue Analysis                                                                      |
| 4-14       | Positive Detection Summary, Fillet Samples, Volatile Organic Compounds                                                               |
| 4-15       | Positive Detection Summary, Whole Body Samples, Volatile Organic Compounds                                                           |
| 4-16       | Positive Detection Summary, Fillet Samples, Pesticides                                                                               |
| 4-17       | Positive Detection Summary, Whole Body Samples, Pesticides                                                                           |
| 4-18       | Positive Detection Summary, Fillet Samples, TAL Inorganics                                                                           |
| 4-19       | Positive Detection Summary, Whole Body Samples, TAL Inorganics                                                                       |
| 5-1        | Organic Physical and Chemical Properties                                                                                             |
| 5-2        | Relative Mobilities of Inorganics as a Function of Environmental Conditions (Eh, pH)                                                 |
|            |                                                                                                                                      |

# LIST OF TABLES (Continued)

#### Number

- 6-1 Organic Data Summary, Surface Soil
- 6-2 Inorganic Data Summary, Surface Soil
- 6-3 Organic Data Summary, Subsurface Soil
- 6-4 Inorganic Data Summary, Subsurface Soil
- 6-5 Groundwater Data Summary
- 6-6 Surface Water Data Summary
- 6-7 Sediment Data Summary
- 6-8 Organic and Inorganic Fish Fillet Data Summary
- 6-9 Summary of COPCs in Environmental Media of Concern
- 6-10 Matrix of Potential Human Exposure
- 6-11 Exposure Assessment Summary, Incidental Ingestion of Soil Contaminants
- 6-12 Exposure Assessment Summary, Dermal Contact with Soil Contaminants
- 6-13 Exposure Assessment Summary, Inhalation of Fugitive Particulates
- 6-14 Exposure Assessment Summary, Ingestion of Groundwater Contaminants
- 6-15 Exposure Assessment Summary, Dermal Contact with Groundwater Contaminants
- 6-16 Exposure Assessment Summary, Inhalation of Groundwater Volatile Contaminants
- 6-17 Exposure Assessment Summary, Ingestion of Surface Water
- 6-18 Exposure Assessment Summary, Dermal Contact with Surface Water
- 6-19 Exposure Assessment Summary, Ingestion of Sediment
- 6-20 Exposure Assessment Summary, Dermal Contact with Sediment
- 6-21 Exposure Assessment Summary, Fish Fillet Ingestion
- 6-22 Toxicity Factors
- 6-23 Incremental Lifetime Cancer Risks (ICRs) and Hazard Indices (HIs), Soil
- 6-24 Incremental Lifetime Cancer Risks (ICRs) and Hazard Indices (HIs), Groundwater
- 6-25 Incremental Lifetime Cancer Risks (ICRs) and Hazard Indices (HIs), Surface Water
- 6-26 Incremental Lifetime Cancer Risks (ICRs) and Hazard Indices (HIs), Sediment
- 6-27 Incremental Lifetime Cancer Risks (ICRs) and Hazard Indices (HIs), Fish
- 6-28 Total Site Risk
- 7-1 Surface Water Data Summary
- 7-2 Physical/Chemical Characteristics of the COPCs
- 7-3 Field Chemistry From Biological Samples
- 7-4 Total Number of Aquatic Species Identified Per Station
- 7-5 Fish Distribution and Characterization
- 7-6 Systematic List of Benthic Macroinvertebrate Species at Sites 35 and 36
- 7-7 Biotic Index, USEPA Tolerance to Organic Waste, and Sensitivity to Metals
- 7-8 Summary Statistics of Benthic Macroinvertebrate Species
- 7-9 Frequency and Range of Detection Compared to Saltwater North Carolina WQSs, USEPA WQSVs, and USEPA AWQC
- 7-10 Comparison of Biota Tissue Data Collected in Brinson Creek to Biota Tissue Collected in Other Studies
- 7-11 Frequency and Range of Detection Compared to Sediment Screening Values

# LIST OF TABLES (Continued)

# Number

ţ

- 7-12 Results of the Jaccard Coefficient (Sj) of Community Similarity and SΦrenson Index (Ss) of Community Similarity Between Benthic Macroinvertebrate Stations, Brinson Creek and Hadnot Creek
- 7-13 Results of the Jaccard Coefficient (Sj) of Community Similarity and Sorenson Index (Ss) of Community Similarity Between Benthic Macroinvertebrate Stations, Brinson Creek and Webb Creek
- 7-14 Terrestrial Reference Values
- 7-15 Soil to Plant Transfer Coefficients and Beef Bioconcentration Factors
- 7-16 Terrestrial Chronic Daily Intake Model Exposure Parameters
- 7-17 Surface Water Quotient Index
- 7-18 Sediment Screening Values Quotient Index
- 7-19 Terrestrial Quotient Index Ratios

### LIST OF FIGURES

# Number

- 1-1 Location Map
- 1-2 Site Plan
- 1-3 Location of Proposed Highway Right-of-Way
- 1-4 Pre RI/FS Wells and Sampling Locations
- 2-1 Soil Gas Survey and Groundwater Screening Sample Locations
- 2-2 Soil Gas Survey Results
- 2-3 Groundwater Screening Results
- 2-4 Post RI/FS Sampling Locations
- 2-5 Surface Water, Sediment, Benthic and Fish Sample Location Map
- 2-6 Off-Site Background Sampling Locations in the White Oak River Basin
- 2-7 Fish and Benthic Macroinvertebrate Sampling Location in Webb Creek
- 2-8 Fish and Benthic Macroinvertebrate Sampling Location in Holland Mill Creek
- 2-9 Fish and Benthic Macroinvertebrate Sampling Location in Hadnot Creek

3-1 Location of Hydrogeologic Cross-Sections, Marine Corps Base, Camp Lejeune

- 3-2 Hydrogeologic Cross-Sections of MCB, Camp Lejeune Area
- 3-3 Cross-Section Locations at Site 35
- 3-4 Hydrogeologic Cross-Section A-A'
- 3-5 Hydrogeologic Cross-Section B-B'
- 3-6 Hydrogeologic Cross-Section C-C'
- 3-7 Groundwater Contour Map Depicting Flow in The Surficial Aquifer
- 3-8 Groundwater Contour Map Depicting Flow in the Upper-Most Portion of the Castle Hayne Aquifer
- 3-9 Biohabitat Map
- 3-10 Supply Well Location Map

4-1 Detected Organics in Surface Soil

4-2 Detected Inorganics and Organics in Subsurface Soil

4-3 Detected Inorganics in Surface Soil

- 4-4 Detected Organics in Upper Portion of Surficial Aquifer
- 4-5 Detected Total Inorganics in Upper Portion of Surficial Aquifer
- 4-6 Detected Dissolved Inorganics in Upper Portion of Surficial Aquifer
- 4-7 Detected Organics in Lower Portion of Surficial Aquifer
- 4-8 Detected Total Inorganics in Lower Portion of Surficial Aquifer
- 4-9 Detected Dissolved Inorganics in the Lower Portion of the Surficial Aquifer
- 4-10 Detected Organics and Total Dissolved Inorganics in Upper Portion of Castle Hayne Aquifer
- 4-11 Detected Organics in Sediment
- 4-12 Detected Inorganics in Surface Water
- 4-13 Detected Inorganics in Sediment
- 6-1 Conceptual Site Model

### LIST OF APPENDICES

Volume 2

- A SITE SUMMARY REPORT (ESE, 1990)
- B COMPREHENSIVE SITE ASSESSMENT REPORT (LAW, 1992)
- C ADDENDUM TO REPORT OF UNDERGROUND FUEL INVESTIGATION AND COMPREHENSIVE SITE ASSESSMENT (LAW, 1993)
- D INTERIM REMEDIAL ACTION REMEDIAL INVESTIGATION (BAKER, 1994)
- E UST REPORT, FORMER MESS HALL HEATING PLANT (ATEC, 1992)
- F LEAKING UNDERGROUND STORAGE TANK SITE ASSESSMENT REPORT (LAW, 1994)
- G SHALLOW SOIL GAS AND GROUNDWATER INVESTIGATION (TRACER, 1994)
- H RI/FS TEST BORING AND WELL CONSTRUCTION RECORDS
- I RI/FS SAMPLING SUMMARY
- J SUMMARY OF PID MEASUREMENTS FROM RI/FS SOIL BORINGS
- K RI/FS CHAIN OF CUSTODY RECORDS

Volume 3

- L RI/FS FIELD WELL DEVELOPMENT RECORDS
- M RI/FS IDW MANAGEMENT AND DISPOSAL INFORMATION
- N RI/FS HYDRAULIC CONDUCTIVITY DATA
- O SUMMARY OF GROUNDWATER DATA AND AQUIFER CHARACTERISTICS AT MCB CAMP LEJEUNE
- P CRITICAL SPECIES LIST CAMP LEJEUNE ENDANGERED SPECIES AND SPECIAL - INTEREST COMMUNITIES SURVEY
- Q RESULTS OF ENGINEERING PARAMETERS
- R RI/FS FISH TISSUE STATISTICAL SUMMARIES
- S WHITE OAK RIVER BASIN REFERENCE DATA
- T RI/FS COPC SELECTION WORKSHEETS
- U RI/FS DATA AND FREQUENCY SUMMARIES
  - U.1 SURFACE SOIL ORGANICS
  - U.2 SURFACE SOIL INORGANICS
  - U.3 SUBSURFACE SOIL ORGANICS
  - U.4 SUBSURFACE SOIL INORGANICS
  - U.5 GROUNDWATER ORGANICS
  - U.6a GROUNDWATER TOTAL INORGANICS
  - U.6b GROUNDWATER DISSOLVED INORGANICS
  - U.7 SURFACE WATER ORGANICS
  - U.8 SURFACE WATER INORGANICS
  - U.9 SEDIMENT ORGANICS
  - U.10 SEDIMENT INORGANICS

# LIST OF APPENDICES (Continued)

V RI/FS STATISTICAL SUMMARIES

V.1 SURFACE SOIL ORGANICS

V.2 SURFACE SOIL INORGANICS

V.3 SUBSURFACE SOIL ORGANICS

V.4 SUBSURFACE SOIL INORGANICS

V.5 GROUNDWATER ORGANICS

V.6a GROUNDWATER TOTAL INORGANICS

V.6b GROUNDWATER DISSOLVED INORGANICS

V.7 SURFACE WATER ORGANICS

V.8 SURFACE WATER INORGANICS

V.9 SEDIMENT ORGANICS

V.10 SEDIMENT INORGANICS

W CDI RISK SPREADSHEETS

X RI/FS BIOTA POPULATION DATA

X.1 FISH AND CRAB SPECIES

X.2 BENTHIC MACROINVERTEBRATE SPECIES

Y RI/FS FIELD DUPLICATE SUMMARIES

Z RI/FS QA/QC SUMMARIES

Volume 4

AA EVALUATION OF METALS IN GROUNDWATER

BB DATA VALIDATION REPORTS

xi

# LIST OF ACRONYMS AND ABBREVIATIONS

.

yzan

í

| ABS      | adsorption factor                                                 |
|----------|-------------------------------------------------------------------|
| AF       | soil to skin adherence factor                                     |
| AQTESOLV | Aquifer Test Solver Program                                       |
| AQUIRE   | Aquatic Information Retrieval Database                            |
| ARARs    | Applicable or Relevant and Appropriate Requirements               |
| ARL      | Aquatic Reference Level                                           |
| AST      | aboveground storage tank                                          |
| ASTM     | American Society for Testing and Materials                        |
| AT       | averaging time                                                    |
| ATc      | averaging time carcinogen                                         |
| ATnc     | averaging time noncarcinogen                                      |
| ATEC     | ATEC Associates, Inc.                                             |
| AWQC     | Federal Ambient Water Quality Criteria                            |
| Baker    | Baker Environmental, Inc.                                         |
| BCF      | bioconcentration factor                                           |
| bgs      | below ground surface                                              |
| BI       | biotoxic index                                                    |
| BOD      | biological oxygen demand                                          |
| BRA      | baseline risk assessment                                          |
| BTEX     | benzene, toluene, ethylbenzene, xylenes                           |
| BW       | body weight                                                       |
| CAMA     | Coastal Area Management Act                                       |
| CDI      | chronic daily intake                                              |
| CERCLA   | Comprehensive Environmental Response, Compensation, and Liability |
| Act      |                                                                   |
| CF       | conversion factor                                                 |
| CFR      | Code of Federal Regulations                                       |
| CLEAN    | Comprehensive Long-Term Environmental Action Navy                 |
| CLP      | Contract Laboratory Program                                       |
| COPC     | contaminant of potential concern                                  |
| COD      | chemical oxygen demand                                            |
| CRAVE    | Carcinogen Risk Assessment Verification Endeavor                  |
| CRQL     | Contract Required Quantitation Limit                              |
| CSA      | Comprehensive Site Assessment                                     |
| CSF      | Cancer Slope Factor                                               |
| DoN      | Department of the Navy                                            |
| 1,2-DCE  | 1,2-dichloroethene                                                |
| DEM      | Division of Environmental Management                              |
| DDE      | dichlorodiphenyldichloroethylene                                  |
| DDT      | diphenyltrichloroethane                                           |

| ECD                              | electron capture detector                   |
|----------------------------------|---------------------------------------------|
|                                  | -                                           |
| ED                               | exposure duration                           |
| EF                               | exposure frequency                          |
| EL                               | exposure level                              |
| ERA                              | ecological risk assessment                  |
|                                  | •                                           |
| ER-L                             | Effects Range-Low                           |
| ER-M                             | Effects Range-Median                        |
| ESE                              | Environmental Science and Engineering, Inc. |
| ET                               | exposure time                               |
| D.                               | capobal o tanto                             |
| <b>R</b> ( <b>W</b> ( <b>R</b> ) |                                             |
| FAWQC                            | Federal Ambient Water Quality Criteria      |
| FFA                              | Federal Facilities Agreement                |
| FFS                              | Focused Feasibility Study                   |
| F <sub>i</sub>                   | fraction ingested from source               |
|                                  |                                             |
| FID                              | flame ionization detector                   |
| $f_{oc}$                         | sediment particle grain size                |
| FSAP                             | Field Sampling and Analysis Plan            |
| FWS                              | Fish and Wildlife Service                   |
|                                  | Freshwater Water Quality Screening Values   |
| FWQSV                            | Mestiwater water Quality Scicenning Values  |
|                                  |                                             |
| gpd/ft                           | gallons per day per foot                    |
| gpm                              | gallons per minute                          |
|                                  |                                             |
| H                                | mean species diversity                      |
| HA                               | health advisory                             |
|                                  | •                                           |
| HEAST                            | Health Effects Assessment Summary Tables    |
| HHAG                             | Human Health Assessment Group               |
| HHRA                             | Human Health Risk Assessment                |
| HI                               | hazard index                                |
| HQ                               | hazard quotient                             |
| -                                | high quality water                          |
| HQW                              | nigh quanty water                           |
|                                  |                                             |
| i ·                              | hydraulic gradient                          |
| IAS                              | Initial Assessment Study                    |
| ICR                              | incremental cancer risk                     |
| ID                               | inside diameter                             |
| IDW                              | investigative derived wastes                |
|                                  | -                                           |
| IR                               | ingestion rate                              |
| IRA                              | interim remedial action                     |
| IRIS                             | Integrated Risk Information System          |
| IRP                              | Installation Restoration Program            |
|                                  | -                                           |
| К                                | hydraulic conductivity                      |
| K <sub>d</sub>                   | soil sorption coefficient                   |
|                                  |                                             |
| K <sub>oc</sub>                  | organic carbon partition coefficient        |
| K <sub>ow</sub>                  | octanol-water partition coefficient         |
|                                  | · · ·                                       |

xiii

| LANTDIV        | Naval Facilities Engineering Command, Atlantic Division      |
|----------------|--------------------------------------------------------------|
| LAW            | Law Engineering                                              |
| LOAEL          | lowest observed adverse effect level                         |
| LUST           | leaking underground storage tank                             |
|                |                                                              |
| MBI            | Macroinvertebrate Biotic Index                               |
| MCAS           | Marine Corps Air Station                                     |
| MCB            | Marine Corps Base                                            |
| MCL            | maximum contaminant level                                    |
| mg/kg          | milligram per kilogram                                       |
| mg/L           | milligram per liter                                          |
| MF             | modifying factor                                             |
| MI             | mobility index                                               |
| ml             | milliliter                                                   |
| mL/g           | milliliters per gram                                         |
| msl            | mean sea level                                               |
| MTBE           | methyl-tertiary-butyl-ether                                  |
| MW             | monitoring well                                              |
|                |                                                              |
| NACIP          | Navy Assessment and Control of Installation Pollutants       |
| NC DEHNR       | North Carolina Department of Environment, Health and Natural |
| Resources      |                                                              |
| NC DOT         | North Carolina Department of Transportation                  |
| NCMFC          | North Carolina Marine Fisheries Commission                   |
| NCSPCS         | North Carolina State Plane Coordinate System                 |
| NCP            | National Oil and Hazardous Substances Contingency Plan       |
| NCWP           | Near Coastal Waters Program                                  |
| NCWQC          | North Carolina Water Quality criteria                        |
| NCWQS          | North Carolina Water Quality Standards                       |
| NCWRC          | North Carolina Wildlife Resources Commission                 |
| N <sub>e</sub> | effective porosity                                           |
| NEESA          | Naval Energy and Environmental Support Activity              |
| NEP            | National Estuary Program                                     |
| NOAA           | National Oceanic and Atmospheric Administration              |
| NOAEL or NOEL  | No observed adverse effect level                             |
| NPL            | National Priorities List                                     |
| NPS            | National Park Service                                        |
| NSW            | nutrient sensitive waters                                    |
| NUS            | NUS Corporation                                              |
| NWI            | national wetlands inventory                                  |
| 7 / 1/ Y       |                                                              |
| O&G            | oil and grease                                               |
| OU             | Operable Unit                                                |
|                |                                                              |
| PAH            | polynuclear aromatic hydrocarbon                             |
| PC             | permeability constant                                        |
| PCBs           | polychlorinated biphenyls                                    |

z

i

| PCE    | tetrachloroethene                            |
|--------|----------------------------------------------|
| PEF    | particulate emissions factor                 |
| PHA    | public health assessment                     |
| PID    | photoionization detector                     |
| POL    | petroleum, oil, lubricants                   |
| ppb    | parts per billion                            |
| ppm    | parts per million                            |
| psi    | pounds per square inch                       |
| PVC    | polyvinyl chloride                           |
| pw     | pumping well                                 |
| QA/QC  | quality assurance/quality control            |
| QI     | quotient index                               |
| Q1     | 4.0                                          |
| RA     | risk assessment                              |
| RBC    | risk based concentrations                    |
| RCRA   | Resource Conservation and Recovery Act       |
| RfD    | reference dose                               |
| RI/FS  | remedial investigation/feasibility study     |
| ROD    | record of decision                           |
| RMC    | RMC Environmental Services, Inc.             |
| S      | storativity, water solubility                |
| SA     | site assessment or surface area              |
| SAP    | Sample and Analysis Plan                     |
| SARA   | Superfund Amendments and Reauthorization Act |
| SB     | soil boring                                  |
| SCS    | Soil Conservation Service                    |
| SD     | sediment                                     |
| SMCL   | Secondary Drinking Water Regulations         |
| SQC    | sediment quality criteria                    |
| SOPs   | standard operating procedures                |
| SSV    | sediment screening value                     |
| SU     | standard units                               |
| SVOCs  | semivolatile organic compounds               |
| SW     | surface water                                |
| SWQSVs | surface water quality screening values       |
|        |                                              |
| Т      | transmissivity                               |
| TAL    | target analyte list                          |
| TBC    | to be considered                             |
| TCE    | trichloroethene                              |
| TCL    | target compound list                         |
| TCLP   | toxicity characteristic leaching procedure   |
| TDS    | total dissolved solids                       |
| TEF    | toxicity equivalency factor                  |

xv

| TICs<br>TOC<br>TPH<br>Tracer<br>trans-1,2-DCE<br>TRVs<br>TSS | tentatively identified compounds<br>total organic carbon<br>total petroleum hydrocarbons<br>Tracer Research Corporation<br>trans-1,2-dichloroethene<br>terrestrial reference values<br>total suspended solids |
|--------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| UCL                                                          | upper confidence limit                                                                                                                                                                                        |
| UF                                                           | uncertainty factor                                                                                                                                                                                            |
| µg/g                                                         | micrograms per gram                                                                                                                                                                                           |
| μg/L                                                         | micrograms per liter                                                                                                                                                                                          |
| USDI                                                         | United States Department of the Interior                                                                                                                                                                      |
| USEPA                                                        | United States Environmental Protection Agency                                                                                                                                                                 |
| USCS                                                         | Unified Soil Classification System                                                                                                                                                                            |
| USGS                                                         | United States Geological Survey                                                                                                                                                                               |
| USMC                                                         | United States Marine Corps                                                                                                                                                                                    |
| UST                                                          | underground storage tank                                                                                                                                                                                      |
| VOCs                                                         | volatile organic compounds                                                                                                                                                                                    |
| VP                                                           | vapor pressure                                                                                                                                                                                                |
| V <sub>x</sub>                                               | average seepage velocity                                                                                                                                                                                      |
| WAR                                                          | Water and Air Research, Inc.                                                                                                                                                                                  |
| WOE                                                          | weight of evidence                                                                                                                                                                                            |
| WQS                                                          | water quality standards                                                                                                                                                                                       |
| WQSV                                                         | water quality screening values                                                                                                                                                                                |
| WS                                                           | Wilderness Society                                                                                                                                                                                            |

### EXECUTIVE SUMMARY

### Introduction

This document was prepared by Baker Environmental, Inc. (Baker) to serve as a report on the Remedial Investigation (RI) conducted at Operable Unit (OU) No. 10, Site 35 - Camp Geiger Area Fuel Farm in the spring and summer of 1994.

The purpose of this RI was to evaluate the nature and extent of the threat to public health and the environment caused by the release of hazardous substances, pollutants or contaminants. This was accomplished by sampling several media (soil, groundwater, sediment, surface water, fish, crabs, and benthic macroinvertebrates) at OU No. 10, evaluating the analytical data and performing a human health risk assessment (RA) and ecological RA. This RI Report contains the results of all field investigations, a technical memorandum summarizing groundwater data and aquifer characteristics at MCB, Camp Lejeune, the human health RA, and the ecological RA. Previous investigations were conducted by Water and Air Research, Inc., (WAR), Environmental Science and Engineering, Inc. (ESE), NUS Corporation (NUS), Law Engineering (LAW), and Baker Environmental, Inc. (Baker).

### Site Location and Description

Camp Geiger is located at the extreme northwest corner of MCB, Camp Lejeune. The main entrance to Camp Geiger is off U.S. Route 17, approximately 3.5 miles southeast of the City of Jacksonville, North Carolina. Site 35, the Camp Geiger Area Fuel Farm refers primarily to five, 15,000-gallon aboveground storage tanks (ASTs), a pump house, and a fuel unloading pad situated within Camp Geiger just north of the intersection of Fourth and "G" Streets.

### Site History

Construction of Camp Geiger was completed in 1945, four years after construction of MCB, Camp Lejeune was initiated. Originally, the Fuel Farm ASTs were used for the storage of No. 6 fuel oil, but, were later converted for storage of other petroleum products including unleaded gasoline, diesel fuel, and kerosene. The date of their conversion is not known.

Routinely, the ASTs at Site 35 supply fuel to an adjacent dispensing pump. A leak in an underground line at the station was reportedly responsible for the loss of roughly 30 gallons per day of gasoline over an unspecified period (Law, 1992). The leaking line was subsequently sealed and replaced.

The ASTs at Site 35 are currently used to dispense gasoline, diesel and kerosene to government vehicles and to supply USTs in use at Camp Geiger and the nearby New River Marine Corps Air Station. The ASTs are supplied by commercial carrier trucks which deliver product to fill ports located on the fuel unloading pad at the southern end of the facility. Six, short-run (120 feet maximum), underground fuel lines are currently utilized to distribute the product from the unloading pad to the ASTs. Product is dispensed from the ASTs via trucks and underground piping.

Reports of a release from an underground distribution line near one of the ASTs date back to 1957-58 (ESE, 1990). Apparently, the leak occurred as the result of damage to a dispensing pump. At that time, the Camp Lejeune Fire Department estimated that thousands of gallons of fuel were released although records which document this incident do not exist. The fuel reportedly migrated to the east and northeast toward Brinson Creek. Interceptor trenches were excavated, and the captured fuel was ignited and burned.

Another abandoned underground distribution line extended from the ASTs to the former Mess Hall Heating Plant, located adjacent to "D" Street, between Third and Fourth Streets. The underground line dispensed No. 6 fuel oil to a UST which fueled the Mess Hall boiler. The Mess Hall, located across "D" Street to the west, was demolished along with its Heating Plant in the 1960s.

In April 1990, an undetermined amount of fuel had been discovered by Camp Geiger personnel along the unnamed drainage channels north of the Fuel Farm. Apparently, the source of the fuel, believed to be diesel or jet fuel, was an unauthorized discharge from a tanker truck that was never identified. The Activity reportedly initiated an emergency clean-up which included the removal of approximately 20 cubic yards of soil.

The Fuel Farm is scheduled to be decommissioned in April 1995. Plans are currently being prepared to empty, clean, dismantle, and remove the ASTs along with all concrete foundations, slabs on grade, berms and associated underground piping. The Fuel Farm is being removed to make way for a six lane divided highway proposed by the North Carolina Department of Transportation (NCDOT). Construction of the highway is scheduled to commence in August 1995.

#### **Previous Investigations**

The following is a summary of the previous investigations performed at Site 35.

#### Initial Assessment Study

MCB, Camp Lejeune was placed on the National Priority List (NPL) on October 4, 1989 after the Initial Assessment Study of 1983 identified 76 potentially contaminated sites at the base (Water and Air Resources, 1983). Site 35 was identified as one of 22 sites warranting further investigation. Sampling and analysis of environmental media was not conducted during the Initial Assessment Study.

#### Confirmation Study

ESE performed Confirmation Studies of the 22 sites requiring further investigation and investigated Site 35 between 1984 and 1987 (ESE, 1990). In 1984, ESE advanced three hand-auger borings and collected groundwater and soil samples from each location. Soils were analyzed for lead and oil and grease. Lead was detected in soil samples obtained from hand auger borings at concentrations ranging from 6 to 8 mg/kg. Oil and grease was also detected at concentrations ranging from 40 to 2,200 mg/kg.

Shallow groundwater samples were obtained from the open boreholes and analyzed for lead, oil and grease, and volatile organic compounds (VOCs) including benzene, trans-1,2-dichloroethene (T-1,2-DCE), trichloroethene (TCE), and methylene chloride. Lead was detected in each sample ranging from 3,659  $\mu$ g/L to 1,063  $\mu$ g/L. Oil and grease was detected in only one sample at 46,000  $\mu$ g/L. The only detected VOC was methylene chloride in one sample at 4  $\mu$ g/L.

In 1986, ESE collected two sediment and two surface water samples from Brinson Creek and installed three permanent monitoring wells: two east of and one west of the Fuel Farm. Surface water and sediment samples were analyzed for lead, oil and grease and ethylene dibromide. Groundwater samples were obtained in December 1986 and again in March 1987 and were analyzed for lead, oil and grease, and VOCs.

No target analytes were detected in either surface water sample. Both sediment samples were reported to contain lead and oil and grease although no data indicating actual levels of detection were provided in ESE's report. Levels were reported to be higher in the upstream sample, prompting ESE to suggest that the discharge of contaminated groundwater to the creek is occurring at the far northern section of the fuel farm ASTs or that the source of oil and grease and lead may be upstream.

Lead was detected in only one of six samples (33  $\mu$ g/L) obtained from the three permanent monitoring wells. Oil and grease was detected in all six samples ranging from 200  $\mu$ g/L to 12,000  $\mu$ g/L. Detected VOCs included benzene (1.3  $\mu$ g/L to 30  $\mu$ g/L), trans-1,2-DCE (3.2  $\mu$ g/L to 29  $\mu$ g/L), and TCE (detected at 11  $\mu$ g/L on both sample dates).

#### Focused Feasibility Study

A Focused Feasibility Study (FFS) was conducted in 1990 in the area north of the Fuel Farm by NUS Corporation. The investigation included the installation of four groundwater monitoring wells. Results of laboratory analysis revealed that groundwater in one well and soil cuttings from two borings were contaminated with petroleum hydrocarbons. No nonaqueous product was observed.

A geophysical investigation was conducted by NUS as part of the FFS in an attempt to identify underground storage tanks (USTs) at the site of the former gas station. The results indicated the presence of a geophysical anomaly to the north of the former gas station.

### **Comprehensive Site Assessment**

Law Engineering, Inc. (Law) conducted a Comprehensive Site Assessment (CSA) during the fall of 1991 (Law, 1992). The CSA involved the drilling of 18 soil borings to depths ranging from 15 to 44.5 feet. These soil borings were ultimately converted to nested wells that monitor the water table aquifer along two zones. The shallow zone, or water table zone, generally extends from 2.5 to 17.5 feet, below ground surface (bgs). The deeper zone monitored by the nested wells generally ranges from 17.5 to 35 feet bgs. Five additional soil borings were drilled and nine soil borings were hand-augered to provide data regarding soil contamination in the vadose zone. Additional groundwater data was provided via 21 drive-point groundwater or "Hydropunch" samples. A "Tracer" study was also performed to investigate the integrity of the ASTs and underground distribution piping.

Soil and groundwater samples obtained under the CSA were analyzed for both organic and inorganic compounds. Groundwater analyses included purgeable hydrocarbons (EPA 601), purgeable aromatics and methyl-tertiary butyl ether (MTBE) (EPA 602), polynuclear aromatic hydrocarbons (EPA 610), and unfiltered lead (EPA 239.2). Soil analyses were limited to total petroleum hydrocarbons (TPH) (SW846 3rd Edition, 5030/3550: gasoline/diesel fractions) and lead (SW846 3rd Edition, 6010). Ten soil samples were analyzed for ignitability by SW846 3rd Edition, 1010.

The results of the CSA identified areas of impacted soil and groundwater. The nature of the contamination included both halogenated (i.e., chlorinated) organic compounds (e.g., TCE, trans-1,2-DCE, and vinyl chloride) and nonhalogenated, petroleum-based constituents (e.g., TPH, MTBE, benzene, toluene, ethylbenzene, and xylene). The contamination encountered was typically identified in both shallow (2.5 to 17.5 feet bgs) and deep (17.5 to 35 feet bgs) wells.

Law also identified several plumes of shallow groundwater contamination including two plumes comprised primarily of petroleum-based constituents (e.g., BTEX) and two plumes comprised of halogenated organic compounds (e.g., TCE). The plumes are all located north of Fourth Street and east of E Street except for a portion of a TCE plume. This plume extends southwest beyond the corner of Fourth and E Streets.

In general, contaminant concentrations in soil were greatest in those samples taken at or below the water table. Law concluded that soil contamination at Site 35 was likely due to the presence of a dissolved phase groundwater plume and seasonal fluctuations of the water table.

A follow-up to the CSA was conducted by Law in 1992. Reported as an Addendum to the CSA (Law, 1993), it was designed to provide further characterization of the southern extent of the petroleum contamination resulting from historical releases. Three monitoring wells were installed including MW-26, -27, and PW-28. Soil samples were obtained from each of these locations and analyzed for TPH (gasoline and diesel fractions). As part of the follow-up, a pump test was performed to estimate the hydraulic characteristics of the surficial aquifer. This test was designed to determine performance characteristics of a designated pumping well and to estimate hydraulic parameters of the aquifer. An approximate hydraulic conductivity of 100 feet/day was determined for the surficial aquifer.

# Interim Remedial Action RI/FS by Baker

Baker conducted an Interim Remedial Action RI in December 1993. An additional seven soil borings were located within and around groundwater contaminant plume areas identified during the CSA. In addition to the soil borings, thirteen shallow soil samples were taken adjacent to Brinson Creek to determine the extent of contamination emanating from Site 35. Two of these shallow soil samples were situated upstream along Brinson Creek to provide background information on TPH and oil and grease.

In addition to soil sampling, a second round of groundwater level measurements were obtained for comparison to those presented in the CSA.

The most prevalent contaminants detected in soil samples taken during the Interim Remedial Action RI were benzene, toluene, ethylbenzene xylenes, naphthalene, and 2-methylnaphthalene. These constituents are commonly associated with fuel contamination. TPH (gasoline and diesel) and oil and grease were also observed, in addition to sporadic occurrences of lead, chromium, vanadium, and arsenic.

Analytical results, in general, confirm the previous findings that contamination in the majority of the identified soil is associated with a dissolved petroleum hydrocarbon contaminant plume in shallow groundwater. Oil and grease results observed in shallow soil samples obtained from the Brinson Creek area are likely influenced by the presence of naturally occurring organics in soils or an upgradient contamination source. This is supported by elevated background concentrations of

oil and grease in surface soil samples obtained along the banks of Brinson Creek approximately 1/2mile upstream of the site.

The Interim Remedial Action RI/FS culminated with an executed Interim Record of Decision (ROD) signed on September 15, 1994, for the remediation of contaminated soil along and adjacent to the proposed highway right-of-way at Site 35. Three areas of soil contamination requiring remediation have been identified. The first area is located in the vicinity of the Fuel Farms ASTs, and the two other areas are located north of the Fuel Farm. The larger of these two areas is located along "F" Street in the vicinity of monitoring well MW-11; the smaller area is in the area of monitoring well MW-25. Baker has estimated that approximately 3,600 cubic yards (4,900 tons) of contaminated soil is present in these three areas.

A fourth area of soil contamination, located immediately north of Building G480, was also identified in the Interim ROD. Additional data pertaining to this fourth area became available subsequent to the execution of the Interim ROD. This data indicated that contaminated soil was encountered in this area during the removal of a UST there in January 1994. The contaminated soil was excavated and reportedly disposed off site; however, no documentation is available regarding how or where the soil was disposed. An additional soil investigation will be conducted in this area to confirm that the contaminated soil was not returned to the excavation and that follow-up soil remediation in this area is not necessary.

### **Other Investigations**

Two USTs located near the Fuel Farm have been the subject of previous investigations conducted under an Activity-wide UST program. The two USTs include a No. 6 fuel oil UST situated adjacent to the former Mess Hall Heating Plant and a No. 2 fuel oil UST situated adjacent to the Explosive Ordnance and Disposal Armory, Office, and Supply Building. The former UST was abandoned in place years ago (date unknown) and has been the subject of previous environmental investigations performed by ATEC Associates, Inc. and Law. The latter UST was removed in January 1994. Contaminated soils adjacent to the UST were reportedly removed with the tank. However, samples were not collected to confirm the limits of the contaminated soils. Sampling is expected to be conducted to corroborate the limits of soil contamination.

#### Comprehensive Remedial Investigation/Feasibility Study

A comprehensive RI was conducted by Baker in 1994 to evaluate the nature and extent of the threat to public health and the environment caused by the release of hazardous substances, pollutants, or contaminants, and to support a Feasibility Study evaluation of potential remedial alternatives.

### **Remedial Investigation Field Activities**

The RI field program was initiated on April 11, 1994. Data gathering activities were derived from: a soil gas survey and groundwater screening investigation; a soil investigation; a groundwater investigation; a surface water and sediment investigation; and an ecological investigation.

### Soil Gas Survey and Groundwater Screening Investigation

Baker monitored the collection of 67 soil gas samples and 72 groundwater screening samples from sample locations established across the Site 35 study area. This investigation focused on obtaining

additional information to assess the source(s) of halogenated compounds in shallow groundwater. The majority of the sample locations were located south of the Fuel Farm and south of Fourth Street, and were based on the results of previous investigations, which revealed TCE in groundwater. The purpose of this activity was to assist in the placement of soil borings/monitoring wells.

### Soil Investigation

The soil investigation involved the drilling of 26 soil borings at locations primarily determined by the results of the soil gas survey and groundwater screening investigation. Borings were advanced to three depths and included 10 shallow borings (14 to 17 feet bgs), 11 intermediate borings (41 to 47 feet bgs), and five deep borings drilled to a depth equivalent to 5 to 10 feet below the semi-confining layer separating the surficial aquifer from the Castle Hayne Aquifer (51.0 to 66.0 feet bgs).

Soil samples (surface and subsurface) obtained from the borings were analyzed for a few of the following parameters; TCL volatiles, semivolatiles, pesticides/PCBs, TAL metals, as well as a variety of engineering parameters that will be used in the FS. A summary of each sample, the depth it was collected and parameters analyzed is provided in Appendix I.

#### **Groundwater Investigation**

The groundwater investigation included the installation of shallow, intermediate, and deep groundwater monitoring wells. The shallow monitoring wells were installed to intercept the upper portion of the surficial aquifer. The intermediate wells were constructed to monitor the lower portion of the surficial aquifer with screens set just above what appeared to be a semi-confining layer separating the surficial aquifer from the underlying Castle Hayne Aquifer (see Appendix H for boring logs/well construction records). A total of 21 shallow and intermediate wells were installed under this RI. In addition, five deep groundwater wells were installed to monitor the upper portion of the Castle Hayne Aquifer immediately below the suspected semi-confining layer.

Groundwater samples were obtained from each of the 26 newly installed wells and 29 existing wells. The samples were analyzed for TCL volatiles, semivolatiles, pesticides/PCBs, and TAL metals as well as a variety of engineering parameters.

### Surface Water/Sediment Investigation

Surface water and sediment samples were obtained along Brinson Creek which flows roughly north to south immediately east of the Fuel Farm. Samples were obtained from ten stations including three upstream and seven adjacent/downstream locations. Surface water and sediment samples were also collected from an off-base reference station. The reference station included the White Oak River watershed.

The surface water and sediment samples were analyzed for TCL volatiles, semivolatiles, pesticides/PCBs, TAL metals, and particle size distribution.

#### **Ecological Investigation**

The ecological investigation included biological sampling (i.e., fish, shellfish, and benthic macroinvertebrates) along Brinson Creek and along three streams in the nearby White Oak River watershed including Webb Creek, Hadnot Creek, and Holland Mill Creek. The work performed in

the White Oak River watershed was part of an overall ecological background investigation conducted as part of this RI.

### Nature and Extent of Contamination

The nature and extent of contamination at Site 35 was determined based on the analytical results of the various media considered under the RI including soil, groundwater, sediment, surface water, and fish tissue. The RI results were also compared to the results from previous environmental investigations performed at Site 35, when applicable.

### Surface and Subsurface Soil

Relatively few detections of VOCs and SVOCs were observed in surface and subsurface soil samples obtained under the RI. The most significant contamination detected involved tetrachloroethane in subsurface soil at boring 35MW-30B located near the barracks southwest of the Fuel Farm. Pesticides were detected in surface soil samples only, but, are not deemed to be site related. No PCBs were detected in surface soil samples. Detected inorganics were generally similar to background surface and subsurface soil concentrations at Camp Lejeune.

### Groundwater

The nature and extent of groundwater contamination was considered based on the interval of groundwater monitored and included the upper portion of the surficial aquifer; the lower portion of the surficial aquifer; and the upper portion of the Castle Hayne Aquifer.

The results of the RI confirm the results of previous environmental investigations conducted at Site 35 and expand the existing database. Additional groundwater monitoring wells were installed in the surficial aquifer south of the Fuel Farm, and Fourth Street and in the upper portion of the Castle Hayne Aquifer.

No substantial contamination was detected in the upper portion of the Castle Hayne Aquifer. This indicates that, to date, the suspected semi-confining layer that separates the surficial aquifer from the Castle Hayne Aquifer has served effectively as an aquitard (see Figure 3-4).

Extensive groundwater contamination was observed in the surficial aquifer along both the upper and lower monitored intervals. Fuel-related organic contaminants, when encountered, appear more prevalent in the upper portion of the surficial aquifer. Conversely, solvent-related organic contaminants, when encountered, appear more prevalent in the lower portion of the surficial aquifer. This is likely due to the fact that the latter are the more dense compounds having a specific gravity greater than groundwater.

The extent of fuel-related contamination appears to be adequately defined based on the data obtained to date. It is limited to the area north of Fourth Street in the vicinity of obvious suspected sources such as the Fuel Farm and nearby former UST sites.

The extent of solvent-related contamination has not been completely defined to date nor have all of its sources been identified. A plume appears to extend from north of Fourth Street south to Fifth Street beyond which the RI did not extend in the southerly direction (see Figures 4-4 and 4-7). The source of this plume has not been determined. A second smaller plume is present in the vicinity of

the Former Vehicle Maintenance Garage (Building TC474). The smaller plume appears to be adequately defined with Building TC474 and the immediate vicinity as the likely source of contamination.

١

Elevated levels of inorganic contaminants (total and dissolved) were detected in groundwater samples obtained from within the surficial aquifer. It is questionable whether this contamination is due to past site activities because the results are similar to those obtained by Baker at other Camp Lejeune sites. The elevated total metals are believed to be caused by suspended particulates in the samples.

#### Surface Water and Sediment

Significant levels of organic and inorganic contaminants were detected in sediment samples obtained from locations adjacent to and downstream of Site 35. The results of VOC analyses were "masked" by the presence of high levels of Tentatively Identified Compounds (TICs), and consequently, few VOC detections were reported. Nevertheless, the Baker field team commented during sampling that the sediment samples appeared to contain elevated levels of fuel-related contaminants which could also explain the presence of TICs. Lead at elevated levels was also detected in these sediment samples, and like the organic contaminants, could be related to Site 35.

Surface water contamination was limited to a single detection of lead and zinc downstream of Site 35 at levels in excess of the WQSVs and the NCWQS. No organic contaminants were detected in surface water samples.

Fish

A variety of organic and inorganic contaminants were detected in fillet and whole body samples analyzed under this RI. The most significant contaminants detected were the pesticides dieldrin, and 4,4'-DDD with a single detection of inorganic mercury. These contaminants were primarily responsible for the calculated risk to human health in excess of EPA guidelines.

### **Baseline Human Health Risk Assessment**

The BRA highlights the media of interest from the human health standpoint at OU No. 10 by identifying areas with elevated ICR and HI values. Current and future potential receptors at the site include current military personnel, current recreational adults and children, future residents (i.e., children and adults), and future construction workers. Contaminants of Potential Concern (COPCs) are identified by media and the total site risk for each of these receptors is estimated by logically summing the multiple pathways likely to affect the receptor during a given activity (see Table ES-1). The following algorithms defined the total site risk for the current and future potential receptor groups assessed in a quantitative manner. The risk associated with each site is derived using the estimated risk from multiple areas of interest.

- 1. Current Military Personnel
  - a. Incidental ingestion of COPCs in surface soil + dermal contact with COPCs in surface soil + inhalation of airborne COPCs

# TABLE ES-1

# SUMMARY OF COPCs IN ENVIRONMENTAL MEDIA OF CONCERN OPERABLE UNIT NO. 10 (SITE 35) REMEDIAL INVESTIGATION, CTO-0232 MCB CAMP LEJEUNE, NORTH CAROLINA

| Contaminant                 | Surface Soil                                 |   | Subsurface<br>Soil |     | Ground-<br>water |    | Surface<br>Water |   | Sediment |          | Fish |          |
|-----------------------------|----------------------------------------------|---|--------------------|-----|------------------|----|------------------|---|----------|----------|------|----------|
| VOCs                        |                                              |   |                    |     |                  |    |                  |   |          | T        |      | T        |
| Acetone                     |                                              |   |                    | X   |                  |    |                  | 1 |          | Х        | •    | x        |
| 1,1,2,2-Tetrachloroethane   |                                              |   |                    |     |                  | X  |                  |   |          | 1        |      |          |
| Chloroform                  | 1                                            |   |                    |     |                  | X  |                  | 1 |          | 1        |      |          |
| Methylene Chloride          | 1                                            |   |                    | X   |                  |    |                  |   |          |          |      | x        |
| 1,1,2-Trichloroethane       |                                              |   |                    |     |                  | X  |                  | 1 |          |          |      |          |
| 1,1-Dichloroethane          |                                              |   |                    |     |                  | X  |                  |   |          |          |      | <u> </u> |
| 1,1-Dichloroethene          |                                              |   |                    |     | ٠                | X  |                  |   |          | <u> </u> |      |          |
| 2-butanone                  |                                              |   |                    |     |                  |    |                  |   |          | †        |      | x        |
| Benzene                     |                                              |   |                    |     | •                | X  |                  |   |          |          |      |          |
| Carbon disulfide            | 1                                            | Х |                    |     |                  |    |                  |   |          |          |      | X.       |
| cis-1,2-Dichloroethene      |                                              |   |                    |     | •                | X  |                  |   |          | †        |      |          |
| Ethylbenzene                |                                              |   |                    | 1   | ٠                | X  |                  |   |          |          |      |          |
| Methyl Tertiary Butyl Ether |                                              |   |                    |     | ٠                | X  |                  |   |          | <u> </u> |      |          |
| Tetrachloroethene           |                                              |   |                    | X.  |                  | ·X |                  |   |          |          |      |          |
| Toluene                     |                                              | Х |                    |     | •                | X  |                  |   |          | x        |      | X        |
| trans-1,2-Dichloroethene    |                                              |   |                    |     | •                | x  |                  |   |          | <u> </u> |      |          |
| Trichloroethene             |                                              |   |                    |     | •                | X  |                  |   |          | <u> </u> |      |          |
| Xylenes (Total)             |                                              | х |                    |     | •                | X  |                  |   |          | <b>[</b> |      |          |
| SVOCs                       | 1                                            |   |                    |     |                  |    |                  |   |          |          |      |          |
| Benzo(a) pyrene             | 1                                            | X |                    | · · |                  |    |                  |   |          |          |      |          |
| Indeno(1,2,3-cd) pyrene     |                                              | x |                    |     |                  |    |                  |   |          |          |      |          |
| Dibenz(a,h) anthracene      | 1                                            | X |                    |     |                  |    |                  |   |          |          |      |          |
| Benzo(g.h,i) perylene       | •                                            | х |                    |     |                  |    |                  |   |          |          |      |          |
| 4-Methylphenol              | <u> </u>                                     |   |                    |     |                  | x  |                  |   |          |          |      |          |
| 2,4-Dimethylphenol          |                                              |   |                    |     |                  | x  |                  |   |          |          |      |          |
| Naphthalene                 | <u>†                                    </u> |   |                    | 1   | •                | x  |                  |   |          |          |      |          |
| Dibenzofuran                |                                              |   |                    |     | ٠                | x  |                  |   |          |          | `    |          |
| Fluorene                    |                                              |   |                    |     |                  | X  |                  |   |          |          |      |          |
| Anthracene                  |                                              |   |                    |     |                  | x  |                  |   |          |          |      |          |
| Carbazole                   |                                              |   |                    |     |                  | X  |                  |   |          |          |      |          |
| Diethylphthalate            | 1                                            |   |                    |     |                  |    |                  |   | •        | x        |      |          |
| Di-n-butylphthalate         |                                              |   |                    |     |                  |    |                  |   |          | X        |      |          |

)

ES-9

# TABLE ES-1 (Continued)

# SUMMARY OF COPCS IN ENVIRONMENTAL MEDIA OF CONCERN OPERABLE UNIT NO. 10 (SITE 35) REMEDIAL INVESTIGATION, CTO-0232 MCB CAMP LEJEUNE, NORTH CAROLINA

| Contaminant                | Surface Soil |   | Subsurface<br>Soil |   | Ground-<br>water |   | Surface<br>Water |   | Sedir | ment | Fish |   |
|----------------------------|--------------|---|--------------------|---|------------------|---|------------------|---|-------|------|------|---|
| Bis(2-ethylhexyl)phthalate |              | X |                    |   |                  |   |                  |   |       | Х    |      |   |
| Phenol                     |              | X |                    |   |                  | Х |                  |   |       |      |      |   |
| 2-Methylnaphthalene        |              |   |                    |   | ٠                | Х |                  |   |       |      |      |   |
| 2-Methylphenol             |              |   |                    |   |                  | Х |                  |   |       |      |      |   |
| Acenaphthene               | 1            | X |                    |   |                  |   |                  |   |       |      |      |   |
| Phenanthene                | •            | X |                    |   | •                | X |                  |   |       |      |      |   |
| Carbazole                  |              | X |                    |   |                  |   |                  |   |       |      |      |   |
| Fluoranthene               |              | X |                    |   |                  |   |                  |   |       |      |      |   |
| Pyrene                     |              | X |                    | Х |                  |   |                  |   |       |      |      |   |
| Butylbenzlphthalate        |              | X |                    |   |                  |   |                  |   |       |      |      |   |
| Benzo(a)anthracene         | 1            | x |                    |   |                  |   |                  |   |       |      |      |   |
| Chrysene                   | 1            | X |                    |   |                  |   |                  |   |       |      |      |   |
| Benzo(b) fluoranthene      | •            | X | •                  | X |                  |   |                  |   |       |      |      |   |
| Pesticides                 |              |   |                    |   |                  |   |                  |   |       |      |      |   |
| Aldrin                     |              | 1 |                    |   |                  | X |                  |   |       |      |      | X |
| gamma-BHC                  |              | 1 |                    |   |                  |   |                  |   |       |      |      | X |
| alpha-Chlordane            |              | X |                    |   |                  |   |                  |   | •     | Х    | ٠    | X |
| beta-BHC                   |              | X | 1                  |   |                  | X |                  |   |       | X    | ٠    | X |
| Dieldrin                   | •            | X |                    |   |                  |   |                  |   | •     | Х    | ٠    | Х |
| Endosulfan II              | •            | X |                    |   |                  |   | ,                |   | ٠     | Х    | ٠    | X |
| Endrin Ketone              | •            | X |                    |   |                  |   |                  |   | •     | X    | •    | X |
| Endrin Aldehyde            | •            | X |                    |   | [                |   |                  |   | •     | X    | ٠    | X |
| Endrin                     |              | X |                    |   |                  |   |                  |   | •     | Х    | ٠    | X |
| delta-BHC                  | 1            |   |                    |   | •                | X |                  |   |       | X    |      | X |
| gamma-Chlordane            |              | X |                    |   |                  |   |                  |   | •     | X    |      |   |
| Heptachlor                 | 1            |   |                    |   | •                | X |                  |   | ł     | X    | •    | X |
| Heptachlor Epoxide         |              |   |                    |   |                  |   |                  |   | •     | X    |      | X |
| Methoxychlor               |              |   |                    |   |                  |   | •                |   | •     | X    |      |   |
| 4,4'-DDE                   |              | x |                    |   |                  |   |                  |   | •     | X    | •    | X |
| 4,4'-DDT                   |              | x |                    |   |                  | X |                  |   | •     | x    | •    | X |
| 4,4'-DDD                   | •            | X |                    |   |                  | X |                  |   | •     | x    | •    | x |
| Inorganics                 |              |   |                    |   |                  |   |                  |   |       |      |      |   |
| Aluminum                   |              | X |                    | X |                  | X |                  | X |       | X    | •    | X |
| Antimony                   |              | X |                    |   | •                | X | •                | X |       |      |      |   |
| Arsenic                    | •            | X | •                  | X | •                | X | •                | X | •     | X    |      |   |

# TABLE ES-1 (Continued)

# SUMMARY OF COPCs IN ENVIRONMENTAL MEDIA OF CONCERN OPERABLE UNIT NO. 10 (SITE 35) REMEDIAL INVESTIGATION, CTO-0232 MCB CAMP LEJEUNE, NORTH CAROLINA

| Contaminant | Surface Soil |   | Subsurface<br>Soil |   | Ground-<br>water |    | Surface<br>Water |   | Sediment |                                              | Fish     |          |
|-------------|--------------|---|--------------------|---|------------------|----|------------------|---|----------|----------------------------------------------|----------|----------|
| Barium      |              | X |                    | X | •                | X  |                  | X | •        | X                                            | •        | X        |
| Beryllium   |              | X |                    |   | •                | X  |                  |   | •        | x                                            |          |          |
| Cadmium     |              | X |                    | X | •                | X  | <u> </u>         | 1 |          | <u>†                                    </u> | <u> </u> | x        |
| Calcium     |              | X |                    | X |                  | x  |                  | x |          | x                                            | 1        |          |
| Chromium    |              | X |                    | X | ٠                | x  | •                | x | •        | x                                            | · ·      |          |
| Cobalt      |              | X |                    | X | ٠                | X  | •                | X | •        | x                                            |          | 1        |
| Copper      |              | X |                    | X |                  | x  |                  |   | •        | x                                            | •        | x        |
| Lead        | •            | X | ٠                  | X | ٠                | X  | •                | X | •        | x                                            | •        | x        |
| Magnesium   |              | X |                    | X |                  | x  | 1                | x | ·        | x                                            |          | <u> </u> |
| Manganese   | •            | X |                    | X | ٠                | X  | •                | X | •        | x                                            | •        | X        |
| Mercury     |              |   |                    |   |                  | X  | •                | X |          | x                                            | •        | X        |
| Nickel      |              | X |                    | X | •                | X  |                  |   | •        | x                                            |          | <u> </u> |
| Potassium   |              |   |                    | X |                  | X  |                  | X |          | X                                            |          | <u> </u> |
| Selenium    |              | X |                    | x |                  | x  | <u> </u>         | X | . •      | x                                            | .•       | X        |
| Silver      |              |   |                    | X | ٠                | ·X |                  | 1 | ·        | 1                                            |          | <u> </u> |
| Sodium      |              |   |                    |   |                  | X  |                  | X |          | x                                            | <u> </u> | 1        |
| Thallium    |              | X | •                  | x | •                | x  | •                | x | •        | x                                            | <u> </u> | <u> </u> |
| Vanadium    |              | X |                    | X | •                | X  | •                | X | •        | x                                            |          |          |
| Zinc        |              | X |                    | X | •                | x  | •                | X | •        | x                                            | •        | X        |
| Iron        |              | X | ·                  | X |                  | x  |                  | x |          | x                                            |          | <u> </u> |

• Selected as COPC.

X Positively detected in media.

### 2. Future Residents (Children and Adults)

- a. Incidental ingestion of COPCs in surface soil + dermal contact with COPCs in surface soil + inhalation airborne of COPCs
- b. Ingestion of COPCs in groundwater + dermal contact with COPCs in groundwater + inhalation of volatile COPCs
- 3. Future Construction Worker

.

- a. Incidental ingestion of COPCs in on-site subsurface soil + dermal contact with COPCs in subsurface soil + inhalation of airborne COPCs
- 4. Current Recreational Children and Adults
  - a. Ingestion of COPCs in surface water and sediment + dermal contact with COPCs in surface water and sediment
  - b. Ingestion of fish tissue (adults only)

The total site ICR and HI values associated with current and future receptors at this site are presented in Table ES-2. The total site ICR for the current recreational child  $(4.4 \times 10^{-7})$  current recreational adult  $(1.9 \times 10^{-5})$ , and current military personnel  $(3.1 \times 10^{6})$  are below the USEPA's upper bound risk range  $(1 \times 10^{-4} \text{ to } 1 \times 10^{-6})$ , therefore adverse effects are considered unlikely. The total site HI for the current recreational child (0.01) and current military personnel (0.09) did not exceed unity. Therefore, adverse effects are considered unlikely. The total site HI for the current recreational child (0.01) and current military personnel (0.09) did not exceed unity. Therefore, adverse effects are considered unlikely. The total site HI for the current recreational adult (1.8) is slightly above unity. The total site risk is due to potential exposure from fish fillet ingestion which is driven by the presence of mercury. However, the exposure parameters used to calculate risk from fish ingestion are very conservative; mercury was not found to be causing a risk in any other media at Site 35; and the fish collected at Site 35 are considered migratory and move along Brinson Creek, therefore this risk may not be due to contamination at the site. Therefore, the risk from ingestion of fish may not be site related.

The total site ICR and HI for the future construction worker  $(1.2 \times 10^{-7} \text{ and } 0.02, \text{ respectively})$  are below the USEPA's risk range, therefore, risk to this receptor is considered unlikely. The total site ICR for future adult residents  $(4.3 \times 10^{-3})$  and future child residents  $(2.1 \times 10^{-3})$  exceed the USEPA's upper bound risk range  $(1 \times 10^{-4} \text{ to } 1 \times 10^{-6})$ . The total site risk is driven by future potential exposure to groundwater. The ICR values are driven by the presence of arsenic and beryllium. The total site HI for the future adult resident (44) and the future child resident (104) exceed unity. The total site risk is driven by future potential exposure to groundwater. The HI values are driven by the presence of cis-1,2-dichlorothene, trichloroethene, benzene, antimony, arsenic, barium, chromium, cadmium, manganese, and vanadium.

#### **Ecological Risk Assessment**

Overall, metals and pesticides appear to be the most significant site related COPCs that have the potential to affect the integrity of the aquatic and terrestrial receptors at Site 35. Although the

American alligator has been observed at Site 35, potential adverse impacts to this species could not be quantitatively evaluated.

#### Aquatic Ecosystem

Surface water quality showed exceedances of aquatic reference values for lead, mercury, and zinc. In addition, iron, cobalt and manganese were above the concentration that caused adverse impacts to aquatic species in a few studies. However, most of the studies did not meet the criteria for reliability, and other studies indicated that potential impacts to aquatic organisms did not occur at the concentrations detected in the surface water at Brinson Creek. For sediments, concentrations of lead and the organics dieldrin, 4,4'-DDD, 4,4'-DDE, 4,4'-DDT, endrin, alpha-chlordane, and gamma-chlordane exceeded the aquatic reference values. In the surface water, mercury exceeded aquatic reference values in the upstream stations. Although these levels were indicative of a high potential for risk (QI > 100), mercury is not believed to be site related. Zinc only exceeded unity slightly and was only found at a single station. Lead has a single exceedance of the aquatic reference value by slightly greater than 10 indicating a moderate potential for risk to aquatic related.

In the sediments, lead exceeded the lower sediment aquatic reference value throughout Brinson Creek. The only exceedances of the higher sediment aquatic reference value occurred downstream of Site 35 with the highest QI of 137 representing a high potential for risk to aquatic receptors. The lead detected in the sediments is likely site related, the result of past reported surface spills/runoff and past and ongoing groundwater discharges to surface water.

Pesticides exceeded the sediment aquatic reference values throughout Brinson Creek. The highest QI, 2,600 for dieldrin, represents a high potential for risk to aquatic receptors. There is no documented pesticide disposal or storage/preparation activities at Site 35. The pesticide levels detected in the sediments probably are a result of routine application in the general vicinity of Site 35.

Although, the pesticides in the sediments were found at levels indicating contamination throughout the watershed, the highest levels were observed in the lower reaches of Brinson Creek. This deposition trend may be related to the higher organics in the sediments in the lower reach, which would accumulate more of these types of contaminants.

The fish community sampled in Brinson Creek was representative of an estuarine ecosystem with both freshwater and marine species present. In addition, the presence of blue crabs, grass shrimp, and crayfish support the active use of Brinson Creek by aquatic species.

The absence of pathologies observed in the fish collected from Brinson Creek indicates that the surface water and sediment quality may not adversely impact the fish community.

The benthic macroinvertebrate community demonstrated the typical tidal/freshwater species trend of primarily chironmids and oligochaetes in the upper reaches and polychaetes and amphipods in the lower reaches. Species representative of both tolerant and intolerant taxa were present. Species richness and densities were representative of an estuarine ecosystem.

In summary, the aquatic community in Brinson Creek is representative of an estuarine community and does not appear to be significantly impacted by surface water and sediment quality.

#### **Terrestrial Ecosystem**

Surface soil quality indicated a potential for adversely impacting the terrestrial receptors that have direct contact with the surface soils. This adverse impact is primarily due to cadmium in the surface soils. Cadmium was detected at a relatively high concentration in only out of ten surface soil samples, therefore any estimation of adverse effects on terrestrial receptors using this cadmium concentration is conservative.

There also appears to be impacts to the terrestrial receptors due to copper in the fish tissue. Copper was not detected in the surface water but was detected in sediment samples collected downstream of Site 35 at concentrations lower than the sediment samples taken upstream of Site 35. As such, the copper in the fish tissue does not appear to be site related.

#### **Conclusions**

- Site 35 is an active petroleum product Fuel Farm scheduled for decommissioning and dismantlement in early 1995. The Fuel Farm dates back to 1945 and has a poorly documented history of various spills and leaks associated with aboveground and underground storage tanks and associated piping.
- Site 35 is situated within Camp Geiger in the northwest corner of Camp Lejeune. It is located along Brinson Creek which is a boundary line between Camp Lejeune and adjacent private property.
- Several environmental studies have been conducted at Site 35 dating back to 1983. The data obtained to date indicate the presence of significant elevated levels of organic and inorganic contaminants in surficial groundwater, Brinson Creek sediments, and fish tissue. Contaminated soil (fuel-related) in the vicinity of a proposed highway through Site 35 has been addressed through an Interim Record of Decision executed on September 15, 1994. One potentially significant area of subsurface soil contamination was identified during the RI in the vicinity of the Barracks located southwest of the Fuel Farm based on detections of PCE subsurface soil samples obtained from borings 35MW-30B and -37B. In addition, the Baker field team commented that during the drilling of boring 35MW-29B a strong odor was encountered although no VOCs or SVOCs were detected in subsurface soil samples obtained at this location.
  - Organic contamination in groundwater is presently limited to the surficial aquifer which is monitored at two levels including the groundwater surface (upper portion) and atop an underlying suspected semi-confining layer (lower portion). The suspected semi-confining layer appears to be adequately serving as an effective aquitard separating the surficial aquifer from the underlying Castle Hayne Aquifer as no significant levels of contamination were detected in the underlying Castle Hayne Aquifer. Relative to organic contaminants, both fuel- and solvent-related contaminants were detected in groundwater samples obtained from the upper and lower portions of the surficial aquifer. In general, fuel-related contamination was detected most prevalently in samples obtained from wells monitoring the upper portion of the surficial aquifer. Conversely, solvent-related contaminants were more prevalent in groundwater samples obtained from the lower portion of the surficial aquifer.

# TABLE ES-2

# TOTAL SITE RISK **OPERABLE UNIT NO. 10 (SITE 35)** REMEDIAL INVESTIGATION, CTO-0212 MCB CAMP LEJEUNE, NORTH CAROLINA

| Receptors                  | Soil             |               | Groundwater     |             | Surface Water   |               | Sediment        |               | Fish            |             | TOTALS  |      |
|----------------------------|------------------|---------------|-----------------|-------------|-----------------|---------------|-----------------|---------------|-----------------|-------------|---------|------|
|                            | ICR              | HI            | ICR             | ні          | ICR             | HI            | ICR             | HI            | ICR             | HI          | ICR     | HI   |
| Future Child Resident      | 4.5E-05<br>(<1)  | 0.93<br>(1)   | 2.1E-03<br>(99) | 103<br>(99) | NA              | NA            | NA              | NA            | NA              | NA          | 2.1E-03 | 104  |
| Future Adult Resident      | 2.7E-05<br>(<1)  | 0.10<br>(<1)  | 4.3E-03<br>(99) | 44<br>(99)  | NA              | NA            | NA              | NA            | NA              | NA          | 4.3E-03 | 44   |
| Future Construction Worker | 1.2E-07<br>(100) | 0.02<br>(100) | NA              | NA ·        | NA              | NA            | · NA            | NA            | NA              | NA          | 1.2E-07 | 0.02 |
| Current Military Personnel | 3.1E-06<br>(100) | 0.09<br>(100) | NA              | NA          | NA              | NA            | NA              | NA            | NA              | NA          | 3.1E-06 | 0.09 |
| Current Recreational Child | NA               | NA            | NA              | NA          | 1.1E-07<br>(27) | <0.01<br>(<1) | 3.3E-07<br>(73) | 0.01<br>(99)  | NA              | NA          | 4.4E-07 | 0.01 |
| Current Recreational Adult | NA               | NA            | NA              | NA          | 1.2E-07<br>(<1) | <0.01<br>(<1) | 4.5E-07<br>(<1) | <0.01<br>(<1) | 1.8E-05<br>(99) | 1.8<br>(99) | 1.9E-05 | 1.8  |

Notes: ICR = Incremental Lifetime Cancer Risk

HI = Hazard Index ND = Not Determined NA = Not Applicable ( ) = Percent Contribution to Total Risk

The source of the fuel-related groundwater contamination appears to be the Fuel Farm, underground piping, and nearby USTs. It appears to be adequately defined and somewhat limited to the area north of Fourth Street.

Solvent-related contamination appears to be separated into two plumes. The smaller plume is located in the vicinity of Building TC474, a former Vehicle Maintenance Garage, which is its most likely source. The larger plume is located west of the Fuel Farm and extends from north of Fourth Street south to Fifth Street and possibly beyond. Based on data obtained to date the horizontal limits of the second solvent-related plume has not been defined and its source is not known.

- Elevated levels of inorganic contaminants (total and dissolved) were detected in groundwater samples obtained from within the surficial aquifer. It is questionable whether this contamination is due to past site activities because the results are similar to those obtained by Baker at other Camp Lejeune sites.
- Organic and inorganic contaminants were detected in sediment samples obtained at locations adjacent to and downstream of Site 35. The results of VOC analyses were "masked" by the presence of Tentatively Identified Compounds (TICs) at high levels. The TICs may be indicative of accumulated higher molecular weight hydrocarbons which are the remnants of past contamination.

Inorganic contamination, primarily in the form of lead, was also detected at elevated concentrations and is likely related to Site 35.

- Baker calculated that the human health risk associated with Site 35 is in excess of the acceptable range. The total risk was driven by future potential exposure to groundwater and current potential exposure to fish. However, only non-carcinogenic risks were likely with exposure to fish.
- The ecological risk assessment indicated that the aquatic community within Brinson Creek was representative of an estuarine community and does not appear to be adversely impacted by surface water and sediment quality. Additionally, there are no significant adverse impacts to terrestrial receptors from site-related contaminants.

### **Recommendations**

Based on the data obtained it is recommended that:

- The remedial investigation at Site 35 be extended south of Fifth Street as needed to define the extent and locate the source(s) of solvent-related groundwater contamination in the surficial aquifer.
- The monitoring wells screened within the surficial aquifer that were sampled under the RI for inorganic contaminants (total phase only) be resampled using low-flow pumping techniques. This technique uses a peristaltic pump that limits the pumping

rate to between 0.20 - 0.30 gallons per minute (gpm). These pumping rates are set to produce no net head loss in the well being sampled. Sediments (the likely source of the high inorganic concentrations in total phase samples) in the bottom of the well are also left mostly undisturbed. Samples are collected only after 3 to 5 well volumes have been removed, water quality has stabilized, and turbidity levels are less than 10 Nephelometric Turbidity Units (NTUs).

- Sediment samples along Brinson Creek be obtained at locations adjacent to and downstream of Site 35 and analyze for TPH (EPA Methods 5030 and 3550) so as to provide data regarding the extent of organic contamination that was "masked" by TICs in results obtained under the RI.
- An Interim Remedial Action Feasibility Study be prepared that focuses on groundwater in the vicinity of the Fuel Farm and north of Fourth Street. The purpose of this Interim FS will be to address groundwater contamination in this area which may be a continuing source of contamination to Brinson Creek.
- The northeastern edge of the halogenated organic plume has not been delineated. Therefore, soil and groundwater samples should be collected on the northern side of Brinson Creek in order to determine if the creek is acting as a barrier to groundwater contamination that may be migrating off-site.
- Special precautions be taken when soil excavation is performed during the construction of the new highway. Specifically, it is recommended that the written construction workplans reference the need for monitoring of volatile organic contaminant concentrations in the breathing zone of the workers, and that institutional and engineering controls be established to minimize human exposure to both VOCs and fugitive dust particulates. Although the calculated risk to human health for future construction workers on Site 35 is well below the EPA acceptable range, adverse exposure to a volatilized fraction of contaminants in the subsurface soil or inhalation of airborne contaminants is possible.

# 1.0 INTRODUCTION

١

(

(

This document is a report on the Remedial Investigation (RI) activities performed at Operable Unit (OU) No. 10, Site 35 - Camp Geiger Area Fuel Farm. It has been prepared by Baker Environmental, Inc. (Baker) for presentation to the Department of the Navy (DoN), Naval Facilities Engineering Command, Atlantic Division (LANTDIV) under Navy CLEAN Contract Number N62470-89-D-4814. The RI has been conducted in accordance with guidelines and procedures presented in the National Oil and Hazardous Substances Pollution Contingency Plan (NCP)(40 CFR 300.430). USEPA's Guidance for Conducting Remedial Investigations and Feasibility Studies Under CERCLA (USEPA 1988) was used as a guide for preparing this document.

The purpose of this RI was to evaluate the nature and extent of the threat to public health and the environment caused by the release of hazardous substances, pollutants or contaminants. This was accomplished by sampling several media (soil, groundwater, sediment, surface water, fish, crabs, and benthic macroinvertibrates) at OU No. 10, evaluating the analytical data and performing a human health risk assessment (RA) and ecological RA. This RI report contains the results of all field investigations, a technical memorandum summarizing groundwater data and aquifer characteristics at MCB, Camp Lejeune, the human health RA, and the ecological RA. Previous investigations were conducted by Water and Air Research, Inc., (WAR) Environmental Science and Engineering, Inc. (ESE), NUS Corporation (NUS), Law Engineering (LAW) and Baker Environmental, Inc. (Baker).

Marine Corps Base (MCB) Camp Lejeune, North Carolina has been actively involved in various environmental investigation and remediation programs since 1983, beginning with the Navy Assessment and Control of Installation Pollutants (NACIP) Program. The first study conducted under the NACIP to investigate potentially hazardous site at MCB Camp Lejeune was an Initial Assessment Study (IAS). It was conducted in 1983 and identified areas of concern that may potentially cause threats to human health and the environment as a result of past storage, handling, and/or disposal of hazardous material. Based on a review of historical records, field inspections and personal interviews, 76 areas of concern (AOCs) were identified. The IAS concluded that none of the sites pose an immediate threat to human health or the environment, however, 22 sites warrant further investigation to assess long-term impacts. During preliminary investigation of the AOCs, an additional AOC (Site 78, Hadnot Point Industrial Area) was identified.

The Department of Navy's Installation Restoration Program (IRP) was initiated in 1986 following the legislation of the Superfund Amendments and Reauthorization Act (SARA). The IRP was implemented to follow the requirements of SARA and replaced the NACIP.

MCB Camp Lejeune was placed on the Comprehensive Environmental Response, Compensation and Liability Act (CERCLA) National Priorities List (NPL) effective October 4, 1989 (54 Federal Register 41015, October 4, 1989). Subsequently, a Federal Facilities Agreement (FFA) between the United States Environmental Protection Agency Region IV (EPA), the North Carolina Department of Environment, Health and Natural Resources (NC DEHNR), and the DoN was signed in February 1991. The primary purpose of the FFA is to ensure that environmental impacts associated with past and present activities at the MCB are thoroughly investigated and appropriate CERCLA response/Resource Conservation and Recovery Act (RCRA) corrective action alternatives are developed and implemented as necessary to protect public health and the environment. The FFA covers 23 sites at MCB Camp Lejeune that require investigation in accordance with the NCP, CERCLA and SARA under the terms and conditions outlined in the FFA. These sites have been divided into 13 operable units to simplify proceeding with Remedial Investigation/Feasibility Studies (RI/FS) activities.

h

## 1.1 Background

This section presents an overview of Site 35 and is divided into two subsections, Site Description and Site History.

#### 1.1.1 Site Description

MCB, Camp Lejeune (also referred to as the "Activity") is located in Onslow County, North Carolina (Figure 1-1). The Activity currently covers approximately 234 square miles and is bisected by the New River, which flows in a southeasterly direction and forms a large estuary before entering the Atlantic Ocean. The borders of the Activity are defined by the U.S. Route 17 and State Route 24 to the west and northwest, respectively. The eastern border is defined by the Atlantic Ocean shoreline and the City of Jacksonville, North Carolina, borders the Activity to the north.

Camp Geiger is located at the extreme northwest corner of MCB Camp Lejeune and contains a mixture of troop housing, personnel support and training facilities. The main entrance is located along U.S. Route 17, approximately 3.5 miles southeast of the City of Jacksonville, North Carolina. Site 35, Camp Geiger Area Fuel Farm refers primarily to five, 15,000-gallon aboveground storage tanks (ASTs), a pump house, a fuel loading/unloading pad, an oil water separator, and a distribution island situated just north of the intersection of Fourth and "G" Streets. Results of previous investigations have expanded the study area beyond the confines of the Fuel Farm. To date, the study area is bounded on the west by D Street, on the north by Second Street, on the east by Brinson Creek and on the south by Fifth Street and Building No. TC572 (Figure 1-2).

Brinson Creek begins north of US Route 17 and forms the eastern boundary of the site and Camp Geiger, as it flows to the New River. East of Brinson Creek is private property. It appears, based on rough field measurements and observations, that Brinson Creek is tidally influenced to some point north of Site 35.

The 40-acre study area surrounding Site 35 is primarily covered with vegetation. Although the majority of the area is maintained, the portion adjacent to Brinson Creek is heavily wooded and overgrown. Roadways, buildings, former building foundations and several large parking areas are located throughout the study area. Eight large warehouses (TC572, TC470, TC473, TC474, TC462, TC560, TC341, and TC342), five barracks (G530 through G534) for temporary housing troops and an armory (G480) presently exist within the boundaries of the study area.

A pair of abandoned railroad tracks are located near warehouses TC462 and TC560 oriented in the north/south direction which appear to have been used to supply the series of three warehouses (two existing and one former), the ice house and the fuel farm. Chemicals are currently being stored within a fenced portion of the study area located between warehouses TC470 and TC572. The foundations of previously existing structures are scattered throughout the study area marking the former existence of a warehouse (TC460), a mess hall, a mess hall heating plant, a gas station and an ice house.

Two large fields exist in the central and western central portions of the study area. Both of the fields are used for recreation and training exercises. The "COMMARFORLANT Nuclear Biological Chemical Defense School Training Range" is located southeast of the site. Training exercises and lectures on nuclear, chemical and biological warfare are administered at this facility. This facility stores and employs the chemical warfare training agent CS (0-chlorobenzylidene malonitrile) on a regular basis.

#### 1.1.2 Site History

Construction of MCB, Camp Lejeune began in 1941 with the objective of developing the "Worlds Most Complete Amphibious Training Base." Construction started at Hadnot Point, where the major functions of the Activity are centered. Development at the Activity is primarily in five geographical locations under the jurisdiction of the Base Command. These areas include Camp Geiger, Montford Point, Courthouse Bay, Mainside, and the Rifle Range Area.

Construction of Camp Geiger was completed in 1945, four years after construction of MCB, Camp Lejeune was initiated. Originally, the Fuel Farm ASTs were used for the storage of No. 6 fuel oil, but were later converted for storage of other petroleum products including unleaded gasoline, diesel fuel, and kerosene. The date of their conversion is not known.

Routinely, the ASTs at Site 35 supply fuel to an adjacent dispensing pump. A leak in an underground line at the station was reportedly responsible for the loss of roughly 30 gallons per day of gasoline over an unspecified period (Law, 1992). The leaking line was subsequently sealed and replaced.

The ASTs at Site 35 are currently used to dispense gasoline, diesel and kerosene to government vehicles and to supply underground storage tanks (USTs) in use at Camp Geiger and the nearby New River Marine Corps Air Station. The ASTs are supplied by commercial carrier trucks which deliver product to fill ports located on the fuel loading/unloading pad located south of the ASTs. Six, short-run (120 feet maximum), underground fuel lines are currently utilized to distribute the product from the unloading pad to the ASTs. Product is dispensed from the ASTs via trucks and underground piping.

Previously abandoned underground distribution line extended from the ASTs to the former Mess Hall Heating Plant, located adjacent to "D" Street, between Third and Fourth Streets. The underground line dispensed No. 6 fuel oil to a UST which fueled the Mess Hall boiler. The Mess Hall, located across "D" Street to the west, is believed to have been demolished along with its Heating Plant in the 1960s.

Reports of a release from an underground distribution line near one of the ASTs date back to 1957-58 (ESE, 1990). Apparently, the leak occurred as the result of damage to a dispensing pump. At that time the Camp Lejeune Fire Department estimated that thousands of gallons of fuel were released although records of the incident have since been destroyed. The fuel reportedly migrated to the east and northeast toward Brinson Creek. Interceptor trenches were excavated and the captured fuel was ignited and burned.

In April 1990, an undetermined amount of fuel was discovered by Camp Geiger personnel along two unnamed drainage channels north of the Fuel Farm. Apparently, the source of the fuel, believed to diesel or jet fuel, was an unauthorized discharge from a tanker truck that was never identified. The Activity reportedly initiated an emergency clean-up which included the removal of approximately 20 cubic yards of soil.

{

The Fuel Farm is scheduled to be demolished by April 1995. Plans are currently being prepared to empty, clean, dismantle, and remove the ASTs along with all concrete foundations, slabs on grade, berms and associated underground piping. The Fuel Farm is being removed to make way for a six lane divided highway proposed by the North Carolina Department of Transportation (NCDOT) (Figure 1-3).

In addition to the Fuel Farm dismantling, soil remediation activities will be executed along the highway right-of-way as per an Interim Record of Decision executed on September 15, 1994. The soil remediation work is scheduled to commence in May 1995.

#### 1.2 <u>Summary of Previous Investigations</u>

The purpose of this section is to summarize existing information pertaining to previous environmental studies involving Site 35. Information presented herein can be found in the Initial Assessment Study of Marine Corps Base, Camp Lejeune, North Carolina (WAR, 1983), Final Site Summary Report, MCB Camp Lejeune (ESE, 1990) Draft Field Investigation/Focused Feasibility Study, Camp Geiger Fuel Spill Site (NUS, 1990), Underground Fuel Investigation and Comprehensive Site Assessment (Law, 1992) and the Addendum Report of Underground Fuel Investigation and Comprehensive Site Assessment (Law, 1993) and the Interim Remedial Action Remedial Investigation/Feasibility Study (Baker, 1994). Sample locations associated with each of these studies are depicted on Figure 1-4.

## 1.2.1 Initial Assessment Study

MCB, Camp Lejeune was placed on the National Priority List (NPL) in 1983 after the Initial Assessment Study (IAS) identified 76 potentially contaminated sites at the Activity (WAR, 1983). Site 35 was identified as one of 23 sites warranting further investigation. Sampling and analysis of environmental media was not conducted during the IAS.

#### 1.2.2 Confirmation Study

ESE performed Confirmation Studies of the 22 sites requiring further investigation which included a study of the Fuel Farm between 1984 and 1987 (ESE, 1990). In 1984, ESE advanced three handauger borings (35GW-1, -2, and -3) downgradient of the site, and collected groundwater and soil samples from each location. Soils were analyzed for lead and oil and grease. Lead was detected in soil samples obtained from hand auger borings at concentrations ranging from 6 to 8 mg/kg. Oil and grease was also detected at concentrations ranging from 40 to 2,200 mg/kg.

Shallow groundwater samples were obtained from the open boreholes and analyzed for lead, oil and grease, and volatile organic compounds (VOCs) including benzene, trans-1,2,-dichloroethene (trans-1,2,-DCE), trichloroethene (TCE), and methylene chloride. Lead was detected in each sample ranging from 1,063  $\mu$ g/L (35GW-3) to 3,659  $\mu$ g/L (35GW-1). Oil and grease was detected in sample 35GW-2 at 46,000  $\mu$ g/L. The only detected VOC was methylene chloride in sample 35GW-1 at 4  $\mu$ g/L.

In 1986, ESE collected two sediment (35SE1 and 35SE2) and two surface water (35SW1 and 35SW2) samples from Brinson Creek and installed three permanent monitoring wells (35GW-4, -5, and -6 which were later renamed EMW-5, -6, and -7), two east of and one west of the Fuel Farm. Table 1-1 details well construction. Surface water and sediment samples were analyzed for lead, oil and grease and ethylene dibromide. Groundwater samples were obtained in December 1986 and again in March 1987 and were analyzed for lead, oil and grease (O&G), and volatile organic compounds (VOCs).

No target analytes were detected in either surface water sample. Both sediment samples were reported to contain lead and oil and grease although no data indicating actual levels of detection were provided in ESE's report. Levels were reported to be higher in the upstream sample, prompting ESE to suggest that the discharge of contaminated groundwater to the creek is occurring at the far northern section of the Fuel Farm ASTs or that the source of O&G and lead may be upstream.

Lead was detected in only one of six samples  $(33 \ \mu g/L)$ : EMW-6) obtained from the three permanent monitoring wells. Oil and grease was detected in all six samples in a range from 200  $\mu g/L$  (EMW-5: December 1986) to 12,000  $\mu g/L$  (EMW-5: March 1987). Detected VOCs included benzene (range: 1.3  $\mu g/L$  at EMW-7 to 30  $\mu g/L$  at EMU-6), trans-1,2,-DCE (range: 3.2  $\mu g/L$  at EMW-5 to 29  $\mu g/L$  at EMW-7), and TCE (detected at 11  $\mu g/L$  at EMW-7 on both sample dates).

ESE recommended further investigations designed to determine the horizontal and vertical extent of contamination residing within the soils and groundwater beneath the site and sediments in Brinson Creek. In addition, ESE recommended investigation of the adjacent automotive maintenance/hobby shop to determine if it is a source of VOC contamination. In conjunction with the investigations, ESE recommended a risk assessment for portions of the ESE report that pertain to Site 35 (Appendix A).

# 1.2.3 Focused Feasibility Study

A Focused Feasibility Study (FFS) was conducted in 1990 in the area north of the Fuel Farm by NUS. Although the FFS was conducted, a Record of Decision was not signed as a result. The FFS included the installation of four groundwater monitoring wells numbered EMW-1, -2,-3, and -4. Table 1-1 summarizes well construction details. Baker was not able to obtain a copy of the NUS report. It was, however, discussed in the Comprehensive Site Assessment Report (Law, 1992). Law indicated that the results of laboratory analysis revealed groundwater in one well and soil cuttings from two borings were contaminated with petroleum hydrocarbons although non-aqueous product was not observed. No quantifiable data was provided in the Law report.

A geophysical investigation was also conducted by NUS as part of the FFS in an attempt to identify USTs at the site of the former gas station. The results indicated the presence of a geophysical anomaly in the vicinity of the former gas station.

## 1.2.4 Comprehensive Site Assessment

Law conducted a Comprehensive Site Assessment (CSA) during the fall of 1991 (Law, 1992). The CSA involved the drilling of 18 soil borings to depths ranging from 15 to 44.5 feet. These soil borings were ultimately converted to nested wells (MW-8 through 25) that monitor the water table aquifer along two zones. The shallow wells were constructed to monitor the water table and

generally screened from 2.5 to 17.5 feet below ground surface (bgs). The deeper wells monitored the lower portion of the surficial aquifer and are generally screened from 17.5 to 35 feet bgs. Table 1-2 summarizes well construction details. Well MW-20 was the only well installed that is not a double nested well. It is screened from 3 to 12.5 feet bgs. Five additional soil borings were drilled and nine soil borings were hand-augered to provide data regarding vadose zone soil contamination. Three soil borings (SB-1, SB-2, SB-3) were drilled specifically to provide subsurface stratigraphic data. Additional groundwater data was provided via 21 drive-point groundwater or "Hydropunch" samples. A "Tracer" study was also performed to investigate the integrity of the ASTs and underground distribution piping.

Soil and groundwater samples obtained under the CSA were analyzed for both organic and inorganic compounds. Groundwater analyses included purgeable hydrocarbons (EPA 601), purgeable aromatics and methyl-tertiary-butyl-ether (MTBE) (EPA 602), polynuclear aromatic hydrocarbons (PAHs) (EPA 610), and unfiltered lead (EPA 239.2). Soil analyses were limited to total petroleum hydrocarbons (TPH) (SW846 3rd Edition, 5030/3550: gasoline/diesel fractions) and lead (SW846 3rd Edition, 6010). In addition, ten soil samples were analyzed for ignitability by SW846 3rd Edition, 1010.

The results of the CSA identified areas of impacted soil and groundwater. The nature of the contamination included both halogenated (i.e., chlorinated) organic compounds (e.g., TCE, trans-1,2-DCE, and vinyl chloride) and nonhalogenated, petroleum-based constituents (e.g., TPH, MTBE, benzene, toluene, ethylbenzene, and xylene). The contamination encountered was typically identified in both shallow (2.5 to 17.5 feet bgs) and deep (17.5 to 35 feet bgs) wells.

Law also identified several plumes of shallow groundwater contamination including two plumes comprised primarily of petroleum-based constituents (e.g., BTEX) and two plumes comprised of halogenated organic compounds (e.g., TCE). The plumes are all located north of Fourth Street and east of E Street except for a portion of a TCE plume that extends southwest beyond the corner of Fourth and E Streets.

In general, contaminant concentrations in soil were greatest in those samples taken at or below the water table. Law concluded that soil contamination at Site 35 was likely due to the presence of a dissolved phase groundwater plume and seasonal fluctuations of the water table. For portions of this report, refer to Appendix B.

A follow-up to the CSA was conducted by Law in 1992. Reported as an Addendum to the CSA (Law, 1993), it was designed to provide further characterization of the southern extent of the previously identified petroleum contamination. Three monitoring wells were installed including MW-26, -27, and PW-28. Monitoring well construction details are summarized in Table 1-2. Soil samples were obtained from each of these locations and analyzed for TPH (gasoline and diesel fractions). As part of the follow-up, a pump test was performed to estimate the hydraulic characteristics of the surficial aquifer. This test was designed to determine performance characteristics of the pumping well (PW-28) and to estimate hydraulic parameters of the aquifer. An approximate hydraulic conductivity of 100 feet/day was determined for the surficial aquifer. Portions of the Addendum to the CSA is provided in Appendix C.

## 1.2.5 Interim Remedial Action RI/FS

An Interim Remedial Action field investigation was initiated by Baker in December 1993. Its purpose was to provide additional soil data to augment the existing Site 35 database, to determine the presence of non-fuel related chemical contaminants, to provide additional information regarding the extent of soil contamination, and to support an Interim Remedial Action FS.

Seven soil borings (SB-29 through SB-35) were advanced to depths 6 to 12 feet for the purpose of collecting samples for chemical analysis. Samples were screened with an HNu photoionization detector (PID) to detect potential volatile organic hydrocarbons and to help select which sample would be submitted for laboratory analysis. Samples submitted to the laboratory were analyzed for USEPA Contract Laboratory Program (CLP) Target Compound List (TCL) volatiles and semivolatiles, Target Analyte List (TAL) inorganics, TPH by SW846 3rd Edition, Modified Method 8015 and oil and grease by SW846 3rd Edition Method 9071. Samples analyzed for TPH were extracted in accordance with SW 846 3rd Edition, Methods 5030 (gasoline range organics) and 3550 (diesel range organics). A composite sample was analyzed for the TCLP and RCRA Hazardous Waste Characteristics.

In addition, 13 shallow surface soil samples (BCSB-01 through BCSB-13) were collected at a depth of 0" to 12" from topographically low areas of Brinson Creek and the drainage channel located north of the Fuel Farm. Soil samples BCSB-01 through BCSB-10 were analyzed for CLP TCL volatiles and semivolatiles, TAL inorganics, TPH by SW 846 3rd Edition, Modified Method 8015 and oil and grease by SW 846 3rd Edition, Method 9071. Soil samples BCSB-11, 12, and 13 were analyzed for TPH and oil and grease only. A composite sample was analyzed for full TCLP and RCRA characteristics.

In general, analytical data gathered during the Interim RI suggests that the petroleum hydrocarbon contamination is primarily located near the surface of the shallow groundwater. The results indicate that the highest TPH related contamination occurs at or below the water table and groundwater fluctuations likely account for the subsurface soil contamination detected immediately above the top of the groundwater.

The Interim Remedial Action RI/FS culminated with an executed Interim Record of Decision (ROD), signed on September 15, 1994, for the remediation of contaminated soil along and adjacent to the proposed highway right-of-way at Site 35. Three areas of contaminated soil have been identified. The first area is located in the vicinity of the Fuel Farm ASTs, and the two other areas are located north of the Fuel Farm. The larger of these two areas is located along "F" Street in the vicinity of monitoring well MW-25. Baker has estimated that approximately 3,600 cubic yards (4,900 tons) of contaminated soil is present in these areas. Contaminated soil located in these areas is scheduled for removal and disposal at an off-site soil recycling facility beginning in 1995.

A fourth area of soil contamination, located immediately north of Building G480, was also identified in the Interim ROD. Additional data pertaining to this fourth area became available subsequent to the execution of the Interim ROD. This data indicated that contaminated soil was encountered in this area during the removal of a UST there in January 1994. The contaminated soil was excavated and reportedly disposed off site; however, no documentation is available regarding how or where the soil was disposed. An additional soil investigation will be conducted in this area to confirm that the contaminated soil was not returned to the excavation and that follow-up soil remediation in this area is not necessary.

# 1.2.6 Other Investigations

Two USTs located near the Fuel Farm have been the subject of previous investigations conducted under the Activity's UST program. The two USTs include a No. 6 fuel oil UST situated adjacent to the former Mess Hall Heating Plant and a No. 2 fuel oil UST situated adjacent to Building G480 (Explosive Ordnance and Disposal Armory, Office, and Supply Building). The former was abandoned in place years ago (date unknown) and has been the subject of previous environmental investigations performed by ATEC Associates, Inc. (ATEC) and Law. The latter was removed in January 1994. Contaminated soils adjacent to the UST were reportedly removed with the tank. However, samples were not collected to confirm the limits of contamination.

As part of the Interim Remedial Action for soil to be executed in 1995 by OHM Corporation, four soil borings will be advanced in the immediate vicinity of the former No. 2 fuel oil UST. Soil samples will be collected from each location immediately above the water table and analyzed for TPH (5030 and 3550). The sampling is expected to verify the remaining soils do not contain hydrocarbon contamination associated with the former UST.

ATEC conducted a site assessment in the vicinity of Building TC341 to investigate contamination associated with the UST previously used to supply fuel to the Mess Hall Heating Plant. During the investigation, ATEC installed three shallow monitoring wells and analyzed the soils and groundwater for TPH (EPA Method 8015) and BTEX (EPA Method 8020) (ATEC, 1992). The details of well construction are summarized on Table 1-1.

Results of TPH in soils ranged from 110 mg/kg (MW-3) to 2,000 mg/kg (MW-2). Total BTEX was detected in soils ranging from non-detected concentrations to 5,530  $\mu$ g/kg in MW-2. TPH in groundwater was detected in MW-1 at a concentration of 5 mg/L and in MW-2 at 3 mg/L. Total BTEX was detected in the groundwater sample collected from MW-2 at a concentration of 34  $\mu$ g/L. Based on these results, ATEC had recommended removal of the UST and associated piping. For details of the ATEC report please refer to Appendix E.

Law submitted a report for a leaking underground storage tank (LUST) site assessment for Building TC341 on April 13, 1994, to LANTDIV summarizing the activities conducted in March 1994. The assessment was conducted in order to delineate the extent of contamination identified by ATEC.

The assessment involved the installation of 12 Type II and two Type III groundwater monitoring wells and analysis of soils and groundwater (Figure 1-4). Well construction details are provided on Table 1-3. The soils were analyzed for TPH according to EPA Methods 5030/8015 (volatile fractions), 3550/8015 (semivolatile fraction), and 9071 (oil and grease), TCLP metals, ignitability, and pH. Groundwater samples were analyzed for purgeable aromatic hydrocarbons (EPA Method 602), polynuclear aromatic hydrocarbons (EPA Method 610), and the eight RCRA metals.

Results of TPH (5030/8015) in soils ranged from nondetectable concentrations to 4,100 mg/kg in MW-14 (3.5 to 5 feet). TPH (3550/8015) was detected in soil samples at MW-11, MW-17, MW-14, and MW-15 at concentrations of 11 mg/kg, 11 mg/kg, 800 mg/kg, and 490 mg/kg, respectively. In addition, TCLP metals (barium, chromium, and cadmium) were detected in samples at concentrations below TCLP limits. Results for pH in soils range between 5.53 to 7.48 and ignitability was not detected.

RCRA metals, volatile organic compounds, and semivolatile organic compounds were detected in groundwater samples from monitoring wells MW-1 through MW-17. RCRA metals were detected in both of the samples submitted for metals analyses. Volatile organic compounds were detected in four of the five samples submitted for analyses. Seventeen samples were submitted for analyses of semivolatile organic compounds and five possessed detectable concentrations. For complete details and results of the investigation, refer to Appendix F.

Law concluded that the majority of the soil and groundwater contamination originating from the tank system at Building TC341 had been adequately defined. Preparation of a Corrective Action Plan is in progress and was scheduled to be completed in January 1995.

#### 1.3 <u>Report Organization</u>

The RI Report is a compilation of nine sections. Section 1.0, Introduction, presents the purpose of the RI, site description, site history, and results of previous investigations. The field investigation activities conducted under the RI are summarized in Section 2.0 and the physical characteristics of the study are summarized in Section 3.0. Section 4.0 presents a discussion of the nature and extent of contamination. Contaminant fate and transport and the baseline risk assessment are presented in Sections 5.0 and 6.0, respectively. Section 7.0 presents details of the ecological risk assessment. Conclusions and recommendations are discussed in Section 8.0. Tables, figures, and references pertinent to each section are presented at the end of each section.

Ň

ν.

SECTION 1.0 TABLES

# TABLE 1-1

# SUMMARY OF EXISTING WELL CONSTRUCTION DETAILS 1992 UNDERGROUND STORAGE TANK ASSESSMENT NEAR THE FORMER MESS HALL HEATING PLANT 1990 FIELD INVESTIGATION OF CAMP GEIGER FUEL SPILL SITE 1986 SITE ASSESSMENT OF CAMP GEIGER FUEL FARM SITE 35, CAMP GEIGER AREA FUEL FARM MARINE CORPS BASE, CAMP LEJEUNE, NORTH CAROLINA CONTRACT TASK ORDER 0232

| Well No.            | Date<br>Installed | Consultant<br>Supervising<br>Well Installation | Top of<br>PVC Casing<br>Elevation<br>(feet, above<br>MSL) <sup>(1)</sup> | Ground Surface<br>Elevation<br>(feet, above<br>MSL) | Stick-Up<br>(feet, above<br>ground surface) | Boring<br>Depth<br>(feet, bgs) <sup>(2)</sup> | Well<br>Depth<br>(feet, bgs) | Screen<br>Interval Depth<br>(feet, bgs) | Depth to<br>Sand Pack<br>(feet, bgs) | Depth to<br>Bentonite<br>(feet, bgs) |
|---------------------|-------------------|------------------------------------------------|--------------------------------------------------------------------------|-----------------------------------------------------|---------------------------------------------|-----------------------------------------------|------------------------------|-----------------------------------------|--------------------------------------|--------------------------------------|
| 1992 Under          | rground St        | orage Tank Assessment                          | Near Former Mess                                                         | Hall Heating Plan                                   | nt                                          |                                               |                              |                                         |                                      |                                      |
| MW-1 <sup>(3)</sup> | 6-1-92            | ATEC and Associates                            | 20.59(6)                                                                 |                                                     |                                             | 20.0                                          | 20.0                         | 5.0 - 20.0                              | 3.0 - 20.0                           | 2.0 - 3.0                            |
| MW-2 <sup>(3)</sup> | 6-2-92            | ATEC and Associates                            | 21.13(6)                                                                 |                                                     |                                             | 20.0                                          | 20.0                         | 5.0 - 20.0                              | 3.0 - 20.0                           | 2.0 - 3.0                            |
| MW-3 <sup>(3)</sup> | 6-2-92            | ATEC and Associates                            | 20.49%                                                                   |                                                     |                                             | 20.0                                          | 20.0                         | 5.0 - 20.0                              | 3.0 - 20.0                           | 2.0 - 3.0                            |
| 1990 Field          | Investigati       | on of Camp Geiger Fuel                         | Spill Site                                                               |                                                     |                                             |                                               |                              |                                         |                                      |                                      |
| EMW-1               | 1990(4)           | NUS                                            | 19.16 <sup>(7)</sup>                                                     | 17.4 <sup>(7)</sup>                                 | 1.8 <sup>(7)</sup>                          |                                               | 23.0                         | 8.5 - 17.5 <sup>(4)</sup>               |                                      |                                      |
| EMW-2               | 1990(4)           | NUS                                            |                                                                          |                                                     |                                             |                                               |                              | 1.87 - 10.89 <sup>(4)</sup>             | <b></b>                              |                                      |
| EMW-3               | 1990(4)           | NUS                                            | 7.00 <sup>(7)</sup>                                                      | 4.7 <sup>(7)</sup>                                  | 2.3 <sup>(7)</sup>                          | ±                                             | 14.85                        | 3.06 - 12.06 <sup>(4)</sup>             |                                      |                                      |
| EMW-4               | 1990(4)           | NUS                                            |                                                                          |                                                     |                                             |                                               |                              | 2.61 - 11.61 <sup>(4)</sup>             | ••                                   |                                      |
| 1986 Site A         | ssessment         | of Camp Geiger Fuel Fa                         | rm                                                                       |                                                     | ······································      |                                               |                              |                                         |                                      |                                      |
| EMW-5               | 1986(5)           | ESE                                            | 17.98 <sup>(7)</sup>                                                     | 16.1(7)                                             | 1.9(7)                                      |                                               | 26.30                        | 10.5 - 24.5 <sup>(4)</sup>              |                                      |                                      |
| EMW-6               | 1986(5)           | ESE                                            | 15.97 <sup>(7)</sup>                                                     | 14.2 <sup>(7)</sup>                                 | 1.8 <sup>(7)</sup>                          |                                               | 28.67                        | 10.5 - 24.5(4)                          |                                      |                                      |
| EMW-7               | 1986(5)           | ESE                                            | 18.49 <sup>(7)</sup>                                                     | 16.4(7)                                             | 2.1 <sup>(7)</sup>                          |                                               | 27.80                        | 10.5 - 24.5 <sup>(4)</sup>              |                                      |                                      |

Notes:  $^{(1)}$  MSL = mean sea level

bgs = below ground surface

(3) Calculated values based on elevations recorded in Law's report, "Final Report Underground Fuel Investigation Comprehensive Site Assessment," dated February 7, 1992.

(4) Data/information was found in Law's report, "Final Report Underground Fuel Investigation Comprehensive Site Assessment," dated February 7, 1992.

<sup>(5)</sup> Data/information found in ESE's "Site Summary Report," dated September 1990.

(6) Elevations as recorded in Law's report, "Leaking Underground Storage Tank, Site Assessment Report," dated April 13, 1994.

<sup>(7)</sup> Data was gathered by Baker during 1994 Remedial Investigation.

<sup>(8)</sup> -- Indicates that the data is not known.

# TABLE 1-2

# SUMMARY OF EXISTING WELL CONSTRUCTION DETAILS 1991 ASSESSMENT OF A SUSPECTED FUEL LEAK ORIGINATING FROM THE CAMP GEIGER FUEL FARM (1991) SITE 35, CAMP GEIGER AREA FUEL FARM MARINE CORPS BASE, CAMP LEJEUNE, NORTH CAROLINA CONTRACT TASK ORDER 0232

| Well No. | Date<br>Installed | Consultant<br>Supervising<br>Well Installation | Top of<br>PVC Casing<br>Elevation<br>(feet, above<br>MSL) <sup>(1)</sup> | Ground<br>Surface<br>Elevation<br>(feet, above<br>MSL) | Stick-Up<br>(feet, above<br>ground surface) | Boring<br>Depth<br>(feet, bgs) <sup>(2)</sup> | Well<br>Depth<br>(feet, bgs) | Screen<br>Interval<br>Depth <sup>(3)</sup><br>(feet, bgs) | Depth to<br>Sand<br>Pack <sup>(3)</sup><br>(feet, bgs) | Depth to<br>Bentonite <sup>(3)</sup><br>(feet, bgs) |
|----------|-------------------|------------------------------------------------|--------------------------------------------------------------------------|--------------------------------------------------------|---------------------------------------------|-----------------------------------------------|------------------------------|-----------------------------------------------------------|--------------------------------------------------------|-----------------------------------------------------|
| MW-8S/D  | 8-15-91           | Law Engineering                                | 19.17 <sup>(4)</sup>                                                     | 16.8 <sup>(5)</sup>                                    | 2.4 <sup>(4)</sup>                          | 30.0                                          | 30.0                         | 4.5 - 13.5<br>20.5 - 29.5                                 | 2.0 - 15.0<br>18.0 - 30.0                              | 1.0 - 2.0<br>15.0 - 18.0                            |
| MW-9S/D  | 8-16-91           | Law Engineering                                | 18.88                                                                    | 16.9                                                   | 2.0                                         | 30.0                                          | 30.0                         | 3.5 - 12.5<br>25.5 - 29.5                                 | 2.0 - 13.0<br>16.0 - 30.0                              | 1.0 - 2.0<br>13.0 - 16.0                            |
| MW-10S/D | 8-19-91           | Law Engineering                                | 19.01                                                                    | 16.6                                                   | 2.4                                         | 30.0                                          | 30.0                         | 4.5 - 13.5<br>25.5 - 29.5                                 | 2.0 - 14.0<br>19.0 - 30.0                              | 1.0 - 2.0<br>16.0 - 19.0                            |
| MW-11S/D | 8-19-91           | Law Engineering                                | 18.39 <sup>(4)</sup>                                                     | 15.9(5)                                                | 2.5 <sup>(4)</sup>                          | 30.0                                          | 30.0                         | 4.5 - 13.5<br>25.5 - 29.5                                 | 2.0 - 19.5<br>22.5 - 30.0                              | 1.0 - 2.0<br>19.5 - 22.5                            |
| MW-12S/D | 8-19-91           | Law Engineering                                | 19.94                                                                    | 17.3                                                   | 2.6                                         | 28.5                                          | 28.5                         | 5.0 - 14.0<br>24.0 - 28.0                                 | 3.0 - 14.5<br>19.0 - 28.5                              | 2.0 - 3.0<br>15.5 - 19.0                            |
| MW-13S/D | 8-19-91           | Law Engineering                                | 17.02                                                                    | 14.6                                                   | 2.4                                         | 30.0                                          | 30.0                         | 5.5 - 14.5<br>25.5 - 29.5                                 | 3.0 - 18.5<br>22.5 - 30.0                              | 2.0 - 3.0<br>18.5 - 22.5                            |
| MW-14S/D | 8-20-91           | Law Engineering                                | 17.73                                                                    | 15.3                                                   | 2.4                                         | 30.0                                          | 30.0                         | 3.5 - 12.5<br>24.5 - 28.5                                 | 2.0 - 13.0<br>21.0 - 29.0                              | 1.0 - 2.0<br>18.0 - 21.0                            |
| MW-15S/D | 8-20-91           | Law Engineering                                | 18.05(4)                                                                 | 15.5 <sup>(5)</sup>                                    | 2.6 <sup>(4)</sup>                          | 30.0                                          | 30.0                         | 4.5 - 13.5<br>25.5 - 29.5                                 | 2.5 - 17.5<br>25.0 - 30.0                              | 1.5 - 2.5<br>17.5 - 23.0                            |
| MW-16S/D | 8-21-91           | Law Engineering                                | 20.06                                                                    | 17.6                                                   | 2.5                                         | 29.0                                          | 29.0                         | 5.0 - 14.0<br>24.0 - 28.5                                 | 2.0 - 17.5<br>20.0 - 24.5                              | 1.0 - 2.0<br>17.5 - 20.5                            |
| MW-17S/D | 8-21-91           | Law Engineering                                | 16.77                                                                    | 14.1                                                   | 2.7                                         | 29.5                                          | 29.5                         | 7.5 - 16.5<br>25.0 - 29.0                                 | 4.5 - 19.5<br>22.5 - 30.0                              | 3.5 - 4.5<br>19.5 - 22.5                            |
| MW-18S/D | 8-21-91           | Law Engineering                                | 13.40 <sup>(4)</sup>                                                     | 10.8(5)                                                | 2.6 <sup>(4)</sup>                          | 25.0                                          | 25.0                         | 3.0 - 12.0<br>20.5 - 24.5                                 | 1.5 - 14.0<br>17.0 - 25.0                              | 0.5 - 1.5<br>14.0 - 17.0                            |
| MW-195/D | 8-22-91           | Law Engineering                                | 8.72                                                                     | 6.0                                                    | 2.7                                         | 25.0                                          | 25.0                         | 4.5 - 13.5<br>22.5 - 24.5                                 | 2.0 - 15.0<br>20.0 - 25.0                              | 1.0 - 2.0<br>17.0 - 20.0                            |

.

# TABLE 1-2 (Continued)

# SUMMARY OF EXISTING WELL CONSTRUCTION DETAILS 1991 ASSESSMENT OF A SUSPECTED FUEL LEAK ORIGINATING FROM THE CAMP GEIGER FUEL FARM (1991) SITE 35, CAMP GEIGER AREA FUEL FARM MARINE CORPS BASE, CAMP LEJEUNE, NORTH CAROLINA CONTRACT TASK ORDER 0232

| Well No. | Date<br>Installed | Consultant<br>Supervising<br>Well Installation | Top of<br>PVC Casing<br>Elevation<br>(feet, above<br>MSL) <sup>(1)</sup> | Ground<br>Surface<br>Elevation<br>(feet, above<br>MSL) | Stick-Up<br>(feet, above<br>ground surface) | Boring<br>Depth<br>(feet, bgs) <sup>(2)</sup> | Well<br>Depth<br>(feet, bgs) | Screen<br>Interval<br>Depth <sup>(3)</sup><br>(feet, bgs) | Depth to<br>Sand<br>Pack <sup>(3)</sup><br>(feet, bgs) | Depth to<br>Bentonite <sup>(3)</sup><br>(feet, bgs) |
|----------|-------------------|------------------------------------------------|--------------------------------------------------------------------------|--------------------------------------------------------|---------------------------------------------|-----------------------------------------------|------------------------------|-----------------------------------------------------------|--------------------------------------------------------|-----------------------------------------------------|
| MW-20S/D | 8-23-91           | Law Engineering                                | 15.97(4)                                                                 | 13.6 <sup>(3)</sup>                                    | 2.4 <sup>(4)</sup>                          | 12.5                                          | 12.5                         | 3.0 - 12.0                                                | 1.5 - 12.5                                             | 0.5 - 1.5                                           |
| MW-21S/D | 8-23-91           | Law Engineering                                | 17.57                                                                    | 15.1                                                   | 2.5                                         | 27.5                                          | 27.5                         | 4.5 - 13.5<br>25.5 - 27.0                                 | 2.0 - 14.0<br>22.0 - 28.5                              | 1.0 - 2.0<br>19.0 - 22.0                            |
| MW-22S/D | 8-28-91           | Law Engineering                                | 19.18(4)                                                                 | 16.3 <sup>(5)</sup>                                    | 2.9 <sup>(4)</sup>                          | 35.0                                          | 35.0                         | 5.5 - 14.5<br>32.5 - 35.0                                 | 3.0 - 25.5<br>29.0 - 35.0                              | 2.0 - 3.0<br>25.5 - 29.0                            |
| MW-23S/D | 8-27-91           | Law Engineering                                | 8.74                                                                     | 6.4                                                    | 2.3                                         | 20.0                                          | 20.0                         | 2.5 - 9.5<br>17.5 - 20.0                                  | 1.0 - 10.0<br>13.0 - 21.0                              | 0.5 - 1.0<br>10.0 - 13.0                            |
| MW-24S/D | 8-28-91           | Law Engineering                                | 18.72(4)                                                                 | 16.5(5)                                                | 2.2 <sup>(4)</sup>                          | 29.0                                          | 29.0                         | 8.5 - 17.5<br>26.5 - 29.0                                 | 4.0 - 20.0<br>23.0 - 29.0                              | 0.8 - 3.0<br>20.0 - 23.0                            |
| MW-25S/D | 8-29-91           | Law Engineering                                | 13.32                                                                    | 11.3                                                   | 2.0                                         | 30.0                                          | 30.0                         | 4.5 - 13.5<br>27.5 - 30.0                                 | 2.0 - 22.0<br>25.0 - 30.0                              | 1.0 - 2.0<br>22.0 - 25.0                            |

# Notes: $^{(1)}$ MSL = mean sea level

- $^{(2)}$  bgs = below ground surface
- (3) Two wells were installed within the same borehole, therefore, the two ranges of depth correspond to depths at which the screen, sand pack, and bentonite seal can be located with respect to each well.
- <sup>(4)</sup> Elevations as recorded in Law's report, "Final Report Underground Fuel Investigation Comprehensive Site Assessment, dated February 7, 1992.
- (5) Calculated values based on elevations recorded in Law's report, "Final Report Underground Fuel Investigation Comprehensive Site Assessment, dated February 7, 1992.
- \* A shallow and an intermediate well were installed in the same borehole at locations with an S/D designation. Law Engineering installed two separate sets of wells on two occasions (August 1991 and March 1994) and duplicated designations MW-8 through MW-17. Baker added the S/D designation for clarity. The designation indicates a shallow well screened across the water table. The D designation indicates an intermediate well screen in the 20 to 30-foot interval.

## TABLE 1-3

# SUMMARY OF EXISTING WELL CONSTRUCTION DETAILS 1994 UNDERGROUND STORAGE TANK ASSESSMENT NEAR BUILDING TC341 SITE 35, CAMP GEIGER AREA FUEL FARM MARINE CORPS BASE, CAMP LEJEUNE, NORTH CAROLINA CONTRACT TASK ORDER 0232

| Well No. | Date<br>Installed | Consultant<br>Supervising Well<br>Installation | Top of<br>PVC Casing<br>Elevation<br>(feet, above<br>MSL) <sup>(1)</sup> | Ground Surface<br>Elevation<br>(feet, above<br>MSL) | Stick-Up<br>(feet, above<br>ground surface) | Boring Depth<br>(feet, bgs) <sup>(2)</sup> | Well Depth<br>(feet, bgs) | Screen<br>Interval<br>Depth<br>(feet, bgs) | Depth to<br>Sand Pack<br>(feet, bgs) | Depth to<br>Bentonite <sup>(3)</sup><br>(feet, bgs) |
|----------|-------------------|------------------------------------------------|--------------------------------------------------------------------------|-----------------------------------------------------|---------------------------------------------|--------------------------------------------|---------------------------|--------------------------------------------|--------------------------------------|-----------------------------------------------------|
| MW-4     | . 3-1-94          | Law Engineering                                | 20.52                                                                    | 18.4                                                | 2.1                                         | 14.0                                       | 13.0                      | 3.0-13.0                                   | 2.0-14.0                             | 0.0-2.0                                             |
| MW-5     | 3-1-94            | Law Engineering                                | 19.79 <sup>(4)</sup>                                                     | 17.9(5)                                             | 1.9(4)                                      | 14.0                                       | 13.0                      | 3.0-13.0                                   | 2.0-14.0                             | 0.0-2.0                                             |
| MW-6     | 3-1-94            | Law Engineering                                | 19.16 <sup>(4)</sup>                                                     | 17.3 <sup>(5)</sup>                                 | 1.9(4)                                      | 14.0                                       | 13.0                      | 3.0-13.0                                   | 2.0-14.0                             | 0.0-2.0                                             |
| MW-7     | 3-1-94            | Law Engineering                                | 19.12 <sup>(4)</sup>                                                     | 17.2(5)                                             | 1.9(4)                                      | 14.0                                       | 13.0                      | 3.0-13.0                                   | 2.0-14.0                             | 0.0-2.0                                             |
| MW-8     | 3-1-94            | Law Engineering                                | 16.56 <sup>(4)</sup>                                                     | 16.56 <sup>(5)</sup>                                | Flush <sup>(4)</sup>                        | 14.0                                       | 13.0                      | 3.0-13.0                                   | 2.0-14.0                             | 0.0-2.0                                             |
| MW-9     | 3-3-94            | Law Engineering                                | 19.36(4)                                                                 | 17.4 <sup>(5)</sup>                                 | 2.0 <sup>(4)</sup>                          | 33.0                                       | 32.0                      | 27.0-32.0                                  | 24.5-33.0                            | 0.0-22.0                                            |
| MW-10    | 3-3-94            | Law Engineering                                | 19.31(4)                                                                 | 17.4 <sup>(5)</sup>                                 | 1.95(4)                                     | 14.0                                       | 13.0                      | 3.0-13.0                                   | 2.0-14.0                             | 0.0-2.0                                             |
| MW-11    | 3-4-94            | Law Engineering                                | 19.21 <sup>(4)</sup>                                                     | 17.3(5)                                             | 1.95 <sup>(4)</sup>                         | 14.0                                       | 13.0                      | 3.0-13.0                                   | 2.0-14.0                             | 0.0-2.0                                             |
| MW-12    | 3-7-94            | Law Engineering                                | 19.75(4)                                                                 | 17.8(5)                                             | 2.0 <sup>(4)</sup>                          | 14.0                                       | 13.0                      | 3.0-13.0                                   | 2.0-14.0                             | 0.0-2.0                                             |
| MW-13    | 3-7-94            | Law Engineering                                | 17.79 <sup>(4)</sup>                                                     | 15.8 <sup>(5)</sup>                                 | 2.0 <sup>(4)</sup>                          | 14.0                                       | 13.0                      | 3.0-13.0                                   | 2.0-14.0                             | 0.0-2.0                                             |
| MW-14    | 3-8-94            | Law Engineering                                | 16.31(4)                                                                 | 16.3(5)                                             | Flush <sup>(4)</sup>                        | 14.0                                       | 13.0                      | 3.0-13.0                                   | 2.0-14.0                             | 0.0-2.0                                             |
| MW-15    | 3-8-94            | Law Engineering                                | 16.20(4)                                                                 | 16.2 <sup>(5)</sup>                                 | Flush <sup>(4)</sup>                        | 30.0                                       | 30.0                      | 25.0-30.0                                  | 23.0-30.0                            | 0.0-22.0                                            |
| MW-16    | 3-8-94            | Law Engineering                                | 16.53(4)                                                                 | 16.5(5)                                             | Flush <sup>(4)</sup>                        | 14.0                                       | 13.0                      | 3.0-13.0                                   | 2.0-14.0                             | 0.0-2.0                                             |
| MW-17    | 3-8-94            | Law Engineering                                | 16.14(4)                                                                 | 16.1(5)                                             | Flush <sup>(4)</sup>                        | 14.0                                       | 13.0                      | 3.0-13.0                                   | 2.0-14.0                             | 0.0-2.0                                             |

Notes: <sup>(1)</sup>

: <sup>(1)</sup> MSL = mean sea level

 $^{(2)}$  bgs = below ground surface

(3) Indicates that interval is recorded as cement in well construction records submitted to the State of North Carolina, however, some bentonite usually exists as a barrier within this interval to prevent cement intrusion into sand pack.

(4) Elevations as recorded in Law's report, "Leaking Underground Storage Tank, Site Assessment Report," dated April 13, 1994.

(5) Calculated values based on elevations recorded in Law's report, "Leaking Underground Storage Tank, Site Assessment Report," dated April 13, 1994.

Law Engineering installed two separate sets of wells at this site on two occasions (August 1991 and March 1994) and duplicated designations MW-8 through MW-17. Additional designations (S [shallow]/D [deep]) were added to these nested wells installed in 1991 for clarity.

# 3.4 Geology

#### 3.4.1 Regional Geology

MCB Camp Lejeune is located in the Atlantic Coastal Plain physiographic province. The sediments of the Atlantic Coastal Plain consist of interbedded sands, clays, calcareous clays, shell beds, sandstone, and limestone. These sediments are layered in interfingering beds and lenses that gently dip and thicken to the southeast (ESE, 1990). Regionally, they comprise 10 aquifers and nine confining units which overlie igneous and metamorphic basement rocks of pre-Cretaceous age. The combined thickness of these sediments is approximately 1,500 feet. These sediments were deposited in marine or near-marine environments and range in age from early Cretaceous to Quaternary time. Table 3-2 presents a generalized geologic and hydrogeologic units in coastal North Carolina (Harned et al., 1989).

United States Geological Survey (USGS) studies at MCB Camp Lejeune indicate that the area is underlain by sand and limestone aquifers separated by semi-confining units (i.e., in some portions of the base) of silt and clay. These aquifers include the water table (surficial), Castle Hayne, Beaufort, Peedee, Black Creek, and upper and lower Cape Fear. The surficial aquifer ranges in thickness from 0-73 feet and averages 25 feet according to U.S.G.S (Cardinell et al, 1993). The estimated lateral hydraulic conductivity for the surficial aquifer is 50 ft/d and is based on a general composition of fine sand mixed with some silt and clay (Cardinell et al, 1993). Less permeable clay and silt beds function as confining units or semi-confining units which separate the aquifers and impede the flow of groundwater between aquifers. The vertical hydraulic conductivity of the Castle Hayne confining unit was estimated to range from 0.0014 to 0.41 ft/d and is comparable to those determined for silt (Cardinell et al, 1993). A generalized hydrogeologic cross-section of this area is presented in Figures 3-1 and 3-2. This cross-section illustrates the relationship between the aquifers in this area (Cardinell et al., 1993).

#### 3.4.2 Site Geology

Numerous borings were advanced within the study area during the field investigations conducted by Baker. Subsurface soil descriptions are provided in the Test Boring and Well Construction Records in Appendix H. Additional information regarding the soils were obtained from the previous investigations. The following provides detailed description of the stratigraphy underlying the study area.

Soil conditions are generally uniform throughout the study area. In general, the shallow soils consist of unconsolidated deposits of silty sand, clayey silt, silt and sand. These soils represent the Quaternary age "undifferentiated" deposits which characterize the River Bend Formation and is underlain by the Castle Hayne Formation. Sands are primarily fine to medium grained and contain varied amounts of silt (0-50%), shell fragments (0-35%), clay (0-10%). Results of the standard penetration tests indicate that the sands have a relative density of loose to dense. Based on field observations, the sands classify as silty sand (SM) and/or poorly graded sand (SP) according to the USCS.

Silts are plastic to nonplastic, contain varied amounts of sand (0-50%) and clay (0-10%) and classify as ML or MH. Standard penetration tests indicate that the silts have a relative density of loose to dense for the nonplastic, and soft to very stiff for the plastic.

Geologic cross-sections were constructed to illustrate subsurface soil beneath the study area. As shown on Figure 3-3, several areas were traversed to provide a cross-sectional view of the study area. Three cross-sections were constructed: A-A' crosses west to east across the upper portion of the study area; B-B' crosses north to south; and C-C' crosses west to east across the lower portion of the study area.

Cross-section A-A' depicts subsurface soils to an elevation of -51.3 feet msl from the western boundary of the study area to the eastern boundary. As illustrated on Figure 3-4, the soil underlying this portion of the area consist of fine to medium sands, clayey silts, and silty sands.

In general, on the western portion of the study area, a fine sand with trace to some silt is underlain by another fine sand that is partially cemented with calcium carbonate and contains 10-20% shell fragments to a depth of approximately -25 msl. Underlying the partially cemented sand is a very dense to dense, greenish gray, fine sand containing some silt, trace to some shell fragments. This soil unit is the semi-confining unit separating the Quaternary sediments from the Castle Hayne Aquifer. The semi-confining unit appears to be approximately 8 to 12 feet thick, generally thickening toward the east. Beneath this unit resides the Castle Hayne Formation. Borings were only advanced 10 to 15 feet into this formation during the RI, therefore providing limited knowledge of specific details regarding the condition of the Castle Hayne beneath the study area. The upper portion of the Castle Hayne was described as a partially cemented, gray, fine sand with some shell fragment and limestone fragments encountered periodically.

On the eastern portion of the study area this entire sequence of soil types appears to be overlain by silty clay or a clayey silt. The unit is not uniform and varies from approximately 4 to 20 feet thick.

Cross-section B-B' depicts the subsurface soil conditions to an elevation of -42.1 feet (Figure 3-5). The soils consisted of clayey silts, sands, silty sands, peats, and clays. Overall the soils did not differ substantially from those encountered in the A-A' cross-section. In general, a fine to medium sand with trace to some silt was interbedded with silts, silty sands, clayey silts and clays to an elevation of -6 to -12 msl. The only difference was the 8 feet of peat observed in soil boring 35MW-34B. This boring was located in the southeastern portion of the study area.

Beneath the fine to medium sand resides the partially cemented, gray, fine sand with trace to some shell fragments. The semi-confining unit underlies this unit followed by the Castle Hayne Formation.

Cross-section C-C' illustrates the soils beneath the southern portion of the site to an elevation of -51.3 (Figure 3-6). In general, the soils consisted of the same types observed in the other cross-sections previously discussed. The only difference in this cross-section when compared with the others is the increase in interbedded soils on the eastern portion of the area.

Overall, the soils encountered during investigations within the study area are fairly consistent throughout. Note that within the study area, a laterally continuous semi-confining unit was present and between -26.0 and -28.1 feet msl. The location of the semi-confining unit separating the surficial from the Castle Hayne Aquifer was encountered approximately 40 feet below ground surface. This is consistent with the range reported by the U.S.G.S. but exceeds the average of 25 feet they had reported (Cardinell et al, 1993).

# 3.5 Surface Soils

Information regarding site soil conditions was obtained from the Soil Survey publication prepared by the U.S. Department of Agriculture - Soil Conservation Service (SCS) for Marine Corps Base Camp Lejeune, North Carolina (SCS, 1984). Due to past grading and surface activities at the site, the soils described in the SCS publication may differ from current site conditions.

According to the SCS Soil Survey the site is underlain by a single distinct soil unit, the Baymeade-Urban (BaB) Land Complex. Baymeade-Urban soils exhibit 0 to 6 percent slopes and only about 30 percent of their surface area has been altered through urbanization. Infiltration is rapid and surface water runoff slow in the remaining undisturbed areas. The seasonal high water table ranges from 4 to 5 feet bgs for Baymeade-Urban soils.

# 3.6 <u>Hydrogeology</u>

The following sections discuss the regional and site-specific hydrogeologic conditions. The information presented on the regional hydrogeology is from literature (Harned, et al., 1989); site-specific hydrogeologic information presented is from data collected during the field investigation.

# 3.6.1 Regional Hydrogeology

The surficial water table aquifer lies in a series of undifferentiated sediments, primarily sand and clay, which commonly extend to depths of 50 to 100 feet. This aquifer is not used for water supply at MCB Camp Lejeune because of its low yielding production rates. A confining unit is present underlying the surficial aquifer within the eastern portion of MCB Camp Lejeune (Harned, et al., 1989).

The principal water supply aquifer for the Activity lies in a series of sand and limestone beds between 50 and 300 feet bgs. This series of sediments generally is known as the Castle Hayne Aquifer. The Castle Hayne Aquifer is about 150 to 350 feet thick in the area and is the most productive aquifer in North Carolina. Estimated transmissivity (T) and hydraulic conductivity (K) values for the Castle Hayne Aquifer range from 4,300 to 24,500 ft<sup>2</sup>/day (32,200 to 183,300 gallons/foot/day) and 14 to 82 feet/day, respectively (Harned et al., 1989).

Onslow County and MCB Camp Lejeune lie in an area where the Castle Hayne Aquifer contains freshwater, although the proximity of saltwater in deeper layers just below the aquifer and in the New River estuary is of concern in managing water withdrawals from the aquifer. Overpumping of the deeper parts of the aquifer could cause intrusion of saltwater. The aquifer contains water having less than 250 milligrams per liter (mg/l) chloride throughout the area of the Base (Harned et al., 1989).

The aquifers that lie below the Castle Hayne consist of thick sequences of sand and clay. Although some of these aquifers are used for water supply elsewhere in the Coastal Plain, they contain saltwater in the MCB Camp Lejeune area and are not used (Harned et al., 1989).

Rainfall in the MCB Camp Lejeune area enters the ground in recharge areas, infiltrates the soil, and moves downward until it reaches the water table, which is the top of the saturated zone. In the saturated zone, groundwater flows in the direction of lower hydraulic head, moving through the system to discharge areas like the New River and its tributaries or the ocean (Harned et al., 1989).

Water levels in wells tapping the surficial aquifer vary seasonally. The surficial aquifer receives more recharge in the winter than in the summer when much of the water evaporates or is transpired by plants before it can reach the water table. Therefore, the water table generally is highest in the winter months and lowest in summer or early fall (Harned et al., 1989).

In semi-confined aquifers, water is sometimes under excess head and the level to which it rises in a tightly cased well is called the potentiometric surface. The hydraulic head in the semi-confined Castle Hayne Aquifer, shows a different pattern of variation over time. Some seasonal variation also is common in the potentiometric surface of the Castle Hayne Aquifer, but the changes tend to be slower and over a smaller range than for water table wells (Harned et al., 1989).

# **3.6.2** Site Hydrogeology

The following sections describe the site hydrogeologic conditions for the surficial (water table aquifer) and the deep (Castle Hayne Aquifer) water-bearing zones at Site 35. Hydrogeologic characteristics in the vicinity of the site were evaluated by reviewing existing information (e.g., USGS publications) and installing a network of shallow, intermediate and deep monitoring wells.

Groundwater was encountered at varying depths during the drilling program. This variation is primarily attributed topographical changes. In general, the groundwater was encountered between 5.5 and 8.5 feet bgs. The water table nears the surface in the area of Brinson Creek, where the topography drops.

Multiple rounds of groundwater level measurements were obtained from the shallow, intermediate and deep monitoring wells within the study area. Three complete rounds were obtained on June 14, July 12, and September 9, 1994 and are summarized on Tables 2-3, 2-4, and 2-5.

Shallow groundwater elevations exhibited some fluctuation over the three month period. The water table aquifer exhibited a 0.73 to 3.25 foot increase in elevation. The increase may be due to increased precipitation experienced during the latter portion of the summer and early fall of 1994. Typically at MCB, Camp Lejeune, a higher water table is noted in the spring and a lower water table is noted in the late fall. However, the spring of 1994 was reported by Activity personnel unseasonably dry and may have resulted in a decrease in the elevation of the groundwater. Approximately 1.67 inches of rainfall was recorded by Baker's rain gauge between March 12, 1994 and May 10, 1994. Typically, Camp Lejeune receives approximately 6.5 inches of rain during the months of March and April according to the Naval Oceanography Command Detachment (see Table 3-1).

Shallow groundwater flow patterns in the vicinity of the site on September 9, 1994 are depicted on Figure 3-7. The data indicates that the groundwater flow is toward the northeast, with an average gradient of  $1.7 \times 10^{-2}$  ft/ft.

Hydraulic conductivity test were performed at the site between September 9 and 10, 1994. The average hydraulic conductivity for the upper portion of the water table aquifer is 0.628 ft/day  $(2.22 \times 10^{-4} \text{ cm/sec})$  and the average for the lower portion of the water table aquifer is 5.16 ft/day  $(1.8 \times 10^{-3} \text{ cm/sec})$ . These values were calculated using the Geraghty and Miller aquifer test solver (AQTESOLV) program which uses the Bouwer and Rice (1976) method for unconfined aquifers. The average values are consistent with expected values of hydraulic conductivity for the sands and

silty sands at the site (Fetter, 1980). The copies of the AQTESOLV printouts are located in Appendix N and the results are summarized on Table 3-3.

A study of data from other aquifer tests (pump tests) performed at MCB Camp Lejeune was conducted by Baker to further evaluate aquifer characteristics and production capacities. The technical memorandum is provided in Appendix O. The information contained in this memorandum pertains primarily to the surficial aquifer. Average pumping rates range from 0.5 to 3 gallons per minute (gpm). Transmissivity ranges from 7.17 to 7,099.20 ft<sup>2</sup>/day; storativity ranges from 1.51 x 10<sup>-3</sup> to 7.48 x 10<sup>-2</sup>; and hydraulic conductivity ranged from 0.48 to 1.42 ft/day.

Fluctuation of the groundwater elevations within the deep wells was observed over the three months, however the fluctuation was not as dramatic as in the shallow and intermediate wells. Fluctuations ranged from 0.88 to 1.77 feet. It is not uncommon for a semi-confined aquifer to not respond to precipitation or seasonal fluctuations with the same magnitude as an unconfined aquifer. The presence of the semiconfining unit will impede the vertical migration of precipitation causing a delayed and minimal effect on the head of the aquifer.

The upper portion of the Castle Hayne Aquifer also flows northeast across the site with a gradient of  $1.4 \times 10^{-2}$  (see Figure 3-8). The calculated hydraulic conductivity for this unit was calculated from a slug test at 6.03 ft/day (2.03 x  $10^{-3}$  cm/sec). These values are consistent with the sands encountered in the upper portion of the Castle Hayne Formation beneath the site (Fetter, 1980). The result of the slug test is summarized in Table 3-4 and the data is provided in Appendix N.

# 3.7 Land Use and Demography

Present military population of MCB, Camp Lejeune is approximately 40,928 active duty personnel. The military dependent community is in excess of 32,081. About 36,086 of these personnel and dependents reside in base housing units. The remaining personnel and dependents live off base and have had dramatic effects on the surrounding area. An additional 4,412 civilian employees perform facilities management and support functions. The population of Onslow County has grown from 17,739 in 1940, prior to the formation of the base, to its present population of 121,350.

Site 35, the Camp Geiger Area Fuel Farm, is presently used to dispense gasoline, diesel, and kerosene to government vehicles and to supply USTs in use at Camp Geiger and the New River Marine Corps Air Station. The fuel farm is planned for demolition for a proposed highway. Barracks are located within 1,000 feet of the site and many warehouses and storage facilities are located adjacent to and within the boundaries of the study area. A COMMARFORLANT Nuclear Biological Chemical Defense School Training Range is located adjacent to the southeast boundary of the site.

Sensitive environmental areas would include Brinson Creek and associated unnamed tributaries.

## 3.8 <u>Regional Ecology</u>

MCB Camp Lejeune is located in the Coastal Plain Province. The ecology of the region is influenced by climate, which is characterized by hot, humid summers and cool winters. Some subfreezing cold spells occur during the winters, and there are occasional accumulations of snow that rarely persist. The average precipitation is 55.96 inches and the mean temperature is 60.9°F.

The area exhibits a long growing season, typically more than 230 days. Soils in the region range from very poorly drained muck to well-drained sandy loam.

A number of natural communities are present in the Coastal Plain Province. Subcommunities and variations of these major community types are also present, and alterations of natural communities have occurred in response to disturbance and intervention (i.e., forest cleared to become pasture). The natural communities found in the area are summarized as follows:

- Mixed Hardwood Forest Found generally on slopes of ravines. Beech is an indicator species with white oak, tulip, sweetgum, and holly.
- Southeastern Evergreen Forest Dominated by pines, especially longleaf pine.
- Loblolly Pine/Hardwoods Community Second growth forest that includes loblolly pine with a mix of hardwoods -- oak, hickory, sweetgum, sour gum, red maple, and holly.
- Southern Floodplain Forest Occurs on the floodplains of rivers. Hardwoods dominate with a variety of species present. Composition of species varies with the amount of moisture present.
- Maritime Forest Develops on the lee side of stable sand dunes protected from the ocean. Live oak is an indicator species with pine, cedar, yaupon, holly, and laurel oak. Deciduous hardwoods may be present where forest is mature.
- Pocosins Lowland forest community that develops on highly organic soils that are seasonally flooded. Characterized by plants adapted to drought and acidic soils low in nutrients. Pond pine is dominant tree with dense layer of evergreen shrubs. Strongly influenced by fire.
- Cypress\Tupelo Swamp Forest Occurs in the lowest and wettest areas of floodplains. Dominated by bald cypress and tupelo.
- Freshwater Marsh Occurs upstream from tidal marshes and downstream from nontidal freshwater wetlands. Cattails, sedges, and rushes are present. On the coast of North Carolina swamps are more common than marshes.
- Salt Marsh Regularly flooded, tidally influenced areas dominated by salt-tolerant grasses. Saltwater cordgrass is a characteristic species. Tidal mud flats may be present during low tide.
- Salt Shrub Thicket High areas of salt marshes and beach areas behind dunes. Subjected to salt spray and periodic saltwater flooding. Dominated by salt resistant shrubs.
- Dunes/Beaches Zones from the ocean shore to the maritime forest. Subjected to sand, salt, wind, and water.

#### **TABLE 3-3**

# SUMMARY OF HYDRAULIC CONDUCTIVITY TESTS SITE 35, CAMP GEIGER AREA FUEL FARM MCB, CAMP LEJEUNE, NORTH CAROLINA CONTRACT TASK ORDER 0232

| Well No. |        | Conductivity<br>Head Test | Hydraulic Conductivity<br>Rising Head Test |                         |  |  |
|----------|--------|---------------------------|--------------------------------------------|-------------------------|--|--|
|          | ft/day | cm/sec                    | ft/day                                     | cm/sec                  |  |  |
| 35MW-30A | 1.18   | 4.16 x 10 <sup>-4</sup>   | 1.50                                       | 5.31 x 10 <sup>-4</sup> |  |  |
| 35MW-31A | 0.346  | 1.22 x 10 <sup>-4</sup>   | 0.269                                      | 9.51 x 10 <sup>-s</sup> |  |  |
| 35MW-35A | 0.119  | 4.20 x 10 <sup>-5</sup>   | 0.115                                      | 4.06 x 10 <sup>-5</sup> |  |  |
| 35MW-32B | 6.22   | 2.20 x 10 <sup>-3</sup>   | 5.15                                       | 1.82 x 10 <sup>-3</sup> |  |  |
| 35-MW36B | 2.91   | 1.03 x 10 <sup>-3</sup>   | 3.20                                       | 1.13 x 10 <sup>-3</sup> |  |  |
| 35MW-37B | 7.06   | 2.49 x 10 <sup>-3</sup>   | 6.44                                       | 2.27 x 10 <sup>-3</sup> |  |  |
| 35GWD-1  | 6.80   | 2.40 x 10 <sup>-3</sup>   | 6.03                                       | 2.13 x 10 <sup>-3</sup> |  |  |

Average Hydraulic Conductivity for shallow wells: 0.628 ft/day (2.22 x 10<sup>-4</sup> cm/sec)

Average Hydraulic Conductivity for intermediate wells: 5.16 ft/day (1.82 x 10<sup>-3</sup> cm/sec)

Notes: Hydraulic conductivity test results were analyzed using Bouwer and Rice method as presented in the Geraghty and Miller "AQTESOLV" program, version 1.10.

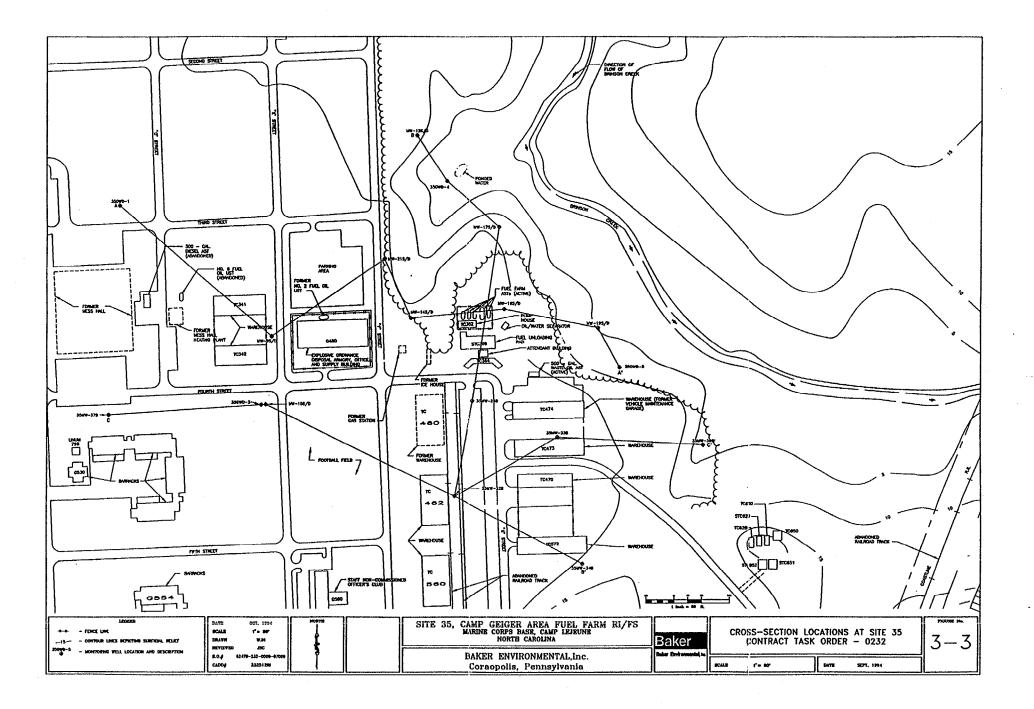
Hydraulic conductivity tests were conducted on September 28 and 29, 1994, using an In-Situ Environmental Data Logger (Model SE-1000C) and pressure transducer.

Monitoring wells with an "A" or "B" designation indicate wells completed within the shallow aquifer at shallow and intermediate depths, respectively. The well with "GWD" designation was completed in the upper-most portion of the Castle Hayne Aquifer.

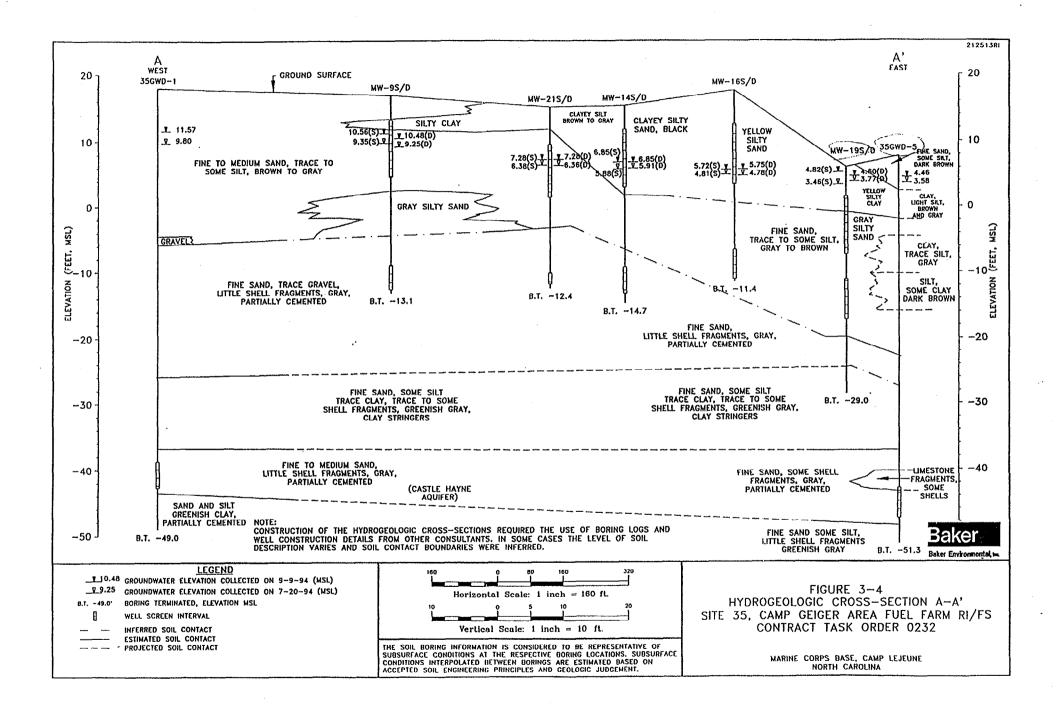
Falling Head Test data was not used in the calculation of the average hydraulic conductivity for shallow wells. Falling Head Tests are inappropriate for wells that have screens that split the water table.

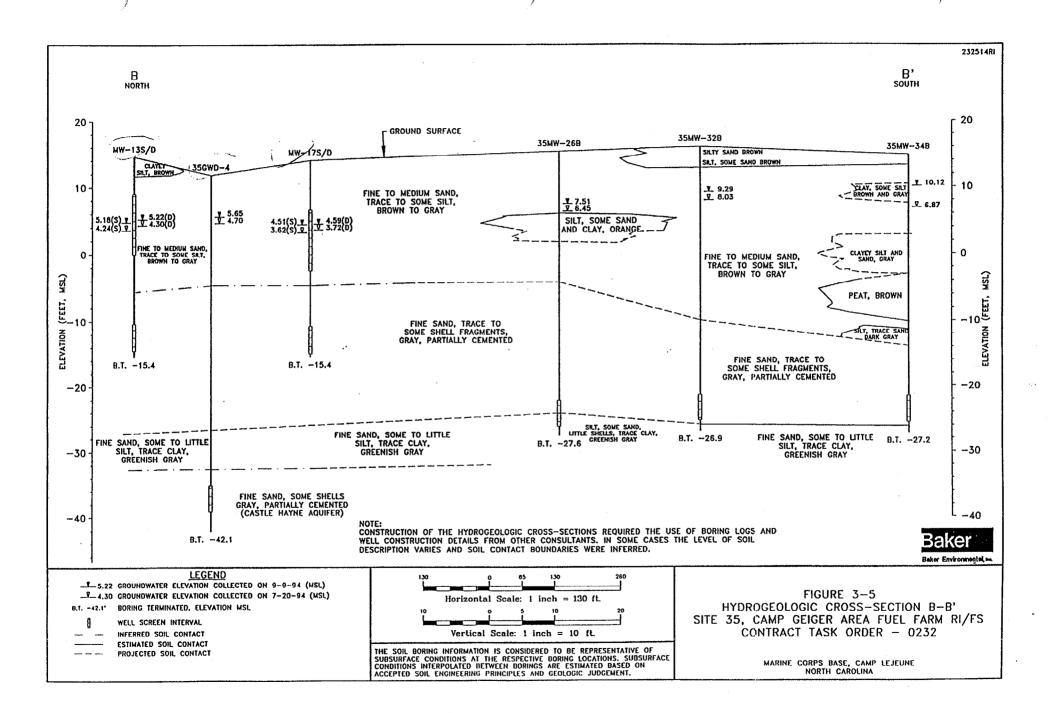
## TABLE 3-4

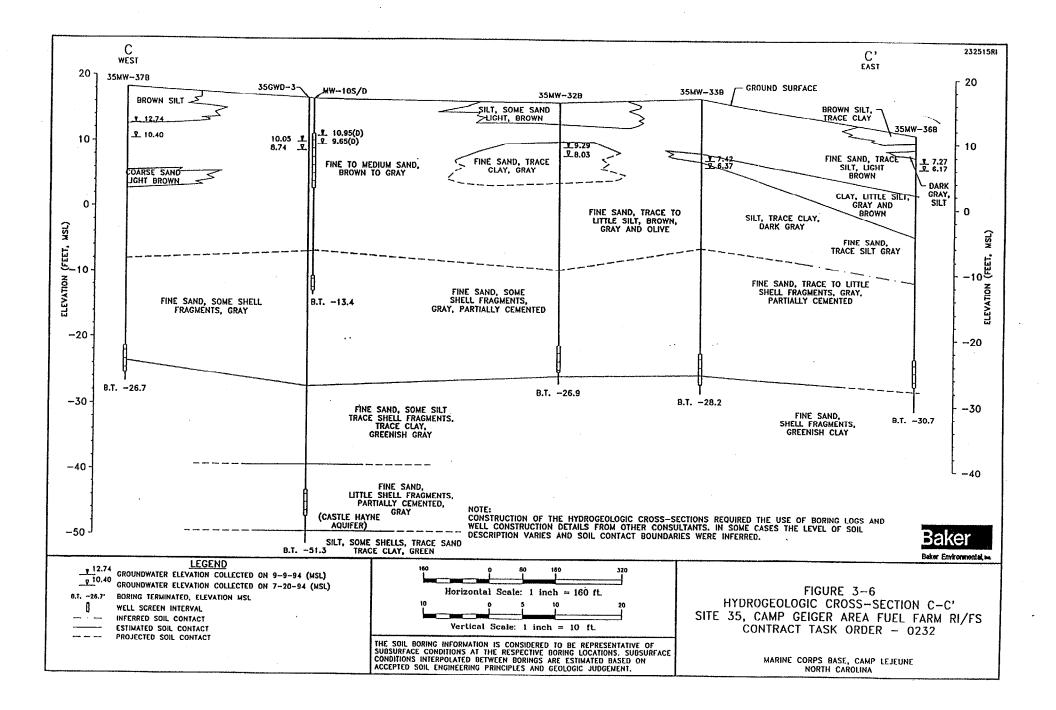
# SUMMARY OF WATER SUPPLY WELLS WITHIN A ONE-MILE RADIUS SITE 35, CAMP GEIGER AREA FUEL FARM MCB CAMP LEJEUNE, NORTH CAROLINA CONTRACT TASK ORDER 0232

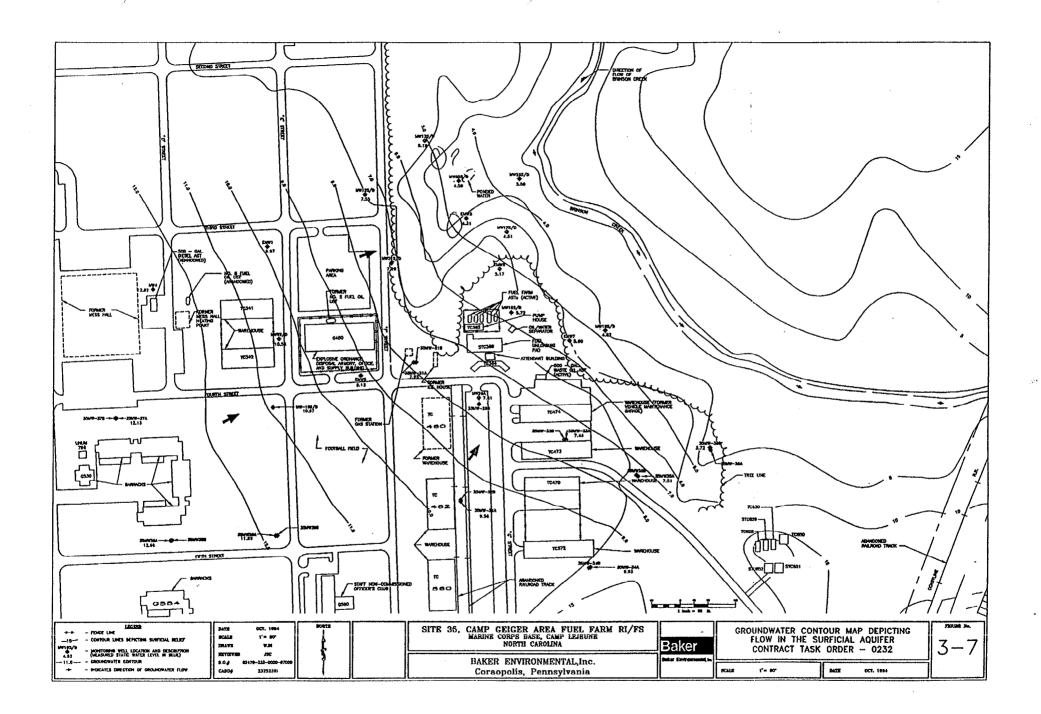

| Well No.               | USGS Identification<br>Number | Date Drilled | Drilling Company                   | Screen<br>Depth<br>(feet) | Screen<br>Depth<br>(feet)                 | Approximate Distance and<br>Direction from Site<br>(feet) |
|------------------------|-------------------------------|--------------|------------------------------------|---------------------------|-------------------------------------------|-----------------------------------------------------------|
| MCAS-203               | 3443230772653.1               |              |                                    | 173                       |                                           | 4620/South                                                |
| MCAS-106               | 3443260772701.1               | 1954 (est.)  |                                    |                           |                                           | 4290/South                                                |
| TC-1251                | 3443290772710.1               | 1975         | Carolina Well and Pump Co.         | 240                       | 120-140<br>160-170                        | 4290/South-Southwest                                      |
| TC-1253                | 3443370772729.1               | 1975         | Carolina Well and Pump Co.         | 250                       | 120-135<br>155-170                        | 4290/Southwest                                            |
| MCAS-1254              |                               |              |                                    |                           |                                           | 5280/Southwest                                            |
| TC-901                 | 3443450772727.1               | 1941         | Layne Atlantic Co.                 | 77                        | 46-56<br>66-76                            | 3465/Southwest                                            |
| TC-700 <sup>(1)</sup>  | 3443560772727.1               | 1941         |                                    | 76                        | 27.5-76                                   | 2970/West-Southwest                                       |
| TC-504                 | 3444090772804.1               | 1942         | Layne Atlantic Co.                 | 113                       | 50-60<br>75-85                            | 5280/West                                                 |
| TC-600                 | 344405077728.1                | 1941         | Layne Atlantic Co.                 | 70                        | 48-70                                     | 2640/West                                                 |
| NC-52 <sup>(1)</sup>   | 3444180772729.1               | 1941         | Layne Atlantic Co.                 | 70                        | 25-66                                     | 2640/West                                                 |
| TC-502 <sup>(1)</sup>  | 3444070772728.1               | 1941         | Virginia Machine and Well Co.      | 182                       | 110-184                                   | 2640/West-Northwest                                       |
| T-15 <sup>(1)</sup>    | 3444250772707.1               | 1959         | Heater Well Co.                    | 477                       |                                           | 1320/North                                                |
| X-25616 <sup>(1)</sup> | 3444350772640.1               | 1978         | NC Division of Environmental Mgmt. | 185                       |                                           | 2970/North-Northeast                                      |
| TC-100 <sup>(1)</sup>  | 3444280772729.1               | 1941         | Layne Atlantic Co.                 | 67                        |                                           | 3300/Northwest                                            |
| TC-104 <sup>(1)</sup>  | 3444300772729.1               | 1941 ·       | Virginia Machine and Well Co.      | 182                       | 107-182                                   | 3300/Northwest                                            |
| TC-202                 | 3444120772755.1               | 1942         |                                    | 80                        | 35-40<br>45-50<br>55-60<br>65-70<br>75-80 | 3300/Northwest                                            |
| TC-325                 | 3444120772755.2               | 1980         | Carolina Well and Pump Co.         |                           |                                           | 4620/West                                                 |

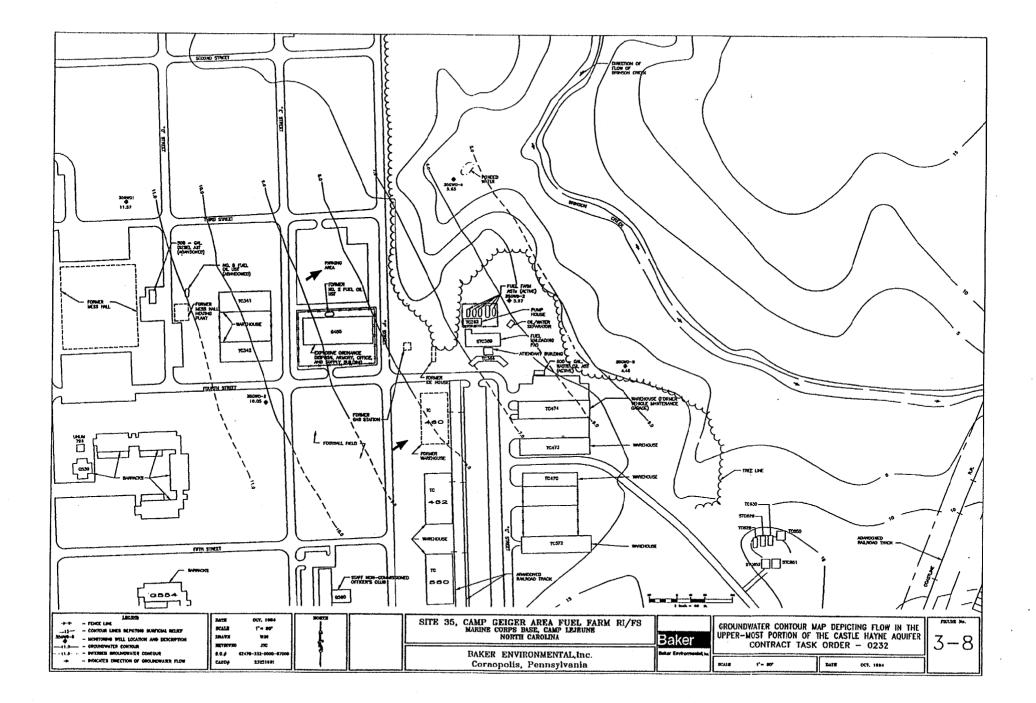
Notes: (1) Wells are listed as open hole wells according to the U. S. Geological Survey, Water Resources Investigations Report 89-4096.

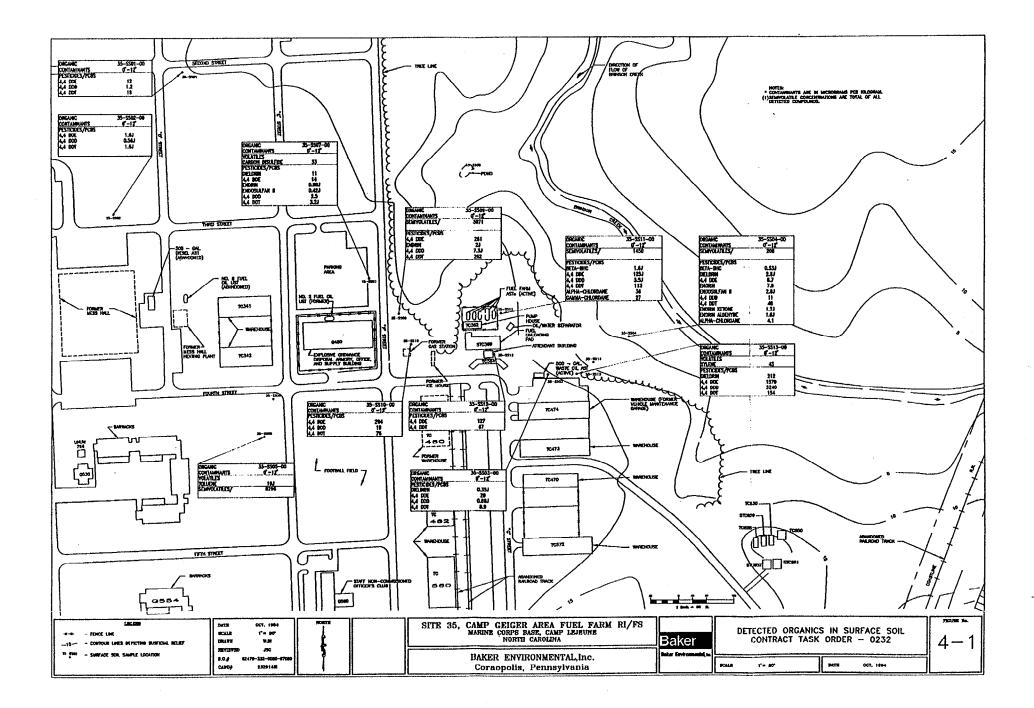

" No data was available.


est. - estimated

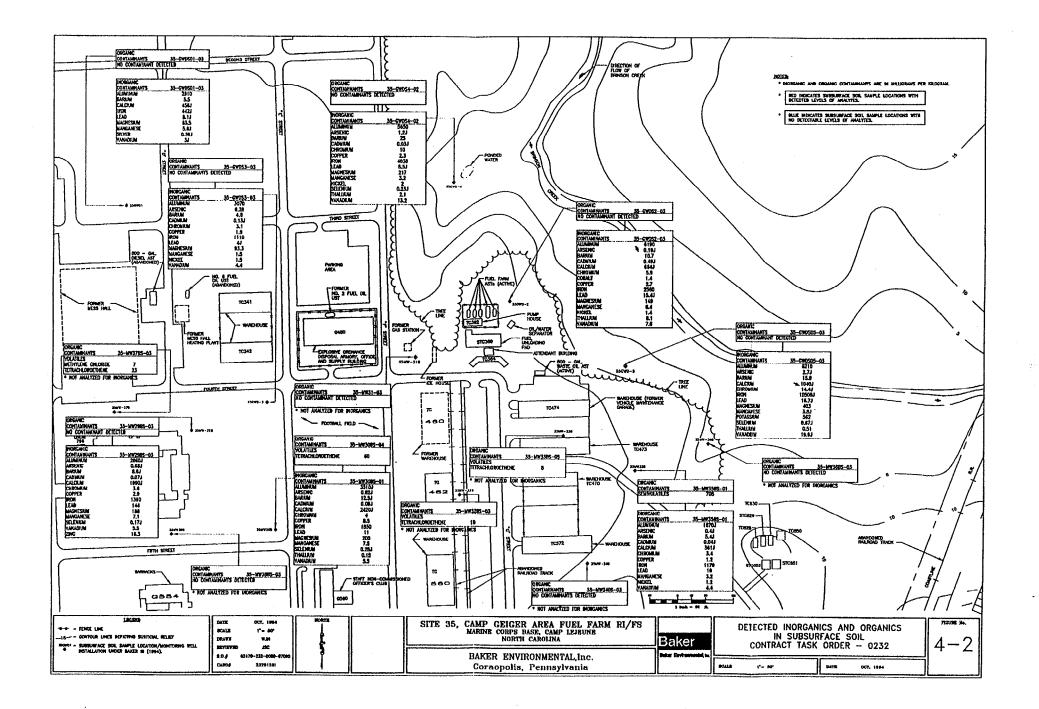

Source: According to U. S. Geological Survey, Water Resources Investigations Report 89-4096.

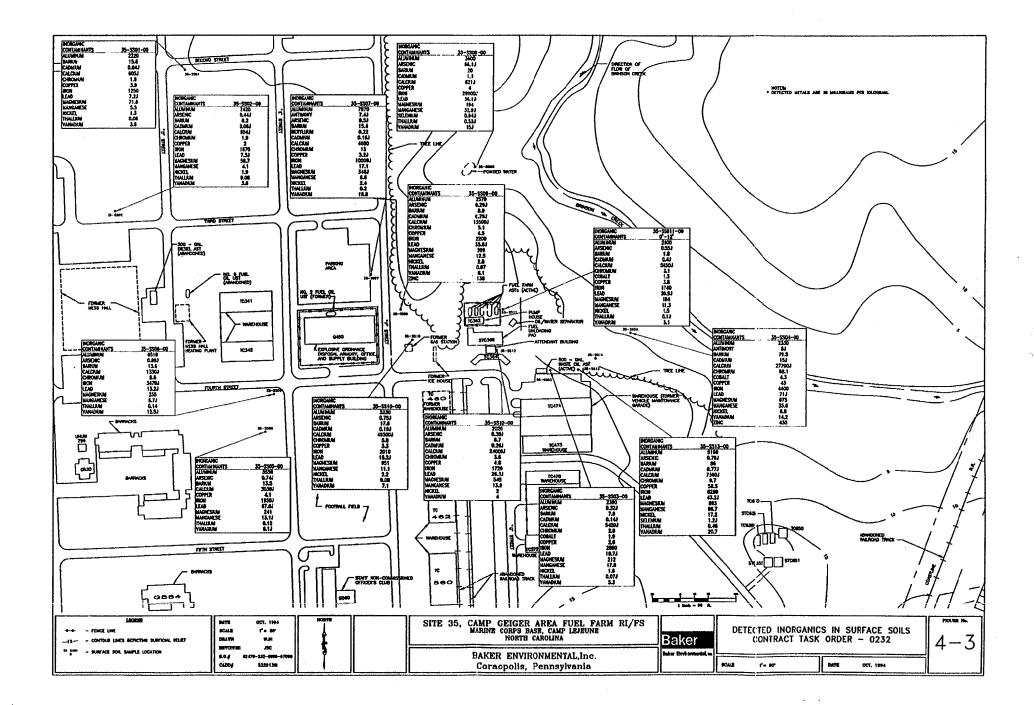




. And

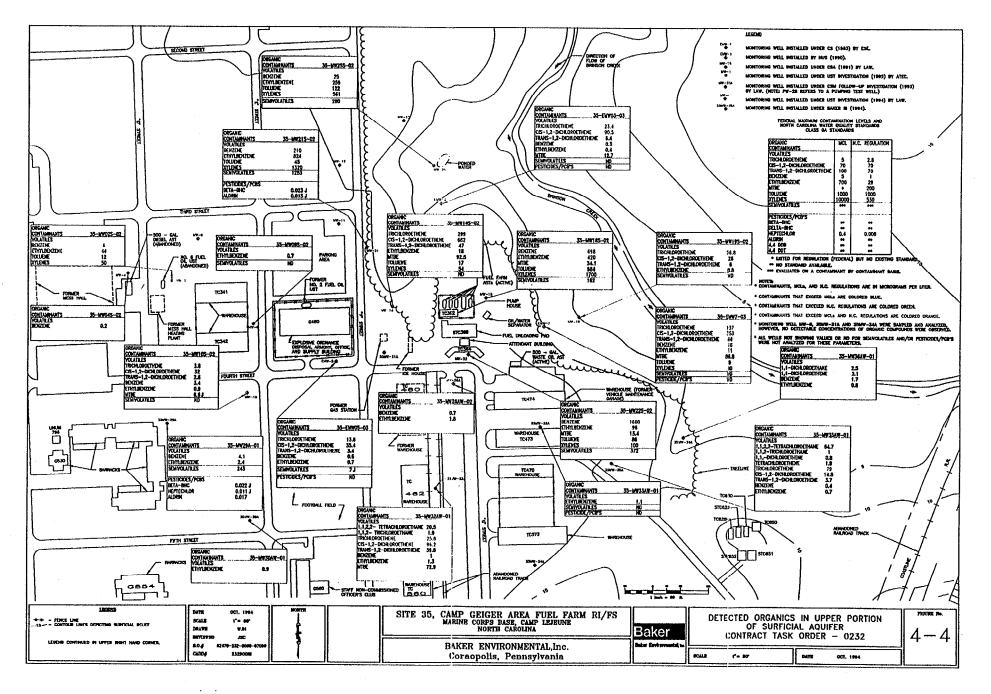


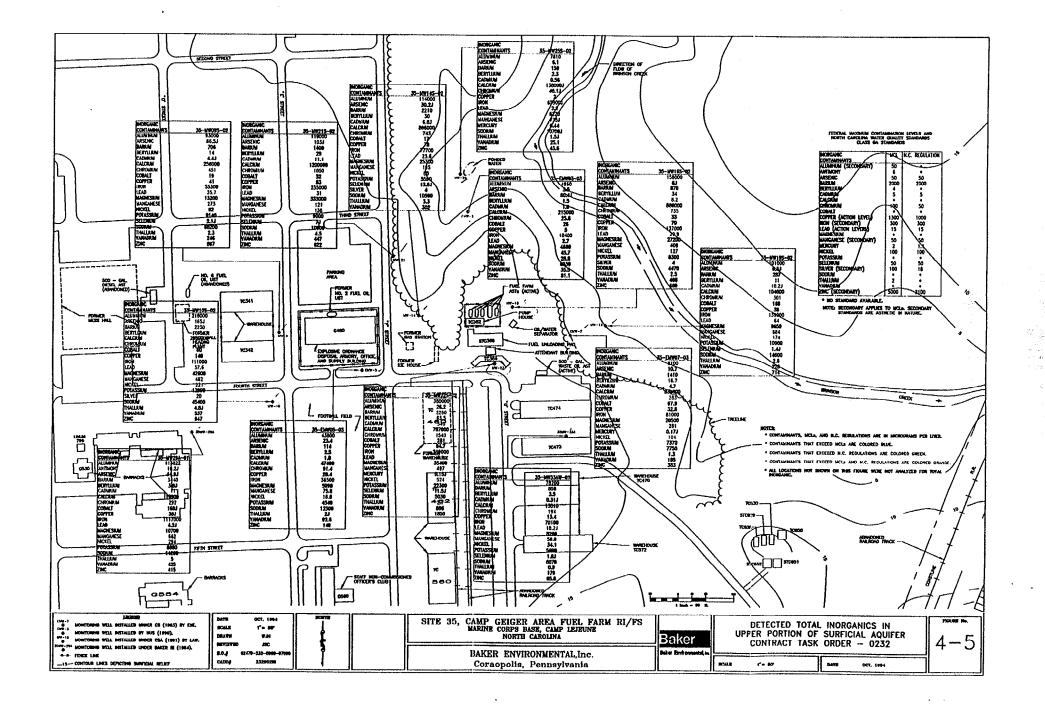


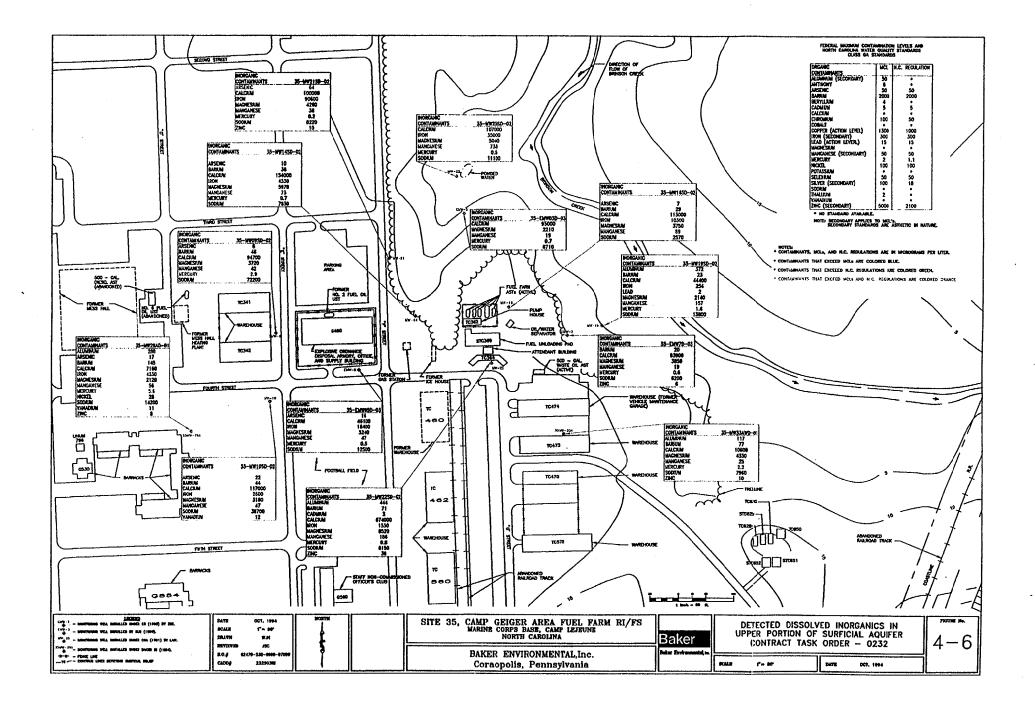



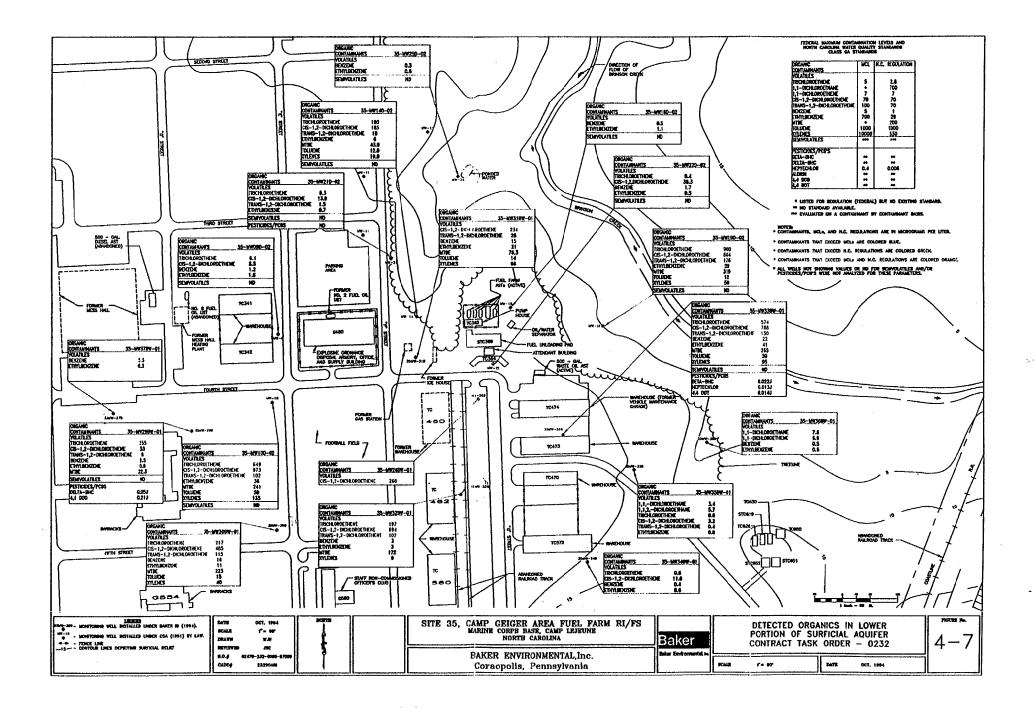


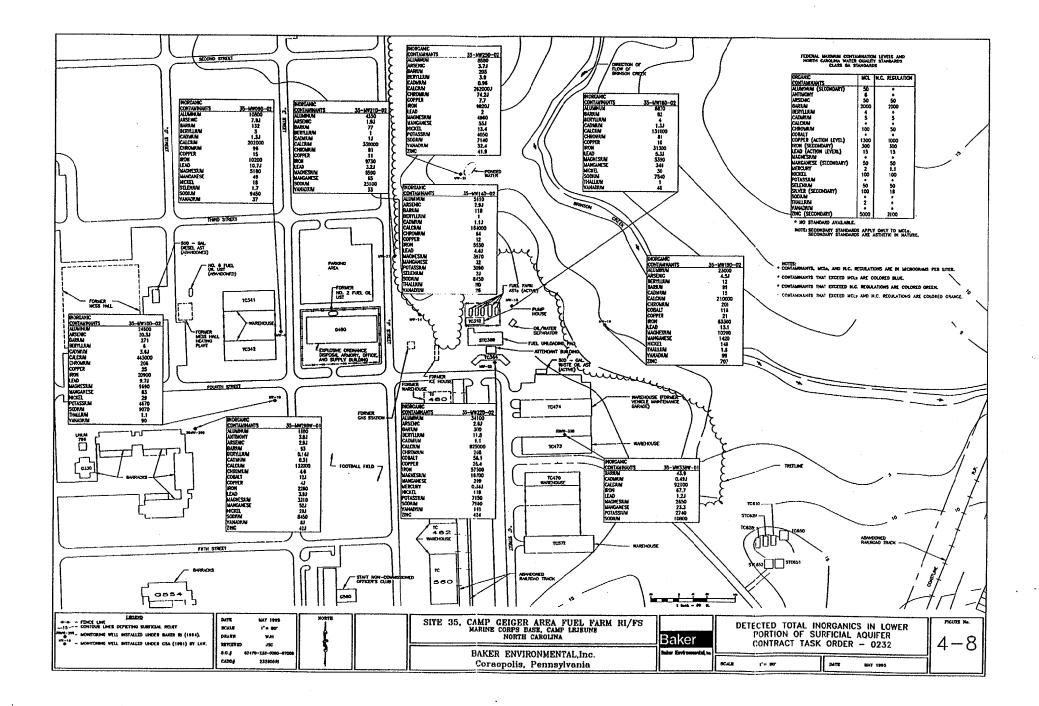



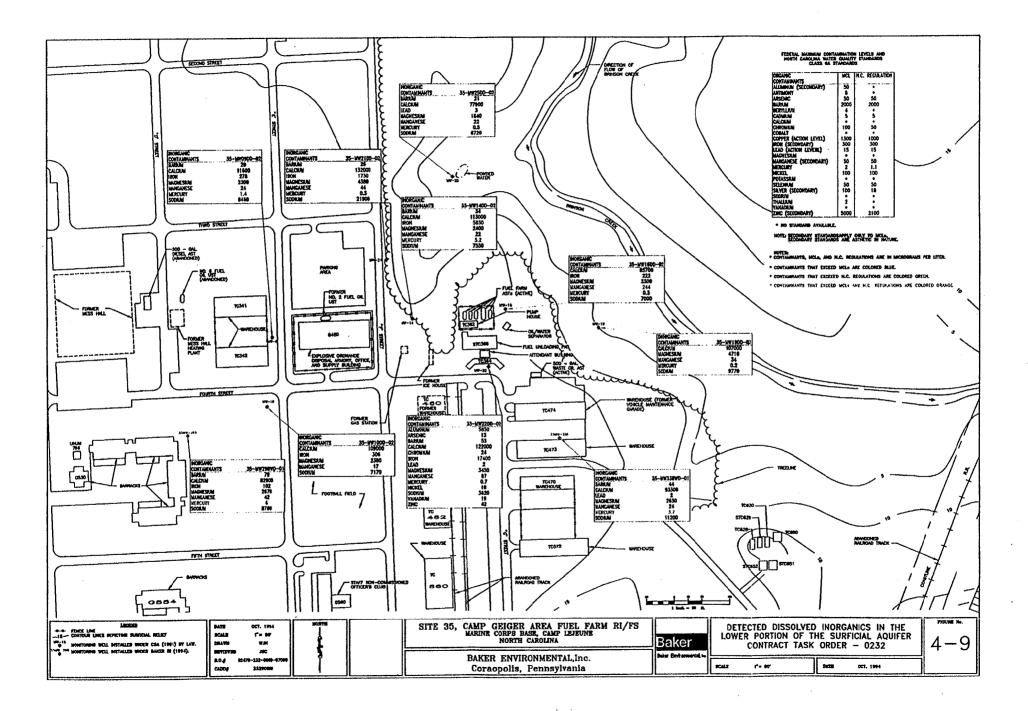


.



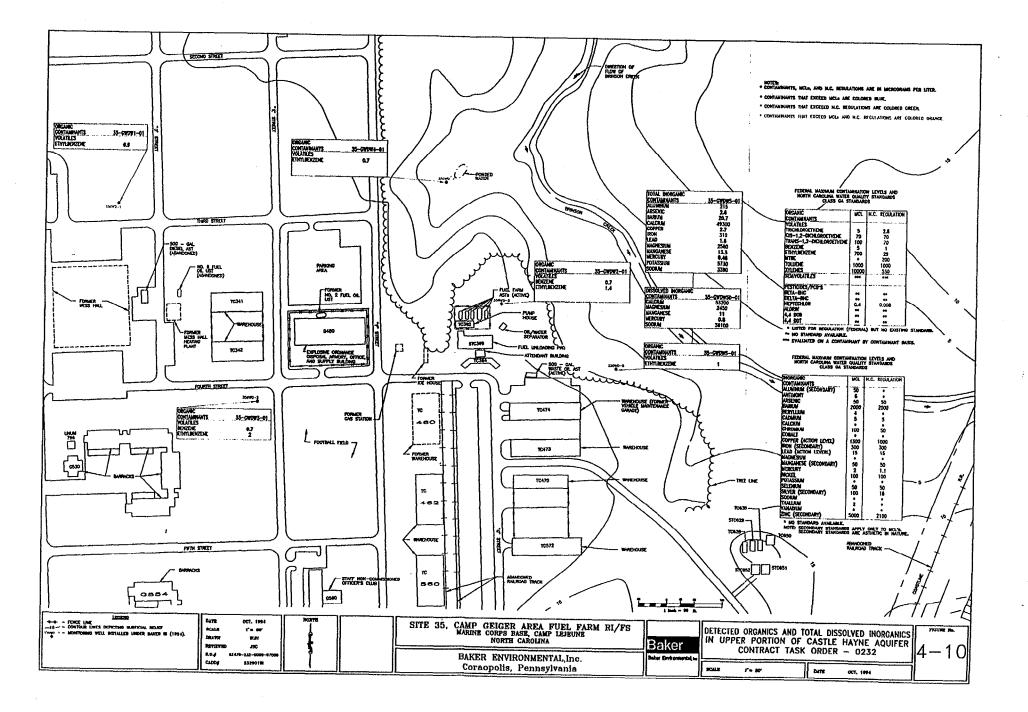




, former

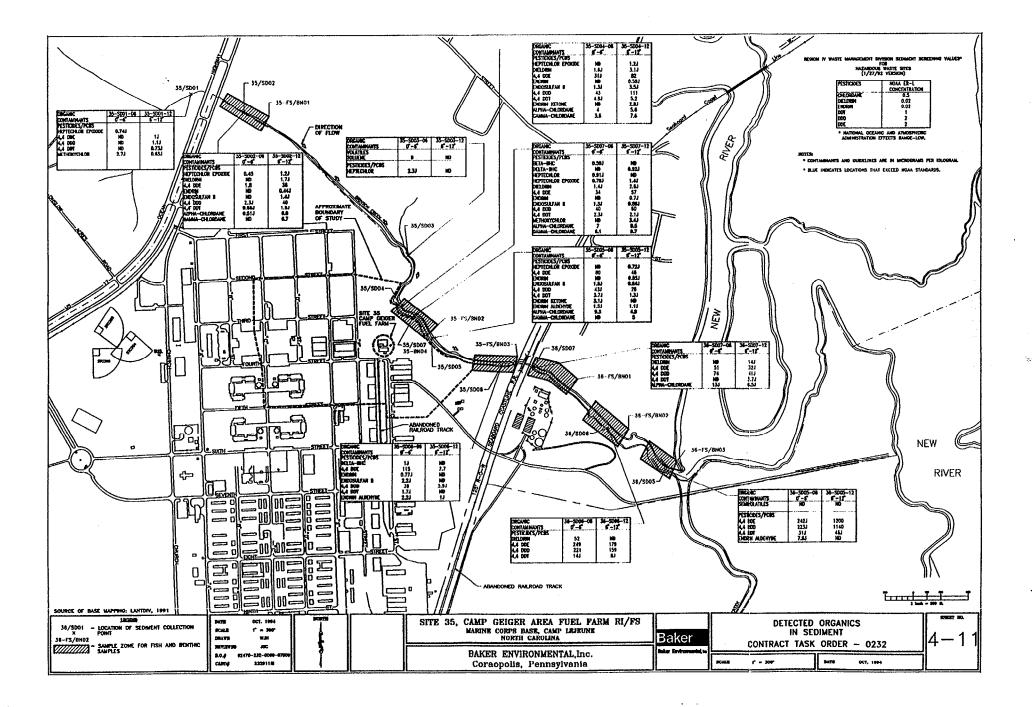


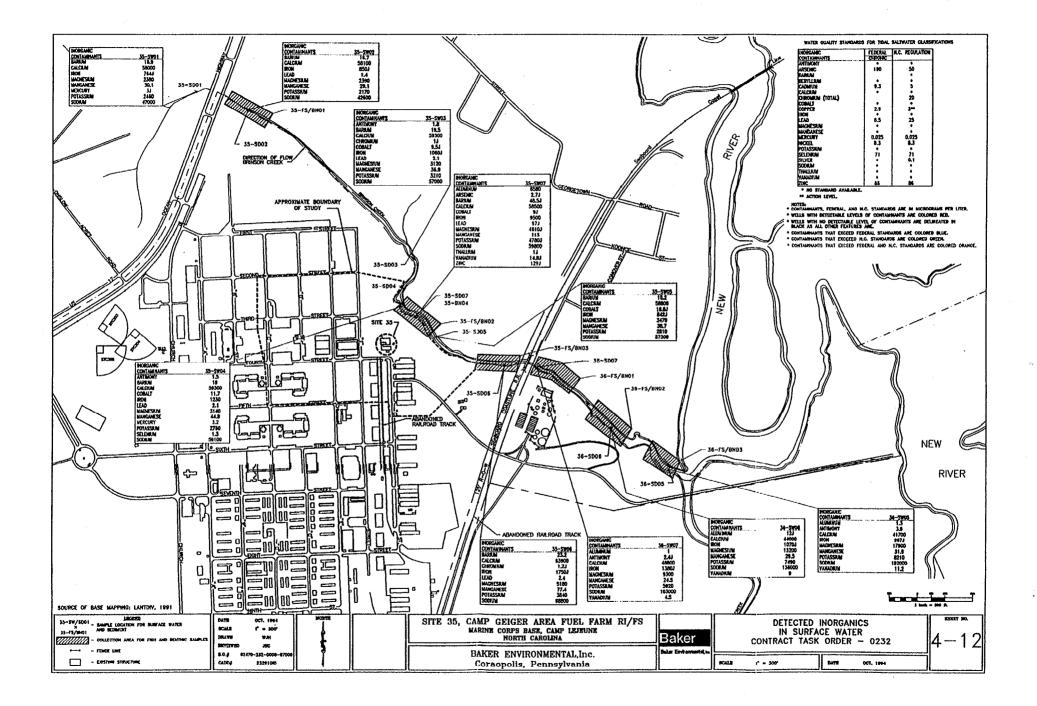



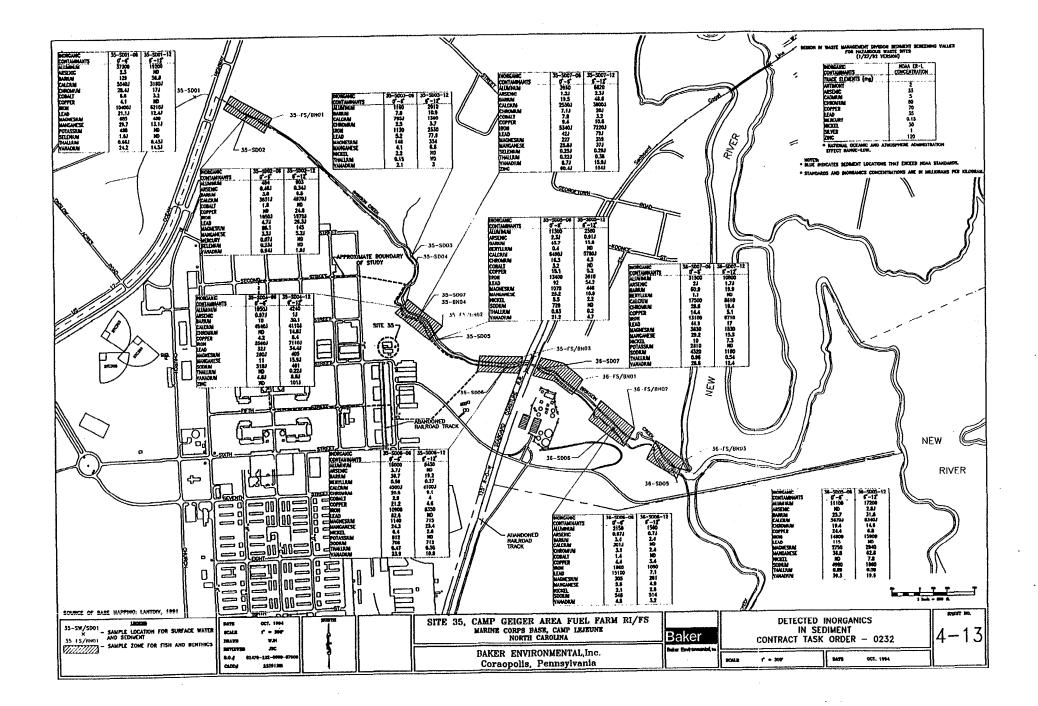

.







, ,



.







### ORGANIC DATA SUMMARY SURFACE SOIL OPERABLE UNIT NO. 10 (SITE 35) REMEDIAL INVESTIGATION, CTO-0232 MCB CAMP LEJEUNE, NORTH CAROLINA

|                            | Surface                      | Soil                                       |
|----------------------------|------------------------------|--------------------------------------------|
| Contaminant                | Range of Positive Detections | No. of Positive Detects/<br>No. of Samples |
| Carbon Disulfide           | 33                           | 1/10                                       |
| Toluene                    | 19J                          | 1/13                                       |
| Xylenes (total)            | 43                           | 1/13                                       |
| Phenol                     | 3,071                        | 1/13                                       |
| Acenaphthene               | 196J                         | 1/13                                       |
| Phenanthrene               | 191J - 1,186                 | 2/13                                       |
| Carbazole                  | 183J                         | 1/13                                       |
| Fluoranthene               | 423 - 1,567                  | 2/13                                       |
| Pyrene                     | <b>295J - 1,17</b> 3         | 2/13                                       |
| Butylbenzyphthalate        | 295J                         | 1/13                                       |
| Benzo(a)anthracene         | 566                          | 1/13                                       |
| Chrysene                   | 204J - 683                   | 2/13                                       |
| bis(2-Ethylhexyl)phthalate | 279J                         | 1/13                                       |
| Benzo(b)fluoranthene       | 337J - 1,186                 | 2/13                                       |
| Benzo(a)pyrene             | 625                          | 1/13                                       |
| Ideno (1,2,3-cd)pyrene     | 381                          | 1/13                                       |
| Dibenz(a,h)anthracene .    | 184J                         | 1/13                                       |
| Benzo(g,h,i)perylene       | 208J - 366                   | 2/13                                       |
| beta-BHC                   | 0.53J - 1.6J                 | 2/10                                       |
| Dieldrin                   | 0.35J - 212                  | 4/10                                       |
| 4,4'-DDE                   | 1.6J - 1,570                 | 10/10                                      |
| Endrin                     | 0.68J - 7.9                  | 3/10                                       |
| Endosulfan II              | 0.42J - 2.9J                 | 2/10                                       |
| 4,4'-DDD                   | 0.56J - 3,240                | 9/10                                       |
| 4,4'-DDT                   | 1.6J - 262                   | 10/10                                      |
| Endrin ketone              | 1.2J                         | 1/10                                       |
| Endrin aldehyde            | 0.37J - 1.6J                 | 2/10                                       |
| alpha-Chlordane            | 4.1 - 36                     | 2/10                                       |
| gamma-Chlordane            | 27                           | 1/10                                       |

Note:

te: Concentrations expressed in microgram per kilogram (μg/kg). J - Estimated value

All rejected results have been removed from the data.

Frequencies of detection are adjusted accordingly.

organics in the sediments in the lower reach, which would accumulate more of these types of contaminants.

- The fish community sampled in Brinson Creek was representative of an estuarine ecosystem with both freshwater and marine species present. In addition, the presence of blue crabs, grass shrimp, and crayfish support the active use of Brinson Creek by aquatic species.
- The absence of pathologies observed in the fish collected from Brinson Creek indicates that the surface water and sediment quality may not adversely impact the fish community.
- The benthic macroinvertebrate community demonstrated the typical tidal/freshwater species trend of primarily chironmids and oligochaetes in the upper reaches and polychaetes and amphipods in the lower reaches. Species representative of both tolerant and intolerant taxa were present. Species richness and densities were representative of an estuarine ecosystem.
- The aquatic community in Brinson Creek is representative of an estuarine community and does not appear to be significantly impacted by surface water and sediment quality.
- Surface soil quality indicated a potential for adversely impacting the terrestrial receptors that have indirect contact with the surface soils and copper in the tissue samples. This adverse impact is primarily due to cadmium in the surface soils. The cadmium in the surface soil is overestimating the adverse impacts since it was detected at a relatively high concentration in only one out of ten samples. In addition, the copper in the tissue samples does not appear to be site-related.

#### 8.2 <u>Recommendations</u>

Based on the data obtained it is recommended that:

- The remedial investigation at Site 35 be extended south of Fifth Street as needed to define the extent and locate the source(s) of solvent-related groundwater contamination in the surficial aquifer.
- The monitoring wells screened within the surficial aquifer that were sampled under the RI for inorganic contaminants (total phase only) be resampled using low-flow pumping techniques in order to more accurately quantify total metals contamination. Based on past experiences with the technique at Camp Lejeune, it is anticipated that samples taken using the low-flow technique will produce results similar to previously obtained as dissolved metals results.
- Obtain sediment samples along Brinson Creek at locations adjacent to and downstream of Site 35 and analyze for TPH (EPA Methods 5030 and 3550) so as to provide data regarding the extent of organic contamination that was "masked" by TICs in results obtained under the RI.

data suggests that suspended solids in the sample may be contributing to elevated total metals.

- No significant organic or inorganic contamination was detected in the samples collected from the deep wells (Figure 4-10). The absence of TCE in the Castle Hayne Aquifer indicates that the unit identified as a semi-confining unit is retarding the vertical migration of the contaminates. Although the unit possesses very little clay and is not the "typical" semi-confining unit, the high permeability of the soils above and below the unit as well as the groundwater gradient exhibited at the site provide for the surficial aquifer waters to flow along the top of the unit instead of passing through the unit. Vertical migration may be occurring at the site but at a very slow rate such that the contamination has not been detected in the upper portion of the Castle Hayne Aquifer.
- No VOCs were detected in surface water samples. Toluene was the only volatile organic compound detected in the sediments obtained from station 35-SW/SD03 within Brinson Creek (Figure 4-11). Although VOCs generally were not detected, heavy sheens and hydrocarbon odors were noted during sampling. During sample validation, it was noted that an unusually high number of Tentatively Identified Compounds (TICs) were identified in the samples.
- Although no SVOCs were detected in the surface water samples, a number of SVOCs were detected in the sediment samples collected from Brinson Creek. The SVOCs were detected in greater frequency in the samples collected from 6 to 12 inches. SVOCs were detected both upgradient and downgradient of Site 35. However, the highest levels of SVOCs were detected in samples obtained adjacent to Site 35.
- Pesticides were detected at all 10 sediment sample locations; however, no pesticides were observed in the surface water samples. The application of pest control to the surfaces Camp Geiger leads to pesticide detections in the sediments of Brinson Creek. The pesticides are carried from the surface soil to the creek via surface runoff and natural erosion. This statement can be further supported by the large number of pesticides detected in the surface soils at the site. PCBs were not detected in any of the surfaced water or sediment samples collected from Brinson Creek.
- Inorganics above the Federal Screening Values (WQSVs and NOAA standards) and/or NCWQS are present in one surface water and seven sediment locations. The only compound to exceed the NOAA standards in sediments was lead. The greatest concentration was detected in sample number 36-SD06-06 collected from the 0 to 6 inch interval. The detected lead is prevalent adjacent to and downstream of Site 35 and could be related to past site activities. Mercury, lead and zinc were detected at levels exceeding the Federal and North Carolina Standards in surface water samples 35-SW01, 35-SW04 and 35-SW07. The mercury was detected in two samples (35-SW01 and 35-SW04) located upstream of Site 35 which indicates contamination may originate from an upgradient location. The concentrations of lead and zinc detected in sample 35-SW07 may be attributed to past practices at

### INORGANIC DATA SUMMARY SURFACE SOIL **OPERABLE UNIT NO. 10 (SITE 35) REMEDIAL INVESTIGATION, CTO-0232** MCB CAMP LEJEUNE, NORTH CAROLINA

|           | -                                                                      |                                                                   | Surface Soil                    |                                               | · · · · · · · · · · · · · · · · · · ·                                  |
|-----------|------------------------------------------------------------------------|-------------------------------------------------------------------|---------------------------------|-----------------------------------------------|------------------------------------------------------------------------|
| Inorganic | Average<br>Base-Specific<br>Background <sup>(1)</sup><br>Concentration | Twice the Average<br>Base-Specific<br>Background<br>Concentration | Range of Positive<br>Detections | No. of<br>Positive Detects/<br>No. of Samples | No. of Times Exceeded Twice<br>the Average Background<br>Concentration |
| Aluminum  | 2,104                                                                  | 4,209                                                             | 2,020 - 7,870                   | 13/13                                         | 3                                                                      |
| Antimony  | 2.41                                                                   | 4.81                                                              | 7.4J - 8J                       | 2/10                                          | 2                                                                      |
| Arsenic   | 0.39                                                                   | 0.77                                                              | 0.29J - 66.1J                   | 11/13                                         | 4                                                                      |
| Barium    | 7.1                                                                    | 14.2                                                              | 6.2 - 86                        | 13/13                                         | 6                                                                      |
| Beryllium | 0.11                                                                   | 0.22                                                              | 0.22                            | 1/12                                          | 0                                                                      |
| Cadmium   | 0.31                                                                   | 0.61                                                              | 0.04J - 15J                     | 10/10                                         | 1                                                                      |
| Calcium   | 534                                                                    | 1,069                                                             | 604J - 49,500J                  | 13/13                                         | 10                                                                     |
| Chromium  | 2.38                                                                   | 4.77                                                              | 1.9 - 98.1                      | 11/13                                         | 6                                                                      |
| Cobalt    | 1.17                                                                   | 2.35                                                              | 1.3 - 4.3                       | 3/13                                          | 1                                                                      |
| Copper    | 4.51                                                                   | 9.02                                                              | 2 - 58.3                        | 12/13                                         | 2                                                                      |
| Iron      | 1,257                                                                  | 2,515                                                             | 1,250 - 29,900J                 | 13/13                                         | 6                                                                      |
| Lead      | 12.1                                                                   | 24.2                                                              | 7.2 - 71J                       | 13/13                                         | 7                                                                      |
| Magnesium | 84.7                                                                   | 169                                                               | 58.7 - 951                      | 13/13                                         | 11                                                                     |
| Manganese | 7.04                                                                   | 14.1                                                              | 4.1 - 66.7                      | 13/13                                         | 4                                                                      |
| Nickel    | 1.55                                                                   | 3.09                                                              | 1.3 - 17.2                      | 10/13                                         | 1                                                                      |
| Selenium  | 0.37                                                                   | 0.74                                                              | 0.94J - 1.2J                    | 2/13                                          | 2                                                                      |
| Thallium  | 0.4                                                                    | 0.8                                                               | 0.06 - 0.53J                    | 11/13                                         | 0                                                                      |
| Vanadium  | 3.27                                                                   | 6.54                                                              | 3.6 - 20.7                      | 13/13                                         | 6                                                                      |
| Zinc      | 4.92                                                                   | 9.84                                                              | 138 - 430                       | 2/2                                           | 2                                                                      |

Notes:

Concentrations expressed in milligram per kilogram (mg/kg). Soil background concentrations are based on reference background soil samples collected from MCB Camp Lejeune investigations. ND - Not Detected

J - Estimated value

All rejected results have been removed from the data. Frequencies of detection are adjusted accordingly.

#### ORGANIC DATA SUMMARY SUBSURFACE SOIL OPERABLE UNIT NO. 10 (SITE 35) REMEDIAL INVESTIGATION, CTO-0232 MCB CAMP LEJEUNE, NORTH CAROLINA

|                      | Subsurface Soil                 |                                            |  |  |  |  |  |
|----------------------|---------------------------------|--------------------------------------------|--|--|--|--|--|
| Contaminant          | Range of Positive<br>Detections | No. of Positive Detects/<br>No. of Samples |  |  |  |  |  |
| Methylene Chloride   | 7J                              | 5/19                                       |  |  |  |  |  |
| Acetone              | 11J - 144J                      | 5/19                                       |  |  |  |  |  |
| Tetrachloroethene    | 8 - 60                          | 4/19                                       |  |  |  |  |  |
| Pyrene               | 283J                            | 1/8                                        |  |  |  |  |  |
| Benzo(b)fluoranthene | 425                             | 1/8                                        |  |  |  |  |  |

Note:

Concentrations expressed in microgram per kilogram (µg/kg).

J - Estimated value

All rejected results have been removed from the data.

Frequencies of detection are adjusted accordingly.

-

### INORGANIC DATA SUMMARY SUBSURFACE SOIL OPERABLE UNIT NO. 10 (SITE 35) REMEDIAL INVESTIGATION, CTO-0232 MCB CAMP LEJEUNE, NORTH CAROLINA

|           |                                                                     |                                                                   | Subsurface Soil                 |                                               |                                                                        |
|-----------|---------------------------------------------------------------------|-------------------------------------------------------------------|---------------------------------|-----------------------------------------------|------------------------------------------------------------------------|
| Inorganic | Average Base-Specific<br>Background <sup>(1)</sup><br>Concentration | Twice the<br>Average Base-Specific<br>Background<br>Concentration | Range of Positive<br>Detections | No. of<br>Positive Detects/<br>No. of Samples | No. of Times Exceeded<br>Twice the Average<br>Background Concentration |
| Aluminum  | 3,563                                                               | 7,127                                                             | 1,870J - 6,210                  | 8/8                                           | 0                                                                      |
| Arsenic   | 0.38                                                                | 0.76                                                              | 0.19J - 2.7J                    | 7/8                                           | 1                                                                      |
| Barium    | 5.65                                                                | 11.3                                                              | 4.8 - 25                        | 8/8                                           | 3                                                                      |
| Cadmium   | 0.37                                                                | 0.74                                                              | 0.03J - 0.49J                   | 6/6                                           | 0                                                                      |
| Calcium   | 277                                                                 | 554                                                               | 361J - 2,420J                   | 6/8                                           | 4                                                                      |
| Chromium  | 4.19                                                                | 8.37                                                              | 3.1 - 14.4J                     | 7/8                                           | 2                                                                      |
| Cobalt    | 0.56                                                                | 1.12                                                              | 1.4                             | 1/8                                           | 1                                                                      |
| Copper    | 1.08                                                                | 2.15                                                              | 1.2 - 8.5                       | 6/8                                           | 4                                                                      |
| Iron      | 1,066                                                               | 2,133                                                             | 442J - 10,500J                  | 8/8                                           | 3                                                                      |
| Lead      | 3.64                                                                | 7.27                                                              | 4J - 144                        | 8/8                                           | 6                                                                      |
| Magnesium | 106                                                                 | 212                                                               | 63.5 - 403                      | 7/8                                           | 2                                                                      |
| Manganese | 3.54                                                                | 7.07                                                              | 1.5 - 7.5                       | 8/8                                           | 2                                                                      |
| Nickel    | 1.31                                                                | 2.61                                                              | 1.2 - 2                         | 4/8                                           | 0                                                                      |
| Potassium | 119                                                                 | 238                                                               | 562                             | 1/8                                           | 1                                                                      |
| Selenium  | 0.4                                                                 | 0.79                                                              | 0.17J - 0.67J                   | 4/8                                           | 0                                                                      |
| Silver    | 0.52                                                                | 1.05                                                              | 0.39J                           | 1/8                                           | 0                                                                      |
| Thallium  | 0.34                                                                | 0.67                                                              | 0.1 - 2.1                       | 4/8                                           | 1                                                                      |
| Vanadium  | 4.77                                                                | 9.53                                                              | 3J - 19.9J                      | 8/8                                           | 2                                                                      |
| Zinc      | 2.16                                                                | 4.32                                                              | 16.3                            | 1/3                                           | 1                                                                      |

Notes: Concentrations expressed in milligram per kilogram (mg/kg).

(1) Soil background concentrations are based on reference background soil samples collected from MCB Camp Lejeune investigations.

ND - Not Detected

J - Estimated value

All rejected results have been removed from the data. Frequencies of detection are adjusted accordingly.

1

1

## TABLE 6-5

# GROUNDWATER DATA SUMMARY OPERABLE UNIT NO. 10 (SITE 35) REMEDIAL INVESTIGATION, CTO-0232 MCB CAMP LEJEUNE, NORTH CAROLINA

|                             |                      | Groundwate         | r Criteria                                  |                | Frequency           | /Range                                        | C                             | Comparison to Cri           | teria                       |                |
|-----------------------------|----------------------|--------------------|---------------------------------------------|----------------|---------------------|-----------------------------------------------|-------------------------------|-----------------------------|-----------------------------|----------------|
|                             |                      |                    | Federal Health<br>Advisories <sup>(3)</sup> |                |                     |                                               |                               | Above                       | Detects<br>Health<br>sories |                |
| Contaminant                 | NCWQS <sup>(1)</sup> | MCL <sup>(2)</sup> | 10 kg<br>Child                              | 70 kg<br>Adult | Concentration Range | No. of<br>Positive Detects/<br>No. of Samples | No. of Detects<br>Above NCWQS | No. of Detects<br>Above MCL | 10 kg<br>Child              | 70 kg<br>Adult |
| 1,1,2,2-Tetrachloroethane   | NE                   | NE                 | NE                                          | NE             | 20.5 - 64.7         | 2/50                                          | NA                            | NA                          | NA                          | NA             |
| 1,1,2-Trichloroethane       | NE                   | 5                  | 400                                         | 1,000          | 1 - 1.9             | 2/50                                          | NA                            | 0                           | 0                           | 0              |
| 1,1-Dichloroethane          | 700                  | NE                 | NE                                          | NE             | 2.5 - 7.6           | 3/50                                          | 0                             | NA                          | NA                          | NA             |
| 1,1-Dichloroethene          | 7                    | 7                  | 1,000                                       | 4,000          | 0.8 - 6.9           | 4/50                                          | 0                             | 0                           | 0                           | 0              |
| Chloroform                  | 0.19                 | 100                | 100                                         | 400            | 0.6                 | 1/50                                          | 1                             | 0                           | 0                           | 0              |
| Tetrachloroethene           | 0.7                  | 5                  | 1,000                                       | 5,000          | 1.9                 | 1/50                                          | 1                             | 0                           | 0                           | 0              |
| cis-1,2-Dichloroethene      | 70                   | . 70               | 3,000                                       | 11,000         | 3.2 - 973           | 22/50                                         | 12                            | 12                          | 0                           | 0              |
| trans-1,2-Dichloroethene    | 70                   | 100                | 2,000                                       | 6,000          | 0.4 - 176           | 18/50                                         | 5                             | 5                           | 0                           | 0              |
| Trichloroethene             | 2.8                  | 5                  | NE                                          | NE             | 0.4 - 900           | 20/50                                         | 17                            | 16                          | NA                          | NA             |
| Benzene                     | 1                    | 5                  | NE                                          | NE             | 0.2 - 1,660         | 29/50                                         | 17                            | 10                          | NA                          | NA             |
| Toluene                     | 1,000                | 1,000              | 2,000                                       | 7,000          | 0.3 - 984           | 42/50                                         | 0                             | 0                           | 0                           | 0              |
| Ethylbenzene                | 29                   | 700                | 1,000                                       | 3,000          | 0.3 - 824           | 42/50                                         | 8                             | 1                           | 0                           | 0              |
| Methyl Tertiary Butyl Ether | 200                  | NE                 | 500                                         | 2,000          | 6.6J - 319          | 15/50                                         | 4                             | NA                          | 0                           | 0              |
| Xylenes (Total)             | 530                  | 10,000             | 40,000                                      | 100,000        | 0.6 - 1,700         | 45/50                                         | 3                             | 0                           | 0                           | 0              |
| Phenol                      | NE                   | NE                 | 6,000                                       | 20,000         | 11 - 23             | 2/24                                          | NA                            | NA                          | 0                           | 0              |
| 2-Methylphenol              | NE                   | NE                 | NE                                          | NE             | 17                  | 1/24                                          | NA                            | NA                          | NA                          | NA             |
| 4-Methylphenol              | NE                   | NE                 | NE                                          | NE             | 6J                  | 1/24                                          | NA                            | NA                          | NA                          | NA             |
| 2,4-Dimethylphenol          | NE                   | NE                 | NE                                          | NE             | 74                  | 1/24                                          | NA                            | NA                          | NA                          | NA             |
| Naphthalene                 | NE                   | NE                 | 400                                         | 1,000          | 7J - 499            | 6/24                                          | NA                            | NA                          | 1                           | 0              |
| 2-Methylnaphthalene         | NE                   | NE                 | NE                                          | NE             | 70 - 668            | 5/24                                          | NA                            | NA                          | NA                          | NA             |
| Dibenzofuran                | NE                   | NE                 | NE                                          | NE             | 8J - 23             | 3/24                                          | NA                            | NA                          | NA                          | NA             |
| Fluorene                    | NE                   | NE                 | NE                                          | NE             | 8J - 22             | 3/24                                          | NA                            | NA                          | NA                          | NA             |
| Phenanthrene                | NE                   | NE                 | NE                                          | NE             | 10J - 52            | 3/24                                          | NA                            | NA                          | NA                          | NA             |

# TABLE 6-5 (Continued)

# GROUNDWATER DATA SUMMARY OPERABLE UNIT NO. 10 (SITE 35) REMEDIAL INVESTIGATION, CTO-0232 MCB CAMP LEJEUNE, NORTH CAROLINA

•

|             |                      | Groundwate         | r Criteria       |                | Frequency            | /Range                                        | C                             | Comparison to Cri           | iteria                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                             |
|-------------|----------------------|--------------------|------------------|----------------|----------------------|-----------------------------------------------|-------------------------------|-----------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|
|             |                      |                    | Federal<br>Advis |                |                      | No. of                                        |                               |                             | Above                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Detects<br>Health<br>sories |
| Contaminant | NCWQS <sup>(I)</sup> | MCL <sup>(2)</sup> | 10 kg<br>Child   | 70 kg<br>Adult | Concentration Range  | No. of<br>Positive Detects/<br>No. of Samples | No. of Detects<br>Above NCWQS | No. of Detects<br>Above MCL | 10 kg<br>Child                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 70 kg<br>Adult              |
| Anthracene  | NE                   | NE                 | NE               | NE             | 71                   | 1/24                                          | NA                            | NA                          | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | NA Set                      |
| Carbazole   | NE                   | NE                 | NE               | NE             | · 12 - 13            | 2/24                                          | NA                            | NA                          | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | NA 👘                        |
| beta-BHC    | NE                   | NE                 | NE               | NE             | 0.022J - 0.023J      | 3/7                                           | NA                            | NA                          | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | NA                          |
| delta-BHC   | NE                   | NE                 | NE               | NE             | 0.05J                | 1/7                                           | NA                            | NA                          | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | NA                          |
| Heptachlor  | 0.008                | 0.4                | 5                | 5              | 0.011J - 0.013J      | 2/7                                           | 2                             | 0                           | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0 50                        |
| Aldrin      | NE                   | NE                 | 0.3              | 0.3            | 0.013J - 0.017J      | · 2/7                                         | NA                            | NA                          | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0                           |
| 4,4'-DDD    | NE                   | NE                 | NE               | NE             | 0.21J                | 1/7                                           | NA                            | NA                          | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | NA                          |
| 4,4'-DDT    | NE                   | NE                 | NE               | NE             | 0.014J               | 1/7                                           | NA                            | NA                          | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | NA                          |
| Aluminum    | NE                   | NE                 | NE               | NE             | 215 - 380,000        | 23/24                                         | NA                            | NA                          | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | NA                          |
| Antimony    | NE                   | 6                  | 10               | 15             | 3.8J - 10.2J         | 2/10                                          | NA                            | 1                           | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0                           |
| Arsenic     | 50                   | 50                 | NE               | NE             | 1.9J - 165J          | 21/23                                         | 3                             | 3                           | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | NA                          |
| Barium      | 2,000                | 2,000              | NE               | NĒ             | 20.7 - 3,440         | 24/24                                         | 4                             | 4                           | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | NA                          |
| Beryllium . | NE                   | 4                  | 4,000            | 20,000         | 0.14 <b>J -</b> 63.5 | 22/24                                         | NA                            | 10                          | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0                           |
| Calcium     | NE                   | NE                 | NE               | NE             | 13,510 - 2,050,000   | 24/24                                         | NA                            | NA                          | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | NA                          |
| Chromium    | 50                   | 100                | 200              | 800            | 4.6 - 1,540          | 22/24                                         | 19                            | 14                          | 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4                           |
| Cadmium     | 5                    | 5                  | 5                | 20             | 0.31 - 340           | 22/24                                         | 8                             | 8                           | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1                           |
| Cobalt      | NE                   | NE                 | NE               | NE             | 12J - 281            | 13/24                                         | NA                            | NA                          | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | NA                          |
| Copper      | 1,000                | 1,300              | NE               | NE             | 2 - 140              | 23/24                                         | 0                             | 0                           | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | NA                          |
| Iron        | 300                  | NE                 | NE               | NE             | 67.7 - 255,000       | 24/24                                         | 23                            | NA                          | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | NA                          |
| Lead        | 15                   | 15                 | NE               | NE             | 1.2J - 64            | 21/24                                         | 7                             | 7                           | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | NA                          |
| Magnesium   | NE                   | NE                 | NE               | NE             | 2,560 - 42,600       | 24/24                                         | NA                            | NA                          | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | NA                          |
| Manganese   | 50                   | 50 <sup>(4)</sup>  | NE               | NE             | 13.3 - 1,420         | 24/24                                         | 19                            | 19                          | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | NA                          |
| Mercury     | 1.1                  | 2                  | NE               | 2              | 0.15J - 0.84J        | 5/24                                          | 0                             | 0                           | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0                           |
|             |                      |                    |                  |                | $\bigcirc$           |                                               |                               |                             | A Real Property in the second |                             |

### TABLE 6-5 (Continued)

### GROUNDWATER DATA SUMMARY OPERABLE UNIT NO. 10 (SITE 35) REMEDIAL INVESTIGATION, CTO-0232 MCB CAMP LEJEUNE, NORTH CAROLINA

|             |                      | Groundwate           | r Criteria     |                                | Frequency           | /Range                                        | (                             | Comparison to Cri           | iteria         |                             |
|-------------|----------------------|----------------------|----------------|--------------------------------|---------------------|-----------------------------------------------|-------------------------------|-----------------------------|----------------|-----------------------------|
|             |                      |                      |                | Health<br>ories <sup>(3)</sup> |                     |                                               |                               |                             | Above          | Detects<br>Health<br>sories |
| Contaminant | NCWQS <sup>(1)</sup> | MCL <sup>(2)</sup>   | 10 kg<br>Child | 70 kg<br>Adult                 | Concentration Range | No. of<br>Positive Detects/<br>No. of Samples | No. of Detects<br>Above NCWQS | No. of Detects<br>Above MCL | 10 kg<br>Child | 70 kg<br>Adult              |
| Nickel      | 100                  | 100                  | 500            | 1,700                          | 13.4 - 524          | 19/24                                         | 9                             | 9                           | 1              | 0                           |
| Potassium   | NE                   | NE                   | NE             | NE                             | 2,740 - 22,300      | 17/24                                         | NA                            | NA                          | NA             | NA                          |
| Selenium    | 50                   | 50                   | NE             | NE                             | 1.4J - 13.5J        | 8/16                                          | 0                             | 0                           | NA             | NA                          |
| Silver      | -18                  | NE                   | 200            | 200                            | 4 - 20              | 3/24                                          | . 1                           | NA                          | 0              | 0                           |
| Sodium      | NE                   | NE                   | NE             | NE                             | 4,470 - 68,200      | 23/24                                         | NA                            | NA                          | NA             | NA                          |
| Thallium    | NE                   | 2                    | 7              | 20                             | 0.9 - 5             | 15/24                                         | NA                            | 8                           | 0              | 0                           |
| Vanadium    | NE                   | NE                   | NE             | NE                             | 8J - 886            | 22/24                                         | NA                            | NA                          | NA             | NA                          |
| Zinc        | 2,100                | 5,000 <sup>(4)</sup> | 3,000          | 10,000                         | 41.9 - 1,850        | 16/18                                         | 0                             | 0                           | 0              | 0                           |

Notes: Concentrations expressed in microgram per liter (µg/L).

(1) NCWQS = North Carolina Water Quality Standards for Groundwater

(2) MCL = Safe Drinking Water Act Maximum Contaminant Level

<sup>(3)</sup> Longer Term Health Advisories for a 10 kg Child and 70 kg Adult

(4) SMCL = Secondary Maximum Contaminant Level

NE - No Criteria Established

NA - Not Applicable

NJ - Estimated/tentative value

J - Estimated value

All rejected results have been removed from the data. Frequencies of detection are adjusted accordingly.

### SURFACE WATER DATA SUMMARY OPERABLE UNIT NO. 10 (SITE 35) REMEDIAL INVESTIGATION, CTO-0232 MCB CAMP LEJEUNE, NORTH CAROLINA

|             | Sur                  | face Water Crite     | eria              |                                                                |                                            |                                                     |                           | (                                  | Comparison to Crite  | eria           |                                                                              |
|-------------|----------------------|----------------------|-------------------|----------------------------------------------------------------|--------------------------------------------|-----------------------------------------------------|---------------------------|------------------------------------|----------------------|----------------|------------------------------------------------------------------------------|
|             |                      | Federal<br>AWC       |                   |                                                                | Twice the                                  |                                                     | ontaminant<br>uency/Range |                                    | Positive Detect      | s Above AWQC   |                                                                              |
| Contaminant | NCWQS <sup>(1)</sup> | Water &<br>Organisms | Organisms<br>Only | Average<br>Reference<br>Station<br>Background<br>Concentration | Average<br>Reference<br>Station<br>Average | No. of<br>Positive<br>Detects/<br>No. of<br>Samples | Contaminant<br>Range      | Positive<br>Detects Above<br>NCWQS | Water &<br>Organisms | Organisms Only | No. of Times<br>Exceeded Twice<br>the Average<br>Background<br>Concentration |
| luminum     | NE                   | NE                   | NE                | 333.17                                                         | 666.3                                      | 4/10                                                | 1 - 6,580                 | NA                                 | NA                   | NA             | 1                                                                            |
| ntimony     | NE                   | 14                   | 4300              | ND                                                             | ND                                         | 4/10                                                | 1.5 - 3.9                 | NA                                 | 0                    | 0              | NA                                                                           |
| rsenic      | NE                   | 0.018                | 0.14              | ND                                                             | ND                                         | 1/10                                                | 2.7J                      | NA                                 | 1                    | 1              | NA                                                                           |
| arium       | NE                   | 2,000                | NE                | 25.7                                                           | 51.4                                       | 7/10                                                | 16.7 - 48.5J              | NA                                 | 0                    | NA             | 0                                                                            |
| alcium      | NE                   | NE                   | NE                | 17,566                                                         | 35,132                                     | 10/10                                               | 41,700 - 63,900           | NA                                 | NA                   | NA             | 10                                                                           |
| hromium     | NE                   | NE                   | NE                | ND                                                             | ND                                         | 2/10                                                | 1J - 1.2J                 | NA                                 | NA                   | NA             | NA 🐭                                                                         |
| obalt       | NE                   | NE                   | NE                | ND                                                             | ND                                         | 4/10                                                | 9J - 16.8J                | NA                                 | NA                   | NA             | NA Service                                                                   |
| ·on         | NE                   | 300                  | NE                | 575.7                                                          | 1,151.4                                    | 10/10                                               | 764J - 9,500              | NA                                 | 10                   | NA             | 4                                                                            |
| cad         | NE                   | NE                   | NE                | ND                                                             | ND                                         | 5/10                                                | 1.4 - 97J                 | NA                                 | NA                   | NA             | NA                                                                           |
| lagnesium   | NE                   | NE                   | NE                | 1,744.7                                                        | 3,489.4                                    | 10/10                                               | 2,380 - 17,900            | NA                                 | NA                   | NA             | 5                                                                            |
| langanese   | NE                   | 50                   | 100               | ND                                                             | ND                                         | 10/10                                               | 24.5 - 113                | NA                                 | 2                    | 1              | NA                                                                           |
| 1ercury     | NE                   | 0.14                 | 0.15              | ND                                                             | ND                                         | 2/10                                                | 3J - 3.2J                 | NA                                 | 2                    | 2              | NA                                                                           |
| otassium    | NE                   | NE                   | NE                | ND                                                             | ND                                         | 10/10                                               | 2,170 - 8,210             | NA                                 | NA                   | NA             | NA                                                                           |
| clenium     | NE                   | NE                   | NE                | 0.82                                                           | 1.66                                       | 1/10                                                | 1.3J                      | NA                                 | NA                   | NA             | 0                                                                            |
| odium       | NE                   | NE                   | NE                | 9,830                                                          | 19,660                                     | 10/10                                               | 42,600 - 192,000          | NA                                 | NA                   | NA             | 10                                                                           |
| hallium     | NE                   | 1.7                  | 6.3               | ND                                                             | ND ·                                       | 1/10                                                | 1J                        | NA                                 | 0.                   | 0              | NA                                                                           |
| /anadium    | NE                   | NE                   | NE                | ND                                                             | ND                                         | 4/10                                                | 4.5 - 14.8J               | NA                                 | NA                   | NA             | NA                                                                           |
| linc        | NE                   | NE                   | NE                | ND                                                             | ND                                         | 1/10                                                | 129J                      | NA                                 | NA                   | NA             | NA                                                                           |

Notes: Concentrations expressed in microgram per liter ( $\mu$ g/L).

(1) NCWQS = North Carolina Water Quality Criteria for Surface Water

(2) AWQC = Ambient Water Quality Standard

NE - Not Established

NA - Not Applicable

J - Estimated value

All rejected results have been removed from the data. Frequencies of detection are adjusted accordingly.

# SEDIMENT DATA SUMMARY OPERABLE UNIT NO. 10 (SITE 35) REMEDIAL INVESTIGATION, CTO-0232 MCB CAMP LEJEUNE, NORTH CAROLINA

|                             | Sedii<br>Scree<br>Val<br>(SS | ening<br>ues |                                                                |                                                               | Contaminant Fr                               | equency/Range                      | Compa<br>Screenin                              |                                                |                                                                   |
|-----------------------------|------------------------------|--------------|----------------------------------------------------------------|---------------------------------------------------------------|----------------------------------------------|------------------------------------|------------------------------------------------|------------------------------------------------|-------------------------------------------------------------------|
| Analyte                     | ER-L                         | ER-M         | Average<br>Reference<br>Station<br>Background<br>Concentration | Twice the<br>Average<br>Reference<br>Station<br>Concentration | No. of Positive<br>Detects/No. of<br>Samples | Range of<br>Positive<br>Detections | No. of<br>Positive<br>Detects<br>Above<br>ER-L | No. of<br>Positive<br>Detects<br>Above<br>ER-M | No. of Times<br>Exceeded<br>Twice the<br>Average<br>Concentration |
| Acetone                     | NE                           | NE           | NE                                                             | NE                                                            | 1/20                                         | 128J                               | NA                                             | NA                                             | NA                                                                |
| Toluene                     | NE                           | NE           | NE                                                             | NE                                                            | 1/20                                         | 8J                                 | NA                                             | NA                                             | NA                                                                |
| Diethylphthalate            | NE                           | NE           | NE                                                             | NE                                                            | 4/20                                         | 352J - 2,135J                      | NA                                             | NA                                             | NA                                                                |
| Di-n-butyl phthalate        | NE                           | NE           | NE                                                             | NE                                                            | 1/20                                         | 218J                               | NA                                             | NA                                             | NA                                                                |
| Bis-(2-ethylhexyl)phthalate | NE                           | NE           | NE                                                             | NE                                                            | 3/20                                         | 469J - 704J                        | NA                                             | NA                                             | NA                                                                |
| beta-BHC                    | NE                           | NE           | 2.51                                                           | 5.02                                                          | 1/20                                         | 0.59J                              | NA                                             | NA                                             | 0                                                                 |
| delta-BHC                   | NE                           | NE           | 0.64*                                                          | 1.28                                                          | 2/20                                         | 0.92J - 1J                         | NA                                             | NA                                             | 0                                                                 |
| Heptachlor                  | NE                           | NE           | 1.18                                                           | 2.36                                                          | 2/20                                         | 0.91J - 2.3J                       | NA                                             | NA                                             | 0                                                                 |
| Heptachlor epoxide          | NE                           | NE           | ND                                                             | ND                                                            | 7/20                                         | 0.43J - 1.4J                       | NA                                             | NA                                             | NA                                                                |
| Dieldrin                    | 0.02                         | 8            | • 1.50*                                                        | 3.0                                                           | 7/20                                         | 1.4J - 52                          | 7                                              | 2                                              | 3                                                                 |
| 4,4'-DDD                    | 2                            | 20           | 1.57                                                           | 3.14                                                          | 17/20                                        | 1.1 <b>J</b> - 1,140               | 16                                             | 14                                             | 15                                                                |
| 4,4'-DDT                    | 1                            | 7            | 2.20                                                           | 4.40                                                          | 15/20                                        | 0.66J - 46J                        | 13                                             | 4                                              | 7                                                                 |
| 4,4'-DDE                    | 2                            | 15           | 2.42                                                           | 4.84                                                          | 17/20                                        | 1J - 1,200                         | 15                                             | 14                                             | 15                                                                |
| Endrin                      | 0                            | 45           | ND                                                             | ND                                                            | 5/20                                         | 0.44J - 0.85J                      | 5                                              | 0                                              | NA                                                                |
| Endosulfan II               | NE                           | NE           | ND                                                             | ND                                                            | 8/20                                         | 0.84J - 3.5J                       | NA                                             | NA                                             | NA                                                                |
| Methoxychlor                | NE                           | NE           | 0.94*                                                          | 1.88                                                          | 6/20                                         | 0.49J - 3.4J                       | NA                                             | NA                                             | .3                                                                |
| Endrin aldehyde             | NE                           | NE           | 0.59*                                                          | 1.18                                                          | 5/20                                         | 1J - 7.6J                          | NA                                             | NA                                             | 3                                                                 |
| Endrin Ketone               | NE                           | NE           | ND                                                             | ND                                                            | 2/20                                         | 2.8J - 3.1J                        | NA                                             | NA                                             | NA                                                                |
| alpha-Chlordane             | 0.5(1)                       | 6(1)         | 1.20                                                           | 2.40                                                          | 10/20                                        | 0.51J - 13J                        | 10                                             | 5                                              | 9                                                                 |
| gamma-Chlordane             | 0.5(1)                       | 6(1)         | 1.44                                                           | 2.88                                                          | 6/20                                         | 3.6 - 9.7                          | 6                                              | 4                                              | 6                                                                 |

# TABLE 6-7 (Continued)

## SEDIMENT DATA SUMMARY OPERABLE UNIT NO. 10 (SITE 35) REMEDIAL INVESTIGATION, CTO-0232 MCB CAMP LEJEUNE, NORTH CAROLINA

|           | Sedi<br>Scree<br>Val<br>(SS | ening |                                                                |                                                               | Contaminant Fr                               | equency/Range                      | Compa<br>Screenin                              |                                                |                                                                   |
|-----------|-----------------------------|-------|----------------------------------------------------------------|---------------------------------------------------------------|----------------------------------------------|------------------------------------|------------------------------------------------|------------------------------------------------|-------------------------------------------------------------------|
| Analyte   | ER-L                        | ER-M  | Average<br>Reference<br>Station<br>Background<br>Concentration | Twice the<br>Average<br>Reference<br>Station<br>Concentration | No. of Positive<br>Detects/No. of<br>Samples | Range of<br>Positive<br>Detections | No. of<br>Positive<br>Detects<br>Above<br>ER-L | No. of<br>Positive<br>Detects<br>Above<br>ER-M | No. of Times<br>Exceeded<br>Twice the<br>Average<br>Concentration |
| Aluminum  | NE                          | NE    | 1,165.6                                                        | 2,331.2                                                       | 20/20                                        | 484 - 37,300                       | NA                                             | NA                                             | 12                                                                |
| Arsenic   | 33                          | 85    | 0.37                                                           | 0.74                                                          | 15/16                                        | 0.34J - 3.7J                       | 0                                              | 0                                              | 11                                                                |
| Barium    | NE                          | NE    | 6.46                                                           | 12.9                                                          | 20/20                                        | 2.4 - 129                          | NA                                             | NA                                             | 13                                                                |
| Beryllium | NE                          | NE    | 0.09                                                           | 0.18                                                          | 4/14                                         | 0.27 - 1.1                         | NA                                             | NA                                             | 4                                                                 |
| Calcium   | NE                          | NE    | 1,967.1                                                        | 3,934.2                                                       | 19/20                                        | 301J - 17,500J                     | NA                                             | NA                                             | 12                                                                |
| Chromium  | 80                          | 145   | 1.86                                                           | 3.72                                                          | 17/20                                        | 2.4 - 28.6                         | 0                                              | 0                                              | 13                                                                |
| Cobalt    | NE                          | NE    | ND                                                             | ND                                                            | 9/20                                         | 1.4 - 7.8                          | NA                                             | NA                                             | NA                                                                |
| Copper    | 70                          | 390   | 0.75                                                           | 1.50                                                          | 16/20                                        | 3.4 - 24.8                         | 0                                              | 0                                              | 16                                                                |
| Iron      | NE                          | NE    | 433.7                                                          | 867.4                                                         | 20/20                                        | 1,050J - 15,900                    | NA                                             | NA                                             | 20                                                                |
| Lead      | 35                          | 110   | 0.79                                                           | 1.58                                                          | 18/18                                        | 4.7 - 15,100                       | 9                                              | 2                                              | 18                                                                |
| Magnesium | NE                          | NE    | 45.25                                                          | 90.5                                                          | 20/20                                        | 88.1 - 3,830                       | NA                                             | NA                                             | 19                                                                |
| Manganese | NE                          | NE    | 3.63                                                           | 7.26                                                          | 20/20                                        | 3.2J - 62.8                        | NA                                             | NA                                             | 14                                                                |
| Mercury   | 0                           | 1     | 0.14                                                           | 0.28                                                          | 1/1                                          | 0.07J                              | 0                                              | 0                                              | 0                                                                 |
| Nickel    | 30                          | 50    | ND                                                             | ND                                                            | 12/20                                        | 2.1B - 13.6B                       | 0                                              | 0                                              | NA                                                                |
| Potassium | NE                          | NE    | ND                                                             | ND                                                            | 3/20                                         | 498 - 2,610                        | NA                                             | NA                                             | NA                                                                |
| Selenium  | NE                          | NE    | 0.19                                                           | 0.38                                                          | 4/20                                         | 0.23J - 1.6J                       | NA                                             | NA                                             | 1                                                                 |
| Sodium    | NE                          | NE    | ND                                                             | ND                                                            | 11/20                                        | 461 - 4,980                        | NA                                             | NA                                             | NA                                                                |

## TABLE 6-7 (Continued)

### SEDIMENT DATA SUMMARY OPERABLE UNIT NO. 10 (SITE 35) REMEDIAL INVESTIGATION, CTO-0232 MCB CAMP LEJEUNE, NORTH CAROLINA

|          | Scree<br>Va | ment<br>ening<br>lues<br>VS) |                                                                |                                                               | Contaminant Fr                               | equency/Range                      | -                                              | rison to<br>g Values                           |                                                                   |
|----------|-------------|------------------------------|----------------------------------------------------------------|---------------------------------------------------------------|----------------------------------------------|------------------------------------|------------------------------------------------|------------------------------------------------|-------------------------------------------------------------------|
| Analyte  | ER-L        | ER-M                         | Average<br>Reference<br>Station<br>Background<br>Concentration | Twice the<br>Average<br>Reference<br>Station<br>Concentration | No. of Positive<br>Detects/No. of<br>Samples | Range of<br>Positive<br>Detections | No. of<br>Positive<br>Detects<br>Above<br>ER-L | No. of<br>Positive<br>Detects<br>Above<br>ER-M | No. of Times<br>Exceeded<br>Twice the<br>Average<br>Concentration |
| Thallium | NE          | NE                           | 0.10                                                           | 0.20                                                          | 14/20                                        | 0.15 - 0.96                        | NA                                             | NA                                             | 13                                                                |
| Vanadium | NE          | NE                           | 1.52                                                           | 3.04                                                          | 20/20                                        | 0.94J - 39.3                       | NA                                             | NA                                             | 15                                                                |
| Zinc     | 120         | 270                          | 0.11                                                           | 10.22                                                         | 3/3                                          | 60.4J - 104J                       | 0                                              | 0                                              | 3                                                                 |

Notes: <sup>(1)</sup> Values for Total Chlordane.

Organic concentrations expressed in microgram per kilogram ( $\mu$ g/kg).

Inorganic concentrations expressed in milligram per kilogram (mg/kg).

NE - Not Established

NA - Not Applicable

J - Estimated value

\* - Maximum Concentration

All rejected results have been removed from the data. Frequencies of detection are adjusted accordingly.

### ORGANIC AND INORGANIC FISH FILLET AND CRAB TISSUE DATA SUMMARY OPERABLE UNIT NO. 10 (SITE 35) REMEDIAL INVESTIGATION, CTO-0232 MCB CAMP LEJEUNE, NORTH CAROLINA

| Contaminant             | Range of<br>Positive<br>Detection | Frequency of<br>Detection | Bioconcentration<br>Factor<br>(L/kg) | Contaminant<br>Detected in<br>Surface Water? | Contaminant<br>Detected in<br>Sediment? |
|-------------------------|-----------------------------------|---------------------------|--------------------------------------|----------------------------------------------|-----------------------------------------|
| ORGANICS (µg/kg)        |                                   |                           |                                      |                                              |                                         |
| Methylene Chloride      | 26 - 16,317                       | 6/18                      | 0.9(1)                               | No                                           | No                                      |
| Acetone                 | 58 - 372,323                      | 11/18                     | NA                                   | No                                           | Yes                                     |
| Carbon Disulfide        | 196 - 1,328                       | 15/18                     | NA                                   | No                                           | No                                      |
| 2-Butanone              | 63 - 5108                         | 2/18                      | NA                                   | No                                           | No                                      |
| Toluene                 | 24                                | 1/18                      | 26 <sup>(2)</sup>                    | No                                           | Yes                                     |
| PESTICIDES/PCBS (µg/kg) |                                   |                           |                                      |                                              |                                         |
| beta-BHC                | 4.2 - 11                          | 7/22                      | 130(1)                               | No                                           | Yes                                     |
| gamma-BHC               | 2.1 - 5.5                         | 6/22                      | 130(1)                               | No                                           | No                                      |
| Heptachlor              | 2.6 - 4.3                         | 3/22                      | 11,200(1)                            | No                                           | Yes                                     |
| Aldrin                  | 2.3 - 6.6                         | 3/22                      | 4,670(1)                             | No                                           | No                                      |
| Heptachlor Epoxide .    | 3.9                               | 1/22                      | 11,200 <sup>(1)</sup>                | No                                           | Yes                                     |
| Dieldrin                | 4.3 - 48                          | 18/22                     | 4,670(1)                             | No                                           | Yes                                     |
| 4,4'-DDE                | 39 - 572                          | 22/22                     | 53,600(1)                            | No                                           | Yes                                     |
| Endrin                  | 2.5 - 52                          | 9/22                      | 3,970(1)                             | No                                           | Yes                                     |
| Endosulfan II           | 3.6 - 9.6                         | 4/22                      | NA                                   | . No                                         | Yes                                     |

•

## TABLE 6-8 (Continued)

# ORGANIC AND INORGANIC FISH FILLET AND CRAB TISSUE DATA SUMMARY OPERABLE UNIT NO. 10 (SITE 35) REMEDIAL INVESTIGATION, CTO-0232 MCB CAMP LEJEUNE, NORTH CAROLINA

| Contaminant                             | Range of<br>Positive<br>Detection | Frequency of<br>Detection | Bioconcentration<br>Factor<br>(L/kg) | Contaminant<br>Detected in<br>Surface Water? | Contaminant<br>Detected in<br>Sediment? |
|-----------------------------------------|-----------------------------------|---------------------------|--------------------------------------|----------------------------------------------|-----------------------------------------|
| PESTICIDES/PCBS (µg/kg)<br>(continued): |                                   |                           |                                      |                                              |                                         |
| 4,4'-DDD                                | 19 - 256                          | 22/22                     | 53,600(1)                            | No                                           | Yes                                     |
| 4,4'-DDT                                | 2.5 - 15                          | 11/13                     | 53,600(1)                            | No                                           | Yes                                     |
| Endrin Ketone                           | 3.6 - 3.8                         | 2/13                      | NA                                   | No                                           | Yes                                     |
| Endrin Aldehyde                         | 2.8 - 4                           | 2/13                      | 3,970(1)                             | No                                           | Yes                                     |
| alpha-Chlordane                         | 3.6 - 38                          | 9/13                      | 14,100 <sup>(1)</sup> *              | No                                           | Yes                                     |
| INORGANICS (mg/kg)                      |                                   |                           |                                      |                                              |                                         |
| Aluminum                                | 19.3 - 27.3                       | 6/13                      | 231(2)                               | Yes                                          | Yes                                     |
| Arsenic                                 | 1.4                               | 1/13                      | 44(1)                                | Yes                                          | Yes                                     |
| Barium                                  | 0.41 - 2.2                        | 8/13                      | 8 <sup>(2)</sup>                     | Yes                                          | Yes                                     |
| Cadmium                                 | 0.16 - 0.8                        | 5/13                      | 64(1)                                | No                                           | No                                      |
| Calcium                                 | 676 - 13,300                      | 12/13                     | NA                                   | Yes                                          | Yes                                     |
| Chromium                                | 3 - 4                             | 2/22                      | 16                                   | Yes                                          | Yes                                     |
| Cobalt                                  | 6.9                               | 1/13                      | 40 <sup>(2)</sup>                    | Yes                                          | Yes                                     |
| Copper                                  | 2.3 - 27.5                        | 13/13                     | 36(1)                                | No                                           | Yes                                     |

!

## **TABLE 6-8** (Continued)

## ORGANIC AND INORGANIC FISH FILLET AND CRAB TISSUE DATA SUMMARY OPERABLE UNIT NO. 10 (SITE 35) REMEDIAL INVESTIGATION, CTO-0232 MCB CAMP LEJEUNE, NORTH CAROLINA

| Contaminant                        | Range of<br>Positive<br>Detection | Frequency of<br>Detection | Bioconcentration<br>Factor<br>(L/kg) | Contaminant<br>Detected in<br>Surface Water? | Contaminant<br>Detected in<br>Sediment? |
|------------------------------------|-----------------------------------|---------------------------|--------------------------------------|----------------------------------------------|-----------------------------------------|
| INORGANICS (mg/kg)<br>(continued): |                                   |                           |                                      |                                              |                                         |
| Iron                               | 20.4 - 48                         | 8/13                      | NA                                   | Yes                                          | Yes                                     |
| Lead                               | 0.51 - 0.61                       | 3/13                      | 49(1)                                | Yes                                          | Yes                                     |
| Magnesium                          | 833 - 1,550                       | 13/13                     | NA                                   | Yes                                          | Yes                                     |
| Manganese                          | 1 - 3.1                           | 10/13                     | 35(2)                                | Yes                                          | Yes                                     |
| Mercury                            | 0.3 - 0.98                        | 4/4                       | 5,500(1)                             | Yes                                          | Yes                                     |
| Potassium                          | 9,180 - 19,000                    | 13/13                     | NA                                   | Yes                                          | Yes                                     |
| Selenium                           | 0.72 - 0.8                        | 2/13                      | 6(1)                                 | Yes                                          | Yes                                     |
| Silver                             | 1 - 3.3                           | 5/18                      | 0.5                                  | No                                           | No                                      |
| Sodium                             | 1,970 - 21,900                    | 13/13                     | NA                                   | Yes                                          | Yes                                     |
| Vanadium                           | 1.7                               | 1/22                      | NA                                   | Yes                                          | Yes                                     |
| Zinc                               | 38 - 130                          | 5/5                       | 47 <sup>(1)</sup>                    | Yes                                          | Yes                                     |

\* Value for Total Chlordane

<sup>(1)</sup> Region IV Water Quality Standards, 1992

<sup>(2)</sup> Region III, BTAG Screening Values

All rejected results have been removed from the data. Frequencies of detection are adjusted accordingly.

## SUMMARY OF COPCS IN ENVIRONMENTAL MEDIA OF CONCERN OPERABLE UNIT NO. 10 (SITE 35) REMEDIAL INVESTIGATION, CTO-0232 MCB CAMP LEJEUNE, NORTH CAROLINA

| Contaminant                 | Surfac | ce Soil |   | urface<br>oil | Grow<br>wa |   | Surfac<br>Wate | - F   | Sedir | ment | Fi | ish |
|-----------------------------|--------|---------|---|---------------|------------|---|----------------|-------|-------|------|----|-----|
| VOCs                        |        |         |   |               |            |   |                |       |       |      |    |     |
| Acetone                     |        |         |   | X             |            |   |                |       |       | Х    | •  | X   |
| 1,1,2,2-Tetrachloroethane   |        |         |   |               |            | Х |                |       |       |      |    |     |
| Chloroform                  |        |         |   |               |            | X |                |       |       |      |    |     |
| Methylene Chloride          |        |         |   | X             |            |   |                |       |       |      |    | X   |
| 1,1,2-Trichloroethane       |        |         |   |               |            | Х |                | -     |       |      |    |     |
| 1,1-Dichloroethane          | 1      |         |   |               |            | Х |                |       |       |      |    |     |
| 1,1-Dichloroethene          |        |         |   |               | ۲          | X |                |       |       |      |    |     |
| 2-butanone                  |        |         |   |               |            |   |                |       |       |      |    | X   |
| Benzene                     |        |         |   |               | •          | X |                |       |       |      |    |     |
| Carbon disulfide            | 1      | X       |   |               |            |   |                |       |       |      |    | X   |
| cis-1,2-Dichloroethene      | 1      |         |   |               | •          | X |                |       |       |      |    |     |
| Ethylbenzene                |        | 1       |   |               | •          | X |                |       |       |      |    |     |
| Methyl Tertiary Butyl Ether |        |         |   | 1             | •          | X |                |       |       |      |    |     |
| Tetrachloroethane           |        |         |   | X             |            | X |                |       |       |      |    |     |
| Toluene                     | 1      | X       | 1 | 1             | •          | X |                |       |       | Х    |    | X   |
| trans-1,2-Dichloroethene    |        |         |   |               | •          | X |                |       |       |      |    |     |
| Trichloroethene             |        |         |   | 1             | •          | X |                |       |       |      |    | T   |
| Xylenes (Total)             | 1      | X       |   |               | •          | X |                | i     |       |      |    | T   |
| SVOCs                       | 1      | 1       |   |               |            |   |                |       |       |      |    |     |
| Benzo(a) pyrene             |        | X       |   | ·             |            |   |                |       |       | [    |    | 1   |
| Indeno(1,2,3-cd) pyrene     | 1      | x       |   |               |            |   |                |       |       |      | ·  | 1   |
| Dibenz(a,h) anthracene      | 1      | X       | 1 |               |            |   |                |       |       |      |    | T   |
| Benzo(g.h,i) perylene       | •      | x       |   | 1             |            |   |                |       |       |      |    | 1   |
| 4-Methylphenol              |        |         |   |               |            | X |                |       |       |      |    | 1   |
| 2,4-Dimethylphenol          |        |         |   |               | 1          | X |                |       |       |      |    |     |
| Naphthalene                 |        |         |   |               | •          | X |                | · · · |       |      |    | 1   |
| Dibenzofuran                | 1      |         | 1 | 1             | •          | X |                |       |       |      |    |     |
| Fluorene                    | 1      | 1       | 1 | 1             | 1          | X |                |       |       |      |    |     |
| Anthracene                  | 1      | 1       | 1 | 1             | 1          | x |                |       |       |      |    |     |
| Carbazole                   |        | 1       |   | 1             |            | X |                |       |       |      |    |     |
| Diethylphthalate            |        | 1       |   |               |            |   |                |       | ٠     | X    |    |     |
| Di-n-butylphthalate         | 1 .    | 1       | 1 | 1             |            | Τ |                |       |       | X    |    |     |
| Bis(2-ethylhexyl)phthalate  |        | x       | 1 |               |            |   |                |       |       | X    |    |     |
| Phenol                      |        | X       | 1 |               |            | X |                |       |       |      |    |     |
| 2-Methylnaphthalene         | 1      |         |   |               | •          | X |                |       |       |      |    |     |

### TABLE 6-9 (Continued)

## SUMMARY OF COPCs IN ENVIRONMENTAL MEDIA OF CONCERN OPERABLE UNIT NO. 10 (SITE 35) REMEDIAL INVESTIGATION, CTO-0232 MCB CAMP LEJEUNE, NORTH CAROLINA

| Contaminant           | Surfac | e Soil | Subsu<br>So | urface<br>bil | Groi<br>wa | 1 | Surf<br>Wa |   | Sediu | ment | Fi       | sh |
|-----------------------|--------|--------|-------------|---------------|------------|---|------------|---|-------|------|----------|----|
| 2-Methylphenol        |        |        |             |               |            | Х |            |   |       |      |          |    |
| Acenaphthene          |        | Х      |             |               |            |   |            |   |       |      |          |    |
| Phenanthene           | •      | Х      |             |               | •          | X |            |   |       |      |          |    |
| Carbazole             |        | Х      |             |               |            |   |            |   |       |      |          |    |
| Fluoranthene          |        | X      |             |               | -          |   |            |   |       |      |          |    |
| Pyrene                |        | X      |             | X             |            |   |            |   |       |      |          |    |
| Butylbenzlphthalate   |        | X      |             |               |            |   |            |   |       |      |          |    |
| Benzo(a)anthracene    |        | x      |             |               |            |   |            |   |       |      |          | ·  |
| Chrysene              |        | X      |             |               |            |   |            |   |       |      |          |    |
| Benzo(b) fluoranthene | •      | Х      | •           | Х             |            |   |            |   |       |      |          | ·  |
| Pesticides            |        |        |             |               |            |   |            |   |       |      |          |    |
| Aldrin                |        |        |             |               |            | X |            |   |       |      |          | Х  |
| gamma-BHC.            |        |        |             |               |            |   |            |   |       |      |          | X  |
| alpha-Chlordane       |        | X      |             |               |            |   |            |   | •     | Х    | •        | Х  |
| beta-BHC              |        | X      |             |               |            | X |            |   |       | X    | •        | X  |
| Dieldrin              | •      | X      |             |               |            |   |            |   | •     | Х    | Ð        | X  |
| Endosulfan II         | •      | X      |             |               |            | 1 |            |   | •     | X    | 0        | Х  |
| Endrin Ketone         | •      | X      |             |               |            |   |            |   | •     | X    | 0        | Х  |
| Endrin Aldehyde       | •      | X      |             |               |            |   |            |   | •     | X    | 0        | Х  |
| Endrin                |        | X      |             |               |            |   |            |   | •     | X    | 0        | X  |
| delta-BHC             |        |        |             |               | ٠          | X |            |   |       | X    |          | X  |
| gamma-Chlordane       | _      | X      |             |               |            |   |            |   | •     | X    |          | ŀ  |
| Heptachlor            |        |        |             |               | •          | X |            |   |       | X    | 0        | X  |
| Heptachlor Epoxide    |        |        |             |               |            |   |            |   | •     | x    |          | Х  |
| Methoxychlor          |        |        |             |               |            | [ |            |   | •     | X    |          |    |
| 4,4'-DDE              |        | X      | 1           |               |            |   |            |   | •     | X    | ٠        | Х  |
| 4,4'-DDT              |        | x      |             | ·             |            | x |            |   | •     | X    | •        | Х  |
| 4,4'-DDD              | •      | X      |             | 1             |            | X |            |   | . •   | X    | •        | X  |
| Inorganics            |        |        | 1           |               |            |   |            |   |       |      |          |    |
| Aluminum              |        | X      | 1           | X             | 1          | X |            | X |       | X    | •        | X  |
| Antimony              |        | X      |             | 1             | •          | X | •          | x |       |      | <u> </u> |    |
| Arsenic               | •      | x      | •           | X             | •          | x | •          | x | •     | x    |          |    |
| Barium                |        | X      |             | X             | •          | x |            | x | •     | X    | •        | X  |
| Beryllium             |        | X      | 1           |               | •          | X |            |   | •     | X    |          |    |
| Cadmium               | _      | x      |             | X             | •          | x |            |   |       |      |          | x  |
| Calcium               |        | X      |             | X             |            | X |            | X |       | X    |          |    |

#### TABLE 6-9 (Continued)

#### SUMMARY OF COPCs IN ENVIRONMENTAL MEDIA OF CONCERN OPERABLE UNIT NO. 10 (SITE 35) REMEDIAL INVESTIGATION, CTO-0232 MCB CAMP LEJEUNE, NORTH CAROLINA

| Contaminant | Surfac | ce Soil |   | urface<br>oil |   | und-<br>iter |   | face<br>ater | Sedi | ment | Fi | sh |
|-------------|--------|---------|---|---------------|---|--------------|---|--------------|------|------|----|----|
| Chromium    |        | X       |   | X             | • | X            | • | X            | •    | X    |    |    |
| Cobalt      |        | X       |   | X             | • | X            | • | X            | ٠    | X    |    |    |
| Copper      |        | X       |   | X             |   | X            |   |              | ٠    | X    | •  | X  |
| Lead        | •      | Х       | ٠ | X             | • | X            | • | X            | ٠    | X    | •  | X  |
| Magnesium   | Ι      | X       |   | X             |   | X            |   | X            |      | X    |    |    |
| Manganese   | •      | X       |   | X             | ٠ | X            | • | X            | ٠    | X    | •  | X  |
| Mercury     |        |         |   |               |   | X            | ٠ | X            |      | X    | •  | X  |
| Nickel      |        | Х       |   | X             | ٠ | X            |   |              | ٠    | Х    |    |    |
| Potassium   |        |         |   | X             |   | X            |   | X            |      | Х    |    |    |
| Selenium    | · ·    | Х       |   | Х             |   | X            |   | X            | ٠    | Х    | •  | X  |
| Silver      |        |         |   | Х             | • | X            |   |              |      |      |    |    |
| Sodium      |        |         |   |               |   | Х            |   | Х            |      | Х    |    |    |
| Thallium    |        | Х       | ٠ | Х             | ٠ | X            | • | Х            | ٠    | X    |    |    |
| Vanadium    |        | Х       |   | Х             | ٠ | Х            | • | Х            | ٠    | Х    |    |    |
| Zinc        |        | х       |   | Х             | • | Х            | • | Х            | •    | Х    | ٠  | x  |
| Iron        |        | Х       |   | Х             |   | Х            |   | Х            |      | х    |    |    |

= Selected as COPC

X = Positively detected in media

### MATRIX OF POTENTIAL HUMAN EXPOSURE OPERABLE UNIT NO. 10 (SITE 35) REMEDIAL INVESTIGATION, CTO-0232 MCB CAMP LEJEUNE, NORTH CAROLINA

| Exposure Medium/<br>Exposure Route               | Current Military<br>Personnel | Future Construction<br>Worker | Future Residential<br>Adult & Child | Current<br>Recreational Adult<br>& Child |
|--------------------------------------------------|-------------------------------|-------------------------------|-------------------------------------|------------------------------------------|
| Soil                                             |                               |                               |                                     |                                          |
| Incidental Ingestion                             | М                             | W                             | A, C                                | NE                                       |
| Dermal Contact                                   | M                             | W                             | A, C                                | NE                                       |
| Groundwater                                      |                               |                               |                                     | NE                                       |
| Ingestion                                        | NE                            | NE                            | A, C                                | NE                                       |
| Dermal Contact                                   | NE                            | NE                            | A, C                                | NE                                       |
| Surface Water                                    |                               |                               |                                     |                                          |
| Ingestion                                        | NE                            | NE                            | NE                                  | A, C                                     |
| Dermal Contact                                   | NE                            | NE                            | NE                                  | A, C                                     |
| Sediment                                         |                               |                               |                                     |                                          |
| Incidental Ingestion                             | NE                            | NE                            | NE                                  | A, C                                     |
| Dermal Contact                                   | NE                            | NE                            | NE                                  | A, C                                     |
| Air                                              |                               |                               |                                     |                                          |
| Inhalation of Vapor<br>Phase Chemicals<br>Indoor | NE                            | NE                            | A, C                                | NE                                       |
| Inhalation of<br>Particulates<br>Outdoor         | М                             | W                             | A, C                                | NE                                       |
| Biota                                            |                               |                               |                                     |                                          |
| Fish Ingestion                                   | NE                            | NE                            | NE                                  | A                                        |

A = Adult

C = Child

M = Military lifetime exposure

W = Construction duration exposure

NE = Not Exposed

### EXPOSURE ASSESSMENT SUMMARY INCIDENTAL INGESTION OF SOIL CONTAMINANTS REMEDIAL INVESTIGATION, CTO-0232 MCB CAMP LEJEUNE, NORTH CAROLINA

| F                  | Future Residential Child and Adult, Current Military Personnel, Future Construction Worker |                                                                                            |                                                    |                                            |  |  |  |  |  |
|--------------------|--------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|----------------------------------------------------|--------------------------------------------|--|--|--|--|--|
| Input<br>Parameter | Description                                                                                | Value                                                                                      |                                                    | Reference                                  |  |  |  |  |  |
| С                  | Exposure Concentration                                                                     | 95% UCL (mg/kg)                                                                            |                                                    | USEPA, May 1992d                           |  |  |  |  |  |
| IR                 | Ingestion Rate                                                                             | Child200 mg/dayAdult100 mg/dayMilitary Personnel100 mg/dayConstruction Worker480 mg/day    |                                                    | USEPA, December 1989a<br>USEPA, March 1991 |  |  |  |  |  |
| CF                 | Conversion Factor                                                                          | 1E-6 kg/mg                                                                                 |                                                    | USEPA, December 1989a                      |  |  |  |  |  |
| Fi                 | Fraction Ingested from<br>Contaminated Source                                              | 100%                                                                                       |                                                    | Conservative Professional<br>Judgement     |  |  |  |  |  |
| EF                 | Exposure Frequency                                                                         | Child350 days/yrAdult350 days/yrMilitary Personnel350 days/yrConstruction Worker90 days/yr |                                                    | USEPA, December 1989a<br>USEPA, March 1991 |  |  |  |  |  |
| ED                 | Exposure Duration                                                                          | Child<br>Adult<br>Military Personnel<br>Construction Worker                                | 6 years<br>24 years<br>4 years<br>1 year           | USEPA, March 1991<br>USEPA, December 1989a |  |  |  |  |  |
| BW                 | Body Weight                                                                                | Child15 kgAdult70 kgMilitary Personnel70 kgConstruction Worker70 kg                        |                                                    | USEPA, December 1989a                      |  |  |  |  |  |
| AT <sub>c</sub>    | Averaging Time Carcinogen                                                                  | All                                                                                        | 25,550 days                                        | USEPA, December 1989a                      |  |  |  |  |  |
| AT <sub>ac</sub>   | Averaging Time<br>Noncarcinogen                                                            | Child<br>Adult<br>Military Personnel<br>Construction Worker                                | 2,190 days<br>8,760 days<br>1,460 days<br>365 days | USEPA, December 1989a                      |  |  |  |  |  |

### EXPOSURE ASSESSMENT SUMMARY DERMAL CONTACT WITH SOIL CONTAMINANTS REMEDIAL INVESTIGATION, CTO-0232 MCB CAMP LEJEUNE, NORTH CAROLINA

| Future Residential Child and Adult, Current Military Personnel, Future Construction Worker |                                                          |                                                                                     |                                                         |                                                                                                                           |  |  |  |  |
|--------------------------------------------------------------------------------------------|----------------------------------------------------------|-------------------------------------------------------------------------------------|---------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Input<br>Parameter                                                                         | Description                                              | Value                                                                               |                                                         | Reference                                                                                                                 |  |  |  |  |
| С                                                                                          | Exposure Concentration                                   | 95% UCL (mg/kg)                                                                     |                                                         | USEPA, May 1992d                                                                                                          |  |  |  |  |
| CF                                                                                         | Conversion Factor                                        | IE-6 kg/mg                                                                          | <u></u>                                                 | USEPA, December 1989a                                                                                                     |  |  |  |  |
| SA                                                                                         | Exposed Surface Area of<br>Skin Available for<br>Contact | Child2,300 cm²Adult5,800 cm²Military Personnel5,800 cm²Construction Worker4,300 cm² |                                                         | USEPA, January 1992a<br>Reasonable worst case:<br>individual skin area limited<br>to head, hands, forearms,<br>lower legs |  |  |  |  |
| AF                                                                                         | Soil-to-Skin Adherence<br>Factor                         | 1.0 mg/cm <sup>2</sup>                                                              |                                                         | USEPA, Region IV, 1992c                                                                                                   |  |  |  |  |
| ABS                                                                                        | Fraction Absorped<br>(unitless)                          | Organics<br>Inorganics                                                              | 1.0%<br>0.1%                                            | USEPA, Region IV, 1992c                                                                                                   |  |  |  |  |
| EF                                                                                         | Exposure Frequency                                       | Child<br>Adult<br>Military Personnel<br>Construction Worker                         | 350 days/yr<br>350 days/yr<br>350 days/yr<br>90 days/yr | USEPA, December 1989a<br>USEPA, March 1991                                                                                |  |  |  |  |
| ED                                                                                         | Exposure Duration                                        | Child<br>Adult<br>Military Personnel<br>Construction Worker                         | 6 years<br>24 years<br>4 years<br>1 year                | USEPA, March 1991<br>USEPA, December 1989a                                                                                |  |  |  |  |
| BW                                                                                         | Body Weight                                              | Child<br>Adult<br>Military Personnel<br>Construction Worker                         | 15 kg<br>70 kg<br>70 kg<br>70 kg                        | USEPA, December 1989a                                                                                                     |  |  |  |  |
| AT <sub>e</sub>                                                                            | Averaging Time<br>Carcinogen                             | All                                                                                 | 25,550 days                                             | USEPA, December 1989a                                                                                                     |  |  |  |  |
| AT <sub>nc</sub>                                                                           | Averaging Time<br>Noncarcinogen                          | Child<br>Adult<br>Military Personnel<br>Construction Worker                         | 2,190 days<br>8,760 days<br>1,460 days<br>365 days      | USEPA, December 1989a                                                                                                     |  |  |  |  |

### EXPOSURE ASSESSMENT SUMMARY INHALATION OF FUGITIVE PARTICULATES REMEDIAL INVESTIGATION, CTO-0232 MCB CAMP LEJEUNE, NORTH CAROLINA

| H                  | Future Residential Child and Adult, Current Military Personnel, Construction Worker |                                                             |                                                                                  |                                       |  |  |  |  |  |
|--------------------|-------------------------------------------------------------------------------------|-------------------------------------------------------------|----------------------------------------------------------------------------------|---------------------------------------|--|--|--|--|--|
| Input<br>Parameter | Description                                                                         | Value                                                       |                                                                                  | Reference                             |  |  |  |  |  |
| С                  | Exposure Concentration                                                              | 95% UCL                                                     | (mg/kg)                                                                          | USEPA, May 1992d                      |  |  |  |  |  |
| EF                 | Exposure Frequency                                                                  | Child<br>Adult<br>Military Personnel<br>Construction Worker | 350 days/yr<br>350 days/yr<br>350 days/yr<br>90 days/yr                          | USEPA, December 1989a                 |  |  |  |  |  |
| ED                 | Exposure Duration                                                                   | Child<br>Adult<br>Military Personnel<br>Construction Worker | 6 years<br>24 years<br>4 years<br>1 year                                         | USEPA, March 1991                     |  |  |  |  |  |
| IR                 | Inhalation Rate                                                                     | Child<br>Adult<br>Military Personnel<br>Construction Worker | 10 m <sup>3</sup><br>20 m <sup>3</sup><br>20 m <sup>3</sup><br>20 m <sup>3</sup> | USEPA, March 1991<br>USEPA, May 1989b |  |  |  |  |  |
| BW                 | Body Weight                                                                         | Child<br>Adult<br>Military Personnel<br>Construction Worker | 15 kg<br>70 kg<br>70 kg<br>70 kg                                                 | USEPA, December 1989a                 |  |  |  |  |  |
| AT <sub>c</sub>    | Averaging Time<br>Carcinogen                                                        | All                                                         | 25,550 days                                                                      | USEPA, December 1989a                 |  |  |  |  |  |
| AT <sub>nc</sub>   | Averaging Time<br>Noncarcinogens                                                    | Child<br>Adult<br>Military Personnel<br>Construction Worker | 2,190 days<br>8,760 days<br>1,460 days<br>365 days                               | USEPA, December 1989a                 |  |  |  |  |  |
| PEF                | Site-Specific Particulate<br>Emission Factor                                        | 4.63E09 m                                                   | l <sup>3</sup> /kg                                                               | Cowherd,<br>USEPA, December 1989a     |  |  |  |  |  |

#### EXPOSURE ASSESSMENT SUMMARY INGESTION OF GROUNDWATER CONTAMINANTS REMEDIAL INVESTIGATION, CTO-0232 MCB CAMP LEJEUNE, NORTH CAROLINA

|                    | Future Residential Child and Adult |                |                            |                                            |  |           |  |  |  |
|--------------------|------------------------------------|----------------|----------------------------|--------------------------------------------|--|-----------|--|--|--|
| Input<br>Parameter | Description                        | Value          |                            | Value                                      |  | Reference |  |  |  |
| С                  | Exposure Concentration             | 95% UCL        | (mg/L)                     | USEPA, May 1992d                           |  |           |  |  |  |
| IR                 | Ingestion Rate                     | Child<br>Adult | l L/day<br>2 L/day         | USEPA, March 1991<br>USEPA, December 1989a |  |           |  |  |  |
| EF                 | Exposure Frequency                 | Child<br>Adult | 350 days/yr<br>350 days/yr | USEPA, December 1989a                      |  |           |  |  |  |
| ED                 | Exposure Duration                  | Child<br>Adult | 6 years<br>30 years        | USEPA, March 1991                          |  |           |  |  |  |
| BW                 | Body Weight                        | Child<br>Adult | 15 kg<br>70 kg             | USEPA, December 1989a                      |  |           |  |  |  |
| AT <sub>c</sub>    | Averaging Time<br>Carcinogen       | All            | 25,550 days                | USEPA, December 1989a                      |  |           |  |  |  |
| AT <sub>nc</sub>   | Averaging Time<br>Noncarcinogen    | Child<br>Adult | 2,190 days<br>10,950 days  | USEPA, December 1989a                      |  |           |  |  |  |

#### EXPOSURE ASSESSMENT SUMMARY DERMAL CONTACT WITH GROUNDWATER CONTAMINANTS REMEDIAL INVESTIGATION, CTO-0232 MCB CAMP LEJEUNE, NORTH CAROLINA

|                    | Future 1                                                 | Residential C     | Child and Adult                                  | · ·                   |
|--------------------|----------------------------------------------------------|-------------------|--------------------------------------------------|-----------------------|
| Input<br>Parameter | Description                                              |                   | Value                                            | Reference             |
| C                  | Exposure Concentration                                   | 95% UCL           | (mg/L)                                           | USEPA, May 1992d      |
| SA                 | Exposed Surface Area of<br>Skin Available for<br>Contact | Child<br>Adult    | 10,000 cm <sup>2</sup><br>23,000 cm <sup>2</sup> | USEPA, January 1992a  |
| PC                 | Permeability Constant                                    | Chemical Specific |                                                  | USEPA, January 1992a  |
| ET                 | Exposure Time                                            | All               | 0.25 hr/day                                      | USEPA, January 1992a  |
| EF                 | Exposure Frequency                                       | Child<br>Adult    | 350 days/yr<br>350 days/yr                       | USEPA, March 1991     |
| ED.                | Exposure Duration                                        | Child<br>Adult    | 6 years<br>30 years                              | USEPA, December 1989a |
| CF                 | Conversion Factor                                        | 1 L/1000 c        | m <sup>3</sup>                                   | USEPA, December 1989a |
| BW                 | Body Weight                                              | Child<br>Adult    | 15 kg<br>70 kg                                   | USEPA, December 1989a |
| AT <sub>c</sub>    | Averaging Time<br>Carcinogen                             | All               | 25,550 days                                      | USEPA, December 1989a |
| AT <sub>nc</sub>   | Averaging Time<br>Noncarcinogen                          | Child<br>Adult    | 2,190 days<br>10,950 days                        | USEPA, December 1989a |

#### EXPOSURE ASSESSMENT SUMMARY INHALATION OF GROUNDWATER VOLATILE CONTAMINANTS REMEDIAL INVESTIGATION, CTO-0232 MCB CAMP LEJEUNE, NORTH CAROLINA

|                    | Future Residential Child and Adult |                |                           |                       |  |  |  |  |  |
|--------------------|------------------------------------|----------------|---------------------------|-----------------------|--|--|--|--|--|
| Input<br>Parameter | Description                        | Value          |                           | Reference             |  |  |  |  |  |
| С                  | Exposure Concentration             | 95% UCL        | (mg/m <sup>3</sup> )      | USEPA, May 1992d      |  |  |  |  |  |
| IR                 | Inhalation Rate                    | Child<br>Adult | 0.6 m³/hr<br>0.6 m³/hr    | USEPA, December 1989a |  |  |  |  |  |
| ET                 | Exposure Time                      | All            | 0.25 hr/day               | USEPA, January 1992a  |  |  |  |  |  |
| EF                 | Exposure Frequency                 | All            | 350 day/yr                | USEPA, December 1989a |  |  |  |  |  |
| ED                 | Exposure Duration                  | Child<br>Adult | 6 years<br>30 years       | USEPA, December 1989a |  |  |  |  |  |
| BW                 | Body Weight                        | Child<br>Adult | 15 kg<br>70 kg            | USEPA, December 1989a |  |  |  |  |  |
| AT <sub>c</sub>    | Averaging Time<br>Carcinogen       | All            | 25,550 days               | USEPA, December 1989a |  |  |  |  |  |
| AT <sub>nc</sub>   | Averaging Time<br>Noncarcinogens   | Child<br>Adult | 2,190 days<br>10,950 days | USEPA, December 1989a |  |  |  |  |  |

#### EXPOSURE ASSESSMENT SUMMARY INGESTION OF SURFACE WATER REMEDIAL INVESTIGATION, CTO-0232 MCB CAMP LEJEUNE, NORTH CAROLINA

| Current Recreational Child and Adult |                                  |                |                              |                                                                        |
|--------------------------------------|----------------------------------|----------------|------------------------------|------------------------------------------------------------------------|
| Input<br>Parameter                   | Description                      | Value          |                              | Reference                                                              |
| С                                    | Exposure Concentration           | 95% UCL        | (mg/L)                       | USEPA, May 1992d                                                       |
| IR                                   | Ingestion Rate                   | Child<br>Adult | 0.05 L/hr<br>0.05 L/hr       | USEPA, December 1989a                                                  |
| EF                                   | Exposure Frequency               | Child<br>Adult | 20 events/yr<br>20 events/yr | Site-Specific Professional Judgement<br>(4 days/month x 5 months/year) |
| ED                                   | Exposure Duration                | Child<br>Adult | 6 years<br>30 years          | USEPA, December 1989a                                                  |
| BW                                   | Body Weight                      | Child<br>Adult | 15 kg<br>70 kg               | USEPA, December 1989a                                                  |
| AT <sub>c</sub>                      | Averaging Time Carcinogen        | All            | 25,550 days                  | USEPA, December 1989a                                                  |
| AT <sub>nc</sub>                     | Averaging Time<br>Noncarcinogens | Child<br>Adult | 2,190 days<br>10,950 days    | USEPA, December 1989a                                                  |

### EXPOSURE ASSESSMENT SUMMARY DERMAL CONTACT WITH SURFACE WATER REMEDIAL INVESTIGATION, CTO-0232 MCB CAMP LEJEUNE, NORTH CAROLINA

| Current Recreational Child and Adult |                                                       |                          |                                                 |                                                                              |
|--------------------------------------|-------------------------------------------------------|--------------------------|-------------------------------------------------|------------------------------------------------------------------------------|
| Input<br>Parameter                   | Description                                           | Value                    |                                                 | Reference                                                                    |
| C,                                   | Exposure Concentration                                | 95% UCL                  | (mg/L)                                          | USEPA, May 1992d                                                             |
| SA                                   | Exposed Surface Area of<br>Skin Available for Contact | Child<br>Adult           | 4,600 cm <sup>2</sup><br>11,500 cm <sup>2</sup> | 50 percent whole body (head,<br>arms, hands, forearms,<br>lower extremities) |
| ET                                   | Exposure Time                                         | Child<br>Adult           | 2.6 hr/day<br>2.6 hr/day                        | USEPA, January 1992a                                                         |
| EF                                   | Exposure Frequency                                    | Child<br>Adult           | 20 days/yr<br>20 days/yr                        | Site-Specific Professional<br>Judgement<br>(4 days/month x 5 months/year)    |
| ED                                   | Exposure Duration                                     | Child<br>Adult           | 6 years<br>30 years                             | USEPA, December 1989a                                                        |
| CF                                   | Volumetric Conversion<br>Factor for Water             | 1 L/1000 cm <sup>3</sup> |                                                 | USEPA, December 1989a                                                        |
| BW                                   | Body Weight                                           | Child<br>Adult           | 15 kg<br>70 kg                                  | USEPA, December 1989a                                                        |
| AT <sub>c</sub>                      | Averaging Time<br>Carcinogen                          | All                      | 25,550 days                                     | USEPA, December 1989a                                                        |
| AT <sub>nc</sub>                     | Averaging Time<br>Noncarcinogen                       | Child<br>Adult           | 2,190 days<br>10,950 days                       | USEPA, December 1989a                                                        |
| PC                                   | Permeability Constant                                 | Chemical-Specific        |                                                 | USEPA, January 1992a                                                         |

### EXPOSURE ASSESSMENT SUMMARY INGESTION OF SEDIMENT REMEDIAL INVESTIGATION, CTO-0232 MCB CAMP LEJEUNE, NORTH CAROLINA

| Current Recreational Child and Adult |                                 |                |                           |                                                                           |  |
|--------------------------------------|---------------------------------|----------------|---------------------------|---------------------------------------------------------------------------|--|
| Input<br>Parameter                   | Description                     | Value          |                           | Reference                                                                 |  |
| С                                    | Exposure Concentration          | 95% UCL        | (mg/kg)                   | USEPA, May 1992d                                                          |  |
| IR                                   | Soil Ingestion Rate             | Child<br>Adult | 100 mg/day<br>100 mg/day  | USEPA, December 1989a                                                     |  |
| EF                                   | Exposure Frequency              | Child<br>Adult | 20 days/yr<br>20 days/yr  | Site-Specific Professional<br>Judgement<br>(4 days/month x 5 months/year) |  |
| ED                                   | Exposure Duration               | Child<br>Adult | 6 years<br>30 years       | USEPA, December 1989a                                                     |  |
| BW                                   | Body Weight                     | Child<br>Adult | 15 kg<br>70 kg            | USEPA, December 1989a                                                     |  |
| AT <sub>c</sub>                      | Averaging Time<br>Carcinogen    | All            | 25,550 days               | USEPA, December 1989a                                                     |  |
| AT <sub>nc</sub>                     | Averaging Time<br>Noncarcinogen | Child<br>Adult | 2,190 days<br>10,950 days | USEPA, December 1989a                                                     |  |
| CF                                   | Conversion Factor               | 1E-06 kg/mg    |                           | USEPA, December 1989a                                                     |  |

#### EXPOSURE ASSESSMENT SUMMARY DERMAL CONTACT WITH SEDIMENT REMEDIAL INVESTIGATION, CTO-0232 MCB CAMP LEJEUNE, NORTH CAROLINA

| Current Recreational Child and Adult |                                               |                        |                                                 |                                                                                                      |
|--------------------------------------|-----------------------------------------------|------------------------|-------------------------------------------------|------------------------------------------------------------------------------------------------------|
| Input<br>Parameter                   | Description                                   | Value                  |                                                 | Reference                                                                                            |
| С                                    | Exposure Concentration                        | 95% UCL                | (mg/kg)                                         | USEPA, May 1992d                                                                                     |
| SA                                   | Surface Area of Skin<br>Available for Contact | Child<br>Adult         | 4,600 cm <sup>2</sup><br>11,500 cm <sup>2</sup> | 50 percent whole body<br>(head, arms, hands, forearms,<br>lower extremities)<br>USEPA, January 1992a |
| AF                                   | Sediment Adherence Factor                     | $1.0 \text{ mg/cm}^2$  |                                                 | USEPA, Region IV, 1992c                                                                              |
| ABS                                  | Absorption Factor<br>(dimensionless)          | Organics<br>Inorganics | 1.0%<br>0.1%                                    | USEPA, Region IV, 1992c                                                                              |
| EF                                   | Exposure Frequency                            | Child<br>Adult         | 20 events/yr<br>20 events/yr                    | Site-Specific Professional<br>Judgement<br>(4 days/month x 5 months/year)                            |
| ED                                   | Exposure Duration                             | Child<br>Adults        | 6 years<br>30 years                             | USEPA, December 1989a                                                                                |
| BW                                   | Body Weight                                   | Child<br>Adult         | 15 kg<br>70 kg                                  | USEPA, December 1989a                                                                                |
| AT <sub>c</sub>                      | Averaging Time Carcinogen                     | All                    | 70 years                                        | USEPA, December 1989a                                                                                |
| AT <sub>ac</sub>                     | Averaging Time<br>Noncarcinogen               | Child<br>Adult         | 6 years<br>30 years                             | USEPA, December 1989a                                                                                |
| CF                                   | Conversion Factor                             | 1E-06 kg/mg            |                                                 | USEPA, December 1989a                                                                                |

### EXPOSURE ASSESSMENT SUMMARY FISH FILLET INGESTION REMEDIAL INVESTIGATION, CTO-0232 MCB CAMP LEJEUNE, NORTH CAROLINA

| Current Recreational Adult |                                               |                    |                                  |  |
|----------------------------|-----------------------------------------------|--------------------|----------------------------------|--|
| Input<br>Parameter         | Description                                   | Value              | Reference                        |  |
| С                          | Exposure Concentration                        | 95% UCL<br>(mg/kg) | USEPA, May 1992d                 |  |
| IR                         | Ingestion Rate                                | 0.145 kg/meal      | USEPA, 1993b                     |  |
| Fi                         | Fraction Ingested from<br>Contaminated Source | 1.0                | 90th Percentile Consumption Rate |  |
| EF                         | Exposure Frequency                            | 48 meal/year       | USEPA, December 1989a            |  |
| ED                         | Exposure Duration                             | 9 years            | USEPA, 1993b                     |  |
| BW                         | Body Weight                                   | 70 kg              | USEPA, December 1989a            |  |
| AT <sub>c</sub>            | Averaging Time<br>Carcinogen                  | 25,550 days        | USEPA, December 1989a            |  |
| AT <sub>nc</sub>           | Averaging Time<br>Noncarcinogen               | 10,950 days        | USEPA, December 1989a            |  |

(

## TOXICITY FACTORS REMEDIAL INVESTIGATION, CTO-0232 MCB CAMP LEJEUNE, NORTH CAROLINA

| · · · · · · · · · · · · · · · · · · · | RfD     | RfC     | CSF      | CSFI     | WOE | Reference                             |
|---------------------------------------|---------|---------|----------|----------|-----|---------------------------------------|
| Volatiles:                            |         |         |          |          |     |                                       |
| Benzene                               | 3.0E-04 | 1.7E-03 | 2.9E-02  | 2.9E-02  | A   | EPA/ECAO                              |
| cis-1,2-Dichloroethene                | 1.0E-02 |         |          |          |     | IRIS, 1994                            |
| Tetrachloroethene                     | 1.0E-02 | ND      | 5.2E-02  | 2.0E-03  |     | IRIS, 1994; USEPA, 1992b              |
| 1,1-Dichloroethene                    | 9.0E-03 |         | 6.0E-01  | 1.75E-01 | С   | IRIS,1994                             |
| Toluene                               | 2.0E-01 | 4.0E-01 | **       |          | D   | IRIS, 1994                            |
| trans-1,2-Dichloroethene              | 2.0E-02 |         | **       |          |     | · · · · · · · · · · · · · · · · · · · |
| Trichloroethene                       | 6E-03   | PDG     | 1.1E-02  | 6.0E-03  | B2  | IRIS, 1994; USEPA 1992b               |
| Xylenes (total)                       | 2.0E+00 | PDG     |          |          | D   | IRIS, 1994                            |
| Acetone                               | 1.00E-1 |         |          |          |     | IRIS, 1994                            |
| Ethylbenzene                          | 1.0E-1  | 2.9E-01 |          |          | F   | IRIS, 1994                            |
| Methyl Tertiary Butyl Ether           | 5.0E-03 | 8.6E-01 |          |          | D   | IRIS, 1994, EPA/ECAO                  |
| Semivolatiles:                        |         |         |          |          |     |                                       |
| Benzo(b)fluoranthene                  |         |         | 7.30E-01 | 6.10E-01 | B2  | IRIS, 1994                            |
| Diethylphthalate                      | 8.0E-01 |         |          |          |     | IRIS, 1994                            |
| Dibenzofuran                          | 4.0E-03 |         |          |          |     | EPA/ECAO                              |
| Pesticides/PCBs:                      |         |         |          |          |     |                                       |
| 4,4-DDD                               | ND      | ND      | 2.4E-01  |          | B2  | IRIS, 1994                            |
| 4,4:-DDE                              | ND      | ND      | 3.4E-01  |          | B2  | IRIS, 1994                            |
| 4,4 <b>'-D</b> DT                     | 5.0E-04 | ND      | 3.4E-01  | 3.4E-01  | B2  | IRIS, 1994                            |
| Dieldrin                              | 5.0E-05 |         | 1.6E+01  | 1.6E+01  | B2  | IRIS, 1994                            |
| Heptachlor                            | 5.0E-05 |         | 4.5E+00  | 4.55E+00 | B2  | IRIS, 1994                            |
| Heptachlor Epoxide                    | 5.0E-05 | ND      | 4.5E+00  | 9.1E+00  | B2  | IRIS, 1994                            |
| Endrin                                | 5.0E-04 |         | -        |          | D   | IRIS, 1994                            |
| Methoxychlor                          | 5.0E-03 |         |          |          | D   | IRIS, 1994                            |
| Total Chlordane                       | 6.0E-05 | UR      | 1.3E+00  | 1.3E+00  | B2  | IRIS, 1994                            |
| beta-BHC                              |         |         | 1.8E+00  | 1.8E+00  | -   | IRIS, 1994                            |
| Inorganics:                           |         |         |          |          |     |                                       |
| Arsenic                               | 3.0E-04 | ND      | 1.7E+00  | 1.5E+01  | A   | IRIS, 1994                            |
| Antimony                              | 4.0E-04 |         |          |          |     |                                       |
| Barium                                | 7.0E-02 | -       |          |          |     | IRIS, 1994                            |
| Beryllium                             | 5.0E-03 | ND      | 4.3E+00  | 8.4E+00  | B2  | IRIS, 1994                            |
| Cadmium                               | 5.0E-04 | PDG     | ·        | 6.3E+00  | BI  | IRIS, 1994                            |
| Chromium                              | 5.0E-03 |         | -        |          |     | IRIS, 1994                            |
| Cobalt                                | 6.0E-02 |         |          |          |     |                                       |
| Copper                                | 3.7E-02 |         | -        |          | D   |                                       |
| Manganese                             | 5.0E-03 | 1.4E-05 |          |          | D   | IRIS, 1994                            |
| Mercury                               | 3.0E-04 | 8.6E-05 |          |          | D   | HEAST, 1994                           |
| Nickel                                | 2.0E-02 | PDG     |          |          |     | IRIS, 1994                            |
| Selenium                              | 5.0E-03 | ND      | _        |          | D   | IRIS, 1994                            |
| Vanadium                              | 7.0E-03 |         |          |          |     | HEAST, 1994                           |
| Zinc                                  | 3.0E-01 |         |          |          | D   | IRIS, 1994                            |

#### TABLE 6-22 (Continued)

#### TOXICITY FACTORS REMEDIAL INVESTIGATION, CTO-0232 MCB CAMP LEJEUNE, NORTH CAROLINA

6

Notes: RfD Oral Reference Dose (mg/kg - day) Inhalation Reference Concentration (mg/kg-day)<sup>-1</sup> RfC Oral Cancer Slope Factor (mg/kg-day)-1 CSF Inhalation Cancer Slope Factor (mg/kg-day)-1 CSFI WOE Weight of Evidence IRIS Integrated Risk Information System HEAST Health Effects Assessment Summary Tables USEPA United States Environmental Protection Agency Not Determined ND PDG Pending Weight of Evidence WOE PDG Pending Under Review by USEPA UR Human Carcinogen Α Probable Human Carcinogen - Limited Evidence **B1** B2 Probable Human Carcinogen - Sufficient Evidence С Possible Human Carcinogen D Not Classifiable as to Human Carcinogenicity I Ingestion

## INCREMENTAL LIFETIME CANCER RISKS (ICRs) AND HAZARD INDICES (HIs) OPERABLE UNIT NO. 10 (SITE 35) SOIL

## **REMEDIAL INVESTIGATION, CTO-0232** MCB CAMP LEJEUNE, NORTH CAROLINA

|                               |                             |         |          | Recepto            | or Group |                   |                               |       |
|-------------------------------|-----------------------------|---------|----------|--------------------|----------|-------------------|-------------------------------|-------|
| Exposure Route                | Future Residential<br>Child |         |          | esidential<br>lult | 1        | Military<br>onnel | Future Construction<br>Worker |       |
|                               | ICR                         | HI      | ICR      | HI                 | ICR      | HI                | ICR                           | HI    |
| Incidental Ingestion          | 4.0E-05                     | 0.91    | 1.71E-05 | 0.10               | 2.9E-06  | 0.09              | 1.2E-07                       | 0.02  |
| Dermal Contact                | 4.6E-06                     | 0.02    | 9.9E-06  | <0.01              | 1.7E-07  | <0.01             | 1.1E-09                       | <0.01 |
| Inhalation of<br>Particulates | 3.3E-09                     | 5.5E-15 | 5.6E-09  | 9.5E-15            | 9.3E-10  | 2.8E-14           | 8.9 x 10 <sup>-12</sup>       | NA    |
| Total                         | 4.5E-05                     | 0.93    | 2.7E-05  | 0.10               | 3.1E-06  | 0.09              | 1.2E-07                       | 0.02  |

NA - Not Applicable

## INCREMENTAL LIFETIME CANCER RISKS (ICRs) AND HAZARD INDICES (HIs) OPERABLE UNIT NO. 10 (SITE 35) GROUNDWATER REMEDIAL INVESTIGATION, CTO-0232 MCB CAMP LEJEUNE, NORTH CAROLINA

|                      | Receptor Group |               |                        |       |  |  |  |  |
|----------------------|----------------|---------------|------------------------|-------|--|--|--|--|
| Exposure Route       | Future Resid   | lential Child | Future Residential Adu |       |  |  |  |  |
|                      | ICR            | HI            | ICR                    | HI    |  |  |  |  |
| Ingestion            | 2.0E-03        | 101           | 4.3E-03                | 43    |  |  |  |  |
| Dermal Contact       | 1.1E-04        | 2.1           | 2.0E-05                | 1.0   |  |  |  |  |
| Inhalation of Vapors | 1.0E-05        | <0.01         | 2.3E-05                | <0.01 |  |  |  |  |
| Total                | 2.1E-03        | 103           | 4.3E-03                | 44    |  |  |  |  |

## INCREMENTAL LIFETIME CANCER RISKS (ICRs) AND HAZARD INDICES (HIs) OPERABLE UNIT NO. 10 (SITE 35) SURFACE WATER REMEDIAL INVESTIGATION, CTO-0232 MCB CAMP LEJEUNE, NORTH CAROLINA

|                | Receptor Group    |       |                               |       |  |  |  |  |
|----------------|-------------------|-------|-------------------------------|-------|--|--|--|--|
| Exposure Route | Current Re<br>Chi |       | Current Recreational<br>Adult |       |  |  |  |  |
|                | ICR               | HI    | ICR                           | н     |  |  |  |  |
| Ingestion      | 1.1E-07           | <0.01 | 1.1E-07                       | <0.01 |  |  |  |  |
| Dermal Contact | 3.2E-09           | <0.01 | 8.6E-09                       | <0.01 |  |  |  |  |
| Total          | 1.1E-07           | <0.01 | 1.2E-07                       | <0.01 |  |  |  |  |

l

(

## INCREMENTAL LIFETIME CANCER RISKS (ICRs) AND HAZARD INDICES (HIs) OPERABLE UNIT NO. 10 (SITE 35) SEDIMENT REMEDIAL INVESTIGATION, CTO-0232 MCB CAMP LEJEUNE, NORTH CAROLINA

|                |                   | Receptor Group |                              |        |  |  |  |  |
|----------------|-------------------|----------------|------------------------------|--------|--|--|--|--|
| Exposure Route | Current Re<br>Chi |                | Current Recreationa<br>Adult |        |  |  |  |  |
|                | ICR               | HI             | ICR                          | HI     |  |  |  |  |
| Ingestion      | 2.3E-07           | 0.01           | 2.4E-07                      | <0.01  |  |  |  |  |
| Dermal Contact | 1.0E-07           | <0.01          | 2.1E-07                      | <0.01  |  |  |  |  |
| Total          | 3.3E-07           | 0.01           | 4.5E-07                      | < 0.01 |  |  |  |  |

## INCREMENTAL LIFETIME CANCER RISKS (ICRs) AND HAZARD INDICES (HIs) OPERABLE UNIT NO. 10 (SITE 35) FISH

## REMEDIAL INVESTIGATION, CTO-0232 MCB CAMP LEJEUNE, NORTH CAROLINA

|                | Current Rec<br>Adu |     |
|----------------|--------------------|-----|
| Exposure Route | ICR                | HI  |
| Ingestion      | 1.8E-05            | 1.8 |
| Total          | 1.8E-05            | 1.8 |

## TOTAL SITE RISK OPERABLE UNIT NO. 10 (SITE 35) REMEDIAL INVESTIGATION, CTO-0212 MCB CAMP LEJEUNE, NORTH CAROLINA

|                            | Sc               | oil           | Ground          | lwater      | Surface         | Water         | Sedir           | nent          | Fis             | h           | тот     | ALS  |
|----------------------------|------------------|---------------|-----------------|-------------|-----------------|---------------|-----------------|---------------|-----------------|-------------|---------|------|
| Receptors                  | ICR              | HI            | ICR             | HI          | ICR             | HI            | ICR             | HI            | ICR             | ні          | ICR     | HI   |
| Future Child Resident      | 4.5E-05<br>(<1)  | 0.93<br>(1)   | 2.1E-03<br>(99) | 103<br>(99) | NA              | NA            | NA              | NA            | NA              | NA          | 2.1E-03 | 104  |
| Future Adult Resident      | 2.7E-05<br>(<1)  | 0.10<br>(<1)  | 4.3E-03<br>(99) | 44<br>(99)  | NA              | NA            | NA              | NA            | NA              | NA          | 4.3E-03 | 44   |
| Future Construction Worker | 1.2E-07<br>(100) | 0.02<br>(100) | NA              | NA          | NA              | NA            | NA              | NA            | NA              | NA          | 1.2E-07 | 0.02 |
| Current Military Personnel | 3.1E-06<br>(100) | 0.09<br>(100) | NA              | NA          | NA              | NA            | NA              | NA            | NA              | NA          | 3.1E-06 | 0.09 |
| Current Recreational Child | NA               | NA            | NA              | NA          | 1.1E-07<br>(27) | <0.01<br>(<1) | 3.3E-07<br>(73) | 0.01<br>(99)  | NA              | NA          | 4.4E-07 | 0.01 |
| Current Recreational Adult | NA               | NA            | NA              | NA          | 1.2E-07<br>(<1) | <0.01<br>(<1) | 4.5E-07<br>(<1) | <0.01<br>(<1) | 1.8E-05<br>(99) | 1.8<br>(99) | 1.9E-05 | 1.8  |

Notes: ICR = Incremental Lifetime Cancer Risk

HI = Hazard Index

ND = Not Determined

NA = Not Applicable

() = Percent Contribution to Total Risk

## 8.0 CONCLUSIONS AND RECOMMENDATIONS

This section presents conclusions based on the information presented in Sections 1.0 through 7.0 and outlines recommendations for follow-up actions, as deemed appropriate, to fill informational gaps and provide a sound engineering basis for the development of remedial responses.

#### 8.1 <u>Conclusions</u>

- VOCs were detected in surface soil samples 35-SS05-00, 35-SS13-00 and 35-SS07-00. Sample 35-SS05-00 contained low concentrations of toluene, sample 35-SS07-00 contained carbon disulfide and sample 35-SS13-00 contained detectable levels of total xylenes.
- SVOCs were detected in surface soil samples collected within the study area. Contamination detected in samples 35-SS11-00 and 35-SS04-00 may be related to past activities associated with the Fuel Farm or the oil/water separator located near the ASTs.
- Tetrachloroethene was the only VOC detected in the subsurface soils that could be attributed to site conditions. It was detected in four borings (35-MW37BM, 35-MW30B, 35-MW32B and 35-MW33B) drilled south of Fourth Street. The contamination may be attributed to contaminants residing in the groundwater beneath the site.
- Sample 35-MW35B was the only subsurface soil sample containing SVOC contamination. A source for the SVOC contamination detected in sample 35-MW35B is neither obvious nor suspected in the vicinity of the soil boring.
- Inorganic levels in surface and subsurface soil were similar to base-wide inorganic levels. Surface soil samples 35-SS04-00 and 35-SS13-00 as well as subsurface soil sample 35-GWDS05-03 exhibited inorganics at levels higher than two times the base background average or the maximum base background detection. One of two reasons may be responsible for these apparent results. The elevated concentrations may be due to past activities at Building TC474 (formerly a vehicle maintenance garage) or simply outside the estimated range of base background. The number of samples used to establish a background range for inorganics is small, therefore may not be completely representative of background conditions.

BTEX compounds were detected in nearly every well that was sampled during the RI. However, the only compounds detected at the site which exhibited concentrations above groundwater standards were benzene and ethylbenzene. The wells containing the highest levels of benzene are concentrated in the areas where petroleum leaks or spills were suspected to have occurred. Monitoring wells MW-16, MW-22 and EMW-7 contained concentrations of benzene which exceeded the federal MCL and NCWQS. Ethylbenzene concentrations in MW-16 and MW-22 exceeded the NCWQS standard, but did not exceed the federal MCL. The following paragraphs describe the four plumes of nonhalogenated organics observed in the surficial.

flow, it is likely that the contamination may be attributed to the storage of chemicals within this area. However, not enough data exists at this time to determine the true origin of this contamination.

Ę

( ----

- Well 35MW-32A exhibited elevated concentrations of TCE and cis-1,2-DCE exceeding the Federal MCL and the NCWQS. The well is located east of warehouse TC462. Enough data has not been gathered to determine the source area for these contaminants.
- Semivolatile compounds were detected in monitoring wells MW-21, EMW-05, MW-29A, MW-16, and MW-22. These compounds appear to be related to petroleum contamination and correlate with the previously identified plumes.
- The only pesticide detected in the shallow groundwater which exceeded the NCWQS was heptachlor. It was detected in MW-29A with no apparent source for the contaminant. The concentration is low enough to indicate that it may have originated from the application of pest controls to the surface soils.
- Inorganic contamination was detected within the upper portion of the water table aquifer throughout the site. Since the distribution of the contaminants does not reflect a particular trend or pattern, it is difficult to assess the entire extent of metals contamination and identify specific source areas. The data suggests that the elevated total metals are due to suspended particulates in the sample.
- Nonhalogenated organic contamination (e.g., BTEX) was detected at low levels in the lower portion of the water table aquifer in nearly every intermediate well location. However, the concentrations of the contaminants detected were much lower than the concentrations detected in the upper portion of the aquifer. This trend complies with the properties of the compounds (i.e., specific gravity). The only exception to the trend is MTBE. The concentration of MTBE increased in the lower portion of the aquifer rather than decreased. A reason for this exception cannot be determined at this time and may require more information to formulate an explanation.

The primary nonhalogenated organic compounds that were detected at levels exceeding the Federal MCL and/or NCWQS were benzene, ethylbenzene and MTBE. Two primary plumes of nonhalogenated compounds were identified within the study area.

- The first to be discussed is located in the western, southwestern and southern portions of the site. The highest concentrations were centered around MW-10D. Benzene was not detected in this well but ethylbenzene and MTBE were detected at concentrations which exceeded the NCWQS. The surrounding wells (MW-09D, 35MW-31B, 35MW-32B, 35MW-30B, 35MW-29B and 35MW-37B) contained benzene at concentrations which exceeded the NCWQS. Three of the wells possessed concentrations which exceeded the federal MCL.
- The second plume is located in the eastern portion of the study area. Monitoring wells MW-19D, MW-22D and 35MW-33B contain concentrations of benzene, ethylbenzene and MTBE in excess of Federal and state groundwater standards.

flow, it is likely that the contamination may be attributed to the storage of chemicals within this area. However, not enough data exists at this time to determine the true origin of this contamination.

- Well 35MW-32A exhibited elevated concentrations of TCE and cis-1,2-DCE exceeding the Federal MCL and the NCWQS. The well is located east of warehouse TC462. Enough data has not been gathered to determine the source area for these contaminants.
- Semivolatile compounds were detected in monitoring wells MW-21, EMW-05, MW-29A, MW-16, and MW-22. These compounds appear to be related to petroleum contamination and correlate with the previously identified plumes.
- The only pesticide detected in the shallow groundwater which exceeded the NCWQS was heptachlor. It was detected in MW-29A with no apparent source for the contaminant. The concentration is low enough to indicate that it may have originated from the application of pest controls to the surface soils.
- Inorganic contamination was detected within the upper portion of the water table aquifer throughout the site. Since the distribution of the contaminants does not reflect a particular trend or pattern, it is difficult to assess the entire extent of metals contamination and identify specific source areas. The data suggests that the elevated total metals are due to suspended particulates in the sample.

10mg

t and

• Nonhalogenated organic contamination (e.g., BTEX) was detected at low levels in the lower portion of the water table aquifer in nearly every intermediate well location. However, the concentrations of the contaminants detected were much lower than the concentrations detected in the upper portion of the aquifer. This trend complies with the properties of the compounds (i.e., specific gravity). The only exception to the trend is MTBE. The concentration of MTBE increased in the lower portion of the aquifer rather than decreased. A reason for this exception cannot be determined at this time and may require more information to formulate an explanation.

The primary nonhalogenated organic compounds that were detected at levels exceeding the Federal MCL and/or NCWQS were benzene, ethylbenzene and MTBE. Two primary plumes of nonhalogenated compounds were identified within the study area.

- The first to be discussed is located in the western, southwestern and southern portions of the site. The highest concentrations were centered around MW-10D. Benzene was not detected in this well but ethylbenzene and MTBE were detected at concentrations which exceeded the NCWQS. The surrounding wells (MW-09D, 35MW-31B, 35MW-32B, 35MW-30B, 35MW-29B and 35MW-37B) contained benzene at concentrations which exceeded the NCWQS. Three of the wells possessed concentrations which exceeded the federal MCL.
- The second plume is located in the eastern portion of the study area. Monitoring wells MW-19D, MW-22D and 35MW-33B contain concentrations of benzene, ethylbenzene and MTBE in excess of Federal and state groundwater standards.

8-3

During Law's investigation of the site, samples were collected from monitoring well MW-19D and MW-22D. Results from the samples indicate that greater concentrations of total BTEX resided within monitoring well MW-22D than was detected by Baker and no BTEX compounds were detected in MW-19D. This information lends credibility to the theory that dissolved nonhalogenated contamination in this area of the study area is migrating with the direction of groundwater flow toward Brinson Creek.

In addition to nonhalogenated compounds, halogenated organics such as TCE, cis-1,2-DCE and trans-1,2-DCE were detected in 10 intermediate wells within the study area. The concentrations of the halogenated organics contamination is greater in the lower portion of the aquifer than the upper portion of the aquifer. This trend is typical when halogenated hydrocarbons, such as those listed previously are identified within an aquifer system. Due to the compounds specific gravity, it is common for higher concentrations of the compound to reside within the deeper portions of the aquifer. The following paragraphs discuss the nonhalogenated oganic plumes in the lower portion of the surficial aquifer.

- Two plumes of halogenated organics have been identified at the site. The first of the two plumes is located in the area of the former Vehicle Maintenance Garage (warehouse TC474) in the eastern portion of the study area. The highest concentrations of TCE were detected in wells MW-19D and 35MW-33B. TCE, cis-1,2-DCE and trans-1,2-DCE concentrations exceeded the federal MCL and NCWQS. These concentrations correlate well to the corresponding shallow wells. The concentrations detected in MW-19D are similar to the concentrations detected by Law in their previous investigation. Based on the concentrations detected in the shallow and intermediate wells, the former Vehicle Maintenance Garage is the suspected source for the halogenated organic contamination is this portion of the study area.
- A larger plume of halogenated organics originates on the southern edge of the study area trending northeast toward Brinson Creek. Elevated TCE concentrations exceeding the Federal MCL and the NCWQS were detected in monitoring wells 35MW-30B, 35MW-32B, 35MW-29B, MW-10D, MW-09D, MW-14D and MW-21D. The highest TCE concentration was detected in MW-10D, however this does not appear to be the source area for the contamination. The southern and northeastern edge of the plume is not defined and it is Baker's belief that the contamination source is located outside of the boundaries of the study area.
- No semivolatiles were detected in the lower portion of the shallow aquifer.
- Heptachlor was detected in monitoring well 35MW-33B at a concentration that exceeded the NCWQS. The source of this contamination is unknown.
- Inorganic contamination was detected within the lower portion of the water table aquifer. In comparison to the upper portion of the aquifer, inorganic concentrations were generally lower in the lower portion of the aquifer. Since the distribution of the contaminants do not reflect a particular trend or pattern, it is difficult to assess the entire extent of metals contamination and identify specific source areas. The

data suggests that suspended solids in the sample may be contributing to elevated total metals.

- No significant organic or inorganic contamination was detected in the samples collected from the deep wells (Figure 4-10). The absence of TCE in the Castle Hayne Aquifer indicates that the unit identified as a semi-confining unit is retarding the vertical migration of the contaminates. Although the unit possesses very little clay and is not the "typical" semi-confining unit, the high permeability of the soils above and below the unit as well as the groundwater gradient exhibited at the site provide for the surficial aquifer waters to flow along the top of the unit instead of passing through the unit. Vertical migration may be occurring at the site but at a very slow rate such that the contamination has not been detected in the upper portion of the Castle Hayne Aquifer.
- No VOCs were detected in surface water samples. Toluene was the only volatile organic compound detected in the sediments obtained from station 35-SW/SD03 within Brinson Creek (Figure 4-11). Although VOCs generally were not detected, heavy sheens and hydrocarbon odors were noted during sampling. During sample validation, it was noted that an unusually high number of Tentatively Identified Compounds (TICs) were identified in the samples.
- Although no SVOCs were detected in the surface water samples, a number of SVOCs were detected in the sediment samples collected from Brinson Creek. The SVOCs were detected in greater frequency in the samples collected from 6 to 12 inches. SVOCs were detected both upgradient and downgradient of Site 35. However, the highest levels of SVOCs were detected in samples obtained adjacent to Site 35.
- Pesticides were detected at all 10 sediment sample locations; however, no pesticides were observed in the surface water samples. The application of pest control to the surfaces Camp Geiger leads to pesticide detections in the sediments of Brinson Creek. The pesticides are carried from the surface soil to the creek via surface runoff and natural erosion. This statement can be further supported by the large number of pesticides detected in the surface soils at the site. PCBs were not detected in any of the surfaced water or sediment samples collected from Brinson Creek.
  - Inorganics above the Federal Screening Values (WQSVs and NOAA standards) and/or NCWQS are present in one surface water and seven sediment locations. The only compound to exceed the NOAA standards in sediments was lead. The greatest concentration was detected in sample number 36-SD06-06 collected from the 0 to 6 inch interval. The detected lead is prevalent adjacent to and downstream of Site 35 and could be related to past site activities. Mercury, lead and zinc were detected at levels exceeding the Federal and North Carolina Standards in surface water samples 35-SW01, 35-SW04 and 35-SW07. The mercury was detected in two samples (35-SW01 and 35-SW04) located upstream of Site 35 which indicates contamination may originate from an upgradient location. The concentrations of lead and zinc detected in sample 35-SW07 may be attributed to past practices at

Site 35 due to its geographic location with respect to Site measurements of groundwater.

• Baker calculated that the human health risk associated with pesticides dieldrin and DDD in surface soil samples demonstrates a risk range within acceptable levels.

• Baker calculated that the overall human health risk associated with Site 35 is in excess of the acceptable range. The total risk was driven by future potential exposure to groundwater and current potential exposure to fish. However, only noncarcinogenic risks were likely with exposure to fish.

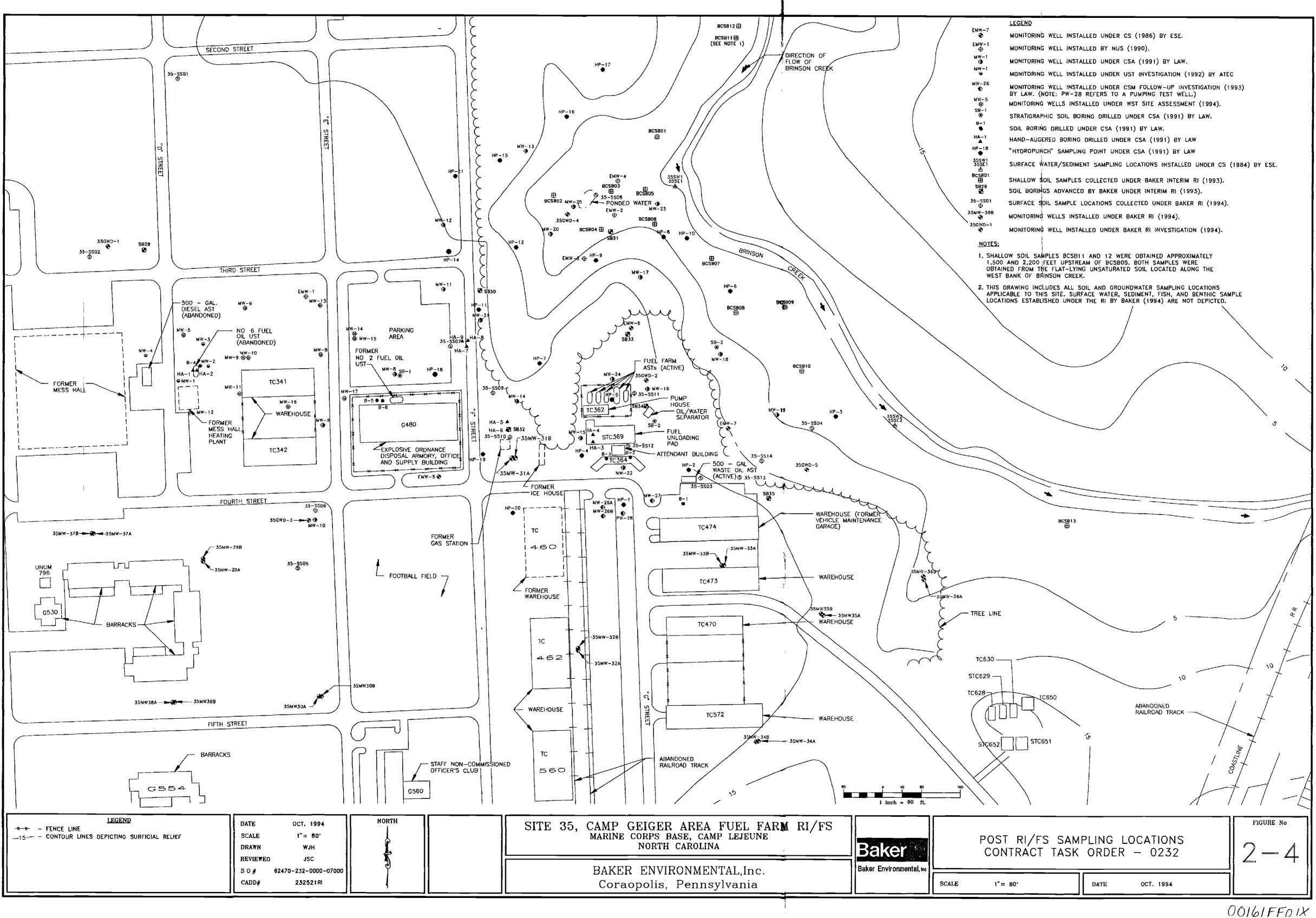
- Overall, metals and pesticides appear to be the most significant site related COPCs that have the potential to affect the integrity of the aquatic and terrestrial receptors at Site 35. Although the American alligator have been observed at Site 35, potential adverse impacts to this species could not be quantitatively evaluated.
- Surface water quality showed exceedances of aquatic reference values for lead, mercury, and zinc. In addition, iron, cobalt and manganese were above the concentration that caused adverse impacts to aquatic species in a few studies. However, most of the studies did not meet the criteria for reliability, and other studies indicated that potential impacts to aquatic organisms did not occur at the concentrations detected in the surface water at Brinson Creek. For sediments, concentrations of lead and the organics dieldrin, 4,4'-DDD, 4,4'-DDE, 4,4'-DDT, endrin, alpha-chlordane, and gamma-chlordane exceeded the aquatic reference values. In the surface water, mercury exceeded aquatic reference values in the upstream stations. Although these levels were indicative of a high potential for risk (QI > 100), mercury is not believed to be site related. Zinc only exceeded unity slightly and was only found at a single station. Lead has a single exceedance of the aquatic reference value by slightly greater than 10 indicating a moderate potential for risk to aquatic receptors. Lead also was found in the groundwater samples at similar levels and is site related.
- In the sediments, lead exceeded the lower sediment aquatic reference value throughout Brinson Creek. The only exceedances of the higher sediment aquatic reference value occurred downstream of Site 35 with the highest QI of 137 representing a high potential for risk to aquatic receptors. The lead detected in the sediments is likely site related, the result of past reported surface spills/runoff and past and ongoing groundwater discharges to surface water.
- Pesticides exceeded the sediment aquatic reference values throughout Brinson Creek. The highest QI, 2,600 for dieldrin, represents a high potential for risk to aquatic receptors. There is no documented pesticide disposal or storage/preparation activities at Site 35. The pesticide levels detected in the sediments probably are a result of routine application in the general vicinity of Site 35.
- Although, the pesticides in the sediments were found at levels indicating contamination throughout the watershed, the highest levels were observed in the lower reaches of Brinson Creek. This deposition tread may be related to the higher

organics in the sediments in the lower reach, which would accumulate more of these types of contaminants.

- The fish community sampled in Brinson Creek was representative of an estuarine ecosystem with both freshwater and marine species present. In addition, the presence of blue crabs, grass shrimp, and crayfish support the active use of Brinson Creek by aquatic species.
- The absence of pathologies observed in the fish collected from Brinson Creek indicates that the surface water and sediment quality may not adversely impact the fish community.
- The benthic macroinvertebrate community demonstrated the typical tidal/freshwater species trend of primarily chironmids and oligochaetes in the upper reaches and polychaetes and amphipods in the lower reaches. Species representative of both tolerant and intolerant taxa were present. Species richness and densities were representative of an estuarine ecosystem.
- The aquatic community in Brinson Creek is representative of an estuarine community and does not appear to be significantly impacted by surface water and sediment quality.
- Surface soil quality indicated a potential for adversely impacting the terrestrial receptors that have indirect contact with the surface soils and copper in the tissue samples. This adverse impact is primarily due to cadmium in the surface soils. The cadmium in the surface soil is overestimating the adverse impacts since it was detected at a relatively high concentration in only one out of ten samples. In addition, the copper in the tissue samples does not appear to be site-related.

#### 8.2 <u>Recommendations</u>

, See


Based on the data obtained it is recommended that:

- The remedial investigation at Site 35 be extended south of Fifth Street as needed to define the extent and locate the source(s) of solvent-related groundwater contamination in the surficial aquifer.
- The monitoring wells screened within the surficial aquifer that were sampled under the RI be resampled for inorganic contaminants (total phase only) using low-flow pumping techniques in order to more accurately quantify total metals contamination. Based on past experiences with the technique at Camp Lejeune, it is anticipated that using the low-flow technique will result in lower total metals concentrations due to reduced sediment disturbances while sampling.
- Surface soils and sediments be resampled for mercury and zinc in order to replace that data which was rejected during validation. The data generated from the additional sampling of soils and sediments combined with the results of the lowflow groundwater sampling for metals should enable Baker to determine whether or not Site 35 is the source of elevated zinc and/or mercury concentrations in

٢

Brinson Creek surface water and fish. In addition, new information regarding metals concentrations in Site 35 media will be used to further evaluate the human health and environmental risks associated with the site. The soils and sediment data and any associated analyses will be incorporated into an addendum to the RI Report.

- Sediment samples along Brinson Creek be obtained at locations adjacent to and downstream of Site 35 and analyze for TPH (EPA Methods 5030 and 3550) so as to provide data regarding the extent of organic contamination that was "masked" by TICs in results obtained under the RI.
- An Interim Remedial Action Feasibility Study be prepared that focuses on the groundwater in the vicinity of the Fuel Farm and north of Fourth Street. The purpose of this Interim FS will be to address groundwater contamination in this area which may be a continuing source of contamination to Brinson Creek.
- The northeastern edge of the halogenated organic plume has not been delineated. Therefore soil and groundwater samples should be collected on the northern side of Brinson Creek in order to determine if Brinson Creek is acting as a barrier to groundwater contamination that may be migrating off-site.
  - Special precautions be taken when soil excavation is performed during the construction of the new highway. Specifically, it is recommended that the written construction workplans reference the need for monitoring of volatile organic contaminant concentrations in the breathing zone of the workers, and that institutional and engineering controls be established to minimize human exposure to both VOCS and fugitive dust particulates. Although the calculated risk to human health for future construction workers on Site 35 is well below the EPA acceptable range, adverse exposure to a volatilized fraction of contaminants in the subsurface soil or inhalation of airborne contaminants is possible.



APPENDIX B INTERIM ACTION FEASIBILITY STUDY FOR SHALLOW GROUNDWATER IN THE VICINITY OF THE FORMER FUEL FARM

# FINAL

## INTERIM FEASIBILITY STUDY FOR SURFICIAL GROUNDWATER FOR A PORTION OF OPERABLE UNIT NO. 10 SITE 35 - CAMP GEIGER AREA FUEL FARM

## MARINE CORPS BASE CAMP LEJEUNE, NORTH CAROLINA

## **CONTRACT TASK ORDER 0232**

## MAY 31, 1995

Prepared For:

## DEPARTMENT OF THE NAVY ATLANTIC DIVISION NAVAL FACILITIES ENGINEERING COMMAND Norfolk, Virginia

Under:

LANTDIV CLEAN Program Contract N62470-89-D-4814

# Prepared by:

BAKER ENVIRONMENTAL, INC. Coraopolis, Pennsylvania

#### **EXECUTIVE SUMMARY**

This report presents the Draft Interim Feasibility Study (FS) for groundwater in the vicinity of the Fuel Farm at Operable Unit (OU) No. 10, Site 35 - Camp Geiger Area Fuel Farm, located at Marine Corps Base (MCB), Camp Lejeune, North Carolina. The Interim FS is based on data collected during the Remedial Investigation (RI) conducted at Site 35 (Baker, 1994), as well as data collected under previous investigations.

#### **Purpose of the Interim FS**

The purpose of this Interim FS is to identify and evaluate various remedial actions for contaminated groundwater in the vicinity of the Fuel Farm at Site 35. The results of the RI indicate that the extent of groundwater contamination has not been adequately defined to date, although contaminated groundwater is present in the area of the proposed highway downgradient from the Fuel Farm. It is a known source of ongoing contamination to Brinson Creek. The Interim FS is intended to develop potential remedial actions that will provide for the protection of human health and the environment from contaminated groundwater in this area prior to the completion of a comprehensive FS that considers remedial actions for the entire area of contaminated groundwater as well as other media including surface water and sediments. The comprehensive FS will not be initiated until additional data is obtained from Site 35 to more clearly define the extent and possible sources of contaminated groundwater.

#### Site Description and Location

Camp Geiger is located at the extreme northwest corner of MCB Camp Lejeune and contains a mixture of troop housing, personnel support and training facilities. The main entrance is located along U.S. Route 17, approximately 3.5 miles southwest of the City of Jacksonville, North Carolina. Site 35, the Camp Geiger Area Fuel Farm, refers primarily to five, 15,000-gallon aboveground storage tanks (ASTs), a pump house, a fuel loading/unloading pad, an oil water separator, and a distribution island situated just north of the intersection of Fourth and "G" Streets.

#### Site History

)

Construction of Camp Geiger was completed in 1945, four years after construction of MCB, Camp Lejeune was initiated. Originally, the Fuel Farm ASTs were used for the storage of No. 6 fuel oil, but were later converted for storage of other petroleum products including unleaded gasoline, diesel fuel, and kerosene. The date of their conversion is not known.

Routinely, the ASTs at Site 35 supply fuel to an adjacent dispensing pump. A leak in an underground line at the station was reportedly responsible for the loss of roughly 30 gallons per day of gasoline over an unspecified period (Law, 1992). The leaking line was subsequently sealed and replaced.

The ASTs at Site 35 are currently used to dispense gasoline, diesel, and kerosene to government vehicles, and to supply underground storage tanks (USTs) in use at Camp Geiger and the nearby New River Marine Corps Air Station. The ASTs are supplied by commercial carrier trucks which deliver product to fill ports located on the fuel loading/unloading pad located south of the ASTs. Six, short-run (120 feet maximum), underground fuel lines are currently utilized to distribute the

product from the unloading pad to the ASTs. Product is dispensed from the ASTs via trucks and underground piping.

Reports of a release from an underground distribution line near one of the ASTs date back to 1957-58 (ESE, 1990). Apparently, the leak occurred as the result of damage to a dispensing pump. At that time the Camp Lejeune Fire Department estimated that thousands of gallons of fuel were released although no records of the incident are available. The fuel reportedly migrated to the east and northeast toward Brinson Creek. Interceptor trenches were excavated and the captured fuel was ignited and burned.

In April 1990, an undetermined amount of fuel was discovered by Camp Geiger personnel along two unnamed drainage channels north of the Fuel Farm. Apparently, the source of the fuel, believed to diesel or jet fuel, was an unauthorized discharge from a tanker truck that was never identified. The Activity reportedly initiated an emergency clean-up which included the removal of approximately 20 cubic yards of soil.

The Fuel Farm is scheduled to be decommissioned in 1995. Plans are currently being prepared to empty, clean, dismantle, and remove the ASTs along with all concrete foundations, slabs on grade, berms, and associated underground piping. The Fuel Farm will be removed to make way for a six-lane divided highway proposed by the North Carolina Department of Transportation (NCDOT). Construction of the highway is also scheduled to commence in 1995.

In addition to the Fuel Farm dismantling, soil remediation activities will take place along the highway right-of-way as per an Interim Record of Decision executed on September 15, 1994. The soil remediation work is scheduled to commence following the demolition of the Fuel Farm.

#### **Previous Investigations and Findings**

Previous investigations conducted at Site 35 include the Initial Assessment Study of Marine Corps Base, Camp Lejeune, North Carolina (WAR, 1983), Final Site Summary Report, MCB Camp Lejeune (ESE, 1990) Draft Field Investigation/Focused Feasibility Study, Camp Geiger Fuel Spill Site (NUS, 1990), Underground Fuel Investigation and Comprehensive Site Assessment (Law, 1992) and the Addendum Report of Underground Fuel Investigation and Comprehensive Site Assessment (Law, 1993), the Interim Remedial Action Remedial Investigation/Feasibility Study (Baker, 1994), and the Remedial Investigation Report (Baker, 1994).

The Initial Assessment Study identified Site 35 as one of 23 sites warranting further investigation. Environmental media were not sampled as part of this study.

ESE performed the Confirmation Study at the Fuel Farm between 1984 and 1987. Soil, groundwater, surface water, and sediment samples were obtained and analyzed for lead and oil and grease. Groundwater was also analyzed for volatile organics. Oil and grease results indicated that soils northeast of the Fuel Farm were potentially impacted by site activities.

Additional wells were installed by NUS Corporation during the Focused Feasibility Study, which was conducted in 1990. Soil cuttings obtained from two of the four well boreholes contained hydrocarbon related contamination.

Law conducted the Comprehensive Site Assessment in 1991. A total of 18 soil borings were drilled, sampled and converted to nested wells that monitor the water table aquifer at two depths. An additional three soil borings were drilled to provide stratigraphic data. Five more soil borings were drilled to provide data regarding vadose zone contamination. Nine hand-auger samples were also obtained. A follow-up study was conducted subsequent to the Comprehensive Site Assessment. Three additional borings were drilled, sampled and converted to wells.

÷λ

**`**}

J

Law identified areas of impacted soil and groundwater directly beneath and apart from the Fuel Farm. The nature of the contamination included both chlorinated organic compounds (e.g., TCE, trans-1,2-DCE, and vinyl chloride) and petroleum hydrocarbons (e.g., TPH, MTBE, BTEX). The majority of the soil contamination encountered appeared to be associated with a fluctuating groundwater table. Two plumes of shallow groundwater contaminated with petroleum constituents and two plumes contaminated with chlorinated organics were identified. All four plumes were located north of Fourth Street and east of E Street except for a portion of a TCE plume extending southwest of Fourth Street.

The Interim Remedial Action RI conducted by Baker in 1993 and 1994 consisted of drilling seven additional soil borings including five in those areas where groundwater contamination plumes were suspected. In general, the Interim Remedial Action RI data confirm the findings of the CSA (Law, 1992) that indicated contaminated soil conditions at Site 35 are primarily associated with a fluctuating shallow groundwater plume.

The Interim Remedial Action RI/FS culminated with an executed Interim Record of Decision (ROD), signed on September 15, 1994, for the remediation of contaminated soil along and adjacent to the proposed highway right-of-way at Site 35. Three areas of contaminated soil have been identified. The first area is located in the vicinity of the Fuel Farm ASTs, and the two other areas are located north of the Fuel Farm. The larger of these two areas is located along "F" Street in the vicinity of monitoring well MW-25. Baker has estimated that approximately 3,600 cubic yards (4,900 tons) of contaminated soil is present in these areas. Contaminated soil located in these areas is scheduled for removal and disposal at an off-site recycling facility beginning July 1995.

A fourth area of soil contamination, located immediately north of Building G480, was also identified in the Interim ROD. Additional data pertaining to this fourth area became available subsequent to the execution of the Interim ROD. This data indicated that contaminated soil was encountered in this area during the removal of a UST there in January 1994. The contaminated soil was excavated and reportedly disposed off site; however, no documentation is available regarding how or where the soil was disposed. An additional soil investigation will be conducted in this area to confirm that the contaminated soil was not returned to the excavation and that follow-up soil remediation in this area is not necessary.

A comprehensive RI was conducted by Baker in 1994 to evaluate the nature and extent of the threat to public health and the environment caused by the release of hazardous substances, pollutants, or contaminants, and to support a Feasibility Study evaluation of potential remedial alternatives. The RI field program was initiated on April 11, 1994. Data gathering activities were derived from: a soil gas survey and groundwater screening investigation, a soil investigation, a groundwater investigation, a surface water and sediment investigation, and an ecological investigation. The results of this investigation are discussed in the following sections: "Nature and Extent of Contamination" and "Summary of Site Risks."

Two USTs located near the Fuel Farm have been the subject of previous investigations conducted under an Activity-wide UST program. The two USTs include a No. 6 fuel oil UST situated adjacent to the former Mess Hall Heating Plant, and a No. 2 fuel oil UST situated adjacent to the Explosive Ordnance and Disposal Armory, Office, and Supply Building. The former UST was abandoned in place years ago (date unknown) and has been the subject of previous environmental investigations performed by ATEC Associates, Inc. and Law. The latter UST was removed in January 1994, and is the UST associated with the fourth area of soil contamination identified in the Interim ROD signed September 15, 1994, which is mentioned above.

#### Nature and Extent of Contamination

The nature and extent of contamination was determined based on the analytical results of the various media considered under the RI (Baker, 1994), including soil, groundwater, sediment, surface water, and fish tissue.

#### Surface and Subsurface Soil

Relatively few detections of VOCs and SVOCs were observed in surface and subsurface soil samples obtained under the RI. Pesticides were detected in surface soil samples only, but, are not deemed to be site related. No PCBs were detected in surface or subsurface soil samples. Detected inorganics were generally similar to background surface and subsurface soil concentrations at Camp Lejeune.

#### Groundwater

The nature and extent of groundwater contamination was considered based on the interval of groundwater monitored and included the upper portion of the surficial aquifer, the lower portion of the surficial aquifer, and the upper portion of the Castle Hayne aquifer.

No significant contamination was detected in the upper portion of the Castle Hayne aquifer. This indicates that, to date, the suspected semi-confining layer that separates the surficial aquifer from the Castle Hayne aquifer has served effectively as an aquitard.

Extensive groundwater contamination was observed in the surficial aquifer along both the upper and lower monitored intervals. Fuel-related organic contaminants, when encountered, appear more prevalent in the upper portion of the surficial aquifer. Conversely, solvent-related organic contaminants, when encountered, appear more prevalent in the lower portion of the surficial aquifer. This is likely due to the fact that the latter have specific gravities that are greater than one, while fuel-related contaminants have specific gravities less than one.

The extent of fuel-related contamination appears to be adequately defined based on the data obtained to date. It is limited to the area north of Fourth Street in the vicinity of obvious suspected sources such as the Fuel Farm, and nearby former UST sites.

The extent of solvent-related contamination has not been completely defined to date nor have all of its sources been identified. A plume appears to extend from north of Fourth Street south to Fifth Street beyond which the RI did not extend in the southerly direction. The source of this plume has not been determined. A second smaller plume is present in the vicinity of the Former Vehicle

Maintenance Garage (Building TC474). This plume appears to be adequately defined with Building TC474 and the immediate vicinity as the likely source of contamination.

Elevated levels of inorganic contaminants (total and dissolved) were detected in groundwater samples obtained from within the surficial aquifer. It is questionable whether this contamination is due to past site activities because the results are similar to those obtained by Baker at other Camp Lejeune sites. The elevated total metals are believed to be caused by suspended particulates in the samples.

#### Surface Water and Sediment

Significant levels of organic and inorganic contaminants were detected in sediment samples obtained from locations adjacent to and downstream of Site 35. The results of VOC analyses were "masked" by the presence of high levels of Tentatively Identified Compounds (TICs), and consequently, few VOC detections were reported. Nevertheless, the Baker field team commented during sampling that the sediment samples appeared to contain elevated levels of fuel-related contaminants which could also explain the presence of TICs. Lead at elevated levels was also detected in these sediment samples, and like the organic contaminants, could be related to Site 35.

Surface water contamination was limited to a single detection of lead and zinc downstream of Site 35 at levels in excess of the WQSVs and the NCWQS. No organic contaminants were detected in surface water samples.

#### Fish

)

A variety of organic and inorganic contaminants were detected in fillet and whole body samples analyzed under the RI. The most significant contaminants detected were the pesticides dieldrin and 4,4-DDD, and a single inorganic mercury. These contaminants were primarily responsible for the calculated risk to human health in excess of EPA guidelines.

#### **Summary of Site Risks**

As part of the RI Baker calculated that the human health risk associated with Site 35 is in excess of the acceptable range. The total risk was driven by future potential exposure to groundwater (specifically driven by the contaminants: cis-1,2-dichloroethene, trichloroethene, benzene, antimony, arsenic, barium, beryllium, chromium, cadmium, manganese, and vanadium) and current potential exposure to fish (due to mercury).

The ecological risk assessment indicated that the aquatic community within Brinson Creek was representative of an estuarine community and does not appear to be adversely impacted by surface water and sediment quality. Additionally, there are no significant adverse impacts to terrestrial receptors from site-related contaminants.

#### **Remediation Levels**

This section presents the remediation levels (RLs) chosen for OU No. 10. RLs are chosen by the risk manager for the COCs and are included in the Interim FS and the Interim ROD. These numbers derived from the RGOs are no longer goals and should be considered required levels for the remedial actions to achieve.

ES-5

The RLs associated with OU No. 10 are presented on Table ES-1. This list was based on a comparison of contaminant-specific ARARs (or ARAR-based RGOs) and the site-specific risk-based RGOs. If a COC had an ARAR, the most limiting (or conservative) ARAR was selected as the RL for that contaminant. If a COC did not have an ARAR, the most conservative risk-based RGO was selected for the RL.

In order to determine the final COCs for OU No. 10, the contaminant concentrations detected at each site were compared to the RLs presented on Table ES-1. The contaminants which exceed at least one of the RLs have been retained as final COCs. The contaminants that did not exceed any of the RLs are no longer considered as COCs with respect to this Interim FS. The final COCs and their associated RLs are presented on Table ES-2.

Several inorganic COCs, including arsenic, beryllium, antimony, barium, cadmium, manganese, nickel, and vanadium, were detected in concentrations that exceeded remediation levels. However, these inorganics will not be addressed in this Interim FS because it is unlikely that their presence is a result of past site activities. (The inorganic concentrations are similar to those detected at other Camp Lejeune sites.) Recently, Baker has employed new sampling techniques for inorganics in groundwater utilizing low-flow pumps. The low-flow pumps minimize particle disturbance and have resulted in reduced levels of total inorganics in groundwater analytical results. As recommended in the RI, inorganics at OU No. 10 will be re-sampled using this low-flow sampling technique. Based on previous experience on other sites at this Activity, it is probable that detected concentrations for some inorganic COCs will then fall below remediation levels. Thus, inorganic COCs exceeding remediation levels will not be addressed at this time and Table ES-3 presents a final list of COCs to be addressed in this Interim FS.

#### Summary of Alternatives

Various technologies and process options were screened and evaluated under the Interim Remedial Action FS. Ultimately, five Remedial Action alternatives (RAAs) were developed and are listed as follows:

- RAA 1 No Action
- RAA 2 No Action with Institutional Controls
- RAA 3 Groundwater Collection and On-Site Treatment
- RAA 4 In Situ Air Sparging and Off-Gas Carbon Adsorption
- RAA 5 In Well Aeration and Off-Gas Carbon Adsorption

A brief description of each alternative as well as the estimated cost and timeframe to implement the alternative are as follows:

• RAA 1: No Action

| Total Net Present Worth (30 yea | ars):\$ | 0 |
|---------------------------------|---------|---|
| Months to Implement:            |         | 0 |

Under the No action RAA, no remedial actions will be performed to reduce the toxicity, mobility, or volume of the contaminated surficial groundwater at Site 35. This method assumes that passive remediation will occur via natural attenuation processes and that the

-contaminant levels will be reduced over an indefinite period of time. However, the achievable reductions versus time are difficult, if not impossible to predict.

The No Action RAA is required by the NCP to provide a baseline for comparison with other alternatives. Since contaminants will remain at the site under this alternative, USEPA is required by the NCP [40 CFR 300.515(e) (ii)] to review the effects of this alternative no less often than every five years.

RAA 2: No Action with Institutional Controls

)

3

| Total Net Present Worth (30 years): | . \$299,800 |
|-------------------------------------|-------------|
| Months to Implement:                | 2           |

Under RAA No. 2, no remedial actions will be performed to reduce the toxicity, mobility, or volume of the contaminated surficial groundwater at Site 35. This RAA provides for the revision of the Base Master Plan to include restrictions on the use of the surficial aquifer in the vicinity of the Fuel Farm. This will reduce the risk to human health and the environment posed by this media by eliminating one exposure pathway; however, the impacted surficial groundwater will remain a potential source of contamination to Brinson Creek.

In addition to the aquifer-use restrictions, long-term groundwater monitoring is to be included under this RAA to provide data regarding the impact of natural attenuation and the progress of contaminant migration. Long-term groundwater monitoring includes the semi-annual collection and analysis (TCL VOCs) of groundwater samples from 11 monitoring wells, the development of a semi-annual monitoring report, and the replacement of one monitoring well every five years.

Since contaminants will remain at the site under this alternative, the USEPA is required by the NCP [40 CFR 300.515(e) (iii)] to review the effects of this alternative no less often than every five years.

RAA 3: Groundwater Collection and On-Site Treatment

| Total Net Present Worth (30 years): | . \$3,000,500 |
|-------------------------------------|---------------|
| Months to Implement:                | 3             |

RAA 3 is a source collection and treatment alternative, the source being the contaminated surficial groundwater in the vicinity of the Fuel Farm at Site 35. Under this alternative a vertical interceptor trench, approximately two feet wide, by 30 feet deep, by 1,080 feet long, will be installed at the downgradient edge of the contaminated plume in the area between the proposed highway and Brinson Creek. The interceptor trench will be constructed from the ground surface to the semi-confining layer at the base of the surficial aquifer. The purpose of the interceptor trench is to collect contaminated surficial groundwater for transfer to an on-site treatment facility prior to it being discharged to Brinson Creek.

The type of interceptor trench proposed under RAA 4 is termed a "biopolymer slurry drainage trench." This type of trench can be installed without dewatering or structural bracing. Through the use of a natural, biodegradable slurry, the walls of a trench excavation can be supported and the trench can be installed without personnel entering an excavation.

compared to other trenching methods, this technique is safer and cost-effective in areas with a high groundwater and unstable soil because there are no costs for dewatering and water disposal or shoring.

A biopolymer slurry drainage trench is constructed in much the same manner as a typical slurry cut-off wall. However, unlike a bentonite-clay slurry, a biodegradable biopolymer slurry supports the walls of the trench while excavated materials are removed and drainage structures are installed. The biopolymer slurry then naturally biodegrades after the trench is backfilled. In the end, a permeable wall is left intact. In this case an impermeable geomembrane will be installed along the downgradient side of the trench so that groundwater will enter the trench from only the upgradient direction.

The interceptor trench will be designed to collect groundwater at a rate roughly equal to the groundwater flow (5 to 10 gpm) across the upgradient face of the trench (31,900 square feet). Flow across the downgradient face of the trench will be restricted by an impermeable geomembrane barrier. Drawdown of the groundwater surface will be minimized so as to mitigate the potential of excessive ground settlement beneath the highway. The collected groundwater will be conveyed to an on-site treatment plant located just east of the proposed highway right-of-way, creek-side, where it appears that adequate space and firm foundation material is available.

Baker, LANTDIV, and MCB, Camp Lejeune will negotiate with NC DOT regarding the specifics for site access to the creek-side of the new highway. The EPA and NC DEHNR will be kept abreast of developments on this subject. In this FS, Baker proposes an access road running along the east side of the highway from the south.

The collected groundwater will be treated sufficiently to allow for its discharge to Brinson Creek at a point downstream of Site 35. It is anticipated that the groundwater treatment system will include filtration for the removal of suspended solids, a settling tank for the removal of metals, sludge collection and disposal, volatilization (air stripping) for the removal of VOCs, and secondary treatment of VOC emissions from the air stripper and of the treated groundwater (i.e., via carbon adsorption). The treatment plant effluent will be sampled once a month to insure that water discharged to Brinson Creek meets all applicable water quality standards.

RAA 3 assumes that the Base Master Plan will be modified to include restrictions on the use of the surficial aquifer in the vicinity of the Fuel Farm. This will reduce the risk to human health and the environment posed by this media by eliminating one exposure pathway.

In addition to aquifer-use restrictions, long-term groundwater monitoring is to be included under this RAA to provide date regarding the impact of natural attenuation and the progress of contaminant migration. Long-term groundwater monitoring includes the semi-annual collection and analysis (TCL VOCs) of groundwater samples from 11 monitoring wells, the development of a semi-annual monitoring report, and the replacement of one monitoring well every five years.

Since contaminants will remain at the site under this alternative, the USEPA is required by the NCP {40 CFR 300.515(e) (iii)} to review the effects of this alternative no less often than every five years.

#### RAA 4: In Situ Air Sparging and Off-Gas Carbon Adsorption

λ

3

| Total Net Present Worth (30 years): | \$2,459,600 |
|-------------------------------------|-------------|
| Months to Implement:                | 3           |

In situ air sparging (IAS) is a technique in which air is injected into water saturated zones for the purpose of removing organic contaminants primarily via volatilization and secondarily via aerobic biodegradation. IAS systems introduce contaminant-free air into an impacted aquifer near the base of the zone of contamination, forcing VOC contaminants to transfer from the groundwater into sparged air bubbles. The air bubbles are then transported into soil pore spaces in the unsaturated zone where they are typically collected via soil vapor extraction (SVE) and conveyed to an on-site, off-gas treatment system.

An IAS system typically is comprised of the following components: 1) air injection wells; 2) an air compressor; 3) air extraction wells; 4) a vacuum pump; 5) associated piping and valving for air conveyance; and 6) an off-gas treatment system (e.g., activated carbon, combustion, or oxidation). Under RAA 4 a line of air sparging wells will be installed between the proposed highway and Brinson Creek in order to treat and contain the contaminated plume near its downgradient extreme. Based on empirical data from similar sites, the radius of influence of an air sparging well ranges from five to almost 200 feet, but is typically on the order of 25 feet (EPA, 1992). For the purpose of the FS, Baker estimates that 43 sparging wells, 30 feet deep, and 43 SVE wells, 4 feet deep, would be required. The proposed off-gas treatment system (activated carbon) will be located just east of the proposed highway right-of-way, creek-side, where it appears that there is adequate space and firm foundation material available. The air emissions from the off-gas treatment system will be sampled monthly to insure that all applicable air emissions standards are being met.

Air sparging systems are most effective in sandy soils, but, can be adversely impacted by high levels of inorganic compounds in the groundwater which oxidize and precipitate when contacted by the sparged air. These organics can form a heavy scale on well screens and clog the well space of the sand pack surrounding the well screen resulting in a reduction in permeability. A field pilot test is recommended to determine the loss of efficiency over time as a result of inorganics precipitation and oxidation, the radius of influence of the wells under various heads of injection air pressure, and the rate of off-gas organic contaminant removal via carbon adsorption and carbon breakthrough.

Baker, LANTDIV, and MCB, Camp Lejeune will negotiate with NC DOT regarding the specifics for site access to the creek side of the new highway. The EPA and NC DEHNR will be kept abreast of developments on this subject. In this FS, Baker proposes an access road running along the east side of the highway from the south.

RAA 4 assumes that the Base Master Plan will be modified to include restrictions on the use of the surficial aquifer in the vicinity of the Fuel Farm. This will reduce the risk to human health and the environment posed by this media by eliminating one exposure pathway.

In addition to aquifer-use restrictions, long-term groundwater monitoring is to be included under this RAA to provide data regarding the impact of natural attenuation and the progress of contaminant migration. Long-term groundwater monitoring includes the semi-annual collection and analysis (TCL VOCs) of groundwater samples from 11 monitoring wells, the development of a semi-annual monitoring report, and the replacement of one monitoring well every five years.

Since contaminants will remain at the site under this alternative, the USEPA is required by the NCP [40 CFR 300.515 (e) (iii)] to review the effects of this alternative no less often than every five years.

• RAA 5: In Well Aeration and Off-Gas Carbon Adsorption

| Total Net Present Worth (30 years): | \$2,519,700 |
|-------------------------------------|-------------|
| Months to Implement:                | 3           |

In well aeration is a new technology that utilizes circulating air flow within a groundwater well that, in effect, turns the well into an air stripper. In well aeration differs from air sparging in that volatilization occurs outside the well via air sparging and within the well via in well aeration. Similar to air sparging, this technique removes organic contaminants from groundwater primarily via volatilization and secondarily via aerobic biodegradation. Under RAA 5 a line of in well aeration wells will be installed between the proposed highway and Brinson Creek in order to treat and contain the contaminated plume near its downgradient extreme. The radius of influence, or capture zone, of an in well aeration well is reportedly much greater than that of a typical air sparging well system. Using modeling equations and graphical solutions, the developers of this technology have calculated a radius of influence of over 100 feet at Site 35.

For the purpose of the FS, Baker estimates that six in well aeration wells would be required. Volatilized organics collected by this technology, unlike air sparging, will be treated at each in well aeration well by independent air treatment/carbon adsorption systems which will rest adjacent to the wells. The air emissions from the off-gas treatment system will be sampled monthly to insure that all applicable air emissions standards are being met. Each well and aboveground off-gas treatment system will be housed in a small prefabricated building.

In well aeration systems, like IAS systems, are most effective in sandy soils, but, can be adversely impacted by high levels of inorganic compounds in the groundwater which oxidize and precipitate when contacted by air. These inorganics can form a heavy scale on well screens and clog the well space of the sand pack surrounding the well screen resulting in a reduction in permeability. A field pilot test is recommended to determine the loss of efficiency over time as a result of inorganics precipitation and oxidation, the radius of influence of the wells under various heads of injection air pressure, and the rate of off-gas organic contaminant removal via carbon adsorption and carbon breakthrough.

Baker, LANTDIV, and MCB, Camp Lejeune will negotiate with NC DOT regarding the specifics for site access to the creek side of the new highway. The EPA and NC DEHNR will be kept abreast of developments on this subject. In this FS, Baker proposes an access road running along the east side of the highway from the south.

RAA 5 assumes that the Base Master Plan will be modified to include restrictions on the use of the surficial aquifer in the vicinity of the Fuel Farm. This will reduce the risk to human health and the environment posed by this media by eliminating one exposure pathway.

In addition to aquifer-use restrictions, long-term groundwater monitoring is to be included under this RAA to provide data regarding the impact of natural attenuation and the progress of contaminant migration. Long-term groundwater monitoring includes the semi-annual collection and analysis (TCL VOCs) of groundwater samples from 11 monitoring wells, the development of a semi-annual monitoring report, and the replacement of one monitoring well every five years.

Since contaminants will remain at the site under this alternative, the USEPA is required by the NCP [40 CFR 300.515 (e) (iii)] to review the effects of this alternative no less often than every five years.

#### **Comparative Analysis of Alternatives**

This Interim FS has identified and evaluated a range of RAAs potentially applicable to the groundwater concerns at Site 35 (OU No. 10). Table ES-4 presents a summary of this evaluation. A comparative analysis in which the alternatives are evaluated in relation to one another with respect to the nine evaluation is presented below. The purpose of this analysis is to identify the relative advantages and disadvantages of each RAA.

#### Overall Protection of Human Health and the Environment

RAA 1 (No Action) and RAA 2 (No Action With Institutional Controls) are similar in that neither alternative involves active treatment. RAA 2 provides for some overall protection to human health through the incorporation of aquifer-use restrictions which are not included under RAA 1.

RAA 3 (Groundwater Collection and On-Site Treatment), RAA 4 (In Situ Air Sparging And Off-Gas Carbon Adsorption), and RAA 4 (In Well Aeration And Off-Gas Carbon Adsorption) have a common element in that each is intended to reduce groundwater contamination at the downgradient extreme of the contaminated plume and to serve as a barrier to future contaminated groundwater discharge to Brinson Creek. RAA 3 would likely be the most effective barrier in that it is designed to span the entire length and depth of the contaminated portion of the surficial aquifer and will be equipped with an impermeable geomembrane along its downgradient face. RAA 3 is the only treatment alternative that will impact both organic and inorganic contaminants which could be important if it is determined in the future that inorganic contaminants in groundwater are still a concern.

#### Compliance With ARARs

RAA 1 (No action) and RAA 2 (No Action With Institutional Controls) are no action alternatives that will not comply with ARARs. RAA 3 (Groundwater Collection and On-Site Treatment), RAA 4 (In Situ Air Sparging And Off-Gas Carbon Adsorption), and RAA 5 (In Well Aeration And Off-Gas Carbon Adsorption) are primarily source control measures that will reduce contaminant levels over a limited area defined as the particular zone of influence of each system.

Wetlands disturbance will be an issue with RAA 3, 4, and 5, but, most significantly with RAA 3 which includes the excavation of an approximately two-foot wide, by 30-foot deep, by 1,080-foot interceptor trench. The disturbance associated with RAA 4 and 5 is limited primarily to drilling and well installations, although of the two, RAA 4 will have the greater impact due to the large number of wells to be installed.

Treated air and groundwater discharge are provisions of RAA 3, whereas, only air emissions are a part of RAA 4 and 5. These discharges will need to comply with applicable ARARs.

#### Long-Term Effectiveness and Permanence

In the case of all five RAAs, contamination will remain at the site and require a USEPA review on five year basis. RAA 1 (No Action) and RAA 2 (No Action With Institutional Controls) provide for no active means of contaminant reduction although, under RAA 2, aquifer-use restrictions will provide a permanent means for protection against direct human exposure to the contaminated surficial groundwater.

The effectiveness of RAA 3 (Groundwater Collection and On-Site Treatment), RAA 4 (In Situ Air Sparging And Off-Gas Carbon Adsorption), and RAA 5 (In Well Aeration and Off-Gas Carbon Adsorption) can be assumed to be roughly equivalent without the benefit of the results of field pilot-scale testing. RAA 3 may be the most difficult of the three to install, however, once installed it will likely be the most reliable and easiest to control. RAA 4 and 5 may encounter clogging problems if dissolved metals precipitate out of solution when placed in contact with forced air. At a minimum the metals problem will prompt increased maintenance which could lead to complete well replacement. RAA 4 has the additional problem of releasing toxic vapors to the atmosphere during operation because it is difficult to apply sufficient vacuum to the vadose zone where the groundwater surface is within a few feet of the ground surface.

#### Reduction of Toxicity, Mobility, or Volume Through Treatment

No reduction of contaminants will occur under RAA 1 (No Action) and RAA 2 (No Action With Institutional Controls) as the result of active treatment because active treatment is not provided for under these RAAs.

RAA 3 (Groundwater Collection and On-Site Treatment) provides for on-site treatment of the collected contaminated groundwater (organics and inorganics) using standard wastewater treatment technology. Conversely, RAA 4 (In Situ Air Sparging And Off-Gas Carbon Adsorption) and RAA 5 (In Well Aeration And Off-Gas Carbon Adsorption) provide for treatment of the organic phase of contaminated groundwater in-situ. Both RAA 4 and 5 utilize primarily volatilization technology and biodegradation technology secondarily. The principle difference between the two is that under RAA 4 both volatilization and biodegradation occur outside the well and within the soil column. Under RAA 5, volatilization occurs within the well while biodegradation occurs outside the well within the soil column. Under RAA 4 it may be difficult to efficiently collect all of the volatilized organic contaminants via conventional soil vapor extraction because of the proximity of the groundwater surface to the ground surface at this site. Without an efficient means of collecting the volatilized organics under RAA 4, toxic vapors may be released to the atmosphere. Under RAA 5 this is not a concern because the volatilization is conducted within the well and conveyed to an adjacent activated carbon unit via piping which means the system is essentially a closed loop.

RAA 3 will produce the highest volume of residual waste during operation because it is the only alternative involving groundwater treatment. However, the volume of air treatment under RAA 3 will be less than that under RAAs 4 and 5 because the latter are specifically designed as air volatilization systems. Under RAAs 4 and 5 a small volume of contaminated water will be generated because extracted air contains water which condenses and collects in a knock-out tank at the treatment facility.

#### Short-Term Effectiveness

٦

ì

- 1

Worker protection against exposure will not be a significant issue for any of the RAAs. Each system provided for under RAA 3 (Groundwater Collection and On-Site Treatment), RAA 4 (In Situ Air Sparging and Off-Gas Carbon Adsorption), and RAA 5 (In Well Aeration and Off-Gas Carbon Adsorption) will require approximately 30 to 60 days to install with the total time in the field for construction being a little longer. It has also been assumed that system start-up and testing operations will require an additional 90 days.

Under RAA 1 (No Action) and RAA 2 (No Action With Institutional Controls) there will be no increase in the risks to the community resulting from implementation of the RAA. RAAs 3 and 5 will likely present minimal risk of community exposure during implementation and operation because they are, in essence, closed loop systems. RAA 4 has the potential for releases of toxic vapors to the atmosphere because of close proximity of the groundwater surface to the ground surface will make efficient soil vapor extraction difficult.

Some disturbance of the wetlands is expected under RAAs 3, 4, and 5. The greatest disturbance will be associated with RAA 3.

#### *Implementability*

Aside from RAAs 1 and 2, which are no action or essentially no action alternatives, RAA 3 (Groundwater Collection And On-Site Treatment) will present greater technical challenges during construction than RAA 4 (In Situ Air Sparging and Off-Gas Carbon Adsorption), and RAA 5 (In Well Aeration and Off-Gas Carbon Adsorption). This is because RAA 3 involves the construction of a two foot wide by 30 foot deep by 1,080 feet long interceptor trench while RAAs 4 and 5 involve primarily well installation.

The interceptor trench under RAA 3 represents specialized technology that is available from a limited number of vendors, whereas, the air sparging technology of RAA 4 is relatively commonplace, and in well aeration (RAA 5) is a proprietary technology offered by a single vendor.

The proposed groundwater monitoring plan coupled with routine system maintenance and monitoring should be sufficient to provide sufficient notice of a system failure under either RAA 3, 4 or 5. The purpose of the monitoring is to provide for system adjustments with sufficient time so that a significant contaminant release to the environment will not occur.

Because each system under RAA 3, 4, and 5 will require construction within a wetlands area and because air and water discharges are incorporated into the designs, the intent of federal and state wetlands and air and water discharge permits must be met.

#### Cost

The estimated total present worth costs of the alternatives, excluding RAA 1: No Action, range from \$299,800 for RAA 2: No Action with Institutional Controls to \$3,000,500 for RAA 3: Groundwater Collection and On-Site Treatment. These costs are based on the assumption of 30 years of active use, with an annual interest rate of five percent. The ranking of the alternatives in terms of costs is as follows:

| RAA | <b>-</b> 1: | No Action                                          | \$0         |
|-----|-------------|----------------------------------------------------|-------------|
| RAA | 2:          | No Action with Institutional Controls              | \$299,800   |
| RAA | 4:          | In Situ Air Sparging and Off-Gas Carbon Adsorption | \$2,459,600 |
| RAA | 5:          | In Well Aeration and Off-Gas Carbon Adsorption     | \$2,519,700 |
| RAA | 3:          | Groundwater Collection and On-Site Treatment       | \$3,000,500 |

#### **USEPA/State Acceptance**

)

The USEPA and NC DEHNR have indicated their concurrence with the RAAs developed under this FS, in general, and with RAA 5 as the proposed alternative, in particular. The ROD also identified RAA 3 as the proposed alternative should RAA 5 be determined to be technically infeasible based on the results of a field pilot test.

#### **Community Acceptance**

Based on the lack of community participation at a public meeting held on May 10, 1995, no adverse community reaction to the proposed remedial action is anticipated.

#### **TABLE ES-1**

## **REMEDIATION LEVELS FOR COCs OPERABLE UNIT NO. 10 (SITE 35) INTERIM FEASIBILITY STUDY CTO-232** MCB CAMP LEJEUNE, NORTH CAROLINA

| Contaminant of Concern      | RL <sup>(1)</sup> | Basis of Goal         | Corresponding<br>Risk |
|-----------------------------|-------------------|-----------------------|-----------------------|
| Benzene                     | 1                 | NCWQS <sup>(2)</sup>  |                       |
| Trichloroethene             | 2.8               | NCWQS                 |                       |
| Arsenic                     | 50                | NCWQS                 |                       |
| Beryllium                   | 4                 | MCL <sup>(3)</sup>    |                       |
| cis-1,2-Dichloroethene      | 70                | NCWQS                 |                       |
| trans-1,2-Dichloroethene    | 70                | NCWQS                 |                       |
| Ethyl Benzene               | 29                | NCWQS                 |                       |
| Methyl Tertiary Butyl Ether | 200               | NCWQS                 |                       |
| Toluene                     | 1,000             | NCWQS                 |                       |
| Xylenes                     | 530               | NCWQS                 |                       |
| Naphthalene                 | 626               | <b>Risk-Ingestion</b> | HI <sup>(4)</sup> =1  |
| Antimony                    | 6                 | MCL <sup>(5)</sup>    |                       |
| Barium                      | 2,000             | NCWQS                 |                       |
| Cadmium                     | 5                 | NCWQS                 |                       |
| Cobalt                      | 939               | Risk-Ingestion        | HI=1                  |
| Copper                      | 1,000             | NCWQS                 |                       |
| Manganese                   | 50                | NCWQS                 |                       |
| Mercury                     | 1.1               | NCWQS                 |                       |
| Nickel                      | 100               | NCWQS                 |                       |
| Selenium                    | 50                | NCWQS                 |                       |
| Vanadium                    | 110               | Risk-Ingestion        | HI=1                  |
| Zinc                        | 2,100             | NCWQS                 |                       |

Notes: Concentrations expressed in microgram per liter (ug/L) <sup>(1)</sup> RL = Remediation Level <sup>(2)</sup> NCWQS = North Carolina Water Quality Standards for Groundwater <sup>(3)</sup> MCL = Maximum Contaminant Level

<sup>(4)</sup> HI = Hazard Index

}

}

## TABLE ES-2

# COCs THAT EXCEED REMEDIATION LEVELS OPERABLE UNIT NO. 10 (SITE 35) INTERIM FEASIBILITY STUDY CTO-232 MCB CAMP LEJEUNE, NORTH CAROLINA

| Contaminant of Concern      | RL <sup>(1,2)</sup> |  |
|-----------------------------|---------------------|--|
| Benzene                     | 1                   |  |
| Trichloroethene             | 2.8                 |  |
| Arsenic                     | 50                  |  |
| Beryllium                   | 4                   |  |
| cis-1,2-Dichloroethene      | 70                  |  |
| trans-1,2-Dichloroethene    | 70                  |  |
| Ethyl Benzene               | 29                  |  |
| Methyl Tertiary Butyl Ether | 200                 |  |
| Xylenes                     | 530                 |  |
| Antimony                    | 6                   |  |
| Barium                      | 2,000               |  |
| Cadmium                     | 5                   |  |
| Manganese                   | 50                  |  |
| Nickel                      | 100                 |  |
| Vanadium                    | 110                 |  |

)

)

<sup>(1)</sup> RL = Remediation Level
 <sup>(2)</sup> Groundwater RLs expressed as ug/L (ppb)

## **TABLE ES-3**

## ORGANIC COCs THAT EXCEED REMEDIATION LEVELS OPERABLE UNIT NO. 10 (SITE 35) INTERIM FEASIBILITY STUDY CTO-232 MCB CAMP LEJEUNE, NORTH CAROLINA

| Contaminant of Concern      | RL <sup>(1,2)</sup> |  |  |
|-----------------------------|---------------------|--|--|
| Benzene                     | 1                   |  |  |
| Trichloroethene             | 2.8                 |  |  |
| cis-1,2-Dichloroethene      | 70                  |  |  |
| trans-1,2-Dichloroethene    | 70                  |  |  |
| Ethyl Benzene               | 29                  |  |  |
| Methyl Tertiary Butyl Ether | 200                 |  |  |
| Xylenes                     | 530                 |  |  |

)

<sup>(1)</sup> RL = Remediation Level
 <sup>(2)</sup> Groundwater RLs expressed as ug/L (ppb)

# TABLE ES-4

| Evaluation Criteria                   | RAA I<br>No Action                                                                                                                                      | RAA 2<br>No Action with Institutional<br>Controls                                                     | RAA 3<br>Groundwater Collection and On-<br>Site Treatment                                                                                                                                                                                                                    | RAA 4<br>In Situ Air Sparging and Off-Gas<br>Carbon Adsorption                                                                                                                                                                                                   | RAA 6<br>In Well Aeration and Off-Gas<br>Carbon Adsorption                                                                                                                                                                                                             |
|---------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| OVERALL PROTECTIVENESS                |                                                                                                                                                         |                                                                                                       |                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                        |
| • Human Health                        | Potential risks associated with<br>groundwater exposure will remain.<br>Some reduction in contaminant<br>levels may result from natural<br>attenuation. | Aquifer-use restrictions mitigate<br>risks from direct groundwater<br>exposure.                       | Active collection and treatment will<br>reduce contaminant levels in<br>groundwater within capture zone of<br>interceptor trench (estimated at 100<br>feet upgradient maximum).<br>Aquifer-use restrictions will also<br>mitigate risks from direct<br>groundwater exposure. | Active in situ volatilization and<br>biodegradation will reduce<br>contaminant levels in groundwater<br>within radius of influence of wells<br>(estimated at 25 feet). Aquifer-use<br>restrictions will also mitigate risks<br>from direct groundwater exposure. | Active in-well volatilization and in<br>situ biodegradation will reduce<br>contaminant levels in groundwater<br>within radius of influence of wells<br>(estimated 100 feet). Aquifer-use<br>restrictions will also mitigate risks<br>from direct groundwater exposure. |
| • Environment                         | Contaminated groundwater will<br>continue to be a source of future<br>contamination to Brinson Creek.                                                   | Contaminated groundwater will<br>continue to be a source of future<br>contamination to Brinson Creek. | Interceptor trench serves as a barrier<br>to contaminated groundwater<br>discharge to Brinson Creek.                                                                                                                                                                         | Air sparging wells serve as a barrier<br>to contaminated groundwater<br>discharge to Brinson Creek.                                                                                                                                                              | Aeration wells serve as a barrier to<br>contaminated groundwater<br>discharge to Brinson Creek.                                                                                                                                                                        |
| COMPLIANCE WITH ARARs                 |                                                                                                                                                         |                                                                                                       |                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                        |
| Chemical-Specific                     | No active effort made to reduce<br>groundwater contaminant levels to<br>below federal or state ARARs.                                                   | No active effort made to reduce<br>groundwater contaminant levels to<br>below federal or state ARARs. | Reductions in groundwater<br>contaminant levels to below federal<br>or state ARARs can be expected<br>within capture zone of interceptor<br>trench. Reductions upgradient will<br>be less substantial if at all.                                                             | Reductions in groundwater<br>contaminant levels to below federal<br>or state ARARs can be expected<br>within radius of influence of wells.<br>Reductions upgradient will be less<br>substantial if at all.                                                       | Reductions in groundwater<br>contaminant levels to below federal<br>or state ARARs can be expected<br>within radius of influence of wells.<br>Reductions upgradient will be less<br>substantial if at all.                                                             |
| <ul> <li>Location-Specific</li> </ul> | Not Applicable.                                                                                                                                         | Not Applicable.                                                                                       | Wetlands and alligators (endangered<br>species) are concerns because of<br>proposed location of interceptor<br>trench. It is assumed that necessary<br>approvals can be obtained.                                                                                            | Wetlands and alligators (endangered<br>species) are concerns because of<br>proposed location of interceptor<br>trench. It is assumed that necessary<br>approvals can be obtained.                                                                                | Wetlands and alligators (endangered<br>species) are concerns because of<br>proposed location of interceptor<br>trench. It is assumed that necessary<br>approvals can be obtained.                                                                                      |
| Action-Specific                       | Not Applicable.                                                                                                                                         | Not Applicable.                                                                                       | Can be designed to meet these ARARs.                                                                                                                                                                                                                                         | Can be designed to meet these ARARs.                                                                                                                                                                                                                             | Can be designed to meet these ARARs.                                                                                                                                                                                                                                   |

# TABLE ES-4 (Continued)

| Evaluation Criteria                                          | RAA 1<br>No Action                                                                                    | RAA 2<br>No Action with Institutional<br>Controls                                                                                                                                                                                                           | RAA 3<br>Groundwater Collection and On-<br>Site Treatment                                                                                                                                                                                                                                | RAA 4<br>In Situ Air Sparging and Off-Gas<br>Carbon Adsorption                  | RAA ∮<br>In Well Aeration and Off-Gas<br>Carbon Adsorption                                                                                                                                                                                                                                                                          |
|--------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| LONG-TERM EFFECTIVENESS<br>AND PERFORMANCE                   |                                                                                                       |                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                          |                                                                                 |                                                                                                                                                                                                                                                                                                                                     |
| • Magnitude of Residual Risk                                 | Any long-term effect on<br>contamination will be the result of<br>natural attenuation processes only. | Any long-term effect on<br>contamination will be the result of<br>natural attenuation processes only.<br>Aquifer-use restrictions will provide<br>a permanent means for protection<br>against direct exposure to the<br>contaminated surficial groundwater. | intercepting contaminated<br>groundwater and blocking its<br>discharge to Brinson Creek for as<br>long as it remains in operation.<br>Aquifer-use restrictions will provide<br>a permanent means for protection<br>against direct exposure to the<br>contaminated surficial groundwater. | long as it remains in operation.                                                | Provides an effective means of<br>intercepting and treating<br>contaminated groundwater prior to<br>its discharge to Brinson Creek for as<br>long as it remains in operation.<br>Aquifer-use restrictions will provide<br>a permanent means for protection<br>against direct exposure to the<br>contaminated surficial groundwater. |
| <ul> <li>Adequacy and Reliability of<br/>Controls</li> </ul> | Not Applicable.                                                                                       | Aquifer-use restrictions are reliable<br>if enforced. Enforcement is likely<br>as Camp Geiger is a controlled<br>military installation                                                                                                                      |                                                                                                                                                                                                                                                                                          | reliably for an indefinite period.                                              | In well aeration is a relatively new<br>technology without a substantial<br>commercial track record. High<br>levels of metals could short circuit<br>the system prompting frequent<br>maintenance. Well replacement<br>over several years may result.                                                                               |
| Estimated Period of     Operation                            | 30 Years                                                                                              | 30 Years                                                                                                                                                                                                                                                    | 30 years unless additional active<br>treatment actions are implemented<br>upgradient.                                                                                                                                                                                                    | 30 years unless additional active treatment actions are implemented upgradient. | 30 years unless additional active treatment actions are implemented upgradient.                                                                                                                                                                                                                                                     |
| Need for 5-Year Review                                       | Review required because no active treatment is included                                               | Review required because no active treatment is included.                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                          | • •                                                                             | Review required because area<br>impacted by treatment will be<br>limited.                                                                                                                                                                                                                                                           |

## TABLE ES-4 (Continued)

| Evaluation Criteria                                                | RAA I<br>No Action                                            | RAA 2<br>No Action with Institutional<br>Controls                              | RAA 3<br>Groundwater Collection and On-<br>Site Treatment                                                                                                          | RAA 4<br>In Situ Air Sparging and Off-Gas<br>Carbon Adsorption                                                                                                                               | RAA 5<br>In Well Aeration and Off-Gas<br>Carbon Adsorption                                                                                    |
|--------------------------------------------------------------------|---------------------------------------------------------------|--------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|
| REDUCTION OF TOXICITY,<br>MOBILITY, OR VOLUME<br>THROUGH TREATMENT |                                                               |                                                                                |                                                                                                                                                                    |                                                                                                                                                                                              | · · · · · · · · · · · · · · · · · · ·                                                                                                         |
| Treatment Process Used                                             | No active treatment process applied.                          | No active treatment process applied.                                           | On-site groundwater treatment<br>includes filtration, metals<br>precipitation, air stripping, air and<br>water carbon adsorption.                                  | In situ volatilization and<br>biodegradation. Off-gas carbon<br>adsorption.                                                                                                                  | In situ volatilization and<br>biodegradation. Off-gas carbon<br>adsorption.                                                                   |
| <ul> <li>Reduction of Toxicity,<br/>Mobility or Volume</li> </ul>  | No reduction except by natural attenuation.                   | No reduction except by natural attenuation.                                    | Reduction of organic and inorganic contaminants expected within capture zone of trench.                                                                            | Reduction of organic contaminants expected within radius of influence of wells.                                                                                                              | Reduction of organic contaminants<br>expected within radius of influence<br>of wells.                                                         |
| <ul> <li>Residuals Remaining After<br/>Treatment</li> </ul>        | No active treatment process applied.                          | No active treatment process applied.                                           | Residuals include metals sludge and spent carbon which would have to be disposed of properly.                                                                      | Residuals requiring disposal include<br>spent carbon and a small volume of<br>condensed contaminated vapor<br>(water).                                                                       | Residuals requiring disposal include<br>spent carbon and a small volume of<br>condensed contaminated vapor<br>(water).                        |
| <ul> <li>Statutory Preference for<br/>Treatment</li> </ul>         | Not satisfied.                                                | Not satisfied.                                                                 | Satisfied except that area impacted<br>by treatment is limited and does not<br>include entire plume of<br>contaminated surficial groundwater.                      | Satisfied except that area impacted<br>by treatment is limited and does not<br>include entire plume of<br>contaminated surficial groundwater.                                                | Satisfied except that area impacted<br>by treatment is limited and does not<br>include entire plume of<br>contaminated surficial groundwater. |
| SHORT-TERM EFFECTIVENESS <ul> <li>Community Protection</li> </ul>  | Risks to community not increased<br>by remedy implementation. | Risks to community not increased by remedy implementation.                     | Minimal, if any, risks during collection and treatment.                                                                                                            | Possible migration of toxic vapors<br>through ground surface because<br>vapor extraction is difficult to<br>control when groundwater surface is<br>within several feet of ground<br>surface. | Minimal, if any, risks during<br>operation and treatment.                                                                                     |
| Worker Protection                                                  | None.                                                         | Protection required during well installation and sampling.                     | Trench installation procedure limits worker exposure by design.                                                                                                    | Minimal potential for worker exposure.                                                                                                                                                       | Minimal potential for worker exposure.                                                                                                        |
| Environmental Impacts                                              | Continucd impacts from unchanged<br>existing conditions.      | Continued impacts from unchanged existing conditions.                          | Wetlands disturbance during<br>installation could be significant.<br>Trench will serve as a barrier for<br>contaminated groundwater<br>discharge to Brinson Creek. | Minimal wetlands disturbance.<br>System will serve as a barrier for<br>contaminated groundwater<br>discharge to Brinson Creek.                                                               | Minimal wetlands disturbance.<br>System will serve as a barrier for<br>contaminated groundwater<br>discharge to Brinson Creek.                |
| Installation Period                                                | Not Applicable.                                               | Less than 30 days required to install additional groundwater monitoring wells. | 60 to 90 days estimated to install trench and treatment system.                                                                                                    |                                                                                                                                                                                              | 60 to 90 days estimated to install aeration wells and treatment system.                                                                       |

# TABLE ES-4 (Continued)

 $\sim$ 

د

| Evaluation Criteria                                            | RAA I<br>No Action                          | RAA 2<br>No Action with Institutional<br>Controls                                                                                 | RAA 3<br>Groundwater Collection and On-<br>Site Treatment                                                                                                                                                                                                                                                                                                              | RAA 4<br>In Situ Air Sparging and Off-Gas<br>Carbon Adsorption                                                                                                                                                                                                                                                    | RAA 5<br>In Well Aeration and Off-Gas<br>Carbon Adsorption                                                                                                                                                                                                                                                 |
|----------------------------------------------------------------|---------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| IMPLEMENTABILITY                                               |                                             |                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                            |
| • Ability to Construct and<br>Operate                          | No construction or operation<br>activities. | Involves standard well installation<br>and sampling only.                                                                         | Soft ground in wetlands areas may<br>hamper construction and result in<br>delays. Once installed, operating is<br>straight-forward using commercially<br>proven technology. Approximately<br>2,000 to 3,000 cubic yards of<br>potentially contaminated soil<br>excavated from the trench will<br>require disposal. Lack of access<br>may be a significant cost factor. | Construction of activities involve<br>primarily well installation which<br>has been previously executed<br>successfully in this area. Disposal<br>of drill cuttings required.<br>Thin vadose zone may hamper<br>effective vapor extraction which<br>could result in the release of toxic<br>vapors to atmosphere. | Construction of activities involve<br>primarily well installation which<br>has been previously executed<br>successfully in this area. Disposal<br>of drill cuttings required.<br>High metals in groundwater could<br>clog well screens which would<br>require frequent maintenance or<br>well replacement. |
|                                                                |                                             |                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                        | High metals in groundwater could<br>clog well screens which would<br>require frequent maintenance or<br>well replacement.                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                            |
| <ul> <li>Ability to Monitor<br/>Effectiveness</li> </ul>       | No monitoring.                              | Proposed monitoring will provide<br>an indication of effects of natural<br>attenuation and progress of<br>contaminants migration. | Proposed monitoring will give<br>notice of failure so that system can<br>be adjusted before a significant<br>contaminant release occurs.                                                                                                                                                                                                                               | Proposed monitoring will give<br>notice of failure so that system can<br>be adjusted before a significant<br>contaminant release occurs.                                                                                                                                                                          | Proposed monitoring will give<br>notice of failure so that system can<br>be adjusted before a significant<br>contaminant release occurs.                                                                                                                                                                   |
| <ul> <li>Availability of Services and<br/>Equipment</li> </ul> | None required.                              | Well installation and sampling services available from multiple vendors.                                                          | Biopolymer trench technology<br>available from a limited number of<br>vendors.                                                                                                                                                                                                                                                                                         | Air sparging technology is available from multiple vendors.                                                                                                                                                                                                                                                       | In well aeration is a patented<br>priority technology currently<br>available from only one vendor.                                                                                                                                                                                                         |
| Requirements for Agency Coordination                           | None required.                              | Must submit semi-annual reports to document sampling reports.                                                                     |                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                   | None required, provided the intent<br>of wetlands and air and water<br>discharge permits is met.                                                                                                                                                                                                           |
| COSTS                                                          |                                             |                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                   | ,                                                                                                                                                                                                                                                                                                          |
| <ul> <li>Net Present Worth (30 years)</li> </ul>               | \$0                                         | \$299,800                                                                                                                         | \$3,000,500                                                                                                                                                                                                                                                                                                                                                            | \$2,459,600                                                                                                                                                                                                                                                                                                       | \$2,519,700                                                                                                                                                                                                                                                                                                |

# 1.0 **-** INTRODUCTION

This report presents the Draft Interim Feasibility Study (FS) for groundwater in the vicinity of the Fuel Farm at Operable Unit (OU) No. 10, Site 35 - Camp Geiger Area Fuel Farm, located at Marine Corps Base (MCB), Camp Lejeune, North Carolina. It has been prepared by Baker Environmental, Inc. (Baker) under contract with the Naval Facilities Engineering Command, Atlantic Division (LANTDIV).

This Interim FS has been conducted in accordance with the guidelines and procedures delineated in the National Oil and Hazardous Substance Pollution Contingency Plan (NCP) for remedial actions (40 CFR 300.430). These NCP regulations were promulgated under the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA), commonly referred to as Superfund, and amended by the Superfund Amendments and Reauthorization Act (SARA) signed into law on October 17, 1986. The United States Environmental Protection Agency's (USEPA's) document <u>Guidance for Conducting Remedial Investigations and Feasibility Studies Under CERCLA</u> (USEPA, 1988b) has been used as guidance for preparing this document.

This Interim FS is based on data collected during the Remedial Investigation (RI) conducted at Site 35 (Baker, 1994), as well as data collected under previous investigations. The FS focuses on contaminated groundwater in the vicinity of the Fuel Farm.

## 1.1 <u>Purpose of the Interim FS</u>

1

Ì

The purpose of this Interim FS is to identify and evaluate various remedial actions for contaminated groundwater in the vicinity of the Fuel Farm at Site 35. Contaminated groundwater is present in the area of the proposed highway and is a source of ongoing contamination to Brinson Creek. The results of the RI indicate that the extent of groundwater contamination has not been adequately defined to date. The Interim FS is intended to develop potential remedial actions that will provide for the protection of human health and the environment from contaminated groundwater in this area prior to the completion of a comprehensive FS that considers remedial actions for the entire area of contaminated groundwater as well as other media including surface water and sediments. The comprehensive FS will be not initiated until additional data is obtained from Site 35 to define the extent and possible sources of contaminated groundwater.

The FS process under CERCLA serves to ensure that appropriate remedial alternatives are developed and evaluated, such that relevant information concerning the remedial action options can be presented, and an appropriate remedy selected. The FS involves two major phases:

- Development and screening of remedial action alternatives, and
- Detailed analysis of remedial action alternatives.

The first phase includes the following major activities: (1) developing remedial action objectives, (2) developing general response actions, (3) identifying volumes or areas of affected media, (4) identifying and screening potential technologies and process options, (5) evaluating process options, (6) assembling alternatives, (7) defining alternatives, and (8) screening and evaluating alternatives. Section 121(b)(1) of CERCLA requires that an assessment of permanent solutions and alternative treatment technologies or resource recovery technologies that, in whole or in part, will result in a permanent and significant decrease in the toxicity, mobility, or volume of the hazardous substance, pollutant, or contaminant be conducted. In addition, according to CERCLA, treatment alternatives should be developed ranging from an alternative that, to the degree possible, would eliminate the need for long-term management to alternatives involving treatment that would reduce toxicity, mobility, or volume as their principal element. A containment option involving little or no treatment and a no action alternative should also be developed.

The second phase of the FS consists of: (1) evaluating the potential alternatives in detail with respect to nine evaluation criteria to address statutory requirements and preferences of CERCLA, and (2) performing a comparative analysis of the evaluated alternatives.

## 1.2 <u>Report Organization</u>

This Interim FS Report is organized in five sections. The Introduction (Section 1.0) presents a brief discussion of the FS process, and site background information including a summary of the nature and extent of contamination at the site. Section 2.0 contains the remedial action objectives, remediation goal options, and remediation levels. Section 3.0 contains the identification and preliminary screening of the remedial action technologies. In addition, Section 3.0 discusses the general response actions. Section 4.0 contains the development and preliminary screening of remedial action alternatives. Section 5.0 presents the results of the detailed analysis of the remedial alternatives (both individual analysis and comparative analysis). The detailed analysis is based on a set of nine criteria including short- and long-term effectiveness, implementability, cost, state and local acceptance, compliance with applicable regulations, and overall protection of human health and the environment. The references for Sections 1.0 through 5.0 are listed at the end of each section.

## 1.3 Background Information

This section presents background information pertaining to Site 35 including the site description and location, site history, previous investigations and findings, physical characteristics of the study are, nature and extent of contamination, and conclusions and recommendations from the RI.

## 1.3.1 Site Description and Location

MCB, Camp Lejeune (also referred to as the "Activity") is located in Onslow County, North Carolina (Figure 1-1). The Activity currently covers approximately 234 square miles and is bisected by the New River, which flows in a southeasterly direction and forms a large estuary before entering the Atlantic Ocean. The borders of the Activity are defined by the U.S. Route 17 and State Route 24 to the west and northwest, respectively. The eastern border is defined by the Atlantic Ocean shoreline and the City of Jacksonville, North Carolina, borders the Activity to the north.

Camp Geiger is located at the extreme northwest corner of MCB Camp Lejeune and contains a mixture of troop housing, personnel support and training facilities. The main entrance is located along U.S. Route 17, approximately 3.5 miles southeast of the City of Jacksonville, North Carolina. Site 35, the Camp Geiger Area Fuel Farm, refers primarily to five, 15,000-gallon aboveground storage tanks (ASTs), a pump house, a fuel loading/unloading pad, an oil water separator, and a distribution island situated just north of the intersection of Fourth and "G" Streets. Results of previous investigations have expanded the study area beyond the confines of the Fuel Farm. To date, the study area is bounded on the west by D Street, on the north by Second Street, on the east by Brinson Creek, and on the south by Fifth Street and Building No. TC572 (Figure 1-2). However,

# 2.0 REMEDIAL ACTION OBJECTIVES, REMEDIATION GOAL OPTIONS, AND REMEDIATION LEVELS

This section presents the remedial objectives and the development of remediation goal options (RGOs) and remediation levels (RLs). Section 2.1 presents the media of concern, Section 2.2 presents remedial action objectives, and Section 2.3 presents contaminants of concern for OU No. 10. RGOs, which are presented in Section 2.4, are chemical-specific concentration goals established for medium and land use combinations for the protection of human health and the environment. There are two general sources of chemical-specific RGOs: (1) concentrations based on applicable or relevant and appropriate requirements (ARARs) and, (2) risk-based concentrations for the protection of public health and the environment. The selection of RGOs includes: identifying the media(s) of concern, selection of contaminants of concern (COCs), evaluation of ARARs, and identification of site-specific information for the exposure pathway information (i.e., exposure frequency, duration, or intake rate data). Thus, the development of RGOs for OU No. 10 is detailed in Sections 2.1 through 2.4. In addition, Section 2.5 presents a comparison of risk-based remediation goal options to maximum contaminant concentrations in groundwater, while Section 2.6 discusses the uncertainty associated with risk-based RGOs. Finally, Section 2.7 presents the RLs chosen for OU No. 10 during this Interim FS.

### 2.1 Media of Concern

)

Ĵ

The results of the baseline human health RA presented in the RI Report (Baker, 1994) indicate that the total site risk (carcinogenic and non-carcinogenic) exceeds the generally accepted range established by the EPA and is driven by future potential exposure to surficial groundwater and current potential exposure to fish and noncarcinogenic risks. The other media (soil, sediment, surface water, and air) had ICRs less than 1.0E-04 and HIs less than 1.0. However, the evaluation of sediment media was based on the analytical results whereby volatile organic compound (VOC) levels were masked by the presence of Tentatively Identified Compounds at high levels. These results, along with observations by Baker field staff that the sediment samples appeared to contain fuel-related contaminants, prompted a recommendation in the RI Report that additional sediment samples be obtained and analyzed for TPH (via EPA Methods 5030 and 3550).

The focus of this Interim FS is surficial groundwater in the vicinity of the Fuel Farm with the emphasis placed on that contamination extending downgradient towards Brinson Creek. The contaminated surficial groundwater has been identified as a source of continued contamination to Brinson Creek. Remedial actions focused on contaminated surficial groundwater south and west of the Fuel Farm, and sediments in Brinson Creek, are subject to additional investigation and will be addressed in a comprehensive FS to be prepared following the completion of additional follow-up remedial investigation activities.

## 2.2 <u>Remedial Action Objectives</u>

Remedial action objectives are medium-specific or operable unit-specific goals established for protecting human health and the environment.

At Site 35, the specific media to be addressed by the Interim Remedial Action is contaminated surficial groundwater in the vicinity of the Fuel Farm extending downgradient towards Brinson Creek. The remedial action objectives for this surficial groundwater aquifer are:

- Mitigate the potential for direct exposure to the contaminated groundwater in the surficial aquifer.
- Minimize or prevent the horizontal and vertical migration of contaminated groundwater in the surficial aquifer.
- Restore the surficial aquifer to the remediation levels established for the groundwater COCs.

## 2.3 Contaminants of Concern

Contaminants of Potential Concern (COPCs) initially selected and evaluated in the RA (Table 1-1) were selected on the basis of frequency of detection, toxicity, and comparison to established criteria or standards. The final list of COPCs identified in the RA are termed Contaminants of Concern (COCs) for groundwater in this Interim FS (see Table 2-1). COCs from this list that were detected at levels not exceeding a regulatory or a risk-based remediation goal will be eliminated from further consideration later in Section 2.0. This final set of COCs will then become the basis for a set of remedial action objectives applicable to OU No. 10.

# 2.4 <u>Remediation Goal Options</u>

RGOs are based on federal and state criteria or risk-based concentrations. Federal and state criteria will be identified and evaluated in Section 2.4.1. Site-specific, risk-based RGOs for the COCs at OU No. 10 will be developed in Section 2.4.2. The results from both of these sections will be used to develop the initial set of RGOs for the operable unit.

## 2.4.1 Applicable or Relevant and Appropriate Federal and State Requirements

Under Section 121(d)(1) of CERCLA, remedial actions must attain a degree of cleanup which assures protection of human health and the environment. Additionally, CERCLA remedial actions that leave any hazardous substances, pollutants, or contaminants on site must meet, upon completion of the remedial action, a level or standard of control that at least attains standards, requirements, limitations, or criteria that are "applicable or relevant and appropriate" under the circumstances of the release. These requirements are known as "ARARs" or applicable or relevant and appropriate requirements. ARARs are derived from both federal and state laws. CERCLA's definition of "Applicable Requirements" is:

...cleanup standards, standards of control, or other substantive environmental protection requirements, criteria, or limitations promulgated under federal or state law that specifically address a hazardous substance, pollutant or contaminant, remedial action, location, or other circumstance at a CERCLA site. Drinking water criteria may be an applicable requirement for a site with contaminated groundwater that is used as a drinking water source.

### CERCLA's definition of "Relevant and Appropriate Requirements" is:

Ì

1

)

...cleanup standards, standards of control and other substantive environmental protection requirements, criteria, or limitations promulgated under federal or state law that, while not "applicable" to a hazardous substance, pollutant, contaminant, remedial action, location, or other circumstance at a CERCLA site, address problems or situations sufficiently similar to those encountered at the CERCLA site that their use is well suited to the particular site.

EPA has also indicated that "other" federal and state criteria, advisories, and guidelines may have To Be Considered (TBC) during the development of remedial alternatives. TBCs are not promulgated, not enforceable, and do not have the same status as ARARs. Yet, they may be useful in establishing a cleanup level or in designing the remedial action, especially when no specific ARARs exist or they are not sufficiently protective. Examples of such other criteria include EPA Drinking Water Health Advisories, Carcinogenic Potency Factors, and Reference Doses.

There are three types of ARARs. The first type, chemical-specific ARARs, are requirements which set health or risk-based concentration limits or ranges for specific hazardous substances, pollutants, or contaminants. Federal Maximum Contaminant Levels (MCLs) established under the Safe Drinking Water Act (SDWA) are examples of chemical-specific ARARs.

The second type of ARAR, location-specific, sets restrictions on activities based upon the characteristics of the site and/or the nearby suburbs. Examples of this type of ARAR include federal and state siting laws for hazardous waste facilities and sites on the National Register of Historic Places.

The third classification of ARARs, action-specific, refers to the requirements that set controls or restrictions on particular activities related to the management of hazardous substances, pollutants, or contaminants. RCRA regulations for closure of hazardous waste storage units, RCRA incineration standards, and pretreatment standards under the Clean Water Act (CWA) for discharges to publicly-owned treatment works (POTWs) are examples of action specific ARARs.

Subsection 121(d) of CERCLA requires that federal and state substantive requirements that qualify as ARARs be complied with by remedies. Federal, state, or local permits do not need to be obtained for removal or remedial actions implemented on site but their substantive requirement must be obtained. "On site" is interpreted by the USEPA to include the areal extent of contamination and all suitable areas in reasonable proximity to the contamination necessary for implementation of the response action.

ARARs can be identified only on a site-specific basis. They depend on the detected contaminants at a site, site-specific characteristics, and particular remedial actions proposed for the site. Chemical-specific, location-specific, and action-specific ARARs identified for OU No. 10 are presented in the following section.

# 2.4.1. Chemical-Specific ARARs

The following chemical-specific ARARs were identified for Site 35: the North Carolina Water Quality Standards (NCWQSs) applicable to groundwaters, the federal MCLs, and Secondary MCLs. A brief description of each of these standards/guidelines is presented below.

North Carolina Water Quality Standards (Groundwater) – Under the North Carolina Administrative Code (NCAC), Title 15A, Subchapter 2L, Section .0200, (15A NCAC 2L.0200) the NC DEHNR has established water quality standards (NCWQSs) for three classifications of groundwater within the state: GA, GSA, and GC. Class GA waters are those groundwaters in the state naturally containing 250 milligram per liter (mg/L) or less of chloride. These waters are an existing or potential source of drinking water supply for humans. Class GSA waters are those groundwaters in the State naturally containing greater than 250 mg/L of chloride. These waters are an existing or potential source of water supply for potable mineral water and conversion to fresh water. Class GC water is defined as a source of water supply for purposes other than drinking. The NCAC T15A:02L.0300 has established sixteen river basins within the state as Class GC groundwaters (15A NCAC 2L.0201 and 2L.0300).

The water quality standards for groundwater are the maximum allowable concentrations resulting from any discharge of contaminants to the land or water of the state that may be tolerated without creating a threat to human health or that would otherwise render the groundwater unsuitable for its intended best usage. If the water quality standard of a substance is less than the limit of detectability, the substance shall not be permitted in detectable concentrations. If naturally occurring substances exceed the established standard, the standard will be the naturally occurring concentration as determined by the State. Substances which are not naturally occurring, and for which no standard is specified, are not permitted in detectable concentrations for Class GA or Class GSA groundwaters (15A NCAC 2L.0202).

The NCWQSs for substances in Class GA and Class GSA groundwaters are established as the lesser of:

- Systemic threshold concentration (based on reference dose and average consumption)
- Concentration which corresponds to an incremental lifetime cancer risk of 1.0E-6
- Taste threshold limit value
- Odor threshold limit value
- Federal MCL
- National Secondary Drinking Water Standard (or secondary MCL)

Note that the water quality standards for Class GA and Class GSA groundwaters are the same except for chloride and total dissolved solids concentrations (15A NCAC 2L.0202).

The Class GA groundwater NCWQSs for the groundwater COCs for OU No. 10 are listed on Table 2-2. As shown on the table, the majority of the state standards are the same or more stringent than the federal MCLs.

Federal Maximum Contaminant Levels – MCLs are enforceable standards for public water supplies promulgated under the SDWA and are designed for the protection of human health. MCLs are based on laboratory or epidemiological studies and apply to drinking water supplies consumed by a minimum of 25 persons. These standards are designed for prevention of human health effects associated with a lifetime exposure (70-year lifetime) of an average adult (70 kg) consuming two liters of water per day. MCLs also consider the technical feasibility of removing the contaminant from the public water supply.

Secondary MCLs are nonenforceable guidelines established under the SDWA. The secondary MCLs are set to control contaminants in drinking water that primarily affect the aesthetic qualities relating to public acceptance of drinking water.

Table 2-2 presents MCLs for groundwater COCs. For manganese and zinc, the secondary MCL has been listed.

## 2.4.1.2 Location-Specific ARARs

ì

ì

}

Potential location-specific ARARs identified for OU No. 10 are listed on Table 2-3. An evaluation determining the applicability of these location-specific ARARs with respect to OU No. 10 is also presented and summarized on Table 2-3. Based on this evaluation, specific sections of the following location-specific ARARs may be applicable to OU No. 10:

- Fish and Wildlife Coordination Act
- Federal Endangered Species Act
- North Carolina Endangered Species Act
- Executive Order 11990 on Protection of Wetlands
- Executive Order 11988 on Floodplain Management
- RCRA Location Requirements

Please note that the citations listed on Table 2-3 should not be interpreted to indicate that the entire citation is an ARAR. The citation listing is provided on the table as a general reference.

## 2.4.1.3 Action-Specific ARARs

Action-specific ARARs are typically evaluated following the development of alternatives since they are dependent on the type of action being considered. Therefore, at this step in the FS process, potential action-specific ARARs have only been identified and not evaluated for OU No. 10. A set of potential action-specific ARARs are listed on Table 2-4. These ARARs are based on RCRA, CWA, SDWA, and Department of Transportation (DOT) requirements. Note that the citations listed on Table 2-4 should not be interpreted to indicate that the entire citation is an ARAR. The citation listing is provided on the table as a general reference.

These ARARs will be evaluated after the remedial action alternatives have been identified for OU No. 10. Additional action-specific ARARs may also be identified and evaluated at that time.

## 2.4.2 - Risk-Based Remediation Goal Options

In conjunction with the RGOs based on federal and state ARARs (Section 2.4.1), risk-based RGOs were developed for the groundwater COCs. The methodology used to derive the RGOs was in accordance with USEPA risk assessment guidance (USEPA, 1989a) (USEPA, 1991a). For noncarcinogenic effects, an action level was calculated that corresponds to an HI of 1.0, or unity, which is the level of exposure to a contaminant from all significant exposure pathways in a given medium below which it is unlikely for even sensitive populations to experience health effects. For carcinogenic effects, an action level was calculated that corresponds to 1.0E-04 (one in ten thousand) ICR over a lifetime as a result of exposure to the potential carcinogen from all significant exposure pathways for a given medium. A 1.0E-04 risk level was used as an end point for determining action levels for remediation. Based on the NCP (40 CFR 300.430), for known or suspected carcinogens, acceptable exposure levels are generally concentrations that represent an ICR between 1.0E-04 and 1.0E-06. The action levels for OU No. 10 are representative of acceptable incremental risks based on current and probable future use of the area.

Three steps were involved in estimating the risk-based RGOs for OU No. 10 COCs. These steps are generally conducted for a medium and land-use combination and involved identifying: (1) the most significant exposure pathways and routes, (2) the most significant exposure parameters, and (3) equations. The equations included calculations of total intake from a given medium and were based on identified exposure pathways and associated parameters.

# 2.4.2.1 Derivation of Risk Equations

)

The determination of chemical-specific RGOs was performed in accordance with USEPA guidance (USEPA, 1989a). Reference doses (RfDs) were used to evaluate noncarcinogenic contaminants, while cancer slope factors (CSFs) were used to evaluate carcinogenic contaminants.

Potential exposure pathways and receptors used to determine RGOs are site-specific and consider the current and/or future land use of a site. The following exposure scenarios were used in the determination of RGOs for OU No. 10:

• Ingestion of groundwater (future resident)

The potential risk estimated in the human health risk assessment indicated that the majority of the site-specific risk is likely to occur from exposure to groundwater. Groundwater does not appear to pose an appreciable risk with respect to both dermal contact and inhalation. For this Interim FS, the most conservative exposure pathway (i.e., groundwater ingestion) was used in the development of RGOs. The RGOs were calculated for future (adult and children) receptors in order to provide site-specific RGOs from which remedial alternatives could be generated.

Consistent with USEPA guidance, noncarcinogenic health effects were estimated using the concept of an average annual exposure. The action level incorporated the exposure time and/or frequency that represented the number of days per year and number of years that exposure occurs. This is used with a term known as the averaging time, which converts the daily exposure to an annual exposure. Carcinogenic health effects were calculated as an incremental lifetime cancer risk, and therefore represented the exposure duration (years) over the course of a potentially exposed individual's lifetime (70 years).

The estimation methods and models used in this section were consistent with current USEPA risk assessment guidance (USEPA, 1989a) (USEPA, 1991a). Exposure estimates associated with each exposure route are presented below. RGOs were developed, with site-specific inputs, for groundwater COCs presented in the human health risk assessment. However, in order to determine if a medium at a site requires remediation, estimated RGOs were compared to site-specific contaminant levels. This assessment was conducted to assure that media and contamination at each site would be addressed on a site-specific basis. The following sections present the equations and inputs used in the estimation of groundwater RGOs developed for OU No. 10.

## Ingestion of Groundwater

Currently there are no receptors who are exposed to groundwater contamination in this area. Since groundwater is obtained from "noncontaminated" supply wells, pumped to water treatment plants, and distributed via a potable water system. However, it is assumed for the purposes of calculating remediation goals, that potable wells would pump groundwater from the site area for public consumption. Groundwater ingestion RGOs are characterized using the following equation:

$$Cw = \frac{TR \ or \ THI \times BW \times AT_{c} \ or \ AT_{nc} \times DY}{CSF \ or \ 1/RfD \times EF \times ED \times IR \times (1,000 \ \mu g/mg)}$$

Where:

ì

- **`** 

3

| Сw   | = | contaminant concentration in groundwater ( $\mu$ g/L) |
|------|---|-------------------------------------------------------|
| TR   | = | total lifetime risk                                   |
| THI  | = | total hazard index                                    |
| BW   | = | body weight (kg)                                      |
| ATc  | = | averaging time carcinogens (yr)                       |
| ATnc | = | averaging time noncarcinogens (yr)                    |
| DY   | = | days per year (day/year)                              |
| CSF  | = | cancer slope factor (mg/kg-day)-1                     |
| RfD  | = | reference dose (mg/kg-day)                            |
| EF   | = | exposure frequency (day/year)                         |
| ED   | = | exposure duration (yr)                                |
| IR   | = | ingestion rate (L/day)                                |

#### Future On-Site Residents

Exposure to COCs via ingestion of groundwater was retained as a potential future exposure pathway for both children and adults.

An ingestion rate (IR) of 1.0 liter/day was used for the amount of water consumed by a 1 to 6 year old child weighing 15 kg. This ingestion rate provides a health conservative exposure estimate (for systemic, noncarcinogenic toxicants) designed to protect young children who could potentially be more affected than adolescents, or adults. This value assumes that children obtain all the tap water they drink from the same source for 350 days/year [which represents the exposure frequency (EF)]. An averaging time (AT) of 2,190 days (6 years x 365 days/year) is used for noncarcinogenic compound exposure.

The IR for adults was 2 liters/day (USEPA, 1989a). The exposure duration (ED) used for the estimation of adult CDIs was 30 years (USEPA, 1989a), which represents the national upper-bound (90th percentile) time at one residence. The averaging time for noncarcinogens was 10,950 days (30 years x 365 days/year). An AT of 25,550 days (70 years x 365 days/year) was used to evaluate exposure for both children and adults to potential carcinogenic compounds.

Table 2-5 presents a summary of the input parameters for the ingestion of groundwater scenarios.

# 2.4.2.2 Summary of Site-Specific Risk-Based Remediation Goal Options

COCs were chosen based on available toxicity data and frequency of detection and available ARARs. RGOs were generated for contaminants with available toxicity data. A summary of the risk-based RGOs calculated for the exposure scenarios is presented below. Separate RGOs for future adult residents and children have been calculated. In addition, both carcinogenic and noncarcinogenic RGOs have been calculated. Calculations are provided in Appendix A of this report.

## Ingestion of Groundwater

The groundwater ingestion RGOs were estimated for the groundwater within the entire operable unit. Currently, there are no known receptors who are exposed to contaminated groundwater. Base personnel receive potable water via a base water distribution. However, a hypothetical future ingestion RGO was estimated for the COCs. In order to estimate conservative RGOs for subpopulations (i.e., adult resident and child resident), specific input variables were developed for each subpopulation. Tables 2-6 and 2-7 present the RGOs calculated for the carcinogenic and noncarcinogenic COCs in the groundwater, respectively.

# 2.5 <u>Comparison of Risk-Based Remediation Goal Options to Maximum Contaminant</u> <u>Concentrations in Groundwater</u>

Generally, RGOs are not required for any contaminants in a medium with a cumulative cancer risk of less than 1.0E-04, where an HI is less than or equal to 1.0, or where the RGOs are clearly defined by ARARs. In order to decrease uncertainties in the estimation of the reasonable maximum exposure (RME), which is the maximum exposure that is reasonably expected to occur at the site, the maximum concentration of a contaminant in a media can be compared to the estimated risk-based RGO if chemical-specific criteria are not available.

In Table 2-8, the carcinogenic and non-carcinogenic risk-based RGOs for groundwater ingestion with respect to future residential receptors (adult and children) are compared to the maximum groundwater contaminant concentrations detected at Site 35 during the RI. The NCWQSs and MCLs are also presented in this table.

## 2.6 <u>Uncertainty Associated with Risk-Based RGOs</u>

The uncertainties associated with calculating risk-based RGOs are summarized below. The RGO estimations presented in this section are quantitative in nature, and their results are highly dependent upon the accuracy of the input. The accuracy with which input values can be quantified is critical to the degree of confidence that the decision maker has in the action levels.

Most scientific computation involves a limited number of input variables, which are tied together by a scenario to provide a desired output. Some RGO inputs are based on literature values rather than measured values. In such cases the degree of certainty may be expressed as whether the estimate was based on literature values or measured values, not on how well defined the distribution of the input was. Some RGOs are based on parameters; the qualitative statement that the RGO was based on estimated inputs defines the certainty in a qualitative manner.

The toxicity factors, CSFs and RfDs, have uncertainties built into the assumptions used to calculate these values. Because the toxicity factors are determined from high doses administered to experimental animals and extrapolated to low doses to which humans may be exposed, uncertainties exist. Thus, toxicity factors could either overestimate or underestimate the potential effects on humans. However, because human data exists for very few chemicals, risks are based on these values. In addition, the exposure assumptions (e.g., 10 events per year, etc.) also have uncertainties associated with them.

Although RGOs are believed to be full protective for the RME individual(s), the existence of the same contaminants in multiple media or of multiple chemicals affecting the same populations(s), may lead to a situation where, even after attainment of all RGOs, protectiveness is not freely achieved (i.e., cumulative risk may fall outside the risk range).

# 2.7 <u>Remediation Levels</u>

This section presents the remediation levels (RLs) chosen for OU No. 10. RLs are chosen by the risk manager for the COCs and are included in the Interim FS and the Interim ROD. These numbers derived from the RGOs are no longer goals and should be considered required levels for the remedial actions to achieve.

The RLs associated with OU No. 10 are presented on Table 2-9. This list was based on a comparison of contaminant-specific ARARs (or ARAR-based RGOs) and the site-specific risk-based RGOs. If a COC had an ARAR, the most limiting (or conservative) ARAR was selected as the RL for that contaminant. If a COC did not have an ARAR, the most conservative risk-based RGO was selected for the RL. For all contaminants but arsenic, beryllium, and barium the most

limiting ARAR was more conservative than the risk-based RGO. In the cases of arsenic, beryllium and barium, the federal MCLs were selected in lieu of more conservative RGO values because the MCLs are generally based on the capacity of the best available technology to achieve reductions in groundwater contaminant concentrations.

Ì

٦

)

In order to determine the final COC for OU No. 10, the contaminant concentrations detected at each site were compared to the RLs presented on Table 2-9. The contaminants which exceed at least one of the RLs have been retained as final COCs. The contaminants that did not exceed any of the RLs are no longer considered as COCs with respect to this Interim FS. The final COCs and their associated RLs are presented on Table 2-10.

Several inorganic COCs, including arsenic, beryllium, antimony, barium, cadmium, manganese, nickel, and vanadium, were detected in concentrations that exceeded remediation levels. However, these inorganics will not be addressed in this Interim FS because it is unlikely that their presence is a result of past site activities. (The inorganic concentrations are similar to those detected at other Camp Lejeune sites.) Recently, Baker has employed new sampling techniques for inorganics in groundwater utilizing low-flow pumps. The low-flow pumps minimize particle disturbance and have resulted in reduced levels of total inorganics in groundwater analytical results. As recommended in the RI, inorganics at OU No. 10 will be re-sampled using this low-flow sampling technique. Based on previous experience on other sites at this Activity, it is probable that detected concentrations for some inorganics will then fall below remediation levels. Thus, inorganic COCs exceeding remediation levels will not be addressed at this time and Table 2-11 presents a final list of COCs to be addressed in this Interim FS.

# **SECTION 2.0 TABLES**

.

į

• )

-

Ì

)

3

# PRELIMINARY GROUNDWATER CONTAMINANTS OF CONCERN OPERABLE UNIT NO. 10 (SITE 35) INTERIM FEASIBILITY STUDY, CTO-0232 MCB CAMP LEJEUNE, NORTH CAROLINA

| COCs                        |
|-----------------------------|
| Benzene                     |
| cis-1,2-Dichloroethene      |
| Ethylbenzene                |
| Methyl Tertiary Butyl Ether |
| Naphthalene                 |
| Toluene                     |
| trans-1,2-Dichloroethene    |
| Trichloroethene             |
| Xylenes (Total)             |
| Antimony                    |
| Arsenic                     |
| Barium                      |
| Beryllium                   |
| Cadmium                     |
| Cobalt                      |
| Copper                      |
| Lead                        |
| Manganese                   |
| Mercury                     |
| Nickel                      |
| Selenium                    |
| Thallium                    |
| Vanadium                    |
| Zinc                        |
| 2-Methylnaphthalene         |

# CHEMICAL-SPECIFIC ARARS EVALUATED FOR OPERABLE UNIT NO. 10 (SITE 35) INTERIM FEASIBILTIY STUDY CTO-232 MCB CAMP LEJEUNE, NORTH CAROLINA

| Contaminant                 | NCWQS | Federal<br>MCL <sup>(2)</sup> |
|-----------------------------|-------|-------------------------------|
| Benzene                     | 1     | 5                             |
| Trichloroethene             | 2.8   | 5                             |
| Arsenic                     | 50    | 50                            |
| Beryllium                   | NE    | 4                             |
| cis-1,2-Dichloroethene      | 70    | 70                            |
| trans-1,2-Dichloroethene    | 70    | 100                           |
| Ethyl Benzene               | 29    | 700                           |
| Methyl Tertiary Butyl Ether | 200   | NE                            |
| Toluene                     | 1,000 | 1,000                         |
| Xylenes                     | 530   | 10,000                        |
| Naphthalene                 | NE    | NE                            |
| Antimony                    | NE    | 6                             |
| Barium                      | 2,000 | 2,000                         |
| Cadmium                     | 5     | 5                             |
| Cobalt                      | NE    | NE                            |
| Соррег                      | 1,000 | 1,300 <sup>(3)</sup>          |
| Manganese                   | 50    | 50(4)                         |
| Mercury                     | 1.1   | 2                             |
| Nickel                      | 100   | 100                           |
| Selenium                    | 50    | 50                            |
| Vanadium                    | NE    | NE                            |
| Zinc                        | 2,100 | 5,000(4)                      |

Notes: Concentrations expressed in microgram per liter (ug/L)

<sup>(1)</sup> NCWQS = North Carolina Water Quality Standards for Groundwater

<sup>(2)</sup> MCL = Safe Drinking Water Act Maximum Contaminant Level
 <sup>(3)</sup> Action Level for Copper

<sup>(4)</sup> Secondary Maximum Contaminant Level (SMCL)

NE = No Criteria Established

# LOCATION-SPECIFIC ARARS EVALUATED FOR OPERABLE UNIT NO. 10 (SITE 35) INTERIM FEASIBILITY STUDY CTO-0232 MCB CAMP LEJEUNE, NORTH CAROLINA

| Potential Location-Specific ARAR                                                                                                                                                                                                                 | General<br>Citation                                  | ARAR Evaluation                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| National Historic Preservation Act of<br>1966 – requires action to take into<br>account effects on properties included<br>in or eligible for the National Register<br>of Historic Places and to minimize<br>harm to National Historic Landmarks. | 16 USC 470,<br>40 CFR<br>6.301(b), and<br>36 CFR 800 | No known historic properties<br>are within or near OU No. 10,<br>therefore, this act will not be<br>considered an ARAR                                                                                                                                                                                                                                                                                                                                                                    |
| Archeological and Historic<br>Preservation Act – establishes<br>procedures to provide for preservation<br>of historical and archeological data<br>which might be destroyed through<br>alteration of terrain.                                     | 16 USC 469,<br>and 40 CFR<br>6.301(c)                | No known historical or<br>archeological data is known<br>to be present at the sites,<br>therefore, this act will not be<br>considered an ARAR.                                                                                                                                                                                                                                                                                                                                            |
| Historic Sites, Buildings and<br>Antiquities Act – requires action to<br>avoid undesirable impacts on<br>landmarks on the National Registry of<br>Natural Landmarks.                                                                             | 16 USC<br>461467, and 40<br>CFR 6.301(a)             | No known historic sites,<br>buildings or antiquities are<br>within or near OU No. 10,<br>therefore, this act will not be<br>considered as an ARAR.                                                                                                                                                                                                                                                                                                                                        |
| Fish and Wildlife Coordination Act –<br>requires action to protect fish and<br>wildlife from actions modifying<br>streams or areas affecting streams.                                                                                            | 16 USC<br>661-666                                    | Brinson Creek is located near<br>and within the operable unit<br>boundaries. If remedial<br>actions are implemented that<br>modify this creek, this will be<br>an applicable ARAR.                                                                                                                                                                                                                                                                                                        |
| Federal Endangered Species Act –<br>requires action to avoid jeopardizing<br>the continued existence of listed<br>endangered species or modification of<br>their habitat.                                                                        | 16 USC 1531,<br>50 CFR 200,<br>and 50 CFR<br>402     | Many protected species have<br>been sited near and on MCB<br>Camp Lejeune such as the<br>American alligator, the<br>Bachmans sparrow, the Black<br>skimmer, the Green turtle, the<br>Loggerhead turtle, the piping<br>plover, the Red-cockaded<br>woodpecker, and the<br>rough-leaf loosestrife<br>(LeBlond, 1991),(Fussell,<br>1991),(Walters, 1991). In<br>addition, the alligator has<br>been sighted on Base (in<br>Wallace Creek). Therefore,<br>this will be considered an<br>ARAR. |

# TABLE 2-3 (Continued)

)

)

# LOCATION-SPECIFIC ARARS EVALUATED FOR OPERABLE UNIT NO. 10 (SITE 35) INTERIM FEASIBILITY STUDY CTO-0232 MCB CAMP LEJEUNE, NORTH CAROLINA

| ······································                                                                                                                                                                                                                                                                  |                                                  |                                                                                                                                                                                                                                                                                                                                                                                      |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Potential Location-Specific ARAR                                                                                                                                                                                                                                                                        | General<br>Citation                              | ARAR Evaluation                                                                                                                                                                                                                                                                                                                                                                      |
| North Carolina Endangered Species Act<br>- per the North Carolina Wildlife<br>Resources Commission. Similar to the<br>Federal Endangered Species Act, but<br>also includes State special concern<br>species, State significantly rate species,<br>and the State watch list.                             | GS 113-331 to<br>113-337                         | Since the American alligator<br>has been sighted within MCB<br>Camp Lejeune (in Wallace<br>Creek), this will be considered<br>an ARAR.                                                                                                                                                                                                                                               |
| Rivers and Harbors Act of 1899<br>(Section 10 Permit) – requires permit<br>for structures or work in or affecting<br>navigable waters.                                                                                                                                                                  | 33 USC 403                                       | No remedial actions will affect<br>the navigable waters of the<br>New River. Therefore, this act<br>will not be considered an<br>ARAR.                                                                                                                                                                                                                                               |
| Executive Order 11990 on Protection of<br>Wetlands – establishes special<br>requirements for Federal agencies to<br>avoid the adverse impacts associated<br>with the destruction or loss of wetlands<br>and to avoid support of new<br>construction in wetlands if a practicable<br>alternative exists. | Executive Order<br>Number 11990,<br>and 40 CFR 6 | Based on a review of Wetland<br>Inventory Maps, Brinson<br>Creek has areas of wetlands.<br>Therefore, this will be an<br>applicable ARAR.                                                                                                                                                                                                                                            |
| Executive Order 11988 on Floodplain<br>Management – establishes special<br>requirements for Federal agencies to<br>evaluate the adverse impacts associated<br>with direct and indirect development of<br>a floodplain.                                                                                  | Executive Order<br>Number 11988,<br>and 40 CFR 6 | Based on the Federal<br>Emergency Management<br>Agency's Flood Insurance Rate<br>Map for Onslow County, OU<br>No. 10 is primarily within a<br>minimal flooding zone (outside<br>the 500-year floodplain).<br>However, the immediate areas<br>around Brinson Creek are<br>within the 100-year floodplain<br>(FEMA, 1987). Therefore, this<br>may be an ARAR for the<br>operable unit. |
| Wilderness Act - requires that federally<br>owned wilderness area are not<br>impacted. Establishes nondegradation,<br>maximum restoration, and protection of<br>wilderness areas as primary<br>management principles.                                                                                   | 16 USC 1131,<br>and 50 CFR 35.                   | No known federally-owned<br>wilderness areas are located<br>near the operable unit,<br>therefore, this act will not be<br>considered an ARAR.                                                                                                                                                                                                                                        |

# TABLE 2-3 (Continued)

# LOCATION-SPECIFIC ARARS EVALUATED FOR OPERABLE UNIT NO. 10 (SITE 35) INTERIM FEASIBILITY STUDY CTO-0232 MCB CAMP LEJEUNE, NORTH CAROLINA

| Potential Location-Specific ARAR                                                                                                                                      | General<br>Citation                    | ARAR Evaluation                                                                                                                                                                                                                                                        |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| National Wildlife Refuge System –<br>restricts activities within a National<br>Wildlife Refuge.                                                                       | 16 USC 668,<br>and 50 CFR 27           | No known National Wildlife<br>Refuge areas are located near<br>the operable unit, therefore,<br>this will not be considered an<br>ARAR.                                                                                                                                |
| Scenic Rivers Act - requires action to<br>avoid adverse effects on designated<br>wild or scenic rivers.                                                               | 16 USC 1271,<br>and 40 CFR<br>6.302(e) | No known wild or scenic rivers<br>are located near the operable<br>unit, therefore, this act will not<br>be considered an ARAR.                                                                                                                                        |
| Coastal Zone Management Act –<br>requires activities affecting land or<br>water uses in a coastal zone to certify<br>noninterference with coastal zone<br>management. | 16 USC 1451                            | No activities at the site will<br>affect land or water uses in a<br>coastal zone, therefore, this act<br>will not be considered an<br>ARAR.                                                                                                                            |
| Clean Water Act (Section 404) –<br>prohibits discharge of dredged or fill<br>material into wetland without a permit.                                                  | 33 USC 404                             | No actions to discharge<br>dredged or fill material into<br>wetlands will be considered for<br>the operable unit, therefore,<br>this act will not be considered<br>an ARAR.                                                                                            |
| RCRA Location Requirements –<br>limitations on where on-site storage,<br>treatment, or disposal of RCRA<br>hazardous waste may occur.                                 | 40 CFR 264.18                          | These requirements may be<br>applicable if the remedial<br>actions for the operable unit<br>include the on-site storage,<br>treatment, or disposal of<br>RCRA hazardous waste.<br>Therefore, these requirements<br>may be an applicable ARAR<br>for the operable unit. |

)

)

# ACTION-SPECIFIC ARARs EVALUATED FOR OPERABLE UNIT NO. 10 (SITE 35) INTERIM FEASIBILITY STUDY CTO-0232 MCB CAMP LEJEUNE, NORTH CAROLINA

| Standard <sup>(1)</sup> | Action                              | General<br><u>Citation</u>    |
|-------------------------|-------------------------------------|-------------------------------|
| RCRA                    | Capping                             | 40 CFR 264                    |
|                         | Closure                             | 40 CFR 264, 244               |
|                         | Container Storage                   | 40 CFR 264, 268               |
|                         | New Landfill                        | 40 CFR 264                    |
|                         | New Surface Impoundment             | 40 CFR 264                    |
|                         | Dike Stabilization                  | 40 CFR 264                    |
|                         | Excavation, Groundwater Diversion   | 40 CFR 264, 268               |
|                         | Incineration                        | 40 CFR 264, 761               |
|                         | Land Treatment                      | 40 CFR 264                    |
|                         | Land Disposal                       | 40 CFR 264, 268               |
|                         | Slurry Wall                         | 40 CFR 264, 268               |
|                         | Tank Storage                        | 40 CFR 264, 268               |
|                         | Treatment                           | 40 CFR 264, 265,              |
|                         |                                     | 268;                          |
|                         |                                     | 42 USC 6924;                  |
|                         |                                     | 51 FR 40641;                  |
|                         | Wester Dille                        | 52 FR 25760                   |
| <u></u>                 | Waste Pile                          | 40 CFR 264, 268               |
| CWA                     | Discharge to Water of United States | 40 CFR 122, 125, 136          |
|                         | Direct Discharge to Ocean           | 40 CFR 125                    |
|                         | Discharge to POTW                   | 40 CFR 403, 270               |
|                         | Dredge/Fill                         | 40 CFR 264;                   |
|                         |                                     | 33 CFR 320-330; 33<br>USC 403 |
| CAA                     | Discharge to Air                    | 40 CFR 50                     |
| (NAAQS)                 | Dissingly in Li                     | 40 UFR JU                     |
| SDWA                    | Underground Injection Control       | 40 CFR 144, 146,              |
|                         |                                     | 147, 268                      |
| TSCA                    | PCB Regulations                     | 40 CFR 761                    |
| DOT                     | DOT Rules for Transportation        | 49 CFR 107                    |

| (1) | RCRA    | = | Resource Conservation Recovery Act     |
|-----|---------|---|----------------------------------------|
|     | CWA     | = | Clean Water Act                        |
|     | CAA     | = | Clean Air Act                          |
|     | (NAAQS) | = | National Ambient Air Quality Standards |
|     | SDWA    | = | Safe Drinking Water Act                |
|     | DOT     | = | Department of Transportation           |

)

)

# INGESTION OF GROUNDWATER RGO PARAMETERS OPERABLE UNIT NO. 10 (SITE 35) INTERIM FEASIBILITY STUDY CTO-0232 MCB CAMP LEJEUNE, NORTH CAROLINA

| Ingestion of Groundwater Input Parameters |                                 |                   |                            |                    |
|-------------------------------------------|---------------------------------|-------------------|----------------------------|--------------------|
| Input<br>Parameter                        | Description                     | Value             |                            | Rationale          |
| C,                                        | Exposure<br>Concentration       | Calculated        |                            | USEPA, 1989a       |
| TR                                        | Total Lifetime Risk             | 1.0E-04           |                            | USEPA, 1991a       |
| THI                                       | Total Hazard Index              | 1.0               |                            | USEPA, 1991a       |
| BW                                        | Body Weight                     | Child<br>Adult    | 15 kg<br>70 kg             | USEPA, 1989a       |
| ATc                                       | Averaging Time<br>Carcinogen    | All               | 70 yr                      | USEPA, 1989a       |
| ATnc                                      | Averaging Time<br>Noncarcinogen | Child<br>Adult    | 6 yr<br>30 yr              | USEPA, 1989a       |
| DY                                        | Days Per Year                   | 365 days/yr       |                            | USEPA, 1989a       |
| CSF                                       | Carcinogenic Slope<br>Factor    | Chemical Specific |                            | IRIS, HEAST, USEPA |
| RfD                                       | Reference Dose                  | Chemical Specific |                            | IRIS, HEAST, USEPA |
| EF                                        | Exposure Frequency              | Child<br>Adult    | 350 days/yr<br>350 days/yr | USEPA, 1989a       |
| ED                                        | Exposure Duration               | Child<br>Adult    | 6 yr<br>30 yr              | USEPA, 1991b       |
| IR                                        | Ingestion Rate                  | Child<br>Adult    | 1 L/day<br>2 L/day         | USEPA, 1989a       |

# INGESTION OF GROUNDWATER CARCINOGENIC RGOS OPERABLE UNIT NO. 10 (SITE 35) INTERIM FEASIBILITY STUDY CTO-232 MCB CAMP LEJEUNE, NORTH CAROLINA

|                        | Carcinogenic RGO |                |  |
|------------------------|------------------|----------------|--|
| Contaminant of Concern | Adult Resident   | Child Resident |  |
| Benzene                | 294              | 629            |  |
| Trichloroethene        | 774              | 1,659          |  |
| Arsenic                | 5                | 11             |  |
| Beryllium              | 2                | 4              |  |

Notes: RGO = Remedial Goal Options

)

Remediation Goal Options concentrations expressed in ug/L (ppb) Remediation Goal Options based on a risk of 1.0E-04

# INGESTION OF GROUNDWATER NONCARCINOGENIC RGOS OPERABLE UNIT NO. 10 (SITE 35) INTERIM FEASIBILITY STUDY CTO-232 MCB CAMP LEJEUNE, NORTH CAROLINA

|                             | Noncarcinogenic RGO |                |  |
|-----------------------------|---------------------|----------------|--|
| Contaminant of Concern      | Adult Resident      | Child Resident |  |
| Trichloroethene             | 219                 | 94             |  |
| cis-1,2-Dichloroethene      | 365                 | 156            |  |
| trans-1,2-Dichloroethene    | 730                 | 313            |  |
| Ethyl Benzene               | 3,650               | 1,564          |  |
| Methyl Tertiary Butyl Ether | 183                 | 78             |  |
| Toluene                     | 7,300               | 3,129          |  |
| Xylenes                     | 73,000              | 31,286         |  |
| Naphthalene                 | 1,460               | 626            |  |
| Antimony                    | 15                  | 6              |  |
| Arsenic                     | 11                  | 5              |  |
| Barium                      | 2,555               | 1,095          |  |
| Beryllium                   | 183                 | 78             |  |
| Cadmium                     | 18                  | 8              |  |
| Cobalt                      | 2,190               | 939            |  |
| Copper                      | 1,354               | 580            |  |
| Manganese                   | 183                 | 78             |  |
| Mercury                     | 11                  | 5              |  |
| Nickel                      | 730                 | 313            |  |
| Selenium                    | 183                 | 78             |  |
| Vanadium                    | 256                 | 110            |  |
| Zinc                        | 10,950              | 4,693          |  |

Notes: RGO = Remedial Goal Options

)

Ì

)

Remediation Goal Options concentrations expressed in ug/L (ppb) Remediation Goal Options based on a HI of 1.0

# COMPARISON OF GROUNDWATER INGESTION RISK-BASED RGOS AND GROUNDWATER CRITERIA TO MAXIMUM GROUNDWATER CONTAMINANT LEVELS OPERABLE UNIT NO. 10 (SITE 35) INTERIM FEASIBILITY STUDY CTO-232 MCB CAMP LEJEUNE, NORTH CAROLINA

| Contaminant                 | NCWQS | Federal<br>MCL <sup>(2)</sup> | RGO <sup>(3)</sup>                       |                                           | Maximum                      |
|-----------------------------|-------|-------------------------------|------------------------------------------|-------------------------------------------|------------------------------|
|                             |       |                               | Adult                                    | Child                                     | Groundwater<br>Concentration |
| Benzene                     | 1     | 5                             | 294                                      | 629                                       | 1,660                        |
| Trichloroethene             | 2.8   | 5                             | 774 <sup>(4)</sup><br>219 <sup>(5)</sup> | 1,659 <sup>(4)</sup><br>94 <sup>(5)</sup> | 900                          |
| Arsenic                     | 50    | 50                            | 5 <sup>(4)</sup><br>11 <sup>(5)</sup>    | 11 <sup>(4)</sup><br>5 <sup>(5)</sup>     | 165                          |
| Beryllium                   | NE    | 4                             | 2 <sup>(4)</sup><br>183 <sup>(5)</sup>   | 4 <sup>(4)</sup><br>78 <sup>(5)</sup>     | 63.5                         |
| cis-1,2-Dichloroethene      | 70    | 70                            | 365                                      | 156                                       | 973                          |
| trans-1,2-Dichloroethene    | 70    | 100                           | 730                                      | 313                                       | 176                          |
| Ethyl Benzene               | 29    | 700                           | 3,650                                    | 1,564                                     | 824                          |
| Methyl Tertiary Butyl Ether | 200   | NE                            | 183                                      | 78                                        | 319                          |
| Toluene                     | 1,000 | 1,000                         | 7,300                                    | 3,129                                     | 984                          |
| Xylenes                     | 530   | 10,000                        | 73,000                                   | 31,286                                    | 1,700                        |
| Naphthalene                 | NE    | NE                            | 1,460                                    | 626                                       | 499                          |
| Antimony                    | NE    | 6                             | 15                                       | 6                                         | 10.2                         |
| Barium                      | 2,000 | 2,000                         | 2,555                                    | 1,095                                     | 3,440                        |
| Cadmium                     | 5     | 5                             | 18                                       | 8                                         | 340                          |
| Cobalt                      | NE    | NE                            | 2,190                                    | 939                                       | 281                          |
| Copper                      | 1,000 | 1,300 <sup>(7)</sup>          | 1,354                                    | 580                                       | 140                          |
| Manganese                   | 50    | 50 <sup>(6)</sup>             | 183                                      | 78                                        | 1,420                        |
| Mercury                     | 1.1   | 2                             | 11                                       | 5                                         | 0.84                         |
| Nickel                      | 100   | 100                           | 730                                      | 313                                       | 524                          |
| Selenium                    | 50    | 50                            | 183                                      | 78                                        | 13.5                         |
| Vanadium                    | NE    | NE                            | 256                                      | 110                                       | 886                          |
| Zinc                        | 2,100 | 5,000(6)                      | 10,950                                   | 4,693                                     | 1,850                        |

Notes: Concentrations expressed in microgram per liter (ug/L)

<sup>(1)</sup> NCWQS = North Carolina Water Quality Standards for Groundwater

<sup>(2)</sup> MCL = Safe Drinking Water Act Maximum Contaminant Level

 $^{(3)}$  RGO = Risk-based Remediation Goal Options

(4) Carcinogenic RGO

<sup>(5)</sup> Noncarcinogenic RGO

<sup>(6)</sup> SMCL = Secondary Maximum Contaminant Level

<sup>(7)</sup> Action Level

NE = No Criteria Established

# **REMEDIATION LEVELS FOR COCs OPERABLE UNIT NO. 10 (SITE 35)** INTERIM FEASIBILITY STUDY CTO-232 MCB CAMP LEJEUNE, NORTH CAROLINA

| Contaminant of Concern      | RL <sup>(1)</sup> | Basis of Goal        | Corresponding<br>Risk |
|-----------------------------|-------------------|----------------------|-----------------------|
| Benzene                     | 1                 | NCWQS <sup>(2)</sup> |                       |
| Trichloroethene             | 2.8               | NCWQS                |                       |
| Arsenic                     | 50                | NCWQS                |                       |
| Beryllium                   | 4                 | MCL <sup>(3)</sup>   |                       |
| cis-1,2-Dichloroethene      | 70                | NCWQS                |                       |
| trans-1,2-Dichloroethene    | 70                | NCWQS                |                       |
| Ethyl Benzene               | 29                | NCWQS                |                       |
| Methyl Tertiary Butyl Ether | 200               | NCWQS                |                       |
| Toluene                     | 1,000             | NCWQS                |                       |
| Xylenes                     | 530               | NCWQS                |                       |
| Naphthalene                 | 626               | Risk-Ingestion       | HI <sup>(4)</sup> =1  |
| Antimony                    | 6                 | MCL <sup>(5)</sup>   |                       |
| Barium                      | 2,000             | NCWQS                |                       |
| Cadmium                     | 5                 | NCWQS                |                       |
| Cobalt                      | 939               | Risk-Ingestion       | HI=1                  |
| Copper                      | 1,000             | NCWQS                |                       |
| Manganese                   | 50                | NCWQS                |                       |
| Mercury                     | 1.1               | NCWQS                |                       |
| Nickel                      | 100               | NCWQS                |                       |
| Selenium                    | 50                | NCWQS                |                       |
| Vanadium                    | 110               | Risk-Ingestion       | HI=1                  |
| Zinc                        | 2,100             | NCWQS                |                       |

Notes: Concentrations expressed in microgram per liter (ug/L)

- <sup>(1)</sup> RL = Remediation Level
   <sup>(2)</sup> NCWQS = North Carolina Water Quality Standards for Groundwater
   <sup>(3)</sup> MCL = Maximum Contaminant Level
- $^{(4)}$  HI = Hazard Index

}

)

)

# COCs THAT EXCEED REMEDIATION LEVELS **OPERABLE UNIT NO. 10 (SITE 35)** INTERIM FEASIBILITY STUDY CTO-232 MCB CAMP LEJEUNE, NORTH CAROLINA

| Contaminant of Concern      | RL <sup>(1,2)</sup> |
|-----------------------------|---------------------|
| Benzene                     | 1                   |
| Trichloroethene             | 2.8                 |
| Arsenic                     | 50                  |
| Beryllium                   | 4                   |
| cis-1,2-Dichloroethene      | 70                  |
| trans-1,2-Dichloroethene    | 70                  |
| Ethyl Benzene               | 29                  |
| Methyl Tertiary Butyl Ether | 200                 |
| Xylenes                     | 530                 |
| Antimony                    | 6                   |
| Barium                      | 2,000               |
| Cadmium                     | 5                   |
| Manganese                   | 50                  |
| Nickel                      | 100                 |
| Vanadium                    | 110                 |

<sup>(1)</sup> RL = Remediation Level
<sup>(2)</sup> Groundwater RLs expressed as ug/L (ppb)

# ORGANIC COCS THAT EXCEED REMEDIATION LEVELS OPERABLE UNIT NO. 10 (SITE 35) INTERIM FEASIBILITY STUDY CTO-232 MCB CAMP LEJEUNE, NORTH CAROLINA

| Contaminant of Concern      | RL <sup>(1,2)</sup> |  |  |
|-----------------------------|---------------------|--|--|
| Benzene                     | 1                   |  |  |
| Trichloroethene             | 2.8                 |  |  |
| cis-1,2-Dichloroethene      | 70                  |  |  |
| trans-1,2-Dichloroethene    | 70                  |  |  |
| Ethyl Benzene               | 29                  |  |  |
| Methyl Tertiary Butyl Ether | 200                 |  |  |
| Xylenes                     | 530                 |  |  |

(1) RL = Remediation Level

1 . J

J

)

<sup>(2)</sup> Groundwater RLs expressed as ug/L (ppb)

# 3.0 IDENTIFICATION AND PRELIMINARY SCREENING OF REMEDIAL TECHNOLOGIES

This section covers the identification and preliminary screening of remedial action technologies that may be applicable for the remediation of the groundwater in the vicinity of the Fuel Farm at OU No. 10. Section 3.1 identifies a set of general response actions which correspond to the remedial action objectives. Section 3.2 identifies a set of remedial technologies and process options applicable to groundwater. Section 3.3 presents the preliminary screening of the remedial technologies and process options. Section 3.4 presents a summary of the preliminary screening, and Section 3.5 presents the process option evaluation.

# 3.1 General Response Actions

General response actions are broad-based, medium-specific categories of actions that can be identified to satisfy the remedial action objectives of an FS. Five general response actions have been identified that may satisfy the groundwater remedial action objectives at OU No. 10 including no action, institutional controls, containment actions, collection/discharge actions, and treatment actions.

A brief description of each of the above-mentioned general response actions follows.

# 3.1.1 No Action

ì

ì

3

The NCP requires the evaluation of the no action response as part of the FS process. A no action response provides the baseline assessment for comparison with other remedial alternatives that have a greater level of response. A no action alternative may be considered appropriate when there is no adverse or unacceptable risks to human health or the environment, or when the response action may cause a greater environmental or health danger than the no action alternative itself.

# 3.1.2 Institutional Controls

Institutional controls are actions that can be implemented at a site as part of a complete remedial alternative to minimize exposure to potential hazards. With respect to groundwater, institutional controls may include monitoring programs or ordinances which restrict aquifer use and placement of supply wells.

# 3.1.3 Source Containment Actions

Source containment actions include various technologies which contain and/or isolate the contaminants at a site. These measures are designed to isolate so as to prevent direct exposure to or migration of the contaminated media without disturbing or removing the waste/contaminants from the site. Source containment actions generally serve to cover, seal, chemically stabilize, or provide an effective barrier around specific areas of contamination.

# 3.1.4 Collection/Discharge Actions

Collection/discharge actions are typically associated with groundwater or surface water and are used to control the movement of contaminants through these media or to covey contaminated portions of these media to treatment units. For this Interim FS, groundwater collection/discharge actions at

OU No. 10 are addressed. Collection actions may include extraction wells or subsurface drains. Discharge actions are those means for discharging groundwater that has been treated. Discharge actions may be directed on site or off site.

# 3.1.5 Treatment Actions

)

## 3.1.5.1 Ex Situ Treatment

Ex situ treatment actions, as defined herein, involve physical and/or chemical means of reducing toxicity or destroying contaminants that are present in groundwater once it has been collected and conveyed above the ground surface. Ex situ treatment actions for groundwater are normally conducted on site, but off-site treatment actions are also considered.

## 3.1.5.2 In Situ Treatment

In situ treatment in groundwater refers to a process whereby groundwater contaminants are reduced or eliminated via technologies applied primarily below the ground surface. This type of treatment may involve groundwater extraction, treatment, and reinjection, as long as primary treatment occurs below the ground surface.

## 3.2 Identification of Remedial Action Technologies and Process Options

In this step, an extensive set of potentially applicable technology types and process options is identified for each of the general response actions identified for the media of concern at OU No. 10. The term "technology type" refers to general categories of technologies such as chemical treatment, thermal treatment, biological treatment, and in situ treatment. The term "technology process option" refers to specific processes within each technology type. For example, rotary kiln, fluidized bed, and multiple hearth incineration are process options of thermal treatment. Several technology types may be identified for each general response action, and numerous technology process options may exist within each technology type.

Remedial action technologies potentially applicable to OU No. 10 are listed in Table 3-1 with respect to their corresponding general response action. The applicable process options associated with each of the listed technologies are also listed in the table.

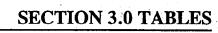
## 3.3 Preliminary Screening of Remedial Action Technologies and Process Options

In this step, the set of remedial action technologies and process options identified in the previous section is reduced (or screened) by evaluating the technologies with respect to technical implementability and site-specific factors. This screening step is site-specific and is accomplished by using readily available information from the RI, with respect to contaminant types, contaminant concentrations, and on-site characteristics, to screen out technologies and process options that cannot be effectively implemented at the site (USEPA, 1988). In general, all technologies/options which appear to be applicable to the site contaminants and to the site conditions are retained for further evaluation. The preliminary screening is presented in Table 3-2. Each of the process options remaining after the preliminary screening is evaluated in Section 3.4.

As shown in Table 3-2, several technologies and/or process options were eliminated from further evaluation since they were determined to be inappropriate for the site-specific characteristics and/or contaminant-specific characteristics of OU No. 10.

# 3.4 Process Options Evaluation

- )


)

).

The objective of the process option evaluation is to select only one process option for each applicable remedial technology type to simplify the subsequent development and evaluation of alternatives without limiting flexibility during remedial design. More than one process option may be selected for a technology type if the processes are sufficiently different in their performance that one would not adequately represent the other. The representative process provides a basis for developing performance specifications during preliminary design. However, the specific process option used to implement the remedial action may not be selected until the remedial design phase.

The retained process options are evaluated based on effectiveness, implementability, and relative cost. The effectiveness evaluation focuses on: the potential effectiveness of process options in meeting the remedial action objectives, the potential impacts to human health and the environment during the construction and implementation phase, and how reliable the process is with respect to the contaminants of concern. The implementability evaluation focuses on the administrative feasibility of implementing a technology as well as the technical implementability. The cost evaluation plays a limited role in this screening. Only relative capital and operating and maintenance (O&M) costs are used instead of detailed estimates. Per the USEPA FS guidance, the cost analysis is made on the basis of engineering judgment.

A summary of the groundwater process option evaluation is presented in Table 3-3. It is important to note that the elimination of a process option does not mean that the process option/technology can never be reconsidered for the site. As previously stated, the purpose of this part of the Interim FS process is to simplify the development and evaluation of potential alternatives.



# TABLE 3-1

# POTENTIAL SET OF REMEDIAL ACTION TECHNOLOGIES AND PROCESS OPTIONS IDENTIFIED FOR OPERABLE UNIT NO. 10 (SITE 35) INTERIM FEASIBILITY STUDY, CTO-0232 MCB CAMP LEJEUNE, NORTH CAROLINA

| Media       | General Response Action                 | Remedial Action<br>Technology | Process Option                              |
|-------------|-----------------------------------------|-------------------------------|---------------------------------------------|
| Groundwater | No Action                               | No Action                     | Natural Attenuation                         |
|             | Institutional Controls Monitoring       |                               | Groundwater and Surface Water<br>Monitoring |
|             |                                         | Aquifer-Use Limitations       | Restrictions in Base Master Plan            |
|             |                                         |                               | Deed Restrictions                           |
|             | Containment Actions Capping             |                               | Clay/Soil Cap                               |
|             |                                         |                               | Asphalt/Concrete Cap                        |
|             |                                         |                               | Soil Cover                                  |
|             |                                         |                               | Multilayered Cap                            |
|             |                                         | Vertical Barriers             | Grout Curtain                               |
|             |                                         |                               | Slurry Wall                                 |
|             |                                         |                               | Sheet Piling                                |
|             |                                         |                               | Rock Grouting                               |
|             |                                         | Horizontal Barriers           | Grout Injection                             |
|             |                                         |                               | Block Displacement                          |
|             | Collection/Discharge Actions Extraction | Extraction Wells              |                                             |
|             |                                         |                               | Extraction/Injection Wells                  |
|             |                                         | Subsurface Drains             | Interceptor Trenches                        |
|             |                                         | On-Site Discharge             | Reinjection                                 |
|             |                                         |                               | Infiltration Galleries                      |
|             |                                         |                               | Surface Water                               |
|             |                                         | Off-Site Discharge            | POTW                                        |
|             |                                         |                               | Base STP                                    |
|             |                                         |                               | Surface Water                               |
|             | Treatment Actions                       | Biological Treatment          | Aerobic                                     |
|             |                                         |                               | Anaerobic                                   |
|             |                                         | Physical/Chemical             | Air Stripping                               |
|             |                                         | Treatment                     | Steam Stripping                             |
|             |                                         |                               | Carbon Adsorption                           |
|             |                                         |                               | Reverse Osmosis                             |
|             |                                         |                               | Ion Exchange                                |
|             |                                         |                               | Chemical Reduction                          |
|             |                                         |                               | Chemical Oxidation                          |
|             |                                         |                               | UV Oxidation                                |
|             |                                         |                               | Electrochemical Iron Generatio              |

)

)

)

-

# TABLE 3-1 (Continued)

)

)

)

# POTENTIAL SET OF REMEDIAL ACTION TECHNOLOGIES AND PROCESS OPTIONS IDENTIFIED FOR OPERABLE UNIT NO. 10 (SITE 35) INTERIM FEASIBILITY STUDY, CTO-0232 MCB CAMP LEJEUNE, NORTH CAROLINA

| Media       | General Response Action                          | Remedial Action Technology      | Process Option          |
|-------------|--------------------------------------------------|---------------------------------|-------------------------|
| Groundwater | ater Treatment Actions (Cont.) Physical/Chemical |                                 | Neutralization          |
| (Cont.)     |                                                  | Treatment (Cont.)               | Precipitation           |
|             |                                                  |                                 | Oil/Water Separator     |
|             |                                                  |                                 | Filtration              |
|             |                                                  |                                 | Flocculation            |
|             |                                                  |                                 | Sedimentation           |
|             |                                                  |                                 | Chemical Dechlorination |
|             |                                                  | Engineered Wetland<br>Treatment | Constructed Wetlands    |
|             |                                                  | Off-Site Treatment              | POTW                    |
|             |                                                  |                                 | RCRA Facility           |
|             |                                                  |                                 | Sewage Treatment Plant  |
|             |                                                  | In-Situ Treatment               | Biodegradation          |
|             |                                                  |                                 | Air Sparging            |
|             |                                                  |                                 | In Well Aeration        |
|             |                                                  |                                 | Passive Treatment Wall  |

# TABLE 3-2

## PRELIMINARY SCREENING OF GROUNDWATER TECHNOLOGIES AND PROCESS OPTIONS OPERABLE UNIT NO. 10 (SITE 35) INTERIM FEASIBILITY STUDY, CTO-0232 MCB CAMP LEJEUNE, NORTH CAROLINA

| General Response<br>Action | Remedial Action<br>Technology | Process Option                                                          | Description                                                                                                                                                             | Site-Specific Applicability                                                                                                                                               | Screening<br>Results |
|----------------------------|-------------------------------|-------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|
| No Action                  | No Action                     | Natural Attenuation                                                     | Contaminated groundwater remains as is<br>and natural subsurface process (for<br>example, biodegradation, adsorption, and<br>volatilization) reduce contaminant levels. | Potentially applicable to any site; the<br>NCP requires a "no action" process<br>option.                                                                                  | Retained             |
| Institutional Controls     | Monitoring                    | Groundwater or<br>Surface Water Monitoring                              | Ongoing monitoring of groundwater or surface water.                                                                                                                     | Potentially applicable.                                                                                                                                                   | Retained             |
|                            | Aquifer-Use<br>Restrictions   | Restrictions in Base<br>Master Plan                                     | Prohibit the use of the contaminated aquifer as a drinking water source.                                                                                                | Potentially applicable.                                                                                                                                                   | Retained             |
|                            |                               | Deed Restrictions                                                       | Limit the future use of land including placement of wells.                                                                                                              | Not applicable to a military installation not on a closure list.                                                                                                          | Eliminated           |
| Containment Actions        | Capping                       | Clay/Soil Cap<br>Asphalt/Concrete Cap<br>Soil Cover<br>Multilayered Cap | Capping material placed over areas of contamination.                                                                                                                    | Not implementable due to the<br>proposed highway that will span the<br>Fuel Farm area and because the<br>horizontal limits of the plume have<br>not been defined to date. | Eliminated           |
|                            | Vertical Barriers             | Grout Curtain                                                           | Pressure injection of grout in a regular<br>pattern of drilled holes to contain<br>contamination.                                                                       | Not applicable because the horizontal<br>limits of the plume have not been<br>defined to date.                                                                            | Eliminated           |
|                            |                               | Slurry Wall                                                             | Trench around areas of contamination.<br>The trench is filled with a soil bentonite<br>slurry to limit migration of contaminants.                                       | Not applicable due to the obstruction posed by the proposed highway.                                                                                                      | Eliminated           |
|                            |                               | Sheet Piling                                                            | Interlocking sheet pilings installed via<br>drop hammer around areas of<br>contamination.                                                                               | Not applicable due to the obstruction posed by the proposed highway.                                                                                                      | Eliminated           |
|                            |                               | Rock Grouting                                                           | Specialty operation for sealing fractures, fissures, solution cavities, or other voids in rock to control flow of groundwater.                                          | Not applicable because rock is not<br>present within several hundred feet of<br>the ground surface at the site.                                                           | Eliminated           |

# PRELIMINARY SCREENING OF GROUNDWATER TECHNOLOGIES AND PROCESS OPTIONS OPERABLE UNIT NO. 10 (SITE 35) INTERIM FEASIBILITY STUDY, CTO-0232 MCB CAMP LEJEUNE, NORTH CAROLINA

| General Response<br>Action         | Remedial Action<br>Technology | Process Option             | Description                                                                                                                                                                                                                                                                             | Site-Specific Applicability                                                                                                                                                       | Screening<br>Results |
|------------------------------------|-------------------------------|----------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|
| Containment Actions<br>(Continued) | Horizontal Barriers           | Grout Injection            | Pressure injection of grout to form a<br>bottom seal across a site at a specific<br>depth.                                                                                                                                                                                              | Generally used in conjunction with<br>vertical barriers which have been<br>primarily deemed not applicable at<br>this site due to the presence of the<br>proposed highway.        | Eliminated           |
|                                    |                               | Block Displacement         | Continued pumping of grout into<br>specially notched holes causing<br>displacement of a block of contaminated<br>groundwater.                                                                                                                                                           | Technique is experimental. Large<br>area over which grout would be<br>required limits this technique.                                                                             | Eliminated           |
| Collection Actions                 | Extraction                    | Extraction/Injection Wells | Extraction wells pull water from the<br>aquifer. Injection wells inject<br>uncontaminated groundwater to enhance<br>collection of contaminated groundwater<br>via the extraction wells. Or the injection<br>wells can also inject material into an<br>aquifer to remediate groundwater. | Not applicable because the<br>extraction/injection process may<br>induce intolerable ground settlement<br>on the highway resulting from<br>fluctuations in the groundwater table. | Eliminated           |
|                                    | Subsurface Drains             | Interceptor Trenches       | Perforated pipe installed in trenches<br>backfilled with porous media to collect<br>contaminated groundwater.                                                                                                                                                                           | Potentially applicable because<br>contamination is limited to a shallow<br>zone and rate of extraction can be to<br>limit effects on groundwater level.                           | Retained             |
| Treatment Actions                  | Biological<br>Treatment       | Aerobic                    | Degradation of organics using<br>microorganisms in an aerobic<br>environment.                                                                                                                                                                                                           | Potentially applicable to nonhalogenated organic COCs.                                                                                                                            | Retained             |
|                                    |                               | Anaerobic                  | Degradation of organics using<br>microorganisms in an anaerobic<br>environment.                                                                                                                                                                                                         | Potentially applicable to halogenated<br>and nonhalogenated organic COCs.<br>Development is in pilot-scale and is<br>not commercially available.                                  | Eliminated           |

# PRELIMINARY SCREENING OF GROUNDWATER TECHNOLOGIES AND PROCESS OPTIONS OPERABLE UNIT NO. 10 (SITE 35) INTERIM FEASIBILITY STUDY, CTO-0232 MCB CAMP LEJEUNE, NORTH CAROLINA

| General Response Remedial Action<br>Action Technology |                                                                                                                   | Process Option                                                                                                                                      | Description                                                                                                                                                                                                     | Site-Specific Applicability                                                                                                                                  | Screening<br>Results                                                                                            |
|-------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|
| Treatment Actions<br>(Continued)                      | Physical/Chemical<br>Treatment                                                                                    | Volatilization<br>(Air/Stream Stripping)                                                                                                            | Mixing large volumes of air/steam with<br>water in a packed column to promote<br>transfer of VOCs to air. Applicable to<br>volatile organics.                                                                   | Potentially applicable to halogenated<br>and nonhalogenated organic COCs.                                                                                    | Retained                                                                                                        |
|                                                       |                                                                                                                   | Carbon Adsorption                                                                                                                                   | Adsorption of contaminants onto<br>activated carbon by passing water<br>through carbon column. Applicable to<br>wide range of organics.                                                                         | Potentially applicable to most organic COCs.                                                                                                                 | Retained                                                                                                        |
|                                                       | Reverse Osmosis<br>Ion Exchange<br>Chemical Reduction<br>Chemical Oxidation<br>Electrochemical Iron<br>Generation | Using high pressure to force water<br>through a membrane leaving<br>contaminants behind. Applicable to<br>dissolved solids (organic and inorganic). | Not applicable because dissolved<br>solids are not anticipated to be a<br>primary treatment concern at this site.                                                                                               | Eliminated                                                                                                                                                   |                                                                                                                 |
|                                                       |                                                                                                                   | Ion Exchange                                                                                                                                        | Contaminated water is passed through a resin bed where ions are exchanged between resin and water. Applicable for inorganics, not organics.                                                                     | Not applicable to the organic COCs.<br>Inorganic compounds are not a<br>primary treatment concern at this site.                                              | Eliminated                                                                                                      |
|                                                       |                                                                                                                   | Chemical Reduction                                                                                                                                  | Addition of a reducing agent to lower the<br>oxidation state of a substance to reduce<br>toxicity/solubility. Mainly applicable to<br>inorganic wastes, phenols, pesticides, and<br>sulfur-containing compounds | Not applicable to the organic COCs.<br>Inorganic compounds are not a<br>primary treatment concern at this site.                                              | Eliminated                                                                                                      |
|                                                       |                                                                                                                   | Chemical Oxidation                                                                                                                                  | Addition of an oxidizing agent to raise<br>the oxidation state of a substance.<br>Applicable to organics and some metals,<br>primarily iron and manganese.                                                      | Not applicable to the organic COCs.<br>Inorganic compounds are not a<br>primary treatment concern at this site.                                              | Eliminated                                                                                                      |
|                                                       |                                                                                                                   |                                                                                                                                                     |                                                                                                                                                                                                                 | Electrical currents are used to put ferrous<br>and hydroxyl ions into solution for<br>subsequent removal via precipitation.<br>Applicable to metals removal. | Not applicable to the organic COCs.<br>Inorganic compounds are not a<br>primary treatment concern at this site. |

# PRELIMINARY SCREENING OF GROUNDWATER TECHNOLOGIES AND PROCESS OPTIONS OPERABLE UNIT NO. 10 (SITE 35) INTERIM FEASIBILITY STUDY, CTO-0232 MCB CAMP LEJEUNE, NORTH CAROLINA

| General Response<br>Action       | Remedial Action<br>Technology                 | Process Option       | Description                                                                                                                                                                                                                   | Site-Specific Applicability                                                                                                                           | Screening<br>Results                                                                                                                                  |
|----------------------------------|-----------------------------------------------|----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|
| Treatment Actions<br>(Continued) | Physical/Chemical<br>Treatment<br>(Continued) | Neutralization       | Addition of an acid or base to a waste in<br>order to adjust its pH. Applicable to<br>acidic or basic waste streams.                                                                                                          | Not applicable because pH adjustment<br>is not a concern at this site.                                                                                | Eliminated                                                                                                                                            |
|                                  |                                               | Precipitation        | Materials in solution are transferred into<br>a solid phase for removal. Applicable to<br>particulates and metals.                                                                                                            | Not applicable to the organic COCs.<br>Inorganic compounds are not a<br>primary treatment concern at this site.                                       | Eliminated                                                                                                                                            |
|                                  |                                               | Oil/Water Separation | Materials in solution are transferred into<br>a separate phase for removal. Applicable<br>to petroleum hydrocarbons.                                                                                                          | Not applicable because no free phase product was detected at the site.                                                                                | Eliminated                                                                                                                                            |
|                                  |                                               | Filtration           | Removal of suspended solids from<br>solution by forcing the liquid through a<br>porous medium. Applicable to<br>suspended solids.                                                                                             | Not applicable because the removal of<br>suspended solids and inorganic<br>compounds is not a primary treatment<br>concern at this site.              | Eliminated                                                                                                                                            |
|                                  |                                               | UV Oxidation         | Ultraviolet (UV) radiation, ozone, and/or<br>hydrogen peroxide are used to destroy<br>organic contaminants as water flows into<br>a treatment tank; an ozone destruction<br>unit treats off-gases from the treatment<br>tank. | Potentially applicable to the organic COCs.                                                                                                           | Retained                                                                                                                                              |
|                                  |                                               | Flocculation         | Small, unsettleable particles suspended in<br>a liquid medium are made to agglomerate<br>into larger particles by the addition of<br>flocculating agents. Applicable to<br>particulates and inorganics.                       | Not applicable to the organic COCs.<br>Particulates and inorganic compounds<br>are not anticipated to be a primary<br>treatment concern at this site. | Eliminated                                                                                                                                            |
|                                  |                                               | Sedimentat           | Sedimentation                                                                                                                                                                                                                 | Removal of suspended solids in an aqueous waste stream via gravity separation.                                                                        | Not applicable to the organic COCs.<br>Particulates and inorganic compounds<br>are not anticipated to be a primary<br>treatment concern at this site. |

## PRELIMINARY SCREENING OF GROUNDWATER TECHNOLOGIES AND PROCESS OPTIONS OPERABLE UNIT NO. 10 (SITE 35) INTERIM FEASIBILITY STUDY, CTO-0232 MCB CAMP LEJEUNE, NORTH CAROLINA

ŧ

| General Response<br>Action       | Remedial Action<br>Technology                 | Process Option                      | Description                                                                                                                                                                                                                            | Site-Specific Applicability                                                               | Screening<br>Results |
|----------------------------------|-----------------------------------------------|-------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|----------------------|
| Treatment Actions<br>(Continued) | Physical/Chemical<br>Treatment<br>(Continued) | Chemical Dechlorination<br>(KPEG)   | Process which uses specially synthesized<br>chemical reagents to destroy hazardous<br>chlorinated molecules or to toxify them<br>to form other less harmful compounds.<br>Applicable to PCBs, chlorinated<br>hydrocarbons and dioxins. | Not applicable to the organic COCs.                                                       | Eliminated           |
|                                  | Thermal Treatment                             | Incineration/<br>Thermal Desorption | Combustion of waste at high<br>temperatures. Different incinerator types<br>can be applicable to pumpable organic<br>wastes, combustible liquids, soils,<br>slurries, or sludges.                                                      | Not applicable to non-combustible<br>liquids such as the groundwater.                     | Eliminated           |
|                                  | Engineered Wetland<br>Treatment               | Constructed Wetlands                | An engineered complex of plants,<br>substrates, water, and microbial<br>populations. Contaminants are removed<br>via plant uptake, biodegradation<br>(organics only), precipitation, and<br>sorption processes.                        | Not applicable to the halogenated organic COCs.                                           | Eliminated           |
|                                  | Off-site Treatment                            | POTW                                | Extracted groundwater discharged to Jacksonville POTW for treatment.                                                                                                                                                                   | Not implementable since this POTW<br>will not accept contaminated<br>groundwater.         | Eliminated           |
|                                  |                                               | RCRA Facility                       | Extracted groundwater discharged to licensed RCRA facility for treatment and/or disposal.                                                                                                                                              | Not implementable due to large volume of groundwater.                                     | Eliminated           |
|                                  |                                               | Sewage Treatment Plant              | Extracted groundwater discharged to Base STP for treatment.                                                                                                                                                                            | Not implementable since Base STP<br>cannot effectively treat highly<br>concentrated VOCs. | Eliminated           |

# PRELIMINARY SCREENING OF GROUNDWATER TECHNOLOGIES AND PROCESS OPTIONS OPERABLE UNIT NO. 10 (SITE 35) INTERIM FEASIBILITY STUDY, CTO-0232 MCB CAMP LEJEUNE, NORTH CAROLINA

ŧ

| General Response<br>Action       | Remedial Action<br>Technology | Process Option                                                                    | Description                                                                                                                                                                                                                                                                                                      | Site-Specific Applicability                                                                                                                              | Screening<br>Results |
|----------------------------------|-------------------------------|-----------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|
| Treatment Actions<br>(Continued) | In Situ Treatment             | Bioventing                                                                        | System of introducing nutrients and<br>oxygen to waste for the stimulation or<br>augmentation of microbial activity to<br>degrade contamination. Applicable to<br>nonhalogenated organic compounds.                                                                                                              | Potentially applicable to the nonhalogenated COCs.                                                                                                       | Retained             |
|                                  |                               | Air Sparging                                                                      | The injection of air under pressure in<br>groundwater to remove VOCs via<br>volatilization. Air bubbles migrate into<br>the vadose zone where they can be<br>extracted or treated by other methods.<br>Introduction of air also may promote<br>degradation of contaminants through<br>biological transformation. | Potentially applicable using horizontal<br>or angled drilling techniques.                                                                                | Retained             |
|                                  |                               | Dual-Phase Vacuum<br>Extraction                                                   | Extraction of a two-phase air-water<br>stream under high vacuum using wells<br>screened above and below the water<br>table.                                                                                                                                                                                      | Not applicable because the proposed<br>highway serves as obstruction to the<br>vertical wells required for the<br>implementation of this type of system. | Eliminated           |
|                                  |                               | In-Well Aeration (a.k.a.<br>UVB, vacuum vaporizer<br>well, in-situ air stripping) | Process of inducing air into a well by<br>applying a vacuum. Results in an in-well<br>airlift pump effect that serves to strip<br>volatiles from groundwater inside the<br>well.                                                                                                                                 | Similar to air sparging. Potentially applicable.                                                                                                         | Retained             |
|                                  |                               | Passive Treatment Wall                                                            | A permeable reaction wall is installed<br>across the flow path of a contaminant<br>plume, allowing the plume to passively<br>more through the wall.                                                                                                                                                              | Potentially applicable to the halogenated organic COCs.                                                                                                  | Retained             |

(

# PRELIMINARY SCREENING OF GROUNDWATER TECHNOLOGIES AND PROCESS OPTIONS OPERABLE UNIT NO. 10 (SITE 35) INTERIM FEASIBILITY STUDY, CTO-0232 MCB CAMP LEJEUNE, NORTH CAROLINA

| General Response<br>Action | Remedial Action<br>Technology | Process Option                                              | Description                                                                                                                    | Site-Specific Applicability                                                                                                       | Screening<br>Results |
|----------------------------|-------------------------------|-------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|----------------------|
| Discharge Actions          | On-Site Discharge             | Reinjection<br>• Injection Wells<br>• InfiltrationGalleries | Treated water reinjection into the site<br>aquifer via use of shallow infiltration<br>galleries (trenches) or injection wells. | Not applicable. Could induce<br>intolerable ground settlement above<br>the highway from fluctuations in the<br>groundwater table. | Eliminated           |
|                            |                               | Surface Water                                               | Treated water discharged to Brinson Creek.                                                                                     | Potentially applicable.                                                                                                           | Retained             |
|                            | Off-Site Discharge            | POTW                                                        | Treated water discharged to Jacksonville POTW.                                                                                 | Not implementable due to distance.                                                                                                | Eliminated           |
|                            |                               | Surface Water                                               | Treated water discharged to New River.                                                                                         | Potentially applicable.                                                                                                           | Retained             |
|                            |                               | Base STP                                                    | Treated water discharged to closest Base STP.                                                                                  | Not implementable due to distance.                                                                                                | Eliminated           |

# TABLE 3-3

# SUMMARY OF GROUNDWATER PROCESS OPTION EVALUATION OPERABLE UNIT NO. 10 (SITE 35) INTERIM FEASIBILITY STUDY, CTO-0232 MCB CAMP LEJEUNE, NORTH CAROLINA

+

| General                   | General Remedial            |                                     | Evaluation                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                      |                       |  |  |
|---------------------------|-----------------------------|-------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|--|--|
| Response<br>Action        | Action<br>Technology        | Process Option                      | Effectiveness                                                                                                                                                                                                         | Implementability Cost                                                                                                                                                                                                                                                                                                                                                                | Evaluation<br>Results |  |  |
| No Action                 | No Action                   | Natural Attenuation                 | • Evaluation not necessary since it is the only option under this general response action category.                                                                                                                   | <ul> <li>Evaluation not necessary since it is<br/>the only option under this general<br/>response action category.</li> <li>Evaluation not necessary<br/>since it is the only option<br/>under this general response<br/>action category.</li> </ul>                                                                                                                                 | Retained              |  |  |
| Institutional<br>Controls | Monitoring                  | Groundwater<br>Monitoring           | <ul> <li>Provides a means for evaluating impact<br/>of natural attenuation processes and<br/>monitoring contaminant migration.</li> </ul>                                                                             | <ul> <li>Readily implementable, but, will<br/>likely require additional monitoring<br/>well installation to replace those<br/>wells abandoned due to the highway.</li> <li>Low capital.</li> <li>Low to moderate O&amp;M.</li> </ul>                                                                                                                                                 | Retained              |  |  |
|                           | Aquifer-Use<br>Restrictions | Restrictions in Base<br>Master Plan | <ul> <li>Reduces future direct exposure to<br/>contaminated groundwater.</li> </ul>                                                                                                                                   | <ul> <li>Readily implementable by Camp<br/>Lejeune staff.</li> <li>Low capital.</li> <li>No O&amp;M.</li> </ul>                                                                                                                                                                                                                                                                      | Retained              |  |  |
| Collection<br>Actions     | Subsurface<br>Drains        | Interceptor Trenches                | <ul> <li>Commercial track record for collecting<br/>and containing a contaminated<br/>groundwater plume.</li> <li>Applicable only for shallow<br/>groundwater plumes</li> <li>Area of influence is limited</li> </ul> | <ul> <li>Requires an experienced specialty contractor</li> <li>May require handling and disposal of a substantial volume if contaminated soil is encountered during excavation</li> <li>Potential exposures during installation</li> <li>May require a special permit to install in a wetlands</li> <li>Low to moderate to high capital.</li> <li>Low to moderate O&amp;M</li> </ul> | Retained              |  |  |

# SUMMARY OF GROUNDWATER PROCESS OPTION EVALUATION OPERABLE UNIT NO. 10 (SITE 35) INTERIM FEASIBILITY STUDY, CTO-0232 MCB CAMP LEJEUNE, NORTH CAROLINA

| General              | Remedial                           |                                             |                                                                                                                                                                                                                                                                                 | Evaluation                                                                                                                                                        |                                                                                                                                 | Evoluation |
|----------------------|------------------------------------|---------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|------------|
| Response<br>Action   |                                    | Effectiveness                               | Implementability                                                                                                                                                                                                                                                                | Cost                                                                                                                                                              | Evaluation<br>Results                                                                                                           |            |
| Treatment<br>Actions | Biological<br>Treatment            | Aerobic                                     | <ul> <li>Not effective treatment for halogenated organics</li> <li>High levels of halogenated organics may adversely impact treatment of nonhalogenated organics</li> <li>Contaminants are converted to carbon dioxide and water</li> </ul>                                     | <ul> <li>Commercially available technology</li> <li>Will require bench-scale testing</li> </ul>                                                                   | <ul> <li>Moderate capital.</li> <li>Moderate O&amp;M.</li> </ul>                                                                | Eliminated |
|                      | Physical/<br>Chemical<br>Treatment | Volatilization<br>(Air/System<br>Stripping) | <ul> <li>Can potentially remove all organic<br/>contaminants</li> <li>Commercially proven and widely used<br/>technology</li> <li>Contaminant transfer rather than<br/>destruction technology</li> </ul>                                                                        | <ul> <li>Commercially available technology</li> <li>Secondary treatment of off gas may<br/>be required</li> <li>May require air emissions treatment</li> </ul>    | <ul> <li>Low to moderate capital.</li> <li>Low to moderate O&amp;M.</li> </ul>                                                  | Retained   |
|                      |                                    | Carbon Adsorption                           | <ul> <li>Can potentially remove all organic<br/>contaminants</li> <li>Commercially proven and widely used<br/>technology</li> <li>Contaminant transfer rather than<br/>destruction technology</li> </ul>                                                                        | <ul> <li>Commercially available technology</li> <li>Spent carbon must be properly<br/>regenerated or disposed</li> <li>May require bench-scale testing</li> </ul> | <ul> <li>Low to moderate capital.</li> <li>Low to high O&amp;M<br/>(dependent on loading rates<br/>and carbon life).</li> </ul> | Eliminated |
|                      |                                    | UV Oxidation                                | <ul> <li>Can potentially remove all organic<br/>contaminants</li> <li>Commercially proven technology</li> <li>Contaminant destruction rather than<br/>transfer technology</li> <li>Effectiveness is reduced by high iron<br/>and other organic levels in groundwater</li> </ul> | <ul> <li>Commercially available technology</li> <li>Secondary treatment of off gas may<br/>be required</li> <li>May require bench-scale testing</li> </ul>        | <ul> <li>Moderate to high capital.</li> <li>Moderate to high O&amp;M.</li> </ul>                                                | Eliminated |
|                      | In Situ<br>Treatment               | Air Sparging                                | <ul> <li>Can potentially remove all organic<br/>contaminants</li> <li>Commercially proven technology</li> <li>Contaminant transfer rather than<br/>destruction technology</li> </ul>                                                                                            | <ul> <li>Commercially available technology</li> <li>Secondary treatment of off gas may<br/>be required</li> <li>May require air emissions permit</li> </ul>       | <ul> <li>Moderate to high capital.</li> <li>Low to moderate O&amp;M.</li> </ul>                                                 | Retained   |

# SUMMARY OF GROUNDWATER PROCESS OPTION EVALUATION OPERABLE UNIT NO. 10 (SITE 35) INTERIM FEASIBILITY STUDY, CTO-0232 MCB CAMP LEJEUNE, NORTH CAROLINA

1

| General                       | Remedial                         |                           | Evaluation                                                                                                                                                                                  |                                                                                                                                                                          |                                                                                 |                           |
|-------------------------------|----------------------------------|---------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|---------------------------|
| Response<br>Action            | Action<br>Technology             | Process Option            | Effectiveness                                                                                                                                                                               | Implementability                                                                                                                                                         | Cost                                                                            | - Evaluation<br>Results , |
| Treatment<br>Actions (cont'd) | In Situ<br>Treatment<br>(cont'd) | In-Well Aeration          | <ul> <li>Can potentially remove all organic<br/>contaminants.</li> <li>Limited commercial track record.</li> <li>Contaminant transfer rather than<br/>destruction technology.</li> </ul>    | <ul> <li>Patented technology licensed by a single vendor.</li> <li>Secondary treatment of off gas may be required.</li> <li>May require air emissions permit.</li> </ul> | <ul> <li>Moderate to high capital.</li> <li>Low to moderate O&amp;M.</li> </ul> | Retained                  |
|                               |                                  | Passive Treatment<br>Wall | <ul> <li>Not effective treatment for BTEX<br/>contaminants.</li> <li>Innovative technology with minimal<br/>long-term applications.</li> <li>Contaminant destruction technology.</li> </ul> | <ul> <li>Technology currently provided by a single vendor.</li> <li>May require retrofit after prolonged remediation.</li> </ul>                                         | <ul> <li>Moderate to high capital.</li> <li>Low O&amp;M.</li> </ul>             | Eliminated                |

5. O

#### 4.0 •DEVELOPMENT AND SCREENING OF ALTERNATIVES

In this section, general response actions and the process options chosen to represent the various technology types applicable for the contaminated surficial groundwater in the vicinity of the Fuel Farm at Site 35 will be combined to form remedial action alternatives. Following development, each alternative will be evaluated against the short-term and long-term aspects of three criteria (effectiveness, implementability, and cost). The alternatives with the most favorable composite evaluation of all criteria will be retained for further consideration during the detailed evaluation (Section 5.0).

## 4.1 **Development of Alternatives**

1

The general response actions and process options chosen to represent the various applicable technologies identified on Table 3-3 have been combined into five remedial action alternatives (RAAs) potentially applicable for the contaminated surficial aquifer near the Fuel Farm at Site 35.

These RAAs combine one or more of the previously screened process options as follows:

| • | RAA 1: | No Action                                          |
|---|--------|----------------------------------------------------|
| • | RAA 2: | No Action with Institutional Controls              |
| • | RAA 3: | Groundwater Collection and On-Site Treatment       |
| • | RAA 4: | In Situ Air Sparging and Off Gas Carbon Adsorption |
| • | RAA 5: | In Well Aeration and Off Gas Carbon Adsorption     |

As indicated by their titles, RAAs 1 and 2 do not include provisions for the active treatment while RAAs 3, 4 and 5 are treatment alternatives. As part of the RAA development process an evaluation is made as to precisely where at a particular site it would be best to install any remediation system designed for shallow groundwater. This is particularly an issue at Site 35 because of the proposed highway which is scheduled for completion prior to implementation of the remediation and will be constructed over a substantial area of previously identified shallow groundwater contamination.

The remedial alternatives developed are considered to be interim in nature because they provide for additional protection to human health and the environment, but are not necessarily intended to represent the final solution for site. This Interim Remedial Action FS does not seek to remediate groundwater contamination across the entire Site 35 because, based on the results of the RI, it has not been adequately defined to date. Since the entire area of shallow contamination cannot be addressed, the alternatives developed for the Interim FS focused on remediating the shallow groundwater contamination along the downgradient extreme of the plume; that is, in the area between the proposed highway and Brinson Creek. A remediation system installed in this area would ideally contain the groundwater contamination from Site 35 prior to its being discharged to Brinson Creek. Additional remediation beneath the proposed highway and further upgradient may be necessary, but should be part of an overall site-wide groundwater remedial action to be considered under a future comprehensive FS.

The proposed highway also represents an access constraint that directly impacts the cost of remediation. Access during construction and operation to the area between the proposed highway and Brinson Creek is critical to this project and can be provided three ways including: 1) via emergency on and off ramps from and to the proposed highway; 2) via a tunnel or culvert through and beneath the proposed highway; or 3) via a dedicated access road constructed parallel to the

proposed highway. Although much of the area on the creek side of the highway is marshy, it has been determined that adequate space and firm foundation material will likely be available for any treatment facilities associated with RAAs 3, 4, and 5. In this case, an access road constructed parallel to the new highway on the creek side would be sufficient.

Baker, LANTDIV, and MCB, Camp Lejeune will negotiate with NC DOT regarding the specifics for site access to the creek side of the new highway. The EPA and NC DEHNR will be kept abreast of developments on this subject. In this FS, Baker proposes an access road running along the east side of the highway from the south.

## 4.1.1 RAA 1: No Action

)

Under the No Action RAA, no remedial actions will be performed to reduce the toxicity, mobility, or volume of the contaminated surficial groundwater at Site 35. This method assumes that passive remediation will occur via natural attenuation processes and that the contaminant levels will be reduced over an indefinite period of time. However, the achievable reductions versus time is difficult if not impossible to predict.

The No Action RAA is required by the NCP to provide a baseline for comparison with other alternatives. Since contaminants will remain at the site under this alternative, USEPA is required by the NCP [40 CFR 300.515(e)(ii)] to review the effects of this alternative no less often than every five years.

## 4.1.2 RAA 2: No Action with Institutional Controls

Under RAA No.2, no remedial actions will be performed to reduce the toxicity, mobility, or volume of the contaminated surficial groundwater at Site 35. This RAA assumes that the Base Master Plan will be modified to include restrictions on the use of the surficial aquifer in the vicinity of the Fuel Farm. This will reduce the risk to human health and the environment posed by this media by eliminating one exposure pathway; however, without additional remediation the contaminated surficial groundwater will remain a future source of contamination for Brinson Creek.

In addition to aquifer-use restrictions, long-term groundwater monitoring is to be included under this RAA to provide data regarding the impact of natural attenuation and the progress of contaminant migration. Long-term groundwater monitoring includes the semi-annual collection and analysis (TCL VOCs) of groundwater samples from 11 monitoring wells, the development of a semi-annual monitoring report, and the replacement of one monitoring well every five years. Figure 4-1 depicts possible locations of additional monitoring wells.

Since contaminants will remain at the site under this alternative, the USEPA is required by the NCP [40 CFR 300.515(e)(iii)] to review the effects of this alternative no less often than every five years.

## 4.1.3 RAA 3: Groundwater Collection and On-Site Treatment

RAA 3 is a source collection and treatment alternative, the source being the contaminated surficial groundwater in the vicinity of the Fuel Farm at Site 35. Under this alternative a vertical interceptor trench will be installed at the downgradient edge of the contaminated plume in the area between the proposed highway and Brinson Creek (see Figure 4-2). The interceptor trench will be installed from the ground surface to the semi-confining layer at the base of the surficial aquifer (see Figures 4-3).

and 4-4). The purpose of the interceptor trench is to collect contaminated surficial groundwater for transfer to an on-site treatment facility prior to it being discharged to Brinson Creek.

The type of interceptor trench proposed under RAA 4 is termed a "biopolymer slurry drainage trench." This type of trench can be installed without dewatering or structural bracing. Through the use of a natural, biodegradable slurry, the walls of a trench excavation can be supported and the trench can be installed without personnel entering an excavation. Compared to other trenching methods, this technique is safer and cost-effective in areas with a high groundwater and unstable soil because there are no costs of dewatering and water disposal or shoring.

A biopolymer slurry drainage trench is constructed in much the same manner as a typical slurry cutoff wall. However, unlike a bentonite-clay slurry, a biodegradable biopolymer slurry supports the walls of the trench while excavated materials are removed and drainage structures are installed. The biopolymer slurry then naturally biodegrades after the trench is backfilled. In the end, a permeable wall is left intact (see Appendix B for additional information on this technology).

The interceptor trench will be designed to collect groundwater at a rate roughly equal to the rate of groundwater flow (i.e., roughly 5 to 10 gpm. See calculations contained in Appendix C) across the upgradient face of the trench (31,900 square feet). Flow across the downgradient face of the trench will be restricted by an impermeable geomembrane barrier. Drawdown of the groundwater surface will be minimized so as to mitigate the potential of excessive ground settlement beneath the highway. The collected groundwater will be conveyed to an on-site treatment plant located just east of the proposed highway right-of-way, creek-side, where it appears that adequate space and firm foundation material is available.

Baker, LANTDIV, and MCB, Camp Lejeune will negotiate with NC DOT regarding the specifics for site access to the creek-side of the new highway. The EPA and NC DEHNR will be kept abreast of developments on this subject. In this FS, Baker proposes an access road running along the east side of the highway from the south.

The collected groundwater will be treated sufficiently to allow for its discharge to Brinson Creek at a point downstream of Site 35. It is anticipated that the groundwater treatment system will include filtration for the removal of suspended solids, precipitation for the removal of inorganics, sludge collection and disposal, volatilization (air stripping) for the removal of VOCs, and secondary treatment of VOC emissions from the air stripper and of the treated groundwater (i.e., via carbon adsorption). The treatment plant effluent will be sampled once a month to insure that water discharged to Brinson Creek meets all applicable water quality standards. The process flow diagram is depicted in Figure 4-5.

RAA 3 assumes that the Base Master Plan will be modified to include restrictions on the use of the surficial aquifer in the vicinity of the Fuel Farm. This will reduce the risk to human health and the environment posed by this media by eliminating one exposure pathway.

In addition to aquifer-use restrictions, long-term groundwater monitoring is to be included under this RAA to provide data regarding the impact of natural attenuation and the progress of contaminant migration. Long-term groundwater monitoring includes the semi-annual collection and analysis (TCL VOCs) of groundwater samples from 11 monitoring wells, the development of a semi-annual monitoring report, and the replacement of one monitoring well every five years.

٦

4-3

Since contaminants will remain at the site under this alternative, the USEPA is required by the NCP [40 CFR 300.515(e)(iii)] to review the effects of this alternative no less often than every five years.

## 4.1.4 RAA 4: In Situ Air Sparging And Off-Gas Carbon Adsorption

In situ air sparging (IAS) is a technique in which air is injected into water saturated zones for the purpose of removing organic contaminants primarily via volatilization and secondarily via aerobic biodegradation. IAS systems introduce contaminant-free air into an impacted aquifer near the base of the zone of contamination, forcing contaminants to transfer from the groundwater into sparged air bubbles. The air bubbles are then transported into soil pore spaces in the unsaturated zone where they are typically collected via soil vapor extraction (SVE) and conveyed to an on-site off-gas treatment system.

An IAS system typically is comprised of the following components: 1) air injection wells; 2) an air compressor; 3) air extraction wells; 4) a vacuum pump; 5) associated piping and valving for air conveyance; and 6) an off-gas treatment system (e.g., activated carbon, combustion, or oxidation). Under RAA 4 a line of air sparging wells will be installed between the proposed highway and Brinson Creek in order to treat and contain the contaminated plume near its downgradient extreme (see Figure 4-6). Based on empirical data from similar sites, the radius of influence of an air sparging well ranges from five to almost 200 feet, but is typically on the order of 25 feet (EPA, 1992). A typical well detail and process flow diagram for the IAS system proposed under RAA 4 is depicted in Figure 4-7. The proposed off-gas treatment system, consisting primarily of activated carbon units, will be located east of the proposed highway where it appears that there is adequate space and firm foundation material available for its construction. The air emissions from the off-gas treatment system will be sampled monthly to insure that all applicable air emissions standards are being met.

Air sparging systems are most effective in sandy soils, but, can be adversely impacted by high levels of inorganic compounds in the groundwater which oxidized and precipitate when contacted by the sparged air. These organics can form a heavy scale on well screens and clog the well space of the sand pack surrounding the well screen resulting in a reduction in permeability. A field pilot test is recommended to determine the loss of efficiency over time as a result of inorganics precipitation and oxidation, the radius of influence of the wells under various heads of injection air pressure, and the rate of off-gas organic contaminant removal via carbon adsorption and carbon breakthrough (see Appendix D for additional information on this technology).

Baker, LANTDIV, and MCB, Camp Lejeune will negotiate with NC DOT regarding the specifics for site access to the creek side of the new highway. The EPA and NC DEHNR will be kept abreast of developments on this subject. In this FS, Baker proposes an access road running along the east side of the highway from the south.

RAA 4 assumes that the Base Master Plan will be modified to include restrictions on the use of the surficial aquifer in the vicinity of the Fuel Farm. This will reduce the risk to human health and the environment posed by this media by eliminating one exposure pathway.

In addition to aquifer-use restrictions, long-term groundwater monitoring is to be included under this RAA to provide data regarding the impact of natural attenuation and the progress of contaminant migration. Long-term groundwater monitoring includes the semi-annual collection and analysis

(TCL VOCs) of groundwater samples from 11 monitoring wells, the development of a semi-annual monitoring report, and the replacement of one monitoring well every five years.

Since contaminants will remain at the site under this alternative, the USEPA is required by the NCP [40 CFR 300.515(e)(iii)] to review the effects of this alternative no less often than every five years.

## 4.1.5 RAA 5: In Well Aeration and Off-Gas Carbon Adsorption

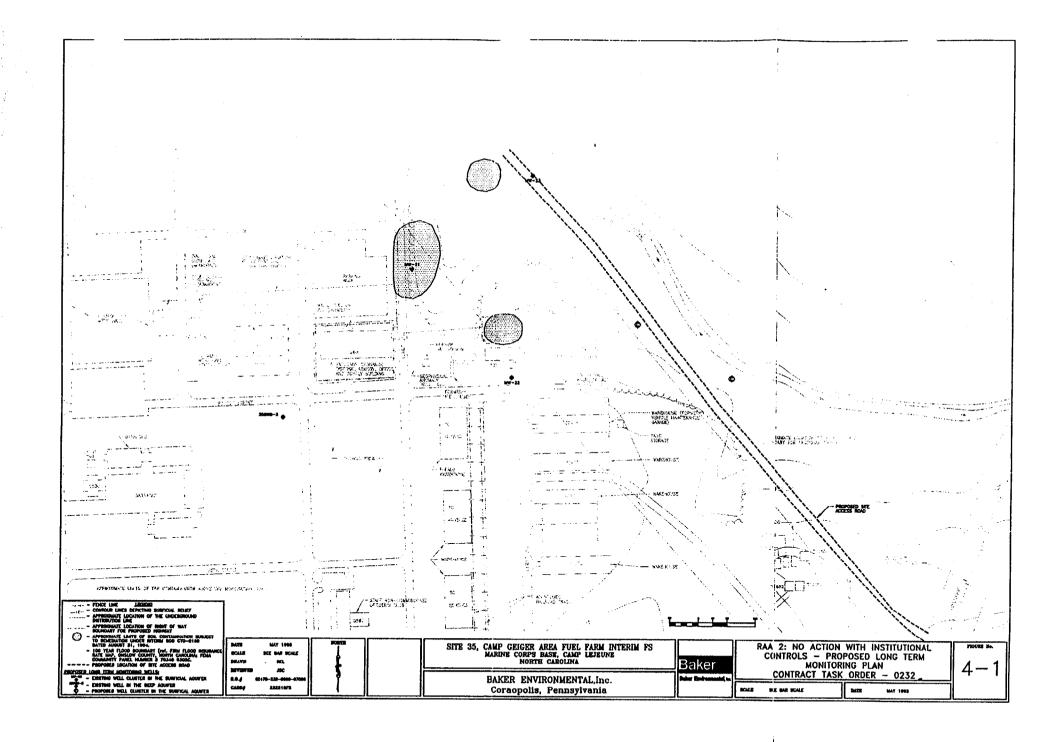
In well aeration is a new technology that utilizes circulating air flow within a groundwater well that, in effect, turns the well into an air stripper. In well aeration differs from air sparging in that volatilization occurs outside the well via air sparging and within the well via in well aeration. Similar to air sparging, this technique removes organic contaminants from groundwater primarily via volatilization and secondarily via aerobic biodegradation. Under RAA 5 a line of in well aeration wells will be installed between the proposed highway and Brinson Creek in order to treat the contaminated plume near its downgradient extreme and contain the migration the plume toward Brinson Creek (see Figure 4-8). The radius of influence or capture zone, of an in well aeration well is reportedly much greater than that of a typical air sparging well. At Site 35, the radius of influence has been calculated by the technology's developers to be over 100 feet. This radius of influence is based upon site specific geological and hydrogeological parameters. Volatilized organic contaminants collected by the in well aeration system, unlike air sparging, will be treated at each in well aeration well by independent carbon adsorption systems which will rest adjacent to the wells. The air emissions from the off-gas treatment system will be sampled monthly to insure that all applicable air emissions standards are being met. Each well and above-ground off-gas treatment system will be housed in a small prefabricated building.

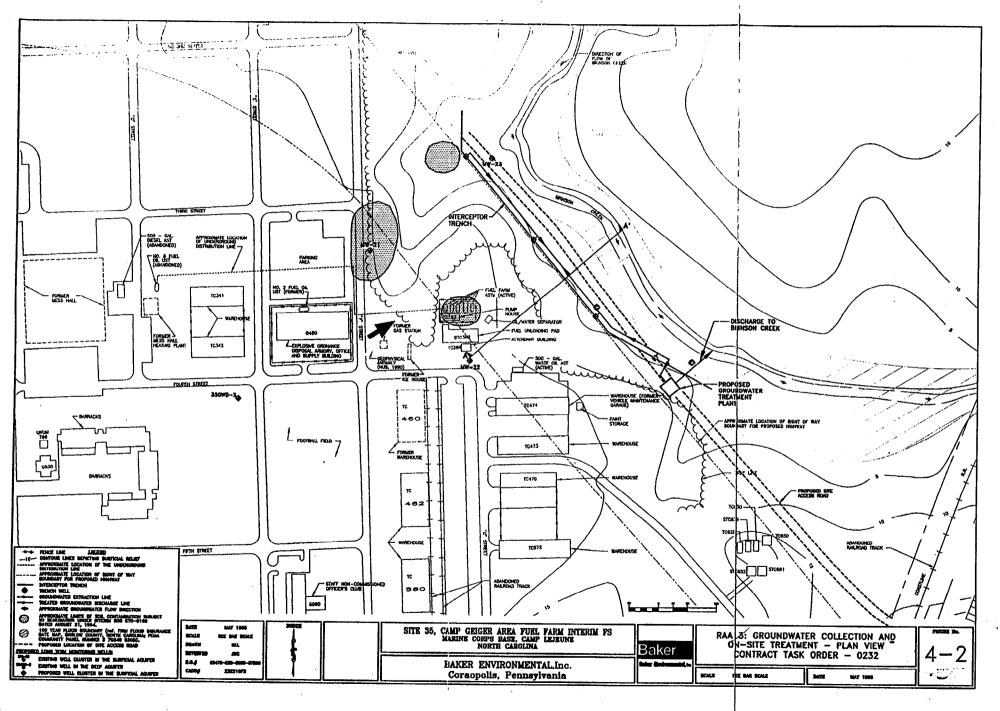
In well aeration systems, like IAS systems, are most effective in sandy soils, but can be adversely impacted by high levels of inorganic compounds in the groundwater which oxidize and precipitate when contacted by air. These inorganics can form a heavy scale on well screens and clog the well space of the sand pack surrounding the well screen resulting in a reduction in permeability. A field pilot test is recommended to determine the loss of efficiency over time as a result of inorganics precipitation and oxidation, the radius of influence of the wells under various heads of injection air pressure, and the rate of off-gas organic contaminant removal via carbon adsorption and carbon breakthrough (see Appendix E for additional information on this technology).

Baker, LANTDIV, and MCB, Camp Lejeune will negotiate with NC DOT regarding the specifics for site access to the creek side of the new highway. The EPA and NC DEHNR will be kept abreast of developments on this subject. In this FS, Baker proposes an access road running along the east side of the highway from the south.

RAA 5 assumes that the Base Master Plan will be modified to include restrictions on the use of the surficial aquifer in the vicinity of the Fuel Farm. This will reduce the risk to human health and the environment posed by this media by eliminating one exposure pathway.

In addition to aquifer-use restrictions, long-term groundwater monitoring is to be included under this RAA to provide data regarding the impact of natural attenuation and the progress of contaminant migration. Long-term groundwater monitoring includes the semi-annual collection and analysis (TCL VOCs) of groundwater samples from 11 monitoring wells, the development of a semi-annual monitoring report, and the replacement of one monitoring well every five years.


3

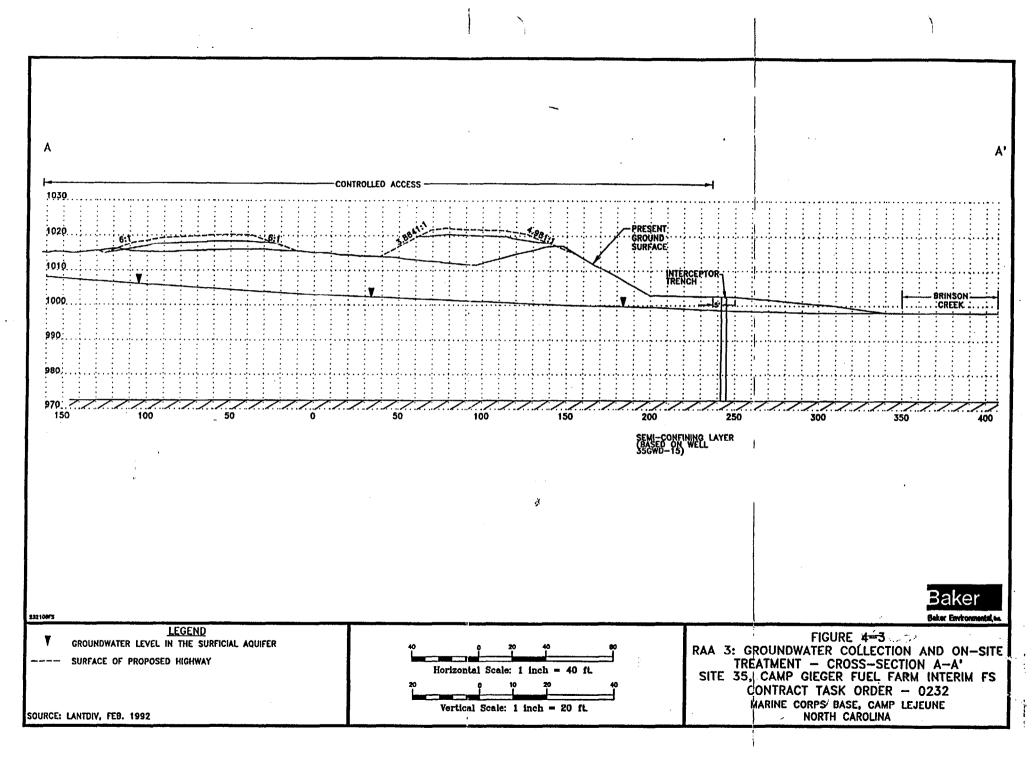

Since contaminants will remain at the site under this alternative, the USEPA is required by the NCP [40 CFR 300.515(e)(iii)] to review the effects of this alternative no less often than every five years.

# 4.2 <u>Screening of Alternatives</u>

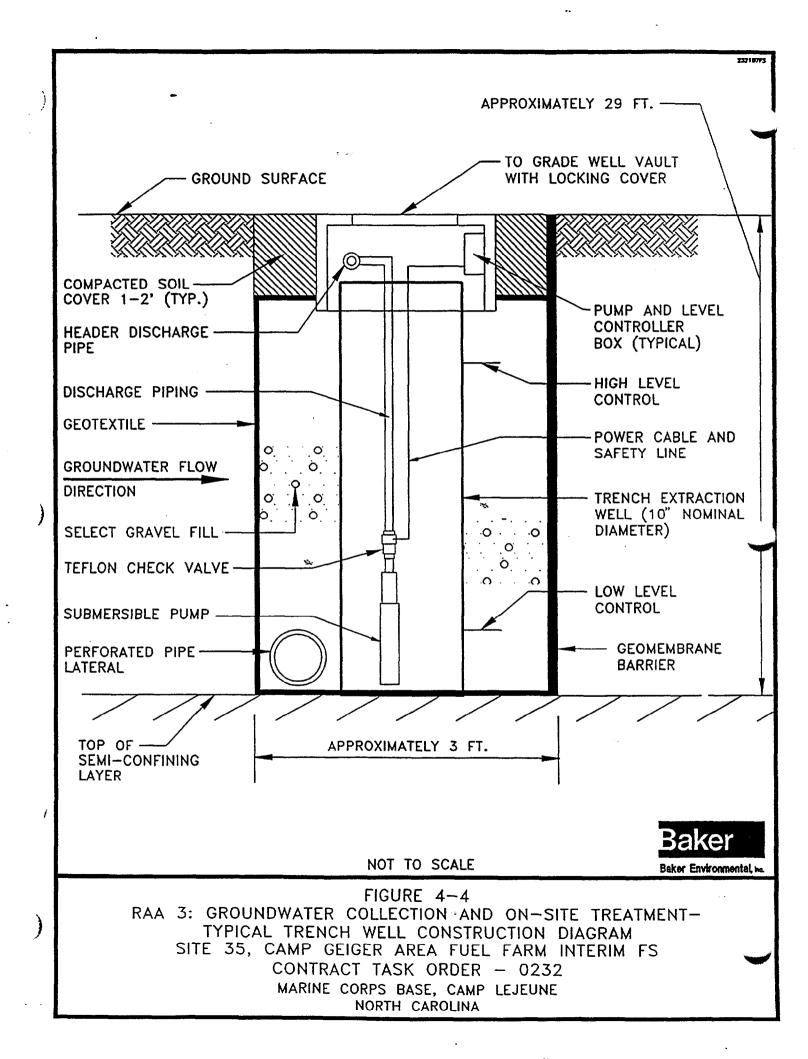
Typically, this section of the FS presents the initial screening of the potential RAAs. The objective of this screening is to make comparisons between similar alternatives, so that only the most promising ones are carried forward for further evaluation (USEPA, 1988a). This screening is an optional step in the FS process, and is usually conducted if there are too many RAAs to perform the detailed evaluation on. In the case of Site 35 (OU No. 10), the decision was made not to conduct this preliminary RAA screening step, and therefore, all of the developed RAAs will undergo the detailed evaluation presented in the next section.

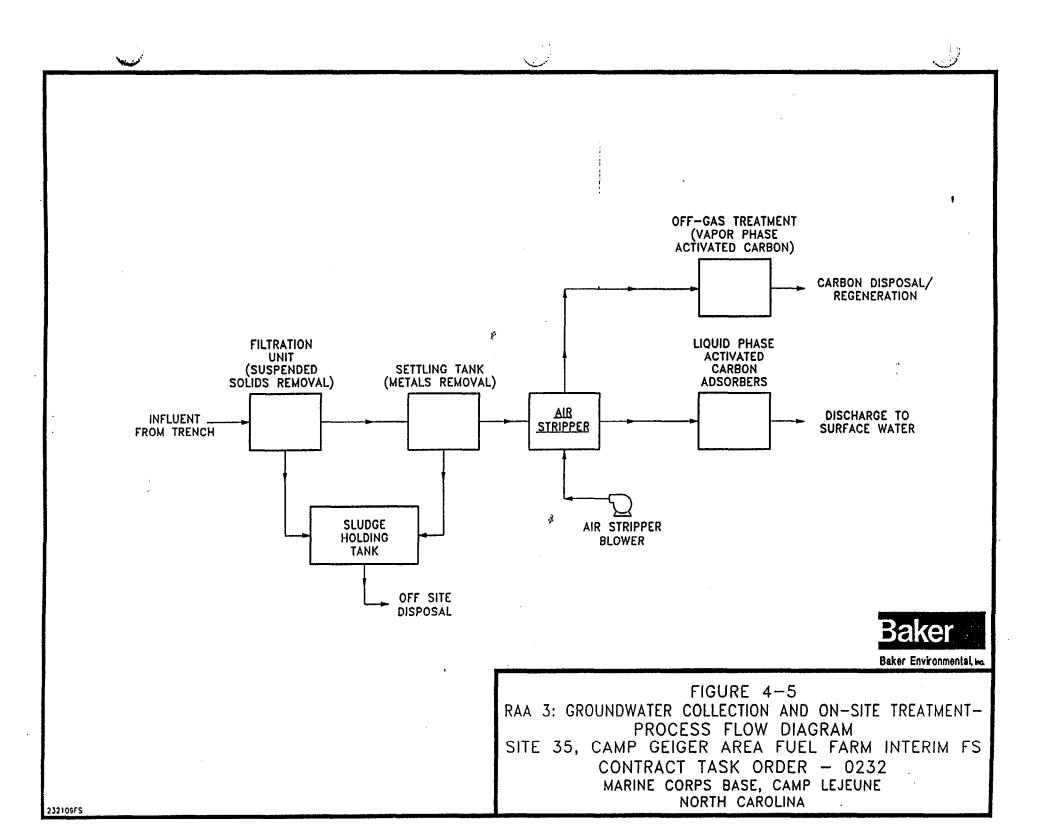
# **SECTION 4.0 FIGURES**

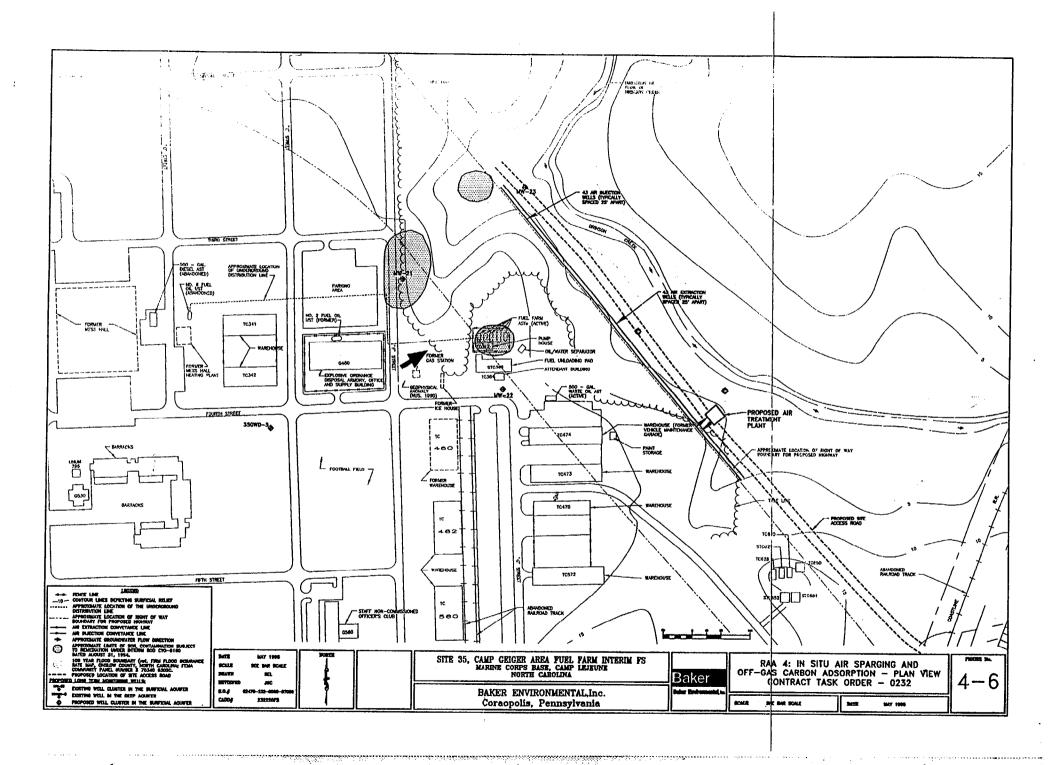


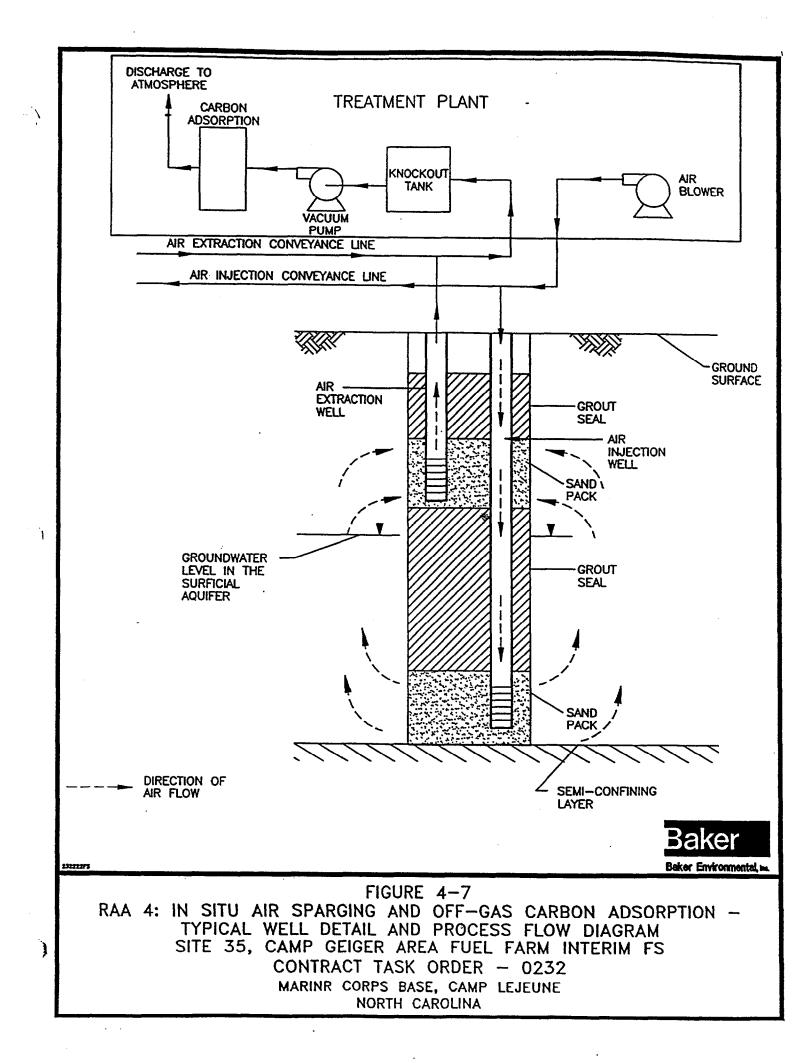


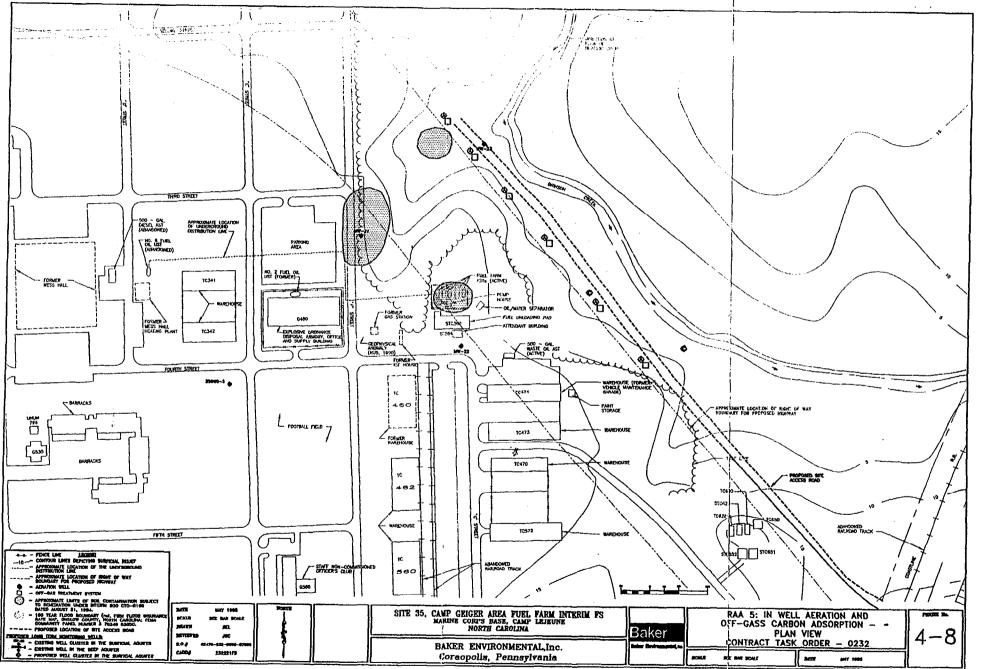

**Manager** se **Mana**lan sanan di s


80 11 14


. . . . . .


a m<del>anuna yayanang</del>a a se je



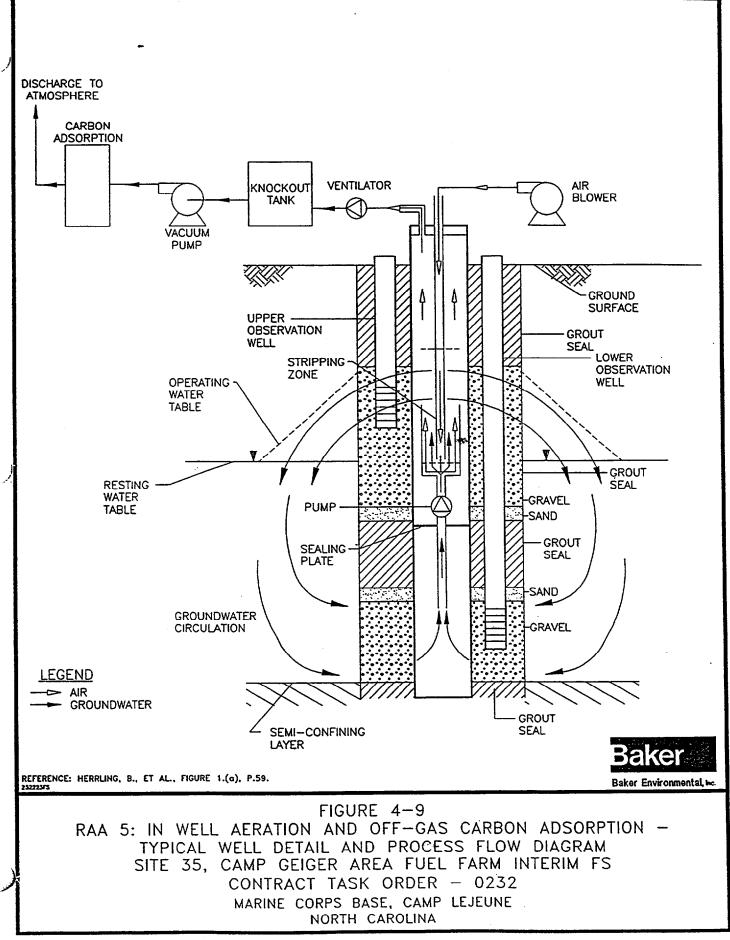


n fan sagar de dawwyse son ar anno s












~,...

·\*····

ورجد فالمصبوب فالمتعالية

•.)



• •

## 5.0 -DETAILED ANALYSIS OF ALTERNATIVES

This section of the FS contains the detailed analysis of the set of RAAs developed in Section 4.0. This analysis has been conducted to provide sufficient information to adequately compare the alternatives, select an appropriate remedy for the site, and demonstrate satisfaction of the CERCLA remedy selection requirements in the ROD (USEPA, 1988a).

The extent to which alternatives are assessed during this detailed analysis is influenced by the available data, the number and types of alternatives being analyzed, and the degree to which alternatives were previously analyzed during their development and screening (USEPA, 1988a).

The following nine evaluation criteria serve as the basis for conducting the detailed analysis:

- 1. Overall protection of human health and the environment
- 2. Compliance with ARARs
- 3. Long-term effectiveness and permanence
- 4. Reduction of toxicity, mobility, or volume
- 5. Short-term effectiveness
- 6. Implementability
- 7. Cost

Ń

- 8. USEPA/State acceptance
- 9. Community acceptance

The first two criteria (referred to as the Threshold Criteria) relate directly to statutory findings; the next five criteria (referred to as the Primary Balancing Criteria) are the primary criteria upon which the analysis is based; and the final two criteria (referred to as the Modifying Criteria) are typically evaluated following comment on the RI/FS report and the proposed plan.

## 5.1 Individual Analysis of Alternatives

The individual analysis of the RAAs is presented in the following subsections. This analysis includes an assessment and a summary profile of each of the RAAs against the evaluation criteria, and a comparative analysis among the alternatives to assess the relative performance of each with respect to each of the evaluation criterion.

The cost estimates that have been developed for each of the alternatives include both capital and operational expenditures. The cost evaluation presents the net present worth (NPW) values for each of the alternatives such that the options can be easily compared. The accuracy of each cost estimate depends upon the assumptions made and the availability of costing information. The present worth costs were calculated assuming a 30-year operational period (based on USEPA guidance) for all of the alternatives, a five percent discount factor, and a zero percent inflation rate. All costs presented in the following sections have been updated to 1995 dollar values.

For this FS, it has been assumed that groundwater monitoring will be conducted semiannually for 30 years. This assumption has been made for costing purposes only.

## 5.1.1 -RAA 1: No Action

## 5.1.1.1 Description

Under the No action RAA, no remedial actions will be performed to reduce the toxicity, mobility, or volume of the contaminated surficial groundwater at Site 35. This method assumes that passive remediation will occur via natural attenuation processes and that the contaminant levels will be reduced over an indefinite period of time. However, the achievable reductions versus time are difficult, if not impossible to predict.

The No Action RAA is required by the NCP to provide a baseline for comparison with other alternatives. Since contaminants will remain at the site under this alternative, USEPA is required by the NCP [40 CFR 300.515(e) (ii)] to review the effects of this alternative no less often than every five years.

## 5.1.1.2 Assessment

#### Overall Protection of Human Health and the Environment

The No Action RAA does not provide for any protection to human health or to the environment with respect to exposure to contaminated surficial groundwater in the vicinity of the Fuel Farm at Site 35. Contaminants in the surficial groundwater will continue to be the source of future contamination via direct discharge to Brinson Creek. Reductions in contaminant levels may occur over time as a result of natural attenuation processes; however, the extent of the attenuation and time required to achieve any reductions is impossible to predict.

#### Compliance with ARARs

Under the No Action RAA, no active effort will be made to reduce the levels of various organic contaminants in the surficial groundwater to achieve the remediation goals. Therefore, this alternative will not achieve the remediation levels for the COCs identified in Section 2.7.

#### Long-Term Effectiveness and Permanence

Under the No Action RAA, any long-term or permanent effect on contamination in the surficial aquifer in the vicinity of the Fuel Farm is dependent on reductions achieved via natural attenuation processes. The extent and degree of natural attenuation and time required to achieve it is impossible to predict. Since contaminants will remain at the site under this alternative, USEPA is required by the NCP [40 CFR 300.515(e) (ii)] to review the effects of this alternative no less often than every five years.

## Reduction of Toxicity, Mobility, or Volume

The No Action RAA does not provide for any form of active treatment with the exception of natural attenuation processes. Natural attenuation may reduce the toxicity, mobility, or volume of organic contaminants in the surficial groundwater at Site 35; however, the extent and degree of the natural attenuation and time required to achieve it is impossible to predict.

## Short-Term Effectiveness

Under the No Action RAA, no construction or treatment activities will be implemented and, consequently, there will be no workers placed at risk to exposure to toxic chemicals. The risks to the public health and the environment will remain unchanged unless natural attenuation processes result in a substantial reduction in contaminant levels.

## Implementability

The No Action RAA is easily implementable since no remediation or monitoring activities are required. In terms of administrative feasibility, this RAA should not require coordination with other agencies. The availability of services and materials is not applicable to this alternative.

## <u>Cost</u>

1

Ì

)

There are no capital or operation and maintenance (O&M) costs associated with the No Action RAA.

## **USEPA/State** Acceptance

The No Action RAA is a required component of an FS. It has historically not been deemed acceptable by the USEPA or NC DEHNR at contaminated sites with nearby receptors such as Brinson Creek.

## Community Acceptance

There seems to be little public interest in this decision process. Although it can be assumed that the distinct odor which is occasionally prevalent around Brinson Creek due to contaminants would not be desirable to the local community. Under the No Action RAA this odor would persist and likely render this alternative unacceptable to the community.

## 5.1.2 RAA 2: No Action With Institutional Controls

# 5.1.2.1 Description

Under RAA No. 2, no remedial actions will be performed to reduce the toxicity, mobility, or volume of the contaminated surficial groundwater at Site 35. This RAA provides for the revision of the Base Master Plan to include restrictions on the use of the surficial aquifer in the vicinity of the Fuel Farm. This will reduce the risk to human health and the environment posed by this media by eliminating one exposure pathway; however, the impacted surficial groundwater will remain a potential source of contamination to Brinson Creek.

In addition to the aquifer-use restrictions, long-term groundwater monitoring is to be included under this RAA to provide data regarding the impact of natural attenuation and the progress of contaminant migration. Long-term groundwater monitoring includes the semi-annual collection and analysis (TCL VOCs) of groundwater samples from 11 monitoring wells, the development of a semi-annual monitoring report, and the replacement of one monitoring well every five years.

5-3

Since contaminants will remain at the site under this alternative, the USEPA is required by the NCP [40 CFR 300.515(e) (iii)] to review the effects of this alternative no less often than every five years.

#### 5.1.2.2 Assessment

## Overall Protection of Human Health and the Environment

The incorporation of aquifer-use restrictions into the Base Master Plan will provide for protection of human health and the environment to direct exposure to the contaminated surficial groundwater at Site 35. Since no active means of treatment or contaminant reduction is provided for under this RAA, contaminated surficial groundwater discharge to Brinson Creek can be expected to continue. Reductions in contaminant levels may occur over time as a result of natural attenuation processes; however, the extent and degree of the attenuation and time required to achieve it is impossible to predict.

RAA 2 includes long-term groundwater monitoring to provide data regarding the impact of natural attenuation and the progress of contaminant migration.

#### Compliance With ARARs

)

Under RAA 2 no effort will be made to reduce the levels of various organic contaminants in the surficial groundwater to achieve the remediation goals. Therefore, this alternative will not achieve the remediation levels for COCs identified in Section 2.7.

## Long-Term Effectiveness and Permanence

Upon the implementation of aquifer-use restrictions, RAA 2 provides a permanent means for protecting human health from direct exposure to contaminants within the surficial aquifer at Site 35. However, the impacted surficial aquifer will remain a potential source of contaminant discharge to Brinson Creek. Reductions in contaminant levels may occur over time as a result of natural attenuation processes; however, the extent and degree of the attenuation and time required to achieve it is impossible to predict. Since contaminants will remain at the site under this alternative, USEPA is required by the NCP [40 CFR 300.515(e) (ii)] to review the effects of this alternative no less often than every five years.

#### Reduction of Toxicity, Mobility, or Volume

RAA 2 does not provide for any form of active treatment of the surficial groundwater at Site 35. Natural attenuation may reduce the toxicity, mobility, or volume of organic contaminants in the surficial groundwater at Site 35; however, the extent and degree of the attenuation and time required to achieve it is impossible to predict.

#### Short-Term Effectiveness

Under RAA 2, on-site activities will include the installation of four new groundwater monitoring wells and the semi-annual sampling of 11 wells. The potential for worker exposure is limited as these activities will be carried out by trained environmental professionals.

Upon implementation aquifer-use restrictions will reduce the risk of direct exposure to groundwater contamination by civilian and military personnel. However, the surficial aquifer will remain a potential future source contamination via direct discharge to Brinson Creek.

#### Implementability

· Ì

- }

RAA 2 will be relatively easy to implement since no remediation activities are involved. Some effort will be required to modify the Base Master Plan and prepare a long-term groundwater monitoring plan. The latter document will be subject to review and some agency interaction can be expected. It is anticipated that four new groundwater monitoring wells will need to be installed primarily as replacements for those wells abandoned when the proposed highway is constructed in 1955. In addition to these four new wells, seven existing wells will be sampled on a semi-annual basis. The results of sample analyses from these 11 wells will be presented in a report prepared semi-annually for agency review. This data will be used to monitor the effects of natural attenuation and the progress of contaminant migration.

#### <u>Cost</u>

The projected cost of RAA 2 is presented in Table 5-1.

#### USEPA/State Acceptance

This RAA, No Action with Institutional Controls, is a required component of an FS. It has historically not been deemed acceptable by the USEPA and NC DEHNR at contaminated sites with nearby receptors such as Brinson Creek.

#### Community Acceptance

There seems to be little public interest in this decision process. Although it can be assumed that the distinct odor which is occasionally prevalent around Brinson Creek due to contaminants would not be desirable to the local community. Under RAA 2 this odor would persist and likely render this alternative unacceptable to the community.

## 5.1.3 RAA 3: Groundwater Collection and On-Site Treatment

#### 5.1.3.1 Description

RAA 3 is a source collection and treatment alternative, the source being the contaminated surficial groundwater in the vicinity of the Fuel Farm at Site 35. Under this alternative a vertical interceptor trench, approximately two-feet wide, by 30-feet deep, by 1,080 feet long, will be installed at the downgradient edge of the contaminated plume in the area between the proposed highway and Brinson Creek. The interceptor trench will be constructed from the ground surface to the semiconfining layer at the base of the surficial aquifer. The purpose of the interceptor trench is to collect contaminated surficial groundwater for transfer to an on-site treatment facility prior to it being discharged to Brinson Creek.

The type of interceptor trench proposed under RAA 3 is termed a "biopolymer slurry drainage trench." This type of trench can be installed without dewatering or structural bracing. Through the use of a natural, biodegradable slurry, the walls of a trench excavation can be supported and the

trench can be installed without personnel entering an excavation. compared to other trenching methods, this technique is safer and cost-effective in areas with a high groundwater and unstable soil because there are not costs of dewatering and water disposal or shoring.

A biopolymer slurry drainage trench is constructed in much the same manner as a typical slurry cutoff wall. However, unlike a bentonite-clay slurry, a biodegradable biopolymer slurry supports the walls of the trench while excavated materials are removed and drainage structures are installed. The biopolymer slurry then naturally biodegrades after the trench is backfilled. In the end, a permeable wall is left intact. In this case an impermeable geotextile will be installed along the downgradient side of the trench so that groundwater will enter the trench from only the upgradient direction.

The interceptor trench will be designed to collect groundwater at a rate roughly equal to the groundwater flow (i.e., roughly 5 to 10 gpm. See calculations contained in Appendix C) across the upgradient face of the trench (31,900 square feet). Flow across the downgradient face of the trench will be restricted by an impermeable geomembrane barrier. Drawdown of the groundwater surface will be minimized so as to mitigate the potential of excessive ground settlement beneath the highway. The collected groundwater will be conveyed to an on-site treatment plant located just east of the proposed highway right-of-way, creek-side, where it appears that adequate space and firm foundation material is available.

Baker, LANTDIV, and MCB, Camp Lejeune will negotiate with NC DOT regarding the specifics for site access to the creek-side of the new highway. The EPA and NC DEHNR will be kept abreast of developments on this subject. In this FS, Baker proposes an access road running along the east side of the highway from the south.

The collected groundwater will be treated sufficiently to allow for its discharge to Brinson Creek at a point downstream of Site 35. It is anticipated that the groundwater treatment system will include filtration for the removal of suspended solids, a settling tank for the removal of metals, sludge collection and disposal, volatilization (air stripping) for the removal of VOCs, and secondary treatment of VOC emissions from the air stripper and of the treated groundwater (i.e., via carbon adsorption). The treatment plant effluent will be sampled once a month to insure that water discharged to Brinson Creek meets all applicable water quality standards.

RAA 3 assumes that the Base Master Plan will be modified to include restrictions on the use of the surficial aquifer in the vicinity of the Fuel Farm. This will reduce the risk to human health and the environment posed by this media by eliminating one exposure pathway.

In addition to aquifer-use restrictions, long-term groundwater monitoring is to be included under this RAA to provide date regarding the impact of natural attenuation and the progress of contaminant migration. Long-term groundwater monitoring includes the semi-annual collection and analysis (TCL VOCs) of groundwater samples from 11 monitoring wells, the development of a semi-annual monitoring report, and the replacement of one monitoring well every five years.

Since contaminants will remain at the site under this alternative, the USEPA is required by the NCP {40 CFR 300.515(e) (iii)] to review the effects of this alternative no less often than every five years.

5-6

#### 5.1.3.2-Assessment

#### Overall Protection of Human Health and the Environment

RAA 3 provides for the overall protection of human health and the environment by intercepting contaminated surficial groundwater prior to its discharge to Brinson Creek and by restricting future use of the surficial aquifer. A reduction of contaminants in the surficial aquifer will result from the collection of groundwater via the interceptor trench and subsequent treatment. Contaminant reduction due to this system will be limited primarily to the zone of capture of the interceptor trench which, based on Baker's experience, will extend 100 feet or less upgradient of the trench.

Aquifer-use restrictions will serve to provide additional protection against direct exposure to contaminated surficial groundwater at the site.

#### Compliance With ARARs

- `}

Under RAA 3 substantial reductions of the levels of organic contaminants in the surficial groundwater can be expected within the capture zone of the interceptor trench. Upgradient of the capture zone some additional reductions can be expected from natural attenuation processes and because contaminants can be expected to continue to flow downgradient toward the interceptor trench. However, no direct means of treatment will be applied in this upgradient area under RAA 3 and it is unlikely that the remediation levels will be achieved upgradient of the capture zone of the interceptor trench.

This RAA proposes that the interceptor trench be installed in the wetlands area between the highway and Brinson Creek. Wetlands are specifically protected by ARARs as is the endangered alligator, one of which has been reported in this area. It is assumed that the intent of federal and state wetlands regulations will be met while conducting RAA 3 activities.

RAA 3 provides for treated groundwater discharge to Brinson Creek and for treated air discharge to the atmosphere. It is assumed that the intent of air and water discharge regulation will be met.

#### Long-Term Effectiveness and Permanence

RAA 3 will provide an effective and permanent means of intercepting and treating contaminated surficial groundwater and mitigating the risk of future discharges of contaminants to Brinson Creek for as long as the system operates. Additional reductions in contaminant levels may occur over time as a result of natural attenuation processes; however, the extent and degree of the attenuation and time required to achieve any reductions is impossible to predict. Aquifer-use restrictions will provide a permanent means of protection against direct exposure to the surficial aquifer.

The interceptor trench represents technology that requires special skills and experience to install and, consequently, is offered by a limited number of vendors. Once installed, the trench requires standard proven and reliable technology to operate and maintain. Routine maintenance and equipment replacement will be required, but, should be able to be completed without compromising the environmental protection component of the system.

Since contaminants will remain at the site under this alternative, USEPA is required by the NCP [40 CFR 300.515(e) (ii)] to review the effects of this alternative no less often than every five years.

#### Reduction of Toxicity, Mobility, or Volume

RAA 3 utilizes groundwater collection and on-site, aboveground treatment as the means for reducing contaminant levels in the surficial aquifer at Site 35. Within the capture zone of the interceptor trench a reduction of toxicity, mobility, and volume of organic contaminants in the surficial aquifer can be expected. Upgradient of this capture zone RAA 3 does not provide for any form of active treatment other than natural attenuation processes. Natural attenuation may reduce the toxicity, mobility, or volume of organic contaminants in the surficial groundwater at Site 35; however, the extent and degree of the attenuation and time required to achieve it is impossible to predict.

The on-site treatment process under RAA 3 will produce residual wastes that will require proper handling and disposal. These wastes include solids and metals sludge, and spent activated carbon. Excavated soil will be a residual waste of the trench installation process that will need proper disposal.

RAA 3 satisfies the statutory preference for treatment alternatives.

#### Short-Term Effectiveness

Ì

The installation procedure for the interceptor trench is designed to minimize worker exposure to contaminated groundwater and toxic vapors. During operation the collection and treatment of contaminated surficial groundwater is conducted essentially within a closed loop. The system allows minimal potential for community exposure to contaminants provided air emissions and treated groundwater ARARs are adhered to.

The installation of the trench will result in some disturbance of the wetlands area within which it is proposed to be placed. It has been reported that an alligator, identified as an endangered species, inhabits Brinson Creek. It is assumed that the Contractor will be able to satisfy the intentions of all regulations regarding protection of the wetlands and any endangered species.

RAA 3 will provide short-term protection against the discharge of groundwater contaminants to Brinson Creek. Aquifer-use restrictions will be in effect within a relatively short period; however, no short-term effect will be apparent because the surficial aquifer is not presently utilized at the Activity.

## Implementability

RAA 3 will present technical and perhaps regulatory challenges to its implementation. These challenges will stem from the proposed location of the interceptor trench within a wetlands area situated between Brinson Creek and the proposed highway. In addition, biopolymer slurry trench installation is not widely performed and the number of contractors experienced with this method is limited.

Access to the area between the highway and Brinson Creek for construction equipment is limited and will possibly require the cooperation of NCDOT to incorporate access features into the proposed highway design. The proposed trench will be located in a soft soil area which may be difficult for heavy construction equipment to maneuver on. The construction of the trench will temporarily disturb the wetlands area although if proper steps are taken during installation, extraordinary restoration efforts may be avoided. It is assumed that the intent of wetlands regulations and all applicable air and water discharge regulations will be met.

The proposed groundwater monitoring program coupled with regular system operation and maintenance checks should be sufficient to provide notice of a system failure so that adjustments can be made before a significant contaminant release would occur.

<u>Cost</u>

7

à.

)

The project cost of RAA 3 is presented in Table 5-2.

#### USEPA /State Acceptance

The USEPA and NC DEHNR have expressed their concurrence with the inclusion of this RAA. RAA 3 is a treatment technology and therefore acceptable to these agencies. Because RAA 3 is an above-ground technology, it is not as preferable as in situ alternatives, therefore, RAA 3 has been identified as the proposed alternative should RAA 5 be determined to be technically infeasible based on the results of a field test.

## Community Acceptance

Based on the lack of community participation at a public meeting held on May 10, 1995, no adverse community reaction to the proposed remedial action is anticipated.

#### 5.1.4 RAA 4: In Situ Air Sparging and Off-Gas Carbon Adsorption

#### 5.1.4.1 Description

In situ air sparging (IAS) is a technique in which air is injected into water saturated zones for the purpose of removing organic contaminants primarily via volatilization and secondarily via aerobic biodegradation. IAS systems introduce contaminant-free air into an impacted aquifer near the base of the zone of contamination, forcing contaminants to transfer from the groundwater into sparged air bubbles. The air bubbles are then transported into soil pore spaces in the unsaturated zone where they are typically collected via soil vapor extraction (SVE) and conveyed to an on-site, off-gas treatment system.

An IAS system typically is comprised of the following components: 1) air injection wells; 2) an air compressor; 3) air extraction wells; 4) a vacuum pump; 5) associated piping and valving for air conveyance; and 6) an off-gas treatment system (e.g., activated carbon, combustion, or oxidation). Under RAA 4 a line of air sparging wells will be installed between the proposed highway and Brinson Creek in order to treat and contain the contaminated plume near its downgradient extreme. Based on empirical data from similar sites, the radius of influence of an air sparging well range from five to almost 200 feet, but is typically on the order of 25 feet (EPA, 1992). For the purpose of the FS, Baker estimates that 43 sparging wells, 30 feet deep, and 43 SVE wells, 4 feet deep, would be required. The proposed off-gas treatment system (activated carbon) will be located just east of the proposed highway where it appears that there is adequate space and firm foundation material

available. The air emissions from the off-gas treatment system will be sampled monthly to insure that all applicable air emissions standards are being met.

Air sparging systems are most effective in sandy soils, but, can be adversely impacted by high levels of inorganic compounds in the groundwater which oxidized and precipitate when contacted by the sparged air. These organics can form a heavy scale on well screens and clog the well space of the sand pack surrounding the well screen resulting in a reduction in permeability. A field pilot test is recommended to determine the loss of efficiency over time as a result of inorganics precipitation and oxidation, the radius of influence of the wells under various heads of injection air pressure, and the rate of off-gas organic contaminant removal via carbon adsorption and carbon breakthrough.

Baker, LANTDIV, and MCB, Camp Lejeune will negotiate with NC DOT regarding the specifics for site access to the creek side of the new highway. The EPA and NC DEHNR will be kept abreast of developments on this subject. In this FS, Baker proposes an access road running along the east side of the highway from the south.

RAA 4 assumes that the Base Master Plan will be modified to include restrictions on the use of the surficial aquifer in the vicinity of the Fuel Farm. This will reduce the risk to human health and the environment posed by this media by eliminating one exposure pathway.

In addition to aquifer-use restrictions, long-term groundwater monitoring is to be included under this RAA to provide data regarding the impact of natural attenuation and the progress of contaminant migration. Long-term groundwater monitoring includes the semi-annual collection and analysis (TCL VOCs) of groundwater samples from 11 monitoring wells, the development of a semi-annual monitoring report, and the replacement of one monitoring well every five years.

Since contaminants will remain at the site under this alternative, the USEPA is required by the NCP [40 CFR 300.515 (e) (iii)] to review the effects of this alternative no less often than every five years.

#### 5.1.4.2 Assessment

#### Overall Protection of Human Health and the Environment

This RAA will provide for the overall protect of human health and the environment by the application of in situ treatment technology to reduce the level of organic contaminants in the surficial aquifer and to provide, in essence, a barrier to minimize the potential for the discharge of organic contaminated groundwater to Brinson Creek. Contaminant reduction due to this system will be limited primarily to the radius of influence of the air sparging wells (estimated at approximately 25 feet).

Aquifer-use restrictions will serve to provide additional protection against direct exposure to contaminated surficial groundwater at the site.

## Compliance With ARARs

Under RAA 4 substantial reductions of the levels of organic contaminants in the surficial groundwater can be expected within the radius of influence of the IAS system. Further upgradient some additional reductions can be expected from natural attenuation processes and because contaminants can be expected to continue to flow downgradient toward the air sparging wells.

However, no direct means of treatment will be applied in this upgradient area under RAA 4 and it is unlikely that the remediation levels will be achieved upgradient of the radius of influence of the IAS system.

This RAA proposes that the air sparging wells and much of the associated piping and appurtenances will be installed in the wetlands area between the highway and Brinson Creek. Wetlands are specifically protected by ARARs as is the endangered alligator, one of which has been reported in this area. It is assumed that the intent of federal and state wetlands regulation will be met while conducting RAA 4 activities.

It is also assumed that the intent of air emissions regulations be met during the implementation and operation of RAA 4.

#### Long-Term Effectiveness and Permanence

This RAA involves in situ treatment technology designed to permanently remove organic contaminants from the surficial aquifer. As an interim action, however, it will be confined to a limited area in the vicinity of the Fuel Farm at Site 35. Based on data obtained under the RI, contaminated surficial groundwater located upgradient of the proposed in situ air sparging system will continue to be a source of contamination to Brinson Creek, however, the organic contaminants should be effectively cut off from discharging to this surface water body by the IAS system.

Air sparging has a significant track record of commercial use and should be able to be controlled adequately and reliably for an indefinite period. High dissolved metals could be precipitated out of solution by the system and cause clogging. This would force frequent maintenance and equipment replacement.

Since contaminants will remain at the site under this alternative USEPA is required by the NCP [40 CFR 300.515 (e) (ii)] to review the effects of this alternative no less often than every five years.

## Reduction of Toxicity, Mobility, or Volume

1

This RAA involves the application of in-situ air sparging technology which, by design, is intended to reduce the volume of volatile organic contaminants in the surficial aquifer where applied by a combination of volatilization and biodegradation. The technology, in essence, works like an in-situ air stripper by injecting air below the groundwater table and, in turn extracting air, presumably laden with volatile organics, from the vadose zone. The contaminants are collected and, in this case, transferred to activated carbon for ultimate disposal. Reductions of contaminants will be limited primarily to the zone defined by the radius of influence of the air sparging wells. Natural attenuation may reduce contaminant levels further over time.

System installation will result in drill cuttings (soil) for which proper disposal will be required. The on-site air treatment will produce residual wastes including spent activated carbon, and a small volume of contaminated water (i.e., condensed vapor collected in a knock-out tank).

#### RAA 4 satisfies the statutory preference for treatment alternatives.

#### Short-Term Effectiveness

The primary activity in constructing an IAS system is installing the air injection/extraction wells. This involves standard environmental drilling techniques which, when executed by experienced professionals, should involve minimal risk of exposure to workers. The potential exists for the release of toxic vapors to the atmosphere if the vapor extraction portion of the IAS system is not as efficient as the air sparging portion. This concern increases when IAS systems are installed in areas where the groundwater surface is within a few feet of the ground surface as is the case at Site 35. The release of toxic vapors to the atmosphere during operation of the IAS system could increase the risk of exposure to the surrounding community.

Relative to environmental impacts, the installation of the IAS system should result in minimal disturbance to the wetlands. Furthermore, the line of air sparging wells should serve as a barrier to organic contaminated groundwater discharge to Brinson Creek.

#### Implementability

IAS technology is widely used and commercially available. Nevertheless, a field pilot-scale study would be appropriate to ensure its effectiveness at Site 35 and to determine critical design parameters. In any in situ system where oxygen is injected, a concern is the effect on the system operation of metals precipitation and oxidation. At high enough levels the metals can clog the well screens, prompting frequent maintenance or even well replacement.

The implementation of this technology will require the installation of multiple air sparging wells in the area between the highway and Brinson Creek. Access to this area for construction equipment is limited and will require the cooperation of NCDOT to incorporate special access features into the proposed highway design.

The construction activities in the wetlands area may result in some disturbance and require restoration efforts. Meeting the intent of air emissions regulations will be necessary.

The proposed groundwater monitoring program coupled with regular system operation and maintenance checks including ambient air monitoring should be sufficient to provide notice of a system failure so that adjustments can be made before a significant contaminant release would occur.

<u>Cost</u>

The project cost of RAA 4 is presented in Table 5-3.

#### USEPA/State Acceptance

Based on comments received to date, USEPA and NC DEHNR appear to concur that RAA 4, In Situ Air Sparging and Off-Gas Carbon Adsorption, will present unacceptable risks due to uncontrolled vapor emissions. This in situ treatment technology is therefore not preferred.

#### Community Acceptance

There seems to be little public interest in this decision process. Although it can be assumed that the distinct odor which is occasionally prevalent around Brinson Creek due to contaminants would not be desirable to the local community. Under RAA 4 this odor may even be exaggerated and therefore likely render this alternative unacceptable to the community.

#### 5.1.5 RAA 5: In Well Aeration and Off-Gas Carbon Adsorption

#### 5.1.5.1 Description

٦

١

In well aeration is a new technology that utilizes circulating air flow within a groundwater well that, in effect, turns the well into an air stripper. In well aeration differs from air sparging in that volatilization occurs outside the well via air sparging and within the well via in well aeration. Similar to air sparging, this technique removes organic contaminants from groundwater primarily via volatilization and secondarily via aerobic biodegradation. Under RAA 5 a line of in well aeration wells will be installed between the proposed highway and Brinson Creek in order to treat the contaminated plume near its downgradient extreme. The radius of influence, or capture zone, of an in well aeration well is reportedly much greater than that of a typical air sparging well system. Using modeling equations and graphical solutions, the developers of this technology have calculated a radius of influence of over 100 feet at Site 35.

For the purpose of the FS, Baker estimates that six in well aeration wells would be required to create a containment/remediation line spanning approximately 1,000 feet with wells spaced 180 feet apart. Volatilized organics collected by this technology, unlike air sparging, will be treated at each in well aeration well by independent carbon adsorption systems which will rest on skids adjacent to the wells. The air emissions from the off-gas treatment system will be sampled monthly to insure that all applicable air emissions standards are being met. Each well and aboveground off-gas treatment system will be housed in a small prefabricated building.

In well aeration systems, like IAS systems, are most effective in sandy soils, but, can be adversely impacted by high levels of inorganic compounds in the groundwater which oxidize and precipitate when contacted by air. These inorganics can form a heavy scale on well screens and clog the well space of the sand pack surrounding the well screen resulting in a reduction in permeability. A field pilot test is recommended to determine the loss of efficiency over time as a result of inorganics precipitation and oxidation, the radius of influence of the wells under various heads of injection air pressure, and the rate of off-gas organic contaminant removal via carbon adsorption and carbon breakthrough.

Baker, LANTDIV, and MCB, Camp Lejeune will negotiate with NC DOT regarding the specifics for site access to the creek side of the new highway. The EPA and NC DEHNR will be kept abreast of developments on this subject. In this FS, Baker proposes an access road running along the east side of the highway from the south.

RAA 5 assumes that the Base Master Plan will be modified to include restrictions on the use of the surficial aquifer in the vicinity of the Fuel Farm. This will reduce the risk to human health and the environment posed by this media by eliminating one exposure pathway.

In addition to aquifer-use restrictions, long-term groundwater monitoring is to be included under this RAA to provide data regarding the impact of natural attenuation and the progress of contaminant migration. Long-term groundwater monitoring includes the semi-annual collection and analysis (TCL VOCs) of groundwater samples from 11 monitoring wells, the development of a semi-annual monitoring report, and the replacement of one monitoring well every five years.

Since contaminants will remain at the site under this alternative, the USEPA is required by the NCP [40 CFR 300.515 (e) (iii)] to review the effects of this alternative no less often than every five years.

#### 5.1.5.2 Assessment

#### Overall Protection of Human Health and the Environment

This RAA will provide for the overall protection of human health and the environment by the application of in situ treatment technology to reduce the level of organic contaminants in the surficial aquifer and to provide, in essence, a barrier to minimize the potential for the discharge of organic contaminated groundwater to Brinson Creek. Contaminant reduction due to this system will be limited primarily to the radius of influence of the in well aeration wells (estimated at slightly greater than 100 feet).

Aquifer-use restrictions will serve to provide additional protection against direct exposure to contaminated surficial groundwater at the site.

#### Compliance With ARARs

Under RAA 5 substantial reductions to the levels of organic contaminants in the surficial groundwater can be expected within the radius of influence of the in well aeration system. Further upgradient some additional reductions can be expected from natural attenuation processes and because contaminants can be expected to continue to flow downgradient toward the in well aeration system. However, no direct means of treatment will be applied in this upgradient area under RAA 5 and it is unlikely that the remediation levels will be achieved upgradient of the radius of influence of the in well aeration system.

This RAA proposes that the in well aeration wells and much of the associated piping and appurtenances will be installed in the wetlands area between the highway and Brinson Creek. Wetlands are specifically protected by ARARs as is the endangered alligator, one of which has been reported in this area. It is assumed that the intent of federal and state wetlands regulations will be met while conducting RAA 5 activities.

It is also assumed that the intent of all air emissions regulation be met during the implementation and operation of RAA 5.

#### Long-Term Effectiveness and Permanence

This RAA involves in situ treatment technology designed to permanently remove organic contaminants from the surficial aquifer. As an interim action, however, it will be confined to a limited area in the vicinity of the Fuel Farm at Site 35. Based on data obtained under the RI, contaminated surficial groundwater located upgradient of the proposed in well aeration system will continue to be a source of contamination to Brinson Creek, however, the organic contaminants

should be effectively cut off from discharging to this surface water body by the in well aeration system.

In well acration is a relatively new technology without a substantial commercial track record in the United States. Nevertheless, it is similar to air sparging and should be able to be fitted with adequate controls to ensure reliability. High dissolved metals could be precipitated out of solution by the system and cause clogging. This could force frequent maintenance and equipment replacement.

Since contaminants will remain at the site under this alternative, USEPA is required by the NCP [40 CFR 300.515 (e) (ii)] to review the effects of this alternative no less often than every five years.

#### Reduction of Toxicity, Mobility, or Volume

2

١

)

This RAA involves the application of in-situ volatilization and biodegradation technology which, by design, is intended to reduce the volume of organic contaminants in the surficial aquifer where applied. The technology, in essence, works like an in well air stripper by injecting air below the groundwater surface and, in turn extracting air, presumably laden with volatile organics, from the vadose zone. The contaminants are collected and, in this case, transferred to activated carbon for ultimate disposal. Reductions of contaminants will be limited primarily to the zone defined by the radius of influence of the air sparging wells. Natural attenuation may reduce contaminant levels further over time.

System installation will result in drill cuttings (soil) for which proper disposal will be required. The on-site air treatment will produce residual wastes including spent activated carbon and a small volume of contaminated water (i.e., condensed vapor collected in a knock-out tank).

RAA 5 satisfies the statutory preference for treatment alternatives.

#### Short-Term Effectiveness

The primary activity in constructing an in well aeration system is installing the wells. This involves standard environmental drilling techniques which, when executed by experience professionals, should involved minimal risk of exposure to workers. During operation, the collection and treatment of toxic vapors is conducted within essentially a closed loop. The system allows minimal potential for community exposure to contaminants provided air emission ARARs are adhered to.

Relative to environmental impacts, the installation of the in well aeration system should result in minimal disturbance to the wetlands. The wells should serve as a barrier to organic contaminated groundwater discharge to Brinson Creek.

#### Implementability

In well aeration is a relatively new technology. Baker has identified two companies which have developed remediation systems utilizing in well aeration. These companies are IEG Technologies Corporation and EG&G Environmental. The IEG systems have been commercially applied extensively in Germany, and are now beginning to find in-roads to the United States. EG&G in well aeration systems are currently operating at several sites overseas and here in the United States as well. Because this technology is still quite new to industry in the United States, a field pilot-scale study should be performed to determine its effectiveness and identify critical design parameters.

Such a study managed by Baker at Site 69 at Camp Lejeune is about to begin. The results of that pilot study should be sufficient and applicable at Site 35.

In any in situ system where oxygen is injected, a concern is the effect on the system operation of metals precipitation and oxidation. At high enough levels the metals can clog the well screens, prompting frequent maintenance or even well replacement.

The implementation of this technology will require the installation of multiple, custom-designed groundwater wells in the area between the highway and Brinson Creek. Access to this area for construction equipment is limited and might require the cooperation of NC DOT to incorporate special access features into the proposed highway design.

The construction activities in the wetlands area may result in some disturbance and require restoration efforts. Meeting the intentions of air emissions regulations will also be necessary.

The proposed groundwater monitoring program coupled with regular system operation and maintenance checks should be sufficient to provide notice of a system failure so that adjustments can be made before a significant contaminant release would occur.

<u>Cost</u>

The projected cost of RAA5 is presented in Table 5-4.

#### USEPA/State Acceptance

The USEPA and NE DEHNR have indicated their concurrence with the RAAs developed under this FS, in general, and with RAA 5 as the proposed alternative, in particular. The ROD also identified RAA 3 as the proposed alternative should RAA 5 be determined to be technically infeasible based on the results of a field pilot test.

#### Community Acceptance

Based on the lack of community participation at a public meeting held on May 10, 1995, no adverse community reaction to the proposed remedial action is anticipated.

#### 5.2 <u>Comparative Analysis</u>

This interim FS has identified and evaluated a range of RAAs potentially applicable to the groundwater concerns at Site 35 (OU No. 10). Table 5-5 presents a summary of this evaluation. A comparative analysis in which the alternatives are evaluated in relation to one another with respect to the nine evaluation is presented below. The purpose of this analysis is to identify the relative advantages and disadvantages of each RAA.

## 5.2.1 Overall Protection of Human Health and the Environment

RAA 1 (No Action) and RAA 2 (No Action With Institutional Controls) are similar in that neither alternative involves active treatment. RAA 2 provides for some overall protection to human health through the incorporation of aquifer-use restrictions which are not included under RAA 1.

RAA 3 (Groundwater Collection and On-Site Treatment), RAA 4 (In Situ Air Sparging And Off-Gas Carbon Adsorption), and RAA 5 (In Well Aeration And Off-Gas Carbon Adsorption) have a common element in that each is intended to reduce groundwater contamination at the downgradient extreme of the contaminated plume and to serve as a barrier to future contaminated groundwater discharge to Brinson Creek. RAA 3 would likely be the most effective barrier in that it is designed to span the entire length and depth of the contaminated portion of the surficial aquifer and will be equipped with an impermeable geomembrane along its downgradient face. RAA 3 is the only treatment alternative that will impact both organic and inorganic contaminants which could be important if it is determined in the future that inorganic contaminants in groundwater are still a concern.

#### 5.2.2 Compliance With ARARs

1

· }

RAA 1 (No action) and RAA 2 (No Action With Institutional Controls) are no action alternatives that will not comply with ARARs. RAA 3 (Groundwater Collection and On-Site Treatment), RAA 4 (In Situ Air Sparging And Off-Gas Carbon Adsorption), and RAA 5 (In Well Aeration And Off-Gas Carbon Adsorption) are primarily source control measures that will reduce contaminant levels over a limited area defined as the particular zone of influence of each system.

Wetlands disturbance will be an issue with RAA 3, 4, and 5, but, most significantly with RAA 3 which includes the excavation of an approximately two-foot wide, by 30-foot deep, by 1,080-foot interceptor trench. The disturbance associated with RAA 4 and 5 is limited primarily to drilling and well installations, although of the two, RAA 4 will have the greater impact due to the large number of wells to be installed.

Treated air and groundwater discharge are provisions of RAA 3, whereas, only air emissions are a part of RAA 4 and 5. These discharges will need to meet the intentions of applicable regulations.

#### 5.2.3 Long-Term Effectiveness and Permanence

In the case of all five RAAs, contamination will remain at the site and require a USEPA review on five year basis. RAA 1 (No Action) and RAA 2 (No Action With Institutional Controls) provide for no active means of contaminant reduction although, under RAA 2, aquifer-use restrictions will provide a permanent means for protection against direct human exposure to the contaminated surficial groundwater.

The effectiveness of RAA 3 (Groundwater Collection and On-Site Treatment), RAA 4 (In Situ Air Sparging And Off-Gas Carbon Adsorption), and RAA 5 (In Well Aeration and Off-Gas Carbon Adsorption) can be assumed to be roughly equivalent without the benefit of the results of field pilot-scale testing. RAA 3 may be the most difficult of the three to install, however, once installed it will likely be the most reliable and easiest to control. RAA 4 and 5 may encounter clogging problems if dissolved metals precipitate out of solution when placed in contact with forced air. At a minimum the metals problem will prompt increased maintenance which could lead to complete well

replacement. RAA 4 has the additional problem of releasing toxic vapors to the atmosphere during operation because it is difficult to apply sufficient vacuum to the vadose zone where the groundwater surface is within a few feet of the ground surface.

## 5.2.4 Reduction of Toxicity, Mobility, or Volume Through Treatment

No reduction of contaminants will occur under RAA 1 (No Action) and RAA 2 (No Action With Institutional Controls) as the result of active treatment because active treatment is not provided for under these RAAs.

RAA 3 (Groundwater Collection and On-Site Treatment) provides for on-site treatment of the collected contaminated groundwater (organics and inorganics) using standard wastewater treatment technology. Conversely, RAA 4 (In Situ Air Sparging And Off-Gas Carbon Adsorption) and RAA 5 (In Well Aeration And Off-Gas Carbon Adsorption) provide for treatment of the organic phase of contaminated groundwater in-situ. Both RAA 4 and 5 utilize primarily volatilization technology and biodegradation technology secondarily. The principle difference between the two is that under RAA 4 both volatilization and biodegradation occur outside the well and within the soil column. Under RAA 5, volatilization occurs within the well while biodegradation occurs outside the well within the soil column. Under RAA 4 it may be difficult to efficiently collect all of the volatilized organic contaminants via conventional soil vapor extraction because of the proximity of the groundwater surface to the ground surface at this site. Without an efficient means of collecting the volatilized organics under RAA 4, toxic vapors may be released to the atmosphere. Under RAA 5 this is not a concern because the volatilization is conducted within the well and conveyed to an adjacent activated carbon unit via piping which means the system is essentially a closed loop.

RAA 3 will produce the highest volume of residual waste during operation because it is the only alternative involving groundwater treatment. However, the volume of air treatment under RAA 3 will be less than that under RAAs 4 and 5 because the latter are specifically designed as air volatilization systems. Under RAAs 4 and 5 a small volume of contaminated water will be generated because extracted air contains water which condenses and collects in a knock-out tank at the treatment facility.

#### 5.2.5 Short-Term Effectiveness

Worker protection against exposure will not be a significant issue for any of the RAAs. Each system provided for under RAA 3 (Groundwater Collection and On-Site Treatment), RAA 4 (In Situ Air Sparging and Off-Gas Carbon Adsorption), and RAA 5 (In Well Aeration and Off-Gas Carbon Adsorption) will require approximately 30 to 60 days to install with the total time in the field for construction being a little longer. It has also been assumed that system start-up and testing operations will require an additional 90 days.

Under RAA 1 (No Action) and RAA 2 (No Action With Institutional Controls) there will be no increase in the risks to the community resulting from implementation of the RAA. RAAs 3 and 5 will likely present minimal risk of community exposure during implementation and operation because they are, in essence, closed loop systems. RAA 4 has the potential for releases of toxic vapors to the atmosphere because of close proximity of the groundwater surface to the ground surface will make efficient soil vapor extraction difficult.

Some disturbance of the wetlands is expected under RAAs 3, 4, and 5. The greatest disturbance will be associated with RAA 3.

#### 5.2.6 Implementability

Aside from RAAs 1 and 2, which are no action or essentially no action alternatives, RAA 3 (Groundwater Collection And On-Site Treatment) will present greater technical challenges during construction than RAA 4 (In Situ Air Sparging and Off-Gas Carbon Adsorption), and RAA 5 (In Well Aeration and Off-Gas Carbon Adsorption). This is because RAA 3 involves the construction of a two-foot wide by 30-foot deep by 1,080 foot long interceptor trench while RAAs 4 and 5 involve primarily well installation.

The interceptor trench under RAA 3 represents specialized technology that is available from a limited number of vendors, whereas, the air sparging technology of RAA 4 is relatively commonplace, and in well aeration (RAA 5) is a relatively new technology offered by two vendors, IEG Technologies Corporation and EG&G Environmental.

The proposed groundwater monitoring plan coupled with routine system maintenance and monitoring should be sufficient to provide sufficient notice of a system failure under either RAA 3, 4 or 5. The purpose of the monitoring is to provide for system adjustments with sufficient time so that a significant contaminant release to the environment will not occur.

Because each system under RAA 3, 4, and 5 will require construction within a wetlands area and because air and water discharges are incorporated into the designs, federal and state agency interaction will be required.

#### 5.2.7 Cost

)

1

The estimated total present worth costs of the alternatives, excluding RAA 1: No Action, range from \$299,800 for RAA 2: No Action with Institutional Controls to \$3,000,500 for RAA 3: Groundwater Collection and On-Site Treatment. These costs are based on the assumption of 30 years of active use. The ranking of the alternatives in terms of costs is as follows:

| RAA | 1: | No Action                                          | \$0         |
|-----|----|----------------------------------------------------|-------------|
| RAA | 2: | No Action with Institutional Controls              | \$299,800   |
| RAA | 4: | In Situ Air Sparging and Off-Gas Carbon Adsorption | \$2,459,600 |
| RAA | 5: | In Well Aeration and Off-Gas Carbon Adsorption     | \$2,519,700 |
| RAA | 3: | Groundwater Collection and On-Site Treatment       | \$3,000,500 |

Figure 5-1 graphically displays a comparison of costs for RAAs 2, 3, 4, and 5.

### 5.2.8 - USEPA/State Acceptance

The USEPA and NE DEHNR have indicated their concurrence with the RAAs developed under this FS, in general, and with RAA 5 as the proposed alternative, in particular. The ROD also identified RAA 3 as the proposed alternative should RAA 5 be determined to be technically infeasible based on the results of a field pilot test.

#### 5.2.9 Community Acceptance

Based on the lack of community participation at a public meeting held on May 10, 1995, no adverse community reaction to the proposed remedial action is anticipated.

# SECTION 5.0 TABLES

ĺ

 $\langle \rangle$ 

.....

# ESTIMATED COSTS

## RAA 2: INSTITUTIONAL CONTROLS WITH GROUNDWATER MONITORING SITE 35 - CAMP GEIGER AREA FUEL FARM MCB CAMP LEJEUNE, NORTH CAROLINA O & M AND CAPITAL COST ESTIMATE

## 7 - EXISTING MONITORING WELLS + 2 - NEW MONITORING CLUSTER WELLS

|                                                                          |                     |                 | UNIT          | SUBTOTA         | L 1        | TOTAL   |                                                |                                                                                                                    |
|--------------------------------------------------------------------------|---------------------|-----------------|---------------|-----------------|------------|---------|------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|
| COST COMPONENT                                                           | UNIT                | QUANTITY        | COST          | COST            |            | COST    | SOURCE                                         | BASIS / COMMENTS                                                                                                   |
| O & M COST ESTIMATE (SEM                                                 | I<br>11-ANNUA]<br>1 | I<br>L SAMPLING | I<br>YEARS 1  |                 |            |         | Cluster Well: 1-25' deep well, 1-40' deep well |                                                                                                                    |
| Groundwater Monitoring<br>Labor                                          | Hours               | 110             | \$ 40         | \$ 4,44         | 0          |         | Engineering Estimate                           | Semi-annual sampling of 6 locations (11 wells):<br>2 samplers, 5 hours (avg.) each location,<br>2 events per year. |
| Laboratory Analyses -<br>TCL VOCs                                        | Sample              | 32              | \$ 175        | <b>\$</b> 5,60  | 0          |         | Baker Average 1994 BOAs                        | Semi-annual sampling of 11 wells:<br>GW Samples - 11 from wells, 5 QA/QC<br>= 16 samples                           |
| Misc. Expenses                                                           | Sample<br>Event     | 2               | \$ 2,780      | \$ 5,56         | 0          |         | 1994 JTR, Vendor Quotes                        | Includes travel, lodging, air fare, supplies,<br>truck rental, equipment, cooler shipping                          |
| Report                                                                   | Sample<br>Event     | 2               | \$ 1,500      | \$ 3,00         | 0          |         | Engineering Estimate                           | 1 - report per sampling event                                                                                      |
| Well Maintenance                                                         | Year                | 1               | \$ 500        | \$ 50           | 0 <b>s</b> | 19,100  | Engincering Estimate                           | Includes repainting and annualized cost of replacing 1 - well every 5 - years                                      |
| CAPITAL COST ESTIMATE<br>New Monitoring Wells<br>Revise Base Master Plan | Cluster<br>Well     | 2               | \$ 3,100      | \$ 6,20<br>\$ - | 0          | ·       | Engineering Estimate                           | Cluster Well: 1 - 25' deep 2" well &<br>1 - 40' deep 2" well<br>No cost - by Camp Lejeune EMD                      |
|                                                                          |                     |                 |               |                 | \$         | 6,200   |                                                |                                                                                                                    |
| ANNUAL GROUNDWATER MONIT                                                 | ORING O             | & M COSTS (     | Years 1 - 30) |                 | s          | 19,100  |                                                |                                                                                                                    |
| GROUNDWATER MONITORING C                                                 |                     |                 |               |                 | \$         | 6,200   | ]                                              |                                                                                                                    |
| TOTAL COST (PW) - RAA 2 (5 YE                                            |                     |                 | OPERATIC      | DN)             | \$         | 88,900  |                                                |                                                                                                                    |
| TOTAL COST (PW) - RAA 2 (30 Y                                            |                     |                 |               |                 | \$         | 299,800 |                                                |                                                                                                                    |

# ESTIMATED COSTS

## RAA 3: GROUNDWATER COLLECTION WITH ON-SITE TREATMENT SITE 35 - CAMP GEIGER AREA FUEL FARM MCB CAMP LEJEUNE, NORTH CAROLINA O & M AND CAPITAL COST ESTIMATE

BIOPOLYMER TRENCH 7-EXISTING MONITORING WELLS + 2-NEW MONITORING CLUSTER WELLS

|                                   |                 |             | UNIT          | SUBTOTAL | TOTAL     |                         |                                                                                                                   |
|-----------------------------------|-----------------|-------------|---------------|----------|-----------|-------------------------|-------------------------------------------------------------------------------------------------------------------|
| COST COMPONENT                    | UNIT            | QUANTITY    | COST          | COST     | COST      | SOURCE                  | BASIS / COMMENTS                                                                                                  |
| 0 & M COST ESTIMATE (SEMI-A       | ANNUAL S        | SAMPLING YE | ARS 1-30)     |          |           |                         | Cluster Well: 1-25' deep well, 1-40' deep well                                                                    |
| Groundwater Monitoring            |                 |             |               |          |           |                         |                                                                                                                   |
| Labor                             | Hours           | 110         | <b>s</b> 40   | \$ 4,440 |           | Engineering Estimate    | Semi-annual sampling of 6 locations (11 wells)<br>2 samplers, 5 hours (avg.) each location,<br>2 events per year. |
| Laboratory Analyses -<br>TCL VOCs | Sample          | 32          | \$            | \$ 5,600 |           | Baker Average 1994 BOAs | Semi-annual sampling of 11 wells:<br>GW Samples - 11 from wells, 5 QA/QC<br>= 16 samples                          |
| Misc. Expenses                    | Sample<br>Event | 2           | \$ 2,780      | \$ 5,560 |           | 1994 JTR, Vendor Quotes | Includes travel, lodging, air fare, supplies,<br>truck rental, equipment, cooler shipping                         |
| Report                            | Sample<br>Event | 2           | \$ 1,500      | \$ 3,000 |           | Engineering Estimate    | 1 - report per sampling event                                                                                     |
| Well Maintenance                  | Year            | 1           | <b>\$</b> 500 | \$ 500   | \$ 19,100 | Engineering Estimate    | Includes repainting and annualized cost of replacing 1 - well every 5 - years                                     |
| CAPITAL COST ESTIMATE             |                 |             |               |          |           |                         |                                                                                                                   |
| New Monitoring Wells              | Cluster<br>Well | 2           | \$ 3,100      |          |           | Engineering Estimate    | Cluster Well: 1 - 25' deep 2" well &<br>1 - 40' deep 2" well                                                      |
| Revise Base Master Plan           |                 |             |               | s -      |           |                         | No cost - by Camp Lejeune EMD                                                                                     |
|                                   |                 |             |               |          | \$ 6,200  |                         |                                                                                                                   |

(Continued Next Page)

## ESTIMATED COSTS (CONTINUED)

## RAA 3: GROUNDWATER COLLECTION WITH ON-SITE TREATMENT SITE 35 - CAMP GEIGER AREA FUEL FARM MCB CAMP LEJEUNE, NORTH CAROLINA O & M AND CAPITAL COST ESTIMATE

BIOPOLYMER TRENCH 7-EXISTING MONITORING WELLS + 2-NEW MONITORING CLUSTER WELLS

|                                     |        |          | UNII | r        | SUBTOTAL | TOTAL     |                                              |                                                                                      |
|-------------------------------------|--------|----------|------|----------|----------|-----------|----------------------------------------------|--------------------------------------------------------------------------------------|
| COST COMPONENT                      | UNIT   | QUANTITY | COST | <u>r</u> | COST     | COST      | SOURCE                                       | BASIS / COMMENTS                                                                     |
| ) & M COST ESTIMATE                 |        |          |      |          |          |           |                                              |                                                                                      |
| freatment Plant O & M (Years 1 - 3  | 0)     |          |      |          |          |           |                                              |                                                                                      |
| Electricity                         | Month  | 12       | \$   | 150      | \$ 1,800 |           | Means 010-034-0160 &<br>Engineering Estimate | 24 hr/day, 365 days/year operation                                                   |
| Carbon Regeneration/<br>Replacement | Unit   | 6        | \$   | 875      | \$ 5,250 |           | Engineering Estimate                         | Four 350 #/GAC Unit@\$2.50/# = \$875/unit<br>Based on approx. 8-month carbon "life". |
| Chemicals - Polymer, Caustic        | Month  | 12       | \$   | 100      | \$ 1,200 |           | Engineering Estimate                         |                                                                                      |
| Analytical (Effluent)               | Sample | 24       | s :  | 200      | \$ 4,800 |           | Engineering Estimate                         | 1 sample/month/GAC unit                                                              |
| (Air)                               | Sample | 24       | \$   | 300      | \$ 7,200 |           | Engineering Estimate                         | 1 sample/month/GAC unit                                                              |
| Sludge Disposal                     | Month  | 12       | \$   | 300      | \$ 3,600 |           | Engineering Estimate                         | 2 drums/month at \$150/drum disposal costs.                                          |
| Labor                               |        |          |      |          |          |           |                                              |                                                                                      |
| Operating                           | Week   | 52       |      |          | \$ 6,200 |           | Engineering Estimate                         | 4 hr/week, 52 weeks/year, at \$30/hr.                                                |
| Plant Maintenance<br>& Sampling     | Month  | 12       | S    | 240      | \$ 2,900 |           | Engineering Estimate                         | 8 hr/month, 12 months/year, at \$30/hr.                                              |
| Administration & Reports            | Hour   | 100      | s    | 50       | \$ 5,000 |           | Engineering Estimate                         | 25 hrs/quarter at \$50/hr                                                            |
|                                     |        |          |      |          |          | \$ 38,000 |                                              |                                                                                      |

(Continued Next Page)

b

## ESTIMATED COSTS (CONTINUED)

## RAA 3: GROUNDWATER COLLECTION WITH ON-SITE TREATMENT SITE 35 - CAMP GEIGER AREA FUEL FARM MCB CAMP LEJEUNE, NORTH CAROLINA O & M AND CAPITAL COST ESTIMATE

BIOPOLYMER TRENCH 7-EXISTING MONITORING WELLS + 2-NEW MONITORING CLUSTER WELLS

|                                       |              |              | UNIT      | SUBTOTAL     | TOTAL |                             |                                                                                                                              |
|---------------------------------------|--------------|--------------|-----------|--------------|-------|-----------------------------|------------------------------------------------------------------------------------------------------------------------------|
| COST COMPONENT                        | UNIT         | QUANTITY     | COST      | COST         | COST  | SOURCE                      | BASIS / COMMENTS                                                                                                             |
| CAPITAL COST ESTIMATE (BIO            | ı<br>Polymer | TRENCH)      |           |              |       |                             |                                                                                                                              |
| SITE PREPARATION                      |              |              |           |              |       |                             |                                                                                                                              |
| Equipment Mobilization                | LS           | 1            | 200       | 200          |       | Rental company & Means      | 1 trailer, 1 forklift, 1 utility tractor w/backhoe                                                                           |
| Personnel Mobilization                | LS           | 1            | 860       | 860          |       | 1994 JTR, Eng'r.Est.        | (Does not include biopolymer trench                                                                                          |
| Pre-Construction Submittals           | LS           | 1            | 14,830    | 14,830       |       | Engineering Estimate        | subcontractor mob/demob.)                                                                                                    |
| Office Trailer Setup                  | LS           | 1            | 120       | 120          |       | Engineering Estimate        |                                                                                                                              |
| Laydown Area / Staging Area           | LS           | 1            | 7,950     | 7,950        |       | Engineering Estimate        | 60' x 100' staging/laydown area                                                                                              |
| Decontamination Area                  | LS           | 1            | 1,580     | 1,580        |       | Means & Eng'r. Estimate     | Steel pans                                                                                                                   |
| Site Access                           | LS           | 1            | 69,490    | 69,490       |       | Means & Eng'r. Estimate     | 3,000 ft access road parallel to highway                                                                                     |
| Miscellaneous                         | LS           | 1            | 81,440    | 81,440       |       | Means & Eng'r. Estimate     | Utilities Materials and Hookup,<br>(incl. Treatment Bldg. and Wells)<br>Erosion Control, Safety Fencing,<br>Sediment Fencing |
| GROUNDWATER COLLECTION /              | ON-SITE T    | REATMENT / I | DISCHARGE | SOIL DISPOSA | L.    |                             | l č                                                                                                                          |
| <b>Biopolymer Trench Construction</b> | LS           | 1            | 1,148,650 | 1,148,650    |       | Means, Vendor & Eng'r. Est. | Includes sub mob/demob, soil disposal.                                                                                       |
| Groundwater Collection                | LS           | 1            | 23,380    | 23,380       |       | Means, Vendor & Eng'r. Est. |                                                                                                                              |
| Treatment Plant Construction          | LS           | 1            | 193,170   | 193,170      |       | Means, Vendor & Eng'r. Est. |                                                                                                                              |
| SITE RESTORATION                      |              |              |           |              |       |                             |                                                                                                                              |
| General Site Cleanup                  | LS           | 1            | 1,500     | 1,500        |       | Engineering Estimate        |                                                                                                                              |
| Wetlands Revegetation                 | LS           | 1            | 14,810    | 14,810       |       | Engineering Estimate        |                                                                                                                              |
| Equipment Decon                       | LS           | 1            | 500       | 500          |       | Engineering Estimate        |                                                                                                                              |
| DEMOBILIZATION                        |              |              |           |              |       |                             |                                                                                                                              |
| Equipment & Trailer Demob             | LS           | 1            | 200       | 200          |       | Rental company & Means      | Same as Mobilization                                                                                                         |
| Personnel Demob                       | LS           | 1            | 860       | 860          |       | 1994 JTR, Eng'r.Est.        | Same as Mobilization                                                                                                         |
| Post-Construction Submittals          | LS           | 1            | 7,240     | 7,240        |       | Engineering Estimate        |                                                                                                                              |
| Miscellaneous                         | LS           | 1            | 9,750     | 9,750        |       | Engineering Estimate        | Remove Utilities (not incl. Treatment Bldg.),                                                                                |
|                                       |              |              |           |              |       | -                           | Erosion Control, Safety Fencing                                                                                              |

(Continued Next Page)

С

## ESTIMATED COSTS (CONTINUED)

## RAA 3: GROUNDWATER COLLECTION WITH ON-SITE TREATMENT SITE 35 - CAMP GEIGER AREA FUEL FARM MCB CAMP LEJEUNE, NORTH CAROLINA O & M AND CAPITAL COST ESTIMATE

## BIOPOLYMER TRENCH 7 - EXISTING MONITORING WELLS + 2 - NEW MONITORING CLUSTER WELLS

|                                   |                 |                      | UNIT           | SUBTOTAL | TOTAL            |                                                        | ŧ                                                                              |
|-----------------------------------|-----------------|----------------------|----------------|----------|------------------|--------------------------------------------------------|--------------------------------------------------------------------------------|
| COST COMPONENT                    | UNIT            | QUANTITY             | COST           | COST     | COST             | SOURCE                                                 | BASIS / COMMENTS                                                               |
| CAPITAL COST ESTIMATE (BIO        | <br>Polymef<br> | <br>R TRENCH Con<br> | tinued)        |          |                  |                                                        |                                                                                |
| DISTRIBUTIVE COSTS<br>Supervision | LS              | 1                    | 56,880         | 56,880   |                  | Engineering Estimate                                   | Site Supervisor, Foreman (3 months)<br>Mechanical Engineer (2 weeks)           |
| Per Diem                          | LS              | 1                    | 20,720         | 20,720   |                  | Engineering Estimate                                   | at \$66/day: Site Supervisor, Foreman,<br>Mechanical Engineer, Plant Operators |
| Home Office/Eng'r/H & S/QA/QC     | LS              | 1                    | 8,530          | 8,530    |                  | Engineering Estimate                                   | 15 % of Supervision                                                            |
| Trailer, Portable Toilet Rental   | LS              | I                    | 540            | 540      |                  | MEANS, 1994: 015-904-1350<br>MEANS, 1994: 016-420-7200 | Trailer 3 months at \$102/month<br>Portable toilet 3 months at \$78/month      |
| Vehicles                          | LS              | 1                    | 3,330          | 3,330    |                  | MEANS, 1994: 016-420-7200                              | Pickup Trucks - 2 @ \$555/month each<br>(3 months)                             |
| SUBTOTAL CAPITAL COST             | I               |                      |                |          | \$ 1,666,500     |                                                        |                                                                                |
| Engineering & Design @ 12 %       | <u> </u>        | 0.12                 |                | 200,000  | · · · · · ·      |                                                        |                                                                                |
| Contingencies @ 15 %              |                 | 0.15                 |                | 250,000  |                  |                                                        |                                                                                |
| TOTAL CAPITAL COST                |                 |                      |                |          | \$ 2,116,500     |                                                        |                                                                                |
| ANNUAL GROUNDWATER MONI           | TORING (        | ) & M COSTS          | (Years 1 - 30) | )        | <b>\$</b> 19,100 |                                                        |                                                                                |
| ANNUAL TREATMENT PLANT O          | & M CO          | STS (YEARS 1         | - 30)          |          | \$ 38,000        |                                                        |                                                                                |
| GROUNDWATER MONITORING C          | APITAL C        | COSTS                |                |          | \$ 6,200         |                                                        |                                                                                |
| TREATMENT PLANT CAPITAL CO        | osts            |                      |                |          | \$ 2,116,500     |                                                        |                                                                                |
| TOTAL CAPITAL COSTS               |                 |                      |                |          | \$ 2,122,700     |                                                        |                                                                                |
| TOTAL COST (PW) - RAA 3 (5 YE     | CAR TREA        | TMENT PLAN           | T OPERATIO     | ON)      | \$ 2,580,800     |                                                        |                                                                                |
| TOTAL COST (PW) - RAA 3 (30 Y     | EAR TRE         | ATMENT PLA           | NT OPERAT      | (ON)     | \$ 3,000,500     |                                                        |                                                                                |

1000

## ESTIMATED COSTS

## RAA 4: IN SITU AIR SPARGING AND OFF-GAS CARBON ADSORPTION SITE 35 - CAMP GEIGER AREA FUEL FARM MCB CAMP LEJEUNE, NORTH CAROLINA O & M AND CAPITAL COST ESTIMATE

43 - NEW AIR INJECTION WELLS + 43 - NEW AIR EXTRACTION WELLS 7 - EXISTING MONITORING WELLS + 2 - NEW MONITORING CLUSTER WELLS

|                                   |                 |             | UNIT            | SUBTOTAL        | TOTAL     |                         |                                                                                           |
|-----------------------------------|-----------------|-------------|-----------------|-----------------|-----------|-------------------------|-------------------------------------------------------------------------------------------|
| COST COMPONENT                    | UNIT            | QUANTITY    | COST            | COST            | COST      | SOURCE                  | BASIS / COMMENTS                                                                          |
| O & M COST ESTIMATE (SEMI-        | ANNUAL S        | SAMPLING YE | ARS 1-30)       | 1               |           |                         | Cluster Well: 1-25' deep well, 1-40' deep well                                            |
| Groundwater Monitoring<br>Labor   | Hours           | 110         | <b>\$</b> 40    | <b>\$</b> 4,440 |           | Engineering Estimate    | Semi-annual sampling of 6 locations (11 wells)                                            |
|                                   | Tiours          |             | Ψ 10            | ш ,,,,,,        |           | Digitioning Doning of   | 2 samplers, 5 hours (avg.) each location,<br>2 events per year.                           |
| Laboratory Analyses -<br>TCL VOCs | Sample          | 32          | \$ 175          | \$ 5,600        |           | Baker Average 1994 BOAs | Semi-annual sampling of 11 wells:<br>GW Samples - 11 from wells, 5 QA/QC<br>= 16 samples  |
| Misc. Expenses                    | Sample<br>Event | 2           | \$ 2,780        | \$ 5,560        |           | 1994 JTR, Vendor Quotes | Includes travel, lodging, air fare, supplies,<br>truck rental, equipment, cooler shipping |
| Report                            | Sample<br>Event | 2           | <b>\$</b> 1,500 | \$ 3,000        |           | Engineering Estimate    | 1 - report per sampling event                                                             |
| Well Maintenance                  | Year            | 1           | \$ 500          | <b>\$</b> 500   | \$ 19,100 | Engineering Estimate    | Includes repainting and annualized cost of replacing 1 - well every 5 - years             |
| CAPITAL COST ESTIMATE             |                 |             |                 |                 |           |                         |                                                                                           |
| New Monitoring Wells              | Cluster         | 2           | \$ 3,100        | <b>\$</b> 6,200 |           | Engineering Estimate    | Cluster Well: 1 - 25' deep 2" well &<br>1 - 40' deep 2" well                              |
| Revise Base Master Plan           | Well            |             |                 | s -             |           |                         | No cost - by Camp Lejeune EMD                                                             |
|                                   |                 |             |                 |                 | \$ 6,200  |                         |                                                                                           |

(Continued Next Page)

a

## ESTIMATED COSTS (CONTINUED)

## RAA 4: IN SITU AIR SPARGING AND OFF-GAS CARBON ADSORPTION SITE 35 - CAMP GEIGER AREA FUEL FARM MCB CAMP LEJEUNE, NORTH CAROLINA O & M AND CAPITAL COST ESTIMATE

43 - NEW AIR INJECTION WELLS + 43 - NEW AIR EXTRACTION WELLS 7 - EXISTING MONITORING WELLS + 2 - NEW MONITORING CLUSTER WELLS

.

|                                     |        |          | UN | 1   | SUBTOTAL         | TOTAL     |                                              |                                                                                     |
|-------------------------------------|--------|----------|----|-----|------------------|-----------|----------------------------------------------|-------------------------------------------------------------------------------------|
| COST COMPONENT                      | UNIT   | QUANTITY | co | OST | COST             | COST      | SOURCE                                       | BASIS / COMMENTS                                                                    |
|                                     |        |          |    |     |                  |           |                                              |                                                                                     |
| O & M COST ESTIMATE                 |        |          |    |     |                  |           |                                              |                                                                                     |
| Treatment Plant O & M (Years 1 - 30 | )      |          |    |     |                  |           |                                              |                                                                                     |
| Electricity                         | Month  | 12       | \$ | 250 | \$ 3,000         |           | Means 010-034-0160 &<br>Engineering Estimate | 24 hr/day, 365 days/year operation                                                  |
| Carbon Regeneration/<br>Replacement | Unit   | 3        | s  | 875 | \$ 2,625         |           | Engineering Estimate                         | Two 350 #/GAC Unit@\$2.50/# = \$875/unit<br>Based on approx. 8-month carbon "life". |
| Analytical (Water)                  | Sample | 12       | s  | 200 | \$ 2,400         |           | Engineering Estimate                         | 1 sample/month                                                                      |
| (Air)                               | Sample | 72       | \$ | 300 | <b>\$</b> 21,600 |           | Engineering Estimate                         | 6 samples/month/GAC unit                                                            |
| Labor                               |        |          |    |     |                  |           |                                              |                                                                                     |
| Operating                           | Week   | 52       | S  | 240 | <b>\$</b> 12,500 |           | Engineering Estimate                         | 8 hr/week, 52 weeks/year, at \$30/hr.                                               |
| Plant Maintenance<br>& Sampling     | Month  | 12       | S  | 480 | \$ 5,800         |           | Engineering Estimate                         | 16 hr/month, 12 months/year, at \$30/hr.                                            |
| Disposal of Water                   |        |          |    |     |                  |           |                                              |                                                                                     |
| Hazardous                           | Gal.   | 1500     | \$ | 5   | \$ 7,500         |           | Engineering Estimate                         | Assume \$5/gal.                                                                     |
| Non-Hazardous                       | Gal.   | 1500     | \$ | 5   | \$ 7,500         |           | Engineering Estimate                         | Assume \$0.50/gal.                                                                  |
| Transport Costs                     | Load   | 6        | \$ | 500 | \$ 3,000         |           | Engineering Estimate                         | Assume \$500/trip                                                                   |
| Administration & Reports            | Hour   | 100      | s  | 50  | <b>\$</b> 5,000  |           | Engineering Estimate                         | 25 hrs/quarter at \$50/hr                                                           |
|                                     |        |          |    |     |                  | \$ 71,000 |                                              |                                                                                     |

(Continued Next Page)

ь

## ESTIMATED COSTS (CONTINUED)

## RAA 4: IN SITU AIR SPARGING AND OFF-GAS CARBON ADSORPTION SITE 35 - CAMP GEIGER AREA FUEL FARM MCB CAMP LEJEUNE, NORTH CAROLINA O & M AND CAPITAL COST ESTIMATE

43 - NEW AIR INJECTION WELLS + 43 - NEW AIR EXTRACTION WELLS 7 - EXISTING MONITORING WELLS + 2 - NEW MONITORING CLUSTER WELLS

|                                     |                 |               | UNIT    | SUBTOTAL | TOTAL |                             | T                                                                                                                |
|-------------------------------------|-----------------|---------------|---------|----------|-------|-----------------------------|------------------------------------------------------------------------------------------------------------------|
| COST COMPONENT                      | UNIT            | QUANTITY      | COST    | COST     | COST  | SOURCE                      | BASIS / COMMENTS                                                                                                 |
| CAPITAL COST ESTIMATE (AII          | I<br>R SPARGINO | 1<br>3)<br>1  |         |          |       |                             |                                                                                                                  |
| SITE PREPARATION                    |                 |               |         |          |       |                             |                                                                                                                  |
| Equipment Mobilization              | LS              | 1             | 200     | 200      |       | Rental company & Means      | 1 trailer, 1 forklift, 1 utility tractor w/backhoe                                                               |
| Personnel Mobilization              | LS              | 1             | 860     | 860      |       | 1994 JTR, Eng'r.Est.        | (Does not include biopolymer trench                                                                              |
| Pre-Construction Submittals         | LS              | 1             | 14,830  | 14,830   |       | Engineering Estimate        | subcontractor mob/demob.)                                                                                        |
| Office Trailer Setup                | LS              | 1             | 120     | 120      |       | Engineering Estimate        |                                                                                                                  |
| Laydown Area / Staging Area         | LS              | 1             | 7,950   | 7,950    |       | Engineering Estimate        | 60' x 100' staging/laydown area                                                                                  |
| Decontamination Area                | LS              | 1             | 1,580   | 1,580    |       | Means & Eng'r. Estimate     | Steel pans                                                                                                       |
| Site Access                         | LS              | 1             | 69,490  | 69,490   |       | Means & Eng'r. Estimate     | 3,000 ft access road parallel to highway                                                                         |
| Miscellaneous                       | LS              | 1             | 26,410  | 26,410   |       | Means & Eng'r. Estimate     | Utilities Materials & Hookup<br>(incl. Treatment Bldg.), Erosion<br>Control, Safety Fencing, Sediment<br>Fencing |
| VAPOR COLLECTION / VAPOR -          | WATER SE        | PARATION / DI | SPOSAL  |          |       |                             |                                                                                                                  |
| <b>Treatment Plant Construction</b> | LS              | 1             | 369,900 | 369,900  |       | Means, Vendor & Eng'r. Est. |                                                                                                                  |
| Vapor Collection                    | LS              | 1             | 146,270 | 146,270  |       | Means, Vendor & Eng'r. Est. |                                                                                                                  |
| SITE RESTORATION                    |                 |               |         |          |       |                             |                                                                                                                  |
| General Site Cleanup                | LS              | 1             | 1,500   | 1,500    |       | Engineering Estimate        |                                                                                                                  |
| Wetlands Revegetation               | LS              | 1             | 14,810  | 14,810   |       | Engineering Estimate        |                                                                                                                  |
| Equipment Decon                     | LS              | 1             | 500     | 500      |       | Engineering Estimate        |                                                                                                                  |
| DEMOBILIZATION                      |                 |               |         |          |       |                             |                                                                                                                  |
| Equipment & Trailer Demob           | LS              | 1             | 200     | 200      |       | Rental company & Means      | Same as Mobilization                                                                                             |
| Personnel Demob                     | LS              | 1             | 860     | 860      |       | 1994 JTR, Eng'r.Est.        | Same as Mobilization                                                                                             |
| Post-Construction Submittals        | LS              | 1             | 7,240   | 7,240    |       | Engineering Estimate        |                                                                                                                  |
| Miscellaneous                       | LS              | 1             | 9,750   | 9,750    | -     | Engineering Estimate        | Remove Utilities (not incl. Treatment Bldg.),<br>Erosion Control,Safety Fencing                                  |

(Continued Next Page)

## ESTIMATED COSTS (CONTINUED)

## RAA 4: IN SITU AIR SPARGING AND OFF - GAS CARBON ADSORPTION SITE 35 - CAMP GEIGER AREA FUEL FARM MCB CAMP LEJEUNE, NORTH CAROLINA O & M AND CAPITAL COST ESTIMATE

43 - NEW AIR INJECTION WELLS + 43 - NEW AIR EXTRACTION WELLS 7 - EXISTING MONITORING WELLS + 2 - NEW MONITORING CLUSTER WELLS

| []                              |          |              | UNIT         | SUBTOTAL           | TOTAL               |                                                        | 9                                                                              |
|---------------------------------|----------|--------------|--------------|--------------------|---------------------|--------------------------------------------------------|--------------------------------------------------------------------------------|
| COST COMPONENT                  | UNIT     | QUANTITY     | COST         | COST               | COST                | SOURCE                                                 | BASIS / COMMENTS                                                               |
| CAPITAL COST ESTIMATE (Cont     | inued)   |              |              |                    |                     |                                                        |                                                                                |
| DISTRIBUTIVE COSTS              |          |              |              |                    |                     |                                                        |                                                                                |
| Supervision                     | LS       | 1            | 56,880       | 56,880             |                     | Engineering Estimate                                   | Site Supervisor, Foreman (3 months)<br>Mechanical Engineer (2 weeks)           |
| Per Diem                        | LS       | 1            | 20,720       | 20,720             |                     | Engineering Estimate                                   | at \$66/day: Site Supervisor, Foreman,<br>Mechanical Engineer, Plant Operators |
| Home Office/Eng'r/H & S/QA/QC   | LS       | 1            | 8,530        | 8,530              |                     | Engineering Estimate                                   | 15 % of Supervision                                                            |
| Trailer, Portable Toilet Rental | LS       | 1            | 540          | 540                |                     | Means, 1994: 015-904-1350<br>Means, 1994: 016-420-7200 | Trailer 3 months at \$102/month<br>Portable toilet 3 months at \$78/month      |
| Vehicles                        | LS       | 1            | 3,330        | 3,330              |                     | Means, 1994: 016-420-7200                              | Pickup Trucks - 2 @ \$555/month each<br>(3 months)                             |
| SUBTOTAL CAPITAL COST           |          |              |              |                    | <b>\$</b> 762,500   | _                                                      |                                                                                |
| Engineering & Design @ 12 %     |          | 0.12         |              | 91,500             |                     |                                                        |                                                                                |
| Contingencies @ 15 %            |          | 0.15         |              | 114,400<br>100,000 |                     |                                                        |                                                                                |
| Treatment Study                 |          |              |              | 100,000            |                     | -                                                      |                                                                                |
| TOTAL CAPITAL COST              |          | <u> </u>     | l            | l                  | \$ 1,068,400        | <u>I</u>                                               |                                                                                |
| ANNUAL GROUNDWATER MONI         | TORING ( | O & M COSTS  | (Years 1 - 3 | 0)                 | \$ 19,100           |                                                        |                                                                                |
| ANNUAL TREATMENT PLANT O        | & M CO   | STS (YEARS 1 | - 30)        |                    | <b>\$</b> 71,000    |                                                        |                                                                                |
| GROUNDWATER MONITORING C        | CAPITAL  | COSTS        |              |                    | \$ 6,200            |                                                        |                                                                                |
| TREATMENT PLANT CAPITAL C       | OSTS     |              |              |                    | \$ 1,068,400        |                                                        |                                                                                |
| TOTAL CAPITAL COSTS             |          |              |              |                    | <u>\$ 1,074,600</u> |                                                        |                                                                                |
| TOTAL COST (PW) - RAA 4 (5 YH   | CAR TREA | TMENT PLAN   | T OPERAT     | ION)               | \$ 1,675,600        | _                                                      |                                                                                |
| TOTAL COST (PW) - RAA 4 (30 Y   | EAR TRE  | ATMENT PLA   | NT OPERA     | TION)              | \$ 2,459,600        |                                                        |                                                                                |

## ESTIMATED COSTS

## RAA 5: IN WELL AERATION AND OFF-GAS CARBON ADSORPTION SITE 35 - CAMP GEIGER AREA FUEL FARM MCB CAMP LEJEUNE, NORTH CAROLINA O & M AND CAPITAL COST ESTIMATE

## ?-NEW AERATION WELLS 7-EXISTING MONITORING WELLS + 2-NEW MONITORING CLUSTER WELLS

|                                                 |                 |             | UNIT            | SUBTOTAL         | TOTAL     |                                                |                                                                                                                    |
|-------------------------------------------------|-----------------|-------------|-----------------|------------------|-----------|------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|
| COST COMPONENT                                  | UNIT            | QUANTITY    | COST            | COST             | COST      | SOURCE                                         | BASIS / COMMENTS                                                                                                   |
| 0 & M COST ESTIMATE (SEMI-                      | <br>ANNUAL S    | SAMPLING YE | ARS 1-30        |                  |           | Cluster Well: 1-25' deep well, 1-40' deep well |                                                                                                                    |
| Groundwater Monitoring                          |                 |             |                 |                  |           |                                                |                                                                                                                    |
| Labor                                           | Hours           | 110         | <b>\$</b> 40    | \$ 4,440         |           | Engineering Estimate                           | Semi-annual sampling of 6 locations (11 wells):<br>2 samplers, 5 hours (avg.) each location,<br>2 events per year. |
| Laboratory Analyses -<br>TCL VOCs               | Sample          | 32          | \$ 175          | \$ 5,600         |           | Baker Average 1994 BOAs                        | Semi-annual sampling of 11 wells:<br>GW Samples - 11 from wells, 5 QA/QC<br>= 16 samples                           |
| Misc. Expenses                                  | Sample<br>Event | 2           | <b>\$</b> 2,780 | \$ 5,560         |           | 1994 JTR, Vendor Quotes                        | Includes travel, lodging, air fare, supplies,<br>truck rental, equipment, cooler shipping                          |
| Report                                          | Sample<br>Event | 2           | \$ 1,500        | \$ 3,000         |           | Engineering Estimate                           | 1 - report per sampling event                                                                                      |
| Well Maintenance                                | Ycar            | 1           | \$ 500          | \$ 500           | \$ 19,100 | Engineering Estimate                           | Includes repainting and annualized cost of<br>replacing 1 - well every 5 - years                                   |
| CAPITAL COST ESTIMATE                           |                 |             |                 |                  |           |                                                |                                                                                                                    |
| New Monitoring Wells<br>Revise Base Master Plan | Cluster<br>Well | 2           | \$ 3,100        | \$ 6,200<br>\$ - |           | Engineering Estimate                           | Cluster Well: 1 - 25' deep 2" well &<br>1 - 40' deep 2" well<br>No cost - by Camp Lejeune EMD                      |
|                                                 |                 |             |                 |                  | \$ 6,200  |                                                |                                                                                                                    |

(Continued Next Page)

a

## ESTIMATED COSTS (CONTINUED)

## RAA 5: IN WELL AERATION AND OFF-GAS CARBON ADSORPTION SITE 35 - CAMP GEIGER AREA FUEL FARM MCB CAMP LEJEUNE, NORTH CAROLINA O & M AND CAPITAL COST ESTIMATE

? - NEW AERATION WELLS 7 - EXISTING MONITORING WELLS + 2 - NEW MONITORING CLUSTER WELLS

|                                                             |                |                |          | NIT           | SUBTOTAL        |          | TAL    |                                                                |                                                                                                                                                   |
|-------------------------------------------------------------|----------------|----------------|----------|---------------|-----------------|----------|--------|----------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|
| COST COMPONENT                                              | UNIT           | QUANTITY       | CC       | OST           | COST            | <u> </u> | OST    | SOURCE                                                         | BASIS / COMMENTS                                                                                                                                  |
|                                                             |                |                |          |               |                 |          |        |                                                                |                                                                                                                                                   |
| O & M COST ESTIMATE                                         |                |                |          |               |                 |          |        |                                                                |                                                                                                                                                   |
| Independent Off-Gas Treatment System                        | ns O & M       | (Years 1 - 30) |          |               |                 |          |        |                                                                |                                                                                                                                                   |
| Electricity                                                 | Month          | 12             | \$       | 200           | \$ 2,400        |          |        | Means 010-034-0160 &<br>Engineering Estimate                   | 24 hr/day, 365 days/year operation                                                                                                                |
| Carbon Regeneration/<br>Replacement                         | Unit           | 9              | \$       | 440           | <b>\$</b> 3,960 |          |        | Engineering Estimate                                           | 175#/GAC Unit@\$2.50/# = \$440/unit<br>Based on approximately 8-month carbon "life".                                                              |
| Analytical (Air)                                            | Sample         | 72             | \$       | 300           | \$ 21,600       |          |        | Engineering Estimate                                           | 1 sample/month/independent GAC unit                                                                                                               |
| Labor<br>Sampling<br>Aeration Equipment by<br>Subcontractor | Month<br>Event | 12<br>2        | \$<br>\$ | 480<br>11,500 | \$              |          |        | Engineering Estimate<br>Vendor Quote &<br>Engineering Estimate | <ul> <li>16 hr/month, 12 months/year, at \$30/hr.</li> <li>2 days maintenance by subcontractor -<br/>includes labor &amp; travel costs</li> </ul> |
| Disposal of Water<br>Hazardous<br>Transport Costs           | Gal.<br>Load   | 200<br>1       | \$<br>\$ | 5<br>500      |                 |          |        | Engineering Estimate<br>Engineering Estimate                   | Assume \$5/gal.<br>Assume \$500/trip                                                                                                              |
| Administration & Reports                                    | Hour           | 100            | S        | 50            | \$ 5,000        | s        | 63,200 | Engineering Estimate                                           | 25 hrs/quarter at \$50/hr                                                                                                                         |

(Continued Next Page)

b

## ESTIMATED COSTS (CONTINUED)

## RAA 5: IN WELL AERATION AND OFF-GAS CARBON ADSORPTION SITE 35 - CAMP GEIGER AREA FUEL FARM MCB CAMP LEJEUNE, NORTH CAROLINA O & M AND CAPITAL COST ESTIMATE

?-NEW AERATION WELLS 7-EXISTING MONITORING WELLS + 2-NEW MONITORING CLUSTER WELLS

|                                         |                |                    | UNIT   | SUBTOTAL | TOTAL |                             |                                                                                                   |
|-----------------------------------------|----------------|--------------------|--------|----------|-------|-----------------------------|---------------------------------------------------------------------------------------------------|
| COST COMPONENT                          | UNIT           | QUANTITY           | COST   | COST     | COST  | SOURCE                      | BASIS / COMMENTS                                                                                  |
| CAPITAL COST ESTIMATE (IN               | I<br>WELL AERA | I<br>ATION)        |        |          |       |                             |                                                                                                   |
| SITE PREPARATION                        |                |                    |        |          |       |                             |                                                                                                   |
| Equipment Mobilization                  | LS             | 1                  | 200    | 200      |       | Rental company & Means      | 1 trailer, 1 forklift, 1 utility tractor w/backhoe                                                |
| Personnel Mobilization                  | LS             | 1                  | 860    | 860      |       | 1994 JTR, Eng'r.Est.        | (Does not include biopolymer trench                                                               |
| Pre-Construction Submittals             | LS             | 1                  | 14,830 | 14,830   |       | Engineering Estimate        | subcontractor mob/demob.)                                                                         |
| Office Trailer Setup                    | LS             | 1                  | 120    | 120      |       | Engineering Estimate        |                                                                                                   |
| Laydown Area / Staging Area             | LS             | 1                  | 7,950  | 7,950    |       | Engineering Estimate        | 60' x 100' staging/laydown area                                                                   |
| Decontamination Area                    | LS             | 1                  | 1,580  | 1,580    |       | Means & Eng'r. Estimate     | Steel pans                                                                                        |
| Site Access                             | LS             | 1                  | 69,490 | 69,490   |       | NC DOT Budget Quote         | 3,000 ft access road parallel to highway                                                          |
| Miscellaneous                           | LS             | 1                  | 64,770 | 64,770   |       | Means & Eng'r. Estimate     | Utilities Hookup (incl. Treatment Bldg.),<br>Erosion Control, Safety Fencing,<br>Sediment Fencing |
| APOR COLLECTION / VAPOR -               | WATER SE       | I<br>PARATION / DI | SPOSAL |          |       |                             |                                                                                                   |
| Individual Off-Gas Treatment<br>Systems | UNIT           | 6                  | 12,600 | 75,600   |       | Means, Vendor & Eng'r. Est. | Includes: Knockout Tank, Activated<br>Carbon Unit, 5 HP Blower                                    |
| In Well Aeration Wells                  | UNIT           | 6                  | 91,887 | 551,320  |       | Means, Vendor & Eng'r. Est. | UVB Custom Wells, 30' deep                                                                        |
| SITE RESTORATION                        |                |                    |        |          |       |                             |                                                                                                   |
| General Site Cleanup                    | LS             | 1                  | 1,500  | 1,500    |       | Engineering Estimate        |                                                                                                   |
| Wetlands Revegetation                   | LS             | 1                  | 7,400  | 7,400    |       | Engineering Estimate        |                                                                                                   |
| Equipment Decon                         | LS             | 1                  | 500    | 500      |       | Engineering Estimate        |                                                                                                   |
| DEMOBILIZATION                          |                |                    |        |          |       |                             |                                                                                                   |
| Equipment & Trailer Demob               | LS             | 1                  | 200    | 200      |       | Rental company & Means      | Same as Mobilization                                                                              |
| Personnel Demob                         | LS             | 1                  | 860    | 860      |       | 1994 JTR, Eng'r.Est.        | Same as Mobilization                                                                              |
| Post-Construction Submittals            | LS             | 1                  | 7,240  | 7,240    |       | Engineering Estimate        |                                                                                                   |
| Miscellaneous                           | LS             | 1                  | 9,740  | 9,740    |       | Engineering Estimate        | Remove Utilities (not incl. Treatment Bldg.),                                                     |
|                                         |                |                    |        |          |       |                             | Erosion Control, Safety Fencing                                                                   |

(Continued Next Page)

## ESTIMATED COSTS (CONTINUED)

## RAA 5: IN WELL AERATION AND OFF - GAS CARBON ADSORPTION SITE 35 - CAMP GEIGER AREA FUEL FARM MCB CAMP LEJEUNE, NORTH CAROLINA O & M AND CAPITAL COST ESTIMATE

?-NEW AERATION WELLS 7-EXISTING MONITORING WELLS + 2-NEW MONITORING CLUSTER WELLS

| <b></b>                                                     |          |             | UNIT         | SUBTOTAL | TOTAL        |                           | 9                                      |
|-------------------------------------------------------------|----------|-------------|--------------|----------|--------------|---------------------------|----------------------------------------|
| COST COMPONENT                                              | UNIT     | QUANTITY    | COST         | COST     | COST         | SOURCE                    | <b>BASIS / COMMENTS</b>                |
|                                                             |          |             |              |          |              |                           |                                        |
| CAPITAL COST ESTIMATE (Cont                                 | nued)    |             |              |          |              |                           |                                        |
|                                                             |          |             |              |          |              |                           |                                        |
| DISTRIBUTIVE COSTS                                          |          |             |              |          |              |                           |                                        |
| Supervision                                                 | LS       | 1           | 56,880       | 56,880   |              | Engineering Estimate      | Site Supervisor, Foreman (3 months)    |
|                                                             |          |             |              |          |              |                           | Mechanical Engineer (2 weeks)          |
| Per Diem                                                    | LS       | 1           | 20,720       | 20,720   |              | Engineering Estimate      | at \$66/day: Site Supervisor, Foreman, |
|                                                             |          |             |              |          |              |                           | Mechanical Engineer, Plant Operators   |
|                                                             |          |             |              |          |              |                           |                                        |
| Home Office/Eng'r/H & S/QA/QC                               | LS       | 1           | 8,530        | 8,530    |              | Engineering Estimate      | 15 % of Supervision                    |
| Trailer, Portable Toilet Rental                             | LS       | 1           | 540          | 540      |              | MEANS, 1994: 015-904-1350 | Trailer 3 months at \$102/month        |
| Haner, Fortable Fonet Rental                                | Lo       | 1           | 540          | 540      |              | MEANS, 1994: 016-420-7200 | Portable toilet 3 months at \$78/month |
|                                                             |          |             |              |          |              |                           |                                        |
| Vehicles                                                    | LS       | 1           | 3,330        | 3,330    |              | MEANS, 1994: 016-420-7200 | Pickup Trucks - 2 @ \$555/month each   |
|                                                             |          |             |              |          |              |                           | (3 months)                             |
|                                                             | l        |             |              |          | S 904.200    |                           | L                                      |
| SUBTOTAL CAPITAL COST<br>Engineering & Design @ 12 %        |          | 0.12        |              | 108,500  | \$ 904,200   |                           |                                        |
| Contingencies @ 15 %                                        |          | 0.12        |              | 135,600  |              |                           |                                        |
| Treatment Study                                             |          |             |              | 100,000  |              |                           |                                        |
| TOTAL CAPITAL COST                                          |          |             |              |          | \$ 1,248,300 |                           |                                        |
|                                                             |          |             |              |          |              |                           |                                        |
| ANNUAL GROUNDWATER MONI                                     | FORING C | 0 & M COSTS | (Years 1 - 3 | 0)       | \$ 19,100    |                           |                                        |
| ANNUAL TREATMENT PLANT O & M COSTS (YEARS 1-30)             |          |             |              |          | \$ 63,200    |                           |                                        |
| GROUNDWATER MONITORING CAPITAL COSTS                        |          |             |              |          | \$ 6,200     |                           |                                        |
| TREATMENT PLANT CAPITAL COSTS                               |          |             |              |          | \$ 1,248,300 |                           |                                        |
| TOTAL CAPITAL COSTS                                         |          |             |              |          | \$ 1,254,500 |                           |                                        |
|                                                             |          |             |              |          |              |                           |                                        |
| TOTAL COST (PW) - RAA 5 (5 YEAR TREATMENT PLANT OPERATION)  |          |             |              |          | \$ 1,821,700 | {                         |                                        |
| TOTAL COST (PW) - RAA 5 (30 YEAR TREATMENT PLANT OPERATION) |          |             |              |          | \$ 2,519,700 | I                         | ·                                      |

#### SUMMARY OF DETAILED ANALYSIS OPERABLE UNIT NO. 10 (SITE 35) INTERIM FEASIBILITY STUDY, CTO-0232 MCB CAMP LEJEUNE, NORTH CAROLINA

| Evaluation Criteria    | RAA 1<br>No Action                                                                                                                                         | RAA 2<br>No Action with<br>Institutional Controls                                                        | RAA 3<br>Groundwater Collection<br>and On-Site Treatment                                                                                                                                                                                                                              | RAA 4<br>In Situ Air Sparging and<br>Off-Gas Carbon Adsorption                                                                                                                                                                                                            | RAA 5<br>In Well Aeration and Off-<br>Gas Carbon Adsorption                                                                                                                                                                                                                             |
|------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| OVERALL PROTECTIVENESS |                                                                                                                                                            |                                                                                                          |                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                         |
| • Human Health         | Potential risks associated<br>with groundwater exposure<br>will remain. Some<br>reduction in contaminant<br>levels may result from<br>natural attenuation. | Aquifer-use restrictions<br>mitigate risks from direct<br>groundwater exposure.                          | Active collection and<br>treatment will reduce<br>contaminant levels in<br>groundwater within capture<br>zone of interceptor trench<br>(estimated at 100 feet<br>upgradient maximum).<br>Aquifer-use restrictions will<br>also mitigate risks from<br>direct groundwater<br>exposure. | Active in situ volatilization<br>and biodegradation will<br>reduce contaminant levels<br>in groundwater within<br>radius of influence of wells<br>(estimated at 25 feet).<br>Aquifer-use restrictions will<br>also mitigate risks from<br>direct groundwater<br>exposure. | Active in-well volatilization<br>and in situ biodegradation<br>will reduce contaminant<br>levels in groundwater<br>within radius of influence<br>of wells (estimated at 45 to<br>60 feet). Aquifer-use<br>restrictions will also<br>mitigate risks from direct<br>groundwater exposure. |
| • Environment          | Contaminated groundwater<br>will continue to be a source<br>of future contamination to<br>Brinson Creek.                                                   | Contaminated groundwater<br>will continue to be a source<br>of future contamination to<br>Brinson Creek. | Interceptor trench serves as<br>a barrier to contaminated<br>groundwater discharge to<br>Brinson Creek.                                                                                                                                                                               | Air sparging wells and SVE<br>wells serve as a barrier to<br>contaminated groundwater<br>discharge to Brinson Creek.                                                                                                                                                      | Aeration wells serve as a<br>barrier to contaminated<br>groundwater discharge to<br>Brinson Creek.                                                                                                                                                                                      |
| COMPLIANCE WITH ARARs  |                                                                                                                                                            |                                                                                                          |                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                         |
| Chemical-Specific      | No active effort made to<br>reduce groundwater<br>contaminant levels to below<br>federal or state ARARs.                                                   | No active effort made to<br>reduce groundwater<br>contaminant levels to below<br>federal or state ARARs. | Reductions in groundwater<br>contaminant levels to below<br>federal or state ARARs can<br>be expected within capture<br>zone of interceptor trench.<br>Reductions upgradient will<br>be less substantial if at all.                                                                   | Reductions in groundwater<br>contaminant levels to below<br>federal or state ARARs can<br>be expected within radius<br>of influence of wells.<br>Reductions upgradient will<br>be less substantial if at all.                                                             | Reductions in groundwater<br>contaminant levels to below<br>federal or state ARARs can<br>be expected within radius<br>of influence of wells.<br>Reductions upgradient will<br>be less substantial if at all.                                                                           |
| Location-Specific      | Not Applicable.                                                                                                                                            | Not Applicable.                                                                                          | Wetlands and alligators<br>(endangered species) are<br>concerns because of<br>proposed location of<br>interceptor trench. It is<br>assumed that necessary<br>approvals can be obtained.                                                                                               | Wetlands and alligators<br>(endangered species) are<br>concerns because of<br>proposed location of<br>interceptor trench. It is<br>assumed that necessary<br>approvals can be obtained.                                                                                   | Wetlands and alligators<br>(endangered species) are<br>concerns because of<br>proposed location of<br>interceptor trench. It is<br>assumed that necessary<br>approvals can be obtained.                                                                                                 |
| Action-Specific        | Not Applicable.                                                                                                                                            | Not Applicable.                                                                                          | Can be designed to meet these ARARs.                                                                                                                                                                                                                                                  | Can be designed to meet these ARARs.                                                                                                                                                                                                                                      | Can be designed to meet these ARARs.                                                                                                                                                                                                                                                    |

••

,

#### SUMMARY OF DETAILED ANALYSIS OPERABLE UNIT NO. 10 (SITE 35) INTERIM FEASIBILITY STUDY, CTO-0232 MCB CAMP LEJEUNE, NORTH CAROLINA

.

.

|                                                              |                                                                                                          |                                                                                                                                                                                                                                                                                      | p=======                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1                                                                                                                                                                                                                                                                                                                                            |
|--------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Evaluation Criteria                                          | RAA 1<br>No Action                                                                                       | RAA 2<br>No Action with<br>Institutional Controls                                                                                                                                                                                                                                    | RAA 3<br>Groundwater Collection<br>and On-Site Treatment                                                                                                                                                                                                                                                                               | RAA 4<br>In Situ Air Sparging and<br>Off-Gas Carbon Adsorption                                                                                                                                                                                                                                                                                                                                                                                         | RAA 5<br>In Well Acration and Off-<br>Gas Carbon Adsorption                                                                                                                                                                                                                                                                                  |
| LONG-TERM EFFECTIVENESS AND<br>PERFORMANCE                   |                                                                                                          |                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                              |
| • Magnitude of Residual Risk                                 | Any long-term effect on<br>contamination will be the<br>result of natural attenuation<br>processes only. | Any long-term effect on<br>contamination will be the<br>result of natural attenuation<br>processes only.<br>Aquifer-use restrictions will<br>provide a permanent means<br>for protection against direct<br>exposure to the<br>contaminated surficial<br>groundwater.                 | Provides an effective means<br>of intercepting<br>contaminated groundwater<br>and blocking its discharge<br>to Brinson Creek for as<br>long as it remains in<br>operation.<br>Aquifer-use restrictions will<br>provide a permanent means<br>for protection against direct<br>exposure to the<br>contaminated surficial<br>groundwater. | Provides an effective means<br>of intercepting and treating<br>contaminated groundwater<br>prior to its discharge to<br>Brinson Creek for as long<br>as it remains in operation.<br>Toxic vapors escaping to<br>the air due to poor vapor<br>extraction may increase risk<br>to community.<br>Aquifer-use restrictions will<br>provide a permanent means<br>for protection against direct<br>exposure to the<br>contaminated surficial<br>groundwater. | Provides an effective means<br>of intercepting and treating<br>contaminated groundwater<br>prior to its discharge to<br>Brinson Creek for as long<br>as it remains in operation.<br>Aquifer-use restrictions will<br>provide a permanent means<br>for protection against direct<br>exposure to the<br>contaminated surficial<br>groundwater. |
| <ul> <li>Adequacy and Reliability of<br/>Controls</li> </ul> | Not Applicable.                                                                                          | Aquifer-use restrictions are<br>reliable if enforced.<br>Enforcement is likely as<br>Camp Geiger is a controlled<br>military installation. The<br>proposed highway right-of-<br>way will continue to be<br>controlled by the Marine<br>Corps, indefinitely, under<br>lease to NCDOT. | Interceptor trench involves<br>basic technology and<br>should be adequate and<br>reliable for an indefinite<br>period.                                                                                                                                                                                                                 | Air sparging has a long<br>track record of commercial<br>use and should be able to<br>be controlled adequately<br>and reliably for an<br>indefinite period. High<br>levels of metals in<br>groundwater could short<br>circuit the system<br>prompting frequent<br>maintenance. Well<br>replacement over several<br>years may result.                                                                                                                   | In well aeration is a<br>relatively new technology<br>without a substantial<br>commercial track record.<br>High levels of metals could<br>short circuit the system<br>prompting frequent<br>maintenance. Well<br>replacement over several<br>years may result.                                                                               |
| Estimated Period of Operation                                | 30 Years                                                                                                 | 30 Years                                                                                                                                                                                                                                                                             | 30 years unless additional active treatment actions are implemented upgradient.                                                                                                                                                                                                                                                        | 30 years unless additional active treatment actions are implemented upgradient.                                                                                                                                                                                                                                                                                                                                                                        | 30 years unless additional active treatment actions are implemented upgradient.                                                                                                                                                                                                                                                              |
| • Need for 5-Year Review                                     | Review required because no active treatment is included                                                  | Review required because no active treatment is included.                                                                                                                                                                                                                             | Review required because<br>area impacted by treatment<br>will be limited.                                                                                                                                                                                                                                                              | Review required because<br>area impacted by treatment<br>will be limited.                                                                                                                                                                                                                                                                                                                                                                              | Review required because<br>area impacted by treatment<br>will be limited.                                                                                                                                                                                                                                                                    |

•

#### SUMMARY OF DETAILED ANALYSIS OPERABLE UNIT NO. 10 (SITE 35) INTERIM FEASIBILITY STUDY, CTO-0232 MCB CAMP LEJEUNE, NORTH CAROLINA

|                                                                    |                                                                  |                                                                  |                                                                                                                                                     |                                                                                                                                                                                                 | 1                                                                                                                                                   |
|--------------------------------------------------------------------|------------------------------------------------------------------|------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|
| Evaluation Criteria                                                | RAA I<br>No Action                                               | RAA 2<br>No Action with<br>Institutional Controls                | RAA 3<br>Groundwater Collection<br>and On-Site Treatment                                                                                            | RAA 4<br>In Situ Air Sparging and<br>Off-Gas Carbon Adsorption                                                                                                                                  | RAA 5<br>In Well Aeration and Off-<br>Gas Carbon Adsorption                                                                                         |
| REDUCTION OF TOXICITY,<br>MOBILITY, OR VOLUME THROUGH<br>TREATMENT |                                                                  |                                                                  |                                                                                                                                                     |                                                                                                                                                                                                 |                                                                                                                                                     |
| Treatment Process Used                                             | No active treatment process applied.                             | No active treatment process applied.                             | On-site groundwater<br>treatment includes<br>filtration, metals<br>precipitation, air stripping,<br>air and water carbon<br>adsorption.             | In situ volatilization and<br>biodegradation. Off-gas<br>carbon adsorption.                                                                                                                     | In situ volatilization and<br>biodegradation. Off-gas<br>carbon adsorption.                                                                         |
| Reduction of Toxicity, Mobility     or Volume                      | No reduction except by natural attenuation.                      | No reduction except by natural attenuation.                      | Reduction of organic and<br>inorganic contaminants<br>expected within capture<br>zone of trench.                                                    | Reduction of organic<br>contaminants expected<br>within radius of influence<br>of wells.                                                                                                        | Reduction of organic<br>contaminants expected<br>within radius of influence<br>of wells.                                                            |
| Residuals Remaining After Treatment                                | No active treatment process applied.                             | No active treatment process applied.                             | Residuals include metals<br>sludge and spent carbon<br>which would have to be<br>disposed of properly.                                              | Residuals requiring<br>disposal include spent<br>carbon and a small volume<br>of condensed contaminated<br>vapor (water).                                                                       | Residuals requiring<br>disposal include spent<br>carbon and a small volume<br>of condensed contaminated<br>vapor (water).                           |
| Statutory Preference for     Treatment                             | Not satisfied.                                                   | Not satisfied.                                                   | Satisfied except that area<br>impacted by treatment is<br>limited and does not<br>include entire plume of<br>contaminated surficial<br>groundwater. | Satisfied except that area<br>impacted by treatment is<br>limited and does not<br>include entire plume of<br>contaminated surficial<br>groundwater.                                             | Satisfied except that area<br>impacted by treatment is<br>limited and does not<br>include entire plume of<br>contaminated surficial<br>groundwater. |
| SHORT-TERM EFFECTIVENESS                                           |                                                                  |                                                                  |                                                                                                                                                     |                                                                                                                                                                                                 |                                                                                                                                                     |
| Community Protection                                               | Risks to community not<br>increased by remedy<br>implementation. | Risks to community not<br>increased by remedy<br>implementation. | Minimal, if any, risks<br>during collection and<br>treatment.                                                                                       | Possible migration of toxic<br>vapors through ground<br>surface because vapor<br>extraction is difficult to<br>control when groundwater<br>surface is within several<br>feet of ground surface. | Minimal, if any, risks<br>during operation and<br>treatment.                                                                                        |
| Worker Protection                                                  | None.                                                            | Protection required during<br>well installation and<br>sampling. | Trench installation<br>procedure limits worker<br>exposure by design.                                                                               | Minimal potential for<br>worker exposure.                                                                                                                                                       | Minimal potential for<br>worker exposure.                                                                                                           |

#### SUMMARY OF DETAILED ANALYSIS OPERABLE UNIT NO. 10 (SITE 35) INTERIM FEASIBILITY STUDY, CTO-0232 MCB CAMP LEJEUNE, NORTH CAROLINA

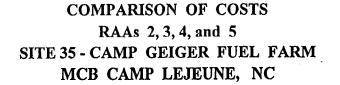
|                                                                |                                                             |                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1                                                                                                                                                                                                                                                                                                                   |
|----------------------------------------------------------------|-------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Evaluation Criteria                                            | RAA 1<br>No Action                                          | RAA 2<br>No Action with<br>Institutional Controls                                                                                    | RAA 3<br>Groundwater Collection<br>and On-Site Treatment                                                                                                                                                                                                                                                                                                                            | RAA 4<br>In Situ Air Sparging and<br>Off-Gas Carbon Adsorption                                                                                                                                                                                                                                                                                                                                                                                             | RAA 5<br>In Well Aeration and Off-<br>Gas Carbon Adsorption                                                                                                                                                                                                                                                         |
| Environmental Impacts                                          | Continued impacts from<br>unchanged existing<br>conditions. | Continued impacts from<br>unchanged existing<br>conditions.                                                                          | Wetlands disturbance<br>during installation could be<br>significant. Trench will<br>serve as a barrier for<br>contaminated groundwater<br>discharge to Brinson Creek.                                                                                                                                                                                                               | Minimal wetlands<br>disturbance. System will<br>serve as a barrier for<br>contaminated groundwater<br>discharge to Brinson Creek.                                                                                                                                                                                                                                                                                                                          | Minimal wetlands<br>disturbance. System will<br>serve as a barrier for<br>contaminated groundwater<br>discharge to Brinson Creek.                                                                                                                                                                                   |
| Installation Period                                            | Not Applicable.                                             | Less than 30 days required<br>to install additional<br>groundwater monitoring<br>wells.                                              | 60 to 90 days estimated to install trench and treatment system.                                                                                                                                                                                                                                                                                                                     | 60 to 90 days estimated to<br>install sparging and SVE<br>wells and treatment system.                                                                                                                                                                                                                                                                                                                                                                      | 60 to 90 days estimated to install aeration wells and treatment system.                                                                                                                                                                                                                                             |
| IMPLEMENTABILITY                                               |                                                             |                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                     |
| • Ability to Construct and Operate                             | No construction or operation activities.                    | Involves standard well<br>installation and sampling<br>only.                                                                         | Soft ground in wetlands<br>areas may hamper<br>construction and result in<br>delays. Once installed,<br>operating is straight-<br>forward using commercially<br>proven technology.<br>Approximately 2,000 to<br>3,000 cubic yards of<br>potentially contaminated<br>soil excavated from the<br>trench will require disposal.<br>Lack of access may be a<br>significant lost factor. | Construction of activities<br>involve primarily well<br>installation which has been<br>previously executed<br>successfully in this area.<br>Disposal of drill cuttings<br>required.<br>Thin vadose zone may<br>hamper effective vapor<br>extraction which could<br>result in the release of toxic<br>vapors to atmosphere.<br>High metals in groundwater<br>could clog well screens<br>which would require<br>frequent maintenance or<br>well replacement. | Construction of activities<br>involve primarily well<br>installation which has been<br>previously executed<br>successfully in this area.<br>Disposal of drill cuttings<br>required.<br>High metals in groundwater<br>could clog well screens<br>which would require<br>frequent maintenance or<br>well replacement. |
| Ability to Monitor Effectiveness                               | No monitoring.                                              | Proposed monitoring will<br>provide an indication of<br>effects of natural<br>attenuation and progress of<br>contaminants migration. | Proposed monitoring will<br>give notice of failure so that<br>system can be adjusted<br>before a significant<br>contaminant release occurs.                                                                                                                                                                                                                                         | Proposed monitoring will<br>give notice of failure so that<br>system can be adjusted<br>before a significant<br>contaminant release occurs.                                                                                                                                                                                                                                                                                                                | Proposed monitoring will<br>give notice of failure so that<br>system can be adjusted<br>before a significant<br>contaminant release occurs.                                                                                                                                                                         |
| <ul> <li>Availability of Services and<br/>Equipment</li> </ul> | None required.                                              | Well installation and<br>sampling services available<br>from multiple vendors.                                                       | Biopolymer trench<br>technology available from a<br>limited number of vendors.                                                                                                                                                                                                                                                                                                      | Air sparging technology is<br>available from multiple<br>vendors.                                                                                                                                                                                                                                                                                                                                                                                          | In well aeration is a<br>patented priority<br>technology currently<br>available from only one<br>vendor.                                                                                                                                                                                                            |

#### SUMMARY OF DETAILED ANALYSIS OPERABLE UNIT NO. 10 (SITE 35) INTERIM FEASIBILITY STUDY, CTO-0232 MCB CAMP LEJEUNE, NORTH CAROLINA

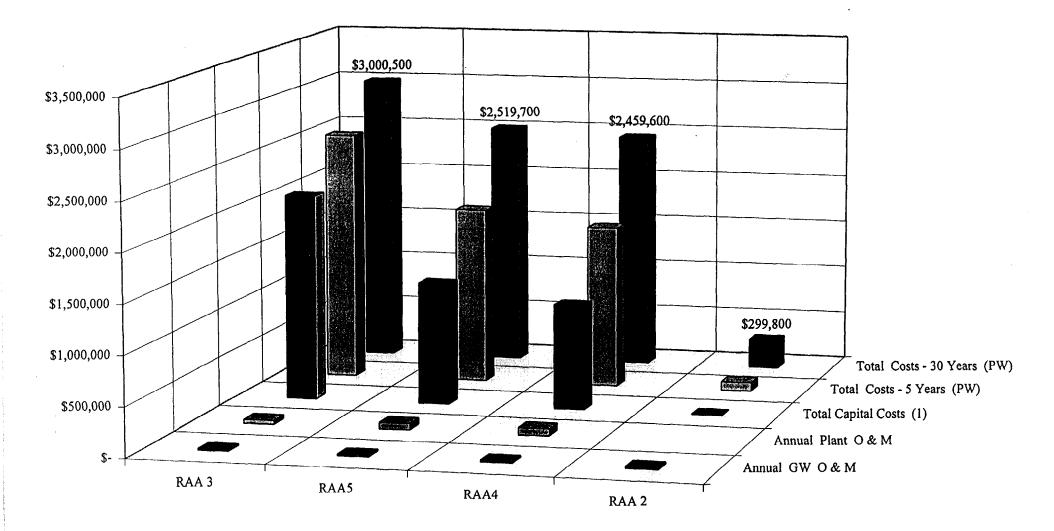
٠

| Evaluation Criteria                  | RAA 1<br>No Action | RAA 2<br>No Action with<br>Institutional Controls             | RAA 3<br>Groundwater Collection<br>and On-Site Treatment                                   | RAA 4<br>In Situ Air Sparging and<br>Off-Gas Carbon Adsorption                                      | RAA 5<br>In Well Aeration and Off-<br>Gas Carbon Adsorption                                         |
|--------------------------------------|--------------------|---------------------------------------------------------------|--------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|
| Requirements for Agency Coordination | None required.     | Must submit semi-annual reports to document sampling reports. | None required, provided the intent of wetland and air and water discharge permits are met. | None required, provided the<br>intent of wetland and air<br>and water discharge permits<br>are met. | None required, provided the<br>intent of wetland and air<br>and water discharge permits<br>are met. |
| COSTS                                |                    |                                                               |                                                                                            |                                                                                                     |                                                                                                     |
| • Net Present Worth (30 years)       | <b>\$</b> 0        | \$299,800                                                     | \$3,000,500                                                                                | \$2,459,600                                                                                         | \$2,519,700                                                                                         |

.


.

)


# **SECTION 5.0 FIGURES**

.

# FIGURE 5-1



1



#### 6.0 -REFERENCES

1

Ì

١

40 Code of Federal Regulations (CFR) 300. 1993. National Contingency Plan.

40 Code of Federal Regulations (CFR) 141. 1992. The Safe Drinking Water Act Maximum Contaminant Levels.

ATEC. 1992. <u>Underground Storage Tank Site Check, Investigation Report, Former Mess Hall</u> <u>Heating Plant</u>. Marine Corps Base, Camp Lejeune, North Carolina.

Baker. 1994. Interim Remedial Action, Remedial Investigation, Operable Unit No. 10, Site 35 - Camp Geiger Fuel Farm. Marine Corps Base, Camp Lejeune, North Carolina.

Baker. 1994. <u>Remedial Investigation/Feasibility Study Sampling and Analysis Plan for Operable</u> <u>Unit No. 10</u>. Marine Corps Base, Camp Lejeune, North Carolina.

Baker. 1994. <u>Remedial Investigation Report, Operable Unit No. 10, Site 35 - Camp Geiger Area</u> <u>Fuel Farm</u>. Marine Corps Base, Camp Lejeune, North Carolina.

ESE, 1990. <u>Final Site Summary Report, MCB Camp Lejeune</u>. ESE Project No. 49-02036, September 1990.

Herrling, B., et al., "In Situ Bioremediation of Groundwater Containing Hydrocarbons, Pesticides, or Nitrate Using Vertical Circulation Flows (UVB/GZB Technique)," <u>Air Sparging for Site</u> <u>Remediation</u>, Lewis Publishers, Boca Raton, Florida, 1994.

Law. 1994. <u>Leaking Underground Storage Tank Site Assessment Report, Building TC341</u>, Marine Corps Base, Camp Lejeune, North Carolina.

Law. 1993. <u>Addendum to Report of Underground Fuel Investigation and Comprehensive Site</u> <u>Assessment</u>. Camp Geiger Fuel Farm, Marine Corps Base, Camp Lejeune, North Carolina.

Law. 1992. Final Report, <u>Underground Fuel Investigation and Comprehensive Site Assessment</u>, <u>Camp Geiger Fuel Farm</u>. Marine Corps Base, Camp Lejeune, North Carolina.

NC DEHNR. 1993. North Carolina Department of Environment, Health, and Natural Resources. <u>Classifications and Water Quality Standards Applicable to Surface Waters of North Carolina</u>. Administrative Code 15A NCAC 2B .0200. Division of Environmental Management. February 1993.

USEPA. 1992. United States Environmental Protection Agency. <u>A Technology Assessment of Soil</u> <u>Vapor Extraction and Air Sparging</u>. Risk Reduction Engineering Laboratory. Office of Research and Development, Cincinnati, Ohio, EPA/600/R-92/173.

USEPA. 1988. United States Environmental Protection Agency. <u>Guidance for Conducting</u> <u>Remedial Investigations and Feasibility Studies Under CERCLA</u>. Office of Emergency and Remedial Response, Washington, D.C., EPA/540/G-89/004. Water and Air Research, Inc. 1983. Initial Assessment Study of Marine Corps Base Camp Lejeune, North Carolina. Prepared for Naval Energy and Environmental Support Activity.

# APPENDIX C TREATABILITY STUDY WORK PLAN, PILOT-SCALE EVALUATION OF IN-SITU AIR SPARGING

## FINAL

# TREATABILITY STUDY WORK PLAN PILOT-SCALE EVALUATION OF IN-SITU AIR SPARGING OPERABLE UNIT NO. 10 (SITE 35) MARINE CORPS BASE, CAMP LEJEUNE NORTH CAROLINA

## CONTRACT TASK ORDER 0323

MAY 31, 1996

Prepared for:

# DEPARTMENT OF THE NAVY ATLANTIC DIVISION NAVAL FACILITIES ENGINEERING COMMAND Norfolk, Virginia

Under:

## LANTDIV CLEAN PROGRAM Contract N62470-89-D-4814

4

Prepared By:

## BAKER ENVIRONMENTAL, INC. Coraopolis, Pennsylvania

## TABLE OF CONTENTS

| 1.0 | INTRODUCTION                                   |
|-----|------------------------------------------------|
|     | 1.1 Purpose and Organization 1-1               |
|     | 1.2 Site Background 1-1                        |
|     | 1.2.1 Site Location and Description 1-1        |
|     | 1.2.2 Site History 1-2                         |
|     | 1.2.3 Previous Investigations and Findings 1-3 |
| 2.0 | INITIAL FEASIBILITY EVALUATION                 |
|     | 2.1 Technology Description                     |
|     | 2.2 Technology Limitations 2-1                 |
|     | 2.3 Technology Implementation/Design Basis 2-3 |
| 3.0 | TREATABILITY STUDY OBJECTIVES 3-1              |
| 4.0 | TESTING PROCEDURES 4-1                         |
|     | 4.1 Mobilization                               |
|     | 4.1.1 Site Preparation/Site Clearing 4-1       |
|     | 4.1.2 Installation of Temporary Utilities 4-1  |
|     | 4.1.3 Temporary Facilities 4-1                 |
|     | 4.2 Drilling and Well Construction 4-1         |
|     | 4.2.1 PVC (2-inch) Monitoring Wells 4-1        |
|     | 4.2.2 Soil Gas Probes 4-3                      |
|     | 4.3 Pilot Test Design and Operation 4-3        |
|     | 4.3.1 Pre-Test Sampling 4-5                    |
|     | 4.3.2 Pilot Test Operation 4-6                 |
|     | 4.3.3 Post-Test Sampling 4-8                   |
|     | 4.4 Equipment Decontamination Procedures 4-8   |
|     | 4.5 Residuals Management 4-8                   |
| 5.0 | COMMUNITY RELATIONS 5-1                        |
| 6.0 | REPORTS                                        |
|     | 6.1 Treatability Study Work Plan 6-1           |
|     | 6.2 Treatability Study Report 6-1              |
| 7.0 | SCHEDULE                                       |
| 8.0 | PROJECT MANAGEMENT AND STAFFING                |

.

## APPENDICES

- A Hydrogeologic Cross Sections
- B Hill AFB Technical Paper
- C Contaminant Concentration Calculations
- D Constituents Detected by EPA Method TO-14

# LIST OF TABLES

- 1-1 Organic COCs that Exceed Remediation Levels
- 4-1 Pre-Test Sampling Matrix
- 4-2 Pilot Testing Sampling Matrix
- 4-3 Post-Test Sampling Matrix

## LIST OF FIGURES

- 1-1 Camp Lejeune and Site 35 Location Map
- 1-2 Site Plan
- 1-3 Detected Organics in Upper Portion of Surficial Aquifer
- 1-4 Detected Organics in Lower Portion of Surficial Aquifer
- 1-5 Groundwater Contour Map for Surficial Aquifer
- 1-6 Cross Section Location
- 1-7 Hydrogeologic Cross Section
- 2-1 RAA 4: In Situ Air Sparging and Off-Gas Carbon Adsorption Site Plan
- 2-2 Summary of Surficial Aquifer Contamination in the Treatability Study Area
- 2-3 Detected BTEX and Total Chlorinated Solvents in Surficial Aquifer (April 1996)
- 2-4 Conceptual Contaminant Plumes Intercepting Sparging Curtain
- 2-5 Plume B Pilot Test Proposed Sparging Wells
- 2-6 Plume C Pilot Test Proposed Sparging Wells
- 4-1 IAS Pilot Test Well Layouts
- 4-2 IAS Pilot Test Soil Gas Probe Layouts
- 4-3 IAS Process Flow Schematic Site 35
- 7-1 IAS Treatability Study Schedule
- 8-1 Project Organization

#### 1.0 INTRODUCTION

This Treatability Study Work Plan has been prepared by Baker Environmental, Inc. (Baker) under the United States Department of the Navy (DON), Atlantic Division, Naval Facilities Engineering Command (LANTDIV) Comprehensive Long-Term Environmental Action Navy (CLEAN) Program for Contract Task Order 0323, Operable Unit (OU) No. 10, Site 35 - Camp Geiger Area Fuel Farm, Marine Corps Base (MCB), Camp Lejeune, North Carolina. The treatability study is being conducted as part of the Remedial Design (RD) for surficial groundwater at Site 35. This document has been prepared in accordance with the requirements of the National Oil and Hazardous Substances Pollution Contingency Plan (NCP) for remedial actions [40 Code of Federal Regulations (CFR) 300.430]. The NCP regulations were promulgated under Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA), commonly referred to as Superfund, and amended by the Superfund Amendments and Reauthorization Act (SARA) signed into law on October 17, 1986. The USEPA's document <u>Guide for Conducting Treatability Studies Under CERCLA</u> (USEPA, 1992) has been used as guidance for preparing this document.

MCB Camp Lejeune was placed on the CERCLA National Priorities List (NPL) on October 4, 1989 (54 Federal Register 41015, October 4, 1989). The United States Environmental Protection Agency (USEPA) Region IV, the North Carolina Department of Environment, Health and Natural Resources (NC DEHNR) and the DON then entered into a Federal Facilities Agreement (FFA) for MCB, Camp Lejeune. The primary purpose of the FFA is to ensure that environmental impacts associated with past and present activities at the MCB, Camp Lejeune are thoroughly investigated and appropriate CERCLA response/Resource Conservation and Recovery Act (RCRA) corrective action alternatives are developed and implemented as necessary to protect public health and the environment.

## 1.1 <u>Purpose and Organization</u>

This document presents Baker's approach to executing the pilot-scale Treatability Study of Air Sparging technology at Site 35. Its purpose is to detail the objectives and methodologies for conducting this work.

Section 1.0 of this document includes this introduction and site background information. Section 2.0 contains a description of in situ air sparging (IAS) technology and its limitations along with a discussion of remedial design/remedial action implementation considerations. The objectives of the treatability study are presented in Section 3.0. Test procedures are detailed in Section 4.0. Community relations efforts are discussed in Section 5.0. The proposed reports to be prepared as part of this project are discussed in Section 6.0, and, finally, the project schedule is presented in Section 7.0.

## 1.2 <u>Site Background</u>

#### 1.2.1 Site Location and Description

Marine Corps Base (MCB), Camp Lejeune is a training base for the U.S. Marine Corps, located in Onslow County, North Carolina. The Activity, as the base is referred to, covers approximately 236 square miles and includes 14 miles of coastline. MCB, Camp Lejeune is bounded to the southeast by the Atlantic Ocean, to the northeast by State Route 24, and to the west by U.S. Route 17. The town of Jacksonville, North Carolina, is located north of the Activity (see Figure 1-1).

Camp Geiger is located at the extreme northwest corner of MCB, Camp Lejeune. The main entrance to Camp Geiger is off U.S. Route 17, approximately 3.5 miles southwest of the city of Jacksonville, North Carolina. Site 35, the decommissioned Camp Geiger Area Fuel Farm, refers primarily to five, 15,000-gallon aboveground storage tanks (ASTs), a pump house, and a fuel unloading pad formerly situated within Camp Geiger just north of the intersection of Fourth and G Streets (see Figure 1-2).

Site 35 is contained within Operable Unit (OU) No. 10, one of 17 operable units at MCB, Camp Lejeune. An "operable unit," as defined by the National Oil and Hazardous Substances Pollution Contingency Plan (NCP), is a discrete action that comprises an incremental step toward comprehensively addressing site problems.

The Interim Feasibility Study (FS) study area consists of a portion of OU No. 10 measuring approximately 18 acres. More specifically, the study area consists of contaminated groundwater in the portion of the surficial aquifer that is located roughly between the Fuel Farm and Brinson Creek (see Figure 1-2).

## 1.2.2 Site History

Construction of Camp Geiger was completed in 1945, four years after construction of MCB, Camp Lejeune was initiated. Originally, the ASTs were used for the storage of No. 6 fuel oil, but were later converted for storage of other petroleum products including unleaded gasoline, diesel fuel, and kerosene. The date of their conversion is not known. The ASTs at the site are reported to be the original tanks. Demolition of the Fuel Farm ASTs was completed in 1995.

Product was dispensed from the ASTs via trucks and underground piping. Routinely, the ASTs at Site 35 supplied fuel to an adjacent dispensing pump. A leak in the underground line from the ASTs to the dispensing island was reportedly responsible for the loss of roughly 30 gallons per day of gasoline over an unspecified period (Law, 1992). The leaking line was subsequently sealed and replaced.

The ASTs at Site 35 were used to dispense gasoline, diesel, and kerosene to government vehicles and to supply underground storage tanks (USTs) in use at Camp Geiger and the nearby New River Marine Corps Air Station until the spring of 1995. The ASTs were supplied by commercial carrier trucks which delivered product to fill ports located on the fuel unloading pad at the southern end of the facility. Six short-run (120 feet maximum), underground fuel lines were utilized to distribute the product from the unloading pad to the ASTs.

Reports of a release from an underground distribution line near one of the ASTs date back to 1957-58 (ESE, 1990). Apparently, the leak occurred as the result of damage to a dispensing pump. At that time, the Camp Lejeune Fire Department estimated that thousands of gallons of fuel were released, although records of the incident cannot be located. The fuel reportedly migrated to the east and northeast toward Brinson Creek. Interceptor trenches were excavated and the captured fuel was ignited and burned.

Another abandoned underground distribution line extended from the ASTs to the former Mess Hall Heating Plant, located adjacent to D Street, between Third and Fourth Streets. The underground line dispensed No. 6 fuel oil to a UST which fueled the Mess Hall boiler. The Mess Hall, located across "D" Street to the west, is believed to have been demolished along with its Heating Plant in the 1960s.

In April 1990, an undetermined amount of fuel had been discovered by Camp Geiger personnel along the unnamed drainage channels north of the Fuel Farm. Apparently, the source of the fuel, believed to be diesel or jet fuel, was an unauthorized discharge from a tanker truck that was never identified. The Activity reportedly initiated an emergency clean-up action that included the removal of approximately 20 cubic yards of soil.

Decommissioning of the Fuel Farm began in the spring of 1995 and was completed in July 1995. The ASTs were cleaned, dismantled and removed along with associated concrete foundations, slabs on grade, berms, and underground piping. The Fuel Farm was removed to make way for a six-lane, divided highway proposed by the North Carolina Department of Transportation (NC DOT) (see Figure 1-2).

In addition to the Fuel Farm dismantling, soil remediation activities began in August 1995 along the highway right-of-way as per an Interim Record of Decision (ROD) executed on September 15, 1994. To date, all identified contaminated soil has been excavated and removed from the site.

## **1.2.3** Previous Investigations and Findings

Previous investigations conducted at Site 35 include the Initial Assessment Study of Marine Corps Base, Camp Lejeune, North Carolina (WAR, 1983); Final Site Summary Report, MCB Camp Lejeune (ESE, 1990); Draft Field Investigation/Focused Feasibility Study, Camp Geiger Fuel Spill Site (NUS, 1990); Underground Fuel Investigation and Comprehensive Site Assessment (Law, 1992); Addendum Report of Underground Fuel Investigation and Comprehensive Site Assessment (Law, 1993); Interim Remedial Action Remedial Investigation/Feasibility Study for Soil (Baker, 1994); Comprehensive Remedial Investigation Report (Baker, 1995); and Interim Feasibility Study for Surficial Groundwater (Baker, 1995).

A comprehensive RI was conducted by Baker in 1994 to evaluate the nature and extent of the threat to public health and the environment caused by the release of hazardous substances, pollutants, or contaminants, and to support a Feasibility Study evaluation of potential remedial alternatives. The RI field program was initiated on April 11, 1994. Data gathering activities were derived from a soil gas survey and groundwater screening investigation, a soil investigation, a groundwater investigation, a surface water and sediment investigation, and an ecological investigation. In April 1996, Baker performed a supplemental field investigation to characterize the vertical and horizontal extent of fuel- and solvent-related contamination along the proposed IAS curtain boundary. This investigation consisted of installation and sampling of a total of 36 temporary monitoring wells. These wells were installed at 12 locations and as 3-well clusters designed to monitor the upper, middle, and lower regions of the surficial aquifer (see Figure 2-3).

Several areas of fuel- and solvent-related groundwater contamination were identified in the surficial aquifer in the area north of Fourth Street. Organic contaminant concentrations detected in the upper and lower portions of the surficial aquifer during the May 1994 sampling round, conducted by Baker, are shown in Figures 1-3 and 1-4, respectively. Additional figures depicting the nature and extent of groundwater contamination are provided in the Final RI Report (Baker, 1995). A water table contour map indicating general groundwater flow directions in the surficial aquifer is provided in Figure 1-5. As shown in Figures 1-6 and 1-7, a hydrogeologic cross-section was developed for the area paralleling Brinson Creek, which shows the various soil types for the area in which the IAS system would be installed. An additional hydrogeologic cross-section was developed from the temporary well boring logs, which is provided in Appendix A. This cross-section indicates that the

soil lithologies vary significantly between the southern and northern portions of the site. As shown in Appendix A, the surficial aquifer in the northern region north of temporary well TW-19 is comprised mainly of medium and fine-grained sands, whereas the region to the south of TW-19 contains at least one significant silt/clay lens of varying thickness.

Two additional areas of solvent-related groundwater contamination have been identified adjacent to Site 35. The extent and sources of this contamination have not been identified and additional RI activities are planned. In addition, significant levels of organic and inorganic contamination were identified in sediment samples.

Following the completion of the RI, a Final Interim Proposed Remedial Action Plan (PRAP) and Final Interim ROD for surficial groundwater at Site 35 were prepared (Baker, 1995). These documents detailed five potential Remedial Action Alternatives (RAAs) developed in the FS for the remediation of organic chemical contaminated surficial groundwater at Site 35. More specifically, the following Remedial Action Objectives (RAOs) were developed in the FS for the surficial aquifer:

- Mitigate the potential for direct exposure to the contaminated groundwater in the surficial aquifer.
- Minimize or prevent the horizontal and vertical migration of contaminated groundwater in the surficial aquifer.
- Restore the surficial aquifer to the remediation levels established for the groundwater contaminants of concern.

The remediation levels established for the contaminated of concern are provided in Table 1-1. These levels were based on the NC DEHNR Water Quality Standards for Groundwater (15A NCAC 2L.0202).

RAA 5, In Well Aeration with Off-Gas Carbon Adsorption, was selected in the Final Interim ROD contingent upon the successful execution of preliminary field pilot-scale tests. This RAA is interim in nature because it represents only one phase of a comprehensive investigation and remediation at Site 35 and is not intended to represent the final solution for OU No. 10. This particular interim action focuses on containment and remediation of organic groundwater contamination in the surficial aquifer located in the vicinity of the Fuel Farm and extending downgradient towards Brinson Creek. A remediation system installed in this area would be designed to mitigate the migration of groundwater contamination from OU No. 10 prior to its discharge into Brinson Creek.

Other media of concern such as sediment and groundwater in the upgradient portion of the surficial aquifer will be addressed during subsequent RI/FS activities that are scheduled to commence later this year. Soil contamination at Site 35 was excavated and removed as part of a separate Interim Remedial Action.

The viability of in-well aeration technology (RAA 5) at Camp Lejeune is being evaluated by means of a field pilot test currently underway at another site (OU No. 14, Site 69). Whether or not in-well aeration is applied at Site 35 is dependent on the results of the field pilot test at Site 69 and, subsequently, on field pilot testing at Site 35. If it is determined, based on the results of the field pilot test, that in-well aeration cannot perform as required, RAA 3 (Groundwater Collection and On-Site Treatment) will be selected as the Interim Preferred Remedial Action. To date, the field pilot test of an in-well aeration technology has experienced delays in being implemented at Site 69 which further delays field pilot-scale tests at Site 35. In the meantime, EPA, NC DEHNR, LANTDIV, Camp Lejeune, and Baker staff agreed that a field pilot test of in-situ air sparging (IAS) technology would be appropriate at this site. If the results of this test are sufficiently positive, a request may be made to prepare an Explanation of Significant Differences (ESD) document to modify the selected alternative.

# 2.0 INITIAL FEASIBILITY EVALUATION

# 2.1 <u>Technology Description</u>

IAS is a technology in which air is bubbled through a contaminated aquifer. Air bubbles traverse horizontally and vertically through the soil column, creating an underground stripper that removes contaminants by volatilization and, for some contaminants, particularly fuel-related compounds, by biodegradation. The air bubbles carry the contaminants upward until they can be recovered by a vapor extraction system or released to the atmosphere.

IAS is a commercially available technology for removing volatile organic chemicals from groundwater. Various technical papers have been published documenting its effectiveness at sites across the U.S. In general, the available literature indicates that IAS is most frequently used to remediate shallow groundwater (i.e., less than 20 feet below the ground surface bgs); however, in theory there is no limit to its application.

At Site 35, the area east of the former Fuel Farm, between Brinson Creek and the proposed divided highway, is located, for the most part, within the limits of the Brinson Creek 100-year floodplain. The area is characteristically marshy with the groundwater surface generally situated within three feet of the ground surface throughout the year. This type of site does not avail itself to vapor extraction due to the lack of a sufficiently thick unsaturated soil zone. Consequently, the contaminants removed from the shallow groundwater at Site 35 via IAS will be discharged to the atmosphere directly.

## 2.2 <u>Technology Limitations</u>

The effectiveness of IAS generally increases with increasing intrinsic permeability (k, cm<sup>2</sup>). Soils should have an intrinsic permeability of at least  $10^{-9}$  in order for air sparging to be effective (EPA/510/B-94/003). Silty sands generally have k values in the range of  $10^{-10}$  to  $10^{-8}$ . Therefore, the soils at Site 35, which are predominantly silty sands, are potentially amenable to IAS. Organic compounds with Henry's law constants greater than 0.01 atm-m<sup>3</sup>/mol (EPA/542/B-94/013) or 100 atm (EPA/510/B-94/003) are typically considered amenable to stripping. All of the VOCs of concern have Henry's constants that are greater than these values.

As previously indicated, IAS is generally applied to remediate contamination in shallow groundwater (i.e., less than 20 feet bgs). At Site 35, the area of contamination is distributed throughout a shallow groundwater zone that varies in depth from approximately 32 to 40 feet. Lighter molecular weight fuel contaminants are more prevalent near the groundwater surface, while heavier halogenated compounds are concentrated atop a semi-confining layer at the base of the shallow groundwater zone. In general, the lighter contaminants near the groundwater surface should be easier and less costly to remove than the heavier contaminants at the base of the shallow zone. This is due, in part, to the higher volatility of the lighter compounds and, in part, because of the greater energy required to inject air in the deeper zone.

The track record for IAS shows that it has indeed been applied more at sites contaminated with fuels rather than solvents. This is probably due in part to the larger number of fuel-related versus solvent-contaminated sites, the biodegradability of fuel-related contaminants, and the fact that the majority of fuel-related sites are characterized by contamination at or near the groundwater surface. One IAS pilot study was performed in 1995 on solvent-related contamination (TCE) at Hill AFB in

Utah (Wheeless, et al., 1995). Significant contaminant removals were achieved by the IAS system, which was applied at a depth similar to Site 35. A copy of this paper, which discusses the results of this study, is included in Appendix B.

IAS systems utilize injected air and are often combined with vapor extraction systems to control the migration of contaminants. At Site 35, between Brinson Creek and the proposed divided highway, the groundwater surface is generally within three feet of the ground surface throughout the year. The available unsaturated soil zone is insufficiently thick to afford the application of vapor extraction. Without vapor extraction, the migration of contaminants in the vadose zone is uncontrolled. However, as illustrated by the following example calculations, vapor emissions are anticipated to be low and should not pose an unacceptable risk to human health or the environment.

To provide a conservative estimate, or upper bound, of the vapor emission rate prior to performing the pilot test, it can be assumed that, at steady-state, the contaminant vapor emission rate will equal the dissolved contaminant migration rate to the IAS system. Thus, this upper bound can be calculated from an estimate of the groundwater specific discharge q [ft/d], width of the IAS barrier W [ft], the depth below the groundwater table to the injection point H [ft], and dissolved contaminant concentration  $C_{gw}$  [lb/ft<sup>3</sup>] as follows:

 $Emissions_{max} = q [ft/d] \times W [ft/d] \times H [ft] \times C_{gw} [lb/ft^3]$ 

Based on the available Site 35 data from the RI Report, conservative estimates for these parameters are as follows: q = 0.06 ft/d (based on K = 0.001 cm/s, I = 0.02), W = 200 ft, H = 25 ft, C<sub>gw</sub> = 0.00006 lb/ft<sup>3</sup> ( $\approx 1,000 \mu g/L$ ). Inserting these values into the above emissions equation results in a maximum surficial emission rate of approximately 0.02 lb/d.

Assuming four sparging wells are installed over the 200-foot wide capture zone with a combined air flow rate of 40 cubic feet per minute (cfm) (i.e., four wells spaced 50 feet apart with 10 cfm per well), the resulting contaminant air concentration passing through the vadose zone would be  $3.5 \times 10^{-7}$  lb/ft <sup>3</sup> or 5.6 mg/m .<sup>3</sup> For a qualitative risk assessment, this value can be compared to the threshold limit value (TLV) for an 8-hour exposure (i.e., time-weighted average (TWA)) for benzene and TCE, which are 32 mg/m<sup>3</sup> and 269 mg/m<sup>3</sup>, respectively. Additional risk assessment analyses will be performed based on the air sampling results from the pilot tests.

Another potential concern associated with the IAS system is the amount of contamination that will be retained in the soils (i.e., resulting contaminant concentrations) since implementation of a soil vapor extraction system to collect volatilized contaminants in the vadose zone may not be possible. Based on an vapor contaminant concentration of 5.6 mg/m<sup>3</sup> and assuming an equilibrium soil-vapor partitioning coefficient of 3.3 L/kg for benzene and 2.5 L/kg for TCE (see calculations provided in Appendix C), the degree of soil contamination resulting from this contaminated air is approximately 0.018 mg/kg. for benzene and 0.014 mg/kg for TCE. The acceptable U.S. EPA risk-based concentrations (RBCs) for exposure to contaminated soil (i.e., accidental ingestion) under a residential use scenario are 22 mg/kg and 58 mg/kg for benzene and TCE, respectively. Thus, the IAS system should not create soil contamination that poses an unacceptable risk to human health or the environment.

# 2.3 <u>Technology Implementation/Design Basis</u>

The IAS alternative in the Interim FS (Baker, 1995), Remedial Action Alternative (RAA) 4, included installation of an IAS "curtain," or barrier, to contain and treat contaminated groundwater as it flows towards Brinson Creek. The conceptual design for RAA 4 included a total of 43 sparging (i.e., air injection) wells spaced approximately 25 feet apart. As shown in Figure 2-1, a total capture zone approximately 1000 feet in width was assumed based on available data. The capture zone width was based on containing groundwater contaminated above the NC DEHNR-based groundwater standards (Table 1-1). As shown in Figure 2-1, the sparging curtain is expected to be located approximately 25 feet downgradient, or east, of the highway's eastern right of way. A soil vapor extraction system was included in the FS as part of RAA 4, since it is typically required for an IAS system as a safeguard measure for controlling vapor emissions. RAA was not selected because of the high water table conditions in the capture zone area along Brinson Creek.

One of the goals of the pilot-scale test is to refine the conceptual design in the FS using test data as well as additional groundwater contaminant data obtained during the Phase II RI at Site 35. The Phase II RI is scheduled to be completed prior to the initiation of the pilot test. A summary of the available groundwater data through the 1994 RI for the fuel-related (i.e., benzene, toluene, ethylbenzene, and xylenes (BTEX)) and solvent-related (i.e., total chlorinated hydrocarbons (CHCs)) contamination in the vicinity of Brinson Creek is provided in Figure 2-2. Total concentrations of BTEX and CHCs detected during the April 1996 field investigation are shown in Figure 2-3.

Groundwater sampling results from the most recent field investigation and previous studies conducted by ESE (1986), NUS (1990), Law (1991 and 1993), and Baker (1994), indicate three primary areas of contamination that intercept the proposed sparging curtain boundary. Hypothetical contaminant plumes for these areas were developed (Figure 2-4) to estimate capture zones and to identify additional data needs. These plumes have been identified as plumes A, B, and C for purposes of this report. These plumes are considered hypothetical since it is unknown if each plume originates from a single source area or if it is actually a composite of two or more plumes originating from multiple sources. The two northern plumes (A and B) represent BTEX contamination associated with monitoring wells MW-20 and MW-16, respectively. The southern plume (plume C) consists of chlorinated solvent contamination, primarily TCE and 1,2-DCE, associated with monitoring well MW-19. A fourth potential area of solvent contamination (not shown), plume D, is located south of plume C near wells 35MW-34B, 35MW-35B, and 35MW-36B (see Figures 1-3 and 1-4). This zone of contamination does not appear to have encroached as near to Brinson Creek as plumes A, B, and C. The concentrations in plume D are three orders of magnitude less than the plume C contamination and appear to represent a separate contaminati source.

Of the three or four plumes intercepting the sparging curtain boundary, plumes B and C contain the bulk of the contaminant mass in the groundwater and pose the most risk to receptors in Brinson Creek. The significance of these two plumes with respect to the remedial design/action is discussed later in this section. Groundwater data (Figure 2-2) show that BTEX levels associated with plume A attenuate rapidly in the downgradient direction, suggesting natural attenuation mechanisms (i.e., biodegradation) are preventing appreciable contamination from reaching the creek. With respect to plume D, contaminant levels in this area only slightly exceed established cleanup levels. Therefore, with containment/treatment of the upgradient source area, natural attainment of the cleanup levels in plumes A and D may be possible through dilution and dispersion.

Conceptually, the shallow aquifer can be divided into two regions; an upper region in which the majority of the BTEX contamination resides, and a lower region that contains the bulk of the solvent-related contamination. The thickness of the shallow aquifer is approximately 30 to 35 feet, with the water table located approximately two to three feet bgs along the sparge curtain boundary. BTEX compounds were generally detected in the upper 0 to 15 feet of aquifer; whereas, the highest concentrations of chlorinated compounds were detected in the lower 20 to 35 feet of aquifer (i.e., above the semi-confining layer). BTEX concentrations in the upper aquifer are generally about two orders of magnitude higher in the upper aquifer than in the lower aquifer.

Plume B is generally a shallow BTEX plume with contamination in the center of the plume extending into the middle portion of the shallow aquifer (approximately 25 feet bgs) and contamination near the edges of the plume extending only to about 15 feet bgs. Plume B is approximately 300 feet in width. The centerline of the plume appears to be located near well TW-23. Soil conditions across Plume B appear more uniform compared to those across Plume C. Most of the saturated aquifer material across Plume B is composed of medium- and fine-grained sands. Thin silt/clay stringers were observed in some of the borings, however, the soils are predominantly sands. Therefore, there is a good chance of success for implementing IAS in Plume B.

In contrast to Plume B, Plume C is generally a deeper chlorinated solvent plume (mainly TCE and 1,2-DCE) with contamination generally absent in the upper 10 feet of aquifer and then increases dramatically with depth to the confining layer located 30-35 feet bgs. Plume C appears to be at least 450 feet in width. As shown in Figure 2-4, part of plume C overlaps with plume B. The highest concentrations of the TCE and 1,2 DCE contamination are centered near well locations TW-16 and TW-17. Soil boring logs from the wells installed along Plume C indicate a much more heterogeneous condition. Boring log TW-16 indicates either silty clay or clayey silt from 6.5 to 25 feet bgs. Silt and clay was also apparent in boring TW-17 down to 18.5 feet bgs with silty sand down to about 24.5 feet bgs. Borings TW-16 and TW-17 contained the highest concentrations of TCE and 1,2-DCE. The thicknesses of the silt/clay and clay/silt lenses appear to dramatically decrease in the northwestern direction along the sparge curtain boundary. A silt/clay lens was only detected from about 8.5 to 9.5 feet in boring TW-18. The thickness of the silt/clay lens may also attenuated in the southeastern direction. Upon implementation of IAS, air flow channels will likely be dependent on the extent and shape of the silt/clay material. Depending on these factors, as well as the permeability and heterogeneity of the sandy and shell hash materials below the silt/clay layer. injected air could travel in a uniform lateral direction beneath the layer, preferentially travel in one direction, or become trapped beneath the silt/clay layer.

Since plumes B and C essentially represent two distinct sites with different types of contamination and soils, two short-term (6-day) pilot-scale tests are proposed for Site 35, one for plume B and one for plume C. The pilot test for plume B will be conducted first since the soil lithology is more homogeneous and contains more sand and less silt than the aquifer materials located further south in the plume C area. Thus, the plume B area is more conducive to IAS technology and has the greatest chance of success. If the plume B pilot test appears successful (i.e., air can be effectively injected into the aquifer with no signs of entrapment below confining layers), then the plume C pilot test will be performed. This area contains the highest levels of solvent-related contamination and poses the greatest treatment challenge with respect to IAS. It is anticipated that the scope of work for the plume C pilot test will be very similar to the first plume B pilot test. However, modifications and adjustments may be made to the plume C study based on data obtained and lessons learned from the first test. To accommodate the two different types and zones of contamination, two sparging wells are proposed for the plume B treatability study, as shown in Figure 2-5. The upper sparging well would be screened approximately 14 to 16 feet bgs, whereas the lower sparging well would be screened from approximately 32 to 34 feet bgs. Exact screen placements would be determined in the field based on actual conditions. As shown in Figure 2-6, only one deep sparging well is proposed for plume C because of the silt/clay and clay silt lenses present from approximately 7 to 23 feet bgs. Air injected into the plume C sparging well is expected to travel horizontally within the lower sand layer and beneath the silt/clay lenses. The air will gradually travel upward as the silt/clay lenses become thinner and eventually disappear.

As shown in Figures 2-5 and 2-6, as the injected air exits the well screen and travels upward towards the water table, it fans out radially, forming a parabolic-shaped zone of influence (under homogeneous conditions). Soil heterogeneities, however, such as silt stringers or very permeable sand lenses, can dramatically alter this flow regime by trapping air and forcing it to move laterally and/or by creating preferential flow paths. Thus, changes in lithology may preclude the sparge curtain from treating certain zones of contamination. Because of the "fanning-out" effect, the length of the radius of influence (ROI) of a sparging well is typically least at the bottom of the well and greatest near the water table. Since the sparging wells cannot be placed below the semi-confining layer, chlorinated hydrocarbons located immediately above this layer may pass beneath and/or between the sparging wells. To minimize this problem, sparging wells may need to be tightly spaced in the deep zones of contamination (i.e., plume C). In areas with mainly shallow contamination, a longer spacing may be feasible, depending on lithology.

Depending on the results of the test and the observed vertical distributions of BTEX compounds and chlorinated hydrocarbons, the full-scale design could include any of the following sparging well combinations:

- Shallow sparging wells for BTEX
- Shallow and deep sparging wells for BTEX
- Deep sparging wells for chlorinated hydrocarbons
- Shallow and deep wells for chlorinated hydrocarbons

The results of the short-term pilot tests will provide key information concerning the effectiveness and implementability of IAS technology at the Site 35 plumes. However, the short-term tests will not provide conclusive evidence as to the effectiveness of the sparge curtain to mitigate long-term contaminant migration. Furthermore, since the plume B pilot test will only be performed for a short duration, it will not provide data regarding potential enhancement of biodegradation rates in this area. For these reasons, a long-term (i.e., 12 to 18-month) barrier effectiveness test is proposed for plumes B and C, provided the short-term pilot test(s) yield(s) promising results. The long-term test would essentially represent the first phase of the interim remedial action, in which permanent, fullscale equipment and utilities would be installed by the Remedial Action Contract (RAC) contractor and operated at the site. During this period, new and existing monitoring wells located up-, down-, and cross-gradient of the sparge curtain boundary would be monitored to track contamination in both untreated and treated areas. Near the end of this time frame, one of the following decisions would be made based on sampling results:

• Continue operation of the existing system

- Expand the existing IAS system to include additional areas if necessary (e.g., plume A and/or plume D)
- Discontinue use of the sparging system in plume B and/or plume C in favor of an alternate technology (i.e., in-well aeration)

Should the short-term tests demonstrate that IAS is a potentially feasible technology for both the BTEX and solvent-related plumes, Baker proposes to proceed with the design of the full-scale interim system based on the collected data and following receipt of review comments on the Treatability Study Report.

# 3.0 TREATABILITY STUDY OBJECTIVES

At Site 35 IAS is proposed as part of an interim remedial action. The focus of this interim action is the contaminated surficial groundwater in the area located east of the former Site 35 Fuel Farm, between Brinson Creek and the proposed divided highway. As this represents only a portion of the contaminated shallow groundwater identified at the site, this action is referred to as an Interim Remedial Action. That is, it represents only a portion of a more comprehensive investigation and remediation at Site 35 and will not necessarily be the final solution for OU No. 10.

The objectives of the pilot-scale treatability study are as follows:

- Assess the applicability of IAS technology in addressing shallow groundwater contamination at Site 35 by evaluating the effectiveness, implementability, and cost of a full-scale treatment system.
- Obtain sufficient data to afford the development of a full-scale system remedial design.
- Assess the impact of air emissions on human health and the environment, and verify that air emissions will not impact the proposed highway project.

## 4.0 **TESTING PROCEDURES**

A Final Remedial Investigation Work Plan, Sampling and Analysis Plan (SAP), Quality Assurance Project Plan (QAPP), and site-specific Health and Safety Plan (HASP) were prepared by Baker (December, 1993) for various field activities at Site 35, including monitoring well installation and soil and groundwater sampling. These project plans will be used for the monitoring well installation and groundwater sampling activities described herein for the pilot-scale test.

## 4.1 <u>Mobilization</u>

Mobilization will include site preparation, site clearing, and mobilization of drilling crew and rig.

## 4.1.1 Site Preparation/Site Clearing

Since the treatability study area is located in a heavily-wooded, low-lying area, site-preparation and site-clearing activities will be required to provide access and a stable working surface.

The existing dirt access road is generally accessible for a drilling rig and 4-wheel drive vehicles. However, the treatability study areas are in a low-lying portion of the site, which are subject to occasional flooding and are generally soft. Therefore, the areas will need to be improved prior to treatability study mobilization activities. A small staging area (approximately 15'x 15') will be prepared in each area by placing a 1-foot thick compacted gravel layer over a geofabric. Limited site-clearing, which includes cutting small trees and removing shrubs, may be required to install the staging areas and treatability study monitoring wells.

# 4.1.2 Installation of Temporary Utilities

The compressor for the IAS system will be operated using a 20-hp gas-powered engine. Therefore, installation of temporary power will not be required.

# 4.1.3 Temporary Facilities

Baker's existing office and storage trailers near Site 41 will be used during the study due to its short duration. Trash will be collected in garbage bags and disposed of in the dumpster located at Site 41. Baker will have a mobile phone on site during the well installation and treatability study effort.

## 4.2 Drilling and Well Construction

This section describes the procedures for the construction and installation of groundwater monitoring wells (two-inch diameter PVC casings two-inch diameter, No. 10 slot, well screened), IAS wells, and the soil gas monitoring probes. All drilling activities will be performed using hollow-stem augering methods under the direct supervision of a licensed well driller in accordance with the procedures provided in the Baker SAP. Oversight will be provided by a Baker geologist.

# 4.2.1 PVC (2-inch) Monitoring Wells

Plan views of the proposed IAS and groundwater monitoring wells for each test are shown in Figure 4-1. As shown in Figure 4-1, six pairs of shallow/deep monitoring well clusters are proposed for the pilot test for plume B. For the plume C test, four pairs of shallow/deep monitoring well clusters

are planned with an additional four deep monitoring wells. Thus, a total of 12 new monitoring wells will be installed for each test. All new monitoring wells will be installed and developed immediately prior to performance of each treatability study.

To optimize data collection for the plume B study, each pair of wells will not be located immediately adjacent to one another as is done with a typical well cluster. However, the cluster well numbering terminology will be used to maintain consistency with previous investigations. The purpose of the two-well cluster concept is to provide the means for obtaining groundwater data at the shallow groundwater surface and above the underlying semi-confining layer. These intervals are monitored by existing double-nested shallow wells. According to the results of previous investigations, the shallow groundwater surface can be expected to be encountered across the treatability study area at two to three feet bgs. Data provided in previous investigations indicates that the top of the semiconfining layer is located about 35 feet bgs.

Each well in the two-well clusters will be provided with either an "A" or "B" designation (e.g., MW-45A and MW-45B). The "A" will identify the well screened at the groundwater surface, whereas "B" will identify the well screened at the top of the underlying confining layer. Existing monitoring wells are currently numbered up to 35MW-43A/B. Therefore, wells installed for the treatability studies will begin with number 35MW-44A/B.

Each well will be constructed with two-inch diameter, schedule 40 PVC casings and No. 10 slot, 2-inch diameter PVC screens. All air sparging wells (35MW-44A/B and 35MW-51B) will be installed using two-foot long screens. The shallow sparging well will be installed to a depth of approximately 16 feet bgs. The deep air sparging well will be installed just above the clayey silt semi-confining layer at a depth of approximately 34 feet bgs.

For the plume B test, a 10-foot screened interval for the groundwater surface monitoring wells will be used from about two to 12 feet bgs. For the deep monitoring wells in plume B, a five-foot long screen will be set approximately three feet higher than the screen depth used for the deep sparging well (i.e., 31 feet). These monitoring wells are placed higher than the sparge wells for the purpose of intercepting the air flow channels rising from the injection well. Detailed well construction information and well installation procedures are provided in Section 5.0 of the SAP.

Because of the presence of the silt/clay lenses, the shallow wells for the plume C test will actually be screened within the lower sand stratum just above (i.e., 1-2 feet) the deep well casing (i.e., within a range of approximately 20 to 30 feet bgs). For all deep monitoring wells which are part of a well cluster (35MW-52B, 35MW-53B, 35MW-54B, and 35MW-55B), a five-foot long screen will be set at a depth that is either equal to, or slightly higher (i.e., 1 to 3 feet) than the screen depth used for the deep sparging well, depending on the thickness of the sand stratum. Thus, the screens for these deep monitoring wells which are not part of a cluster (35MW-56B, 35MW-57B, 35MW-58B, and 35MW-59B), 15-foot long screens will be set for an interval from 19 to 34 feet bgs. The purpose of these 15-foot screens is to capture a greater section of the aquifer to allow for more effective monitoring of the horizontal movement of air at large distances from the sparge well.

Continuous split-spoon sampling using 2-foot long, 2.5- or 3-inch I.D. spoons will be performed during installation of several of the deep wells to determine soil types and well screen placements. Selected soil samples will be collected for possible future geotechnical analysis (e.g., grain size analysis), if deemed necessary following completion of the treatability study.

## 4.2.2 Soil Gas Probes

For each test, a total of six soil gas probes will be installed at various locations surrounding the air sparging wells as shown in Figure 4-2. The probes will be placed approximately 1 foot above the water table (i.e., 1 to 1.5 feet bgs). The probes will be constructed of 2.5-feet long, 1/2-inch diameter schedule 40 PVC piping with retractable or disposable tips. They will be manually pushed into the soil and removed upon completion of the test.

## 4.3 <u>Pilot Test Design and Operation</u>

Once the soil gas probes and monitoring wells are installed, as described in Section 4.2, each IAS test and associated air and groundwater sampling/monitoring activities will commence as follows:

- Day 1: Pre-Test Sampling (Baseline Conditions)
- Days 2-3: Phase I IAS Test (5 scfm flow rate)
- Days 4-5: Phase II IAS Test (20 scfm flow rate)
- Day 6: Post-Test Sampling

During each phase of the pilot test, air will be simultaneously injected into both the shallow and deep sparging wells. In other words, approximately 5 scfm will be injected into each well during Phase I; whereas, approximately 20 scfm will be injected into each well during Phase II. The text will be revised to clarify this point. As discussed below, the length of Phase I and/or Phase II could be expanded based on field observations.

Changes in the following parameters will be measured to evaluate the radius of influence (ROI) of the IAS system:

- Dissolved oxygen (D.O.) in groundwater
- Oxygen concentration (by volume) in soil (vadose zone)
- Contaminant levels in vadose zone (soil gas)
- Contaminant levels in groundwater
- Helium concentrations in vadose zone
- Vadose zone pressure
- Groundwater pressure (water table elevation)

All measurements in the vadose (i.e., unsaturated) zone will be taken using the soil gas probes, and all groundwater parameters will be measured using the upper and lower aquifer monitoring wells.

Of the above parameters, oxygen concentration is the key parameter that will be used to assess the zone of influence of the sparging system, particularly D.O. concentrations in the surficial aquifer. Background dissolved oxygen levels are expected to be at concentrations less than 2 mg/L in the aquifer and possibly in the range of 10 - 15 percent in the vadose zone, depending on the amount of biological activity in the area. Once the IAS system is turned on, D.O. levels in the monitoring wells may rise to various levels up to the saturation point of about 9 mg/L, and oxygen levels in the vadose zone may increase to about 20 percent. The duration of Phase I and/or Phase II could be increased an additional 12 to 24 hours if D.O. measurements indicate that the system has not reached steady-state and more time is needed to obtain an accurate ROI estimate.

In addition to oxygen, a helium tracer will be used to help determine the IAS radius of influence. Procedures for the helium tracer test as well as the other data collection methods and frequencies are discussed for each test phase in the following sections.

All samples collected during this investigation, including QA/QC samples, will be designated with a unique number. The number will serve to identify the investigation, the site, the area within the site, the sample medium, a sampling location, depth or round (pre-test, test, post-test) of sample, and QA/QC qualifiers.

. . .

The sample designation format is as follows:

Site # - Medium - Location - Depth/Round - Time (QA/QC)

An explanation of each of these identifiers is given below.

---- . .

| Site #      | This in           | vestigat      | ion includes Site 35.                                                                                                                                                            |
|-------------|-------------------|---------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Medium      | GW                | =             | Groundwater                                                                                                                                                                      |
|             | SG                | =             | Soil Gas                                                                                                                                                                         |
|             | WT                | =             | Waste                                                                                                                                                                            |
| Location    | station<br>ground | numbe         | umbers identify the sampling location. This would include<br>er for soil location or monitoring well number for<br>Each grid station will be identified with a unique<br>number. |
| Depth/Round | Depth i           | ndicator      | rs will be used for soil samples. The number will refer to the                                                                                                                   |
| Dopunicouna | -                 |               | p of the sampled interval. For example:                                                                                                                                          |
|             | -                 |               |                                                                                                                                                                                  |
|             | 00                |               | top of sample at ground surface                                                                                                                                                  |
|             | 01                | =             | top of sample is 1 foot below surface                                                                                                                                            |
|             | 07                | =             | top of sample is 7 feet below surface                                                                                                                                            |
|             | Round             | indicato      | or will be used for groundwater samples as follows:                                                                                                                              |
|             | 01                | =             | Pre-test sampling round                                                                                                                                                          |
|             | 02                | <del>22</del> | Pilot test (Phase I)                                                                                                                                                             |
|             | 03                | =             | Pilot test (Phase II)                                                                                                                                                            |
|             | 04                | =             | Post-test sampling round                                                                                                                                                         |
| Time        |                   |               | rs will be used to identify the time (in hours) of sample ng each phase as follows:                                                                                              |
|             | 00                | =             | Initial baseline sampling or immediately after system startup (i.e., $t = 10$ minutes)                                                                                           |
|             | 02                | =             | t = 2 hours                                                                                                                                                                      |
|             | 24                | <b>72</b>     | t = 24 hours                                                                                                                                                                     |
|             | 48                | =             | t = 48 hours                                                                                                                                                                     |

| QA/QC | (FB) | = | Field Blank       |
|-------|------|---|-------------------|
|       | (D)  | = | Duplicate Sample  |
|       | (TB) | = | Trip Blank        |
|       | (ER) | = | Equipment Rinsate |

Under this sample designation format the sample number 35-GW-48A-01-24D refers to:

| <u>35</u> -GW-48A-01-24D  | Site 35                         |
|---------------------------|---------------------------------|
| 35- <u>GW</u> -48A-01-24D | Groundwater Sample              |
| 35-GW- <u>48A</u> -01-24D | Monitoring well 48A             |
| 35-GW-48A- <u>01</u> -24D | Pre-test sampling round         |
| 35-GW-48A-01- <u>24</u> D | Sample collected after 24 hours |
| 35-GW-48A-01-24 <u>D</u>  | duplicate (QA/QC) sample        |

This sample designation format will be followed throughout the project. Required deviations to this format in response to field conditions will be documented.

The types and quantities of QA/QC samples associated with the groundwater sampling are indicated in Tables 4-1, 4-2, and 4-3 discussed in the following sections. Additional information concerning the QA/QC samples is provided in the Site 35 QAPP. Sample bottle and holding time requirements for the groundwater samples are also provided in the QAPP.

#### 4.3.1 Pre-Test Sampling

Prior to startup of the IAS system, a 24-hour pre-test sampling event will be conducted to obtain a baseline data set of the natural physical/chemical conditions in the aquifer and vadose. The pre-test sampling matrix outlining all test parameters, methods, and sampling frequencies is provided in Table 4-1. Specific sampling methodologies are described below.

#### 4.3.1.1. Soil Gas Sampling and Monitoring

With the exception of the SUMMA canisters, all soil gas samples will be collected using a Dawson electric high volume air sampling pump connected to the soil gas probes. The high volume air sampler is designed to provide a variable flow setting between 3 to 20 liters/min. The air sampler will be connected to the soil gas probes using 1/4" flexible tubing (i.e., tygon, PVC, polyethylene, or polypropylene). Specific methods and equipment are given below.

#### Oxygen Concentrations

Oxygen concentrations in the vadose zone will be measured using a portable Sentinel Model 503-A  $O_2/LEL$  meter, or equivalent. The measurement will be taken by drawing air from the air pump discharge line into the intake tube on the  $O_2/LEL$  meter.

#### Organic Contaminant Concentrations

The majority of the total organic compound concentrations in soil gas will be measured using an HNu Model PI-101 or DL-101 photoionization detector (PID) with a 10.2 eV lamp. The measurement will be taken by holding the PID probe the in the discharge from the air pump.

In addition to PID readings, a limited number (Table 4-1) of vapor samples will be collected using 6-liter SUMMA canisters. The inlet to the SUMMA canisters (i.e., swagelock), which are supplied under vacuum, will be connected to the soil gas probes using 1/4" flexible tubing (i.e., tygon, PVC, polyethylene, or polypropylene) and shipped to an off-site laboratory certified by NFESC or the U.S. Army Corps of Engineers for EPA Method TO-14 analysis. A list of the constituents detected by the TO-14 analysis is provided in Appendix D. There is no holding time for the SUMMA canisters; however, it is anticipated that all canisters will be shipped to the laboratory within a few days of sampling and analyzed within a two-week time frame.

#### Pressure Measurements

Pressure measurements will be taken using magnehelic differential pressure gauges (e.g., Dwyer Series 2000, 0-20"  $H_2$ 0) hard-piped to dedicated 1/4-inch diameter soil gas probes.

#### 4.3.1.2. Groundwater Sampling

#### Oxygen Concentrations

D.O. concentrations in the aquifer will be measured using a portable YSI Model 57 D.O. meter, or equivalent. The measurement will be taken by using the peristaltic pump to pump water into a small jar in which the D.O. sensor is placed. The D.O. measurement will be taken after the sensor reading stabilizes. The collected water will be disposed in the decontamination water container.

#### Organic Contaminant Concentrations

Groundwater samples will be collected for VOC analysis as indicated in Table 4-1. The peristaltic pump will be used to purge three to five well volumes from the well and to obtain a turbidity reading less than 10 NTUs prior to collecting the sample. Additional sampling collection protocols are provided in the SAP. The samples will be analyzed using EPA SW 846 Method 8240 (plus xylenes) by an off-site laboratory certified by NFESC or the U.S. Army Corps of Engineers.

#### Pressure Measurements

Water table levels will be automatically recorded on an hourly basis in four shallow wells throughout the pre-test, pilot test, and post-test periods using pressure transducers linked to a data logger (4-channel In Situ, Inc. Hermit Model SE2000).

## 4.3.2 Pilot Test Operation

As previously noted, each pilot test will consist of two, 2-day phases (Phase I and Phase II) in which air injection flow rates (per well) of approximately five standard cubic feet per minute (SCFM) and 20 SCFM will be used. The phases will be performed in series without discontinuing air injection. IAS systems typically operate within the range of three to 20 SCFM, with the majority of systems operating around 10 SCFM per well. Thus, the five and 20 SCFM flow rates were selected to provide the optimal data on which to base a full-scale system design.

#### 4.3.2.1 Pilot Test Equipment

A process flow schematic showing the equipment and instrumentation to be used for the IAS tests is provided in Figure 4-3. The equipment shown in Figure 4-3 will be pre-assembled on a single-axle flat bed trailer (5 feet by 8 feet), which will be transported to the site by a van or pickup truck. Since a soil vapor extraction (SVE) test will not be performed in conjunction with the IAS test due to the high water table, the major equipment item to be used in the IAS will be an oil-free rotary vane air compressor. The compressor will be equipped with a pressure relief valve, check valve, and pressure gauge and will be plumbed to a section of 1-inch diameter schedule 40 steel pipe with a bleed valve to control air flow and sampling port to monitor helium concentrations. Schedule 40 0.5-inch diameter high temperature hose will be used to connect the steel pipe to the injection well head. The following parameters will be measured on the compressor discharge:

- Temperature
- Pressure
- Air flow rate

These parameters will be monitored periodically and any changes/adjustments recorded in the field log book as appropriate.

#### 4.3.2.2 Pilot Test Sampling

The test sampling matrix outlining all test parameters, methods, and sampling frequencies is provided in Table 4-1. The sampling procedures are identical to those described in Section 4.3.1, except that helium concentrations will be measured in the soil as part of the helium tracer test discussed in the next section.

## 4.3.2.3 Helium Tracer Test

As air injection is initiated after the baseline sampling, helium will be blended with the injection air at a concentration of about two percent. A series of pressurized helium tanks will be manifolded together and piped into the air injection line. Helium air flow will be adjusted manually by sampling the injected air. Pressure and flow gauges will also be provided on the helium line. The helium will be used as a conservative tracer to identify where the injected air reaches the vadose zone, and to identify if the injected air is traveling to any location of concern. Helium concentrations in the vadose zone will be measured using a portable battery-operated helium detector (Mark 9821 or equivalent). The measurement will be taken by drawing air from the air pump discharge line into the intake tube on the helium detector.

Once the soil gas data has been collected, contaminant emission rates will be estimated by multiplying the air injection flow rate  $Q_{air}$  [ft<sup>3</sup>/min] with some average of the measured shallow soil gas concentrations  $C_{sq}$  [lb/ft<sup>3</sup>]:

Emissions = 
$$Q_{air}$$
 [ft<sup>3</sup>/min] x  $C_{sa}$  [lb/ft<sup>3</sup>]

As a check on the accuracy of the estimate, an estimate of the helium emission rate will be calculated using the same procedure. The helium emission estimate will then be compared with the known helium injection rate to check the accuracy of the contaminant emission rate estimate.

# 4.3.3 Post-Test Sampling

.

Following completion of Phase II air injection period, a 24-hour post-test sampling event will be conducted to evaluate how the aquifer and vadose zone return to their natural pre-test conditions. The post-test sampling matrix outlining all test parameters, methods, and sampling frequencies is provided in Table 4-3. The sampling methodologies are identical to those described in Section 4.3.1 for the pre-test sampling round.

# 4.4 Equipment Decontamination Procedures

All drilling and sampling equipment will be decontaminated before use, between each sampling station, and at the completion of the sampling program in accordance with the EPA Region IV ECBSOPQAM. Specific decontamination procedures are provided in the SAP (Baker, 1993).

## 4.5 Residuals Management

Investigation derived wastes (IDW) will be generated during the drilling and sampling activities associated with the treatability study. The IDW to be generated will include soil cuttings, purge and development groundwater, spent decontamination fluid, and personal protective equipment (PPE) and clothing (PPC). Procedures for IDW disposal are included in the SAP (Baker, 1993).

## 5.0 COMMUNITY RELATIONS

Community relations activities and requirements are outlined in the Base-wide Community Relations Plan prepared by Baker for the CERCLA RI/FS activities being performed on-Base. A Technical Review Committee (TRC) has been established for the MCB Camp Lejeune CERCLA activities, which includes LANTDIV, the Activity, USEPA, NC DEHNR personnel, and local citizens. The TRC reviews CERCLA documents and participates in periodic meetings with Baker to discuss ongoing CERCLA activities.

## 6.0 **REPORTS**

Two main reports are associated with the treatability study effort include this Treatability Study Work Plan and the Treatability Study Report, which will document the treatability study results and conclusions. Submission and review of these two reports are discussed in the following sections.

## 6.1 <u>Treatability Study Work Plan</u>

This Draft Treatability Study Work Plan, which details the scope of the treatability study activities to be performed, is being submitted to LANTDIV, the Activity, USEPA Region IV, and NC DEHNR for review. Comments received from the NC DEHNR and USEPA Region IV, will be addressed and incorporated, as appropriate, into the Final Treatability Study Work Plan. Baker will distribute the appropriate number of copies of the Final Treatability Study Work Plan to LANTDIV, the Activity, USEPA Region IV, NC DEHNR, and the other members of the TRC.

# 6.2 <u>Treatability Study Report</u>

Upon completion of the on-site pilot study, a Treatability Study Report will be prepared in accordance with USEPA's "Guide for Conducting Treatability Studies under CERCLA" (USEPA, October 1992). The Treatability Study Report will provide a presentation and evaluation of the treatability study test results. The Treatability Study Report will also include engineering and design-related information needed for evaluating the short- and long-term effectiveness, implementability (including long-term operation and maintenance requirements), and cost (both capital and operation and maintenance) of implementing a full-scale IAS system on site.

Two versions of the Treatability Study Report will be prepared as follows: a Draft Treatability Study Report for review by the Navy, USEPA, and NC DEHNR; and a Final Treatability Study Report, which will incorporate review comments from the Navy and regulatory agencies. Upon completion, Baker will distribute the appropriate number of copies of the Final Treatability Study Report to LANTDIV, the Activity, USEPA Region IV, NC DEHNR, and the other members of the TRC.

# 7.0 SCHEDULE

A preliminary schedule depicting the treatability study process is provided in Figure 7-1. As shown in Figure 7-1, the on-site operational period for the pilot system, including installation of monitoring wells and demobilization efforts, is approximately three weeks, whereas, the entire treatability study process, which includes development and review of the Treatability Study Work Plan and Treatability Study Report, is expected to require a total of eight months to complete.

# 8.0 PROJECT MANAGEMENT AND STAFFING

The proposed management and staffing of this Treatability Study is graphically depicted in Figure 8-1. The primary participants in this project will include:

- Mr. Matthew D. Bartman, Activity Coordinator
- Mr. Daniel Bonk, P.E., Project Manager
- Mr. Gordon J. Ruggaber, P.E., Lead Engineer
- Mr. Mark Kimes, Site Manager/Project Engineer

Mr. Daniel L. Bonk will serve as the Project Manager. He will be responsible for the overall technical preparation of the report and will serve as the client contact representative from Baker. Lead technical assistance will be provided by Mr. Gordon J. Ruggaber. All field activities will be managed and coordinated by Mr. Mark Kimes, who will serve as the Site Manager. Mr. Kimes will be responsible for coordinating with on-site subcontractors. Senior review and technical guidance will be provided by the MCB, Camp Lejeune Activity Coordinator, Mr. Matthew D. Bartman.

Overall field and reporting QA/QC will be the responsibility of Mr. Daniel L. Bonk. Mr. Ray Wattras will provide program-level technical and administrative support.

# TABLES

## TABLE 1-1

## ORGANIC COCs THAT EXCEED REMEDIATION LEVELS OPERABLE UNIT NO. 10 (SITE 35) CTO-0323 MCB CAMP LEJEUNE, NORTH CAROLINA

| Contaminant of Concern      | RL <sup>(1,2)</sup> | Basis of<br>RL |  |
|-----------------------------|---------------------|----------------|--|
| Benzene                     | 1                   | NC WQS         |  |
| Trichloroethene             | 2.8                 | NC WQS         |  |
| cis-1,2-Dichloroethene      | 70                  | NC WQS         |  |
| trans-1,2-Dichloroethene    | 70                  | NC WQS         |  |
| Ethylbenzene                | 29                  | NC WQS         |  |
| Methyl Tertiary Butyl Ether | 200                 | NC WQS         |  |
| Xylenes                     | 530                 | NC WQS         |  |

Notes:

 $^{(1)}$  RL = Remediation Level

<sup>(2)</sup> Groundwater RLs expressed as µg/L (ppb)

NC WQS = North Carolina Water Quality Standard

# TABLE 4-1

# PRE-TEST SAMPLING MATRIX SITE 35 MCB CAMP LEJEUNE, NORTH CAROLINA

| Matrix      | Location                                  | Analysis    | Frequency         | Method                    | Total<br>Samples |
|-------------|-------------------------------------------|-------------|-------------------|---------------------------|------------------|
| Soil gas    | All probes                                | Oxygen      | t = 0, 8, 24 hrs  | O <sub>2</sub> /LEL meter | 18               |
| Soil gas    | All probes                                | VOCs        | t = 0, 8, 24 hrs  | Vapor analyzer            | 18               |
| Soil gas    | SG1, SG2, SG4, SG7,<br>SG8, SG9           | VOCs        | t = 0 hrs         | SUMMA, TO-14              | 3                |
| Soil gas    | All probes                                | Pressure    | t = 0, 8, 24  hrs | Pressure gauge            | 18               |
| Groundwater | All wells                                 | D.O.        | t = 0, 8, 24 hrs  | D.O. meter                | 18               |
| Groundwater | 46A/B, 50A/B, 53A/B,<br>54A/B             | VOCs        | t = 0, 24 hrs     | Lab, SW 846 8240          | 8 + 3*           |
| Groundwater | 45A, 46A, 48A, 50A,<br>52A, 53A, 54A, 55A | Water Level | Hourly for 24 hrs | Data logger               | 96               |

Notes:

\* Includes following QA/QC samples:

1 Trip blank

1 Equipment rinsate (sampling pump tubing)

•

1 Field duplicate

# TABLE 4-2

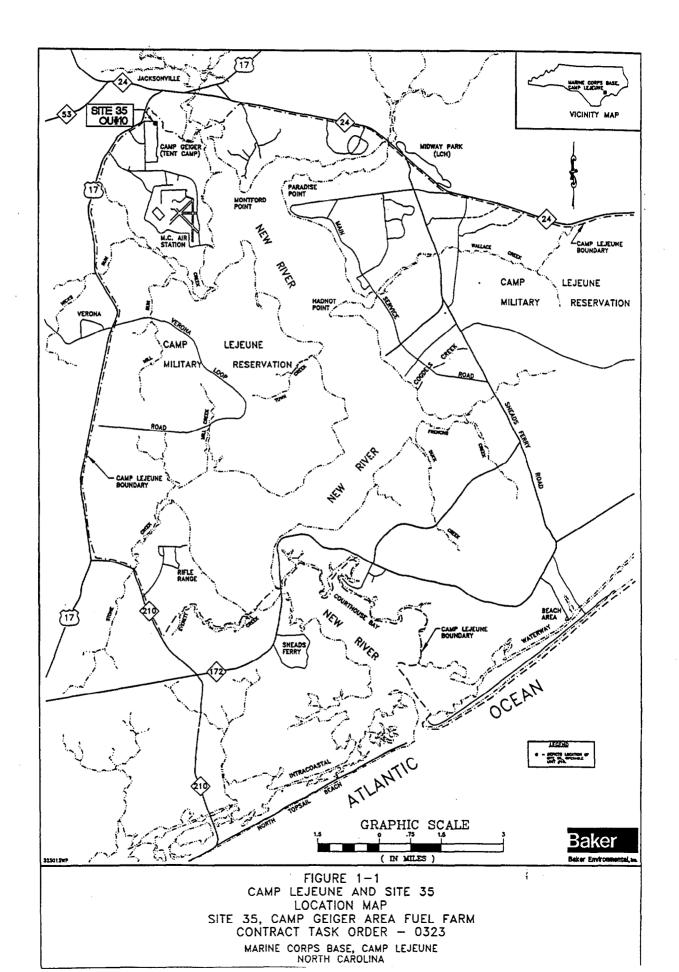
# PILOT TESTING SAMPLING MATRIX SITE 35, MCB CAMP LEJEUNE, NORTH CAROLINA

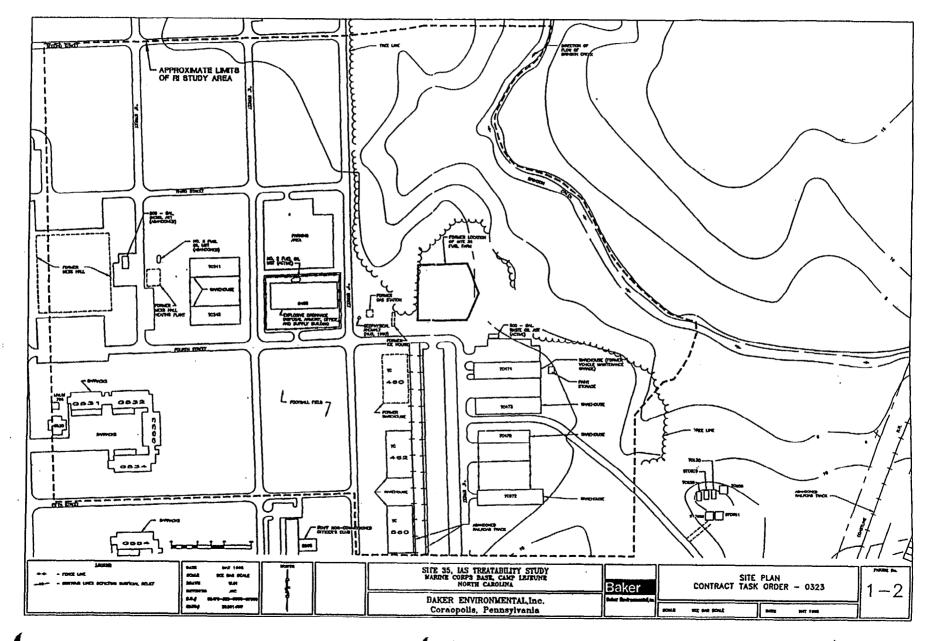
| Matrix           | Location                                  | Analysis    | Frequency                                   | Method                                | Total<br>Samples                              |
|------------------|-------------------------------------------|-------------|---------------------------------------------|---------------------------------------|-----------------------------------------------|
| Phase I, Air Fle | ow Rate = 5 SCFM                          |             |                                             |                                       |                                               |
| Soil gas         | All probes                                | Oxygen      | t=0, 2, 4, 6, 8, 12, 24, 28, 32, 36, 48 hrs | O <sub>2</sub> /LEL meter             | 66                                            |
| Soil gas         | All probes                                | VOCs        | t = 0, 8, 24, 32, 48 hrs                    | Vapor analyzer                        | 30                                            |
| Soil gas         | SG1, SG2, SG4, SG7,<br>SG8, SG9           | VOCs        | t = 48 hrs                                  | SUMMA, TO-14                          | 3                                             |
| Soil gas         | All probes                                | Pressure    | t = 0, 8, 24, 32, 48 hrs                    | Pressure gauge                        | 30                                            |
| Soil gas         | All probes                                | Helium      | t=0, 2, 4, 6, 8, 12, 24, 28, 32, 36, 48 hrs | Portable analyzer                     | 60                                            |
| Groundwater      | All wells                                 | D.O.        | t=0, 2, 4, 6, 8, 12, 24, 28, 32, 36, 48 hrs | D.O. meter                            | 66                                            |
| Groundwater      | 46A/B, 50A/B, 53A/B,<br>54A/B             | VOCs        | t = 24, 48 hrs                              | Lab, SW 846 8240                      | 8                                             |
| Groundwater      | 45A, 46A, 48A, 50A,<br>52A, 53A, 54A, 55A | Water Level | Hourly for 48 hrs                           | Data logger                           | 192                                           |
| Phase II, Air F  | low Rate = 20 SCFM                        |             |                                             | · · · · · · · · · · · · · · · · · · · | ··· <b>·</b> ································ |
| Soil gas         | All probes                                | Oxygen      | t=0, 2, 4, 6, 8, 12, 24, 28, 32, 36, 48 hrs | O <sub>2</sub> /LEL meter             | 66                                            |
| Soil gas         | All probes                                | VOCs        | t = 0, 8, 24, 32, 48 hrs                    | Vapor analyzer                        | 30                                            |
| Soil gas         | SG1, SG2, SG4, SG7,<br>SG8, SG9           | VOCs        | t = 48 hrs .                                | SUMMA, TO-14                          | 3                                             |
| Soil gas         | All probes                                | Pressure    | t = 0, 8, 24, 32, 48 hrs                    | Pressure gauge                        | 30                                            |
| Soil gas         | All probes                                | Helium      | t=0, 2, 4, 6, 8, 12, 24, 28, 32, 36, 48 hrs | Portable analyzer                     | 60                                            |
| Groundwater      | All wells                                 | D.O.        | t=0, 2, 4, 6, 8, 12, 24, 28, 32, 36, 48 hrs | D.O. meter                            | 66                                            |
| Groundwater      | 46A/B, 50A/B, 53A/B,<br>54A/B             | VOCs        | t = 24, 48 hrs                              | Lab, SW 846 8240                      | 8 + 3*                                        |
| Groundwater      | 45A, 46A, 48A, 50A,<br>52A, 53A, 54A, 55A | Water Level | Hourly for 48 hrs                           | Data logger                           | 192                                           |

Notes:

\* Includes following QA/QC samples:
1 Trip blank, 1 Field duplicate
1 Equipment rinsate (sampling pump tubing)

# TABLE 4-3

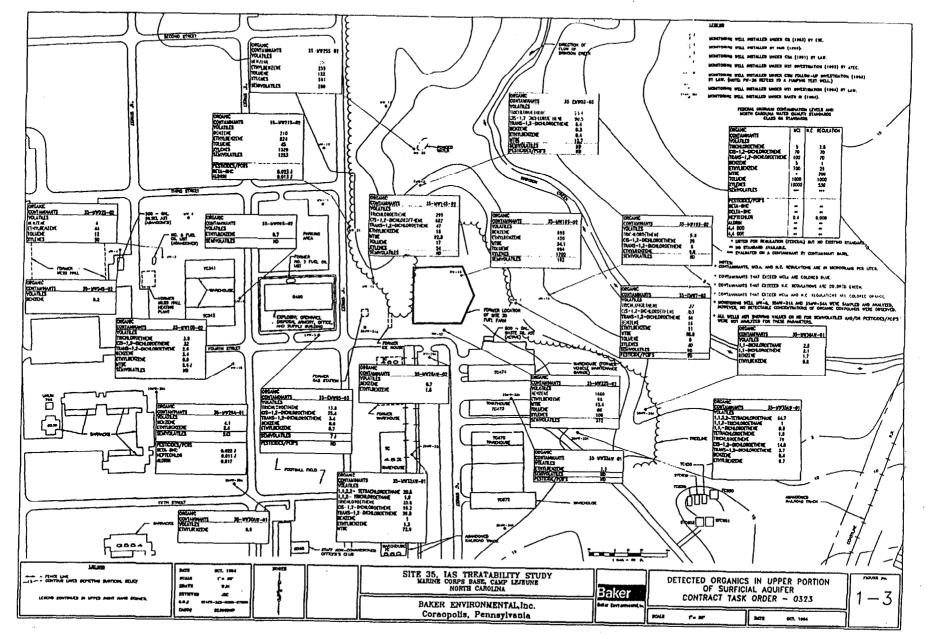

# POST-TEST SAMPLING MATRIX SITE 35 MCB CAMP LEJEUNE, NORTH CAROLINA


| Matrix      | Location                                  | Analysis    | Frequency            | Method                    | Total<br>Samples |
|-------------|-------------------------------------------|-------------|----------------------|---------------------------|------------------|
| Soil gas    | All probes                                | Oxygen      | t = 4, 8, 12, 24 hrs | O <sub>2</sub> /LEL meter | 24               |
| Soil gas    | All probes                                | VOCs        | t = 4, 8, 12, 24 hrs | Vapor analyzer            | 24               |
| Soil gas    | SG1, SG2, SG4, SG7,<br>SG8, SG9           | VOCs        | t = 24 hrs           | SUMMA, TO-14              | 3                |
| Soil gas    | All probes                                | Pressure    | t = 4, 8, 12, 24 hrs | Pressure gauge            | 24               |
| Soil gas    | All probes                                | Helium      | t = 4, 8, 12, 24 hrs | Portable analyzer         | 4                |
| Groundwater | All wells                                 | D.O.        | t = 4, 8, 12, 24 hrs | D.O. meter                | 24               |
| Groundwater | 46A/B, 50A/B, 53A/B,<br>54A/B             | VOCs        | t = 24 hrs           | Lab, SW 846 8240          | 4 + 1°           |
| Groundwater | 45A, 46A, 48A, 50A,<br>52A, 53A, 54A, 55A | Water Level | Hourly for 24 hrs    | Data logger               | 96               |

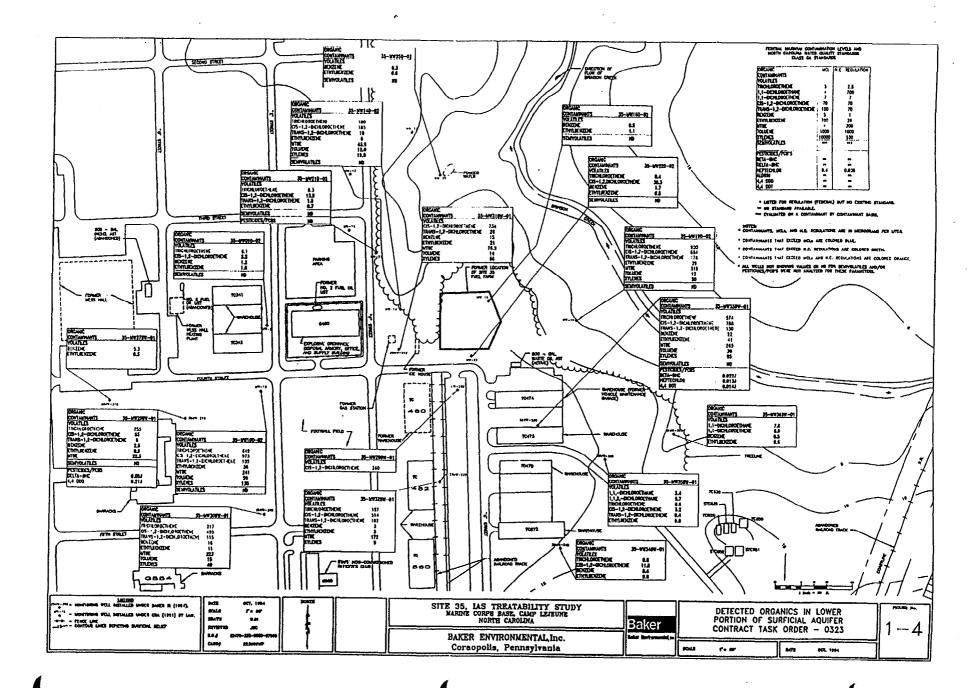
Notes:

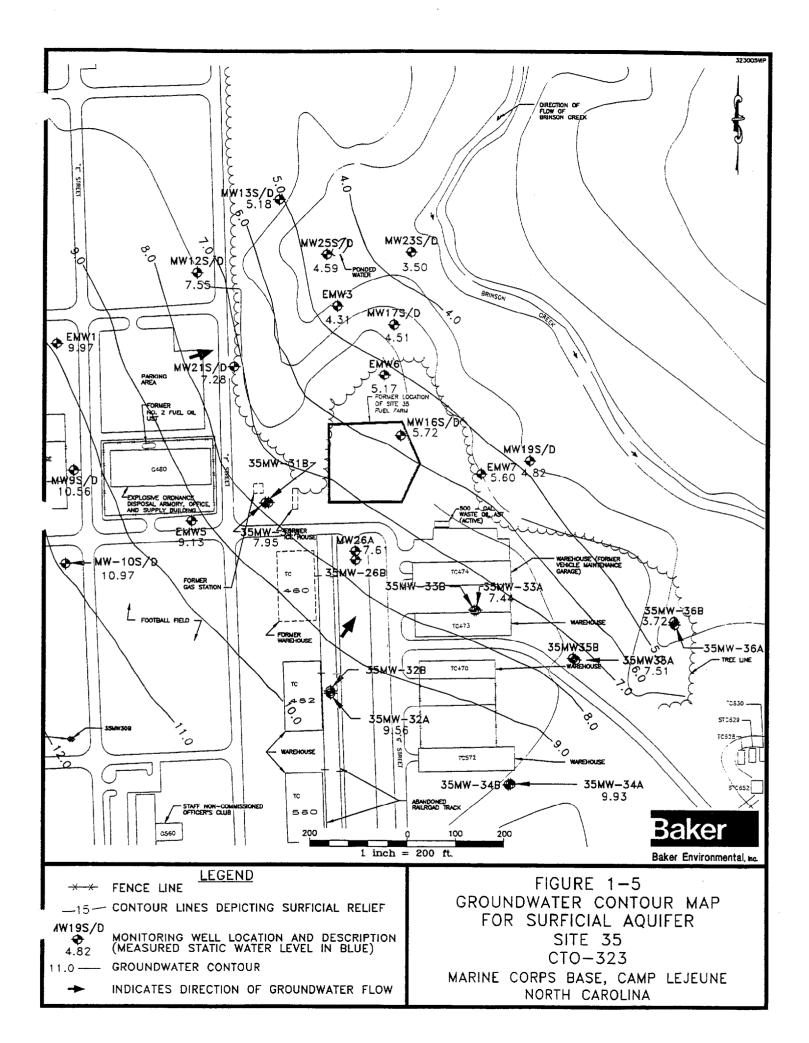
\* Includes following QA/QC samples:1 Trip blank

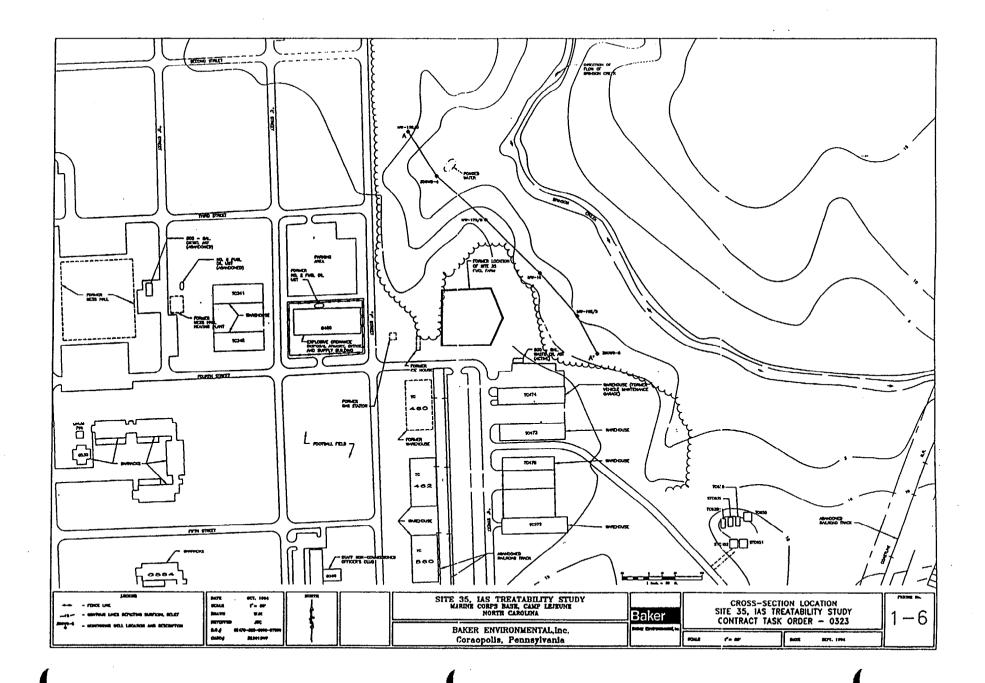
# **FIGURES**



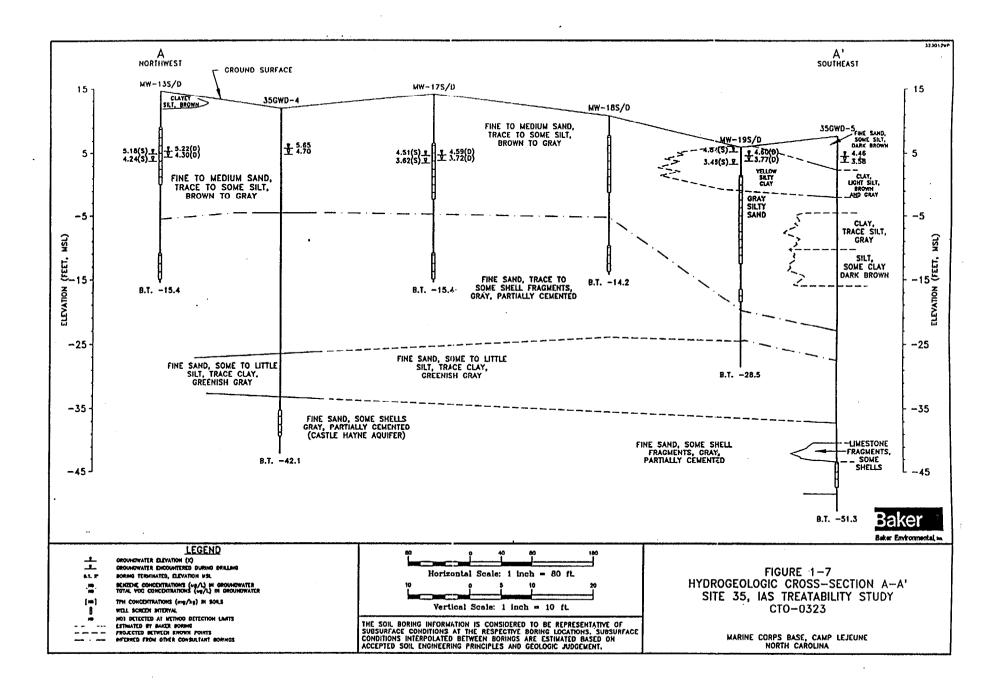




. 5

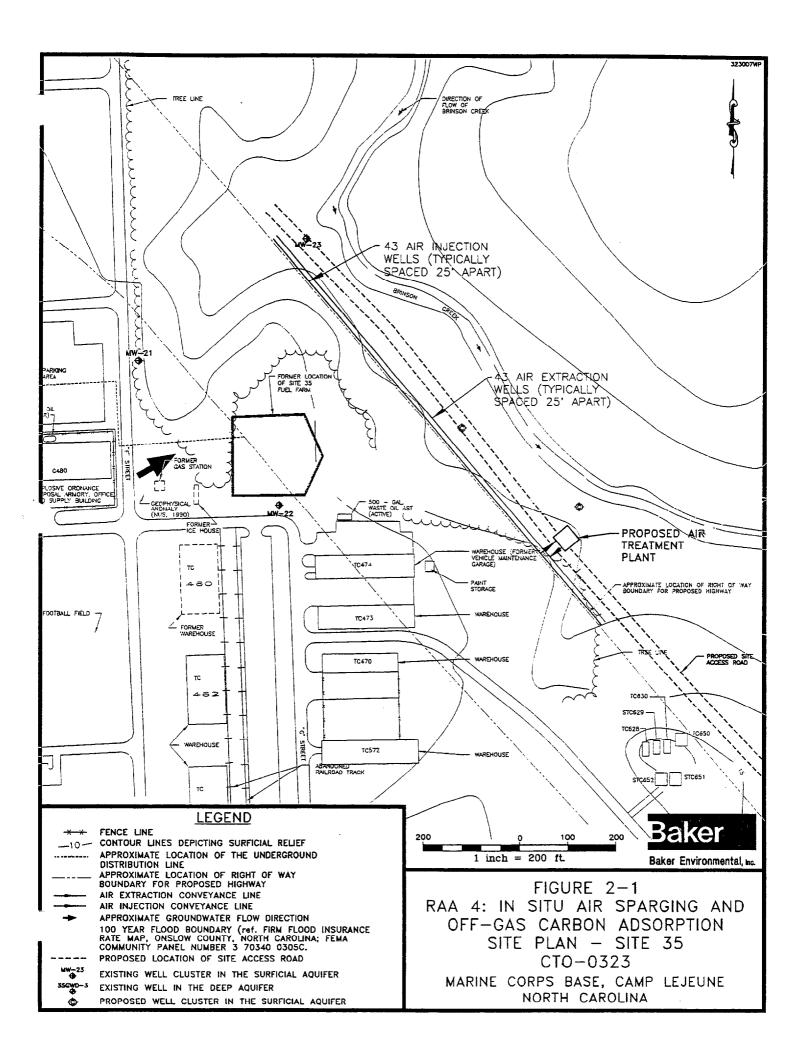

.

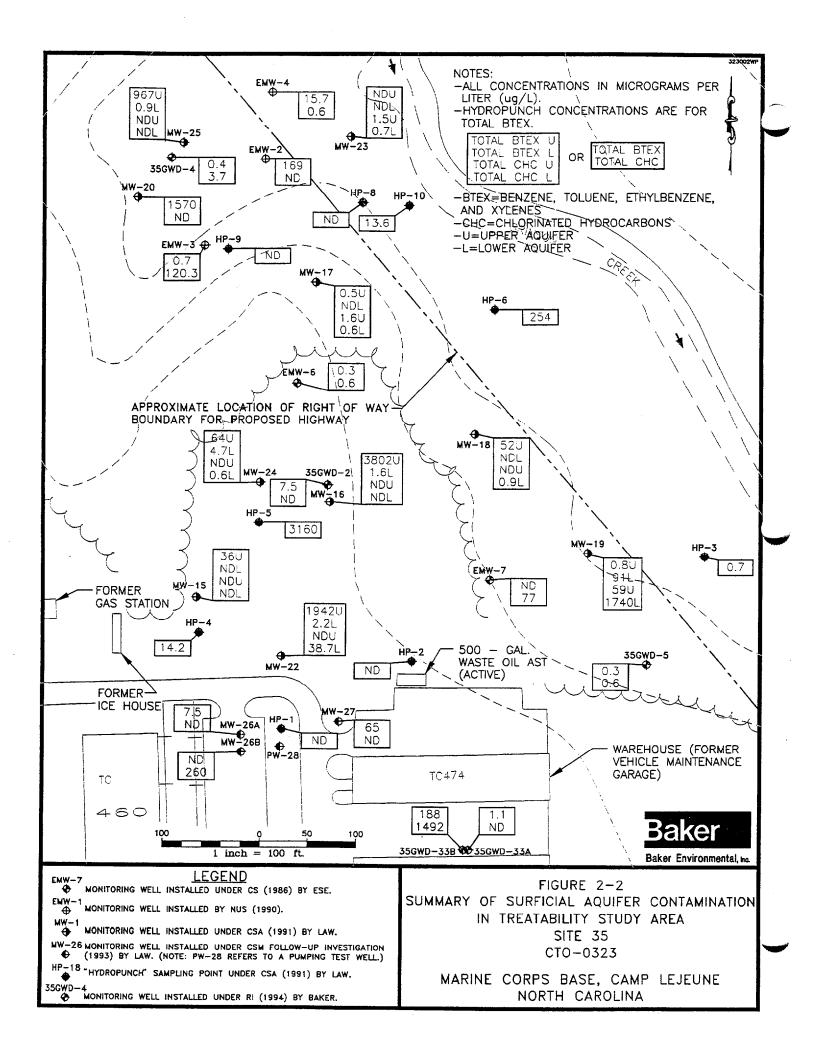

.

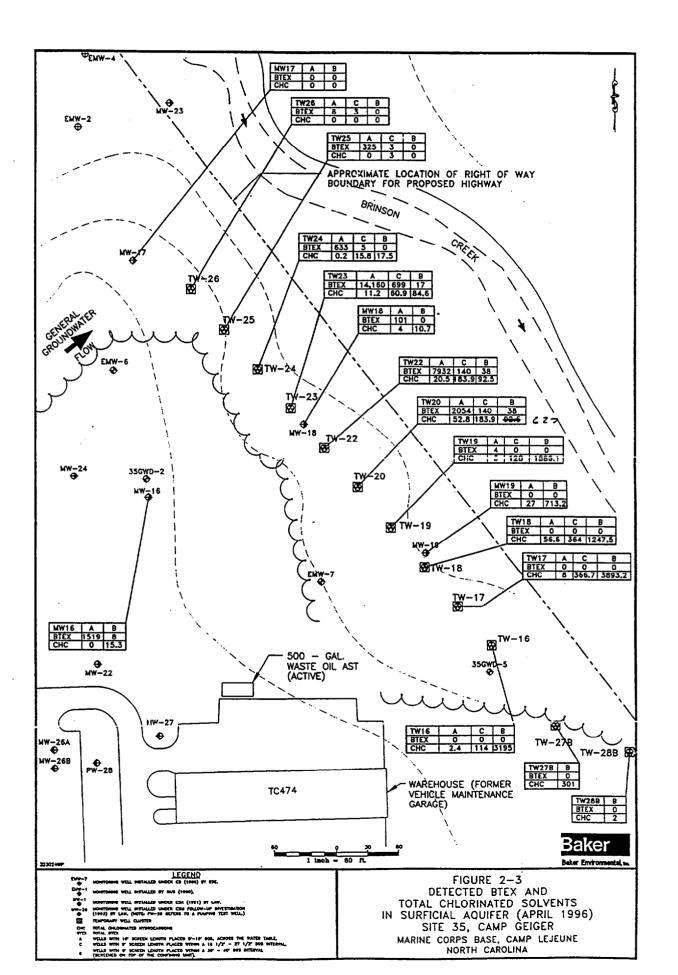



.

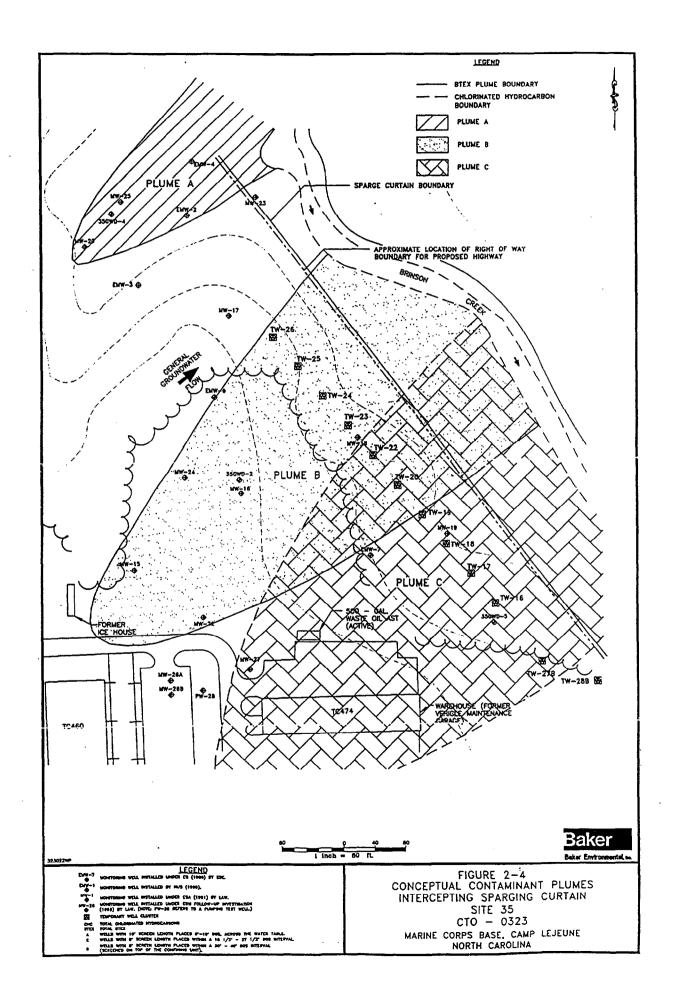




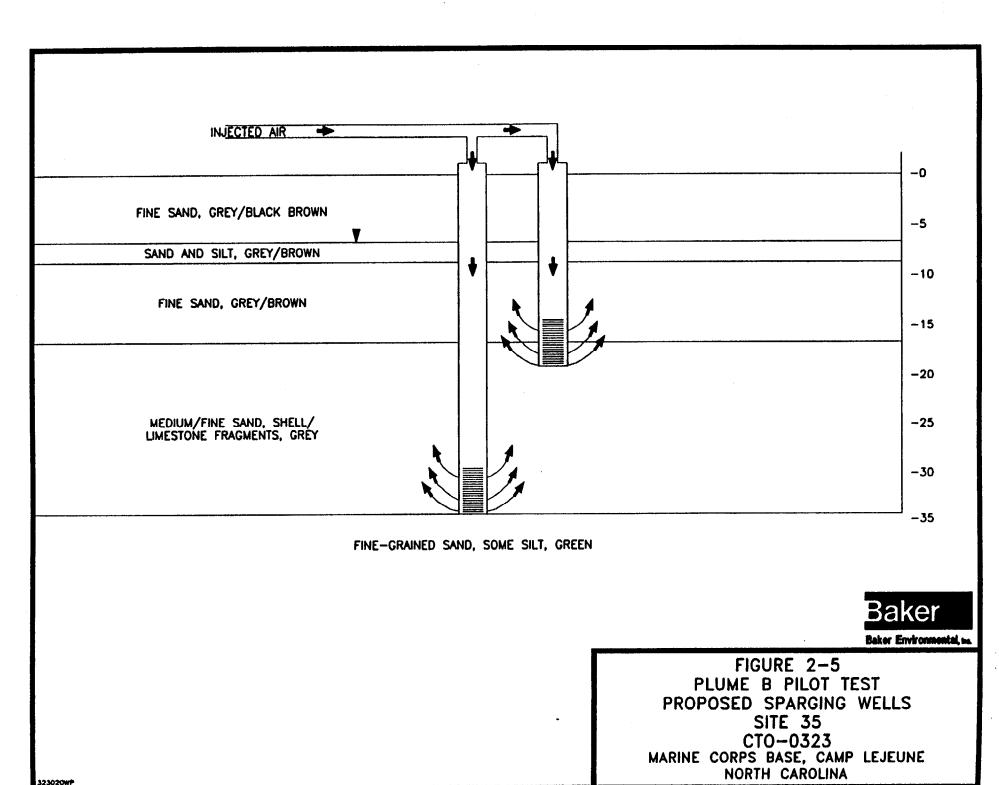





à.

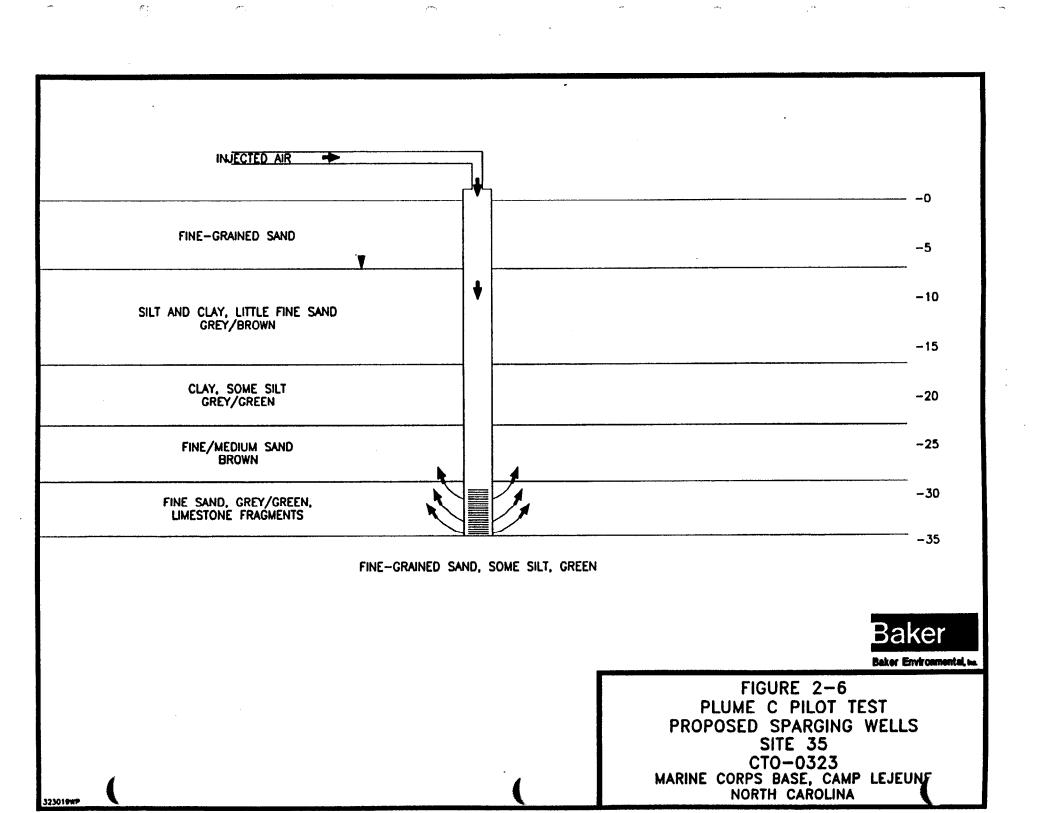


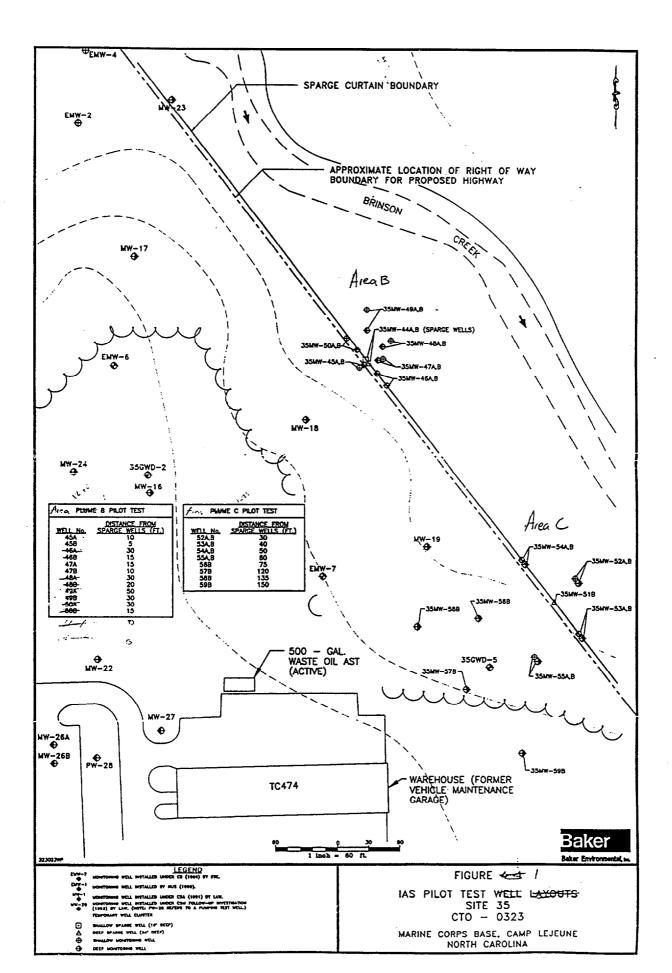

: .

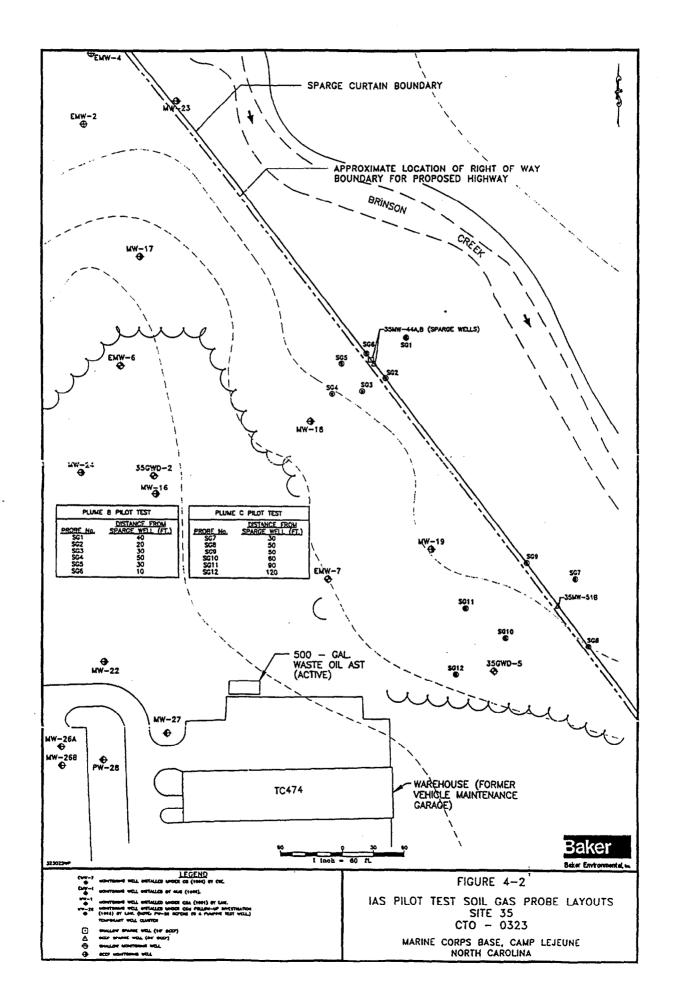


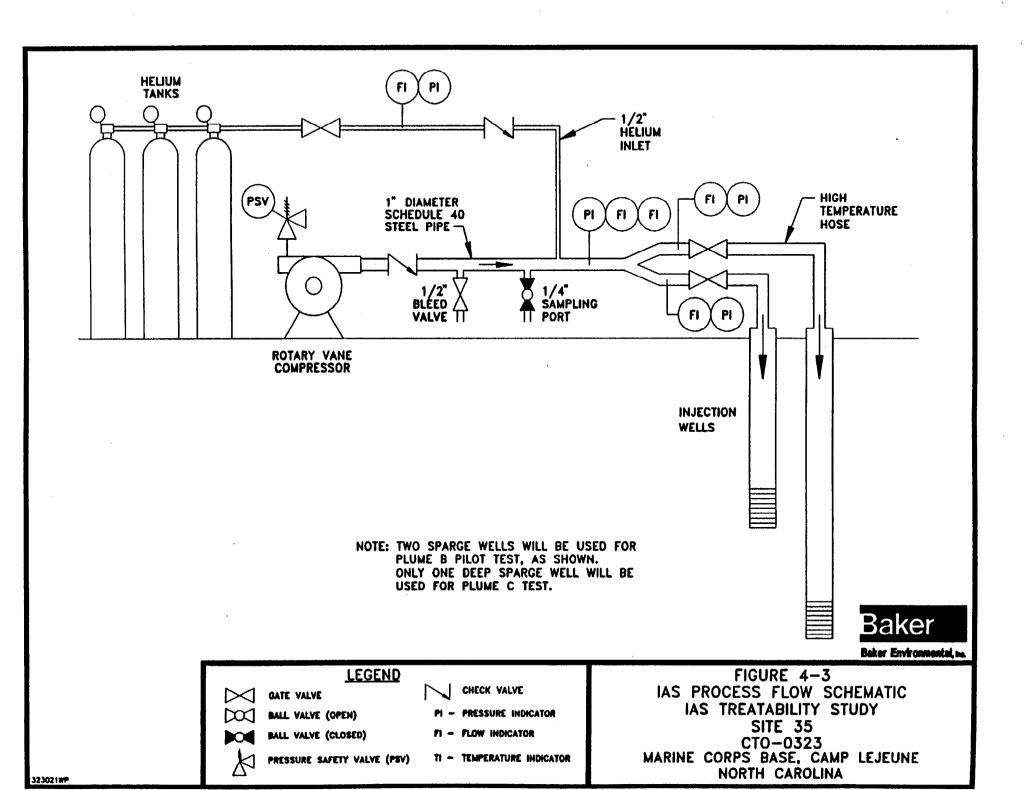






.





.



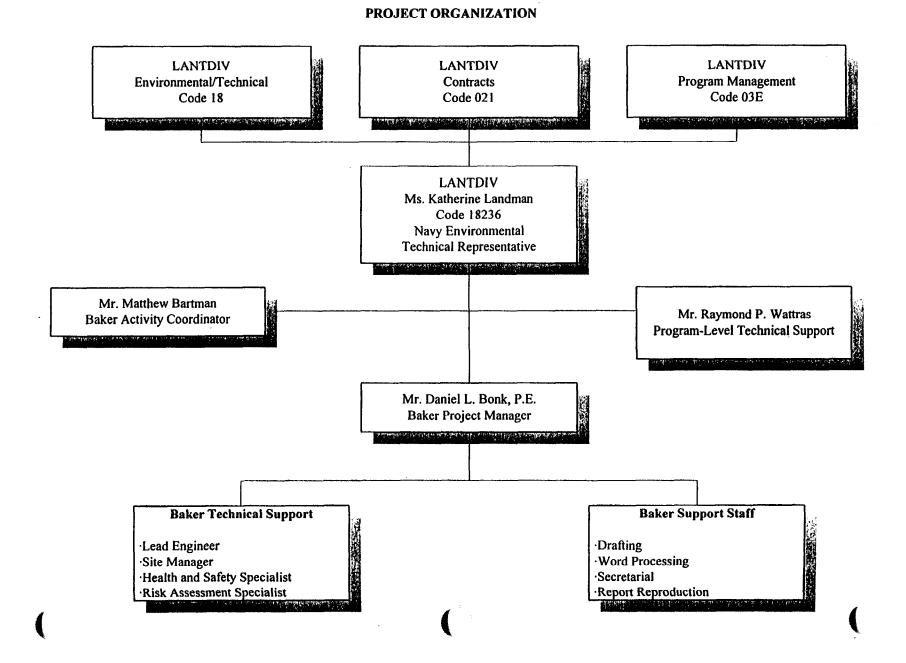

. •••



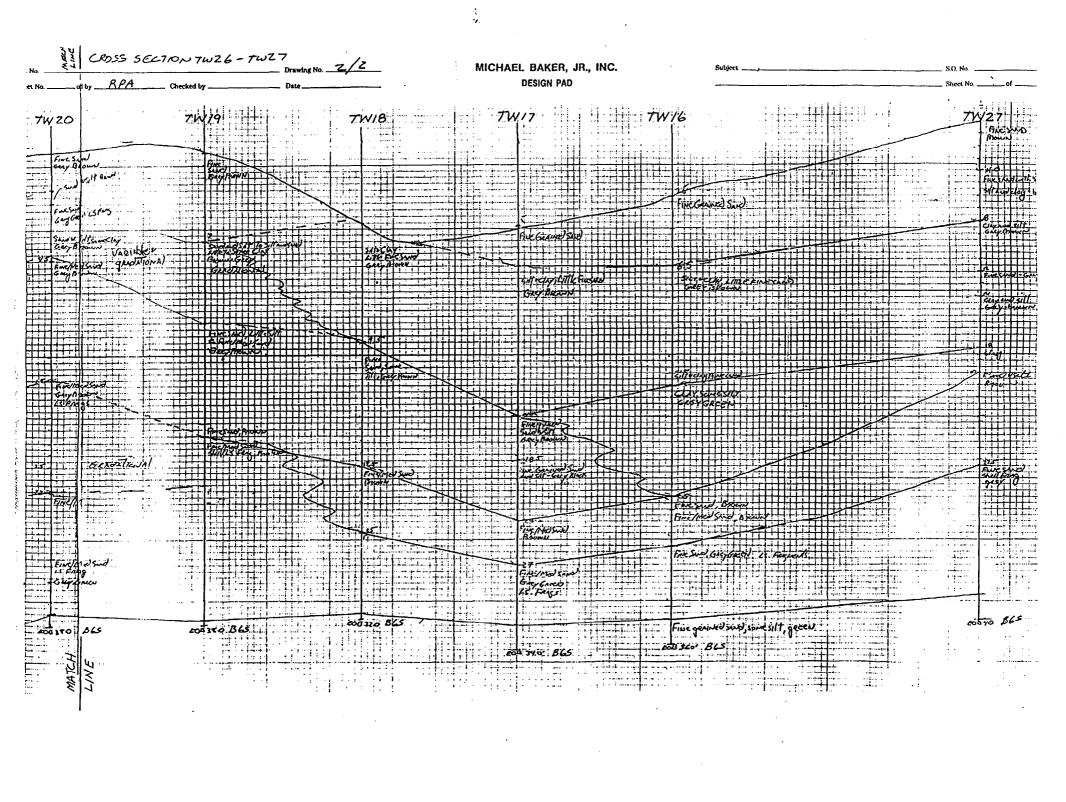


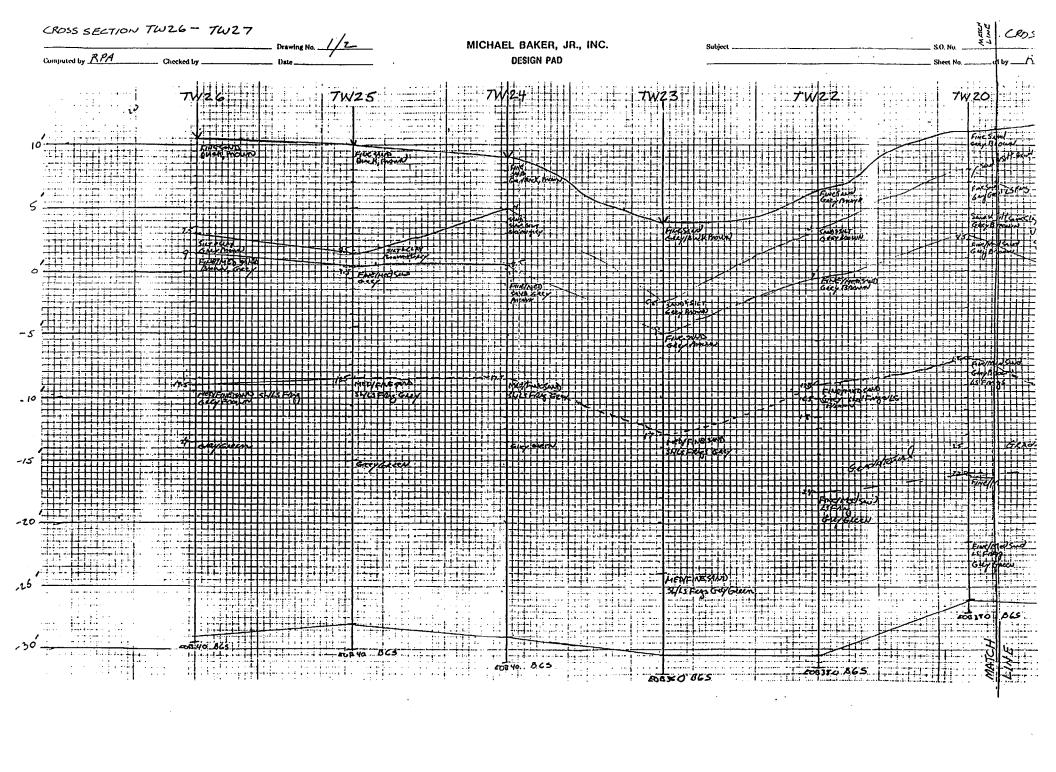





### FIG \_£ 7-1

.


IAS Treatability Study Schedule Site 35, Operable Unit No. 10 Marine Corps Base, Camp Lejeune, North Carolina


|                                        |          |          | 1996 |     |     |     |     |     |     |          |     |     |     |     | 1997 |     |
|----------------------------------------|----------|----------|------|-----|-----|-----|-----|-----|-----|----------|-----|-----|-----|-----|------|-----|
| IAS Treatability Study                 | Start    | Finish   | Jan  | Feb | Mar | Apr | May | Jun | Jul | Aug      | Sep | Oct | Nov | Dec | Jan  | Feb |
| Work Plan                              | 1/15/96  | 1/15/96  | •    |     |     |     |     |     |     |          |     |     |     |     |      |     |
| Draft Treatability Study Work Plan     | 1/15/96  | 2/15/96  |      |     |     |     |     |     |     |          |     |     |     |     |      |     |
| Navy/EPA/State Review                  | 2/15/96  | 4/15/96  |      |     |     |     |     |     |     |          |     |     |     |     |      |     |
| Final Treatability Study Work Plan     | 4/16/96  | 5/24/96  |      |     |     |     |     |     |     |          |     |     |     |     |      |     |
| Treatability Study                     | 6/15/96  | 8/27/96  |      |     |     |     |     |     |     | -        |     |     |     |     |      |     |
| Mobilization                           | 6/17/96  | 7/3/96   |      |     |     |     |     |     |     |          |     |     |     |     |      |     |
| Monitoring Well Installation (Plume B) | 7/8/96   | 7/17/96  |      |     |     |     |     |     |     |          |     |     |     |     |      |     |
| On-Site Pilot Study (Plume B)          | 7/22/96  | 7/30/96  |      |     |     |     |     |     |     |          |     |     |     |     |      |     |
| Monitoring Well Installation (Plume C) | 8/5/96   | 8/14/96  |      |     |     |     |     |     |     |          |     |     |     |     |      |     |
| On-Site Pilot Study (Plume C)          | 8/19/96  | 8/27/96  |      |     |     |     |     |     |     |          |     |     |     |     |      |     |
| Laboratory Analysis                    | 7/25/96  | 9/27/96  |      |     |     |     |     |     |     | <u> </u> |     |     |     |     |      |     |
| Treatability Study Report              | 8/28/96  | 1/30/97  |      |     |     |     |     |     |     | 1        |     |     |     |     |      |     |
| Draft Treatability Study Report        | 8/28/96  | 10/18/96 |      |     |     |     |     |     |     | 1        |     |     |     |     |      |     |
| Navy/EPA/State Review                  | 10/21/96 | 12/20/96 |      |     |     |     |     |     |     |          |     |     |     |     |      |     |
| Final Treatability Study Report        | 12/30/96 | 1/30/97  |      |     |     |     |     |     |     |          |     |     |     |     |      |     |

#### FIGURE 8-1



### APPENDIX A HYDROGEOLOGIC CROSS SECTIONS





### APPENDIX B HILL AFB TECHNICAL PAPER

.

•

•

ALCONDUCTION OF

Ŀ

ľ

Ł

L

. . . .

#### In Situ Air Sparging—Technology Demonstration for Remediating Groundwater Contaminated with Dissolved-Phase Constituents at Hill Air Force Base

Whitney Wheeless, Radian Corporation Steve Hicken. Hill Air Force Base Carrie Beitler, Jim Rowe, Mark A. Robbins, Radian Corporation Robert E. Hinchee, Parsons Engineering Science Paul C. Johnson, Arizona State University Richard L. Johnson, Oregon Graduate Institute of Science & Technology David E. MicWhorter, Colorado State University

#### Abstract

In-situ air sparging (IAS), in conjunction with soil vapor extraction (SVE), is becoming a widely used technology for remediating ground water contaminated with volatile organic compounds. As part of a technology demonstration conducted at Hill AFB, the authors evaluated IAS technology for remediating groundwater contaminated with dissolved-phase chlorinated organic compounds. The primary objective of the demonstration was to determine whether IAS could effectively serve as a control barrier technology and remediate the contaminant plume at Operable Unit 6, where trichloroethene is the major constituent of concern. Another objective was to establish the physical and chemical monitoring parameters and the types of sampling needed to conclusively determine the treatment effectiveness of IAS.

The investigators determined the effectiveness of IAS technology by evaluating the reduction of trichloroethene from the groundwater, as measured in hydropunch and monitor well samples of the groundwater collected before and after the twelve-week demonstration period. In addition, they used the results of a helium tracer study to determine the efficiency of the SVE system in capturing the air sparged into the aquifer. The investigators also used the results from monitor well purge tests to determine the representativeness of monitor well data for evaluating IAS systems. The zone of influence and the effect of the IAS system on the aquifer was determined on the basis of field measurements, such as water levels, subsurface pressures, and water quality parameters.

Both the monitor well and hydropunch sample results showed significant reductions of TCE concentrations during the IAS test—generally from 150 to 300  $\mu$ g/L, at baseline to 1 to 50  $\mu$ g/L after 12 weeks of IAS operation. Significant reductions were observed at most depths for all downgradient monitor wells. These reductions are believed to be a result of a relatively uniform distribution of air flow throughout the aquifer at OU 6 during IAS treatment. The observed lateral movement of air is likely caused by the lower permeability sands within the aquifer that divert upward movement of air and force air to flow laterally. Under the flow regime at the OU 6 TD site, the aquifer as a whole was treated by the IAS system.

an an an <mark>airt an an E</mark>arainneach an Airtean Air

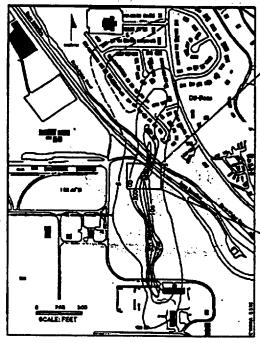
1 . .

en anglasis (Angelsen), en anglasis en anglasis (Angelsen), en anglasis (Angelsen) anglasis (Angelsen), anglasis anglasis (Angelsen), anglasis

and the second second

#### Introduction

In situ air sparging (IAS) is an innovative technology for remediating groundwater, where air is injected into the saturated zone for the purpose of removing organic contaminants. The vertical and horizontal air flow enables the contaminants in the groundwater to volatilize into the air stream. After the contaminated air has migrated to the unsaturated zone, it is typically collected through soil vapor extraction (SVE) for treatment or emission.


f

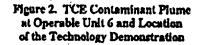
C

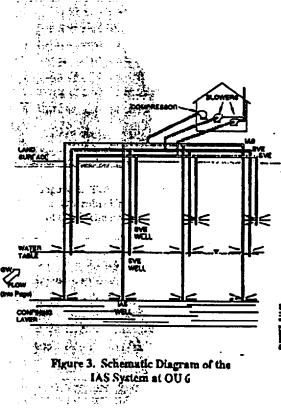
**[** .

ŧ

Figure 2 shows the known extent of contaminated groundwater. The contaminant plume is clongated in the direction of groundwater flow and extends from a maintenance area on Base to beneath a residential area off Base. Minimal lateral spreading is seen in the plume because of the lower-permeability materials that border the sand to silty-sand aquifer in which the contamination is migrating. Because the TCE has not appreciably spread laterally, the average peak concentration in the center of the plume is relatively consistent (generally between 200 and 300  $\mu$ g/L). The location of the TD site relative to the plume and Base boundary is also shown in Figure 2.




#### **Technical Approach**


The IAS test was conducted for a 12week period from February to May 1995 to evaluate the performance of the system in removing chlorinated dissolved-phase contaminants from the groundwater. Baseline groundwater characteristics and organic concentrations were determined.

#### Treatment System

The IAS/SVE system includes a single row of four nested sparging and SVE wells. Figure 3 shows a schematic of the treatment system installed at OU 6. The IAS process equipment was sized to provide a 90% minimum stripping efficiency using relationships developed by Pankow et al. (1993). The resulting compressor specifications were 15 scfm per well at 20

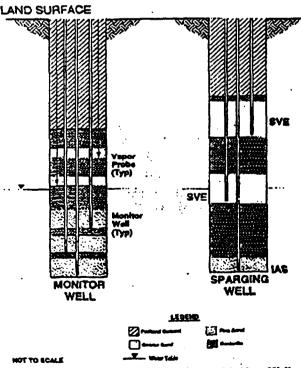


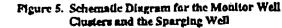


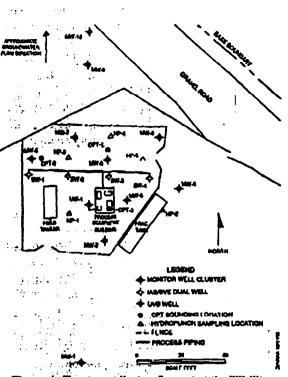


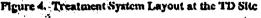
19.10

-


C


psig. The SVE blowers were then sized to capture the sparged air with a safety factor of three to four.


Figure 4 shows a plan of the site and the locations of the treatment and monitor wells. Each treatment well contains an IAS well at the bottom of the aquifer, a deep SVE well screened at the water table, and a shallow SVE well screened 20 ft above the water table. Ten nested monitor wells were also installed at the site at the TD site. Each cluster contains two vapor probes and three monitor wells with 5-ft screened intervals and bentonite seals between the screens. Figure 5 shows a schematic of the IAS/SVE dual wells and the nested monitor well installations.


#### Sampling and Analysis

To observe the impact of the treatment system on the aquifer and the unsaturated zone, numerous parameters were monitored at varying frequencies, as outlined in Table 2. Baseline samples and measurements were collected to









...

characterize the aquifer for chlorinated organics and water quality parameters prior to the system startup. A CPT rig was used to collect hydropunch samples of groundwater at three discrete intervals at five locations within the anticipated zone of influ-The hydropunch samples were CICE. viewed as critical for quantifying the contaminant reduction from IAS because the representativeness of monitor well data is suspect. Previous studies have shown that IAS causes preferential flow to monitor wells which leads to preferential treatment at the wells (Johnson et al., 1993).

Hittan and a sure of the After starup, weekly, monthly, and final samples were collected to monitor the treatment and the impact of the system on the subsurface. Final samples were collected from the monitor wells and at the hydropunch locations after the system had been shut off a week; these sample results were used to evaluate the effectiveness of the IAS system for removing TCB from the aquifer,

> فالمورج ويعجد .....

بالمراجع الجاري . .

**11** - 1

Ð

ſ

1

| Matrix      | Parameter                                                       | Frequency          | Location                                   |  |  |
|-------------|-----------------------------------------------------------------|--------------------|--------------------------------------------|--|--|
| Groundwater | Chlorinated volatile organic compounds                          | Baseline and final | Hydropunch locations                       |  |  |
|             | Chlorinated volatile organic<br>compounds<br>Anions and cations | Monthly            | Monitor wells                              |  |  |
|             | Alkalinity                                                      | • •                |                                            |  |  |
|             | Water level                                                     |                    |                                            |  |  |
|             | Dissolved oxygen                                                | Weekly or monthly  |                                            |  |  |
|             | рН                                                              |                    |                                            |  |  |
|             | Specific conductance                                            |                    |                                            |  |  |
|             | Redox potential                                                 |                    |                                            |  |  |
|             | Temperature                                                     | Continuously       |                                            |  |  |
| Soil gas    | Pressure                                                        | Continuously       | Vapor probes                               |  |  |
| Air         | Volatile organic compounds                                      | Monthly            | System off-gas and<br>venting monitor well |  |  |

| Table 2. Summary of Para | acters Monitored During | the | IAS/SVE Test |
|--------------------------|-------------------------|-----|--------------|
|--------------------------|-------------------------|-----|--------------|

Performance testing was also conducted to further evaluate the test results. A helium tracer recovery test was performed to determine the efficiency of the SVE system in recovering the air sparged into the aquifer. During the test, helium was added to the air sparging system, and the concentration of helium was measured in the SVE off-gas streams and also in the air flow out the venting monitor wells. The recovery of helium was calculated from the injected and recovered helium volumetric flow rates.

Additionally, a monitor well purge test was performed to evaluate the representativeness of the monitor well samples for quantifying IAS treatment. A continuous low-flow purge (0.15 gpm) was performed on three monitor wells within the treatment zone (5M, 7M, and 8M) to remove 800 gallons from cach well. The TCE concentration was monitored over time to determine a stabilized concentration at each well; these concentrations were compared to the final sample results for the monitor well.

tologi oli atometera Selectoria de la terra

and the state of the second state of the

#### **Test Results**

#### TCE Reductions

Concentrations measured after the 12-week treatment period showed the greatest reduction from baseline levels at locations downgradient of the sparging lines. Table 3 provides the baseline and final TCE concentrations for the monitor well and hydropunch samples. These results are organized by depth since the contamination at the site varies by depth, with the shallow-medium and medium zones of the aquifer having the highest concentrations of TCE.

Although there was quite a bit of variability in baseline and final concentrations across the site, generally TCE concentration reductions in the 80% to 90% range, were observed within and downgradient of the treatment zone. A portion of the test data are plotted on the contour map in Figure

1

ŧ

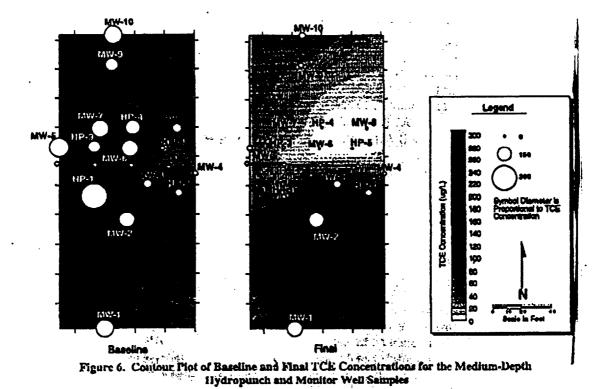
|          |                                       | S        | bellew*               |              |             | Shall   | ow-Medium             |                  | Medium   |           |                       |                               |          |             | Deep*                         |        |
|----------|---------------------------------------|----------|-----------------------|--------------|-------------|---------|-----------------------|------------------|----------|-----------|-----------------------|-------------------------------|----------|-------------|-------------------------------|--------|
|          | TCE Concen-<br>tration (ug/L) Percent |          | Absolute<br>Reduction | TCE Co       |             | Percept | Absolute<br>Reduction | TCE C<br>tration |          | - Percent | Absolute<br>Reduction | TCE Cencea-<br>tration (ug/L) |          | Percent     | Absolute<br>Percent Reduction |        |
| Location | Baseline                              | Final    | Reduction             | (µg/L) .     | Baseline    | Final   | Reduction             | (ug/L)           | Baseline | Final     | Reduction             | (49/L)                        | Besellot | Final       | Reduction                     |        |
| Monitor  | Well Sample                           | <b>.</b> | •                     | <u>1</u>     | <br>        |         |                       |                  |          |           |                       |                               |          |             | <u>.</u> .                    |        |
| MW-1     | 5.99                                  | 20.9     | -249                  | -14.9        | NĂ          | NA      | NA                    | NA               | 202      | 170       | 15.8                  | 32                            | 46.6     | 18.5        | 60.1                          | 28,1   |
| - MW-2   | 4.76                                  | .255     | -436 -                | -20.7        | <u>' NA</u> | NA      | NA                    | NA               | 169      | 174       | -3                    | -5                            | 12       | 13          | 89.2                          | 10.7   |
| MW-3     | 84.7                                  | 26.6     | 68.6                  | 58.1         | NA          | NA      | NA                    | NA               | 80.9     | .72.8     | 10                    | 8.1                           | 0.21     | 0.99        | -374                          | -0.8   |
| MW-4     | 18.5                                  | 46.9     | -154                  | -28.4        | NA          | NA      | NA                    | NA               | 37.4     | 23.2      | 38                    | 14.2                          | 0.35     | 0.41        | -19                           | -0.1   |
| MW-5     | 35.7                                  | 68.7     | -92                   | -33.0        | NA          | NA      | NA                    | NA               | 222      | 36.8      | 83.A                  | 185.2                         | 175      | 71 <i>A</i> | 59.2                          | .103.6 |
| MW-6     | 82.8                                  | 0.38     | 99.5                  | <b>82.</b> A | NA          | NA_     | NA                    | NA               | 188      | 0.3       | 99.8                  | 187.7                         | 21.4     | 0.63        | 97.1                          | 20.8   |
| MW-7     | 120                                   | 27.2     | 773                   | 92.8         | NA          | NA      | NA                    | NA               | 194      | 32.7      | 83.1                  | 161.3                         | 186      | 44.3        | 76.2                          | 141.7  |
| MW-8     | 15.4                                  | 36       | -134                  | -20,6        | NA          | NA      | NA                    | NA               | 93.3     | 3.16      | 96.6                  | 90.1                          | 11.0     | 0.24        | -121                          | -0.1   |
| MW-9     | 46.7 ·                                | 6.38     | 86.3                  | 40.3         | NA          | NA      | NA                    | NA               | .129     | 38.6      | 70.1                  | 90.4                          | 60.8     | 15          | 75.3                          | 45.8   |
| MW-IO    | 122                                   | 38.5     | 68.4                  | 83.5         | NA 3-       | NA      | ·                     | NA               | 194      | 55.8 t    | 712                   | ;138.2                        | 79.5     | 17.9        | 77.55                         | 61.6   |
| UW-1:    | 2.85                                  | NS -     | NC                    | NC -         | I NA        | NA-     | NA                    | NA               | NA       | NA        | - NA                  | NA                            | 4.81     | 1.47        | 69.4~                         |        |
| Hydropu  | ac <b>h Sample</b>                    | •        |                       | •            | 7;          |         |                       |                  |          |           |                       |                               |          |             |                               |        |
| HP-1~    | 3.08                                  | NS       | , NC                  | NC           | 169         | 29.6    | 82.5                  | 139.4            | 300      | 29.4      | 90.2                  | 270.6                         | · NA .:  | NA          | ŃA                            | NA_    |
| HP-2     | 30.9                                  | 20.4     | 34                    | 10.5         | 110         | 12.5    | 88.6                  | 97.5             | 67       | 66        | 1.49                  | 1                             | NA.      | NA          | NA                            | NA     |
| HP-3     | 6.08                                  | NS.      | NC .                  | NC           | 'n          | 14.5    | 79.6                  | 56.5             | 130      | 16        | 87.7                  | 114 -4                        | NA       | NA          | 0 NA                          | NA     |
| HP-4~-   |                                       | NS       | NC                    | NC           | 60          | 1.58    | 97.A                  | 58.4             | 162      | 4.85      | - 97                  | 157.2                         | NA       | NA          | NA .                          | NA     |
| HP-Su    | - <b>8.73</b> -                       | 4.11     | 529 1                 | 4.6          | 186         | 0.61    | 99.7                  | 185.4            | 24.6     | 1.01      | .95,6                 | 23.5                          | NA       | NA          | NA                            | NA     |

### Table 3. TCE Reduction by Depth for Monitor Well and Hydropunch Samples

NA = Not applicable. NC = Not calculated.

.

NS = Not sampled (no water at shallow depth).


\* Refers to relative depth of sample. \* Upgradient of sparging line: MW-1, MW-2, MW-3, HP-1, and HP-2. Cross-gradient of sparging line: MW-4.

Downgradient of sparging line: MW-5 through MW-10, HP-3, HP-4, and HP-5. \* Results are unreliable due to improper development of UW-1S and UW-1D.

RADIAN-CORP



C



6 that represents baseline and final concentrations at the medium depth for both hydropunch and monitor well samples. As the figures illustrates, following the test the concentrations of TCE declined downgradient of the sparging line to concentrations ranging from 0.3 µg/L at MW-6 to 55.8 µg/L at MW-10. Statistical analysis of the baseline-to-final reductions and final concentrations confirmed that the reductions observed were statistically significant?

The higher concentration observed at MW-10 may be due to the position of the well approximately 95 ft downgradient of the sparge line. The average linear velocity at the site is low (0.5 to 1.8 fl/day), and during the course of the test, groundwater treated at the sparging line may not have had sufficient time to migrate to MW-10 by the time the final samples were collected. Evidence for this was provided in subsequent sampling at the site two months after the test period, where concentrations of TCE at MW-10M were measured at 7.8 µg/L. Sector sectors . fernen fichen eine ger

The data were evaluated to determine whether the measured reductions are real. Mass balances were performed using the liquid phase and gas phase sample results. The mass of TCE removed from the groundwater (0.29 to 3.4 lb) compared well with the mass removed from the SVE and monitor well off-gas (0.80 lb). An air-to-water ratio was calculated as 38 to 60 volvol depending on the groundwater velocity. A theoretical air-to-water ratio was calculated as 12 vol/vol. Both of these analyses indicate that the observed reductions are physically possible.

External factors (i.e., other than treatment) that could potentially affect TCE concentrations during the TD were also evaluated. These factors included normal concentration fluctuations in the aquifer and changes in groundwater gradient or flow direction. Periodic monitoring of the contaminant plume since 1993 has shown that concentrations in the center of the plume have never been measured below 150  $\mu$ g/L. Groundwater level surveys taken before, during, and after the treatment show that No. Bry Stre

.

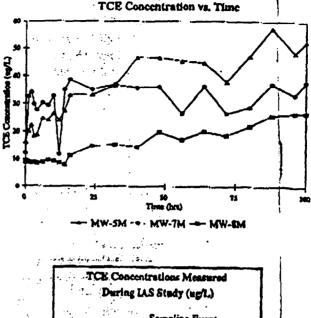
1.17.64

A ....

Selection and another A STATE AND A STATE and the second A K . W. •

Ē

В


groundwater flow direction has remained consistently to the north. Neither of these factors affected TCE concentrations or treatment at the site.

#### Purge Test

The results of the purge test at monitor wells 5, 7, and 8 are shown in Figure 7. The TCE concentrations at MW-7M remained essentially constant during the test around 30  $\mu g/L$ , which agreed well with the final sample result of 32.7  $\mu g/L$ . However, concentrations did show increases during pumping at MW-5M and MW-8M. The cause of this rise is uncertain. The observed gradual rise could be caused by mixing effects from untreated groundwater entering the wells' zones of influence or by preferential treatment at the monitor well. Mixing effects are especially relevant for monitor wells 5 and 8 since they are on the edge of the treatment zone.

Even though these results were inconclusive, the monitor well data showed good correlation with the hydropunch sample results. This correlation does not mean, however, that sampling interferences do not exist with either sampling technique, such as preferential flow or volatilization. The uncertainties in the purge test data do create questions concerning the results, but the consistent concentration reductions across the treatment zone, utilizing three different sampling techniques, appear to be indicative of treatment as a whole.

And Services Star

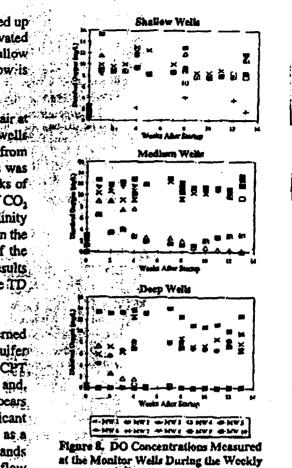


|       | Sampling | Event |
|-------|----------|-------|
| Well  | Harelinc | Find  |
| MW-SM | 222      | 36.8  |
| MW-7M | 194      | 32.7  |
| MW-SM | 93.3     | 3.16  |

Figure 7. TCE Concentrations During the Monitor Well Purge Test and Concentrations Measured During the Baseline and Final Sampling Events

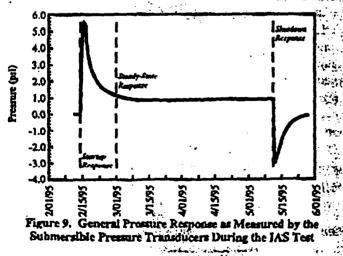
na - Constanting of Syna Anna Constanting of Syna Anna Constanting of Syna Anna Syna

#### Flow Model


Because the reductions measured during the test were significant and appeared to be relatively consistent across the TD site, a conceptual physical model was necessary to account for the observed reductions. Besides the TCE concentrations, several other pieces of data collected during the test were important for evaluating the effect of IAS on the aquifer, including dissolved oxygen readings, pII measurements, the potentiometric surface and water level changes, air flow measurements from the monitor wells, and the lithology at the site.

The DO concentrations were recorded prior to and during the test, as presented graphically in Figure 8. These data show that DO concentrations increased, relative to baseline, within a week of startup. This rapid rise in DO was observed at most depths for all downgradient wells; elevated DO is indicative of oxygen transfer to the aquifer from the sparged air. Particularly noteworthy are the measurements at MW-9 and MW-10, which are located 70 and 95 ft from the sparging line respectively, because they showed elevated DO after 4 weeks of operation (during the first sampling event). The groundwater flow at the site is approximately 0.5 to 1.8 ft/day, so it is not likely that the treated groundwater plume migrated to these locations within the first four weeks of operation Therefore, some degree of direct air flow was observed up to 95 ft downgradient of the sparging line. The elevated DO measurements observed at deep, medium, and shallow depths at many of the wells indicate that the air flow is: distributed relatively uniformly across the entire site. 1

Another indication of the even distribution of air at the site was the change in pH observed at numerous wells downgradient of the treatment area. A gradual rise from baseline conditions ranging from 0.15 to 1 pH units was observed in the pH measurements within 4 to 8 weeks of startup. This rise was likely caused by the stripping of CO, from the aquifer by the sparged air. Because the alkalinity of the groundwater is high and the CO<sub>2</sub> concentration in the 3 sparged (ambient) air is low, CO<sub>2</sub> is stripped out of the groundwater into the air, thus raising the pH. These results, indicate that stripping is occurring across much of the TD. site.


This uniform treatment of the aquifer is governed by the lithology at the OU 6 TD site. Although the aquifers framework is predominantly sands, as shown in the CET. logs, there are slight changes in grain size and density and, thus, permeability throughout the saturated zone. It appears, that these variations in permeability have a significant. effect on the air pathways in the treatment area and, as a ... result, TCE removal rates. The lower permeability sands divert the upward movement of air and force the air to flow. This "pancake" flow mechanism causes a laterally. laterally extensive distribution of air in the aquifer and results in treatment of the groundwater as a whole.

.



and Monthly Sampling Events

IAS appears to have significantly reduced dissolved-phase UCE concentrations at OU 6. however, two important questions remained: 1) Was groundwater simply diverted around the site? and



2) Was the sparged air adequately recovered by the SVE system? These points are important for understanding the impact and effectiveness of the IAS/SVE system.

#### 

HERE BY TIC .... Sec. 8. 1. 1 

> ti i na politika 1999 - **1**999 - 1999

. .

....

3.00

When the IAS system was started at the beginning of the test, a pressure field developed in the TD area. This was seen as a significant rise in pressure measured by pressure transducers in the deep monitor wells. Figure 9 shows the general response of the submersible pressure transducers during the performance of the test.

Figure 10 presents a schematic of the conceptual air flow pathways at steady state in the OU 6 aquifer system. As the figure shows, the less permeable sands have the effect of spreading the air flow laterally through the aquifer. Unique to this site are the confining layers that restrict the air flow and create a locally extensive pressure field during treatment. The deep SVE wells and some of the shallow monitor wells penetrate the confining layers thus providing a release point for the pressure field developed because of these layers.

#### Conclusions

l

1

f

Į.

I

₽

ł

The in situ sparging system installed at Hill AFB OU 6 did appreciably remove contaminants, specifically TCE, from the groundwater. Both the monitor well and hydropunch sample results showed significant reductions of TCE concentrations during the IAS test-generally from 150 to 300  $\mu$ g/L at bascline to 1 to 50  $\mu$ g/L after 12 weeks of IAS operation.

: 125

Significant reductions were observed at most depths for all downgradient monitor wells. These reductions are believed to be a result of a relatively uniform distribution of air flow throughout the aquifer at OU 6 during LAS treatment. This conclusion is supported by the rapid rise in dissolved oxygen at wells up to 95 ft from the sparging line and the consistently clevated dissolved oxygen concentrations in the aquifer both laterally and vertically from the sparging wells. The lateral movement of air is likely caused by the lower permeability sands within the aquifer that divert the upward movement of air and force air to flow laterally. In contrast to a vertical channeling flow mechanism where discrete channels of air provide a relatively small air-water interface, the pancake flow of air in the OU 6 system provided air movement laterally and vertically throughout the aquifer. Since the primary removal mechanism for chlorinated organics is the stripping of contaminants caused by air movement, it appears that under the flow regime at the OU 6 TD site the aquifer as a whole was treated by the IAS system.

It was also found that subsurface lithology drastically affected the ability of the designed system to remove sparged air. The confining layers at or near the water table caused air to accumulate and a pressure field to develop in the treatment area after sparging began. These layers caused the majority of sparged air (80%) to be vented through the shallow monitor wells.

To better understand the impact and effectiveness of IAS at a site, it is recommended that submersible pressure transducer measurements, dissolved oxygen, pH, and contaminant concentrations be monitored before, during, and after the testing period.

#### References

Johnson, R.L., P.C. Johnson, D.B. McWhorter, R.E. Hinchee, and L. Goodman. "Focus: An Overview of In Situ Air Sparging". Ground Water Monitoring and Remediation. 13(4):127-135, Fall 1993.

Pankow, J.F., R.L. Johnson, and J.A. Cherry. "Air Sparging in Gate Wells in Cutoff Walls and Trenches for Control of Plumes of Volatile Organic Compounds (VOCs)". Ground Water, 31(4):654 663. July-August, 1993.

to the state of the state

્રા છે. જેરા સ્ટેન્સ્ટ્રે અને દિવસ્ટ દેશ ગુજરા**સ્ટ**િંગ સ્ટેસ્ટ

الموجعة المعامرين (1997). موجعة مع المراجعة (1997) مع المحمد المراجعة (1997)

#### **Biographical Sketches**

Whitney Wheeless is a staff engineer at Radian Corporation in Austin, Texas. She serves as the technical manager of the technology demonstration at Hill Operable Unit 6. She received her B.S. degree in chemical engineering from the University of Texas at Austin. Most recently, she has worked in the site investigation and remediation field for various government clients. [8501 North Mopac Blvd.; Austin, TX 78759; 512-454-4797; fax 512-454-8807]

L

U

C

ſ

ŧ

ŧ

1

I

þ

ľ

Steven T. Hicken is an environmental engineer at Hill Air Force Base, Utah. He serves as a project manager for Operable Units 6 and 7. He received a B.S. degree in geology from Southern Utah University and a M.S. degree from Utah State University in civil and environmental engineering. [OO-ALC/EMR; 7274 Wardleigh Rd.; Hill AFB, Utah 84056-5137; 801-777-8790; fax 801-777-4306]

Carrie Beitler is a process engineer at Radian Corporation in Austin, Texas and served as the project engineer for the TD. She received her B.S. degree in chemical engineering from Purdue University. She has experience in the design, modeling, and test of air and water pollution control technologies. [8501 North Mopac Blvd.; Austin, TX 78759; 512-454-4797; fax 512-454-8807]

Jim Rowe is a geologist at Radian Corporation in Austin, Texas and serves as the Project Geologist for the OU 6 TD. He received a B.A. degree with a major in geology from Carleton College, Northfield, MN. His project interests lie in innovative technologies for site investigation and the application of computer systems to environmental planning, assessment, and investigation. [8501 North Mopac Blvd.; Austin, TX 78759; 512-454-4797; fax 512-454-8807]

Mark A. Robbins is a senior engineer at Radian Corporation in Alistin, Texas. He serves as a technical advisor for the technology demonstration. He received his B.S. degree in civil engineering from Texas Tech University. He works primarily in the site remediation area for both government and commercial clients. [8501 North Mopac Blvd.; Austin, TX 78759; 512-454-4797; fax 512-454-8807]

Dr. Robert E. Hinchee is a senior research leader at Parsons Engineering Science, Inc. He received his Ph.D. from Utah State University in civil and environmental engineering. He has been involved in the development, demonstration, and application of in situ remediation technologies at more than 200 sites located in the Unived States, Europe, and the South Pacific. [406 West South Jordan Parkway, Suite 300; South Jordan, Utah 84095; 801-572-5999; fax 801-572-9069]

Dr. Paul C. Johnson is an associate professor in the Department of Civil and Environmental engineering at Arizona State University in Tempe, AZ. He received his B.S. and Ph.D. degrees in chemical engineering from the University of California at Davis and Princeton University, respectively. His research and teaching interests focus on the development of cost-effective and innovative solutions to problems related to environmental protection, restoration and risk analyses. Prior to joining the faculty at ASU, he was a senior research engineer at Shell Oil Company's Westhollow Research Center. [Department of Civil Engineering; Arizona State University; Tempe, Arizona 85287-5306; 602-965-915; fax 602-965-0557]

#### and the second second

Alexandra and Alexa Alexandra and Alexandra

Alexandra (Maria) Contration (Maria) Contration (Maria) Contration (Maria)

Dr. Richard L. Johnson is an associate professor in the Department of Environmental Science and Engineering at the Oregon Graduate Institute of Science & Technology. He is also the director of the OGI Center for Groundwater Research and the OGI Large Experimental Aquifer Program. [20000 NW Walker Rd.; Beaverton, Oregon 97006-1999; 503-690-1196; fax 503-690-1273]

Dr. David B. McWhorter is a professor of chemical and biorcsource engineering at Colorado State University. His specialties are multi-fluid flow in porous media, multi-component gaseous diffusion, and ground water hydrology. He is a regular consultant to industry and government on problems of ground water contamination. [Engineering Research Center; Colorado State University; Fort Collins, Colorado; 303-491-8666; fax 303-491-8224]

### APPENDIX C CONTAMINANT CONCENTRATION CALCULATIONS



# Vapor Emission and Resulting Soil Contamination - Site 35 Its Pilot Test

- Total soil concentration,  $C_{Total} = C_{sorbed} + C_{moisture} \Theta_m + C_{uppor} \Theta_r / p_s$ where  $C_{sorbed} = C_{ontaminants}$  sorbed directly onto soil (mg/kg)  $C_{moisture} = C_{ontaminants} dissolved in soil moisture (mg/L)$   $\Theta_m = Soil moisture Content (L-H2)/(kg-Soil)$   $C_{uppor} = C_{ontaminonts} in Soilvopor (mg/L)$   $\Theta_r = vopor void fraction$   $P_s = Soil bulk density (Kg/L)$ 
  - In Equilibrium: Consisture X H = Cropor where H = Henry's Law Constant Consisture X Kd = Csorbed where Kd = partitioning coefficient ( 4/Ks) Kd = Koc X foc, Koc = adsurption coefficient for o.c. foc = organic Carbon (O.C) content · Csorbed = Cuopor (K4/H)
    - CTotal = Cropper [Kd/H + Bm/H + Br/B]

Cmilsture = Cuopor (YH)

| S.O. No CTO - 0323                     |                                |
|----------------------------------------|--------------------------------|
| Subject: Soil-Vapor Contamment Course  | tration Estimates              |
| MCB Camps Lejeure, D.U. N. 10          | Sheet No. <u>3</u> of <u>3</u> |
| Site 35                                | Drawing No.                    |
| Computed by <u>Cork</u> Checked By RPA | Date                           |

$$\frac{V_{0,007}}{V_{0,007}} \xrightarrow{\text{Emission}} and \frac{Accusting}{Southermation} \frac{Southermation}{Southermation} - \frac{Site 35 IAS Albert Test}{Assume} : B_{n} = 0.1 l - H_{2}0/kg_{501}
B_{0} = 0.2 l - art/L-suil
B_{5} = 1.7 kg/L
for 2 = 0.01 9 a l/g-suil
For Benzene,  $H = 0.22$ ;  $K_{00} = 6.6 l/kg$   
For TCE,  $H = 0.44$ ,  $K_{00} = 94 l/kg$   
 $C_{Total} - Benzene = C_{00,007} [(604/9)(0.0)/(B.22 + 0.12/1.79)L)$   
 $C_{Total} - Benzene = C_{00,007} [2.734/hg + 0.4554/hg + 0.124/hg]$   
 $C_{Total} - Benzene = C_{00,007} [3.34/kg]$   
 $C_{00,007} = 5.6 \times 10^{-3} mg/L (3.34/kg)$   
 $C_{Total} - Benzene = (5.6 \times 10^{-3} mg/L)(3.34/kg)$   
 $C_{Total} - Benzene = 0.018 mg/kg$   
 $C_{Total} - Benzene = C_{00,007} [(944/9)(0.01/0,01/4 + 0.2/1.79/k])$   
 $C_{Total} - Benzene = C_{00,007} [2.734/hg + 0.11/Mg/2000 + 0.22/1.79/k]$$$

$$C_{Total-TCE} = (5.6x10^{-3} mg/L) (2.5 c/kg)$$
  
 $C_{Total-TCE} = 0.014 mg/kg$ 

### APPENDIX D CONSTITUENTS DETECTED BY EPA METHOD TO-14

-

| TABLE 1. | VOLATILE | ORGANIC | COMPOLIND | DATA | SHEET |  |
|----------|----------|---------|-----------|------|-------|--|
|          |          |         |           |      |       |  |

**F** 

.

ģ

.

| COMPOUND (SYNONYM)                                                                             | FORMULA                              | MOLECULAR<br>WEIGHT | BOILING<br>POINT (°C) | MELTING<br>POINT (°C) | CAS<br>Number       |
|------------------------------------------------------------------------------------------------|--------------------------------------|---------------------|-----------------------|-----------------------|---------------------|
| Freon 12 (Dichlorodifluoromethane)<br>Methyl chloride (Chloromethane)                          | C12CF2                               | 120.91<br>50.49     | -29.8                 | -158.0                | 74 97 9             |
| Freon 114 (1,2-Dichloro-1,1,2,2-<br>tetrafluoroethane)                                         | CH3C1<br>C1CF2CC1F2                  | 170,93              | -24.2<br>4.1          | ،-97.1<br>-94.0       | 74-87-3             |
| Vinyl chloride (Chloroethylene)                                                                | CH2=CHC1                             | 62.50               | -13.4                 | -1538.0               | 75-01-4             |
| Methyl bromide (Bromomethane)<br>Ethyl chloride (Chloroethane)                                 | CH3Br<br>CH3CH2C1                    | 94.94<br>64.52      | 3.6<br>12.3           | -93.6<br>-136.4       | 74-83-9<br>75-00-3  |
| Freon 11 (Trichlorofluoromethane)<br>Vinylidene chloride (1,1-Dichloroethene)                  | CCl3F<br>ColloCl2                    | 137.38<br>96.95     | 23.7<br>31.7          | -111.0<br>-122.5      | 75-35-4             |
| Dichloromethane (Methylene chloride)<br>Freon 113 (1,1,2-Trichloro-1,2,2-                      | CH2C12<br>CF2C1CC12F                 | 84.94<br>187.38     | 39.8<br>47.7          | -95.1<br>-36.4        | 75-09-2             |
| trifluoroethane)                                                                               |                                      |                     |                       |                       |                     |
| 1,1-Dichloroethane (Ethylidene chloride)<br>cis-1,2-Dichloroethylene                           | CH3CHC12<br>CHC1=CHC1                | 98.96<br>96.94      | 57.3<br>60.3          | -97.0<br>-80.5        | 74-34-3             |
| Chloroform (Trichloromethane)<br>1,2-Dichloroethane (Ethylene dichloride)                      | CHC13<br>C1CH2CH2C1                  | 119.38<br>98.96     | 61.7<br>83.5          | -63.5<br>-35.3        | 67-66-3<br>107-06-2 |
| Methyl chloroform (1,1,1-Trichloroethane)<br>Benzene (Cyclohexatriene)                         | CH3CC13<br>C6H6                      | 133.41<br>78.12     | 74.1<br>80.1          | -30.4                 | 71-55-6<br>71-43-2  |
| Carbon tetrachloride (Tetrachloromethane)                                                      | CČ14                                 | 153.82              | 76.5                  | -23.0                 | 56-23-5             |
| 1,2-Dichloropropane (Propylene<br>dichloride)                                                  | CH3CHC1CH2C1                         | 112.99              | 96.4                  | -100.4                | 78-87-5             |
| Trichloroethylene (Trichloroethene)<br>cis-1,3-Dichloropropene (cis-1,3-<br>dichloropropylene) | C1CH=CC1 <sub>2</sub><br>CH3CC1=CHC1 | 131.29<br>110.97    | 87<br>76              | -73.0                 | 79-01-6             |

٠

T014-60

.-.

æ.

.

### APPENDIX D TEST BORING AND WELL CONSTRUCTION RECORDS



الانبوب ال

يتر و دو دو دو

# **TEST BORING AND WELL CONSTRUCTION RECORD**

PROJECT: SGI - CTO 232 SCREENING

Status - 2

S.O. NO.: 12410-232-03600 COORDINATES: EAST: \_\_\_\_\_

BORING NO .: TWI-A NORTH:

-C ELEVATION: SURFACE: 19.1 BTOP OF STEEL CASING: 18.83

| RIG: MOBIL                                                                  | ES5-T                                  | RUCK Mar        | , NT               |                                              |                |                     |                                        |            |                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
|-----------------------------------------------------------------------------|----------------------------------------|-----------------|--------------------|----------------------------------------------|----------------|---------------------|----------------------------------------|------------|-----------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|                                                                             | SPLIT<br>SPOON                         | CASING          |                    | GERS                                         | CORE<br>BARREL | DATE                | PROGRESS<br>(FT)                       | WEATHER    | WATER<br>DEPTH<br>(FT)                                                            | τιΜε                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| SIZE (DIAM.)                                                                |                                        |                 | 32                 | 430                                          |                | 4/9/96              | 0-ISFT                                 | 50's choup | D's choway b. O. and                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
| LENGTH                                                                      |                                        |                 |                    | FŢ                                           |                |                     |                                        |            |                                                                                   | t in the second s |  |
| ТҮРЕ                                                                        |                                        |                 | He                 | <b>b</b>                                     |                |                     |                                        |            |                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
| HAMMER WT.                                                                  |                                        |                 |                    |                                              |                |                     |                                        |            |                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
| FALL                                                                        |                                        |                 |                    |                                              |                | <u> </u>            |                                        |            |                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
| STICK UP                                                                    |                                        |                 |                    |                                              | <br>           |                     |                                        | l          |                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
| REMARKS:                                                                    |                                        |                 |                    |                                              |                |                     |                                        |            |                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
| <u>SAMPLE TYPE</u><br>S = Split Spoon A = Auger<br>T = Shelby Tube W = Wash |                                        |                 |                    |                                              | ELL<br>RMATION | DIAM                | ТҮР                                    | E          | TOP<br>DEPTH<br>(FT)                                                              | BOTTOM<br>DEPTH<br>(FT)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
| R = Air Rota                                                                |                                        |                 |                    |                                              | asing          | 1"                  | PVC Threaded                           | 1" D.A     | 0                                                                                 | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
| N                                                                           | = No Sampi                             | e               |                    | Well Screen ۱" PVC Slotted Loioi ( حمد عالم) |                |                     |                                        | NOISLOT)   | 5 -                                                                               | 15 F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| Sampl<br>Depth Type<br>(Ft.) and<br>No.                                     | Samp.<br>e Rec.<br>Ft. or<br>& RQ<br>% | or              | Lab.<br>Noist<br>% |                                              | Visual [       | Descriptio          | วท                                     |            | ell<br>lation<br>tail                                                             | Elevation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
| 1 -<br>2 -<br>3 -<br>4 -<br>5 -<br>6 -<br>7 -<br>8 -<br>9 -<br>10 -         | 2                                      |                 |                    |                                              |                | OG LOS T<br>INFORMA |                                        |            | NELL<br>CASIOL<br>EROM<br>OTOSF-<br>WELL SOLF<br>WELL<br>SEREEN<br>FROM<br>IONISF | -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
| DRILLING CO.:<br>DRILLER:                                                   | PARRE-                                 | <u>- 10050-</u> |                    |                                              | <u></u>        |                     | REP.: <u>BRIAN</u><br>GNO.: <u>TWI</u> |            | SHEE                                                                              | r <u>1</u> OF <u>2</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |

. .



## **TEST BORING AND WELL CONSTRUCTION RECORD**

PROJECT: SGI . CTO 232 SCREENING

S.O. NO .: 62470-232-03600 BORING NO .: TWI-A

| SAMPLE TYPE         S = Split Spoon       A = Auger         T = Shelby Tube       W = Wash         R = Air Rotary       C = Core         D = Denison       P = Piston         N = No Sample |                              |                                  |     |                                      |                    | DEFINITIONS<br>SPT = Standard Penetration Test (ASTM D-1586) (Blows/0.5')<br>RQD = Rock Quality Designation (%)<br>Lab. Class. = USCS (ASTM D-2487) or AASHTO (ASTM D-3282)<br>Lab. Moist. = Moisture Content (ASTM D-2216) Dry Weight Basis |                        |  |  |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|----------------------------------|-----|--------------------------------------|--------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|--|--|--|--|
| Depth<br>(Ft.)                                                                                                                                                                              | Sample<br>Type<br>and<br>No. | Samp.<br>Rec.<br>(Ft.<br>&<br>%) |     | Lab.<br>Class.<br>or<br>Pen.<br>Rate | Lab.<br>Moist<br>% |                                                                                                                                                                                                                                              | Elevation              |  |  |  |  |
| -                                                                                                                                                                                           |                              |                                  |     |                                      |                    | Continued from Sheet 1 - Wew source From & TO -                                                                                                                                                                                              |                        |  |  |  |  |
| 11<br>-<br>12<br>13                                                                                                                                                                         | A-N                          |                                  |     |                                      |                    | SEE BORING LOG TWI-B - WELL<br>FOR SOIL INFORMATION - SCREEN<br>FLOM 10<br>TO 15 FT                                                                                                                                                          |                        |  |  |  |  |
| 14                                                                                                                                                                                          |                              |                                  |     |                                      |                    | - Button Plus                                                                                                                                                                                                                                | 4.1                    |  |  |  |  |
| 15                                                                                                                                                                                          |                              |                                  |     |                                      |                    | (E) END OF BORING IS OFT                                                                                                                                                                                                                     | 7.1                    |  |  |  |  |
| 16                                                                                                                                                                                          |                              |                                  |     |                                      |                    |                                                                                                                                                                                                                                              |                        |  |  |  |  |
| 17                                                                                                                                                                                          |                              |                                  |     |                                      |                    |                                                                                                                                                                                                                                              | 4                      |  |  |  |  |
| 18_                                                                                                                                                                                         |                              |                                  |     |                                      | ,<br>,             |                                                                                                                                                                                                                                              |                        |  |  |  |  |
| 19_                                                                                                                                                                                         |                              |                                  |     |                                      |                    |                                                                                                                                                                                                                                              |                        |  |  |  |  |
| 20 -                                                                                                                                                                                        |                              |                                  |     |                                      |                    |                                                                                                                                                                                                                                              |                        |  |  |  |  |
| 21_                                                                                                                                                                                         |                              |                                  |     |                                      |                    |                                                                                                                                                                                                                                              |                        |  |  |  |  |
| 22                                                                                                                                                                                          |                              | 2                                |     |                                      |                    |                                                                                                                                                                                                                                              |                        |  |  |  |  |
| 23 -                                                                                                                                                                                        |                              |                                  |     |                                      |                    |                                                                                                                                                                                                                                              |                        |  |  |  |  |
| 24 -                                                                                                                                                                                        |                              |                                  |     |                                      |                    |                                                                                                                                                                                                                                              |                        |  |  |  |  |
| 25 _                                                                                                                                                                                        |                              |                                  |     |                                      |                    |                                                                                                                                                                                                                                              |                        |  |  |  |  |
| 26 _                                                                                                                                                                                        |                              |                                  |     |                                      |                    |                                                                                                                                                                                                                                              |                        |  |  |  |  |
| 27                                                                                                                                                                                          |                              |                                  |     |                                      |                    |                                                                                                                                                                                                                                              |                        |  |  |  |  |
| 28                                                                                                                                                                                          |                              |                                  |     |                                      |                    |                                                                                                                                                                                                                                              | 1                      |  |  |  |  |
| _<br>29                                                                                                                                                                                     |                              |                                  |     |                                      |                    |                                                                                                                                                                                                                                              | -1                     |  |  |  |  |
| 30_                                                                                                                                                                                         |                              |                                  |     |                                      |                    | Match to Sheet 3                                                                                                                                                                                                                             |                        |  |  |  |  |
| DRILLIN<br>DRILLER                                                                                                                                                                          |                              |                                  | ATT | WOLF                                 | ÷                  | BAKER REP.: BRIAN E DAVIS<br>BORING NO.: TWI-A SHEE                                                                                                                                                                                          | Г <u>2</u> OF <u>2</u> |  |  |  |  |



Т

PROJECT: SGT - CTO 232 SCREENING

1

S.O. NO .: 62410 - 232-0000 - 03600 -----

COORDINATES: EAST: \_\_\_\_\_

ELEVATION: SURFACE: 19.1

BORING NO .: TWI-B NORTH:

Т

( TOP OF STEEL CASING: \_\_\_\_\_\_\_\_

Т

T

| RIG: MOR                                                                                   | NLE 55       |                  | TRUCK                                | . mou                      | JT                  |                                                                |                        |                          |                   |                                          |                         |
|--------------------------------------------------------------------------------------------|--------------|------------------|--------------------------------------|----------------------------|---------------------|----------------------------------------------------------------|------------------------|--------------------------|-------------------|------------------------------------------|-------------------------|
|                                                                                            | SPLI<br>SPOC | Т                | CASING                               |                            | JGERS               | CORE<br>BARREL                                                 | DATE                   | PROGRESS<br>(FT)         | WEATHER           | WATER<br>DEPTH<br>(FT)                   | TIME                    |
| SIZE (DIAM.)                                                                               | 1.43         | in               |                                      | 3                          | MIO                 |                                                                | 4/9/96                 | 0-47                     | 50's cuovo        |                                          | 6130-12130              |
| LENGTH                                                                                     | Zf+          |                  |                                      |                            | 5 FT                |                                                                |                        |                          |                   |                                          | ÷                       |
| ТҮРЕ                                                                                       | 55           |                  |                                      | 4                          | 45                  |                                                                |                        |                          |                   |                                          |                         |
| HAMMER WT.                                                                                 | 140          | lbs.             |                                      |                            |                     |                                                                |                        |                          |                   |                                          |                         |
| FALL                                                                                       | 30           |                  |                                      |                            |                     |                                                                |                        |                          |                   |                                          |                         |
| STICK UP                                                                                   |              |                  |                                      |                            |                     |                                                                |                        |                          |                   |                                          |                         |
| REMARKS:                                                                                   |              |                  |                                      |                            |                     |                                                                | rr                     |                          |                   |                                          |                         |
| S = Splits<br>T = Shelb                                                                    |              | A =              | = Auger<br>= Wash                    |                            |                     | VELL<br>DRMATION                                               | DIAM                   | ТҮР                      | E                 | TOP<br>DEPTH<br>(FT)                     | BOTTOM<br>DEPTH<br>(FT) |
| $\mathbf{R} = \operatorname{Air} \operatorname{Rc}$<br>$\mathbf{D} = \operatorname{Denis}$ | tary         | С =              | = Core<br>= Piston                   |                            | Well C              | Lasing                                                         | 1"                     | PVC Threaded             | l'Dia             | 0                                        | 4Z.                     |
|                                                                                            | N = No S     |                  |                                      |                            | Well S              | Screen                                                         | 1"                     | PVC Slotted (            | 6.01 5LOT)        | 42                                       | 47                      |
| San<br>Depth Typ<br>(Ft.) an<br>No                                                         | d &          | SPT<br>or<br>RQC | Lab.<br>Class.<br>or<br>Pen.<br>Rate | Hnu<br>Lab.<br>Motst<br>-% |                     | Visual (                                                       | Descriptio             | on                       | W<br>Instal<br>De | lation                                   | Elevatior               |
| 1 - 5.<br>2 - 2.0                                                                          | . [ 1.0      | 00 00 UT         |                                      | <1                         | SANC                | E SAMPLE<br>OOTD DIS'<br>DI FINE GRE                           | ال ، در ۲۲۰۰           | SILT BROWN               |                   | INIELL<br>CAS.NG<br>FROM<br>O.D FT<br>TB | -<br>-<br>- /7./        |
| 3 –<br>4 – 4.0                                                                             | 2 1.0        | 4<br>4 4         |                                      | 41                         |                     |                                                                |                        |                          |                   | 42.0FT<br>WELL<br>SOLK                   | -<br>-<br>- <i>15.1</i> |
| 5 - 5-<br>6 - <u><u></u><br/>6 - <u><u></u><br/>6 - <u></u><br/>5-</u></u>                 | 3 1.2        | 22               |                                      | 20                         | SAN<br>NET<br>HAU C | 6 TWIA-0<br>4.0706.0<br>10, FINE 6<br>1 LOOSE, T<br>1 LOOSE, T | RAIN, GRE<br>KALL SILT | EN, MOIST TO             |                   | Fron<br>00 FT<br>TD<br>47.0 FT           |                         |
| 7                                                                                          | 4-           |                  |                                      |                            |                     | BLACIC/00<br>~ @ 6.0                                           | Hall Branne            | 5440<br>                 |                   |                                          |                         |
| 9                                                                                          |              |                  |                                      |                            | SANO                | FINE , BEAIN,                                                  | LOOSEINERM             | JU.J<br>Latch to Sheet 2 |                   |                                          | 9.1                     |
| DRILLING CO<br>DRILLER:                                                                    |              |                  |                                      |                            |                     |                                                                |                        | RREP.: BRIAN             |                   | SHEE                                     | T <u>1</u> OF <u>3</u>  |



Baker Environmental, Inc

PROJECT: 661 - CTO 232 SCREEN NG S.O. NO .: 62470-232-0000-03600 BORING NO .: TWI-B

| T = 1<br>R = 1                            | iplit Spoc<br>ihelby Tu<br>Air Rotan<br>Denison | be<br>/                          | A =<br>W =<br>C =<br>P = | Wash                                 |                                    | DEFINITIONS         SPT = Standard Penetration Test (ASTM D-1586) (Blows/0.5')         RQD = Rock Quality Designation (%)         Lab. Class. = USCS (ASTM D-2487) or AASHTO (ASTM D-3282)         Lab. Moist. = Moisture Content (ASTM D-2216) Dry Weight Basis |                                       |  |  |  |  |
|-------------------------------------------|-------------------------------------------------|----------------------------------|--------------------------|--------------------------------------|------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|--|--|--|--|
| Depth<br>(Ft.)                            | Sample<br>Type<br>and<br>No.                    | Samp.<br>Rec.<br>(Ft.<br>&<br>%) | SPT<br>or<br>RQD         | Lab.<br>Class.<br>or<br>Pen.<br>Rate | Hnu<br>Lab.<br>Motst<br>%<br>(ppn) | Visual Description                                                                                                                                                                                                                                               | Well Installation<br>Detail Elevation |  |  |  |  |
| 11<br>12                                  | 5-4                                             | 2.0                              | 4 80 7 Z                 |                                      | 41                                 | Continued from Sheet 1<br>SAND, FINE GRAIN, GREY, BROWN<br>WET, LOUSE                                                                                                                                                                                            |                                       |  |  |  |  |
| -<br>13-<br>14-                           | ۵-۵                                             |                                  |                          |                                      |                                    | ·                                                                                                                                                                                                                                                                |                                       |  |  |  |  |
| 15- <u>15.0</u><br>16-<br>17- <u>17.0</u> | 5-5                                             | 2.0                              | 67<br>11<br>11           |                                      | <1                                 | GAND, FINE AND MEDIUM GRAIN,<br>GREY. BROWN, LITTLE FINE GRANEL,<br>TRACE TO LITTLE SILT, MCD. DENSE, WET<br>FINE GRAIN SAND AT 16.8 TO FILO<br>WILLITTLE SILT                                                                                                   |                                       |  |  |  |  |
| 18                                        | A-~                                             |                                  |                          |                                      |                                    | -                                                                                                                                                                                                                                                                |                                       |  |  |  |  |
| 21<br>22                                  | 5-6                                             | 1.8                              | У. a<br>4<br>4           |                                      | <1                                 | SAND, FINE AND MEDIUM GREN, LITTESIU<br>GREY, BROWN, LOOSE TO MED. DENSE -<br>WET -                                                                                                                                                                              |                                       |  |  |  |  |
| 23<br>24<br>25 <sup>25 (1)</sup>          | A- N                                            | )                                |                          |                                      |                                    |                                                                                                                                                                                                                                                                  |                                       |  |  |  |  |
| 26<br>27                                  | 5-7                                             | 1.8                              | 7<br>13<br>20<br>20      | ,                                    | <1                                 | SAND, FINEGRAIN, LITTLE MEDIUM<br>GRAIN, LITTLE SILT, GRED, BROWN, -<br>MED. DENSE TO DENSE, WET                                                                                                                                                                 |                                       |  |  |  |  |
| 28<br>29<br>30                            |                                                 |                                  |                          |                                      |                                    |                                                                                                                                                                                                                                                                  |                                       |  |  |  |  |
| DRILLIN<br>DRILLEI                        | G CO.:<br>۱:                                    | Par                              | 2017                     | WOL                                  | FF                                 | BAKER REP.: BRIA<br>BORING NO.: TWI                                                                                                                                                                                                                              |                                       |  |  |  |  |





PROJECT: SGI-LTD 232 SCREENING S.O. NO .: 62470-232-0000-036000 BORING NO .: TWI-B

| T = 9<br>R = /                             | Split Spoo<br>Shelby Tu<br>Air Rotar<br>Denison | ibe<br>y                         | A =<br>W =<br>C =<br>P = | Auger<br>Wash<br>Core<br>Piston      |                       | DEFINITIONS<br>SPT = Standard Penetration Test (ASTM D-1586) (Blows/0.5')<br>RQD = Rock Quality Designation (%)<br>Lab. Class. = USCS (ASTM D-2487) or AASHTO (ASTM D-3282)<br>Lab. Moist. = Moisture Content (ASTM D-2216) Dry Weight Basis |                                |                |  |  |  |  |
|--------------------------------------------|-------------------------------------------------|----------------------------------|--------------------------|--------------------------------------|-----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|----------------|--|--|--|--|
| Depth<br>(Ft.)                             | Sample<br>Type<br>and<br>No.                    | Samp.<br>Rec.<br>(Ft.<br>&<br>%) | SPT<br>or<br>RQD         | Lab.<br>Class.<br>or<br>Pen.<br>Rate | Hans<br>Lab.<br>Moist | Visual Description                                                                                                                                                                                                                           | Well Installation<br>Detail    | Elevation      |  |  |  |  |
| 31-<br>-<br>32 <u>-32.0</u>                | 5-8                                             | 2.0                              | 8<br>10<br>20<br>20      |                                      | 41                    | Continued from Sheet Z<br>SAND, FINE GRAIN, BREY DENSE, KIET                                                                                                                                                                                 | 14045 CQUED -<br>TD 30.0'      | -/2.0          |  |  |  |  |
| -<br>33<br>54                              | A-N                                             |                                  |                          |                                      |                       | GREY, MOIST, STIFF, LITTLE (LAY),<br>LITTLE SHELL FRAGMENTS PARTIALLY<br>CEMENTED (CONSOLIDATED, LIMESTONE<br>MAGMENTS                                                                                                                       |                                |                |  |  |  |  |
| 35 <u>35.0</u><br>36 <u>37.0</u>           | 5-9                                             | 1.0                              | 18<br>20<br>13           |                                      | 41                    | DAND, LITTLE SILT, LITTLE FINE GRAVEL<br>SHELL FRAGMENTS, WIET, MED DENSE<br>TO DENSE, FINE AND MEDIUMGRAIN,<br>CONSOLIDATED SHELL FRAGMENTS. @ \$15<br>CEMENTED                                                                             |                                |                |  |  |  |  |
| 38-<br>39-<br>40-<br>40-0                  | A-N                                             |                                  |                          |                                      |                       | -<br><br><br>                                                                                                                                                                                                                                |                                |                |  |  |  |  |
| 40 <u>40</u><br>41 <u>4</u><br>41 <u>4</u> | S-10                                            | 1.8                              | 11<br>15<br>17<br>19     |                                      | 21                    | SAND, GRES, SHELL FRACINENTS 40.5<br>SAND, FINE GRAINS LITTLE SILT AND CLASS<br>GRES, GREEN, MCS DENSE, WET, -                                                                                                                               |                                | -21.4<br>-22.9 |  |  |  |  |
| 43<br>44                                   | A-N                                             |                                  |                          |                                      |                       | -                                                                                                                                                                                                                                            | SCREED<br>Farm 42.0<br>TO 47.0 |                |  |  |  |  |
| 45 <u>45:0</u><br>46 <u>47.0</u>           | 5-11                                            | 2.0                              | 45<br>813                |                                      | 41                    | SAND, FINE GRAIN, SOME SILT, LITTLE<br>CLAS, GREEN, GRES, MEDIUM STIFFTO<br>STIFF, WET<br>47.0                                                                                                                                               | Botto 947.0                    | -27.9          |  |  |  |  |
| 48_<br>49_<br>-                            | ай<br>                                          |                                  |                          |                                      |                       | ENO OF BORING @ 49,0<br>HAD TO USE WATEL TO LLEAN OUT<br>AUBEL BEFORE TRIZING SAMPLE<br>ESTIMATE ISO GALLONG USED<br>HOLE CAVED TO 30:                                                                                                       |                                |                |  |  |  |  |
| DRILLING<br>DRILLER                        |                                                 |                                  | 1                        | wour                                 | <u> </u>              | BAKER REP.: BRIA<br>BORING NO.: TWT                                                                                                                                                                                                          |                                | · <u> </u>     |  |  |  |  |



. . . .

•

5 gs (# \_

# **TEST BORING AND WELL CONSTRUCTION RECORD**

1

PROJECT: 56-1 - 470 232 54REENING S.O. NO.: 62470-232-0000-03600 COORDINATES: EAST: 2464646.7270 ELEVATION: SURFACE: 17.6

Т

BORING NO.: <u>TW 2 - A</u> NORTH: <u>362393.3209</u> TOP OF STEEL CASING: \_\_\_\_\_

Т

| RIG:                                                                            | MOBI                          | LE 55                          | т т              | RUCK                                 | بر<br>م            | 5         |                  |            |                            |                                                                                                                  |                                                                                                                             |                         |
|---------------------------------------------------------------------------------|-------------------------------|--------------------------------|------------------|--------------------------------------|--------------------|-----------|------------------|------------|----------------------------|------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|-------------------------|
|                                                                                 | £                             | SPLIT<br>SPCIO                 | -                | CASING                               |                    | GERS      | CORE<br>BARREL   | DATE       | PROGRESS<br>(FT)           | WEATHER                                                                                                          | WATER<br>DEPTH<br>(FT)                                                                                                      | TIME                    |
| SIZE (DIAN                                                                      | Л.)                           |                                |                  |                                      |                    |           |                  | 4.9-96     | 0-15                       | 50's crove                                                                                                       | y 4.0                                                                                                                       | OHRS                    |
| LENGTH                                                                          |                               |                                |                  |                                      |                    |           |                  |            |                            |                                                                                                                  |                                                                                                                             | :                       |
| ТҮРЕ                                                                            |                               |                                |                  |                                      |                    |           |                  |            |                            |                                                                                                                  |                                                                                                                             |                         |
| HAMMER                                                                          | WT.                           |                                |                  |                                      |                    |           |                  |            |                            |                                                                                                                  |                                                                                                                             |                         |
| FALL                                                                            |                               |                                |                  |                                      |                    |           |                  |            |                            | <u> </u>                                                                                                         |                                                                                                                             |                         |
| STICK UP                                                                        |                               |                                |                  |                                      |                    |           |                  |            |                            |                                                                                                                  |                                                                                                                             |                         |
| REMARKS                                                                         | :                             |                                |                  |                                      |                    |           |                  | r          |                            |                                                                                                                  | F                                                                                                                           |                         |
|                                                                                 | <u>S</u> plit Spo<br>Shelby T |                                | A =              | Auger<br>Wash                        |                    |           | VELL             | DIAM       | TY                         | PE                                                                                                               | TOP<br>DEPTH<br>(FT)                                                                                                        | BOTTOM<br>DEPTH<br>(FT) |
| ' R ≈ /                                                                         | Air Rotai<br>Denison          | у                              | C ==             | Core<br>Piston                       |                    | WellC     | Casing           | 1          | PVC Threaded               |                                                                                                                  | ٥                                                                                                                           | 5                       |
| J                                                                               |                               | = No Sa                        |                  |                                      |                    | Well S    | Screen           | 1          | PVC Slotted                |                                                                                                                  | 5                                                                                                                           | 15                      |
| · Depth<br>(Ft.)                                                                | Sample<br>Type<br>and<br>No.  | Samp.<br>Rec.<br>Ft.<br>&<br>% | SPT<br>or<br>RQD | Lab.<br>Class.<br>or<br>Pen.<br>Rate | Lab.<br>Moist<br>% |           | Visual           | Descriptio | on                         | Insta                                                                                                            | ell<br>llation<br>tail                                                                                                      | Elevation               |
| -<br>1 -<br>2 -<br>3 -<br>4 -<br>5 -<br>5 -<br>6 -<br>7 -<br>8 -<br>9 -<br>10 - | A-1                           |                                |                  |                                      |                    | Se<br>For | E Barin<br>R Sai |            | noん<br>Aatch to Sheet      | and the second | WELL CASUSC<br>From 0.0 to<br>SIO FF.<br>WELL SOLK<br>From UIO<br>to ISIOFT<br>WELL<br>SLEEEN<br>FROM<br>SIO to<br>ISIO FT. |                         |
| DRILLIN                                                                         |                               |                                | RAT              | - 200                                | <u> </u>           |           |                  | BAKE       | R REP .: _ BR.             | AN E. DAV                                                                                                        | <u>s</u>                                                                                                                    | T 1 05 7                |
| DRILLER                                                                         |                               | 14.C                           |                  |                                      |                    |           |                  | BORIN      | ו ערד IG NO.: <u>דע</u> יד | <u>L- P.</u>                                                                                                     | SHEE                                                                                                                        | т <u>1</u> оғ <u>2</u>  |

an an an an

Т

Т



Baker Environmental, 105

PROJECT: 567 - 10 232 - 50 REGN 25

S.O. NO .: 62470 - 232-0000-03600 BORING NO .: TW2-A

| S<br>T<br>R<br>D | = S<br>= A | plit Spoc<br>helby Tu<br>Air Rotan<br>Denison | be<br>/                          | A ==<br>W ==<br>C ==<br>P = |                                      |                    | <u>DEFINITIONS</u><br>SPT = Standard Penetration Test (,<br>RQD = Rock Quality Designation (<br>Lab. Class. = USCS (ASTM D-2487)<br>Lab. Moist. = Moisture Content (A | %)<br>or AASHTO (AS | TM D-3282)                             |                        |
|------------------|------------|-----------------------------------------------|----------------------------------|-----------------------------|--------------------------------------|--------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|----------------------------------------|------------------------|
| Dept<br>(Ft.)    |            | Sample<br>Type<br>and<br>No.                  | Samp.<br>Rec.<br>(Ft.<br>&<br>%) | SPT<br>or<br>RQD            | Lab.<br>Class.<br>or<br>Pen.<br>Rate | Lab.<br>Moist<br>% | Visual Description                                                                                                                                                    |                     | stallation<br>etail                    | Elevation              |
| 11_              | 1          |                                               |                                  |                             |                                      |                    | Continued from Sheet 1 -                                                                                                                                              |                     | WELL<br>SOLK<br>FROM<br>0.0 TO 15:0 FT |                        |
| -<br>12          |            | A-N                                           |                                  |                             |                                      |                    | -                                                                                                                                                                     |                     | Ken 50000                              |                        |
| 13<br><br>14     |            |                                               |                                  |                             |                                      |                    |                                                                                                                                                                       |                     | 4.0 FT -                               |                        |
| 14               |            |                                               |                                  |                             |                                      |                    | END OF BORING @ 14.0<br>NOTE: HOLE WASHED TO :5.0FT.                                                                                                                  |                     | Botton PWG-                            | 2.6                    |
| -<br>16_         |            |                                               |                                  |                             |                                      |                    | -                                                                                                                                                                     |                     | -                                      |                        |
| 17               |            |                                               |                                  |                             |                                      |                    | -                                                                                                                                                                     |                     | -                                      |                        |
| 18_<br>-<br>19_  |            |                                               |                                  |                             |                                      |                    | -                                                                                                                                                                     |                     |                                        |                        |
| -<br>20          |            |                                               |                                  |                             |                                      |                    | -                                                                                                                                                                     |                     | -                                      |                        |
| 21_              |            |                                               |                                  |                             |                                      |                    | -                                                                                                                                                                     |                     | -                                      | -                      |
| 22<br>23         |            |                                               |                                  |                             |                                      |                    | -                                                                                                                                                                     |                     | -                                      |                        |
| 24 _             |            |                                               |                                  |                             |                                      |                    | -                                                                                                                                                                     |                     | -                                      |                        |
| -<br>25          |            |                                               |                                  |                             |                                      | -                  | -                                                                                                                                                                     |                     | -                                      |                        |
| 26               |            |                                               |                                  |                             |                                      |                    | -                                                                                                                                                                     |                     | -                                      |                        |
| 27<br>28         |            |                                               |                                  |                             |                                      |                    | -                                                                                                                                                                     |                     |                                        |                        |
| -<br>29          |            |                                               |                                  |                             |                                      |                    | -                                                                                                                                                                     | -                   | -                                      | -                      |
| 30_              |            |                                               |                                  |                             |                                      |                    | Match to Sheet 3                                                                                                                                                      |                     |                                        |                        |
| DRIL<br>DRIL     |            |                                               | Par<br>CH.(                      |                             | TWO                                  | LFF                | BAKER REP.: _ÅRι <sub>Α</sub> ,<br>BORING NO.:                                                                                                                        |                     | SHEE                                   | T <u>2</u> OF <u>2</u> |



T



·· · ·

### **TEST BORING AND WELL CONSTRUCTION RECORD**

T

PROJECT: SGI - CTO 232 SCREENING

Т

S.O. NO .: 62470 .232-03600 COORDINATES: EAST: 2464646.7270 ELEVATION: SURFACE: 17.6

BORING NO .: TWZ-B NORTH: 362393 3209 TOP OF STEEL CASING: \_

Т

T

| RIG: m                          | BILE                         | : 55                           | TR                          | UCK M                                | Th Ud              | •            |                  |            |                                        |                      |                                            |                         |
|---------------------------------|------------------------------|--------------------------------|-----------------------------|--------------------------------------|--------------------|--------------|------------------|------------|----------------------------------------|----------------------|--------------------------------------------|-------------------------|
|                                 | . M                          | SPLIT<br>SPOO                  | τļ                          | CASING                               |                    | JGERS        | CORE<br>BARREL   | DATE       | PROGRESS<br>(FT)                       | WEATHER              | WATER<br>DEPTH<br>(FT)                     | TIME                    |
| SIZE (DIAM                      | I.)                          | 1431                           | 2                           |                                      | 3'                 | 410          |                  | 419196     | 0-47                                   | 50's clove           | 6.0                                        | OHRO                    |
| LENGTH                          |                              | ZET                            |                             |                                      |                    | FT           |                  |            |                                        |                      |                                            | :                       |
| ГҮРЕ                            |                              | 55                             |                             |                                      |                    | t S          |                  |            |                                        |                      |                                            |                         |
| AMMER                           | ₩Т.                          | 14016                          | <u>,</u>                    |                                      | 1                  |              |                  |            |                                        |                      |                                            |                         |
| ALL                             |                              | 30 12                          | ,                           |                                      |                    |              |                  |            |                                        |                      |                                            |                         |
| STICK UP                        | †                            | <u> </u>                       |                             |                                      |                    |              |                  |            |                                        |                      |                                            |                         |
| REMARKS:                        | · ·                          |                                |                             |                                      |                    |              |                  |            |                                        |                      |                                            |                         |
| <b>S</b> = S<br><b>T</b> = S    |                              |                                | <b>A</b> =                  | = Auger<br>= Wash                    |                    |              | VELL<br>PRMATION | DIAM       | TYP                                    | 'E                   | TOP<br>DEPTH<br>(FT)                       | BOTTON<br>DEPTH<br>(FT) |
| R = A<br>D = D                  | ir Rotar                     |                                | C =                         | = Core<br>= Piston                   |                    | Well C       | Casing           | 1‴         | PVC Threaded                           | AIC <sup>**</sup> ا  | 0.0                                        | 42.0                    |
|                                 |                              | = No Sa                        |                             |                                      |                    | Well S       | Screen           | ۱"         | PVC Slotted                            | J.01 5WDT            | 42.0                                       | 47.0                    |
| Depth<br>(Ft.)                  | Sample<br>Type<br>and<br>No. | Samp.<br>Rec.<br>Ft.<br>&<br>% | SPT<br>or<br>RQD            | Lab.<br>Class.<br>or<br>Pen.<br>Rate | Lab.<br>Moist<br>% |              | Visual [         | Descriptio | n                                      | We<br>Install<br>Det | ation                                      | Elevatio                |
| -<br>1 -<br>2 - <sup>2,</sup> 0 | 5-1                          |                                | 4 <sub>10</sub><br>10<br>12 | 2                                    | 4                  | 0.01         | FINE GRA         |            | S Feen                                 |                      | WELL CASING<br>From<br>OLOFT TO<br>4510 FT |                         |
| 3 - 4.0                         | 5-2                          | 1.5                            | 7<br>86                     | 1                                    | 4                  | ->           |                  |            | GREJ, DAMP                             |                      | WELL SOLK<br>1900<br>0.0 FT TO<br>47.0 FT  | -<br>                   |
| 5 -<br>6 - <u>6</u>             | 5-3                          | 2.0                            | 2<br>2<br>2<br>3            | <u>,</u>                             | 20                 | BLACK        | · SAWS LAYZ      | n® 4.5 to. | 5.0'- 20 ppm .<br>ON HAU               |                      |                                            |                         |
| 7                               |                              |                                |                             |                                      |                    | SAm<br>[scor | - 40m 6          | -02-03 C   | مدروديوه                               |                      |                                            |                         |
| 9 -                             | <b>A</b> -n∕                 |                                |                             |                                      |                    |              |                  |            |                                        |                      |                                            |                         |
|                                 |                              |                                |                             |                                      |                    | 1            |                  |            | atch to Sheet 2                        |                      |                                            |                         |
| DRILLING<br>DRILLER:            |                              |                                | RA                          | TT W                                 | DLF                | با<br>ا      |                  |            | (REP.: <u>BRIA</u><br>GNO.: <u>TW2</u> | NE. DAVI             |                                            | T <u>1</u> OF           |



PROJECT: 3GI - LTO 232 SLREENING S.O. NO.: 62470-232-03600 BORING NO.: TWZ-B Baker Environmental, Inc. ,

SCREENING

,

| T = Shee<br>R = Air     | lit Spoo<br>elby Tul<br>r Rotary<br>enison | be<br>'                          | A =<br>W =<br>C =<br>P = | Auger<br>Wash<br>Core<br>Piston      |                                    | DEFINITIONS<br>SPT = Standard Penetration Test (ASTM D-1586) (Blows/0.5')<br>RQD = Rock Quality Designation (%)<br>Lab. Class. = USCS (ASTM D-2487) or AASHTO (ASTM D-3282)<br>Lab. Moist. = Moisture Content (ASTM D-2216) Dry Weight Basis |                                                                     |                  |  |  |
|-------------------------|--------------------------------------------|----------------------------------|--------------------------|--------------------------------------|------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|------------------|--|--|
|                         | ample<br>Type<br>and<br>No.                | Samp.<br>Rec.<br>(Ft.<br>&<br>%) | SPT<br>or<br>RQD         | Lab.<br>Class.<br>or<br>Pen.<br>Rate | Hnu<br>Lab.<br>Moist<br>%<br>(rpm) | Visual Description                                                                                                                                                                                                                           | Well Installation<br>Detail                                         | Elevation        |  |  |
| 1<br> 2                 | 5-4                                        | Q. 8                             | و بر<br>و بر             |                                      | <1                                 | Continued from Sheet 1<br>SANO, FINE GRAIN, GREY, LOUSE, WET _<br>-                                                                                                                                                                          | WELL CASING -<br>From GIOTO -<br>45:0 FT<br>WELL SOLIC<br>From 12.0 |                  |  |  |
| 3<br>4<br>5 <u>15.0</u> | A-nl                                       |                                  |                          |                                      |                                    | Б.о<br>Б.о                                                                                                                                                                                                                                   | באסיבי בייי<br>באסיב איני בא<br>                                    | 2.60             |  |  |
| 4                       | 5-5                                        | 1.0                              | 4<br>5                   |                                      | <1                                 | SAND, MEDIUM GRAIN, LITTLE SILT<br>BROWN, LOUSE, WET<br>LITTLE COARSE GRAIN SAND/FINE GRAIN<br>GRAVEL                                                                                                                                        |                                                                     |                  |  |  |
| 8 <br> 9<br>20          | <b>4</b> -√                                |                                  |                          |                                      |                                    |                                                                                                                                                                                                                                              |                                                                     | -2.40            |  |  |
| 2 22.0                  | 5-6                                        | 1.8                              |                          |                                      | 41                                 | SAND, FINE GERIN, TRACE SILF<br>GRAY, LOOSE, WET                                                                                                                                                                                             | -                                                                   |                  |  |  |
| 3_<br>4_<br>5           | N-4                                        |                                  | 1                        |                                      |                                    |                                                                                                                                                                                                                                              |                                                                     |                  |  |  |
| 7 27.0                  | 5-7                                        | 1.5                              | "13<br>18<br>14          |                                      | <{                                 | SANDI FINE AND TEOLUT GRAIN,<br>SOME FINE BRANEN, GREY, MED DENSE<br>WELT                                                                                                                                                                    |                                                                     | -<br>- 8.90<br>- |  |  |
| 28                      | A-J                                        |                                  |                          |                                      |                                    | 30.0<br>SA NO AND SILT Match to Sheet 3:                                                                                                                                                                                                     |                                                                     | -<br>-<br>12.*   |  |  |

Bullin antes -

Baker Environmental, Mc

# TEST BORING AND WELL CONSTRUCTION RECORD

· ••

PROJECT: 561 - LTO 252 SCREENING S.O. NO .: 62470-232-0000-03600 BORING NO .: TW2-B

المحجمة ال

| T = 9<br>R = 7                              | Split Spoo<br>Shelby Tu<br>Air Rotan<br>Denison | be<br>/                          | A =<br>W =<br>C =<br>P =     |                                      |                                    | DEFINITIONS<br>SPT = Standard Penetration Test (/<br>RQD = Rock Quality Designation ('<br>Lab. Class. = USCS (ASTM D-2487)<br>Lab. Moist. = Moisture Content (A | %)<br>or AA! | SHTO (A | STM D-3282)                                                           |                        |
|---------------------------------------------|-------------------------------------------------|----------------------------------|------------------------------|--------------------------------------|------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|---------|-----------------------------------------------------------------------|------------------------|
| Depth<br>(Ft.)                              | Sample<br>Type<br>and<br>No.                    | Samp.<br>Rec.<br>(Ft.<br>&<br>%) | SPT<br>or<br>RQD             | Lab.<br>Class.<br>or<br>Pen.<br>Rate | Hnu<br>Lab.<br>Moist<br>%<br>Lppm) | Visual Description                                                                                                                                              | N            |         | ostallation<br>Detail                                                 | Elevation              |
| 91-<br>32-32.0                              | 5-8                                             | 2.0                              | 17 <sub>18</sub><br>19<br>32 |                                      | 41                                 | Continued from Sheet 2<br>SAND AND SILT, LITTLE FINE GRAVEL<br>WET, DENSE, LITTLE CLAY,<br>SHELL FRAGMENTS 7 LIMESTONE<br>FRAGMENTS, CONSOLIDATED SHELL         |              |         | WELL -<br>CASING -<br>From -<br>6:0 TD 42:0 -<br>FT: -<br>WELL SOLK - |                        |
| 33-<br>34-                                  | A-M                                             |                                  |                              |                                      |                                    | Fragments From 30-3015 -                                                                                                                                        |              |         | Ron<br>0 & to 47.6ft                                                  |                        |
| 35 <u>35.0</u><br>36-<br><u>37.0</u>        | 5-9                                             | o                                | 2020                         |                                      | -                                  | NO SAMPLIC<br>SAMPLE SLIPPED OUT OF SPLITSPOON -                                                                                                                |              |         |                                                                       |                        |
| -<br>38_<br>-<br>39_                        |                                                 |                                  |                              |                                      |                                    | -<br>-<br>-<br>-                                                                                                                                                |              |         | -                                                                     |                        |
| 40 <u>40.</u><br>41 <u>42.</u>              | 5-1:0                                           | 2.0                              | 16<br>.18<br>22<br>25        |                                      | <1                                 | SAND AND SILT, FINE AND MEDIUM<br>GRAIN, SOME SHELL FRACMENTS<br>KNO LIMESTONE FRACMENTS -<br>UNCONSOLIDATED, WET, DENSE                                        |              | 1       | -                                                                     | - 24.40                |
| 43<br>44                                    |                                                 |                                  |                              |                                      |                                    |                                                                                                                                                                 |              |         | WELL SCREED<br>From 42.0<br>TO 47.0 FT                                | -                      |
| 45 <u>45</u><br>46 <u>-</u><br>47 <u>47</u> | 5-11                                            | 2.0                              | 4<br>7<br>9<br>10            | >                                    | 41                                 | SAND, FINE GRAIN, LITTLE SILT, GREEN,<br>GREY, MIGOLUM JENSEWET<br>47.0                                                                                         |              |         | -                                                                     | -27.40                 |
| 48_<br>49_                                  |                                                 |                                  |                              |                                      |                                    | END OF BORING @ 47.0 FT.<br>HAD TO USE WATCH TO CLEAN OUT<br>AUGCA BEFORE TAKING SAMPLE<br>ESTIMATE 50 GALLONS USED<br>HOLE CAVED TO 30'                        | -            |         | -                                                                     | -<br>-<br>-<br>-       |
| DRILLIN<br>DRILLER                          |                                                 |                                  | <br>2.R.Art                  | r hle                                | )<br>NEF                           | BAKER REP.: BRIAN<br>BORING NO.: TWZ                                                                                                                            |              | · DA    | JIS<br>SHEE                                                           | т <u>3</u> оғ <u>3</u> |



PROJECT: SGI - CTO 232 SCREENING

S.O. NO .: 62470-232 -0000-03600 COORDINATES: EAST: \_\_\_\_\_ ELEVATION: SURFACE: \_\_\_\_\_7.8

BORING NO .: TW3-A -NORTH: TOP OF STEEL CASING: \_\_\_\_\_\_\_

| RIG: MOBI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | LE 55          | TRUCK              | mou                | JГ        |                |            |                               |           | WATER                                                                                                               |                                                                                             |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|--------------------|--------------------|-----------|----------------|------------|-------------------------------|-----------|---------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | SPLIT<br>SPOON | CASING             | AU                 | GERS      | CORE<br>BARREL | DATE       | PROGRESS<br>(FT)              | WEATHER   | DEPTH                                                                                                               | TIME                                                                                        |
| SIZE (DIAM.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Less 1         |                    | 3                  | 410       |                | 4/10/96    | 0-15                          | 50'5 SUNN | y 6FT                                                                                                               | o hrs.                                                                                      |
| LENGTH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 217-           |                    | 4                  | FT        |                |            |                               |           |                                                                                                                     | :                                                                                           |
| ТҮРЕ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <b>-</b> .     |                    | ŀ                  | łs        |                |            |                               |           |                                                                                                                     |                                                                                             |
| HAMMER WT.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                |                    |                    |           |                |            |                               |           |                                                                                                                     |                                                                                             |
| FALL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | _              |                    |                    |           |                |            |                               |           |                                                                                                                     |                                                                                             |
| STICK UP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                |                    |                    |           |                |            |                               |           |                                                                                                                     |                                                                                             |
| REMARKS:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -<br>          |                    |                    |           |                | r          |                               |           |                                                                                                                     |                                                                                             |
| S = Split |                | = Auger<br>= Wash  |                    |           | VELL           | DIAM       | тү                            | PE        | TOP<br>DEPTH<br>(FT)                                                                                                | BOTTOM<br>DEPTH<br>(FT)                                                                     |
| R = Air Rota<br>D = Denisor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ary C          | = Core<br>= Piston |                    | Well(     | Casing         | 1''        | PVC Threaded                  | 1" DIA    | 0                                                                                                                   | 5                                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | I = No Sampl   |                    |                    | WellS     | Screen         | 17         | PVC Slotted                   | D.01 SLOT | 10.                                                                                                                 | 15                                                                                          |
| Samp<br>Depth Type<br>(Ft.) and<br>No.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                | or                 | Lab.<br>Moist<br>% |           | Visual (       | Descriptio | on                            | Insta     | rell<br>Ilation<br>tail                                                                                             | Elevation                                                                                   |
| $ \begin{array}{c}     - \\     1 \\     - \\     2 \\     - \\     3 \\     - \\     4 \\     - \\     5 \\     - \\     5 \\     - \\     5 \\     - \\     6 \\     - \\     7 \\     - \\     8 \\     - \\     9 \\     - \\     10 \\   \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | J .            |                    |                    | SE<br>For | E BORINO       | IN FORMA   | イヨーB<br>TON<br>Match to Sheet |           | WELL<br>SOCIL FROM<br>O:0 FD<br>15:0 FT<br>WELL<br>CASING<br>TO 10:0 CT<br>WELL<br>CASING<br>FROM 5.0<br>TO 15:0 FT | -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- |
| DRILLING CO.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | . PAROA        |                    |                    | <br>;     | ·····          |            |                               | ANE, DAVI | \$                                                                                                                  |                                                                                             |
| DRILLING CO.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                | 11                 |                    |           | <u></u>        |            | NG NO.: <u>Tu</u>             |           | SHEE                                                                                                                | T <u>1</u> OF <sup>2</sup>                                                                  |

Baker

Baker Environmental, Inc

# TEST BORING AND WELL CONSTRUCTION RECORD

PROJECT: <u>SGI - CTO 232 - SCREENING</u> S.O. NO.: <u>62470 - 232 - 0000 - 03600</u> BORING NO.: <u>TW3-A</u>

| T = 1<br>R = 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Split Spoo<br>Shelby Tu<br>Air Rotary<br>Denison | be<br>/                          | A =<br>W =<br>C =<br>P = |                                      |                    | DEFINITIONS<br>SPT = Standard Penetration Test (ASTM D-1586) (Blows/0.5')<br>RQD = Rock Quality Designation (%)<br>Lab. Class. = USCS (ASTM D-2487) or AASHTO (ASTM D-3282)<br>Lab. Moist. = Moisture Content (ASTM D-2216) Dry Weight Basis |                             |                         |  |  |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|----------------------------------|--------------------------|--------------------------------------|--------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|-------------------------|--|--|--|--|
| Depth<br>(Ft.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Sample<br>Type<br>and<br>No.                     | Samp.<br>Rec.<br>(Ft.<br>&<br>%) | SPT<br>or<br>RQD         | Lab.<br>Class.<br>or<br>Pen.<br>Rate | Lab.<br>Moist<br>% | Visual Description                                                                                                                                                                                                                           | Well Installation<br>Detail | Elevation               |  |  |  |  |
| -<br>11<br>12<br>13<br>14<br>15<br>16<br>17<br>18<br>19<br>20<br>21<br>21<br>22<br>23<br>24<br>25<br>26<br>27<br>28<br>29<br>20<br>28<br>29<br>20<br>20<br>21<br>20<br>21<br>20<br>21<br>22<br>23<br>24<br>25<br>26<br>27<br>28<br>29<br>20<br>28<br>29<br>20<br>20<br>20<br>20<br>21<br>20<br>21<br>22<br>23<br>24<br>25<br>26<br>27<br>28<br>20<br>20<br>21<br>20<br>21<br>20<br>21<br>20<br>21<br>20<br>21<br>20<br>21<br>20<br>21<br>20<br>21<br>20<br>21<br>20<br>21<br>20<br>21<br>20<br>21<br>20<br>21<br>20<br>21<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20- | G CO.:                                           | PAR                              | -RAT                     |                                      | Pourfi             | Continued from Sheet 1<br>SEE BORING TW3-B<br>FOR SOIL INFORMATION<br>END OF BORING O 15.0 FT<br>                                                                                                                                            | LE. DAV IS                  |                         |  |  |  |  |
| DRILLING<br>DRILLER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                  |                                  | -RAT                     | <u>T - W</u>                         | OLFI               | BAKER REP.: BRIAN<br>BORING NO.: TW3                                                                                                                                                                                                         | <u>- A</u>                  | ET <u>2</u> OF <u>2</u> |  |  |  |  |

T

1



### **TEST BORING AND WELL CONSTRUCTION RECORD**

PROJECT: SGI- 4TO 232 - SCREENING

فاندر السر

1

S.O. NO .: 62470-232-0000-08600 COORDINATES: EAST: \_\_\_\_\_ ELEVATION: SURFACE: /7.8

BORING NO .: TW3-B NORTH:

Т

-TOP OF STEEL CASING: 17.59

Т

| RIG: MOGI                                                      | LE SS<br>SPLIT<br>SPOON | CASING                     |                           | τ<br>GERS    | CORE<br>BARREL                                     | DATE       | PROGRESS<br>(FT)           | WEATHER                  | WATER<br>DEPTH<br>(FT)                         | TIME                    |
|----------------------------------------------------------------|-------------------------|----------------------------|---------------------------|--------------|----------------------------------------------------|------------|----------------------------|--------------------------|------------------------------------------------|-------------------------|
| SIZE (DIAM.)                                                   | 1.43.2                  |                            | 31                        | 410          |                                                    | 4/9/96     | 0-47-                      | 50' WWAY                 | 64                                             | 01723                   |
| ENGTH                                                          | ZFT                     |                            |                           | FT           |                                                    |            |                            |                          |                                                |                         |
| ГҮРЕ                                                           | 55                      |                            |                           | 5            |                                                    |            |                            |                          |                                                |                         |
| HAMMER WT.                                                     | 140165.                 |                            |                           |              |                                                    |            |                            |                          | _                                              |                         |
| FALL                                                           | 30 (2).                 |                            |                           |              |                                                    |            |                            |                          |                                                |                         |
| STICK UP                                                       |                         |                            |                           |              |                                                    |            |                            |                          |                                                |                         |
| REMARKS:                                                       |                         |                            |                           |              |                                                    |            |                            |                          |                                                |                         |
| S = Split Sp<br>T = Shelby                                     |                         | = Auger<br>= Wash          |                           |              | VELL<br>RMATION                                    | DIAM       | TYF                        | PE                       | TOP<br>DEPTH<br>(FT)                           | BOTTON<br>DEPTH<br>(FT) |
| $\mathbf{R} = \text{Air Rot}$<br>$\mathbf{D} = \text{Denisor}$ | ary C                   | = Core<br>= Piston         |                           | Well (       | Casing                                             | 1 **       | PVC Threaded               | l"PIA                    | 0                                              | 42                      |
|                                                                | I = No Samp             |                            |                           | WellS        | Screen                                             | <i>t</i> " | PVC Slotted                | Diolsuor                 | 42                                             | 47                      |
| Samp<br>Depth Type<br>(Ft.) and<br>No.                         | Ft. or<br>& p           | PT Class.<br>or<br>QD Pen. | Hnu<br>tzb.<br>Moist<br>% | Ì            | Visual [                                           | Descriptio | on                         | Well<br>Instalia<br>Deta | tion                                           | Elevatio                |
| 1 - 5-<br>2 - 2.0                                              | 1 2.06                  | 5                          | 4۱                        | Lose         | 5 FINE GRAM<br>, ROOTS<br>5 TW-03-0<br>5 PT @ 16:5 |            |                            |                          | NELL SOCK<br>From Dioft<br>TO 47:0Ft           | 4                       |
| 3 -<br>3 -<br>4 - 4.0                                          | 2 3                     | 3                          | <u>د ا</u>                | SANO,<br>MER | FINE 6RA.<br>D. Päuse, L                           | N; BRET,   |                            |                          | KIGL<br>CASING<br>From<br>B:0 FT<br>TO 4210 F1 | - 15.3<br>-<br>- 13.2   |
| 5 - 5-;<br>6 - 6-0                                             | 2.104                   | 4<br>5                     | <u> </u>                  | same         | 0.Fint 6RA<br>VG TW - 03<br>to 610 B 1             | -•3 coute  |                            |                          | 1012:01-1                                      |                         |
| 7                                                              | 2                       |                            |                           |              |                                                    |            |                            |                          |                                                |                         |
| 9                                                              |                         |                            |                           | SILT         | AND LLAY                                           |            | l 0. c<br>Iatch to Sheet   | 2                        |                                                | - 7.8                   |
| DRILLING CO.<br>DRILLER:                                       |                         | th wolf                    | F-                        |              |                                                    | BAKE       | RREP.: BRIAN<br>IGNO.: TW3 | J E DAVIS<br>B           | SHE                                            | T <u>1</u> OF           |





11.10.10

#### **TEST BORING AND WELL CONSTRUCTION RECORD**

PROJECT: <u>SGI - CTO 232 - SCREENING</u> S.O. NO.: <u>62470-232-0000-03600</u> BORING NO.: <u>TW 3-B</u>

......

| T = S<br>R = A                             | Split Spoo<br>Shelby Tu<br>Air Rotan<br>Denison | ibe<br>V                         | A =<br>W =<br>C =<br>P =                            | Auger<br>Wash<br>Core<br>Piston      |                                               | <u>DEFINITIONS</u><br>SPT = Standard Penetration Test (/<br>RQD = Rock Quality Designation (<br>Lab. Class. = USCS (ASTM D-2487)<br>Lab. Moist. = Moisture Content (A | %)<br>or AASHTO (A | ASTM D-3282)                       |                        |
|--------------------------------------------|-------------------------------------------------|----------------------------------|-----------------------------------------------------|--------------------------------------|-----------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|------------------------------------|------------------------|
| Depth<br>(Ft.)                             | Sample<br>Type<br>and<br>No.                    | Samp.<br>Rec.<br>(Ft.<br>&<br>%) | SPT<br>or<br>RQD                                    | Lab.<br>Class.<br>or<br>Pen.<br>Rate | Hnu<br><del>Lab.</del><br>Moist<br>%<br>(pem) | Visual Description                                                                                                                                                    |                    | nstallation<br>Detail              | Elevation              |
| 11<br>12 <u>/2,0</u>                       | 5-4                                             | 2.0                              | <sup>2</sup> <sup>2</sup> <sup>2</sup> <sup>3</sup> |                                      | 1                                             | Continued from Sheet 1 -<br>SILT AND CLAY, LITTLE FINE SAND, -<br>GREY, BOFT, WET, TREE ROOT -                                                                        |                    | WELL -<br>SOLIC<br>FROM -<br>UIOFT |                        |
| -<br>13<br>14                              | A-N                                             |                                  |                                                     |                                      |                                               |                                                                                                                                                                       |                    | TO 47.0FT                          | 20                     |
| 15 <u>15</u><br>16<br>16<br>17 <u>17</u> 0 |                                                 | 2.0                              | 3 <sub>5</sub><br>6 <sub>7</sub>                    |                                      | 41                                            | JAND : FINE GRAIN, LITTLE SILE -<br>GREY, WET, MEDIUM DENSE -                                                                                                         |                    | 0.0FT -<br>TO 42.0FT -<br>-        | 2.8                    |
| -<br>18<br>-<br>19                         | A-N                                             |                                  |                                                     |                                      |                                               | -                                                                                                                                                                     |                    | -                                  |                        |
| $20 - \frac{2 \cos x}{2}$<br>21            | 5-6                                             | 2.0                              | 3<br>3<br>3<br>3<br>3<br>3                          |                                      | <1                                            | SAND, FINE GRAIN, LITTLE TO TRACE -<br>SILT, GREY, WET, LOOSE TO MED, -<br>DENSE -                                                                                    |                    | -                                  | -                      |
| 23<br>24                                   | AN                                              |                                  |                                                     |                                      |                                               |                                                                                                                                                                       |                    | -                                  | -                      |
| $25 - \frac{25 x}{26 - \frac{27}{27}}$     | 5-7                                             | Læ                               | (<br>MoH                                            |                                      |                                               | SILT AND GLAN, SOME FINE GRAND SAUD -<br>GREY, WET, SOFT -                                                                                                            |                    | -                                  | -7.2                   |
| 27 <u>27</u><br>28 <u>-</u><br>29 <u>-</u> |                                                 |                                  |                                                     |                                      |                                               |                                                                                                                                                                       |                    | -                                  | -                      |
| 30                                         |                                                 |                                  |                                                     |                                      |                                               | 30.0 Match to Sheet 3                                                                                                                                                 |                    |                                    | -12.                   |
| DRILLING<br>DRILLER                        |                                                 | PAR                              | RAT                                                 |                                      | NOLF                                          | BAKER REP.: BRID<br>BORING NO.: TW3-                                                                                                                                  |                    | SHEE                               | r <u>2</u> of <u>3</u> |



Baker Environmental, Inc.

# TEST BORING AND WELL CONSTRUCTION RECORD

PROJECT: 561 - CTU 232 SCREENING S.O. NO .: 62470-232 - 6400-03602 BORING NO .: TW 3-B

| T = S<br>R = A                                 | Split Spoo<br>Shelby Tu<br>Air Rotar<br>Denison | ibe<br>Y                         | A =<br>W =<br>C =<br>P = | Auger<br>Wash<br>Core<br>Piston      |                            | DEFINITIONS<br>SPT = Standard Penetration Test (ASTM D-1586) (Blows/0.5')<br>RQD = Rock Quality Designation (%)<br>Lab. Class. = USCS (ASTM D-2487) or AASHTO (ASTM D-3282)<br>Lab. Moist. = Moisture Content (ASTM D-2216) Dry Weight Basis |   |  |             |                                                 |   |          |
|------------------------------------------------|-------------------------------------------------|----------------------------------|--------------------------|--------------------------------------|----------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|--|-------------|-------------------------------------------------|---|----------|
| Depth<br>(Ft.)                                 | Sample<br>Type<br>and<br>No.                    | Samp.<br>Rec.<br>(Ft.<br>&<br>%) | SPT<br>or<br>RQD         | Lab.<br>Class.<br>or<br>Pen.<br>Rate | Haw<br>Lab.<br>Moist<br>** | Visual Description                                                                                                                                                                                                                           | v |  | nsta<br>Det | allation<br>ail                                 | E | levation |
|                                                | 5-8                                             | 2.0                              | 7 q<br>1 ( <u>7</u>      |                                      | 4                          | Continued from Sheet 2<br>SANO, COARSE AND MEDIUM GRAN, LITTLE_<br>FINE GRAN, CITTLE SILT, GREY, WET<br>MED DENSE TO DENSE; TRACE CLAY_<br>LIMESTONE FRAGMENTS; SILEL FLAGMENTS<br>UN CONSOLIDATED                                           |   |  |             | WELL<br>Salt<br>Fron<br>0:0 FF<br>TD<br>47.0 FT |   |          |
| 33-<br>34-<br>35-35.0                          | A-N                                             |                                  |                          |                                      |                            |                                                                                                                                                                                                                                              |   |  |             | WELL<br>CAS.NG<br>From<br>0.0FT                 |   |          |
| 1 <sup>36</sup>                                | 5-9                                             | 2.0                              | 10<br>18<br>28<br>13     |                                      | 41                         | SAND, SOME SILT, TRACE CLAY<br>GREY, GREEN, HIMESTONE FRAMENTY<br>WET, MED DENSE TO PENSE                                                                                                                                                    |   |  |             | 70<br>42.0 FT                                   |   |          |
| 38_<br>39_<br>40_ <u>40.0</u>                  | A-N                                             |                                  |                          |                                      |                            |                                                                                                                                                                                                                                              |   |  |             |                                                 |   |          |
| 41_<br>42_ <del>42.0</del>                     | 5-10                                            | 2.0                              | 8<br>13<br>18<br>'24     |                                      | 41                         | SAND, LITTLE SILT, TEACE CUAY -<br>GREY. "LIMESTONE REAGING MENTS<br>UNCONSOLIDATOD, WET, MED DENSE                                                                                                                                          |   |  |             | WELL<br>SCREEN                                  |   |          |
| 43_<br>44_<br>#_ 45.e                          | A-N                                             |                                  |                          |                                      |                            | -<br>-<br>45.0                                                                                                                                                                                                                               |   |  |             | From<br>42.0 FT<br>TO 41.0 FT                   |   | -27.2    |
| 45 <u>45.4</u><br>46 <u>47</u><br>47 <u>47</u> | 5-11                                            | 2.0                              | 5, 7 9                   |                                      | 4                          | SAND, FINE GRAW, LITTLE SILF, GREEN<br>GREY, MEDIUM DENSE, WEF                                                                                                                                                                               |   |  |             |                                                 |   | -29.2    |
| 48_<br>49_                                     |                                                 |                                  |                          |                                      |                            | END of BORING @ 47.0Ft.<br>HAD TO USE WATCH TO CLEAN OUT<br>AUGON BEFORE TA KING SAMPLE<br>SATIMATE 30 GALLONS USED<br>HOLE CANED TO                                                                                                         | - |  |             |                                                 |   |          |



. . . .

#### **TEST BORING AND WELL CONSTRUCTION RECORD**

.

PROJECT: SGI - CTO 232 - SCREENING

S.O. NO.: 62470-232-000-03600 BORING NO.: TW4-A COORDINATES: EAST: 2465299.0839 NORTH: 322362.1345 ELEVATION: SURFACE: 15.80 TOP OF STEEL CASING: -

| RIG: r                                          | nobile s                                          | 5                | TRUCK                                 | - mo               | UNT      |                  |            |                    |             |                                                                                                                                      |                         |  |
|-------------------------------------------------|---------------------------------------------------|------------------|---------------------------------------|--------------------|----------|------------------|------------|--------------------|-------------|--------------------------------------------------------------------------------------------------------------------------------------|-------------------------|--|
| · · · ·                                         | SPLIT                                             | ·                | CASING                                |                    | IGERS    | CORE<br>BARREL   | DATE       | PROGRESS<br>(FT)   | WEATHER     | WATER<br>DEPTH<br>(FT)                                                                                                               | TIME                    |  |
| SIZE (DIAM.)                                    | )                                                 |                  | · · · · · · · · · · · · · · · · · · · | 3                  | 4"I0     |                  | 4/10/16    | 0-45               | 50'S SUNN   | y BFT                                                                                                                                | OHAS                    |  |
| LENGTH                                          |                                                   |                  |                                       |                    | FF       |                  |            |                    |             |                                                                                                                                      | :                       |  |
| ТҮРЕ                                            |                                                   | H                |                                       |                    | 5        |                  |            |                    |             |                                                                                                                                      |                         |  |
| HAMMER W                                        | л.                                                |                  |                                       |                    |          |                  |            |                    |             |                                                                                                                                      |                         |  |
| FALL                                            |                                                   |                  |                                       |                    |          |                  |            |                    |             |                                                                                                                                      |                         |  |
| STICK UP                                        |                                                   |                  |                                       |                    |          |                  |            |                    |             |                                                                                                                                      |                         |  |
| REMARKS:                                        |                                                   |                  |                                       |                    |          |                  | r          |                    |             |                                                                                                                                      |                         |  |
|                                                 | SAMPLE TY<br>lit Spoon<br>elby Tube               | A =              | Auger<br>Wash                         |                    |          | /ELL<br>RMATION  | DIAM       | ТҮР                | E           | TOP<br>DEPTH<br>(FT)                                                                                                                 | BOTTOM<br>DEPTH<br>(FT) |  |
|                                                 | Rotary                                            | C =              | Core<br>Piston                        |                    | Well C   | asing            | 1 "        | PVC Threaded       | I"DIA       |                                                                                                                                      |                         |  |
|                                                 | N = No Sa                                         | -                |                                       |                    | Well S   | creen            | 1"         | PVC Slotted        | 5.01"slot 5 |                                                                                                                                      | 15-                     |  |
|                                                 | Samp.<br>ample Rec.<br>Type Ft.<br>and &<br>No. % | SPT<br>or<br>RQD | Lab.<br>Class.<br>or<br>Pen.<br>Rate  | Lab.<br>Moist<br>% |          | Visual [         | Descriptio | on                 | Insta       | ell<br>lation<br>tail                                                                                                                | Elevation               |  |
| 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10 | A-N                                               |                  |                                       |                    | SE<br>Fo | E Born<br>R Soil | IN Form    | Iatch to Sheet 2   |             | WELL SOCK<br>FROM<br>0.0 TO<br>15.0 FT<br>WELL<br>CASING<br>FROM<br>0.0 TO<br>5.0 FT<br>VIELL<br>SCREEN<br>FROM<br>5.0 FT<br>15.0 FT |                         |  |
|                                                 | CO .: PARR                                        | ATT              | Wor                                   | FF                 |          |                  | BAKE       | RREP .: BRIA       | 5 E. DA.11  | 5                                                                                                                                    | - 1 OF 7                |  |
| DRILLER:                                        | CHIP                                              |                  |                                       |                    |          |                  | BORIN      | IG NO.: <u>TW4</u> | -14         | SHEEI                                                                                                                                | <u>1</u> OF <u>2</u>    |  |



PROJECT: 5GI-CTO 232- SCREENINGNO .: TWY-A

| T = 1<br>R· = 1                                     | Split Spoo<br>Shelby Tu<br>Air Rotar<br>Denison      | ibe<br>y                         | A =<br>W =<br>C =<br>P = | Auger<br>Wash<br>Core<br>Piston      |                    | <u>DEFINITIONS</u><br>SPT = Standard Penetration Test (ASTM D-1586) (Blows/0.5')<br>RQD = Rock Quality Designation (%)<br>Lab. Class. = USCS (ASTM D-2487) or AASHTO (ASTM D-3282)<br>Lab. Moist. = Moisture Content (ASTM D-2216) Dry Weight Basis |                                                                                   |                        |  |  |
|-----------------------------------------------------|------------------------------------------------------|----------------------------------|--------------------------|--------------------------------------|--------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|------------------------|--|--|
| Depth<br>(Ft.)                                      | Sample<br>Type<br>and<br>No.                         | Samp.<br>Rec.<br>(Ft.<br>&<br>%) | SPT<br>or<br>RQD         | Lab.<br>Class.<br>or<br>Pen.<br>Rate | Lab.<br>Moist<br>% | Visual Description                                                                                                                                                                                                                                  | Well Installation<br>Detail                                                       | Elevation              |  |  |
| -<br>11<br>12<br>13<br>14<br>15                     | A-N                                                  |                                  |                          |                                      |                    | Continued from Sheet 1<br>SEE BORING LOG TWY-B<br>FOR SOLL INFORMATION                                                                                                                                                                              | WELL SOCIE<br>From DIO<br>TO IS.O FT -<br>WELL SCREEN<br>FROM S.O -<br>TO IS.O FT | 0. <b>6</b> 0          |  |  |
| -<br>16<br>-<br>17<br>-<br>18<br>-<br>19<br>-<br>20 |                                                      |                                  |                          |                                      |                    | END OF BORING @ 15.0 FT                                                                                                                                                                                                                             |                                                                                   |                        |  |  |
| 21<br>22<br>23<br>24<br>25                          |                                                      |                                  |                          |                                      |                    |                                                                                                                                                                                                                                                     |                                                                                   |                        |  |  |
| 26<br>27<br>28<br>29<br>30                          |                                                      |                                  |                          |                                      |                    | Match to Sheet 3                                                                                                                                                                                                                                    |                                                                                   |                        |  |  |
|                                                     | DRILLING CO .: PARPATT WOLFF<br>DRILLER: <u>CHIP</u> |                                  |                          |                                      |                    | BAKER REP.: BRIA<br>BORING NO.: TW4                                                                                                                                                                                                                 |                                                                                   | T <u>2</u> OF <u>2</u> |  |  |



PROJECT: 56 I - 670 232 SCREENING S.O. NO .: 62410-232-0000-03600 B

COORDINATES: EAST: 2465299.0839 ELEVATION: SURFACE: 15.80 TOP OF STEEL CASING:

BORING NO .: TWY B 32236'2. 1345 NORTH:

\_

**RIG:** MOBILE 55 TRUCK MOUNT WATER SPLIT CORE PROGRESS DEPTH WEATHER (FT) TIME DATE SPOON CASING AUGERS BARREL (FT) SIZE (DIAM.) 4/10/96 3410 6.05 0-42 . 4310 60'S SUNNY OHRI LENGTH SFT 2.FT TYPE 55 1-15 HAMMER WT. 140165 FALL 3012 STICK UP REMARKS: воттом TOP WELL SAMPLE TYPE DEPTH DEPTH TYPE INFORMATION DIAM S = Split Spoon  $\mathbf{A} = Auger$ (FT) (FT) W = WashT =Shelby Tube R = Air Rotary C = Core **PVC** Threaded Well Casing ۱... 37 1"DIA ۵ P = Piston  $\mathbf{D} = \mathbf{Denison}$ 37 42 11 **PVC** Slotted N = No Sample Well Screen TOJZIO, O Samp. How Lab. Sample Well Rec. SPT Class. bab. Visual Description Depth Type Installation Ft. Elevation or or Molst (Ft.) and Detail & Pen. RQD % No % Rate (pm) WELL SOCK له بن SAND, LITTLE SILT, BROWN, ROOTS, From 0.0 SAMPLE TWY - DU COLLECTED FROM TO UZ.OFT 1 -1.5 5-1 0.0 TO DIT FT. @ 9:10 11 15 いきしし 8 2.0 2 -CAS-21-ر ح Fresm Q.٤ 1.2 17.8 0.0 TO 3 --5-7 <sup>، ع</sup>ر <1 SILT AND CLAY, CREY, BROWN; BLACK 37.0 FT DAMP: MED. STAFF, MOTTLED 4.0 Δ 4 SAMPLE TWY-03 LOLLECTED FROM 5 -ų 5-3 2.0 <1 4 + 6' @ 9:35 44 60 6 -7 -8 -A-√ 9 10.0 10 -Match to Sheet 2 BAKER REP .: BRIAN = DAV " DRILLING CO .: PARRATT WOLFF SHEET 1 OF 3 BORING NO .: TWU-B DRILLER: CHI



#### an entre con TEST BORING AND WELL CONSTRUCTION RECORD

PROJECT: 5GT - LTD 232 SCREENING S.O. NO.: 62470-232-0000-03600 BORING NO.: TW4-B

| T = SI<br>R = A                        | olit Spoo<br>nelby Tu<br>ir Rotary<br>enison | be<br>/                          | A = 2<br>W = 2<br>C = 2<br>P = 2 | Wash<br>Core                         |                                     | DEFINITIONS<br>SPT = Standard Penetration Test (ASTM D-1586) (Blows/0.5')<br>RQD = Rock Quality Designation (%)<br>Lab. Class. = USCS (ASTM D-2487) or AASHTO (ASTM D-3282)<br>Lab. Moist. = Moisture Content (ASTM D-2216) Dry Weight Basis |   |  |                                             |             |  |
|----------------------------------------|----------------------------------------------|----------------------------------|----------------------------------|--------------------------------------|-------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|--|---------------------------------------------|-------------|--|
| Depth<br>(Ft.)                         | Sample<br>Type<br>and<br>No.                 | Samp.<br>Rec.<br>(Ft.<br>&<br>%) | SPT<br>or<br>RQD                 | Lab.<br>Class.<br>or<br>Pen.<br>Rate | Hnu<br>Lab.<br>Moist<br>-#<br>LPPM) | Visual Description                                                                                                                                                                                                                           | W |  | stallation<br>etail                         | Elevation   |  |
| -<br> <br>2 <u>R.a</u>                 | 5_4                                          | 2.0                              | 2<br>2<br>2<br>2                 |                                      | <1                                  | Continued from Sheet 1<br>SILT AND CLAD, FENTHIN FINE<br>GRAIN SAND BEDI/STRINGENS,<br>BROWN, TREE ROOT @ 11,5ft,<br>SOFT, WET                                                                                                               |   |  | WELL<br>Sour<br>Bren<br>0:0 TO<br>¥2.0 FT   |             |  |
| 3_<br>-<br>4_<br>-<br>5                | A-N                                          |                                  |                                  |                                      |                                     |                                                                                                                                                                                                                                              |   |  | WELL<br>CASING<br>FROM<br>0.070<br>32.0 FT. |             |  |
| 5                                      | 5.5                                          | 1.5                              | Wor<br>3<br>5<br>3               |                                      | 41                                  | SILT AND CLAY, Some FINE<br>GRAM SANS, BROWN, BLACK, GREY, -<br>WET, SOFT, TREEROOT FROM<br>16.5 to 17.0                                                                                                                                     |   |  |                                             |             |  |
| 8-<br>-<br>9-<br>0- <u>2<i>010</i></u> | A-₩                                          |                                  |                                  |                                      |                                     |                                                                                                                                                                                                                                              |   |  |                                             |             |  |
| 1                                      | 5-6                                          | 2.0                              | work                             |                                      | <u> </u>                            | SAND, FINE GRAIN, LITTLE SILT -<br>GREY, WET, LOOSE -                                                                                                                                                                                        |   |  |                                             |             |  |
| 3<br>4<br>5 <u>25`io</u>               | A-N                                          |                                  |                                  |                                      |                                     | <br><br>ک٦. ن                                                                                                                                                                                                                                |   |  |                                             |             |  |
| 6 -<br>7 <u>- 27 0</u>                 | 5-7                                          | 2.0                              | ۲<br>۹<br>۱۷                     |                                      | 4                                   | Sawo, Fine GRAIN, Some SILT, TRACE CAN<br>GREY, MED. DENSE, WET,<br>LI ME STOVE FRAGMENTS, SHELL<br>FRAGMENTS, UNICONSOLIDATED                                                                                                               |   |  |                                             |             |  |
| 8                                      | ۵-۸                                          |                                  |                                  |                                      |                                     | -                                                                                                                                                                                                                                            |   |  |                                             | -<br>-<br>- |  |
| DRILLING                               |                                              | <u>+</u>                         | _ <u></u>                        | <u> </u>                             |                                     | BAKER REP.: Being                                                                                                                                                                                                                            |   |  |                                             |             |  |





3 **4 4 4 100 100** 

# TEST BORING AND WELL CONSTRUCTION RECORD

PROJECT: 5GI - CTO 232 SCREENING S.O. NO .: 62470-232-0000-03600 BORING NO .: TWY-B

| R = 4                           | ihelby Tu<br>Air Rotan<br>Denison | / | W =<br>C =<br>P =       | Core |                                       | SPT = Standard Penetration Test (,<br>RQD = Rock Quality Designation (<br>Lab. Class. = USCS (ASTM D-2487)<br>Lab. Moist. = Moisture Content (A                                          | %)<br>or AASH | ITO (AST | FM D-3282)                                |                                |
|---------------------------------|-----------------------------------|---|-------------------------|------|---------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|----------|-------------------------------------------|--------------------------------|
| Depth<br>(Ft.)                  | (Ft.) and & RQD Pen.              |   |                         |      | <del>tab</del> .<br><del>Mois</del> t | Visual Description                                                                                                                                                                       | We            |          | tallation<br>tail                         | Elevation                      |
| 1-<br>2- <u>32.0</u>            | 5-8                               |   | 10<br>22<br>16<br>12    |      | 4                                     | Continued from Sheet Z<br>SAND, Sant SILT, TRACE CLAD, GAUTY<br>LIMESTONE RASENENT, WCA<br>MEST DENSE to DENSE                                                                           |               |          | WELL<br>SOLIC<br>170 42.0 FT<br>          |                                |
| 3-<br>-<br>4-<br>5- <u>3510</u> |                                   |   | 10                      |      |                                       |                                                                                                                                                                                          |               |          | CASING -<br>From<br>0.0 TO -<br>37.0 FT - |                                |
| 6                               | 5-9                               |   | 14<br>12<br>13          |      | 4                                     | SAND ; FINE GRARN, SOME SILT, TRACE -<br>CLADI LIME ITONE TRAGMENT, WETT -<br>MEC, DOWLET ; -                                                                                            |               |          | WELL<br>SCREEN<br>From                    | -<br>-<br>-<br>-<br>-<br>ZI.ZC |
| 8-<br>                          | 0                                 |   |                         |      |                                       | Same First Aug Marine 61100 -                                                                                                                                                            |               |          | 37070<br>42.0 FT                          |                                |
| 1-<br>2- <u>42.</u>             | 5-10                              |   | 10 <b>q</b><br>q<br>1 0 | {    | 41                                    | SAND, FINE AND MEDIUM GARMA<br>LIMESTONE FARGEMENT LITTLE SIET 41.0<br>GREN, WET I MEDI DENSE<br>SAND, FINE GRAIN, LITTLE SIET,<br>GREEN, BREN, MEDIUM DENSE WET<br>END OF BORING @ 42.0 |               |          | BOTTON<br>PLUG                            | - 25.24<br>26.2                |
| 3_<br>4_<br>4_                  |                                   |   |                         |      |                                       | HOLE CANGO TO \$6.0 FT<br>HAO TO AOO 50 gallous of water<br>TO GLEAN OUT ANGENS THEN SAMPLE                                                                                              |               |          |                                           |                                |
| 46 -<br>47 -                    |                                   |   |                         |      |                                       |                                                                                                                                                                                          |               |          |                                           |                                |
| 48 _<br>-<br>49 _               |                                   |   |                         |      |                                       |                                                                                                                                                                                          | -             |          |                                           |                                |



مودد المحادي

•• ••• •

### **TEST BORING AND WELL CONSTRUCTION RECORD**

.

Т

PROJECT: SGI - CTD 232 - SCREENING S.O. NO .: 62470-232-0000-03000 BORING NO .: TW5-A COORDINATES: EAST: 2465609.5576 NORTH: 362391.5868 ELEVATION: SURFACE: 16.20 TOP OF STEEL CASING: \_\_\_\_

• • • • • · · ·

· •

| RIG: mod                                                                                                                                                                                                                       | 316E 55                   | TEJ                | K M                | AUNT                 | ·               |                                        |                                |            |                                                                                                                          |                         |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|--------------------|--------------------|----------------------|-----------------|----------------------------------------|--------------------------------|------------|--------------------------------------------------------------------------------------------------------------------------|-------------------------|
|                                                                                                                                                                                                                                | SPLIT<br>SPOON            | CASING             |                    | JGERS CORE<br>BARREL |                 | DATE                                   | PROGRESS<br>(FT)               | WEATHER    | WATER<br>DEPTH<br>(FT)                                                                                                   | TIME                    |
| SIZE (DIAM.)                                                                                                                                                                                                                   |                           |                    |                    |                      |                 | 4/10/96                                | 0-15                           | 50'S SUNNY | , 5.2                                                                                                                    | 0 1+123                 |
| LENGTH                                                                                                                                                                                                                         |                           |                    |                    |                      |                 |                                        |                                |            |                                                                                                                          | ÷                       |
| ТҮРЕ                                                                                                                                                                                                                           |                           |                    |                    |                      |                 |                                        |                                |            |                                                                                                                          |                         |
| HAMMER WT.                                                                                                                                                                                                                     |                           |                    |                    |                      |                 |                                        |                                |            |                                                                                                                          |                         |
| FALL                                                                                                                                                                                                                           |                           |                    |                    |                      |                 |                                        |                                |            |                                                                                                                          |                         |
| STICK UP                                                                                                                                                                                                                       |                           |                    |                    |                      |                 |                                        |                                |            |                                                                                                                          |                         |
| REMARKS:                                                                                                                                                                                                                       |                           |                    |                    |                      |                 | ······································ |                                |            |                                                                                                                          |                         |
| S = SplitSplitT = Shelby T                                                                                                                                                                                                     |                           | = Auger<br>= Wash  |                    |                      | /ELL<br>RMATION | DIAM                                   | TYP                            | E          | TOP<br>DEPTH<br>(FT)                                                                                                     | BOTTOM<br>DEPTH<br>(FT) |
| $\mathbf{R} = \operatorname{Air} \operatorname{Rota}$<br>$\mathbf{D} = \operatorname{Denisor}$                                                                                                                                 | iry C                     | = Core<br>= Piston |                    | Well C               | asing           | 10                                     | PVC Threaded                   |            | ٥                                                                                                                        | 5                       |
|                                                                                                                                                                                                                                | = No Sampl                |                    |                    | Well S               | creen           | 1"                                     | PVC Slotted                    |            | 5                                                                                                                        | 15                      |
| Samp<br>Depth Type<br>(Ft.) and<br>No.                                                                                                                                                                                         | e Rec.<br>Ft. SPT<br>% RQ | or                 | Lab.<br>Moist<br>% |                      | Visual [        | Descriptio                             | on                             | Insta      | ell<br>llation<br>tail                                                                                                   | Elevation               |
| $ \begin{array}{c} 1 \\ - \\ 2 \\ - \\ 3 \\ - \\ 4 \\ - \\ 5 \\ - \\ 6 \\ - \\ 7 \\ - \\ 8 \\ - \\ 9 \\ - \\ 10 \\ - \\ 10 \\ - \\ 10 \\ - \\ 10 \\ - \\ 10 \\ - \\ - \\ 10 \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ -$ |                           |                    |                    | 1                    |                 | · LOG TW<br>NFORMAT                    | -                              |            | WELL SOLK<br>From<br>0.0 TO<br>15.0 FT<br>WELL<br>CASING<br>FROM<br>0.0 TO 5.0 FT<br>SUREEN<br>FROM<br>5.0 TO 15:0<br>FT |                         |
| DRILLING CO.:                                                                                                                                                                                                                  |                           | TT WO              | LFF                |                      |                 |                                        | REP.: <u>BRIA</u><br>GNO.: TW5 | J E DAV    |                                                                                                                          | T <u>1</u> OF <u>2</u>  |
| DRILLER:                                                                                                                                                                                                                       | 4ptp                      |                    |                    | - <u></u>            |                 | - ROKIN                                |                                | <u> </u>   | SHEE                                                                                                                     |                         |

Γ

Baker Baker Environmental, 100

PROJECT: SG-I - CTO 232 - SCREENING S.O. NO.: 62470-232-0000-03600 BORING NO.: TWS-A

| S<br>T<br>R<br>D | = S<br>= A | plit Spoo<br>helby Tu<br>Air Rotary<br>Denison | be<br>'                          | A =<br>W =<br>C =<br>P = |                                      |                    | DEFINITIONS<br>SPT = Standard Penetration Test (ASTM D-1586) (Blows/0.5')<br>RQD = Rock Quality Designation (%)<br>Lab. Class. = USCS (ASTM D-2487) or AASHTO (ASTM D-3282)<br>Lab. Moist. = Moisture Content (ASTM D-2216) Dry Weight Basis |      |         |                                        |                        |
|------------------|------------|------------------------------------------------|----------------------------------|--------------------------|--------------------------------------|--------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|---------|----------------------------------------|------------------------|
| Dep<br>(Ft.      |            | Sample<br>Type<br>and<br>No.                   | Samp.<br>Rec.<br>(Ft.<br>&<br>%) | SPT<br>or<br>RQD         | Lab.<br>Class.<br>or<br>Pen.<br>Rate | Lab.<br>Moist<br>% | Visual Description                                                                                                                                                                                                                           | Wel  | Det     |                                        | Elevation              |
| - 11             |            |                                                |                                  |                          |                                      |                    | Continued from Sheet 1                                                                                                                                                                                                                       |      | 7     F | NELL SOCK<br>Rom<br>0.0 TO 15.0FT-     |                        |
| 12_<br>13_       |            | A-N                                            |                                  |                          |                                      |                    | FOR SOIL INFORMATION<br>SEE BORING LOG TWS-B                                                                                                                                                                                                 |      |         | NEW SCREED<br>From<br>0.5 70 15.0 Ft - |                        |
| -<br>14<br>-     |            |                                                |                                  |                          |                                      |                    | -                                                                                                                                                                                                                                            |      |         | Sotton Ruce                            | 1.20                   |
| 15<br><br>16     |            |                                                |                                  |                          |                                      |                    | END OF BORING @ 15.0 FT.                                                                                                                                                                                                                     |      |         | _                                      |                        |
| -<br>17_         |            |                                                |                                  |                          |                                      |                    | -                                                                                                                                                                                                                                            |      |         | -<br>                                  | <b>–</b>               |
| -<br>18<br>-     |            |                                                |                                  |                          |                                      |                    | -                                                                                                                                                                                                                                            |      |         |                                        |                        |
| 19<br>-<br>20    |            |                                                |                                  |                          |                                      |                    | -                                                                                                                                                                                                                                            |      |         |                                        | -                      |
| 21 -             |            |                                                |                                  |                          |                                      |                    | -                                                                                                                                                                                                                                            |      |         | · -                                    |                        |
| 22               |            |                                                |                                  |                          |                                      |                    | -                                                                                                                                                                                                                                            |      |         | _                                      | 1                      |
| 23<br>-<br>24    |            |                                                |                                  |                          |                                      |                    | -                                                                                                                                                                                                                                            |      |         | -                                      |                        |
| 24               |            |                                                |                                  |                          |                                      |                    | -                                                                                                                                                                                                                                            | -    |         | -                                      | 4                      |
| 26 -             |            |                                                |                                  |                          |                                      |                    | -                                                                                                                                                                                                                                            |      |         | -                                      |                        |
| 27 -             |            |                                                |                                  |                          |                                      |                    | -                                                                                                                                                                                                                                            |      |         | -                                      | 4                      |
| 28               |            |                                                |                                  |                          |                                      |                    |                                                                                                                                                                                                                                              | -    |         | -                                      | -                      |
|                  |            |                                                |                                  |                          |                                      |                    | Match to Sheet 3                                                                                                                                                                                                                             |      |         |                                        |                        |
| DRII<br>DRII     | LLIN       | G CO.:<br>: <u> </u>                           | PA                               | RBA                      | TT h                                 | OLFF               | BAKER REP.: 1321A<br>BORING NO.: TWS                                                                                                                                                                                                         | N E. | DAJ     | NS<br>SHEE                             | T <u>2</u> OF <u>2</u> |



----

T



----

#### **TEST BORING AND WELL CONSTRUCTION RECORD**

 PROJECT:
 SGI - GTO Z32 - SCREEWWIG

 S.O. NO.:
 62470-232-0000-0
 BORING

 COORDINATES:
 EAST:
 2465609.5576
 NORTH:

ELEVATION: SURFACE: 16.20

------

BORING NO.: <u>TW5-B</u> NORTH: <u>362391,5868</u> TOP OF STEEL CASING: \_\_\_\_

| RIG: MOBIL                             | -E 55                 | TRUCK I                                          | mou            | NT                                      |                                      |          |                   |            |                                                                                         |                         |
|----------------------------------------|-----------------------|--------------------------------------------------|----------------|-----------------------------------------|--------------------------------------|----------|-------------------|------------|-----------------------------------------------------------------------------------------|-------------------------|
| н<br>                                  | SPLIT<br>SPOON        | CASING                                           |                | IGERS CORE<br>BARREL                    |                                      | DATE     | PROGRESS<br>(FT)  | WEATHER    | WATER<br>DEPTH<br>(FT)                                                                  | TIME                    |
| SIZE (DIAM.)                           | 1.43IN.               |                                                  | 3              | KID                                     |                                      | 4/10/96  | 0-47              | BO'S SUNNY | - 60                                                                                    | o hrs.                  |
| LENGTH                                 | 2FT                   |                                                  |                | FT                                      |                                      |          |                   |            |                                                                                         | f                       |
| ТҮРЕ                                   | 55                    |                                                  | 14             | ٤                                       |                                      |          |                   |            |                                                                                         |                         |
| HAMMER WT.                             | 140765                |                                                  |                |                                         |                                      |          |                   |            |                                                                                         |                         |
| FALL                                   | 30 12                 |                                                  |                |                                         |                                      |          |                   |            |                                                                                         |                         |
| STICK UP                               |                       |                                                  |                |                                         |                                      |          |                   |            |                                                                                         | <u> </u>                |
| REMARKS:                               |                       |                                                  |                |                                         |                                      |          |                   |            | ······                                                                                  | <u> </u>                |
| S = Split Sp<br>T = Shelby             |                       | = Auger<br>= Wash                                |                |                                         | VELL<br>DRMATION                     | DIAM     | TYP               | E          | TOP<br>DEPTH<br>(FT)                                                                    | BOTTOM<br>DEPTH<br>(FT) |
| R = Air Rot $D = Denisor$              | ary C                 | = Core<br>= Piston                               |                | Well C                                  | Casing                               | 1"       | PVC Threaded      | 1'din.     | O                                                                                       | 37                      |
|                                        | N = No Sampl          |                                                  |                | Well S                                  | Screen                               | 1"       | PVC Slotted       | 0.01"SLOT  | 37                                                                                      | 42                      |
| Samp<br>Depth Type<br>(Ft.) and<br>No. | Ft. or                | Samp.<br>Rec. SPT Class. Lab. Visual Description |                |                                         |                                      |          |                   |            | 'ell<br>llation<br>tail                                                                 | Elevation               |
| 4 4.0                                  | 2.0 5<br>(<br>3 1.3 4 | 3                                                | <1<br><1       | DAM<br>SAM<br>FRO<br>SANG<br>GRE<br>SAM | ) 1 BROWN<br>P<br>NILE 35<br>- 0.070 | TBS-00 C | re sigt           |            | WELL<br>SOLK<br>FROM<br>OLO TO<br>42.0 FT<br>WELL<br>CASING<br>FROM<br>0.0TO<br>3700 FT |                         |
| 9 - 10.0                               |                       |                                                  | <del>,,,</del> | -                                       |                                      | М        | latch to Sheet 2  |            |                                                                                         |                         |
| DRILLING CO.                           | PARRE                 | ITT WOL                                          | FF             |                                         |                                      |          | REP .: BRIAN      |            | 2                                                                                       |                         |
| DRILLER:                               | CHIP                  |                                                  |                |                                         | ·····                                |          | G NO.: <u>Tw-</u> |            | SHEE                                                                                    | T <u>1</u> OF <u>3</u>  |



همد ب الي

# TEST BORING AND WELL CONSTRUCTION RECORD

Contraction of the second

PROJECT: 5G-T-CTO 232 - SCREENING S.O. NO.: 62470-232-0000-03600 BORING NO.: TW 5-B

.

| T = 2<br>R = 2                             | Split Spoc<br>Shelby Tu<br>Air Rotan<br>Denison                                                                                                      | be<br>/                          | A =<br>W =<br>C =<br>P = | Auger<br>Wash<br>Core<br>Piston      |                              | DEFINITIONS<br>SPT = Standard Penetration Test (ASTM D-1586) (Blows/0.5')<br>RQD = Rock Quality Designation (%)<br>Lab. Class. = USCS (ASTM D-2487) or AASHTO (ASTM D-3282)<br>Lab. Moist. = Moisture Content (ASTM D-2216) Dry Weight Basis |                                                  |  |  |  |  |  |
|--------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|--------------------------|--------------------------------------|------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|--|--|--|--|--|
| Depth<br>(Ft.)                             | Sample<br>Type<br>and<br>No.                                                                                                                         | Samp.<br>Rec.<br>(Ft.<br>&<br>%) | SPT<br>or<br>RQD         | Lab.<br>Class.<br>or<br>Pen.<br>Rate | Hnu<br>Lab:<br>Moist<br>Lpm) | Visual Description                                                                                                                                                                                                                           | Well Installation<br>Detail <sup>Elevation</sup> |  |  |  |  |  |
| 11_<br>12                                  | 5-4                                                                                                                                                  | 0.5                              | لا ت تر∾                 |                                      | 41                           | Continued from Sheet 1<br>SAND, FINE GRAIN, LITTLE SINT, GREY -<br>WET 1- LOOSE TO MEDIS DENSE -                                                                                                                                             | WELL<br>Sock<br>From<br>0:0 FT<br>TO 42.0 FT     |  |  |  |  |  |
| 13_<br>-<br>14_<br>15_0                    | 4-N                                                                                                                                                  |                                  |                          |                                      |                              |                                                                                                                                                                                                                                              | WELL<br>CASIDG<br>FROM<br>0:0 TO<br>37 0 FT 1.20 |  |  |  |  |  |
| 15 <u>5</u><br>16<br>16<br>17 <u>7</u> .0  | 5.5                                                                                                                                                  | 2.0                              | Wor<br>1<br>4<br>4       |                                      | در                           | SANG, MEDIUM AND FINE GRAIN,<br>GRET, BROWN, WET, LOOSE TO<br>MEDIUM DENSE                                                                                                                                                                   | 37.0 FT 71.20                                    |  |  |  |  |  |
| -<br>18<br>19<br>20<br>20                  | K- N                                                                                                                                                 |                                  |                          |                                      |                              |                                                                                                                                                                                                                                              |                                                  |  |  |  |  |  |
| 20<br>21<br>22<br>22<br>22                 | 5-6                                                                                                                                                  | 2,3                              | 4454                     |                                      | 41                           | SAND, MEDIUM AN FINE GRAIN, -<br>BROWN, WET, -                                                                                                                                                                                               |                                                  |  |  |  |  |  |
| 23 -<br>24 -<br>25 - <sup>25.0</sup>       | A-N                                                                                                                                                  |                                  | ,                        |                                      |                              |                                                                                                                                                                                                                                              |                                                  |  |  |  |  |  |
| 23 - 26 - 27 - 27 - 27 - 27 - 27 - 27 - 27 | 5-7                                                                                                                                                  | 2.0                              | ارک<br>کرا<br>کار<br>کار | -                                    | 41                           | SANO, FINE AND MEDIUM GRAIN,<br>LITTLE SILT, TRACE CLAY, BREY, -                                                                                                                                                                             | - 9.80                                           |  |  |  |  |  |
| 28<br>-<br>29<br>-<br>-<br>-<br>           | A-N                                                                                                                                                  |                                  |                          |                                      |                              | LIMESTONE FRAGMENT, SHELL<br>FRAGMENTS, PARTIALY CEMENTED<br>Match to Sheet 3                                                                                                                                                                |                                                  |  |  |  |  |  |
| DRILLIN                                    | 30-       Math to Sheet 2         DRILLING CO.:       PARRATT WOLFF         DRILLER:       CHIP         BORING NO.:       TWS-B         SHEET 2 OF 3 |                                  |                          |                                      |                              |                                                                                                                                                                                                                                              |                                                  |  |  |  |  |  |



Baker Environmental, ne

#### TEST BORING AND WELL CONSTRUCTION RECORD

PROJECT: <u>5GI-CTO232-SCREENING</u> 5.0. NO.: <u>62470-232-0000-03600</u> BORING NO.: <u>TW5-B</u>

| T = S<br>R = A                                     | plit Spoc<br>helby Tu<br>Air Rotar<br>Denison                                                          | ibe<br>Y                         | A =<br>W =<br>C =<br>P = | Auger<br>Wash<br>Core<br>Piston      |                                       | DEFINITIONS<br>SPT = Standard Penetration Test (ASTM D-1586) (Blows/0.5')<br>RQD = Rock Quality Designation (%)<br>Lab. Class. = USCS (ASTM D-2487) or AASHTO (ASTM D-3282)<br>Lab. Moist. = Moisture Content (ASTM D-2216) Dry Weight Basis |                                                                                                                                       |  |  |  |  |  |
|----------------------------------------------------|--------------------------------------------------------------------------------------------------------|----------------------------------|--------------------------|--------------------------------------|---------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| Depth<br>(Ft.)                                     | Sample<br>Type<br>and<br>No.                                                                           | Samp.<br>Rec.<br>(Ft.<br>&<br>%) | SPT<br>or<br>RQD         | Lab.<br>Class.<br>or<br>Pen.<br>Rate | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | Visual Description                                                                                                                                                                                                                           | Well Installation<br>Detail Elevation                                                                                                 |  |  |  |  |  |
| 31-<br>32-32.0<br>33-<br>34-<br>35- <u>35.0</u>    | 5-8<br>A-N                                                                                             | 20                               | 7<br>17<br>18<br>20      |                                      | 41                                    | Continued from Sheet Z.<br>SANO, COARSE GRAIN, SOME MEDIUM<br>AND FINE GRAIN BRIEF, SOME FINE<br>AND MEDIUM GRAUEN, LITTLE SILT<br>TRACE CLAY, GREY, SHEW FRAMENES<br>LIME STONE FRAGMENTS, DE EY,<br>WET, MERIUM SENSE                      | WELL SOCIE -<br>FROM 0.0 -<br>TO 42.0 -<br>WELL -<br>CASING -<br>FROM 010 -<br>to 37.0 FT -<br>WELL -<br>SCREEN -<br>FROM -<br>37.0 - |  |  |  |  |  |
| 36_<br>7_ <u>37.0</u><br>38_<br>39_<br>40_<br>40.0 | 5-9<br>A-N                                                                                             | ۲.۵                              | 21                       |                                      | 4                                     | SAND, COARSE GRAINI SOME MEDIUM -<br>AND FING GRAIN, LITTLE SILTI TRACE<br>CLAY, GREY, SHELL FRAGMENTS,<br>LIMESTOME FRAGMENTS, LINCONSOLIDATE<br>WET, MEDIUM DENSE                                                                          |                                                                                                                                       |  |  |  |  |  |
| 40 <u>73.8</u><br>41 <u>4</u><br>42 <u>4z.0</u>    | 5.10                                                                                                   | 2.0                              | 15<br>19<br>25<br>24     |                                      | 4                                     | SAND, LOANIE GRAIN, GRES, GREEN, -<br>SHELFRAGMENTS, LIMESTONE FRAGMENTS -<br>41.5<br>SAUPIFINE GRAINIGALEN, GALSIMEONUM DEMES<br>END OF BORING 42.0 FT                                                                                      | Botton Plus - 25.36                                                                                                                   |  |  |  |  |  |
| 43<br>44<br>45<br>46<br>47<br>48<br>49<br><u>}</u> |                                                                                                        |                                  |                          |                                      |                                       | HADTO ATOP 50 gallons of water<br>to clean out augus Titer Sample -                                                                                                                                                                          |                                                                                                                                       |  |  |  |  |  |
|                                                    | DRILLING CO.: PARRATT WOLFE BAKER REP.: BRIAN E. DAVIS<br>DRILLER: CHIP BORING NO.: TWS-B SHEET 3 OF 3 |                                  |                          |                                      |                                       |                                                                                                                                                                                                                                              |                                                                                                                                       |  |  |  |  |  |



Ē

#### **TEST BORING AND WELL CONSTRUCTION RECORD**

÷

PROJECT: SGI - GTO 232 - SCREENING

S.O. NO .: 62470-232-0000-03600

BORING NO .: TW6-A COORDINATES: EAST: \_\_\_\_\_ NORTH: \_\_\_\_\_ ELEVATION: SURFACE: \_\_\_\_\_ TOP OF STEEL CASING: \_\_\_\_

-

|                                                                                 |                                    | ·                                             |                    |           |                    |                          |                                   |             |                                                                                                           |                         |
|---------------------------------------------------------------------------------|------------------------------------|-----------------------------------------------|--------------------|-----------|--------------------|--------------------------|-----------------------------------|-------------|-----------------------------------------------------------------------------------------------------------|-------------------------|
| RIG:                                                                            | OBILE 5                            | 5 TRUCK                                       | mo                 | UNT       |                    |                          |                                   |             |                                                                                                           |                         |
| 2                                                                               | SPLIT<br>SPOON                     |                                               |                    | IGERS     | CORE<br>BARREL     | DATE                     | PROGRESS<br>(FT)                  | WEATHER     | WATER<br>DEPTH<br>(FT)                                                                                    | TIME                    |
| SIZE (DIAM.)                                                                    |                                    |                                               | 3                  | 4 20      |                    | 4/11/96                  | 0-15                              | 60'5 5041   | NO 6FT                                                                                                    | OHRS                    |
| LENGTH                                                                          |                                    |                                               |                    | Fr        |                    |                          |                                   |             |                                                                                                           |                         |
| ТҮРЕ                                                                            |                                    |                                               | 1                  | 45        |                    |                          |                                   |             |                                                                                                           |                         |
| HAMMER WI                                                                       | Γ.                                 |                                               |                    |           |                    |                          |                                   |             |                                                                                                           |                         |
| FALL                                                                            |                                    |                                               |                    |           |                    |                          |                                   |             |                                                                                                           |                         |
| STICK UP                                                                        |                                    |                                               |                    |           |                    |                          |                                   |             |                                                                                                           |                         |
| REMARKS:                                                                        |                                    |                                               |                    | ·         |                    |                          |                                   |             |                                                                                                           |                         |
| S = Split<br>T = Shell                                                          | SAMPLE TYP<br>Spoon A<br>by Tube V | = Auger                                       |                    | V<br>INFO | VELL<br>PRMATION   | DIAM                     | TYP                               | E           | TOP<br>DEPTH<br>(FT)                                                                                      | BOTTOM<br>DEPTH<br>(FT) |
| R = Air R<br>D = Deni                                                           | lotary C                           |                                               |                    | Well C    | asing              | 1"                       | PVC Threaded                      | 1.9.0       | 0.0                                                                                                       | 5.0                     |
|                                                                                 | N = No Sam                         |                                               |                    | Well S    | creen              | I" PVC Slotted O.O. SLOT |                                   |             | 5.0                                                                                                       | 15.0                    |
| Depth Ty<br>(Ft.) a                                                             | nd s c                             | Lab.<br>PT Class.<br>or or<br>QD Pen.<br>Rate | Lab.<br>Moist<br>% |           | Visual [           | Descriptic               | n                                 | Insta       | ell<br>llation<br>tail                                                                                    | Elevation               |
| -<br>1 -<br>2 -<br>3 -<br>3 -<br>4 -<br>5 -<br>6 -<br>7 -<br>8 -<br>9 -<br>10 - | 5N                                 |                                               |                    | SER       | E BORINI<br>R Sore | F LOG T<br>ENFORM        | TW6-B<br>ΔΤΙΟΝ<br>atch to Sheet 2 |             | WELL<br>GASING<br>From<br>0:0 FT<br>WELL SOLE<br>From<br>D:0 FT<br>TO 15:0 FT<br>TO 15:0 FT<br>TO 15:0 FT |                         |
| DRILLING CO                                                                     |                                    | TT WOL                                        | FF                 |           | ·                  | _                        | REP .: BRIA                       |             |                                                                                                           |                         |
| DRILLER:                                                                        | LH:P                               |                                               | . <u></u>          |           |                    | BORIN                    | G NO.: TW 6                       | р- <u>А</u> | SHEE                                                                                                      | т <u>1</u> ОF <u>С</u>  |

Baker

Baker Environmental, Inc

PROJECT: 561 - CTO 232 - SCREENING S.O. NO.: 62470-232-0000-03600 BORING NO.: TW 6-A

| T =<br>R =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Split Spoc<br>Shelby Tu<br>Air Rotar<br>Denison | be<br>/                          | A =<br>W =<br>C =<br>P = |                                      |                    | DEFINITIONS<br>SPT = Standard Penetration Test<br>RQD = Rock Quality Designation<br>Lab. Class. = USCS (ASTM D-2487)<br>Lab. Moist. = Moisture Content (A | (%)<br>or AASHTO (ASTM D-3282)                                                                                   |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|----------------------------------|--------------------------|--------------------------------------|--------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|
| Depth<br>(Ft.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Sample<br>Type<br>and<br>No.                    | Samp.<br>Rec.<br>(Ft.<br>&<br>%) | SPT<br>or<br>RQD         | Lab.<br>Class.<br>or<br>Pen.<br>Rate | Lab.<br>Moist<br>% | Visual Description                                                                                                                                        | Well Installation<br>Detail Elevation                                                                            |
| $ \begin{array}{c} 11 \\ 12 \\ 12 \\ 13 \\ 14 \\ 15 \\ 16 \\ 17 \\ 18 \\ 19 \\ 20 \\ 21 \\ 22 \\ 23 \\ 24 \\ 23 \\ 24 \\ 25 \\ 26 \\ 27 \\ 28 \\ 28 \\ 29 \\ 28 \\ 29 \\ 28 \\ 29 \\ 29 \\ 21 \\ 28 \\ 28 \\ 29 \\ 28 \\ 29 \\ 28 \\ 29 \\ 28 \\ 29 \\ 20 \\ 21 \\ 21 \\ 21 \\ 21 \\ 22 \\ 22 \\ 23 \\ 24 \\ 25 \\ 22 \\ 23 \\ 24 \\ 25 \\ 27 \\ 28 \\ 28 \\ 29 \\ 28 \\ 29 \\ 29 \\ 28 \\ 29 \\ 29 \\ 20 \\ 28 \\ 29 \\ 28 \\ 29 \\ 29 \\ 20 \\ 28 \\ 29 \\ 29 \\ 20 \\ 28 \\ 29 \\ 29 \\ 20 \\ 28 \\ 29 \\ 29 \\ 20 \\ 28 \\ 29 \\ 29 \\ 20 \\ 28 \\ 29 \\ 29 \\ 20 \\ 28 \\ 29 \\ 29 \\ 20 \\ 20 \\ 20 \\ 20 \\ 20 \\ 20 \\ 20 \\ 20$ | <b>А-</b> М                                     |                                  |                          |                                      |                    | Continued from Sheet 1<br>SEE BORING LOG TWB-B<br>FOR SOIL INFORMATION                                                                                    | WELL SOLK -<br>Fileson -<br>0.0 TB<br>15.0 FT -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- |
| 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                 |                                  |                          |                                      |                    | Match to Sheet 3                                                                                                                                          |                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | DRILLING CO .: PARCATT WOULER<br>DRILLER: CHIP  |                                  |                          |                                      |                    | BAKER REP.: BRIA<br>BORING NO.: TV                                                                                                                        |                                                                                                                  |



-----

Second Second

#### **TEST BORING AND WELL CONSTRUCTION RECORD**

1

PROJECT: SGI - CTU 232 - SCREENING

Т

S.O. NO .: 62470 - 232-0000 -03600 BORING NO .: TW6-B COORDINATES: EAST: -ELEVATION: SURFACE:

ANNO STREET

NORTH: TOP OF STEEL CASING:

Т

· \* 4+ 8-60 ms

--

| RIG: MOBIL                             | LE 55 TI                                  | ruck mou                              |                             |        |                  |                                             |                  |                                       |                                                 |                         |
|----------------------------------------|-------------------------------------------|---------------------------------------|-----------------------------|--------|------------------|---------------------------------------------|------------------|---------------------------------------|-------------------------------------------------|-------------------------|
| 2. ·                                   | SPLIT<br>SPOON                            | CASING                                |                             | GERS   | CORE<br>BARREL   | DATE                                        | PROGRESS<br>(FT) | WEATHER                               | WATER<br>DEPTH<br>(FT)                          | TIME                    |
| SIZE (DIAM.)                           | 1.43 IN                                   |                                       | 3                           | 410    |                  | 4/11/196                                    | 0-47             | 60'S SUNN                             | 6.0                                             | OHas                    |
| LENGTH                                 | ZFT                                       |                                       |                             | FT     |                  |                                             |                  |                                       |                                                 | :                       |
| ТҮРЕ                                   | 55                                        |                                       | н                           | s      |                  |                                             |                  |                                       |                                                 |                         |
| HAMMER WT.                             | 140165.                                   |                                       |                             |        |                  |                                             |                  | · · · · · · · · · · · · · · · · · · · |                                                 |                         |
| FALL                                   | 30 IN                                     |                                       |                             |        |                  |                                             |                  |                                       |                                                 |                         |
| STICK UP                               |                                           |                                       |                             |        |                  |                                             |                  |                                       |                                                 |                         |
| REMARKS:                               | · · · · · · · · · · · · · · · · · · ·     | • • • • • • • • • • • • • • • • • • • |                             |        |                  |                                             |                  |                                       |                                                 |                         |
| S = Split Sp<br>T = Shelby             |                                           | = Auger<br>= Wash                     |                             |        | /ELL<br>RMATION  | DIAM                                        | ТҮР              | E                                     | TOP<br>DEPTH<br>(FT)                            | BOTTOM<br>DEPTH<br>(FT) |
| R = Air Rota $D = Denisor$             | ary C                                     | = Core                                |                             | Well C | asing            | 1''                                         | PVC Threaded     | (1" dia.)                             | 0                                               | 42                      |
|                                        | N = No Sampl                              |                                       |                             | Well S | creen            | l"                                          | PVC Slotted 0,   | ol" slot                              | 42                                              | 47                      |
| Samp<br>Depth Type<br>(Ft.) and<br>No. | Ft. or                                    | Class.<br>or<br>D Pen.                | 5.3<br>tab.<br>40ist<br>%~~ |        | Visual [         | Descriptio                                  | n                |                                       | ell<br>lation<br>tail                           | Elevation               |
| 1 - 5-<br>2 - <del>2.0</del>           | ع<br>م<br>ا<br>ا<br>ا<br>ا<br>ا<br>ا<br>ا | 4                                     | 41                          | DAng   | , MEDIUM         | N, Baown,<br>Dense, F<br>oo collect<br>7:34 |                  |                                       | WELL<br>CASISCO<br>FROM<br>DIO FR<br>TO 42:0 FT |                         |
| 3                                      |                                           | 5                                     | ۷۱                          | 5000   | . FINC GRA       | .N. BROWN;                                  | GREY , Mornes    |                                       | When<br>Souge<br>From<br>10:0 Ft                |                         |
| 5 - 5-3<br>6 - <u>6-0</u>              | 3 20 5                                    | ч<br>3                                | 4                           | SA-0   | اج بحاليندا العر | LTONO CLAS                                  | WCT<br>CT22 FRom |                                       | TO 47.0 FT                                      |                         |
| 7                                      | د                                         |                                       |                             |        |                  |                                             |                  |                                       |                                                 |                         |
| 10 10.0                                |                                           |                                       |                             | 1      |                  | M                                           | atch to Sheet 2  |                                       |                                                 | -                       |
| DRILLING CO.                           | PARRA                                     | TT WOLF                               | F                           |        |                  |                                             | REP .: BRIAN     |                                       |                                                 |                         |
| DRILLER: C                             |                                           |                                       |                             |        |                  | BORIN                                       | GNO .: TW6       | - <u>B</u>                            | SHEE                                            | T <u>1</u> OF <u>3</u>  |



-

------

. . . . . . . .

#### TEST BORING AND WELL CONSTRUCTION RECORD

nare residented

PROJECT: 5157 - CTO 232 - SCREENING S.O. NO .: 62470 - 232 - 03600 - 03600 BORING NO .: TW6-A

۰.,

-

| T = SI<br>R = A                                          | plit Spoo<br>helby Tu<br>ir Rotary<br>enison | be<br>/                          | A =<br>W =<br>C =<br>P = | Auger<br>Wash<br>Core<br>Piston      |                                        | <u>DEFINITIONS</u><br>SPT = Standard Penetration Test (ASTM D-1586) (Blows/0.5')<br>RQD = Rock Quality Designation (%)<br>Lab. Class. = USCS (ASTM D-2487) or AASHTO (ASTM D-3282)<br>Lab. Moist. = Moisture Content (ASTM D-2216) Dry Weight Basis |     |                                        |           |  |  |  |
|----------------------------------------------------------|----------------------------------------------|----------------------------------|--------------------------|--------------------------------------|----------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|----------------------------------------|-----------|--|--|--|
| Depth<br>(Ft.)                                           | Sample<br>Type<br>and<br>No.                 | Samp.<br>Rec.<br>(Ft.<br>&<br>%) | SPT<br>or<br>RQD         | Lab.<br>Class.<br>or<br>Pen.<br>Rate | Hay<br>Lat.<br>Moist<br>Moist<br>(Pfn) | Visual Description                                                                                                                                                                                                                                  | Wel | Installation<br>Detail                 | Elevation |  |  |  |
| 11_<br>12                                                | ५-५                                          | 2.0                              | ور م<br>د                |                                      | 4                                      | Continued from Sheet 1 -<br>SAND, FING, MEDIUM, COARGE GAAIN) -<br>LIFTLE SILT, GREIT, BROWN INET -<br>MEDIUM DENSE                                                                                                                                 |     | WELL<br>CASING<br>FROM<br>0:0 FT<br>TO |           |  |  |  |
| 3<br> 4<br> 5K;0                                         | А-N                                          |                                  |                          |                                      |                                        |                                                                                                                                                                                                                                                     |     | 42 DFT<br>-<br>WELL<br>SOCK            | -         |  |  |  |
| 15 <u>15.0</u><br>16 <u>1</u><br>17 <u>17.0</u>          | 5-5                                          | Ð                                | WOF<br>3                 |                                      |                                        | No sample<br>Spance supper out of sample                                                                                                                                                                                                            |     | From<br>10:0 FT<br>TO<br>47.0 FT       |           |  |  |  |
| -<br>18<br>-<br>19<br>-                                  | A-N                                          |                                  |                          |                                      |                                        |                                                                                                                                                                                                                                                     |     | -                                      |           |  |  |  |
| 20 <u>20,0</u><br>-<br>21 <u>-</u><br>22 <u>22,0</u>     | 5-6                                          | 2.0                              | 8<br>10<br>12<br>12      |                                      | 4                                      | SANO, FINE GRAIN, LITTLE SILT,<br>GREY, FEW SHEL FRACMENTS, MERUM<br>DENSE, WET                                                                                                                                                                     |     |                                        |           |  |  |  |
| 23                                                       | A-N                                          |                                  |                          |                                      |                                        |                                                                                                                                                                                                                                                     |     |                                        |           |  |  |  |
| 25 <u>- 27 -</u><br>26 - <u>27 -</u><br>27 <u>- 27 -</u> | 5                                            | 5.3                              | 00 10<br>10<br>11        |                                      | <1                                     | SAND, FINE AND MEDIUM GRAIN,<br>LITTLE SILE, TRACE CLAY, SIREL<br>FRAGMENTS, GREY, MEDIUM DENSE, WET                                                                                                                                                |     |                                        |           |  |  |  |
| 28 -<br>28 -<br>29 -                                     |                                              |                                  |                          |                                      |                                        | -                                                                                                                                                                                                                                                   |     |                                        |           |  |  |  |
| 30-30-0                                                  | <u> </u>                                     | <u> </u>                         | <u> </u>                 | ·                                    |                                        | Match to Sheet 3                                                                                                                                                                                                                                    |     |                                        |           |  |  |  |



Baker Environmental, 🖛

# TEST BORING AND WELL CONSTRUCTION RECORD

PROJECT: SGT -CTO 232 - SCREENISC S.O. NO .: 62470-232-0000-03600 BORING NO .: TW 6-B

ے در معموم معفودہ

| T = 5<br>R = 4                                        | plit Spoo<br>helby Tu<br>\ir Rotary<br>)enison | be<br>/                          | A =<br>W =<br>C =<br>P = | Wash<br>Core                         |                                     | DEFINITIONS<br>SPT = Standard Penetration Test (ASTM D-1586) (Blows/0.5')<br>RQD = Rock Quality Designation (%)<br>Lab. Class. = USCS (ASTM D-2487) or AASHTO (ASTM D-3282)<br>Lab. Moist. = Moisture Content (ASTM D-2216) Dry Weight Basis |                                         |  |  |  |  |  |  |  |
|-------------------------------------------------------|------------------------------------------------|----------------------------------|--------------------------|--------------------------------------|-------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|--|--|--|--|--|--|--|
| Depth<br>(Ft.)                                        | Sample<br>Type<br>and<br>No.                   | Samp.<br>Rec.<br>(Ft.<br>&<br>%) | SPT<br>or<br>RQD         | Lab.<br>Class.<br>or<br>Pen.<br>Rate | Hau<br>teo.<br>Moist<br>1%<br>(ppm) | Visual Description                                                                                                                                                                                                                           | Well Installation<br>Detail Elevation   |  |  |  |  |  |  |  |
| 2-32.0                                                | 5-8                                            | 2,0                              | 5 4 6                    |                                      | 41                                  | Continued from Sheet 3<br>SAND, COARSE GRAIN, SOME FINE<br>NOOMEDIUM GRAIN, LITTLE SINT<br>TRACE CLAY, LITTLE GRAVEL,<br>SHEW TRAGMENTS, LIMESTONE                                                                                           | WELL<br>Socie<br>IDOFT<br>TO47.5557     |  |  |  |  |  |  |  |
| 3                                                     | AN                                             |                                  |                          |                                      |                                     | FRAGENENTS, PARTIALLY COMENTER -<br>3115 to 32.0 FT. WET -<br>MEDIUM DENSE TO DENSE -                                                                                                                                                        | HELL -<br>GASING -<br>From -<br>DIOFT - |  |  |  |  |  |  |  |
| 6-<br><u>- 37.0</u>                                   | 59                                             | 2.0                              | 12 12 10 9               |                                      | 21                                  | SAND, FINE AND MEDIUM GRAIN, LITTLE<br>COARSE GRAIN, LITTLE SILT, TRACE CLAY<br>SHELL FRAGMENTS, LIMESTONE FRAGMENTS_<br>PARTIALY CEMENTED @ 35.07035.5FT<br>AND 35.8 TO 37.0 FT                                                             | TO -<br>42.0FT -                        |  |  |  |  |  |  |  |
| <sup>3</sup> 8_<br><sup>3</sup> 9_<br>10_ <u>40,0</u> | A-N                                            |                                  | 10                       |                                      |                                     |                                                                                                                                                                                                                                              |                                         |  |  |  |  |  |  |  |
| 41 -<br>42 - <u>42.0</u><br>-                         | 5-10                                           | 2.0                              | 16<br>11<br>10           |                                      | 41                                  | FINE GAMN, LITTLE SILT, GREENISH -<br>GRS, SHELL FRAGMENTS, LINESTONE<br>FRAGMENTS, UN CONSOLGATED, -<br>FEW PRITALY COMENTED FRAGMENTS                                                                                                      | WEUL<br>SCREEN<br>From<br>42.0FT        |  |  |  |  |  |  |  |
| rs -<br>94 -<br>95 <u>- 45</u>                        | A-N                                            | ر<br>                            |                          | -                                    |                                     |                                                                                                                                                                                                                                              |                                         |  |  |  |  |  |  |  |
| \$6_<br>\$7_ <u>47.</u>                               | 5-1(                                           |                                  | <br> 1<br> 1<br> 1       |                                      | 41                                  | END OF BORING @ 47.0 FT                                                                                                                                                                                                                      | Borron Pulic                            |  |  |  |  |  |  |  |
| 48_<br>49_                                            |                                                |                                  |                          |                                      |                                     | Han to ADD 150 gellons of<br>WATEN TO CLEAN OUT WEERS<br>FOR SAMPLE<br>BAKERREP .: BIZIN                                                                                                                                                     |                                         |  |  |  |  |  |  |  |

DRILLER: \_\_\_\_\_

BORING NO .: Tw 6-B



.....

### **TEST BORING AND WELL CONSTRUCTION RECORD**

PROJECT: SGI-CTO 232 - SCREENING

TOP OF STEEL CASING: -

. ... severa

| RIG: MOB                                                                                                            | 14:55          | TRUCK              | m                  | - UND      | -               |                  |                                                                                             |                   |                                                                                                                               |                         |
|---------------------------------------------------------------------------------------------------------------------|----------------|--------------------|--------------------|------------|-----------------|------------------|---------------------------------------------------------------------------------------------|-------------------|-------------------------------------------------------------------------------------------------------------------------------|-------------------------|
| ь.                                                                                                                  | SPLIT<br>SPOON | CASING             |                    | GERS       | CORE<br>BARREL  | DATE             | PROGRESS<br>(FT)                                                                            | WEATHER           | WATER<br>DEPTH<br>(FT)                                                                                                        | TIME                    |
| SIZE (DIAM.)                                                                                                        |                |                    |                    |            |                 | 4/11/96          | 0-15                                                                                        | 70'S SUNN         | 57 61                                                                                                                         | ottre s                 |
| LENGTH                                                                                                              |                |                    |                    |            |                 |                  |                                                                                             |                   |                                                                                                                               | 1                       |
| ТҮРЕ                                                                                                                |                |                    |                    |            | ·               |                  |                                                                                             |                   |                                                                                                                               |                         |
| HAMMER WT.                                                                                                          |                |                    |                    |            |                 |                  |                                                                                             |                   |                                                                                                                               |                         |
| FALL                                                                                                                |                |                    |                    |            |                 |                  |                                                                                             |                   |                                                                                                                               |                         |
| STICK UP                                                                                                            |                |                    |                    |            |                 |                  |                                                                                             | ·                 |                                                                                                                               |                         |
| REMARKS:                                                                                                            | <u>, .</u>     |                    |                    |            |                 |                  |                                                                                             |                   |                                                                                                                               |                         |
| S = Split Sp<br>T = Shelby                                                                                          |                | = Auger<br>= Wash  |                    |            | /ELL<br>RMATION | DIAM             | ТҮР                                                                                         | E                 | TOP<br>DEPTH<br>(FT)                                                                                                          | BOTTOM<br>DEPTH<br>(FT) |
| $\mathbf{R} = \operatorname{Air}\operatorname{Rot}_{\mathbf{D}}$ $\mathbf{D} = \operatorname{Denison}_{\mathbf{D}}$ | ary C          | = Core<br>= Piston |                    | Well C     | lasing          | 1                | PVC Threaded                                                                                |                   | 0                                                                                                                             | 5                       |
|                                                                                                                     | 1 = No Sampi   |                    |                    | Well S     | creen           | 1"               | PVC Slotted                                                                                 |                   | 5                                                                                                                             | 15                      |
| Samp<br>Depth Type<br>(Ft.) and<br>No.                                                                              | Ft or          | or                 | Lab.<br>Moist<br>% |            | Visual [        | Descriptio       | on                                                                                          | W<br>Instal<br>De | Elevation                                                                                                                     |                         |
| $ \begin{array}{c} 1 \\ - \\ 2 \\ - \\ 3 \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ -$                         | <i>J</i>       |                    |                    | SE:<br>For | E BORIN         | ις Γος<br>Ινγογγ | -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- |                   | WELL<br>Sock<br>From<br>O:O FT<br>TO IS:OFT<br>WELL<br>SCREEN<br>From<br>S:O FT<br>WELL<br>SCREEN<br>From<br>S:O TO<br>IS:OFT |                         |
| DRILLING CO.                                                                                                        | PARPAT         | T WOLF             | F                  |            |                 |                  | R REP .: BRIA                                                                               |                   | 210                                                                                                                           |                         |
| DRILLER:                                                                                                            | CHIP           |                    |                    |            |                 | BORIN            | IG NO.: TW7                                                                                 | -A                | SHEE                                                                                                                          | т <u>1</u> оғ <u>2</u>  |

Baker

Baker Environmental, Inc.

PROJECT: SGT - CTO 232 - SCREENING NO .: TW 7-A

| T =<br>R =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Split Spoo<br>Shelby Tu<br>Air Rotar<br>Denison | ibe<br>y                         | A =<br>W =<br>C =<br>P = | Auger<br>Wash<br>Core<br>Piston      |                    | <u>DEFINITIONS</u><br>SPT = Standard Penetration Test (ASTM D-1586) (Blows/0.5')<br>RQD = Rock Quality Designation (%)<br>Lab. Class. = USCS (ASTM D-2487) or AASHTO (ASTM D-3282)<br>Lab. Moist. = Moisture Content (ASTM D-2216) Dry Weight Basis |                          |                  |  |  |  |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|----------------------------------|--------------------------|--------------------------------------|--------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|------------------|--|--|--|--|--|
| Depth<br>(Ft.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Sample<br>Type<br>and<br>No.                    | Samp.<br>Rec.<br>(Ft.<br>&<br>%) | SPT<br>or<br>RQD         | Lab.<br>Class.<br>or<br>Pen.<br>Rate | Lab.<br>Moist<br>% | Visual Description                                                                                                                                                                                                                                  | Well Installat<br>Detail | ion<br>Elevation |  |  |  |  |  |
| $ \begin{array}{c}         - \\         11 - \\         12 - \\         13 - \\         13 - \\         13 - \\         14 - \\         15 - \\         16 - \\         17 - \\         16 - \\         17 - \\         18 - \\         19 - \\         20 - \\         21 - \\         22 - \\         23 - \\         22 - \\         23 - \\         22 - \\         23 - \\         22 - \\         23 - \\         22 - \\         23 - \\         22 - \\         23 - \\         22 - \\         23 - \\         22 - \\         23 - \\         22 - \\         23 - \\         22 - \\         23 - \\         22 - \\         23 - \\         22 - \\         23 - \\         22 - \\         23 - \\         22 - \\         23 - \\         22 - \\         23 - \\         22 - \\         23 - \\         22 - \\         23 - \\         22 - \\         23 - \\         22 - \\         23 - \\         22 - \\         23 - \\         22 - \\         23 - \\         22 - \\         23 - \\         22 - \\         23 - \\         22 - \\         23 - \\         22 - \\         23 - \\         22 - \\         23 - \\         22 - \\         23 - \\         23 - \\         23 - \\         23 - \\         23 - \\         23 - \\         23 - \\         23 - \\         23 - \\         23 - \\         23 - \\         23 - \\         23 - \\         23 - \\         23 - \\         23 - \\         23 - \\         23 - \\         23 - \\         23 - \\         23 - \\         23 - \\         23 - \\         23 - \\         23 - \\         23 - \\         23 - \\         23 - \\         23 - \\         23 - \\         23 - \\         23 - \\         23 - \\         23 - \\         23 - \\         23 - \\         23 - \\         23 - \\         23 - \\         23 - \\         23 - \\         23 - \\         23 - \\         23 - \\         23 - \\         23 - \\         23 - \\         23 - \\         23 - \\         23 - \\         23 - \\         23 - \\         23 - \\         23 - \\         23 - \\         23 - \\         23 - \\         23 - \\         23 - \\         23 - \\         23 - \\         23 - \\         23 - \\         23 - \\         23 - \\         23 - \\         23 - \\  $ | А-~                                             | PAR                              | 2 ~~~                    |                                      |                    | Continued from Sheet 1<br>SEE BORING LOG TWI-B<br>For SOIL INFORMATION<br>END OF BORING © 15.0 FT                                                                                                                                                   |                          |                  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | DRILLING CO .: TARRAY WOLF                      |                                  |                          |                                      |                    | BAKER REP.: BRIAN E DAVIS<br>BORING NO.: TW 7-A SHEET 2                                                                                                                                                                                             |                          |                  |  |  |  |  |  |



----

. Sec. .

#### **TEST BORING AND WELL CONSTRUCTION RECORD**

T

PROJECT: SG-I-CTO 232 -SCREENING

T

COORDINATES: EAST: 2464039.7530 NORTH: 361874.6056 ELEVATION: SURFACE: 19.2 TOP OF STEEL CASING:

f interesting

S.O. NO .: 62470-232-0000-03600 BORING NO .: TW 7-B

T

L'ersiens distant

~

Т

T

| RIG: maß                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 14555          | Trock                     | . ~~                      | JON    | • ·             |                                    |                  |                         |                                      |                         |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|---------------------------|---------------------------|--------|-----------------|------------------------------------|------------------|-------------------------|--------------------------------------|-------------------------|
| 4 S. 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | SPLIT<br>SPOON | CASING                    | AU                        | GERS   | CORE<br>BARREL  | DATE                               | PROGRESS<br>(FT) | WEATHER                 | WATER<br>DEPTH<br>(FT)               | TIME                    |
| SIZE (DIAM.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.43IN         | 1                         | 3                         | 4 IO   |                 | 4471196                            | 0-47             | 60'S SUNNY              | 64                                   | Ohrs-                   |
| LENGTH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ZFT            |                           | 1                         | FT     |                 |                                    |                  |                         |                                      | E                       |
| ТҮРЕ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 55             |                           | H                         | 5      |                 |                                    |                  |                         |                                      |                         |
| HAMMER WT.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 140 lbs.       |                           |                           |        |                 |                                    |                  |                         |                                      |                         |
| FALL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 30 in          |                           |                           |        |                 |                                    | •                |                         |                                      |                         |
| STICK UP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                |                           |                           |        |                 |                                    |                  |                         |                                      |                         |
| REMARKS:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                |                           |                           |        |                 |                                    |                  |                         |                                      |                         |
| S = Split |                | = Auger<br>= Wash         |                           |        | /ELL<br>RMATION | DIAM                               | ТҮР              | E                       | TOP<br>DEPTH<br>(FT)                 | BOTTOM<br>DEPTH<br>(FT) |
| $\mathbf{R} = \text{Air Rota}$<br>$\mathbf{D} = \text{Denisor}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ary C          | = Core<br>= Piston        |                           | Well C | Casing          | 1"                                 | PVC Threaded     | I'DIA                   | 0                                    | 42                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | I = No Samp    |                           |                           | Well S | creen           | 1''                                | PVC Slotted      | 001"SLOT                | 42                                   | 45                      |
| Samp<br>Depth Type<br>(Ft.) and<br>No.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Ft. OI         | T Class.<br>or<br>OD Pen. | Hnu<br>Lab.<br>Moist<br>% |        | Visual í        | Descriptic                         | on               | Wel<br>Installa<br>Deta | Elevation                            |                         |
| 1 - 5-1<br>2 - 2:0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.0 15         | 15                        | 21                        | SAND   |                 | FT @ 10:                           | 57               |                         | NELL<br>Pock<br>From<br>SIO FT<br>TO |                         |
| 3 - 5-2<br>4 - 4.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                | 10<br>8                   |                           |        |                 |                                    | u, <u>o</u> _    |                         | 47.0 FT<br>NELL<br>ASING<br>FROM     | - 15.20                 |
| 5 - 5-3<br>6 - 4-0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                | 8<br>5                    | <u> </u>                  | SANG   | C C KAN         | 0 FT @ 11<br>And FINE<br>Some SIUT | GRAW, LITTLE     |                         | 0.0 FT<br>TO 42.0 FT                 |                         |
| 7 – 1<br>8 – A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                |                           |                           | GREY   | J, TRACE F      | we brave                           | -, Moist tower   |                         |                                      |                         |
| 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                |                           |                           |        |                 | М                                  | latch to Sheet 2 |                         |                                      |                         |
| DRILLING CO.<br>DRILLER:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                | TT WOL                    | FP                        |        |                 | _ BAKEF                            |                  | IN E. PANIS             | SHEI                                 | T <u>1</u> OF <u>3</u>  |



PROJECT: SGT -CTO 232 - SCREENING S.O. NO .: 62470-232-000-03600 BORING NO .: TW7-B

| T = S<br>R = A                                                                              | Split Spoo<br>Shelby Tu<br>Air Rotan<br>Denison | ibe<br>Y                         | A =<br>W =<br>C =<br>P = |                                      |                                   | DEFINITIONS<br>SPT = Standard Penetration Test (ASTM D-1586) (Blows/0.5')<br>RQD = Rock Quality Designation (%)<br>Lab. Class. = USCS (ASTM D-2487) or AASHTO (ASTM D-3282)<br>Lab. Moist. = Moisture Content (ASTM D-2216) Dry Weight Basis |     |                                             |               |  |  |  |  |  |
|---------------------------------------------------------------------------------------------|-------------------------------------------------|----------------------------------|--------------------------|--------------------------------------|-----------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|---------------------------------------------|---------------|--|--|--|--|--|
| epth<br>(Ft.)                                                                               | Sample<br>Type<br>and<br>No.                    | Samp.<br>Rec.<br>(Ft.<br>&<br>%) | SPT<br>or<br>RQD         | Lab.<br>Class.<br>or<br>Pen.<br>Rate | Hnu<br>Jab<br>Maist<br>%<br>(ppm) | Visual Description                                                                                                                                                                                                                           | Wel | l Installation<br>Detail                    | Elevation     |  |  |  |  |  |
|                                                                                             | 5-4                                             | 2.0                              | 4510                     |                                      | 41                                | Continued from Sheet 1<br>SAUD, MEDIUMAND FINE GRANN, GREY<br>BROWN, FREDUM DENK, WET<br>BROWN, MEDIUM DENK, WET<br>BROWN ON SFT                                                                                                             |     | WELL<br>SOCIC<br>FROM 010<br>TO 47.0FT<br>- |               |  |  |  |  |  |
|                                                                                             | A۳                                              |                                  |                          |                                      |                                   |                                                                                                                                                                                                                                              |     | CASIDG                                      |               |  |  |  |  |  |
| -<br>-<br>-<br>-<br>-                                                                       | 5-5                                             | 2.0                              | Wan<br>Z<br>Z            |                                      | <1                                | SAND, FINE GRAIN, 10055, WET -<br>GREY, CREEN,                                                                                                                                                                                               |     | -                                           | 4.20          |  |  |  |  |  |
|                                                                                             | A-N                                             |                                  |                          |                                      |                                   | LITTLE COARSE SAND, LITTLE SILT.<br>TRACE CLAT, SHELL FRAGMENTS, -<br>LIMESTONE FRAGMENTS, UNCONSOLIDATED<br>GRET, WET, MED, DENSE -                                                                                                         |     | -                                           |               |  |  |  |  |  |
| 22.0                                                                                        | 5-6                                             | Z. 0                             | 57<br>9<br>11            |                                      | <1                                | SANO, FINE AND MEDIUM GRAW, -<br>LITTLE LOARISE SAND, LITTLE SILT, -<br>THALE CLAND, FREW SHELL FRAMEWERS -<br>GREY, WET, MEDIUM DENSE -                                                                                                     |     |                                             |               |  |  |  |  |  |
|                                                                                             | A-N                                             |                                  |                          |                                      |                                   |                                                                                                                                                                                                                                              |     |                                             |               |  |  |  |  |  |
| 25.0                                                                                        | 5.7                                             | 2.0                              | 3<br>13<br>17<br>18      | 1                                    | 41                                | SAND, FINE AND MEDIUM GRAIN -<br>LITTLE COANSE SAND, LITTLE KOANSE -<br>GREVEN, LITTLESILT, TRALE CLAD, -<br>SHELL FRADMENTS, LIMESTONE -                                                                                                    |     |                                             |               |  |  |  |  |  |
| -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- | A-N                                             |                                  |                          |                                      |                                   | FRAGME-TO, GASS, WET, MED. DENSE                                                                                                                                                                                                             |     |                                             |               |  |  |  |  |  |
|                                                                                             | G CO.:                                          | PA<br>CHIE                       |                          | TT U                                 | L<br>DOLF                         |                                                                                                                                                                                                                                              |     |                                             | T <u>2</u> OF |  |  |  |  |  |

1. 1. 1. 1.



#### Baker Environmental, «c

.....

٠.

#### **TEST BORING AND WELL CONSTRUCTION RECORD**

PROJECT: 561 - CTD 232 - SCREENING S.O. NO .: 62470 - 232 - 0000 - 03600 BORING NO .: TW7-B

• • • • • • • • • • • •

----

| T = 9<br>R = 2                                 | Split Spoo<br>Shelby Tu<br>Air Rotar<br>Denison | ibe<br>y                         | A =<br>W =<br>C =<br>P = | Auger<br>Wash<br>Core<br>Piston      |                                            | DEFINITIONS<br>SPT = Standard Penetration Test (ASTM D-1586) (Blows/0.5')<br>RQD = Rock Quality Designation (%)<br>Lab. Class. = USCS (ASTM D-2487) or AASHTO (ASTM D-3282)<br>Lab. Moist. = Moisture Content (ASTM D-2216) Dry Weight Basis |   |      |                               |                  |                              |  |  |  |
|------------------------------------------------|-------------------------------------------------|----------------------------------|--------------------------|--------------------------------------|--------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|------|-------------------------------|------------------|------------------------------|--|--|--|
| Depth<br>(Ft.)                                 | Sample<br>Type<br>and<br>No.                    | Samp.<br>Rec.<br>(Ft.<br>&<br>%) | SPT<br>or<br>RQD         | Lab.<br>Class.<br>or<br>Pen.<br>Rate | Han 10 100 100 100 100 100 100 100 100 100 | Visual Description                                                                                                                                                                                                                           | V | Vell | Installat<br>Detail           | ion              | Elevation                    |  |  |  |
| 31_<br>32 <u>₹2,</u> ъ                         | 5-8                                             | 2.0                              | 11<br>23<br>13           |                                      | 4                                          | Continued from Sheet 2.<br>5AND AND GRAVER, BREY, GREEN, DENSE _<br>WET, SHELL FRAGE GUTT. LINESTONE _<br>FRAGE GUTS _                                                                                                                       |   |      | 2001<br>2001<br>2007<br>2007  |                  |                              |  |  |  |
| 33                                             | A-N                                             |                                  |                          |                                      |                                            |                                                                                                                                                                                                                                              |   |      | WE<br>LAS:<br>5007<br>420     | ວທີ່<br>- ວິ     |                              |  |  |  |
| 36-<br>7 <u>37.0</u>                           | 5-9                                             | Ź.0                              | 8 q<br>13<br>13          |                                      | 21                                         | SAND, MEDIUM AND FINE GRAIN, LITTLE<br>GRAVEN, LITTLE SILT, THALE CLAY,<br>LITTLE LIMESTANE FLAGMENTS<br>BREY, WET, DENSE                                                                                                                    |   |      |                               | -                | -<br>-<br>-                  |  |  |  |
| 38_<br>39_<br>4) 40                            |                                                 |                                  |                          |                                      |                                            |                                                                                                                                                                                                                                              |   |      |                               | -                | •                            |  |  |  |
| 11-<br>42-42.0                                 | 5-10                                            | 2.0                              | 7<br>9<br>17<br>18       |                                      | <1                                         | SAND, MEDIUM and FINE GRAIN ; LITTLE<br>SILT. TRACE CLAY, LITTLE LIMESTONE -<br>FRACMENTS, GREY, GREEN, WET<br>MEDIUM DENSE TO DENSE -                                                                                                       | - |      | WEL                           |                  | - 22.80                      |  |  |  |
| 43_<br>44_<br>u_ \\$5.0                        |                                                 |                                  |                          |                                      |                                            | -                                                                                                                                                                                                                                            |   |      |                               | 42.0<br>5.0 FT - |                              |  |  |  |
| 45 <u>46</u><br>46<br>47 <u></u> <del>17</del> | 5-11                                            | Zıð                              |                          |                                      | 41                                         | CANOJFING GRAIN I GREY, BREEN, MERICA DENNE<br>LITTE SILT TRACEBAY                                                                                                                                                                           |   |      | Bott<br>PLUC<br>Houce<br>Ta 4 | CANCO .          | - z5.80<br>27.36<br>27.80    |  |  |  |
| 48_<br>49_                                     |                                                 |                                  |                          |                                      |                                            | END OF BONING AT 47.0<br>HAD TO ADD 50 GALLONS OF<br>WATEN TO LLEAN OUT AUGENS<br>FON SOIL SAMPLE                                                                                                                                            |   |      |                               |                  |                              |  |  |  |
| )<br>DRILLIN<br>DRILLER                        |                                                 |                                  | RAT                      | T_ W                                 | 100FF                                      | BAKER REP.: BR.F<br>BORING NO.: TW                                                                                                                                                                                                           |   |      |                               | SHEE             | -1<br>T <u>3</u> OF <u>3</u> |  |  |  |



.

Baker Environmental, 🔤 🚽

-

. .

#### **TEST BORING AND WELL CONSTRUCTION RECORD**

PROJECT: SGI - CTO 232 - SCREENING

S.O. NO.: 62470-232-0000-03600 COORDINATES: EAST: 2464682,0303 ELEVATION: SURFACE: 15.40

- 4

BORING NO.: <u>TWB-A</u> NORTH: <u>361896.4459</u> TOP OF STEEL CASING: \_\_\_\_\_

| RIG: m                                         | OBILE                                | <del>;</del> 55                 | - T              | ever                                 | mos.               | NT         |                 |           |                     |          |                      |                                                               |                         |
|------------------------------------------------|--------------------------------------|---------------------------------|------------------|--------------------------------------|--------------------|------------|-----------------|-----------|---------------------|----------|----------------------|---------------------------------------------------------------|-------------------------|
|                                                |                                      | SPLIT<br>SPOO                   |                  | CASING                               | i Al               | JGERS      | CORE<br>BARREL  | DATE      | PROGRESS<br>(FT)    | WEATHER  | ł                    | WATER<br>DEPTH<br>(FT)                                        | TIME                    |
| SIZE (DIAM                                     | .)                                   |                                 |                  |                                      | 2                  | 14 Do      |                 | 4/11/96   | 0-15                | 70'5 500 | NY                   | 6                                                             | Ohrs.                   |
| LENGTH                                         |                                      |                                 |                  |                                      |                    | Fr         |                 |           |                     |          |                      |                                                               | :                       |
| ТҮРЕ                                           | · [                                  |                                 |                  |                                      | 1                  | +5         |                 |           |                     |          |                      |                                                               |                         |
| HAMMER V                                       | ∕∕т.                                 |                                 |                  |                                      |                    |            |                 |           |                     |          |                      |                                                               |                         |
| FALL                                           |                                      |                                 |                  |                                      |                    |            |                 |           |                     |          |                      |                                                               |                         |
| STICK UP                                       |                                      |                                 |                  |                                      |                    |            |                 |           |                     |          |                      |                                                               |                         |
| REMARKS:                                       |                                      |                                 |                  |                                      |                    |            |                 |           |                     |          |                      |                                                               |                         |
|                                                | <u>SAi</u><br>blit Spoo<br>helby Tul |                                 | A =              | Auger<br>Wash                        |                    |            | VELL<br>RMATION | DIAM      | ТҮР                 | E        | C                    | TOP<br>DEPTH<br>(FT)                                          | BOTTOM<br>DEPTH<br>(FT) |
| $\mathbf{R} = \mathbf{A}$                      | ir Rotary<br>enison                  |                                 | C =              | Core<br>Piston                       |                    | Well C     | asing           | \"        | PVC Threaded        | 1" DIA.  |                      | 0                                                             | 5                       |
| 1                                              |                                      | = No Sa                         |                  |                                      |                    | Well S     | creen           | 111       | PVC Slotted         | d"suot   | 5                    |                                                               | 15                      |
| Depth<br>(Ft.)                                 | Sample<br>Type<br>and<br>No.         | Sarnp.<br>Rec.<br>Ft.<br>&<br>% | SPT<br>or<br>RQD | Lab.<br>Class.<br>or<br>Pen.<br>Rate | Lab.<br>Moist<br>% |            | Visual [        | Descripti | on                  | Instal   | ell<br>latio<br>tail | on                                                            | Elevation               |
| 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>0 | A-N                                  |                                 |                  |                                      |                    | SEE<br>For | BORING-         | IN FOR    |                     |          | REGNISTICS 38EN      | ELL<br>CLE<br>COTO<br>IOFT<br>IELL<br>IOFT<br>IOFT<br>DISIOFT | - 10.40                 |
| DRILLING                                       | _                                    |                                 | 2AT1             | r INO                                | LFF                |            |                 |           | RREP .: BRIAN       |          |                      |                                                               |                         |
| DRILLER:                                       | C                                    | HIP                             |                  |                                      | ,                  |            |                 | BORIN     | IG NO.: <u>TW8-</u> | Α        |                      | SHEET                                                         | 1 OF <u>2</u>           |



PROJECT: 5GI - CTO 232 - SCREENING S.O. NO .: 62470 - 232 -000 - 03600 BORING NO .: TWO-A

| T = 5<br>R = 2                                                                                                                                                                                                                                                         | Split Spoo<br>Shelby Tu<br>Air Rotar<br>Denison | be<br>Y                          | A =<br>W =<br>C =<br>P = |                                      |                    | <u>DEFINITIONS</u><br>SPT = Standard Penetration Test (ASTM D-1586) (Blows/0.5')<br>RQD = Rock Quality Designation (%)<br>Lab. Class. = USCS (ASTM D-2487) or AASHTO (ASTM D-3282)<br>Lab. Moist. = Moisture Content (ASTM D-2216) Dry Weight Basis |   |                                                                                        |                        |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|----------------------------------|--------------------------|--------------------------------------|--------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|----------------------------------------------------------------------------------------|------------------------|--|--|
| Depth<br>(Ft.)                                                                                                                                                                                                                                                         | Sample<br>Type<br>and<br>No.                    | Samp.<br>Rec.<br>(Ft.<br>&<br>%) | SPT<br>or<br>RQD         | Lab.<br>Class.<br>or<br>Pen.<br>Rate | Lab.<br>Moist<br>% | Visual Description                                                                                                                                                                                                                                  |   | stallation<br>etail                                                                    | Elevation              |  |  |
| $ \begin{array}{c} 11 \\ 12 \\ 13 \\ 14 \\ 15 \\ 16 \\ 16 \\ 17 \\ 18 \\ 19 \\ 20 \\ 21 \\ 21 \\ 22 \\ 23 \\ 24 \\ 23 \\ 24 \\ 25 \\ 26 \\ 27 \\ 28 \\ 28 \\ 29 \\ 20 \\ 21 \\ 21 \\ 23 \\ 24 \\ 25 \\ 26 \\ 27 \\ 28 \\ 20 \\ 20 \\ 20 \\ 20 \\ 20 \\ 20 \\ 20 \\ 20$ | A-N                                             |                                  |                          |                                      |                    | Continued from Sheet 1<br>SEE BORING LOG TWB-B<br>FON SOIL INFORMATION<br>END OF BORING USIO FT.                                                                                                                                                    |   | WELL SOCK<br>From J.O FF<br>TO ISIO FF<br>SCREEN<br>F(Com<br>FT<br>BOTTON PLUC (1)<br> | 0.FT 0.40              |  |  |
| 29<br><br>30                                                                                                                                                                                                                                                           |                                                 |                                  |                          |                                      |                    | Match to Sheet 3                                                                                                                                                                                                                                    | - |                                                                                        | -                      |  |  |
| DRILLIN                                                                                                                                                                                                                                                                |                                                 |                                  | 1P                       | T wo                                 | suff               | BAKER REP.: BEN<br>BORING NO.: TWE                                                                                                                                                                                                                  |   | SHEE                                                                                   | T <u>2</u> OF <u>2</u> |  |  |



Baker Environmental, Inc

.

and constraints

••••

#### **TEST BORING AND WELL CONSTRUCTION RECORD**

PROJECT: SGI . LTO 232 - SCREENING

- -----

 S.O. NO.:
 62470-232-0000-03600
 BORING NO.:
 TW B B

 COORDINATES:
 ELEVATION:
 2464682.0303
 NORTH:
 361896.4459

 ELEVATION:
 SURFACE:
 15.40
 TOP OF STEEL CASING:

 -

| RIG: MOB                                                             | 1LE 55         | TRUCK                                                                       | mou        | NT       |                          |                              |              |                |           |                                 |        |                              |
|----------------------------------------------------------------------|----------------|-----------------------------------------------------------------------------|------------|----------|--------------------------|------------------------------|--------------|----------------|-----------|---------------------------------|--------|------------------------------|
|                                                                      | SPLIT<br>SPOON | CASING                                                                      |            | GERS     | CORE<br>BARREL           | DATE                         | PROGI<br>(FT |                | WEATHER   | WA<br>DEP<br>R (F               | тн     | TIME                         |
| SIZE (DIAM.)                                                         | 1.43 80        |                                                                             | 3          | 410      |                          | 4/11/26                      | 0-4          | 2              | 70'S SUNA | 17 b                            |        | ohrs,                        |
| LENGTH                                                               | ZFT            |                                                                             |            | 51       |                          |                              |              |                |           |                                 |        | :                            |
| ТҮРЕ                                                                 | 55             |                                                                             | Т          | 15       |                          |                              |              |                |           |                                 |        |                              |
| HAMMER WT.                                                           | 140165         |                                                                             |            |          |                          |                              |              |                |           |                                 |        |                              |
| FALL                                                                 | 30 10          |                                                                             | 1          |          |                          |                              |              |                |           |                                 |        |                              |
| STICK UP                                                             |                |                                                                             |            |          |                          |                              |              |                |           |                                 |        |                              |
| REMARKS:                                                             |                |                                                                             |            |          |                          |                              |              |                |           |                                 |        |                              |
| S = SplitS<br>T = Shelby                                             |                | = Auger                                                                     |            |          | /ELL<br>RMATION          | DIAM                         |              | TYP            | E         | TOP<br>DEPTH<br>(FT)            |        | BOTTOM<br>DEPTH<br>(FT)      |
| R = Air Ro $D = Denisc$                                              | tary C         | = Core                                                                      |            | Well C   | lasing                   | 1"                           | PVC Three    | eaded          | 1010 .    | 0                               |        | 35                           |
|                                                                      | N = No Sam     |                                                                             |            | Well S   | creen                    | 1" PVC Slotted 0.01" SLOTT   |              |                |           | 35                              |        | 40                           |
| Sam<br>Depth Typ<br>(Ft.) an<br>No                                   | e Ft o         | Lab. H <sub>NU</sub><br>ClassLab. Visual Description I<br>roor Moist<br>Pen |            |          |                          |                              |              |                | Insta     | /ell<br>llation<br>etail        |        | Elevation                    |
| $\begin{bmatrix} -\\ 1 \\ -\\ 2 \\ - \\ z \\ 0 \end{bmatrix} \leq -$ | 1 2.0 3        | 3                                                                           | 21         | SOFT     | to STIFF                 | GREN , BLAC<br>TRACE U       | LA.Y.        | - لارو<br>-    |           | Socie<br>Socie                  | -<br>r | -                            |
| 3 - 5-<br>4 - 4.0                                                    | 2 2.0 4        | 3<br>&                                                                      | <b>L</b> 1 | 5A-01    | le 35-tude<br>9 0:5 ft @ | 8-00 دەرردە                  | te o Fran    | -              |           | 20.0F                           |        | -                            |
|                                                                      | 3 2.0          | 3                                                                           | 41         |          | PIFINE G                 | LAINI LITT                   |              | <u>5.5</u>     |           | CASIN<br>From<br>0.070<br>35:00 |        | -<br>-<br>9 <u>-</u> 90<br>- |
| 7                                                                    | -N             |                                                                             |            | 1 Sa-    | The 35-TU<br>The 35-TU   | ~, WET<br>~ 03-0 <b>3</b> 60 | 1.1.ECTE P + | Firm -<br>-    |           |                                 |        |                              |
| 9<br>10                                                              |                |                                                                             |            |          |                          | M                            | atch to S    | io.o<br>heet 2 |           |                                 |        |                              |
| DRILLING CO                                                          | PARE           | 2ATT V                                                                      | VOL        | <u> </u> | <u></u>                  |                              |              |                | N E. DA   | NIS                             |        | <u> </u>                     |
| DRILLER:                                                             | CHIP           |                                                                             |            | <u>.</u> |                          | BORIN                        | G NO.: _     | TW8            | 3 -B      | S                               | HEE    | Г <u>1</u> ОF <u>}</u>       |



Baker Environmental, tor

# TEST BORING AND WELL CONSTRUCTION RECORD

PROJECT: SGI - CTO 232 - SCREENING

S.O. NO .: 62470-232-0000 BORING NO .: TW8-B

| T =<br>R =                                        | Split Spoo<br>Shelby Tu<br>Air Rotan<br>Denison | be<br>/                          | A =<br>W =<br>C =<br>P =    |                                      |      | DEFINITIONS<br>SPT = Standard Penetration Test (ASTM D-1586) (Blows/0.5')<br>RQD = Rock Quality Designation (%)<br>Lab. Class. = USCS (ASTM D-2487) or AASHTO (ASTM D-3282)<br>Lab. Moist. = Moisture Content (ASTM D-2216) Dry Weight Basis |                                                |                     |  |  |  |  |
|---------------------------------------------------|-------------------------------------------------|----------------------------------|-----------------------------|--------------------------------------|------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|---------------------|--|--|--|--|
| Depth<br>(Ft.)                                    | Sample<br>Type<br>and<br>No.                    | Samp.<br>Rec.<br>(Ft.<br>&<br>%) | SPT<br>or<br>RQD            | Lab.<br>Class.<br>or<br>Pen.<br>Rate |      | Visual Description                                                                                                                                                                                                                           | Well Installation<br>Detail                    | Elevation           |  |  |  |  |
| -<br>11_<br>12                                    | 5-4                                             | 2.0                              | 1<br>1<br>2                 |                                      | 21   | Continued from Sheet 1<br>SILT AND CLAY, LITTLE FINE SAND,<br>SOFT, WET, GREEN GREY 145<br>SAND, FINE GRAIN, SOME SILT<br>THALE CLAY, WET, MEDIUM DENSE.                                                                                     | WELL<br>Han<br>GIOTO<br>HOIOFT                 | -<br>- <u>3</u> .90 |  |  |  |  |
| -<br>13_<br>-<br>14_<br>15_                       | A-N                                             |                                  |                             |                                      |      | GREY, BLACK, GREEN, BROWN -                                                                                                                                                                                                                  | WELL -<br>CASIDG<br>FROM -<br>OIDTO<br>35TO FT | -                   |  |  |  |  |
| 15— <u>13.4</u><br><br>16—<br><br>17— <u>17-6</u> | 5-5                                             | 1.5                              | 7556                        |                                      | 4    | SAND, FING GRAND, SOME SIUT<br>TRACE CLAY, WET, BREY, BREW, MED. DENSE                                                                                                                                                                       |                                                |                     |  |  |  |  |
| -<br>18<br>19                                     | A-N                                             |                                  |                             |                                      |      |                                                                                                                                                                                                                                              |                                                |                     |  |  |  |  |
| 20 <u>20</u><br>21 <u>-</u><br>22 <u>22</u>       | 5-6                                             | 0.5                              | 5 <sub>12</sub><br>12<br>12 |                                      | 41   | SAND, FING AND MEDIUM GRAIN, -<br>LITTLE COARSE SAND, LITTLE SILT, -<br>TRACE CLAY, SHELL FRAGMENTS, -<br>LIMESTONE FRAGMENTS, NET<br>DENSE, GREY                                                                                            |                                                | -6.10               |  |  |  |  |
| 23 <u>-</u><br>24 -                               |                                                 |                                  |                             |                                      |      | CLAME 21.5 FT                                                                                                                                                                                                                                |                                                |                     |  |  |  |  |
| 25 <u>2</u> 5<br>26 <u>-</u><br>27 <u>27</u>      | 5-7                                             | 2.0                              | 10<br>12<br>14<br>11        | (                                    | ٤    | L'MESTONE THAGMANTS WET -                                                                                                                                                                                                                    |                                                |                     |  |  |  |  |
| 27 <u>-</u><br>28 <u>-</u><br>29 <u>-</u>         |                                                 |                                  |                             |                                      |      | Deuse, Grey                                                                                                                                                                                                                                  |                                                |                     |  |  |  |  |
| 30-30                                             | .0                                              |                                  |                             |                                      |      | Match to Sheet 3                                                                                                                                                                                                                             |                                                |                     |  |  |  |  |
| DRILLI                                            | NG CO.:<br>R:                                   | PAR.<br>HIP                      | RAT                         | TW                                   | OLFF | BAKER REP.: BRIA<br>BORING NO.: TWE                                                                                                                                                                                                          | NE. DAVIS<br>B-BSHE                            | ET <u>2</u> OF 2    |  |  |  |  |



PROJECT: SGI-CTO 232-SCREENING S.O. NO.: 62470-232-0000-07600 BORING NO.: TWB-B

|                             |                                                   |                                  | /05              |                                      |                                     | DEEMITIONS                                                                                                                                                  |                                            |
|-----------------------------|---------------------------------------------------|----------------------------------|------------------|--------------------------------------|-------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|
| T = 5                       | <u>SA</u><br>Split Spoo<br>Shelby Tu<br>Air Rotar | be                               | A =<br>W =       | Auger<br>Wash<br>Core                |                                     | <u>DEFINITIONS</u><br>SPT = Standard Penetration Test ( <i>/</i><br>RQD = Rock Quality Designation (<br>Lab. Class. = USCS (ASTM D-2487)                    | (%)<br>) or AASHTO (ASTM D-3282)           |
| D = 1                       | Denison<br>N :                                    | = No Sa                          | •                | Piston                               |                                     | Lab. Moist. = Moisture Content (A                                                                                                                           | ASTM D-2216) Dry Weight Basis              |
| Depth<br>(Ft.)              | Sample<br>Type<br>and<br>No.                      | Samp.<br>Rec.<br>(Ft.<br>&<br>%) | SPT<br>or<br>RQD | Lab.<br>Class.<br>or<br>Pen.<br>Rate | Hnu<br>Loot.<br>Moist<br>40<br>Lerm | Visual Description                                                                                                                                          | Well Installation<br>Detail Elevation      |
| 31-<br>32-32.0              | 5-8                                               | 5.0                              | 5 5 N            |                                      | 41                                  | Continued from Sheet<br>SAND, GOARSE AND MEDIUM GEALN,<br>SOME FINE GRAVEL, GREY, LITTLE<br>SILT, TARLE CLAY. SHELL FRAGMENTS<br>LIMESTONE FRAGMENTS, DENSE | WELL SOCK<br>Fram<br>0:070<br>40:0 FT<br>- |
| -<br>33<br>34               | A-~                                               | -                                |                  |                                      |                                     | TO VENY DENSE, WET                                                                                                                                          | CASING<br>From<br>0:0 TO<br>35:0 FT<br>WEL |
| 35 <u>35</u><br>36-<br>37.0 | 5-9                                               | Z.0                              | ່ອ<br>ຊ<br>13    |                                      | 41                                  | SAND, MEDIUM AND FINE GRAIN,<br>LITTLE COANSE GRAIN, LITTLE SIGT,<br>TRACE CLAY, GREY, GREEN,<br>WET                                                        | SCREEN19.6<br>From -<br>35.0 TO<br>40.0 FT |
| 38-<br>39-                  | A-N                                               |                                  |                  |                                      |                                     | -<br><br>                                                                                                                                                   |                                            |
| 40 400<br>41 41<br>42 42.0  | 5-10                                              |                                  | 77 90 80         |                                      | <1                                  | 40.0<br>SAND, FINE GEAIN, SOME SILT, LITTE -<br>CLAY, GREEN, GRET, MEDIUM DENE -<br>WET                                                                     |                                            |
| 43_<br>44_                  |                                                   |                                  |                  |                                      |                                     | END OF BORING @ 42.0 FT .<br>HAND TO ADD 50 GALLONS OF                                                                                                      |                                            |
| 45<br>46                    |                                                   |                                  |                  |                                      |                                     | For 3016 SAMPLES                                                                                                                                            |                                            |
| 47<br>-<br>48               |                                                   |                                  |                  |                                      |                                     | -                                                                                                                                                           |                                            |
| <b>4</b> 9                  |                                                   |                                  |                  |                                      |                                     |                                                                                                                                                             |                                            |
| DRILLING<br>DRILLER         |                                                   |                                  | 411              | Wou                                  | -FF                                 | BAKER REP.: BRIA<br>BORING NO.: TWE                                                                                                                         | B-B SHEET 3 OF 3                           |

Baker

Baker Environmental, Inc

### **TEST BORING AND WELL CONSTRUCTION RECORD**

PROJECT: SGI - CTO 232 - SCREENING

S.O. NO.: 62470-232-000-03600 COORDINATES: EAST: \_\_\_\_\_ ELEVATION: SURFACE: \_\_\_\_\_\_ BORING NO.: TW9-A NORTH: \_\_\_\_\_ TOP OF STEEL CASING: /5.0/

**RIG:** MOBILE 55 TRUCK MOUNT WATER PROGRESS DEPTH CORE SPLIT WEATHER TIME CASING AUGERS BARREL DATE (FT) (FT) SPOON 4/12/96 3410 SIZE (DIAM.) 6 0-15 70'5 50007 O HANJ LENGTH 5FT TYPE HS HAMMER WT. FALL STICK UP **REMARKS:** TOP DEPTH воттом WFUL SAMPLE TYPE DEPTH INFORMATION DIAM TYPE S = Split Spoon A = Auger (FT) (FT) T =Shelby Tube W = WashC = Core R = Air Rotary 110 PVC Threaded Well Casing ٥ 5 1'din D = Denison P = Piston 1 " 15 **PVC** Slotted Well Screen 5 N = No Sample 0.01" 5007 Samp. Lab. Well Sample Rec. Class. SPT Lab. Visual Description Depth Installation Type Ft. Elevation or Moist or (Ft.) and Detail & Pen. RQD % No. % Rate WELL Soye 1 -HAND DUG FROM 0.0 TO 4.0 FT From 0.0 =-UTILITY CONCERN 2. TO 15.0 FT LATELL. 3. CASING From DOFT 4 -SEE BORING LOG TW9-B to ISIOFT 10.3 FOR SOIL INFORMATION 5 A-N WELL SCREEN From 6 5.0FT TO ISIOFT 7. 8 -9 10 Match to Sheet 2 PARRAT WOLFF BAKERREP .: BRIAN E. DAVII DRILLING CO .:

CHIP

BAKER REP .: BEIAN E. DE

Baker

-

Baker Environmental, Inc

-

PROJECT: 567-670232- SCREENING S.O. NO.: 62770-222-0000-08600 BORING NO.: TW9. A

| T = 2<br>R = 2                                                                                                                                                                         | Split Spoc<br>Shelby Tu<br>Air Rotary<br>Denison | be<br>(                          | A =<br>W =<br>C =<br>P = | Auger<br>Wash<br>Core<br>Piston      |                    | DEFINITIONS<br>SPT = Standard Penetration Test (ASTM D-1586) (Blows/0.5')<br>RQD = Rock Quality Designation (%)<br>Lab. Class. = USCS (ASTM D-2487) or AASHTO (ASTM D-3282)<br>Lab. Moist. = Moisture Content (ASTM D-2216) Dry Weight Basis |              |                 |                                                                                         |                        |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|----------------------------------|--------------------------|--------------------------------------|--------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|-----------------|-----------------------------------------------------------------------------------------|------------------------|--|--|
| Depth<br>(Ft.)                                                                                                                                                                         | Sample<br>Type<br>and<br>No.                     | Samp.<br>Rec.<br>(Ft.<br>&<br>%) | SPT<br>or<br>RQD         | Lab.<br>Class.<br>or<br>Pen.<br>Rate | Lab.<br>Moist<br>% | Visual Description                                                                                                                                                                                                                           | v            | Vell In<br>D    | nstallation<br>Detail                                                                   | Elevation              |  |  |
| $ \begin{array}{c} 11 \\ 12 \\ 12 \\ 13 \\ 14 \\ 15 \\ 16 \\ 17 \\ 18 \\ 19 \\ 20 \\ 21 \\ 22 \\ 21 \\ 22 \\ 23 \\ 24 \\ 25 \\ 24 \\ 25 \\ 26 \\ 27 \\ 28 \\ 29 \\ 29 \\ \end{array} $ | A-N                                              | %)                               |                          | Rate                                 |                    | Continued from Sheet 1<br>SEE BORING LOG TW 9-B<br>For Soin INFORMATION<br>END OF BORING @ 15.0 FT                                                                                                                                           |              |                 | Weusock<br>From 00<br>TD 15:0 FT<br>Sides<br>From<br>Sidto<br>15:0 FT<br>Bottom PWS<br> | 0.3                    |  |  |
| 30                                                                                                                                                                                     |                                                  |                                  |                          |                                      |                    | Match to Shee                                                                                                                                                                                                                                |              |                 |                                                                                         | _                      |  |  |
| DRILLIN<br>DRILLEF                                                                                                                                                                     | G CO.:<br>د: ک                                   | PAR                              | FAT                      | r we                                 | n FF               | BAKER REP.: BORING NO.: TV                                                                                                                                                                                                                   | 21AN<br>N9-1 | <u>E 1</u><br>A | DAVUS<br>SHEE                                                                           | T <u>2</u> OF <u>2</u> |  |  |



Baker Environmental, Inc

. -

# **TEST BORING AND WELL CONSTRUCTION RECORD**

PROJECT: SGI . CTO 232 - SCREENING

S.O. NO .: 62470-232-0000-03600 COORDINATES: EAST: \_\_\_\_ 15.3 ELEVATION: SURFACE:

BORING NO .: TW9-B NORTH: TOP OF STEEL CASING: 15.01

-

---

| RIG: MOB                               | 115 55          | Truck 1            | <u>~00~</u>                    | 1            |                    |                                                               |                                             |            | WATER                                    |                         |
|----------------------------------------|-----------------|--------------------|--------------------------------|--------------|--------------------|---------------------------------------------------------------|---------------------------------------------|------------|------------------------------------------|-------------------------|
|                                        | SPLIT<br>SPOON  | CASING             | AU                             | GERS         | CORE<br>BARREL     | DATE                                                          | PROGRESS<br>(FT)                            | WEATHER    | DEPTH                                    | TIME                    |
| SIZE (DIAM.)                           | 1.4312          | -                  | 3!                             | 410          |                    | 4/12/96                                                       | 0-47                                        | 70'S SUNN- | 1 10                                     | ohes                    |
| LENGTH                                 | ZFT             |                    |                                | FT           |                    |                                                               |                                             |            |                                          |                         |
| ТҮРЕ                                   | <del>'</del> 55 |                    | Н                              | S            |                    |                                                               |                                             |            |                                          |                         |
| HAMMER WT.                             | 140165          |                    |                                |              |                    |                                                               |                                             |            |                                          | <u> </u>                |
| FALL                                   | 30 12           |                    |                                |              |                    |                                                               |                                             |            |                                          |                         |
| STICK UP                               | <u> </u>        |                    |                                |              |                    |                                                               |                                             | <u> </u>   |                                          |                         |
| REMARKS:                               |                 |                    | 1                              |              | <u></u>            | 1                                                             |                                             |            |                                          |                         |
| S = Split Sp<br>T = Shelby             |                 | = Auger<br>= Wash  |                                |              | VELL               | DIAM                                                          | TY                                          |            | TOP<br>DEPTH<br>(FT)                     | BOTTOM<br>DEPTH<br>(FT) |
| R = Air Rot<br>D = Deniso              | ary C           | = Core<br>= Piston |                                | Well         | Casing             | 1                                                             | PVC Threaded                                | l' dia     | 0<br>37                                  | 37                      |
|                                        | N = No Samp     |                    |                                | Wells        | Screen             | 1                                                             | PVC Slotted                                 | Dial SLOT  | 42                                       |                         |
| Samp<br>Depth Type<br>(Ft.) and<br>No. | Ft. O           | r Class.<br>r or   | Han-<br>Lat-<br>Moist<br>Moist |              | Visual             | Descriptio                                                    | on                                          | Insta      | /ell<br>llation<br>etail                 | Elevation               |
| 1                                      | · · ·           |                    | <b>د</b> ا                     | Sama<br>Hang | e 35-7w5<br>DUG ma | (241, 2), 20, 20<br>7-00 COLLEU<br>- 0.0 TO 4,0<br>TJ CONCERN | LK, BROWN, OM<br>ROFELL AND<br>TODIS<br>OFT |            | WELL<br>SOLK<br>FROM<br>0.070<br>42.0 FF |                         |
| 3                                      |                 |                    | 1                              | BED          | an AJGG~.          | NG-/SA-QLI                                                    | 30 4.0 FT                                   |            | WELL                                     |                         |
| 5-5-5-                                 | 1 2.0 2         | 2 4                | 21                             | SILT         | TO STICE           | , GAED, B.                                                    | 2000, MOTTLOG<br>NGT                        |            | CASING<br>FROM<br>0:0 TO<br>37.0 FT      |                         |
| 6                                      |                 |                    |                                |              |                    |                                                               |                                             |            |                                          |                         |
| 9 – A                                  |                 |                    |                                |              |                    |                                                               |                                             |            |                                          |                         |
| 10 -10.0                               |                 |                    |                                | ┨            |                    | 1                                                             | o. ہ<br>Match to Sheet                      | 2          |                                          | - 5,3                   |
|                                        | : PARO          |                    | NOL                            | <br>516      |                    |                                                               |                                             | ANE DAV    | 15                                       |                         |



Baker Environmental, the

.

dicromote a

### **TEST BORING AND WELL CONSTRUCTION RECORD**

PROJECT: <u>667 - CTO 232 - SEREEN.NG</u> S.O. NO.: <u>62470 - 232-0000 - 03600</u> BORING NO.: <u>TW9-B</u>

| T = 5<br>R = 7                                          | iplit Spoc<br>ihelby Tu<br>Air Rotan<br>Denison | be<br>/                          | A = .<br>W = .<br>C = .<br>P = . | Auger<br>Wash<br>Core<br>Piston      |                                                                    | <u>DEFINITIONS</u><br>SPT = Standard Penetration Test (#<br>RQD = Rock Quality Designation (*<br>Lab. Class. = USCS (ASTM D-2487)<br>Lab. Moist. = Moisture Content (A | %)<br>or AASHTO (ASTM D-3282)          |
|---------------------------------------------------------|-------------------------------------------------|----------------------------------|----------------------------------|--------------------------------------|--------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|
| Depth<br>(Ft.)                                          | Sample<br>Type<br>and<br>No.                    | Samp.<br>Rec.<br>(Ft.<br>&<br>%) | SPT<br>or<br>RQD                 | Lab.<br>Class.<br>or<br>Pen.<br>Rate | Han 2<br>Hate.<br>1<br>Hate.<br>1<br>Hate.<br>1<br>Per<br>1<br>Per | Visual Description                                                                                                                                                     | Well installation<br>Detail Elevation  |
| 11<br>12                                                | 5-2                                             |                                  | 8<br>12<br>14<br>16              |                                      | 4                                                                  | Continued from Sheet 1<br>SAND , FINE (FRAIN, SOME SHUT, BREY<br>MEDIUM DENSE, WET                                                                                     | WELL -<br>SOLK -<br>From -<br>0.0 TO - |
| 13-<br>14-<br>15 <sup>1</sup> 50                        | A-N                                             |                                  |                                  |                                      |                                                                    |                                                                                                                                                                        | 42.0 FT<br>                            |
| 15 <u>-</u><br>16-<br>17 <u>-</u><br>17 <u>-</u><br>17- | 5-3                                             | 1.5                              | 5 5 J<br>J<br>J                  |                                      | 4                                                                  | SAND, FINE GRAIN, LITTLE MODIUM<br>GRAIN, LITTLE SILT, TRACE CLAY, MODIUM<br>DENSIE TO LOUSE, WET                                                                      | 0:077<br>37.0 FT -                     |
| -<br>18-<br>-<br>19-<br>-<br>-                          | A-N                                             |                                  |                                  |                                      |                                                                    | -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-                                                                                                |                                        |
| 20 <u>20.0</u><br>21 <u>-</u><br>22 <u>22.0</u>         | 5-4                                             | 2.0                              | <br> <br> <br>2                  |                                      | 4                                                                  | SAUD, FINE GER. NJ SOME SILT<br>GREEN GREN, SOFT<br>SAUDI FINE RNO MEDIUM GRAIN,<br>LITTLE SILT, TALE LAN, MEDIUM -                                                    |                                        |
| 23 - 24 -                                               | AN                                              |                                  |                                  |                                      |                                                                    | DENSE, WET, GRE, GREEN                                                                                                                                                 |                                        |
| 25 <u>25</u><br>26 -<br>27 <u>27</u>                    | 5-5                                             | - 2.0                            | 7811                             |                                      | <1                                                                 | SAND, FINE AND MEDIUM GARINS,<br>SOME SILT, LITTLE CLAY, MEDIUM<br>DENSE; WET, GREY, SITELL TURREMEN<br>DECOMPOSED LIMESTONE FRAGMENTS                                 |                                        |
| 28<br>29<br>-                                           | A-14                                            |                                  |                                  |                                      |                                                                    | -                                                                                                                                                                      |                                        |
| 30-20.<br>DRILLIN                                       | _                                               |                                  |                                  |                                      |                                                                    | Match to Sheet 3                                                                                                                                                       |                                        |

DRILLING CO .: PAREATT WOLFF DRILLER: CHIP BAKER REP.: BRIANE, DAVIS BORING NO.: TWT-B

SHEET 2 OF 💆



#### Baker Environmental, 🔤

### **TEST BORING AND WELL CONSTRUCTION RECORD**

PROJECT: 56-I - 670 232 - 50REENING-S.O. NO .: 62470-235-000-03600

BORING NO .: TW9-B

. . . . . .....

SAMPLE TYPE DEFINITIONS S = Split Spoon A = Auger SPT = Standard Penetration Test (ASTM D-1586) (Blows/0.5') = Shelby Tube W = Wash T RQD = Rock Quality Designation (%)R = Air Rotary C = Core Lab. Class. = USCS (ASTM D-2487) or AASHTO (ASTM D-3282) = Denison P = Piston D Lab. Moist. = Moisture Content (ASTM D-2216) Dry Weight Basis N = No SampleSamp. Lab. Hnu Sample Rec. SPT Class. Well Installation Leb. Depth Туре (Ft. Visual Description or or Moist Detail Elevation (Ft.) and & Pen. RQD % No. %) Rate (ppm) ٢z Continued from Sheet 2 WELL 16 SAND, FINE AND MEDIUM BAAIN, LITTLE SOCK *3*1. 1.5 5-6 41 12 COANSE GRAIN, LIMESTONE FRAGMENTS From ъ FEW SHELL FRAGMENTS, DENSE, GRED 320 OOFT 32 MET TO YZOFT 33 WELL A-N CASING 34 From D.OFT 35.0 35 SAND, FINE AND MEDIUM GRA. N, SI TO 37.0 PT LITTLE SILT, TRACE CLAY, 16 36 5.7 1512 21 LIMESTONE FRAGMENTS, BHELL 10 FLAGMENTS, PAGE DENSE TO DENSE 37.0 WELL -21.7 SCREEN From 38 37.0FT A-M 39 TO 42.0FT 40.0 40 SAUD, SHELL AND LIMESTONE FRAME ATS 145 -26.2 SAND, MEDIUM GRAIN, SOME SILE, LITTLE CLAY 41\_ 4 5-8 2.0 GREEN, GREY, MEDIUM DENSE, WET 69 Bothann Pluy 42.0 -26.7 42-END OF BONING & 42.0FT 42\_ HAD TO ADD 50 GALLONS OF WATER TO LLEAN OUT AUGERS 44. For soil samples 45 46 47-48 49 DRILLING CO .: PARRATT BRIAN E. DAVIS WOLFF BAKER REP.: DRILLER: CAVP SHEET 3 OF 3 BORING NO .: TW9-B



PROJECT: SG-I - LTO232 - SCREENING

5.0. NO .: 62470 - 232 - 2000 -09600 COORDINATES: EAST: \_\_\_\_\_ ELEVATION: SURFACE: \_\_\_\_\_\_\_

.

BORING NO .: TW 10 - A NORTH:

1

\_ TOP OF STEEL CASING: 16.43

-----

T

1

| RIG: m                                                    | 10 BIL                               | ، ے.                           | 55               | TRUC                                 | <u>c me</u>        | UNT      |                    |                   |                                     |            |                                                                                                                        |                         |
|-----------------------------------------------------------|--------------------------------------|--------------------------------|------------------|--------------------------------------|--------------------|----------|--------------------|-------------------|-------------------------------------|------------|------------------------------------------------------------------------------------------------------------------------|-------------------------|
|                                                           | A                                    | SPLIT<br>SPOO                  | -                | CASING                               |                    | GERS     | CORE<br>BARREL     | DATE              | PROGRESS<br>(FT)                    | WEATHER    | WATER<br>DEPTH<br>(FT)                                                                                                 | TIME                    |
| SIZE (DIAN                                                | 1.)                                  |                                |                  |                                      | 3                  | '4Io     |                    | 4/12/96           | 0-15                                | TO'S SUNN  | 1 b                                                                                                                    | OHRJ                    |
| LENGTH                                                    |                                      |                                |                  |                                      | 4                  | 5 FT     |                    |                   |                                     |            |                                                                                                                        | :                       |
| ТҮРЕ                                                      |                                      |                                |                  |                                      | 1                  | Hs       |                    |                   |                                     |            |                                                                                                                        |                         |
| HAMMER                                                    | <b>w</b> т.                          |                                |                  |                                      |                    |          |                    |                   |                                     |            |                                                                                                                        |                         |
| FALL                                                      |                                      |                                |                  |                                      |                    |          |                    |                   |                                     |            |                                                                                                                        |                         |
| STICK UP                                                  |                                      |                                |                  |                                      |                    |          |                    |                   |                                     |            |                                                                                                                        |                         |
| REMARKS                                                   | :                                    | `                              |                  |                                      |                    |          |                    |                   |                                     |            |                                                                                                                        |                         |
|                                                           | <u>SA</u><br>Split Spoo<br>Shelby Tu |                                | A =              | Auger<br>Wash                        |                    |          | VELL<br>RMATION    | DIAM              | TYF                                 | PE         | TOP<br>DEPTH<br>(FT)                                                                                                   | BOTTOM<br>DEPTH<br>(FT) |
| I R = /                                                   | Air Rotar<br>Denison                 |                                | C =              | Core                                 |                    | Well C   | Casing             | Tu.               | PVC Threaded                        | 1" dia.    | 0                                                                                                                      | 6                       |
| <u> </u>                                                  |                                      | = No Sa                        |                  |                                      |                    | Well S   | creen              | La                | PVC Slotted                         | 0.01" SLOT | 5                                                                                                                      | 15                      |
| Depth<br>(Ft.)                                            | Sample<br>Type<br>and<br>No.         | Samp.<br>Rec.<br>Ft.<br>&<br>% | SPT<br>or<br>RQD | Lab.<br>Class.<br>or<br>Pen.<br>Rate | Lab.<br>Moist<br>% |          | Visual (           | Descriptio        | on                                  | Insta      | ell<br>llation<br>tail                                                                                                 | Elevation               |
| -<br>1<br>2<br>3<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10 | А-н                                  |                                |                  |                                      |                    | SE<br>Fo | E BORIN<br>OR SOIL | G LOG T<br>INFORM | WIO-A<br>へー てっし<br>(atch to Sheet ) |            | WELL<br>SOCK<br>FROM<br>a.O TO IS.O FT<br>WELL<br>CASING<br>OIO TO SIOF<br>WELL<br>SCREEN<br>FROM<br>5,0 TO<br>ISIO FT |                         |
| DRILLING                                                  | G CO.:                               | PARA                           | ATT              | WOL                                  | ff-                | <b>.</b> | ·                  |                   | R REP .: BRIA                       |            | 15                                                                                                                     |                         |
| DRILLER                                                   | : <u> </u>                           | HIP                            |                  |                                      |                    |          |                    | BORIN             | NG NO.: <u>TW I</u>                 | 0-A        | SHEE                                                                                                                   | Т <u>1</u> ОГ <u>2</u>  |

Baker

-

Baker Environmental, for

.

PROJECT: 56I - 60 232 - 50REENING S.O. NO .: 62470-232-000-03600 BORING NO .: TW 10-A

| T = 9<br>R = 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | iplit Spoc<br>ihelby Tu<br>Air Rotan<br>Denison | be<br>/                          | A =<br>W =<br>C =<br>P = | Auger<br>Wash<br>Core<br>Piston      |                    | DEFINITIONS<br>SPT = Standard Penetration Test (ASTM D-1586) (Blows/0.5')<br>RQD = Rock Quality Designation (%)<br>Lab. Class. = USCS (ASTM D-2487) or AASHTO (ASTM D-3282)<br>Lab. Moist. = Moisture Content (ASTM D-2216) Dry Weight Basis |      |    |                                                                                    |                          |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|----------------------------------|--------------------------|--------------------------------------|--------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|----|------------------------------------------------------------------------------------|--------------------------|--|
| Depth<br>(Ft.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Sample<br>Type<br>and<br>No.                    | Samp.<br>Rec.<br>(Ft.<br>&<br>%) | SPT<br>or<br>RQD         | Lab.<br>Class.<br>or<br>Pen.<br>Rate | Lab.<br>Moist<br>% | Visual Description                                                                                                                                                                                                                           | w    |    | stallation<br>etail                                                                | Elevation                |  |
| -<br>11<br>12<br>13<br>14<br>15-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | A-N                                             |                                  |                          |                                      |                    | Continued from Sheet 1<br>SEE BORING LOG TWIO-B<br>For SOIL INFORMATION                                                                                                                                                                      |      |    | WELL<br>SOCK<br>FROM<br>010 FT<br>TO ISTOFT<br>WELL<br>SURGEN<br>FROM<br>SORTOFD F |                          |  |
| $15 - \frac{15}{16}$ $16 - \frac{1}{17} - \frac{1}{18} - \frac{18} - \frac{1}{18} - \frac{1}{18} - \frac{1}{18} - \frac{1}{18} - \frac$ |                                                 |                                  |                          |                                      |                    | END OF BORING @ 15.0 FT<br>HOLE WASHED<br>TO 16.0 FT                                                                                                                                                                                         |      |    | Borto -<br>PUUG                                                                    |                          |  |
| DRILLIN<br>DRILLER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                 | PAR                              | PATT                     | Wo                                   | -F?                | BAKER REP.: BRIA<br>BORING NO.: TWI                                                                                                                                                                                                          | N E. | 0A | ۵۱۲<br>Hz                                                                          | EET <u>2</u> OF <u>2</u> |  |



-----

----



### **TEST BORING AND WELL CONSTRUCTION RECORD**

PROJECT: SGI- CTO 232 - SCREENING

Baker Environmental, me

......

S.O. NO .: 62470-232-0000-03600 BORING NO .: TWIO-B COORDINATES: EAST: \_\_\_\_ 16.7 ELEVATION: SURFACE:

and and a co

NORTH: TOP OF STEEL CASING: 16.43

|                         |                | <u>5 TRO</u>                            | <u>ck</u> m                   | our         |                     |                                            |                  |                                                                                                                  | WATER                           |                         |
|-------------------------|----------------|-----------------------------------------|-------------------------------|-------------|---------------------|--------------------------------------------|------------------|------------------------------------------------------------------------------------------------------------------|---------------------------------|-------------------------|
|                         | SPLIT<br>SPOON | CASING                                  | i AU                          | GERS        | CORE<br>BARREL      | DATE                                       | PROGRESS<br>(FT) | WEATHER                                                                                                          | DEPTH<br>(FT)                   | τιμε                    |
| SIZE (DIAM.)            | 1.43 IN        | J                                       | 3                             | 410         |                     | 4-12-96                                    | 0-47             | 70'3 SUNA                                                                                                        | 7.5                             | Ohrs                    |
| ENGTH                   | ZFT            |                                         | 5                             | FT          |                     |                                            |                  |                                                                                                                  |                                 |                         |
| ГҮРЕ                    | 55             |                                         |                               | 16          |                     |                                            |                  |                                                                                                                  |                                 |                         |
| HAMMER WI               | - 140 16       | 6.                                      |                               |             |                     |                                            |                  |                                                                                                                  |                                 |                         |
| FALL                    | 30 1.          |                                         |                               |             |                     |                                            |                  |                                                                                                                  |                                 |                         |
| STICK UP                |                |                                         |                               |             |                     |                                            |                  |                                                                                                                  |                                 |                         |
| REMARKS:                |                |                                         |                               |             |                     |                                            |                  |                                                                                                                  |                                 |                         |
| S = Split<br>T = Shel   |                | PE<br>A = Auger<br>W = Wash             |                               |             | VELL<br>DRMATION    | DIAM                                       | TYF              | ΡE                                                                                                               | TOP<br>DEPTH<br>(FT)            | BOTTOM<br>DEPTH<br>(FT) |
| R = Air F               | Rotary (       | C = Core<br>P = Piston                  |                               | Well        | Casing              | 1"                                         | PVC Threaded     | 1"di-                                                                                                            | O                               | 42                      |
| D = Den                 | N = No Sam     |                                         |                               | Well S      | Screen              | ı"                                         | PVC Slotted      | 0,015LOT                                                                                                         | પટ                              | 47                      |
| Depth T<br>(Ft.) a      | and a          | SPT Class.<br>or or<br>RQD Pen.<br>Rate | Hnu<br>Labr<br>Moist<br>(PPm) |             | Visual              | Descriptic                                 | วท               | W<br>Instal<br>De                                                                                                | Elevatio                        |                         |
| 1 -<br>2 - <b>2.0</b>   | 5-1 2.0        | 33<br>4<br>4                            | <١                            | Fron        | 0.0 B               | w 10-00 c<br>ons FT @<br>Kann, Gre         |                  |                                                                                                                  | WELL<br>Socic<br>Traon          |                         |
| -                       | 5-2 7.0        | 45<br>65                                | ٤1                            |             |                     |                                            | 6 \ <b>T</b>     |                                                                                                                  | 00<br>TO<br>47.0 FT             |                         |
| 5 -<br>6 - <u>6 . 0</u> | s-3 2.0        | 5<br>5<br>6                             | 41                            | 1014<br>50m | 175,6RG7<br>phi 35- | ка. и, ит<br>18 лачин<br>1010-03<br>6.0°@1 | COLLECTES        |                                                                                                                  | WELL<br>CASING<br>From<br>0.070 |                         |
| - ·<br>7<br>8<br>9      | A-N            |                                         |                               |             |                     |                                            |                  |                                                                                                                  | 42.0 FT                         |                         |
| 10 -10.0                | <u></u>        |                                         |                               | _           |                     | N                                          | latch to Sheet   | and the second |                                 | -                       |
| DRILLING C              | O. PAR         | CATT                                    | wac                           | FF          |                     | BAKE                                       | R REP .: BR      | IAN & DA                                                                                                         | 433                             |                         |



-

Baker Environmental, Inc

PROJECT: SGI - LTO 232 - SCREENING

.

S.O. NO .: 62470 - 232-0000-03600 BORING NO .: TW 10-B

| T = 9<br>R = /                                           | plit Spoo<br>helby Tul<br>Air Rotary<br>Denison | De                               | A = /<br>W = /<br>C = /<br>P = / | Wash<br>Core                         |                                                    | DEFINITIONS<br>SPT = Standard Penetration Test (ASTM D-1586) (Blows/0.5')<br>RQD = Rock Quality Designation (%)<br>Lab. Class. = USCS (ASTM D-2487) or AASHTO (ASTM D-3282)<br>Lab. Moist. = Moisture Content (ASTM D-2216) Dry Weight Basis |                                            |         |  |  |  |
|----------------------------------------------------------|-------------------------------------------------|----------------------------------|----------------------------------|--------------------------------------|----------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|---------|--|--|--|
| Depth<br>(Ft.)                                           | Sample<br>Type<br>and<br>No.                    | Samp.<br>Rec.<br>(Ft.<br>&<br>%) | SPT<br>or<br>RQD                 | Lab.<br>Class.<br>or<br>Pen.<br>Rate | 1230.<br>1230.<br>1240.<br>1240.<br>1240.<br>1240. | Visual Description                                                                                                                                                                                                                           | Well Installation<br>Detail                | evation |  |  |  |
| -<br>11-<br>12-12.0                                      | 5-4                                             | ۍ.۲                              | 44 50                            |                                      | 41                                                 | Continued from Sheet 1 -<br>SAJO, FINE GRAN; BROWNT 6257,<br>WET, MEDIUM DENSE                                                                                                                                                               |                                            |         |  |  |  |
| -<br>13-<br>14-<br>15- <i>15.•</i>                       | A-N                                             |                                  | 67                               |                                      |                                                    | SAND, FINE and MERLUM BRAN -<br>BROWN, BREYMEDIUM DENSE                                                                                                                                                                                      | WELL<br>GASING<br>From<br>0.070<br>42.0 FT |         |  |  |  |
| 16<br>17 <b></b><br>18                                   |                                                 |                                  | 106                              |                                      | 4                                                  |                                                                                                                                                                                                                                              |                                            |         |  |  |  |
| 19—<br>20 <mark>- 2ь.</mark><br>21 -<br>22 - <b>г</b> г. | 5-6                                             | 2.0                              | 58<br>79                         |                                      | 41                                                 | SAND, MEORUM AND FLUE GAMN,<br>BROWN, GREY, MEORUM DENSE, WET                                                                                                                                                                                |                                            |         |  |  |  |
| 22 -<br>23 -<br>24 -<br>25 - 25                          | An                                              | ,                                |                                  |                                      |                                                    |                                                                                                                                                                                                                                              |                                            |         |  |  |  |
| 26 -<br>27 - <del>27</del>                               | 5.7                                             | 2,                               | 0 50                             |                                      | <                                                  | SAND, MEDIUM AND FINE GRAIN.                                                                                                                                                                                                                 |                                            | - 9.8   |  |  |  |
| 28<br>29<br>30                                           | A~1                                             | ,<br>L                           |                                  |                                      |                                                    | GREY, LINCE SIGT, SHELL FRAGMENT<br>LINESTONE FRAGMENTS, PEACE LANY<br>LOUSE TO MEDIUM DENSE, WET<br>Match to Sheet                                                                                                                          |                                            | -       |  |  |  |
| DRILLI                                                   | NG CO.:<br>R:                                   |                                  | L<br>RA                          |                                      | JOLF                                               |                                                                                                                                                                                                                                              |                                            | 2 OF 3  |  |  |  |



Baker Environmental, 🔤

1.00

. ....

### TEST BORING AND WELL CONSTRUCTION RECORD

PROJECT: 56 I - 678 232 . SCREENING " S.O. NO .: 62470-232-0000-03600 BORING NO .: 1W10-8

• .

-----

-

| T =<br>R =                           | Split Spoo<br>Shelby Tu<br>Air Rotary<br>Denison | be<br>/                           | A = .<br>W = .<br>C = .<br>P = . | Wash<br>Core                         |                               | DEFINITIONS<br>SPT = Standard Penetration Test (ASTM D-1586) (Blows/0.5')<br>RQD = Rock Quality Designation (%)<br>Lab. Class. = USCS (ASTM D-2487) or AASHTO (ASTM D-3282)<br>Lab. Moist. = Moisture Content (ASTM D-2216) Dry Weight Basis |                |                                       |                        |  |  |
|--------------------------------------|--------------------------------------------------|-----------------------------------|----------------------------------|--------------------------------------|-------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|---------------------------------------|------------------------|--|--|
| Depth<br>(Ft.)                       | Sample<br>Type<br>and<br>No.                     | Samp.<br>Rec.<br>(Ft.<br>&<br>?6) | or<br>RQD                        | Lab.<br>Class.<br>or<br>Pen.<br>Rate | Hrus<br>tab.<br>Moist<br>tab. | Visual Description                                                                                                                                                                                                                           | Well           | Installation<br>Detail                | Elevation              |  |  |
| 31<br>32- <b>32.0</b>                | 5-8                                              | 2.0                               | 22<br>73<br>75<br>75             |                                      | 4                             | Continued from Sheet 2<br>SAND AND GRAVE, BRAY, GREW,<br>LIMESTONE FURGEMENTS, SHELD<br>FRAGMENTS, VENY DENSE, WET                                                                                                                           |                | WELL<br>Sock<br>From<br>Gioto<br>47.0 |                        |  |  |
| 33_<br>34_<br>35_ <b>35:0</b>        | A-N                                              |                                   |                                  | <u></u>                              |                               |                                                                                                                                                                                                                                              |                | 42.0FT                                |                        |  |  |
| 36_<br>37_ <b>37.0</b><br>337_       | 5-9                                              | 1.5                               | 30<br>22<br>18<br>70             |                                      | 41                            | SAND, MEDIUM AND FINE BRAIN,<br>LITTLE LOARIE GRAIN, LITTLE SILT, -<br>THALE CLAY, LIMESTONE FRADMENTS<br>GREY, GREEN, SHELL FRADMENTS-<br>VERY DENSE TO DENSE, WET                                                                          |                | WEIL<br>SCREEN<br>From                |                        |  |  |
| 39_<br>∡r <u>,</u> ¥o.o              | A-N                                              |                                   |                                  |                                      |                               |                                                                                                                                                                                                                                              |                | 42.0FT<br>TO 47.0FT                   |                        |  |  |
| 41 _<br>42 _ <del>42</del> .         | 5-10                                             | 2.0                               | 11<br>16<br>15                   | 7                                    | 41                            | SAND AND GRANEL LITTLE SILT, TEALS<br>CLAY, LIMESTONS FLAGMENTS, SHELL<br>FLAGMENTS, .                                                                                                                                                       |                |                                       | - 25.3                 |  |  |
| 43 _<br>44 _                         | A-۲                                              |                                   |                                  |                                      |                               | -                                                                                                                                                                                                                                            |                |                                       |                        |  |  |
| 45 <u>450</u><br>46 <u>47</u>        | 5-11                                             | 2.0                               | 57<br>78                         |                                      | ۲(                            | 45:0<br>SAND, FINE GRANH SOME SILT, TRACE<br>CATY GREEN, WET, MEDIUM DENSE                                                                                                                                                                   |                | Betton Paulo                          | - 28.3                 |  |  |
| 47 <u>47</u><br>48 -<br>49 -<br>50 - | ·<br>·                                           |                                   | -                                |                                      |                               | END OF BOLING @ 47.0 FT<br>HAD TO ADD 50 GALLONS OF<br>WATCH TO CLEAN OUT AUGERS<br>FOR SOIL SAMPLES                                                                                                                                         |                |                                       | - 30.3<br>-<br>-<br>-  |  |  |
| DRILLIN                              |                                                  | PAR                               |                                  | T WO                                 | NFF                           | BAKER REP .: BRI<br>BORING NO .: TW                                                                                                                                                                                                          | AN E .<br>10-B | OAV + S<br>SHEE                       | T <u>3</u> OF <u>3</u> |  |  |



#### PROJECT: SGI - CTO 232 - SCREENING

Baker Environmental, 🔤

S.O. NO.: 62470-232-0000-03680 COORDINATES: EAST: \_\_\_\_\_\_ ELEVATION: SURFACE: \_\_\_\_\_\_

| RIG: MOB                                                                 | 125 55            | TRUCK M            | 50 A1              | r          |                   |                   |                               |            |                                                                                                                                              |                         |
|--------------------------------------------------------------------------|-------------------|--------------------|--------------------|------------|-------------------|-------------------|-------------------------------|------------|----------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|
|                                                                          | SPLIT<br>SPOON    | CASING             |                    | GERS       | CORE<br>BARREL    | DATE              | PROGRESS<br>(FT)              | WEATHER    | WATER<br>DEPTH<br>(FT)                                                                                                                       | TIME                    |
| SIZE (DIAM.)                                                             | <u>}</u>          |                    | 3%                 | ID         |                   | 4/12/96           | 0-15                          | 70'5 50003 | 6.5                                                                                                                                          | Ohrs.                   |
| LENGTH                                                                   |                   |                    | 51                 |            |                   |                   |                               |            |                                                                                                                                              |                         |
| ТҮРЕ                                                                     |                   |                    | H                  | 5          |                   |                   |                               |            |                                                                                                                                              |                         |
| HAMMER WT.                                                               |                   |                    |                    |            |                   |                   |                               |            |                                                                                                                                              |                         |
| FALL                                                                     |                   |                    |                    |            |                   |                   |                               |            |                                                                                                                                              |                         |
| STICK UP                                                                 |                   |                    |                    |            |                   |                   |                               |            |                                                                                                                                              | 1                       |
| REMARKS:                                                                 |                   |                    |                    |            |                   | <del>.</del>      | <u></u>                       |            |                                                                                                                                              |                         |
| S = Split Sp                                                             |                   | = Auger            |                    |            | VELL<br>DRMATION  | DIAM              | TY                            | PE         | TOP<br>DEPTH<br>(FT)                                                                                                                         | BOTTOM<br>DEPTH<br>(FT) |
| T = Shelby<br>R = Air Rot<br>D = Deniso                                  | tary C            | = Core<br>= Piston |                    | Well (     | Casing            | 1""               | PVC Threaded                  | I"DA       | 0                                                                                                                                            | 5                       |
|                                                                          | N == No Samp      |                    |                    | Wells      | Screen            | 1"                | PVC Slotted                   | 0.01"5607  | 5                                                                                                                                            | N                       |
| Sam<br>Depth Typ<br>(Ft.) and<br>No                                      | e Ft. Si<br>t & O |                    | Lab.<br>Moist<br>% |            | Visual            | Descriptio        | on                            | Insta      | /ell<br>llation<br>etail                                                                                                                     | Elevation               |
| -<br>1 -<br>2 -<br>3 -<br>4 -<br>5 -<br>6 -<br>7 -<br>8 -<br>9 -<br>10 - | ζ.                |                    |                    | SEE<br>For | BORING<br>Soil II | LOG TV<br>NFORMAT | II-B<br>non<br>Match to Sheet |            | WELL<br>SOLL<br>FROM<br>0.0 FT<br>TO IS.0<br>FT<br>WELL<br>CASING<br>FROM<br>0.0 TO<br>SID FT<br>WELL<br>SCREEN<br>FROM<br>S.0 TO<br>IS.0 FT |                         |
| DRILLING CO                                                              | .: PARRI          | ATT WC             | DLFF               | :          | ·                 |                   | R REP .: BRIP                 |            |                                                                                                                                              |                         |
| en e                                 | CHIP              |                    |                    |            |                   | ۷: ۵ ل ا          | TW TW                         | IFA        | तस्य                                                                                                                                         | 1 OF2                   |



Baker Environmental, ne

## **TEST BORING AND WELL CONSTRUCTION RECORD**

.

PROJECT: 5-I- CTO 232 S.O. NO.: 62470-232-0000-03600 BORING NO.: TWII-A

-

| T = S<br>R = A                                                                                                                                                                                                                                                                              | plit Spoc<br>helby Tu<br>Air Rotan<br>Denison | be<br>/                          | A =<br>W =<br>C =<br>P = | Auger<br>Wash<br>Core<br>Piston      |                    | DEFINITIONS<br>SPT = Standard Penetration Test (ASTM D-1586) (Blows/0.5')<br>RQD = Rock Quality Designation (%)<br>Lab. Class. = USCS (ASTM D-2487) or AASHTO (ASTM D-3282)<br>Lab. Moist. = Moisture Content (ASTM D-2216) Dry Weight Basis |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|----------------------------------|--------------------------|--------------------------------------|--------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Depth<br>(Ft.)                                                                                                                                                                                                                                                                              | Sample<br>Type<br>and<br>No.                  | Samp.<br>Rec.<br>(Ft.<br>&<br>%) | SPT<br>or<br>RQD         | Lab.<br>Class.<br>or<br>Pen.<br>Rate | Lab.<br>Moist<br>% | Well Installation<br>Visual Description Detail Elevation                                                                                                                                                                                     |
| $ \begin{array}{c}     - \\     11 - \\     12 - \\     13 - \\     14 - \\     15 - \\     16 - \\     17 - \\     18 - \\     19 - \\     20 - \\     21 - \\     22 - \\     23 - \\     24 - \\     25 - \\     26 - \\     27 - \\     28 - \\     29 - \\     30 - \\   \end{array} $ | A-N                                           |                                  |                          |                                      |                    | Continued from Sheet 1<br>SE & Boreinsic Lois TWILLB<br>FOR SOIL INFORMATION<br>END OF BOREINSIC @ 15 FT<br>Match to Sheet 3.                                                                                                                |
| DRILLIN                                                                                                                                                                                                                                                                                     |                                               | PAR                              |                          | r Wa                                 | DLFF               | BAKER REP .: BLIAN E. DAV 13<br>BORING NO .: TW-11A SHEET 2 OF 2                                                                                                                                                                             |



Baker Environmental, Inc

.....

. •

-- Beaching -- P

## **TEST BORING AND WELL CONSTRUCTION RECORD**

PROJECT: SGI - CTO 232 - SUREEN NO-

S.O. NO.: <u>62470 - 232 - 0000 - 0 3600</u> COORDINATES: EAST: \_\_\_\_\_\_ ELEVATION: SURFACE: \_\_\_\_//.5

-----

BORING NO.: <u>TW II-B</u> NORTH: \_\_\_\_\_\_ TOP OF STEEL CASING: \_\_\_\_\_

1 201 CL ALT 11

| RIG: Most                               | e 55           | Thuck 1                                    | <u>nou-</u>  | 5                  |                                    |                       |                               |                                                                                                                  |                         |                         |  |
|-----------------------------------------|----------------|--------------------------------------------|--------------|--------------------|------------------------------------|-----------------------|-------------------------------|------------------------------------------------------------------------------------------------------------------|-------------------------|-------------------------|--|
|                                         | SPLIT<br>SPOON | CASING                                     |              | GERS               | CORE<br>BARREL                     | DATE                  | PROGRESS<br>(FT)              | WEATHER                                                                                                          | WATER<br>DEPTH<br>(FT)  | TIME                    |  |
| SIZE (DIAM.)                            | 1.43 IN        |                                            | 31           | 470                |                                    | 4/12/96               | 0-42                          | 70's 5000                                                                                                        | 1 6.5                   | Ohrs.                   |  |
| LENGTH                                  | ZFT            |                                            | 5            | FT                 |                                    |                       |                               |                                                                                                                  |                         |                         |  |
| ТҮРЕ                                    | 55             |                                            | Н            | 5                  |                                    |                       |                               |                                                                                                                  |                         |                         |  |
| HAMMER WT.                              | 14016,         |                                            |              |                    |                                    |                       |                               |                                                                                                                  |                         |                         |  |
| FALL                                    | 30 12          |                                            |              |                    |                                    |                       |                               |                                                                                                                  |                         |                         |  |
| STICK UP                                |                |                                            |              |                    |                                    |                       |                               |                                                                                                                  |                         | <u> </u>                |  |
| REMARKS:                                |                |                                            |              |                    |                                    | ·····                 | ••• <u>-</u>                  |                                                                                                                  |                         |                         |  |
| S = Split Sp                            |                | = Auger<br>= Wash                          |              |                    | VELL                               | DIAM                  | TYP                           | νE                                                                                                               | TOP<br>DEPTH<br>(FT)    | BOTTOM<br>DEPTH<br>(FT) |  |
| T = Shelby<br>R = Air Rot<br>D = Deniso | tary C         | = Core<br>= Piston                         | Ī            | WellC              | Casing                             | 111                   | PVC Threaded                  | VC Threaded O                                                                                                    |                         |                         |  |
| 4                                       | N = No Samp    |                                            |              | WellS              | Screen                             | 1"                    | PVC Slotted                   |                                                                                                                  | 37                      | 42                      |  |
| Sam<br>Depth Typ<br>(Ft.) and<br>No     | e Ft. SP       | T Class.<br>or<br>QD Pen.<br>Rate <b>(</b> | Lab<br>Moist |                    | Visual (                           | Descriptio            | on                            | Insta                                                                                                            | fell<br>llation<br>tail | Elevation               |  |
| 1 - 5.0<br>2 - 2.0                      | .5  z          | 2<br>10                                    | ٤١           | Fine<br>Dan<br>San | 62212, Bi<br>pm massi<br>que 35-72 | I MEOINN              | N GRE-y,<br>DENSE             |                                                                                                                  |                         | -<br>                   |  |
| 3 - 5-1                                 | <u> </u>  .5 4 | 4                                          | 41           | Frue.              | 0 et o 10 m                        | 95 PT, <sub>© k</sub> | 5:20. Y                       |                                                                                                                  |                         |                         |  |
| 5 _ 5-                                  |                | וצו                                        | 4۱           | •                  |                                    | 1011-03               | collect-c)<br>@ 15:40         |                                                                                                                  |                         | -                       |  |
| 7                                       |                |                                            |              |                    |                                    |                       |                               |                                                                                                                  |                         |                         |  |
| 9                                       |                |                                            |              |                    |                                    |                       |                               |                                                                                                                  |                         |                         |  |
|                                         |                |                                            |              | 1                  | <u></u>                            |                       | fatch to Sheet                | and the second |                         |                         |  |
| DRILLING CO                             | - PARRI        | ATT Was                                    | ι÷ <u></u>   |                    |                                    | BAKE                  | R REP.: <u>200</u><br>NG NO.: | $N \leftarrow 1/2$                                                                                               | SHE                     | ET <u>1</u> OF <u>2</u> |  |



Baker Environmental, Inc.

....

-----

# TEST BORING AND WELL CONSTRUCTION RECORD

~

----

PROJECT: 561-670 232 - SCREENING S.O. NO .: 62410-232-0000-03600 BORING NO .: TWII-B

.

faile said a

.

| T = S<br>R = A                                                                                 | plit Spoo<br>helby Tul<br>Air Rotary<br>Denison | be<br>/         | A = A $W = V$ $C = C$ $P = F$ | Wash<br>Core                         |                                        | DEFINITIONS<br>SPT = Standard Penetration Test (ASTM D-1586) (Blows/0.5')<br>RQD = Rock Quality Designation (%)<br>Lab. Class. = USCS (ASTM D-2487) or AASHTO (ASTM D-3282)<br>Lab. Moist. = Moisture Content (ASTM D-2216) Dry Weight Basis |
|------------------------------------------------------------------------------------------------|-------------------------------------------------|-----------------|-------------------------------|--------------------------------------|----------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Depth<br>(Ft.)                                                                                 | Sample<br>Type<br>and<br>No.                    | (Ft.<br>&<br>%) | SPT<br>or<br>RQD              | Lab.<br>Class.<br>or<br>Pen.<br>Rate | Hnu<br>Lab:<br>Moist<br>Moist<br>(ppm) | Visual Description Well Installation<br>Detail Elevation                                                                                                                                                                                     |
| 11<br>12 <b></b>                                                                               | 5-4                                             |                 | 23<br>35-                     |                                      | 41                                     | Continued from Sheet 1<br>SAND, FINE AND MEDIUM GRAIN,<br>LITTLE SILT. TRACE CLAY. BROWN<br>GREY, WET, MEDIUM DENGE<br>TO                                                                                                                    |
| 13                                                                                             | A-N                                             |                 |                               |                                      |                                        |                                                                                                                                                                                                                                              |
| 15 <u>0,8</u><br>16 <u>1</u><br>17 <b>17-0</b>                                                 | 5.5                                             | 7.0             | 10<br>11<br>12<br>13          |                                      | ۷۱                                     | SANO, FINE AND MEDIUM GRAIN)<br>LITTLE SILT, BROWN, BREY<br>WET, MEDIUM DENSE                                                                                                                                                                |
| 18_<br>-<br>19_<br>-                                                                           | A-N                                             |                 |                               |                                      | · .                                    |                                                                                                                                                                                                                                              |
| 20 <u>-</u><br>21 -<br>22 <u>-</u><br>22 <u>-</u><br>22 <u>-</u><br>22 <u>-</u><br>22 <u>-</u> | 5-6                                             | I.O             | 1<br>1<br>1<br>1              |                                      | 21                                     | SAND, LITTLE SILT. GREEN, SOFT WET 21.0<br>SAND, FINE SEARNY, BROWN, SOFT WET                                                                                                                                                                |
| 23 -<br>24 -                                                                                   | A-N                                             |                 |                               |                                      |                                        |                                                                                                                                                                                                                                              |
| 25 <u>25 c</u><br>26 <u>27 c</u>                                                               | 5-7                                             | 2.0             | 20<br>40<br>40<br>15          |                                      |                                        | SAND, COARSE AND MEDIUM GRAIN, -<br>LITTLE SILT, TRACECLAY, GREN<br>SHELL FRAGMENTS, LIMESTONE<br>FRAGMENTS, WET                                                                                                                             |
| 28 -<br>29 -                                                                                   | A-N                                             |                 |                               |                                      |                                        |                                                                                                                                                                                                                                              |
| 30-30                                                                                          |                                                 | <u> </u>        | <u> </u>                      |                                      | <u></u>                                | Match to Sheet 3                                                                                                                                                                                                                             |
| DRILLIN<br>DRILLEF                                                                             | G CO.:<br>}: _ <u>_</u> +                       | PARA            | <u>'ATI</u>                   | Woi                                  |                                        | BAKER REP.: BRIAN E. DAVIS<br>BORING NO.: TWII-B SHEET 2 OF 3                                                                                                                                                                                |

| ker Eave.               |                                                            |                                  | A 64 1 1                               |                                 |                                                                                                                                                                          | T - CTO232 - SCREENING<br>1970-232-000-0360 BORING                                                                                                                  | <u>NO.: T</u>   | JH-B                                         |                 |
|-------------------------|------------------------------------------------------------|----------------------------------|----------------------------------------|---------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|----------------------------------------------|-----------------|
| S = S<br>T = S<br>R = A | <u>SA</u><br>plit Spoo<br>helby Tu<br>Air Rotary<br>enison | <u>MPLE T</u><br>in<br>be        | <u>YPE</u><br>A =<br>W =<br>C =<br>P = | Auger<br>Wash<br>Core<br>Piston |                                                                                                                                                                          | DEFINITIONS<br>SPT = Standard Penetration Test (<br>RQD = Rock Quality Designation (<br>Lab. Class. = USCS (ASTM D-2487)<br>Lab. Moist. = Moisture Content (A       | %)<br>or AASHT( | D (ASTM D-3282)                              |                 |
| epth<br>Ft.)            | Sample<br>Type<br>and<br>No.                               | Samp.<br>Rec.<br>(Ft.<br>&<br>%) | SPT<br>or<br>RQD                       |                                 | Hnu<br>tab.<br>Moist<br>-#<br>(Ppm)                                                                                                                                      | Visual Description                                                                                                                                                  | Well            | l Installation<br>Detail                     | Elevation       |
| 32.0                    | 5- <b>B</b>                                                | 2.0                              | 1012<br>2024                           |                                 | 41                                                                                                                                                                       | Continued from Sheet 2<br>SANO, MEDIUM AND FINE GRAIN, LITTLE<br>CORNE GRAVEL, LITTLE SILT, TRAVE<br>CLAY, SHELL FRAGMENT, LIMESDARE<br>FRAGMENTS, BREY, DENSE, WET | •               | WELL<br>SOCK<br>FROM<br>UID FT<br>TD 4210FT. |                 |
| 35,0                    | A-N                                                        |                                  | 10                                     |                                 |                                                                                                                                                                          | SAND, MEDIUM AND FINE GRAIN, LITTLE                                                                                                                                 |                 |                                              |                 |
| ]<br><u>37.</u> 0       | 5-9                                                        | 1.0                              | 24<br>25<br>19                         |                                 | </td <td>COARSE GRANN, LITTLE SILT, TRACE<br/>CLAY, SHELL FRAGMENTS, LIMESTONE<br/>FRAGMENTS, BREY, DENSE, WET</td> <td></td> <td>WELL<br/>SCRECN -</td> <td> / 4.0</td> | COARSE GRANN, LITTLE SILT, TRACE<br>CLAY, SHELL FRAGMENTS, LIMESTONE<br>FRAGMENTS, BREY, DENSE, WET                                                                 |                 | WELL<br>SCRECN -                             | / 4.0           |
| 40.0                    | A-N                                                        |                                  | 10                                     |                                 |                                                                                                                                                                          | JAND, MEDIUM AND FING GRAN,<br>SHELL FRAGMENTS                                                                                                                      |                 | 37.0 to<br>42.0 Ft -                         |                 |
| <u>42.0</u>             | 5-10                                                       | 2.0                              | "رك                                    |                                 | 41                                                                                                                                                                       | LIMESTONG 41.5<br>SANDIFINE GRAIN, Some SILT, LITTLE CLAY GREEN,<br>MEDIUM DEUSE<br>END OF BONING AT 4210 FT                                                        |                 | Bottom Flue                                  | - 30.0<br>-30.5 |
|                         |                                                            |                                  |                                        |                                 |                                                                                                                                                                          | -                                                                                                                                                                   |                 |                                              |                 |
|                         |                                                            |                                  |                                        |                                 |                                                                                                                                                                          | -                                                                                                                                                                   |                 |                                              |                 |
|                         |                                                            |                                  |                                        |                                 |                                                                                                                                                                          |                                                                                                                                                                     |                 |                                              |                 |

Sec. 

| Ba    | ker                |
|-------|--------------------|
| Baker | Environmental, Ind |

| PROJECT:                   | Supplemental Groundwate | <u>r Investigation at 5</u>      | Site 35 - MCBCLEJ |  |  |
|----------------------------|-------------------------|----------------------------------|-------------------|--|--|
| CTO NO.:                   | 62470-232               | BORING NO.:                      | 35-TWIZB          |  |  |
| COORDINATES:<br>ELEVATION: | EAST:                   | - NORTH:<br>- TOP OF PVC CASING: | 15.12             |  |  |

| RIG: Me              | sbile                      | B-53             | \$               |                                     |             |                | DAT                  | E                     |               | GRESS            | WEA         | THER                         | WATE       |                        |
|----------------------|----------------------------|------------------|------------------|-------------------------------------|-------------|----------------|----------------------|-----------------------|---------------|------------------|-------------|------------------------------|------------|------------------------|
|                      |                            | SPLIT<br>SPOON   | CASIN            | G AUG                               | GERS        | CORE<br>BARREL |                      |                       |               | FT.)             |             |                              | (FT.)      |                        |
| SIZE (DIAM           | 1.)                        | 13/8" ID         | -                | 3'4                                 | "ID         | -              | 4/26                 | 0                     | .0 -          | - 42.0           | M.Sun       | 04,605                       | 1          |                        |
| LENGTH               |                            | 2'               | -                | Ľ                                   | -/          | •              |                      | _                     |               |                  |             | 1                            |            |                        |
| TYPE                 | -                          | Stainkess        | -                | H                                   | SA          | -              |                      |                       |               |                  |             |                              |            |                        |
| HAMMER V             | WT.                        | 40 165           | ~                | -                                   | -           |                |                      |                       |               |                  |             |                              |            |                        |
| FALL                 |                            | 301              | -                |                                     | -           |                |                      |                       |               |                  |             |                              |            |                        |
| STICK UP             |                            | -                | -                |                                     | -           | ~              |                      |                       |               |                  |             |                              |            |                        |
| <b>REMARKS</b> :     | Well                       | shroud           | ed Wit           | h vje                               | 11 300      | -k mater       | riali                | bori                  | 1             | allone           | 1 to        | collaps                      | re aboun   | d well                 |
|                      |                            | SAMPLE           |                  |                                     |             | We             | 11                   | Dia                   |               |                  | Гуре        |                              | Тор        | Bottom                 |
|                      | plit Sp                    |                  |                  | A = Au                              |             | Inform         | ation                |                       |               |                  |             |                              | Depth      | Depth                  |
|                      | helby                      |                  |                  | W = W<br>C = Co                     |             |                | _                    |                       |               |                  |             |                              | (ft.)      | (ft.)                  |
|                      | Air Rot<br>Denisor         | n                |                  | C = Co<br>P = Pis                   |             |                |                      | 1"4                   | ØD            | sen 40           | PVC         | Riser                        |            | 33.0                   |
|                      |                            | N = No S         | ample            |                                     |             |                |                      | 1*0                   | ٥٥            | Sen Ao i         | PVC 5       | c(@20                        | 33.0       | 38.0                   |
| Depth<br>(ft.)       | Samp<br>Type<br>and<br>No. | e Rec.<br>(ft. & | SPT<br>or<br>RQD | Lab<br>Class.<br>or<br>Pen.<br>Rate | PID<br>(ppm | 1              | Visual               | Desci                 | ripti         | on               |             | Well<br>Installati<br>Detail |            | Elevation<br>(ft. MSL) |
| 1<br>22.0            | S-1                        | 1.7<br>05%       | 4 6<br>7 8       | -                                   | 0.1         |                | AND,<br>Lay;<br>75e; | 1.ttl<br>lt. b<br>dam | le :<br>pravi | - زم،<br>– زم،   |             |                              | -          |                        |
| 3<br>44.0            | 5-2                        | 1.8<br>90%       | 87<br>7<br>6     | -                                   | 0.1/        | - (            |                      |                       |               |                  |             |                              |            |                        |
| 5<br>66_0            | S-3                        | 2.0<br>1007      | 6<br>5<br>5      | -                                   | 0.1         | ·1 Net         | a 6.0                | 4                     |               |                  |             | <u>_</u>                     | -<br> <br> |                        |
| 7<br>8               | A. M                       | 1 -              | -                | -                                   | -           |                |                      |                       |               | -<br>-<br>-<br>- |             |                              |            |                        |
| 9<br>10 <u> 0.</u> C | ×                          |                  |                  |                                     |             | Mater          | nto SI               | rect                  | 2             | 10.0             |             |                              |            | 5.2                    |
| DRILLING             | co ·                       | Parrat           | L-Wol            | FF                                  |             |                | BAK                  | ERR                   | EР·           | Mar              | <u>K</u> De | John                         | ·          |                        |
| DRILLING             |                            | Chip             | _                |                                     |             |                | BORI                 |                       |               |                  |             |                              |            | EET <sup>†</sup> OF-   |



Baker Environmental, Inc.

PROJECT: CTO NO.: Supplemental Groundwater Investigation at Site 35 - MCBELEJ 62470-232 BORING NO.: 35-TW12B

| T = S $R = A$                                    | Split Spoo<br>Shelby Tu<br>Air Rotary<br>Denison | lbe<br>Y                                 |                       | A = Au $W = W$ $C = Co$ $P = Pist$           | ash<br>re    | DEFINITIONS<br>SPT = Standard Penetration Test (ASTM D-1586)(Blows/0.5')<br>RQD = Rock Quality Designation (%)<br>Lab. Class. = USCS (ASTM D-2487) or AASHTO (ASTM D-3282)<br>Lab. Moist. = Moisture Content (ASTM D-2216) Dry Weight Basis |  |                              |                        |  |  |  |
|--------------------------------------------------|--------------------------------------------------|------------------------------------------|-----------------------|----------------------------------------------|--------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|------------------------------|------------------------|--|--|--|
| Depth<br>(ft.)                                   | Samp.<br>Type<br>and<br>No.                      | = No Sa<br>Samp.<br>Rec.<br>(ft. &<br>%) | SPT<br>or<br>RQD      | Lab<br>Class.<br>or<br>Pen.<br>Rate          | PID<br>(ppm) | Visual Description<br>Continued From Sheet 1                                                                                                                                                                                                |  | Well<br>stallation<br>Detail | Elevation<br>(ft. MSL) |  |  |  |
| 11<br>1212.0                                     | s-4                                              | 1.6<br>80%                               | 87<br>76              | -                                            | 0.1          | FINE TO MED SAND, -<br>some silt, trace coarse -<br>sand; clay; brown w/ -<br>orange laminae; m. cense;                                                                                                                                     |  |                              |                        |  |  |  |
| 13<br>14<br>1515.0                               | A-N                                              | -                                        | -                     | -                                            | -            | wet                                                                                                                                                                                                                                         |  |                              | 0.2                    |  |  |  |
| 16<br>17                                         | 5-5                                              | 1.5<br>75%                               | 1 (                   | -                                            | 0.1          | FINE TO MED SAND, some _<br>shell frag. Esilt, Erace<br>clay; dk green; V. loose; -<br>wet                                                                                                                                                  |  |                              | U.2                    |  |  |  |
| 18<br>19                                         | A-N                                              | -                                        | -                     | -                                            | -            |                                                                                                                                                                                                                                             |  |                              |                        |  |  |  |
| 20 <u>200</u><br>21 <u>-</u><br>22 <u>22</u>     | 5-6                                              | 0,7<br>35%                               | <sup>10</sup> 8<br>89 |                                              | 0.1/         |                                                                                                                                                                                                                                             |  |                              |                        |  |  |  |
| 23<br>24                                         | A-N                                              | -                                        | -                     | -                                            | -            |                                                                                                                                                                                                                                             |  |                              | 0.0                    |  |  |  |
| 25 <u>zse</u><br>26 <u>-</u><br>27 <u>-</u> 27.c | 5-7                                              | 2_0<br>100'/,                            | 7<br>8<br>9           | -                                            | 0.1          | SILT, some shell frag., _<br>trace fine sand ¿ clay; _<br>gray; dense; wet _                                                                                                                                                                |  |                              | - 9.8                  |  |  |  |
| 28<br>29                                         | A-N                                              | -                                        | -                     | -                                            | -            | -<br><br><br><br>Motch to Sheet 3 30.0                                                                                                                                                                                                      |  |                              |                        |  |  |  |
| 30 _ 301                                         |                                                  | <u> </u>                                 | <u> </u>              | <u>لــــــــــــــــــــــــــــــــــــ</u> | <b>I</b>     |                                                                                                                                                                                                                                             |  |                              | -14-                   |  |  |  |
| DRILLING<br>DRILLER:                             |                                                  | Parrat<br>Chip                           | E-Not<br>Lafere       |                                              |              | BAKER REP.:<br>BORING NO.:                                                                                                                                                                                                                  |  | John<br>B                    | SHEETZOF3              |  |  |  |

Baker

Baker Environmental, Inc

### **TEST BORING AND WELL CONSTRUCTION RECORD**

PROJECT: CTO NO.:

Supplemental Groundwater Investigation at Site 35 - MCBCLEJ 62470-232 BORING NO.: 35-TW12B

| T = S $R = A$                                | plit Spoc<br>Shelby Tu<br>Air Rotar<br>Denison | ıbe                           |                                  | A = Au $W = W$ $C = Co$ $P = Pis$   | ash<br>ore   | DEFINITIONS<br>SPT = Standard Penetration Test (ASTM D-1586)(Blows/0.5')<br>RQD = Rock Quality Designation (%)<br>Lab. Class. = USCS (ASTM D-2487) or AASHTO (ASTM D-3282)<br>Lab. Moist. = Moisture Content (ASTM D-2216) Dry Weight Basis |                                                                                             |             |                           |                        |  |
|----------------------------------------------|------------------------------------------------|-------------------------------|----------------------------------|-------------------------------------|--------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|-------------|---------------------------|------------------------|--|
| Depth<br>(ft.)                               | Samp.<br>Type<br>and<br>No.                    | Samp.<br>Rec.<br>(ft. &<br>%) | SPT<br>or<br>RQD                 | Lab<br>Class.<br>or<br>Pen.<br>Rate | PID<br>(ppm) | Visual Description                                                                                                                                                                                                                          |                                                                                             | Insta       | Vell<br>allation<br>etail | Elevation<br>(ft. MSL) |  |
| 31<br>32 <u>37.0</u>                         | 5-8                                            | 1.0<br>50'/,                  | 20<br>20<br>18<br>15             | -                                   | 0.1          | Continued from Sheet 2                                                                                                                                                                                                                      | - ^<br><br>                                                                                 |             |                           |                        |  |
| 33<br>34<br>3535A                            | A-N                                            | ~                             | -                                | -                                   | -            |                                                                                                                                                                                                                                             | -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- |             |                           | - 17.8                 |  |
| 35 <u>35</u><br>36 <u>37</u><br>37 <u>37</u> | 5-9                                            | 1.5<br>75 <i>'</i> [,         | ZO<br>19<br>18<br>15             | -                                   | 0.6          | SHELL FRAGMENTS,                                                                                                                                                                                                                            | -                                                                                           |             |                           | -19.8                  |  |
| 38<br>39<br>4040.0                           | A-N                                            | -                             | -                                | -                                   | -            |                                                                                                                                                                                                                                             |                                                                                             |             |                           | - 22.8<br>- 24.8       |  |
| 41<br>4242.0                                 | 5-10                                           | 1.7<br>85'/,                  | 4 <sub>5</sub><br>5 <sub>5</sub> | -                                   | az<br>10.2   | 4z                                                                                                                                                                                                                                          | le -<br>5                                                                                   |             | 420                       | -26.8                  |  |
| +3<br>+4<br>+5                               |                                                |                               |                                  |                                     |              | BOHE 42.0 Ft                                                                                                                                                                                                                                |                                                                                             |             |                           |                        |  |
| 46<br>47                                     |                                                |                               |                                  |                                     |              |                                                                                                                                                                                                                                             |                                                                                             |             |                           |                        |  |
| 48<br>49<br>50                               |                                                |                               |                                  |                                     |              |                                                                                                                                                                                                                                             |                                                                                             |             |                           |                        |  |
| DRILLING (<br>DRILLER:                       | co.:                                           | Chip                          | E-Not<br>Lafere                  | मि<br>२१                            |              |                                                                                                                                                                                                                                             |                                                                                             | Dej<br>VIZB |                           | SHEET3 OF3             |  |



| PROJECT:     | Supplemental Groundwater | Investigation at 5   | ite 35 - MCBCLEJ |
|--------------|--------------------------|----------------------|------------------|
| CTO NO.:     | 62470-232                | BORING NO .:         | 35-TW1313        |
| COORDINATES: | EAST: 2465098.1832       | - NORTH:             | 361208.5229      |
| ELEVATION:   | SURFACE:                 | - TOP OF PVC CASING: |                  |

| RIG: Ma    | bile               | B-53           | 5              | ·····           | · · ·    |                | DAT                | E        |              | OGRESS  | WEA    | THER       | WATE    | 1 1       |
|------------|--------------------|----------------|----------------|-----------------|----------|----------------|--------------------|----------|--------------|---------|--------|------------|---------|-----------|
|            |                    | SPLIT<br>SPOON | CASIN          | G AU            | GERS     | CORE<br>BARREL |                    |          | (            | FT.)    |        |            | (FT.)   |           |
| SIZE (DIAM | <b>I</b> .)        | 13/8" ID       | -              |                 | /4" D    | -              | 4/z                | 6        | 6 0.0 - AZ.O |         | M.Sun  | ny,605     | -       | -         |
| LENGTH     |                    | 2'             | -              | 5               | 5        | -              |                    |          |              |         |        |            |         |           |
| TYPE       |                    | stainless      |                | <u> </u>        | SA_      | -              |                    |          |              |         |        |            |         |           |
| HAMMER V   | <b>V</b> T.        | 40 165         |                |                 | -        | -              | <u> </u>           |          |              |         |        |            |         |           |
| FALL       |                    | 30*            |                |                 | -        |                | <u> </u>           |          |              |         |        |            |         | _         |
| STICK UP   |                    |                | -              |                 | -        | ~              | [                  | [        |              |         |        |            | [       |           |
| REMARKS:   | Well               | shroude        | d with         | Nellsa          | ock n    | naterial;      | poli,              | )द् व    | =1101        | kd to e | 20162  | se alo     | all pur | <u> </u>  |
|            | -                  | SAMPLE         | TYPE           |                 |          | We             |                    | Di       | am.          |         | Туре   |            | Тор     | Bottom    |
|            | plit Sp            |                |                | A = Au          |          | Inform         | ation              |          |              |         |        |            | Depth   | Depth     |
|            | helby '            |                |                | W = W<br>C = Co |          | ļ              |                    | <u> </u> | _            |         |        |            | (ft.)   | (ft.)     |
|            | lir Rot<br>Denisoi | •              |                | P = Pis         |          |                |                    | 1"       | OD           | Sch 44  | >. PVC | Riser      | -       | 33.0      |
|            |                    | N = No S       | ample          |                 |          |                |                    | 1"       | 60           | Sch 40  | , PYC  | Sciem      | 33.0    | 38.0      |
| Depth      | Samp               | . Samp.        | SPT            | Lab             | PID      |                |                    | I        |              |         |        |            | ·       |           |
| (ft.)      | Туре               | -              | or             | Class.          | (ppm     | )              |                    |          |              |         |        | Well       |         | Elevation |
|            | and                | (ft. &         | RQD            | or              |          |                | Visual Description |          |              | ion     |        | Installati |         | (ft. MSL) |
|            | No.                | %)             |                | Pen.            |          |                |                    |          |              |         |        | Detail     |         |           |
|            |                    |                |                | Rate            |          |                |                    |          |              |         | +      | T [        | {       |           |
| , -        | _                  |                | <sup>3</sup> 5 |                 |          |                |                    |          |              | -       | 1      |            | -1      |           |
| 1          | 5-1                | 0.0            | 9              | -               | -        |                |                    |          |              |         | 1      |            | -1      |           |
| 2 z.o      |                    |                | 9              |                 |          |                |                    |          |              | -       |        |            |         |           |
|            |                    |                | 9              |                 |          | SILT           | FINE               | SAT      | 4D,          | tmac -  |        |            |         |           |
| 3          | 6 0                | 8.0            | 3              |                 | 0.4      | clay           | (F.11)             | j dk     | c. br        | יטאכ    |        |            |         |           |
|            | 5-2                | - 40%          | 3              | -               | /0.      |                | ; Moi              | st       |              | -       |        |            |         |           |
| 4 4.0      |                    |                | 3              |                 |          |                |                    |          | _            | 4.0     |        |            |         | ר.ר       |
|            |                    |                |                | 3               |          | FINE           | SAND.              | 500      | mes          | ilt.    |        |            | _       | 1.1       |
| 5          | S-3                | 1.8            |                | 2               | 0.4/     | 1.ttle         | chy (              | allo     |              | n); _   |        |            |         |           |
|            | 5-5                | 90%            |                | 2.              | 6        | 4 dk br        | o41);              | 100      | use ;        | wet.    |        |            | _       |           |
| 6 6.0      |                    |                |                | ļ'              | ļ        |                | -                  |          |              |         | 4      |            |         |           |
|            |                    |                |                | ]               |          |                |                    |          |              |         | - 1    |            | _       |           |
| 7          |                    |                | 1              |                 | ]        |                |                    |          |              | -       | -      |            |         |           |
|            |                    |                |                | [               |          |                |                    |          |              |         | -      |            | -       |           |
| 8          | A-1                | 4 -            | -              | -               | -        |                |                    |          |              | -       | -      |            |         |           |
|            |                    |                |                |                 |          |                |                    |          |              |         | -      |            | H       |           |
| 9          |                    |                |                |                 |          |                |                    |          |              |         | -1     |            |         |           |
|            |                    |                |                | 1               |          |                |                    |          |              | 0.0     |        |            |         |           |
| 100        | <b> </b>           |                | 1              | 1               | 1        | Match          | to She             | et       | 2.           |         | 1      |            |         | 1.7       |
|            | L                  | Parret         | t - VJ01       | FF              | <u> </u> |                | BAK                |          |              | Mar     | k De   | John       |         |           |
| DRILLING   |                    | Chip           |                | _               |          |                |                    |          |              |         |        |            |         |           |
| DRILLER:   |                    | <u> </u>       | LAIUNG         | <u></u>         |          |                | BORI               | ING      | NO.:         | 35-     | 1 1/1  | <u></u>    | SH      | EET / OF  |



PROJEC CTO NO

| aker           |                                                 |                               | TI                    | EST B                               | ORIN         | G AND WELL CONSTR                                                                                                                                           | UCTION RE                                  | CORD                   |
|----------------|-------------------------------------------------|-------------------------------|-----------------------|-------------------------------------|--------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|------------------------|
| Baker Environr | nental, me                                      |                               |                       |                                     |              |                                                                                                                                                             |                                            |                        |
| OÆCT:<br>ONO.: | <u>_</u>                                        | upplem<br>62470               | <u>ental</u><br>- 232 | Groun                               | dwater       | <u>Investigation at site 3</u><br>BORING NO.: -                                                                                                             | 35 - MCBCL<br>35-TW13B                     | ez<br>                 |
| T = S $R = A$  | Split Spoc<br>Shelby Tu<br>Air Rotar<br>Denison | ıbe                           |                       | A = Au $W = W$ $C = Co$ $P = Pis$   | ash<br>re    | DEFINIT<br>SPT = Standard Penetration Test (A<br>RQD = Rock Quality Designation (%<br>Lab. Class. = USCS (ASTM D-2487<br>Lab. Moist. = Moisture Content (AS | .STM D-1586)(Blo<br>%)<br>7) or AASHTO (AS | TM D-3282)             |
| Depth<br>(ft.) | Samp.<br>Type<br>and<br>No.                     | Samp.<br>Rec.<br>(ft. &<br>%) | SPT<br>or<br>RQD      | Lab<br>Class.<br>or<br>Pen.<br>Rate | PID<br>(ppm) | Visual Description                                                                                                                                          | Well<br>Installation<br>Detail             | Elevation<br>(ft. MSL) |
| _              |                                                 |                               | 5                     |                                     | 04.          | Continued from sheet 1 _                                                                                                                                    |                                            | -                      |

|                  |                  | and<br>No. | (ft. &<br>%) | RQD                     | or<br>Pen.<br>Rate |             | Visual Description                                                                         | Detail   | (ft. MSL)    |
|------------------|------------------|------------|--------------|-------------------------|--------------------|-------------|--------------------------------------------------------------------------------------------|----------|--------------|
| <sup>1</sup> 1   |                  | s-4        | (.8<br>70/,  | 5<br>2<br>32            |                    | 0.4         | Continued from sheet 1<br>MED-COARSE SAND, trace<br>silt; brownig Earn; 11.5<br>loose; Net |          | -0.2         |
| 13               |                  | A-N        | -            | -                       | -                  | -           | FINE SAND, some silt,<br>little clay; olive green;<br>loose; wet                           |          |              |
| - 15<br>16<br>17 |                  | 5-5        | 2.0          | 15<br>16<br>26          |                    | 0.4         | FINE SAND, some silt,<br>little clay; gray; m. 16.1_<br>dense; wet                         |          | -3,3<br>-4.4 |
| 18<br>19         | -                | A-N        | -            | -                       | -                  | -           | SHELL FRAGMENTS, Erace<br>silt; gray; m. dense; wet                                        |          |              |
| 20<br>21<br>22   | <br><br><br>     | 5-6        | 1.4<br>70%   | 149<br>13 <sub>18</sub> | -                  | 0.4<br>/0.4 | sand; gray; v. stiff;                                                                      |          | -8.3         |
| 23<br>24         |                  | A-N        | -            | -                       | -                  | -           | moist -                                                                                    |          |              |
| 25<br>26<br>27   | <br><br><br>27_0 | 5-7        | 1.B<br>90%   | 12<br>13<br>12<br>12    | -                  | 0.4/        | dense to v. dense;                                                                         |          | -13.3        |
| 28<br>29         |                  | A-N        | -            | -                       | -                  |             | Match to Sheet 3                                                                           |          |              |
| 30<br>DRIL       | <u> </u>         |            | Parrat       | E-1107                  | FF                 |             |                                                                                            | k DeJohn |              |
| DRIL             |                  |            | Chip         |                         |                    |             |                                                                                            |          | SHEET2OF3    |



ŧ. 1 4 Suppleme 62470-\_\_\_\_

PROJECT: CTO NO.:

| ental Groundwater | Investigation at Site | = 35 - MCBCLES |
|-------------------|-----------------------|----------------|
| -232              | BORING NO.:           | 35-TW13B       |

|                          |                         | MPLE       | ГҮРЕ              |                                                               |          | DEFINI                                                                                          |                    | (0.51)             |  |  |  |
|--------------------------|-------------------------|------------|-------------------|---------------------------------------------------------------|----------|-------------------------------------------------------------------------------------------------|--------------------|--------------------|--|--|--|
|                          | plit Spoo               |            |                   | $\mathbf{A} = \mathbf{A}\mathbf{u}$ $\mathbf{W} = \mathbf{W}$ | -        | SPT = Standard Penetration Test (ASTM D-1586)(Blows/0.5')<br>RQD = Rock Quality Designation (%) |                    |                    |  |  |  |
|                          | Shelby Tu<br>Air Rotary |            |                   | $\mathbf{W} = \mathbf{W}$<br>$\mathbf{C} = \mathbf{Co}$       |          | Lab. Class. = USCS (ASTM D-248                                                                  |                    | M D-3282)          |  |  |  |
|                          | Denison                 | Ŷ          |                   | $\mathbf{P} = \mathbf{Pis}$                                   |          | Lab. Moist. = Moisture Content (A                                                               |                    |                    |  |  |  |
| <b>D</b> -1              |                         | = No Sa    | mnle              | 1 - 1 15                                                      | uun      | Lab. Moist Moistaic Content (A                                                                  | 51WI D=2210) Diy W |                    |  |  |  |
| Depth                    | Samp.                   | Samp.      | SPT               | Lab                                                           | PID      |                                                                                                 | 1                  |                    |  |  |  |
| (ft.)                    | Башр.<br>Туре           | Rec.       | or                | Class.                                                        | (ppm)    |                                                                                                 | Well               |                    |  |  |  |
| (1)                      | and                     | (ft. &     | RQD               | or                                                            | (PP/     | Visual Description                                                                              | Installation       | Elevation          |  |  |  |
|                          | No.                     | %)         |                   | Pen.                                                          |          | · · · · · · · · · · · · · · · · · · ·                                                           | Detail             | (ft. MSL)          |  |  |  |
|                          |                         |            |                   | Rate                                                          |          |                                                                                                 |                    |                    |  |  |  |
|                          |                         |            | <sup>18</sup> 25  |                                                               |          | continued from Sheet 2 .                                                                        |                    |                    |  |  |  |
| 31                       | 5-8                     | 1.8        | 1 <sup>7</sup> 25 | -                                                             | 0.4      |                                                                                                 |                    | 4                  |  |  |  |
|                          | 5-0                     | 90%        | ZA I              |                                                               | /0.A     | -                                                                                               |                    | 1                  |  |  |  |
| 32 _ 32.0                |                         |            | 30                |                                                               |          |                                                                                                 | 4       _          |                    |  |  |  |
|                          |                         |            |                   |                                                               |          |                                                                                                 | 4         4        | 1                  |  |  |  |
| 33                       |                         |            |                   |                                                               | 1        | -                                                                                               | 33.0 -             | -21.3              |  |  |  |
|                          | A-N                     | -          | -                 | -                                                             | -        |                                                                                                 | 4 6 1 4            |                    |  |  |  |
| 34                       |                         |            |                   |                                                               |          | -                                                                                               | 4 EI I - H         |                    |  |  |  |
|                          |                         |            |                   |                                                               |          | -                                                                                               | -   =   -          |                    |  |  |  |
| 35 35.0                  | ×                       |            |                   |                                                               | <u> </u> |                                                                                                 | 1 []               |                    |  |  |  |
|                          |                         |            | 28<br>30          |                                                               | 0.4/     |                                                                                                 | 1 []   -           |                    |  |  |  |
| 36                       | 5-9                     | 0.9        | 32                | -                                                             |          | -                                                                                               | $+  \Xi    -  $    |                    |  |  |  |
|                          | 1                       | 45%        | 52 16             | ļ                                                             | /0.4     |                                                                                                 |                    |                    |  |  |  |
| 37                       | ×                       |            |                   |                                                               |          |                                                                                                 |                    |                    |  |  |  |
| 38                       |                         |            |                   |                                                               |          | · · · ·                                                                                         | 1 🗉 🛄 1            | -1-                |  |  |  |
| <b> </b> <sup>∞</sup> −− |                         |            |                   |                                                               |          |                                                                                                 | 38.0               | -26.3              |  |  |  |
| 39                       | A-N                     | -          | -                 | -                                                             | -        |                                                                                                 | 7//// 7            |                    |  |  |  |
|                          |                         |            |                   |                                                               | 1        | -                                                                                               | 1/1/1              |                    |  |  |  |
| 40 400                   |                         |            |                   |                                                               |          | <u>40.0</u>                                                                                     |                    | -28.3              |  |  |  |
|                          |                         |            | 20 .              |                                                               |          | FINE SAND, some silt,<br>I.ttle clay; greenish gray; _<br>damp to moist; V.stiff                |                    |                    |  |  |  |
| 41                       | 5-10                    | 1.Z        | 14                | -                                                             | 0.4/     | little clay; greenish gray; _                                                                   |                    |                    |  |  |  |
|                          | 12                      | 60%        | 14                |                                                               | 10.4     | damp to moist; v. stiff                                                                         | -1/1/1 =           |                    |  |  |  |
| 42 42.0                  | ×                       |            | 22                |                                                               | L        | 42.0                                                                                            | 1 / 42.0           | -30.3              |  |  |  |
|                          |                         | ]          |                   |                                                               | }        | BOH@ 42.0 Ft                                                                                    |                    |                    |  |  |  |
| 43                       |                         |            |                   |                                                               |          | -                                                                                               |                    |                    |  |  |  |
|                          |                         |            |                   |                                                               |          |                                                                                                 | -      -           |                    |  |  |  |
| 44                       |                         |            |                   |                                                               |          | -                                                                                               | -                  |                    |  |  |  |
|                          |                         |            |                   |                                                               |          |                                                                                                 |                    |                    |  |  |  |
| 45                       |                         |            |                   |                                                               |          | -                                                                                               | -                  |                    |  |  |  |
| 46 _                     |                         |            |                   |                                                               |          |                                                                                                 |                    |                    |  |  |  |
| 10                       |                         |            |                   |                                                               | 1        | -                                                                                               |                    |                    |  |  |  |
| 47                       | 1                       |            |                   |                                                               |          |                                                                                                 |                    | 1                  |  |  |  |
| $ ^{v'}$                 | 1                       |            | 1                 |                                                               |          | -                                                                                               |                    | 1                  |  |  |  |
| 48                       |                         |            | 1                 |                                                               | 1        |                                                                                                 |                    | ]                  |  |  |  |
|                          | 1                       |            | 1                 | 1                                                             |          | -                                                                                               |                    | ]                  |  |  |  |
| 49                       | {                       |            | 1                 | 1                                                             | 1        |                                                                                                 |                    |                    |  |  |  |
|                          |                         | 1          |                   |                                                               |          |                                                                                                 |                    | 4                  |  |  |  |
| 50                       |                         |            |                   |                                                               |          | <u> </u>                                                                                        |                    | <u> </u>           |  |  |  |
| DRILLING                 | co·                     | Parrat     | t-No              | HF                                                            |          | BAKER REP.: Ma                                                                                  | rk DeJohn          |                    |  |  |  |
|                          |                         | Chip       | 1 aFai            |                                                               |          |                                                                                                 | <b>-</b>           | 01557 <b>3</b> 057 |  |  |  |
| DRILLER:                 |                         | <u>unp</u> | FUILA             | <u> </u>                                                      |          | $ BORING NO.: -35^{-1}$                                                                         |                    | SHEET3 OF3         |  |  |  |
|                          |                         |            |                   |                                                               |          |                                                                                                 |                    |                    |  |  |  |



t. . ·

Baker Environmental, 100

# **TEST BORING AND WELL CONSTRUCTION RECORD**

. ....

. . . . .

PROJECT: SGI- GROWDWARGN SCREENING - LTD 232

| S.O. NO .: 62470-232 | 0000-03600   | BORINGN   |
|----------------------|--------------|-----------|
| COORDINATES: EAST:   | 2465460.9183 | NORTH:    |
| ELEVATION: SURFACE:  | 16.10        | TOP OF ST |

RING'NO.: <u>TW 14-B</u> PRTH: <u>361565.1272</u> P OF STEEL CASING: \_\_\_\_\_

-

|                                                                                                            |                                  |                               |                                            |                              |                    | ب <del>ا ان معامد خط</del> کان |                  |                                       |                      |         |                          |                                                  |                         |
|------------------------------------------------------------------------------------------------------------|----------------------------------|-------------------------------|--------------------------------------------|------------------------------|--------------------|--------------------------------|------------------|---------------------------------------|----------------------|---------|--------------------------|--------------------------------------------------|-------------------------|
| RIG: me                                                                                                    | > <u>%16</u>                     | <del>;</del> 55               | <u>'T</u>                                  | euck .                       | Mou                | <u></u>                        |                  |                                       |                      |         |                          |                                                  |                         |
|                                                                                                            |                                  | SPLIT<br>SPOOM                |                                            | CASING                       | 1                  | GERS                           | CORE<br>BARREL   | DATE                                  | PROGRESS<br>(FT)     | WEATHER | 1                        | WATER<br>DEPTH<br>(FT)                           | TIME                    |
| SIZE (DIAM                                                                                                 | .)                               | 1.431                         | N.                                         |                              | 34                 | (YIDO                          |                  | 4-29-96                               | 0-42.0               | 705 000 | 5                        | 6                                                | O Hrw-                  |
| LENGTH                                                                                                     |                                  | ZFT                           |                                            |                              | 1                  | -FT                            |                  |                                       |                      |         |                          |                                                  |                         |
| TYPE                                                                                                       |                                  | 55                            |                                            |                              |                    | 15                             |                  |                                       |                      |         |                          |                                                  | L                       |
| HAMMER                                                                                                     | NT.                              | 1401)                         | 63.                                        |                              |                    |                                |                  |                                       |                      |         |                          |                                                  |                         |
| FALL                                                                                                       |                                  | 30 10                         | - T                                        | •                            | <u> </u>           |                                |                  |                                       |                      |         |                          |                                                  |                         |
| STICK UP                                                                                                   |                                  |                               |                                            |                              |                    |                                |                  |                                       |                      |         |                          | · · · · · ·                                      |                         |
| REMARKS:                                                                                                   |                                  |                               |                                            |                              |                    |                                |                  | · · · · · · · · · · · · · · · · · · · |                      |         | 1                        | <u> </u>                                         | <u></u>                 |
| . S = S                                                                                                    |                                  |                               | A =                                        | = Auger<br>= Wash            |                    |                                | VELL<br>DRMATION | DIAM                                  | TY                   | PE      | DE                       | TOP<br>EPTH<br>(FT)                              | BOTTOM<br>DEPTH<br>(FT) |
| R = A                                                                                                      | neloy II<br>lir Rotar<br>Jenison | r <b>y</b>                    | C =                                        | = wasn<br>= Core<br>= Piston |                    | Well                           | Casing           | l'ii                                  | PVC Threaded         |         | Ċ                        | >                                                | 35                      |
| U = U                                                                                                      |                                  | = No Sa                       |                                            |                              |                    | Well S                         | Screen           | 1"                                    | PVC Slotted          |         | 3:                       | 5                                                | 40                      |
| Depth<br>(Ft.)                                                                                             | Sample<br>Type<br>and<br>No.     | Samp.<br>Rec.<br>FL<br>&<br>% | SPT<br>or<br>RQC                           | or                           | Lab.<br>Moist<br>% |                                | Visual           | Descriptio                            | วท                   | Insta   | Vell<br>allatio<br>etail | n                                                | Elevatio                |
| $ \begin{array}{c} 1 \\ - \\ 2 \\ - \\ 2 \\ - \\ - \\ 3 \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ -$ | 5-1<br>5-2<br>5-3                |                               | 10 5 4 5 4 5 4 7 5 7 7 7 7 7 7 7 7 7 7 7 7 |                              | ·                  | SILT,                          | 74462 24         | NT 1 MOIST                            | CLAY, Brow           |         | S LE OYU J CRE           | ELL<br>SAN 010<br>SOFT<br>ELL<br>SING<br>Y010 FT |                         |
| 10 - 10,1                                                                                                  | 2                                |                               |                                            |                              | ┨───               |                                |                  | N                                     | 10<br>Match to Sheet | 2       |                          |                                                  | -6.10                   |
|                                                                                                            |                                  |                               |                                            |                              |                    |                                |                  | L.                                    | laten woonee         |         |                          |                                                  |                         |

DRILLING CO .: PARRAY WOLFF

BAKER REP.: BRIAN E

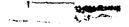
SHEET 1 OF

DAvrs

Baker

Baker Environmental, tec

| T = 9<br>R = 2                  | iplit Spoc<br>ihelby Tu<br>Air Rotan<br>Denison | be ˈ<br>/                        | A =<br>W =<br>C =<br>P = | Auger<br>Wash<br>Core<br>Piston      |                                                              | DEFINITIONS<br>SPT = Standard Penetration Test (A<br>RQD = Rock Quality Designation (<br>Lab. Class. = USCS (ASTM D-2487)<br>Lab. Moist. = Moisture Content (A | %)<br>or AASHTO (ASTM D-3282)                    |
|---------------------------------|-------------------------------------------------|----------------------------------|--------------------------|--------------------------------------|--------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|
| Depth<br>(Ft.)                  | Sample<br>Type<br>and<br>No.                    | Samp.<br>Rec.<br>(Ft.<br>&<br>%) |                          | Lab.<br>Class.<br>or<br>Pen.<br>Rate | \$1.<br>\$1.<br>\$1.<br>\$1.<br>\$1.<br>\$1.<br>\$1.<br>\$1. | Visual Description                                                                                                                                             | Well Installation<br>Detail Elevation            |
| 11_<br>12_<br>12_<br>12_        | 5-4                                             | 1.5                              | 7767                     |                                      | <1                                                           | Continued from Sheet 1 -<br>Sang, Fine Graw, Little Shit, Grey -<br>Net, Mean Dense                                                                            | WELL SOCK<br>From 0.0<br>TO 40.0 FT<br>WELLUSING |
| -<br>13_<br>-<br>14_            | À-17                                            |                                  |                          |                                      |                                                              | -                                                                                                                                                              | From 35:0 -<br>To 40:0 Fr<br>-                   |
| 15 <u>//5*0</u><br>16           | 5.5                                             | LO                               | مور<br>مروم<br>1 ح       |                                      | 41                                                           | SAND, FINE AND MEDIUM BRAIN,<br>BROWN, WET, LOOSE,<br>LATTLE SILL                                                                                              | - 1.10                                           |
| 17 <u>17</u><br>18<br>18<br>19  | 4-N                                             |                                  |                          |                                      |                                                              |                                                                                                                                                                |                                                  |
| 20 <u>-</u> <u>20 -</u><br>21 _ | 5-6                                             | 0.5                              | 2001<br>1902             |                                      | 21                                                           | SAND, FINE GRAIN, BROWN, WET, -<br>LOOSE, LITTLE SILT -                                                                                                        |                                                  |
| 22 <u>22</u><br>23 -            | A-N                                             |                                  | wor                      |                                      |                                                              |                                                                                                                                                                |                                                  |
| 24 -<br>25 - 25 0               | 1                                               |                                  | 16 10                    |                                      |                                                              | SANO, FINE AND MEDIUM GRAIN, SONE<br>SILT, MEDIUM DENSE, GREY, GREEN                                                                                           | 8.90                                             |
| 26                              | 5-7                                             | 0.5                              | - ic<br>iy               |                                      | <                                                            | WET, LIMESTONG AND SHEN FRAGMENT<br>PANTIALLY COMENTED                                                                                                         |                                                  |
| 28                              | A-N                                             |                                  |                          |                                      |                                                              | Match to Sheet 3.                                                                                                                                              |                                                  |
| DRILLIN<br>DRILLER              |                                                 |                                  | RAT                      | τ w                                  | olff                                                         |                                                                                                                                                                |                                                  |


Baker

Baker Environmental, 100

PROJECT: JG-I - GROUNOWATE~ SCREENING

S.O. NO .: 62470 -232-0000 -02600 BORING NO .: TW +4-B

| T = 9<br>R = 1                       | Split Spoo<br>Shelby Tu<br>Air Rotan<br>Denison | be<br>I                                  | A =<br>W =<br>C =<br>P = | Auger<br>Wash<br>Core<br>Piston      |                                      | DEFINITIONS<br>SPT = Standard Penetration Test (A<br>RQD = Rock Quality Designation (<br>Lab. Class. = USCS (ASTM D-2487)<br>Lab. Moist. = Moisture Content (A | %)<br>or AAS | HTO (AST       | M D-3282)                                                |                             |
|--------------------------------------|-------------------------------------------------|------------------------------------------|--------------------------|--------------------------------------|--------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|----------------|----------------------------------------------------------|-----------------------------|
| Depth<br>(Ft.)                       | Sample<br>Type<br>and<br>No.                    | Samp.<br>Rec.<br>(Ft.<br>&<br>%)         | SPT<br>or<br>RQD         | Lab.<br>Class.<br>or<br>Pen.<br>Rate | Hrns<br>Late.<br>Moist<br>%<br>(ppm) | Visual Description                                                                                                                                             | W            | ell inst<br>De | allation<br>tail                                         | Elevation                   |
| 31-<br>32- <u>320</u>                | 5-6                                             | 2.0                                      | 20<br>14<br>12<br>10     |                                      | <b>~</b>                             | Continued from Sheet 2<br>SANO, FINE AND MEDIUM GAAN,<br>GREY, HING STONG AND SHELL FRAGMENT,<br>WET, PARTIALLY CEMENTED,<br>DENSC                             |              |                | WEUL<br>CASIDU<br>DID TO 35.0 FT<br>WEUL SOCIU<br>FRIENA |                             |
| 33-<br>34-<br>35-<br>35-             | A-N                                             |                                          |                          |                                      |                                      |                                                                                                                                                                |              |                | 40.070 -<br>40.0 FT -<br>-                               |                             |
| 36-<br>37-<br>37.0                   | 5-7                                             | 2.0                                      | 30<br>36<br>24<br>20     |                                      | 41                                   | SAND, FUNG AND MEDIUM GARING<br>GRED. BREEN, LIMESTONG AND<br>SHELL FRIGHTS, WET, PARTALUDI<br>CEMENTED, DENSE TO VERD DENSE                                   |              |                | WELL CASING<br>Thim 35:0<br>TO 40:0 FT                   | -18.90                      |
| -<br>38<br>39<br>29                  | A-N                                             | an a |                          |                                      |                                      |                                                                                                                                                                |              |                | -<br>-<br>-                                              |                             |
| 40 <u>40</u><br>+1 -<br>+2 <u>42</u> | 5-8                                             | 2.0                                      | 676                      |                                      | ٤1                                   | 40.0<br>Sawo, Fint Grann, Galew, some Silt,<br>Little Char, WET, MED. STIRE _                                                                                  |              |                | Botton PLUG<br>House Churs<br>From 400 -<br>To 420Ft     | -23.90                      |
| 43_<br>44_                           |                                                 |                                          |                          |                                      |                                      | END OF BORING 42.0FT                                                                                                                                           |              |                | -                                                        |                             |
| 45<br>46                             |                                                 |                                          |                          |                                      |                                      | -                                                                                                                                                              |              |                | -                                                        |                             |
| 47<br>48<br>49                       |                                                 |                                          |                          |                                      |                                      | -                                                                                                                                                              |              |                | . 3                                                      |                             |
| DRILLIN                              |                                                 |                                          | RATT                     | - wo                                 | LRE                                  | BAKER REP.: BRIA<br>BORING NO.: TN (                                                                                                                           |              |                | ۲۵<br>۶HEE                                               | -<br>т <u></u> ЗОF <u>З</u> |



T~ 27



### **TEST BORING AND WELL CONSTRUCTION RECORD**<sup>®</sup>

PROJECT: 5GI - SCREENING - CTO 232 S.O. NO.: 02470-232-000-03600 BORI COORDINATES: EAST: \_\_ 2466064.6254 FLEVATION SURFACE 15.20

BORING NO .: TWIS-B NORTH: 361251.1824 TOP OF STEEL CASING:

| RIG: MOBIL                              | .e 55 '                   | Truc no                                | 750                       |              | <u> </u>                  |              |                               |           |                        |                        |
|-----------------------------------------|---------------------------|----------------------------------------|---------------------------|--------------|---------------------------|--------------|-------------------------------|-----------|------------------------|------------------------|
|                                         | SPLIT<br>SPOON            | CASING                                 |                           | GERS         | CORE<br>BARREL            | DATE         | PROGRESS<br>(FT)              | WEATHER   | WATER<br>DEPTH<br>(FT) | TIME                   |
| SIZE (DIAM.)                            | 1.43 in.                  |                                        | 3                         | 4 20         |                           | 4/30/96      | 0-                            | bos crow- | 6                      | O Hes                  |
| LENGTH                                  | 2FT                       |                                        |                           | F1-          |                           |              |                               |           |                        |                        |
| ТҮРЕ                                    | 55                        |                                        | H.                        | s            |                           |              |                               |           |                        |                        |
| HAMMER WT.                              | 14016.                    |                                        |                           |              |                           |              |                               | -         |                        | ·                      |
| FALL                                    | 3012.                     |                                        |                           |              |                           |              |                               |           |                        | 1. 12.0.25             |
| STICK UP                                |                           |                                        |                           |              |                           |              |                               |           |                        |                        |
| REMARKS:                                |                           |                                        |                           |              |                           |              |                               |           |                        |                        |
| S = Split Sp                            |                           | <u>E</u><br>. = Auger<br>V. = Wash     |                           | V<br>INFC    | VELL                      | DIAM         | TYP                           | ۶E        | TOP<br>DEPTH<br>(FT)   | BOTTO<br>DEPTI<br>(FT) |
| T = Shelby<br>R = Air-Rot<br>D = Deniso | tary C                    | = core<br>= Piston                     |                           | Well Casing  |                           | t <i>a</i> . | PVC Threaded                  |           | 0                      | 35                     |
|                                         | N = No Sam                |                                        |                           | Wells        | Screen                    | 1"           | PVC Slotted                   |           | 35                     | 40                     |
| Sam,<br>Depth Typ<br>(Ft.) and<br>No    | e FL S<br>5 & R<br>- 35 R | PT Class.<br>ur or<br>iQD Pen.<br>Rate | Hau<br>Lab.<br>Moist<br>% |              |                           | Descriptio   |                               | Insta     | ell<br>llation<br>tail | Elevati                |
| 1 - 5-<br>2 - <del>2</del> .0           | 0.5                       | 8                                      | 4                         | Sand<br>10Am | , fine 600<br>P. 73 Mo139 | , BROWNIG    | <sup>ደ</sup> ፋግ 1,0056  <br>T |           |                        |                        |
| 3- 5.                                   | 2 1.5 5                   | 10                                     | 4                         |              | -                         |              |                               | -         |                        | -                      |

11.20 4. 5 SAND, FINE GRAIN, LITTLE SILTI TRACE < CLAY, WET, SOFT TO MEONIN STIFF S<sub>4</sub> 5. 5-3 12.0 ۵.۵ 6 -7. 8 -A-N 9 5.0 10 Match to Sheet 2 BAKER REP .: BRIAN E. DAVIS DRILLING CO .: PARCATT WOLFF FORING NO . TWIS- B SHEET 1 OF------VILLEY

PROJECT: 56-1 - SCREENING - CTD 232 S.O. NO .: 12-10-232-0000-03600 BORING NO .: TW 15-B

| T = 9<br>R = 7                           | plit Spoc<br>helby Tu<br>Air Rotary<br>Denison | be<br>/ | A =<br>W =<br>C =<br>P = |                      |                | DEFINITIONS<br>SPT = Standard Penetration Test (A<br>RQD = Rock Quality Designation (9<br>Lab. Class. = USCS (ASTM D-2487) o<br>Lab. Moist. = Moisture Content (A) | %)<br>or AA | i)<br>r AASHTO (ASTM D-3282) |     |                                     |             |  |  |
|------------------------------------------|------------------------------------------------|---------|--------------------------|----------------------|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|------------------------------|-----|-------------------------------------|-------------|--|--|
| Depth<br>(Ft.)                           | Type (Ft. or or Moi<br>and & RQD Pen. 36       |         |                          | Class.<br>or<br>Pen. | 12 13 15 15 PC | Visual Description                                                                                                                                                 | ۷           | Vell                         |     | tallation<br>etail                  | Elevation   |  |  |
| -<br>11<br>12- <sup>12-2</sup>           | 5-4                                            | کره     | 2 N 20                   |                      | ۷              | Continued from Sheet 1 $-$<br>SAND, FINE GRAIN, SONE SILT, WET, $-$<br>SOFT, BROWN BRED, RED $-$                                                                   |             |                              |     | WELL Sock<br>From 0.0<br>TO 40.0 FT | -<br>-<br>- |  |  |
| -<br>13<br>14                            | А- <sub>N</sub>                                |         |                          | (                    |                |                                                                                                                                                                    | -           |                              |     | 48.100<br>From 0.0<br>TD 55-0 FT    |             |  |  |
| 15 <u>''5 0</u><br>16_<br>17 <u>''20</u> | 5-5                                            | 2.0     | bar<br>war<br>war<br>2   |                      | 41             | SAND, FINE GRAN, LITTLE SILT, WET, GREY 157<br>SAND, FINE GRANN, Some SILT, WET, GREY 157<br>SAND, FINE GRANN, Some SILT, WET,<br>BROWN, VEMY SOPE TO SOFT         |             |                              |     |                                     | -0.30       |  |  |
| 18-<br>19-<br>20-<br>20-<br>20-20-0      | H-4                                            |         |                          |                      |                |                                                                                                                                                                    |             |                              |     |                                     |             |  |  |
| 20 <u>2018</u><br>21<br>22 <b>22.6</b>   | 5-6                                            | 20      | wor<br>3 2<br>3          |                      | 41             | אויט, דומים פרבור, לאייל איין שבד, בידה שבד, בידאים איין שביין איין איין איין שבד, בידה בידה בידה בידה בידה בידה בידה בידה                                         |             |                              |     |                                     |             |  |  |
| 23 -<br>24 -<br>25 - <sup>26°</sup> • 0  | <b>۸-</b> N                                    |         |                          |                      |                | -<br>-<br>-<br>Z5:0                                                                                                                                                |             |                              |     |                                     |             |  |  |
| 25 -<br>26 -<br>27 - <u>27.0</u>         | 5.7                                            | •       | 15 IN<br>21<br>19        |                      | 4              | SAND, FINE GRAINISOME SILT GREY, 64500<br>SAND, FINE GRAINISOME SILT GREY, 64500<br>BENSE, TRACE CLAY, SILELL FRAME GUTS<br>WET                                    |             | -                            |     |                                     | 9.80<br>    |  |  |
| 28 -<br>29 -<br>30 -                     | A-N                                            |         |                          |                      |                |                                                                                                                                                                    |             |                              |     |                                     |             |  |  |
| 30<br>DRILLING<br>DRILLER                |                                                | PAR     |                          | - wou                | <br>           | BAKER REP.: Baker BORING NO.: TV K                                                                                                                                 |             | E.                           | DA- | لامہ SHE                            |             |  |  |

ż

Baker

Baker Environmental, Inc

10

Baker Environmental, Inc

Baker

-

-----

PROJECT: 561-SCREENING - CTO 232

S.O. NO .: 62410-232-0000 -03600 BORING NO .: THIS-B

-----

| T = 9<br>R = 7                                                                                         | Split Spoo<br>Shelby Tu<br>Air Rotar<br>Denison | ibe<br>Y                         | A =<br>W =<br>C =<br>P = | Auger<br>Wash<br>Core<br>Piston      |                               | <u>DEFINITIONS</u><br>SPT = Standard Penetration Test (/<br>RQD = Rock Quality Designation (<br>Lab. Class. = USCS (ASTM D-2487)<br>Lab. Moist. = Moisture Content (A | %)<br>or AASHTO (ASTM D-3282)                             |                  |
|--------------------------------------------------------------------------------------------------------|-------------------------------------------------|----------------------------------|--------------------------|--------------------------------------|-------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|------------------|
| Depth<br>(Ft.)                                                                                         | Sample<br>Type<br>and<br>No.                    | Samp.<br>Rec.<br>(Ft.<br>&<br>%) | SPT<br>or<br>RQD         | Lab.<br>Class.<br>or<br>Pen.<br>Rate | Hnv<br>LaD.<br>Moist<br>Here) | Visual Description                                                                                                                                                    | Well Installation<br>Detail                               | Elevation        |
| 51-<br>32- <u>37:0</u>                                                                                 | 0                                               | 1.5                              | 20 27<br>21 21<br>81     |                                      | دا                            | Continued from Sheet2<br>SANO, FING AND ME DIUM GRAIN, GREY<br>GREEN, LIMESTONG AND SAGUE FRAGMENTS,<br>WET, DENSE, LITTE SIJ                                         | WELL<br>CASING-<br>FRATTO<br>0:0 TO 35:0 FT-<br>WELL SOCK |                  |
| -<br>33<br>34                                                                                          | A-N                                             |                                  |                          |                                      |                               | -                                                                                                                                                                     | From -                                                    |                  |
| 36-<br>37-<br>37-                                                                                      | 5-9                                             | 2.0                              | (7<br>(8<br>(8<br>)5     |                                      | 41                            | SAND, FINE AND MEDIUM GARIN, GREY,<br>GEEN, LIMESTANE AND SHELL FRAGMENT<br>WET, DENSE, LITTLE SILT,<br>                                                              | WELL<br>SCREEN<br>55070<br>1400 FT                        | -19.80           |
| 28_<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-     | A-1                                             |                                  |                          |                                      |                               |                                                                                                                                                                       |                                                           |                  |
| $\begin{array}{c} 40 - \frac{400}{100} \\ 41 - \frac{420}{100} \\ 42 - \frac{420}{100} \\ \end{array}$ | 5-10                                            | 2.0                              | 57<br>9<br>9             |                                      | <u> </u>                      | SANQ FINE GRAW, GREEN, SOME SUT                                                                                                                                       | House Lawery<br>To you -                                  | -24.80           |
| +3_<br>+4_<br>+4_                                                                                      |                                                 |                                  |                          |                                      |                               | ENO OF BORING @ 42.0 FT -                                                                                                                                             |                                                           |                  |
| +5_<br>46_<br>+7_                                                                                      |                                                 |                                  |                          |                                      |                               | -                                                                                                                                                                     |                                                           |                  |
| -<br>48<br>49<br>-                                                                                     |                                                 |                                  |                          |                                      |                               | -                                                                                                                                                                     |                                                           | -                |
| DRILLIN<br>DRILLER                                                                                     |                                                 | PAR                              |                          | <u> </u>                             | OLK                           | BAKER REP.: BRIAN<br>BORING NO.: TWIS                                                                                                                                 | E. DAVIS                                                  | т <u> 3</u> оғ 3 |



Baker Environmental, inc

.

and the second

### **TEST BORING AND WELL CONSTRUCTION RECORD**

•

PROJECT: SGI - LTO 232 - SCREEN: NG

S.O. NO.: 62470 - 232 - 0900 - 63600 COORDINATES: EAST: <u>24658 25.2426</u> ELEVATION: SURFACE: <u>6.90</u>

BORING NO.: <u>TW 16 A</u> NORTH: <u>363304,7185</u> TOP OF STEEL CASING: \_\_\_\_\_

HEATE:

|                                                                          | 50 TRACK<br>SPLIT<br>SPOON | CASING             | AUC                | GERS        | CORE<br>BARREL    | DATE               | PROGRESS<br>(FT)                | WEATHER    | WATER<br>DEPTH<br>(FT)                                                                                                              | TIME                    |
|--------------------------------------------------------------------------|----------------------------|--------------------|--------------------|-------------|-------------------|--------------------|---------------------------------|------------|-------------------------------------------------------------------------------------------------------------------------------------|-------------------------|
| IZE (DIAM.)                                                              |                            |                    | 31                 | 410         |                   | 4/16/96            | 0-15                            | 70'S SUNN  | y 16                                                                                                                                | O Hrcs                  |
| ENGTH                                                                    |                            |                    | -3                 | FT          |                   |                    |                                 |            |                                                                                                                                     |                         |
| YPE                                                                      |                            |                    | H                  | 5           |                   |                    |                                 |            |                                                                                                                                     |                         |
| IAMMER WT.                                                               |                            | l                  |                    |             |                   |                    |                                 |            |                                                                                                                                     |                         |
| ALL                                                                      |                            |                    |                    |             |                   |                    |                                 |            |                                                                                                                                     |                         |
| TICK UP                                                                  |                            |                    |                    |             |                   |                    |                                 |            |                                                                                                                                     |                         |
| EMARKS:                                                                  |                            |                    |                    |             |                   |                    |                                 |            |                                                                                                                                     |                         |
| S = SplitSp<br>T = Sheiby                                                |                            | = Auger<br>= Wash  |                    | V<br>INFC   | VELL              | DIAM               | ТҮР                             | E          | TOP<br>DEPTH<br>(FT)                                                                                                                | BOTTOM<br>DEPTH<br>(FT) |
| R = Air Rot<br>D = Deniso                                                | ary C                      | = Core<br>= Piston |                    | Well (      | Casing            | 1"                 | PVC Threaded                    | 1" dia.    | 0                                                                                                                                   | 5                       |
|                                                                          | N == No Sampl              |                    |                    | Well S      | Screen            | 1"                 | PVC Slotted                     | UIOI "SLOT | 5                                                                                                                                   | 15                      |
| Samp<br>Depth Type<br>(Ft.) and<br>No.                                   | Ft. or                     | or                 | Lab.<br>Moist<br>% |             | Visual            | Descriptio         | on                              |            | ell<br>lation<br>tail                                                                                                               | Elevation               |
| -<br>1 -<br>2 -<br>3 -<br>4 -<br>5 -<br>6 -<br>7 -<br>8 -<br>9 -<br>10 - | 2                          |                    |                    | SE E<br>For | BORING<br>Soil IN | LOG-TW<br>FORMATIC | الل- B<br>مرا<br>Aatch to Sheet |            | KIELL<br>SOCK<br>FROMOIO<br>TO ISIO<br>FT<br>KIELL<br>CASING<br>FROMOIO<br>TO S.O FT<br>WELL<br>SCREEN<br>FROM<br>5.0 TO<br>ISIO FT |                         |

Baker

#### Baker Environmental, Inc

# TEST BORING AND WELL CONSTRUCTION RECORD

PROJECT: 361-670232-56REENING S.O. NO .: 62470-132-0000-03600

BORING NO .: TWIG-A

| T =<br>R =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Split Spoo<br>Shelby Tu<br>Air Rotan<br>Denison | be<br>/                          | A =<br>W =<br>C =<br>P = |                                      |                    | DEFINITIONS<br>SPT = Standard Penetration Test (<br>RQD = Rock Quality Designation (<br>Lab. Class. = USCS (ASTM D-2487)<br>Lab. Moist. = Moisture Content (A | %)<br>or AASHTO (ASTM D-3282)                                                                                                               |                        |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|----------------------------------|--------------------------|--------------------------------------|--------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|------------------------|
| Depth<br>(Ft.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Sample<br>Type<br>and<br>No.                    | Samp.<br>Rec.<br>(Ft.<br>&<br>%) | SPT<br>or<br>RQD         | Lab.<br>Class.<br>or<br>Pen.<br>Rate | Lab.<br>Moist<br>% | Visual Description                                                                                                                                            | Well Installation<br>Detail                                                                                                                 | Elevation              |
| $ \begin{array}{c} 11 \\ - \\ 12 \\ - \\ 13 \\ - \\ 13 \\ - \\ 14 \\ - \\ 15 \\ - \\ 16 \\ - \\ 17 \\ - \\ 18 \\ - \\ 19 \\ - \\ 20 \\ - \\ 21 \\ - \\ 22 \\ - \\ 23 \\ - \\ 24 \\ - \\ 25 \\ - \\ 26 \\ - \\ 26 \\ - \\ 26 \\ - \\ 26 \\ - \\ 26 \\ - \\ 26 \\ - \\ 26 \\ - \\ 26 \\ - \\ 26 \\ - \\ 26 \\ - \\ 26 \\ - \\ 26 \\ - \\ 26 \\ - \\ 26 \\ - \\ 26 \\ - \\ 26 \\ - \\ 26 \\ - \\ 26 \\ - \\ 26 \\ - \\ 26 \\ - \\ 26 \\ - \\ 26 \\ - \\ 26 \\ - \\ 26 \\ - \\ 26 \\ - \\ 26 \\ - \\ 26 \\ - \\ 26 \\ - \\ 26 \\ - \\ 26 \\ - \\ 26 \\ - \\ 26 \\ - \\ 26 \\ - \\ 26 \\ - \\ 26 \\ - \\ 26 \\ - \\ 26 \\ - \\ 26 \\ - \\ 26 \\ - \\ 26 \\ - \\ 26 \\ - \\ 26 \\ - \\ 26 \\ - \\ 26 \\ - \\ 26 \\ - \\ 26 \\ - \\ 26 \\ - \\ 26 \\ - \\ 26 \\ - \\ 26 \\ - \\ 26 \\ - \\ 26 \\ - \\ 26 \\ - \\ 26 \\ - \\ 26 \\ - \\ 26 \\ - \\ 26 \\ - \\ 26 \\ - \\ 26 \\ - \\ 26 \\ - \\ 26 \\ - \\ 26 \\ - \\ 26 \\ - \\ 26 \\ - \\ 26 \\ - \\ 26 \\ - \\ 26 \\ - \\ 26 \\ - \\ 26 \\ - \\ 26 \\ - \\ 26 \\ - \\ 26 \\ - \\ 26 \\ - \\ 26 \\ - \\ 26 \\ - \\ 26 \\ - \\ 26 \\ - \\ 26 \\ - \\ 26 \\ - \\ 26 \\ - \\ 26 \\ - \\ 26 \\ - \\ 26 \\ - \\ 26 \\ - \\ 26 \\ - \\ 26 \\ - \\ 26 \\ - \\ 26 \\ - \\ 26 \\ - \\ 26 \\ - \\ 26 \\ - \\ 26 \\ - \\ 26 \\ - \\ 26 \\ - \\ 26 \\ - \\ 26 \\ - \\ 26 \\ - \\ 26 \\ - \\ 26 \\ - \\ 26 \\ - \\ 26 \\ - \\ 26 \\ - \\ 26 \\ - \\ 26 \\ - \\ 26 \\ - \\ 26 \\ - \\ 26 \\ - \\ 26 \\ - \\ 26 \\ - \\ 26 \\ - \\ 26 \\ - \\ 26 \\ - \\ 26 \\ - \\ 26 \\ - \\ 26 \\ - \\ 26 \\ - \\ 26 \\ - \\ 26 \\ - \\ 26 \\ - \\ 26 \\ - \\ 26 \\ - \\ 26 \\ - \\ 26 \\ - \\ 26 \\ - \\ 26 \\ - \\ 26 \\ - \\ 26 \\ - \\ 26 \\ - \\ 26 \\ - \\ 26 \\ - \\ 26 \\ - \\ 26 \\ - \\ 26 \\ - \\ 26 \\ - \\ 26 \\ - \\ 26 \\ - \\ 26 \\ - \\ 26 \\ - \\ 26 \\ - \\ 26 \\ - \\ 26 \\ - \\ 26 \\ - \\ 26 \\ - \\ 26 \\ - \\ 26 \\ - \\ 26 \\ - \\ 26 \\ - \\ 26 \\ - \\ 26 \\ - \\ 26 \\ - \\ 26 \\ - \\ 26 \\ - \\ 26 \\ - \\ 26 \\ - \\ 26 \\ - \\ 26 \\ - \\ 26 \\ - \\ 26 \\ - \\ 26 \\ - \\ 26 \\ - \\ 26 \\ - \\ 26 \\ - \\ 26 \\ - \\ 26 \\ - \\ 26 \\ - \\ 26 \\ - \\ 26 \\ - \\ 26 \\ - \\ 26 \\ - \\ 26 \\ - \\ 26 \\ - \\ 26 \\ - \\ 26 \\ - \\ 26 \\ - \\ 26 \\ - \\ 26 \\ - \\ 26 \\ - \\ 26 \\ - \\ 26 \\ - \\ 26 \\ - \\ 26 \\ - \\ 26 \\ - \\ 26 \\ - \\ 26 \\ - \\ 26 \\ - \\ 26 \\ - \\ 26 \\ - \\ 26 \\ - \\ 26 \\ - \\ 26 \\ - \\ 26 \\ - \\ 26 \\ - \\ 26 \\ - \\ 26 \\ - \\ 26 \\ - \\ 26 \\ - \\ 26 \\ - \\ 26 \\ - \\ 26 \\ - \\ 26 \\ - \\ 26 \\ - \\ 26 \\ - \\ 26 \\ - \\ 26 \\ - \\ 26 \\ - \\ 26 \\ - \\ 26 \\ - \\ 26 \\ - \\ 26 \\ - \\ 26 \\ - \\ 26 \\$ | А- <i>N</i>                                     |                                  |                          |                                      |                    | Continued from Sheet 1                                                                                                                                        | WELL SOCK<br>0.0 TO 15:0 FT<br>WELL<br>SURECN<br>From<br>5:0 TO<br>15:0 FT<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- | -8.10                  |
| -<br>27<br>-<br>28<br>-<br>-<br>29<br>-<br>30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                 | Poo                              |                          |                                      |                    | Match to Sheet 3<br>BAKER REP.: BR14                                                                                                                          |                                                                                                                                             |                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | NG CO.:<br>R:                                   | _                                |                          | · Wor                                | .FF                | BAKER REP.: 5Kir<br>BORING NO.: Tw-                                                                                                                           |                                                                                                                                             | T <u>2</u> OF <u>2</u> |





PROJECT: SGT - CTO 232 - SLREENING

S.O. NO.: 62470-232-000-03600 COORDINATES: EAST: 2465825.2426 ELEVATION: SURFACE: 6.90

-

BORING NO.: 7016-6 NORTH: 363304.7185 TOP OF STEEL CASING: \_\_\_\_\_

|                                        | SPLIT<br>SPOON | CASING             | AU                 | GERS        | CORE<br>BARREL              | DATE         | PROGRESS<br>(FT)              | WEATHER    | WATER<br>DEPTH<br>(FT)                                                             | TIME                    |
|----------------------------------------|----------------|--------------------|--------------------|-------------|-----------------------------|--------------|-------------------------------|------------|------------------------------------------------------------------------------------|-------------------------|
| ZE (DIAM.)                             | 1.43 "         |                    | 34                 | IID         |                             | 4/16/96      | 0-18                          | 70'S SUNN- | 1 4 FT                                                                             | O Hrs                   |
| ENGTH                                  | Zer            |                    | 5                  | FT          |                             | 4/17/96      | 18-36                         | 60'5 5000  |                                                                                    | OHNS                    |
| YPE                                    | ي ا            |                    | 1                  | 15          |                             |              |                               |            |                                                                                    |                         |
| AMMER WT.                              | 1Yalis         |                    |                    |             |                             |              |                               |            |                                                                                    |                         |
| ALL                                    | 30.00          |                    |                    |             |                             |              |                               |            |                                                                                    |                         |
| TICK UP                                |                |                    |                    |             |                             |              |                               |            |                                                                                    |                         |
| EMARKS:                                |                |                    |                    |             |                             |              |                               |            | r r                                                                                |                         |
| S = SplitSp<br>T = Shelby              |                | = Auger<br>= Wash  |                    |             | VELL<br>DRMATION            | DIAM         | TY                            | PE         | TOP<br>DEPTH<br>(FT)                                                               | BOTTOM<br>DEPTH<br>(FT) |
| R = Air Rot<br>D = Denisor             | ary C          | = Core<br>= Piston |                    | Well Casing |                             | 1            | PVC Threaded                  |            | ٥                                                                                  | 30                      |
|                                        | l = No Samp    |                    |                    | Well        | Screen                      | 1            | PVC Slotted                   |            | 30                                                                                 | 35                      |
| Samp<br>Depth Type<br>(Ft.) and<br>No. | Ft. OF         |                    | Lab.<br>Moist<br>% |             | Visual                      | Descriptio   | on                            | Insta      | /ell<br>Ilation<br>etail                                                           | Elevatio                |
| 4 4.0                                  | 2 2 2 5        | 2<br>5<br>5<br>6   | <1<br><1<br><1     | 64.00       | 2 <b>5 16 7</b> 1 13/2 1    | 1.1. LITCESI | een cenee                     |            | WELL<br>SOLL<br>FROM<br>0:0 TD<br>35:0 FT<br>WELL<br>CASING<br>FROM<br>SIO TO 30:0 |                         |
| 6 _ 6.0                                |                | ר<br>ג<br>ג        | 21                 | SILT 1      | un DENSE                    | TTLE FINE 64 | LITTLE SILT L                 |            |                                                                                    | - 0.4                   |
|                                        | -5 210         | 3<br>3<br>3<br>3   | 41                 | 1           | 3, 58mE 515<br>(53) (Brown) | , wet        | c Gm N SAND<br>Aatch to Sheel |            |                                                                                    |                         |

Baker

Baker Environmental, Inc

## **TEST BORING AND WELL CONSTRUCTION RECORD**

PROJECT: SGI - CTO Z32 - SCREENING

S.O. NO .: 62+70-232-0000-03600 BORING NO .: TW16-B

| T =<br>R =                                      | Split Spoc<br>Shelby Tu<br>Air Rotan<br>Denison           | be<br>/              | A =<br>W =<br>C =<br>P = | Auger<br>Wash<br>Core<br>Piston |           | DEFINITIONS<br>SPT = Standard Penetration Test (ASTM D-1586) (Blows/0.5')<br>RQD = Rock Quality Designation (%)<br>Lab. Class. = USCS (ASTM D-2487) or AASHTO (ASTM D-3282)<br>Lab. Moist. = Moisture Content (ASTM D-2216) Dry Weight Basis |   |                  |  |  |
|-------------------------------------------------|-----------------------------------------------------------|----------------------|--------------------------|---------------------------------|-----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|------------------|--|--|
| Depth Type (Ft. or or M<br>(Ft.) and & RQD Pen. |                                                           | Haj<br>Lab.<br>Moist | Visual Description       | Well Installation<br>Detail     | Elevation |                                                                                                                                                                                                                                              |   |                  |  |  |
| -<br>11<br>12 <sup>12-0</sup>                   | 5-6                                                       | 1.5                  | N N N                    |                                 | 4         | Continued from Sheet 1<br>SILT AND CLYTY, LITTLE FING GRAINSAN,<br>GREY, BROWN, WER, STIFF                                                                                                                                                   | - |                  |  |  |
| 12                                              | 5-7                                                       | 1.5                  | r<br>S<br>S<br>S<br>Y    |                                 | 41        | SILT AND WAY, LITTLE FINE GRAN _ SAND, BROWN, WET STIFF                                                                                                                                                                                      |   |                  |  |  |
| 15                                              | 5-8                                                       | 1.5                  | 23<br>34                 |                                 | 41        | SILT AND CLAY, SOME FINE GRAIN SAND,<br>GREY. NET, STIFE 140                                                                                                                                                                                 |   | -8.10            |  |  |
| 17                                              | 5-9                                                       | 1.5                  | 2<br>2<br>3<br>3         |                                 | 41        | CLAY, SOMESILT, LITTLE TO TRACE FINE<br>GRAIN SAND, BREY GREEN, MOIST TO WET                                                                                                                                                                 |   |                  |  |  |
| 19<br>2020, c                                   | 5-10                                                      | 2,0                  | 1 2 3 3                  |                                 | 4         | CLAY, SOME SILT, TURCE F. St SAND,<br>MOIST TO WET,<br>LORGY, BREEN, BLACK, MEDIUM STRF<br>THIN FILL GRIN SEND & 13.0 H (3.2 FT                                                                                                              | - |                  |  |  |
| 21 -<br>22 - <sup>2</sup> Lro                   | 511                                                       | 2.0                  | 123                      |                                 | 21        | CLAY SOME SILT, TRACE FINE SAND,<br>MOUT D WET<br>Thin Fine Grand Send @ 21.01                                                                                                                                                               | - | -                |  |  |
| 23 -<br>24 - 24.0                               | 5-12                                                      | 2.0                  | 5050                     |                                 | <1        | CLAY Some SILT, TRACE FINE SEND,<br>MOIST. B WET, GREY, GREEN, BLACK<br>MEDIUM STIEL<br>Thin Fine Green Send from 23.5 to 23.7                                                                                                               | - |                  |  |  |
| 25                                              | 5-13                                                      | 2.0                  | 4<br>6<br>9              |                                 | 21        | CLAY AND SILT,                                                                                                                                                                                                                               |   | - 18.10<br>19.10 |  |  |
| 27 -<br>28 - <del>78</del> .                    | 5-14                                                      | 2.0                  | 35                       |                                 | 4         | SAND, FINE AND MEDIL GARIN, BANN,<br>THACE SICT, WE<br>SAND, FINE GRAIN                                                                                                                                                                      |   |                  |  |  |
| 20<br>                                          | 5-15                                                      | 1.5                  | 15                       | 3                               | c1        | SAME, FINE GRAND, LITTLE SILT, WETT,<br>SAME, SUL MAN, DENSE<br>MATCH STRUCTURE SILT, WETT,<br>SALE, SUL MAN, DENSE                                                                                                                          |   | 72.10            |  |  |
| ×                                               | DRILLING CO .: PACIFATT WOUFFE BAKER REP .: BALEN & DAVIS |                      |                          |                                 |           |                                                                                                                                                                                                                                              |   |                  |  |  |

DRILLER:

BORING NO.: TN 6-B SHEET 2 OF 3



Baker Environmental, Inc.

# **TEST BORING AND WELL CONSTRUCTION RECORD**

PROJECT: SGI-CTO 282- SCRC 60-05-S.O. NO .: 62470-232-0000-03600 BORING NO .: TW 16-B

.

| T = 1<br>R = 1                                                                                        | Split Spoo<br>Shelby Tu<br>Air Rotar<br>Denison | ibe<br>V | A =<br>W =<br>C =<br>P = | Auger<br>Wash<br>Core<br>Piston |                    | DEFINITIONS<br>SPT = Standard Penetration Test (ASTM D-1586) (Blows/0.5')<br>RQD = Rock Quality Designation (%)<br>Lab. Class. = USCS (ASTM D-2487) or AASHTO (ASTM D-3282)<br>Lab. Moist. = Moisture Content (ASTM D-2216) Dry Weight Basis |  |                                                           |                        |  |
|-------------------------------------------------------------------------------------------------------|-------------------------------------------------|----------|--------------------------|---------------------------------|--------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|-----------------------------------------------------------|------------------------|--|
| Depth<br>(Ft.)                                                                                        |                                                 |          |                          |                                 | Lab.<br>Moist<br>% | Visual Description Well Installation<br>Detail                                                                                                                                                                                               |  |                                                           | Elevation              |  |
| 32 <u>320</u>                                                                                         | 5-16                                            | 1.5      | 7<br>12<br>15<br>70      |                                 | 4                  | Continued from Sheet 2.<br>SAMO, FILE AND MEDICA EARING WITHE<br>SILE ; SHELL FRAGMENTS, LIMESTONE<br>FLORMANT, GOLT, GREEN, CENSE,<br>FLORMANT, MICH. CONSTRUCT<br>FLORMANT, MICH.                                                          |  | WELL<br>SOCK -<br>FROM -<br>0:0 TO -<br>35.0 FT -         | -23.10                 |  |
| 33-<br>34                                                                                             | 1                                               | 1.5      | 23<br>40<br>50/5-        |                                 | <1                 | SAND, FINE GRAN, SOME SILT, LITTLE CLAY                                                                                                                                                                                                      |  | SCREEN -<br>Fron -<br>30:0 to<br>35:0 FT -                |                        |  |
| ≥5<br>≥6 <u>36.0</u>                                                                                  | 5-18                                            | 2.0      | 7<br>66                  |                                 | ( )                | END OF BORING @ 36:0 Fr                                                                                                                                                                                                                      |  | Botton P. U.B.<br>At 35:0 Fri -<br>Ho Li<br>CANED TO 35:0 | -28.10<br>-29.10       |  |
| 37_<br>-<br>38_                                                                                       |                                                 |          |                          |                                 |                    |                                                                                                                                                                                                                                              |  | -                                                         |                        |  |
| ±9                                                                                                    |                                                 |          |                          |                                 |                    |                                                                                                                                                                                                                                              |  | -                                                         |                        |  |
| -≻1<br>                                                                                               |                                                 |          |                          |                                 |                    |                                                                                                                                                                                                                                              |  | -                                                         |                        |  |
|                                                                                                       |                                                 |          |                          |                                 |                    |                                                                                                                                                                                                                                              |  | -                                                         |                        |  |
| ∻5<br><br>46<br>                                                                                      |                                                 |          |                          |                                 |                    |                                                                                                                                                                                                                                              |  | -                                                         |                        |  |
| 47<br>-<br>48<br>-                                                                                    |                                                 |          |                          |                                 |                    |                                                                                                                                                                                                                                              |  | -                                                         | -                      |  |
| 49                                                                                                    |                                                 | ,Par     |                          | - :00                           | LFF                |                                                                                                                                                                                                                                              |  |                                                           | -                      |  |
| DRILLING CO.: CARRET WOLFF BAKER REP.: BREED E. COMMENTED BAKER REP.: BREED E. COMMENTED SHEET 3 OF 3 |                                                 |          |                          |                                 |                    |                                                                                                                                                                                                                                              |  |                                                           | т <u>3</u> Оғ <u>3</u> |  |



.



Baker Environmental, inc

## **TEST BORING AND WELL CONSTRUCTION RECORD**

PROJECT: SGI - CTO 232 - SCREENING

S.O. NO.: 12710 - 232-0000 - 03000 COORDINATES: EAST: 2465825.2426 ELEVATION: SURFACE: 6.90

BORING NO.: <u>TW16 - C</u> NORTH: <u>363304,7185</u> TOP OF STEEL CASING: \_\_\_\_\_

| RIG: MOBILE                                                    | SPLIT       |                    |                    | JGERS                      | CORE<br>BARREL | DATE    | PROGRESS                       | WEATHER  | WATER<br>DEPTH<br>(FT)                                               | TIME                    |
|----------------------------------------------------------------|-------------|--------------------|--------------------|----------------------------|----------------|---------|--------------------------------|----------|----------------------------------------------------------------------|-------------------------|
|                                                                | SPOON       | CASING             | <u> </u>           |                            | BARKEL         | DATE    | (FT)                           |          |                                                                      | TIME                    |
| IZE (DIAM.)                                                    |             |                    | 3410               |                            |                | 4/17/96 | 0-25                           | LOY SUNN | 17 6                                                                 | OHn                     |
| ENGTH                                                          |             |                    | 5                  | FT                         |                |         |                                |          |                                                                      |                         |
| YPE                                                            |             |                    | H                  | 5                          |                |         |                                |          |                                                                      |                         |
| IAMMER WT.                                                     |             |                    |                    |                            |                |         |                                |          |                                                                      |                         |
| ALL                                                            |             | -                  |                    |                            |                |         |                                |          |                                                                      |                         |
| TICK UP                                                        |             |                    |                    |                            |                |         |                                |          |                                                                      |                         |
| EMARKS:                                                        |             | - <b>1</b>         |                    |                            |                |         | <u></u>                        |          |                                                                      |                         |
| SAMPLE TYPEWELLS = Split SpoonA = AugerT = Shelby TubeW = Wash |             |                    |                    |                            |                | DIAM    | TYP                            | ۶E       | TOP<br>DEPTH<br>(FT)                                                 | BOTTOM<br>DEPTH<br>(FT) |
| T = Shelby Tu<br>R = Air Rotary<br>D = Denison                 | y C         | = Core<br>= Piston | Ī                  | Well (                     | Casing         | ] "     | PVC Threaded                   |          | 6                                                                    | 20                      |
|                                                                | = No Sample |                    |                    | Well Screen V" PVC Slotted |                |         | 20                             | 25       |                                                                      |                         |
|                                                                |             |                    | Lab.<br>Moist<br>% | Visual Description ,       |                |         | Well<br>Installation<br>Detail |          |                                                                      |                         |
| 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10                |             |                    |                    | st Fo                      | E BORIN        | NFORMA  | TW16-B<br>Tied                 |          | WELL<br>FROM<br>DIOFS<br>25.0FF<br>WELL<br>CASING<br>DIOFS<br>20.0FT |                         |

Baker

Baker Environmental, ne

.

PROJECT: <u>56I-CTO 232-5CREEWING</u> S.O. NO.: 62470-23 2-0000-03600 BORING NO.: TW16-C

| T = 2<br>R = 2                                                                                                                                                                                                                     | Split Spoo<br>Shelby Tu<br>Air Rotan<br>Denison | be<br>/                          | A =<br>W =<br>C =<br>P = | Auger<br>Wash<br>Core<br>Piston      |                    | DEFINITIONS<br>SPT = Standard Penetration Test (ASTM D-1586) (Blows/0.5')<br>RQD = Rock Quality Designation (%)<br>Lab. Class. = USCS (ASTM D-2487) or AASHTO (ASTM D-3282)<br>Lab. Moist. = Moisture Content (ASTM D-2216) Dry Weight Basis |                                       |  |  |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|----------------------------------|--------------------------|--------------------------------------|--------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|--|--|--|--|
| Depth<br>(Ft.)                                                                                                                                                                                                                     | Sample<br>Type<br>and<br>No.                    | Samp.<br>Rec.<br>(Ft.<br>&<br>%) | SPT<br>or<br>RQD         | Lab.<br>Class.<br>or<br>Pen.<br>Rate | Lab.<br>Moist<br>% | Visual Description                                                                                                                                                                                                                           | Well Installation<br>Detail Elevation |  |  |  |  |
| $ \begin{array}{c} 11 \\ 12 \\ 12 \\ 13 \\ 14 \\ 15 \\ 16 \\ 17 \\ 16 \\ 17 \\ 18 \\ 19 \\ 20 \\ 21 \\ 22 \\ 23 \\ 24 \\ 25 \\ 26 \\ 27 \\ 26 \\ 27 \\ 28 \\ 29 \\ 30 \\ 0 \\ 30 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ $ | A-n                                             |                                  |                          |                                      |                    | Continued from Sheet 1<br>SEE BORING LOG TW 16-B<br>FOR SOIL INFORMATION<br>END OF BORING @ 25.0 FT<br>Match to She                                                                                                                          |                                       |  |  |  |  |
| DRILLING CO.: PROMATE WOLFF BAKER REP.: BRIANE. DAVIS<br>DRILLER: <u>CHIP</u> BORING NO.: TWIG-C SHEET 2 OF                                                                                                                        |                                                 |                                  |                          |                                      |                    |                                                                                                                                                                                                                                              |                                       |  |  |  |  |

Baker

Baker Environmental, Inc

•

#### **TEST BORING AND WELL CONSTRUCTION RECORD**

PROJECT: SOI - CR 232 - SCREEN NO

S.O. NO.: 62470-222-0000-03600 BORING NO.: TW:7-A COORDINATES: EAST: 2465786.5749 NORTH: 363349-6850 ELEVATION: SURFACE: 4.70 TOP OF STEEL CASING:

-

| RIG: Maß:                                            | LE 55          | TRUCK              | Mou                | INT        |                    |            |                        |            |                                                                            |                         |
|------------------------------------------------------|----------------|--------------------|--------------------|------------|--------------------|------------|------------------------|------------|----------------------------------------------------------------------------|-------------------------|
|                                                      | SPLIT<br>SPOON | CASING             | AU                 | GERS       | CORE<br>BARREL     | DATE       | PROGRESS<br>(FT)       | WEATHER    | WATER<br>DEPTH<br>(FT)                                                     | τιμε                    |
| SIZE (DIAM.)                                         |                |                    | 31                 | ΉŢ         |                    | 4/16/96    | 0-15                   | 70'S SUNNY | 6                                                                          | o Has                   |
| LENGTH                                               |                |                    | 5                  | FT         |                    |            |                        |            |                                                                            |                         |
| ТҮРЕ                                                 |                |                    | +                  | 15         |                    |            |                        |            |                                                                            |                         |
| HAMMER WT.                                           |                |                    |                    |            |                    |            |                        |            |                                                                            |                         |
| FALL                                                 |                |                    |                    |            |                    |            |                        |            |                                                                            |                         |
| STICK UP                                             |                |                    |                    |            |                    |            |                        |            |                                                                            |                         |
| REMARKS:                                             |                |                    |                    |            |                    | <u></u>    | <u> </u>               |            |                                                                            |                         |
| S = Split Sp<br>T = Shelby                           |                | = Auger<br>= Wash  |                    |            | VELL<br>DRMATION   | DIAM       | TY                     | PE         | TOP<br>DEPTH<br>(FT)                                                       | BOTTOM<br>DEPTH<br>(FT) |
| R = Air Rot<br>D = Deniso                            | ary C          | = Core<br>= Piston |                    | Well (     | Casing             | 1"         | PVC Threaded           |            | 0                                                                          | 5                       |
|                                                      | N == No Samp   |                    |                    | Well S     | Screen             | "          | PVC Slotted            |            | 5                                                                          | 15                      |
| Samp<br>Depth Type<br>(Ft.) and<br>No                | Ft. or         |                    | Lab.<br>Moist<br>% |            | Visual             | Descriptio | on                     | Insta      | 'ell<br>llation<br>tail                                                    | Elevation               |
| -<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10 | 7              |                    |                    | SEE<br>For | BORING<br>- 3016 7 |            | no∼)<br>Match to Sheet |            | WELL SOLK<br>From<br>0.0 TO 15.0<br>WELL<br>CAS 1.25<br>From<br>0.0 TO 5.0 |                         |
| DRILLING CO                                          | .: PARE        | ATT WOL            | íć.                |            |                    |            | R REP .: BEIA          |            | <u>s</u>                                                                   |                         |
| DRILLER: C                                           | HIP            |                    |                    |            |                    | EORI       | NG NO.: TW             | ( I-A      | SHE                                                                        | et <u>1</u> of 2        |



Baker Environmental, Inc.

#### **TEST BORING AND WELL CONSTRUCTION RECORD**

PROJECT: SC-I-CTO 232-SCREENING S.O. NO .: 62470-232-0000-03600 BORING NO .: TW 17-A

.

| T = 1<br>R = 1                                                                                                                                                                               | Split Spoo<br>Shelby Tu<br>Air Rotary<br>Denison | be                               | A =<br>W =<br>C =<br>P = | Auger<br>Wash<br>Core<br>Piston      |                    | <u>DEFINITIONS</u><br>SPT = Standard Penetration Test (<br>RQD = Rock Quality Designation (<br>Lab. Class. = USCS (ASTM D-2487)<br>Lab. Moist. = Moisture Content (A | (%)<br>or AASHTO (ASTM D-3282) |                         |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|----------------------------------|--------------------------|--------------------------------------|--------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|-------------------------|
| Depth<br>(Ft.)                                                                                                                                                                               | Sample<br>Type<br>and<br>No.                     | Samp.<br>Rec.<br>(Ft.<br>&<br>%) | SPT<br>or<br>RQD         | Lab.<br>Class.<br>or<br>Pen.<br>Rate | Lab.<br>Moist<br>% | Visual Description                                                                                                                                                   | Well Installation<br>Detail    | Elevation               |
| $ \begin{array}{c} 11 \\ 12 \\ 12 \\ 13 \\ 14 \\ 15 \\ 16 \\ 16 \\ 17 \\ 18 \\ 19 \\ 20 \\ 21 \\ 22 \\ 21 \\ 22 \\ 23 \\ 24 \\ 25 \\ 26 \\ 27 \\ 26 \\ 27 \\ 28 \\ 29 \\ 30 \\ \end{array} $ |                                                  |                                  |                          |                                      |                    | Continued from Sheet 1<br>SEE BORING LOG TWIT-A<br>For Soil INFORMATION<br>ENC OF BORING © 15-0 FT<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-  |                                |                         |
| DRILLIN                                                                                                                                                                                      |                                                  | PAC                              |                          | t WO                                 | LFF                | BAKER REP.: BRA<br>BORING NO.: TW F                                                                                                                                  | I-A SHE                        | et <u>2</u> of <u>2</u> |

Baker

Baker Environmental, Inc

-----

•

#### **TEST BORING AND WELL CONSTRUCTION RECORD**

PROJECT: SGI - GTO 232 - SCREEN NG

\_

|                                        | SPLIT<br>SPOON         | CASING                         |                             | GERS               | CORE<br>BARREL                      | DATE                         | PROGRESS<br>(FT)               | WEATHER   | WATER<br>DEPTH<br>(FT)   | τιμε                    |
|----------------------------------------|------------------------|--------------------------------|-----------------------------|--------------------|-------------------------------------|------------------------------|--------------------------------|-----------|--------------------------|-------------------------|
| IZE (DIAM.)                            |                        |                                |                             | 470                |                                     | 4/16/96                      | 0-34.0                         |           |                          |                         |
| ENGTH                                  | 1.43"<br>2FT           |                                |                             | 4 <u>70</u><br>SFT |                                     | 1116170                      |                                | 70'S SUNA |                          | OHA                     |
| YPE                                    | <u>471</u><br>55       |                                |                             | - <u>1</u> 5       |                                     |                              |                                | <u> </u>  |                          |                         |
| IAMMER WT.                             | 140 165                |                                |                             | 1-                 |                                     |                              |                                |           |                          |                         |
| ALL                                    | 30,                    |                                | -                           |                    |                                     |                              |                                | •         |                          |                         |
| TICK UP                                | 1. 761. <b>97</b> 7.97 | <u></u>                        | +                           |                    |                                     |                              |                                |           |                          | <u> </u>                |
| EMARKS:                                | L                      |                                |                             |                    |                                     |                              |                                |           |                          |                         |
| S = Split Sp<br>T = Shelby             |                        | E<br>= Auger<br>/ = Wash       |                             |                    | WELL<br>DRMATION                    | DIAM                         | TYF                            | 95        | TOP<br>DEPTH<br>(FT)     | BOTTOM<br>DEPTH<br>(FT) |
| R = Air Rota<br>D = Denisor            | ary C                  | = Core<br>= Piston             |                             | Well (             | Casing                              | \ <i>n</i> `                 | PVC Threaded                   | 1" 1 4    | 1"dia 0                  |                         |
|                                        |                        |                                |                             | Wells              | Screen                              | 1"                           | 27                             | 32        |                          |                         |
| Samp<br>Depth Type<br>(Ft.) and<br>No. | Ft. o                  | PT Class.<br>Ir or<br>IQD Pen. | Hnu<br>Leio.<br>Moist<br>73 |                    | Visual                              |                              |                                |           | /ell<br>llation<br>stail | Elevatio                |
| 1                                      | t 1                    | 1                              | <(                          | SAND               | , FINE GADI,<br>-, Dang to          | . unit sic<br>noist to       | Γ1 Ga=1,<br>03E                |           |                          | -                       |
| 2 - 2,0<br>3 - 5-7<br>4 - 4.0          | 2                      | 2<br>23                        | <۱                          | STLEF              | AND CLAT, I<br>IN, BAEY, MO         | LITLE FILE G                 | 3.0<br>.0~9~9.<br>57 D w GT 72 |           |                          | -1.70                   |
| 5 - 5-<br>6 - 6' 8                     |                        | 2                              | <(                          |                    |                                     |                              |                                |           |                          |                         |
| 7 _ 5-<br>8 _ 8 . 6                    | · ។                    | 55                             | <1                          | \$Aw               | P ANP SILT ST                       | russer Fro                   | - B.O to B.IFT                 |           |                          |                         |
| - 9                                    | -51                    | 3                              | < (                         | GAN                | And clay<br>as schol, e<br>t static | , LITTLE TO<br>PROCESS, 60.8 | TRACE FORS<br>MOTOFO           |           |                          |                         |
| 10 -10, 0                              |                        | 2                              | 1                           |                    |                                     | _                            | Match to Sheet                 |           | 1                        |                         |

# Baker

Baker Environmental, Inc.

1.00

----

#### **TEST BORING AND WELL CONSTRUCTION RECORD**

PROJECT: SET 410 USE - SE KEAP MA S.O. NO .: 124 10-222 - 1000-08600 BORING NO .: THE COME

and the second sec

| T = S $R = A$                   | Split Spoo<br>Shelby Tu<br>Air Rotan<br>Denison | be<br>(                          | A =<br>W =<br>C =<br>P = | Auger<br>Wash<br>Core<br>Piston      |                                    | <u>DEFINITIONS</u><br>SPT = Standard Penetration Test (ASTM D-1586) (Blows/0.5')<br>RQD = Rock Quality Designation (%)<br>Lab. Class. = USCS (ASTM D-2487) or AASHTO (ASTM D-3282)<br>Lab. Moist. = Moisture Content (ASTM D-2216) Dry Weight Basis |      |                                           |                         |  |  |
|---------------------------------|-------------------------------------------------|----------------------------------|--------------------------|--------------------------------------|------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-------------------------------------------|-------------------------|--|--|
| Depth<br>(Ft.)                  | Sample<br>Type<br>and<br>No.                    | Samp.<br>Rec.<br>(Ft.<br>&<br>%) | SPT<br>or<br>RQD         | Lab.<br>Class.<br>or<br>Pen.<br>Rate | Hnu<br>tab.<br>Moist<br>&<br>(ppm) | Visual Description                                                                                                                                                                                                                                  | Well | Installation<br>Detail                    | Elevation               |  |  |
| -<br>11-<br>12- <sup>12,0</sup> | 5-6                                             | 2.9                              | 2<br>3<br>3<br>2         |                                      | <۱                                 | Continued from Sheet 1<br>STUT AND CLAY, SOME FING SARIA SAND, GROW<br>BROWN, WET, STIFE                                                                                                                                                            |      | WELL SOLC<br>From<br>0:0<br>70<br>32.0 f- | 5.80                    |  |  |
| 13_<br>14<br>14                 | 5-7                                             | 2,0                              | 3<br>43<br>4             |                                      | 41                                 | SILT AND LLAY, SOME FING GARINSAND,<br>GREY, WET STIFF -                                                                                                                                                                                            | -    | 2052<br>CRSW00<br>CROM<br>1010            |                         |  |  |
| -<br>15-<br>16- <u>16</u>       | 5-8                                             | 2.0                              | 4 4 4                    |                                      | 4                                  | SAND ANDSILT, FINE GAAN, BLACK GRED.<br>BROWN, WET, SOFT D MEDIUM STIFF<br>SOME CLAY                                                                                                                                                                |      | 70<br>27.0 FT                             | 10.30                   |  |  |
| 17<br>18 <u>18. 0</u>           | 5-9                                             | 2.0                              | 45 45 45                 |                                      | 41                                 | TREE ROOTFICON 16.5 TO 1675' 17.5<br>SANOANOSILT, LITTLE CLAY,<br>GREY WET, MICOUN STIFF. BIS                                                                                                                                                       |      |                                           | 12.80                   |  |  |
| 19<br>20 <u>که.ت</u>            | 5-10                                            | 2.0                              | 44                       |                                      | 4                                  | SAND, FINE GRAIN, SOME SILT, GRES, BLACK<br>WET, BOGTION MEDIUM JTIRE                                                                                                                                                                               |      |                                           |                         |  |  |
| 21                              | 5-11                                            | 1                                | 7 5<br>7 7               | Į                                    | <                                  | SAWA IGING GRAIN, SOME SILT GRAN BALK -                                                                                                                                                                                                             |      |                                           |                         |  |  |
| 23<br>24 <del>24 -</del>        | 5-12                                            | 2.0                              | 42                       |                                      | 41                                 | SAND, FINE AND MEDGUNGADIN, LITTE SILT<br>BROWN, WET, LOUSE TO MEDIUM<br>DENJE                                                                                                                                                                      |      |                                           |                         |  |  |
| 25<br>26                        |                                                 | 1.0                              | 12                       |                                      | 4                                  | -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-                                                                                                                                                         |      |                                           |                         |  |  |
| 27<br>28 <del>28.</del><br>29   |                                                 | -                                | 2 <sub>1</sub>           |                                      | < 1                                | SAND, FINE AND MEDIUM GREW, LITTLE SILT -<br>SAEN AND LIMESTONE FREGMENTS. MEDIUM -<br>DENSE, UKT GRESNI, GREEN -<br>TO VERY DENSE                                                                                                                  |      | WELL<br>SUREGN<br>TUR<br>27.0<br>7332.0FT |                         |  |  |
| 30-30                           | G CO.:                                          | PAR                              | CC 3.                    | 1                                    |                                    | BAKER REP .: BRIAN                                                                                                                                                                                                                                  |      |                                           | _                       |  |  |
| DRILLER                         | :                                               | 418                              |                          |                                      |                                    | BORING NO.: <u>דש וז-</u>                                                                                                                                                                                                                           | B    | SHE                                       | ET <u>2</u> OF <u>2</u> |  |  |



#### sta sinna ≜ asiana a **TEST BORING AND WELL CONSTRUCTION RECORD**

Baker Environmental, 100

an an the

PROJECT: SG-I - GTO 232 - SCREELING

.

5.0. NO .: 62470-232-000-03600 BORING NO .: TW17-is

- ---- Series

| S<br>T<br>R<br>C | ' = S<br>t = A | plit Spoc<br>helby Tu<br>Air Rotary<br>Denison | be<br>/                          | A =<br>W =<br>C =<br>P = |                                      |                                | DEFINITIONS<br>SPT = Standard Penetration Test (ASTM D-1586) (Blows/0.5')<br>RQD = Rock Quality Designation (%)<br>Lab. Class. = USCS (ASTM D-2487) or AASHTO (ASTM D-3282)<br>Lab. Moist. = Moisture Content (ASTM D-2216) Dry Weight Basis |                     |             |  |  |  |
|------------------|----------------|------------------------------------------------|----------------------------------|--------------------------|--------------------------------------|--------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|-------------|--|--|--|
| Deş<br>(Fi       |                | Sample<br>Type<br>and<br>No.                   | Samp.<br>Rec.<br>(Ft.<br>&<br>%) | SPT<br>or<br>RQD         | Lab.<br>Class.<br>or<br>Pen.<br>Rate | Hoos<br>Jabo<br>Moist<br>Moist | Visual Description                                                                                                                                                                                                                           | Well Instal<br>Deta | j Elevation |  |  |  |
|                  |                |                                                |                                  | 13. is                   |                                      |                                | Continued from Sheet 2 -                                                                                                                                                                                                                     |                     | 2.0 F"      |  |  |  |
| _1ر<br>_         |                | 5-16                                           | Z.0                              | 17 17                    |                                      | 41                             | SAND, FINE AND MEDIUM GRADS / GAREY -                                                                                                                                                                                                        |                     | w-B7+032.2- |  |  |  |
| <u></u> 32—      | 32.0           |                                                |                                  | 16                       |                                      |                                | SANDAND SILT, SOME CLAY, MEDIUM DENSE,                                                                                                                                                                                                       | 21                  | -27.5<br>   |  |  |  |
| 33—              |                | 5-17                                           | 1.0                              | 21<br>05                 |                                      | 21                             | wet, breen                                                                                                                                                                                                                                   |                     | n 3 2.0 -   |  |  |  |
| -<br>34          | 34.0           |                                                |                                  | 20                       |                                      | ļ                              |                                                                                                                                                                                                                                              |                     | -29.3       |  |  |  |
| -<br>25-         |                |                                                |                                  |                          |                                      |                                | END OF BORING @ 34.0 FT                                                                                                                                                                                                                      |                     | -           |  |  |  |
| -                |                |                                                |                                  |                          |                                      |                                | -                                                                                                                                                                                                                                            |                     | 4           |  |  |  |
| €6<br>-          |                |                                                |                                  |                          |                                      |                                | -                                                                                                                                                                                                                                            |                     |             |  |  |  |
| 37-              |                |                                                |                                  |                          |                                      |                                | -                                                                                                                                                                                                                                            |                     | -           |  |  |  |
| -8-              |                |                                                |                                  |                          |                                      |                                | -                                                                                                                                                                                                                                            |                     | _           |  |  |  |
| 29_              | 1              | r                                              |                                  |                          |                                      |                                | -                                                                                                                                                                                                                                            |                     | -           |  |  |  |
| 40 -             |                |                                                |                                  |                          |                                      |                                |                                                                                                                                                                                                                                              |                     | -<br>-      |  |  |  |
|                  |                |                                                |                                  |                          |                                      |                                |                                                                                                                                                                                                                                              |                     | 4           |  |  |  |
| <u> </u> -1-     |                |                                                |                                  |                          |                                      |                                | -                                                                                                                                                                                                                                            |                     |             |  |  |  |
| ÷2-              | -              |                                                |                                  |                          |                                      |                                | -                                                                                                                                                                                                                                            |                     | -]          |  |  |  |
| ÷3 -             |                |                                                |                                  |                          |                                      |                                | -                                                                                                                                                                                                                                            |                     | _           |  |  |  |
| 4-               | 4              |                                                |                                  |                          |                                      |                                | -                                                                                                                                                                                                                                            | 4                   |             |  |  |  |
| 45-              | 1              |                                                |                                  |                          |                                      |                                |                                                                                                                                                                                                                                              |                     |             |  |  |  |
|                  |                |                                                |                                  |                          |                                      |                                |                                                                                                                                                                                                                                              | -                   | -           |  |  |  |
| 46-              |                |                                                |                                  |                          |                                      |                                |                                                                                                                                                                                                                                              |                     |             |  |  |  |
| 47.              | -              |                                                |                                  |                          |                                      |                                | -                                                                                                                                                                                                                                            |                     |             |  |  |  |
| 48               | -              |                                                |                                  |                          |                                      |                                |                                                                                                                                                                                                                                              | 4                   | -           |  |  |  |
| 49.              |                |                                                |                                  |                          |                                      |                                |                                                                                                                                                                                                                                              |                     | -           |  |  |  |
| 50.              | -              |                                                |                                  |                          |                                      |                                |                                                                                                                                                                                                                                              |                     | -           |  |  |  |
|                  |                | <br>G CO.:                                     |                                  | <u>_</u>                 | - :00                                | <br>ت محتوره                   | BAKER REP.: BAKER                                                                                                                                                                                                                            | N E. DAUS           |             |  |  |  |
|                  |                | ۲: <u></u>                                     |                                  |                          |                                      |                                | BORING NO.: TOD:                                                                                                                                                                                                                             |                     | SHEET 3 OF  |  |  |  |



Baker Environmental, Inc

.

### **TEST BORING AND WELL CONSTRUCTION RECORD**

 PROJECT:
 SGT-CTD Z32 - SCREENING

 S.O. NO.:
 62476-232-000 -03600

 BORING NO.:
 TW17-C

 COORDINATES:
 EAST:
 2465786.5749

 ELEVATION:
 SURFACE:
 4.70

|                                       |                | ······································ |                    |        |                       |              |                       |           |                         |                         |
|---------------------------------------|----------------|----------------------------------------|--------------------|--------|-----------------------|--------------|-----------------------|-----------|-------------------------|-------------------------|
| RIG: CME                              | SSTO TRA       | CK MOU.                                | JΤ                 |        |                       |              |                       |           |                         |                         |
|                                       | SPLIT<br>SPOON | CASING                                 | AU                 | GERS   | CORE<br>BARREL        | DATE         | PROGRESS<br>(FT)      | WEATHER   | WATER<br>DEPTH<br>(FT)  |                         |
| SIZE (DIAM.)                          |                |                                        | 3                  | YID    |                       | 4-16-96      | 0-23.5                | LO'S SUNN | 36                      | OHRS.                   |
| LENGTH                                |                |                                        |                    | Fr     |                       |              |                       |           |                         |                         |
| ТҮРЕ                                  |                |                                        | 1                  | S      |                       |              |                       |           |                         |                         |
| HAMMER WT.                            |                |                                        |                    |        |                       |              |                       |           |                         |                         |
| FALL                                  |                |                                        |                    |        | -                     |              |                       |           |                         |                         |
| STICK UP                              |                |                                        |                    |        |                       |              |                       |           |                         |                         |
| REMARKS:                              |                |                                        |                    |        |                       | <del>.</del> |                       |           |                         |                         |
| S = SplitSp<br>T = Shelby             |                | = Auger<br>= Wash                      |                    |        | VELL                  | DIAM         | TY                    | PE        | TOP<br>DEPTH<br>(FT)    | BOTTOM<br>DEPTH<br>(FT) |
| R = Air Rot<br>D = Deniso             | ary C          | = Core                                 |                    | Well ( | Casing                | μi.          | PVC Threaded          |           | Ö                       | 18.5                    |
|                                       | N = No Samp    |                                        |                    | Well S | Screen                | PVC Slotted  |                       |           | 18.5                    | 23.5                    |
| Samj<br>Depth Typ<br>(Ft.) and<br>No  | e Ft. SP       |                                        | Lab.<br>Moist<br>% |        | Visual                | Descripti    | on                    | Insta     | 'ell<br>llation<br>tail | Elevation               |
| -<br>6 -<br>7 -<br>8 -<br>9 -<br>10 - | - 7            |                                        |                    | SEE    | - BORINO<br>- SOIL IN |              | トゥー<br>Match to Sheet |           |                         |                         |
| DRILLING CO                           |                | the wor                                | FF                 |        |                       |              | RREP.: BRIE           |           | <15<br>CL               | IEET <u>1</u> OF        |
| DRILLER:                              | CHIP           |                                        |                    |        |                       | <u> </u>     | NG NO.: <u>T</u>      |           | Sr                      |                         |

Baker

Baker Environmental, toc

# TEST BORING AND WELL CONSTRUCTION RECORD

PROJECT: SGT-CTO 232-SCREENING S.O. NO.: 62470-0000-03600 BORING NO.: TW17-C

| T = 1<br>R = 1 | Split Spoc<br>Shelby Tu<br>Air Rotan<br>Denison | be<br>/                          | A =<br>W =<br>C =<br>P = |                                      |                    | DEFINITIONS<br>SPT = Standard Penetration Test (ASTM D-1586) (Blows/0.5')<br>RQD = Rock Quality Designation (%)<br>Lab. Class. = USCS (ASTM D-2487) or AASHTO (ASTM D-3282)<br>Lab. Moist. = Moisture Content (ASTM D-2216) Dry Weight Basis |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |
|----------------|-------------------------------------------------|----------------------------------|--------------------------|--------------------------------------|--------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Depth<br>(Ft.) | Sample<br>Type<br>and<br>No.                    | Samp.<br>Rec.<br>(Ft.<br>&<br>%) | SPT<br>or<br>RQD         | Lab.<br>Class.<br>or<br>Pen.<br>Rate | Lab.<br>Moist<br>% | Visual Description                                                                                                                                                                                                                           | Well Installation<br>Detail<br>Elevation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |  |
| 11             | IG CO.:                                         |                                  |                          | - 200                                | FF                 | Continued from Sheet 1<br>SEE BORING LOG TWITTS<br>For soil INFORMATION<br>ENDOF BORING @ 235 FT<br>Match to Sheet 3<br>BAKER REP.: BRO                                                                                                      | Societ<br>From $-$<br>Dio to $-$<br>23.5 FT $-$<br>UELL<br>(Asinstring From $-$<br>Dio the $-$<br>IB:S FT $-$<br>IB:S FT $-$<br>IB:S -<br>IB:S $-$<br>IB:S -<br>IB:S -<br>IB |  |  |  |  |
| DRILLEI        |                                                 | CH                               |                          |                                      |                    | BORING NO.: <u></u> か!                                                                                                                                                                                                                       | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |  |

Baker

Baker Environmental, Inc

#### **TEST BORING AND WELL CONSTRUCTION RECORD**

PROJECT: SG-I - LTUZZ - SCREEN'NG

S.O. NO.: <u>62.470-232-0000-03600</u> COORDINATES: EAST: <u>2465761.5149</u> ELEVATION: SURFACE: <u>4.60</u> BORING NO.: <u>Twis-A</u> NORTH: <u>363409,7343</u> TOP OF STEEL CASING:

-

| RIG:                                                                     |                          |                    |                    |        |                |                          |                  |           |                                                                                                                           |                         |
|--------------------------------------------------------------------------|--------------------------|--------------------|--------------------|--------|----------------|--------------------------|------------------|-----------|---------------------------------------------------------------------------------------------------------------------------|-------------------------|
| LME                                                                      | SSO TR<br>SPLIT<br>SPOON | CASING             |                    | GERS   | CORE<br>BARREL | DATE                     | PROGRESS<br>(FT) | WEATHER   | WATER<br>DEPTH<br>(FT)                                                                                                    | TIME                    |
| SIZE (DIAM.)                                                             |                          |                    | 34                 | IO     |                | 4/16/96                  | 0-15.0           | 70'S SUNI | 17 6                                                                                                                      | O Hiru:                 |
| LENGTH                                                                   |                          |                    | SF                 |        |                |                          |                  |           |                                                                                                                           |                         |
| ТҮРЕ                                                                     |                          |                    |                    | ٤      |                |                          |                  |           |                                                                                                                           |                         |
| HAMMER WT.                                                               |                          |                    |                    |        |                |                          |                  |           |                                                                                                                           |                         |
| FALL                                                                     |                          |                    |                    |        |                |                          |                  |           |                                                                                                                           |                         |
| STICK UP                                                                 |                          |                    |                    |        |                |                          |                  |           |                                                                                                                           |                         |
| REMARKS:                                                                 |                          |                    |                    |        |                | <del></del>              |                  |           |                                                                                                                           |                         |
| S = Split Sp<br>T = Shelby                                               |                          | = Auger<br>= Wash  |                    |        | VELL           | DIAM                     | TY               | PE        | TOP<br>DEPTH<br>(FT)                                                                                                      | BOTTOM<br>DEPTH<br>(FT) |
| R = Air Rot $D = Deniso$                                                 | ary C                    | = Core<br>= Piston |                    | Well ( | Casing         | 111.                     | PVC Threaded     | l"dia.    | <u> </u>                                                                                                                  | 5                       |
|                                                                          | N = No Sampi             | e                  |                    | Well S | Screen         | 111                      | PVC Slotted      | Dial'Stat | 5                                                                                                                         | 15                      |
| Samp<br>Depth Type<br>(Ft.) and<br>No.                                   | Ft. or                   | or                 | Lab.<br>Moist<br>% |        | Visual         | Descriptio               | on               | Insta     | fell<br>Ilation<br>Itail                                                                                                  | Elevation               |
| -<br>1 -<br>2 -<br>3 -<br>4 -<br>5 -<br>6 -<br>7 -<br>8 -<br>9 -<br>10 - | 2                        |                    |                    |        |                | or Log -<br>Nformer<br>N |                  |           | WELL<br>Source<br>Source<br>Source<br>Is a fr<br>Well<br>Surger fro<br>Source<br>Is a fr<br>Well<br>Surger fro<br>Is a fr | -                       |
| DRILLING CO.                                                             |                          |                    | ol F               | (°     |                |                          | RREP .: BR       |           |                                                                                                                           | PT 1 05 1               |
| DRILLER:                                                                 | <u>VALUNI</u>            |                    |                    |        |                | EORI                     | NG NO.: TW       | 13-A      | SHE                                                                                                                       | ET <u>1</u> OF <u>2</u> |



Baker Environmental, Inc

PROJECT: SGI - CTO 232 - SCREENING S.O. NO .: 62470-232-0000-03600 BORING NO .: TW 18 - A

•

| T =<br>R =                                                                                                                                                                                                                     | Split Spoo<br>Shelby Tu<br>Air Rotar<br>Denison | be<br>Y                          | A =<br>W =<br>C =<br>P = | Auger<br>Wash<br>Core<br>Piston      |                    | DEFINITIONS<br>SPT = Standard Penetration Test (ASTM D-1586) (Blows/0.5')<br>RQD = Rock Quality Designation (%)<br>Lab. Class. = USCS (ASTM D-2487) or AASHTO (ASTM D-3282)<br>Lab. Moist. = Moisture Content (ASTM D-2216) Dry Weight Basis |                             |                        |  |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|----------------------------------|--------------------------|--------------------------------------|--------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|------------------------|--|--|--|
| Depth<br>(Ft.)                                                                                                                                                                                                                 | Sample<br>Type<br>and<br>No.                    | Samp.<br>Rec.<br>(Ft.<br>&<br>%) | SPT<br>or<br>RQD         | Lab.<br>Class.<br>or<br>Pen.<br>Rate | Lab.<br>Moist<br>% | Visual Description                                                                                                                                                                                                                           | Well Installation<br>Detail | Elevation              |  |  |  |
| $ \begin{array}{c} 11 - \\ - \\ 12 - \\ 13 - \\ 13 - \\ 14 - \\ 15 - \underbrace{15 \cdot 0}_{15 \cdot 0} \\ 16 - \\ 17 - \\ 18 - \\ - \\ 18 - \\ - \\ 18 - \\ - \\ - \\ 18 - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\$ | A-N                                             |                                  |                          |                                      |                    | END OF BORING @ 15:0 FT                                                                                                                                                                                                                      | BOTTOM PLUC                 | -10.40                 |  |  |  |
| 19<br>20<br>21<br>22<br>23<br>24<br>25<br>26<br>27<br>28<br>29                                                                                                                                                                 |                                                 |                                  |                          |                                      |                    |                                                                                                                                                                                                                                              |                             |                        |  |  |  |
| 30                                                                                                                                                                                                                             |                                                 |                                  |                          | Wor                                  | FF                 | Match to Sheet 3           BAKER REP.:         BRIA                                                                                                                                                                                          | NE DAVIS                    |                        |  |  |  |
| DRILLEF                                                                                                                                                                                                                        | l:                                              | WAL                              | <u>-3</u>                |                                      | <u>.</u>           | BORING NO.: TW                                                                                                                                                                                                                               | SHEE                        | Г <u>2</u> ОF <u>2</u> |  |  |  |



Baker Environmental, ne

### **TEST BORING AND WELL CONSTRUCTION RECORD**

PROJECT: SGI - CTO 232 - SCREEN, DG

S.O. NO.: 62470 - 232 - 000 - 33600 COORDINATES: EAST: 2465761.5149 ELEVATION: SURFACE: 4.60

BORING NO.: TW 18-B NORTH: 363409.7343 TOP OF STEEL CASING: -

| <u></u>                                                                                           |                |                    |                                        |                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                         |                    |                     |                                                                                          |                         |
|---------------------------------------------------------------------------------------------------|----------------|--------------------|----------------------------------------|--------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|--------------------|---------------------|------------------------------------------------------------------------------------------|-------------------------|
| RIG: CME                                                                                          | 850 TR         | ucic moc           | NT                                     |                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                         |                    |                     |                                                                                          |                         |
|                                                                                                   | SPLIT<br>SPOON | CASING             |                                        | GERS                                                         | CORE<br>BARREL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | DATE                                                                    | PROGRESS<br>(FT)   | WEATHER             | WATER<br>DEPTH<br>(FT)                                                                   | TIME                    |
| SIZE (DIAM.)                                                                                      | 1.4312         |                    | 3                                      | 4 IO                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4/16/96                                                                 | 0-32.0             | 70'S SUNNY          | . 6                                                                                      | 0 120-1                 |
| ENGTH                                                                                             | ZFT            |                    | 1                                      | -<br>FT                                                      | <b>.</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                         |                    |                     |                                                                                          |                         |
| ГҮРЕ                                                                                              | SS             |                    | ]-                                     | łs                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                         |                    |                     |                                                                                          |                         |
| HAMMER WT.                                                                                        | 14016.         |                    |                                        |                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                         |                    |                     |                                                                                          |                         |
| FALL                                                                                              | 3010           |                    |                                        |                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                         |                    |                     |                                                                                          | <u> </u>                |
| STICK UP                                                                                          | <u> </u>       |                    |                                        |                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                         |                    |                     |                                                                                          |                         |
| REMARKS:                                                                                          |                | <u></u>            | ·                                      |                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                         |                    |                     |                                                                                          |                         |
| S = SplitSplitSplitSplitSplitSplitSplitSplit                                                      |                | = Auger<br>= Wash  |                                        |                                                              | VELL<br>DRMATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | DIAM                                                                    | זיד                | PE                  | TOP<br>DEPTH<br>(FT)                                                                     | BOTTOM<br>DEPTH<br>(FT) |
| R = Air Rot<br>D = Deniso                                                                         | tary C         | = Core<br>= Piston |                                        | Well (                                                       | Casing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1//*                                                                    | PVC Threaded       | N' dia              | 0.                                                                                       | 27.0                    |
|                                                                                                   | N = No Samp    | le                 |                                        | Wells                                                        | Screen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ["                                                                      | PVC Slotted        | 0.01"sist 27.0      |                                                                                          | 32.0                    |
| Samj<br>Depth Typ<br>(Ft.) and<br>No                                                              | e Ft. Of       |                    | Hau<br>Lab.<br>Moist                   |                                                              | Visual                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Descriptio                                                              | on                 | Wi<br>Instal<br>Def | ation                                                                                    | Elevatio                |
| $4 \frac{-4.0}{-5}$ $5 \frac{-4.0}{-5}$ $6 \frac{-4.0}{-5}$ $7 \frac{-5}{-5}$ $8 \frac{-8.0}{-5}$ | -7 1.5 3       | 2                  | <1<br><1<br><1<br><1<br><1<br><1<br><1 | SAUL<br>SAUL<br>SAUL<br>SAUL<br>SAUL<br>SAUL<br>SAUL<br>SAUL | AUP CLASS<br>AUP CLASS<br>AUD SILT<br>SREW VIN<br>BROWSNIC<br>BROWSNIC<br>BROWSNIC<br>BROWSNIC<br>BROWSNIC<br>BROWSNIC<br>BROWSNIC<br>BROWSNIC<br>BROWSNIC<br>BROWSNIC<br>BROWSNIC<br>BROWSNIC<br>BROWSNIC<br>BROWSNIC<br>BROWSNIC<br>BROWSNIC<br>BROWSNIC<br>BROWSNIC<br>BROWSNIC<br>BROWSNIC<br>BROWSNIC<br>BROWSNIC<br>BROWSNIC<br>BROWSNIC<br>BROWSNIC<br>BROWSNIC<br>BROWSNIC<br>BROWSNIC<br>BROWSNIC<br>BROWSNIC<br>BROWSNIC<br>BROWSNIC<br>BROWSNIC<br>BROWSNIC<br>BROWSNIC<br>BROWSNIC<br>BROWSNIC<br>BROWSNIC<br>BROWSNIC<br>BROWSNIC<br>BROWSNIC<br>BROWSNIC<br>BROWSNIC<br>BROWSNIC<br>BROWSNIC<br>BROWSNIC<br>BROWSNIC<br>BROWSNIC<br>BROWSNIC<br>BROWSNIC<br>BROWSNIC<br>BROWSNIC<br>BROWSNIC<br>BROWSNIC<br>BROWSNIC<br>BROWSNIC<br>BROWSNIC<br>BROWSNIC<br>BROWSNIC<br>BROWSNIC<br>BROWSNIC<br>BROWSNIC<br>BROWSNIC<br>BROWSNIC<br>BROWSNIC<br>BROWSNIC<br>BROWSNIC<br>BROWSNIC<br>BROWSNIC<br>BROWSNIC<br>BROWSNIC<br>BROWSNIC<br>BROWSNIC<br>BROWSNIC<br>BROWSNIC<br>BROWSNIC<br>BROWSNIC<br>BROWSNIC<br>BROWSNIC<br>BROWSNIC<br>BROWSNIC<br>BROWSNIC<br>BROWSNIC<br>BROWSNIC<br>BROWSNIC<br>BROWSNIC<br>BROWSNIC<br>BROWSNIC<br>BROWSNIC<br>BROWSNIC<br>BROWSNIC<br>BROWSNIC<br>BROWSNIC<br>BROWSNIC<br>BROWSNIC<br>BROWSNIC<br>BROWSNIC<br>BROWSNIC<br>BROWSNIC<br>BROWSNIC<br>BROWSNIC<br>BROWSNIC<br>BROWSNIC<br>BROWSNIC<br>BROWSNIC<br>BROWSNIC<br>BROWSNIC<br>BROWSNIC<br>BROWSNIC<br>BROWSNIC<br>BROWSNIC<br>BROWSNIC<br>BROWSNIC<br>BROWSNIC<br>BROWSNIC<br>BROWSNIC<br>BROWSNIC<br>BROWSNIC<br>BROWSNIC<br>BROWSNIC<br>BROWSNIC<br>BROWSNIC<br>BROWSNIC<br>BROWSNIC<br>BROWSNIC<br>BROWSNIC<br>BROWSNIC<br>BROWSNIC<br>BROWSNIC<br>BROWSNIC<br>BROWSNIC<br>BROWSNIC<br>BROWSNIC<br>BROWSNIC<br>BROWSNIC<br>BROWSNIC<br>BROWSNIC<br>BROWSNIC<br>BROWSNIC<br>BROWSNIC<br>BROWSNIC<br>BROWSNIC<br>BROWSNIC<br>BROWSNIC<br>BROWSNIC<br>BROWSNIC<br>BROWSNIC<br>BROWSNIC<br>BROWSNIC<br>BROWSNIC<br>BROWSNIC<br>BROWSNIC<br>BROWSNIC<br>BROWSNIC<br>BROWSNIC<br>BROWSNIC<br>BROWSNIC<br>BROWSNIC<br>BROWSNIC<br>BROWSNIC<br>BROWSNIC<br>BROWSNIC<br>BROWSNIC<br>BROWSNIC<br>BROWSNIC<br>BROWSNIC<br>BROWSNIC<br>BROWSNIC<br>BROWSNIC<br>BROWSNIC<br>BROWSNIC<br>BROWSNIC<br>BROWSNIC<br>BROWSNIC<br>BROWSNIC<br>BROWSNIC<br>BROWSNIC<br>BROWSNIC<br>BROWSNIC<br>BROWSNIC<br>BROWSNIC<br>BROWSNIC<br>BROWSNIC<br>BROWSNIC<br>BROWSNIC<br>BROWSNIC<br>BROWSNIC<br>BROWSNIC<br>BROWSNIC<br>BROWSNIC<br>BROWSNIC<br>BROWSNIC<br>BROWSNIC<br>BROWSNIC<br>BROWSNIC<br>BROWSNIC<br>BROWSNIC<br>BROWSNIC<br>BROWSNIC<br>BROWSNIC<br>BROWSNIC<br>BROWSNIC<br>BROWSNIC<br>BROWSNIC<br>BROWSNIC<br>BROWSNIC<br>BROWSNIC<br>BROWSNIC<br>BROWSNIC<br>BROWSNIC<br>BROWSNIC<br>BROWSNIC<br>BROWSNIC<br>BROWSNIC<br>BROWSNIC<br>BROWSNIC<br>BROWSNIC<br>BROWSNIC<br>BROWSNIC<br>BROWSNIC<br>BROWSNIC<br>BROWSNIC<br>BROWSNIC<br>B | , LINE OF<br>STITE OF<br>FINE GRAM<br>FINE GRAM<br>MOTOEO. 1<br>MOTOEO. | 500 ων , 6 χτη<br> |                     | WEUL<br>Socie<br>From<br>0.078<br>38.0 FT<br>1322<br>CASING<br>Tecom<br>0.075<br>27:0 FT |                         |
| 10                                                                                                |                |                    |                                        |                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                         | Match to Sheet     | .2                  |                                                                                          | _                       |
| DRILLING CO                                                                                       |                | <u></u>            |                                        |                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                         |                    | E CA                |                                                                                          |                         |
| DRILLER:                                                                                          | <u>CH-1</u>    |                    |                                        |                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | EORI                                                                    | NG NO.: 📆          | 3-3                 | SHE                                                                                      | ET <u>1</u> OF          |



Baker Environmental, Inc.

#### 613h **TEST BORING AND WELL CONSTRUCTION RECORD**

.....

PROJECT: SGI - CA 232 - SCREENING S.O. NO .: 6240 - 232 -0000 -03500 BORING NO .: TWIS-B

und damer av

···· ·· ·

- 72a

| T = 9<br>R = 7                       | Split Spoo<br>Shelby Tu<br>Air Rotan<br>Denison | ibe<br>y                         | A =<br>W =<br>C =<br>P = | Wash                                 |                                      | DEFINITIONS<br>SPT = Standard Penetration Test (ASTM D-1586) (Blows/0.5')<br>RQD = Rock Quality Designation (%)'<br>Lab. Class. = USCS (ASTM D-2487) or AASHTO (ASTM D-3282)<br>Lab. Moist. = Moisture Content (ASTM D-2216) Dry Weight Basis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                           |                         |  |  |  |
|--------------------------------------|-------------------------------------------------|----------------------------------|--------------------------|--------------------------------------|--------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|-------------------------|--|--|--|
| Depth<br>(Ft.)                       | Sample<br>Type<br>and<br>No.                    | Samp.<br>Rec.<br>(Ft.<br>&<br>%) | or<br>RQD                | Lab.<br>Class.<br>or<br>Pen.<br>Rate | Hnus<br>Letb.<br>Moist<br>%<br>(ppn) | Visual Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Well Installation<br>Detail               | Elevation               |  |  |  |
| -<br>11-<br>-<br>12- <sup>12,0</sup> | 5-6                                             | 210                              | 567                      |                                      | 21                                   | Continued from Sheet 1<br>SAND, F. J. Comm. , Gater<br>SAND, F. J. Comm. , Comm. Sond Start, BROWN, BOOSE<br>TO MODIFY (Sond Start, BROWN, BOOSE<br>TO MODIFY (Sond Start, BROWN, BOOSE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Went<br>Sock<br>From<br>0:0 TO<br>32:0 Ft | 6.40<br>                |  |  |  |
| 13_<br>14_ <u>1</u>                  | 5-7                                             | 2.0                              | 200<br>7<br>7            |                                      | <1                                   | SADD, FINE GARIN, SOME TO LITTLE SIUT; -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | · LAS:NG<br>FROM<br>0:070<br>27.0Ft       |                         |  |  |  |
| 15                                   | 5-8                                             | 03                               | CD 00                    |                                      | <1                                   | SAND, FINE GARIN, JUNESIUT: VET -<br>SOFT TO MEDIUM DENSE, BLOUN -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | WELL<br>Sureen<br>From<br>27.0 TO         |                         |  |  |  |
| 17<br>1818.0                         | 5-9                                             | 1.5                              | 2 N 18                   |                                      | <1                                   | SAW, FINE GRAIN, SOME SUT, WET<br>SOFT TO DEFORM DEFORT BROWN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 32.0 Fr                                   |                         |  |  |  |
| -<br>19<br>20 <sup>20.0</sup>        | 5-10                                            | 1.5                              | 5 5                      |                                      | <,                                   | SAND, FLUCKING, SOME STAT, US -<br>SOTT, BROWNS 19.5<br>SAND, FINE AND MEDIUM GORIN, LITTLE STUT, -<br>BROWN, WET, LOOSE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                           | -<br><br>               |  |  |  |
| 21 -<br>22 - <sup>22.0</sup>         | 5-11                                            | 1,5                              | 78<br>12                 |                                      | ۷۱                                   | SAND, FING ADD MECLON GRAMILIKELATION<br>SILT, BROWN, WET, LOOSE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                           | -                       |  |  |  |
| $23 - \frac{1}{24 - \frac{24}{2}}$   | 5-12                                            | ·2.0                             | 3                        |                                      | 4                                    | SAND, FINE END MEDIUM SALIN, Erace SILF -<br>BROWN: WET, LOOSE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                           |                         |  |  |  |
| 25<br>26                             | 5-13                                            | 2.0                              | 13,7                     |                                      | 41                                   | 2510<br>SANO, FINE AND MEDIUM GRAIN, LITTE SILT -<br>SHELL AND LIMESTING FRAGMENTS, BREE<br>PRATTALLY COMENTER DENSE RULE OF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                           | -20.40                  |  |  |  |
| 27<br>282 <i>9</i> ,                 | S-14                                            | 2.0                              | 32                       | 2                                    | 41                                   | SAND UTLED BROWN WE - 214<br>SAND UTLED BROWN WE - 214<br>SAND FINE AND ITSOUM GALL UTLE GALL<br>GRAN, UTLE SHE SHE LAND UTLES ON S. 40<br>BROWNEND SHE SHE SHE LAND UTLES ON S. 40<br>MARKING CHE SHE SHE AND LAND COMES ON S. 40<br>MARKING CHE SHE SHE SHE SHE SHE SHE SHE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                           |                         |  |  |  |
| 29<br>30 <u>30,</u>                  | 5-15                                            | 5.3                              | ین<br>۶۶<br>پار          |                                      | 4                                    | SAND SHELL FRAGE BOOM WET 29.<br>SAND SHELL FRAGE BOOM GO AND SHELL STORE STOR<br>SHELL HOLENS FOR STORE AND SHELL STORE STORE<br>SHELL HOLENS FOR STORE STORE MET STORE ST |                                           |                         |  |  |  |
| DRILLIN<br>DRILLER                   |                                                 | PAR                              | rat                      | 7 h                                  | JOLFF                                | BAKER REP.:<br>BORING NO.:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                           | ET <u>2</u> OF <u>3</u> |  |  |  |

# Baker

#### **TEST BORING AND WELL CONSTRUCTION RECORD**

Baker Environmental, Inc

-

PROJECT: SGT-CTO 232 - SOREENING

S.O. NO .: 62470-232-0000-03600 BORING NO .: TWIS-B

1.00

| T =<br>R =     | Split Spoo<br>Shelby Tu<br>Air Rotan<br>Denison | ibe<br>Y                         | A =<br>W =<br>C =<br>P = | Auger<br>Wash<br>Core<br>Piston      |                                | DEFINITIONS<br>SPT = Standard Penetration Test (ASTM D-1586) (Blows/0.5')<br>RQD = Rock Quality Designation (%)<br>Lab. Class. = USCS (ASTM D-2487) or AASHTO (ASTM D-3282)<br>Lab. Moist. = Moisture Content (ASTM D-2216) Dry Weight Basis |   |                     |                        |  |  |
|----------------|-------------------------------------------------|----------------------------------|--------------------------|--------------------------------------|--------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|---------------------|------------------------|--|--|
| Depth<br>(Ft.) | Sample<br>Type<br>and<br>No.                    | Samp.<br>Rec.<br>(Ft.<br>&<br>%) | SPT<br>or<br>RQD         | Lab.<br>Class.<br>or<br>Pen.<br>Rate | Hinu<br>Lab.<br>Moist<br>(ppm) | _                                                                                                                                                                                                                                            |   | stallation<br>etail | Elevation              |  |  |
| 31-<br>32-32-  | 5-16                                            | 2.0                              | 1- <u>11</u> 1-1         |                                      | ۲۱                             | Continued from Sheet2 LITTLE WARES-<br>SANDIMENTION AND FINE GAAN, LITTLE WARES-<br>GAAN, LITTLE FILE GAE, LIMETENS AND<br>SHEL FAR DALLT WET<br>SHOD ANDSHUT, FUEGANN, LITTLE CLAY GREEN, MGO CLOS<br>ENO OF BORING @ 32, 9 FT              |   | Botton Ruit         | -26.90<br>-27.40       |  |  |
| 33             | •                                               |                                  |                          |                                      |                                |                                                                                                                                                                                                                                              |   | -                   |                        |  |  |
| 34<br>-<br>35  |                                                 |                                  |                          |                                      |                                |                                                                                                                                                                                                                                              |   | -                   |                        |  |  |
| 36             |                                                 |                                  |                          |                                      |                                |                                                                                                                                                                                                                                              |   |                     |                        |  |  |
|                |                                                 |                                  |                          |                                      |                                | -                                                                                                                                                                                                                                            |   | -                   | -                      |  |  |
| 39             |                                                 |                                  |                          |                                      |                                | -                                                                                                                                                                                                                                            |   |                     |                        |  |  |
| +1             |                                                 |                                  |                          |                                      |                                |                                                                                                                                                                                                                                              |   | -                   |                        |  |  |
| +3             |                                                 |                                  |                          |                                      |                                | -                                                                                                                                                                                                                                            |   | -                   | -                      |  |  |
| 44             |                                                 |                                  |                          |                                      |                                | -                                                                                                                                                                                                                                            |   | -                   | -1<br>-1<br>-1         |  |  |
| 46_            |                                                 |                                  |                          |                                      |                                | -                                                                                                                                                                                                                                            |   | -                   |                        |  |  |
| 47<br>48       |                                                 |                                  |                          |                                      |                                | -                                                                                                                                                                                                                                            |   |                     |                        |  |  |
| 49_<br>50_     |                                                 |                                  |                          |                                      |                                | -                                                                                                                                                                                                                                            | - | -                   | -                      |  |  |
| DRILLI         | NG CO.:<br>R: <u>C+</u>                         |                                  | <u>a</u> atti            | سەرە                                 | ÷۴                             | BAKER REP.: BRIAN<br>BORING NO.: TW                                                                                                                                                                                                          |   | +vis<br>SHEE        | т <u>3</u> оғ <u>3</u> |  |  |

Baker

Baker Environmental, Inc

#### **TEST BORING AND WELL CONSTRUCTION RECORD**

PROJECT: SGI- CTO 232 - SCREENING

.

S.O. NO.: 62470-232-0000-03600 COORDINATES: EAST: 2465761.5149 ELEVATION: SURFACE: 4.60 BORING NO.: <u>TWIB-C</u> NORTH: <u>363409.7343</u> TOP OF STEEL CASING: \_\_\_\_\_

| RIG: Cme                                                                                                                                                                                            | 8573 TRA<br>SPLIT<br>SPOON | رد ۲۵۵۰<br>CASING  |                    | GERS   | CORE<br>BARREL | DATE       | PROGRESS<br>(FT)                  | WEATHER              | WATER<br>DEPTH<br>(FT)                                    | TIME                    |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|--------------------|--------------------|--------|----------------|------------|-----------------------------------|----------------------|-----------------------------------------------------------|-------------------------|
| SIZE (DIAM.)                                                                                                                                                                                        |                            |                    | 34                 | YID    |                | 4/16/96    | 0-23.5                            | 70'S SUNN            | , 6                                                       | OHR,                    |
| LENGTH                                                                                                                                                                                              |                            |                    | 51                 |        |                |            |                                   |                      |                                                           |                         |
| ТҮРЕ                                                                                                                                                                                                |                            |                    | H                  | 5      |                |            |                                   |                      |                                                           |                         |
| HAMMER WT.                                                                                                                                                                                          |                            |                    |                    |        |                |            |                                   | -                    |                                                           |                         |
| FALL                                                                                                                                                                                                |                            |                    |                    |        |                |            |                                   |                      |                                                           |                         |
| STICK UP                                                                                                                                                                                            |                            |                    |                    |        |                |            |                                   |                      |                                                           |                         |
| REMARKS:                                                                                                                                                                                            |                            |                    |                    |        |                |            |                                   |                      |                                                           |                         |
| S = Split Sp<br>T = Shelby                                                                                                                                                                          |                            | = Auger<br>= Wash  |                    |        | VELL           | DIAM       | TYF                               | ÞE                   | TOP<br>DEPTH<br>(FT)                                      | BOTTOM<br>DEPTH<br>(FT) |
| R = Air Rot<br>D = Deniso                                                                                                                                                                           | ary C                      | = Core<br>= Piston |                    | Well ( | Casing         | j.i        | PVC Threaded                      | 1" dia               | 0                                                         | 18.5                    |
|                                                                                                                                                                                                     | N = No Samp                |                    |                    | Well S | Screen         | 122        | PVC Slotted                       | 0.01"SLOT            | 18,5                                                      | 23,5                    |
| Sam<br>Depth Typ<br>(Ft.) and<br>No                                                                                                                                                                 | e Ft. SP                   | 4                  | Lab.<br>Moist<br>% |        | Visual i       | Descriptio | on                                | We<br>Install<br>Det | ation                                                     | Elevation               |
| $ \begin{array}{c} 1 \\ - \\ 2 \\ - \\ 3 \\ - \\ 4 \\ - \\ 5 \\ - \\ 6 \\ - \\ 7 \\ - \\ 8 \\ - \\ 9 \\ - \\ 10 \\ - \\ 10 \\ - \\ 10 \\ - \\ 10 \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ -$ | - N                        |                    |                    |        |                | Former     | - TW18-B<br>عها<br>Match to Sheet |                      | Wax<br>Sock of F. L J<br>Wasing F. K. J<br>Wasing F. F. J |                         |
| DRILLING CO                                                                                                                                                                                         |                            |                    | <u>.</u>           |        |                |            |                                   | IN E DRVS            |                                                           |                         |
| DRILLER:                                                                                                                                                                                            |                            |                    |                    |        |                | E PORI     | NG NO .: 701                      | 3-0                  | SHE                                                       | ET <u>1</u> OF 7        |



Baker Environmental, Inc

.

PROJECT: SGI - GTO 232 - SURGENING

S.O. NO .: 62470-222-0000-03600 BORING NO .: 123-3-6

| T =<br>R =                                                                                                                                                                                                                                                                               | Split Spoc<br>Shelby Tu<br>Air Rotan<br>Denison | be<br>/ | A =<br>W =<br>C =<br>P = | Auger<br>Wash<br>Core<br>Piston |                    | DEFINITIONS<br>SPT = Standard Penetration Test (ASTM D-1586) (Blows/0.5')<br>RQD = Rock Quality Designation (%)<br>Lab. Class. = USCS (ASTM D-2487) or AASHTO (ASTM D-3282)<br>Lab. Moist. = Moisture Content (ASTM D-2216) Dry Weight Basis |                                                                                                                                                                          |  |  |  |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|---------|--------------------------|---------------------------------|--------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| Depth<br>(Ft.)                                                                                                                                                                                                                                                                           | (Ft) Type (Ft. or or Mo                         |         |                          |                                 | Lab.<br>Moist<br>% | Visual Description                                                                                                                                                                                                                           | Well Installation<br>Detail <sup>Elevation</sup>                                                                                                                         |  |  |  |  |  |
| $ \begin{array}{c}     - \\     11 - \\     - \\     12 - \\     13 - \\     13 - \\     14 - \\     15 - \\     16 - \\     17 - \\     16 - \\     17 - \\     18 - \\     19 - \\     20 - \\     21 - \\     22 - \\     23 - \\     24 - \\     25 - \\     25 - \\   \end{array} $ | A-N                                             |         |                          |                                 |                    | Continued from Sheet 1<br>SEE BORING LOG TWIG-B<br>For Solu IN Framewood<br>END OF BORING AT 23,5 FT                                                                                                                                         | WELL<br>SOCIC<br>FROM<br>0:0 TD<br>235 FT<br>WELL<br>CASING<br>FROM<br>GID TD<br>18.5 FT<br>18.5 FT<br>18.5 FT<br>18.5 FT<br>18.5 FT<br>-13.90<br>70<br>-13.90<br>-18.90 |  |  |  |  |  |
| 26<br>27<br>28<br>29<br>29                                                                                                                                                                                                                                                               |                                                 |         |                          |                                 |                    | Match to Shee                                                                                                                                                                                                                                |                                                                                                                                                                          |  |  |  |  |  |
| DRILLIN<br>DRILLEI                                                                                                                                                                                                                                                                       |                                                 |         |                          |                                 |                    | BAKER REP.: <u>Br</u><br>BORING NO.: <u>TN</u>                                                                                                                                                                                               | AN E DAVIS                                                                                                                                                               |  |  |  |  |  |



Baker Environmental, Inc

----

.....

#### **TEST BORING AND WELL CONSTRUCTION RECORD**

.

PROJECT: SGI-CTOZ32-SCREENING

----

•

 S.O. NO.:
 62470-232.0000.03600
 BORING NO.:
 TW19-A

 COORDINATES:
 EAST:
 2465719.1571
 NORTH:
 363445.7345

 ELEVATION:
 SURFACE:
 10.90
 TOP OF STEEL CASING:

-

195----

| RIG                                                |                |                   |                    |             |                |            |                  |                      |                                                                                                                                     |                         |
|----------------------------------------------------|----------------|-------------------|--------------------|-------------|----------------|------------|------------------|----------------------|-------------------------------------------------------------------------------------------------------------------------------------|-------------------------|
| RIG: MOBILE                                        | SPLIT<br>SPOON | CASING            |                    | GERS        | CORE<br>BARREL | DATE       | PROGRESS<br>(FT) | WEATHER              | WATER<br>DEPTH<br>(FT)                                                                                                              | TIME                    |
| SIZE (DIAM.)                                       |                |                   | 34                 | 4ID         |                | 4/15/96    | 0-15             | 605 (60.00-          | 6                                                                                                                                   | 044-22                  |
| LENGTH                                             |                |                   | 5                  | FT          |                |            |                  |                      |                                                                                                                                     |                         |
| ТҮРЕ                                               |                |                   | H.                 | S           |                |            |                  |                      |                                                                                                                                     |                         |
| HAMMER WT.                                         |                |                   |                    |             |                |            |                  | •                    |                                                                                                                                     |                         |
| FALL                                               |                |                   |                    |             |                |            |                  |                      |                                                                                                                                     |                         |
| STICK UP                                           |                |                   |                    |             |                |            |                  |                      |                                                                                                                                     |                         |
| REMARKS:                                           |                |                   |                    |             |                | ······     |                  |                      |                                                                                                                                     |                         |
| S = Split Sp<br>T = Shelby                         |                | = Auger<br>= Wash |                    | V<br>INFC   | VELL           | DIAM       | TY               | ÞE                   | TOP<br>DEPTH<br>(FT)                                                                                                                | BOTTOM<br>DEPTH<br>(FT) |
| R = Air Rot<br>D = Deniso                          | ary C          | = Core            |                    | Well (      | Casing         | "          | PVC Threaded     | 1.0" dia             | 0                                                                                                                                   | 5                       |
|                                                    | N == No Samp   |                   |                    | Well S      | Screen         | 1"         | PVC Slotted      | D.OI"SLOT            | 5                                                                                                                                   | 15                      |
| Samp<br>Depth Type<br>(Ft.) and<br>No              | Ft. or         | 1 1               | Lab.<br>Moist<br>% |             | Visual         | Descriptio | on               | We<br>Install<br>Det | ation                                                                                                                               | Elevation               |
| 1<br>2<br>3<br>4<br>5 A-<br>6<br>7<br>8<br>9<br>10 |                |                   |                    | SE:<br>Far. | E Borg         |            | Match to Sheet   |                      | WELL<br>SOLIC<br>FROM 0.0<br>TO ISIOFT<br>WELL<br>(ASING<br>FROM<br>0.0 TO<br>S.0 FT<br>WELL<br>SCREEN<br>FROM<br>5.0 FO<br>15.0 FT |                         |
| DRILLING CO                                        |                | re world          | 4                  |             |                |            |                  | NEDAVIS              | CU0                                                                                                                                 | ET 1 OF 7               |
| DRILLER:                                           | CHIP           |                   |                    |             |                | FORI       | NG NO .: TWI     | <u>7-h</u>           | SHE                                                                                                                                 | ET <u>1</u> OF <u>2</u> |



Baker Environmental, Inc

PROJECT: 561- CTO 232- 5CREENING S.O. NO .: 62470-232-0000-03600

.

BORING NO .: Twig-A

| T = 2<br>R = 2                                           | Split Spoc<br>Shelby Tu<br>Air Rotar<br>Denison | be<br>/ | A =<br>W =<br>C =<br>P = | Auger<br>Wash<br>Core<br>Piston |  | DEFINITIONS<br>SPT = Standard Penetration Test (ASTM D-1586) (Blows/0.5')<br>RQD = Rock Quality Designation (%)<br>Lab. Class. = USCS (ASTM D-2487) or AASHTO (ASTM D-3282)<br>Lab. Moist. = Moisture Content (ASTM D-2216) Dry Weight Basis |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |
|----------------------------------------------------------|-------------------------------------------------|---------|--------------------------|---------------------------------|--|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Depth<br>(Ft.)                                           |                                                 |         |                          |                                 |  | Visual Description                                                                                                                                                                                                                           | Well Installation<br>Detail Elevation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |
| $ \begin{array}{c}                                     $ | A- س                                            |         |                          |                                 |  | Continued from Sheet 1 SEE BORING LOG TW19-B FOR SOIL INFORMETOR  END OF BORING © 15:0 FT                                                                                                                                                    | Weil           Suzzer           From           So To           Sozia           Sozia |  |  |  |  |
| DRILLIN<br>DRILLER                                       |                                                 |         | RAT                      | r wo                            |  | BAKER REP.: BR. BR. BORING NO.: TW 19                                                                                                                                                                                                        | NE. DAVIS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |



Baker Environmental, ne

#### **TEST BORING AND WELL CONSTRUCTION RECORD**

PROJECT: SGI- CDB2 - SCREENING

S.O. NO.: 62470-232 -000-0360 COORDINATES: EAST: 2465719.1571 ELEVATION: SURFACE: 10.90

BORING NO.: <u>TW19-B</u> NORTH: <u>363445.7345</u> TOP OF STEEL CASING: -

|                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | CORE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | PROGRESS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | WATER<br>DEPTH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|-------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| SPOON                         | CASING                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | AUG                                                                                                      | GERS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | BARREL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | DATE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | (FT)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | WEATHER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (FT)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | TIME                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 1.43 TO                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 31                                                                                                       | 470                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 4/15/96                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0-38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 60's CLOUR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Ohru,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| ZOFT                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5                                                                                                        | FT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 55                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Н                                                                                                        | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | · :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 140165.                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 301N                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ·····                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| oon A                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | DIAM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | TY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | PE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | TOP<br>DEPTH<br>(FT)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | BOTTOM<br>DEPTH<br>(FT)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| ary C                         | = Core                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                          | Well                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Casing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | PVC Threaded                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                          | Well                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Screen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | PVC Slotted                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| ble Rec. SP<br>Ft. or<br>& PC | T Class.<br>or<br>O Pen.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Lab.<br>Meist<br>-45                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Visual                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Descriptio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | DN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Insta                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | llation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Elevatio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 1 1                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 41                                                                                                       | Da~                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | to main                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | A, BROWS,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <b>GREJ</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | WELL<br>SOLK<br>STOM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 4 LIO -                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ۷                                                                                                        | SANG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | r fire Gra                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | , به محمد میں<br>بر <del>10</del> 05 رونی                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | , 623-7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | WELL<br>CASINF<br>That                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 3 1.5 R                       | 2<br>Z                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <۱                                                                                                       | e a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | a Guit G                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 33.0 FT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| -4 1.5 2                      | دی<br>۱                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <1                                                                                                       | SAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | IP ENO SIG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | T. E. 15 60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ٦.ċ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | - 3.90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| -5 2103                       | 1 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <1                                                                                                       | Som                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | E CLAY.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Brow Ri                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | GRANN<br>59, GRE-7<br>Match to Sheet                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                               | SPLIT       SPOON         1.43 IO       Z.0 FT         5.5       140 165.         30 r.N       30 r.N         SAMPLE TYPE       N         Soon       A         Tube       W         ary       C         n       P         N = No Sampl       SP         Samp.       Rec.         P       Ft.         01       2.0         1       2.0         2       2.0         2       2.0         2       2.0         2       1.5         2       1.5         2       1.5         2       1.5         2       1.5         2       1.5 | SPLIT<br>SPOONCASING $I. 43 TO$ $Z.OFT$ $Z.OFT$ $Z.OFT$ $SS IIIG$ $IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII$ | SPOONCASINGAUG $I. 43 TO$ $31/2$ $Z.OFT$ $5$ $SS$ $H$ $I40 Ibs$ $S$ $30 IN$ $I40 Ibs$ $SAMPLE TYPE$ $SOT IntermodelySon INI40 IbsI40 IbsI10 IbsI40 IbsI10 Ibs<$ | SPLIT<br>SPOONCASINGAUGERS $I.43 TO$ $3/4 TD$ $Z.OFT$ $SFT$ $SS$ $HS$ $I40 IbS$ $HS$ $I10 IbS$ $HS$ $I11 IbS$ $I10$ $I12 IbS$ $I10$ $I15 IbS$ $I10$ $I11 IbS$ $I10$ $I11$ $I111$ $I111$ $I111$ $I111$ | SPLIT<br>SPOONCASINGAUGERSCORE<br>BARREL1.43 TO $3/4$ TOZOFT $5$ FTSSHS140 lbS $30$ N30 N $145$ 30 N $145$ 30 N $145$ SAMPLE TYPE<br>Noon $A$ auger<br>TubeN = No Sample $Well Casing$<br>N = No SampleN = No Sample $Well Casing$<br>VisualN = No Sample $Well Casing$<br>VisualN = No Sample $Visual$<br>Per.N = No Sample $Visual$<br>Per.N = No Sample $Uab.$<br>Nerst<br>Per.N = No Sample $Uab.$<br>Class.N = No Sample $Visual$<br>Per.N = No Sample $Visual$<br>Per. | SPLIT<br>SPOONCASINGAUGERSCORE<br>BARRELDATE1.43 TD $3^{1}4$ TD $4^{1}15^{1}6$ 2.0 FrSFr55HS140 1bsS30 r.NS30 r.NS31 r.NS32 r.NS32 r.NS32 r.NS33 r.NS34 r.NS35 r.NRec.36 r.NRec.37 r.NS38 r.NRec.39 r.NRec.30 r.NRec.30 r.NRec.31 r.1C32 r.1Rec.31 r.1C32 r.1Rec.3 | SPLIT<br>SPOONCASINGAUGERSCORE<br>BARRELDATEPROGRESS<br>(FT) $I.43 TO$ $3 l_4 TD$ $4 l_{15} l_{96}$ $0 - 38$ Z.OFT $SFT$ $SFT$ $ 35$ $H5$ $  30 I.N$ $   30 I.N$ $   30 I.N$ $   30 I.N$ $   30 I.N$ $   30 I.N$ $   30 I.N$ $   30 I.N$ $   30 I.N$ $   30 I.N$ $   30 I.N$ $   30 I.N$ $   30 I.N$ $   30 I.N$ $   30 I.N$ $   30 I.N$ $   30 I.N$ $   30 I.N$ $   30 I.N$ $   30 I.N$ $   N = No SampleN = No SampleNeal CasingN = No SampleN = No SampleNeal CasingN = No Sample   11 Z.o1 I  2.0 Z_22 I.N  2.0 Z_22 I.N  2.0 Z_22 I.N$ | SPLIT<br>SPOONCASINGAUGERSCORE<br>BARRELDATEPROGRESS<br>(FT)WEATHER1.43 IO314 TO4115/960 - 3860'S CLOVE2.0 FrSFr35HS30 IN30 IN31 ReportSampleWell CasingPVC Threaded32 No33 ReportSampleVisual DescriptionN34 ReportSample35 Report36 ReportSample37 ReportSample38 Report39 Report30 Report31 Report <t< td=""><td>SPLIT<br/>SPOONCASINGAUGERSCORE<br/>BARRELDATEPROGRESS<br/>(FT)WEATHERDEPTH<br/>(FT)1.43 TO3/4 TO4/15/960-3840'S C.G.M.M.41.43 TO3/4 TO4/15/960-3840'S C.G.M.M.42.0 FTSFT3.5HS3.6 FTSFT3.7 M3.7 M3.7 M3.7 M3.7 M3.7 M3.7 M3.8 MPL<br/>M P3.8 ROD<br/>M ROD<br/>M RATE<br/>M ROD<b< td=""></b<></td></t<> | SPLIT<br>SPOONCASINGAUGERSCORE<br>BARRELDATEPROGRESS<br>(FT)WEATHERDEPTH<br>(FT)1.43 TO3/4 TO4/15/960-3840'S C.G.M.M.41.43 TO3/4 TO4/15/960-3840'S C.G.M.M.42.0 FTSFT3.5HS3.6 FTSFT3.7 M3.7 M3.7 M3.7 M3.7 M3.7 M3.7 M3.8 MPL<br>M P3.8 ROD<br>M ROD<br>M RATE<br>M ROD <b< td=""></b<> |

# Baker

A grant of

#### **TEST BORING AND WELL CONSTRUCTION RECORD**

Baker Environmental, me

State and an and a state of the state of the

PROJECT: 36-I- LTD 232 - SCREELING

S.O. NO .: 62470-232-0000-03600 BORING NO .: TW19-B

| T = 9<br>R = 4               | plit Spoc<br>helby Tu<br>Air Rotan<br>Denison | be<br>/                          | A =<br>W =<br>C =<br>P = | Auger<br>Wash<br>Core<br>Piston      |               | DEFINITIONS<br>SPT = Standard Penetration Test (ASTM D-1586) (Blows/0.5')<br>RQD = Rock Quality Designation (%)<br>Lab. Class. = USCS (ASTM D-2487) or AASHTO (ASTM D-3282)<br>Lab. Moist. = Moisture Content (ASTM D-2216) Dry Weight Basis |                                      |                         |  |  |  |  |
|------------------------------|-----------------------------------------------|----------------------------------|--------------------------|--------------------------------------|---------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|-------------------------|--|--|--|--|
| Depth<br>(Ft.)               | Sample<br>Type<br>and<br>No.                  | Samp.<br>Rec.<br>(Ft.<br>&<br>%) | SPT<br>or<br>RQD         | Lab.<br>Class.<br>or<br>Pen.<br>Rate | Lab.<br>Moist | Visual Description                                                                                                                                                                                                                           | Well Installation<br>Detail          | Elevation               |  |  |  |  |
| 11-<br>12-12.0               | 5-6                                           | ۲۰۵                              | 507<br>1<br>1            |                                      | 21            | Continued from Sheet 1<br>>UT AUD SAND, SOME CLAY <u>II.0</u><br>SLGT AWO SAND, BROWN, GREY, FINE -<br>GRANN, SOFT                                                                                                                           | Ver<br>Sour<br>From 0070-<br>38.0 Fr | -0.10                   |  |  |  |  |
| 13<br>14 <u>/۲٬۹</u>         | S-7                                           | 2,0                              | 13<br>MOL<br>MOL         |                                      | 4             | SAND AND SKT, SOME CLAY, BROWN, SOFT, WE 130<br>BAND, FING GRAW SONESILT, TARGE LLAY<br>BROWN, BOFT TO MEDIUM DENSE, WETH, O                                                                                                                 |                                      | -1.60<br>-2.10<br>-3.10 |  |  |  |  |
| -<br>15<br>16 <u> (6.0</u>   | 5-8                                           | 2.0                              | N T R                    |                                      | 4             | SAWA, FINE GRAIN, LITTLE SIGT, LITTLE -<br>COFTLE GRAIN, BAREY; MEDIUM -<br>DENTE, WET                                                                                                                                                       |                                      | -                       |  |  |  |  |
| ۔<br>17-<br>18- <u>18</u> -  | • ·                                           | 2,0                              | 26<br>15<br>12           |                                      | 41            | SANO, FINE GRAIN, BROWN, LITTLE SILT<br>GREY, BROWN, WET, SOFT TO DENSE                                                                                                                                                                      |                                      |                         |  |  |  |  |
| <br>19<br>20 <u></u> 20,     | 5-10                                          | 0,5                              | 1001                     |                                      | <1            | SAAU, ENE AND MECHIN GREN, GROND -<br>Grein, Wer, SOFT,<br>HIGHLY CONPACTED SAND @ 19.0 TO 19.5 DE                                                                                                                                           |                                      |                         |  |  |  |  |
| 21 -<br>22 - <sup>22.0</sup> | 5-11                                          | 5.0                              | wor                      |                                      | <[            | SAND, FINE GRAIN, REC, BROWN, Some -                                                                                                                                                                                                         |                                      |                         |  |  |  |  |
| 23 _<br>24 _ <del>24 ∞</del> | S-12                                          | Z. 0                             | 7                        | J                                    | <1            | SANG FINE AND MEDIUM GRAND, SHELL                                                                                                                                                                                                            |                                      |                         |  |  |  |  |
| 25<br>26 <sup></sup>         | 1                                             | 2.0                              | 12                       | -                                    | <1            | SAND, FINE AND MEDIUM BAR. N BROWN, ECO<br>UTTRE SILT, SOFT, WET<br>SAND, FINE AND MEDIUM BRAIN, BROWN RED                                                                                                                                   |                                      |                         |  |  |  |  |
| 27<br>28 <del></del> 28      | 5-14                                          | 2,0                              | to<br>Wort<br>Wort       | ŕ                                    | ~!            | SANG FINE CHE ME CALL FREE FILE                                                                                                                                                                                                              |                                      |                         |  |  |  |  |
| 29<br>30                     | 5-15                                          | 2.0                              | 1020<br>32<br>51         | 1                                    | 4.            | SAND, FINE AND MEDIUM GRAIN. BREY<br>SHELL AND LINESTING BRAMONTA WET<br>PARTIALLY LEMENTED Match to Sheet 3                                                                                                                                 |                                      |                         |  |  |  |  |
| DRILLING                     |                                               |                                  | CAT                      | τ W0                                 | ufe           | BAKER REP.: BEIA<br>BORING NO.: THE                                                                                                                                                                                                          |                                      | et <u>2</u> of <b>2</b> |  |  |  |  |

# Baker

1404

**~.** ,

# TEST BORING AND WELL CONSTRUCTION RECORD

Baker Environmental, Inc

1.2

·

PROJECT: SGI - CTOBZ-SCREENING

S.O. NO .: 12470-232-0000-03600 BORING NO .: 119-B

| T = 9<br>R = 2                                                     | Split Spoo<br>Shelby Tu<br>Air Rotary<br>Denison | be<br>/                          | A =<br>W =<br>C =<br>P =      |                                      |                                      | DEFINITIONS<br>SPT = Standard Penetration Test (ASTM D-1586) (Blows/0.5')<br>RQD = Rock Quality Designation (%)<br>Lab. Class. = USCS (ASTM D-2487) or AASHTO (ASTM D-3282)<br>Lab. Moist. = Moisture Content (ASTM D-2216) Dry Weight Basis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                         |                           |  |  |  |  |
|--------------------------------------------------------------------|--------------------------------------------------|----------------------------------|-------------------------------|--------------------------------------|--------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|---------------------------|--|--|--|--|
| Depth<br>(Ft.)                                                     | Sample<br>Type<br>and<br>No.                     | Samp.<br>Rec.<br>(Ft.<br>&<br>%) | SPT<br>or<br>RQD              | Lab.<br>Class.<br>or<br>Pen.<br>Rate | H~~<br>Lab.<br>Moist<br>%            | Visual Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Well Installatio<br>Detail                                                              | ON<br>Elevation           |  |  |  |  |
| $\begin{array}{c} - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - $ | 5-16<br>5-17<br>5-13                             | 2.0                              | 12 12 13 14 29 14 29 14 13 CO |                                      | L((m))<br>L1<br>L1<br>L1<br>L1<br>L1 | Continued from Sheet 2<br>SANG, FINE FINE MERCIUM SCE. U.<br>LITTLE STITLE FROM SCENE<br>COMENTIAL MERCIUM ENDER SAND<br>COMENTIAL MERCIUM ENDER SAND<br>COMENTIAL MERCIUM ENDER SAND<br>SAND FINE ANOMENUM ENDER SHELL AND LIMESTINE<br>FLACMENTS, I WER, DENSE<br>SHOO, FINE ANOMENUM ENDER STORE<br>DENSE TO USE DENSE<br>SAND, FINE ENDEMENT OF AND CONTAINS<br>STORE SULT, SULL AND LIMESTONE<br>SAND, FINE ENDEMENT OF AND CONTAINS<br>SCIENT SULL AND LIMESTONE<br>SAND, FINE ENDEMENT OF AND CONTAINS<br>STORE SULT, SULL AND LIMESTONE<br>SAND, FINE ENDEMENT OF AND CONTAINS<br>SCIENT SULL AND LIMESTONE<br>SAND, FINE ENDEMENT (LINE TO CONTAINS<br>SCIENT SULL AND LIMESTONE<br>SAND, FINE ENDEMENT (LINE TO CONTAINS<br>SCIENT AND LIMESTONE STARE<br>SAND, FINE ENDEMENT (LINE TO CONTAINS<br>SCIENT SULL AND LIMESTONE STARE<br>SAND, FINE ENDEMENT (LINE TO CONTAINS<br>SCIENT SULL AND LIMESTONE STARE<br>SAND AND BOUND DEVICE STARE<br>SAND AND BOUND BOUND (LINE TO CONTAINS<br>SCIENT AND LIMESTONE STARE<br>SAND AND BOUND BOUND (LINE TO CONTAINS<br>SCIENT AND LIMESTONE STARE) | WELL S<br>From C<br>TD 33.<br>ULLU<br>CASING<br>SURCE<br>TRAN<br>33.0<br>38.0<br>COTTON |                           |  |  |  |  |
| 49-<br>50-<br>DRILLII<br>DRILLE                                    |                                                  |                                  | RATT                          | نياه                                 | ufe                                  | BAKER REP.: BRIA.<br>BORING NO.: TWIP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | NEIDAVIS<br>1-B                                                                         | <br>Sheet <u>ਤੇ</u> of ਤੁ |  |  |  |  |

Baker

Baker Environmental, 🛶

#### **TEST BORING AND WELL CONSTRUCTION RECORD**

PROJECT: SGT - LTO 232 - SCREENING

.

S.O. NO.: 62470-232-0000-03600 COORDINATES: EAST: 2465719.1571 ELEVATION: SURFACE: 10.90 BORING NO.: <u>Twig-C</u> NORTH: <u>363445.7345</u> TOP OF STEEL CASING: <u>-</u>

|                                        | <u>そ 万5</u><br>SPLIT<br>SPOOI |                  | CASING                               |                    | GERS    | CORE<br>BARREL | DATE       | PROGRESS<br>(FT) | WEATHER   | WATER<br>DEPTH<br>(FT)                                                                   |                         |
|----------------------------------------|-------------------------------|------------------|--------------------------------------|--------------------|---------|----------------|------------|------------------|-----------|------------------------------------------------------------------------------------------|-------------------------|
| IZE (DIAM.)                            |                               |                  |                                      | 34                 | 110     |                | 4/15/96    | 0-26,5           | 10'S SUNN | 7 6                                                                                      | 040;                    |
| ENGTH                                  |                               |                  |                                      |                    | FT      |                |            |                  |           |                                                                                          |                         |
| YPE                                    |                               |                  |                                      | H                  | ······· |                |            |                  |           |                                                                                          |                         |
| IAMMER WT.                             |                               |                  |                                      | · 1                |         |                |            |                  |           |                                                                                          |                         |
| ALL                                    |                               |                  |                                      |                    |         |                |            |                  |           |                                                                                          |                         |
| TICK UP                                |                               |                  |                                      | 1                  |         | 1              |            |                  |           |                                                                                          |                         |
| EMARKS:                                | <u></u>                       |                  |                                      |                    |         |                | - <b>-</b> |                  |           | ······                                                                                   |                         |
| S = Split Sp<br>T = Shelby             |                               | A =              | Auger<br>Wash                        |                    |         | VELL           | DIAM       | TY               | PE        | TOP<br>DEPTH<br>(FT)                                                                     | BOTTON<br>DEPTH<br>(FT) |
| R = Air Rot<br>D = Denisor             | ary                           | C =              | Core<br>Piston                       |                    | Well (  | Casing         | 1.6        | PVC Threaded     | iodia     | 0                                                                                        | 21,5                    |
|                                        | <b>i</b> = No Sa              |                  | riston                               |                    | WellS   | Screen         | 1"         | PVC Slotted      | DOISLOT   | 21.5                                                                                     | 26.5                    |
| Samp<br>Depth Type<br>(Ft.) and<br>No. | Ft.                           | SPT<br>or<br>RQD | Lab.<br>Class.<br>or<br>Pen.<br>Rate | Lab.<br>Moist<br>% |         | Visual         | Descriptio | n                | Insta     | fell<br>llation<br>tail                                                                  | Elevatio                |
| 1                                      | 2                             |                  |                                      |                    | 1       |                | G LOG T    |                  |           | WELL<br>Sock<br>From<br>0:0 TD<br>26:5 FT<br>WELL<br>CASING<br>From<br>0:0 TO<br>21:5 FT |                         |

Baker

Baker Environmental, Inc.

PROJECT: 367-670232-562660

BORING NO .: TW19-C

| S = Split Spo<br>T = Shelby T<br>R = Air Rota<br>D = Denison                                                                                                         | ube<br>'Y                        | A =<br>W =<br>C =<br>P = |                                      |                    | DEFINITIONS<br>SPT = Standard Penetration Test (ASTM D-1586) (Blows/0.5')<br>RQD = Rock Quality Designation (%)<br>Lab. Class. = USCS (ASTM D-2487) or AASHTO (ASTM D-3282)<br>Lab. Moist. = Moisture Content (ASTM D-2216) Dry Weight Basis |                                                                                                                                                                                                                                   |  |  |  |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|--------------------------|--------------------------------------|--------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| Sample<br>Depth Type<br>(Ft.) and<br>No.                                                                                                                             | Samp.<br>Rec.<br>(Ft.<br>&<br>%) | SPT<br>or<br>RQD         | Lab.<br>Class.<br>or<br>Pen.<br>Rate | Lab.<br>Moist<br>% | Visual Description                                                                                                                                                                                                                           | Well Installation<br>Detail Elevation                                                                                                                                                                                             |  |  |  |  |  |
| $ \begin{array}{c} 11 \\ 12 \\ 13 \\ 14 \\ 15 \\ 16 \\ 17 \\ 18 \\ 19 \\ 20 \\ 21 \\ 22 \\ 23 \\ 24 \\ 25 \\ 26 \\ 27 \\ 26 \\ 27 \\ 28 \\ 29 \\ 30 \\ \end{array} $ |                                  |                          |                                      |                    | Continued from Sheet 1<br>SEE BORING LOG TWIG-5<br>FOR SOL INFORMATION<br>END OF BORING @ 26.5 FT<br>Match to Shee                                                                                                                           | WELL<br>SOCK<br>0.0 FT TD<br>26.5 FT<br>-10.60<br>-10.60<br>NUELL<br>-10.60<br>-10.60<br>-10.60<br>-10.60<br>-10.60<br>-10.60<br>-10.60<br>-10.60<br>-10.60<br>-10.60<br>-10.60<br>-10.60<br>-10.60<br>-10.60<br>-10.60<br>-10.60 |  |  |  |  |  |

# Baker

Baker Environmental, Inc

## **TEST BORING AND WELL CONSTRUCTION RECORD**

PROJECT: SGT -CTO 232 - SCREENING

•

S.O. NO .: 62470 -232 -0000 - 03600 BORING NO .: TW 20-A 
 COORDINATES:
 EAST:
 2465686.1840
 NORTH:
 363473.5132

 ELEVATION:
 SURFACE:
 10.60
 TOP OF STEEL CASING:

TOP OF STEEL CASING:

| S = SplitSpoon     A = Auger       T = ShelbyTube     W = Wash       R = AiRotary     C = Core       D = Denison     P = Piston       N = No Sample     Uab.       Sample     Lab.       Destring     Class of the core       Sample     Sample       Visual Description     Well Casing       Visual Description     Well       Visual Description     Well       Sample     Sample       Sample     Sample       Sample     Sample       Visual Description     Well       Visual Description     Well       Sample     Sample       Sample     Sample       Visual Description     Well       Visual Description     Well       Sample     Sample       Sample     Sample       Visual Description     Well       Sample     Sample       Sample     Sample       Visual Description     Well       Sample     Sample       Sample </th <th>RIG: MOLO BIL</th> <th>E 55 ĵ</th> <th>Rouc m</th> <th>610</th> <th><u>-</u></th> <th></th> <th></th> <th></th> <th></th> <th>WATER</th> <th></th>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | RIG: MOLO BIL                                         | E 55 ĵ                   | Rouc m                    | 610   | <u>-</u> |        |           |                         |             | WATER                                                                                                                |                         |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|--------------------------|---------------------------|-------|----------|--------|-----------|-------------------------|-------------|----------------------------------------------------------------------------------------------------------------------|-------------------------|
| LENGTH 5 FFT 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                       |                          | CASING                    | AU    | GERS     |        | DATE      |                         | WEATHER     |                                                                                                                      | TIME                    |
| LENGTH 5 FFT 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | SIZE (DIAM.)                                          |                          |                           | 3%    | í Do     |        | 4/15/96   | 0-15                    | 60's closon | 6                                                                                                                    | Oltri.                  |
| TYPE     HS     Image: Stand of the | LENGTH                                                |                          |                           |       |          |        |           |                         |             |                                                                                                                      |                         |
| FALL     STICK UP       REMARKS:            S = SplitSocon         A = Auger         T = Shelby Tube         W = Wash         R = Ain Rotary         C = Core         D = Denison         P = Piston         N = NoSample             Denison         N = NoSample             Sample         Sample         Sample             Sample         Sample             Sample             Sample             Sample             Sample             Sample             Sample             Sample             Sample             Sample             Sample             Sample             Sample             Sample             Sample             Sample             Sample             Sample             Sample             Sample             Sample             Sample             Sample             Sample             Sample                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ТҮРЕ                                                  |                          |                           | 1     |          |        |           |                         |             |                                                                                                                      |                         |
| STICK UP     Sample TYPE     Sample TYPE     Well     Well     Diam     TYPE     Top     Botton       S = SplitSoon     A = Auger     Well     INFORMATION     DIAM     TYPE     Deprint     Dep                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | HAMMER WT.                                            |                          |                           |       |          |        |           |                         | -           |                                                                                                                      |                         |
| REMARKS:       SAMPLE TYPE<br>T = Shelby Tube     TOP<br>Well Casing     TOP<br>DEFTH     BOTTOD<br>DEFTH       Type<br>T = Shelby Tube     W = Wash<br>Well Casing     U//<br>(''     PVC Threaded     ('')     O     S       D = Denison     P = Piston     Well Casing     (''     PVC Sixted     0.01"Slot     DEFTH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | FALL                                                  |                          |                           | 1     |          |        |           |                         |             |                                                                                                                      |                         |
| SAMPLE TYPE     WELL     TYPE     TOP     BOTTON       T = Shelby Tube     W = Wash     Well Casing     ["     PVC Threaded     ["]]     DEPTH     DEPTH     DEPTH       D = Denison     P = Piston     N = No Sample     Well Screen     ["     PVC Straded     ["]]     D     S       D = Denison     P = Piston     Well Screen     ["     PVC Straded     ["]]     D     S       D = Denison     P = Piston     Lab     Well Screen     ["     PVC Straded     ["]]     D     S       Depth     Sample     Sample     Lab                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | STICK UP                                              |                          |                           |       |          |        |           |                         |             |                                                                                                                      |                         |
| S = SplitSpoon     A = Auger       T = ShelbyTube     W = Wash       R = AiROtary     C = Core       D = Denison     P = Piston       N = No Sample     Lab.       Sample     Lab.       Depth     Type     Depth     Diff (Tr)       Depth     Sample       Bample     Class     ap       Depth     Sample       Depth     Sample       Sample     Lab.       Sample     Lab.       Sample     Lab.       Sample     Lab.       Sample     Lab.       Sample     Sample       Visual Destription     Well:       Visual Destription     Well:       Sample     Sample       Sample     Sample       Sample     Sample       Visual Destription     Well:       Sample     Sample       Sample     Sample <t< td=""><td>REMARKS:</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | REMARKS:                                              |                          |                           |       |          |        |           |                         |             |                                                                                                                      |                         |
| R= Air Rotary<br>D = Denison<br>N = No SampleC = Core<br>P = Piston<br>N = No SampleWall Casing<br>Visual ScreenV' PVC Stoted $0$ or<br>Visual Oestription $0$ or<br>Visual Destription $0$ or<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | S = Split Sp                                          | oon A                    | = Auger                   |       |          |        | DIAM      | TY                      | PE          | DEPTH                                                                                                                | BOTTOM<br>DEPTH<br>(FT) |
| N = No SampleWell Screen(" PVC SixtedO.01"S(at) $\bigcirc$ 15DepthSample<br>Rec.<br>and<br>NoSprLab<br>or<br>or<br>Per<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | R = Air Rot                                           | ary C                    | = Core                    |       | Well (   | Casing | t''       | PVC Threaded            | 11.910.     |                                                                                                                      |                         |
| Desch     Sample<br>Type<br>and<br>No     Ref.<br>br     SPT     Class<br>or<br>or<br>AQD     and<br>or<br>Per     Visual Description     Weilt<br>Installation       1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                       |                          |                           |       | Welli    | Screen | ("        | PVC Slotted             | 0.01"slot   | <u>ち</u>                                                                                                             | 15                      |
| SET BORINGTUZO-B $SET BORINGTUZO-B$ $SET BORINGTUZO-B$ $SOLC INFORMATION$ $SET SOLC INFORMATION$ $SCLC SCREED SOT TO SCOT TO SCO$                                                                                                                                                                                                                                                                                                                                                                   | Depth Type<br>(Ft) and                                | ele Rec.<br>Ft. o<br>& R | r Class<br>r or<br>QD Per | Moist |          | Visual | Descripti | on                      | Install     | ation<br>a                                                                                                           | Elevation               |
| DRILLING CO.: PARRATT WOLFE BAKER REP.: BRIAN E. DAVIS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3 -<br>4 -<br>5 -<br>6 -<br>7 -<br>8 -<br>9 -<br>10 - |                          |                           |       |          |        | INFORM    | గారాలు<br>Match to Shee |             | SOCIL<br>FROM<br>O:0 FD<br>ISTO FT<br>WELL<br>CASING<br>FROM<br>O:0 FD<br>S:0 FT<br>NELL<br>SCREED<br>FROM<br>S:0 FD |                         |

Baker

Baker Environmental, Inc.

PROJECT: SOT - 60 232 - SOREENING

.

S.O. NO .: 62470 -282-0000 -03600 BORING NO .: TW-20 A

| T = 9<br>R = 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Split Spoo<br>Shelby Tu<br>Air Rotan<br>Denison | be<br>/                          | A =<br>W =<br>C =<br>P = |                                      |                    | DEFINITIONS<br>SPT = Standard Penetration Test (ASTM D-1586) (Blows/0.5')<br>RQD = Rock Quality Designation (%)<br>Lab. Class. = USCS (ASTM D-2487) or AASHTO (ASTM D-3282)<br>Lab. Moist. = Moisture Content (ASTM D-2216) Dry Weight Basis |                                       |  |  |  |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|----------------------------------|--------------------------|--------------------------------------|--------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|--|--|--|--|--|
| Depth<br>(Ft.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Sample<br>Type<br>and<br>No.                    | Samp.<br>Rec.<br>(Ft.<br>&<br>%) | SPT<br>or<br>RQD         | Lab.<br>Class.<br>or<br>Pen.<br>Rate | Lab.<br>Moist<br>% | Visual Description                                                                                                                                                                                                                           | Well Installation<br>Detail Elevation |  |  |  |  |  |
| $ \begin{array}{c}         - \\         11 - \\         12 - \\         13 - \\         13 - \\         13 - \\         14 - \\         15 - 5 \\         16 - \\         17 - \\         18 - \\         17 - \\         18 - \\         19 - \\         20 - \\         21 - \\         22 - \\         23 - \\         24 - \\         22 - \\         23 - \\         24 - \\         25 - \\         26 - \\         27 - \\         28 - \\         29 - \\         30 - \\         \end{bmatrix} $ | A-N                                             |                                  |                          |                                      |                    | Continued from Sheet 1<br>SEE BOTZING LOG TW 20-B<br>FOR JOIL INFORMATION<br>END OF COMME @ 15:0 FT                                                                                                                                          |                                       |  |  |  |  |  |
| DRILLIN<br>DRILLEF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                 |                                  | ecat                     | Two                                  | LFF                | BAKER REP.: BR<br>BORING NO.: Tu                                                                                                                                                                                                             | 120-A SHEET 2 OF 2                    |  |  |  |  |  |

# Baker

Baker Environmental, Inc

#### **TEST BORING AND WELL CONSTRUCTION RECORD**

PROJECT: SGI - LTO 232 - SCREEN WG

S.O. NO.: <u>62470-232-0000 - 03600</u> BORIN COORDINATES: EAST: <u>2465686.1840</u> NORTH ELEVATION: SURFACE: <u>10.60</u> TOP O

BORING NO.: TWZD-B NORTH: <u>363437.5132</u> TOP OF STEEL CASING: \_\_\_\_

-

| RIG: CME                      | 850 TR         | ACK MO             | υ.<br>14                         |        |                  |             |                                                                                                          |                         |                                 |                         |
|-------------------------------|----------------|--------------------|----------------------------------|--------|------------------|-------------|----------------------------------------------------------------------------------------------------------|-------------------------|---------------------------------|-------------------------|
|                               | SPLIT<br>SPOON | CASING             |                                  | GERS   | CORE<br>BARREL   | DATE        | PROGRESS<br>(FT)                                                                                         | WEATHER                 | WATER<br>DEPTH<br>(FT)          | TIME                    |
| SIZE (DIAM.)                  | 1.43 IN        |                    | 3                                | 420    |                  | 0-38        | 4/15/96                                                                                                  | 60's clour              | 6                               | O Hrs.                  |
| LENGTH                        | 2FT            |                    | 5                                |        |                  |             |                                                                                                          |                         |                                 |                         |
| TYPE                          | 55             |                    | H                                | 5      |                  |             |                                                                                                          |                         |                                 |                         |
| HAMMER WT.                    | 140165         |                    |                                  |        |                  |             |                                                                                                          |                         |                                 |                         |
| FALL                          | ki Qé          |                    |                                  |        |                  |             |                                                                                                          |                         |                                 |                         |
| STICK UP                      |                |                    |                                  |        |                  |             |                                                                                                          |                         |                                 |                         |
| REMARKS: TI                   | N21-A          | BZC N              | TOF                              | INST   | ALLED            | DUE TO      | FIELD STA                                                                                                | KING ERRO               | <u>ہ</u>                        |                         |
| S = Split Sp<br>T = Shelby'   |                | = Auger<br>= Wash  |                                  |        | VELL<br>DRMATION | DIAM        | TY                                                                                                       | ÞE                      | TOP<br>DEPTH<br>(FT)            | BOTTOM<br>DEPTH<br>(FT) |
| R = Air Rot $D = Deniso$      | ary C          | = Core<br>= Piston |                                  | Wəll ( | Casing           | 1"          | PVC Threaded                                                                                             | :"dra.                  | 0                               | 23                      |
|                               | N == No Samp   |                    |                                  | Wells  | Screen           | ۱″          | PVC Slotted                                                                                              | 0.01 500-               | 23                              | 28                      |
| Depth Samp<br>Vet) and<br>No  | Ft. of         | Class              | Inu<br>Lab<br>Maist<br>Ly<br>P?M |        | Visual           | Descripti   | on                                                                                                       | Wel<br>Instalia<br>Deta | tion                            | Elevation               |
| 1 - S-<br>2 - Z·O             | 1 p.5 2        | Z<br>Z             | 21                               | BLAUE  | , Fen Roo        | is, DAng 1. |                                                                                                          |                         | WELL<br>Sock<br>Ream<br>35.0 FT |                         |
| 3 - S-;<br>4 - 4.0            |                | 3                  | 41                               | SANO   | ·                |             | Dane, SOFT<br>                                                                                           |                         | -                               | - 7.60                  |
| 5 - 5 -<br>6 - <u>6.0</u> 5 - | 3 2.05         | 0197               | ८।                               | Som    | e timess         | saten,      | MGDIUM GARING                                                                                            |                         |                                 | -4.60                   |
| 7 - <b>s</b>                  | -4 2.0         | 3<br>3<br>3        | 4                                | BRO    | ۵۰۵ GRE          | , morried,  | FINE GARIN,<br>WET, SOFF                                                                                 |                         |                                 |                         |
| 9 - S-                        | -5 1.5         | 46                 | 2                                | SANG   | D. FINE ANS      | medium e    | <del>مدته سنة. ۵۵۵۰ م. ۲</del><br>م. ۲. ۲. ۲. ۲. ۲. ۲.<br>راین م. ۲. ۲. ۲. ۲. ۲. ۲. ۲. ۲. ۲. ۲. ۲. ۲. ۲. |                         |                                 | - 2.10                  |
|                               |                |                    |                                  | 1      |                  |             |                                                                                                          | ANE.D                   | AVIS                            |                         |
| DRILLING CO                   |                | <u>000 77740</u>   | ist-                             | ··· -  |                  |             | R REP.: <u>した</u><br>NG NO.: アメ                                                                          |                         | SHE                             | ET <u>1</u> OF          |



1-1-10400

Baker Environmental, Inc

e ~~

PROJECT: 5GI - CTO 232 - SCREENING S.O. NO .: 627 70 -232 -0000 -03600 BORING NO .: TW 2008

all the set

| T = S<br>R = A                    | Split Spoo<br>Shelby Tul<br>Air Rotary<br>Denison | ibe<br>y                         | A = P $W = V$ $C = Q$ $P = 1$ | Auger<br>Wash<br>Core<br>Piston      |                       | <u>DEFINITIONS</u><br>SPT = Standard Penetration Test (ASTM D-1586) (Blows/0.5')<br>RQD = Rock Quality Designation (%)<br>Lab. Class. = USCS (ASTM D-2487) or AASHTO (ASTM D-3282)<br>Lab. Moist. = Moisture Content (ASTM D-2216) Dry Weight Basis |              |                                        |                        |  |  |  |
|-----------------------------------|---------------------------------------------------|----------------------------------|-------------------------------|--------------------------------------|-----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|----------------------------------------|------------------------|--|--|--|
| Depth<br>(Ft.)                    | Sample<br>Type<br>and<br>No.                      | Samp.<br>Rec.<br>(Ft.<br>&<br>%) | 1 1                           | Lab.<br>Class.<br>or<br>Pen.<br>Rate | Hoist<br>Moist<br>Ren | Visual Description                                                                                                                                                                                                                                  |              | nstallation<br>Detail                  | Elevation              |  |  |  |
| -<br>11-<br>12                    | 5-6                                               |                                  | MJ 3- ~~                      |                                      | 5                     | Continued from Sheet 1<br>SAND, FINE BRANN, LITTLE MEDIUM BRANN,<br>LITTLE SICT, BROWN & BREY, INET, MEDIUM<br>DENSE to LOOSE                                                                                                                       | -            | WELL SOCK<br>Trom<br>0.0 TO<br>38.0 Fr |                        |  |  |  |
| 13_<br>14_ <u>14.0</u>            | 5-7                                               | 2,3                              | 2<br>3<br>4                   |                                      | 2                     | SAND, FINE GRAIN, LITTLE MERIN GRAIN,<br>LITTLE CLLT, BROWN: OREY, WET, MERIN<br>LOOSE, .<br>SAND, FINE GRAIN, TRALE MEDIUM GRAIN,                                                                                                                  |              | WGU<br>CASING-<br>From<br>0:0 TO       |                        |  |  |  |
| 15-<br>16-160                     | 5-8                                               | 2.0                              | 1                             |                                      | ٤1                    | SAND, FINE GRAIN, TRACE MEDIUM BACH, A)<br>LITTLE SLT, BREWN, GAEMINGT, LOOSE                                                                                                                                                                       |              | 33.0 Fr<br>-                           |                        |  |  |  |
| 17<br>18( <u>%,c</u>              | 5-9                                               | 2.0                              | ی دونا<br>سوم<br>سرون         |                                      | <1                    | SAND FINE GRAIN, TRACE TO LITTLE MEDIUM-<br>GRAIN, LITTLE SILT, BROWN, WET, LOOSE<br>TO VERY LOOSE 18.0                                                                                                                                             |              |                                        | 7.40                   |  |  |  |
| 19<br>20                          | 5-10                                              | 2.0                              | (8                            |                                      | 41                    | SAND, FINE AND MEDIUM GARN, GREY,<br>BROWN I SHELL FRAGMENT, LIMEI FORE<br>FRAGMENTS. LIFTLE SILT, PARTIALLY<br>CEMENTED LIMES FONE / SHELL FRAGMENTI -<br>DENSE, WET                                                                               |              |                                        |                        |  |  |  |
| 21<br>22 <u>21-</u>               | 5-11                                              | 2.0                              | 2.2<br>7.3<br>31<br>24        | 1                                    | <[                    | termitererst Brandbardshart -                                                                                                                                                                                                                       |              |                                        |                        |  |  |  |
| 23 -<br>24 - <sup>24.0</sup>      | 5-12                                              | 2:0                              | 16<br>31<br>27<br>26          |                                      | 41                    | SAND, FINE GRAIN, LITTLE MEDIUM<br>GRAIN, LITTLE SILT, SHELL FRAGMENT<br>LIMETTONE FRAGMENTS. LITTLE TO SOME<br>PARTARLY (EMENTED LIMETTONE<br>FRAGMENT, WET, DENSE TO VEN DENTE                                                                    |              |                                        |                        |  |  |  |
| 25<br>26 <del></del> 2 <u>5.0</u> | 5-13                                              | 2,0                              | 24 22                         | L .                                  | <u></u>               | SAND, FINE GRAIN, LITTLE MEDLUM<br>GRAIN, LITTLE TO SOME SILT, SHELL<br>AND LIMETONE FRAGMENTS, PARTIFLY-                                                                                                                                           |              |                                        |                        |  |  |  |
| 27<br>2828.0                      | 05-14                                             | 12.0                             |                               |                                      | 41                    | CEMENTED LIMESTONE FRAGMENTS, NOT<br>DENSETO VEND DENSE JORES, BREENZI.<br>SAND, FINE AND MEDIUM GNAIN, BREEL<br>AND LIMESTONE FRAGMEND, PHATIGUEN<br>CEMENTED LIMOSDNE, NET. STILLE                                                                | 1<br>4<br>-  | Ne.                                    |                        |  |  |  |
| 29<br>30 <u></u> 30.0             | 0 5-15                                            | . 2.0                            | 15<br>18<br>21<br>30          |                                      | 41                    | TO MECIUM DENSE                                                                                                                                                                                                                                     |              |                                        |                        |  |  |  |
| DRILLIN                           |                                                   | Pra<br>Hil                       | <u>RA</u>                     | <u>v 71</u>                          | JOLF                  | BAKER REP.: BIZI                                                                                                                                                                                                                                    | ANE:<br>20-B |                                        | ET <u>2</u> OF <u></u> |  |  |  |



. . . .

#### **TEST BORING AND WELL CONSTRUCTION RECORD**

PROJECT: 56-I-CTO 232 - SCREENING S.O. NO.: 62470-232-0000-03600 BORING NO.: TW 20-B

| T = S $R = A$                 | Split Spoc<br>Shelby Tu<br>Air Rotan<br>Denison | ibe<br>Y                         | A =<br>W =<br>C =<br>P =   | Auger<br>Wash<br>Core<br>Piston      |                                   | <u>DEFINITIONS</u><br>SPT = Standard Penetration Test (ASTM D-1586) (Blows/0.5')<br>RQD = Rock Quality Designation (%)<br>Lab. Class. = USCS (ASTM D-2487) or AASHTO (ASTM D-3282)<br>Lab. Moist. = Moisture Content (ASTM D-2216) Dry Weight Basis |      |                                             |                        |  |  |  |
|-------------------------------|-------------------------------------------------|----------------------------------|----------------------------|--------------------------------------|-----------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|---------------------------------------------|------------------------|--|--|--|
| Depth<br>(Ft.)                | Sample<br>Type<br>and<br>No.                    | Samp.<br>Rec.<br>(Ft.<br>&<br>%) | SPT<br>or<br>RQD           | Lab.<br>Class.<br>or<br>Pen.<br>Rate | Hny<br>Lab.<br>Moist<br>&<br>Ver) | Visual Description                                                                                                                                                                                                                                  | Well | Installation<br>Detail                      | Elevation              |  |  |  |
| 32 <u>32</u> 0                | 5-16                                            |                                  |                            |                                      | 4                                 | Continued from Sheet<br>Sawa, Fint GRAIN, LITTLE MEDIUM GRAIN, -<br>SHELL AND LIMESTONE FRAGMENTS, -<br>LITTLE SILT, PARTIALEY GEMENTED -<br>SHELL AND LIMESTONE FRAGMENTS, _<br>385+ DENSE                                                         |      | WELL<br>Socie<br>Fron<br>O.O.To<br>B.JOFT - | 21.00                  |  |  |  |
| 33-<br>34-340                 | 5-17                                            | 1.5                              | 19<br>13<br>14<br>19<br>10 |                                      | <1                                | SAND, FINE GRAIN, LIPPLE MEDIUM<br>GRAIN, BOME SILT, DENSE, GREEN<br>GREY, WET<br>SAND, FINE AND MEDIUM GRAIN, LITTLE                                                                                                                               |      | WELL<br>(ASING)<br>Freen<br>33.0 -          | -21.90<br>-22.40       |  |  |  |
| 35-<br>36- <b>36</b> ,0       | 5-18                                            |                                  | 15<br>23                   |                                      | <1                                | CORRESE GROWN: SOME SILT, MEDIUM DEWSE<br>GREEN, GREMIWET, SHELL AND<br>LIMESTONE FRAGMENTS<br>                                                                                                                                                     |      | -                                           |                        |  |  |  |
| 37_<br>38_ <u>38.0</u><br>39_ | 5-19                                            | Q'Z                              | 13 12                      |                                      |                                   | SAND ANOSILTI LITTLE CLAY, BREEN, STIFE -<br>WET<br>END OF BONING @ 38.0 FT -                                                                                                                                                                       |      |                                             | -26.40                 |  |  |  |
| 40-<br>+1-                    |                                                 |                                  |                            |                                      |                                   |                                                                                                                                                                                                                                                     |      | -                                           | -<br>-<br>-            |  |  |  |
| +2<br>-<br>-<br>-3            |                                                 |                                  |                            |                                      |                                   |                                                                                                                                                                                                                                                     |      | -                                           | -                      |  |  |  |
| 4_<br>5_                      |                                                 |                                  |                            |                                      |                                   |                                                                                                                                                                                                                                                     |      |                                             |                        |  |  |  |
| 46<br>-<br>47<br>-            |                                                 |                                  |                            |                                      |                                   |                                                                                                                                                                                                                                                     |      |                                             |                        |  |  |  |
| 48-<br>-<br>49-<br>-<br>50-   |                                                 |                                  |                            |                                      |                                   |                                                                                                                                                                                                                                                     |      |                                             | -                      |  |  |  |
| DRILLIN                       | G CO.:<br>:                                     | PAR                              | .RAT                       | τω                                   | 0.LFF=                            | BAKER REP.: B21A<br>BORING NO.: TNJ 2                                                                                                                                                                                                               | NE.  | DAVIS<br>SHEE                               | т <u>3</u> ОF <u>3</u> |  |  |  |

Baker

Baker Environmental, 🔤

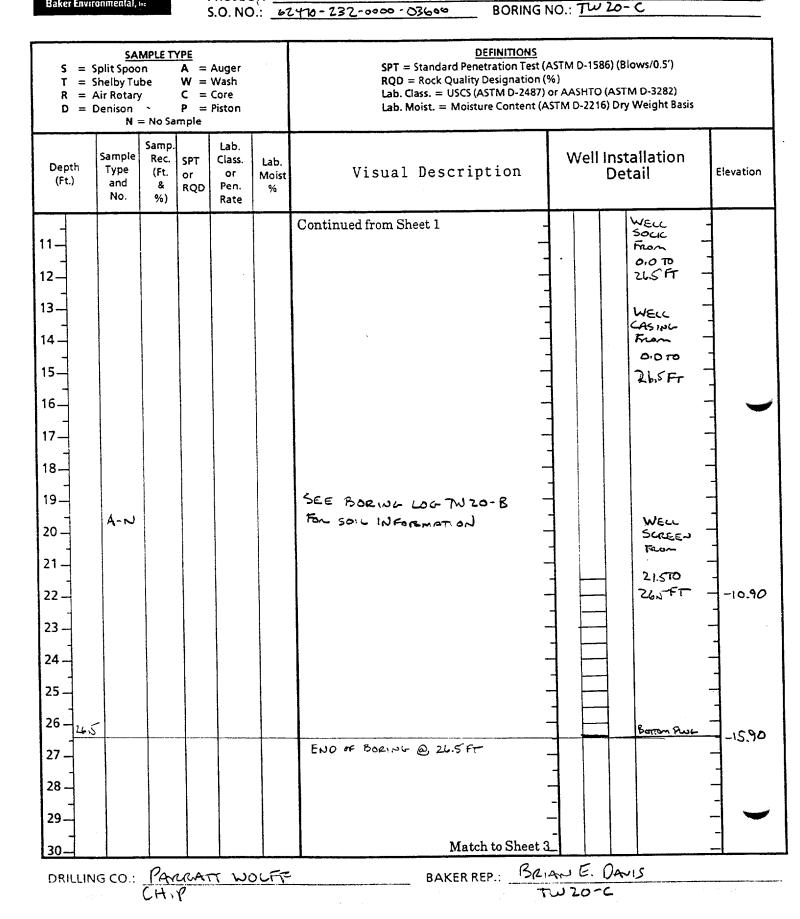
## TEST BORING AND WELL CONSTRUCTION RECORD

PROJECT: SGI - CTO 232 - SCREENING

. -

S.O. NO.: 62470-232-000-03600 COORDINATES: EAST: 2465686.1840 ELEVATION: SURFACE: 10.60

BORING NO.: <u>TW 20- C</u> NORTH: <u>363473.5132</u> TOP OF STEEL CASING: -


| RIG: MOBI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | LE 55          | Truck              | mou                | INT         |                |            |                  |                     |                                                                      |                         |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|--------------------|--------------------|-------------|----------------|------------|------------------|---------------------|----------------------------------------------------------------------|-------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | SPLIT<br>SPOON | CASING             | AU                 | GERS        | CORE<br>BARREL | DATE       | PROGRESS<br>(FT) | WEATHER             | WATER<br>DEPTH<br>(FT)                                               | TIME                    |
| SIZE (DIAM.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                    | 3                  | 410         |                | 4/15/96    | 0-265            | 60'5 <600           | , 6                                                                  | ohrs.                   |
| LENGTH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                |                    | 5                  | FT          |                |            |                  |                     |                                                                      |                         |
| TYPE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -              |                    | Н                  | 5           |                |            |                  |                     |                                                                      |                         |
| HAMMER WT.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | •              |                    |                    |             |                |            |                  |                     |                                                                      |                         |
| FALL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                |                    |                    |             |                |            |                  |                     |                                                                      |                         |
| STICK UP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                |                    |                    |             |                |            |                  |                     |                                                                      |                         |
| REMARKS:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                |                    |                    |             |                |            |                  | i                   |                                                                      |                         |
| S = Split |                | = Auger<br>= Wash  |                    |             | VELL           | DIAM       | TYF              | ÞE                  | TOP<br>DEPTH<br>(FT)                                                 | BOTTOM<br>DEPTH<br>(FT) |
| R = Air Rota D = Denisor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ary C          | = Core<br>= Piston |                    | Well Casing |                | 111        | PVC Threaded     |                     | 0                                                                    | 21.5                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | I = No Samp    |                    |                    | WellS       | Screen         |            | PVC Slotted      |                     | 21.5                                                                 | 26.5                    |
| Samp<br>Depth Type<br>(Ft.) and<br>No.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Ft. or         |                    | Lab.<br>Moist<br>% |             | Visual (       | Descriptio | on               | Wi<br>Instal<br>Def | lation                                                               | Elevation               |
| $ \begin{array}{c} - \\ 1 \\ - \\ 2 \\ - \\ 3 \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ -$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2              |                    |                    |             |                | IFORMAT    | latch to Sheet   |                     | WELL<br>SOCK<br>OID TO<br>ZLSFT<br>WELL<br>CASING<br>OID TO<br>ZLSFT |                         |
| DRILLING CO.<br>DRILLER:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                | ATT WO             | SLFK               | 2           |                |            | RREP.: BRIP      | NE DAV              |                                                                      | ET <u>1</u> OF.         |



Baker Environmental, Inc

PROJECT: SGI-CTO 232 - SCREENING

BORING NO .: TW 20-C





PROJECT: SGI - CTO 232 - SCREENING

S.O. NO.: 62470-232-0000-03600 COORDINATES: EAST: 2465657.4640 ELEVATION: SURFACE: 9.60 BORING NO.: 1-22-A NORTH: 363497, 1786 TOP OF STEEL CASING: 

| RIG: ma                                                                  | BIL                              | ६ ऽऽ                           | - 7              | <i>idde</i> k                        | mov                | NT        |                    |                           |                                      |                                                                                                                 | •                                                                                                                      |                         |
|--------------------------------------------------------------------------|----------------------------------|--------------------------------|------------------|--------------------------------------|--------------------|-----------|--------------------|---------------------------|--------------------------------------|-----------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|-------------------------|
|                                                                          |                                  | SPLIT<br>SPOOI                 |                  | CASING                               |                    | GERS      | CORE<br>BARREL     | DATE                      | PROGRESS<br>(FT)                     | WEATHER                                                                                                         | WATER<br>DEPTH<br>(FT)                                                                                                 | TIME                    |
| SIZE (DIAM.)                                                             | )                                |                                |                  |                                      | 3                  | 410       |                    | 4/14/96                   | 0-15                                 | 70'5 50NN                                                                                                       | 46                                                                                                                     | o Hres.                 |
| LENGTH                                                                   |                                  |                                |                  |                                      |                    | Fr        |                    |                           |                                      |                                                                                                                 |                                                                                                                        | :                       |
| ТҮРЕ                                                                     |                                  |                                |                  |                                      |                    | S         |                    |                           |                                      |                                                                                                                 |                                                                                                                        |                         |
| HAMMER W                                                                 | и.                               |                                |                  |                                      | Τ                  |           |                    |                           |                                      | 4                                                                                                               |                                                                                                                        |                         |
| FALL                                                                     |                                  |                                |                  |                                      | -                  |           |                    |                           | 1.10 <b>- 1</b> .11 - 1.1 - 1 1 1 1. |                                                                                                                 |                                                                                                                        |                         |
| STICK UP                                                                 |                                  |                                |                  |                                      |                    |           |                    |                           |                                      |                                                                                                                 |                                                                                                                        |                         |
| REMARKS:                                                                 |                                  | ····                           |                  |                                      |                    |           |                    |                           |                                      |                                                                                                                 |                                                                                                                        |                         |
|                                                                          | <u>SA</u><br>lit Spoo<br>elby Tu |                                | A =              | Auger<br>Wash                        |                    | V<br>INFO | VELL<br>DRMATION   | DIAM                      | TYF                                  | E                                                                                                               | TOP<br>DEPTH<br>(FT)                                                                                                   | BOTTOM<br>DEPTH<br>(FT) |
| $\mathbf{R} = \mathbf{A}\mathbf{i}\mathbf{i}$                            | r Rotan<br>enison                |                                | <b>C</b> =       | Core<br>Piston                       |                    | Well(     | Casing             | 1"                        | PVC Threaded                         |                                                                                                                 | 0                                                                                                                      | 5                       |
|                                                                          |                                  | = No Sa                        |                  |                                      |                    | WellS     | Screen             | ("                        | PVC Slotted                          |                                                                                                                 | 5                                                                                                                      | 15                      |
|                                                                          | Sample<br>Type<br>and<br>No.     | Samp.<br>Rec.<br>Ft.<br>&<br>% | SPT<br>or<br>RQD | Lab.<br>Class.<br>or<br>Pen.<br>Rate | Lab.<br>Moist<br>% |           | Visual (           | Descriptio                | on                                   | Insta                                                                                                           | Yell<br>Ilation<br>Itail                                                                                               | Elevation               |
| -<br>1 -<br>2 -<br>3 -<br>4 -<br>5 -<br>6 -<br>7 -<br>8 -<br>9 -<br>10 - | <b>A-N</b>                       |                                |                  |                                      |                    | SE        | E BORING<br>5011 / |                           | Intch to Sheet                       | and the second secon | WELL<br>SOLK<br>DIO<br>TO<br>JSIO FT<br>WELL<br>CASING<br>OIO TO SOF<br>WELL<br>SCREEN<br>FROM<br>SIO FT<br>TO<br>ISIO |                         |
| DRILLING                                                                 | <b>C</b> O                       | PARA                           | ATT              | wac                                  | RFF .              |           |                    |                           | RREP.: BRI                           |                                                                                                                 | 115                                                                                                                    |                         |
|                                                                          | WA                               | عريده                          | )                |                                      |                    |           |                    | <ul> <li>Total</li> </ul> | TW                                   | 22-A                                                                                                            |                                                                                                                        | nt i fioti i            |



Baker Environmental, Inc

PROJECT: <u>SC-I - CTO 232 - SCREENING</u> S.O. NO.: <u>62470-232-0004-03600</u> BORING NO.: <u>TW 22-A</u>

| T = 5<br>R = 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Split Spoc<br>Shelby Tu<br>Air Rotan<br>Denison | be<br>/                          | A =<br>W =<br>C =<br>P = | Auger<br>Wash<br>Core<br>Piston      |                    | DEFINITIONS<br>SPT = Standard Penetration Test (ASTM D-1586) (Blows/0.5')<br>RQD = Rock Quality Designation (%)<br>Lab. Class. = USCS (ASTM D-2487) or AASHTO (ASTM D-3282)<br>Lab. Moist. = Moisture Content (ASTM D-2216) Dry Weight Basis |                                       |  |  |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|----------------------------------|--------------------------|--------------------------------------|--------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|--|--|--|--|
| Depth<br>(Ft.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Sample<br>Type<br>and<br>No.                    | Samp.<br>Rec.<br>(Ft.<br>&<br>%) | SPT<br>or<br>RQD         | Lab.<br>Class.<br>or<br>Pen.<br>Rate | Lab.<br>Moist<br>% | Visual Description                                                                                                                                                                                                                           | Well Installation<br>Detail Elevation |  |  |  |  |
| -<br>11-<br>12-<br>-<br>13-<br>-<br>14-<br>-<br>15-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | A-N                                             |                                  |                          |                                      |                    | Continued from Sheet 1<br>SEE BORING LOG TW22-A<br>FOR SOIL INFORMATION                                                                                                                                                                      |                                       |  |  |  |  |
| $ \begin{array}{c} 15 & \frac{15}{5} \\ -16 \\ 16 \\ -17 \\ -18 \\ -19 \\ -19 \\ -20 \\ -21 \\ -21 \\ -22 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -$ |                                                 |                                  |                          |                                      |                    | END OF BORING BISIDFT                                                                                                                                                                                                                        |                                       |  |  |  |  |
| 24<br>25<br>26<br>27<br>28<br>29<br>30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                 |                                  |                          |                                      |                    | Match to Shee                                                                                                                                                                                                                                |                                       |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                 |                                  |                          | TT W                                 | JOIF               | BAKER REP.: BR<br>BORING NO.: TW                                                                                                                                                                                                             | 12-A SHEET 2 OF 2                     |  |  |  |  |



Baker Environmental, me

-----

# **TEST BORING AND WELL CONSTRUCTION RECORD**

PROJECT: SGI-CTO 232 - SCREENING

-

S.O. NO.: 62470-232-000 -03600 COORDINATES: EAST: 2465657.4640 ELEVATION: SURFACE: 9.60 BORING NO.: 1022-B NORTH: 363497.1786 TOP OF STEEL CASING: -

| RIG: CME                                        | 850 TA             | ACK MOU                          | TH   |               |                              |                           |                           |                                                                                                                | WATER                             |                         |
|-------------------------------------------------|--------------------|----------------------------------|------|---------------|------------------------------|---------------------------|---------------------------|----------------------------------------------------------------------------------------------------------------|-----------------------------------|-------------------------|
|                                                 | SPLIT<br>SPOON     | CASING                           | AUC  | GERS          | CORE<br>BARREL               | DATE                      | PROGRESS<br>(FT)          | WEATHEI                                                                                                        | R DEPTH                           | TIME                    |
| IZE (DIAM.)                                     | 1.4312             |                                  | 31/2 | 420           |                              | 4/14/96                   | 0-16                      | 70'5 500m                                                                                                      | d k                               | OHR                     |
| ENGTH                                           | ZFT.               |                                  | 5    | /             |                              | 4/15/96                   | 16-33                     | 60'5 500                                                                                                       | 0 yu                              | other                   |
| YPE                                             | 55                 |                                  | Н    | 5             |                              |                           |                           |                                                                                                                |                                   |                         |
| HAMMER WT.                                      | 140165             |                                  |      |               |                              |                           |                           | •                                                                                                              |                                   | <u> </u>                |
| ALL                                             | BOIN               |                                  |      |               |                              |                           |                           |                                                                                                                |                                   | <u> </u>                |
| TICK UP                                         |                    |                                  |      |               |                              |                           |                           |                                                                                                                |                                   |                         |
| REMARKS:                                        |                    |                                  |      |               | <u> </u>                     | <del></del>               |                           | <u></u>                                                                                                        | T                                 |                         |
| S = Split Sp                                    |                    | = Auger                          |      |               | VELL<br>DRMATION             | DIAM                      | TY                        | PE                                                                                                             | TOP<br>DEPTH<br>(FT)              | BOTTOM<br>DEPTH<br>(FT) |
| T = Shelby<br>R = Air Rot                       | ary C              | = Wash<br>= Core                 |      | Well          | Casing                       | 1''                       | PVC Threaded              | 1" 210.                                                                                                        | 0                                 | 33                      |
| D = Deniso                                      | n P<br>N = No Samp | = Piston<br>ble                  |      | Wells         | Well Screen    " P           |                           | PVC Slotted               | 0.01 "SLOT                                                                                                     | 33                                | 38                      |
| Depth Type<br>(Ft.) and                         |                    |                                  |      |               |                              | Descriptio                | on                        | Insta                                                                                                          | Vell<br>allation<br>etail         | Elevatio                |
| 1 - 5-<br>- z.0                                 |                    | 1011<br>Jo14                     | £1   | SAND<br>ROOTS | I FINE GAA<br>I DAMP T       | NN, GREJ, R               | beown, Few<br>Loost       |                                                                                                                | WELL SOCK<br>FRO 000F<br>to 38.0F | - ]                     |
| 2 <u>2.0</u><br>3 <u>4</u><br>4 <u>4.0</u><br>5 |                    | 1                                | 4    | SAND<br>Met-  | AND SIUT, I<br>There, Morris | LITTLE LLAY               | 3.0<br>, Brown , bazy     |                                                                                                                | TREA DIOF                         | -1                      |
| 5 - 5.<br>6 - 6.0                               | 3 2.0              | 2                                | 21   |               |                              | twe baans,<br>Martula,    | Some way<br>Moist po w Ga |                                                                                                                |                                   |                         |
| 7 - 5.                                          |                    | <sup>1</sup> z<br>2 <sub>3</sub> | 2)   | 5A0<br>800    | un, FINE GR                  | 1.2, LITTE 1<br>MOTTED, 6 | 7<br>neolum 622.w,<br>187 |                                                                                                                |                                   | -2.60                   |
|                                                 | - 2                | του<br>ωυΤ<br>υυΤ<br>100         | 41   |               |                              |                           | Match to Sheet            |                                                                                                                |                                   |                         |
| 1. 1                                            | 1 1                |                                  |      | 1             |                              |                           | R REP.: BRI               | the second s | L                                 |                         |



Baker Environmental, tec

. . . . . . .

. . .

. . . .

PROJECT: SGI-CTO 232- SPEENING S.O. NO .: 62470-232-000-0360 BORING NO .: Tw 22-B

...

| T = 9<br>R = 7           | plit Spoo<br>helby Tu<br>Air Rotary<br>Denison | be .                             | A =<br>W =<br>C =<br>P = |                                      |                      | DEFINITIONS<br>SPT = Standard Penetration Test (ASTM D-1586) (Blows/0.5')<br>RQD = Rock Quality Designation (%)<br>Lab. Class. = USCS (ASTM D-2487) or AASHTO (ASTM D-3282)<br>Lab. Moist. = Moisture Content (ASTM D-2216) Dry Weight Basis |                                                  |  |  |  |  |
|--------------------------|------------------------------------------------|----------------------------------|--------------------------|--------------------------------------|----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|--|--|--|--|
| Depth<br>(Ft.)           | Sample<br>Type<br>and<br>No.                   | Samp.<br>Rec.<br>(Ft.<br>&<br>%) | SPT<br>or<br>RQD         | Lab.<br>Class.<br>or<br>Pen.<br>Rate | 多い日日                 | Visual Description                                                                                                                                                                                                                           | Well Installation<br>Detail <sup>Elevation</sup> |  |  |  |  |
| -<br>11_<br>12           | 5-6                                            | 1.5                              | 1<br>1<br>1              |                                      | 41                   | Continued from Sheet 1<br>SAND, FINE GRAIN, GREY, BROWN, WET<br>LITTLE SIGT,                                                                                                                                                                 |                                                  |  |  |  |  |
| 13-<br>14-14-0           | 5-7                                            | 2.0                              | 12<br>23<br>86           |                                      | ٤١                   | SAND, FINE GRAIN, BREY BROWN LITTLE SITE                                                                                                                                                                                                     | 1 AIGUL<br>6 ASING-<br>FROM<br>0.0 TO            |  |  |  |  |
| 15<br>1616_4             | 5-8                                            | 2.0                              | 35-<br>810<br>47         |                                      | 41_                  | SAND, FINE AND MEDIUM GRAIN, GREY<br>WET. & TTUE SHEN FRACMENT 165                                                                                                                                                                           | 33.0 F→<br>-5.°<br>-6.90                         |  |  |  |  |
| 17<br>18                 | 5-9                                            | 2.0                              | 8                        | <u> </u>                             | 4                    | SAMP, FINE GRAIN, SOME SILT. TRACE CLAY, _<br>LIMESTANE AND SHELL FRACKENS, BROWN,<br>BEEJ, WET, MEDIUM DENSE 18.0<br>SAND, FINE GRAIN, LITTLE MEDIUM GRAIN,                                                                                 |                                                  |  |  |  |  |
| 19<br>20 <del></del>     | 5-10                                           | 2.0                              | اب<br>ابا<br>ادع         |                                      | <1                   | SAND, FINE ENOMED GREN GREN LITTL                                                                                                                                                                                                            |                                                  |  |  |  |  |
| 21                       | 5-11                                           | 2.0                              | 15                       |                                      | <1                   | COARSE GRAIN , TRICE SILT, BROWM GAEN,<br>WET, FEW SHELL AND LAMESTINE<br>FRAGMENT, FEW PATTALLY LEMENTS<br>UNTITUE / SHELL SCREMENT, DENSIE<br>SAND, FINE AND NOTING BRAIN, LITLE                                                           |                                                  |  |  |  |  |
| 23<br>24 <del></del> _   | 5-12                                           | 2.0                              | 14<br>14<br>23           | s                                    | <[                   | SINT, WET, GREY, TEN SHELLAND<br>LIMESTONS TOLICT FERS, DENSE, WET<br>SAND, FINE GREIN, LIPTLE TOR - SCAL<br>SOME SIGT, FON UNESADE FOR SUCCE                                                                                                |                                                  |  |  |  |  |
| 25 -<br>26 - <u>26 -</u> | 5 <i>-13</i>                                   |                                  | 23<br>30<br>29           |                                      | ∠ 1<br>              | SAND, FWE GRAND LITTLE MEDIUM GARAN                                                                                                                                                                                                          |                                                  |  |  |  |  |
| 27                       |                                                |                                  | ) 13<br>1<br>15<br>3     | 0                                    | <u> </u><br> <br>  < | Some SILT, FEW LIMESTARE AND SULL<br>FLADMENT, GREY, WET, DENSE<br>SAND, FINE AND MERUM GRAIN, LITTLE<br>1 SILT, LITCHING FAMP SULL FRAGE MENT                                                                                               |                                                  |  |  |  |  |
| 30-30.                   | s-/<                                           |                                  |                          | 3                                    |                      | GKE, LO WET, DE SE<br>Some Match to Sheet 2<br>BAKER REP BRIN                                                                                                                                                                                | 3                                                |  |  |  |  |

| DRILLING | CO.: | <u>7 A</u> | <i>n.</i> , | 25 | TT | 1 | c | 5 | 3 |
|----------|------|------------|-------------|----|----|---|---|---|---|
| DRILLER: | C    | H.         | ?           |    |    | - |   |   |   |

BAKER REP .: BRIAN E. DAVIS BORING NO .: TWZZ-B \_\_\_\_

SHEET 2 OF 3



Baker Environmental, 🗠

#### **TEST BORING AND WELL CONSTRUCTION RECORD**

PROJECT: SGI - CTO 232 - SCREENING S.O. NO.: 62470-232-0000-03600 BORING NO.: TW22-B

| T = 5<br>R = 7              | Split Spoo<br>Shelby Tu<br>Air Rotar<br>Denison | ibe<br>y                         | A =<br>W =<br>C =<br>P = |                                      |            | DEFINITIONS<br>SPT = Standard Penetration Test (ASTM D-1586) (Blows/0.5')<br>RQD = Rock Quality Designation (%)<br>Lab. Class. = USCS (ASTM D-2487) or AASHTO (ASTM D-3282)<br>Lab. Moist. = Moisture Content (ASTM D-2216) Dry Weight Basis |                 |                                      |                        |  |  |  |
|-----------------------------|-------------------------------------------------|----------------------------------|--------------------------|--------------------------------------|------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|--------------------------------------|------------------------|--|--|--|
| Depth<br>(Ft.)              | Sample<br>Type<br>and<br>No.                    | Samp.<br>Rec.<br>(Ft.<br>&<br>%) | SPT<br>or<br>RQD         | Lab.<br>Class.<br>or<br>Pen.<br>Rate | Hoist      | Visual Description                                                                                                                                                                                                                           |                 | stallation<br>etail                  | Elevation              |  |  |  |
| 31-<br>32- <u>32.0</u>      | 5-16                                            | 210                              | ent we                   |                                      | <b>د</b> ا | Continued from Sheet 2<br>Sawo, Fue and moun Grann, Some<br>Cogrest Grand, These Sill, Limestone -<br>And Sill Function (2017) Some cements<br>Limestors Filter GUP                                                                          |                 | WELL SOCK<br>From 0.0<br>Fo 38.0 FT  |                        |  |  |  |
| -<br>≥3<br>≥4_ <u>-34.0</u> | 5-17                                            | 210                              | 13<br>15<br>17<br>22     |                                      | 4          | SAND, FINE ANTERIUM GRAIN, LIMESTONE<br>AND SHELL KARL MCMT. LITTLE LEMENTS<br>LIMEITONE REAGENCETS DENSE TO VERY<br>DENSE. LITTLE STUT, GREY, GREEN, WET                                                                                    |                 | CASING -                             | - 23.40                |  |  |  |
| 35-<br>36 <u>36</u> 0       | 5-18<br>5                                       | 2.0                              | 15                       | 1                                    | 41         | SANG, FINE AND MEDIUM EAL ON LIMESTONE<br>AND SHELL REAGENEUTS, GOME SILT,<br>LITTLE PARTIALLY CEMENTED LIMESTONE<br>FREDEMENTS, MEDIUM DENSE, EREY,<br>BREEN, WET                                                                           |                 | Sucted<br>Fron<br>330<br>TO 38:0FT - |                        |  |  |  |
| ₹7_<br>38 <u>38~</u> 38~0   | 5-19                                            | 1.5                              | 13<br>14<br>16<br>18     |                                      | 41         | 37.0<br>Sano, Some SILT, LITTLE CLAY, GREEN,<br>MEOLUN VENIE WET                                                                                                                                                                             |                 | Botton Fw C-                         | -28.40                 |  |  |  |
| 39<br>40                    |                                                 |                                  |                          |                                      |            | END OF BORING 28:0FT -                                                                                                                                                                                                                       |                 | -                                    |                        |  |  |  |
| 4:<br>42                    |                                                 |                                  | •<br>•                   |                                      |            |                                                                                                                                                                                                                                              |                 |                                      |                        |  |  |  |
| 43 _<br>44 _                |                                                 |                                  |                          |                                      |            |                                                                                                                                                                                                                                              |                 |                                      |                        |  |  |  |
| 45 _<br>46 _                |                                                 |                                  |                          |                                      |            | -                                                                                                                                                                                                                                            |                 | -                                    | 4                      |  |  |  |
| 47<br>48<br>-               |                                                 |                                  |                          |                                      |            | -                                                                                                                                                                                                                                            |                 | -                                    |                        |  |  |  |
| 49_<br>                     |                                                 |                                  |                          |                                      |            | -                                                                                                                                                                                                                                            |                 | -                                    | -                      |  |  |  |
| DRILLIN<br>DRILLER          | G CO.:<br>k:                                    | Yf.(                             | 252.52.<br>C             | · ·                                  | 120        | BAKER REP.: BRIA<br>BORING NO.: THE                                                                                                                                                                                                          | in E. 1<br>12-B | SHEE                                 | T <u>3</u> OF <u>3</u> |  |  |  |

-



Baker Environmental, ne

- -----

## **TEST BORING AND WELL CONSTRUCTION RECORD**

PROJECT: SET- CTOZ32 - SCREENING

S.O. NO .: 62470-232-0000-03600 COORDINATES: EAST: 2465657.4640 ELEVATION: SURFACE: 9.60 BORING NO .: TW -22C 363497.1786 NORTH: TOP OF STEEL CASING:

|                                                           |                                    | <u>55</u><br>SPLIT<br>SPOON    |                  | CASING                               | 1                  | GERS BARREL       |                     | DATE                                             | PROGRESS<br>(FT) | WEATHER                                                                                                         | WATER<br>DEPTH<br>(FT)                                                             | TIME                    |
|-----------------------------------------------------------|------------------------------------|--------------------------------|------------------|--------------------------------------|--------------------|-------------------|---------------------|--------------------------------------------------|------------------|-----------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|-------------------------|
| SIZE (DIAM.                                               |                                    |                                | -                |                                      | 2                  | 410               |                     | 4/10/91                                          | 0-26.5           | 60'S CLOUPY                                                                                                     | . 6                                                                                | Ohrs.                   |
| LENGTH                                                    |                                    |                                |                  |                                      |                    | <u>410</u><br>Sfr |                     | 11131 116                                        | 0 2 003          | 005 -000                                                                                                        | /                                                                                  |                         |
| ТҮРЕ                                                      |                                    |                                |                  |                                      |                    | 15                |                     |                                                  | +                |                                                                                                                 |                                                                                    |                         |
| HAMMER V                                                  | NT.                                |                                |                  |                                      |                    |                   |                     |                                                  |                  |                                                                                                                 |                                                                                    |                         |
| ALL                                                       |                                    |                                |                  |                                      |                    |                   |                     |                                                  |                  |                                                                                                                 |                                                                                    |                         |
| STICK UP                                                  |                                    |                                |                  |                                      |                    |                   |                     |                                                  |                  |                                                                                                                 |                                                                                    | <u> </u>                |
| REMARKS:                                                  |                                    |                                |                  |                                      |                    |                   |                     |                                                  |                  |                                                                                                                 |                                                                                    |                         |
|                                                           | <u>SA</u><br>plit Spoc<br>nelby Tu |                                | A =              | Auger<br>Wash                        |                    |                   | VELL<br>ORMATION    | DIAM                                             | TYI              | ÞE                                                                                                              | TOP<br>DEPTH<br>(FT)                                                               | BOTTOM<br>DEPTH<br>(FT) |
|                                                           | ir Rotar                           |                                | c =              | Core<br>Piston                       |                    | Well (            | Casing              | 1"                                               | PVC Threaded     | 1">>~                                                                                                           | 0                                                                                  | 21.5                    |
|                                                           |                                    | = No Sai                       |                  |                                      |                    | Well S            | Screen              | 1''                                              | PVC Slotted      | Dio!" Slot                                                                                                      | 21.5                                                                               | 26,5                    |
| Depth<br>(Ft.)                                            | Sample<br>Type<br>and<br>No.       | Samp.<br>Rec.<br>Ft.<br>&<br>% | SPT<br>or<br>RQD | Lab.<br>Class.<br>or<br>Pen.<br>Rate | Lab.<br>Moist<br>% |                   | Visual              | isual Description Well<br>Installation<br>Detail |                  |                                                                                                                 |                                                                                    | Elevatior               |
| -<br>1<br>2<br>3<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10 | A-N                                |                                |                  |                                      |                    | SE1<br>For        | e Borin<br>2 Soil 1 | 6 206 T<br>NFORME                                | W-Z2C            |                                                                                                                 | WELL<br>SOCK FRO<br>DIDI<br>2655F:-<br>WELL<br>CASING<br>FROM<br>DID TO<br>ZIJS FT |                         |
|                                                           |                                    | PARE                           | 1<br>2AT         | T W                                  | OLFE               | <br>              |                     |                                                  | R REP.: BRIG     | and the second secon | VIS                                                                                |                         |
| DRILLING                                                  |                                    |                                | <u></u>          |                                      | <u></u>            |                   |                     | PORIN                                            | IG NO .: TW      | -220                                                                                                            | SHE                                                                                | ET <u>1</u> OF          |



#### Baker Environmental, Inc

#### **TEST BORING AND WELL CONSTRUCTION RECORD**

PROJECT: 56I - LTD 232 - SCREENING S.O. NO .: 62470-232-0000-03600 BORING NO .: TW-22C

SAMPLE TYPE DEFINITIONS SPT = Standard Penetration Test (ASTM D-1586) (Blows/0.5') S = Split Spoon A = Auger W = Wash RQD = Rock Quality Designation (%) T =Shelby Tube Lab. Class. = USCS (ASTM D-2487) or AASHTO (ASTM D-3282) R = Air Rotary C = Core P = Piston Lab. Moist. = Moisture Content (ASTM D-2216) Dry Weight Basis D = Denison N = No Sample Samp. Lab. Sample Well Installation Rec. SPT Class. Lab. Depth Type Visual Description (Ft. or Detail Elevation or Moist (Ft.) and & Pen. RQD % No %) Rate Continued from Sheet 1 NELL Sau 11 -FROM 0.0 70 12-26.5=-13 -10/2-66 CASUSC 14 -From 00 15 15-2hsr-T 16-17-18-SEE BORIDG LOG TW-22C Weic SCRECAS 19-For SOIL INFORMATION From AN 21,5 40 20 -26.5FT 21 --11,90 22 23 -24 25 26 265 Bonon Plus -16.90 END OF BORING @ 26.5 FT 27 28 29 Match to Sheet 3 30 BAKER REP .: BALAN E. DAVIS DRILLING CO .: PARRATE WOLFF BORING NO .: TW - 226 SHEET 2 OF 2 DRILLER: \_\_\_\_\_CHIP



PROJECT: SGI - CTO 232 - SCREENING

Baker Environmental, ne

1 - x - x - x **4** 

S.O. NO.: 4270-232-0000-03600 COORDINATES: EAST: 2465610.9966 ELEVATION: SURFACE: 9.10

BORING NO.: TW 23-A NORTH: <u>363543.1637</u> TOP OF STEEL CASING: \_\_\_\_

- 1.000-0

\_

| RIG: MOB                                                                 | ILE 55                            | TRUCK             | mo                 | UNT    |                  |            |                  |                      |                                                                                                                                      |                         |
|--------------------------------------------------------------------------|-----------------------------------|-------------------|--------------------|--------|------------------|------------|------------------|----------------------|--------------------------------------------------------------------------------------------------------------------------------------|-------------------------|
|                                                                          | SPLIT<br>SPOON                    | CASING            |                    | GERS   | CORE<br>BARREL 4 | DATE       | PROGRESS<br>(FT) | WEATHER              | WATER<br>DEPTH<br>(FT)                                                                                                               | TIME                    |
| SIZE (DIAM.)                                                             |                                   |                   | 3                  | 4 ID   |                  | 4-14-95    |                  | 70'S SUNN            | , 6                                                                                                                                  | othes.                  |
| LENGTH                                                                   |                                   |                   | 1                  | FT     |                  |            |                  |                      |                                                                                                                                      |                         |
| ТҮРЕ                                                                     |                                   |                   | н                  | 5      |                  |            |                  |                      |                                                                                                                                      |                         |
| HAMMER WT.                                                               |                                   |                   |                    |        |                  |            |                  |                      |                                                                                                                                      |                         |
| FALL                                                                     |                                   |                   |                    |        |                  |            |                  |                      |                                                                                                                                      |                         |
| STICK UP                                                                 |                                   |                   |                    |        |                  |            |                  |                      |                                                                                                                                      |                         |
| REMARKS:                                                                 |                                   |                   |                    |        |                  |            |                  | <u>_</u>             |                                                                                                                                      |                         |
| S = SplitSp<br>T = Shelby                                                |                                   | = Auger<br>= Wash |                    |        | /ELL<br>RMATION  | DIAM       | TYP              | E                    | TOP<br>DEPTH<br>(FT)                                                                                                                 | BOTTOM<br>DEPTH<br>(FT) |
|                                                                          | = Air Rotary C = Core Well Casing |                   |                    |        |                  |            | PVC Threaded     | 1.0"d.a              | ٥                                                                                                                                    | 5                       |
|                                                                          | N = No Sampl                      |                   |                    | Well S | creen            | 1"         | PVC Slotted      | 0.01"SLOT            | 5-                                                                                                                                   | 15-                     |
| Samp<br>Depth Type<br>(Ft.) and<br>No.                                   | Ft. or                            | or                | Lab.<br>Moist<br>% |        | Visual [         | Descriptio | n                | We<br>Install<br>Det | ation                                                                                                                                | Elevation               |
| -<br>1 -<br>2 -<br>3 -<br>4 -<br>5 -<br>6 -<br>7 -<br>8 -<br>9 -<br>10 - |                                   |                   |                    | 1      |                  |            | [atch to Sheet 2 |                      | WELL<br>SOUR<br>FROMDID<br>TDISIO<br>FT<br>WELL<br>CRSING<br>FISM<br>DIO TO<br>S.D FT<br>WELL<br>SCREEN<br>FROM<br>SIO TO<br>ISIO FT | 4.10                    |
| DRILLING CO.                                                             |                                   | ATT WOU           | <u> </u>           |        |                  | BAKER      | REP .: BRIAN     | JE. DEVIS            |                                                                                                                                      | T 1 05 7                |
| DRILLER:                                                                 | CHIP                              |                   |                    |        |                  | BORIN      | G NO .: 1 W C    | <u> </u>             | SHEE                                                                                                                                 | T <u>1</u> OF <u>2</u>  |



-

Baker Environmental, Inc.

PROJECT: 56-I - LTO 232-56REENING S.O. NO .: 64270-232-0000-03600 BORING NO .: 7W 23-A

| T = 9<br>R = 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | iplit Spoc<br>Shelby Tu<br>Air Rotan<br>Denison | be<br>/                          | A =<br>W =<br>C =<br>P = | Auger<br>Wash<br>Core<br>Piston      |                    | DEFINITIONS<br>SPT = Standard Penetration Test (ASTM D-1586) (Blows/0.5')<br>RQD = Rock Quality Designation (%)<br>Lab. Class. = USCS (ASTM D-2487) or AASHTO (ASTM D-3282)<br>Lab. Moist. = Moisture Content (ASTM D-2216) Dry Weight Basis |    |      |                                                                                           |            |                        |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|----------------------------------|--------------------------|--------------------------------------|--------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|------|-------------------------------------------------------------------------------------------|------------|------------------------|--|--|
| Depth<br>(Ft.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Sample<br>Type<br>and<br>No.                    | Samp.<br>Rec.<br>(Ft.<br>&<br>%) | SPT<br>or<br>RQD         | Lab.<br>Class.<br>or<br>Pen.<br>Rate | Lab.<br>Moist<br>% | Visual Description                                                                                                                                                                                                                           | ,  | Well | Installation<br>Detail                                                                    | ר<br>ווויי | Elevation              |  |  |
| -<br>11_<br>-<br>12_<br>-<br>13_<br>-<br>14_                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 4- <i>ب</i>                                     |                                  |                          |                                      |                    | Continued from Sheet 1<br>SEE BORINGLOG TW23-B<br>For Sol- INFORMATION                                                                                                                                                                       |    |      | WELL<br>SOLL<br>FROM<br>JS.O FO<br>JS.O FT<br>WELL<br>SCREEN<br>FROM<br>STO TO<br>JS.O FT |            |                        |  |  |
| $15 - \frac{15 \cdot 0}{15 \cdot 0}$ $16 - \frac{16}{17 - \frac{1}{17 - \frac{1}{18 - \frac{18 - 1}{18 - \frac{1}{18 $ |                                                 |                                  |                          |                                      |                    | END OF BOLING @ 15.0 FT                                                                                                                                                                                                                      |    |      | BOTTON                                                                                    |            | - 5.90                 |  |  |
| DRILLIN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                 |                                  | reA                      | tt h                                 | JOLF               |                                                                                                                                                                                                                                              | AN |      | DAVIS                                                                                     | SHEE       | T <u>2</u> OF <u>2</u> |  |  |



Baker Environmental, Inc

# **TEST BORING AND WELL CONSTRUCTION RECORD**

PROJECT: SGI - GTO 232 - SLREENING

S.O. NO.: 62470-232 -000 -0260 COORDINATES: EAST: 2465610.9966 ELEVATION: SURFACE: 9.10 •

| RIG: CME                               | 850 TRA        | ck mou                   | <del>م</del> ت            |                                              |            |                                          |                      | WATER                                     |                         |
|----------------------------------------|----------------|--------------------------|---------------------------|----------------------------------------------|------------|------------------------------------------|----------------------|-------------------------------------------|-------------------------|
|                                        | SPLIT<br>SPOON | CASING                   | AUGE                      | CORE<br>RS BARREL                            | DATE       | PROGRESS<br>(FT)                         | WEATHER              | DEPTH<br>(FT)                             | ΤΙΜΕ                    |
| IZE (DIAM.)                            | . لم 143 / 1   |                          | 341                       | >                                            | 4/14/96    | 0-35.0                                   | 70'5 5000            | 2 6                                       | O Has.                  |
| ENGTH                                  | ZFT            |                          | SFT                       |                                              |            |                                          |                      |                                           |                         |
| ГҮРЕ                                   | 55             |                          | HS                        |                                              |            |                                          |                      |                                           |                         |
| HAMMER WT.                             | 140 (bs.       |                          |                           |                                              |            |                                          |                      |                                           |                         |
| ALL                                    | 30(1)          |                          |                           |                                              |            |                                          |                      |                                           |                         |
| STICK UP                               |                |                          |                           |                                              |            |                                          |                      |                                           |                         |
| REMARKS:                               |                |                          |                           |                                              |            |                                          |                      |                                           |                         |
| S = SplitSp<br>T = Shelby              |                | = Auger<br>= Wash        |                           | WELL<br>INFORMATION                          | DIAM       | TYP                                      | ΡE                   | TOP<br>DEPTH<br>(FT)                      | BOTTOM<br>DEPTH<br>(FT) |
| R = Air Rot<br>D = Deniso              | ary C          | = Core<br>= Piston       | V                         | Vell Casing                                  | N          | PVC Threaded                             | 1"dia                | 0                                         | 30                      |
|                                        | l = No Samp    |                          | v                         | Vell Screen                                  | ٦"         | PVC Slotted                              | 0.01"510+            | 30                                        | 35                      |
| Samp<br>Depth Type<br>(Ft.) and<br>No. | Ft. or         | T Class.<br>or<br>D Pen. | Hns<br>Lab.<br>Moist<br>% | Visual                                       | Descripti  | on                                       | We<br>Install<br>Det | ation                                     | Elevation               |
| 1 - 5-1<br>2 - <del>Z.0</del>          | 2.0 17         |                          | 5.<br>B                   | AND, FINE 6RA<br>Rown, BLACK,<br>50 FT, MOBT | GAET, F    | ESILT;<br>EW ROOT;                       |                      | WELL<br>SOUL<br>FROM<br>diu to<br>35TO FT |                         |
| 3 - 5-;                                | 2 1.01         | \<br>t                   | 5<br>1                    | AND, FINE G<br>BLACK, GREY:                  | TRACE CLA  | E SILT,<br>7. FE-2 ROOD                  |                      | WELL<br>CASING<br>From 0.0                | -<br>-<br>-             |
| 5 - 5-<br>6 - 6.0                      | 2 1.5 3        | 3<br>4                   | T<br>50                   | AND, FINE GR<br>VALE CLAJ,<br>WP, FINE GAR   | WET -      | ین ۲۵ ۲۰۲۰ (۲۵ میلی)<br>کست<br>۲۰۱۰ مترج |                      | 30.0 FT                                   | 3.6                     |
| 7 - 5-                                 | 4 2.01         | 3                        |                           | AND AND S<br>MEY, MOTH<br>MET 73 MEDIN       | En, moist  | CLARY, BROWN                             |                      |                                           | - 4.6<br><br>           |
| 9                                      | 5 4            | F B                      |                           |                                              | LIN, LITTE | M. BROWN GAST                            | -                    |                                           | -0.10                   |
| 10 -18.0                               |                | 1 1                      |                           |                                              | <b>A</b> 1 | taten to bileet                          |                      |                                           |                         |



Baker Environmental, Inc

.

PROJECT: SGT- GTO 232- SCREENING S.O. NO .: 62470-232-000-03600 BORING NO .: TW 23-B

| T = S<br>R = A                            | plit Spoor<br>helby Tub<br>vir Rotary<br>Denison | De                               |                           | Auger<br>Wash<br>Core<br>Piston      |                           | <u>DEFINITIONS</u><br>SPT = Standard Penetration Test (ASTM D-1586) (Blows/0.5')<br>RQD = Rock Quality Designation (%)<br>Lab. Class. = USCS (ASTM D-2487) or AASHTO (ASTM D-3282)<br>Lab. Moist. = Moisture Content (ASTM D-2216) Dry Weight Basis |            |
|-------------------------------------------|--------------------------------------------------|----------------------------------|---------------------------|--------------------------------------|---------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|
| Depth<br>(Ft.)                            | Sample<br>Type<br>and<br>No.                     | Samp.<br>Rec.<br>(Ft.<br>&<br>%) | SPT<br>or<br>RQD          | Lab.<br>Class.<br>or<br>Pen.<br>Rate | Hnu<br>tab.<br>Moist<br>* | Visual bescription Detan                                                                                                                                                                                                                            | Elevation  |
|                                           | 5-6                                              | 5.0                              | 23<br>34                  |                                      | 21                        | Continued from Sheet 1<br>SANO, FINE GRAIN, Sont MEDIUMGRAIN<br>GREGI, WET, MEDIUM DENSE<br>                                                                                                                                                        |            |
| 12 <u>12.0</u><br>-<br>13-<br>14-<br>14-0 | 5-7                                              |                                  | 11                        |                                      | 4                         | SAND, FINE GRAIN, LITTLE MEDIUM GRAIN _ KASING<br>GREY to 1310, BROWNSEREY From _ KROM - GIOTO -<br>13.0 to 14.0, WET _ 30.0 FT - 30.0 FT -                                                                                                         |            |
| 14 - 14.5<br>15 - 16.0                    | -                                                | 20.5                             | 1007<br>1007              |                                      | 41                        | SAN 0, GREJ, VET                                                                                                                                                                                                                                    |            |
| 17<br>18                                  | 5-7                                              | 1.0                              | 23                        | -                                    | <1                        | 17.0<br>SAND, MEDIUM AND FINE GRAIN, LITTLE<br>SILT, Trace Clay, GRED, SHELL<br>AND LIMESTONE FRAGMENS, WET<br>DENSE HUTCH FRAGMENS, WET                                                                                                            | -7.90      |
| 19-<br>20- <u>2.0</u>                     | 5-10                                             | 2.0                              | 30<br>22<br>15<br>16      |                                      | ٤1                        | DENSE ; LITTLE PARTIRUM CEMENTED<br>LIMESTONE FRANKENTS<br>SAND, MEDIUM ANDENNE GRANN, MITTLE CORNIE<br>GRANN, LITTLE SILT, FALLE CLAY, GREY<br>SHELL, PARTHALLY CEMENTED LIMESTON                                                                  |            |
| 21-                                       | 5-(1                                             | 2.0                              | 20<br>21<br>21<br>23      |                                      | <1                        | SAND, MEDIUM AND FLAE GRANN, SOME                                                                                                                                                                                                                   | -          |
| 23 -<br>24 - 24.                          | 1                                                | 2.0                              | 85<br>5<br>15<br>52<br>52 | 2                                    | <1                        | SAND, MEDIUM RUD FINE GRAIN, SONE<br>COARSE SAND, LITTLE TO TRACESIUT, FEW<br>SHELL RUD EUNESTANE FRAGMENT),<br>WET, DENSE                                                                                                                          |            |
| 25 -<br>26 - <u>21.</u>                   | 5-13                                             | 5 Z.0                            | 18<br>21<br>23<br>2       | 0                                    | 41                        |                                                                                                                                                                                                                                                     |            |
| 27 –<br>28 – 28                           | 5-14                                             | 4 2.0                            | דו<br>18<br>28<br>3       | 8                                    | ۷                         | SAND, MEDIUM AND FINE GAAN, LITTLE -<br>COARSE SAND, FEW SILELL FRAGMENTS, -<br>WAY BLASE, WET, TRACE SILE -                                                                                                                                        |            |
| 29                                        | 5 -13                                            | 5 2.0                            | 15                        | 12                                   | 4                         | SAND, MEDIUM AND FINE GRAIN, SONE - WELL<br>STUT, FEW SUELL FRAGMENTS, - SKREEN<br>SREY, GREEN, LITZETD FEW<br>UMENDALE FRAGMENTS Match to Sheet 3. TO 35:0 FT                                                                                      | -<br>-<br> |

DRILLING CO .: PARRATT WOLFF DRILLER: CHIP

BAKER REP .: BRIAN E. DAMS BORING NO .: TW 23-B SHEET 2 OF 3



Baker Environmental, 🖂

#### **TEST BORING AND WELL CONSTRUCTION RECORD**

PROJECT: SGT - CTO 232 - SLREENING

.

S.O. NÓ .: 62470 - 232 - 0000 - 03600 BORING NO .: TW 23 - B

| T =<br>R =                              | Split Spoo<br>Shelby Tu<br>Air Rotan<br>Denison | be                               | A =<br>W =<br>C =<br>P = | Auger<br>Wash<br>Core<br>Piston      |                         | RQD = Rock Quality Designation (<br>Lab. Class. = USCS (ASTM D-2487)                                                                                                                            | DEFINITIONS<br>SPT = Standard Penetration Test (ASTM D-1586) (Blows/0.5')<br>RQD = Rock Quality Designation (%)<br>Lab. Class. = USCS (ASTM D-2487) or AASHTO (ASTM D-3282)<br>Lab. Moist. = Moisture Content (ASTM D-2216) Dry Weight Basis |                  |  |  |  |  |  |
|-----------------------------------------|-------------------------------------------------|----------------------------------|--------------------------|--------------------------------------|-------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|--|--|--|--|--|
| Depth<br>(Ft.)                          | Sample<br>Type<br>and<br>No.                    | Samp.<br>Rec.<br>(Ft.<br>&<br>%) | SPT<br>or<br>RQD         | Lab.<br>Class.<br>or<br>Pen.<br>Rate | Honst<br>Moist<br>Moist | Visual Description                                                                                                                                                                              | Well Installat<br>Detail                                                                                                                                                                                                                     | ion<br>Elevation |  |  |  |  |  |
| 31-<br>32-3210                          | 5-16                                            | Z.0                              | 10<br>10<br>11<br>12     |                                      | 4                       | Continued from Sheet 2<br>SANDI MEDIUM AND FINE GAGIN, LITTLE<br>GARGE GRAINI SIMESILT, SHELL AND<br>LIMESTONG FRAGMENTI, GREED, GREEN, -<br>WET, MEDIUM DENSE TO DENSE                         | WEUL<br>From<br>0.0 Tr<br>35.0                                                                                                                                                                                                               |                  |  |  |  |  |  |
| 33_<br>34_ <del>31</del> .              | 5-17                                            | 2.0                              | 12<br>28<br>42           |                                      | 21                      | SAND, MEDIUM AND FINE BRAIN, LITTLE<br>CARSE BRAIN, LITTLE TO SOME SILT, -<br>BREY, ERECN, SHELL AND LIMENTINE<br>FRAGMENTS, WET, DENSE TO VEMY DENSE<br>LITTLE PARTNALLY CEMENTED LIMESTONEY - |                                                                                                                                                                                                                                              | ан -<br>сонг -   |  |  |  |  |  |
| 35-<br>36-34.2                          | 5-18                                            |                                  | 715                      |                                      |                         | AND SHELL FLAGHEUTS 3415<br>SAND, FINEGRAN, SOMESILT, LITTLE LLAY -<br>GREEN, WET 31.1                                                                                                          | Hove c                                                                                                                                                                                                                                       | 6.070350T        |  |  |  |  |  |
| 37 - 37 - 37 - 37 - 37 - 37 - 37 - 37 - |                                                 |                                  |                          |                                      |                         | END OF BORING @ 3610 FT                                                                                                                                                                         |                                                                                                                                                                                                                                              |                  |  |  |  |  |  |
|                                         | <u> </u>                                        | Page                             | 2.0                      |                                      |                         | BAKER REP.: BRA                                                                                                                                                                                 | J E, Daras                                                                                                                                                                                                                                   | ]                |  |  |  |  |  |
| DRILLER                                 |                                                 | CHY                              |                          |                                      |                         | BORING NO.: TW Z                                                                                                                                                                                |                                                                                                                                                                                                                                              | SHEET 3 OF 3     |  |  |  |  |  |



Baker Environmentst

# **TEST BORING AND WELL CONSTRUCTION RECORD**

PROJECT: SGI-CTO 232 -SCREENING

. . . . .

S.O. NO.: 62470-232-0000-03600 COORDINATES: EAST: 2465610,9966 ELEVATION: SURFACE: 9.10 BORING NO.: <u>**TV23-C**</u> NORTH: <u>363543.</u>[637 TOP OF STEEL CASING: \_\_\_\_

687 S28567 2 3 5

| RIG: M                                          | hau                              |                                 | ~                | uck m                                |                    | -      |                  |            |                  |                         |                                                                                                                                                                      |                         |
|-------------------------------------------------|----------------------------------|---------------------------------|------------------|--------------------------------------|--------------------|--------|------------------|------------|------------------|-------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|
| • • •                                           |                                  | SPLIT                           |                  |                                      |                    | GERS   | CORE<br>BARREL   | DATE       | PROGRESS<br>(FT) | WEATHE                  | WATER<br>DEPTH<br>R (FT)                                                                                                                                             | TIME                    |
| SIZE (DIAM.                                     | )                                |                                 |                  |                                      | 3!                 | 410    |                  | 4-14-96    | 0-25             | 70's sum                | - 'o                                                                                                                                                                 | oines,                  |
| LENGTH                                          |                                  |                                 |                  |                                      | 5                  |        |                  |            |                  |                         |                                                                                                                                                                      | :                       |
| ТҮРЕ                                            |                                  |                                 |                  |                                      | H                  | 5      |                  |            |                  |                         |                                                                                                                                                                      |                         |
| HAMMER V                                        | νт.                              |                                 |                  |                                      |                    |        |                  |            |                  | ~                       |                                                                                                                                                                      |                         |
| FALL                                            |                                  |                                 |                  |                                      |                    |        |                  |            |                  | <u></u>                 |                                                                                                                                                                      |                         |
| STICK UP                                        |                                  |                                 |                  |                                      |                    |        |                  |            |                  |                         |                                                                                                                                                                      |                         |
| REMARKS:                                        | •                                |                                 |                  |                                      |                    |        |                  |            |                  |                         | <b>r</b>                                                                                                                                                             |                         |
|                                                 | <u>SA</u><br>lit Spoo<br>elby Tu |                                 | A =              | Auger<br>Wash                        |                    |        | VELL<br>DRMATION | DIAM       | TYF              | PE                      | TOP<br>DEPTH<br>(FT)                                                                                                                                                 | BOTTOM<br>DEPTH<br>(FT) |
| $\mathbf{R} = \mathbf{A}$                       | r Rotary<br>enison               |                                 | C =              | Core<br>Piston                       |                    | Well ( | Casing           | 111        | PVC Threaded     |                         | 0                                                                                                                                                                    | 20                      |
|                                                 |                                  | = No Sa                         |                  |                                      |                    | WellS  | Screen           | 111        | PVC Slotted      |                         | 20                                                                                                                                                                   | 25                      |
| Depth<br>(Ft.)                                  | Sample<br>Type<br>and<br>No.     | Samp.<br>`Rec.<br>Ft.<br>&<br>% | SPT<br>or<br>RQD | Lab.<br>Class.<br>or<br>Pen.<br>Rate | Lab.<br>Moist<br>% |        | Visual I         | Descriptio | on               | Insta                   | Vell<br>Illation<br>etail                                                                                                                                            | Elevation               |
| 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10 | AN                               |                                 |                  |                                      |                    | TDR.   | E BORING         | V FO& MAT  | Tatch to Sheet   |                         | WELL<br>5044<br>From<br>25<br>Fr<br>25<br>Fr<br>25<br>Fr<br>25<br>Fr<br>25<br>Fr<br>25<br>Fr<br>25<br>Fr<br>25<br>Fr<br>25<br>Fr<br>25<br>Fr<br>25<br>Fr<br>25<br>Fr |                         |
| DRILLING                                        | <b>čo.:</b> ۲                    | PARA                            | LAT              | e wo                                 | LFF                |        |                  | BAKEI      | R REP .: BRIA    | <u>. Б. Да.</u><br>23-с | <u>/is</u>                                                                                                                                                           |                         |
|                                                 | $\mathbb{W}$                     | ALLY                            | l                |                                      |                    |        |                  |            | IW i             |                         |                                                                                                                                                                      |                         |

Baker

Baker Environmental, Inc

.

PROJECT: SGI - CTO 232 - SCREENING

S.O. NO .: 62470-232-0000-03600 BORING NO .: TW25-C

| T = S $R = A$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | plit Spoo<br>helby Tu<br>Air Rotan<br>Denison | be<br>/                          | A =<br>W =<br>C =<br>P = | Auger<br>Wash<br>Core<br>Piston      |                    | DEFINITIONS<br>SPT = Standard Penetration Test (ASTM D-1586) (Blows/0.5')<br>RQD = Rock Quality Designation (%)<br>Lab. Class. = USCS (ASTM D-2487) or AASHTO (ASTM D-3282)<br>Lab. Moist. = Moisture Content (ASTM D-2216) Dry Weight Basis |            |      |             |                                                                                                                                                                     |           |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|----------------------------------|--------------------------|--------------------------------------|--------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|------|-------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|--|
| Depth<br>(Ft.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Sample<br>Type<br>and<br>No.                  | Samp.<br>Rec.<br>(Ft.<br>&<br>%) | SPT<br>or<br>RQD         | Lab.<br>Class.<br>or<br>Pen.<br>Rate | Lab.<br>Moist<br>% | Visual Description                                                                                                                                                                                                                           | Ň          | Well | Inst<br>Def | allation<br>tail                                                                                                                                                    | Elevation |  |
| $ \begin{array}{c}     - \\     11 - \\     - \\     12 - \\     13 - \\     13 - \\     14 - \\     15 - \\     16 - \\     17 - \\     18 - \\     19 - \\     20 - \\     21 - \\     22 - \\     23 - \\     24 - \\     25 - \frac{25 \cdot 0}{25 \cdot 0} \\     26 - \\     27 - \\     28 - \\     29 - \\     - \\     29 - \\     - \\     29 - \\     - \\     - \\     - \\     - \\     - \\     - \\     - \\     - \\     - \\     - \\     - \\     - \\     - \\     - \\     - \\     - \\     - \\     - \\     - \\     - \\     - \\     - \\     - \\     - \\     - \\     - \\     - \\     - \\     - \\     - \\     - \\     - \\     - \\     - \\     - \\     - \\     - \\     - \\     - \\     - \\     - \\     - \\     - \\     - \\     - \\     - \\     - \\     - \\     - \\     - \\     - \\     - \\     - \\     - \\     - \\     - \\     - \\     - \\     - \\     - \\     - \\     - \\     - \\     - \\     - \\     - \\     - \\     - \\     - \\     - \\     - \\     - \\     - \\     - \\     - \\     - \\     - \\     - \\     - \\     - \\     - \\     - \\     - \\     - \\     - \\     - \\     - \\     - \\     - \\     - \\     - \\     - \\     - \\     - \\     - \\     - \\     - \\     - \\     - \\     - \\     - \\     - \\     - \\     - \\     - \\     - \\     - \\     - \\     - \\     - \\     - \\     - \\     - \\     - \\     - \\     - \\     - \\     - \\     - \\     - \\     - \\     - \\     - \\     - \\     - \\     - \\     - \\     - \\     - \\     - \\     - \\     - \\     - \\     - \\     - \\     - \\     - \\     - \\     - \\     - \\     - \\     - \\     - \\     - \\     - \\     - \\     - \\     - \\     - \\     - \\     - \\     - \\     - \\     - \\     - \\     - \\     - \\     - \\     - \\     - \\     - \\     - \\     - \\     - \\     - \\     - \\     - \\     - \\     - \\     - \\     - \\     - \\     - \\     - \\     - \\     - \\     - \\     - \\     - \\     - \\     - \\     - \\     - \\     - \\     - \\     - \\     - \\     - \\     - \\     - \\     - \\     - \\     - \\     - \\     - \\     - \\     - \\     - \\     - \\     - \\     - \\     - \\     - \\     - \\     - \\     - \\     - \\     - \\     - \\     - \\     - \\     - \\     - \\     - \\     - \\     - \\     - \\     - \\   $ | A- N                                          |                                  |                          |                                      |                    | Continued from Sheet 1<br>SEE BORING LOG TW23-B<br>For Sole INFORMATION<br>END OF BORING & 25.0 FT                                                                                                                                           |            |      |             | NELL<br>SOCK<br>FRUM<br>0.0<br>70<br>25.0<br>FT<br>VIELL<br>CASING<br>TO<br>20.0<br>FT<br>VIELL<br>SCREEN<br>FRUM<br>20.0<br>FT<br>20.0<br>FT<br>25.0<br>FT<br>25.0 | -10.90    |  |
| 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1                                             |                                  | <u> </u>                 |                                      |                    | Match to Sheet                                                                                                                                                                                                                               | <u>ر ع</u> |      |             | <u> </u>                                                                                                                                                            | <u> </u>  |  |

| DRILLING CO.: | PARRATT | WOLFF                   |  |
|---------------|---------|-------------------------|--|
| DRILLER: WE   | 4644    | · · · · · · · · · · · · |  |

BAKER REP .: BRIAN E. DAVIS BORING NO.: TW23-C

SHEET 2 OF



Baker Environmental, 🔤

## **TEST BORING AND WELL CONSTRUCTION RECORD**

PROJECT: SGI -CTO 232 - SCREENING

ار رو بهو مر الطلط

S.O. NO.: 62410-232-COORDINATES: EAST: 2465591.8938 ELEVATION: SURFACE: 10.70 BORING NO.: TW24-A NORTH: <u>363601.7530</u> TOP OF STEEL CASING: \_\_\_\_\_

| RIG: CME &                                                     | 50 TRAU        | c mount            |                    |           |                |            |                       |                                         | WATER                                                                                                                   |                                                                                             |
|----------------------------------------------------------------|----------------|--------------------|--------------------|-----------|----------------|------------|-----------------------|-----------------------------------------|-------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|
|                                                                | SPLIT<br>SPOON | CASING             |                    | GERS      | CORE<br>BARREL | DATE       | PROGRESS<br>(FT)      | WEATHER                                 | DEPTH                                                                                                                   | TIME                                                                                        |
| SIZE (DIAM.)                                                   |                |                    | 3!                 | GID       |                | 4-14-96    | 0-15                  | 70'5 SUN1                               | 5 6                                                                                                                     | ohrs.                                                                                       |
| LENGTH                                                         |                |                    |                    | FT        |                |            |                       |                                         |                                                                                                                         |                                                                                             |
| ТҮРЕ                                                           |                |                    | H                  | 5         |                |            |                       |                                         |                                                                                                                         |                                                                                             |
| HAMMER WT.                                                     |                |                    |                    |           |                |            |                       |                                         |                                                                                                                         |                                                                                             |
| FALL                                                           |                |                    |                    |           |                |            |                       |                                         |                                                                                                                         |                                                                                             |
| STICK UP                                                       |                |                    |                    |           |                |            |                       | <u> </u>                                |                                                                                                                         |                                                                                             |
| REMARKS:                                                       |                |                    |                    |           | ·              |            |                       |                                         | T                                                                                                                       |                                                                                             |
| S = Split Sp<br>T = Shelby                                     |                | = Auger            |                    | V<br>INFC | VELL           | DIAM       | TYF                   |                                         | TOP<br>DEPTH<br>(FT)                                                                                                    | BOTTOM<br>DEPTH<br>(FT)                                                                     |
| R = Air Rot<br>D = Deniso                                      | ary C          | = Core<br>= Piston |                    | Well (    | Casing         | 1"         | PVC Threaded          | Idia.                                   | 0                                                                                                                       | 5                                                                                           |
|                                                                | N = No Samp    |                    |                    | WellS     | Screen         | 1"         | PVC Slotted           | 0.01 SLOT                               | 5                                                                                                                       | 15                                                                                          |
| Samp<br>Depth Type<br>(Ft.) and<br>No                          | Ft. or         |                    | Lab.<br>Moist<br>% |           | Visual         | Descriptic | on                    | Instal                                  | ell<br>lation<br>tail                                                                                                   | Elevation                                                                                   |
| $ \begin{array}{c}             1 \\             1 \\         $ | 1              |                    |                    | SEE       | E BORINI       |            | ۲۰۸<br>fatch to Sheet |                                         | WELL<br>SOCK<br>FROM<br>DIO FO<br>ISIO FT<br>WELL<br>CASING<br>FROM<br>SIO FT<br>INELL<br>SCREEN<br>FROM<br>SIO TO ISIO | -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- |
| DRILLING CO                                                    |                | ITT WO             | LFIE               |           |                |            | RREP.: BRI            | AN E. DA                                | <u>. V 15</u><br>SHF                                                                                                    | et <u>1</u> of <u>.</u>                                                                     |
| DOULER: _C                                                     | 410            |                    |                    |           |                | BOKIN      |                       | - · · · · · · · · · · · · · · · · · · · |                                                                                                                         | <u> </u>                                                                                    |

Baker

Baker Environmental, Inc

.

PROJECT: SCT - CTO 232 - SCREENING 5.0. NO .: 62470 - 232-0000 - 03600 BORING NO .: TW 24-A

| T = 5<br>R = /                                                                                                                         | iplit Spoo<br>ihelby Tu<br>Air Rotary<br>Denison | be<br>/                          | A =<br>W =<br>C =<br>P = | Wash<br>Core                         |                    | DEFINITIONS<br>SPT = Standard Penetration Test (ASTM D-1586) (Blows/0.5')<br>RQD = Rock Quality Designation (%)<br>Lab. Class. = USCS (ASTM D-2487) or AASHTO (ASTM D-3282)<br>Lab. Moist. = Moisture Content (ASTM D-2216) Dry Weight Basis |                                               |      |  |  |  |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|----------------------------------|--------------------------|--------------------------------------|--------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|------|--|--|--|--|--|
| Depth<br>(Ft.)                                                                                                                         | Sample<br>Type<br>and<br>No.                     | Samp.<br>Rec.<br>(Ft.<br>&<br>%) | SPT<br>or<br>RQD         | Lab.<br>Class.<br>or<br>Pen.<br>Rate | Lab.<br>Moist<br>% | Visual Description                                                                                                                                                                                                                           | Well Installation<br>Detail <sup>Elevan</sup> | tion |  |  |  |  |  |
| 11-<br>-<br>12-<br>-<br>13-<br>-<br>14-                                                                                                | A-N                                              |                                  |                          |                                      |                    | Continued from Sheet 1<br>                                                                                                                                                                                                                   |                                               | 30   |  |  |  |  |  |
| $ \begin{array}{c} 15 \\ 16 \\ 16 \\ 17 \\ 18 \\ 19 \\ 20 \\ 21 \\ 22 \\ 23 \\ 24 \\ 25 \\ 26 \\ 27 \\ 28 \\ 29 \\ 30 \\ \end{array} $ |                                                  |                                  |                          |                                      |                    | END OF BORING @ 15 FT                                                                                                                                                                                                                        |                                               |      |  |  |  |  |  |
| DRILLIN<br>DRILLE                                                                                                                      |                                                  | PARA<br>CHI                      |                          | WOLF                                 | ٤                  | BAKER REP.: BRING NO.: TWZ                                                                                                                                                                                                                   |                                               | OF 2 |  |  |  |  |  |



-----



# **TEST BORING AND WELL CONSTRUCTION RECORD**

PROJECT: SGI - CTO 232 - SCREENING

S.O. NO.: 62470-232-000 -02600 COORDINATES: EAST: 2465591.8938 NORTH: 363601.7530 ELEVATION: SURFACE: 10.70

TOP OF STEEL CASING: \_\_\_\_

| RIG: MOBI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | E 55 -         | TRUCK 1                  | nou                       | JT.           |                                 |                       |                            |                   | WATER                                     |                         |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|--------------------------|---------------------------|---------------|---------------------------------|-----------------------|----------------------------|-------------------|-------------------------------------------|-------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | SPLIT<br>SPOON | CASING                   | AU                        | GERS          | CORE<br>BARREL                  | DATE                  | PROGRESS<br>(FT)           | WEATHER           | DEPTH<br>(FT)                             | TIME                    |
| SIZE (DIAM.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1.43 I.N       |                          | 3%                        | IO            |                                 | 4/14/96               | 0-40                       | 70'5 50007        | 6                                         | Olfr>                   |
| ENGTH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2FT            |                          | SF                        | Г             |                                 |                       |                            |                   |                                           |                         |
| гүре                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 55             |                          | H                         | 5             |                                 |                       |                            |                   |                                           |                         |
| HAMMER WT.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 140 lbs        |                          |                           |               |                                 |                       |                            |                   |                                           |                         |
| FALL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 30 (1).        |                          |                           |               |                                 |                       |                            |                   |                                           | <u> </u>                |
| STICK UP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                |                          |                           |               |                                 |                       |                            |                   |                                           |                         |
| REMARKS:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <u></u>        |                          |                           |               |                                 | r                     |                            |                   |                                           |                         |
| S = Split Sp |                | = Auger<br>= Wash        |                           |               | VELL<br>DRMATION                | DIAM                  | TYI                        | PE                | TOP<br>DEPTH<br>(FT)                      | BOTTOM<br>DEPTH<br>(FT) |
| $R = Air Ro^{2}$<br>D = Deniso                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | tary C         | = Core<br>= Piston       |                           | Well          | Casing                          | 11                    | PVC Threaded               | 1"210             | ٥                                         | 35                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | N = No Samp    |                          |                           | Wells         | Screen                          | ויי                   | PVC Slotted                | DIDI"SLOT         | 35                                        | 40                      |
| Sam<br>Depth Typ<br>(Ft.) and<br>No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | e Ft. SF       | Class.<br>or<br>QD Pen.  | Hnu<br>Lab.<br>Moist<br>% |               | Visual                          | Descriptio            | n                          | W<br>Instal<br>De | lation                                    | Elevation               |
| 1 -<br>2 - <del>2.0</del> 5-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                | or<br>15<br>1            | 4                         | BIA           | at Brown                        | , soft. Mo            |                            |                   | WELL<br>SOLL<br>FROM DIO<br>TO YOLD<br>FT |                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1 1            | 1<br>3                   | <u>دا</u>                 |               |                                 |                       | тена,<br>0157 <u>- Ца</u>  |                   | WELL<br>CASING<br>From<br>0.0             |                         |
| 5 - 5.<br>6 - 400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3 2.0 4        | 4<br>, 1                 | 21                        | SANE          | , Some Sil<br>-ép, ₩ <i>e</i> T | T, BROWN<br>, THACE C | o, breig,<br>ung           |                   | ۳) ۵ <u>ز</u> ۶ ول                        |                         |
| 7 - 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -7 1.0 1       | n<br>1-0                 | کر (                      |               | , some sic<br>00, WET           | i une i               | D TRACE LLAY               |                   |                                           |                         |
| 9 - 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | - 20           | - <u>3</u><br>3 <b>2</b> |                           | SAUD<br>SILT, | FINE AND<br>TRACE CLA           | 7, GREY               | 8.5<br>, SOFT, WET         |                   |                                           | - 2.2                   |
| 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                |                          |                           |               |                                 |                       | Aatch to Sheet             |                   |                                           |                         |
| DRILLING CO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                | T WOLF                   | <u> </u>                  |               |                                 |                       | R REP.: 0217<br>NG NO.: TV | IN E. DAN<br>24-B | SHE                                       | ET <u>1</u> OF          |

Baker

Baker Environmental, Inc

PROJECT: 567 - CTO 232 - SCREENING S.O. NO .: 62470-232-0000-03600 BORING NO .: TW24-B

DEFINITIONS SAMPLE TYPE SPT = Standard Penetration Test (ASTM D-1586) (Blows/0.5') A = Auger **S** = Split Spoon RQD = Rock Quality Designation (%) W = Wash T = Shelby Tube Lab. Class. = USCS (ASTM D-2487) or AASHTO (ASTM D-3282) C = Core  $\mathbf{R} = \operatorname{Air} \operatorname{Rotary}$ Lab. Moist. = Moisture Content (ASTM D-2216) Dry Weight Basis P = Piston D = Denison > N = No Sample Samp. Lab. Hnu Well Installation Sample Rec. SPT Class. Lab. Elevation Depth Detail Visual Description Type (Ft. or Moist or (Ft.) and & Pen. RQD ~~ No. %) Rate (99-) 24 لماديد Continued from Sheet 1 SOFF SAND, KINE GRAIN LITTLE MEDIUM GRAIN, ٩<sub>٩</sub> 4 (marco 11-GREY, BROWN, SOFT 2.0 5-6 0.0 70 40.0 FT SA-O, FINE GRAIN, LITTLE MELLING GRAN GREA BROWN, WET I SOFT \_ \_ BU 120 12-2 -2.80 ч*6* Sand, Free as may on brain, with . Brown from 13.0 to 13.5 FT NELL 13-41 ک.۵ 5.7 CASING ( possible petralcum Staining ) 14.0 ~~~ 14 -167 0.0 00 Sand, FINE Grain, LITTLE MERIL Grain, 35.0 FT 2.0 15-LITTLE SILT, BROWN, WET 5-3 41 5 7 16.0 16-5 7 2.08 17-5-9 17.5 -6.80 21 SAND, MEDIUM AND FINE GRAIN, LITTLE SILT 18.0 18-TRACE CLAY, GREY, SOME SHELL AND 24 LIMESTONE MAGMEUR, GREY, WET, MESLUM 24 DENSIS, LITTLE PARTIALLY CEMENTED 19-41 5-10 2.0 25-2-7 2010 20. 14 16 21 5-11 23 24 11.5 41 77.0 22 K/ 18 SAND, MEDIUM DUD FINE GRAIN, 21 23 19 5-12 2.0 LITTLE SILT, GREY, SOME SHOLL AND 23 24.0 24 CEMENTES LIMESTANS, VENY DENSE, WET 120 22 25 41 25.5 2.0 28 -14.80 5-13 GRES 13 SAND, MEDIUM AND FINE GRAIN, 260 26 LITTLE SUT, & RED , GREEN, SHELLIND LITTLE SUT, & RED , GREEN, SHELLIND LITERDIE FRIEMENT DENSE, WIGT PANTIALY COMEVER SHELLING LINGTONE 19 55 21 27 -2.0 18 5-14 FRAGMENTS 19 28.0 28 -14 SAND, MEDIUM AND FINE GRAIN, SUME SILT SHELL AND LING TONE FOR MENTS, GAREN 29 (4 (4 5-15 21 GREY, PARTALLY LEMENTED, DENSE 361 Match to Sheet 3. 50.0 30 BAKER REP .: BRIGH E DAVIS DRILLING CO .: PARRATE WOLFE SETTER 2 OF 3 DODINGNO. TW24-B DRILLER: \_CHIP



. •

Baker Environmental, 🛥

# **TEST BORING AND WELL CONSTRUCTION RECORD**

PROJECT: SGT-CTO232-SCREENING

S.O. NO .: 62470-232-0000-03600 BORING NO .: TW -24B

.

| T = 5<br>R = 7                                             | Split Spoc<br>Shelby Tu<br>Air Rotar<br>Denison | ibe<br>y                         | A =<br>W =<br>C =<br>P =   | Auger<br>Wash<br>Core<br>Piston                                                             |                      | DEFINITIONS<br>SPT = Standard Penetration Test (ASTM D-1586) (Blows-0.5')<br>RQD = Rock Quality Designation (%)<br>Lab. Class. = USCS (ASTM D-2487) or AASHTO (ASTM D-3282)<br>Lab. Moist. = Moisture Content (ASTM D-2216) Dry Weight Basis |                                                |                      |  |  |  |
|------------------------------------------------------------|-------------------------------------------------|----------------------------------|----------------------------|---------------------------------------------------------------------------------------------|----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|----------------------|--|--|--|
| Depth<br>(Ft.)                                             | Sample<br>Type<br>and<br>No.                    | Samp.<br>Rec.<br>(Ft.<br>&<br>%) | SPT<br>or<br>RQD           | Lab.<br>Class.<br>or<br>Pen.<br>Rate                                                        | How<br>tab.<br>Maist | Visual Description                                                                                                                                                                                                                           | Well Installation<br>Detail                    | Elevation            |  |  |  |
| 31<br>32- <u>-32-0</u>                                     | 5-16                                            | 1.0                              | 4<br>4<br>8<br>12          |                                                                                             | 41                   | Continued from Sheet 2<br>SAND, FINE AND MEDIUMERAIN,<br>LITTLE SILT, BREY 1 SAELIAND<br>MESTONE FRAGMENTS, LITTLE<br>CEMENTATION, WET, MEDIUM DENIE                                                                                         | WELL -<br>SOCK -<br>From -<br>ON TO \$0.0 FT - |                      |  |  |  |
| 33_<br>34 <u>34</u> &<br>35_                               | 5-17<br>5-18                                    | 1.5<br>2.0                       | 24<br>15<br>20<br>10<br>10 |                                                                                             | <u>دا</u>            | SAND, FINE AND MEDIUM GRAIN, LITTLE UNY GREY BUD<br>SAND, FINE AND MEDIUM GRAIN, LITTLE<br>CORFUE GRAIN, SHIELL AND LIMESTONS<br>FUEL MEDIUM DEN LE                                                                                          |                                                | -77.80<br>-73.30     |  |  |  |
| 36 <sup>1360</sup><br>37<br>37<br>33<br>3600               | 5-19                                            | 2.0                              | 20                         | 1                                                                                           | <1                   | SAWDINEDIUM AND FINE, LITTLE COARSE<br>GRAIN, SITELL AND LIMETIONE FRAGMENTS,<br>LITTLE CEMENTATION, WET MEDIUM<br>BENJE TO DONIE 33.0                                                                                                       |                                                | - 27.30              |  |  |  |
| ≓<br>S∋                                                    | 5-20                                            | 2.0                              | 3<br>4<br>4                | -                                                                                           | 41                   | SAND, SOME SILT, LITTLE CLAY, GREEN,<br>WET, MEDIUM DENSE,<br>                                                                                                                                                                               | Borton Pwg                                     | -29 30               |  |  |  |
| 4'                                                         |                                                 | 1                                |                            | -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- |                      |                                                                                                                                                                                                                                              |                                                |                      |  |  |  |
| 44                                                         |                                                 |                                  |                            |                                                                                             |                      |                                                                                                                                                                                                                                              |                                                |                      |  |  |  |
| 46<br>47                                                   |                                                 |                                  |                            |                                                                                             |                      | -<br>-<br>-                                                                                                                                                                                                                                  |                                                |                      |  |  |  |
| 48<br>-<br>49<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- |                                                 |                                  |                            |                                                                                             |                      |                                                                                                                                                                                                                                              |                                                |                      |  |  |  |
| DRILLING<br>DRILLER:                                       |                                                 |                                  | ATT                        | Wor                                                                                         | 1<br>77              | BAKER REP.: BORING NO.: THE                                                                                                                                                                                                                  | <u>, Е. Дали</u><br>24 <u>в</u> Sheet          | <u>3</u> OF <u>3</u> |  |  |  |

Baker Environmental, Inc

Sec. 4. 194

.

# **TEST BORING AND WELL CONSTRUCTION RECORD**

PROJECT: SGI - CTO 232 - SCREENING

S.O. NO.: 624 70 - 232 . 0000 - 03600 COORDINATES: EAST: 2465591, 8938 ELEVATION: SURFACE: 10,70 BORING NO.: Tw 24-C NORTH: 363601.7530 TOP OF STEEL CASING: \_\_\_\_\_

|                                                                                                                                                                     |                    |                          |                    |              |                  |                    |                  | · · · · · · · · · · · · · · · · · · · |                                                                                             |                         |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|--------------------------|--------------------|--------------|------------------|--------------------|------------------|---------------------------------------|---------------------------------------------------------------------------------------------|-------------------------|
| RIG: Mos                                                                                                                                                            | 1E 55              | TRUCK m                  | لد ت ه             | ~            |                  |                    |                  |                                       |                                                                                             |                         |
|                                                                                                                                                                     | SPLIT<br>SPOON     | CASING                   | AU                 | JGERS        | CORE<br>BARREL   | DATE               | PROGRESS<br>(FT) | WEATHER                               | WATER<br>DEPTH<br>(FT)                                                                      | TIME                    |
| SIZE (DIAM.)                                                                                                                                                        |                    |                          | 31                 | 410          |                  | 4/14/96            | 0-27.5           | 70'S SUNNT                            | Q                                                                                           | o Hes                   |
| LENGTH                                                                                                                                                              |                    |                          |                    | FT           |                  |                    |                  |                                       |                                                                                             |                         |
| ТҮРЕ                                                                                                                                                                |                    |                          | Н                  | 15           |                  |                    |                  |                                       |                                                                                             |                         |
| HAMMER WT.                                                                                                                                                          |                    |                          |                    |              |                  |                    |                  |                                       |                                                                                             |                         |
| FALL                                                                                                                                                                |                    |                          |                    | · · ·        |                  |                    |                  |                                       |                                                                                             |                         |
| STICK UP                                                                                                                                                            |                    |                          |                    |              |                  | <u> </u>           |                  |                                       |                                                                                             |                         |
| REMARKS:                                                                                                                                                            |                    |                          |                    | <del>.</del> |                  | 1 1                |                  | <u> </u>                              | <u> </u>                                                                                    |                         |
| . S = SplitS<br>T = Shelby                                                                                                                                          |                    | =<br>= Auger<br>/ = Wash |                    |              | WELL<br>DRMATION | DIAM               | TYP              | 25                                    | TOP<br>DEPTH<br>(FT)                                                                        | BOTTOM<br>DEPTH<br>(FT) |
| R = Air Ro<br>D = Deniso                                                                                                                                            | tary C             | = Core<br>= Piston       | ļ                  | Well (       | Casing           | l'it.              | PVC Threaded     | 1"dia                                 | 0                                                                                           | 22.5                    |
|                                                                                                                                                                     | N = No Samp        |                          | !                  | Well S       | Screen           | 1"                 | PVC Slotted      | DIDISLOT                              | ZZ.5                                                                                        | Z7.5                    |
| Sam<br>Depth Typ<br><u>(</u> Ft.) and<br>No                                                                                                                         | e Ft. SP<br>d & or |                          | Lab.<br>Moist<br>% |              | Visual           | Descriptio         | on               | Instal                                | 'ell<br>llation<br>tail                                                                     | Elevation               |
| -<br>1 -<br>2 -<br>3 -<br>4 -<br>5 -<br>4 -<br>5 -<br>4 -<br>-<br>4 -<br>-<br>4 -<br>-<br>-<br>4 -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- | ų                  |                          |                    |              |                  | st Lot<br>NForm at |                  |                                       | WELL<br>SOCK<br>FROM OID<br>TO 17.5FT<br>WELL<br>CASING<br>FROM<br>0.0<br>70<br>22.5<br>FT. |                         |
| DRILLING CO                                                                                                                                                         | .: PARCAT          | T WOLFE                  |                    |              |                  | BAKEI              | RREP .: BRIP     | NE. DAU                               |                                                                                             |                         |
| DRILLER:                                                                                                                                                            |                    |                          |                    |              |                  | BORIN              | NG NO.:          | 124-0                                 | SHEE                                                                                        | ET <u>1</u> OF <u>2</u> |



Baker Environmental, Inc.

.

PROJECT: <u>5GI - CTD 232 - SCREENING</u> S.O. NO.: <u>62470-232-0000-03600</u> BORING NO.: <u>TW 24-0</u>

| Depth<br>(Ft.)Sample<br>Rec.Lab.<br>SPTLab.<br>Class.Well Installation<br>DetailDepth<br>(Ft.)Sample<br>Rec.SPT<br>(Ft. or<br>and<br>& RQDClass.<br>Pen.Lab.<br>Woist<br>Wisual DescriptionWell Installation<br>DetailNo.<br>(%)%)Rate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |      |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| Ny hate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | tion |
| $ \begin{array}{c} 23 \\ 24 \\ -24 \\ -25 \\ -26 \\ -27 \\ -27 \\ -27 \\ -27 \\ -27 \\ -27 \\ -27 \\ -27 \\ -27 \\ -27 \\ -27 \\ -27 \\ -27 \\ -27 \\ -27 \\ -27 \\ -27 \\ -27 \\ -27 \\ -27 \\ -27 \\ -27 \\ -27 \\ -27 \\ -27 \\ -27 \\ -27 \\ -27 \\ -27 \\ -27 \\ -27 \\ -27 \\ -27 \\ -27 \\ -27 \\ -27 \\ -27 \\ -27 \\ -27 \\ -27 \\ -27 \\ -27 \\ -27 \\ -27 \\ -27 \\ -27 \\ -27 \\ -27 \\ -27 \\ -27 \\ -27 \\ -27 \\ -27 \\ -27 \\ -27 \\ -27 \\ -27 \\ -27 \\ -27 \\ -27 \\ -27 \\ -27 \\ -27 \\ -27 \\ -27 \\ -27 \\ -27 \\ -27 \\ -27 \\ -27 \\ -27 \\ -27 \\ -27 \\ -27 \\ -27 \\ -27 \\ -27 \\ -27 \\ -27 \\ -27 \\ -27 \\ -27 \\ -27 \\ -27 \\ -27 \\ -27 \\ -27 \\ -27 \\ -27 \\ -27 \\ -27 \\ -27 \\ -27 \\ -27 \\ -27 \\ -27 \\ -27 \\ -27 \\ -27 \\ -27 \\ -27 \\ -27 \\ -27 \\ -27 \\ -27 \\ -27 \\ -27 \\ -27 \\ -27 \\ -27 \\ -27 \\ -27 \\ -27 \\ -27 \\ -27 \\ -27 \\ -27 \\ -27 \\ -27 \\ -27 \\ -27 \\ -27 \\ -27 \\ -27 \\ -27 \\ -27 \\ -27 \\ -27 \\ -27 \\ -27 \\ -27 \\ -27 \\ -27 \\ -27 \\ -27 \\ -27 \\ -27 \\ -27 \\ -27 \\ -27 \\ -27 \\ -27 \\ -27 \\ -27 \\ -27 \\ -27 \\ -27 \\ -27 \\ -27 \\ -27 \\ -27 \\ -27 \\ -27 \\ -27 \\ -27 \\ -27 \\ -27 \\ -27 \\ -27 \\ -27 \\ -27 \\ -27 \\ -27 \\ -27 \\ -27 \\ -27 \\ -27 \\ -27 \\ -27 \\ -27 \\ -27 \\ -27 \\ -27 \\ -27 \\ -27 \\ -27 \\ -27 \\ -27 \\ -27 \\ -27 \\ -27 \\ -27 \\ -27 \\ -27 \\ -27 \\ -27 \\ -27 \\ -27 \\ -27 \\ -27 \\ -27 \\ -27 \\ -27 \\ -27 \\ -27 \\ -27 \\ -27 \\ -27 \\ -27 \\ -27 \\ -27 \\ -27 \\ -27 \\ -27 \\ -27 \\ -27 \\ -27 \\ -27 \\ -27 \\ -27 \\ -27 \\ -27 \\ -27 \\ -27 \\ -27 \\ -27 \\ -27 \\ -27 \\ -27 \\ -27 \\ -27 \\ -27 \\ -27 \\ -27 \\ -27 \\ -27 \\ -27 \\ -27 \\ -27 \\ -27 \\ -27 \\ -27 \\ -27 \\ -27 \\ -27 \\ -27 \\ -27 \\ -27 \\ -27 \\ -27 \\ -27 \\ -27 \\ -27 \\ -27 \\ -27 \\ -27 \\ -27 \\ -27 \\ -27 \\ -27 \\ -27 \\ -27 \\ -27 \\ -27 \\ -27 \\ -27 \\ -27 \\ -27 \\ -27 \\ -27 \\ -27 \\ -27 \\ -27 \\ -27 \\ -27 \\ -27 \\ -27 \\ -27 \\ -27 \\ -27 \\ -27 \\ -27 \\ -27 \\ -27 \\ -27 \\ -27 \\ -27 \\ -27 \\ -27 \\ -27 \\ -27 \\ -27 \\ -27 \\ -27 \\ -27 \\ -27 \\ -27 \\ -27 \\ -27 \\ -27 \\ -27 \\ -27 \\ -27 \\ -27 \\ -27 \\ -27 \\ -27 \\ -27 \\ -27 \\ -27 \\ -27 \\ -27 \\ -27 \\ -27 \\ -27 \\ -27 \\ -27 \\ -27 \\ -27 \\ -27 \\ -27 \\ -27 \\ -27 \\ -27 \\ -27 \\ -27 \\ -27 \\ -27 \\ -27 \\ -27 \\ -27 \\ -27 \\ -27 \\ -27 \\ -27 \\ -27 \\ -27 \\ -27 \\ -27 \\ -27 \\ -27 \\ -27 \\ -27 \\ -27 \\ -27 \\ $ | 1.80 |
| DRILLING CO.: PARRATT WOLFS BAKER REP.: BRIAN E. DAJIS<br>DRILLER: CHIP BORING NO.: TW24-C SHEET 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | OF 2 |



Baker Environmental, 🔤

------

-----

# **TEST BORING AND WELL CONSTRUCTION RECORD**

PROJECT: 561-CTO 232 - SCREENING

• • • • •

.

S.O. NO.: 62470-232-0000-03600 BORING NO.: 12 25-A COORDINATES: EAST: 2465570.6022 NORTH: 363625.9719 ELEVATION: SURFACE: 11,10 TOP OF STEEL CASING: -

| RIG: mobil                                                                                             | .6 55 TR       | Jak may,           | <b>٦</b> ٢         |           |                  |                                       |                       |                     |                        |                         |
|--------------------------------------------------------------------------------------------------------|----------------|--------------------|--------------------|-----------|------------------|---------------------------------------|-----------------------|---------------------|------------------------|-------------------------|
|                                                                                                        | SPLIT<br>SPOON | CASING             |                    | GERS      | CORE<br>BARREL   | DATE                                  | PROGRESS<br>(FT)      | WEATHER             | WATER<br>DEPTH<br>(FT) | TIME                    |
| SIZE (DIAM.)                                                                                           |                |                    | 31/                | 4ID       |                  | 4/13/96                               | 0-15                  | 70'S SUNNY          | b                      | ohrs.                   |
| LENGTH                                                                                                 |                |                    |                    | FT        |                  |                                       |                       |                     |                        |                         |
| ТҮРЕ                                                                                                   |                |                    | H                  |           |                  |                                       |                       |                     |                        |                         |
| HAMMER WT.                                                                                             |                |                    |                    |           |                  |                                       |                       |                     |                        |                         |
| FALL                                                                                                   |                |                    |                    |           |                  |                                       |                       |                     |                        |                         |
| STICK UP                                                                                               |                |                    |                    |           |                  |                                       |                       |                     |                        |                         |
| REMARKS:                                                                                               |                |                    |                    |           |                  | · · · · · · · · · · · · · · · · · · · |                       |                     |                        |                         |
| S = Split Sp<br>T = Shelby                                                                             |                | = Auger<br>= Wash  |                    | V<br>INFC | VELL<br>DRMATION | DIAM                                  | TYI                   | PE                  | TOP<br>DEPTH<br>(FT)   | BOTTOM<br>DEPTH<br>(FT) |
| R = Air Rot<br>D = Deniso                                                                              | ary C          | = Core<br>= Piston |                    | Well (    | Casing           | )"                                    | PVC Threaded          | l'Idra.             | 0                      | 10                      |
|                                                                                                        | N = No Samp    |                    |                    | Wells     | Screen           | ("                                    | PVC Slotted           | 0.01 5105           | 10                     | 15                      |
| Sam;<br>Depth Typ;<br>(Ft.) and<br>No                                                                  | FL SP          |                    | Lab.<br>Moist<br>% |           | Visual           | Descriptio                            | on                    | Wi<br>Instal<br>Det | lation                 | Elevation               |
| 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10                                                        | 7              |                    |                    |           |                  |                                       | れっい<br>Match to Sheet |                     |                        |                         |
| DRILLING CO.: PARRATT WOLFF BAKER REP.: BRIAD E. DAVIS<br>DRILLER: CHIP BORING NO.: TW 25-A SHEET 1 OF |                |                    |                    |           |                  |                                       |                       |                     |                        | ET <u>1</u> OF <u>2</u> |



Baker Environmental, Inc

PROJECT: SGI - LTO 232- SCREENING

.

5.0. NO .: 62470-232 0000-03:00 BORING NO .: TW 25-A

| T = SI<br>R = A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | plit Spoo<br>helby Tu<br>ir Rotary<br>enison | be<br>,                          | A =<br>W =<br>C =<br>P = |                                      |                    | DEFINITIONS<br>SPT = Standard Penetration Test (ASTM D-1586) (Blows/0.5')<br>RQD = Rock Quality Designation (%)<br>Lab. Class. = USCS (ASTM D-2487) or AASHTO (ASTM D-3282)<br>Lab. Moist. = Moisture Content (ASTM D-2216) Dry Weight Basis |                             |                        |  |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|----------------------------------|--------------------------|--------------------------------------|--------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|------------------------|--|--|--|
| Depth<br>(Ft.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Sample<br>Type<br>and<br>No.                 | Samp.<br>Rec.<br>(Ft.<br>&<br>%) | SPT<br>or<br>RQD         | Lab.<br>Class.<br>or<br>Pen.<br>Rate | Lab.<br>Moist<br>% | Visual Description                                                                                                                                                                                                                           | Well Installation<br>Detail | Elevation              |  |  |  |
| 13 - 14 - 15 - 15(0) $16 - 17 - 18 - 17 - 18 - 19 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 -$ | <b>Α-Ν</b>                                   | Dao                              |                          |                                      |                    | Continued from Sheet 1                                                                                                                                                                                                                       |                             | -3.90                  |  |  |  |
| DRILLING CO.: PARRATT WOLFF<br>DRILLER:CHIP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                              |                                  |                          |                                      |                    | BORING NO.: TW2                                                                                                                                                                                                                              | ST-A SHEI                   | T <u>2</u> OF <u>2</u> |  |  |  |



Baker Environmental, Inc

10000

# **TEST BORING AND WELL CONSTRUCTION RECORD**

PROJECT: SGI-CTO 232 - SCREENING

S.O. NO .: 62470-232-0000-03600 COORDINATES: EAST: 2465570.6022 NORTH: 363625.9719 ELEVATION: SURFACE: 11.10

1 .

BORING NO .: TW-25 - B TOP OF STEEL CASING:

|                                        | LE SS T<br>SPLIT   |                           |                              |        | CORE                              |            | PROGRESS                 |            | WATER<br>DEPTH                                     |                         |  |  |
|----------------------------------------|--------------------|---------------------------|------------------------------|--------|-----------------------------------|------------|--------------------------|------------|----------------------------------------------------|-------------------------|--|--|
| ÷                                      | SPOON              | CASING                    | AUC                          | GERS   | BARREL                            | DATE       | (FT)                     | WEATHER    |                                                    | TIME                    |  |  |
| IZE (DIAM.)                            | 1.43               |                           | 34                           | 34 10  |                                   | 4/13/76    | 0 - 40                   | 70'5 5000- | 1 6.5                                              | Ohrs.                   |  |  |
| ENGTH                                  | 2 FT               |                           | 51                           | FT     |                                   |            |                          |            |                                                    |                         |  |  |
| YPE                                    | 55                 |                           | H                            | 5      |                                   |            |                          |            |                                                    |                         |  |  |
| AMMER WT.                              | 140165.            |                           |                              |        |                                   |            |                          |            |                                                    |                         |  |  |
| ALL                                    | 30 10.             |                           |                              |        |                                   |            |                          |            |                                                    |                         |  |  |
| TICK UP                                |                    |                           |                              |        |                                   |            |                          |            |                                                    |                         |  |  |
| REMARKS:                               |                    |                           | r                            |        |                                   |            |                          |            | <u> </u>                                           |                         |  |  |
| S = Split Sp<br>T = Shelby             |                    | = Auger<br>= Wash         |                              |        | VELL<br>DRMATION                  | DIAM       | TY                       | PE         | TOP<br>DEPTH<br>(FT)                               | BOTTOM<br>DEPTH<br>(FT) |  |  |
| R = Air Rot<br>D = Deniso              | ary C              | = Core<br>= Piston        |                              | Well ( | Casing                            | 117        | PVC Threaded             | 1"Dia      | 0                                                  | 35-                     |  |  |
| -                                      | N = No Sampl       |                           |                              | WellS  | Screen                            | 1"         | PVC Slotted              | 0:01 slot  | 01310t 35                                          |                         |  |  |
| Samp<br>Depth Type<br>(Ft.) and<br>No. | Ft. or             | T Class.<br>or<br>DD Pen. | Hnu<br>Lab<br>Moist<br>Moist |        | Visual I                          | Descriptio | on                       | Insta      | 'ell<br>llation<br>tail                            | Elevatio                |  |  |
| 1 -<br>2 - 2,0                         | ا<br>2.0 ک         | 1<br>3                    | ٤1                           | BUNCK  | Fine 620.                         |            | t, txace (lay<br>> Roots |            | WELL SOCK<br>From 0.0<br>TO 40.0 FT<br>WELL CASING |                         |  |  |
| 3 - 5-7<br>4 - 4.0                     | - 60 2             | 3                         | ۷                            | uny    | FINE GRA<br>I BROWNI<br>INA DENSE | MOIST      |                          |            | 5:0FT<br>35:0FT                                    |                         |  |  |
| 5 - 5-3<br>6 - 6.0                     | 8 2.0 4            | 2                         | ۷                            |        |                                   |            | TEP SOFT                 |            |                                                    | - 6.60<br><br>          |  |  |
|                                        | 4 2.0 3            | 3<br>5                    | 4                            |        |                                   |            |                          |            |                                                    |                         |  |  |
| - ک<br>9 ک<br>10 ۲۰۰۰                  | <u>او</u><br>د 2 ک | >                         | 4                            |        |                                   |            |                          |            |                                                    | -2.60<br>- 3.10<br>-    |  |  |



Baker Environmental, Inc

.

PROJECT: <u>SGI-CTO</u> 232-SCREENING S.O. NO.: <u>62470-232-0000-02600</u> BORING NO.: <u>TW25-B</u>

| Depth<br>(Ft.)            | ample<br>Type<br>and<br>No. | (Ft.    | SPT                          | Lab.                         | in I                                          | DEFINITIONS<br>SPT = Standard Penetration Test (ASTM D-1586) (Blows/0.5')<br>RQD = Rock Quality Designation (%)<br>Lab. Class. = USCS (ASTM D-2487) or AASHTO (ASTM D-3282)<br>Lab. Moist. = Moisture Content (ASTM D-2216) Dry Weight Basis |                             |           |  |  |  |
|---------------------------|-----------------------------|---------|------------------------------|------------------------------|-----------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|-----------|--|--|--|
|                           |                             | &<br>%) | or<br>RQD                    | Class.<br>or<br>Pen.<br>Řate | Hn»<br><del>Lab:</del><br>Moist<br>%<br>(Ppr) | Visual Description                                                                                                                                                                                                                           | Well Installation<br>Detail | Elevation |  |  |  |
| 2 12.0                    | 5-6                         |         | м <sup>м</sup><br>м          |                              | 41                                            | Continued from Sheet 1<br>JANO, FINE GRAIN, GREY, BROWN, WET -<br>LITTLE SILT TRAVE LLAY,                                                                                                                                                    |                             | -0.90     |  |  |  |
|                           | 5.7                         | 2.3     | 9<br>8<br>7 <sub>9</sub>     |                              | 1                                             | SAWD, FINE GRAIN, LITTLE MEDIN GRAIN,-<br>LITTLE to trace SI 14, GREIN, BROWN, WET<br>MEDIUM RENSE LITTLE BROWN LAYER -<br>FROM 12.5 to 13.5 FT-SLIGHT PETDLESM _                                                                            | -                           |           |  |  |  |
|                           | 5-8                         |         | <sup>&amp;</sup> ન<br>મ<br>મ |                              | ()                                            | SAWO, FINE GLANN, LITTLE MEDIUM GARIN, -<br>LITTLE SILT, BROWN, WET, MEDIUM BENE                                                                                                                                                             | -                           |           |  |  |  |
| -<br>17-<br>18-           | <u> </u>                    | 20      | 1 3<br>12<br>12              |                              | 4                                             | SAND, MEDIUM 4-D FINE SHAND, LITTLE                                                                                                                                                                                                          |                             | -<br>7.40 |  |  |  |
| 19 <u>20.0</u>            | 5-10                        | 2.0     | 10 20<br>25<br>59/3<br>25    |                              | 41                                            | LIMESTONE FRAGMENTS, DENSE<br>BROWN FROM 13.0 TO 2000 FT<br>SAMO, MEDIUM - D FINE GRAIN, BROWN, GRET                                                                                                                                         |                             |           |  |  |  |
| 21                        | 5-11                        | 2.0     | 32<br>39<br>41               |                              | ۷                                             | SAND AND GRAVEL, LITTLE SHET, TRACE 220                                                                                                                                                                                                      |                             |           |  |  |  |
| 23 -<br>24 - <b>ZY.</b> 0 | 3-12                        | 15      | 1235<br>39<br>41             |                              | 4                                             | FLAS, BREY, GREEN, SHELLAND UNESSONE<br>FRAGMENTS, KENJ DENSE, WET<br>PARTAUTI SOMENTEZ<br>SAUD ; MEDIUM AND FINE GUAIN, LITTLE<br>SILT, TRACE CLAY, GREY, SILGUE AND                                                                        |                             |           |  |  |  |
| 25<br>26 <b>26.0</b>      | 5-13                        | 1.0     | 5%                           | -                            |                                               | LIMESTANE FLAGMENTS, DENSE<br>FEW PARTIALY LOMENTED FRAGMENTS<br>BAND, FINE AN MEDIUM DRAIN, LITTLE COARSE<br>BAND, EIMESTENE AND SHELL FRAGMENTS<br>GRET : GREEN, LITTLE CEMENTED FRAGMENT -                                                |                             |           |  |  |  |
| 27<br>28 <del>28.0</del>  | 5-14                        | 1.5     | 34<br>39<br>50/<br>8.1       |                              | 4                                             | WET, VENY DENSE<br>SAND, EWE GRAW, SOME MEDIUM GRAW, -<br>LITTLE SKIT, EMEDIUME AND SHELL<br>MADMENT, FEW CEMENTIO FRAMENTI<br>GREY, GREEN, WET, NEYDENSE -                                                                                  |                             |           |  |  |  |
| 29<br>30                  | 5-15                        | 0.5     | 5%.                          | 5                            | ٢                                             | SAWD, SHELL AND LIMESTONE FRAGMENTS -<br>MICTARITY CENEWRO, OREY IGREEN, WET<br>VERY DENSE Match to Sheet 3                                                                                                                                  |                             |           |  |  |  |



Baker Environmental, 🔤

PROJECT: 56I - CTD 232 - SLEEENING S.O. NO .: 62470 - 232 - 0000 - 03600

BORING NO .: TW 25 -B

| T = 1<br>R = 1                  | Split Spoo<br>Shelby Tu<br>Air Rotar<br>Denison | ibe<br>y                         | A =<br>W =<br>C =<br>P = | Auger<br>Wash<br>Core<br>Piston      |                                               | DEFINITIONS<br>SPT = Standard Penetration Test (ASTM D-1586) (Blows/0.5')<br>RQD = Rock Quality Designation (%)<br>Lab. Class. = USCS (ASTM D-2487) or AASHTO (ASTM D-3282)<br>Lab. Moist. = Moisture Content (ASTM D-2216) Dry Weight Basis |                                        |                        |  |  |  |
|---------------------------------|-------------------------------------------------|----------------------------------|--------------------------|--------------------------------------|-----------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|------------------------|--|--|--|
| Depth<br>(Ft.)                  | Sample<br>Type<br>and<br>No.                    | Samp.<br>Rec.<br>(Ft.<br>&<br>%) |                          | Lab.<br>Class.<br>or<br>Pen.<br>Rate | Hnu<br><del>Lab.</del><br>Moist<br>%<br>(Ppm) | Visual Description                                                                                                                                                                                                                           | Well Installation<br>Detail            | Elevation              |  |  |  |
| 31                              | 5-16                                            | 1.5                              | 39 17 17                 |                                      | در                                            | Continued from Sheet<br>SANO, FINE AND MEDIUM GROW, LITTLE _<br>COARDE GRANN, GREY, GREEN, SHELL<br>AND LMESTONE FRAGMEND, PARTANY<br>SEMENTED, WET                                                                                          | WEW<br>SOCK<br>From<br>UNOTO<br>TOO FT |                        |  |  |  |
| 33_<br>34_ <del>34,0</del>      | 5-17                                            | E5                               | 23<br>31<br>35           |                                      | 21                                            | SAUD, FINE GRAIN, LITTLE MEDIUM GRAIN, _<br>GREY, GRE GN, SIFELL AND LINGTONE<br>FRAGMENTS RUET, VERY DENSE<br>LITTLE SILT -                                                                                                                 | WELL<br>                               |                        |  |  |  |
| 35<br>36 <u>36,0</u>            | 5-18                                            | 2.0                              | 18 19 24 27 27           |                                      | 41                                            | SAND, FINE AND MEDIUM GRAIN, FEW<br>COANSE GRAIN, GREGS GREGS, TRACESIUT, -<br>WET, VEM DENSE, SHELL AND LIMESTONE -<br>FILAGMENTS, VENY DENSE TO DENSE, -<br>SOME PARTALLY CEMENTED LIMESTONE                                               |                                        | - 23.90                |  |  |  |
| -<br>38 <u>-3<sup>8</sup>.0</u> | 5-19                                            | 2.0                              | 19<br>24<br>26<br>13     |                                      | ۷۱                                            | BAND, FINE AND MEDIUM GAA.N; DENSE<br>BARTALLY CEMENTED UMESTONE AND -<br>SHELL FRATMENTS, WET, GREEN 380                                                                                                                                    | 40.0ET                                 |                        |  |  |  |
| 39_<br>40_ <del>40.2</del>      | 5-20                                            | 2.0                              | 16                       |                                      | 4                                             | SAND, SOME SUT, F.NE GNALM, UITTE UAY, _<br>GREEN, WET MEDIUM DENSE                                                                                                                                                                          | Bottom                                 | -28.90                 |  |  |  |
| -<br>41 _<br>-<br>42 _          |                                                 |                                  |                          |                                      |                                               | ENO OF BORING @ 40.0 FT                                                                                                                                                                                                                      |                                        |                        |  |  |  |
| -<br>43 _<br>-<br>44 _          |                                                 |                                  | -                        |                                      |                                               |                                                                                                                                                                                                                                              |                                        |                        |  |  |  |
| 45<br>46                        |                                                 |                                  |                          |                                      |                                               |                                                                                                                                                                                                                                              |                                        |                        |  |  |  |
| 47<br>48                        |                                                 |                                  |                          |                                      |                                               |                                                                                                                                                                                                                                              |                                        |                        |  |  |  |
| °9                              |                                                 |                                  |                          |                                      |                                               |                                                                                                                                                                                                                                              |                                        | -                      |  |  |  |
| DRILLIN                         |                                                 |                                  | · [xirt                  | WOL                                  | FF                                            | BAKER REP.: BRIAN<br>BORING NO.: TW 25                                                                                                                                                                                                       | E ,DAVIS<br>-B SHEE                    | т <u>3</u> оғ <u>3</u> |  |  |  |

Baker

Baker Environmental, 100

# **TEST BORING AND WELL CONSTRUCTION RECORD**

PROJECT: SG-I-CTO 232- SCREENING

S.O. NO.: 62470-232-0090-03688 COORDINATES: EAST: 2465570.6022 ELEVATION: SURFACE: 11.10

BORING NO.: <u>Tw 25-C</u> NORTH: <u>363625.9719</u> TOP OF STEEL CASING: \_\_\_\_

| RIG: Mod                                        | bile 55        | TRUCK P            | NOU                |        |                  |                  |                  |                                                                                                                 |                         |                         |
|-------------------------------------------------|----------------|--------------------|--------------------|--------|------------------|------------------|------------------|-----------------------------------------------------------------------------------------------------------------|-------------------------|-------------------------|
|                                                 | SPLIT<br>SPOON | CASING             |                    | GERS   | CORE<br>BARREL   | DATE             | PROGRESS<br>(FT) | WEATHER                                                                                                         | WATER<br>DEPTH<br>(FT)  |                         |
| SIZE (DIAM.)                                    |                | -                  | 34                 | +IO    |                  | 4/14/96          | 0-27,5           | 70'S SUNNY                                                                                                      | 1 6                     | ohrsi                   |
| LENGTH                                          |                |                    |                    | FT     |                  |                  |                  |                                                                                                                 |                         |                         |
| ТҮРЕ                                            |                |                    | 1                  | 15     |                  |                  |                  |                                                                                                                 |                         |                         |
| HAMMER WT.                                      |                |                    |                    |        |                  |                  |                  |                                                                                                                 |                         |                         |
| FALL                                            |                |                    |                    |        |                  |                  |                  |                                                                                                                 |                         |                         |
| STICK UP                                        |                |                    |                    |        |                  |                  |                  |                                                                                                                 |                         |                         |
| REMARKS:                                        |                |                    |                    |        |                  |                  |                  |                                                                                                                 |                         |                         |
| S = Split Sp<br>T = Shelby                      |                | -                  |                    |        | VELL<br>DRMATION | DIAM             | TYF              | Έ                                                                                                               | TOP<br>DEPTH<br>(FT)    | BOTTOM<br>DEPTH<br>(FT) |
| R = Air Rot $D = Deniso$                        | ary C          | = Core<br>= Piston |                    | WellC  | Casing           | [" <sup>`</sup>  | PVC Threaded     | 1"din.                                                                                                          | Ο                       |                         |
|                                                 | N = No Samp    |                    |                    | Well S | Screen           | 1                | PVC Slotted      | DIOISLUT                                                                                                        | 22.5                    | 27.5                    |
| Samp<br>Depth Type<br>(Ft.) and<br>No.          | Ft. or         | or                 | Lab.<br>Moist<br>% |        | Visual [         | Descriptic       | on               | Insta                                                                                                           | 'ell<br>llation<br>tail | Elevation               |
| 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10 |                |                    |                    | For    | E BORINI         | NFORME<br>M      | latch to Sheet 2 | and the second secon |                         |                         |
| DRILLING CO.<br>DRILLER:                        | : PARR<br>CHIP | ATT W              |                    | F      |                  | _ BAKER<br>BORIN | R REP.: BRIA     | N = DA                                                                                                          |                         | ET <u>1</u> OF 2        |

Baker

Baker Environmental, Inc

-

PROJECT: 56I - 670232 - 50REENING S.O. NO.: 62470-232-0000-03600 BORING NO.: TW25-6

| T = Shell R = Air F                                                                                                              | SAMPLE T<br>t Spoon<br>lby Tube<br>Rotary<br>iison<br>N = No Sa | A =<br>W =<br>C =<br>P =                 | Auger<br>Wash<br>Core<br>Piston      |                    | <u>DEFINITIONS</u><br>SPT = Standard Penetration Test (ASTM D-1586) (Blows/0.5')<br>RQD = Rock Quality Designation (%)<br>Lab. Class. = USCS (ASTM D-2487) or AASHTO (ASTM D-3282)<br>Lab. Moist. = Moisture Content (ASTM D-2216) Dry Weight Basis |                                       |  |  |  |  |
|----------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|------------------------------------------|--------------------------------------|--------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|--|--|--|--|
| Depth Ty<br>(Ft.) a                                                                                                              | mple Samp.<br>ppe (Ft.<br>and &<br>No. %)                       |                                          | Lab.<br>Class.<br>or<br>Pen.<br>Rate | Lab.<br>Moist<br>% | Visual Description                                                                                                                                                                                                                                  | Well Installation<br>Detail Elevation |  |  |  |  |
| $ \begin{array}{c} 19 \\ 20 \\ 21 \\ 21 \\ 22 \\ 23 \\ 24 \\ 25 \\ 26 \\ 27 \\ 26 \\ 27 \\ 28 \\ 29 \\ 30 \\ 30 \\ \end{array} $ |                                                                 | J. J |                                      | OLF                | Continued from Sheet 1<br>SEE BORING LOG TW 25-B<br>FOR SOLL INFORMATION<br>END OF BORING @ 275 F-<br>Match to Sheet 3<br>SE BAKER REP: 820                                                                                                         |                                       |  |  |  |  |
| DRILLING CO.: PARRATT WOLFF BAKER REP.: BRIAN E. DAVIS<br>CHIP TW25-C 2 2                                                        |                                                                 |                                          |                                      |                    |                                                                                                                                                                                                                                                     |                                       |  |  |  |  |

Baker

Baker Environmental, ne

## **TEST BORING AND WELL CONSTRUCTION RECORD**

PROJECT: SGI - CTO 232 -SCREENING

.

 S.O. NO.:
 62470-232-0003-03600
 BORING NO.:
 TWZG-A

 COORDINATES:
 EAST:
 Z465538.7507
 NORTH:
 363678.6989

 ELEVATION:
 SURFACE:
 10.80
 TOP OF STEEL CASING:

| RIG: ~                                          | IOBI                               | LE S                           | 5                | TRULK          | ma                 | JNT                                                               |                          |         |                  |           |                         |                           |
|-------------------------------------------------|------------------------------------|--------------------------------|------------------|----------------|--------------------|-------------------------------------------------------------------|--------------------------|---------|------------------|-----------|-------------------------|---------------------------|
|                                                 |                                    | SPLIT<br>SPOO                  | -                | CASING         | AU                 | GERS                                                              | CORE<br>BARREL           | DATE    | PROGRESS<br>(FT) | WEATHER   | WAT<br>DEPI<br>(FT      | н                         |
| SIZE (DIAM                                      | .)                                 |                                | _                |                | 31                 | 4In                                                               | -                        | 4/13/96 | 0-15             | 70'S SUNN | - 6                     | ohrs.                     |
| LENGTH                                          |                                    |                                |                  |                | 1                  | Fr                                                                |                          |         |                  |           |                         |                           |
| TYPE                                            |                                    |                                |                  |                | 1                  | 15                                                                |                          |         |                  |           |                         |                           |
| HAMMER V                                        | νт.                                |                                |                  |                |                    |                                                                   |                          |         |                  |           |                         |                           |
| FALL                                            |                                    |                                |                  |                |                    |                                                                   |                          |         |                  |           |                         |                           |
| STICK UP                                        |                                    |                                |                  |                |                    |                                                                   |                          |         |                  |           |                         |                           |
| REMARKS:                                        |                                    |                                |                  |                |                    |                                                                   |                          |         |                  |           |                         |                           |
|                                                 | <u>SA</u><br>hiit Spoo<br>helby Tu |                                | A =              | Auger<br>Wash  |                    | V<br>INFO                                                         | /ELL<br>RMATION          | DIAM    | TYF              | E         | TOP<br>DEPTH<br>(FT)    | BOTTOM<br>DEPTH<br>(FT)   |
| R = Ai                                          | r Rotar<br>enison                  |                                | C =              | Core<br>Piston |                    | Well C                                                            | asing                    | 1"      | PVC Threaded     | 1"DIA.    | 0                       | 5                         |
|                                                 |                                    | = No Sa                        |                  |                |                    | Well S                                                            | creen                    | 10      | PVC Slotted      | 0.01"SLOT | 5                       | 15                        |
| Depth<br>(Ft.)                                  | Sample<br>Type<br>and<br>No.       | Samp.<br>Rec.<br>Ft.<br>&<br>% | SPT<br>or<br>RQD | or             | Lab.<br>Moist<br>% |                                                                   | Visual Description Insta |         |                  |           | 'ell<br>llation<br>tail | Elevation                 |
| 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10 | A-N                                |                                |                  |                |                    | SEE BOZING LOG TWZG-B<br>FOR SOIL INFORMATION<br>Match to Sheet 2 |                          |         |                  |           |                         |                           |
| DRILLING                                        |                                    |                                |                  | t mos          | ノデデ                |                                                                   |                          |         | R REP .: BRIA    |           |                         |                           |
| DRILLER:                                        | . (                                | CHIP                           | <b>)</b><br>     |                |                    |                                                                   |                          | BORIN   | IG NO.: TW       | 26 -A     | SI                      | HEET <u>1</u> OF <u>2</u> |

Baker Baker Environmental, Inc

PROJECT: SGI- CTO 232-SCREENING

S.O. NO .: 62470-232-0000-03600 BORING NO .: TW 26-A

| T =<br>R =                                                                                                                                                                                                                    | Split Spoo<br>Shelby Tu<br>Air Rotan<br>Denison                                                        | ibe<br>Y                         | A =<br>W =<br>C =<br>P = | Auger<br>Wash<br>Core<br>Piston      |                    | DEFINITIONS<br>SPT = Standard Penetration Test (ASTM D-1586) (Blows/0.5')<br>RQD = Rock Quality Designation (%)<br>Lab. Class. = USCS (ASTM D-2487) or AASHTO (ASTM D-3282)<br>Lab. Moist. = Moisture Content (ASTM D-2216) Dry Weight Basis |  |                                                                                    |           |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|----------------------------------|--------------------------|--------------------------------------|--------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|------------------------------------------------------------------------------------|-----------|--|
| Depth<br>(Ft.)                                                                                                                                                                                                                | Sample<br>Type<br>and<br>No.                                                                           | Samp.<br>Rec.<br>(Ft.<br>&<br>%) | SPT<br>or<br>RQD         | Lab.<br>Class.<br>or<br>Pen.<br>Rate | Lab.<br>Moist<br>% | Visual Description                                                                                                                                                                                                                           |  | tallation<br>tail                                                                  | Elevation |  |
| $ \begin{array}{c} 11 \\ 12 \\ 12 \\ 13 \\ 14 \\ 15 \\ 16 \\ 17 \\ 16 \\ 17 \\ 18 \\ 19 \\ 20 \\ 21 \\ 22 \\ 21 \\ 23 \\ 24 \\ 25 \\ 26 \\ 27 \\ 26 \\ 27 \\ 28 \\ 29 \\ 30 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ $ | A-N                                                                                                    |                                  |                          |                                      |                    | Continued from Sheet 1<br>SEE BORING LOG TW26-B<br>FOR SOIL INFORMATION<br>END OF BORNG @ 15.0 FT<br>                                                                                                                                        |  | WELL SOLK<br>FROM<br>0.0 TO IS.OFT<br>WIELL<br>SCREEN<br>FROM<br>5.0 TO IS.OFT<br> | -4.20     |  |
|                                                                                                                                                                                                                               | DRILLING CO.: PARRATT WOLFF BAKER REP.: BRIAN E DAVIS<br>DRILLER: CHIP BORING NO.: TW26-A SHEET 2 OF 2 |                                  |                          |                                      |                    |                                                                                                                                                                                                                                              |  |                                                                                    |           |  |



S. Marine all

PROJECT: SGI - CTO 232 - SCREENING

.

Baker Environmental, 🔤

#### 

| RIG: mobil                                            | LESS           | 5 1                        | ruci                 | <u>م</u> م                | 1000                                                                                                                                                              | Г                         |                             |                        |            |                          | 14/4 7755                      |                         |
|-------------------------------------------------------|----------------|----------------------------|----------------------|---------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|-----------------------------|------------------------|------------|--------------------------|--------------------------------|-------------------------|
|                                                       | SPLIT<br>SPOON |                            | ASING                |                           | GERS                                                                                                                                                              | CORE<br>BARREL            | DATE                        | PROGRESS<br>(FT)       | WEATHE     | R                        | WATER<br>DEPTH<br>(FT)         | TIME                    |
| SIZE (DIAM.)                                          | 1.43I          | 4                          |                      | 3                         | 410                                                                                                                                                               |                           | 41,3/96                     | <b>a</b> -40           | 70'5 5000  | 47                       | 7.0                            | 0420,                   |
| LENGTH                                                | ZFT            |                            |                      | 5                         | FT                                                                                                                                                                |                           |                             |                        |            |                          |                                |                         |
| ТҮРЕ                                                  | 55             |                            |                      | H                         | 5                                                                                                                                                                 |                           |                             |                        |            |                          |                                |                         |
| HAMMER WT.                                            | 140 16         | <b>r</b> .                 |                      |                           |                                                                                                                                                                   |                           |                             |                        |            |                          |                                |                         |
| FALL                                                  | 30 .1          |                            |                      |                           |                                                                                                                                                                   |                           |                             |                        |            |                          |                                |                         |
| STICK UP                                              |                |                            |                      |                           |                                                                                                                                                                   |                           |                             |                        |            |                          |                                |                         |
| REMARKS:                                              |                |                            |                      |                           |                                                                                                                                                                   |                           |                             |                        |            |                          |                                |                         |
| S = Split Sp<br>T = Shelby                            |                | $\frac{PE}{A} = A$ $W = V$ |                      |                           |                                                                                                                                                                   | VELL                      | DIAM                        | TY                     | PE         |                          | ТОР<br>DEPTH<br>(FT)           | BOTTOM<br>DEPTH<br>(FT) |
| R = Air Rota<br>D = Denisor                           | ary            | C = C<br>P = F             | Core                 |                           | Well (                                                                                                                                                            | Casing                    | 1" .                        | /" PVC Threaded "      |            |                          | 0                              | 35                      |
|                                                       | I = No San     | • •                        |                      |                           | WellS                                                                                                                                                             | Screen                    | 1"                          | PVC Slotted            | 0.01" SLOT | _                        | 35                             | 40                      |
| Samp<br>Depth Type<br>(Ft.) and<br>No.                | Ft.<br>&       | SPT<br>or<br>RQD           | Class.<br>or<br>Pen. | Hns<br>Lab.<br>Moist<br>% |                                                                                                                                                                   | Visual                    | Descriptio                  | on                     | Inst       | Well<br>allati<br>Detail |                                | Elevatior               |
| 1-5-1                                                 | 0,9            | 13<br>56                   |                      | 1                         | SANO<br>Mois                                                                                                                                                      | FINE GRA.<br>T. LITTLE SH | N, Èrown,<br>T <sub>i</sub> | BLACK,                 |            | so<br>Fre<br>Or          | ورب<br>دور<br>ورب              |                         |
| $2 - \frac{2.0}{3} - \frac{3}{4.0} - \frac{5.7}{5.7}$ |                | 23<br>2<br>2               |                      | 4                         |                                                                                                                                                                   |                           | moist <sub>1</sub> 506      |                        |            |                          | 0,0FT<br>1614<br>15126<br>2000 |                         |
| 5 - 5-3                                               | 3 1.5          | ί<br>5<br><sup>7</sup> 8   |                      | 4۱                        | SANO<br>Brow                                                                                                                                                      | ыме беа.<br>№, 6ееу, 1    | N, LITLE<br>SOFT TO P       | sict, .<br>Neoran STRE |            |                          | 070<br>50FT                    |                         |
| 6                                                     | 4 2.0          | 7 h 4 0                    |                      | <1                        |                                                                                                                                                                   | MEQUIMAN<br>(LAY T BRO    |                             |                        |            | - 4.30<br>- 3.30         |                                |                         |
| 8 - 5-<br>9 - 5-<br>10 - 10.0                         | 2.             | 54<br>43                   |                      | 41                        | SILT and CLAY, GEEY BEOWN, MOTTED<br>SOME FINE GRAIN SAND, MOIST TO WEF<br>SAND, FINE AND MEDIVA GRAIN,<br>LITTLE SILT, THALE CLAY, SOFT, WEF<br>Match to Sheet 2 |                           |                             |                        |            |                          | -<br>-<br>-<br>-               |                         |
| DRILLING CO.                                          |                | ATT                        | Wolf                 | Ŧ                         |                                                                                                                                                                   |                           |                             | RREP .: BRI            |            | AVI                      | s<br>SHEI                      | T <u>1</u> OF           |



Baker Environmental, Inc

PROJECT: SGT - CTD -232 . SEREEN NG S.O. NO .: 62410-232-0000-03600 BORING NO .: TW 26-B

| T = S $R = A$                        | iplit Spoo<br>ihelby Tul<br>Air Rotary<br>Denison | De                               | A =<br>W =<br>C =<br>P =                                                                    | •                                    |                                        | DEFINITIONS<br>SPT = Standard Penetration Test (ASTM D-1586) (Blows/0.5')<br>RQD = Rock Quality Designation (%)<br>Lab. Class. = USCS (ASTM D-2487) or AASHTO (ASTM D-3282)<br>Lab. Moist. = Moisture Content (ASTM D-2216) Dry Weight Basis |                                                  |  |  |  |  |
|--------------------------------------|---------------------------------------------------|----------------------------------|---------------------------------------------------------------------------------------------|--------------------------------------|----------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|--|--|--|--|
| Depth<br>(Ft.)                       | Sample<br>Type<br>and<br>No.                      | Samp.<br>Rec.<br>(Ft.<br>&<br>%) | SPT<br>or<br>RQD                                                                            | Lab.<br>Class.<br>or<br>Pen.<br>Rate | Hnu<br>Lab.<br>Moist<br>Moist<br>(Pgm) | Visual Description                                                                                                                                                                                                                           | Well Installation<br>Detail <sup>Elevation</sup> |  |  |  |  |
| 11-<br>12- <u>12-0</u>               | 5-6                                               | 1,0                              | 3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3 |                                      | 7                                      | Continued from Sheet 1 -<br>SADD, FINE GRAIN, LITTLE SILT, TRACE _<br>CLAN, SOFT, WET, BROWN _                                                                                                                                               | WELL -<br>Sock _<br>Freen -<br>0.070 _<br>40.0FT |  |  |  |  |
| 13                                   | 5-7                                               | 2.00                             | 2<br>3<br>3<br>3                                                                            |                                      | 41                                     | SAND, FINE GRAIN, LITTLE MEDIUM GAAN, -<br>LITTLE TO TRAKE SILT, GREY WET, LOOSE -                                                                                                                                                           | WELL 2.20<br>(ASING -<br>FROM -<br>0:0 TO -      |  |  |  |  |
| 15-<br>16- <u>16-</u>                | 5-3                                               | 2.0                              | 1 <sup>Поон</sup>                                                                           |                                      |                                        | SAND, FINE GRAIN, LITTLE TO TRACE MEDIUM -                                                                                                                                                                                                   | 35.0FT                                           |  |  |  |  |
| 17<br>18 <u></u> 18.4                |                                                   | 2.0                              | way<br>woli<br>4                                                                            |                                      | 41                                     | WET, LOODE 17.5<br>SAND, FINE GANIN, GITTLE TO SOME STUTY _<br>BROW NJ WET; SOFT                                                                                                                                                             |                                                  |  |  |  |  |
| 19                                   |                                                   | 2,3                              | 30<br>10<br>14                                                                              |                                      | 41                                     | 19.5<br>SAND, MEDIUMAND FINE GAAN, LITTL<br>SILF, TRALE GLAY, GREY, BROUND<br>SHELL FRAGMENTS, LIMESTONE FRAGMENT<br>DENSE                                                                                                                   | 8.70                                             |  |  |  |  |
| 22 _ 22                              |                                                   | 4.0                              | 28<br>28<br>30                                                                              | <u> </u>                             |                                        | PARTIANY COMENTED SAND 2115 TO 22.0 FT_<br>SAND, MEDIUM and FING GRAIN, SOME<br>COARTE GRAIN, BROWN, GREY, LIMESTONE -                                                                                                                       |                                                  |  |  |  |  |
| 24 - 24.0<br>25                      | 5 AR<br>5-13                                      | 1.5                              |                                                                                             |                                      | <1                                     | FINA AMENTI, DENSE TO KEIN DENSE,<br>WET<br>SAND, MEDIUM and FINE GROW, SOME<br>COARSE GARLY, GREY, GREEN, LIMESTONE<br>AND SHELL FREEMENT, PARTHALLY CEMENTED                                                                               |                                                  |  |  |  |  |
| 26 <u>2</u><br>27 –                  | <u>o</u><br>S-14                                  | 1 2.0                            | 18<br>27<br>37                                                                              | 3                                    | 4                                      | SAND, FINE AND MEQUIN GRAIN, LITTLE<br>COANSE GRAIN, GREY GREEN, THALESING,<br>HITTLE PARTIALLY (SMEATED LIMESTIC)                                                                                                                           |                                                  |  |  |  |  |
| 28 - <u>28</u> -<br>29 -<br>29<br>30 | 5-15                                              | -                                | 35<br>(4<br>31<br>26                                                                        | 1                                    | c1                                     | SAND, MEDIUM AND FINE BARA. U. GOME<br>CONVERT & GREY, GRECH TRACE SILT,<br>SOME PARTALY COMENTED LIMESTONS<br>AND SHELL FRAGMENTS, VENY DENSE                                                                                               |                                                  |  |  |  |  |
|                                      |                                                   |                                  |                                                                                             |                                      |                                        | BAKER REP. Deve                                                                                                                                                                                                                              |                                                  |  |  |  |  |

DRILLING CO .: PARAT MIFE DRILLER: CI+P

BAKER REP .: BRIAN E. VAN'S BORING NO .: TW26-6

SHEET Z OF 3

Baker

Baker Environmental, 🛥

PROJECT: SGI - CTO 232 - SCREEWING

S.O. NO .: 62470-232-0000-03600 BORING NO .: TW 26-B

| T = Sr<br>R = A                               | SAMPLI<br>blit Spoon<br>nelby Tube<br>ir Rotary<br>enison<br>N = No | A =<br>W =<br>C =        | Auger<br>Wash<br>Core<br>Piston      |                              | RQD = Rock Quality Designation (*<br>Lab. Class. = USCS (ASTM D-2487) (*                                                                                                   | SPT = Standard Penetration Test (ASTM D-1586) (Blows 0.5')<br>RQD = Rock Quality Designation (%)<br>Lab. Class. = USCS (ASTM D-2487) or AASHTO (ASTM D-3282)<br>Lab. Moist. = Moisture Content (ASTM D-2216) Dry Weight Basis |                         |  |  |  |  |  |  |
|-----------------------------------------------|---------------------------------------------------------------------|--------------------------|--------------------------------------|------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|--|--|--|--|--|--|
| Depth<br>(Ft.)                                | Sample Re<br>Type (F<br>and 8<br>No. %                              | c. SPT<br>t. or<br>k ROD | Lab.<br>Class.<br>or<br>Pen.<br>Rate | Hou<br>toto<br>toto<br>(rem) | Visual Description                                                                                                                                                         | Well Installation<br>Detail                                                                                                                                                                                                   | Elevation               |  |  |  |  |  |  |
| 31<br>32 <u>32.0</u>                          | 5-16 2.1                                                            | 0 14 17                  |                                      | دا                           | Continued from Sheet 2<br>SAUD, MEDIUM AND FINF GRAIN, SOME COARLE<br>GALIN, GREY, GREEN, THALE SILT, SOME<br>MATTRICIT CEMENTEDLIMESTONE AND<br>SELL FRAGMENT, DENSE, WET | WELL<br>SOLK<br>FROM<br>OIOTOYOIOFT                                                                                                                                                                                           |                         |  |  |  |  |  |  |
| 33<br>34 <b>_3</b> 4.0                        | 5-17 2.0                                                            | , <u>3</u> A<br>26<br>28 |                                      | 41                           | SAND, FINE AND MEDIUM GRAIN, GREY,<br>GREEN, TRACE SILE, LITTLE PARTIALY<br>COMENTED LIMESTONE AND SILELL<br>FRAGMENTS, VERY DENSE, WET                                    | CASING<br>From 0.0<br>TO 35:0 FT                                                                                                                                                                                              |                         |  |  |  |  |  |  |
|                                               | 5-18 <sup>2.0</sup>                                                 | <b>Z</b> •               |                                      | ۷١                           | SAND, MEDWIN and COARDEGRAIN, SOME<br>FINEGANAN, LIMESTONE AND SHEEL FRAGMENTI<br>GREEN, GREYIVEN DONE, WET                                                                |                                                                                                                                                                                                                               | - 24.20                 |  |  |  |  |  |  |
| ~7_<br>~7_<br>~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | 5-19 2,                                                             | 32<br>44<br>0 42<br>42   |                                      | ۲1                           | SAND. FINE AND MEALUM BROND, SONE<br>SILTI LITTLE CLAY, LIMESTONE AND<br>SHELL FRAGMENTS, VENY DENSE, WET-                                                                 | 40.0 Fr                                                                                                                                                                                                                       |                         |  |  |  |  |  |  |
| 39-<br>4)- <b>100</b>                         | 5-20 <b>2</b> ,                                                     | 28<br>12<br>0 12<br>14   |                                      | 21                           | SAND, FANGGRAND, SOME SILT, GREGE", MODIUM DUNT<br>WET, TRALE CLAM                                                                                                         | Bottom Plug                                                                                                                                                                                                                   | -2870                   |  |  |  |  |  |  |
| 2_                                            |                                                                     |                          |                                      |                              | ENO OF BORN - B 40,0                                                                                                                                                       |                                                                                                                                                                                                                               |                         |  |  |  |  |  |  |
| 3                                             |                                                                     |                          |                                      |                              | -                                                                                                                                                                          |                                                                                                                                                                                                                               |                         |  |  |  |  |  |  |
| 5                                             |                                                                     |                          |                                      |                              | -                                                                                                                                                                          |                                                                                                                                                                                                                               | -<br>-<br>-             |  |  |  |  |  |  |
| 7                                             |                                                                     |                          |                                      |                              | -                                                                                                                                                                          |                                                                                                                                                                                                                               |                         |  |  |  |  |  |  |
| 9_                                            |                                                                     |                          |                                      |                              | -                                                                                                                                                                          |                                                                                                                                                                                                                               | -                       |  |  |  |  |  |  |
|                                               | 5 CO.: <u>Pa</u><br>CH                                              |                          | WOLF                                 | F                            | BAKER REP .: Being<br>BORING NO .: TWZ                                                                                                                                     | NE DAVIS                                                                                                                                                                                                                      | et <u>3</u> OF <u>3</u> |  |  |  |  |  |  |

Baker

Baker Environmental, me

## **TEST BORING AND WELL CONSTRUCTION RECORD**

PROJECT: SGI - CTO 232 - SCREEWING

S.O. NO .: 62470-232-0000-03600

.

BORING NO .: TW26-C \_\_\_\_ 
 COORDINATES:
 Z465538,7507
 NORTH:
 363678.6989
 Second State
 TOP OF STEEL CASING:

| RIG: Moo                | ve 55         |                  | nucr                                 | <u>100000</u>      | τ         | r                                     |            |                           |           | WATER                 |                         |
|-------------------------|---------------|------------------|--------------------------------------|--------------------|-----------|---------------------------------------|------------|---------------------------|-----------|-----------------------|-------------------------|
|                         | SPLIT<br>SPOO | N   (            | CASING                               | AU                 | GERS      | CORE<br>BARREL                        | DATE       | PROGRESS<br>(FT)          | WEATHER   | DEPTH                 | TIME                    |
| SIZE (DIAM.)            |               |                  |                                      | 3                  | 420       |                                       | 4/13/20    | 0-275                     | 70's suna | 76                    | Oths                    |
| ENGTH                   |               |                  |                                      | 5                  | F         |                                       |            |                           |           |                       |                         |
| ГҮРЕ                    |               |                  |                                      | 4                  | >         |                                       |            |                           |           |                       |                         |
| HAMMER WT.              |               |                  |                                      |                    |           |                                       |            |                           | -         |                       |                         |
| FALL                    |               |                  |                                      |                    |           |                                       |            |                           |           |                       |                         |
| STICK UP                |               |                  |                                      |                    |           |                                       |            |                           |           |                       | <u> </u>                |
| REMARKS:                |               |                  |                                      |                    |           |                                       | <u> </u>   |                           |           |                       |                         |
| S = SplitS<br>T = Shelb |               | A =              | Auger<br>Wash                        |                    | V<br>INFC | VELL<br>DRMATION                      | DIAM       | TYP                       | E         | TOP<br>DEPTH<br>(FT)  | BOTTOM<br>DEPTH<br>(FT) |
| R = Air Ro<br>D = Denis | ,<br>itary    | c =              | Core<br>Piston                       |                    | Well (    | Casing                                | 111        | PVC Threaded              | rdin      | O                     | 22.5                    |
| <b>D</b> = Denis        | N = No Sa     |                  |                                      |                    | WellS     | Screen                                | 1.         | PVC Slotted               |           | 22.5                  | 27.5                    |
| Depth Typ<br>(Ft.) an   | d &           | SPT<br>or<br>RQD | Lab.<br>Class.<br>or<br>Pen.<br>Rate | Lab.<br>Moist<br>% |           | Visual [                              | Descriptio | on                        | Instal    | ell<br>lation<br>tail | Elevation               |
|                         |               |                  |                                      |                    |           |                                       |            |                           |           |                       |                         |
| DRILLING CC             |               |                  | PT wo                                | nfa                | ,<br>,    | · · · · · · · · · · · · · · · · · · · | BAKEI      | RREP.: BRIA<br>IGNO.: TWI | NE DANS   |                       | T <u>1</u> OF           |



#### **TEST BORING AND WELL CONSTRUCTION RECORD**

Baker Environmental, be

PROJECT: 5-1-CTO 232-SCREENING S.O. NO .: 62470-232-000-03400 BORING NO .: TW 26-C

| T =<br>R =                                                                                                                                           | Split Spoo<br>Shelby Tu<br>Air Rotar<br>Denison | ibe<br>y                         | A =<br>W =<br>C =<br>P = | Auger<br>Wash<br>Core<br>Piston      |                                  | DEFINITIONS<br>SPT = Standard Penetration Test (ASTM D-1586) (Blows. 0.5')<br>RQD = Rock Quality Designation (%)<br>Lab. Class. = USCS (ASTM D-2487) or AASHTO (ASTM D-3282)<br>Lab. Moist. = Moisture Content (ASTM D-2216) Dry Weight Basis |                                                                                                |  |  |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|----------------------------------|--------------------------|--------------------------------------|----------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|--|--|--|--|
| Depth<br>(Ft.)                                                                                                                                       | Sample<br>Type<br>and<br>. No.                  | Samp.<br>Rec.<br>(Ft.<br>&<br>%) | SPT<br>or<br>RQD         | Lab.<br>Class.<br>or<br>Pen.<br>Rate | Lab.<br>Moisτ<br><sup>ງ</sup> ່າ | Visual Description                                                                                                                                                                                                                            | Well Installation<br>Detail <sup>Elevation</sup>                                               |  |  |  |  |
| $ \begin{array}{c} 11 \\ 12 \\ 13 \\ 14 \\ 15 \\ 16 \\ 17 \\ 18 \\ 19 \\ 20 \\ 21 \\ 22 \\ 23 \\ 24 \\ 25 \\ 25 \\ 25 \\ 25 \\ 25 \\ 25 \\ 25 \\ 25$ | <b>4-N</b>                                      |                                  |                          |                                      |                                  | Continued from Sheet                                                                                                                                                                                                                          | WIELL<br>SOLIL<br>FROM OLIS<br>TO 27.5<br>FT<br>UELL<br>CASWG<br>FROM<br>DIO TD<br>22.5 FT<br> |  |  |  |  |
| 26 -<br>27 -<br>28 -<br>29 -<br>30 -                                                                                                                 | 5                                               |                                  |                          |                                      |                                  | - END OF BOR N'S @ 27.5 FT                                                                                                                                                                                                                    | Bottom Pluy -16.70                                                                             |  |  |  |  |
| DRILLIN<br>DRILLER                                                                                                                                   | -                                               |                                  |                          | r Wo                                 | UFF                              | BAKER REP.: BRIA<br>BORING NO.: TWZ                                                                                                                                                                                                           |                                                                                                |  |  |  |  |



Baker Environmental, Inc.

#### **TEST BORING AND WELL CONSTRUCTION RECORD**

| PROJECT:     | Supplem  | ental Groundwater | Investigation at 3 | site 35 - MCBCLEJ |
|--------------|----------|-------------------|--------------------|-------------------|
| CTO NO.:     | 62470 -  |                   | BORING NO .:       | 35- TW 27 B       |
| COORDINATES: | EAST:    | 2465873.5482      | NORTH:             | 363238.2230       |
| ELEVATION:   | SURFACE: | 11.9              | TOP OF PVC CASING: | 11.90             |

| RIG: Me                                                               | sbile    | B-53           | •              |                             |       |                | DAT     | E          |                | GRESS               | WE                 | ATHER      | WATE    | 1         |
|-----------------------------------------------------------------------|----------|----------------|----------------|-----------------------------|-------|----------------|---------|------------|----------------|---------------------|--------------------|------------|---------|-----------|
|                                                                       |          | SPLIT<br>SPOON | CASIN          | G AU                        | GERS  | CORE<br>BARREL |         |            | (              | FT.)                |                    |            | (FT.)   |           |
| SIZE (DIAN                                                            | 1.)      | 3/8" ID        |                | 3%                          | 4" ID | -              | 4/25    | 5          | 0.0            | - 40.0              | Sonn               | y 2 505    | -       | -         |
| LENGTH                                                                |          | 2'             | -              |                             | 5     | ~              |         |            |                |                     |                    | <i>.</i>   |         |           |
| TYPE                                                                  | 5        | tainless       | -              | H                           | SA    | -              |         |            |                |                     |                    |            |         |           |
| HAMMER V                                                              |          | 40 165         | ~              |                             | -     | -              |         |            |                |                     |                    |            |         |           |
| FALL                                                                  |          | 30*            | -              |                             | -     | ~              |         |            |                |                     |                    |            |         |           |
| STICK UP                                                              |          | -              | -              |                             | -     | ~              |         |            |                |                     |                    |            |         |           |
| REMARKS:                                                              | Well     | shroude        | dwith          | Nells                       | ock n | naterial       | borin   | 19 9       | 21101          | red to a            | ollaz              | SE GTON    | ind wel | 1         |
|                                                                       |          | AMPLE          |                |                             |       | We             |         |            | am.            |                     | Гуре               |            | Тор     | Bottom    |
| S = S                                                                 | plit Spc |                |                | A = Au                      | iger  | Inform         |         |            |                |                     | -71-               |            | Depth   | Depth     |
|                                                                       | helby T  |                |                | <b>W</b> = <b>W</b>         | ash   |                |         |            |                |                     |                    |            | (ft.)   | (ft.)     |
|                                                                       | ir Rota  | •              |                | C = Co                      |       |                |         |            |                |                     |                    |            |         | 20        |
| D ≈ I                                                                 | Denison  |                |                | $\mathbf{P} = \mathbf{Pis}$ | ton   |                |         | 1″         | ØÐ             | Sch. 4              | o Pr               | IC Riser   | -       | 33.0      |
|                                                                       |          | N = No Sa      | mple           |                             | _     |                |         | r          | OD             | Sch. 40             | PVK                | scieen     | 33.0    | 38.0      |
| Depth                                                                 | Samp.    |                | SPT            | Lab                         | PID   |                |         |            |                |                     |                    |            |         |           |
| (ft.)                                                                 | Туре     | Rec.           | or             | Class.                      | (ppm  |                |         | _          |                |                     |                    | Well       |         | Elevation |
|                                                                       | and      | (ft. &         | RQD            | or                          | PS/   |                | Visual  | Des        | cripti         | on                  |                    | Installati |         | (ft. MSL) |
|                                                                       | No.      | %)             |                | Pen.                        | PS/B  | 5              |         |            |                |                     | 1                  | Detail     |         | . ,       |
|                                                                       |          | <u> </u>       |                | Rate                        |       |                |         |            |                |                     | $\vdash$           | 1 1        |         |           |
|                                                                       |          |                | 2              |                             |       | FINE 4         | SAND    | 50         | me             | wit+ -              | 1                  |            | -       |           |
|                                                                       | 5-1      |                | 2              | -                           | 1.0   | + 000          | e cle   |            | dar            | ·k , —              | $\{ \ \}$          |            |         |           |
|                                                                       |          | 55'/.          | 23             |                             | /1.   | D FINE S       | $u_{0}$ | <u>ניי</u> |                |                     | $\{ \mid $         |            | -       |           |
| 2 _ 2.0                                                               |          |                |                |                             |       |                | an2 1   | 003        | w's c          |                     | 11                 |            |         |           |
| _                                                                     |          |                | 22             |                             | 1.00  |                |         |            |                | -                   | 4                  |            | -       |           |
| 3                                                                     | 5-2      | 0.9            | - <sup>-</sup> | -                           | 1.0/  |                |         |            |                | _                   | $\{ \ \}$          |            |         |           |
|                                                                       |          | 45%            | 32             |                             | 1.    |                |         |            |                | 3.8 -               | $\left\{ \right\}$ |            | -       | 8.1       |
| 4 4.0                                                                 |          |                |                |                             |       | FINES          | AND     | <1         | AY             | some -              | ]                  |            |         | 0.1       |
| _                                                                     | ĺ        |                | 24             |                             | 0.8,  | silt           | It.br   | 011        | ∩`, ่ <b>∩</b> | some<br>n. stiff; - | 4                  |            | 4       |           |
| 5                                                                     | 5-3      | 1.8            |                | -                           |       | mois           | t       |            | -              | 5.4                 | 4                  | 11         |         | 15        |
|                                                                       |          | 90%            | 44             |                             | 10.   | 8              | · - ·   |            | • •            |                     |                    |            | . –     | 6.5       |
| 6 6.0                                                                 |          |                | · · ·          |                             |       | FINES          | ; it. b | 1004       | NO.            |                     | $\left  \right $   |            |         |           |
| 4                                                                     |          |                | 6,             |                             |       |                | , Moi   |            |                |                     | 4                  |            | _       |           |
| 7                                                                     | 5-4      | 1.6            | 6              | -                           | 0.8   |                |         | ·          |                |                     |                    |            |         | 5,0       |
| _                                                                     |          | 80%            | 6              |                             | /0.   |                |         |            |                | ilt, trace          |                    |            | _       | •         |
| 8 8.0                                                                 |          |                | 0              |                             | ļ     | clay;g         | WA? W   | n. >       | 2.00           | 6.0                 |                    |            |         | 3.9       |
|                                                                       |          |                | 4              |                             |       | CLAY           | SILT,   | fu         | ace            | Fine -              |                    |            | _       | 2.1       |
| 9                                                                     | 5-5      | 1.0            | 5              | -                           | 0.8   | 1 sand-        |         |            |                |                     |                    |            |         |           |
|                                                                       |          | 50%            | 3              |                             | 10    | 8 gray         | m.s     | tif        | F: d           | lamp _              |                    |            |         |           |
| 10 100 50% 34 10.8 gray; m. stiff; damp                               |          |                |                |                             |       |                |         |            |                |                     |                    |            |         |           |
| Match Sheet 2                                                         |          |                |                |                             |       |                |         |            |                |                     |                    |            |         |           |
| DRILLING CO.: Parrett-Wolff BAKER REP.: Mark DeJohn                   |          |                |                |                             |       |                |         |            |                |                     |                    |            |         |           |
| DRILLER: <u>Chip Lafever</u> BORING NO.: <u>35-TW27B</u> SHEET 1 OF 3 |          |                |                |                             |       |                |         |            |                |                     |                    |            |         |           |
|                                                                       |          |                | 911240         | 5                           |       |                |         | NIC.       | NIC            |                     |                    |            | CT [1   | CETIAE    |



Baker Environmental, Inc.

PROJECT: CTO NO.: Supplemental Groundwater Investigation at Site 35 - MCBELEJ 62470-232 BORING NO.: 35-TVN27B

| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                   |            |              |                                              |          |          | DEDINIT                                                  | IONS |             |                                         |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|------------|--------------|----------------------------------------------|----------|----------|----------------------------------------------------------|------|-------------|-----------------------------------------|--|--|
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 6-6               |            |              | <u>CYPE</u>                                  | A = Au   | CAT      |                                                          |      | 586)(Blow   | \$/0.5')                                |  |  |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                   |            |              |                                              |          |          | •                                                        |      | 500)(510    | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, |  |  |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                   | -          |              |                                              |          |          | Lab. Class. = USCS (ASTM D-2487) or AASHTO (ASTM D-3282) |      |             |                                         |  |  |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1                 | -          | ,            |                                              |          |          |                                                          |      |             |                                         |  |  |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                   |            | = No Sa      | mple                                         |          |          |                                                          |      |             |                                         |  |  |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Depth             |            |              |                                              | Lab      | PID      |                                                          |      |             |                                         |  |  |
| and<br>No.       (ft. &<br>%)       RQD<br>%)       or<br>Par.<br>Rate       PS/8G       Visual Description       Installation<br>Detail       Installation<br>Detail         11 $5-6$ $0.9$ $3.3$ $ 0.8$ Continued from Sheet 1 $-$ 12 $120$ $45/7$ $3.4$ $ 0.8$ Continued from Sheet 1 $-$ 13 $5-7$ $1.4$ $3.2$ $0.8$ Continued from Sheet 1 $ -$ 14 $40$ $70/7$ $3.4$ $ 0.8$ Fine SAND, some sitticky: $ -$ 15 $5-8$ $2.0$ $3.2$ $ 1.0/$ $CLNY$ is $1.1$ , $1.1$ it for from $5$ $                                         -$ <td></td> <td></td> <td></td> <td></td> <td>Class.</td> <td>(ppm)</td> <td></td> <td></td> <td></td> <td>Elevation</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                   |            |              |                                              | Class.   | (ppm)    |                                                          |      |             | Elevation                               |  |  |
| No.       %0       Pen. $17/8G$ Detail         11       5-6       0.9       3       -       0.8       Continued from Sheet 1         12       120       45%       3       -       0.8       Continued from Sheet 1         13       5-7       1.4       3       -       0.8       Fine Samo, some silt icky i         14       40       70%       3       -       0.8       ftmec coarse and is brown i         14       40       70%       3       -       0.8       ftmec coarse and is brown i         15       5-8       2.0       3       -       0.8       ftmec coarse and is brown i         16       160       100%       2.4       0.8       gray is sitist, wet       -         16       160       1.0%       2.0       3       -       1.0%       mode mattled; brown i       -         18       180       1.0%       2.0       3       -       1.0%       mode mattled; some site 200       -         19       5-10       1.3       2.1       -       1.0%       mode from one site 200       -       -         21       5-11       1.8       2       -       6.8 <td></td> <td></td> <td>•</td> <td>RQD</td> <td>-</td> <td>~ /</td> <td>Visual Description</td> <td></td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                   |            | •            | RQD                                          | -        | ~ /      | Visual Description                                       |      |             |                                         |  |  |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   | No.        | %)           |                                              |          | P5/BG    |                                                          | D    | etail       |                                         |  |  |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |            |              |                                              | Rate     |          |                                                          |      |             |                                         |  |  |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | _                 |            | - 0          | 3,                                           |          | 0.8,     | continued from sheet 1 -                                 |      |             |                                         |  |  |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   | 5-6        |              |                                              | -        |          |                                                          |      |             |                                         |  |  |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   | -          | 451,         | 34                                           | -        | 10.0     | 120                                                      |      | -           |                                         |  |  |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 12 -14.0          |            |              |                                              |          |          |                                                          |      |             | -0.1                                    |  |  |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |            | 1.4          | <sup>2</sup> Z                               | 1        |          | trace coarse sand: brown:                                |      |             |                                         |  |  |
| 14       10       10       14       13       140         15       5.8       2.0       3       2       100/2       24       100/2       117       1.146       Fine       140         15       16       160       100/2       2       -       10       CLAY; SILT, 1.141       Fine       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                   | 2-1        |              | 3,                                           | -        | 10.B     | and wat                                                  |      |             |                                         |  |  |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 114 7140          |            | ~,           | - 4                                          |          |          | J. 14.0                                                  |      |             | -71                                     |  |  |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                   |            |              | 2                                            |          | 1.       | MAY'S ALT Little Fine -                                  |      |             | - 6.1                                   |  |  |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                   | 1 c a      | 2.0          | 2                                            |          |          | and the howar -                                          |      |             |                                         |  |  |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                   | 5.0        | 100%         |                                              | -        | 10.8     | Seine Morried, Vient                                     |      |             |                                         |  |  |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 16 _16.0          |            | -            | - 4                                          |          |          | Jidy , DOIL , MEL                                        |      |             |                                         |  |  |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                   |            |              | 2                                            |          | T,       |                                                          |      |             | 1                                       |  |  |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 17                | 9.9        |              | 5                                            | -        | 1 /      |                                                          |      | _           |                                         |  |  |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                   |            |              | 34                                           |          | 10.8     |                                                          |      |             |                                         |  |  |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 18 18.0           |            |              |                                              | <b></b>  | <b>_</b> |                                                          |      |             | -6.1                                    |  |  |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                   |            |              | 2                                            |          | 1.0,     | CLAT, trace silt; dk gray; -                             |      |             |                                         |  |  |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 19                | 5-10       | 1.3          |                                              | -        |          | m.st:tt;damp                                             |      | -           |                                         |  |  |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |            | 657.         | 6                                            |          | 10.8     | 19.7-                                                    |      | _           | -7.8                                    |  |  |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 20 20.0           | · <b> </b> |              | <u>                                     </u> | <b> </b> |          | I FINE SAMU, SOME SHE                                    |      |             | -8.1                                    |  |  |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |            | 110          | Z                                            |          | 1.2      | LE Clayjok Glayju.                                       |      | -           | 1                                       |  |  |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   | 5-11       | 1.0          | 2                                            | -        | 10.8     |                                                          |      | -           | 1                                       |  |  |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 20 720            |            | 901,         | 2                                            |          |          | SILI, little to some clay,                               |      | -           |                                         |  |  |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1 <sup>2</sup>    | 1          |              | T                                            |          | 1.0      |                                                          |      |             | 1                                       |  |  |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 23 -              |            | 10           | - 3                                          |          |          |                                                          |      |             |                                         |  |  |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                   | 5-12       |              | 2                                            | -        | 10.8     | Moist Z3.5                                               |      |             | -116                                    |  |  |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 24 24.0           | >          | 00%          | - 5                                          |          |          | FINE SAND Some silt,                                     |      |             |                                         |  |  |
| $\frac{25}{26} = \frac{5 \cdot 13}{30} = \frac{3 \cdot 6}{30} = \frac{1}{10} = \frac{100}{100} = 1000000000000000000000000000000000000$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                   |            |              | 2                                            |          | T.,      | little clay; dk gray; _                                  |      | -           | ]                                       |  |  |
| $\frac{26}{260} = \frac{30}{7} + \frac{4}{3} = \frac{71.8}{71.8} + \frac{1}{100} + \frac{1}{100} = \frac{1}{100} \frac{1}{100} + \frac{1}{100} + \frac{1}{100} = \frac{1}{100} + \frac{1}{100} + \frac{1}{100} = \frac{1}{100} + \frac{1}{100} + \frac{1}{100} = \frac{1}{100} + \frac{1}{100} + \frac{1}{100} = \frac{1}{100} + $ | 25                | 5-13       | 0.6          | 63                                           | -        |          |                                                          |      | 1 _         | 4                                       |  |  |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   | 1          | 30%          | 42                                           |          | 11.0     | 100323 1102                                              |      |             | 4                                       |  |  |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Z6                |            | ļ            | +                                            |          |          |                                                          |      |             | -                                       |  |  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                   | · .        |              | WOT                                          |          | Da.      | trace clay -                                             |      |             |                                         |  |  |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 27                | S-14       |              |                                              | -        |          | · · · -                                                  |      |             |                                         |  |  |
| $\frac{28}{29} = \frac{5.15}{30} = \frac{0.6}{30'} = \frac{0.8}{26}$ $\frac{13}{20} = \frac{0.8}{30'} = \frac{13}{26}$ $\frac{13}{20} = \frac{0.8}{10.8}$ $\frac{13}{10.8}$ $\frac{13}{10$                                                                                           |                   |            | 100%         | 1211                                         |          | 10.8     | 27.6 _                                                   |      | -           | 1-15.7                                  |  |  |
| 29 5-15 0.6 20 - 0.8<br>30 300 300 0.8 Match Sheet 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 68                | <b>*</b>   |              |                                              | +        | +        |                                                          |      |             | 1 1                                     |  |  |
| DRILLING CO.: Parrett-Wolff BAKER REP.: Mark DeJohn<br>75 TH/272                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 20 -              | 1015       | 06           | 1 20                                         |          | 0.81     | -                                                        |      | -           | 1                                       |  |  |
| DRILLING CO.: Parratt-Wolff BAKER REP.: Mark DeJohn<br>75 Tul 272                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1 <sup>29</sup> — | 010        | 301          | 74                                           | -        |          |                                                          |      |             | 1                                       |  |  |
| DRILLING CO.: Parratt-Wolff BAKER REP.: Mark DeJohn<br>75 Tul 272                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 30 300            | >          | <i>JC7</i> . | ZE                                           | >        | 10.0     | Match Sheet 3                                            |      |             |                                         |  |  |
| CL 1 F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                   |            |              |                                              |          |          |                                                          |      | <del></del> |                                         |  |  |
| DRILLER: <u>Chip Lafever</u> BORING NO.: <u>35-TW27B</u> SHEET2OF3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | DRILLING          | co.:       |              |                                              |          |          | BAKER REP.: Mar                                          | K De | החס         |                                         |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                   |            | Chip         | Later                                        | er       |          | BORING NO · 35-7                                         | W271 | 3           | SHEET 2 OF 3                            |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | DIGEBER.          |            | 1            |                                              |          |          |                                                          |      |             | •                                       |  |  |

Baker

Baker Environmental, Inc

#### TEST BORING AND WELL CONSTRUCTION RECORD

PROJECT:

CTO NO.:

.

| Supplemental Groundwater | Investigation at Sit | te 35 - MCBCLEJ |
|--------------------------|----------------------|-----------------|
| 62470-232                | BORING NO.:          | 35-TW27B        |

| S = Split SpoonA = AugerSPT = Standard Penetration Test (ASTM D-1586)(BlorT = Shelby TubeW = WashRQD = Rock Quality Designation (%)R = Air RotaryC = CoreLab. Class. = USCS (ASTM D-2487) or AASHTO (ASTM D-2216) Dry VD = DenisonP = PistonLab. Moist. = Moisture Content (ASTM D-2216) Dry VN = No SampleOrClass. (ppm)(ft.)TypeRec.orNo.%)Pen.Visual Description | TM D-3282) |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|
| R = Air Rotary $C = Core$ Lab. Class. = USCS (ASTM D-2487) or AASHTO (ASTM D-216) Dry V $D = Denison$ $P = Piston$ Lab. Moist. = Moisture Content (ASTM D-2216) Dry VN = No SampleDepthSamp.SPTLabMerceOrClass.(ppm)(ft.)TypeRec.orand(ft. & RQDorVisual Description                                                                                                |            |
| D = Denison $P = Piston$ Lab. Moist. = Moisture Content (ASTM D-2216) Dry VN = No SampleDepthSamp.Samp. $PT$ LabPID(ft.)TypeRec.or $Class.$ (ppm)Visual Description $Visual Description$ Installation                                                                                                                                                               |            |
| $\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                            |            |
| Depth<br>(ft.)Samp.SPTLabPID(ft.)Type<br>andRec.orClass.(ppm)WellInstallation                                                                                                                                                                                                                                                                                       |            |
| (ft.)TypeRec.orClass.(ppm)Welland(ft. & RQDorVisual DescriptionInstallation                                                                                                                                                                                                                                                                                         | 1 1        |
|                                                                                                                                                                                                                                                                                                                                                                     | Elevation  |
| No. %) Pen. Detail                                                                                                                                                                                                                                                                                                                                                  | (ft. MSL)  |
| Rate                                                                                                                                                                                                                                                                                                                                                                |            |
| Liz Continued FRM Speet 2                                                                                                                                                                                                                                                                                                                                           |            |
| $21$ $\left  0.2 \right  \left  0.2 \right  \left  0.2 \right $                                                                                                                                                                                                                                                                                                     | ]          |
|                                                                                                                                                                                                                                                                                                                                                                     | 4          |
| 32 - 320 Figs (sold still - 11 gray - 1) -                                                                                                                                                                                                                                                                                                                          | 4          |
| 33 - 0.8/ 2 2 0.8/ togray; v. loose to v                                                                                                                                                                                                                                                                                                                            | -          |
|                                                                                                                                                                                                                                                                                                                                                                     | -21.1      |
| 34 34.0 40% Z <sub>12</sub> 10.8 dense; vet                                                                                                                                                                                                                                                                                                                         | 4          |
|                                                                                                                                                                                                                                                                                                                                                                     | 1          |
|                                                                                                                                                                                                                                                                                                                                                                     | ]          |
|                                                                                                                                                                                                                                                                                                                                                                     | 4          |
| $36 - \frac{360}{360} - \frac{857}{13} + \frac{13}{17} - \frac{1}{12} = -$                                                                                                                                                                                                                                                                                          | -          |
| 17 - 10 18 40 0.8 - 11 = 11                                                                                                                                                                                                                                                                                                                                         | -          |
|                                                                                                                                                                                                                                                                                                                                                                     | -          |
|                                                                                                                                                                                                                                                                                                                                                                     |            |
|                                                                                                                                                                                                                                                                                                                                                                     | 26.1       |
| 39 _ 5.20 1.6 10 - 0.8 FINE SAND, some silt, little                                                                                                                                                                                                                                                                                                                 | ]          |
| BOULD BOULD BOULD                                                                                                                                                                                                                                                                                                                                                   |            |
| 40 400 400 40.0 1/ 40.0                                                                                                                                                                                                                                                                                                                                             | -28.1      |
| BOH@40.0Ft -                                                                                                                                                                                                                                                                                                                                                        | -          |
|                                                                                                                                                                                                                                                                                                                                                                     | -          |
|                                                                                                                                                                                                                                                                                                                                                                     | -          |
|                                                                                                                                                                                                                                                                                                                                                                     | -          |
| 43 _                                                                                                                                                                                                                                                                                                                                                                |            |
|                                                                                                                                                                                                                                                                                                                                                                     | -          |
|                                                                                                                                                                                                                                                                                                                                                                     |            |
|                                                                                                                                                                                                                                                                                                                                                                     | -          |
|                                                                                                                                                                                                                                                                                                                                                                     | -          |
|                                                                                                                                                                                                                                                                                                                                                                     |            |
|                                                                                                                                                                                                                                                                                                                                                                     |            |
|                                                                                                                                                                                                                                                                                                                                                                     | 4          |
|                                                                                                                                                                                                                                                                                                                                                                     | -          |
|                                                                                                                                                                                                                                                                                                                                                                     | -          |
|                                                                                                                                                                                                                                                                                                                                                                     | -          |
|                                                                                                                                                                                                                                                                                                                                                                     |            |
| 50                                                                                                                                                                                                                                                                                                                                                                  |            |
| DRILLING CO .: Parratt- Notff BAKER REP .: Mark DeJohn                                                                                                                                                                                                                                                                                                              |            |
|                                                                                                                                                                                                                                                                                                                                                                     | SHEET 3 OF |
| DRILLER: <u>Chip Latever</u> BORING NO.: <u>35 W215</u>                                                                                                                                                                                                                                                                                                             |            |



PROJECT: <u>561- GROUND WATER SCREENING - CTO 232</u> S.O. NO.: <u>62170-232-0000-03600</u> BORING NO.: <u>1</u> COORDINATES: EAST: 2465757.9580 ELEVATION: SURFACE: 11.50

BORING NO .: TW28-B TOP OF STEEL CASING:

-

| RIG: MOBIL                                                                       | E 55             | TRUCK                                   | <u>mðu n</u>                                   |        |                                |                                                               |                                                       |             |                                                                           | <u>`</u>                |
|----------------------------------------------------------------------------------|------------------|-----------------------------------------|------------------------------------------------|--------|--------------------------------|---------------------------------------------------------------|-------------------------------------------------------|-------------|---------------------------------------------------------------------------|-------------------------|
|                                                                                  | SPLIT<br>SPOON   | CASING                                  |                                                | SERS   | CORE<br>BARREL                 | DATE                                                          | PROGRESS<br>(FT)                                      | WEATHER     | WATER<br>DEPTH<br>(FT)                                                    | TIME                    |
| SIZE (DIAM.)                                                                     | 1.43 I.N.        |                                         | 34                                             | I.p    |                                | 4-29-96                                                       | 0-40.0                                                | 70's charge | 2 -6                                                                      | OHRI                    |
| LENGTH                                                                           | ZFT              |                                         | SF                                             |        |                                |                                                               |                                                       | · ·         | >                                                                         |                         |
| ТҮРЕ                                                                             | 55               | -                                       | H:                                             | 5      |                                |                                                               |                                                       |             |                                                                           |                         |
| HAMMER WT.                                                                       | 140 100.         |                                         |                                                |        |                                |                                                               |                                                       |             | •                                                                         |                         |
| FALL                                                                             | 30 m.            | ×.                                      |                                                |        |                                | 1                                                             |                                                       |             |                                                                           |                         |
| STICK UP                                                                         |                  |                                         | 1                                              | ·,     |                                |                                                               |                                                       |             |                                                                           |                         |
| REMARKS:                                                                         |                  |                                         | <u> </u>                                       | • •    |                                |                                                               |                                                       |             |                                                                           |                         |
| S = Split S<br>T = Shelby                                                        |                  | = Auger<br>/ = Wash                     |                                                |        | VELL<br>DRMATION               | DIAM                                                          | Ţ                                                     | YPE         | TOP<br>DEPTH<br>(FT)                                                      | BOTTOM<br>DEPTH<br>(FT) |
| R = Air Ro                                                                       | tary C           | = Core<br>= Piston                      | Γ                                              | Well ( | Casing                         | 10                                                            | PVC Threaded                                          | •           | 0                                                                         | 33.0                    |
| D = Denisc                                                                       | N = No Samp      |                                         |                                                | Well S | Screen                         | 1                                                             | PVC Slotted                                           |             | 33.0                                                                      | 38.0                    |
| Sam<br>Depth Typ<br>(Ft.) and<br>No                                              | e FL SI<br>d & O | r Class.<br>r or<br>OD Pen.             | Hnu<br>tab.<br>Moist<br><del>35</del><br>(pp-) | -      | Visual                         | Descripti                                                     | on                                                    | , Insta     | /ell<br>Ilation<br>etail                                                  | Elevation               |
| 1 - <u>5</u><br>2 - <u>2</u> - <u>5</u><br>3 - <u>4</u> - <u>4</u> .0 - <u>5</u> | 2 1.0 3          | 4 1 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 | <1_<br><1                                      | GRAN   | 3, 6 € £ 9, 16<br>T T3 = 5 € T |                                                               | nt E Sin-                                             |             | WELL<br>SOLK<br>RUM<br>O.OM<br>38.0 FT<br>WELL<br>CASING<br>FROM<br>O:OTO |                         |
| 6 - 60                                                                           | 3 1.0            | 2<br>3.                                 | ۷(                                             | SILT   | AND CLAU                       | Benner, LIME<br>Benner, L.<br>Loose<br>J. BROWN,<br>GRANN SAN | NET                                                   |             | 33.0 PT                                                                   | - 6.00                  |
| 8 80                                                                             |                  | Υ <sub>6</sub><br>Υ <sub>6</sub><br>ε   | د (                                            | WE     | ANS CLA<br>TITRACE<br>7E0.000  | FING GAN                                                      | ی، ۲۶۵۰ میر ۲۶۵۰<br>۲۰۰۰ ۲۰۰۰ ۲۰ ۲۰۰<br>Match to Shee | Υ           |                                                                           |                         |
| DRILLING CC                                                                      | PARR             | ATT WO                                  |                                                |        | <u>.</u>                       | BAKE                                                          | R REP .: BO                                           | ZIAN E. DA  | (VIS                                                                      |                         |
|                                                                                  | CHIP             |                                         |                                                |        |                                |                                                               | NG NO.: T.                                            | 123.B       | SHE                                                                       | ET 1 OF                 |

Baker

ş

Baker Environmental, Inc.

PROJECT: <u>SGT-GROWOWATEN SCREENING - CT 232</u> S.O. NO.: <u>62470-232-6000-03600</u> BORING NO.: <u>TW 28-B</u>

| T = S $R = A$              | iplit Spoc<br>ihelby Tu<br>Air Rotan<br>Denison | be<br>/                          | A =<br>W =<br>C =<br>P =                     | Auger<br>Wash<br>Core<br>Piston      |                           | RQD = Rock Quality Designation (<br>Lab. Class. = USCS (ASTM D-2487) (                                                                     | <u>DEFINITIONS</u><br>SPT = Standard Penetration Test (ASTM D-1586) (Blows/0.5')<br>RQD = Rock Quality Designation (%)<br>Lab. Class. = USCS (ASTM D-2487) or AASHTO (ASTM D-3282)<br>Lab. Moist. = Moisture Content (ASTM D-2216) Dry Weight Basis |                  |  |  |  |
|----------------------------|-------------------------------------------------|----------------------------------|----------------------------------------------|--------------------------------------|---------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|--|--|--|
| Depth<br>(Ft.)             | Sample<br>Type<br>and<br>No.                    | Samp.<br>Rec.<br>(Ft.<br>&<br>%) | SPT<br>or<br>RQD                             | Lab.<br>Class.<br>or<br>Pen.<br>Rate | Hrs Abist<br>Moist<br>Per | Visual Description                                                                                                                         | Well Installation<br>Detail                                                                                                                                                                                                                         | Elevation        |  |  |  |
| -<br>11<br>12              | 5-6                                             | 1.0                              | 5 yy                                         |                                      | 4                         | Continued from Sheet 1<br>SIGT AND LURY, TRACE FIRE SAND<br>MEDIUM STIFF, WET, BROWN, BRUY<br>GRAY @ 11:0 Fr 12:0                          | WELL<br>Sock<br>Fron<br>OID TO<br>380 Fr                                                                                                                                                                                                            | 0.50             |  |  |  |
| 13_<br>14                  | · ·                                             | 2.8                              | 6, 4<br>61<br>61                             | •                                    | લ                         | SANO, FINE GARIN, LITTE SUT, -<br>LITTE MEDIUM GRAIN, GRÓY ZWET -<br>MEDIUM DENJE -                                                        | WELL<br>CASING<br>From                                                                                                                                                                                                                              |                  |  |  |  |
| 15-<br>16-<br>16-<br>16-   | 5-8                                             | 1.5                              | 67                                           |                                      | دا                        | SAND, FING GRAIN, LITTLE MERLUM -<br>GRAINIGREY, BROWN, WET -<br>-<br>                                                                     | re<br>330 FT<br>WELL<br>SCACEN                                                                                                                                                                                                                      |                  |  |  |  |
| 17                         | 5-9                                             | 2.0                              | 9<br>4<br>87                                 |                                      | <u> </u>                  | BROWNIGRED, WET , LITTLE SHE 17.5<br>SAND, FREDIUM GRAIN, BROWN 17.75<br>SAND, FINE AND MEDIUM GRAIN,<br>BROWNIGRED, WET, LITTLE SILT LONG | From<br>23.0 TO<br>38.0 FT                                                                                                                                                                                                                          | -6.25            |  |  |  |
| 19-<br>20- <sup>Zo</sup> ~ | 5.10                                            | 2.0                              | 200 il 100                                   |                                      | Ž1                        | SANDIFINE 640 MOD- GRAN                                                                                                                    |                                                                                                                                                                                                                                                     | -                |  |  |  |
| 21<br>22 <u></u> 2.0       | 5-11                                            | 2.0                              | 77                                           |                                      | 4                         | LITTLE SIGT, TRACE LAND, 62 EN, WET                                                                                                        |                                                                                                                                                                                                                                                     | -                |  |  |  |
| 23 _<br>24 _ <u>21.9</u>   | 5-12                                            | 2.0                              |                                              |                                      | <1                        | LITTLE SILT, TWACE (LAY, GREY, BROWN _<br>WET, MOONEN DENSE TO LOOSE                                                                       |                                                                                                                                                                                                                                                     | -                |  |  |  |
| 25<br>26 <u>کړ، م</u>      | 5-13                                            | 1.0                              | 2 Jor 200 200 200 200 200 200 200 200 200 20 |                                      | 4                         | SANDI FING AND MEDIUN BRAIN,<br>BROWN, GREY, DENSE TO MEDIUM<br>DENSE LIMESTONE AND SHELL FRAG-<br>MENTS,                                  |                                                                                                                                                                                                                                                     | - 13_00<br><br>- |  |  |  |
| 27<br>28                   | 5-14                                            | 1.0                              | 7<br>9<br>24                                 |                                      | 4                         | Saud, FINE AND MERING GARIN, BROWN                                                                                                         |                                                                                                                                                                                                                                                     |                  |  |  |  |
| 29<br>30                   | 5-15                                            | ·/·0                             | 4.<br>50.<br>                                |                                      | ۲(                        | LITTLE LINCOM IF AND SUCH FARMENTS                                                                                                         |                                                                                                                                                                                                                                                     |                  |  |  |  |
| DRILLING<br>DRILLER:       | •                                               | PA                               |                                              | HT V                                 | 30C1                      | BAKER REP.: BRIA<br>BORING NO.: T-J Z                                                                                                      | NE. DAVIS<br>28-B SHE                                                                                                                                                                                                                               | T 2 OF 2         |  |  |  |



18 B.

Baker Environmental, 144

PROJECT: 507-620000ATE- 502640146 -CT0232 S.O. NO.: 62470-232-0000-03600 BORING NO.: TW28-B

| T = 9<br>R = /                | iplit Spoc<br>ihelby Tu<br>Air Rotan<br>Denison | ibe<br>Y                         | A =<br>W =<br>C =<br>P = | Auger<br>Wash<br>Core<br>Piston      |                                              | <u>DEFINITIONS</u><br>SPT = Standard Penetration Test (<br>RQD = Rock Quality Designation (<br>Lab. Class. = USCS (ASTM D-2487)<br>Lab. Moist. = Moisture Content (A       | %)<br>or AASHTO (ASTM D-3282)                                              |
|-------------------------------|-------------------------------------------------|----------------------------------|--------------------------|--------------------------------------|----------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|
| Depth<br>(Ft.)                | Sample<br>Type<br>and<br>No.                    | Samp.<br>Rec.<br>(Ft.<br>&<br>%) | SPT<br>or<br>RQD         | Lab.<br>Class.<br>or<br>Pen.<br>Rate | Hns<br><del>Lab</del><br>Moist<br>-%<br>(R-) | Visual Description                                                                                                                                                         | Well Installation<br>Detail Elevation                                      |
| -<br>51-<br>32-32.0           | 5- (b                                           | Z.9                              | 28<br>18<br>16<br>20     |                                      | 21                                           | Continued from Sheet Z 305<br>SAND, MEDIUM AND FINE GROWN, LITTLE<br>SILT, BREY, GREEN, WET, LINESPONE<br>AND SHELL FRAGMEND, PARTARLY<br>CEMENTED, DENSE, LITTLE GRAVEL - | WELL CAS. X 19,00<br>From 0.0<br>TO 33.0 Gr -<br>WELL JOLL -<br>From 0.0 - |
| 33-<br>33-<br>34- <u>31.0</u> | 5-17                                            | t.o                              | 30<br>46<br>5864         |                                      | 21                                           | SAND, MEDIUM AND FLUE GRANA, LITTER<br>SILT, GREY, ENERA, MET, LIMESTORE<br>AND SHELL ENGONEME, PARTIALLY<br>LEMENTED, VENY DENSE,                                         | TO 38.0 Fr<br>WELL 21.50<br>SCREED -<br>From                               |
|                               | 5-18                                            | 1.0                              | 17 N 19                  |                                      | <۱                                           |                                                                                                                                                                            | 33.0 FT -<br>TO 36.0FT -                                                   |
| 37-<br>38- <u>38-0</u>        | S-19                                            | 0,2                              | 50/02                    |                                      | ۲1                                           | SAND, MEDIUM AND FINE GRAIN,<br>LITTLE SILT, IGRES, BEECH, WET, -<br>LIMESTONE AND SHELL FRAMENTS,<br>PARTIALLY COMENTER. VERY DENSE 38.0                                  | Betton -26.50                                                              |
| 29<br>29<br>40                | 5-20                                            | 2.0                              | 7<br>8<br>10             |                                      |                                              | EAND, FINE EARIN, BREEN, VET MEANIN<br>DENSE, SOME SILT, TRACE CLAY _                                                                                                      |                                                                            |
| +1;2                          |                                                 |                                  |                          |                                      |                                              | GNO OF BORING @ 3810 FT -                                                                                                                                                  |                                                                            |
| +3<br><br><br><br>            |                                                 |                                  |                          |                                      |                                              | -                                                                                                                                                                          |                                                                            |
| 46                            |                                                 |                                  |                          |                                      |                                              |                                                                                                                                                                            |                                                                            |
| 48<br>49                      |                                                 |                                  |                          |                                      |                                              |                                                                                                                                                                            |                                                                            |
| 50-<br>DRILLIN                |                                                 | <u></u>                          |                          |                                      | 60                                           |                                                                                                                                                                            | IGN E. DAVIS                                                               |
| DRILLIN                       |                                                 | -HIP                             | 421471                   |                                      |                                              | BAKER REP.:<br>BORING NO.:                                                                                                                                                 |                                                                            |



Baker Environmental, 🗠

#### **TEST BORING AND WELL CONSTRUCTION RECORD**

PROJECT: SGT- SUREENING - 500 232

S.O. NO.: 62470-232-0000-03600 COORDINATES: EAST: 2466048.8526 ELEVATION: SURFACE: 13.20

BORING NO.: Tw29 -B NORTH: <u>360563.1448</u> TOP OF STEEL CASING: \_\_\_\_\_

| RIG: MOBILI              | e 55 -             | Truck m             | nount  |                |         |                  |            |                        |                                       |
|--------------------------|--------------------|---------------------|--------|----------------|---------|------------------|------------|------------------------|---------------------------------------|
|                          | SPLIT<br>SPOON     | CASING              | AUGERS | CORE<br>BARREL | DATE    | PROGRESS<br>(FT) | WEATHER    | WATER<br>DEPTH<br>(FT) | TIME                                  |
| SIZE (DIAM.)             | 14320              |                     | 3420   |                | 4-30-26 | 0-42             | 60'5 61007 | 16.0                   | OHas.                                 |
| LENGTH                   | ZFT                |                     | ZFT    |                |         |                  |            |                        |                                       |
| TYPE                     | \$5                |                     | IIIS   |                |         | <b>A</b>         |            |                        |                                       |
| HAMMER WT.               | 140165.            |                     |        |                |         |                  |            |                        |                                       |
| FALL                     | 3014.              |                     |        |                |         |                  |            |                        |                                       |
| STICK UP                 |                    |                     |        |                |         |                  |            | -                      | · · · · · · · · · · · · · · · · · · · |
| REMARKS:                 |                    |                     |        |                |         | •                |            |                        |                                       |
| S = Split Sp             |                    | = Auger<br>/ = Wash |        | WELL           | DIAM    | TYI              | ξE         | TOP<br>DEPTH<br>(FT)   | BOTTOM<br>DEPTH<br>(FT)               |
| T = Shelby $R = Air Rot$ | tary C             | = Core              | Well   | Casing         | 1       | PVC Threaded     | No. 1      | 0                      | 35                                    |
| D = Deniso               | n P<br>N = No Samp | = Piston<br>de      | Well   | Screen         | (1)     | PVC Slotted      | 2 Mg       | 35                     | 40                                    |

| Depth<br>(Ft.)               | Sample<br>Type<br>and<br>No. | Samp.<br>Rec.<br>Ft.<br>&<br>35 | SPT<br>or<br>RQD | Lab.<br>Class.<br>or<br>Pen.<br>Rate | Hnu<br>Leo.<br>Maist<br>%<br>(pom) |                                   | ) escripti                  | on                    |                      |      | We<br>nstall<br>Det | ation               | Elevatior       |
|------------------------------|------------------------------|---------------------------------|------------------|--------------------------------------|------------------------------------|-----------------------------------|-----------------------------|-----------------------|----------------------|------|---------------------|---------------------|-----------------|
| 1 -<br>2 - 2.0               | 3-1                          | 0.5                             | 5<br>8<br>12     |                                      | <b>८</b>                           | SAND, BINE GAA.<br>TO MOIST, ME   | n, Brown<br>Den             | ، همخي،<br>معرج       | Da-r _               | :    |                     | WELL Sock           | ]               |
| 2<br>                        | 5-2                          | 1.5                             | 8 10<br>24<br>18 |                                      | 21                                 |                                   |                             |                       | -                    |      |                     | WELL CASING<br>1700 | 1               |
| -<br>5 -<br>6 - L.B          | 53                           | 7.0                             | و م<br>د         |                                      | ۷۱                                 | SAND, FINE GARIN<br>GAY, BROWN, F | u, Some :<br>167 Grig       | SILT, LITT<br>, SUFT, | 4.5<br>ne -<br>Net - |      |                     |                     | - 8.7<br>-<br>- |
| 7<br>7<br>8                  |                              |                                 |                  |                                      |                                    |                                   |                             |                       | -                    |      |                     |                     |                 |
| 9<br>10                      | AN                           |                                 |                  |                                      |                                    |                                   |                             |                       |                      |      |                     |                     |                 |
|                              |                              | Raa                             |                  |                                      | . 56                               | <u> </u>                          |                             | Match to              |                      |      |                     | <u> </u>            | <u> </u>        |
| DRILLING CO .: PAREATT-WOLFF |                              |                                 |                  |                                      |                                    |                                   | BAKER REP .: BRIAN E. DAVIS |                       |                      | SHEE | T 1 OF              |                     |                 |



BORING NO .: TW 29-B

Baker Environmental, Inc

PROJECT: SET - SEREENING - LTD 232

S.O. NO .: 62470-232-0000-03600

DEFINITIONS SAMPLE TYPE SPT = Standard Penetration Test (ASTM D-1586) (Blows/0.5') A = AugerS = Split Spoon RQD = Rock Quality Designation (%) T = Shelby Tube W = WashLab. Class. = USCS (ASTM D-2487) or AASHTO (ASTM D-3282) R = Air RotaryC = Core Lab. Moist. = Moisture Content (ASTM D-2216) Dry Weight Basis = Piston D = Denison > P N = No Sample Samp Lab. Hnu Well Installation Sample Rec. Class. SPT -tab. Depth Type Visual Description (Ft. or Detail Elevation or Moist (Ft.) and & Pen. RQD -# No. %) Rate Korn Continued from Sheet 1 600, wer SAND AND SILT WELL SOCK 6 6 F40~ 11.0 1.5 0,07740,0 2.20 11. 5-4 8 21 SAND, FINE AND MEDIUM BRAIN, LITTLE FT 16 SILT, TRACE CURY, WET, MEDIUM 12.0 12-DENSE WELL CASISC 13 From 010 A-N TO 35 10 FT 14 ISia 15 SAND, FINE AND MODIUM GRAIN, LITEN 79 SILT, Trace Chan, BROWN, EREY, (13 4 16. nerim Dense 5-5 20 4 170 17-18-A-N 19 20.0 20 -÷ 3 4 8 8 0.15 5-6 -7.80 21 41 1.5 SAND, FINE GRAIN, GEEN, SOME SILT !Z 10 SHELL FRAGMENTS, WET, TRACE 220 22 CLAY MEQUE DENSE 23 A-N 24. 2500 25 SAND FINE GAME, SOME SILT, GREY łд 15 SHELL FLAGMENT, WET, DENSE 21 26 5-7 2.0 z۴ 31 27.0 27. 28 29 Match to Sheet 3

DRILLING CO .: PARRATT-WORKE BAKER REP.: BRIAN EI DANIS DRILLER: WARY BORING NO.: W29-8 SHEET

SHEET 2 OF 3

Baker Environmental, tec

Baker

.....

PROJECT: SGT - SCREENING - UTO 232 S.O. NO .: 22170-232-6000-03600 BORING NO .: TW29-B

| SAMPLE TYPES= Split SpoonA= AugerT= Shelby TubeW= WashR= Air RotaryC= CoreD= DenisonP= PistonN= No Sample |      |     |                                             |  |    | DEFINITIONS<br>SPT = Standard Penetration Test (ASTM D-1586) (Blows/0.5')<br>RQD = Rock Quality Designation (%)<br>Lab. Class. = USCS (ASTM D-2487) or AASHTO (ASTM D-3282)<br>Lab. Moist. = Moisture Content (ASTM D-2216) Dry Weight Basis |              |                                               |                        |  |  |
|-----------------------------------------------------------------------------------------------------------|------|-----|---------------------------------------------|--|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|-----------------------------------------------|------------------------|--|--|
| Depth<br>(Ft.)                                                                                            |      |     | Samp.<br>Rec. SPT<br>(Ft. or<br>& RQD<br>%) |  |    | • Visual Description                                                                                                                                                                                                                         | Well Ir<br>C | Elevation                                     |                        |  |  |
| -<br>51<br>32                                                                                             | 5-8  | 2.0 | ی<br>د در<br>م در                           |  | 4  | Continued from Sheet<br>SAND, FINE AND MEDIUM GARNY,<br>Some SILT, TRACE CLANS, BREN, WER<br>DENSE, LIME, TONE AND SHELL FRAMENT<br>LITTLE PRANTICY COMENTED FRAGMENT                                                                        |              | WELL<br>Sock From -<br>Gio To 4010 -          |                        |  |  |
| 33_<br>-<br>34_<br>                                                                                       | A-N  |     |                                             |  |    | -                                                                                                                                                                                                                                            |              | WELL CASHS (<br>Friend 0.0<br>TO 35:0 FT      |                        |  |  |
| 36-<br>37- <u>37</u> 0                                                                                    | 5-9  | Z.0 | 6<br>14<br>24<br>20                         |  | 41 | SAND, FING AND MEDIUM FARIN,<br>SOME SIUT, TRACE CLAJ, GREGY, GREEN<br>WET, LINCHTANE AND SHEW FRAGMENT<br>LITTLE PARTIALY COMENTED FRAGMENT                                                                                                 |              | WELL<br>SCREGU<br>From -<br>35:0 TO<br>400 FT | -21.80                 |  |  |
| -<br>38-<br>39-                                                                                           | A-N  |     |                                             |  |    |                                                                                                                                                                                                                                              |              | _                                             |                        |  |  |
| 40 <u>40.0</u><br>+1_<br>+2 <u>42.0</u>                                                                   | 5-10 |     | 19<br>21<br>16                              |  | 41 | SAND AND SILF, BREEN, STIRE, LIPTE GIAS                                                                                                                                                                                                      |              | How there you                                 |                        |  |  |
| ÷3_<br>÷4_                                                                                                |      |     |                                             |  |    | END OF BORING 942.05-                                                                                                                                                                                                                        |              | -                                             |                        |  |  |
| 45 -<br>46                                                                                                |      |     |                                             |  |    | -                                                                                                                                                                                                                                            |              | -                                             |                        |  |  |
| 47                                                                                                        |      |     |                                             |  |    | -                                                                                                                                                                                                                                            |              | -                                             |                        |  |  |
| 50_                                                                                                       |      |     |                                             |  |    |                                                                                                                                                                                                                                              |              |                                               | -                      |  |  |
| DRILLING CO .: PARRATT - WOLFF<br>DRILLER: WALLY                                                          |      |     |                                             |  |    | BAKER REP.: BRIAN<br>BORING NO.: TW29                                                                                                                                                                                                        | JE. DA.<br>B | SHEE                                          | г <u>პ</u> оғ <u>პ</u> |  |  |



| PROJECT:     | Site 35  | Supplemental | Groundwater Invest | igation     |
|--------------|----------|--------------|--------------------|-------------|
| CTO NO .:    | 232      | • • •        | BORING NO.:        | 35TW30A     |
| COORDINATES: | EAST:    | 2465953.7973 | NORTH:             | 364054.1170 |
| ELEVATION:   | SURFACE: | 14.82        | TOP OF PVC CASING: |             |

| RIG:<br>#58                                                                                                 |                            |                 |                  |                  |                |                 | DAT    | E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       | GRESS                                                                                             | WE  | <br>EA1    | THER                        | WATE           |                        |
|-------------------------------------------------------------------------------------------------------------|----------------------------|-----------------|------------------|------------------|----------------|-----------------|--------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|---------------------------------------------------------------------------------------------------|-----|------------|-----------------------------|----------------|------------------------|
| Page 74                                                                                                     | ÷                          | SPLIT<br>SPOON  | CASIN            | G AL             | JGERS          | CORE<br>BARREL  |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (     | (FT.)                                                                                             |     |            |                             | (FT.)          |                        |
| SIZE (DIAM                                                                                                  | L.)                        | 1-3/8"          |                  | 3                | Y4"            |                 | 8-3-   | 96                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.    | -19.5                                                                                             | ner | ":9<br>-c9 | st, rain<br>, (70'5)        | 211.0          |                        |
| LENGTH                                                                                                      |                            | 2.0             |                  |                  | 5'             |                 |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |       |                                                                                                   |     |            |                             |                |                        |
| TYPE                                                                                                        |                            | Std.            |                  |                  | HSA            |                 |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |       |                                                                                                   |     |            |                             |                |                        |
| HAMMER V                                                                                                    | NT.                        | 140 lbs.        |                  |                  |                |                 |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |       |                                                                                                   |     |            |                             |                |                        |
| FALL                                                                                                        |                            | 30"             |                  |                  |                |                 |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |       |                                                                                                   |     |            |                             |                |                        |
| STICK UP                                                                                                    |                            |                 |                  |                  |                |                 |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |       |                                                                                                   |     |            |                             |                |                        |
| REMARKS:                                                                                                    | Augo                       | ered t<br>ubaek | o a iq<br>grow   | .5' (1<br>~d i   | 095) a<br>5.46 | Septh. T<br>opm | emp    | 070                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | roy   | well                                                                                              | 50  | it.        | 8-3                         | -96            |                        |
|                                                                                                             | _                          | SAMPLE          |                  |                  |                | We              | U      | Dia                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | m.    | Туре                                                                                              |     |            |                             | Тор            | Bottom                 |
|                                                                                                             | plit Sp<br>helby T         |                 |                  | A = A $W = V$    | •              | Inform          | ation  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |       |                                                                                                   |     |            |                             | Depth<br>(ft.) | Depth<br>(ft.)         |
|                                                                                                             | ir Rota<br>Denison         | 1               |                  | C = C<br>P = Pi  |                | Rise            | er     | 2.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0"    | Schedule<br>PVC                                                                                   | 40  |            |                             | +2.5           | -9,0                   |
|                                                                                                             |                            | N = No S        | _                |                  |                | Scre            | en     | 2.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0"    | Schedule<br>0.01 Slot                                                                             |     |            |                             | -9.0           | -19.0                  |
| Depth<br>(ft.)                                                                                              | Samp<br>Type<br>and<br>No. | -               | SPT<br>or<br>RQD | Lab<br>ID<br>No. | PID<br>(ppm    | 3               | Visual | Desc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ripti | on                                                                                                |     | Ŀ          | Well<br>nstallati<br>Detail |                | Elevation<br>(ft. MSL) |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                       |                            |                 |                  |                  |                | Aug             | er to  | • In a second se<br>Second second secon<br>second second sec |       | (bgs) -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- |     | ~          | ſ                           | PUC-           | 5.82                   |
| DRILLING CO.: <u>Parratt-Wolff</u><br>DRILLER: <u>G. Lansing</u><br>BORING NO.: <u>35TW30A</u> SHEET 1 OF 2 |                            |                 |                  |                  |                |                 |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |       |                                                                                                   |     |            |                             |                |                        |

| Ba   | ker              |
|------|------------------|
| Bake | r Environmental, |

PROJECT: CTO NO.:

t

<u>Site 35 Supplemental Groundwater Investigation</u> <u>323</u> BORING NO.: <u>35TW30A</u>

|            |                        | MPLE'     | TYPE         |                                     |          | DEFINI                                                              |                      | <b>10 C</b> D |
|------------|------------------------|-----------|--------------|-------------------------------------|----------|---------------------------------------------------------------------|----------------------|---------------|
|            | plit Spoo              |           |              | $\mathbf{A} = \mathbf{A}\mathbf{u}$ | -        | SPT = Standard Penetration Test (A                                  |                      | s/0.5')       |
|            | Shelby Tu<br>Air Rotar |           |              | W = W<br>C = Co                     |          | RQD = Rock Quality Designation (%<br>PID = Photoionization Detector | (0)                  |               |
|            | Air Rotar<br>Denison   | У         |              | P = Pis                             |          | ppm = parts per million                                             |                      |               |
|            |                        | l = No Sa | mnle         | 1-15                                | ton .    | hhm - hare ber munon                                                |                      |               |
| Depth      | Samp.                  | Samp.     | SPT          | Lab                                 | PID      |                                                                     |                      |               |
| (ft.)      | Туре                   | Rec.      | or           | D                                   | (ppm)    | Visual Description                                                  | Well<br>Installation | Elevation     |
|            | and                    | (ft. &    | RQD          | No.                                 |          | visual Description                                                  | Detail               | (ft. MSL)     |
|            | No.                    | %)        |              |                                     |          |                                                                     | Detail               |               |
| _          |                        |           |              |                                     |          | Continued from Sheet 1                                              |                      |               |
| 11         |                        |           |              |                                     |          |                                                                     |                      | 3,82          |
|            |                        |           |              |                                     |          | -                                                                   |                      |               |
| 12         |                        |           |              |                                     |          |                                                                     |                      |               |
| 13         |                        |           | ł            |                                     |          | -                                                                   | sere                 | in            |
| " -        |                        |           |              |                                     |          |                                                                     |                      |               |
| 14         |                        | ł         |              |                                     | 1        |                                                                     |                      |               |
|            |                        |           |              | 1                                   |          | Rugan La Variataria                                                 |                      |               |
| 15         |                        | ł         |              |                                     |          | Auger to 19.5' (bgs)-                                               | 1   <b> </b>   _     |               |
|            |                        |           |              |                                     |          |                                                                     | {  <b> </b>   -      |               |
| 16         |                        |           |              |                                     |          |                                                                     | 4日) -                |               |
| 17         |                        |           |              |                                     |          | -                                                                   | 1日) -                |               |
|            |                        |           |              |                                     |          | i —                                                                 | 1日1 -                |               |
| 18         |                        |           | ł            |                                     |          | -                                                                   | 1   -                |               |
|            |                        |           |              |                                     |          |                                                                     | 1月1 -                |               |
| 19         |                        | ]         | 1            |                                     |          |                                                                     | 1日  _                | -4.18         |
| 19.5       |                        |           |              |                                     |          | <u> </u>                                                            |                      | -4.68         |
| 20         |                        |           |              |                                     |          | End of Boring _                                                     | W Wett               |               |
|            |                        |           |              | ·                                   |          | · · ·                                                               | piug_                |               |
| 21         |                        | •         |              | Į                                   |          | TD: 19,5' (bas) -                                                   | 4                    |               |
| 22         |                        |           |              |                                     |          |                                                                     | -                    |               |
|            |                        |           |              |                                     |          |                                                                     | 1       -            |               |
| 23         |                        |           |              |                                     |          | -                                                                   | 1     -              |               |
|            |                        |           |              |                                     |          |                                                                     |                      |               |
| 24         |                        |           |              | 1                                   |          |                                                                     |                      |               |
|            |                        | Į         |              |                                     |          |                                                                     | 4       _            |               |
| 25         | [                      |           |              |                                     |          |                                                                     |                      |               |
|            |                        |           |              |                                     |          | -                                                                   | -       -            |               |
| 26         |                        | 1         |              |                                     | 1        |                                                                     | -       -            | ł             |
| 27         | 1                      |           |              |                                     |          | -                                                                   | -       -            | 1             |
|            |                        |           | 1            |                                     |          |                                                                     | 1       -            | 1             |
| 28         |                        |           |              | 1                                   |          | -                                                                   | ]       -            | ]             |
|            |                        |           |              | 1                                   | 1        |                                                                     |                      |               |
| 29         |                        |           |              | 1                                   | 1        |                                                                     |                      | 1             |
|            | 1                      |           |              | 1                                   | 1        |                                                                     |                      | 4             |
| 30         | l                      | <u> </u>  | <u>I</u>     | I                                   | <u> </u> | I                                                                   |                      |               |
| DRILLING ( |                        | Sunat     | 4 - 612      | 2210                                |          | BAKER REP.: J.E.                                                    | 2                    | -             |
| DISTURDING |                        | CLIL AL   | <u> 14</u> 3 | T                                   |          | DANER NEF.: 21 C.                                                   | - mm tomar           | <u> </u>      |
| DRILLER:   | _6                     | S. Cam    | Sima         |                                     |          | BORING NO .: _35TV                                                  | 20A 80EU             | HEET 2 OF     |
|            |                        |           | -            |                                     |          |                                                                     |                      | • .           |



5

| PROJECT:     | Site 35  | Supplemental | Groundwater.    | Investigation |
|--------------|----------|--------------|-----------------|---------------|
| CTO NO.:     | 232      |              | BORING NO.:     | 35TW 30B      |
| COORDINATES: | EAST:    | 2465953.7973 | NORTH:          | 364054.1170   |
| ELEVATION:   | SURFACE: | 14.82        | TOP OF PVC CASI | NG:           |

| RIG:<br>#58                                              |                                                                     |         |                 |                   |               |      | DATI                                                                                  | E   |                                 | GRESS                                  | WE  | ATHE   |              | VATER<br>DEPTH | 1              |
|----------------------------------------------------------|---------------------------------------------------------------------|---------|-----------------|-------------------|---------------|------|---------------------------------------------------------------------------------------|-----|---------------------------------|----------------------------------------|-----|--------|--------------|----------------|----------------|
|                                                          | SPLIT<br>SPOON                                                      |         | NG              | AUGERS            | CORE<br>BARRE |      |                                                                                       |     | (                               | FT.)                                   |     |        |              | (FT.)          |                |
| SIZE (DIAM.)                                             | 1-3/8"                                                              |         |                 | 3 1/4"            |               |      | 8-3-9                                                                                 | 16  | 0-                              | 40.0                                   | hum | cast,n | 3, 3         | = 10.5         | <u></u>        |
| LENGTH                                                   | 2.0                                                                 |         |                 | 5!                |               |      |                                                                                       |     |                                 |                                        |     |        |              |                |                |
| ТҮРЕ                                                     | Std.                                                                |         |                 | HSA               |               |      |                                                                                       |     |                                 |                                        |     |        |              |                | _              |
| HAMMER WT.                                               | 140 lbs                                                             | ·       |                 |                   |               |      |                                                                                       |     |                                 |                                        |     |        |              |                |                |
| FALL                                                     | 30"                                                                 |         |                 |                   | ļ             |      |                                                                                       | _   |                                 |                                        |     |        |              |                |                |
| STICK UP                                                 |                                                                     |         | <u> </u>        |                   |               |      |                                                                                       |     |                                 |                                        |     |        |              |                |                |
| REMARKS: 50<br>50                                        | t 8-3                                                               | -96.1   | $\frac{1}{100}$ | - back            | grown         | d    | <u>is .</u>                                                                           | 49  | b b m                           | <u>^ ``</u>                            | ٦٩  | mbo    | 101          |                |                |
|                                                          |                                                                     | E TYPE  |                 |                   |               | Wel  |                                                                                       | Di  | iam.                            | Туре                                   |     |        |              | Top            | Bottom         |
| S = Split                                                | -                                                                   |         |                 | = Auger<br>= Wash | Info          | rma  | ation                                                                                 |     |                                 |                                        |     |        |              | Depth<br>(ft.) | Depth<br>(ft.) |
| T = Shelb<br>R = Air R                                   |                                                                     |         |                 | = wash<br>= Core  |               |      |                                                                                       |     |                                 | Schedule                               | 40  |        |              | (11.)          | (10)           |
| D = Denis                                                | -                                                                   |         |                 | = Piston          | F             | Rise | r                                                                                     | 2   | .0"                             | PVC                                    |     |        | +            | 2.5            | -34.5          |
|                                                          | N = No                                                              | Sample  |                 |                   | s             | cree | en                                                                                    | 2   | .0"                             | Schedule<br>0.01 Slot                  |     |        | -            | 34.5           | -39.5          |
| Depth Sau                                                | np. Sam                                                             | p. SP7  |                 | ab PII            | 2             |      |                                                                                       |     |                                 | <b></b>                                | T   | W      | ell          |                |                |
|                                                          | pe Re                                                               |         |                 | D (ppr            | n)            |      | Visual                                                                                | Des | scripti                         | ion                                    |     | Instal |              |                | Elevation      |
|                                                          | nd (ft.<br>0. %                                                     | -       | א ן כ           | lo.               |               |      |                                                                                       |     | -                               |                                        |     | Det    | tail         |                | (ft. MSL)      |
| $ \begin{array}{c}                                     $ | N<br>1 1972<br>1972<br>1972<br>1972<br>1972<br>1972<br>1972<br>1972 | 2 0 0 % | 0               | .4                | Hu 515        |      | AND,<br>Lace to<br>SAN<br>SAN<br>SAN<br>SAN<br>SAN<br>SAN<br>SAN<br>SAN<br>SAN<br>SAN |     | e 90<br>th St<br>5/11<br>000000 | ttle to<br>xidation<br>ish<br>ing is - |     |        | 1" p<br>risc | 25-            | ને.82          |
| 100.01                                                   |                                                                     | 5%      |                 | .4                | .4 m          | ied  | ium                                                                                   | de  | nsa                             | to Sheet                               | 2   |        |              | -              |                |
| DRILLING CO.:<br>DRILLER:                                | Par                                                                 |         |                 | /tt               |               |      | BAKI<br>BORI                                                                          |     |                                 | _                                      |     |        |              |                | EET 1 OF       |

Baker

Baker Environmental, 14

t

| IO NO.:                     |                                                                                                          | MPLE                          | ГҮРЕ             |                  |                  | BORING NO.:                                                                                                                                                  | IONS                           |                      |  |  |  |
|-----------------------------|----------------------------------------------------------------------------------------------------------|-------------------------------|------------------|------------------|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|----------------------|--|--|--|
| T = S<br>R = A              | S = Split Spoon $A =$ $T = Shelby Tube$ $W =$ $R = Air Rotary$ $C =$ $D = Denison$ $P =$ $N = No Sample$ |                               |                  |                  | ash<br>re        | SPT = Standard Penetration Test (ASTM D-1586)(Blows/0.5')<br>RQD = Rock Quality Designation (%)<br>PID = Photoionization Detector<br>ppm = parts per million |                                |                      |  |  |  |
| Depth<br>(ft.)              | Samp.<br>Type<br>and<br>No.                                                                              | Samp.<br>Rec.<br>(ft. &<br>%) | SPT<br>or<br>RQD | Lab<br>ID<br>No. | PID<br>(ppm)     | Visual Description                                                                                                                                           | Well<br>Installation<br>Detail | Elevatio<br>(ft. MSI |  |  |  |
| 11<br>1212.e                | 5-3                                                                                                      | € N<br>N<br>N                 | mm 4m            |                  | .4/.4            | Continued from Sheet 1<br>damp to moist<br>SAND, fine grained _<br>wltrace silt.light _<br>brown, loose, wet _                                               |                                | 4.32                 |  |  |  |
| 14 -<br>15 <u>150</u>       | A-N                                                                                                      | 2.0                           | 6                |                  | .4               | 15.0                                                                                                                                                         |                                | -0.18                |  |  |  |
| 6<br>7<br>8                 | 5-4                                                                                                      | 2.0                           | 578              |                  | .4               | SANDO, fine grained -<br>Witrace silt. light<br>brown   brown, medium<br>dense, wet                                                                          |                                |                      |  |  |  |
| 9<br>9<br>20 <u>200</u>     | A-N                                                                                                      | 1.0                           |                  |                  | .4               | 20.0                                                                                                                                                         | l" PVC<br>riser                |                      |  |  |  |
| 1<br>2 <u>220</u>           | 5-5                                                                                                      | 1:4<br>2.0<br>70%             | 4409             |                  | . <b>4</b><br>.4 | SAND, fine grained w[<br>trace sut. Oxidation _<br>(dark orange brownish_<br>red staining is very _<br>heavy). Brown to gray_                                |                                |                      |  |  |  |
| 3<br>4<br>5 <del>25</del> 0 | A-N                                                                                                      |                               |                  |                  | .4/4             | medium dense, wet                                                                                                                                            |                                |                      |  |  |  |
| 26<br>2727.0                | 5-6                                                                                                      | 1.3<br>2.0<br>65%             | -m4m             |                  | .4<br>.4         | SAND, fine to coarse _<br>grained witrace sitt,<br>trace quartz gravel _<br>Oxidation (dark<br>Orange brownish red                                           |                                |                      |  |  |  |
| 28<br>29<br>30              | A-N                                                                                                      |                               |                  |                  | .4               | staining is very heavy .<br>Brown, loose, wet                                                                                                                |                                |                      |  |  |  |
| RILLING                     | co.: <u>T</u>                                                                                            | 2223                          | H-12             | plff             |                  | BAKER REP.: J.E.                                                                                                                                             | Zimmarmi                       | 311                  |  |  |  |



÷

1

### TEST BORING AND WELL CONSTRUCTION RECORD

<u>Site 35 Supplemental Groundwater Investigation</u> 232\_\_\_\_\_\_BORING NO.: <u>35TW30P</u> PROJECT: CTO NO.:

.

|               |           | AMPLE     | TYPE        |                             |          | DEFINIT                                                                                                       |                            |           |  |  |
|---------------|-----------|-----------|-------------|-----------------------------|----------|---------------------------------------------------------------------------------------------------------------|----------------------------|-----------|--|--|
| 1             | plit Spoo |           |             | A = Au                      |          | SPT = Standard Penetration Test (A                                                                            | STM D-1586)(Blows          | :/0.5')   |  |  |
|               | Shelby Tu |           |             | $\mathbf{W} = \mathbf{W}$   |          | <b>RQD</b> = Rock Quality Designation (%                                                                      | ó)                         |           |  |  |
|               | Air Rotar | У         |             | C = Co                      |          | PID = Photoionization Detector                                                                                |                            |           |  |  |
| D = I         | Denison   |           | •           | $\mathbf{P} = \mathbf{Pis}$ | ton      | <b>ppm</b> = parts per million                                                                                |                            |           |  |  |
|               |           | I = No Sa |             |                             |          |                                                                                                               |                            |           |  |  |
| Depth         | Samp.     | Samp.     | SPT         | Lab                         | PID      |                                                                                                               | Well                       |           |  |  |
| (ft.)         | Туре      | Rec.      | OF          | D                           | (ppm)    | Visual Description                                                                                            | Installation               | Elevation |  |  |
|               | and       | (ft. &    | RQD         | No.                         |          | r                                                                                                             | Detail                     | (ft. MSL) |  |  |
|               | No.       | %)        |             |                             | ļ        |                                                                                                               |                            |           |  |  |
| 31            |           | 1.7       | 20<br>22    |                             | 4        | Continued from Sheet 2                                                                                        |                            |           |  |  |
| <sup>31</sup> | 5-7       |           | 19          |                             | .4       | SAND, fine to medium<br>grained witrace sitt                                                                  |                            |           |  |  |
| 32            | • (       | 85%       |             |                             |          | little cemented sand-                                                                                         | 1" puc-                    |           |  |  |
| 52 - 520      |           | 0570      |             |                             | }        | Stone nodules, cemented                                                                                       |                            | 1         |  |  |
| 33            |           |           |             |                             |          | Shell material and                                                                                            | e riser                    |           |  |  |
|               | A-N       |           |             |                             | .4       | little shell fragments                                                                                        |                            |           |  |  |
| 34            | H-N       |           |             |                             | .4<br>.4 | Brown togray white                                                                                            |                            |           |  |  |
|               | •         |           |             |                             | .4       | dense, wet                                                                                                    |                            | 1         |  |  |
| 35            |           |           |             |                             |          | 350                                                                                                           |                            |           |  |  |
|               |           | 1.6       | 21          |                             |          |                                                                                                               |                            | -20.10    |  |  |
| 36            | _         | 2.0       | 24          |                             |          | FOSSILIFEROUS LIMESTONE                                                                                       | E LI"PIC-                  |           |  |  |
|               | 5-8       | 2.0       | 23          |                             | .4       | WISAND, fine grained                                                                                          | Screen                     |           |  |  |
| 37 37.0       | _         | 80%       | 29          |                             | - 4      | trace silt, traca                                                                                             |                            | 1         |  |  |
|               |           |           | · · · · · · |                             | A .      | commented shell -                                                                                             | $ \mathbf{H}  \rightarrow$ |           |  |  |
| 38 _ 380      | A-N       |           |             |                             | ·4/4     | material/shell frags -                                                                                        |                            |           |  |  |
|               |           | 1.7       | 18          |                             |          | trace micrite cement                                                                                          |                            |           |  |  |
| 39            |           |           | 10          |                             |          | Light gray/white, danse, -                                                                                    |                            |           |  |  |
|               | 5.9       | 2.0       | is          |                             | .4       | wat. 391_                                                                                                     |                            | -24.28    |  |  |
| 40 40.0       |           | 85%       | 39          |                             | .4       | SAND, fine grained, trace sit, trace<br>clay, trace shall material. Maist<br>DK. graenish gray lublite, danse |                            | - 24.69   |  |  |
|               |           |           |             |                             |          |                                                                                                               | <b>   </b>                 | -25.19    |  |  |
| 41            |           |           |             |                             |          | End of Boring _                                                                                               |                            |           |  |  |
|               |           | · ·       |             |                             |          | —                                                                                                             | plug                       |           |  |  |
| 42            |           |           |             |                             |          | TD: 40.0'(695) -                                                                                              |                            |           |  |  |
|               |           |           |             |                             |          |                                                                                                               |                            |           |  |  |
| 43 -          |           |           |             |                             | •        | -                                                                                                             |                            |           |  |  |
|               |           |           |             |                             |          |                                                                                                               |                            |           |  |  |
| 44            |           |           |             |                             |          | -                                                                                                             |                            |           |  |  |
|               |           |           |             |                             |          | —                                                                                                             |                            |           |  |  |
| 45            |           |           |             |                             |          | -                                                                                                             |                            |           |  |  |
|               |           |           |             |                             |          | -                                                                                                             |                            |           |  |  |
| 6             |           |           |             |                             |          | -                                                                                                             |                            |           |  |  |
|               |           |           |             |                             |          | —                                                                                                             |                            |           |  |  |
| 7             |           |           |             |                             |          | -                                                                                                             |                            |           |  |  |
|               |           |           |             |                             |          |                                                                                                               |                            |           |  |  |
| 8             |           |           |             |                             |          | · · ·                                                                                                         |                            |           |  |  |
| ~ -           |           |           |             |                             |          | -                                                                                                             |                            |           |  |  |
| 9 -           |           |           |             |                             |          | -                                                                                                             |                            |           |  |  |
|               |           |           |             |                             |          | -                                                                                                             |                            | ļ         |  |  |
|               |           |           |             |                             |          |                                                                                                               |                            |           |  |  |
|               |           | I         |             |                             | L.,      |                                                                                                               |                            |           |  |  |
| DRILLING C    | 0.: R     | rrat      | t- 12       | 2710c                       |          | BAKER REP.: <u>J.E. 2</u>                                                                                     | mmerman                    |           |  |  |
|               |           |           | XZ          |                             |          |                                                                                                               | mmerman                    |           |  |  |
| DRILLER:      | G         | . Lans    | eniz        |                             |          | BORING NO.: 35TU                                                                                              | JBOR SH                    | EET 30F>  |  |  |
|               |           |           | - J-        |                             |          |                                                                                                               | J/I                        | 3         |  |  |



| PROJECT:     | Site 3:  | 5 Supplemental | Groundwater       | Investigation |
|--------------|----------|----------------|-------------------|---------------|
| CTO NO .:    | 232      |                | BORING NO.:       | 35TW31A       |
| COORDINATES: | EAST:    | 2466236.0625   | NORTH:            | 363508.9161   |
| ELEVATION:   | SURFACE: | 9.50           | _ TOP OF PVC CASI | NG:           |

| RIG:<br>#58                                                                                   |                             |                |                  |                   |             |                | DAT                                             | e PI |      | GRESS                 | w                      | EAT         | THER   | WATE   |       |
|-----------------------------------------------------------------------------------------------|-----------------------------|----------------|------------------|-------------------|-------------|----------------|-------------------------------------------------|------|------|-----------------------|------------------------|-------------|--------|--------|-------|
| pages 57-3                                                                                    |                             | SPLIT<br>SPOON | CASIN            | G AU              | GERS        | CORE<br>BARREL |                                                 |      | (    | FT.)                  |                        |             |        | (FT.)  |       |
| SIZE (DIAM                                                                                    | .)                          | 1-3/8"         |                  | 3                 | 1/4"        |                | 8-2-9                                           | 16 ( | 0    | -19.5                 | mug                    | 263<br>Y 77 | + rain | ~11.0  | 5     |
| LENGTH                                                                                        |                             | 2.0            |                  | 5                 | 1           |                |                                                 |      |      |                       |                        |             | 1      |        |       |
| TYPE                                                                                          |                             | Std.           |                  | H                 | SA          |                |                                                 |      |      |                       |                        | -           |        |        |       |
| HAMMER W                                                                                      | /T.                         | 140 lbs.       |                  |                   |             |                |                                                 |      |      |                       |                        |             |        |        |       |
| FALL                                                                                          |                             | 30"            |                  |                   |             |                |                                                 |      |      |                       |                        |             |        |        |       |
| STICK UP                                                                                      |                             |                |                  |                   |             |                |                                                 |      |      |                       |                        |             |        |        |       |
| REMARKS: Augered to a 19,5' (bgs) depth. Temporary well set 8-2-96<br>How background is. 3ppm |                             |                |                  |                   |             |                |                                                 |      |      |                       |                        |             |        |        |       |
| SAMPLE TYPE                                                                                   |                             |                |                  |                   | We          | u j            | Diam                                            |      | Туре |                       |                        |             | Тор    | Bottom |       |
| S = Sp                                                                                        | -                           |                |                  | A = Au            | -           | Inform         | ation                                           |      |      |                       |                        |             |        | Depth  |       |
| T = Sh                                                                                        |                             |                |                  | W = W             |             |                |                                                 |      |      |                       | 10                     |             |        | (ft.)  | (ft.) |
| R = A $D = D$                                                                                 | enison                      | •              | 1-               | C = Co<br>P = Pis |             | Rise           | er                                              | 2.0" |      | Schedule<br>PVC       |                        |             |        | +2.5   | -9.0  |
|                                                                                               |                             | N = No S       | -                |                   |             | Scre           | en                                              | 2.0" |      | Schedule<br>0.01 Slot |                        |             |        | -9.0   | -19.0 |
| Depth<br>(ft.)                                                                                | Samp.<br>Type<br>and<br>No. | -              | SPT<br>or<br>RQD | Lab<br>ID<br>No.  | PID<br>(ppm | <u>.  </u>     | Well<br>Visual Description Installati<br>Detail |      |      | ion                   | Elevation<br>(ft. MSL) |             |        |        |       |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                         |                             |                |                  |                   |             | Auge           | er to                                           |      |      |                       |                        | L L         |        |        | 0.50  |
| DRILLING CO .: Parrath-wolff BAKER REP .: J.E. Zimmerman                                      |                             |                |                  |                   |             |                |                                                 |      |      |                       |                        |             |        |        |       |
| DRILLER: <u>G. Lansing</u> BORING NO.: <u>35TW31A</u> SHEET 1 OF 2                            |                             |                |                  |                   |             |                |                                                 |      |      |                       |                        |             |        |        |       |

Baker

Baker Environmental, Pe

PROJECT: CTO NO.:

<u>Site 35 Supplemental Groundwater Investigation</u> 232 BORING NO.: <u>35TW31A</u>

|          |           |           |            |                                     |         |                                                     |              | . 🧹           |
|----------|-----------|-----------|------------|-------------------------------------|---------|-----------------------------------------------------|--------------|---------------|
|          |           | MPLE'     | гуре       |                                     |         | DEFINIT                                             |              | <i>/0.6</i> 0 |
|          | plit Spoo |           |            | <b>A</b> = Au                       |         | SPT = Standard Penetration Test (A                  |              | s/0.5')       |
|          | helby Tu  |           |            | W = W                               |         | RQD = Rock Quality Designation (%                   | <b>()</b>    |               |
|          | Air Rotar | y .       |            | $\mathbf{C} = \mathbf{C}\mathbf{o}$ |         | PID = Photoionization Detector                      |              |               |
| D = L    | Denison   | I = No Sa | mala       | $\mathbf{P} = \mathbf{Pis}$         | ton     | ppm = parts per million                             |              |               |
| Depth    | Samp.     | Samp.     | SPT        | Lab                                 | PID     |                                                     |              |               |
| (ft.)    | Type      | Rec.      | or         | D                                   |         |                                                     | Well         | Elevation     |
| (,       | and       | (ft. &    | RQD        | No.                                 | (*****) | Visual Description                                  | Installation | (ft. MSL)     |
|          | No.       | %)        |            |                                     |         |                                                     | Detail       |               |
|          |           |           |            |                                     |         | Continued from Sheet 1                              |              |               |
|          |           |           |            |                                     |         |                                                     |              | -1.50         |
|          |           |           |            |                                     |         |                                                     | 4 🏳 🔶 🗕      |               |
| 12       |           |           |            |                                     |         |                                                     | 4 🖽 🔶 🗕      |               |
|          |           |           |            |                                     |         | -                                                   | 4 🖂 📔 🗧      |               |
| 13       |           | 1         |            |                                     |         |                                                     |              |               |
| 14       |           | [         |            | l                                   |         | -                                                   |              |               |
|          | ·         |           |            |                                     |         | Auger to 19.5' (bgs)                                | I LI" PVC    |               |
| 15       |           |           |            |                                     |         |                                                     | screen       |               |
|          |           |           |            |                                     |         |                                                     |              |               |
| 16       |           |           | ł          |                                     |         |                                                     | 1日1          |               |
|          |           |           | 1          |                                     |         | _                                                   | 4月1 -        |               |
| 17       |           |           |            |                                     |         |                                                     | =   -        |               |
|          |           |           |            |                                     |         | -                                                   | 4 🖂 📔 🗕 –    | $\sim$        |
| 18       |           |           |            | l                                   |         |                                                     | 1日) -        |               |
| 19       |           |           |            |                                     |         | -                                                   | 1   _        |               |
| 19 19.5  |           |           |            |                                     |         |                                                     |              | -9.50         |
| 20       |           |           | <u> </u>   | <u> </u>                            |         | End of Boring_                                      |              | -10.00        |
|          | ł         |           |            | Ι.                                  |         |                                                     | ] waii       |               |
| 21       | Į         |           |            |                                     |         | TD: 19.5' (b95) -                                   | plug_        |               |
|          |           |           |            |                                     |         | 110.11.3 (0.3)                                      |              |               |
| 22       |           |           |            |                                     |         |                                                     | 4            |               |
|          | •         |           |            |                                     |         | -                                                   | -       -    |               |
| 23       |           |           | 1          |                                     |         |                                                     | 4   ]        |               |
|          |           | ł         |            |                                     |         | -                                                   | -       -    |               |
| 24       |           | 1         |            |                                     |         |                                                     | 4            |               |
| 25       |           |           |            |                                     |         | -                                                   | 1       -    |               |
|          |           |           | 1          |                                     |         | _                                                   | 1       -    | 1             |
| 26       |           |           |            |                                     |         | -                                                   | ]       _    |               |
|          |           |           |            | 1                                   |         |                                                     |              |               |
| 27       |           |           | 1          |                                     | 1       | _                                                   | 4       _    | 4             |
|          |           | 1         | 1          | 1                                   |         | ] -                                                 | 4         -  | 4             |
| 28       |           |           |            | 1                                   |         |                                                     | 4111         | 4             |
|          |           |           | <b>.</b> . | 1                                   |         | -                                                   | -       -    | 1             |
| 29       |           | 1         |            | 1                                   |         |                                                     | -      -     | 1             |
| 30       |           |           |            |                                     |         | -                                                   |              | 1             |
|          | 1         | .1        | .1         | 1                                   | 1       | 1                                                   |              |               |
| DRILLING | co.: T    | gurat     | <u>t-h</u> | poltt                               |         | BAKER REP.: $\underline{J}. \underline{\epsilon}$ . | Zimmerman    | <u> </u>      |
|          |           |           |            |                                     |         |                                                     |              |               |
| DRILLER: | 5         | s. Lan    | sing       |                                     |         | BORING NO .: 35T                                    | W31A S       | HEET 2 OI     |
|          |           |           | -          |                                     |         |                                                     |              | •••           |



| PROJECT:     | 5.ta 35  | Supplemental | Groundwater Inu    | estigation  |
|--------------|----------|--------------|--------------------|-------------|
| CTO NO .:    | 232      |              | BORING NO.:        | 35TW31B     |
| COORDINATES: | EAST:    | 2466236.0625 | NORTH:             | 363508.9161 |
| ELEVATION:   | SURFACE: | 9,50         | TOP OF PVC CASING: | -           |

| RIG:<br>#58                  | ·                                               |                   |                 |                   |        |                    | DAT             | Ŧ          | PRC    | OGRESS                         | WE           | т 41        | HER       | WATE                  |                        |
|------------------------------|-------------------------------------------------|-------------------|-----------------|-------------------|--------|--------------------|-----------------|------------|--------|--------------------------------|--------------|-------------|-----------|-----------------------|------------------------|
|                              |                                                 | SPLIT<br>SPOON    | CASIN           | G AU              | GERS   | CORE<br>BARREL     |                 | E          |        | (FT.)                          |              |             |           | (FT.)                 |                        |
| SIZE (DIAN                   | 1.)                                             | 1-3/8"            |                 | 3                 | /4"    |                    | 8-2-9           | 16         | 0      | -40.0                          | ener<br>aner | 692<br>692  | (80'S)    | ~11.c                 | 2                      |
| LENGTH                       |                                                 | 2.0               |                 | 5                 | 1      |                    |                 |            |        |                                |              |             |           |                       |                        |
| TYPE                         |                                                 | Std.              |                 | 149               | sa     |                    |                 |            |        |                                |              |             |           |                       |                        |
| HAMMER                       | WT.                                             | 140 lībs.         |                 |                   |        |                    |                 |            |        |                                |              |             |           |                       |                        |
| FALL                         |                                                 | 30"               |                 |                   |        |                    |                 | _          |        |                                |              |             |           |                       |                        |
| STICK UP                     |                                                 |                   |                 |                   |        |                    |                 |            |        |                                |              |             |           |                       |                        |
| REMARKS                      | :San<br>Sat                                     | pled              | borev<br>76. Hr | nole<br>ou b      | using  | g 5' cei<br>round  | nters<br>is .:  | 3 P F      | so f   | 70.0.(h                        | 98           | <u>}</u> .` | Tam       | porar                 | y well                 |
|                              | Ş                                               | AMPLE             | TYPE            |                   |        | We                 | 11              | Dia        | am.    | Туре                           |              |             |           | Тор                   | Bottom                 |
|                              | S = Split SpoonA = AugerT = Shelby TubeW = Wash |                   |                 |                   | Inform | ation              |                 |            |        |                                |              |             | Depth     |                       |                        |
|                              | •                                               |                   |                 |                   |        |                    |                 |            |        |                                |              | _           |           | (ft.)                 | (ft.)                  |
|                              | Air Rota<br>Denison                             |                   |                 | C = Co<br>P = Pis |        | Rise               | er              | 2.         | 0"     | Schedule<br>PVC                |              |             |           | +2.5                  | -34.5                  |
|                              |                                                 | N = No S          | -               |                   |        | Scre               | en              | 2.         | 0"     | Schedule<br>0.01 Slot          |              |             |           | -34.5                 | 5-39.5                 |
| Depth                        | Samp.                                           | -                 | SPT             | Lab<br>ID         | PID    | 1                  |                 |            |        |                                |              |             | Well      |                       | Elevation              |
| (ft.)                        | Type<br>and                                     | Rec.<br>(fl. &    | or<br>RQD       | No.               | (ppm   |                    | Visual          | Desc       | cripti | on                             |              | Ir          | ıstallati |                       | Elevation<br>(ft. MSL) |
|                              | No.                                             | (it a<br>%)       |                 | 100.              |        |                    |                 |            |        |                                |              |             | Detail    |                       |                        |
| 2  <br>3  <br>4  <br>5   5.9 | A-N                                             |                   |                 |                   |        | Auge               | r to            | 5 5.0<br>Y | 0' (   | -<br>(bgs)<br>-<br>-<br>-<br>- |              | -           |           | _<br>_<br>9۷C_<br>خو۲ | 4.50                   |
| 6<br>77.0                    | 5-1                                             | 80%<br>80%        | 48222           |                   | .3/2   | clar               | craca<br>J. Oxi | 994<br>Feb | s so   | $\sim$                         |              |             |           | -                     |                        |
| 8<br>8<br>99.0               | 5.2                                             | 0.0<br>8.1<br>8.1 | ~44V            |                   |        | dari<br>Gra<br>mer | k rad<br>4; 10  | 950<br>950 | tai.   | onish<br>oning-<br>f           | -            |             |           |                       |                        |
| 10                           | 5-3                                             | 1.6               | 45              | 05                | .3/    | - 30v              | ~~¢             | <u>N</u>   | Aatch  | n to Sheet                     |              |             |           |                       | <del>-</del> 0.50      |
| DRILLING                     |                                                 |                   |                 | <u>o1ff</u>       |        |                    | BAKI            |            |        | _                              |              |             |           |                       |                        |
| DRILLER:                     |                                                 | <u>G.Lav</u>      | sing            |                   |        |                    | BORI            | NG I       | NO.:   | 357                            | <u>(1)</u>   | 31          | 8         | SH                    | EET I OF               |

Baker

Baker Environmental, 14

| PROJECT: |  |
|----------|--|
| CTO NO.: |  |

t

CT:  $\underline{Site 35}$  Supplemental Groundwater InvestigationO.: $\underline{232}$ BORING NO.:  $\underline{35TW31B}$ DEFINITIONSS SMPLE TYPES = Split SpoonA = AugerSPT = Standard Penetration Test (ASTM D-1586)(Blows/0.5')T = Shelby TubeW = WashRQD = Rock Quality Designation (%)R = Air RotaryC = CorePID = Photoionization DetectorD = DenisonP = Pistonppm = parts per million

| D = I                                                 | Denison<br>N                | [ = No Sa                     | mnie             | P = Pis          | ton          | ppm = parts per million                                                                                             |                                |                        |
|-------------------------------------------------------|-----------------------------|-------------------------------|------------------|------------------|--------------|---------------------------------------------------------------------------------------------------------------------|--------------------------------|------------------------|
| Depth<br>(fl.)                                        | Samp.<br>Type<br>and<br>No. | Samp.<br>Rec.<br>(ft. &<br>%) | SPT<br>or<br>RQD | Lab<br>ID<br>No. | PID<br>(ppm) | Visual Description                                                                                                  | Well<br>Installation<br>Detail | Elevation<br>(ft. MSL) |
| 11 <u> </u>                                           | 5.3                         | 80%                           | 10               | 05               | - 3/.3       | Continued from Sheet 1<br>SAND, Five grained<br>witrace site. Brownt<br>light brown, medium<br>dense, moist to wet. |                                | -1.50                  |
| 13<br>14<br>1515.0                                    | AN                          |                               |                  |                  | i) iii       | <br><br>15.0                                                                                                        |                                | -5.50                  |
| 16<br><br>17                                          | 5-4                         | 1.5<br>2.0<br>75%             | MM MM            |                  | i)<br>Vii    | SAND, fine grained -<br>witrace silt. Light<br>brown   brown, loose<br>wet.                                         | 4                              |                        |
|                                                       | A-N                         |                               |                  |                  | .3/3<br>.3   |                                                                                                                     | riser _                        |                        |
|                                                       | 5-5                         | 1.6<br>2.0<br>80%             | 54               |                  | i)/ii        | SAND, fine grained _<br>witrace sile, trace _<br>Shell material<br>Oxidation (orangish _                            |                                | -10.50                 |
| 23<br>24<br>2525                                      | A-N                         |                               |                  |                  | 3/3          | brown staining is _<br>heavy). Brown &<br>white, loose, wet<br>                                                     |                                |                        |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$ | 5-6                         | ·5<br>20<br>25%               | 52<br>48<br>10/4 |                  | 3/3          | SAND, fine to coarse.<br>grained witrace -<br>silt, trace fine -<br>grained quartz -                                |                                | -15.50                 |
| 28<br>29<br>3030.0                                    | A-N                         |                               | . *              |                  | 3/3          | gravel and shell<br>material. Brown F<br>white, very dense<br>wet.<br>30.0                                          |                                |                        |
| DRILLING                                              | co.: <u>F</u>               | g-1-9-                        | tt-b             | 201ff            |              | BAKER REP.: <u>J. E. 2</u>                                                                                          | limmermen                      |                        |
| DRILLER:                                              | <u>.</u>                    | S. Lan                        | sing             |                  |              | BORING NO.: <u>357</u> 0                                                                                            | U3IB S                         | HEET 2 O               |



;

### TEST BORING AND WELL CONSTRUCTION RECORD

PROJECT: <u>Site 35 Supplemental Groundwater Investigation</u> CTO NO.: <u>232</u> BORING NO.: <u>357W31B</u>

| [               | SA            | MPLE      | <b>TYPE</b> |                                     |       | DEFINIT                                                                                       | IONS                 |           |  |  |  |
|-----------------|---------------|-----------|-------------|-------------------------------------|-------|-----------------------------------------------------------------------------------------------|----------------------|-----------|--|--|--|
| $S = S_{I}$     | plit Spoo     |           |             | $\mathbf{A} = \mathbf{A}\mathbf{u}$ | iger  | SPT = Standard Penetration Test (ASTM D-1586)(Blows/0.5')                                     |                      |           |  |  |  |
| •               | helby Tu      |           |             | W = W                               | -     | RQD = Rock Quality Designation (%                                                             |                      |           |  |  |  |
|                 | ir Rotar      |           |             | $\mathbf{C} = \mathbf{C}\mathbf{c}$ |       | PID = Photoionization Detector                                                                |                      |           |  |  |  |
|                 | )enison       | ,         |             | $\mathbf{P} = \mathbf{Pis}$         |       | ppm = parts per million                                                                       |                      |           |  |  |  |
|                 |               | i = No Sa | mple        |                                     |       |                                                                                               |                      |           |  |  |  |
| Depth           | Samp.         | Samp.     | SPT         | Lab                                 | PID   |                                                                                               | 337-11               |           |  |  |  |
| (ft.)           | Туре          | Rec.      | or          | D                                   | (ppm) | Visual Description                                                                            | Well<br>Installation | Elevation |  |  |  |
|                 | and           | (ft. &    | RQD         | No.                                 |       | Visual Description                                                                            | 1                    | (fL MSL)  |  |  |  |
| 1               | No.           | %)        |             |                                     |       |                                                                                               | Detail               |           |  |  |  |
|                 |               | 1.8       | 22          |                                     |       | Continued from Sheet 2                                                                        |                      |           |  |  |  |
| 31              | ~ ~           | 2.0       | 22          |                                     | -3/.3 | SAND, fine to madium                                                                          |                      |           |  |  |  |
|                 | 5-7           |           | 20          |                                     | 3     | grained withace silt,                                                                         | I" PVC-              |           |  |  |  |
| 32 32.0         |               | 90%       | 22          |                                     |       | little cemented<br>Sandstone nodules,                                                         | riser                |           |  |  |  |
|                 |               |           |             |                                     |       | cemented shall -                                                                              | I ISEI               |           |  |  |  |
| 33              |               |           |             |                                     | 2     | material and little                                                                           |                      |           |  |  |  |
|                 | A-N           |           |             |                                     | .3/   | Shell fragments.                                                                              |                      |           |  |  |  |
| 34 _            | n N           |           |             |                                     | .3    | Brown to gray and                                                                             |                      |           |  |  |  |
|                 |               |           |             |                                     |       | white, densa, wet                                                                             |                      | -25.00    |  |  |  |
| 35 35.0         |               |           |             |                                     |       |                                                                                               |                      | -25.50    |  |  |  |
|                 |               | 1.5       | 12          |                                     |       | FOSSILIFEROUS LIMESTONE                                                                       | LI" PUC              |           |  |  |  |
| 36              |               | 2.0       | 30          |                                     | .3/3  | wisawo, fine grained                                                                          | Screen               |           |  |  |  |
|                 | 5-8           |           | 31          |                                     | 1.3   | trace sit, trace _                                                                            |                      |           |  |  |  |
| 37 37.0         |               | 75%       | 39          | L                                   |       | comented shell _                                                                              |                      |           |  |  |  |
|                 |               |           |             |                                     | •3/3  | material fragments                                                                            |                      |           |  |  |  |
| 38. 38.0        | A-N           |           |             |                                     | /.3   | micrite coment. Light                                                                         |                      |           |  |  |  |
|                 |               | 1.6       | 8           |                                     |       | gray & white, very dense, wet                                                                 |                      | -29.00    |  |  |  |
| 39              | - 0           | 2.0       | 10          |                                     | .3,   | SAND, fine grained wi                                                                         |                      | -27.00    |  |  |  |
|                 | 5-9           | _         | 111         |                                     | .3    | trace silt, trace clay.                                                                       |                      | -30.00    |  |  |  |
| 40 <u>40.</u> d |               | 80%       | 10          |                                     |       | SAWD, fine grained wi<br>trace silt, trace clay.<br>Dark greenish gray<br>Medium dense, moist |                      | -30.50    |  |  |  |
|                 |               |           |             | ł                                   |       | End of Boring -                                                                               |                      | 50.5 -    |  |  |  |
| 41              |               | .         |             | 1                                   |       | J                                                                                             | Uvert-               |           |  |  |  |
|                 |               | 1         |             |                                     |       |                                                                                               | tplug -              |           |  |  |  |
| 42              |               | 1         |             |                                     |       | TD: 40.0'(bgs) _                                                                              |                      |           |  |  |  |
|                 |               |           |             |                                     |       | · · _                                                                                         |                      |           |  |  |  |
| 43              |               |           |             | ļ                                   | 1     |                                                                                               |                      |           |  |  |  |
|                 |               |           |             |                                     |       | _                                                                                             |                      |           |  |  |  |
| 44 _            |               |           |             |                                     |       | _                                                                                             |                      |           |  |  |  |
|                 |               |           |             |                                     |       | _                                                                                             |                      |           |  |  |  |
| 45              |               |           |             |                                     |       |                                                                                               | _                    |           |  |  |  |
|                 |               |           |             |                                     |       | _                                                                                             |                      |           |  |  |  |
| 6               |               |           |             |                                     |       | _                                                                                             | 4       _            |           |  |  |  |
|                 |               |           |             |                                     |       | _                                                                                             |                      |           |  |  |  |
| 7               |               |           |             |                                     |       |                                                                                               |                      |           |  |  |  |
|                 |               |           |             |                                     |       | -                                                                                             |                      |           |  |  |  |
| 8               |               |           |             |                                     |       |                                                                                               |                      |           |  |  |  |
|                 |               |           | 1           | 1                                   |       |                                                                                               | 4       -            |           |  |  |  |
| 9               |               |           | 1           | 1                                   | 1     | · _                                                                                           | 4                    |           |  |  |  |
|                 |               |           |             |                                     |       | -                                                                                             | -       -            | ł         |  |  |  |
| 0               |               | 1         | <u> </u>    | 1                                   | 1     |                                                                                               |                      |           |  |  |  |
| DRILLING C      | co.: <u>F</u> | gura.     | <u>tt-u</u> | 201FF                               |       | BAKER REP.: J.E.                                                                              | Zimmerman            | <u>^</u>  |  |  |  |
| DRILLER:        | <u> </u>      | S. Law    | sina        |                                     |       | BORING NO .: 35TL                                                                             | N318 s               | HEET3OF3  |  |  |  |

Baker

FALL

Baker Environmental, Inc

TEST BORING AND WELL CONSTRUCTION RECORD

| CTO NO.:<br>COORDINATES:<br>ELEVATION: | 62470<br>EAST:<br>SURFACI | 2464   | 273.7830 | 6              | BORING<br>NORTH:<br>TOP OF I |          | 35- MW 39B<br>362383.7474<br>18.03 |                |          |  |
|----------------------------------------|---------------------------|--------|----------|----------------|------------------------------|----------|------------------------------------|----------------|----------|--|
| RIG: Mobil                             | e B-53                    | 5      |          |                | DATE                         | PROGRESS | WEATHER                            | WATER<br>DEPTH | TIME     |  |
|                                        | SPLIT<br>SPOON            | CASING | AUGERS   | CORE<br>BARREL |                              | (FT.)    | WLATILK                            | (FT.)          | 1 114112 |  |
| SIZE (DIAM.)                           | 13/8" ID                  | -      |          | -              | 4/28                         | 0.0-47.0 | MSUNNY, 705                        | -              | -        |  |
| LENGTH                                 | 2'                        | -      | 5'       | -              |                              |          |                                    |                |          |  |
| TYPE                                   | Stainless                 | -      | HSA      | -              |                              |          |                                    |                |          |  |
| HAMMER WT.                             | 140 165                   | -      | -        | -              |                              |          |                                    |                |          |  |
|                                        |                           |        |          | 1              | 1                            | 1        |                                    | 1              |          |  |

-

-

301

-

| STICK UP                                              |                             | -                             | ~                |                                     | -            | ~                    |        |                    |        |                         |                       |                          |
|-------------------------------------------------------|-----------------------------|-------------------------------|------------------|-------------------------------------|--------------|----------------------|--------|--------------------|--------|-------------------------|-----------------------|--------------------------|
| REMARKS                                               | :                           |                               |                  |                                     |              |                      |        | ×                  |        |                         |                       |                          |
| T = S                                                 | Split Spoo<br>Shelby Tu     | ıbe                           | <u>TYPE</u>      | A = Au $W = W$                      | ash          | We<br>Inform         |        | Diam.              |        | Туре                    | Top<br>Depth<br>(ft.) | Bottom<br>Depth<br>(ft.) |
|                                                       | Air Rotar<br>Denison        |                               |                  | C = CorP = Pist                     |              |                      |        | ZOD                | Sch 40 | PVC Riser               | -                     | 40.0                     |
| -                                                     | N                           | I = No Sa                     | ample            |                                     |              | (0.01"51             | .075)  | 2"od               | Sch 40 | PVC Scree               | 40.0                  | 45.0                     |
| Depth<br>(ft.)                                        | Samp.<br>Type<br>and<br>No. | Samp.<br>Rec.<br>(ft. &<br>%) | SPT<br>or<br>RQD | Lab<br>Class.<br>or<br>Pen.<br>Rate | PID<br>(ppm) |                      | Visual | Descripti          |        | Wel<br>Installa<br>Deta | l<br>tion             | Elevation<br>(ft. MSL)   |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$ | A-N                         |                               |                  |                                     | _            | See<br>35-7<br>infor | Maria  | g lag f<br>B for s |        |                         |                       |                          |
| DRILLING CO .: Parrett - Wolff                        |                             |                               |                  |                                     |              |                      | BAKI   | ER REP.:           |        | k DeJohn                | 1                     |                          |
| DRILLER: <u>Chip Lafever</u>                          |                             |                               |                  |                                     |              |                      | BORI   | NG NO.:            |        | MW39B                   | SH                    | EET 1 OF3                |

-



PROJE CTO N

Z:6

| Baker Environ                                         | mental, 🔤                                       |                               |                  |                                     |                  |                                                                                          |                                                                                                                             |
|-------------------------------------------------------|-------------------------------------------------|-------------------------------|------------------|-------------------------------------|------------------|------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|
| PROJECT:<br>CTO NO.:                                  | 5                                               | upplem<br>62470               | ental<br>- 232   | Groun                               | duater           | <u> </u>                                                                                 | ite 35 - MCBCLEJ<br>                                                                                                        |
| T = S $R = J$ $D = J$                                 | Split Spoc<br>Shelby Tu<br>Air Rotar<br>Denison | ıbe                           |                  | A = Au $W = W$ $C = Co$ $P = Pis$   | ash<br>re<br>ton | SPT = Standard Penetration T<br>RQD = Rock Quality Designa<br>Lab. Class. = USCS (ASTM I | EFINITIONS<br>Fest (ASTM D-1586)(Blows/0.5')<br>ation (%)<br>D-2487) or AASHTO (ASTM D-3:<br>ent (ASTM D-2216) Dry Weight B |
| Depth<br>(ft.)                                        | Samp.<br>Type<br>and<br>No.                     | Samp.<br>Rec.<br>(ft. &<br>%) | SPT<br>or<br>RQD | Lab<br>Class.<br>or<br>Pen.<br>Rate | PID<br>(ppm)     | Visual Description                                                                       | Well<br>Installation<br>Detail                                                                                              |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$ |                                                 |                               |                  |                                     |                  |                                                                                          |                                                                                                                             |

| 27<br>28<br>29               |                           |           |
|------------------------------|---------------------------|-----------|
| 30                           |                           |           |
| DRILLER: Chip Lafever        | BAKER REP .: Mark De John |           |
| DRILLER: <u>Chip Latever</u> | BORING NO .: 35-19439B    | SHEETZOF3 |

-



PROJECT: CTO NO.:

#### TEST BORING AND WELL CONSTRUCTION RECORD

Supplemental Groundwater Investigation at site 35 - MCBCLEJ 62470-232 BORING NO.: 35-MW39B

|                           | SA        | MPLE 1  | <b>CYPE</b> |                                     |       | DEFINIT                                                   | IONS                                    |             |  |  |  |
|---------------------------|-----------|---------|-------------|-------------------------------------|-------|-----------------------------------------------------------|-----------------------------------------|-------------|--|--|--|
| <b>S</b> = S              | plit Spoo |         |             | $\mathbf{A} = \mathbf{A}\mathbf{u}$ | ger   | SPT = Standard Penetration Test (ASTM D-1586)(Blows/0.5') |                                         |             |  |  |  |
| <b>T</b> = S              | helby Tu  | ibe     |             | W = W                               | ash   | RQD = Rock Quality Designation (%                         |                                         |             |  |  |  |
|                           | ir Rotar  | y       |             | $\mathbf{C} = \mathbf{Co}$          |       | Lab. Class. = USCS (ASTM D-2487                           |                                         |             |  |  |  |
| $\mathbf{D} = \mathbf{I}$ | Denison   |         |             | $\mathbf{P} = \text{Pist}$          | ton   | Lab. Moist. = Moisture Content (AS                        | TM D-2216) Dry W                        | eight Basis |  |  |  |
|                           |           | = No Sa |             |                                     |       |                                                           |                                         |             |  |  |  |
| Depth                     | Samp.     | Samp.   | SPT         | Lab                                 | PID   |                                                           |                                         |             |  |  |  |
| (ft.)                     | Туре      | Rec.    | or          | Class.                              | (ppm) |                                                           | Well                                    | Elevation   |  |  |  |
|                           | and       | (ft. &  | RQD         | or                                  |       | Visual Description                                        | Installation                            | (ft. MSL)   |  |  |  |
|                           | No.       | %)      |             | Pen.                                |       |                                                           | Detail                                  |             |  |  |  |
|                           |           |         |             | Rate                                |       |                                                           | 71 171                                  |             |  |  |  |
|                           |           |         |             |                                     |       | - · · · -                                                 |                                         |             |  |  |  |
| 31                        |           |         |             |                                     |       | · · · · · · · · · · · · · · · · · · ·                     |                                         |             |  |  |  |
|                           |           |         |             |                                     |       | –                                                         |                                         |             |  |  |  |
| <sup>3</sup> 2            |           |         |             |                                     |       | BENTONITE                                                 |                                         |             |  |  |  |
| 33                        |           |         |             |                                     |       | GROUT C                                                   |                                         | 1           |  |  |  |
| <sup>33</sup> —           |           |         |             |                                     |       | —                                                         |                                         |             |  |  |  |
|                           |           |         |             |                                     |       | -                                                         |                                         |             |  |  |  |
| 4                         |           |         |             |                                     |       |                                                           |                                         |             |  |  |  |
|                           |           |         |             | :                                   |       |                                                           |                                         |             |  |  |  |
| 5                         |           |         |             |                                     |       |                                                           |                                         |             |  |  |  |
|                           |           |         |             |                                     |       | -                                                         | 35.6 -                                  | -16.5       |  |  |  |
| <sup>6</sup>              |           |         |             |                                     |       | BENTONITE                                                 |                                         |             |  |  |  |
|                           |           |         |             |                                     |       | SEAL Z_                                                   |                                         |             |  |  |  |
| 7                         |           |         |             |                                     |       |                                                           |                                         |             |  |  |  |
|                           |           |         |             |                                     |       |                                                           |                                         | - 18.9      |  |  |  |
| <sup>38</sup>             |           |         |             |                                     |       | . —                                                       | 38.0                                    | ~10.7       |  |  |  |
| <u> </u>                  |           |         |             |                                     |       | SAND                                                      |                                         |             |  |  |  |
| 9                         |           |         |             |                                     |       | PACK =                                                    |                                         |             |  |  |  |
|                           |           |         |             |                                     |       |                                                           |                                         |             |  |  |  |
| to                        |           |         |             |                                     |       |                                                           | ······································  | - 20.9      |  |  |  |
|                           |           |         |             |                                     |       | -                                                         | - ISI -                                 |             |  |  |  |
| h                         |           |         |             |                                     |       |                                                           |                                         |             |  |  |  |
| <u> </u>                  |           | 1       |             |                                     |       | -                                                         | [1] [1] [1] [1] [1] [1] [1] [1] [1] [1] |             |  |  |  |
| 2                         |           |         | ł           |                                     |       |                                                           | 1:目() -                                 |             |  |  |  |
|                           |           |         |             |                                     |       | -                                                         |                                         |             |  |  |  |
| 3 –                       |           |         |             |                                     |       |                                                           |                                         |             |  |  |  |
| ł4 _                      |           |         |             |                                     |       | -                                                         | : 「国家」 - 「                              | 1           |  |  |  |
| <sup>14</sup> —           |           |         |             |                                     |       |                                                           |                                         | 1           |  |  |  |
|                           |           |         |             |                                     | 1     | 45.0                                                      | 45.0 _                                  | - 25.9      |  |  |  |
| 5 <u>450</u>              | <u> </u>  |         |             |                                     |       |                                                           |                                         | - 23.7      |  |  |  |
|                           |           | 0.9     | 46          |                                     | 0.21  | FINESAND, some silt, -                                    | 124212 -                                | 1           |  |  |  |
| t6                        | 5-1       | 45%     | 10          | -                                   |       | little clay; olive greens -<br>V. stiffs damp 470         | 1848861 -                               | 1           |  |  |  |
| 17 47.0                   |           | 1-10/,  | 10          |                                     | /o.z  | V. Stitt; damp 47.0                                       | 1×1×1×1×1×1×1×1×1×1×1×1×1×1×1×1×1×1×1×  | - 27.9      |  |  |  |
|                           | 1         |         |             | 1                                   | 1     |                                                           |                                         | 1 - 27.7    |  |  |  |
| 48 _                      |           | 1       |             |                                     |       | BOH@ 47.0 Ft -                                            |                                         | 1           |  |  |  |
|                           |           |         | 1           |                                     |       |                                                           |                                         |             |  |  |  |
| f9 _                      | 1         | 1       |             | 1                                   |       |                                                           | ]       -                               | ]           |  |  |  |
| '' —                      |           | 1       |             |                                     |       |                                                           | ]       -                               | ]           |  |  |  |
| 50 _                      |           |         |             |                                     |       | -                                                         |                                         |             |  |  |  |
|                           | <u> </u>  | Parrat  | t-Wol       | HT                                  |       | BAKER REP.: Mar                                           | k DeJohn                                |             |  |  |  |
|                           | <u> </u>  |         |             |                                     |       |                                                           |                                         |             |  |  |  |
| DRILLING                  |           | Chip    | 1.1         |                                     |       | BORING NO.: <u>35-1</u>                                   | 1W39B                                   | SHEET 3OF   |  |  |  |

Baker

| PROJECT:<br>CTO NO.:<br>COORDINA                      |                                                                        | <u>62'470</u><br>EAST: | <u>-232</u><br>_ <u>24(</u> | \$4977.                             |             |                        | BORIN<br>NORT  | IG NO.<br>H:       |        | -       | <u>35-11-10</u><br>35-11-1040<br>362399.8 | B              | <u> </u>               |
|-------------------------------------------------------|------------------------------------------------------------------------|------------------------|-----------------------------|-------------------------------------|-------------|------------------------|----------------|--------------------|--------|---------|-------------------------------------------|----------------|------------------------|
|                                                       |                                                                        | SURFACI<br>B - 5       |                             | . <u>o</u>                          |             |                        | PROGRESS       |                    |        |         |                                           | WATER          | 4                      |
|                                                       |                                                                        | SPLIT<br>SPOON         | CASIN                       | G AU                                | GERS        | CORE<br>BARREL         | DATE (FT.)     |                    |        | WEATHER | DEPTH<br>(FT.)                            |                |                        |
| SIZE (DIAN                                            | 1.)                                                                    | 13/8" ID               | -                           | 67                                  | 4"ID        | -                      | 4/2            | 70.0               | >-47.0 | 5 P     | Sunny, 705                                | -              |                        |
| LENGTH                                                | <u> </u>                                                               | 2'                     | -                           |                                     | 5'          | -                      |                |                    |        |         | / <b>&gt;</b> /                           |                |                        |
| TYPE                                                  |                                                                        | Stainless              | -                           |                                     | SA          | -                      |                |                    |        |         |                                           |                |                        |
| HAMMER                                                |                                                                        | 40 1bs                 | -                           |                                     | -           | ~                      |                |                    |        |         |                                           |                |                        |
| FALL                                                  |                                                                        | 30*                    | -                           |                                     | -           | ~                      |                |                    |        |         |                                           |                |                        |
| STICK UP                                              |                                                                        | -                      |                             |                                     | -           | ~                      |                |                    |        |         |                                           |                |                        |
| REMARKS                                               | :                                                                      |                        |                             | · · ·                               |             |                        |                |                    |        |         |                                           |                |                        |
|                                                       | _                                                                      | SAMPLE                 | TYPE                        |                                     |             | We                     | 11             | Diam               |        | T       | ype                                       | Тор            | Bottom                 |
|                                                       | SAMPLE TYPE $S = Split Spoon$ $A = Auger$ $T = Shelby Tube$ $W = Wash$ |                        |                             |                                     |             | Inform                 |                |                    |        | •       |                                           | Depth<br>(ft.) | Depth<br>(ft.)         |
|                                                       | Air Rot<br>Denisor                                                     | on $P = Piston$        |                             |                                     |             |                        |                | Ζ"٥                | D Sch  | 40 1    | PVC Riser                                 | -              | 40.0                   |
|                                                       | N = No Sample                                                          |                        |                             |                                     |             |                        | SLOTS          | 2"0                | DSch   | 40      | PVL Screen                                | 40.0           | 45.0                   |
| Depth<br>(ft.)                                        | Samp<br>Type<br>and<br>No.                                             | e Rec.<br>(ft. &       | SPT<br>or<br>RQD            | Lab<br>Class.<br>or<br>Pen.<br>Rate | PID<br>(ppm |                        | Visual         | Descrij            | otion  |         | Well<br>Installatio<br>Detail             | าก I           | Elevation<br>(ft. MSL) |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$ | A-1                                                                    | 1 -                    | -                           | -                                   |             | See<br>35-TV<br>inform | poring<br>Vo3B | j loc<br>far<br>an | for    |         |                                           |                |                        |
| DRILLING                                              | CO.: .                                                                 | Parrat<br>Chip         | t-Vlol                      | FF                                  | •           |                        | BAKI           | ER REI             |        |         | DeJohn                                    |                |                        |
| DRILLER:                                              | <u> </u>                                                               | BORI                   | NG NO                       | ): <u> </u>                         | 1-0         | 18403                  | _ SHI          | EETIO              |        |         |                                           |                |                        |



# D

PROJ CTO

11 12

13

14

ļ5

۱6

| aker                                                  |                                                      |                               | T                | EST B                               | ORIN             | ING AND WELL CONSTRUCTION RECORD                                                                                                                                                                                                            |                                |                        |  |  |  |  |
|-------------------------------------------------------|------------------------------------------------------|-------------------------------|------------------|-------------------------------------|------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|------------------------|--|--|--|--|
| Baker Environr                                        | mental, Inc                                          |                               |                  |                                     |                  |                                                                                                                                                                                                                                             |                                |                        |  |  |  |  |
| OJECT:<br>O NO.:                                      | 5                                                    | upplem<br>62470               | ental<br>- 232   | Groun                               | duater           | BORING NO .:                                                                                                                                                                                                                                | 35 - MCBCLE<br>35-MW40B        | <u> </u>               |  |  |  |  |
| T = 5<br>R = 7<br>D = 1                               | Split Spoo<br>Shelby Tu<br>Air Rotar<br>Denison<br>N | ibe<br>y<br>[ = No Sa         | mple             | A = Au $W = W$ $C = Co$ $P = Pist$  | ash<br>re<br>ton | DEFINITIONS<br>SPT = Standard Penetration Test (ASTM D-1586)(Blows/0.5')<br>RQD = Rock Quality Designation (%)<br>Lab. Class. = USCS (ASTM D-2487) or AASHTO (ASTM D-3282)<br>Lab. Moist. = Moisture Content (ASTM D-2216) Dry Weight Basis |                                |                        |  |  |  |  |
| Depth<br>(ft.)                                        | Samp.<br>Type<br>and<br>No.                          | Samp.<br>Rec.<br>(ft. &<br>%) | SPT<br>or<br>RQD | Lab<br>Class.<br>or<br>Pen.<br>Rate | PID<br>(ppm)     | Visual Description                                                                                                                                                                                                                          | Well<br>Installation<br>Detail | Elevation<br>(ft. MSL) |  |  |  |  |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$ |                                                      |                               |                  |                                     |                  |                                                                                                                                                                                                                                             |                                |                        |  |  |  |  |

| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$ |                    |                            |                         |              |
|-------------------------------------------------------|--------------------|----------------------------|-------------------------|--------------|
| 30                                                    |                    |                            |                         |              |
| DRILLING CO.: Paratt                                  | z-Wolff<br>-aferer | BAKER REP.:<br>BORING NO.: | Mark DeJohn<br>35-MW40B | SHEET 2 OF 3 |

Baker Baker Environmental, Inc.

PROJECT: CTO NO.:

#### **TEST BORING AND WELL CONSTRUCTION RECORD**

Supplemental Groundwater Investigation at Site 35 - MCBELEJ 62470-232 BORING NO.: 35-MV1408

| <b></b>                                                                                                                                                                                  | SA                                                                 | MPLE         | YPE           |                                                             |       | DEFINITIONS                                                                                                               |                      |                            |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|--------------|---------------|-------------------------------------------------------------|-------|---------------------------------------------------------------------------------------------------------------------------|----------------------|----------------------------|--|--|
|                                                                                                                                                                                          | plit Spoo                                                          | n            |               | $\mathbf{A} = \mathbf{A}\mathbf{u}$                         | -     | SPT = Standard Penetration Test (ASTM D-1586)(Blows/0.5')                                                                 |                      |                            |  |  |
|                                                                                                                                                                                          | Shelby Tu                                                          |              |               | <b>W</b> = W                                                |       | <b>RQD</b> = Rock Quality Designation (                                                                                   |                      |                            |  |  |
|                                                                                                                                                                                          | Air Rotary                                                         | 7            |               | $\mathbf{C} = \mathbf{Cor}$<br>$\mathbf{P} = \mathbf{Pist}$ |       | Lab. Class. = USCS (ASTM D-2487) or AASHTO (ASTM D-3282)<br>Lab. Moist. = Moisture Content (ASTM D-2216) Dry Weight Basis |                      |                            |  |  |
| D=1                                                                                                                                                                                      | Denison<br>N                                                       | = No Sa      | mnie          | $\mathbf{P} = \mathbf{P}\mathbf{IS}$                        | lon   | Lab. Moist. – Moisture Content (A.                                                                                        | 51WI D-2210) DIY W   | eight Dasis                |  |  |
| Depth                                                                                                                                                                                    | Samp.                                                              | Samp.        | SPT           | Lab                                                         | PID   | · · · · · · · · · · · · · · · · · · ·                                                                                     |                      |                            |  |  |
| (ft.)                                                                                                                                                                                    | Туре                                                               | Rec.         | or            | Class.                                                      | (ppm) | Visual Description                                                                                                        | Well<br>Installation | Elevation                  |  |  |
|                                                                                                                                                                                          | and<br>No.                                                         | (ft. &<br>%) | RQD           | or<br>Pen.                                                  |       | Visual Description                                                                                                        | Detail               | (ft. MSL)                  |  |  |
|                                                                                                                                                                                          | 110.                                                               | /0)          |               | Rate                                                        |       |                                                                                                                           | 200                  |                            |  |  |
| $\begin{array}{c} 31 \\ - \\ 32 \\ - \\ 33 \\ - \\ 34 \\ - \\ 35 \\ - \\ 35 \\ - \\ 35 \\ - \\ 36 \\ - \\ - \\ - \\ 37 \\ - \\ - \\ 38 \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ $ | A-N                                                                |              |               |                                                             |       | BENTONITE<br>GROOT 2<br>BENTONITE<br>SEAL<br>SAND PACK 2                                                                  |                      | - 17.8<br>- 20.2<br>- 22.2 |  |  |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                    | 5-1                                                                | 1.6<br>80'/. | 4<br>4<br>6 9 | -                                                           | 0.2   | FINE SAND, some sitt,<br>little clay; olive green; -<br>stiff; damp 47.0                                                  |                      | -27.2                      |  |  |
| 47                                                                                                                                                                                       |                                                                    |              | 9             |                                                             |       | 32, 17; Camp 47.0<br>BOH@ 47.0 ft                                                                                         | - 11.0<br>           | - 292                      |  |  |
| <del>1</del> 8 _                                                                                                                                                                         |                                                                    |              |               |                                                             |       |                                                                                                                           |                      |                            |  |  |
| 49 -                                                                                                                                                                                     |                                                                    |              |               |                                                             |       |                                                                                                                           |                      | 1                          |  |  |
| ' <b>''</b>                                                                                                                                                                              |                                                                    |              |               |                                                             |       | -                                                                                                                         | ]       -            | ]                          |  |  |
| 50                                                                                                                                                                                       |                                                                    |              | ł             |                                                             |       | _                                                                                                                         |                      |                            |  |  |
|                                                                                                                                                                                          | . <u>.</u>                                                         | Parrat       | +             |                                                             |       |                                                                                                                           | rk DeJohn            |                            |  |  |
| DRILLING                                                                                                                                                                                 | co.:                                                               |              |               |                                                             |       |                                                                                                                           | No. 14 no            |                            |  |  |
| DRILLER:                                                                                                                                                                                 | DRILLER: <u>Chip Lafever</u> BORING NO.: <u>35-MW40B</u> SHEET30F3 |              |               |                                                             |       |                                                                                                                           |                      |                            |  |  |



.

| PROJECT:     | Supplemental Groundwater | Investigation at 3          | ite 35 - MCBELEJ |
|--------------|--------------------------|-----------------------------|------------------|
| CTO NO.:     | 62470-232                | BORING NO.:                 | 35-MW41B         |
| COORDINATES: |                          | _ NORTH:                    | 362391.8702      |
| ELEVATION:   | SURFACE:                 | <b>_</b> TOP OF PVC CASING: | 16.43            |

| RIG: Mob                             |                                  | B-53             | <b>.</b> |              |        |                | DAT                    | E   |        | GRESS      | WE/         | ATHER        | WATE<br>DEPTH |           |
|--------------------------------------|----------------------------------|------------------|----------|--------------|--------|----------------|------------------------|-----|--------|------------|-------------|--------------|---------------|-----------|
|                                      |                                  | SPLIT<br>POON    | CASIN    | G AU         | GERS   | CORE<br>BARREL |                        |     | (      | FT.)       |             |              | (FT.)         |           |
| SIZE (DIAM.)                         | 13                               | 5/8" ID          |          |              |        | -              | 4/28                   | >   | 0.0 -  | - 47.0     | MSUN        | MY, 80'5     | -             | -         |
| LENGTH                               |                                  | 2'               | -        | t            | -/     | <u> </u>       |                        |     |        |            |             |              |               |           |
| TYPE                                 | স                                | ainess           | _        | H            | SA     | -              |                        |     |        |            |             |              |               |           |
| HAMMER W                             |                                  | 0 165            | ~        |              | -      | -              |                        |     |        |            |             |              |               |           |
| FALL                                 |                                  | 301              | -        |              | -      | -              |                        |     |        |            |             |              |               |           |
| STICK UP                             |                                  | -                | -        |              | _      | ÷.             |                        |     |        |            |             |              |               |           |
| REMARKS: 1                           | 25-                              | GAL OF           | - WATE   | IZ AD        | DED T  | O PREVEN       | TT RU                  | JHC | 11145  | SAND       | 5           |              |               |           |
|                                      |                                  | AMPLE            |          | •            |        | We             |                        |     | am.    |            | Туре        | _            | Тор           | Bottom    |
| $S = Split Spoon \qquad A = Auger$   |                                  |                  |          |              |        | Inform         | ation                  |     |        |            | ••          |              | Depth         | Depth     |
|                                      | T = Shelby Tube W = Wash         |                  |          |              |        |                |                        |     |        |            |             |              | (ft.)         | (ft.)     |
|                                      | $R = Air Rotary \qquad C = Core$ |                  |          |              |        |                |                        | 21  | "      | $c \mid n$ | <u> </u>    |              | -             | 10.       |
| D = Der                              | D = Denison $P = Piston$         |                  |          |              |        |                | 6                      | 00  | 5ch 4  | 0 140      | - Kiser     |              | 40.0          |           |
|                                      | N = No Sample                    |                  |          |              | (0.01" | 5LOTS)         | S.                     | '0D | Sch d  | O Pre      | C Jareen    | A0.0         | 45.0          |           |
| - I                                  | Samp.                            | Samp.            | SPT      | Lab          | PID    |                |                        |     |        |            |             |              |               |           |
| (ft.)                                | Туре                             | Rec.             | or       | Class.       | (ppm   |                | *** 1                  | ~   | • ,•   |            |             | Well         |               | Elevation |
|                                      | and                              | (ft. &           | RQD      | or           |        |                | Visual                 | Des | cripti | on         |             | Installati   |               | (ft. MSL) |
|                                      | No.                              | %)               |          | Pen.<br>Rate |        |                |                        |     |        |            |             | Detail       |               | •         |
| <del></del>                          |                                  |                  | <u> </u> | Kale_        |        |                |                        |     |        |            | 1/2         |              |               |           |
| 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8 | ¥-H                              | -                | -        | -            | -      | 35-T           | barir<br>WIOI<br>matic | 3 f |        |            |             |              |               |           |
| 9<br>10<br>DRILLING CO<br>DRILLER:   | D.: _                            | Parret<br>Chip 1 | L- Wol   | FF           |        |                | BAKI<br>BORI           |     |        | 70         | K D<br>5-MV | eJohn<br>HIB | <br>          | EET I OF  |



PROJECT: CTO NO.: Supplemental Groundwater Investigation at Site 35 - MCBCLEJ 62470-232 BORING NO.: 35-MW41B

| CTO NO.:                     |                                                                                                         | 62910         | - (36     | <u> </u>                  |              | BORING NO.:                                                   |              | ·                      |  |
|------------------------------|---------------------------------------------------------------------------------------------------------|---------------|-----------|---------------------------|--------------|---------------------------------------------------------------|--------------|------------------------|--|
| 6-6                          | SAMPLE TYPEDEFINITIONSS = Split SpoonA = AugerSPT = Standard Penetration Test (ASTM D-1586)(Blows/0.5') |               |           |                           |              |                                                               |              |                        |  |
| T = 5                        | Shelby Tu                                                                                               | ıbe           |           | $\mathbf{W} = \mathbf{W}$ | ash          | RQD = Rock Quality Designation                                | on (%)       |                        |  |
|                              | Air Rotar<br>Denison                                                                                    | у             |           | C = Co<br>P = Pis         |              | Lab. Class. = USCS (ASTM D-<br>Lab. Moist. = Moisture Content |              |                        |  |
|                              | N                                                                                                       | I = No Sa     |           |                           |              |                                                               |              | Weight Dubis           |  |
| Depth<br>(ft.)               | Samp.<br>Type                                                                                           | Samp.<br>Rec. | SPT<br>or | Lab<br>Class.             | PID<br>(ppm) |                                                               | Well         |                        |  |
| (11.)                        | and                                                                                                     | (ft. &        | RQD       | 0r                        | (ppm)        | Visual Description                                            | Installation | Elevation<br>(ft. MSL) |  |
|                              | No.                                                                                                     | %)            |           | Pen.<br>Rate              |              |                                                               | Detail       | (                      |  |
|                              |                                                                                                         |               |           | Tuto                      | l            |                                                               | -71 1/1      | -                      |  |
| <u>1</u>                     |                                                                                                         |               |           |                           |              |                                                               |              |                        |  |
| 12                           |                                                                                                         |               |           |                           |              |                                                               |              | -                      |  |
| 13                           |                                                                                                         |               |           |                           |              |                                                               |              |                        |  |
|                              |                                                                                                         |               |           |                           |              |                                                               |              | -                      |  |
| 14                           |                                                                                                         |               |           |                           |              |                                                               |              |                        |  |
| 15                           |                                                                                                         |               |           |                           |              |                                                               |              |                        |  |
| 16                           |                                                                                                         |               |           |                           |              |                                                               |              |                        |  |
| 17                           |                                                                                                         |               |           |                           |              |                                                               |              | -                      |  |
|                              |                                                                                                         |               |           |                           |              |                                                               |              |                        |  |
| 18                           |                                                                                                         |               |           |                           |              |                                                               |              | -                      |  |
| 19                           |                                                                                                         |               |           |                           |              |                                                               |              | ]                      |  |
| 20                           | A-N                                                                                                     | -             | -         | -                         | -            |                                                               |              | -                      |  |
|                              |                                                                                                         |               |           |                           |              |                                                               |              |                        |  |
| <b>2</b> <sup>1</sup>        |                                                                                                         |               |           |                           |              |                                                               |              |                        |  |
| 22                           |                                                                                                         |               |           |                           |              |                                                               |              | -                      |  |
| 23                           |                                                                                                         |               |           |                           |              |                                                               |              |                        |  |
| 24                           |                                                                                                         |               |           |                           |              |                                                               | -12 12       | -                      |  |
|                              |                                                                                                         |               |           |                           |              |                                                               |              |                        |  |
| 25                           |                                                                                                         |               |           |                           |              |                                                               |              | -                      |  |
| 26                           |                                                                                                         |               |           |                           |              |                                                               |              |                        |  |
| 27                           |                                                                                                         |               |           |                           |              |                                                               |              |                        |  |
|                              |                                                                                                         |               |           |                           |              |                                                               |              | 4                      |  |
| 28                           |                                                                                                         |               |           |                           |              |                                                               |              |                        |  |
| 29                           |                                                                                                         |               |           |                           |              |                                                               |              | -                      |  |
| 30                           | <u> </u>                                                                                                |               |           |                           |              | <u> </u>                                                      | RIAL         |                        |  |
| DRILLING CO .: Parratt-Wolff |                                                                                                         |               |           |                           | ,            | BAKER REP.:                                                   | lark DeJohn  |                        |  |
| DRILLER:                     |                                                                                                         |               |           |                           |              |                                                               | 5-MW41B      | SHEET2OF3              |  |
|                              |                                                                                                         |               |           |                           |              |                                                               |              |                        |  |

Baker

PROJECT: CTO NO.:

### TEST BORING AND WELL CONSTRUCTION RECORD

Baker Environmental, Inc.

Supplemental Groundwater Investigation at Site 35 - MCBCLEJ 62470-232 BORING NO.: 35-MW41B

|                 |                        | MPLE          | ГҮРЕ     |                                                         |        | DEFINITIONS<br>SPT = Standard Penetration Test (ASTM D-1586)(Blows/0.5') |                                           |             |  |  |
|-----------------|------------------------|---------------|----------|---------------------------------------------------------|--------|--------------------------------------------------------------------------|-------------------------------------------|-------------|--|--|
|                 | Split Spoo             |               |          | A = Au $W = W$                                          |        | <b>RQD</b> = Rock Quality Designation (%)                                |                                           |             |  |  |
|                 | Shelby Tu<br>Air Rotar |               |          | $\mathbf{W} - \mathbf{W}$<br>$\mathbf{C} = \mathbf{C}0$ |        | Lab. Class. = USCS (ASTM D-248)                                          |                                           | 1 (2282 J M |  |  |
|                 | Denison                | у             |          | $\mathbf{P} = \mathbf{Pis}$                             |        | Lab. Moist. = Moisture Content (AS                                       |                                           |             |  |  |
| U-1             |                        | i = No Sa     | mnla     | I - 115                                                 | ton    | Lab. Moist. – Moisture Coment (A.                                        | 51WI D-2210) Diy W                        | eigin Dasis |  |  |
| Depth           | Samp.                  | Samp.         | SPT      | Lab                                                     | PID    |                                                                          | 1                                         |             |  |  |
| (ft.)           | Запр.<br>Туре          | Rec.          | or       | Class.                                                  | (ppm)  |                                                                          | Well                                      |             |  |  |
| (10.)           | and                    | (ft. &        | RQD      | or                                                      | (ppin) | Visual Description                                                       | Installation                              | Elevation   |  |  |
|                 | No.                    | (11. dc<br>%) | КŲD      | Pen.                                                    |        | Visual Description                                                       | Detail                                    | (ft. MSL)   |  |  |
|                 | 110.                   | /0)           |          | Rate                                                    |        |                                                                          | Detain                                    |             |  |  |
|                 |                        |               |          | Nate                                                    |        | · · · · · · · · · · · · · · · · · · ·                                    | 77 1 7                                    |             |  |  |
| 31              |                        |               |          |                                                         |        | -                                                                        |                                           |             |  |  |
|                 |                        |               |          |                                                         |        |                                                                          |                                           |             |  |  |
| 32              |                        |               |          |                                                         |        | -                                                                        |                                           |             |  |  |
|                 |                        |               |          |                                                         |        |                                                                          |                                           |             |  |  |
| 33 _            |                        |               |          |                                                         |        | BENTONITE                                                                |                                           |             |  |  |
|                 |                        |               |          |                                                         |        | GROOT Z=                                                                 |                                           |             |  |  |
| 34              | ľ                      |               |          |                                                         |        | -                                                                        |                                           |             |  |  |
|                 |                        |               |          |                                                         |        |                                                                          |                                           |             |  |  |
| 35              |                        |               |          |                                                         |        | -                                                                        |                                           |             |  |  |
| <b>3</b> –      |                        |               |          |                                                         |        |                                                                          | 35.1 -                                    | - 18.4      |  |  |
| 36              |                        |               |          |                                                         |        | -                                                                        |                                           |             |  |  |
| 30              |                        |               |          |                                                         | 1      | BENTONITE                                                                |                                           |             |  |  |
| 37              |                        |               |          |                                                         |        | 2EAL (                                                                   | ★**   12 -                                |             |  |  |
|                 | 1                      |               | -        |                                                         |        | –                                                                        |                                           |             |  |  |
| 38 _            | A-N                    | -             | -        | -                                                       | -      | -                                                                        | 37.9 _                                    |             |  |  |
| 30              |                        |               |          | 1                                                       |        |                                                                          | 37.9                                      | -21.2       |  |  |
| 39              |                        |               |          |                                                         |        | SAND PACK Z                                                              |                                           |             |  |  |
|                 |                        |               |          | 1                                                       |        |                                                                          | 131131                                    |             |  |  |
| 10              |                        |               |          |                                                         |        | -                                                                        | [3] [4]                                   |             |  |  |
| <sup>60</sup> — |                        |               |          |                                                         |        | -                                                                        | 10.0 -                                    | -23,3       |  |  |
| 41              |                        |               |          | ]                                                       |        | -                                                                        |                                           |             |  |  |
|                 | 1                      |               |          |                                                         |        |                                                                          |                                           |             |  |  |
|                 |                        |               |          |                                                         |        | -                                                                        |                                           |             |  |  |
| 42              |                        |               |          |                                                         |        |                                                                          |                                           |             |  |  |
|                 |                        |               |          |                                                         |        | -                                                                        | 19月2日 -                                   |             |  |  |
| 43              |                        |               |          |                                                         |        |                                                                          | 193 <u>5</u> 9 -                          |             |  |  |
| 44              |                        |               |          |                                                         |        | -                                                                        |                                           | 1           |  |  |
| <sup>44</sup> – |                        |               |          |                                                         |        |                                                                          |                                           | 1           |  |  |
| 45 45.0         |                        |               |          |                                                         |        | 450                                                                      |                                           |             |  |  |
| 45 _ 45.0       |                        |               | <u> </u> |                                                         |        |                                                                          | 45.0-                                     | -28.3       |  |  |
| -               |                        | 1.0           | 78       |                                                         | 0.2/   | FINE SAND, some silt,                                                    | - 13433431 -                              |             |  |  |
| 46              | S-1                    | 50%           | 6        | -                                                       |        | little clay; alive green;                                                | 134840 -                                  | -           |  |  |
|                 |                        | 50,,          | 6        | 1                                                       | 6.2    | 47.0                                                                     | 47.0                                      | 7.7         |  |  |
| 47 470          | 1                      | 1             |          |                                                         | +      | 4/.0_                                                                    | + · [ · ] · [ · ] · · · · · · · · · · · · | -30.3       |  |  |
|                 |                        |               | 1        |                                                         |        | -                                                                        | -       -                                 | 1           |  |  |
| 48              |                        |               | 1        |                                                         |        |                                                                          |                                           | - ·         |  |  |
|                 |                        | 1             | 1        |                                                         |        | -                                                                        | -     -                                   | 4           |  |  |
| 49              |                        |               |          |                                                         |        |                                                                          |                                           | 1           |  |  |
|                 | 1                      |               | 1        |                                                         | 1      | -                                                                        |                                           | 1           |  |  |
| 50              | <u> </u>               | 1             | I        | <u> </u>                                                | 1      | <u> </u>                                                                 |                                           | 4           |  |  |
|                 | <u> </u>               | Parrat        | t-Wol    | HF .                                                    |        | BAKER REP.: Mar                                                          | K DeJohn                                  |             |  |  |
| DRILLING        |                        |               |          |                                                         |        | <u> つ</u> 戸                                                              |                                           |             |  |  |
| DRILLER:        |                        | <u>Chip</u>   | Later    | و٢                                                      |        | BORING NO.: <u></u>                                                      | MW41B                                     | SHEET 3 OF  |  |  |
|                 |                        |               |          |                                                         |        |                                                                          |                                           |             |  |  |





Baker Environmental, Inc

# **TEST BORING AND WELL CONSTRUCTION RECORD**

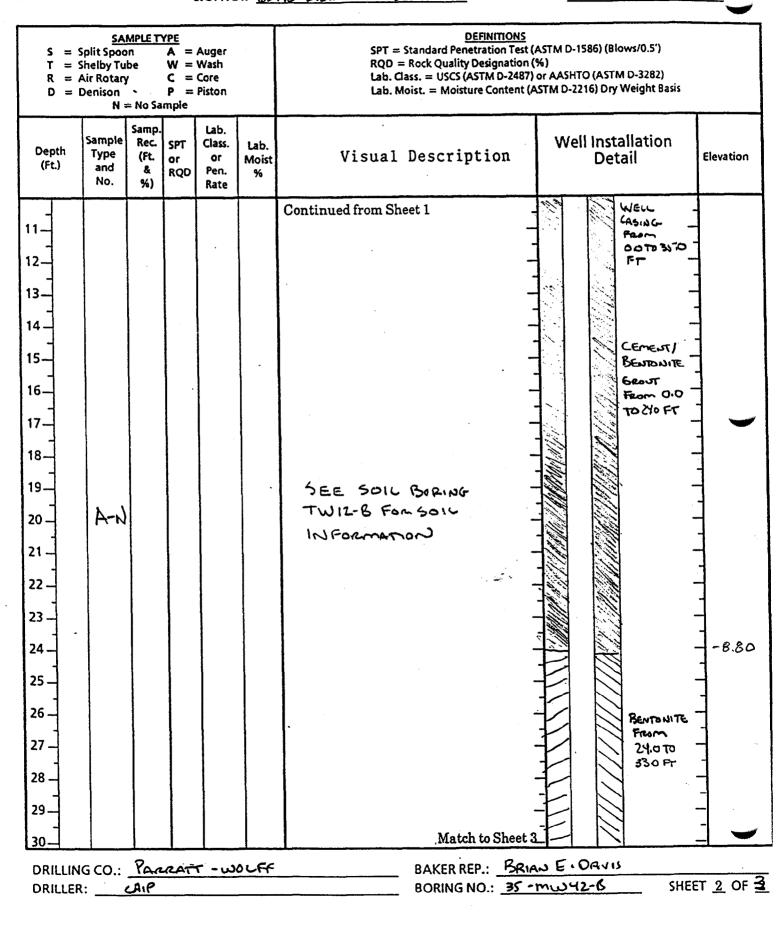
 PROJECT:
 SGI - SCREENING - LTD 232

 S.O.NO.:
 62470-232-0000-03600
 BORIN

 COORDINATES:
 EAST:
 2465251.0135
 NORT

 ELEVATION:
 SURFACE:
 15.20
 TOP 0

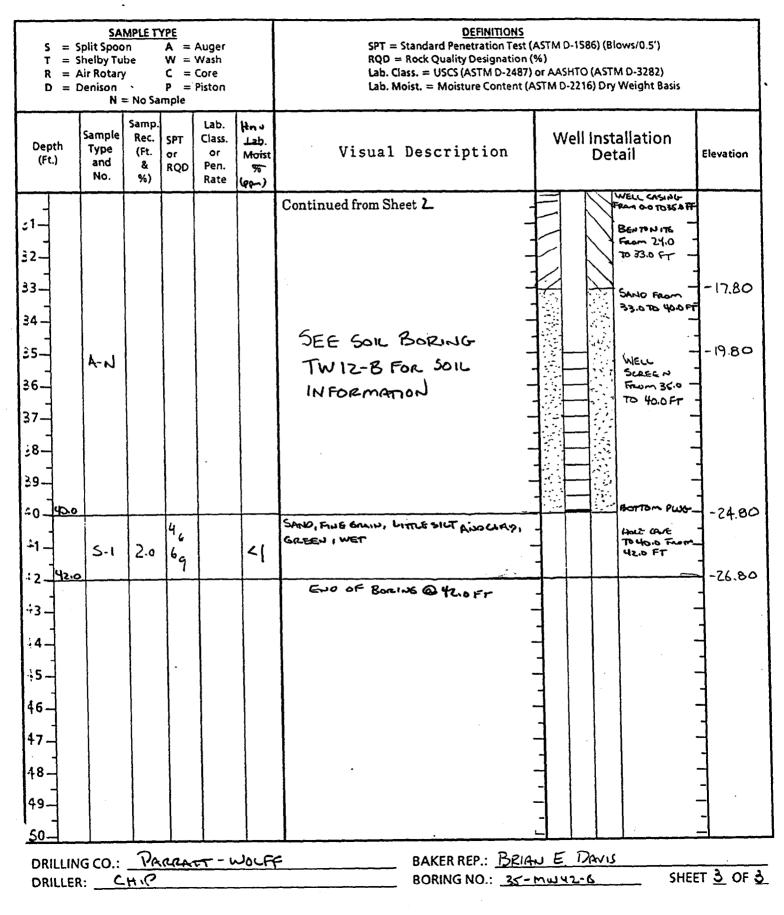
· · ·


BORING NO.: 35-MW42-B NORTH: 361201.5610 TOP OF STEEL CASING: 15.12

| RIG:                                                  | ILE 55            | TRUCH              | <br>∠ M            | 0027            |                  |            |                       |              |                             |                                                                                                 |                         |
|-------------------------------------------------------|-------------------|--------------------|--------------------|-----------------|------------------|------------|-----------------------|--------------|-----------------------------|-------------------------------------------------------------------------------------------------|-------------------------|
|                                                       | SPLIT<br>SPOON    | CASING             |                    | GERS            | CORE<br>BARREL   | DATE       | PROGRESS<br>(FT)      | WEAT         | HER                         | WATER<br>DEPTH<br>(FT)                                                                          | TIME                    |
| SIZE (DIAM.)                                          | 1.43              |                    | 6                  | 410             |                  | 5-1-96     | 0-42                  | 70'5         | SUNNY                       | 6                                                                                               | O (tr.)                 |
| LENGTH                                                | ZFT               |                    |                    | FT              |                  |            |                       |              |                             |                                                                                                 |                         |
| ТҮРЕ                                                  | 55                |                    |                    | 3               |                  |            |                       |              |                             |                                                                                                 |                         |
| HAMMER WT.                                            | 140100            |                    |                    |                 |                  |            |                       |              |                             | · · · · · · · · · · · · · · · · · · ·                                                           |                         |
| FALL                                                  | 30#2              |                    |                    |                 |                  |            |                       |              |                             |                                                                                                 |                         |
| STICK UP                                              |                   |                    |                    |                 |                  |            |                       |              |                             |                                                                                                 |                         |
| REMARKS:                                              |                   |                    |                    | 1 <sup>-1</sup> |                  |            |                       |              |                             |                                                                                                 | 3<br>                   |
| S = SplitS<br>T = Shelby                              |                   | = Auger<br>= Wash  |                    | V<br>INFC       | VELL<br>DRMATION | DIAM       | TYI                   | PE           |                             | TOP<br>DEPTH<br>(FT)                                                                            | BOTTOM<br>DEPTH<br>(FT) |
| R = Air Ro $D = Denise$                               | tary C            | = Core<br>= Piston |                    | WellC           | Casing           | 217        | PVC Threaded          |              |                             | 0'                                                                                              | 35 '                    |
|                                                       | N = No Samp       |                    |                    | Well S          | Screen           | 2"         | PVC Slotted           | <u> </u>     |                             | 35'                                                                                             | 40'                     |
| Sam<br>Depth Typ<br>(Ft.) an<br>No                    | e Ft SP<br>d & or |                    | Lab.<br>Moist<br>% |                 | Visual           | Descriptio | on                    |              | Well<br>Installat<br>Detail |                                                                                                 | Elevatior               |
| 1<br>1<br>-2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10 | -2                |                    |                    | T               |                  | N          | ၀၊င<br>Match to Sheet |              |                             | 1/Eu<br>Asiu6<br>From<br>Dio 70350 P<br>Emeut/<br>Entruite<br>Seout<br>Tro<br>Dio TO<br>ZY:0 FT |                         |
| DRILLING CO                                           |                   | ATT - h            | OLF                | F               | •                |            | R REP.: BIZ           |              |                             |                                                                                                 |                         |
| <b>DRILLER</b> :                                      | CHIP              |                    |                    |                 |                  | EORI       | NG NO.: <u>35-</u>    | <u>mw42-</u> | - <u>B</u>                  | _ SHEE                                                                                          | T <u>1</u> OF           |

2 - **1**1 - 194




PROJECT: <u>56I-5CREENING-CT0232</u> S.O. NO.: <u>62470-232-0000-03600</u> BORING NO.: <u>35-MW42-B</u>





Baker Environmental, tec

PROJECT: 56T- 5600000- 60232 S.O. NO .: 62470.232-0000-03600 BORING NO .: 35-MW 42-B





----

# TEST BORING AND WELL CONSTRUCTION RECORD

PROJECT: SET - SCREENING - LTO 232

| S.O. NO .: 102470-232 | - 2000 - 03600 | BORING N  | 0.: <u>3</u> \$ |
|-----------------------|----------------|-----------|-----------------|
| COORDINATES: EAST:    | 2465317.8687   | NORTH:    |                 |
| ELEVATION: SURFACE:   | 15.30          | TOP OF ST | EEL CAS         |

5- MW43-B 875.6941 SING: 15.01

S Jenn Ste

| RIG: MOBU    | <u>+ 55 7</u>  | TRUCK M | OUNT   |                  |        |                  |            |                        |                         |
|--------------|----------------|---------|--------|------------------|--------|------------------|------------|------------------------|-------------------------|
|              | SPLIT<br>SPOON | CASING  | AUGERS | CORE<br>BARREL   | DATE   | PROGRESS<br>(FT) | WEATHER    | WATER<br>DEPTH<br>(FT) | TIME                    |
| SIZE (DIAM.) | 14312          |         | 34100  |                  | 5-1-96 | 0-42             | 70's sunny | 6                      | OHAS                    |
| LENGTH       | ZFT            |         | SFT    |                  |        |                  |            |                        |                         |
| ТҮРЕ         | 55             |         | HS     |                  |        |                  |            |                        |                         |
| HAMMER WT.   | 140125.        |         |        |                  |        |                  |            |                        |                         |
| FALL         | 30n.           |         |        |                  |        |                  |            |                        |                         |
| STICK UP     |                |         |        |                  |        |                  |            | -                      |                         |
| REMARKS:     |                |         |        |                  |        |                  |            | ·····                  |                         |
| S = Split Sp |                | = Auger |        | VELL<br>DRMATION | DIAM   | ואַד             | PE         | TOP<br>DEPTH<br>(FT)   | BOTTOM<br>DEPTH<br>(FT) |

| S = Split<br>T = Shelt                |                                      | <u>(PE</u><br>A = /<br>W = ' |                                      |                    | WELL<br>INFORMATION  | DIAM     | TYPE         |       | TOP<br>DEPTH<br>(FT)                                                                       | BOTTOM<br>DEPTH<br>(FT) |
|---------------------------------------|--------------------------------------|------------------------------|--------------------------------------|--------------------|----------------------|----------|--------------|-------|--------------------------------------------------------------------------------------------|-------------------------|
| R = Air R $D = Denis$                 | otary                                | C =                          | Core<br>Piston                       |                    | Well Casing          | 2"       | PVC Threaded |       | 0                                                                                          | 35                      |
|                                       | N = No Sa                            |                              | FISION                               |                    | Well Screen          | 2"       | PVC Slotted  |       | 35                                                                                         | 40                      |
| Depth Ty<br>(Ft.) a                   | nple Rec.<br>pe Ft.<br>nd &<br>io. % | SPT<br>or<br>RQD             | Lab.<br>Class.<br>or<br>Pen.<br>Rate | Lab.<br>Moist<br>% | Visual               | Descript | on           | Insta | ell<br>lation<br>tail                                                                      | Elevation               |
| -<br>6 -<br>7 -<br>8 -<br>9 -<br>10 - | 1-N                                  |                              |                                      |                    | SEE Soil<br>For Soil | INFORM   | ATLON -      |       | WELL CASING<br>FROM 00<br>TO 25:0 FT<br>(LEMENT)<br>BENONITE<br>GROUT<br>FROM<br>00 TO<br> |                         |
|                                       |                                      | RAT                          | <u>r wo</u>                          | NFR                |                      |          | RREP.: BRIA  |       | <u>/\\$</u>                                                                                | FT 1 OF                 |

DRILLER. CHIP

FORING NO: 20- MW43-B

SHEET 1 OF



Baker Environmental, tec

PROJECT: SGI - SCREENING -CTO 232 S.O. NO.: 62470-232-0000-03600 BORING NO.: 35-MW 43-B



Baker

Baker Environmental, Inc

PROJECT: 561-562EENING-670232 S.O. NO.: 62170-232-0000-03600 BORING NO.: 35- MWY3-B

SAMPLE TYPE DEFINITIONS = Split Spoon SPT = Standard Penetration Test (ASTM D-1586) (Blows/0.5') S A = Auger Т = Shelby Tube W = Wash RQD = Rock Quality Designation (%)R = Air Rotary¢ = Core Lab. Class. = USCS (ASTM D-2487) or AASHTO (ASTM D-3282) D = Denison P = Piston Lab. Moist. = Moisture Content (ASTM D-2216) Dry Weight Basis N = No Sample Samp. Lab. Hns Sample Rec. SPT Class. Well Installation Lab. Depth Type (Ft. Visual Description 10 or Moist Detail (Ft.) Elevation and & Pen. RQD -% No. %) Rate (ppm) WELL CASING **Continued** from Sheet From 0.0 31-TO 35.0FT 32 Bentonite from 270 33. -17.70 5.000 BS.000 34 40:0FT 4-N SEE SOIL BORING 35-MW43-R 35 -19.70 WELL SCREED FOR SOIL INFORMATION -..` Rean 35,0 to 40.0 FT 36 <u>ر.</u> ک 37. 3 28-29. 400 -.` Borron PWG 40--2470 11 10 HOLE 41.0 -1-LAVE? <1 5-1 From 40.0 TO 420FT 2.0 SAND , F. NE CARINO, SOME SIUT AND CLAY 2 GREEN, WET, MEOUR INFF 42.0 -2--26.70 END OF BORING @ 42.0 FT -3. -4 -15 46 47. 48 49. 50 DRILLING CO .: PARATE . WOLFF BAKERREP .: BRIANE. DAVIS 6H1P SHEET 3 OF 3 DRILLER: BORING NO .: 35-1-1-18



| PROJECT:     | Sita 35  | Supplemental | Groundwater I    | nuestigation |
|--------------|----------|--------------|------------------|--------------|
| CTO NO.:     | 232      | ••           | BORING NO.:      | 35MW4-4H     |
| COORDINATES: | EAST:    | 2466156.2755 | NORTH:           | 363676-3309  |
| ELEVATION:   | SURFACE: | 7.60         | TOP OF PVC CASIN | G: 10.08     |

| RIG:                                                                                                       |                                                        |                  |                    |               |                |          |         |                                                                                             | ·····                         | WATE           |                        |
|------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|------------------|--------------------|---------------|----------------|----------|---------|---------------------------------------------------------------------------------------------|-------------------------------|----------------|------------------------|
| Page 28-7 30                                                                                               | SPLIT<br>SPOON                                         | CASING           | AUG                | ERS           | CORE<br>BARREL | DATE     |         | OGRESS<br>(FT.)                                                                             | WEATHER                       | DEPTH<br>(FT.) |                        |
| SIZE (DIAM.)                                                                                               | 1-3/8"                                                 |                  | 67                 | / <u>A.</u> " |                | 3-1-90   | 0.      | -1915                                                                                       | Partly Cloudy<br>(70'5) humid | 11.0           |                        |
| LENGTH                                                                                                     | 2.0                                                    |                  |                    |               |                |          | +-      |                                                                                             | CTO STROMIG                   |                |                        |
| TYPE                                                                                                       | Std.                                                   |                  | HS                 |               |                |          |         |                                                                                             |                               |                | 1                      |
| HAMMER WT.                                                                                                 | 140 lbs.                                               |                  |                    |               |                |          | 1       |                                                                                             |                               |                |                        |
| FALL                                                                                                       | 30"                                                    |                  |                    |               |                |          |         |                                                                                             |                               |                |                        |
| STICK UP                                                                                                   |                                                        |                  |                    |               |                |          |         |                                                                                             |                               |                |                        |
| REMARKS: Kugered to a 19.5' closs depth. Type I well set 8-1-96<br>HNU background lange is . 4 to 1.3 ppm. |                                                        |                  |                    |               |                |          |         |                                                                                             |                               |                |                        |
|                                                                                                            | SAMPLE                                                 |                  |                    |               | We             |          | Diam.   | Туре                                                                                        |                               | Тор            | Bottom                 |
| $S = Split S_{j}$                                                                                          |                                                        |                  | A = Aug            | -             | Informa        | ation    |         |                                                                                             |                               | Depth          | Depth                  |
| T = Shelby<br>R = Air Ro                                                                                   |                                                        |                  | W = Wa<br>C = Core |               |                |          |         |                                                                                             | 10                            | (ft.)          | (ft.)                  |
| D = Denisc                                                                                                 |                                                        | F                | P = Pisto          |               | Rise           | <b>x</b> | 2.0"    | Schedule<br>PVC                                                                             |                               | +2.5           | -9,0                   |
|                                                                                                            |                                                        | -                |                    |               | Scree          | en       | 2.0"    | Schedule<br>0.01 Slot                                                                       | 1                             | - 9.0          | -19.0                  |
| Depth Sam<br>(ft.) Typ<br>and<br>No                                                                        | e Rec.<br>1 (fl. &                                     | SPT<br>or<br>RQD | Lab<br>ID<br>No.   | PID<br>(ppm)  |                | Visual D | escript | ion                                                                                         | Well<br>Installati<br>Detail  | on             | Elevation<br>(ft. MSL) |
| 1<br>2<br>3<br>4<br>5 /A-N<br>6<br>7<br>8<br>9<br>10                                                       |                                                        |                  |                    | 1.3/ 33       | Kug            | er to    | 19.5    | -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- |                               | periets        |                        |
|                                                                                                            | DRILLING CO.: Parratt-Wolff BAKER REP.: J.E. Zummerman |                  |                    |               |                |          |         |                                                                                             |                               |                |                        |
|                                                                                                            | G. Lan                                                 |                  |                    |               |                |          |         |                                                                                             | MW44A                         |                | ET I OF 2              |

Baker

Baker Environmental, Inc

#### TEST BORING AND WELL CONSTRUCTION RECORD

PROJECT:

CTO NO.:

t

Site 35 Supplemental Groundwater Investigation 232 BORING NO .: 35MW 44-FI 232

| T = S<br>R = A | plit Spoo<br>helby Tu<br>Air Rotar | ibe                           | <u>rype</u>      | A = Au $W = W$ $C = Co$     | ash<br>re    | DEFINITIONS<br>SPT = Standard Penetration Test (ASTM D-1586)(Blows/0.5')<br>RQD = Rock Quality Designation (%)<br>PID = Photoionization Detector |                                |                        |  |  |
|----------------|------------------------------------|-------------------------------|------------------|-----------------------------|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|------------------------|--|--|
| D = I          | Denison<br>N                       | = No Sa                       | mole             | $\mathbf{P} = \mathbf{Pis}$ | ton          | ppm = parts per million                                                                                                                          |                                |                        |  |  |
| Depth<br>(ft.) | Samp.<br>Type<br>and<br>No.        | Samp.<br>Rec.<br>(ft. &<br>%) | SPT<br>or<br>RQD | Lab<br>ID<br>No.            | PID<br>(ppm) | Visual Description                                                                                                                               | Well<br>Installation<br>Detail | Elevation<br>(ft. MSL) |  |  |
| 11<br>12       |                                    |                               |                  | -                           |              | Continued from Sheet 1                                                                                                                           |                                | -3.40                  |  |  |
| 13<br>14<br>15 | A-N                                |                               |                  |                             | 27.7         |                                                                                                                                                  | Screan                         |                        |  |  |
| 16<br>17       |                                    |                               |                  |                             |              |                                                                                                                                                  | Sand<br>pack                   | -                      |  |  |
| 18<br>19<br>20 |                                    |                               |                  |                             |              | End of Boring -                                                                                                                                  |                                | -11.40<br>-11.90       |  |  |
| 21<br>22       |                                    |                               |                  |                             |              | TD: 19.5' (bgs) -                                                                                                                                | plug_                          | •                      |  |  |
| 23<br>24       | -                                  |                               |                  |                             |              |                                                                                                                                                  |                                |                        |  |  |
| 25<br>26       |                                    |                               |                  |                             |              | <br>                                                                                                                                             |                                |                        |  |  |
| 27<br>28<br>29 |                                    |                               |                  |                             |              |                                                                                                                                                  |                                |                        |  |  |
| 30             |                                    | Parra                         | <u> </u>         | 2015f                       | F            | BAKER REP.: <u>J. E.</u>                                                                                                                         | Zimmerman                      |                        |  |  |
| DRILLER:       |                                    | S. Lav                        |                  |                             |              | BORING NO.: <u>35</u> M                                                                                                                          |                                | SHEET 2 OF             |  |  |



| PROJECT:     | Site 35  | Supplemental Gra | undwater Investigatio | и<br>И      |
|--------------|----------|------------------|-----------------------|-------------|
| CTO NO .:    | 232      | •••              | BORING NO.:           | 35MW44B     |
| COORDINATES: | EAST:    | 2466146.9242     | NORTH:                | 363675.9649 |
| ELEVATION:   | SURFACE: | 7.10             | TOP OF PVC CASING:    | 9.59        |

| RIG:<br>#58                                           |                    | <b>_</b> |               |                 |                |                                         | DAT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Е           |             | OGRESS                                     | WEA            | THER         | WATE                                                                                                          |                        |
|-------------------------------------------------------|--------------------|----------|---------------|-----------------|----------------|-----------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|-------------|--------------------------------------------|----------------|--------------|---------------------------------------------------------------------------------------------------------------|------------------------|
| Pages 19->21                                          | SPLI<br>SPOO       | N CAS    | SING          | AUC             | GERS           | CORE<br>BARREL                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |             |             | (FT.)                                      |                |              | (FT.)                                                                                                         |                        |
| SIZE (DIAM.)                                          | 1-3/8              | '        |               | 61              | 4"             |                                         | 7-31-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 96          | 0           | -35.5                                      | humid          | (2003)       | 11.0                                                                                                          |                        |
| LENGTH                                                | 2.0                |          |               | 5               | /              |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |             |             |                                            |                |              |                                                                                                               |                        |
| TYPE                                                  | Std.               |          |               | HS              | A              |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |             |             |                                            |                |              |                                                                                                               |                        |
| HAMMER WT                                             | 140 lb             | s.       |               |                 |                |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |             |             |                                            |                |              |                                                                                                               |                        |
| FALL                                                  | 30"                |          |               |                 |                |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |             |             |                                            |                |              |                                                                                                               |                        |
| STICK UP                                              |                    |          |               |                 |                |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |             |             |                                            |                |              |                                                                                                               |                        |
| REMARKS: Sw<br>to                                     | ngle spi<br>a 35.5 | it space | n so<br>I def | mpl<br>atin.    | e coli<br>Type | rected f                                | br(a)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 70C<br>- 31 | ato<br>-96. | ry ana.<br>HNU bo                          | lysis<br>ackgr | 7-9'<br>ouud | (695).<br>15.4                                                                                                | 4ugered<br>ppm         |
|                                                       | SAMP               | LE TYP   | <u>C</u>      |                 |                | We                                      | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Di          | am.         | Туре                                       |                |              | Тор                                                                                                           | Bottom                 |
| S = Split                                             | •                  |          |               | =Au             | -              | Inform                                  | ation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |             |             |                                            |                |              | Depth                                                                                                         |                        |
| T = Shell                                             | -                  |          |               | / = Wa          |                |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |             |             |                                            |                |              | (ft.)                                                                                                         | (ft.)                  |
| R = Air I $D = Den$                                   | son                | - ·      | Р             | = Con<br>= Pist |                | Ris                                     | er                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2           | .0"         | Schedule<br>PVC                            |                |              | +2.5                                                                                                          | -30.0                  |
|                                                       | N = N              | o Sample |               |                 |                | Scre                                    | en                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2           | .0"         | Schedule<br>0.01 Slot                      |                |              | -30.0                                                                                                         | o -35.0                |
|                                                       | mp. Sar            |          |               | Lab             | PID            | 1                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |             |             |                                            |                | Well         |                                                                                                               |                        |
|                                                       | vpe Re<br>nd (ft.  |          |               | ID<br>No.       | (ppm           | U                                       | Visual                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Des         | cripti      | ion                                        | 1              | nstalla      | tion                                                                                                          | Elevation<br>(ft. MSL) |
|                                                       | Io. %              |          |               |                 |                |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |             |             | Detai                                      | 1              |              |                                                                                                               |                        |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$ | 2                  | -        |               |                 | .4             | Aug                                     | jer to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |             | .oʻ (       |                                            |                | 4            | ement<br>grout<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- |                        |
| 9 <u>-</u> 9,0                                        | -1 2.<br>80        |          | 0             | 94              | .4<br>.4<br>.4 | trace<br>Oxida<br>red s<br>Gray<br>Stit | tolid<br>Homen<br>Homen<br>Homen<br>Homen<br>Homen<br>Homen<br>Homen<br>Homen<br>Homen<br>Homen<br>Homen<br>Homen<br>Homen<br>Homen<br>Homen<br>Homen<br>Homen<br>Homen<br>Homen<br>Homen<br>Homen<br>Homen<br>Homen<br>Homen<br>Homen<br>Homen<br>Homen<br>Homen<br>Homen<br>Homen<br>Homen<br>Homen<br>Homen<br>Homen<br>Homen<br>Homen<br>Homen<br>Homen<br>Homen<br>Homen<br>Homen<br>Homen<br>Homen<br>Homen<br>Homen<br>Homen<br>Homen<br>Homen<br>Homen<br>Homen<br>Homen<br>Homen<br>Homen<br>Homen<br>Homen<br>Homen<br>Homen<br>Homen<br>Homen<br>Homen<br>Homen<br>Homen<br>Homen<br>Homen<br>Homen<br>Homen<br>Homen<br>Homen<br>Homen<br>Homen<br>Homen<br>Homen<br>Homen<br>Homen<br>Homen<br>Homen<br>Homen<br>Homen<br>Homen<br>Homen<br>Homen<br>Homen<br>Homen<br>Homen<br>Homen<br>Homen<br>Homen<br>Homen<br>Homen<br>Homen<br>Homen<br>Homen<br>Homen<br>Homen<br>Homen<br>Homen<br>Homen<br>Homen<br>Homen<br>Homen<br>Homen<br>Homen<br>Homen<br>Homen<br>Homen<br>Homen<br>Homen<br>Homen<br>Homen<br>Homen<br>Homen<br>Homen<br>Homen<br>Homen<br>Homen<br>Homen<br>Homen<br>Homen<br>Homen<br>Homen<br>Homen<br>Homen<br>Homen<br>Homen<br>Homen<br>Homen<br>Homen<br>Homen<br>Homen<br>Homen<br>Homen<br>Homen<br>Homen<br>Homen<br>Homen<br>Homen<br>Homen<br>Homen<br>Homen<br>Homen<br>Homen<br>Homen<br>Homen<br>Homen<br>Homen<br>Homen<br>Homen<br>Homen<br>Homen<br>Homen<br>Homen<br>Homen<br>Homen<br>Homen<br>Homen<br>Homen<br>Homen<br>Homen<br>Homen<br>Homen<br>Homen<br>Homen<br>Homen<br>Homen<br>Homen<br>Homen<br>Homen<br>Homen<br>Homen<br>Homen<br>Homen<br>Homen<br>Homen<br>Homen<br>Homen<br>Homen<br>Homen<br>Homen<br>Homen<br>Homen<br>Homen<br>Homen<br>Homen<br>Homen<br>Homen<br>Homen<br>Homen<br>Homen<br>Homen<br>Homen<br>Homen<br>Homen<br>Homen<br>Homen<br>Homen<br>Homen<br>Homen<br>Homen<br>Homen<br>Homen<br>Homen<br>Homen<br>Homen<br>Homen<br>Homen<br>Homen<br>Homen<br>Homen<br>Homen<br>Homen<br>Homen<br>Homen<br>Homen<br>Homen<br>Homen<br>Homen<br>Homen<br>Homen<br>Homen<br>Homen<br>Homen<br>Homen<br>Homen<br>Homen<br>Homen<br>Homen<br>Homen<br>Homen<br>Homen<br>Homen<br>Homen<br>Homen<br>Homen<br>Homen<br>Homen<br>Homen<br>Homen<br>Homen<br>Homen<br>Homen<br>Homen<br>Homen<br>Homen<br>Homen<br>Homen<br>Homen<br>Homen<br>Homen<br>Homen<br>Homen<br>Homen<br>Homen<br>Homen<br>Homen<br>Homen<br>Homen<br>Homen<br>Homen<br>Homen<br>Homen<br>Homen<br>Homen<br>Homen<br>Homen<br>Homen<br>Homen<br>Homen<br>Homen<br>Homen<br>Homen<br>Homen<br>Homen<br>Homen<br>Homen<br>Homen<br>Homen<br>Homen<br>Homen<br>Homen<br>Homen<br>Homen<br>Homen<br>Homen<br>Homen<br>Homen<br>Homen<br>Homen<br>Homen<br>Homen<br>Homen<br>Homen<br>Homen<br>Homen<br>Homen<br>Homen<br>Homen<br>Homen<br>Homen<br>Homen<br>Homen<br>Homen<br>Homen<br>Homen<br>Homen<br>Homen<br>Homen<br>Homen<br>Homen<br>Homen<br>Homen<br>Homen<br>Homen<br>Homen<br>Homen<br>Homen<br>Homen<br>Homen<br>Homen<br>Homen<br>Homen<br>Homen<br>Homen<br>Homen<br>Homen<br>Homen<br>Homen<br>Homen<br>Homen<br>Homen<br>Homen<br>Homen<br>Homen<br>Homen<br>Homen<br>Homen<br>Homen<br>Homen<br>Homen<br>Homen<br>Homen | 39          |             | lbrownig<br>Pace at ta<br>na diaean<br>9.0 |                |              |                                                                                                               | 0.10<br>-1.90          |

BORING NO .: 35 MW44B SHEET 1 OF 3

DRILLER:

G. Lansino

Ľ,

# Baker

### TEST BORING AND WELL CONSTRUCTION RECORD

| $(t.)  \begin{array}{c} 1 \\ and \\ No. \end{array}  \begin{array}{c} 0 \\ s \\$                                                                                                     | PROJECT:<br>CTO NO.:                                  |                                                                                                                                 | 232                     |           |   |     | <u>Groundwater Investi</u><br>BORING NO.:                                                             | 35MW44B                         |                        |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|-------------------------|-----------|---|-----|-------------------------------------------------------------------------------------------------------|---------------------------------|------------------------|
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                       | T = 5<br>R = 7                                        | S = Split Spoon $A = Auger$ $T = Shelby Tube$ $W = Wash$ $R = Air Rotary$ $C = Core$ $D = Denison$ $P = Piston$ $N = No Sample$ |                         |           |   |     | SPT = Standard Penetration Test (<br>RQD = Rock Quality Designation<br>PID = Photoionization Detector | ASTM D-1586)(Blow               | rs/0.5')               |
| $ \begin{array}{c} 11 \\ 12 \\ 13 \\ 13 \\ 14 \\ 15 \\ 16 \\ 16 \\ 17 \\ 18 \\ 19 \\ 20 \\ 21 \\ 22 \\ 21 \\ 22 \\ 23 \\ 24 \\ 25 \\ 26 \\ 26 \\ 27 \\ 27 \\ 27 \\ 27 \\ 27 \\ 28 \\ 28 \\ 28 \\ 28 \\ 28 \\ 28 \\ 28 \\ 28$ |                                                       | Samp.<br>Type<br>and                                                                                                            | Samp.<br>Rec.<br>(ft. & | SPT<br>or | D | ł   |                                                                                                       | Installation                    | Elevation<br>(ft. MSL) |
|                                                                                                                                                                                                                              | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$ |                                                                                                                                 |                         |           |   | 4/4 |                                                                                                       | Cemeir<br>Groui<br>Ryc<br>Lisec | -1890                  |

- 5



PROJECT: CTO NO.:

;

### TEST BORING AND WELL CONSTRUCTION RECORD

Site 35 Supplemental Groundwater Investigation 232\_\_\_\_\_\_BORING NO.: 35MW44B

|                           | SA            | MPLE    | ГҮРЕ |                             |       | DEFINIT                            | TIONS        |           |
|---------------------------|---------------|---------|------|-----------------------------|-------|------------------------------------|--------------|-----------|
| S = Sp                    | olit Spoo     |         |      | A = Au                      |       | SPT = Standard Penetration Test (A |              | s/0.5')   |
| T = SI                    | helby Tu      | ibe     |      | W = W                       | ash   | RQD = Rock Quality Designation (%  | <b>(6</b> )  |           |
| $\mathbf{R} = \mathbf{A}$ | ir Rotar      | y       |      | $\mathbf{C} = \mathbf{Co}$  | re    | PID = Photoionization Detector     |              | Į         |
|                           | enison        |         |      | $\mathbf{P} = \mathbf{Pis}$ | ton   | ppm = parts per million            |              |           |
|                           | N             | = No Sa | mple |                             |       |                                    |              |           |
| Depth                     | Samp.         | Samp.   | SPT  | Lab                         | PID   |                                    | Well         |           |
| (ft.)                     | Туре          | Rec.    | or   | ID                          | (ppm) | Visual Description                 | Installation | Elevation |
|                           | and           | (ft. &  | RQD  | No.                         |       | Visiai Description                 | Detail       | (ft. MSL) |
|                           | No.           | %)      |      |                             |       |                                    | Detail       |           |
|                           |               |         |      |                             |       | Continued from Sheet               |              | ·         |
| 31                        |               |         |      |                             |       |                                    |              |           |
|                           |               |         |      |                             |       |                                    | in mar       |           |
| 32                        |               |         |      |                             | 4,    |                                    | Scred        | 20        |
|                           | A-N           |         |      |                             | 4.4   |                                    |              |           |
| 33                        | 1.12          |         |      |                             | .4    | -                                  |              |           |
|                           |               |         |      |                             |       | Auger to 35.5' (bas)               | Sand         |           |
| 34                        |               |         |      |                             |       |                                    | pack         |           |
|                           |               |         |      |                             |       |                                    |              |           |
|                           |               |         |      |                             |       | –                                  |              |           |
| 35                        |               |         |      |                             |       |                                    |              | -27.90    |
| 355                       |               |         |      |                             |       |                                    |              | -28.40    |
| 36                        |               |         |      |                             |       | End of Boring _                    | 1]           |           |
|                           |               |         |      |                             |       | -                                  | Wall-        |           |
| 37                        |               |         |      |                             | 1     | TD: 35.5' (bgs) _                  | pluq-        |           |
|                           |               |         |      |                             |       | _                                  |              |           |
| 38                        |               |         |      |                             |       |                                    | 4            |           |
|                           |               |         |      |                             |       | _                                  |              |           |
| 39                        |               |         |      |                             |       |                                    |              |           |
|                           |               |         |      |                             |       | _                                  |              |           |
| 40                        |               |         |      |                             |       |                                    |              |           |
|                           |               |         |      |                             | •     |                                    |              |           |
| 41                        |               |         |      |                             |       | -                                  |              |           |
|                           |               |         |      |                             |       |                                    |              |           |
| 42                        |               |         |      |                             |       | -                                  | 111 -        |           |
|                           |               |         |      |                             | 1     |                                    |              |           |
| 43                        |               |         |      |                             |       |                                    |              |           |
|                           |               |         |      | ĺ                           | }     |                                    | 1            |           |
| 44                        |               |         |      |                             |       | -                                  | 4       -    |           |
|                           |               |         |      |                             |       |                                    |              |           |
| 45                        |               |         |      |                             |       | -                                  | 4 1 1 1      |           |
| l⇔ –                      |               |         |      |                             |       |                                    | -            |           |
|                           |               |         |      |                             |       | -                                  | -            |           |
| 6                         |               |         |      |                             |       |                                    |              |           |
|                           |               |         |      |                             |       | -                                  | 4            |           |
| 7                         |               |         |      |                             |       | _                                  | 4            |           |
|                           |               |         |      |                             |       | -                                  | 4       _    |           |
| 8                         |               |         |      |                             |       | _                                  | 4            |           |
|                           |               | 1       |      |                             | 1     |                                    | 4       _    |           |
| 9                         |               |         |      |                             | 1     | · _                                |              | 1         |
|                           |               |         |      |                             |       | -                                  |              | Į         |
| 0                         |               |         |      |                             |       |                                    |              |           |
| DRILLING C                | :0.: <u>F</u> | arrat   | t-w  | olff                        |       | BAKER REP.: $\underline{J, E}$ ,   | Zimmerman    |           |
| DRILLER:                  | 6             | . Lans  | ina  |                             |       | BORING NO.: <u>35</u> M            |              |           |

Baker

| Baker Environme                                       | Baker Environmental, 🗤     |                  |                    |                                     |                                  |                      |                       |                          |       |                                                                                             |                                                         |               |                        |
|-------------------------------------------------------|----------------------------|------------------|--------------------|-------------------------------------|----------------------------------|----------------------|-----------------------|--------------------------|-------|---------------------------------------------------------------------------------------------|---------------------------------------------------------|---------------|------------------------|
| PROJECT:<br>CTO NO.:<br>COORDINAT<br>ELEVATION        |                            | 62470            | <u>-232</u><br>_24 | 167972<br>164972<br>7.8             |                                  |                      | BORIN<br>NORT         | NG NC<br>H:              | D.:   | n <del>at 5</del><br>Asing:                                                                 | 5:20 35 - MCBOLEJ<br>35-GWD06<br>362400.0135<br>: 17.57 |               |                        |
| RIG: Mo                                               | bile                       | B-53             | 5                  |                                     |                                  |                      | DAT                   | <sub>E</sub> P           |       | GRESS                                                                                       | WEATHER                                                 | WATE<br>DEPTH | 4 1                    |
|                                                       |                            | SPLIT<br>SPOON   | CASIN              | G AU                                | GERS                             | CORE<br>BARREL       | ,                     |                          | T.)   |                                                                                             | (FT.)                                                   |               |                        |
| SIZE (DIAM                                            | l.)                        | 13/8" ID         | -                  | 6                                   | 1/4" ID                          | -                    | 4/25                  | 5 0                      | 0.0   | -47.0                                                                                       | SUNNY, 70'S                                             |               | - 1                    |
| LENGTH                                                |                            | 2'               | -                  |                                     | 5                                | -                    | 4/2                   | 6 4                      | 7.C   | -52.0                                                                                       | P.Sunny, 803                                            | -             | -                      |
| TYPE                                                  | 1                          | Stainkes         | -                  |                                     | SA                               | -                    | 4/2                   |                          |       |                                                                                             | P. Sonny, 70's                                          | -             |                        |
| HAMMER V                                              |                            | 140 lbs          | -                  |                                     | -                                | -                    | 140                   | $\frac{1}{1}$            | 0.0   | - <u>, , , </u>                                                                             | <u>,                                     </u>           |               |                        |
| FALL                                                  |                            | 301              | -                  |                                     |                                  | -                    |                       |                          |       |                                                                                             |                                                         | ·····         |                        |
| STICK UP                                              |                            | 1                |                    |                                     |                                  | ~                    |                       |                          |       |                                                                                             |                                                         |               |                        |
| REMARKS:                                              | ł                          |                  |                    | f                                   |                                  |                      |                       |                          |       |                                                                                             |                                                         |               |                        |
| S = Sp<br>T = St<br>R = <b>A</b>                      | We<br>Inform               |                  | Diam               |                                     |                                  | Туре                 | Top<br>Depth<br>(ft.) | Bottom<br>Depth<br>(ft.) |       |                                                                                             |                                                         |               |                        |
| D = D                                                 |                            |                  | )                  | C = Cc<br>P = Pis                   |                                  |                      |                       | 20                       | D     | Sch 40                                                                                      | PVC Riser                                               | -             | 63                     |
|                                                       |                            |                  | = No Sample        |                                     |                                  |                      | 5607)                 |                          |       |                                                                                             | PVC Screen                                              | 63            | 68                     |
| Depth<br>(ft.)                                        | Samp<br>Type<br>and<br>No. | e Rec.<br>(ft. & | SPT<br>or<br>RQD   | Lab<br>Class.<br>or<br>Pen.<br>Rate | PID<br>(ppm<br> 3/ <sub>B2</sub> | )                    | Visual                | Descri                   | iptic | on                                                                                          | Well<br>Installatio<br>Detail                           | on            | Elevation<br>(ft. MSL) |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$ | A-r                        | 7 -              |                    |                                     |                                  | See<br>35-7<br>Infor | borin<br>Wo3<br>mati  | D les<br>B for           | j Fi  | -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- |                                                         |               |                        |
| DRILLING C                                            | :0.:                       | Parret           | t- VJol            | FF                                  |                                  |                      | BAKI                  | ER RE                    | P.:   |                                                                                             | < DeJohn                                                |               |                        |
| DRILLER:                                              | -                          | Chip             | atore              | 27                                  | <u></u>                          |                      | BORI                  | NG NO                    | 0.:   | <u>35-</u>                                                                                  | 5WD06                                                   | _ SHI         | eet   of4              |

### RD

| Baker Environ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | mental, mr.                                            | - 1                           |                  |                                     |                       | G AND WELL CONSTI                                                                                                                                  |                                       |                        |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|-------------------------------|------------------|-------------------------------------|-----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|------------------------|
| PROJECT:<br>CTO NO.:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | רי<br>רי                                               | 62470                         | ental<br>- 232   | 91000                               | duater                | <u>Investigation at Site</u><br>BORING NO.:                                                                                                        | <u>35 - MCBCLE</u><br><u>35-GWDOG</u> | <u></u> '              |
| S = S $T = S$ $R = S$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Split Spoc<br>Shelby Tu<br><b>but</b> Rotar<br>Denison | ibe 、                         |                  | A = Au $W = W$ $C = Co$ $P = Pis$   | ash<br>re             | DEFIN<br>SPT = Standard Penetration Test (<br>RQD = Rock Quality Designation<br>Lab. Class. = USCS (ASTM D-24<br>Lab. Moist. = Moisture Content (A | (%)<br>87) or AASHTO (ASI             | TM D-3282)             |
| Depth<br>(ft.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Samp.<br>Type<br>and<br>No.                            | Samp.<br>Rec.<br>(ft. &<br>%) | SPT<br>or<br>RQD | Lab<br>Class.<br>or<br>Pen.<br>Rate | PID<br>(ppm)<br>PS/B4 | Visual Description                                                                                                                                 | Well<br>Installation<br>Detail        | Elevation<br>(ft. MSL) |
| $\begin{array}{c} 1 \\ 1 \\ 12 \\ 13 \\ 14 \\ 15 \\ 16 \\ 17 \\ 18 \\ 19 \\ 20 \\ 21 \\ 22 \\ 21 \\ 22 \\ - \\ 22 \\ - \\ 22 \\ - \\ 22 \\ - \\ 22 \\ - \\ 22 \\ - \\ 21 \\ 22 \\ - \\ 22 \\ - \\ 22 \\ - \\ 22 \\ - \\ 22 \\ - \\ 22 \\ - \\ 22 \\ - \\ 22 \\ - \\ 22 \\ - \\ 22 \\ - \\ 22 \\ - \\ 22 \\ - \\ 22 \\ - \\ 22 \\ - \\ 22 \\ - \\ 22 \\ - \\ 22 \\ - \\ 22 \\ - \\ 22 \\ - \\ 22 \\ - \\ 22 \\ - \\ 22 \\ - \\ 22 \\ - \\ 22 \\ - \\ 22 \\ - \\ 22 \\ - \\ 22 \\ - \\ 22 \\ - \\ 22 \\ - \\ 22 \\ - \\ 22 \\ - \\ 22 \\ - \\ 22 \\ - \\ 22 \\ - \\ 22 \\ - \\ 22 \\ - \\ 22 \\ - \\ 22 \\ - \\ 22 \\ - \\ 22 \\ - \\ 22 \\ - \\ 22 \\ - \\ 22 \\ - \\ 22 \\ - \\ 22 \\ - \\ 22 \\ - \\ 22 \\ - \\ 22 \\ - \\ 22 \\ - \\ 22 \\ - \\ 22 \\ - \\ 22 \\ - \\ 22 \\ - \\ 22 \\ - \\ 22 \\ - \\ 22 \\ - \\ 22 \\ - \\ 22 \\ - \\ 22 \\ - \\ 22 \\ - \\ 22 \\ - \\ 22 \\ - \\ 22 \\ - \\ 22 \\ - \\ 22 \\ - \\ 22 \\ - \\ 22 \\ - \\ 22 \\ - \\ 22 \\ - \\ 22 \\ - \\ 22 \\ - \\ 22 \\ - \\ 22 \\ - \\ 22 \\ - \\ 22 \\ - \\ 22 \\ - \\ 22 \\ - \\ 22 \\ - \\ 22 \\ - \\ 22 \\ - \\ 22 \\ - \\ 22 \\ - \\ 22 \\ - \\ 22 \\ - \\ 22 \\ - \\ 22 \\ - \\ 22 \\ - \\ 22 \\ - \\ 22 \\ - \\ 22 \\ - \\ 22 \\ - \\ 22 \\ - \\ 22 \\ - \\ 22 \\ - \\ 22 \\ - \\ 22 \\ - \\ 22 \\ - \\ 22 \\ - \\ 22 \\ - \\ 22 \\ - \\ 22 \\ - \\ 22 \\ - \\ 22 \\ - \\ 22 \\ - \\ 22 \\ - \\ 22 \\ - \\ 22 \\ - \\ 22 \\ - \\ 22 \\ - \\ 22 \\ - \\ 22 \\ - \\ 22 \\ - \\ 22 \\ - \\ 22 \\ - \\ 22 \\ - \\ 22 \\ - \\ 22 \\ - \\ 22 \\ - \\ 22 \\ - \\ 22 \\ - \\ 22 \\ - \\ 22 \\ - \\ 22 \\ - \\ 22 \\ - \\ 22 \\ - \\ 22 \\ - \\ 22 \\ - \\ 22 \\ - \\ 22 \\ - \\ 22 \\ - \\ 22 \\ - \\ 22 \\ - \\ 22 \\ - \\ 22 \\ - \\ 22 \\ - \\ 22 \\ - \\ 22 \\ - \\ 22 \\ - \\ 22 \\ - \\ 22 \\ - \\ 22 \\ - \\ 22 \\ - \\ 22 \\ - \\ 22 \\ - \\ 22 \\ - \\ 22 \\ - \\ 22 \\ - \\ 22 \\ - \\ 22 \\ - \\ 22 \\ - \\ 22 \\ - \\ 22 \\ - \\ 22 \\ - \\ 22 \\ - \\ 22 \\ - \\ 22 \\ - \\ 22 \\ - \\ 22 \\ - \\ 22 \\ - \\ 22 \\ - \\ 22 \\ - \\ 22 \\ - \\ 22 \\ - \\ 22 \\ - \\ 22 \\ - \\ 22 \\ - \\ 22 \\ - \\ 22 \\ - \\ 22 \\ - \\ 22 \\ - \\ 22 \\ - \\ 22 \\ - \\ 22 \\ - \\ 22 \\ - \\ 22 \\ - \\ 22 \\ - \\ 22 \\ - \\ 22 \\ - \\ 22 \\ - \\ 22 \\ - \\ 22 \\ - \\ 22 \\ - \\ 22 \\ - \\ 22 \\ - \\ 22 \\ - \\ 22 \\ - \\ 22 \\ - \\ 22 \\ - \\ 22 \\ - \\ 22 \\ - \\ 22 \\ - \\ 22 \\ - \\ 22 \\ - \\ 22 \\ - \\ 22 \\ - \\ 22 \\ - \\ 22 \\ - \\ 22 \\ - \\ 22 \\ - \\ 22 \\ - \\ 22 \\ - \\ 22 \\ - \\ 22 \\ - \\ 22 \\ - \\ 22 \\ - \\ 22 \\ - \\ 22 \\ - \\ 22 \\ - \\ 22 \\ - \\ 22 \\ - \\ 22 \\ - \\ 22 \\ - \\ 22 \\$ | А-Н                                                    |                               |                  |                                     |                       |                                                                                                                                                    |                                       |                        |

| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$ |                    |                            |                         |            |
|-------------------------------------------------------|--------------------|----------------------------|-------------------------|------------|
|                                                       | t-Wolff<br>Lafeyer | BAKER REP.:<br>BORING NO.: | Mark DeJohn<br>35-GWDO6 | SHEET 20F4 |



Supplement <u>ب</u> . 1 Ŧ. 1. 25 ~~ . 1 - 1 MCBCLEJ NDOG

PROJECT: CTO NO.:

| Tq I | GIOUNDINATER | LIVestigation of | at site 35 - 10 |
|------|--------------|------------------|-----------------|
| 32   | ·            | BORING NO.       | : <u>35-Gw</u>  |

|                                                             |                             | MPLE '                        | ГҮРЕ                        |                                                               |                       | DEFINI                                                                                |                                | . (0.51)               |
|-------------------------------------------------------------|-----------------------------|-------------------------------|-----------------------------|---------------------------------------------------------------|-----------------------|---------------------------------------------------------------------------------------|--------------------------------|------------------------|
| T = S                                                       | plit Spoo<br>Shelby Tu      | ibe .                         |                             | $\mathbf{A} = \mathbf{A}\mathbf{u}$ $\mathbf{W} = \mathbf{W}$ | -                     | <b>SPT</b> = Standard Penetration Test (A<br><b>RQD</b> = Rock Quality Designation (% |                                | s/0.5')                |
| R = 4                                                       | A Rotar                     | y(Mud                         | )                           | $\mathbf{C} = \mathbf{Co}$                                    |                       | Lab. Class. = USCS (ASTM D-2487                                                       |                                |                        |
| D=1                                                         | Denison<br>N                | = No Sa                       | mple                        | <b>P</b> = Pis                                                | ton                   | Lab. Moist. = Moisture Content (AS                                                    | 51M D-2216) Dry w              | eight Basis            |
| Depth<br>(ft.)                                              | Samp.<br>Type<br>and<br>No. | Samp.<br>Rec.<br>(ft. &<br>%) | SPT<br>or<br>RQD            | Lab<br>Class.<br>or<br>Pen.<br>Rate                           | PID<br>(ppm)<br>P3/72 | Visual Description                                                                    | Well<br>Installation<br>Detail | Elevation<br>(ft. MSL) |
| 31<br>3232.0                                                | 5-1                         | 1.3<br>65%                    | 8 <sub>12</sub><br>15<br>17 |                                                               | 0.1                   | SHELL FRAGMENTS, trace -<br>to little silt; gray; m. dense;-<br>wet -                 |                                |                        |
| 33<br>34340                                                 | 5-2                         |                               | 24<br>24<br>20<br>20        | -                                                             | 0.1 /                 | some silt, trace clay; dense                                                          |                                | - 15.7                 |
| 35<br>36                                                    | 5-3                         | 1.5<br>75%                    | 24<br>26<br>13              | _                                                             | 0.1<br>/0.1           | FINE -MED SAND, little<br>shell Frag. ¿silt; gray;<br>V. dense; Net<br>360            |                                | -18.2                  |
| 37<br>38 <u>380</u>                                         | 5-4                         | 1.8<br>90%                    | 12<br>13<br>13<br>19        |                                                               | 0.1                   | FINE SAND, somesitt, -<br>trace shell frag. { clay; -<br>Jray; M. dense; moist _      |                                |                        |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$        | A-H                         | -                             | -                           | -                                                             | -                     |                                                                                       |                                |                        |
| 44 <u>44.0</u><br>45 <u>46</u>                              | 5-5                         | 1.B<br>90%                    | 4 5<br>8 12                 | -                                                             | 0.1                   | FINE SAND, some sitt,                                                                 |                                | - 27.3                 |
| 47 47.0                                                     | A-N                         | -                             | -                           | -                                                             | -                     | Hittle clay; olivegreen; -<br>stiff to v. stiff; _                                    | 41.0 _                         | ONTER                  |
| 17 <u>18</u><br>18 <u>1</u><br>19 <u>1</u><br>50 <u>500</u> | R-N                         | -                             | -                           | -                                                             | -                     | moist -                                                                               |                                | -29.2                  |
|                                                             |                             | Parrat                        |                             | ff.                                                           |                       |                                                                                       | K DeJohn                       |                        |
| DRILLING<br>DRILLER:                                        |                             | Chip                          |                             |                                                               |                       |                                                                                       |                                | SHEET3OF4              |



PROJECT: CTO NO.:

> Depth (ft.)

| ker                       |             |           | T     | EST B                       | ORIN   | G AND WELL CONSTR                                         | UCTION RE       | CORD       |  |  |  |
|---------------------------|-------------|-----------|-------|-----------------------------|--------|-----------------------------------------------------------|-----------------|------------|--|--|--|
| Environ                   | mental, Inc |           |       |                             |        |                                                           |                 |            |  |  |  |
| ECT:                      | ک           | upplem    | ental | Groun                       | duater | <u>Investigation at Site 3</u><br>BORING NO.:             | 15 - MCBCLI     | <u></u>    |  |  |  |
| NO.:                      | _           | 62470     | - 232 |                             |        | BORING NO.:                                               | 35-GWD06        |            |  |  |  |
|                           |             |           |       |                             |        |                                                           |                 |            |  |  |  |
|                           | SA          | MPLE '    | ГҮРЕ  |                             |        | DEFINIT                                                   | <u>CIONS</u>    |            |  |  |  |
| S = Split Spoon A = Auger |             |           |       |                             |        | SPT = Standard Penetration Test (ASTM D-1586)(Blows/0.5') |                 |            |  |  |  |
| T = Shelby Tube W = Wash  |             |           |       |                             |        | ROD = Rock Quality Designation (%                         | 6)              |            |  |  |  |
| R=1                       | Adir Rotar  | V(Mud)    |       | C = Co                      | re     | Lab. Class. = USCS (ASTM D-2487                           |                 | TM D-3282) |  |  |  |
|                           | Denison     |           |       | $\mathbf{P} = \mathbf{Pis}$ | ton    | Lab. Moist. = Moisture Content (AS                        |                 |            |  |  |  |
|                           |             | l = No Sa | mple  |                             |        |                                                           | · •             | U          |  |  |  |
| pth                       | Samp.       | Samp.     | SPT   | Lab                         | PID    |                                                           |                 |            |  |  |  |
| ñ.)                       | Туре        | Rec.      | or    | Class.                      | (ppm)  |                                                           | Well            | Elevation  |  |  |  |
| ,                         | and         | (ft. &    | RQD   | or                          |        | Visual Description                                        | Installation    | 1 1        |  |  |  |
|                           | No.         | %)        |       | Pen.                        | P5/BG  |                                                           | Detail          | (ft. MSL)  |  |  |  |
|                           |             | ,         |       | Rate                        |        |                                                           |                 |            |  |  |  |
| -                         |             | 17        | 10 17 |                             | 0.4,   | BENTONITE -                                               |                 | -          |  |  |  |
|                           | 5-6         | 1.3       | 12    | _                           | 1/4    | Gitost                                                    | <b>F</b> / i/ - |            |  |  |  |

|                                              | 110.        | 70)                |                                   | Rate | 14           |                                                                                                               | Detain |                  |
|----------------------------------------------|-------------|--------------------|-----------------------------------|------|--------------|---------------------------------------------------------------------------------------------------------------|--------|------------------|
| 51 _<br>52 _ <u>52</u> 0                     | 5-6         | 1.3<br>65%         | 10<br>12<br>13                    | _    | 0.4<br>/0.4  | BENTONITE                                                                                                     |        |                  |
| <u>4</u> 3<br>54540                          | 5-7         | 0.8<br>40%         | 10<br>20<br>24<br>40              | -    | 0.7 /<br>0.7 | hard -                                                                                                        |        |                  |
| £5<br>56560                                  | 5-B         | 1.8<br>90%         | 9<br>12<br>20<br>22               | -    | 0.2/<br>/0.Z | trace to little shell frag;                                                                                   |        |                  |
| 57<br>5850                                   | 5-9         | 1.7<br>85 <i>%</i> | 20<br>24<br>27<br>31              | -    | 0.7/<br>/0.2 | -<br><br>5,7,7                                                                                                | 58.0 - | - 39.9<br>- 40.2 |
| 59<br>60<br>61<br>62<br>63<br>63<br>64<br>65 | R- N        | -                  | -                                 | -    |              | FINE SAND, some shell<br>Freig Sitt, 1:ttle clays<br>greiy; V-dense; wet<br>BENTONTIE<br>SEAL<br>SAND<br>PACK | 60.0 - | -40.2            |
| 6660<br>67<br>6868<br>6960<br>6960           | 5-10<br>R-N | Z.0<br>100%        | <sup>16</sup> 20<br>22<br>25<br>- | -    | 0.2/<br>/0.2 | greenishgray; dense; -<br>Wet<br>BOH@69.0 ft                                                                  | 69.0-  | -50.Z            |
| DRILLING                                     |             | Parrat             |                                   |      | <u> </u>     | BAKER REP.: Mar                                                                                               |        | SHEET4OF4        |

-



| PROJECT:     | 5.te 35  | Supplemental | Groundwater In     | vastigation     |
|--------------|----------|--------------|--------------------|-----------------|
| CTO NO .:    | 232      |              | BORING NO.:        | <u>35 GWD07</u> |
| COORDINATES: | EAST:    | 2466150.9595 | NORTH:             | 363667.6343     |
| ELEVATION:   | SURFACE: | 7,30         | TOP OF PVC CASING: | 9.41            |

| RIG:<br>≠ 58                                                                   |                     |           |                        |               |          |                  | DAT                                                                                                                                                                  | PR                    | OGRESS          |                               | WATER          |           |
|--------------------------------------------------------------------------------|---------------------|-----------|------------------------|---------------|----------|------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|-----------------|-------------------------------|----------------|-----------|
| $4 \rightarrow 9 \qquad \text{SPLIT} \\ 36 \rightarrow 37 \qquad \text{SPOON}$ |                     |           | CASING AUG             |               | GERS     | CORE<br>BARREL   | DATE                                                                                                                                                                 | < 1                   | (FT.)           | WEATHER                       | DEPTH<br>(FT.) | TIME      |
| 20 201                                                                         |                     | 1-3/8"    | <u>ر</u> ه،            | 31/4"         | /8'4"    |                  | 7-30-9                                                                                                                                                               | 20                    | -37.0           | partly cloudy<br>humid (BO'S) | 11.0'          | +1        |
|                                                                                |                     | 2.0       | 37.0                   |               | 5        |                  | 1                                                                                                                                                                    | _                     | 0-51.5          | overcest,<br>humid (70's)     |                | 1         |
| TYPE                                                                           |                     | Std.      | Steel                  |               | SA       |                  |                                                                                                                                                                      | Ť                     |                 |                               | [              | 1 1       |
| HAMMER V                                                                       | NT. 1               | 140 lios. |                        | 1             |          |                  |                                                                                                                                                                      |                       |                 |                               |                | 11        |
| FALL                                                                           |                     | 30"       |                        |               |          |                  |                                                                                                                                                                      |                       |                 |                               |                |           |
| STICK UP                                                                       |                     |           | ·····                  |               |          |                  |                                                                                                                                                                      |                       |                 |                               |                |           |
| REMARKS:                                                                       | Borel               | nole ci   | ontini<br>HAJU         | Lousi         | y sa     | mpled<br>and ran | toa                                                                                                                                                                  | 51.5'                 | (bqs) d         | iepth, Type<br>9 ppm.         | <u>ν</u> Π ως  | ٤١١       |
|                                                                                |                     | AMPLE     |                        |               |          | We               |                                                                                                                                                                      | Diam.                 | Туре            |                               | Тор            | Bottom    |
| $S = S_1$                                                                      | plit Spor           |           | A = Auger              |               |          | Informa          |                                                                                                                                                                      | Diam.                 | 1360            |                               | Depth          | Depth     |
| -                                                                              | helby T             |           | W = Wash               |               |          |                  |                                                                                                                                                                      |                       |                 |                               | (ft.)          | (ft.)     |
| $\mathbf{R} = \mathbf{A}$                                                      | ir Rotar<br>Denison |           | C = Core<br>P = Piston |               |          | Ris              | Riser                                                                                                                                                                |                       | Schedule<br>PVC | Schedule 40<br>PVC            |                | -46.0     |
| N = No Sample                                                                  |                     |           |                        |               | Scre     | en               | 2.0"                                                                                                                                                                 | Schedule<br>0.01 Slot |                 | -46.0                         | -51.0          |           |
| Depth                                                                          | Samp.               | Samp.     | SPT                    | Lab           | PID      |                  | L                                                                                                                                                                    | <u></u>               | 10.01 010       | T                             | 1              |           |
| (ft.) Type Rec.                                                                |                     |           | or                     | ID            | 1        | a                | Vieual D                                                                                                                                                             |                       | ·               | Well                          | 4              | Elevation |
| and                                                                            |                     | (ft. &    | RQD                    | RQD No.       |          |                  | Visual Description                                                                                                                                                   |                       |                 | on Installation Detail        |                | (ft. MSL) |
|                                                                                | No.                 | %)        | <b></b>                |               | <b></b>  |                  |                                                                                                                                                                      | ing of U              | -140000         |                               |                |           |
|                                                                                |                     | 1.2       | 4                      | I             | .6,      |                  | SAND, fine grained witrace<br>silt, trace/little rooted mat.<br>Silty SIAND, fine grained<br>witrace to little clay.<br>Oxidation present.<br>Brownish gray to brown |                       |                 |                               | -              | 6.60      |
|                                                                                | 5-1                 | 2.0       | - יייט אר              | l             | .6/      | Silty            |                                                                                                                                                                      |                       |                 | FFT   FT c                    | cement         | 2.60      |
| 2 20                                                                           | J-1                 | 60%       | -                      | 1             |          | Ox.d             |                                                                                                                                                                      |                       |                 |                               | grout          |           |
| 2 2.0                                                                          |                     | 1.0       | ╂────╂                 |               | <b> </b> |                  |                                                                                                                                                                      |                       |                 |                               |                | 5.30      |
| 3                                                                              | Í                   | 2.0       | 354                    | ł             | .6,      | us 1+            | SAND, fine grain<br>witrace site. Br                                                                                                                                 |                       |                 |                               | steel          |           |
| 11                                                                             | 2-S                 | 2.0       | 4                      |               | .6/.9    | Ish r            | ush gray, loose to<br>medium dense, d                                                                                                                                |                       |                 |                               | casing         |           |
| 4 4.0                                                                          | 1                   | 50%       | 4                      | 1             |          | 14105200         | man mar araise ic                                                                                                                                                    |                       |                 |                               | ,              | 5.30      |
|                                                                                |                     | 1         |                        | 1             | .6/      |                  | <u> </u>                                                                                                                                                             |                       |                 |                               |                | , 30      |
| 5 50                                                                           | A-N                 |           |                        | L             | 1.6      | <u>}</u>         | <u></u>                                                                                                                                                              |                       | 5.0             |                               | ·              | 2.30      |
|                                                                                |                     | 2.0       | 4                      | 1             |          |                  |                                                                                                                                                                      |                       | ,<br>,          |                               | -              |           |
| 6                                                                              |                     | 2.0       | 53                     | 1             | .6       |                  |                                                                                                                                                                      | _                     | _               |                               | _              | }         |
| 4                                                                              | 5-3                 |           |                        | ł             |          | ' Sut            | YSAN                                                                                                                                                                 | 20't.                 | ine             |                               | 4              |           |
| 7 <u>7.0</u>                                                                   |                     | 100%      | ·                      | <b> </b>      | <b>_</b> |                  | ained withrace _                                                                                                                                                     |                       |                 |                               | —              |           |
| 8                                                                              | -                   | 2.0       | V) L Q-                |               | .9/9     | to               |                                                                                                                                                                      | •                     | Oxida           |                               | 2" PVC-        |           |
|                                                                                | ] [3-4]             |           |                        |               | 1.9      | ing              |                                                                                                                                                                      | 1. Grayish brown      |                 |                               |                |           |
| 9 _ 9.0                                                                        | <b> </b>            | 100%      | 8                      | <b> </b>      | —        | - +0             | brow                                                                                                                                                                 | an, me                | adium-          | -41 41                        |                |           |
|                                                                                |                     | 2.0       | 500                    |               | 1.6      | dev              | •                                                                                                                                                                    |                       | in stict        |                               | -              |           |
| 10                                                                             | 5-5                 | 2.0       | 112                    |               | .6       | > aar            | mpte                                                                                                                                                                 |                       | h to Sheet      |                               |                |           |
|                                                                                | -                   |           | • • • •                | 4             | 1        | 1                |                                                                                                                                                                      | Nau                   | A TO SHEEL      | 2464                          |                |           |
|                                                                                | <br>~               | 100%      |                        |               | J        | 1                | ·                                                                                                                                                                    |                       |                 | <u> </u>                      |                |           |
| DRILLING C                                                                     |                     | _         | tt-W                   | 1 <u>0177</u> |          |                  | BAKE                                                                                                                                                                 |                       | . <u>J.E</u>    | Zimmer<br>SWD07               | man            |           |

## Baker

#### TEST BORING AND WELL CONSTRUCTION RECORD

Baker Environmental, Inc

**PROJECT:** CTO NO.:

 $\sim$ 

Ł

#### Site 35 Supplemental Groundwater Investigation 232 BORING NO.: 35GWD07

| r                                                       |           | honr n                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 01/10/20         |                             |              | IN DISTANT                                                                      | TONS                                    |            |  |  |  |
|---------------------------------------------------------|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|-----------------------------|--------------|---------------------------------------------------------------------------------|-----------------------------------------|------------|--|--|--|
| SAMPLE TYPE<br>S = Split Spoon A = Auger                |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                             |              | <u>DEFINITIONS</u><br>SPT = Standard Penetration Test (ASTM D-1586)(Blows/0.5') |                                         |            |  |  |  |
| S = Split Spoon<br>T = Shelby Tube                      |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  | W = W                       | -            | RQD = Rock Quality Designation (%)                                              |                                         |            |  |  |  |
|                                                         | Air Rotar |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  | $C = C_0$                   |              | PID = Photoionization Detector                                                  |                                         |            |  |  |  |
|                                                         | Denison   | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                  | $\mathbf{P} = \mathbf{Pis}$ |              | ppm = parts per million                                                         |                                         |            |  |  |  |
| N = No Sample                                           |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                             |              |                                                                                 |                                         |            |  |  |  |
| Depth                                                   | Samp.     | Samp.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | SPT              | Lab                         | PID          |                                                                                 |                                         |            |  |  |  |
| (fl.)                                                   | Туре      | Rec.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | or               | D                           | (ppm)        | Visual Description                                                              | Well<br>Installation                    | Elevation  |  |  |  |
|                                                         | and       | (ft. &                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | RQD              | No.                         |              |                                                                                 | Detail                                  | (ft. MSL)  |  |  |  |
|                                                         | No.       | %)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                  |                             |              |                                                                                 |                                         |            |  |  |  |
|                                                         | 5-5       | 100%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                  |                             | .6/.6        | Continued from Sheet 1                                                          |                                         | -3.50      |  |  |  |
|                                                         |           | 1.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                  |                             | .6<br>.6     |                                                                                 |                                         | -3.70      |  |  |  |
| 12                                                      | e,        | 2.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | m4.9 r           |                             | 1            |                                                                                 |                                         |            |  |  |  |
|                                                         | 5-6       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ى                |                             |              | SAND, fine grained_                                                             |                                         |            |  |  |  |
| 13 13.0                                                 |           | 90%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                  |                             |              | witrace site -                                                                  |                                         |            |  |  |  |
|                                                         |           | 2.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | mmd m            |                             | .6           | Brown to light -                                                                | 1 1 came                                | ht         |  |  |  |
| 14                                                      | 5-7       | 2.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3                |                             | .6           |                                                                                 | ceme<br>grout                           |            |  |  |  |
|                                                         |           | 100%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4 4              |                             | ي.           | Dismon Eo year -                                                                |                                         |            |  |  |  |
| 15 150                                                  |           | 100%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                  |                             | <b> </b>     | to brown, medium                                                                |                                         |            |  |  |  |
| 16                                                      | _         | 1.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | P CAW            |                             | .6/.6        | dense to loose, -                                                               |                                         |            |  |  |  |
|                                                         | 5-8       | - 2.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Ă                |                             | 1.6          | moist to wet                                                                    | - ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ |            |  |  |  |
| 17 17.0                                                 | -         | 60%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                  |                             |              |                                                                                 | Cassion                                 |            |  |  |  |
|                                                         |           | 1.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                  |                             |              |                                                                                 |                                         |            |  |  |  |
| 18                                                      | 100       | 2.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3257             |                             | 5/0          |                                                                                 |                                         |            |  |  |  |
|                                                         | 5-9       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5                |                             | 1.6          |                                                                                 |                                         |            |  |  |  |
| 1919.0                                                  |           | 85%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                  |                             |              | -                                                                               |                                         | 4          |  |  |  |
|                                                         |           | 1.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 222              |                             |              |                                                                                 | +1  1  -                                | -          |  |  |  |
| 20                                                      | 5-10      | 2.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ź                |                             | 0,0          |                                                                                 |                                         | 1          |  |  |  |
|                                                         |           | 20%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                  |                             | 1.0          |                                                                                 |                                         | 1          |  |  |  |
| 21 <u>210</u>                                           |           | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1                | <b> </b>                    |              |                                                                                 |                                         |            |  |  |  |
| 22                                                      |           | 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | n<br>n<br>u<br>u | 1                           | .6           | Cemanted Sandstone nodules                                                      |                                         | -14.30     |  |  |  |
|                                                         | 5-10      | 2.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 6                |                             | 1.6          |                                                                                 |                                         | -14.70     |  |  |  |
| 2323.0                                                  |           | 50%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 7                |                             |              |                                                                                 | 2" PUC                                  |            |  |  |  |
|                                                         |           | .6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                  |                             |              | SAND, fine to medium                                                            |                                         |            |  |  |  |
| 24                                                      |           | 2.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 7<br>8<br>13     |                             | .6           | grained withace sit                                                             |                                         | 1          |  |  |  |
|                                                         | 5-12      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 13               |                             | <u>و، (ي</u> | and little cemented                                                             |                                         |            |  |  |  |
| 25 250                                                  |           | 30%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                  | ļ                           |              | shall material                                                                  | ++++++                                  | 4          |  |  |  |
|                                                         |           | 1.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 12 24            | 1                           | 1            |                                                                                 |                                         | 4          |  |  |  |
| 26                                                      | 5-13      | 2.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 24               |                             | و، \ف        | fragments. Light _                                                              | +11+11 -                                |            |  |  |  |
|                                                         |           | 80%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 38               | 1                           | 6            | gray to brown t _                                                               |                                         |            |  |  |  |
| 27                                                      | ×         | and the second s |                  | <u> </u>                    |              | - white, very dense-                                                            | 1111 -                                  |            |  |  |  |
| 28                                                      |           | 20/20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 14               | 1                           | 0,0          | to dense, wet                                                                   |                                         | 1          |  |  |  |
| <u>ا</u> آ "                                            | 5-14      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 122              |                             | 1.6          | . –                                                                             |                                         | ]          |  |  |  |
| 2929.0                                                  | 2         | 100%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 26               |                             |              |                                                                                 |                                         | ]          |  |  |  |
|                                                         | T.        | 12.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 22               |                             | .6/.6        |                                                                                 |                                         | 4          |  |  |  |
| 30                                                      | 5-15      | 2.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 24               | <u> </u>                    | 1.6          |                                                                                 |                                         |            |  |  |  |
| DRILLING CO .: Brratt-Wolff BAKER REP .: J.E. Zummerman |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                             |              |                                                                                 |                                         |            |  |  |  |
| DIADDING CO., FARMACC- COOTTA                           |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                             |              |                                                                                 |                                         |            |  |  |  |
| DRILLER:                                                |           | S. Lan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | sina             |                             |              | BORING NO.: _356                                                                | <u> </u>                                | SHEET 2 OF |  |  |  |
|                                                         |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                             |              |                                                                                 |                                         | • .        |  |  |  |



PROJECT: CTO NO.:

ç

## TEST BORING AND WELL CONSTRUCTION RECORD

<u>Site 35 Supplemental Groundwater Investigation</u> 232 BORING NO.: <u>35GWD07</u>

| SAMPLE TYPE DEFINITIONS |                      |              |                |                                     |              |                                                        |                            |               |  |  |  |
|-------------------------|----------------------|--------------|----------------|-------------------------------------|--------------|--------------------------------------------------------|----------------------------|---------------|--|--|--|
| 6-1                     |                      |              | <u>TYPE</u>    |                                     |              |                                                        |                            |               |  |  |  |
|                         | Split Spo            |              |                | $\mathbf{A} = \mathbf{A}\mathbf{i}$ | -            | SPT = Standard Penetration Test (A                     | STM D-1586)(Blow           | rs/0.5')      |  |  |  |
|                         | Shelby T             |              |                | W = W                               |              | RQD = Rock Quality Designation (%                      | <b>()</b>                  |               |  |  |  |
|                         | Air Rotar<br>Denison | У            |                | $\mathbf{C} = \mathbf{C}\mathbf{c}$ |              | <b>PID</b> = Photoionization Detector                  |                            |               |  |  |  |
| <b>D</b> =              |                      | I – No Co    |                | $\mathbf{P} = \mathbf{Pis}$         | ston         | <b>ppm = parts per million</b>                         |                            |               |  |  |  |
| Depth                   | Samp.                | I = No Samp. | I SPT          | Lab                                 | PID          |                                                        |                            |               |  |  |  |
| (ft.)                   | Type                 | Rec.         | or             | ID ID                               | 1            |                                                        | Well                       | <b>771</b> .• |  |  |  |
| (11.)                   | and                  | (ft. &       | RQD            | No.                                 | (ppm)        | Visual Description                                     | Installation               | Elevation     |  |  |  |
|                         | No.                  | %)           | I NQD          | 140.                                |              |                                                        | Detail                     | (ft. MSL)     |  |  |  |
|                         | +                    |              | 10             |                                     |              | Continued from Sheet 2 30.5                            |                            |               |  |  |  |
| 31 _340                 | 5-15                 | 100%         | 10             |                                     | .6/.6        | Continued from Sheet 2 30.5<br>FOSSILIFEROUS LIMESTONE | com-                       | $mt^{-23.20}$ |  |  |  |
|                         |                      | 1.3          | 18             | ·                                   |              | WISHND, five grained                                   | grout                      |               |  |  |  |
| 32                      |                      | 20           | 24             |                                     | .6           | trace silt, trace                                      |                            |               |  |  |  |
|                         | 5-16                 | 1            | 28             |                                     | .6           | comented shall                                         |                            |               |  |  |  |
| 33 33.0                 |                      | 65%          | 28<br>32       |                                     | <u>ی</u> . ا | material (fragments                                    |                            |               |  |  |  |
|                         | 1                    | 1.8          | 12             |                                     |              | micrite coment.                                        |                            |               |  |  |  |
| 34                      |                      | 2.0          | 12             |                                     | .6           | Brown to light gray                                    | Steel-                     |               |  |  |  |
|                         | 5-17                 | 2.0          | 24             |                                     | 1.6          | and white, dense, wet                                  |                            | 3             |  |  |  |
| 35 35.0                 |                      | 90%          | 18             |                                     |              |                                                        |                            | -27.20        |  |  |  |
|                         |                      | .6,          |                |                                     |              |                                                        |                            |               |  |  |  |
| 36                      |                      | 2.0          | 45             |                                     | و/ف          | -                                                      | ┝╻┝╻╴╼                     |               |  |  |  |
|                         | 5-18                 | 2.0          | 11             |                                     | 1.6          | SAND, fine grained                                     |                            |               |  |  |  |
| 37 32.0                 |                      | 30%          | 11             |                                     |              | trace silt, trace                                      |                            | _             |  |  |  |
|                         | 1                    | 1.6          | 5              |                                     |              | clay, trace shell                                      |                            | -29.70        |  |  |  |
| 38                      |                      | 120          | 6              |                                     | .4,          | material. Dark                                         | N N Benta                  | nita          |  |  |  |
|                         | 5-19                 | 2.0          | -              |                                     | .4           | greenish gray and                                      | SIUTE                      |               |  |  |  |
| 39 39.                  |                      | 80%          | t't            |                                     | .4           | white, dense to _                                      |                            | `             |  |  |  |
|                         | 1                    | 1.5          | 11             |                                     |              | medium dense.                                          | $\square$ $\square$ $\neg$ |               |  |  |  |
| 40                      |                      | 120          | 16             |                                     | .4,          |                                                        | 2" PH                      | 2             |  |  |  |
|                         | 5-20                 |              |                |                                     | 4            | moist _                                                | riser                      |               |  |  |  |
| 41 41.0                 |                      | 75%          | 21             |                                     | · • T        | 41.0                                                   |                            |               |  |  |  |
|                         |                      | 1.4          | 36             |                                     |              | FOSSILIFEROUS LIMESTONE                                |                            | -33.70        |  |  |  |
| 42                      | -                    | 2.0          | 24             |                                     | .4,          | WISAND, fine grained                                   |                            |               |  |  |  |
|                         | 5-21                 | 2.4          | 24             |                                     | .4           | trace silt, little                                     | NN $T$                     |               |  |  |  |
| 43 430                  |                      | 70%          | 38             |                                     | •7           | commented shell                                        |                            |               |  |  |  |
|                         |                      | 1.5          | 38             |                                     |              | material, trace shall                                  | NN $T$                     |               |  |  |  |
| <u>44</u>               | C                    | 20           | 47             |                                     | .4,          | fragments, micrite -                                   | NN                         | 24.2.2        |  |  |  |
|                         | 5-22                 |              | 2007 4<br>1044 |                                     | .4<br>.4     | cement. Light gray &                                   |                            | -36.70        |  |  |  |
| 45 45.0                 | ×                    | 75%          | 46             |                                     |              | White, dens / u. dense, wet.                           |                            | -37.70        |  |  |  |
|                         |                      | N jã         | 12             |                                     |              |                                                        |                            | -51.10        |  |  |  |
| 46                      | 5.72                 | 2.0          | 13             |                                     | .4           |                                                        | Sand                       | 7070          |  |  |  |
|                         | 2-53                 |              | 24             |                                     | .4/.4        | SAND, fine grained                                     |                            | -38.70        |  |  |  |
| 47 47.0                 |                      | 90%          | 28             |                                     | .4           | witrace sit, trace                                     |                            | 1             |  |  |  |
|                         |                      | 1.6          | 38<br>49       |                                     |              | Shell fragments                                        |                            |               |  |  |  |
| 48                      | 1000                 | (Z.O)        | 49             |                                     | .4           |                                                        | Well                       |               |  |  |  |
|                         | 5-24                 |              | 56             |                                     | .4           | Olive & white, dense                                   | Scree                      | ~             |  |  |  |
| 49 49.0                 |                      | 80%          | 68             |                                     |              | to very deuse, wet.                                    |                            |               |  |  |  |
|                         | 5.20                 | 2.0          | 17             |                                     | .4/4         |                                                        |                            |               |  |  |  |
| 50                      | 5-25                 | 2.0          | 26             |                                     | 1.4          |                                                        |                            |               |  |  |  |
| DRILLING (              | co.: 庄               | gres.        | <u>. + (</u>   | DOLFF                               | 3            | BAKER REP.: J.E. 2.                                    | mmerman                    |               |  |  |  |
|                         | ~                    | 1 ~          | •              |                                     |              |                                                        |                            |               |  |  |  |
| DRILLER:                | <u>L</u>             | . Lans       | <u>sina</u>    |                                     |              | BORING NO .: <u>356</u> 0                              | SF <u>5000</u>             | IEET 30F4-    |  |  |  |



2

Baker Environmental, inc

PROJECT: CTO NO.:

## TEST BORING AND WELL CONSTRUCTION RECORD

Site 35 Supplemental Groundwater Investigation 232 BORING NO.: 3550007

|      | SAMPLE TYPE<br>S = Split Spoon A = Auger |              |                      |           |             |                                     |         | DEFINITIONS                                                                                            |                                   |           |  |  |  |
|------|------------------------------------------|--------------|----------------------|-----------|-------------|-------------------------------------|---------|--------------------------------------------------------------------------------------------------------|-----------------------------------|-----------|--|--|--|
|      |                                          |              |                      |           |             | $\mathbf{A} = \mathbf{A}\mathbf{u}$ |         | <b>SPT</b> = Standard Penetration Test (ASTM D-1586)(Blows/0.5')<br>POD = Port Overline Decimation (%) |                                   |           |  |  |  |
|      |                                          |              | Shelby Tu            |           |             | W = W                               |         | <b>RQD</b> = Rock Quality Designation                                                                  | (%)                               |           |  |  |  |
|      |                                          |              | Air Rotar<br>Denison | У         |             | C = Co<br>P = Pis                   |         | PID = Photoionization Detector<br>ppm = parts per million                                              |                                   |           |  |  |  |
|      | -                                        | <b>y</b> = 1 |                      | I = No Sa | mple        | 1 - 1 15                            | 1011    | ppm – pars per minion                                                                                  |                                   |           |  |  |  |
|      | Dept                                     | h            | Samp.                | Samp.     | SPT         | Lab                                 | PID     |                                                                                                        |                                   |           |  |  |  |
|      | (ft.)                                    |              | Туре                 | Rec.      | or          | D                                   | (ppm)   |                                                                                                        | Well                              | Elevation |  |  |  |
|      | • •                                      |              | and                  | (ft. &    | RQD         | No.                                 |         | Visual Description                                                                                     | Installation                      | (ft. MSL) |  |  |  |
|      |                                          |              | No.                  | %)        |             |                                     |         |                                                                                                        | Detail                            |           |  |  |  |
|      | Γ.                                       |              | 5-25                 |           | 330         |                                     | •4/.4   | Continued from Sheet 3                                                                                 | - Sand                            |           |  |  |  |
| 51   | _                                        | 51.0         |                      | 100%      | 38          |                                     | 7.4     |                                                                                                        | Pack                              | -43.70    |  |  |  |
|      | _                                        | 51.5         | 14-N                 |           |             |                                     | •4/.4   |                                                                                                        | -19-19/ -                         | -44.20    |  |  |  |
| 52   |                                          |              |                      |           |             |                                     |         | End of Boring.                                                                                         |                                   |           |  |  |  |
| 53   | -                                        |              |                      |           |             |                                     |         | TD: SI.S' (bgs)                                                                                        | - Useri<br>Screar                 | 、         |  |  |  |
| 35   |                                          |              |                      |           |             |                                     |         |                                                                                                        | -1 $ $ $ $ $-1$ $ $ $-1$ $ $ $-1$ |           |  |  |  |
| 54   | -                                        |              |                      |           |             |                                     |         |                                                                                                        | - Uwent                           |           |  |  |  |
|      |                                          |              |                      |           |             |                                     |         | -                                                                                                      | - [plug-                          |           |  |  |  |
| 55   |                                          |              |                      |           |             |                                     |         |                                                                                                        |                                   |           |  |  |  |
|      | _                                        |              |                      |           |             |                                     |         | -                                                                                                      | $\neg$                            |           |  |  |  |
| 56   |                                          |              |                      |           |             |                                     |         | _                                                                                                      |                                   |           |  |  |  |
|      | _                                        |              |                      |           |             |                                     |         |                                                                                                        |                                   |           |  |  |  |
| 57   |                                          |              |                      |           |             |                                     |         | -                                                                                                      |                                   | _         |  |  |  |
| 1    | _                                        |              |                      |           |             |                                     |         |                                                                                                        |                                   | -         |  |  |  |
| 58   |                                          |              |                      |           |             |                                     |         | -                                                                                                      | -1                                |           |  |  |  |
| 59   | -                                        |              |                      |           |             |                                     |         |                                                                                                        |                                   | -         |  |  |  |
| 39   |                                          |              |                      |           |             |                                     |         | -                                                                                                      |                                   |           |  |  |  |
| 60   | -                                        |              |                      |           |             |                                     |         |                                                                                                        |                                   |           |  |  |  |
|      | -                                        |              |                      |           |             |                                     |         | -                                                                                                      | $\neg$                            |           |  |  |  |
| 1    | ٦                                        |              |                      |           |             |                                     |         |                                                                                                        |                                   |           |  |  |  |
|      |                                          |              |                      |           |             |                                     |         | -                                                                                                      | $\neg       \neg \neg$            |           |  |  |  |
| 2    |                                          |              |                      |           |             |                                     |         |                                                                                                        | 7       7                         |           |  |  |  |
|      |                                          |              |                      |           |             |                                     |         | -                                                                                                      |                                   |           |  |  |  |
| '3   | _                                        |              |                      |           |             |                                     |         | -                                                                                                      |                                   |           |  |  |  |
|      | _                                        | ·            |                      |           |             |                                     |         |                                                                                                        |                                   |           |  |  |  |
| 4    | _                                        |              |                      |           |             |                                     |         | -                                                                                                      | -                                 |           |  |  |  |
|      | _                                        |              |                      |           | :           |                                     |         |                                                                                                        |                                   |           |  |  |  |
| :5   |                                          |              |                      |           |             |                                     |         | -                                                                                                      |                                   |           |  |  |  |
| :6   |                                          |              |                      |           |             |                                     |         |                                                                                                        |                                   |           |  |  |  |
|      |                                          |              |                      |           |             |                                     |         | -                                                                                                      |                                   |           |  |  |  |
| 7    | -                                        |              |                      |           |             |                                     |         |                                                                                                        |                                   |           |  |  |  |
| 1    |                                          |              |                      |           |             |                                     |         | -                                                                                                      |                                   |           |  |  |  |
| 8    |                                          |              |                      |           |             |                                     |         |                                                                                                        |                                   |           |  |  |  |
|      |                                          |              |                      |           |             |                                     |         | -                                                                                                      | $\neg       \neg \neg$            |           |  |  |  |
| 9    |                                          |              |                      |           |             |                                     |         | ·                                                                                                      | ]                                 |           |  |  |  |
| 1    | 4                                        |              |                      |           |             |                                     |         | -                                                                                                      |                                   |           |  |  |  |
| 0    |                                          |              |                      |           |             |                                     |         |                                                                                                        |                                   | $\smile$  |  |  |  |
| DRII | LLIN                                     | ig c         | :0.: <u>F</u>        | arra!     | 4- U        | 201FF                               | a.<br>- | BAKER REP.: J.E.                                                                                       | Zimmerma                          | ۸         |  |  |  |
| DRII | LLEI                                     | <b>ર</b> :   | G                    | . Law     | <u>sing</u> |                                     |         | BORING NO.: 350                                                                                        |                                   |           |  |  |  |
|      |                                          |              |                      |           | *           |                                     |         |                                                                                                        |                                   |           |  |  |  |

### APPENDIX E SGI SAMPLE SUMMARY

#### SEDIMENT SAMPLING SUMMARY SITE 35, CAMP GEIGER AREA FUEL FARM SUPPLEMENTAL GROUNDWATER INVESTIGATION MCB, CAMP LEJEUNE, NORTH CAROLINA

|                 | Date    | ТРН        | TPH        |         |      | :       |           |       |
|-----------------|---------|------------|------------|---------|------|---------|-----------|-------|
| Sample Location | Sampled | 5030/8015m | 3550/8015m | Mercury | Zinc | Percent | Duplicate | MS/MS |
|                 |         | Gasoline   | Diesel     |         |      | Solids  |           |       |
| 35-SD01-06-02   | 8/08/95 | x          | X          | Х       | X    | Х       |           |       |
| 35-SD01-612-02  | 8/08/95 | X          | x          | Х       | Х    | X       |           |       |
| 35-SD02-06-02   | 8/08/95 | x          | x          | Х       | X    | Х       |           | ,     |
| 35-SD02-612-02  | 8/08/95 | x          | <b>X</b> · | X       | Х    | Х       |           |       |
| 35-SD03-06-02   | 8/07/95 | X          | X          | Х       | Х    | Х       |           |       |
| 35-SD03-612-02  | 8/07/95 | X          | x          | Х       | X    | Х       |           |       |
| 35-SD04-06-02   | 8/07/95 | X          | x          | Х       | X    | Х       |           |       |
| 35-SD04-612-02  | 8/07/95 | x          | x          | Х       | X    | X       |           |       |
| 35-SD05-06-02   | 8/07/95 | x          | x          | X       | х    | х       |           |       |
| 35-SD05-612-02  | 8/07/95 | X          | x          | Х       | Х    | Х       |           |       |
| 35-SD06-06-02   | 8/07/95 | X          | x          | Х       | X    | Х       | X         |       |
| 35-SD06-612-02  | 8/07/95 | X          | X          | X       | X    | Х       |           |       |
| 35-SD07-06-02   | 8/08/95 | x          | x          | X       | X    | X       |           |       |
| 35-SD07-612-02  | 8/08/95 | x          | X          | X       | x    | X       |           | ·     |
| 36-SD05-06-02   | 8/08/95 | X          | X          | X       | X    | X       |           |       |
| 36-SD05-612-02  | 8/08/95 | X          | Х          | x       | x    | X       |           |       |
| 36-SD06-06-02   | 8/07/95 | X          | X          | X       | X    | X       |           |       |
| 36-SD06-612-02  | 8/07/95 | X          | Х          | X       | X    | X       |           |       |
| 36-SD07-06-02   | 8/07/95 | X          | X          | X       | X    | X       | X         | x     |
| 36-SD07-612-02  | 8/07/95 | X          | x          | X       | X    | X       |           |       |

.

#### SOIL SAMPLE SUMMARY SOIL SCREENING INVESTIGATION SITE 35, CAMP GEIGER FUEL FARM SUPPLEMENTAL GROUNDWATER INVESTIGATION CONTRACT TASK ORDER 0232

| Sample       | Date      | Borehole | Sampling   | PAR  | AMETERS | 5 *** |
|--------------|-----------|----------|------------|------|---------|-------|
| Location     | Collected | Depth**  | Interval** | BTEX | DCE/TC  | MTBE  |
|              |           | (ft bgs) | (ft bgs)   |      |         |       |
| 35-TW01B-00  | 4/09/96   | 44       | 05         | X    | X       | X     |
| 35-TW01B-03  | 4/09/96   | 4        | 4-6        | X    | X       | X     |
| 35-TW02B-00  | 4/09/96   | 47       | 05         | X    | X       | X     |
| 35-TW02B-03  | 4/09/96   | 47       | 4-6        | X    | Х       | Х     |
| 35-TW03B-00  | 4/09/96   | 47       | 05         | x    | x       | Х     |
| 35-TW03B-03  | 4/09/96   | 47       | 4-6        | x    | X       | х     |
| 35-TW04B-00  | 4/10/96   | 42       | 05         | X    | X       | X     |
| 35-TW04B-03  | 4/10/96   | 42       | 4-6        | x    | X       | Х     |
| 35-TW05B-00  | 4/10/96   | 42       | 05         | X    | Х       | x     |
| 35-TW05B-03  | 4/10/96   | 42       | 4-6        | x    | x       | x     |
| 35-TW06B-00  | 4/11/96   | 47       | 05         | X    | X       | X     |
| 35-TW06B-03  | 4/11/96   | 47       | 4-6        | X    | X       | X     |
| 35-TW07B-00  | 4/11/96   | 47       | 05         | x    | X       | X     |
| 35-TW07B-03  | 4/11/96   | 47       | 4-6        | X    | X       | X     |
| 35-TW08B-00  | 4/11/96   | 42       | 05         | x    | X       | х     |
| 35-TW08B-03  | 4/11/96   | 42       | 4-6        | X    | X       | X     |
| 35-TW09B-00  | 4/12/96   | 42       | 05         | X    | X       | X     |
| 35-TW09B-03  | 4/12/96   | 42       | 4-6        | x    | X       | X     |
| 35-TW10B-00  | 4/12/96   | 47       | 05         | X    | X       | X     |
| 35-TW10B-03  | 4/12/96   | 47       | 4-6        | X    | X       | X     |
| 35-TW11B-00  | 4/12/96   | 42       | 05         | X    | X       | X     |
| 35-TW11B-03  | 4/12/96   | 42       | 4-6        | X    | X       | X     |
| 35-TW30B-01* | 7/31/96   | 40       | 0-2        | X    | X       |       |
| 35-TW31B-05* | 8/02/96   | 40       | 8-10       | X    | X       |       |
| 35-MW60B-04* | 8/02/96   | 40       | 6-8        | X    | x       |       |

These samples were also analyzed for vinyl chloride, chloroform,
 1,1,1-TCA, tetrachloride and PCE.

\*\* ft bgs = feet below ground surface

BTEX = Benzene, toluene, ethylbenzene, and xylenes.
 DCE/TCE = cis-1,2 dichloroethylene, trans-1,2 dichloroethylene, and trichloroethylene.

MTBE = methyl tertiary butylether

#### GROUNDWATER SAMPLE SUMMARY NAOC, GROUNDWATER SCREENING INVESTIGATION SITE 35, CAMP GEIGER FUEL FARM SUPPLEMENTAL GROUNDWATER INVESTIGATION CONTRACT TASK ORDER 0232

|             |           | On-Site | Mobile Lab | Fixed-base Lab |            |          |
|-------------|-----------|---------|------------|----------------|------------|----------|
| Sample      | Date      | Paran   | neters *   |                | Parameters |          |
| Location    | Collected | BTEX    | DCE/TCE    | MTBE           | TCL VOCs   | MTBE     |
| 35-TW16A    | 4/17/96   | х       | x          | x              |            |          |
| 35-TW16B    | 4/17/96   | х       | x          | x              |            |          |
| 35-TW16C    | 4/17/96   | x       | x          | x              |            |          |
| 35-TW17A    | 4/17/96   | X       | X          | x              |            |          |
| 35-TW17B    | 4/17/96   | X       | x          | x              |            |          |
| 35-TW17C    | 4/17/96   | х       | x          | х              |            |          |
| 35-TW18A    | 4/17/96   | x       | x          | х              |            |          |
| 35-TW18B    | 4/16/96   | х       | X          | х              |            |          |
| 35-TW18C    | 4/16/96   | x       | X          | x              |            |          |
| 35-TW19A    | 4/16/96   | Х       | X          | x              |            |          |
| 35-TW19B    | 4/16/96   | х       | X          | Х              |            |          |
| 35-TW19C    | 4/16/96   | x       | x          | x              |            |          |
| 35-TW20A    | 4/15/96   | х       | x          | x              |            |          |
| 35-TW20B    | 4/15/96   | x       | x          | x              |            |          |
| 35-TW20C    | 4/15/96   | x       | x          | x              | 1          |          |
| 35-TW22A    | 4/15/96   | х       | x          | x              | 1          |          |
| 35-TW22B    | 4/15/96   | x       | x          | x              | İ          |          |
| 35-TW22C    | 4/15/96   | х       | x          | x              |            |          |
| 35-TW23A    | 4/15/96   | х       | x          | x              |            |          |
| 35-TW23B    | 4/15/96   | х       | x          | x              |            |          |
| 35-TW23C    | 4/15/96   | х       | x          | х              |            |          |
| 35-TW24A    | 4/14/96   | х       | x          | x              |            |          |
| 35-TW24B    | 4/14/96   | X       | x          | х              |            |          |
| 35-TW24C    | 4/14/96   | X       | x          | x              |            |          |
| 35-TW25A    | 4/14/96   | x       | x          | х              |            |          |
| 35-TW25B    | 4/14/96   | X       | x          | x              |            |          |
| 35-TW25C    | 4/14/96   | х       | x          | х              |            |          |
| 35-TW26A    | 4/13/96   | x       | x          | x              |            |          |
| 35-TW26B    | 4/13/96   | х       | x          | x              |            |          |
| 35-TW26C    | 4/13/96   | x       | x          | x              | l          |          |
| 35-TW27B    | 4/25/96   | x       | x          | x              | x          | x        |
| 35-TW28B    | 4/29/96   | x       | x          | x              | x          | x        |
| 35-TW30A**  | 8/4/96    | x       | x          | x              | x          | X        |
| 35-TW30B**  | 8/4/96    | x       | x          | x              | x          | x        |
| 35-TW31A**  | 8/4/96    | x       | x          | X              | x          | X        |
| 35-TW31B**  | 8/4/96    | x       | x          | х              | x          | x        |
| 35-MW16S    | 4/14/96   | x       | x          | x              | 1          |          |
| 35-MW16D    | 4/14/96   | х       | x          | х              | 1          |          |
| 35-MW17S    | 4/13/96   | X       | x          | x              | 1          |          |
| 35-MW17D    | 4/13/96   | x       | x          | x              |            |          |
| 35-MW18S    | 4/13/96   | x       | x          | х              | 1          |          |
| 35-MW18D    | 4/13/96   | x       | x          | X              | 1          |          |
| 35-MW19S    | 4/14/96   | x       | x          | x              | 1          | 1        |
| 35-MW19D    | 4/14/96   | x       | x          | x              | 1          | l        |
| 35-MW60A**  | 8/4/96    | x       | x          | X              | x          | x        |
| 35-MW60B**  | 8/4/96    | x       | x          | x              | x          | x        |
| 33-M WOUB** | 10/4/30   |         |            | <u> </u>       | <u> </u>   | <u> </u> |

BTEX = Benzene, tohuene, ethylbenzene, and xylenes.

DCE/TCE = cis-1.2 dichcloroethylene, trans-1.2 dichloroethylene, and trichloroethylene.

MTBE = methyl tertiary butylether

\*

\*\* Mobile laboratory anlysis included cis-1,2 DCE, trans-1,2 DCE, TCE, vinyl chloride, chloroform, carbon tetrachloride, 1,1,1-TCA, and PCE

### GROUNDWATER SAMPLE SUMMARY SAOC, GROUNDWATER SCREENING INVESTIGATION SITE 35, CAMP GEIGER FUEL FARM SUPPLEMENTAL GROUNDWATER INVESTIGATION CONTRACT TASK ORDER 0232

|          |           | On-Site | Mobile Lab |           | Fixed-base I | Lab  |
|----------|-----------|---------|------------|-----------|--------------|------|
| Sample   | Date      | Parar   | neters *   |           | Parameters   |      |
| Location | Collected | BTEX    | DCE/TCE    | MTBE      | TCL VOCs     | MTBE |
| 35-TW01A | 4/10/96   | х       | X          | X         |              |      |
| 35-TW01B | 4/09/96   | X       | X          | X         |              |      |
| 35-TW02A | 4/09/96   | x       | X          | х         |              |      |
| 35-TW02B | 4/09/96   | X       | X          | x         |              |      |
| 35-TW03A | 4/10/96   | X       | X          | x         |              |      |
| 35-TW03B | 4/9/96    | X       | X          | X         |              |      |
| 35-TW04A | 4/10/96   | X       | X          | x         |              |      |
| 35-TW04B | 4/10/96   | X       | X          | х         |              |      |
| 35-TW05A | 4/10/96   | Х       | X          | X         |              |      |
| 35-TW05B | 4/10/96   | Х       | X          | X         |              |      |
| 35-TW06A | 4/11/96   | Х       | X          | Х         |              |      |
| 35-TW06B | 4/11/96   | X       | X          | Х         |              |      |
| 35-TW07A | 4/15/96   | X       | x          | х         |              |      |
| 35-TW07B | 4/11/96   | Х       | X          | X         |              |      |
| 35-TW08A | 4/11/96   | X       | X          | Х         |              |      |
| 35-TW08B | 4/11/96   | X       | X          | Х         |              |      |
| 35-TW09A | 4/13/96   | X       | X          | Х         |              |      |
| 35-TW09B | 4/13/96   | X       | X          | Х         |              |      |
| 35-TW10A | 4/13/96   | X       | X          | Х         |              |      |
| 35-TW10B | 4/13/96   | X       | X          | Х         |              |      |
| 35-TW11A | 4/12/96   | X       | X          | Х         |              |      |
| 35-TW11B | 4/12/96   | X       | X          | Х         |              |      |
| 35-TW12B | 4/26/96   |         |            |           | X            | x    |
| 35-TW13B | 4/26/96   |         |            | · · · · · | X            | X    |
| 35-TW14B | 4/29/96   |         |            |           | X            | X    |
| 35-TW15B | 4/30/96   |         |            |           | x            | x    |
| 35-TW29B | 4/30/96   |         |            |           | X            | X    |
| 35-MW30A | 4/08/96   | X       | x          | Х         |              |      |

BTEX = Benzene, toluene, ethylbenzene, and xylenes.

DCE/TCE = cis-1,2 dichcloroethylene, trans-1,2 dichloroethylene, and trichloroethylene.

MTBE = methyl tertiary butylether

\*

### GROUNDWATER SAMPLE SUMMARY ROUND 3 GROUNDWATER INVESTIGATION SITE 35, CAMP GEIGER FUEL FARM SUPPLEMENTAL GROUNDWATER INVESTIGATION CONTRACT TASK ORDER 0232

|             |           | Paramete | ers     |            |        |
|-------------|-----------|----------|---------|------------|--------|
| Sample      | Date      | TAL      |         | Duplicates | MS/MSD |
| Location    | Collected | Metals   | TSS/TDS |            |        |
| 35-MW09S-02 | 8/12/95   | X        | X       |            |        |
| 35-MW09D-02 | 8/12/95   | X        | X       |            |        |
| 35-MW10S-02 | 8/09/95   | X        | X       |            |        |
| 35-MW10D-02 | 8/09/95   | x        | X       |            |        |
| 35-MW14S-02 | 8/10/95   | X        | X       |            |        |
| 35-MW14D-02 | 8/10/95   | X        | X       |            |        |
| 35-MW16S-02 | 8/10/95   | X        | X       | X          |        |
| 35-MW16D-02 | 8/09/95   | x        | x       |            |        |
| 35-MW19S-02 | 8/11/95   | X        | x       | X          | X      |
| 35-MW19D-02 | 8/11/95   | X        | X       |            |        |
| 35-MW22S-02 | 8/13/95   | x        | x       |            |        |
| 35-MW22D-02 | 8/13/95   | x        | x       |            |        |
| 35-MW29A-02 | 8/12/95   | X        | x       |            |        |
| 35-MW29B-02 | 8/12/95   | x        | x       |            |        |
| 35-MW33A-02 | 8/12/95   | X        | X       |            |        |
| 35-MW33B-02 | 8/12/95   | x        | x       |            |        |
| 35-EMW03-02 | 8/10/95   | X        | X       |            |        |
| 35-EMW05-02 | 8/11/95   | X        | X       |            |        |
| 35-EMW07-02 | 8/10/95   | X        | X       |            |        |
| 35-GWD05-02 | 8/11/95   | X        | X       |            |        |

### GROUNDWATER SAMPLE SUMMARY ROUND 4, GROUNDWATER INVESTIGATION SITE 35, CAMP GEIGER FUEL FARM SUPPLEMENTAL GROUNDWATER INVESTIGATION CONTRACT TASK ORDER 0232

|             |           | Paramet | ers  |            |        |
|-------------|-----------|---------|------|------------|--------|
| Sample      | Date      | TCL     |      | Duplicates | MS/MSD |
| Location    | Collected | VOCS    | MTBE |            |        |
| 35-MW09D-04 | 4/27/96   | X       | X    |            |        |
| 35-MW10D-04 | 4/27/96   | X       | X    | X          |        |
| 35-MW14D-02 | 4/26/96   | X       | X    |            |        |
| 35-MW19S-02 | 4/27/96   | X       | X    |            |        |
| 35-MW19D-02 | 4/27/96   | X       | X    | X          | X      |
| 35-MW30B-04 | 4/27/96   | X       | X    |            |        |
| 35-MW32A-04 | 4/27/96   | X       | X    |            |        |
| 35-MW35A-04 | 4/27/96   | X       | X    |            |        |
| 35-MW36A-04 | 4/27/96   | X       | X    |            |        |
| 35-MW36B-04 | 4/27/96   | X       | X    |            | -      |
| 35-MW37B-04 | 4/28/96   | X       | X    |            |        |
| 35-MW39B-04 | 5/02/96   | X       | X    |            |        |
| 35-MW40B-04 | 5/01/96   | X       | X    |            |        |
| 35-MW41B-04 | 5/02/96   | X       | X    |            |        |
| 35-MW42B-04 | 5/01/96   | X       | X    | X          |        |
| 35-MW43B-04 | 5/03/96   | X       | X    |            |        |
| 35-MW60A-04 | 8/04/96   | X       | X    |            |        |
| 35-MW60B-04 | 8/04/96   | X       | X    | X          | X      |
| 35-EMW03-02 | 4/26/96   | X       | X    |            |        |
| 35-GWD06-04 | 4/30/96   | X       | X    |            |        |
| 35-GWD07-04 | 4/30/96   | X       | X    |            |        |

APPENDIX F SOIL AND GROUNDWATER SCREENING RESULTS MOBILE LABORATORY DATA



University of Pittsburgh Applied Research Center 220 William Pitt Way, Pittsburgh, PA 15238 (412) 826-5245 FAX (412) 826-3433

April 19, 1996

Mr. Mike Smith Baker Environmental, Inc. Airport Office Park, Bldg. 3 420 Rouser Road Coraopolis, PA 15108

Dear Mr. Smith:

Attached are copies of the data listings and a copy of the analysis logs for your project at Camp LeJeune.

Please give me a call if you have questions or I can be of further assistance. Thank you for using MICROSEEPS.

Sincerely,

J. Marden

David J. Masdea

DJM/lsp

Attachment: 961023

----- BAKER BNVIRONMENTAL -----

961023

----- PROJECT: SGI/CAMP LEJEUNE ---------- PROJECT LOCATION: SOUTH AREA ---------- H2O CONCENTRATIONS IN (ug/1) -----

|             |                         |                         |         | BTHYL   | M& P - | 0-     | trans-  | cie-    |        |        |                       |           |          |
|-------------|-------------------------|-------------------------|---------|---------|--------|--------|---------|---------|--------|--------|-----------------------|-----------|----------|
| SAMPLE      | TIMB                    | BBNZBNB                 | TOLUENE | BBN2BNB | XYLBNB | XYLENB | 1,2-DCB | 1,2-DCB | TCB    | MTBE   | FILB                  | DATE      | DATB     |
| нунв        | COULRCLED               | (ug/1)                  | (ug/1)  | (ug/1)  | (ug/1) | (ug/1) | (ug/1)  | (ug/1)  | (ug/1) | (ug/1) | NAMB                  | COLLECTED | ANALYZED |
|             | • • • • • • • • • • • • | • • • • • • • • • • • • |         |         |        |        |         |         |        |        | • • • • • • • • • • • |           |          |
| 12-MM-30V   | 1830                    | <1                      | <1      | <1      | <1     | <1     | <1      | <1      | <.1    | < 5    | M10 78                | 04/08/96  | 04/09/96 |
| 35-MW16D-04 | 1710                    | 8                       | <1      | <1      | <1     | <1     | <1      | 15      | 0.3    | < 5    | M10 168               | 04/14/96  | 04/14/96 |
| 35-MW168-04 | 1658                    | 557                     | 51      | 275     | 885    | 26     | <1      | <1      | <.1    | 16     | M10 169               | 04/14/96  | 04/14/96 |
| 35-MW17D-04 | 1119                    | <1                      | <1      | <1      | <1     | <1     | <1      | <1      | <.1    | <5     | M10 149               | 04/13/96  | 04/13/96 |
| 35-MW178-04 | 1125                    | <1                      | 1       | 1>      | <1     | <1     | <1      | <1      | <.1    | <5     | M10 150               | 04/13/96  | 04/13/96 |
| 35-MW18D-04 | 1258                    | <1                      | <1      | <1      | <1     | <1     | <1      | 10      | 0.7    | <5     | M10 151               | 04/13/96  | 04/13/96 |
| 35-MW185-04 | 1303                    | 99                      | <1      | 2       | <1     | <1     | <1      | 4       | 0.5    | 63     | M10 152               | 04/13/96  | 04/13/96 |
| 35-MW19D-04 | 1212                    | <1                      | <1      | <1      | <1     | <1     | 68      | 266     | 379.2  | <5     | M10 164               | 04/14/96  | 04/14/96 |
| 35-MW198-04 | 1233                    | <1                      | <1      | <1      | <1     | <1     | 2       | 13      | 12.0   | <5     | M10 163               | 04/14/96  | 04/14/96 |
|             |                         |                         |         |         |        |        |         |         |        |        |                       |           |          |
| 35-TWTB1-04 | 1905                    | <1                      | <1      | <1      | <1     | <1     | <1      | <1      | <.1    | <5     | M10 87                | 04/09/96  | 04/10/96 |
| 35-FB01-04I |                         | <1                      | <1      | <1      | <1     | <1     | <1      | <1      | <.1    | <5     | M10 124               | 04/12/96  | 04/12/96 |
|             |                         |                         |         |         |        |        |         |         |        |        |                       |           |          |

----- BAKER ENVIRONMENTAL ---------- PROJECT: SGI/CAMP LEJEUNE ---------- PROJECT LOCATION: NORTH AREA ---------- H2O CONCENTRATIONS IN (ug/l) -----

.

|              |           |         |         | BTHYL   | M&P-   | 0-     | trans-  | cia-    |        |        |         |           |          |
|--------------|-----------|---------|---------|---------|--------|--------|---------|---------|--------|--------|---------|-----------|----------|
| DAMPLR       | TIMB      | BENZENB | TOLUBNE | BENZENK | XYLBNR | XYLBNB | 1,2-DCB | 1,2-DCB | TCB    | MTBB   | FILB    | DATE      | DATE     |
| HAMB         | COLLECTED | (ug/1)  | (ug/1)  | (ug/l)  | (ug/1) | (ug/1) | (ug/1)  | (ug/1)  | (ug/1) | (ug/1) | NAMB    | COLLECTED | ANALYZED |
| 15 - TW01A-0 | 41 1809   | <1      | <1      | <1      | <1     | <1     | <1      | <1      | <.1    | <5     | M10 85  | 04/09/96  | 04/10/96 |
| 35-TW018-0   | 41 1716   | <1      | <1      | <1      | <1     | <1     | 2       | 48      | 1.1    | <5     | M10 86  | 04/09/96  | 04/10/96 |
| 35-TW02A-0   | 4 1100    | <1      | <1      | <1      | <1     | <1     | <1      | <1      | <.1    | < 5    | M10 95  | 04/10/96  | 04/10/96 |
| 35-TW02B-0   | 41 1020   | <1      | <1      | <1      | <1     | <1     | 18      | 211     | 7.6    | <5     | M10 96  | 04/10/96  | 04/10/95 |
| 35-TW03A-0   | 41 1505   | <1      | <1      | <1      | <1     | <1     | <1      | <1      | <.1    | <5     | M10 97  | 04/10/96  | 04/10/96 |
| 35-TW03B-0   | 41 2121   | <1      | <1      | <1      | <1     | <1     | 5       | 125     | 13.5   | < 5    | M10 88  | 04/09/96  | 04/10/96 |
| 35-TW04A-0   | 41 1734   | <1      | <1      | <1      | <1     | <1     | <1      | <1      | <.1    | < 5    | M10 100 | 04/10/96  | 04/10/96 |
| 35-TW048-0   | 41 1900   | <1      | <1      | <1      | <1     | <1     | 2       | 46      | 24.6   | <5     | M10 104 | 04/10/96  | 04/10/96 |
| 35-TW05A-0   | 41 1915   | <1      | <1      | <1      | <1     | <1     | <1      | <1      | <.1    | < 5    | M10 105 | 04/10/96  | 04/10/96 |
| 35-TW05B-0   | 41 1923   | <1      | <1      | <1      | <1     | <1     | <1      | 13      | 1.7    | <5     | M10 106 | 04/10/96  | 04/10/96 |
| 35-TW06A-0   | 4I 1425   | <1      | <1      | <1      | <1     | <1     | <1      | <1      | <.1    | <5     | M10 116 | 04/11/96  | 04/11/96 |
| 35-TW06B-0   | 41 1414   | <1      | <1      | <1      | <1     | <1     | <1      | <1      | <.1    | <5     | M10 115 | 04/11/96  | 04/11/96 |
| 35-TW07A-0   | 4I 175B   | <1      | <1      | <1      | <1     | <1     | <1      | <1      | <.1    | < 5    | M10 119 | 04/11/96  | 04/11/96 |
| 35-TW07B-0   | 4I 1733   | <1      | <1      | <1      | <1     | <1     | <1      | <1      | <.1    | < 5    | M10 120 | 04/11/96  | 04/11/96 |
| 35-TW08A-0   | 4I 1910   | <1      | <1      | <1      | <1     | <1     | <1      | <1      | <.1    | <5     | M10 121 | 04/11/96  | 04/11/96 |
| 35-TW08B-0   | 41 1913   | <1      | <1      | <1      | <1     | <1     | <1      | 7       | 1.3    | <5     | M10 123 | 04/11/96  | 04/11/96 |
| 35-TW09A-0   | 4I 1130   | <1      | <1      | <1      | <1     | <1     | <1      | <1      | <.1    | <5     | M10 136 | 04/12/96  | 04/12/96 |
| 35-TW09B-0   | 41 1250   | <1      | <1      | <1      | <1     | <1     | 1       | 38      | 9.6    | <5     | M10 131 | 04/12/96  | 04/12/96 |
| 35-TW10A-0   | 4I 1644   | <1      | <1      | <1      | <1     | <1     | <1      | <1      | <.1    | <5     | M10 137 | 04/12/96  | 04/12/96 |
| 35-TW108-0   | 41 1651   | <1      | <1      | <1      | <1     | <1     | <1      | 11      | <.1    | <5     | M10 138 | 04/12/96  | 04/12/96 |
| 35-TW11A-0   | 4I 1900   | <1      | <1      | <1      | <1     | <1     | <1      | <1      | <.1    | < 5    | M10 141 | 04/12/96  | 04/12/96 |
| 35-TW11B-0   | 41 1904   | <1      | <1      | <1      | <1     | <1     | <1      | 6       | 0.5    | <5     | M10 142 | 04/12/96  | 04/12/96 |

961023

#### MICROSEBRS

961023

----- BAKER ENVIRONMENTAL -----PROJECT: SGI/CAMP LEJEUNE ----- .

----- PROJECT LOCATION: NORTH AREA -----

---- SOIL CONCENTRATIONS IN (ng/g) -----

|             |           |         |         | BTHYL   | MGP-   | 0-     | trans-  | cis-    |        |        |         |           |           |
|-------------|-----------|---------|---------|---------|--------|--------|---------|---------|--------|--------|---------|-----------|-----------|
| DAMPLE      | TIMB      | 88N28N8 | TOLUENE | BENZENS | XYLBNB | XYLBNB | 1,2-DCB | 1,2-DCB | TCB    | MTBE   | FILB    | DATS      | DATE      |
| HAMR        | COLLECTED | (ng/g)  | (ng/g)  | (ng/g)  | (ng/g) | (ng/g) | (ng/g)  | (ng/g)  | (ng/g) | (ng/g) | NAME    | COLLECTED | ANALY 2BD |
| 35-TW018-00 | 830       | <2      | <2      | <2      | <2     | <2     | <2      | <2      | <1     | <10    | M10 79  | 04/09/96  | 04/09/96  |
| 35-TW018-03 | 853       | <2      | <2      | <2      | <2     | <2     | <2      | <2      | <1     | <10    | M10 80  | 04/09/96  | 04/09/96  |
| 35-TW02B-00 | 1313      | <2      | <2      | <2      | <2     | <2     | <2      | <2      | <1     | <10    | M10 81  | 04/09/96  | 04/10/96  |
| 35-TW028-03 | 1345      | <2      | <2      | <2      | <2     | <2     | <2      | <2      | <1     | <10    | M10 82  | 04/09/96  | 04/10/96  |
| 35-TW03B-00 | 1659      | <2      | <2      | <2      | <2     | <2     | <2      | <2      | <1     | <10    | M10 83  | 04/09/96  | 04/10/96  |
| 35-TW03B-03 | 1715      | <2      | <2      | <2      | <2     | <2     | <2      | <2      | <1     | <10    | M10 84  | 04/09/96  | 04/10/96  |
| 35-TW048-00 | 917       | <2      | <2      | <2      | <2     | <2     | <2      | <2      | <1     | <10    | M10 93  | 04/10/96  | 04/10/96  |
| 35-TW04B-03 | 935       | <2      | <2      | <2      | <2     | <2     | <2      | <2      | <1     | <10    | M10 94  | 04/10/96  | 04/10/96  |
| 35-TW058-00 | 1258      | <2      | <2      | <2      | <2     | <2     | <2      | <2      | <1     | <10    | M10 98  | 04/10/96  | 04/10/96  |
| 35-TW05B-03 | 1314      | <2      | <2      | <2      | <2     | <2     | <2      | <2      | <1     | <10    | M10 99  | 04/10/96  | 04/10/96  |
| 35-TW06B-00 | 734       | <2      | <2      | <2      | <2     | <2     | <2      | <2      | <1     | <10    | M10 109 | 04/11/96  | 04/11/96  |
| 35-TW068-03 | 755       | <2      | <2      | <2      | <2     | <2     | <2      | <2      | <1     | <10    | M10 110 | 04/11/96  | 04/11/96  |
| 35-TW07B-00 | 1059      | <2      | <2      | <2      | <2     | <2     | <2      | <2      | <1     | <10    | M10 113 | 04/11/96  | 04/11/96  |
| 35-TW078-03 | 1115      | <2      | <2      | <2      | <2     | <2     | <2      | <2      | <1     | <10    | M10 114 | 04/11/96  | 04/11/96  |
| 35-TW08B-00 | 1428      | <2      | <2      | <2      | <2     | <2     | <2      | <2      | <1     | <10    | M10 117 | 04/11/96  | 04/11/96  |
| 35-TW088-03 | 1440      | <2      | <2      | <2      | <2     | <2     | <2      | <2      | <1     | <10    | M10 118 | 04/11/96  | 04/11/96  |
| 35-TW09B-00 | 810       | <2      | <2      | <2      | <2     | <2     | <2      | <2      | <1     | <10    | M10 127 | 04/12/96  | 04/12/96  |
| 35-TW09B-03 | 822       | <2      | <2      | <2      | <2     | <2     | <2      | <2      | <1     | <10    | M10 126 | 04/12/96  | 04/12/96  |
| 35-TW108-00 | 1224      | <2      | <2      | <2      | <2     | <2     | <2      | <2      | <1     | <10    | M10 132 | 04/12/96  | 04/12/96  |
| 35-TW10B-03 | 1236      | <2      | <2      | <2      | <2     | <2     | <2      | <2      | <1     | <10    | M10 133 | 04/12/96  | 04/12/96  |
| 35-TW118-00 | 1520      | <2      | <2      | <2      | <2     | <2     | <2      | <2      | <1     | <10    | M10 134 | 04/12/96  | 04/12/96  |
| 35-TW118-03 | 1540      | <2      | <2      | <2      | <2     | <2     | <2      | <2      | <1     | <10    | M10 135 | 04/12/96  | 04/12/96  |

961023

----- BAKER ENVIRONMENTAL -----

----- PROJECT: SGI/CAMP LEJEUNE ---------- PROJECT LOCATION: SOUTH AREA -----

----- H2O CONCENTRATIONS IN (ug/1) -----

|                 |           |         |         | BTHYL                     | M&P-   | 0-           | trans-  | cis-    |                           |        |         |           |           |
|-----------------|-----------|---------|---------|---------------------------|--------|--------------|---------|---------|---------------------------|--------|---------|-----------|-----------|
| BAMPLE          | TIME      | BBNZBNB | TOLUBNE | BBNZBNB                   | XYLBNB | XYLBNB       | 1,2-DCB | 1,2-DCB | TCB                       | MTBB   | FILB    | DATE      | DATE      |
| NAMB            | COLLECTED | (ug/l)  | (ug/1)  | (ug/1)                    | (ug/1) | (ug/1)       | (ug/l)  | (ug/l)  | (ug/1)                    | (ug/l) | NAMB    | COLLECTED | ANALY ZED |
| <b></b>         |           |         |         | • • • • • • • • • • • • • |        |              | ******* |         | • • • • • • • • • • • • • |        |         | •••••     |           |
| 15 - TW16A - 0- | 1 1300    | <1      | <1      | <1                        | < 1    | <1           | <1      | 2       | 0.4                       | < 5    | M10 201 | 04/16/96  | 04/16/96  |
| 35-TW168-0      | 1 1225    | <1      | <1      | <1                        | <1     | <1           | 338     | 1317    | 1540.4                    | < 5    | M10 202 | 04/16/96  | 04/16/96  |
| 35-TW16C-0      | 1216      | <1      | <1      | <1                        | <1     | <1           | 6       | 91      | 17.0                      | <5     | M10 203 | 04/16/96  | 04/16/96  |
| 35-TW17A-0      | AI 1050   | <1      | <1      | <1                        | <1     | <1           | <1      | 6       | 2.0                       | <5     | M10 200 | 04/16/96  | 04/16/96  |
| 35-TW178-0      | 4I 919    | <1      | <1      | <1                        | <1     | <1           | 422     | 1417    | 2054.2                    | <5     | M10 198 | 04/16/96  | 04/16/96  |
| 35-TW17C-0      | I 1012    | <1      | <1      | <1                        | <1     | <1           | 54      | 159     | 153.7                     | <5     | M10 199 | 04/16/96  | 04/16/96  |
| 35-TW18A-0      | AI 1616   | <1      | <1      | <1                        | <1     | <1           | 4       | , 32    | 24.6                      | <5     | M10 191 | 04/16/96  | 04/16/96  |
| 35-TW18B-0      | II 1619   | <1      | <1      | <1                        | <1     | <1           | 118     | 410     | 719.5                     | <5     | M10 192 | 04/16/96  | 04/16/96  |
| 35-TW18C-0      | 1622      | <1      | <1      | <1                        | <1     | <1           | 32      | 165     | 167.0                     | <5     | M10 193 | 04/16/96  | 04/16/96  |
| 35-TW19A-0      | 1 1204    | 2       | <1      | <1                        | 2      | <1           | <1      | <1      | 0.3                       | <5     | M10 188 | 04/16/96  | 04/16/96  |
| 35-TW198-0      | AI 1208   | <1      | <1      | <1                        | <1     | <1           | 141     | 611     | 834.1                     | <5     | M10 189 | 04/16/96  | 04/16/96  |
| 35-TW19C-0      | 1 1213    | <1      | <1      | <1                        | <1     | <1           | 7       | 107     | 21.0                      | <5     | M10 190 | 04/16/96  | 04/16/96  |
| 35-TW20A-0      | 1747      | 215     | 883     | 353                       | 445    | 158          | 2       | 42      | 8.8                       | <5     | M10 180 | 04/15/96  | 04/15/96  |
| 35-TW20B-0      | 41 1750   | <1      | 2       | <1                        | <1     | <1           | 63      | 318     | 246.3                     | <5     | M10 181 | 04/15/96  | 04/15/96  |
| 35-TW20C-0      | 1753      | 37      | 174     | 28                        | 61     | 30           | 8       | 124     | 34.4                      | <5     | M10 182 | 04/15/96  | 04/15/96  |
| 35-TW22A-0      | 1 1536    | 1654    | 3636    | 629                       | 1293   | 720          | <1      | 16      | 4.5                       | <5     | M10 179 | 04/15/96  | 04/15/96  |
| 35-TW228-0      | 1500      | 11      | 14      | 4                         | 6      | 3            | 5       | 77      | 10.5                      | <5     | M10 177 | 04/15/96  | 04/15/96  |
| 35-TW22C-0      | 1 1506    | 33      | 58      | 12                        | 23     | 14           | 9       | 137     | 37.9                      | <5     | M10 178 | 04/15/96  | 04/15/96  |
| 35-TW23A-0      | 11 1242   | 3296    | 7392    | 708                       | 1795   | 969          | <1      | 9       | 2.2                       | 58     | M10 174 | 04/15/96  | 04/15/96  |
| 35-TW23B-0      | 11 1255   | 4       | 6       | 2                         | 3      | 2            | 3       | 70      | 11.6                      | <5     | M10 175 | 04/15/96  | 04/15/96  |
| 35-TW23C-0      | 1247      | 224     | 315     | 37                        | 79     | 44           | 3       | 47      | 10.9                      | 8      | M10 176 | 04/15/96  | 04/15/96  |
| 35-TW24A-0      | 1 1508    | 586     | 3       | 37                        | 7      | <1           | <1      | <1      | 0.2                       | 85     | M10 165 | 04/14/96  | 04/14/96  |
| 35-TW24B-0      | 1521      | <1      | <1      | <1                        | <1     | <1           | <1      | 17      | 0.5                       | <5     | M10 166 | 04/14/96  | 04/14/96  |
| 35-TW24C-0      | 1 1515    | 5       | <1      | <1                        | <1     | <1           | <1      | 15      | 0.8                       | <5     | M10 167 | 04/14/96  | 04/14/96  |
| 35-TW25A-0      | II 953    | 312     | 2       | 11                        | <1     | <1           | <1      | <1      | <.1                       | 19     | M10 160 | 04/14/96  | 04/14/96  |
| 35-TW258-04     | II 1000   | <1      | <1      | <1                        | <1     | <1           | <1      | <1      | <.1                       | <5     | M10 161 | 04/14/96  | 04/14/96  |
| 35-TW25C-0      | NI 947    | 3       | <1      | <1                        | <1     | <1           | <1      | 3       | < . 1                     | < 5    | M10 162 | 04/14/96  | 04/14/96  |
| 35-TW26A-0      | II 1555   | 5       | <1      | 3                         | <1     | <1           | <1      | <1      | <.1                       | < 5    | M10 154 | 04/13/96  | 04/13/96  |
| 35-TW26B-0      | 1711      | <1      | <1      | <1                        | <1     | < <b>1</b> 6 | <1      | <1      | < . 1                     | < 5    | M10 155 | 04/13/96  | 04/13/96  |
| 35-TW26C-0      | II 1622   | 3       | <1      | <1                        | <1     | <1           | <1      | <1      | <.1                       | < 5    | M10 153 | 04/13/96  | 04/13/96  |

LABORATORY LOCATION: CAMP LEJEUNE

PROJECT: <u>961023 - SGT</u>

PAGE OF

ANALYSIS: 870X, CLUD., MTBE in Soul/1120

PATH: CilCP MIO

BASE FILE NAME: MIDA / MIDAB . x

| ANALYSIS | [                              |             | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | PID     | EC       | D    | F     | ID       |             |
|----------|--------------------------------|-------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|----------|------|-------|----------|-------------|
| DATE     | SAMPLE ID                      | CYCLE #     | HSS #                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | MET/CAL | MET      | CAL  | MET   | /CAL     | COMMENTS    |
|          |                                |             | ****                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |         |          |      |       |          |             |
| 1996     | HLO BLANK                      | 64          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | NH      | 11/10    | 3:48 | MIO   | BEA      |             |
|          | WSTO LS RG                     | 67          | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |         |          |      |       | I        |             |
|          | R 6                            | 68          | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |         |          |      |       |          |             |
|          | Rs-                            | 69          | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |         |          |      |       |          | ·           |
|          | RS                             | 70          | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |         |          |      |       |          |             |
|          | <u>R4</u>                      | 71          | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |         |          |      |       |          |             |
|          | Ry                             | 72.         | Z                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |         |          |      |       |          |             |
|          | <u>l</u> 2                     | 73          | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |         |          |      |       |          |             |
|          | R'2                            | 74          | 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |         |          |      |       |          |             |
|          | MTDE RY                        | 75          | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |         |          |      |       |          |             |
|          | MTIBE RY                       | 16          | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |         |          |      |       | ·        |             |
|          | HEO BLANK                      | 77          | /2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |         |          |      |       | ·        |             |
|          | 35- MW-30A 1830                |             | 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |         |          | ١    | 1     |          |             |
|          | - TUOIB-00 530                 | 79          | 14<br>15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |         | 1110 BC  | ASB  | 11100 | seas_    | 6.2         |
|          | -03 853                        | 80          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         |          |      |       | <b> </b> | 5.1         |
|          | - TWO2 B - 00 013<br>- 03 1345 |             | 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |         |          |      |       | <b> </b> | \$7         |
|          | -03 1343                       | 92          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         |          |      |       | <u> </u> | 4.9         |
|          | -TW03B-00 169-9-5              | <u>* 87</u> |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         |          |      |       |          | 5.1         |
|          | -03 17151104                   |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         | 4        |      |       | 1        | 5.8         |
|          | 35- TWO A - OILT 1941745       | - 85        | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |         | MIN BE   | AB   | 1110  | BEA      |             |
| }        | -TWOIB-CYIT MUGHT              | - 86        | 21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |         |          |      |       |          |             |
|          | -TWTB1-04 1905                 | <u> </u>    | 22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |         | i-       |      |       |          |             |
|          | -TW038-041 2121                | 88          | and the survey of the local division of the | <u></u> |          |      |       |          | A           |
|          | -TWOZA -04E 2134               |             | 24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |         | <u> </u> |      |       | l        | GC stopped? |
| L        | WSTDLS RE                      | 90          | 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |         |          |      |       |          | I           |

[

\*\*\*\*\* ONSITE ANALYSIS \*\*\*\*\*

PAGE 2 OF 6

LABORATORY LOCATION: CAMP LEicene

PROJECT: 961023 - SGI ANALYSIS: BTEY, Chloris, MITDE Soil /HZJ

PATHE C' ICPIMIE)

BASE FILE NAME: 11/0.4 / 11/0.4 B x ...

| ANALYSIS |                     |                 |          | PID     | ECD        | FID                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |            |
|----------|---------------------|-----------------|----------|---------|------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|
| DATE     | SAMPLE ID           | CYCLE #         | HSS #    | MET/CAL | MET/CAL    | MET/CAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | COMMENTS   |
|          | 无法已在自己就自己还想就正知道的    | *****           |          |         |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            |
|          | WSTD 15 RY          | 9/              | 26       | NA      | MOBEAB     | MICBER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            |
|          | H20 BLANK           | 92              | 27       |         | <u> </u>   | (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |            |
| 4/10/96  | 35-7004200 917      | 92<br>93        | 28       |         | MIN BEASIS | MICBEAS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |            |
|          | -03 93              | 94              | 29       |         |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 50         |
|          | - TWOZA-04 1100     | 95              | 30       |         | huo BellB  | MIUBEA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            |
|          | - TWOZB-OUT 1026    | 96              | 31       |         |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            |
|          | - TWO3A -04/ 150    |                 | 32       |         |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            |
|          | - TW057-CO 1254     | <u>98</u><br>99 | .33      |         | MIOBEASB   | inio BEAS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5.0        |
|          | - TWO 58-03 1314    |                 | 34       |         | <b>_</b>   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <u>6.Y</u> |
|          | - TW04A-04 1734     | 100             | 35       |         | MIUBEAB    | MIU BEA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |            |
|          | WSTD 15 RG          | 101             | 36       |         |            | <u>}</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |            |
|          | WSTO LS RY          | 102             | 31       |         | <u> </u>   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            |
|          | H20 BLANK           | 103             | 38       |         |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            |
|          | 35- TN640-64 IM     | 00 104          | 3.7      |         |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            |
|          | - TWØ5A "04I 1915   | 105             | 40       |         |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            |
|          | -TWOSB-041 1923     | 106             | <u> </u> |         |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            |
| 4/11/96  | HIO BLANK           | /07             |          |         | l          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            |
|          | WSTO LS R4          | 105             | 2        |         |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            |
|          | 35-TWP0B-00 734     | 109             | 3        |         | MILBUASE   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 571        |
|          | -03 757             | 110             | 4        |         |            | And the second se | 5.0        |
|          | WSTD CIS RY         | 11              | 5        |         | MICOBEAB   | rill GBEA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |            |
|          | <u>R4</u>           |                 | C        |         |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            |
|          | 35-TW07B-00 1054    |                 |          |         | h110BEASB  | MIDBEAS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 53         |
|          | - 03 1115           |                 | <u> </u> | ·····   |            | he a Ait of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 5,2        |
|          | - TWO 6 B 04 1 1414 | 115             | <u> </u> |         | MIO BEAR   | hite bed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |            |

\*\*\*\*\* ONSITE ANALYSIS \*\*\*\*\*

PAGE\_\_\_\_OF\_\_\_6

LABORATORY LOCATION: CAMP LEJENNE

PROJECT: 961023 - SET

ANALYSIS: BTBY, CLIAN'S AITBET

PATHE CICPIMIO

BASE FILE NAME: MINA / MINA 3

| ANALYSIS |                            |         |          | PID     | ECD          | FID       |                        |
|----------|----------------------------|---------|----------|---------|--------------|-----------|------------------------|
| DATE     | SAMPLE ID                  | CYCLE # | HSS #    | MET/CAL | MET/CAL      | MET/CAL   | COMMENTS               |
|          |                            |         |          | BABBBE  |              |           |                        |
| 9/11/96  | 35. TWOGA - 04 [ 1425      | 116     | 10       | ŇA      | MIUBEAB      | MIO BEA   |                        |
|          | - TWO8 B-00 1426           | 117     | 1        |         | this bease   | MOBEAS    | 5.7                    |
|          | -03 1439                   | 119     | 12       |         |              | <u> </u>  | 5.5                    |
|          | - TWUTA-045 1758           | 119     | 13       |         | MIO GEAB     | 1110 8-17 | ·                      |
|          | - TW&70-645 1731           | 120     | - 14     |         |              | <u> </u>  |                        |
|          | WSTD L5 R4                 | 121     | 15       |         |              |           |                        |
|          | 35-TW#8A-045 1910          | 122     | 16       |         |              |           |                        |
|          | - TWØ8B-64I 1913           | 123     | 17       |         |              | ļ         |                        |
| 4/12/96  | FB 35- FBOI OY             | 124     | 1        |         |              |           |                        |
|          | WSTD LS RY                 | 725     | 2        |         |              |           |                        |
|          | 35-7W\$98-00 FIC           | 126     | 3        |         | MINBENSB     | MIDDEAS   | 5.2                    |
|          | -03 822                    | 4 127   | 4        |         | <u> (</u>    |           | 5.8                    |
|          | WITD MTBE RY               | 128     | 5        |         | in OBEAB     | MOBER     |                        |
|          | 35 - TWO 9 B - WIE IN      | 124     | <u> </u> |         |              | I         | Sample problem no run. |
|          | - TW W9 A . DY I 170       |         | 2        |         |              |           |                        |
| 35:Two91 | - 047- 1- 1- 10 B- 60- 121 | 131     | .3       |         |              | <u> </u>  | 51                     |
|          | -TWIDB-CO 12               | 132     |          |         | MIDBEASD     | MIDBEAS   |                        |
|          | -03 12%                    | 133     | 5        |         | 11           |           | <u> </u>               |
|          | - TWILB - CO 1520          |         | 6        |         |              |           | 5.0                    |
|          | -03 15ro                   | 135     |          |         |              | <b></b>   | 5.7                    |
|          | 35- TWOGA -OUT 1200        | 136     | 8        |         | INIOBERA     | MOBER     |                        |
|          | - TWIDA -OYE 1644          | 127     | ĩ        |         | <u>}</u>     |           |                        |
|          | - TWIDB -04 E 1651         | 138     | 10       |         |              |           |                        |
|          | ESTO ES RECISA             | 4 139   | <u> </u> |         |              |           |                        |
|          | WETO NO CIS RY-            | 140     | 12       |         |              | L         |                        |
| 1        | H20 BLANK                  |         |          |         | 4            | •         |                        |
|          |                            |         |          |         | <pre>{</pre> |           | (                      |

\*\*\*\*\* ONSITE ANALYSIS \*\*\*\*\*

PAGE\_\_\_\_OF\_\_6

LABORATORY LOCATION: CAMP LETERNE

PROJECT: 461023 " SGT

ANALYSIS: Bitk, MITBE, Chloice's

PATHE C'ALCPLMID

BASE FILE NAME: HICHAB

| ANALYSIS |                           |         |       | PID      | E       | CD       | F        | ID       |                                       |
|----------|---------------------------|---------|-------|----------|---------|----------|----------|----------|---------------------------------------|
| DATE     | SAMPLE ID                 | CYCLE # | HSS # | ME'T/CAL | ME      | T/CAL    | мет      | '/CAL    | COMMENTS                              |
|          | <b>再以及重要的现在是</b> 自己的是是有限的 | *****   |       | *****    |         | -        |          |          |                                       |
| 4/12/96  | 35 - TWIIA - 06 I 1900    | 141     | 13    | NA       | mol     | BEAB     | MIUL     | કેટમ     |                                       |
|          | - TWIIB - 045 1904        | 142     | 14    |          |         | )        | <b> </b> | <b>j</b> |                                       |
| 4/13/94  | HZU DLANK                 | (43     | 1     |          |         |          |          |          |                                       |
| ,,       | LUSTO LS RY               | ,44     | 2     |          |         | <u> </u> |          | <u> </u> |                                       |
|          | WSTD MIBE R4              | 145     | 3     |          | <b></b> | Í        |          | <b></b>  |                                       |
|          | " R2                      | 146     | 4     |          |         | 1        |          | ļ        |                                       |
|          | " R2                      | 142     | 5     |          |         |          |          |          | · · · · · · · · · · · · · · · · · · · |
|          | H20 BLANK                 | 148     | 6     |          |         | _        |          |          |                                       |
|          | 35-MWITD-04 1119          | 149     | 7     |          |         | <u> </u> |          |          | · · · · · · · · · · · · · · · · · · · |
|          | -MW175-04 1126            | 150     | 8     |          |         |          |          |          |                                       |
|          | - MW18D-04 1258           | 1721    | 9     |          |         | _        |          |          |                                       |
|          | - MW 185-04 1302          | 152     | 10    |          |         |          | <u> </u> |          |                                       |
|          | -TW260-041 1622           | 153     | 13    |          |         | <u> </u> |          | L        | ·                                     |
|          | -TW26A-04E 1555           | 184     | 12    |          |         |          |          |          |                                       |
|          | - TW 26 B-04I 1711        | 155-    | 13    |          |         | <u> </u> |          |          |                                       |
| 4/14/14  |                           | 156     | 1     |          |         | L        |          |          |                                       |
|          | WSTD L5 RY                | 157     | 2     |          |         |          |          |          |                                       |
|          | CIS RY                    | 158     | 3     |          |         |          |          |          | •                                     |
|          | MTBE RY                   | 155     | 4     |          |         |          |          |          |                                       |
|          | 35-TW15A-041 095          | 140     | 5-    |          |         |          |          |          |                                       |
|          | 35-TW25B-045 1000         | 161     | 6     |          |         |          |          |          | · · · · · · · · · · · · · · · · · · · |
|          | -TW2SC-OVI OQU            | 162     | 7     |          |         |          |          |          |                                       |
|          | - MW195-041 127           | 163     | Å     |          |         |          |          |          |                                       |
|          | - MW19D-041 1212          | 164     | 9     |          |         |          |          |          |                                       |
|          | -TW24A-OVI ISOK           | 165     | 10    |          |         |          | 1        |          |                                       |

\*\*\*\*\* ONSITE ANALYSIS \*\*\*\*\*

.....

PAGE 5 OF 6

ANALYSIS: BIEK, (410.2), 11130-Soil furter

LABOHATORY LOCATION: CAMP LEJERNE

PROJECT: 46/02 3 SGF FILE NAME: 4 W A /AB

PATH: C'NCDIMIO

BASE FILE NAME: 4 10 A /A O

| (        | · · · · · · · · · · · · · · · · · · · | ······    | r        | ~~~~                                  | <u> </u> | FID      |          |
|----------|---------------------------------------|-----------|----------|---------------------------------------|----------|----------|----------|
| ANALYSIS |                                       |           |          | PID                                   | ECD      |          |          |
| DATE     | SAMPLE ID                             | CYCLE #   | HSS #    | MET/CAL                               | 1        | MET/CAL  | COMMENTS |
|          |                                       |           | *****    | ******                                |          | ****     |          |
| 4/14/46  | 35-TW248-041 151                      | 164       |          | Nn                                    | MICBEAB  | MIC BEA  |          |
|          | -TW246-042 1515                       | 167       | 12       | l<br>                                 |          |          |          |
|          | - MW16D-04 1710                       |           | 13       |                                       |          |          |          |
|          | -MW165-01 1658                        | 169       | 14       | · · · · · · · · · · · · · · · · · · · |          |          |          |
|          | usito is ry                           | 170       | 15       |                                       | l        |          |          |
|          | H20 BLANK                             | /71<br>72 | 16       |                                       |          |          |          |
| 4/15/96  | H20 BLANE                             | .72       | . (      |                                       |          |          |          |
|          | with ls R4                            | 173       | 2        |                                       |          |          |          |
|          | SS.TW23A-041 MUL                      | 174       | 3        |                                       |          |          |          |
|          | -TW238-045 1255                       | เกร       | 4        |                                       |          |          |          |
|          | - TW 23C - CYF 1247                   | 176       | 5        |                                       |          |          |          |
|          | - TW 22 B-01E 150                     | 177       | نبا      |                                       |          | <u></u>  |          |
|          | - TW 22C - CY.E 1500                  | 102       | η        |                                       |          | <u> </u> |          |
|          | - TW22 A-OUT ISE                      | (71       | Ý        |                                       |          |          |          |
|          | - TWOK - OUT 17                       |           | 9        |                                       |          | [        |          |
|          | -TW 208 -CUT 1752                     | 18'1      | lç       |                                       |          |          |          |
|          | -TW20C-04E 1753                       | 152       | ų        |                                       |          |          |          |
| 4/16/96  | H20 BLANK                             | 183       | í        |                                       |          |          |          |
|          | WSTD 15 R4                            | 184       | 2.       |                                       |          |          |          |
|          | WSED CIS R4                           | (85       | 3        |                                       |          |          |          |
|          | WITD MEBE RY                          | 184.      | 4        |                                       |          | <u>`</u> |          |
|          | HZO RLANK                             |           | 5        |                                       |          |          |          |
|          | H20 BLANK_<br>35-TW19 A - 04E 141     | 185       | 4        |                                       |          |          |          |
|          | 1- TW 19 B-04 I 120                   | 189       | <u>ר</u> |                                       |          |          |          |
|          | - TWIGC - 045 1213                    | 190       | 8        |                                       |          |          |          |
|          |                                       |           |          |                                       | •        |          |          |

\*\*\*\*\* ONSITE ANALYSIS \*\*\*\*\*

OF 6 PAGE\_6

LABOHATORY LOCATION: 6777 CAMAD Lefsman

PROJECT: 4418+ 47613 -3 56-E

ANALYSIS: Bier, MIBE, Chlero Suil / Witte,-

PATH: Cilcpimio

BASE FILE NAME The Add

| ANALYSIS |                                    |          |               | PID                                   | ECD                                   | FID        |          |
|----------|------------------------------------|----------|---------------|---------------------------------------|---------------------------------------|------------|----------|
| DATE     | SAMPLE ID                          | CYCLE #  | HSS #         | MET/CAL                               | MET/CAL                               | MET/CAL    | COMMENTS |
|          |                                    |          | 9 1417        | ******                                |                                       | ******     |          |
| 4/16/56  | H20 BLANK                          |          | 7 171/        | Nut                                   | MILBEAS                               | MINJER     |          |
|          | 35- TWI 8 A-045 7614               |          | 10            | •••••••••                             |                                       |            |          |
|          | - TWISB . OIT 1619                 | <u> </u> | - 11          |                                       |                                       |            |          |
|          | - TW 18 C - OYI 1622               |          | (2            |                                       |                                       |            |          |
|          | HZOBLANK TEST                      | 195      | 113           |                                       |                                       |            |          |
|          | WSTD LS RY                         | 196      | <u> </u>      |                                       |                                       |            |          |
|          | H20 BLANK TIST<br>WETD CTS SH Inth | 117      |               |                                       |                                       |            |          |
|          | were crs - in the                  | -148,    | <u> </u>      |                                       |                                       |            |          |
|          | 35-TW178.0+ 10919                  | 168      | 4             |                                       | · · · · · · · · · · · · · · · · · · · | ·····      |          |
|          | -TW176-041 1012                    | 194      | 5             |                                       |                                       |            |          |
|          | - TIU 17A-041 1010                 | 200      | (cz           |                                       |                                       |            |          |
|          | 35-TWIGA-OVE MOC                   | 201      |               |                                       |                                       |            |          |
|          | - TWIG B - CUE 1225                | 202      | <u>8</u><br>4 |                                       |                                       |            |          |
|          | - TW 16 C-045 1216                 | 203      | 9             |                                       | <u> </u>                              | <u></u>    |          |
|          |                                    |          |               |                                       |                                       | ······     |          |
|          |                                    |          |               |                                       |                                       |            |          |
| \        |                                    |          |               |                                       |                                       |            |          |
|          |                                    |          |               |                                       |                                       | ·          | <u></u>  |
|          |                                    |          |               |                                       |                                       |            |          |
|          |                                    |          |               | · · · · · · · · · · · · · · · · · · · |                                       | - <u> </u> |          |
| <b> </b> |                                    |          |               |                                       |                                       |            |          |
|          |                                    |          |               |                                       |                                       |            |          |
| f        |                                    |          | [             |                                       |                                       |            |          |
|          |                                    |          |               |                                       |                                       | ·          |          |

961048 ----- BAKER ENVIRONMENTAL -----VER. 5 ----- PROJECT: CAMP LEJEUNE ---------- SOIL CONCENTRATIONS IN (ng/g) -----

|                               |                            |         |         |        |        |          |         |         |        |        | CARBON   |        |            |         |           |           |
|-------------------------------|----------------------------|---------|---------|--------|--------|----------|---------|---------|--------|--------|----------|--------|------------|---------|-----------|-----------|
|                               |                            |         | BTHYL   | M&P-   | ٥-     | VINYL    | trans-  | cis-    | CHLORO | 1,1,1- | TBTRA    |        |            |         |           |           |
| BAMPLE                        | BRNZRNR                    | TOLUBNE | BRNZRNR | XYLBNB | XYLENB | CHLORIDE | 1,2-DCB | 1,2-DCB | FORM   | TCA    | CHLORIDE | TCB    | <b>PCB</b> | FILB    | DATS      | TIME      |
| NAME                          | (ng/g)                     | (ng/g)  | (ng/g)  | (ng/g) | (ng/g) | (ng/g)   | (ng/g)  | (ng/g)  | (ng/g) | (ng/g) | (ng/g)   | (ng/g) | (ng/g)     | NAMB    | COLLECTED | COLLECTED |
| · · · · · · · · · · · · · · · | • • • • <b>• • • •</b> • • | <b></b> |         |        |        |          |         | •••••   |        |        |          |        |            |         | ••••••••• |           |
| 35-MW448-04                   | <2                         | <2      | <2      | <2     | <2     | <100     | <2      | <2      | <1     | <1     | <1       | <1     | <1         | M10 366 | 07/31/96  | 1225      |
| 35-MW31B-05                   | <2                         | <2      | <2      | <2     | <2     | <100     | <2      | <2      | <1     | <1     | <1       | <1     | <1         | M10 389 | 08/02/96  | 1030      |
| 35-TW30B-01                   | <2                         | <2      | <2      | <2     | <2     | <100     | <2      | <2      | <1     | <1     | <1       | <1     | <1         | M10 400 | 08/03/96  | 813       |

#### ----- H2O CONCENTRATIONS IN (ug/l) -----

|                                  |             |         |              |        |        |          |         |         |        |         | CARBON   |        |        |         |           |           |
|----------------------------------|-------------|---------|--------------|--------|--------|----------|---------|---------|--------|---------|----------|--------|--------|---------|-----------|-----------|
|                                  |             |         | <b>BTHYL</b> | M&P-   | 0-     | VINYL    | trans-  | cis-    | CHLORO | 1,1,1-  | TETRA    |        |        |         |           |           |
| SAMPLB                           | BBNZBNB     | TOLUENB | BBNZBNB      | XYLBNB | XXTBNB | CHLORIDE | 1,2-DCB | 1,2-DCB | FORM   | TCA     | CHLORIDB | TCB    | PCB    | FILB    | DATE      | TIME      |
| NAMB                             | (ug/1)      | (ug/1)  | (ug/1)       | (ug/1) | (ug/1) | (ug/1)   | (ug/1)  | (ug/1)  | (ug/1) | (ug/1)  | (ug/1)   | (ug/1) | (ug/1) | NAMB    | COLLECTED | COLLECTED |
| 35-TW31A                         | <1          | <1      | <1           | <1     | <1     | <50      | <1      | <1      | 1.9    | <br>۲.۱ | <.1      | <.1    | <.1    | M10 393 | 08/02/96  |           |
| 35-TW31B                         | <1          | <1      | <1           | <1     | <1     | <50      | <1      | <1      | 0.6    | <.1     | <.1      | <.1    | <.1    | M10 394 | 08/02/96  | ****      |
| 35-TW30B                         | <1          | <1      | <1           | <1     | <1     | <50      | <1      | <1      | 1.0    | <.1     | <.1      | ۲.1    | ۲.>    | M10 422 | 08/04/96  |           |
| 35-TW <del>31A</del>             | <1          | <1      | <1           | <1     | <1     | <50      | <1      | <1      | 1.5    | <.1     | <.1      | <.1    | <.1    | M10 423 | 08/04/96  | 1310      |
| 35-TH <del>91A</del> <b>30</b> / | <b>A</b> <1 | <1      | <1           | <1     | <1     | <50      | <1      | <1      | 3.7    | <.1     | ۲.۱      | <.1    | ۲.۱    | M10 424 | 08/04/96  | 1527      |
| 35-TW31B                         | <1          | <1      | <1           | <1     | <1     | <50      | <1      | <1      | 0.3    | ۲.1     | <.1      | <.1    | <.1    | M10 425 | 08/04/96  | 1322      |
| 35-MW44A 60,                     | <b>A</b> <1 | <1      | <1           | <1     | <1     | <50      | <1      | <1      | 1.5    | ۲.1     | <.1      | <.1    | <.1    | M10 426 | 08/04/96  | 1146      |
| 35-MW118 60                      | <b>B</b> <1 | <1      | <1           | <1     | <1     | <50      | <1      | <1      | 0.2    | <,1     | <.1      | <.1    | <.1    | M10 427 | 08/04/96  |           |

changes per log entry MDS. 8/4/96

## APPENDIX G SGI CHAIN-OF-CUSTODY RECORDS

|                                     | مىرى بەرمىيىتىتىرى<br>بەرسىرى بەر ئەتكەن | a a a a a a a a a a a a a a a a a a a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                    | Refrige                                                       | ator #                                                                                                          | de.                 |         | · . •                                             |                                  |                    | fine .                                                                                                         |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | and states                                                                                                                                                                                                                        |                                                                                                                                                                                                                                     |                              |
|-------------------------------------|------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|---------------------|---------|---------------------------------------------------|----------------------------------|--------------------|----------------------------------------------------------------------------------------------------------------|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|
| edimental (                         | mallagento                               | and the second second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                    | #/Type                                                        | Container                                                                                                       | Solid               |         | ، راغیناً است. در میزا<br>ماریخیناً است. در میزان |                                  |                    |                                                                                                                |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | لىسىنىڭ اور يۇرىغ<br>ئەرىشىنى ئۇرىشى                                                                                                                                                                                              | مەرىمە ئەتتەر بىلىغى بىلىغان بى<br>مەرىمە ئىلىغان بىلىغان ب |                              |
| nicondinici di<br>Dicharonician     | ากสมาชิง                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | وسنيت بالمحم                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                    | Volume                                                        |                                                                                                                 |                     |         | مندرة نواري من الم<br>المندر الم                  |                                  |                    |                                                                                                                |             | annel and bes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ال به معرف المراجع الم<br>المراجع المراجع |                                                                                                                                                                                                                                     | ينيقا السمية بتينا ال<br>الم |
|                                     |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | n an                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                    | Preserv                                                       | atives                                                                                                          |                     |         | ORGAN                                             | C                                |                    |                                                                                                                | INC         | ORG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                     |                              |
| te Rec'd                            | Doltan                                   | Date Due                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | an tha ann an a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | n tanan arawa ang kabupatén kabupatén kabupatén kabupatén kabupatén kabupatén kabupatén kabupatén kabupatén ka<br>Kabupatén kabupatén ka | ANALY<br>REQUE                                                |                                                                                                                 |                     | i St    | BNA                                               |                                  |                    |                                                                                                                | Metal       | S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                     |                              |
| count #                             |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | :<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | T                                                                                                                                                                                                                                  | - 4<br>                                                       | a de la composición d | a hage a black      | 384     |                                                   |                                  | WES                | TON Ana                                                                                                        | ·           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | y                                                                                                                                                                                                                                 | Lucasian Charters                                                                                                                                                                                                                   |                              |
|                                     | Lab                                      | Client ID/Desc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ription                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Matrix<br>QC<br>Chosen                                                                                                                                                                                                             | Matrix                                                        | Date                                                                                                            | Time<br>Collected   |         |                                                   |                                  |                    |                                                                                                                |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                     |                              |
|                                     | ID                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1 (V)<br>MS MSD                                                                                                                                                                                                                    |                                                               | 7/15 M                                                                                                          | 14. 137             |         |                                                   |                                  |                    | 24 - 5 e 1<br>Anno - 22 -                                                                                      |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                   | ┝──┤──                                                                                                                                                                                                                              |                              |
|                                     | 35 m                                     | 71508 - 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                    |                                                               |                                                                                                                 |                     |         |                                                   |                                  |                    |                                                                                                                | <br> <br>   | in a stand is a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                     |                              |
| Air -                               | 1                                        | 1997 - La Carlo br>1997 - La Carlo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | and the second sec |                                                                                                                                                                                                                                    | مربع میں میں اور          |                                                                                                                 | lleinnen en eren    | المراجع | مد تنا ا                                          | ر.<br>مراسب روم با آمه مو        | a francisco de fra |                                                                                                                |             | 3<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | an a                                                                                                                                                                                          | المتعديدة أحاج                                                                                                                                                                                                                      | مر المرتبين الم              |
| and a                               |                                          | and the second second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1                                                                                                                                                                                                                                  | م م م                                                         |                                                                                                                 |                     |         |                                                   | يندر بيا <u>لي</u><br>مدر بياليد |                    | يستب بولو و                                                                                                    |             | a a succession and a succession of a successio | يىيە رىيىغ <b>ا</b> ھۆتەتتە<br>يېرىمە رىيىغا ھۆتەتتە                                                                                                                                                                              | منانية الدرسية الم                                                                                                                                                                                                                  |                              |
|                                     |                                          | edimeter strand have                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | and that we are the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | مينين المركز<br>محمد المركز المركز                                                                                                                                                                                                 | د ان المراجع ( 1994 )<br>المراجع ( 1994 )<br>المراجع ( 1994 ) |                                                                                                                 |                     |         |                                                   |                                  |                    | uu şirar.                                                                                                      |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                   | 1                                                                                                                                                                                                                                   |                              |
| ដែលរូវទាំងទាំង<br>រដ្ឋាភូមិព័ររំព័រ | . Frider an                              | Land and the second second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Carl Mar Barrianss and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | A Martin Contractor                                                                                                                                                                                                                | ا<br>ایک کون میں                                              |                                                                                                                 | 1                   |         |                                                   | مرکب مالست<br>مرکب میلا          |                    |                                                                                                                |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Star of Stranger                                                                                                                                                                                                                  | Survey Barre                                                                                                                                                                                                                        |                              |
| Olim.                               |                                          | الله مع تعديم الله الله المالية المالية.<br>الإسلام الله الله المالية المالية المالية المالية المالية المالية الم                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | raise nues bas Andrews                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | سمية المستقد ما ال                                                                                                                                                                                                                 | 1 h                                                           | a and block when with                                                                                           | 1975-1955<br>       |         | ()<br>                                            | an de persona                    |                    | eline testerne and<br>testerne generation                                                                      |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | میں                                                                                                                                                                                           | 1                                                                                                                                                                                                                                   |                              |
|                                     | a to section                             | Contraction of the second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | and the arrivation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                    |                                                               | مەرمەتلەت مەرمەر يەر<br>مەرمەتلەت مەرمەر يەرمەر                                                                 | 100 20 10 20        | 1       |                                                   |                                  |                    |                                                                                                                |             | مر المربية الم<br>مربية المربية ال                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | article all a stress by                                                                                                                                                                                                           | k bi                                                                                                                                                                                                                                |                              |
| _                                   | الشقاع م                                 | in and the first first first for the second se | يوني.<br>ميداديند کې ديکين                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                    | میده است و در ای<br>رو                                        | List Island                                                                                                     | d'article trainer.  | است     |                                                   | and market                       |                    | مىدىرە رىغ <sup>ۇ</sup> قەرىسەرر<br>ي                                                                          | 1           | و و المحديد الم                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | لې<br>جملينې سنې ولو ولو ور يون<br>د د د د د د ولو ولو ور يون<br>د د د د د د ور ولو                                                                                                                                               | يىيە: يالەرەبىيەر ئۇ<br>مەر                                                                                                                                                                                                         | ببأكر سريرة أقدينا           |
|                                     |                                          | and a second state of the second s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | n an Anna Anna Anna Anna Anna<br>Anna Anna                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                    |                                                               | Maral.                                                                                                          |                     |         |                                                   | 2                                |                    |                                                                                                                |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                     |                              |
|                                     | EL COMPLETE                              | ONLY SHADE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | DAREAS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | d Marine Marine                                                                                                                                                                                                                    | DATE/RE                                                       | /ISIONS:                                                                                                        | Letter and a second | الد کال |                                                   | na sel braniti na<br>C           | 1                  | i timi oni bor na ta                                                                                           | 1 6.00000   | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | CON Anol                                                                                                                                                                                                                          | din the                                                                                                                                                                                                                             | Orales                       |
| ecial instructio                    |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                    |                                                               | 1                                                                                                               |                     | · · ·   | 5                                                 |                                  |                    |                                                                                                                |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | FON Analy                                                                                                                                                                                                                         |                                                                                                                                                                                                                                     |                              |
| SEVEN                               | JAN TO                                   | where the second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 14.40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                    | 1 1                                                           | 2                                                                                                               |                     |         |                                                   |                                  |                    |                                                                                                                |             | amples w<br>) Shipped                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                   | 1) Prese                                                                                                                                                                                                                            | pe was:<br>int on Outer      |
| IF CLUC                             | g a 🕇 da Barta                           | and the first                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                    |                                                               | 3                                                                                                               | <u>};</u>           |         |                                                   |                                  |                    |                                                                                                                |             | and Deliv<br>Irbili #                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ered                                                                                                                                                                                                                              |                                                                                                                                                                                                                                     | e Y∝or, N<br>oken on Out     |
| DL. in C                            | er Kolada                                | L. C. Y                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | - Let de                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                    |                                                               | 4                                                                                                               | 1 Hold              |         |                                                   | <u>}</u>                         | ······             |                                                                                                                | 2           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | or Chilled                                                                                                                                                                                                                        | Packag                                                                                                                                                                                                                              | Y OF N                       |
|                                     | :                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | •                                                                                                                                                                                                                                  |                                                               |                                                                                                                 | <u>412.44.</u>      |         |                                                   |                                  |                    | and a second | C           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | d in Good<br>Y or N                                                                                                                                                                                                               | 3) Pres                                                                                                                                                                                                                             | int on Samp                  |
|                                     |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                    |                                                               | 6                                                                                                               | 41-26-1-11          |         |                                                   |                                  |                    | an a                                                                       | 4           | ) Labels II<br>roperly Pi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ndicate                                                                                                                                                                                                                           | 🦛 4) Unbr                                                                                                                                                                                                                           | oken on                      |
| Inquished                           | Received                                 | Date                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Relinquis                                                                                                                                                                                                                          | hed                                                           | Receive                                                                                                         |                     | Date    | Time                                              | Dia                              | crepancie          | s Between                                                                                                      |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Y or N                                                                                                                                                                                                                            | COC R                                                                                                                                                                                                                               | Y or N<br>cord Prese         |
| by<br>*                             | <u>, by</u>                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                    |                                                               |                                                                                                                 |                     |         |                                                   |                                  | C Record           | els and<br>? Y or N                                                                                            | Ь<br>Н<br>Н | ) Receive<br>loiding Tir                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | d within<br>nes<br>Y or N                                                                                                                                                                                                         | Section 2 Sec                                                                                                                                                                                                                       | ample Rec't<br>Y or N        |
|                                     |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                    |                                                               |                                                                                                                 |                     |         |                                                   | <b>- 1 I</b>                     |                    | Contraction of the second                                                                                      | 1000        | 645 - C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | YOFN                                                                                                                                                                                                                              |                                                                                                                                                                                                                                     |                              |

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | a strategy and the second strategy and the | an a           |                                         | 1                                                                                                              | container            |                                                          |     |                                                                                                                                                                                                                                    |                |                                       | 28:34<br>28:34                                        | 1.<br>                                                             |       |                                              |                                                 |                                  |                                                |                                      | ,<br>č |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|----------------------------------------------------|-----------------------------------------|----------------------------------------------------------------------------------------------------------------|----------------------|----------------------------------------------------------|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|---------------------------------------|-------------------------------------------------------|--------------------------------------------------------------------|-------|----------------------------------------------|-------------------------------------------------|----------------------------------|------------------------------------------------|--------------------------------------|--------|
| Makonako<br>Robertemperikin<br>Mikorekinina                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                            | Will and a to a to wide                            |                                         | Volum                                                                                                          |                      | 6060161<br>60163                                         |     |                                                                                                                                                                                                                                    |                |                                       | من من الارتيان من |                                                                    |       |                                              |                                                 |                                  |                                                |                                      | ~      |
| ADIRIO(CCI4Manacian<br>20<br>Date Rec'd<br>Account #                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                            | AT                                                 |                                         |                                                                                                                | (SES<br>ESTED —      |                                                          | VõA | ORG                                                                                                                                                                                                                                | Pest/<br>PCB ( | Herb                                  |                                                       |                                                                    |       |                                              |                                                 |                                  |                                                |                                      |        |
| ATTICK<br>CODIN<br>SCOTTO<br>SCOTTO<br>SCOTTO<br>SCOTTO<br>SCOTTO<br>SCOTTO<br>SCOTTO<br>SCOTTO<br>SCOTTO<br>SCOTTO<br>SCOTTO<br>SCOTTO<br>SCOTTO<br>SCOTTO<br>SCOTTO<br>SCOTTO<br>SCOTTO<br>SCOTTO<br>SCOTTO<br>SCOTTO<br>SCOTTO<br>SCOTTO<br>SCOTTO<br>SCOTTO<br>SCOTTO<br>SCOTTO<br>SCOTTO<br>SCOTTO<br>SCOTTO<br>SCOTTO<br>SCOTTO<br>SCOTTO<br>SCOTTO<br>SCOTTO<br>SCOTTO<br>SCOTTO<br>SCOTTO<br>SCOTTO<br>SCOTTO<br>SCOTTO<br>SCOTTO<br>SCOTTO<br>SCOTTO<br>SCOTTO<br>SCOTTO<br>SCOTTO<br>SCOTTO<br>SCOTTO<br>SCOTTO<br>SCOTTO<br>SCOTTO<br>SCOTTO<br>SCOTTO<br>SCOTTO<br>SCOTTO<br>SCOTTO<br>SCOTTO<br>SCOTTO<br>SCOTTO<br>SCOTTO<br>SCOTTO<br>SCOTTO<br>SCOTTO<br>SCOTTO<br>SCOTTO<br>SCOTTO<br>SCOTTO<br>SCOTTO<br>SCOTTO<br>SCOTTO<br>SCOTTO<br>SCOTTO<br>SCOTTO<br>SCOTTO<br>SCOTTO<br>SCOTTO<br>SCOTTO<br>SCOTTO<br>SCOTTO<br>SCOTTO<br>SCOTTO<br>SCOTTO<br>SCOTTO<br>SCOTTO<br>SCOTTO<br>SCOTTO<br>SCOTTO<br>SCOTTO<br>SCOTTO<br>SCOTTO<br>SCOTTO<br>SCOTTO<br>SCOTTO<br>SCOTTO<br>SCOTTO<br>SCOTTO<br>SCOTTO<br>SCOTTO<br>SCOTTO<br>SCOTTO<br>SCOTTO<br>SCOTTO<br>SCOTTO<br>SCOTTO<br>SCOTTO<br>SCOTTO<br>SCOTTO<br>SCOTTO<br>SCOTTO<br>SCOTTO<br>SCOTTO<br>SCOTTO<br>SCOTTO<br>SCOTTO<br>SCOTTO<br>SCOTTO<br>SCOTTO<br>SCOTTO<br>SCOTTO<br>SCOTTO<br>SCOTTO<br>SCOTTO<br>SCOTTO<br>SCOTTO<br>SCOTTO<br>SCOTTO<br>SCOTTO<br>SCOTTO<br>SCOTTO<br>SCOTTO<br>SCOTTO<br>SCOTTO<br>SCOTTO<br>SCOTTO<br>SCOTTO<br>SCOTTO<br>SCOTTO<br>SCOTTO<br>SCOTTO<br>SCOTTO<br>SCOTTO<br>SCOTTO<br>SCOTTO<br>SCOTTO<br>SCOTTO<br>SCOTTO<br>SCOTTO<br>SCOTTO<br>SCOTTO<br>SCOTTO<br>SCOTTO<br>SCOTTO<br>SCOTTO<br>SCOTTO<br>SCOTTO<br>SCOTTO<br>SCOTTO<br>SCOTTO<br>SCOTTO<br>SCOTTO<br>SCOTTO<br>SCOTTO<br>SCOTTO<br>SCOTTO<br>SCOTTO<br>SCOTTO<br>SCOTTO<br>SCOTTO<br>SCOTTO<br>SCOTTO<br>SCOTTO<br>SCOTTO<br>SCOTTO<br>SCOTTO<br>SCOTTO<br>SCOTTO<br>SCOTTO<br>SCOTTO<br>SCOTTO<br>SCOTTO<br>SCOTTO<br>SCOTTO<br>SCOTTO<br>SCOTTO<br>SCOTTO<br>SCOTTO<br>SCOTTO<br>SCOTTO<br>SCOTTO<br>SCOTTO<br>SCOTTO<br>SCOTTO<br>SCOTTO<br>SCOTTO<br>SCOTTO<br>SCOTTO<br>SCOTTO<br>SCOTTO<br>SCOTTO<br>SCOTTO<br>SCOTTO<br>SCOTTO<br>SCOTTO<br>SCOTTO<br>SCOTTO<br>SCOTTO<br>SCOTTO<br>SCOTTO<br>SCOTTO<br>SCOTTO<br>SCOTTO<br>SCOTTO<br>SCOTTO<br>SCOTTO<br>SCOTTO<br>SCOTTO<br>SCOTTO<br>SCOTTO<br>SCOTTO<br>SCOTTO<br>SCOTTO<br>SCOTTO<br>SCOTTO<br>SCOTTO<br>SCOTTO<br>SCOTTO<br>SCOTTO<br>SCOTTO<br>SCOTTO<br>SCOTTO<br>SCOTTO<br>SCOTTO<br>SCOTTO<br>SCOTTO<br>SCOTTO<br>SCOTTO<br>SCOTTO<br>SCOTTO<br>SCOTTO<br>SCOTTO<br>SCOTTO<br>SCOTTO<br>SCOTTO<br>SCOTTO<br>SCOTTO<br>SCOTTO<br>SCOTTO<br>SCOTTO<br>SCOTTO<br>SCOTTO<br>SCOTTO<br>SCOTTO<br>SCOTTO<br>SCOTTO<br>SCOTTO<br>SCOTTO<br>SCOTTO<br>SCOTTO<br>SCOTTO<br>SCOTTO<br>SCOTTO<br>SCOTTO<br>SCOTTO<br>SCOTTO<br>SCOTTO<br>SCOTTO<br>SCOTTO<br>SCOTTO<br>SCOTTO<br>SCOTTO<br>SCOTTO<br>SCOTTO<br>SCOTTO<br>SCOTTO<br>SCOTTO<br>SCOTTO<br>SCOTTO<br>SCOTTO<br>SCOTTO<br>SCOTTO<br>SCOTTO<br>SCOTTO<br>SCOTTO<br>SCOTTO<br>SCOTTO<br>SCOTTO<br>SCOTTO<br>SCOTTO<br>SCOTTO<br>SCOTTO<br>SCO | Cilent                                     | <b>ID/Description</b>                              | Matrix<br>QC<br>Chosen<br>(/)<br>MS MSD | Matrix                                                                                                         | Date<br>Collected    | Time<br>Collected                                        |     |                                                                                                                                                                                                                                    |                |                                       | WEST                                                  | ON Ana                                                             |       | Use Only                                     |                                                 |                                  |                                                |                                      | ·      |
| A Wards                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                            |                                                    |                                         |                                                                                                                |                      | ر به<br>میرو اینینی<br>مراجع در اینینی<br>مراجع در اینین |     |                                                                                                                                                                                                                                    |                |                                       |                                                       |                                                                    |       |                                              | میکند به میکند.<br>معید به میکود<br>محمد محمد ا |                                  |                                                |                                      |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                            | 200 - 100 I. Laser, 18, 19 <sup>0</sup> - 13<br>19 |                                         |                                                                                                                |                      |                                                          |     |                                                                                                                                                                                                                                    |                |                                       |                                                       | 1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1 |       |                                              |                                                 |                                  |                                                |                                      |        |
| FIELD PERSONNEL:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | COMPLETE ONLY                              | SHADED AREAS                                       |                                         | ATE/RE                                                                                                         | VISIONS:             |                                                          |     | 5                                                                                                                                                                                                                                  |                |                                       |                                                       |                                                                    |       | WEST                                         | TON Anal                                        | vtics Us                         | e Only                                         |                                      | -      |
| Special Instructions:<br>14 Lint 4 TL<br>TZLP III CL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | and the second                             | and SUC                                            | -<br>-<br>                              |                                                                                                                | 1.       2.       3. |                                                          |     |                                                                                                                                                                                                                                    |                | · · · · · · · · · · · · · · · · · · · | •                                                     |                                                                    |       | amples w<br>Shipped<br>and Deliv<br>irbill # | ere: or<br>or<br>ered                           | COC<br>1) Pre<br>Packa<br>2) Uni | Tape was<br>esent on C<br>age Y o<br>broken on | outer<br>r N<br>Outer                |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                            |                                                    |                                         | the second s |                      |                                                          |     | ar e ser br>Al e ser e |                |                                       |                                                       | 2000 - 200<br>2000 - 200<br>2000 - 200                             | 3<br> | ) Receive<br>condition<br>) Labels in        | Y or N                                          | Packs<br>3) Pre                  | ige Y o<br>isent on S<br>.Y o                  | n N<br>ampie<br>N                    |        |
| by                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | by set                                     | Date Time,                                         | Relinquish<br>by                        | ed                                                                                                             | Received<br>by       |                                                          |     | N.Tim                                                                                                                                                                                                                              |                | Samp                                  | les Labe<br>Record?                                   | Between<br>is and<br>Y or 1                                        | 5     | ) Receive<br>loiding Tin                     | Y or N<br>d Within<br>nes<br>Y or N             | COC<br>Upon                      | Record Pi<br>Sample F<br>Y o                   | resent <sup>22</sup><br>lec't<br>r N |        |

COC#

5~3046

# Custody Transfer Record/Lab Work Request



مريزر

|                                    | AKE                | -X -            |                                                                                                                                                                                                                                    | an exercise r                 |                               | Refrige                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                   | REIquid            | a ż        | en pro       | 1 ° 6 QM       | 12.57         | ع المر <sup>ي</sup>   | V USP                                                                                       | 1218          |            | 7,278-8                | . <b>.</b>                                                                                                                                                                                                                         |                  | ande is                               | 112 <b>P</b> A                                                                   | <b>8</b> (1994)   |
|------------------------------------|--------------------|-----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|-------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|--------------------|------------|--------------|----------------|---------------|-----------------------|---------------------------------------------------------------------------------------------|---------------|------------|------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|---------------------------------------|----------------------------------------------------------------------------------|-------------------|
| Final Proj.                        | Samplin            | Date            | N. A. L. C. K.                                                                                                                                                                                                                     | 2 BULL                        |                               | #/Туре                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Container         | Sólid*             |            |              |                | aue S         |                       |                                                                                             |               |            |                        |                                                                                                                                                                                                                                    |                  | 73912                                 | 1. 20                                                                            | 8. M.(            |
| <pre>k Order # _ ect Contact</pre> | /Phone i           | T UA            | UHOY                                                                                                                                                                                                                               | VN HIL                        | N'X CE                        | XIII                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 9                 | fLiquid<br>Solid 4 | 14.        |              | 10             |               |                       |                                                                                             |               |            |                        | 1974 - 1974 - 1974 - 1974 - 1974 - 1974 - 1974 - 1974 - 1974 - 1974 - 1974 - 1974 - 1974 - 1974 - 1974 - 1974 -<br>1974 - 1974 - 1974 - 1974 - 1974 - 1974 - 1974 - 1974 - 1974 - 1974 - 1974 - 1974 - 1974 - 1974 - 1974 - 1974 - |                  |                                       |                                                                                  |                   |
| Project Man                        | Rec'd              |                 |                                                                                                                                                                                                                                    | 20011.1.2                     |                               | Preser                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | vatives           | A WAR              |            |              |                |               | ( n.Ed                |                                                                                             | 5 35 G. T.    |            |                        |                                                                                                                                                                                                                                    | 1000             |                                       |                                                                                  |                   |
|                                    | Del                | ា ស្រុកស្រុក    | TAT                                                                                                                                                                                                                                |                               |                               | ANALY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                   |                    | 5          | ORG          | BANIC          | -             |                       |                                                                                             |               | al la      |                        |                                                                                                                                                                                                                                    |                  |                                       | 1247-32 - 1034<br>1775 - 1034 - 1034<br>1775 - 1034 - 1034<br>1775 - 1034 - 1034 |                   |
| Rec'd                              |                    |                 | Date Due _                                                                                                                                                                                                                         |                               |                               | REQUE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ISTED             |                    | Ì Ì        |              | 22             | Hen           |                       | N Exc                                                                                       | 1             | Tet.       | ð                      |                                                                                                                                                                                                                                    |                  | 1906 A 19                             |                                                                                  | 8 <sup>2</sup> 84 |
|                                    |                    |                 |                                                                                                                                                                                                                                    |                               | Matrix                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                   |                    |            |              |                | 21.           | WE                    | 8101                                                                                        | I Anal        | vtics (    | Jse Or                 | ily i                                                                                                                                                                                                                              | ł                |                                       |                                                                                  |                   |
| E8:<br>Soll<br>Sediment            |                    | CI              | lent ID/Desc                                                                                                                                                                                                                       | cription                      | QC<br>Chosen<br>(~)<br>MS MSD | Matrix                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Date<br>Collected | Time<br>Collected  | J.S        | II RIN       | TTA +<br>WETAL | en Fui        | E's S                 | Cevility                                                                                    | ALL SALE      | 73/105     | 227                    | Echael                                                                                                                                                                                                                             | A ON             | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |                                                                                  | 101               |
| Sludge                             | 2                  | - Front of      |                                                                                                                                                                                                                                    |                               |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                   | 5.57 J.S.          |            |              |                |               |                       |                                                                                             |               |            |                        |                                                                                                                                                                                                                                    |                  |                                       |                                                                                  | ¥                 |
|                                    |                    | And and and     |                                                                                                                                                                                                                                    | and the second second         |                               | house is investig                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                   | to de la           |            |              |                |               |                       | 1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1 | 1             |            | الدينة :<br>الدينة : د |                                                                                                                                                                                                                                    |                  |                                       |                                                                                  |                   |
| Drum and a                         | 3                  |                 | 7. 7.                                                                                                                                                                                                                              | S. S.                         |                               | and the second se |                   |                    |            |              |                |               | 1<br>1<br>1           |                                                                                             |               |            | V                      |                                                                                                                                                                                                                                    |                  |                                       |                                                                                  |                   |
| )rum 🖓 🔐 🗖                         | 3                  | SET 11          | 313152                                                                                                                                                                                                                             | New Parts                     |                               | 1.54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   | Pak Line           |            |              | لاستشدا        |               | i                     | 1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1 | it            |            |                        |                                                                                                                                                                                                                                    | م<br>المناسبة ال | 1 m                                   |                                                                                  |                   |
| eachate .                          | 3                  |                 | All From                                                                                                                                                                                                                           | 20.1824                       |                               | 1202                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1 Se              | and and and        |            | à sha de car |                | اه به به زر ک | C                     |                                                                                             | i han solan a |            |                        | Linux                                                                                                                                                                                                                              | والمعرفين الم    | ينين ولاستان                          | 1                                                                                | 新校                |
| Vipe : K St                        | 2                  |                 |                                                                                                                                                                                                                                    |                               |                               | in Al B. (<br>Laterana)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Ser.              | Cart a to a        | Inita      | 1.1          | and abread     | in an         | 211                   |                                                                                             |               |            |                        | utilities and the                                                                                                                                                                                                                  |                  |                                       |                                                                                  |                   |
| lsh da ka                          |                    | V. Silling . S. | مر بر المربي br>مربي المربي ال | and a set of second           |                               | 128                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | S. S.             |                    | San san ta |              |                | wo ka         | a va V<br>Caractana   | a ritas                                                                                     | in airea.     |            |                        |                                                                                                                                                                                                                                    |                  |                                       |                                                                                  |                   |
|                                    | 1441               | Company an      |                                                                                                                                                                                                                                    | T A L                         | المتعادية                     | u i c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Prof              | Aust 2 M           | 1.27       |              | Land Second    |               | a.<br>La granda da la |                                                                                             |               | المعند شدة |                        | Section that                                                                                                                                                                                                                       | )                | 1 Hone Z                              |                                                                                  | 20                |
|                                    |                    |                 | -64<br>-64                                                                                                                                                                                                                         | م.<br>م. م. م. م. م. م. م. م. | a anti-                       | e assime complete                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Linesed & 1       | 1. 15              |            |              | and o          |               |                       |                                                                                             | line in the   |            |                        | يا قىيىتىمىتىغ<br>بىل                                                                                                                                                                                                              | والتحصيدين       |                                       |                                                                                  | 2 行               |
|                                    | 4                  |                 | and since                                                                                                                                                                                                                          |                               |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                   |                    | vi (entis) | Shine        |                | ear). a       | 10.10                 |                                                                                             |               | الم مساقة  |                        |                                                                                                                                                                                                                                    |                  |                                       |                                                                                  |                   |
|                                    |                    |                 |                                                                                                                                                                                                                                    |                               |                               | DATE/RE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | VISIONS:          |                    | ,          |              |                |               |                       |                                                                                             |               |            | WES                    | STON A                                                                                                                                                                                                                             | Anaiyt           | ics Use                               | Only                                                                             |                   |
| s-I<br>S-I<br>S-I                  | ons:<br>CDU<br>CDU | ッナK<br>ッド E     | -04<br>-04                                                                                                                                                                                                                         | 370                           | AY                            | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2                 |                    |            |              |                |               |                       |                                                                                             |               | - 1)<br>Ha |                        | were:<br>d o<br>vered _                                                                                                                                                                                                            |                  | 1) Pres<br>Packaç                     | ape was<br>ent on O<br>e Y oi                                                    | uter<br>N         |
| Alala -                            | OT H               | 'CA'S           | 57                                                                                                                                                                                                                                 | 14 50 50 10                   | 14D -                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4<br>5            | <u></u>            |            |              |                |               |                       |                                                                                             |               | _ 2)<br>3) | Ambler<br>Receiv       | nt or Chi<br>ed in Go<br>Y or                                                                                                                                                                                                      | bod              | Packag                                | oken on<br>e Y or<br>ent on S<br>Y or                                            | · N<br>ampie      |
|                                    |                    |                 |                                                                                                                                                                                                                                    |                               |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 6                 |                    |            |              |                |               |                       |                                                                                             |               |            |                        | Indicate<br>Preserve                                                                                                                                                                                                               | əd               |                                       | oken on<br>Y o                                                                   |                   |
| by                                 |                    |                 | Date                                                                                                                                                                                                                               | Time                          | Relinquist<br>by              | hed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Receive<br>by     | d D                | ate        | Tir          | ne             | Sam           | repand                | abels a                                                                                     |               | 5)         | Receiv                 | Y or<br>ed Withi                                                                                                                                                                                                                   | N                | COCR                                  | ecord Pr<br>ample R                                                              | esent<br>ec't     |
| 3                                  |                    | •               | 5/3                                                                                                                                                                                                                                | 1330                          |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                   |                    |            |              |                | NOT           |                       | ACT:                                                                                        | UIN.          | Ho         | olding T               | Imes<br>Y or                                                                                                                                                                                                                       | N                |                                       | Y or                                                                             | N                 |
|                                    |                    |                 |                                                                                                                                                                                                                                    |                               | •                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                   |                    |            |              |                |               |                       |                                                                                             | '<br>         |            |                        |                                                                                                                                                                                                                                    |                  |                                       | 14                                                                               |                   |

| na na serie de la companya de<br>la companya de la comp | Start Start Start                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.<br>                                                                                                                                                                                                                                                                                                                                               | ly Tra                                   | Refrige             |                                          |                                       | · · · · · · · |                                             |                         | Kernig P                                                                        | 8405-643<br>                                    | <mark></mark>                                                                                                                                                                                                                                                                                                                                         |                                                                                             |            |                                 |                                                 | ege                                            |                                                           |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|---------------------|------------------------------------------|---------------------------------------|---------------|---------------------------------------------|-------------------------|---------------------------------------------------------------------------------|-------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|------------|---------------------------------|-------------------------------------------------|------------------------------------------------|-----------------------------------------------------------|
| មីលែក<br>ទាំរបាត់សារាស                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1                                                                                                                                                                | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ala da esta da antesa da antes<br>Antesa da antesa da a<br>Antesa da antesa da a |                                          |                     | Container                                |                                       |               | 2012 C.A                                    |                         |                                                                                 |                                                 | ارد<br>میں دیکھ کا اندریا<br>میں دیکھ کا اندریا                                                                                                                                                                                                                                                                                                       |                                                                                             |            |                                 |                                                 |                                                |                                                           |
| Totto Toto                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | المراقبة المراجع المحاصلين.<br>وذكر المحاصلين المراجع المراجع المراجع المراجع المحاصلين المحاصلين المحاصلين المحاصلين المحاصلين المحاصلين الم<br>والمحاصلين المحاصلين | and the second                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                      | د.<br>موجد موجد کرد<br>موجد موجد کرد کرد | - Solito            |                                          | Solid<br>Eligidia                     |               | لي                                          |                         | dia anti-                                                                       | مو کو شد در<br>مرجع مرجع مرجع<br>محمد محمد مرجع | العسب ميماً ورور<br>والمسيح بي ميماً وروري<br>من روميد ركيو فروري                                                                                                                                                                                                                                                                                     | 5                                                                                           |            | 1                               | مربيا في من<br>مربيا له مر                      |                                                |                                                           |
| TORS CONTE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                 | The stand manual for                                                                                                                                                                                                                                                                                                                                                                                                                                                      | A so in a solution of the second s                                                                                                                                                                                                                                      | and a summer of                          | Preser              |                                          | Solici                                |               | 5. 1 minute<br>1 - 1 minute<br>1 - 1 minute |                         | anna an bair<br>an an bair                                                      |                                                 |                                                                                                                                                                                                                                                                                                                                                       |                                                                                             |            | hinner of head houses           |                                                 | فی میں ایک | المن المن المن<br>المن المن المن المن المن المن المن المن |
| 00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Dol                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | La se ante se                                                                                                                                                                                                                                                                                                    | a mar Arkenie . Na drawk i c             | ANALY               |                                          |                                       | -             | ORG                                         |                         | -                                                                               |                                                 |                                                                                                                                                                                                                                                                                                                                                       | - COLOR DO                                                                                  | ORG        |                                 |                                                 |                                                |                                                           |
| Date Rec'd<br>Account #                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                 | Date Due                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                      |                                          | REQU                | ESTED                                    |                                       | VOA           | BNA                                         | Pest/<br>PCB            | Herb                                                                            |                                                 |                                                                                                                                                                                                                                                                                                                                                       | Metal                                                                                       | NO 1       |                                 |                                                 | ور<br>محمد تقديماً في محمد                     | بنسعيرة                                                   |
| MATTER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                      | Matrix                                   |                     | an a |                                       |               | <b></b> _                                   | T                       |                                                                                 | WEST                                            | ON Anal                                                                                                                                                                                                                                                                                                                                               | ytics (                                                                                     | Use Oi     | nly                             |                                                 |                                                | <b></b>                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Lab<br>ID                                                                                                                                                                                                                                                       | Client ID/Desc                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ription                                                                                                                                                                                                                                                                                                                                              | QC<br>Chosen<br>(√)<br>MS MSD            | Matrix              | Date<br>Collected                        | Time<br>Collected                     | 724           | n<br>Shing<br>Shing<br>Shing                |                         |                                                                                 |                                                 |                                                                                                                                                                                                                                                                                                                                                       |                                                                                             |            |                                 |                                                 |                                                |                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                      |                                          |                     |                                          |                                       |               | (*                                          | 5                       |                                                                                 |                                                 | مر المراجع (م)<br>- المحمد المراجع (م)<br>- المحمد المراجع (م)                                                                                                                                                                                                                                                                                        |                                                                                             |            |                                 | مىرى بىرى<br>مەرىغا ئىسى بىر<br>مەرىكا بىر      |                                                |                                                           |
| SFURIO<br>GOILE<br>IL INTIM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                 | an a                                                                                                                                                                                                                                                                                                                                                                                                                                  | ی کر چه در                                                                                                                                                                                                                                                                                                       |                                          |                     | a kanadana a                             | to the second                         |               |                                             |                         | in<br>in<br>in<br>in<br>in<br>in<br>in<br>in<br>in<br>in<br>in<br>in<br>in<br>i |                                                 |                                                                                                                                                                                                                                                                                                                                                       | 1 1<br>1 1<br>1 1<br>1 1<br>1 1<br>1 1<br>1 1<br>1 1<br>1 1<br>1 1                          | -<br>-<br> |                                 | محمد مع الدين من الد<br>المحمد مع الدين الد     |                                                | i                                                         |
| धिततांष्ट्र<br>जन्महार्म्सान्द्र                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                 | م<br>میک مستقدی میدون میک کند.<br>روان میک کرد را با با در میک میک                                                                                                                                                                                                                                                                                                                                                                                                        | بېرىيى يەرىپىرىيى<br>بىرى يەرىپىرىيى                                                                                                                                                                                                                                                                                                                 |                                          |                     |                                          |                                       |               |                                             |                         |                                                                                 |                                                 | •                                                                                                                                                                                                                                                                                                                                                     |                                                                                             |            |                                 | مندوبة إيدرد                                    |                                                | Emilia                                                    |
| Tir Miles                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Balancaire.<br>Frank st                                                                                                                                                                                                                                         | and the second of the second                                                                                                                                                                                                                                                                                                                                                          | ار کا شمایی ایک سندی<br>مربع                                                                                                                                                                                                                                                                                                                         |                                          | Levi de Loreno      |                                          | a and a second                        |               |                                             |                         |                                                                                 | 11.<br>12.<br>13. ]                             |                                                                                                                                                                                                                                                                                                                                                       |                                                                                             | .L         | ومحمو المحاد مخترفهم            |                                                 |                                                |                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                 | in hydrogram (hydrogram) a dan and a dan ar barar barar<br>Angal a sanar a sanar an ang baran an ay barar yana<br>Mahada dan ang barar ang barar an angal yang bara                                                                                                                                                                                                                                                                                                       | برا را با گاه می میکنو و این برد<br>رو دار گاه که دور است از ا<br>ای دار<br>برو مقدار اعمام بخته اندین                                                                                                                                                                                                                                               |                                          |                     |                                          | 1   1   1   1   1   1   1   1   1   1 |               |                                             | 1999.<br>1997.<br>1997. |                                                                                 |                                                 | i nakon na ko<br>11<br>11<br>20 de angelere                                                                                                                                                                                                                                                                                                           | 1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1 |            | 1                               | na az anti Barria<br>77 - 14<br>Maria at Barria | 1                                              |                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                 | en aper en la regione se la construcción de la construcción de la construcción de la construcción de la constru<br>La construcción de la construcción d<br>Reconstrucción de la construcción d<br>Reconstrucción de la construcción d | مرین میں                                                                                                                                                                                                                                                                                                         |                                          |                     |                                          | a increase in the factor              |               |                                             |                         |                                                                                 | مىلىمى .<br>بەر                                 |                                                                                                                                                                                                                                                                                                                                                       |                                                                                             |            | 1                               | د د ار<br>معاقدها<br>د معاقدها                  | a barr a the state of the late                 |                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                      | ه د د منع وسیعد در اده                   | i andri u si intera | linder and the second                    |                                       |               |                                             |                         |                                                                                 | a d <u>i</u> a.                                 |                                                                                                                                                                                                                                                                                                                                                       | ]<br> <br> <br> <br> <br> <br> <br> <br>                                                    |            | Barta a Arran Ingan             | ميدو <b>ا</b> الدينية.                          |                                                | مرد المراجع<br>المراجع المراجع                            |
| FIELD PERSON                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | NEL: COMPLE                                                                                                                                                                                                                                                     | ETE ONLY SHADED                                                                                                                                                                                                                                                                                                                                                                                                                                                           | AREAS                                                                                                                                                                                                                                                                                                                                                |                                          | DATE/RE             | VISIONS:                                 | -                                     |               | المستنب أ                                   | him. H                  | مراجع                                                                           |                                                 |                                                                                                                                                                                                                                                                                                                                                       |                                                                                             |            |                                 |                                                 |                                                |                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                      | · · · · · · · · · · · · · · · · · · ·    |                     | 1                                        | · ·                                   |               | -                                           | <u>.</u>                |                                                                                 | a sector                                        |                                                                                                                                                                                                                                                                                                                                                       |                                                                                             |            |                                 |                                                 | s Use Or                                       |                                                           |
| 5714                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                 | C. Tup.                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                      | -                                        |                     | 2                                        |                                       |               |                                             |                         | ,                                                                               |                                                 |                                                                                                                                                                                                                                                                                                                                                       | - I)                                                                                        | Shippe     | were:<br>ed or                  | 1                                               | COC Tape<br>) Present                          | on O                                                      |
| 755                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | DAY                                                                                                                                                                                                                                                             | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                      | · -                                      |                     | 3                                        |                                       |               |                                             |                         |                                                                                 | : v                                             |                                                                                                                                                                                                                                                                                                                                                       | - A                                                                                         | irbili # _ | livered                         | - 2                                             | Package<br>2) Unbroke                          |                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                 | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | í.                                                                                                                                                                                                                                                                                                                                                   | •                                        |                     | . <b>4,</b>                              | · · · ·                               |               |                                             |                         |                                                                                 |                                                 |                                                                                                                                                                                                                                                                                                                                                       |                                                                                             |            | nt or Chille<br>ved in Goo      |                                                 | Package 1                                      |                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | an a                                                                                                                                                                                                                                                                                                             |                                          |                     | 5<br>6                                   |                                       |               |                                             |                         |                                                                                 |                                                 |                                                                                                                                                                                                                                                                                                                                                       | - C                                                                                         | ondition   | n Y or<br>Indicate<br>Preserved | N<br>4                                          | l) Unbroke<br>Sample                           | Y or<br>in on                                             |
| Relinquished                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Receive<br>by                                                                                                                                                                                                                                                   | ed Date                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Time                                                                                                                                                                                                                                                                                                                                                 | Relinquisi<br>by                         | hed                 | Receive                                  | iq 🛬 🗠 C                              | )ate          | Tim                                         | nə                      | Discre                                                                          | ancies<br>Is Label                              | Between<br>s and                                                                                                                                                                                                                                                                                                                                      | an a                                                    |            | Y or ved Within                 | N , C                                           |                                                | rd Pr                                                     |
| MAST                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                 | 3/Z                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1500                                                                                                                                                                                                                                                                                                                                                 |                                          | y an in             |                                          | ting .                                |               |                                             |                         | COC F                                                                           | ecord?                                          | Y or N                                                                                                                                                                                                                                                                                                                                                | S H                                                                                         | oldina 1   | Times 🐫                         |                                                 | Jpon Sam                                       | ple R<br>Y or                                             |
| 同社主                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | · .                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                      |                                          |                     | · .                                      |                                       |               |                                             |                         | and the second                                                                  |                                                 | 1999 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -<br>1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -<br>1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - |                                                                                             |            | You                             | 1                                               |                                                |                                                           |

| E11 FID PO Sampling Data was an end of a set | Lington       Array       <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| With Original Control Provided States of the second states the second states of the second states of the | WorkOrDick/<br>Fic/Cit/Onlice/Phone       Preservatives                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| DProject Manager       Detervatives       Detevatives       Detervatives                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | DRIDICICI Manager       Defended Add Secure Add                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Commerciant       Del(       Commerciant       ANALYSES       Requested       State       St                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Construction       Del verter       Del verter       Del verter       AnALYSES<br>REQUESTED       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Account #                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Account #<br>ATRIX<br>ODES<br>Solition<br>Solition<br>Solition<br>Solition<br>Solition<br>Solition<br>Solition<br>Solition<br>Solition<br>Solition<br>Solition<br>Solition<br>Solition<br>Solition<br>Solition<br>Solition<br>Solition<br>Solition<br>Solition<br>Solition<br>Solition<br>Solition<br>Solition<br>Solition<br>Solition<br>Solition<br>Solition<br>Solition<br>Solition<br>Solition<br>Solition<br>Solition<br>Solition<br>Solition<br>Solition<br>Solition<br>Solition<br>Solition<br>Solition<br>Solition<br>Solition<br>Solition<br>Solition<br>Solition<br>Solition<br>Solition<br>Solition<br>Solition<br>Solition<br>Solition<br>Solition<br>Solition<br>Solition<br>Solition<br>Solition<br>Solition<br>Solition<br>Solition<br>Solition<br>Solition<br>Solition<br>Solition<br>Solition<br>Solition<br>Solition<br>Solition<br>Solition<br>Solition<br>Solition<br>Solition<br>Solition<br>Solition<br>Solition<br>Solition<br>Solition<br>Solition<br>Solition<br>Solition<br>Solition<br>Solition<br>Solition<br>Solition<br>Solition<br>Solition<br>Solition<br>Solition<br>Solition<br>Solition<br>Solition<br>Solition<br>Solition<br>Solition<br>Solition<br>Solition<br>Solition<br>Solition<br>Solition<br>Solition<br>Solition<br>Solition<br>Solition<br>Solition<br>Solition<br>Solition<br>Solition<br>Solition<br>Solition<br>Solition<br>Solition<br>Solition<br>Solition<br>Solition<br>Solition<br>Solition<br>Solition<br>Solition<br>Solition<br>Solition<br>Solition<br>Solition<br>Solition<br>Solition<br>Solition<br>Solition<br>Solition<br>Solition<br>Solition<br>Solition<br>Solition<br>Solition<br>Solition<br>Solition<br>Solition<br>Solition<br>Solition<br>Solition<br>Solition<br>Solition<br>Solition<br>Solition<br>Solition<br>Solition<br>Solition<br>Solition<br>Solition<br>Solition<br>Solition<br>Solition<br>Solition<br>Solition<br>Solition<br>Solition<br>Solition<br>Solition<br>Solition<br>Solition<br>Solition<br>Solition<br>Solition<br>Solition<br>Solition<br>Solition<br>Solition<br>Solition<br>Solition<br>Solition<br>Solition<br>Solition<br>Solition<br>Solition<br>Solition<br>Solition<br>Solition<br>Solition<br>Solition<br>Solition<br>Solition<br>Solition<br>Solition<br>Solition<br>Solition<br>Solition<br>Solition<br>Solition<br>Solition<br>Solition<br>Solition<br>Solition<br>Solition<br>Solition<br>Solition<br>Solition<br>Solition<br>Solition<br>Solition<br>Solition<br>Solition<br>Solition<br>Solition<br>Solition<br>Solition<br>Solition<br>So |
| QDES       Lab       Client ID/Description       Coceents       Matrix       Date       Time         QC       Matrix       Collected                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ODESITION       Cilent ID/Description       OC<br>Chosen<br>(/)       Matrix       Date<br>Collected       Time<br>Collected       Vi         Soldrage<br>Collected       MS       MSD       Matrix       Date<br>Collected       Time<br>Collected       Vi       Vi </td                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Standard       Standard <td< th=""><th>A SUCCO<br/>Wato/<br/>Ol/S<br/>Succomments<br/>Solida<br/>Upudo<br/>Leachate<br/>ISS TILIZZIN-1<br/>Leachate</th></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | A SUCCO<br>Wato/<br>Ol/S<br>Succomments<br>Solida<br>Upudo<br>Leachate<br>ISS TILIZZIN-1<br>Leachate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Dum       35       111111111111111111111111111111111111                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | - Drum<br>Liquides<br>EP/TCLP:<br>Leachato:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Druma       35       TUDENDS         Leachator       35       TUDENDS         Crish       44       44         Crin       44 <td>Diune<br/>Liquida<br/>Lepitol 2<br/>Leachator<br/>Loachator</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Diune<br>Liquida<br>Lepitol 2<br>Leachator<br>Loachator                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| EPTICLP       35-770/2015-       10-10-10-10-10-10-10-10-10-10-10-10-10-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Who       Image: State of the           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Field       Image: Second          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Special Instructions:      1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Special Instructions:      1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Special Instructions:       1.       WESTON Analytics Ose on the second                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Special Instructions:       1.       WESTON Analytics Ose on the second                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 5-7/1/58-04 / CAVE 1/12 1) Shipped or 1) Present c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Special Instructions:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 5-600006-07 ( TCHSMMALING3Airbill #2) Unbroker<br>5-700 293-514 (2) Ambient or Chilled Package Y                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5-7/1/58-07 / CALE 01172 1) Shipped or 1) Present on                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | S-GUP(G-07) TLASMARL 2) Unbroken a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| · 3) Received in Good 3) Present of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3) Received in Good 3) Present on                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| A Labels Indicate 4) Labels Indicate 4) Labels Indicate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Properly Preserved Sample Y                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 6 Condition Y or N Y                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| by by by Samples Labels and 5) Received Within Upon Samp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 6 4) Unbroken o<br>Property Preserved Sample Y                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| MDS HER Y OR N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Bit Construction     <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |

,

1

Cout 429096

#### WESTON Analytics Use Only

# Custody Transfer Record/Lab Work Request



| Cilent BA                                                              | ME        | Keener                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                         | Refrige                                                                                          | rator #              | 100010010116                                                                                                    | 100000      | 1.44. P. V.S. 275         | and the second second | 2.87 Y.F. 9               |                      | NA BUSIN                    | A. 70        | 11111111111  | a alla        |                                | 2111910       | -               | 1250555              | estat.         | Bach              |
|------------------------------------------------------------------------|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|--------------------------------------------------------------------------------------------------|----------------------|-----------------------------------------------------------------------------------------------------------------|-------------|---------------------------|-----------------------|---------------------------|----------------------|-----------------------------|--------------|--------------|---------------|--------------------------------|---------------|-----------------|----------------------|----------------|-------------------|
| Est: Final Proj                                                        | Samp      | ling Date                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                         | #/Type                                                                                           | Container            | atiquid)<br>#Solida                                                                                             |             | Carl La                   | 14 8                  | م ند ج ند م<br>محمد الحاد | and the stand        | 1. 20 - 20 - 21<br>La maine |              |              |               |                                |               |                 | <b>45.80</b>         | i i fil        | ALC: N            |
| Est: Final Proj:<br>Work Order #2<br>Project Contac<br>AD Project Mar  |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     | The second second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                         |                                                                                                  | )                    | 1Liquid                                                                                                         | 1           |                           | 5 6                   |                           |                      | 100                         | 1 33 da      |              |               |                                |               |                 | -                    | sing<br>Ball   | 化的<br>分析的         |
| AD Protect Mar                                                         | ACAT      | States of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 25 Flore            | WI to the practice                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | a Same and                              | Preserv                                                                                          | atives.              |                                                                                                                 |             |                           |                       |                           | a 12                 |                             | Luchai       |              |               |                                |               | 制造道法            | 10                   | Stel           | 13.41             |
| QC /                                                                   | De        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | TAT                 | State and settions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Section Second                          | ANALY                                                                                            | 959                  |                                                                                                                 |             | ORG                       | ANIC                  |                           |                      |                             |              |              | DRG           |                                |               |                 |                      |                | 948 I<br>1818     |
| Date Rec'd<br>Account #                                                |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Date Due            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                         | REQUE                                                                                            | STED -               |                                                                                                                 | N V V       | BNA                       | Pest/<br>PCB          | Herb                      |                      |                             |              | Metal        | Ŋ             |                                |               |                 |                      |                | 04-6              |
| STATUS PLANADAN                                                        |           | [                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                         | <u> </u>                                                                                         |                      |                                                                                                                 |             |                           |                       | ł                         | WE                   | STON                        | Analy        | tics l       | Use O         | nly                            | +             |                 |                      |                |                   |
| MATRIX<br>CODES: 4<br>8 - Soll - 445<br>SE - Sediment<br>SOL Solid dr. | Lab<br>ID | c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | illent ID/Desc      | ription                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Matrix<br>QC<br>Chosen<br>(√)<br>MS MSD | Matrix                                                                                           | Date<br>Collected    | Time<br>Collected                                                                                               | N.          | N. S. S.                  |                       |                           |                      |                             |              |              |               |                                |               |                 |                      | ممر            |                   |
| SLSSludge<br>WSWater                                                   |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 18. Erst            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                         |                                                                                                  |                      |                                                                                                                 | Lecarda -   |                           | al a literary         |                           |                      |                             |              |              |               |                                |               |                 |                      |                |                   |
|                                                                        |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                         |                                                                                                  | 15 6.                | Con marile                                                                                                      |             |                           |                       |                           |                      |                             |              |              |               | E. Yu                          |               | 244 <u>7</u> 84 |                      |                | ()<br><b>1</b> 64 |
| Solids                                                                 |           | In the second state of the |                     | 14 P. S. 19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4                                       | 1<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2 | t a same             | Salara attaine                                                                                                  |             |                           |                       |                           | 1 wissing            | معدینی در ا                 |              |              | 5             | يونيم معينية ال<br>1933 (2017) |               |                 |                      |                | 5369              |
| Louida<br>EPACER                                                       | ~         | 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                     | من و من المراجع المن و من المراجع المر<br>من المراجع المر<br>من المراجع المر                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                         |                                                                                                  | Lei construction     | Contraction (1)                                                                                                 |             | tins for an<br>percent of |                       | La Strine La              | Server and           |                             |              |              | 1 Manua 2014. |                                |               |                 |                      |                | <b>新</b> 代        |
| Win- Wie⊖ seis                                                         |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | a summer a so at so | and a start of the second s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                         |                                                                                                  | I Ki is is mentioned | a and and a second s |             |                           | And the second        | 1                         |                      | 1                           | 1            |              |               |                                |               |                 |                      | K je j         |                   |
| Ge (EG)                                                                |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     | and a start of the second s<br>The second se<br>The second s<br>The second se |                                         |                                                                                                  |                      |                                                                                                                 |             |                           |                       | 1 interest                | deivezt-e.s          |                             | Lui vesti te |              |               | Class.                         |               |                 |                      | 教徒             |                   |
|                                                                        |           | Section of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                         |                                                                                                  | and and a second     | 1                                                                                                               |             | ()<br>()<br>()            |                       | Sector                    | ر قا<br>مەربىيە قارى |                             |              |              |               |                                |               |                 |                      |                | 2.5               |
|                                                                        |           | Sector S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | A at here           | Se to inc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | austrie - Eaustrie                      | and the street                                                                                   |                      |                                                                                                                 |             |                           |                       |                           | 10 1                 |                             | r. 52        |              |               |                                |               | 550867<br>5507  |                      |                | ***               |
|                                                                        |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                         | DATE/RE                                                                                          | VISIONS              | And the second                                                                                                  | a later had |                           | Lateria               | hard on                   | P. S. Can            | a pril<br>a Boston (* )     |              | <u>(</u>     |               | 55 b                           | in the second | Marce           |                      |                | \$ <b>3</b>       |
| FIELD PERSON<br>Special Instruct                                       |           | OMPLETE C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | INLY SHADE          | D AREAS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | J                                       | DATE/RE                                                                                          | 1                    |                                                                                                                 |             |                           |                       |                           |                      |                             |              |              | WE            | STON                           | Analy         | tics U          | Jse On               | ly             |                   |
| 35-TU                                                                  | 127       | 1-04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ANO                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                         |                                                                                                  | 2                    |                                                                                                                 |             |                           |                       |                           |                      |                             |              |              |               | s were:<br>bed                 | or            |                 | C Tape '<br>resent o |                | er                |
| 35-70                                                                  |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     | DAY TO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | RN                                      |                                                                                                  | 3                    |                                                                                                                 |             |                           |                       |                           |                      |                             |              | - <b>)</b> H |               | elivered                       |               | Pac             | kage `               | or             | Ν                 |
| Alloth                                                                 |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                         |                                                                                                  | 4                    |                                                                                                                 |             |                           |                       |                           |                      |                             |              |              | •             | ent or C                       | hilled        | 2) U<br>Pac     | Inbrokei<br>kage     | n on O<br>( or | N                 |
| 7811 WIZI                                                              | ي المشه   | a finer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 20019               | A Carl May                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                         |                                                                                                  | 5                    |                                                                                                                 |             | P                         |                       |                           |                      |                             |              |              |               | ived in (<br>on Y d            |               | 3) P            | resent (             | on Sar<br>/ or | nple<br>N         |
|                                                                        |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                         |                                                                                                  | , 6                  |                                                                                                                 | ····        |                           |                       |                           |                      | <u></u>                     |              |              |               | is Indica<br>y Presei          |               |                 | Inbroke<br>nple      |                | N                 |
| Relinquished<br>by                                                     | F         | Received<br>by                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Date                | Time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Relinquis<br>by                         | hed                                                                                              | Receive<br>by        | d I                                                                                                             | Date        | Th                        | ne                    | Sar                       | nples l              | cies Be<br>.abels i         | and          | 5            | i) Rece       | Y c<br>Ned Wi                  | or N          | co              | C Recoi              | d Pres         | sent<br>c't       |
| mas                                                                    |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Hpa                 | 1BCD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                         |                                                                                                  | <u> </u>             |                                                                                                                 |             | $\vdash$                  |                       |                           | C Reco               | Jar Y                       | or N         | ŀ            | loiding       | Times<br>Y (                   | or N          |                 | ١                    | r or           | N                 |
| RFW 21-21-00¥*                                                         | 7/01      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     | L372                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ,                                       | L373                                                                                             | 1                    | 375                                                                                                             |             | .377                      |                       | L3                        | 378                  | Ref                         | #            |              | Co            | oler#                          |               |                 |                      | 38             | 31-59             |
|                                                                        | (91       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     | 0/1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | •                                       | 2010                                                                                             |                      | 7                                                                                                               |             | •                         |                       |                           |                      |                             |              |              |               | _                              |               |                 |                      | 1              |                   |

Pine Horas Antonia ....

WESTON Analytics Use Only

COC# 429096

# **Custody Transfer Record/Lab Work Request**



|                                                    |           | ليسبيهم           |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -             |                  |                                            |                               |                           | ٠,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                    |             |                                                      |                                          |                 |                      |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                           | Pag                                                            | θ                          | <u> an</u> OL                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|----------------------------------------------------|-----------|-------------------|----------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|------------------|--------------------------------------------|-------------------------------|---------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|-------------|------------------------------------------------------|------------------------------------------|-----------------|----------------------|-----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|----------------------------------------------------------------|----------------------------|-------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Clion                                              | -93       | 1 anin an         | A Brief it south the south                                                                                     | All the state                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | and the start | - Cuisar         | Refrige                                    | rator #                       |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |             |                                                      |                                          |                 |                      |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                           |                                                                |                            |                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Est, Final Prol.<br>Work Order #<br>Project Contac | Samp      | ling Date         |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                  | #/Туре                                     | Container                     | Solid :                   | the state of the s | ノション               |             |                                                      |                                          |                 |                      |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2000 B                                    |                                                                |                            | 1725<br>1414                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Work Order # 2                                     | 1/Phor    |                   |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5. 10. 50     | 1519             | - Yolum                                    | 63                            | iulquid.<br>ISõliõ        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |             |                                                      |                                          |                 |                      |                                         | 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                           |                                                                | 57 ( )<br>17 ( ) ( )       |                                                                   | 1000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| AD Project Mai                                     | nader     | ELCAL Y           | 15                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | a a sura      | 1.15             | Presen                                     | vatives                       |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Jacob State        |             | 1.20                                                 | 100                                      | 1               | 1                    |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                           |                                                                | ANT                        | 4.35                                                              | 20.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| AD Project Mar                                     | D         | BIEN, HARR        | TAT                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                  | ANALY                                      | 255                           |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ORG                | ANIC        |                                                      |                                          |                 |                      |                                         | DRG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                           | 、款行                                                            | <b>1</b>                   |                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Date Rec'd<br>Account #                            |           |                   | Date Due _                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                  | REQUE                                      |                               |                           | ٩<br>٩                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | BNA                | Pest        | Herb                                                 |                                          | (17)<br>1       |                      | Metal                                   | S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                           | 和私                                                             |                            |                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| ANAT DIVISION                                      |           | 1                 |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               | 41.v             |                                            |                               |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |             | 1                                                    | WE                                       | STON            | I Anal               | ytics l                                 | Use O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | nly                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ł                                         |                                                                |                            |                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| (MATRIX<br>CODES: 225-7                            | Lab<br>ID | C                 | ilent ID/Desc                                                                                                  | ription                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Cho           | trix<br>C<br>Sen | Matrix                                     | Date<br>Collected             | Time<br>Collected         | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                    |             |                                                      |                                          | ¥.,             |                      |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                           |                                                                |                            |                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| SE - Sediment                                      |           |                   |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               | /)<br>MSD        |                                            |                               | ł                         | N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                    |             | {                                                    | · ·                                      |                 | <b>.</b>             | 1                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ļ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                           |                                                                |                            |                                                                   | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| SL-Sludge                                          |           | 35                | 9.77.77.87                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               | L                |                                            |                               | 1.00                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |             |                                                      |                                          |                 |                      |                                         | 10 - 100 - 10<br>55 - 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                           |                                                                |                            |                                                                   | 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                    |           |                   | aliteration for all the second se | akazaka nakaza zotana<br>Ing peperantapan na                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |               |                  | bird (t. <b>V</b> an Trank)<br>N           | <pre>i / Nimeto inv</pre>     | 2.45°                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                  |             |                                                      |                                          |                 | 27 J.X 244           |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                           |                                                                |                            | ****                                                              | 1.18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| O OI S A<br>A Arct<br>DS Drum<br>Solids            |           |                   |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               | 630-044          | V, N 5, 179                                | <u>مر</u> بارد                |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1. / 19 mm / 4 / 4 | EC UNAT     | 11111                                                | 1 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4  |                 |                      |                                         | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | No. ork                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | G. T. State                               |                                                                |                            |                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| DL - Drum                                          |           |                   |                                                                                                                | 1)315 Barrier                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |               |                  | fan en | دهمه که در تروی<br>م          |                           | a na ana<br>Ang tanàn<br>Ang taong                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                    | <b>.</b>    |                                                      | 100 million (1997)<br>100 million (1997) |                 |                      |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | L'E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5.259 - 5<br>Griden - 5                   |                                                                |                            |                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| LESSEP/TCLPS                                       |           |                   |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                  |                                            | karaftaftar karadar<br>Series |                           | Bu and Alba                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ansta da ka        | G           |                                                      | 6                                        |                 | ••••••••••           |                                         | 1411 1 - 144 - 14<br>17 - |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 677.784                                   |                                                                |                            |                                                                   | 1947                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| WI - Wipe                                          |           | TEL SHARPER       |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                  |                                            |                               | Contraction of the second |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2                  | 13          | Contractor<br>Contractor<br>Contractor<br>Contractor | 5. de 13                                 |                 |                      |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Section of the sectio |                                           |                                                                |                            | and a                                                             | Costante<br>Costante<br>Costante<br>Costante<br>Costante<br>Costante<br>Costante<br>Costante<br>Costante<br>Costante<br>Costante<br>Costante<br>Costante<br>Costante<br>Costante<br>Costante<br>Costante<br>Costante<br>Costante<br>Costante<br>Costante<br>Costante<br>Costante<br>Costante<br>Costante<br>Costante<br>Costante<br>Costante<br>Costante<br>Costante<br>Costante<br>Costante<br>Costante<br>Costante<br>Costante<br>Costante<br>Costante<br>Costante<br>Costante<br>Costante<br>Costante<br>Costante<br>Costante<br>Costante<br>Costante<br>Costante<br>Costante<br>Costante<br>Costante<br>Costante<br>Costante<br>Costante<br>Costante<br>Costante<br>Costante<br>Costante<br>Costante<br>Costante<br>Costante<br>Costante<br>Costante<br>Costante<br>Costante<br>Costante<br>Costante<br>Costante<br>Costante<br>Costante<br>Costante<br>Costante<br>Costante<br>Costante<br>Costante<br>Costante<br>Costante<br>Costante<br>Costante<br>Costante<br>Costante<br>Costante<br>Costante<br>Costante<br>Costante<br>Costante<br>Costante<br>Costante<br>Costante<br>Costante<br>Costante<br>Costante<br>Costante<br>Costante<br>Costante<br>Costante<br>Costante<br>Costante<br>Costante<br>Costante<br>Costante<br>Costante<br>Costante<br>Costante<br>Costante<br>Costante<br>Costante<br>Costante<br>Costante<br>Costante<br>Costante<br>Costante<br>Costante<br>Costante<br>Costante<br>Costante<br>Costante<br>Costante<br>Costante<br>Costante<br>Costante<br>Costante<br>Costante<br>Costante<br>Costante<br>Costante<br>Costante<br>Costante<br>Costante<br>Costante<br>Costante<br>Costante<br>Costante<br>Costante<br>Costante<br>Costante<br>Costante<br>Costante<br>Costante<br>Costante<br>Costante<br>Costante<br>Costante<br>Costante<br>Costante<br>Costante<br>Costante<br>Costante<br>Costante<br>Costante<br>Costante<br>Costante<br>Costante<br>Costante<br>Costante<br>Costante<br>Costante<br>Costante<br>Costante<br>Costante<br>Costante<br>Costante<br>Costante<br>Costante<br>Costante<br>Costante<br>Costante<br>Costante<br>Costante<br>Costante<br>Costante<br>Costante<br>Costante<br>Costante<br>Costante<br>Costante<br>Costante<br>Costante<br>Costante<br>Costante<br>Costante<br>Costante<br>Costante<br>Costante<br>Costante<br>Costante<br>Costante<br>Costante<br>Costante<br>Costante<br>Costante<br>Costante<br>Costante<br>Costante<br>Costante<br>Costante<br>Costante<br>Costante<br>Costante<br>Costante<br>Costante<br>Costante<br>Costante<br>Costante<br>Costante<br>Costante<br>Costante<br>Costante<br>Costante<br>Costante<br>Costante<br>Costante<br>Costante<br>Costante<br>Costante<br>Costante<br>Costante<br>Costante<br>Costante<br>Costante<br>Costante<br>Costante<br>Costante<br>Costante<br>Costante<br>Costante<br>Costante<br>Costante<br>Costante<br>Cos |
| X hOther, from Fish                                |           | Constant and      |                                                                                                                | A CLASSIC COLOR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               | ek anda          |                                            | - Alexandras                  |                           | desire-si                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                    | 101 (J. 16) |                                                      |                                          |                 |                      | 1                                       | 1. A. C. C.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 244 C 185                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                           | 湯か                                                             | 44.5                       | ALC: NO                                                           | 1.1.13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| AN ALL LAND AND AND                                | <u> </u>  | Sector Contractor | And Annald Press                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                  |                                            | L                             |                           | Containe Car                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                    | S           |                                                      | 8<br>                                    | والمرتبعة مرتبه |                      | 4                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | an instant                                | Lucities of                                                    |                            |                                                                   | 144.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                    |           | STATISTICS        |                                                                                                                | Sand and a start of the start o |               |                  | 200                                        | 2011 A. 110                   | 67                        | Sauces.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                    |             | tifet                                                |                                          | Share store and |                      |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                           |                                                                | AV SOF                     | 1000 (A)                                                          | 1.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                    |           |                   |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               | 001570           | A. J. Barrow                               | And Associates Del            |                           | 201-11-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Carelo y igo       |             |                                                      | 0.020                                    | منطق            | م هذه الحدث الم<br>ا | -                                       | t P<br>at and an                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | al and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | فمستعد                                    |                                                                | 100000                     | ANNA CONTRACT                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| A STATE OF THE STATE OF THE STATE OF               |           | 代命法制              |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                  |                                            |                               |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |             |                                                      |                                          |                 |                      | . Setting                               | esaks                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                           | 物理                                                             |                            |                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| FIELD PERSON<br>Special Instruct                   |           | OMPLETE ON        | NLY SHADE                                                                                                      | AREAS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |               | ינ               | DATE/RE                                    |                               |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |             |                                                      |                                          |                 |                      |                                         | WE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | STON                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Analy                                     | tics U                                                         | se On                      | ly                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                    | Ĵ(ĸ       | ge /              | Date                                                                                                           | Time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |               | quish<br>by      |                                            | 2<br>3                        | d Di                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |             |                                                      |                                          | les Bet         |                      | 1)<br>Ali<br>2)<br>3)<br>Co<br>4)<br>Pr | amples<br>Shippe<br>and De<br>rbill #<br>Amble<br>Receiv<br>ondition<br>Labels<br>operly<br>Receiv                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ed<br>livered<br>nt or C<br>ved In C<br>ved In C<br>ved In C<br>n Y o<br>Indica<br>Presen<br>Y o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | hilled<br>Bood<br>r N<br>te<br>ved<br>r N | 1) Pi<br>Paci<br>2) Ui<br>Paci<br>3) Pi<br>4) Ui<br>Sam<br>COC | nbroken<br>ple Y<br>Record | on Oute<br>'or<br>on On Ou<br>'or<br>Sam<br>'or<br>'or<br>d Prese | N<br>uter<br>N<br>nple<br>N<br>N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| mps                                                |           |                   | tha                                                                                                            | 1800                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |               |                  |                                            |                               |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |             |                                                      | Reco                                     | rd? Y           |                      |                                         | olding 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                           | Upoi                                                           | n Sampi<br>Y               | ie Rec'<br>Or                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| RFW 21-21-001/A-7                                  | /91       |                   |                                                                                                                | L37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2             |                  | L373                                       | L3                            | 75                        | L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 377                |             | L37                                                  | 78                                       | Ref#            |                      |                                         | Coo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ler#                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                           |                                                                |                            | 381                                                               | 1-596a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |

| Client                                 | Bake                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                              |                                         |                                                  | Refrige   | rator #                                       |                              |      | 1           |              |                                              |                    |                                                                                                                 |              |         |                                                                                                                 |             | Page                     |                  | Ŧ     |
|----------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|-----------------------------------------|--------------------------------------------------|-----------|-----------------------------------------------|------------------------------|------|-------------|--------------|----------------------------------------------|--------------------|-----------------------------------------------------------------------------------------------------------------|--------------|---------|-----------------------------------------------------------------------------------------------------------------|-------------|--------------------------|------------------|-------|
| Est. Final Prol. S                     | ampling Date                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | . A.A.                                       | 1.15                                    | (AAK)                                            |           | Container                                     |                              | 101  |             | 1274         |                                              | Anne in Liv        |                                                                                                                 |              |         |                                                                                                                 |             | aliger 1995<br>Anno 1996 |                  |       |
| Work Order #                           | · · · · <b>· · · · · · ·</b> · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1                                            | Par                                     |                                                  |           | 110.000                                       |                              | 100  | 1. 1. p.    | as ?!        | a p p                                        | N AV               | VE I                                                                                                            |              |         |                                                                                                                 |             |                          | ti desad         | · ·   |
| AD Project Mana                        | ner De                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | AISE //                                      | 13/601                                  | Cold P. Candida                                  | Preser    |                                               | Lisolid .                    |      |             |              |                                              |                    |                                                                                                                 |              |         |                                                                                                                 |             |                          | 6 7087<br>6 9844 | 1     |
| QC                                     | Del                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | TAT                                          | 11 Sundan Mark                          |                                                  | ANALY     | SES                                           |                              |      | ORG         | ANIC         |                                              |                    |                                                                                                                 | 212.24       | NORG    | · · · · · ·                                                                                                     |             |                          |                  | N.C   |
| Date Rec'd<br>Account #                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | _Date Due                                    |                                         |                                                  | REQUE     | STED                                          |                              | VOA  | BNA         | Pest/<br>PCB | Herb                                         | ().<br>1 116 - 13  | يندي أسادين                                                                                                     |              | SN N    | a la contra de la co |             |                          |                  | 50.00 |
|                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                              |                                         | Matrix                                           |           |                                               |                              |      | T           | 1            |                                              | WES                | TON A                                                                                                           | nalytic      | s Use ( | Only                                                                                                            | ł           |                          |                  |       |
| 8 - 4 Soll And                         | Lab<br>ID                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Client ID/Desci                              | ription                                 | QC<br>Chosen                                     | Matrix    | Date<br>Collected                             | Time<br>Collected            | 104  |             |              |                                              |                    |                                                                                                                 |              |         |                                                                                                                 |             |                          |                  |       |
| SO Sold WAT                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                              |                                         |                                                  | - A.      |                                               |                              | 2    |             |              |                                              |                    |                                                                                                                 |              |         |                                                                                                                 |             |                          |                  |       |
| SL Slüdge                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | MAJHE                                        |                                         |                                                  |           | 1257                                          |                              |      |             |              |                                              |                    |                                                                                                                 |              |         |                                                                                                                 |             |                          | 1. M.C.          |       |
| O OIISI                                | and the second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | MUSG                                         | 1 Th Day P. Carbon 1.411.               |                                                  | 122       | 8 8 8 8 7 1<br>9 8 2 4 8 7 1<br>9 8 2 4 8 7 1 |                              | Sec. |             |              |                                              | ملة مرة مسرة.<br>م |                                                                                                                 |              |         |                                                                                                                 |             |                          |                  |       |
| DLY Drum                               | 2 - In Later Manual                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <u>/////////////////////////////////////</u> | PH. PH. 417 145 145 145415 1            |                                                  |           |                                               | 1020                         | 52   | ter.        |              |                                              |                    |                                                                                                                 | News a Burne |         |                                                                                                                 | المستحد مع  |                          |                  | 周辺    |
| Liquida<br>LizzEP/TCLP<br>The Leachate | 100100010001007100/17.210                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | MOSSI.                                       | where the part of the                   |                                                  | ( jej)    | 841723                                        | Vinna Cardona<br>15 and 16 A | 340  |             |              | i.                                           |                    |                                                                                                                 |              |         |                                                                                                                 |             |                          |                  |       |
| WI Wipe                                | and the second state of the second seco | MASEN.                                       | 111111111111111111111111111111111111111 | The subscription of second second                |           | N.                                            | 15.15                        | 37   |             |              |                                              | arista din<br>G    | initia de la la constante de la |              |         |                                                                                                                 |             |                          |                  |       |
| F. Fish And                            | THE PARTY OF THE PARTY OF THE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                              | THE REPORT OF THE REPORT OF THE         |                                                  | 10 M      | 77557                                         | 230                          | 12   |             |              |                                              |                    |                                                                                                                 |              |         |                                                                                                                 |             | <b>新新教</b>               |                  | Č.    |
|                                        | 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | MPS/GFF                                      | ا فر بر میروند.<br>۱۳ (می وروند) از م   |                                                  | <u> A</u> | SPINT,                                        | 12552                        |      |             |              |                                              |                    |                                                                                                                 |              |         |                                                                                                                 |             |                          |                  | 6 X 8 |
|                                        | ATT 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                              | 1 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |                                                  | Vers X.   | 18-232                                        | WART-                        |      |             |              |                                              |                    |                                                                                                                 |              |         |                                                                                                                 |             |                          |                  | 100   |
| FIELD PERSONNI                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                              |                                         |                                                  | DATE/RE   | /ICIONS:                                      | Canita Sec. Sec.             |      | در بیمبرد ا |              | مواليدية من                                  | ا<br>ساله مدیند    | د.<br>د ما د مع محمد                                                                                            |              | a lane  |                                                                                                                 |             | مرد الم <u>مرد</u>       |                  | ×.    |
| Special Instructio                     | ns:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                              |                                         | ' ا <u>لــــــــــــــــــــــــــــــــــــ</u> |           | 1,                                            |                              |      |             |              | <del> </del>                                 |                    |                                                                                                                 |              | w       | ESTON                                                                                                           | Analy       | tics Use (               | )nly             | _     |
| Sta                                    | and and<br>RN.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 781                                          | 144                                     | -                                                |           | 2                                             |                              |      |             |              | <u>.                                    </u> |                    |                                                                                                                 |              |         | es were:<br>ped                                                                                                 |             | COC Tap<br>1) Preser     |                  |       |
|                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                              | // /                                    | -                                                |           | 3                                             |                              |      |             |              |                                              |                    |                                                                                                                 |              | Hand D  | Delivered                                                                                                       |             | Package<br>2) Unbrol     |                  |       |
| IUP                                    | $\mathcal{N}$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                              |                                         | -                                                | ·····     | 4                                             | <u> </u>                     |      |             |              |                                              |                    |                                                                                                                 |              |         | lent or C                                                                                                       |             | Package                  | Y or             | ,     |
|                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                              |                                         | -                                                |           | 5                                             |                              | ·    |             | <u> </u>     |                                              |                    |                                                                                                                 |              |         | eived in (<br>ion Y o                                                                                           |             | 3) Preser                | nton Sa<br>Yor   |       |
|                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                              |                                         |                                                  | <u></u>   | 6                                             |                              |      |             |              |                                              |                    |                                                                                                                 | i            |         | els Indica<br>ly Preser                                                                                         |             | 4) Unbrol<br>Sample      |                  |       |
| Relinquished<br>by                     | Received<br>by                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Date                                         | Time                                    | Relinquisi<br>by                                 | ned       | Received<br>by                                | d D                          | ate  | Tir         | me           |                                              |                    | s Betwe<br>els and                                                                                              | en           | ,       | Yo                                                                                                              | n N         | COC Red                  | cord Pre         | 05    |
| MOS                                    | 1300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 4/57                                         |                                         |                                                  |           |                                               |                              |      | 1           |              |                                              | Record             | ?Yor                                                                                                            | N            |         | eived Wit<br>g Times<br>Y o                                                                                     | ihin<br>x N | Upon Sa                  | mple Re<br>Y or  |       |
| 111/2                                  | 1200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 11-1                                         |                                         |                                                  |           |                                               |                              |      |             |              | NOTE                                         | S:                 |                                                                                                                 |              |         | Υo                                                                                                              | or N        |                          |                  |       |

| WESTON Anal                                                  | lyาเบล (ปร            | se Only           | C                        | ustod                 | y Tra                                    | nsfe              | er Re                                              | ecor              | d/L         | ab                   | W             | orł                                   | (R               | eq                         | ue                             | st                                           |                                                                                             | ·                                                                                                |                                    | Pag                                              | 15                                                                           | of                                             |                             |
|--------------------------------------------------------------|-----------------------|-------------------|--------------------------|-----------------------|------------------------------------------|-------------------|----------------------------------------------------|-------------------|-------------|----------------------|---------------|---------------------------------------|------------------|----------------------------|--------------------------------|----------------------------------------------|---------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|------------------------------------|--------------------------------------------------|------------------------------------------------------------------------------|------------------------------------------------|-----------------------------|
| Client<br>Est. Final Proj.                                   | Sampl                 | Ing Date          | MAY                      | 15 199                | A                                        | Refrige<br>#/Type | rator #<br>Container                               | ARACING<br>Solid  |             |                      | <b>77</b> 7   | 22                                    |                  |                            |                                |                                              |                                                                                             | Carlor Carl                                                                                      |                                    |                                                  |                                                                              | ili yak<br>Katak                               | <u></u>                     |
| Work Order #<br>Project Contac                               | t/Phon                | o#DLl             | Bowle                    | 412-269               | Aless                                    | Volume            | )                                                  | Solid 9           | 240         |                      |               |                                       |                  |                            |                                | 91990<br>11.1291                             |                                                                                             | 10.00                                                                                            | 19<br>19<br>19<br>19               | <table-cell><br/>茨<br/>菱<br/>菱</table-cell>      |                                                                              | 16.742.<br>18.742.                             | din Sala<br>Nation          |
| AD Project Mai                                               | nager                 | Pense             | 461-1                    |                       |                                          | Preserv           | atives                                             | <b>通道</b> 教教      | 12          | ORG                  | ANIC          |                                       |                  |                            |                                | NR INC                                       | DRG                                                                                         |                                                                                                  |                                    | 業業                                               | 496.692<br>499-53                                                            | ₩ikir.<br>Vetise                               | 1856<br>1977                |
| Date Rec'd                                                   |                       |                   | Date Due                 |                       |                                          | ANALY<br>REQUE    |                                                    |                   | <b>V</b> OV | BNA                  | Pest/<br>PCB  | Herb                                  | 1910             |                            |                                | Metal                                        | z                                                                                           |                                                                                                  |                                    |                                                  |                                                                              |                                                |                             |
| Account #                                                    |                       |                   |                          |                       | Matrix                                   | [                 | · ·                                                |                   |             |                      |               | +                                     | WE               | STON                       | Analy                          |                                              | <u>.</u>                                                                                    | nly                                                                                              | -                                  | 21000                                            | -2019-1-10. J                                                                |                                                |                             |
| MATRIX<br>CODEB:<br>8 - Soll<br>SE - Sedimenta<br>SO - Solid | Lab<br>ID             | C                 | lient ID/Desc            | cription              | Matrix<br>QC<br>Chosen<br>(√)<br>MS IMSD | Matrix            | Date<br>Collected                                  | Time<br>Collected | 101-        |                      |               |                                       |                  |                            |                                |                                              |                                                                                             |                                                                                                  |                                    |                                                  |                                                                              |                                                |                             |
| SL • Sludge<br>W • Water                                     |                       | 35-7              | WRB                      | 7 <i>04</i> 4         | a province and any ranks                 | U.                |                                                    | VEGO              |             |                      |               | in in                                 |                  |                            |                                |                                              | 72                                                                                          | E A                                                                                              |                                    |                                                  |                                                                              | N                                              |                             |
| O-OI                                                         |                       |                   |                          | 2012                  |                                          |                   | CYPE                                               | 54.5              |             |                      |               |                                       | 3                |                            | 14 J. J.                       | 139 S.A.                                     | 0350 jan<br>17 4 1                                                                          | 5/25                                                                                             | 22                                 | 71                                               | Ø] <sub>13</sub>                                                             | と                                              | 1997<br>Marian              |
| DS - Drum<br>Solids<br>DL - Drum                             |                       | 35-8              | BELO                     | and the first         | a warmen and a same                      |                   | V D P A                                            | Parties           |             |                      | 1214          | در از در<br>در از در<br>در زیر        | 12               | [بريد المريد ال            | المرد بيانيا<br>ومراجع مرد الم |                                              | l toj<br>Lea straina<br>P.S. Straina                                                        | میں استاد ہیں۔<br>ریجان سروی                                                                     | لىنىيىدىر<br>1900-يە               |                                                  |                                                                              |                                                |                             |
|                                                              |                       | 5.9.2.1.5         | 1302                     | THE PARTY PROPERTY    | For-2 Providence                         | ANN C.            | id lie                                             | 5485              | 2.4         | h. X                 | 101           | ( افع                                 |                  | c Ye                       | 140                            |                                              | 12 A. (                                                                                     |                                                                                                  |                                    | Ling T                                           |                                                                              | <u>N</u>                                       | 5.                          |
| WI - Wipe                                                    | . <u></u>             | 35-7              | <u>w13/1</u>             | - <u>-</u>            |                                          |                   | aut                                                | 1.5010            |             | terre etter til      |               | eri a sui 21<br>N'errette s<br>S      |                  |                            |                                |                                              |                                                                                             | 1                                                                                                |                                    |                                                  |                                                                              |                                                | 200<br>200<br>200           |
| F: Fish                                                      |                       |                   |                          |                       |                                          | 5 7.97 P. 4       | a francúska se |                   |             |                      |               |                                       |                  |                            |                                |                                              | 1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1 |                                                                                                  |                                    |                                                  |                                                                              |                                                | 織                           |
| Responses.                                                   |                       |                   |                          | aler v an en an ener  |                                          |                   |                                                    | 211               |             |                      |               |                                       | هه د . ه         |                            | - lideau                       |                                              | al esta<br>Kashing                                                                          |                                                                                                  |                                    |                                                  |                                                                              |                                                |                             |
|                                                              |                       | russis dina       |                          |                       | Mars 1                                   | 150 B (4 5 B)     |                                                    | Digiting.         |             | 2000<br>2000<br>2000 |               |                                       | anin a           | الذار مينين<br>الذار مينين |                                |                                              |                                                                                             |                                                                                                  |                                    |                                                  |                                                                              | <b>1</b> 31                                    | A. 1                        |
| S. Contractor                                                |                       | - <u>1</u> 88,344 |                          |                       |                                          |                   |                                                    | 5.1               | estil's sta | 1.101.18             | ante Nandasse | all in the second                     | أدامتهم ومحا     | asti an                    | مبعدادتهم                      |                                              |                                                                                             | a da u                                                                                           |                                    |                                                  |                                                                              |                                                | -414                        |
| FIELD PERSON<br>Special Instruct                             |                       | JMPLE (E OI       | NLT SHAUEI               | JAHEAS                | · لـــــ                                 | DATE/RE           | 1                                                  |                   |             |                      |               |                                       |                  |                            |                                |                                              | WE                                                                                          | STON                                                                                             | Analy                              | rtics U                                          | se On                                                                        | ly                                             |                             |
| MTBC<br>35 -<br>addi 1<br>35 - twi                           | P<br>Em<br>tonc<br>2B | 403               | -04<br>H/es<br>35-<br>RN | NO<br>FO, MT<br>TW 13 | BE ,<br>B-04.<br>Relinguist              |                   | 2,<br>3,<br>4,<br>5,<br>6,<br>Receive              |                   |             |                      |               | · · · · · · · · · · · · · · · · · · · |                  |                            |                                | - 1)<br>- Ai<br>- 2)<br>- 3)<br>- Co<br>- 4) | and De<br>rbill # _<br>Amble<br>Receiv<br>ondition                                          | were:<br>ad<br>livered<br>mt or Ci<br>ved In C<br>ved In C<br>a Y o<br>a Indica<br>Presen<br>Y o | hilled<br>àood<br>r N<br>te<br>ved | 1) Pr<br>Pack<br>2) Ui<br>Pack<br>3) Pr<br>4) Ui | Tape (<br>resent c<br>tage Y<br>nbroker<br>resent c<br>Y<br>nbroker<br>ple Y | on Oute<br>or<br>on Oi<br>or<br>or<br>or<br>or | N<br>uter<br>N<br>nple<br>N |
| Helinguished<br>by<br>MOGMATH                                |                       | by                | Date 4/2.6               | Time<br>1800          | keiinguisi<br>by                         |                   | by                                                 |                   | ate         | Tin                  |               | Sam                                   | ples La<br>Recor | es Betv<br>bels an<br>d? Y | d                              |                                              | Receiv                                                                                      | ved Wit                                                                                          | hin                                |                                                  | Record<br>Samp<br>Y                                                          |                                                | rt –                        |

· 1

1

WESTON Analytics Use Only

C.O.C # 425096

Custody Transfer Record/Lab Work Request



|                                               |                                                                         | -                                       |              |                   |                                       |               |         |               |              |             |                             |             |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                    |                  | Pag                 | θ                                             | of                       |   |
|-----------------------------------------------|-------------------------------------------------------------------------|-----------------------------------------|--------------|-------------------|---------------------------------------|---------------|---------|---------------|--------------|-------------|-----------------------------|-------------|------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|------------------|---------------------|-----------------------------------------------|--------------------------|---|
| Client BAKON                                  | ENNI ROMMON TAC                                                         | alle a                                  | Refriger     | rator #           |                                       |               |         |               |              |             |                             |             | 11.021           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                    |                  |                     |                                               |                          | F |
| Est. Final Proj. Samp                         | Ing Date 4/15/96                                                        | 17, 147, 147, 147                       | #/Type 0     | Container         |                                       | 制制的           | 17.6484 |               |              | 調整総         |                             |             | 18.787<br>1878-5 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 313 3.                             | 477.举            | 老礼礼                 |                                               | <u></u>                  | F |
| ork Order #                                   | スイテロー んらみ                                                               | the strate of the                       |              |                   | Solid                                 | PRODACE       | 11.6.1  | rid inte      |              |             |                             |             | in Set           | and the second sec | 14.00                              | A.S.A.           | ting to             | 1043<br>1058 - 12                             | area.<br>Area            | F |
| roject Contact/Phor                           | 10 # DANS BONK 412-12                                                   | · · · · · · · · · · · · · · · · · · ·   | yolume       |                   | Solid                                 |               |         |               |              |             |                             |             | <b>3</b> 6.485   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <b>空调将</b>                         |                  | STAR.               | Mine:                                         | 1998 (                   | L |
| D Project Manager                             | DAN BOAK 412 2                                                          | 7-600                                   | ) Preserv    | atives            | <b>Mar</b> ia all                     | 法规制           | _       | 線線            |              | (3)学校       | 翻載                          |             |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 28.00                              | 和研究              | 11-9es              | 的制作。                                          |                          | Ļ |
| DCD                                           | elTAT                                                                   |                                         | ANALYS       | SES               | -                                     | <u> </u>      |         | ANIC          |              |             |                             |             |                  | RG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                    |                  |                     | 12                                            |                          |   |
| ete Rec'd                                     |                                                                         |                                         | REQUE        | STED -            |                                       | N N           | BNA     | Pest/<br>PCB  | Herb         |             |                             |             | Metal            | S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                    |                  |                     |                                               | 51.7                     |   |
| ATRIX                                         |                                                                         | <b>I</b>                                |              |                   |                                       |               | 1,      | J             | ł            | WE          | STON                        | I Analy     | rtics l          | Jse O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | nly                                | 1                |                     |                                               |                          | - |
| CODES:<br>Soll ID<br>ID<br>Soll ID<br>Soll ID | Client ID/Description                                                   | Matrix<br>QC<br>Chosen<br>(✓)<br>MS MSD |              | Date<br>Collected | Time<br>Collected                     | i J           |         |               |              |             |                             |             |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                    |                  |                     |                                               |                          |   |
| - Sludge<br>- Water                           | 25-70278-04                                                             |                                         | TO A         | Starsfe           | 1.916)                                | ×             |         |               |              |             | une                         |             |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                    | <b>蜂</b> 派       |                     | 樂影                                            | 欄                        | Ī |
| - Oll<br>Alr                                  | 25-TR-100                                                               |                                         | 12 de        | all she           | 1420)                                 |               | لاستريت | لينتن         | مر به منه مر | . Lances 2  | tionaria ini                | k cinetaire |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                    | 新兴               |                     |                                               | A ANT                    |   |
| Solids                                        | 35- ERW01-04                                                            | ALANA AND A MALANA AND                  |              | The Property      | 115.00                                | 5.5           |         | SN 57         |              |             |                             |             |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                    |                  |                     | 緇集                                            |                          |   |
| - Drum                                        | THE PART OF A PARTY OF A PARTY OF A                                     | 1000 1000                               |              |                   |                                       |               |         |               |              |             |                             | 5/10        |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 潮怒                                 | 物件               |                     | 清洁                                            | <b>客</b> 機               |   |
| EP/TCLP                                       | Contraction of the second second                                        |                                         |              |                   |                                       |               |         |               |              |             |                             |             | 総合               | 鎃                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2.0                                | 77. SF           | 3× 7                |                                               |                          | 1 |
| • Wipe<br>Other                               |                                                                         |                                         |              |                   |                                       |               |         |               |              |             |                             |             | 潮游               | <b>15</b> /2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                    | 100127           |                     |                                               |                          |   |
| - Fish                                        |                                                                         |                                         |              | \$G/44            |                                       | 影彩            | i data  |               |              | 3455        | 傳統                          | R.A.        | 調査               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 983-39<br>S                        | T                | 4 <b>1</b>          |                                               | 99-83<br>                |   |
| in starting                                   |                                                                         |                                         | 1012         |                   |                                       |               |         |               | 1025         | - Inte      |                             |             |                  | and is the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1. C. M.                           | an an<br>Milaire | Sec.<br>Acadetic    | 134                                           |                          | 1 |
|                                               | 2019年中的中国中国的中国中国中国中国中国中国中国中国中国中国                                        | 1/18/07 100 pm                          | S. 2.8.2.8.1 | No. 1 Mar         | 188 198 19                            |               | 12.10   | <b>1</b>      | 柳树           | 1000        |                             |             |                  | 推进                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 的歌                                 | 教教               | 3                   | 1                                             | de la c                  |   |
|                                               |                                                                         |                                         |              |                   |                                       |               |         |               |              |             |                             |             |                  | a. al                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1200                               |                  | **                  |                                               | ykoj                     | Ì |
| ELD PERSONNEL: C                              | OMPLETE ONLY SHADED AREAS                                               |                                         | DATE/REV     | ISIONS:           | XXXX 44(5)A                           | 1.757 B.16 (1 | ATTYLE  | CALCUPATION . | 1 A 300 P    | 1993-980-38 | Thereas                     | 1707145     |                  | 14/10-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | OTON                               | Anal             | dias !              |                                               |                          | 1 |
| pecial Instructions:                          | 20TO: 35-TW278-0                                                        | 4 -                                     |              | 1                 |                                       |               |         |               |              |             |                             |             |                  | VVE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3101                               | Analy            |                     | lse On                                        | <b>y</b>                 | - |
| AS I-DAY                                      | V TURN-REPORT RE<br>O DAN BONK.                                         |                                         | i            | 2<br>3<br>4       |                                       |               |         |               |              |             |                             |             | - 1)<br>Hi<br>Al | and De<br>rbill # _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | were:<br>ed<br>livered<br>ont or C |                  | 1) P<br>Pac<br>2) U | C Tape<br>resent (<br>kage<br>hbroke)<br>kage | on Out<br>/ or<br>n on C | ) |
| KIT BLAN                                      | AAE<br>K 13 ROUTINE TUK<br>K RINSATE<br>L26606634<br>Geceived Date Time | <i>N</i>                                |              | 5                 | · · · · · · · · · · · · · · · · · · · |               |         |               |              |             |                             |             | 3)               | Recel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | vedin (<br>n Y c                   | Bood             |                     | resent                                        |                          | n |
| elex #1                                       | (26606634                                                               |                                         |              | 6                 |                                       |               |         |               |              |             |                             |             |                  | roperly                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | s Indica<br>Preser                 | ved              |                     | nbroke<br>ple                                 |                          |   |
|                                               | by Date Time                                                            | Relinguist<br>by                        | ned          | Received<br>by    |                                       | )ate          | Tin     | ne<br>        | Sarr<br>COC  | nples L     | cies Be<br>abels a<br>rd? Y | nd          |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                    |                  |                     | C Recor                                       |                          | ¢ |
| / 21-21-001/ 31                               | L372                                                                    |                                         | L373         | L3                | 75                                    |               | 377     | ]             |              | 78          | Ref#                        | ¢           |                  | Coc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | oler#                              |                  |                     |                                               | 38                       | 3 |
| 11 21-21-00                                   |                                                                         | , <u></u>                               |              | <b></b>           | 7                                     |               |         |               |              | - <b>-</b>  |                             |             |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                    |                  |                     |                                               | 1                        | 1 |

| nchcape T                                  |                                                                    | Services                                                                 | Dallas                                                                                               |                                        | 1089 Ea                       |                       |           |       |                           |        |        |           |                   |                    |                    |               |                   |                 |                  |         | TODY I                                                | REC(                                     |
|--------------------------------------------|--------------------------------------------------------------------|--------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|----------------------------------------|-------------------------------|-----------------------|-----------|-------|---------------------------|--------|--------|-----------|-------------------|--------------------|--------------------|---------------|-------------------|-----------------|------------------|---------|-------------------------------------------------------|------------------------------------------|
| Company:<br>Address:<br>Contact:<br>Phone: | Report<br>Baker<br>420 Ao<br>o-acali<br>Dar Bu<br>12-269<br>12-269 | 10:<br>Env<br>use- Art , B14, 3<br>1, UM 15108<br>nk<br>1-6090<br>S-, Yn | Com<br>Add<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- | parly:<br>dresst                       | voice to                      |                       | ns B      |       | ANALY<br>REQUI            | SIS    |        | . Set     |                   | 238-2              |                    |               |                   |                 |                  |         | _ab use<br>Due Date<br>Temp. of c<br>when rece<br>2 3 | oolers<br>ved (C°):<br>4 5<br>Geal N / Y |
| roj. No.                                   | Project N                                                          |                                                                          |                                                                                                      |                                        | ·····                         | /pe of C              | ontair    | ners  |                           | _      | af a   |           |                   |                    |                    | /             | /.                |                 |                  |         | ;                                                     | -                                        |
| atrix <sup>1</sup> Date Time               | C G<br>o r<br>m a                                                  | Identifying Marks                                                        | of Sample(                                                                                           | 3)                                     | VOA                           | A/G<br>1 Lt.          | 250<br>ml | P/0   | /*                        | Hat    |        | 74/3      | / /               | / /                |                    | /<br>·/       | /                 |                 | Lab              |         | le ID (Lat                                            | Use Only                                 |
| 5 8.795 1130                               | X                                                                  | 35-5004-                                                                 | 612-02                                                                                               |                                        |                               |                       | 2         |       | 1                         | R      | 4      |           |                   |                    |                    |               |                   |                 |                  |         |                                                       |                                          |
| 3 8-7-9 1117                               | 1                                                                  | 35-5003-                                                                 |                                                                                                      |                                        |                               |                       | Z         |       | 1                         | 1      | 1      |           |                   |                    |                    |               |                   |                 |                  |         |                                                       |                                          |
| 5 8-743 1115                               | ٨                                                                  | 35-5003-6                                                                | 12-02                                                                                                | 1                                      |                               |                       | 2         |       | ×                         | ×      | ×      |           |                   |                    |                    |               |                   | <b>"</b>        |                  |         |                                                       |                                          |
| HU 8-895                                   |                                                                    | 35-TB01                                                                  |                                                                                                      | ······································ | 71                            | +43                   |           |       | X                         |        |        |           |                   |                    | -                  | _             |                   | _               |                  |         |                                                       |                                          |
|                                            |                                                                    |                                                                          |                                                                                                      |                                        |                               |                       |           |       |                           |        |        |           |                   |                    |                    |               |                   |                 |                  |         |                                                       |                                          |
|                                            |                                                                    |                                                                          |                                                                                                      |                                        |                               |                       |           |       |                           |        |        |           |                   |                    |                    |               |                   |                 |                  |         |                                                       |                                          |
|                                            |                                                                    |                                                                          |                                                                                                      |                                        |                               |                       |           |       |                           |        |        |           |                   |                    |                    |               |                   |                 |                  |         |                                                       |                                          |
|                                            |                                                                    |                                                                          |                                                                                                      |                                        |                               |                       |           |       |                           |        |        |           |                   |                    |                    |               |                   | _               |                  |         | <u></u>                                               |                                          |
|                                            |                                                                    | 1 or Standard                                                            |                                                                                                      | Priority 3 or 10                       |                               | 4 500 4               |           |       |                           | X (602 | /9020  |           | 1418.1            | or 801             | 5) 101             |               | 191 25            | A/824           |                  |         |                                                       | EAD (6010)                               |
| Turn around time<br>Relinquished by:       | Signature                                                          |                                                                          | Time:                                                                                                |                                        | : (Signature)                 | 4 2110 -              |           | Date: |                           | me:    |        | emark     |                   |                    | 0,, 10.            |               |                   |                 | ,                |         |                                                       |                                          |
| Relinquished by: (                         |                                                                    |                                                                          | Time:                                                                                                | Received by                            | : (Signature)                 |                       |           | Date: | T                         | ime:   | 1      |           |                   |                    |                    |               |                   |                 |                  |         |                                                       |                                          |
| Relinquished by: (                         | (Signature)                                                        | Date:                                                                    | Time:                                                                                                | Received by                            | : (Signature)                 |                       |           | Date: | т<br>                     | ime:   | C<br>a | lient's o | delive<br>ditions | ry of s<br>s conte | amples<br>lined ir | cons<br>the F | titute<br>Price : | acce<br>Sched   | ptance (<br>ule. | of Inch | cape/ITS-C                                            | allas terms                              |
|                                            | W - Wastew<br>DA - 40 ml v                                         |                                                                          | S - Soil<br>er / Or Glass                                                                            | SD - Solid L                           | Liquid A<br>60 ml - Glass wic | - Air Bag<br>le mouth |           |       | Charcoal t<br>- Plastic c |        |        | - Sludy   | ge                | C                  | - Oil              | n             | S - I             | )allas<br>Pleas | e Fax            | writte  | ept verb<br>en chanç<br>-5592                         | al changes<br>jes to                     |

| Inchcape Testing Services                                                                                                                                                                                                                       | Dallas                                                             | 1089 East           |                  |           | vd., R |                        | on, T   | ( 750          | 81 (9              |                    | 238-5            |                   | Ċ                    | HAI                 | N OF CUSTODY REC                                                                                                                        | ORD             |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|---------------------|------------------|-----------|--------|------------------------|---------|----------------|--------------------|--------------------|------------------|-------------------|----------------------|---------------------|-----------------------------------------------------------------------------------------------------------------------------------------|-----------------|
| Report to:<br>Company: <u>Beker Env</u><br>Address: <u>420 Rouser Ad, Bkly 3</u><br><u>Concells</u> <u>1A</u> 15108<br>Contact: <u>Dan Bonk</u><br>Phone: <u>412-269-6000</u><br>Fax:<br>Sampler's Name<br><u>Hann Bernhard</u><br>Project Name |                                                                    | Sa m                | <u> </u>         | pontaine  |        | ANALY<br>REQUI         | STE     | 210            | NY.                |                    |                  |                   |                      |                     | Lab use only<br>Due Date:<br>Temp. of coolers<br>when received (C<br>1 2 3 4<br>Custody Seal<br>Intact<br>Screened<br>For Radioactivity | 5<br>N/Y<br>N/Y |
| C     G       Matrix <sup>1</sup> Date     Time       Time     m     a       Identifying Marks                                                                                                                                                  | of Sample(s)                                                       | VOA                 | A/G<br>1 Lt.     | 250<br>ml | P/O    |                        | N N     | ×              |                    | / /                | / /              |                   | //                   |                     | Lab Sample ID (Lab Use (                                                                                                                | Only)           |
| SW 8-8951335 X 35-ERO.                                                                                                                                                                                                                          | 1.02                                                               | 2                   | 1                |           |        | X                      | X       | X              | {-                 | C \$P              |                  |                   | -{                   |                     | <u> </u>                                                                                                                                |                 |
| SW 8895/345 K 35-ERO                                                                                                                                                                                                                            |                                                                    | 2                   | 1                |           |        | X                      | ×       | X              |                    | 22/2               |                  |                   |                      |                     |                                                                                                                                         |                 |
| 5 8-795 1144 + 35-5007                                                                                                                                                                                                                          |                                                                    |                     |                  | 2         |        | X                      | +       | 1              |                    |                    |                  |                   | -                    |                     | ······································                                                                                                  |                 |
| 5 8-795 1144 7 35-5007                                                                                                                                                                                                                          |                                                                    |                     |                  | 2         |        | 1                      | ×       | 8              |                    |                    |                  |                   |                      |                     |                                                                                                                                         |                 |
| S 8.741 1142 + 35- 5007.                                                                                                                                                                                                                        |                                                                    |                     |                  | 2         |        | K                      | X       | X              |                    |                    |                  |                   |                      |                     | ·                                                                                                                                       |                 |
| 5 B795 1242 × 35- 5006                                                                                                                                                                                                                          | 06.02 1                                                            |                     |                  | 2         |        | X                      | 1       | ×              |                    |                    |                  |                   |                      |                     |                                                                                                                                         |                 |
| 5 8.795 1240 + 35- 5006                                                                                                                                                                                                                         |                                                                    |                     |                  | 2         | T      | X                      | x       | X              |                    |                    |                  |                   |                      |                     | <u></u>                                                                                                                                 |                 |
| 5 8-74× 1212 A 35- 5005                                                                                                                                                                                                                         |                                                                    |                     |                  | 2         |        | X                      | ×       | ×              |                    |                    |                  |                   |                      |                     |                                                                                                                                         |                 |
|                                                                                                                                                                                                                                                 | -#612-02 +                                                         |                     |                  | 2         |        | X                      | ×       | X              |                    |                    |                  |                   |                      |                     |                                                                                                                                         |                 |
| 5 8-74 1132 × 35- 5004-                                                                                                                                                                                                                         |                                                                    |                     |                  | 2         |        | 1                      | X       | X              |                    |                    |                  |                   | -                    |                     |                                                                                                                                         |                 |
| Turn around time                                                                                                                                                                                                                                | ty 2 or 50%                                                        | Priority 4          | ERS *            |           |        | + BTE                  | X (602/ | 8020),         | TPH (4             | 418.1              | or 801           | 5), VOL           | ATILES               | (624/82             | 40), IGNITABILITY, TOTAL LEAD (6                                                                                                        | 010)            |
| Relinquished by: (Signature) Date:                                                                                                                                                                                                              | Time: Received by: (Sign                                           | ature)              |                  |           | ate:   | Ti                     | ne:     | Re             | marks              | 3                  |                  |                   |                      |                     |                                                                                                                                         |                 |
| Relinquished by: (Signature) Date:                                                                                                                                                                                                              | Time: Received by: (Sign                                           | ature)              |                  |           | Date:  | <u>ן</u><br>דו<br>ן    | me:     | -              |                    |                    |                  |                   |                      |                     |                                                                                                                                         | /               |
| Relinquished by: (Signature) Date:                                                                                                                                                                                                              | Time: Received by: (Sign                                           | ature)              |                  |           | Date:  | <br>                   | me:     | -<br>Cli<br>an | ient's d<br>d cond | leliver<br>litions | y of sa<br>conta | imples<br>ined in | constitu<br>the Pric | ites acc<br>se Sche | ceptance of Inchcape/ITS-Dalias te<br>soule.                                                                                            | /<br>fms        |
| Matrix WW - Wastewater W - Water<br>Container VOA - 40 ml vial A/G - Amb                                                                                                                                                                        | S - Soil SD - Solid L - Liquid<br>er / Or Glass 1 Liter 250 ml - ( | A - A<br>Glass wide | Air Bag<br>mouth |           |        | harcoal t<br>Plastic c |         |                | - Sludg            | 18                 | 0                | - Oil             | ITS                  | - Dalla<br>Piea     | as cannot accept verbal cha<br>ase Fax written changes to<br>214-238-5592                                                               | nges.           |
| OFFICE USE ONLY                                                                                                                                                                                                                                 | <u></u>                                                            | 1                   | f                |           |        |                        |         |                |                    |                    |                  |                   |                      |                     | 11                                                                                                                                      |                 |
|                                                                                                                                                                                                                                                 |                                                                    | 2                   |                  | (         |        |                        |         |                |                    |                    |                  |                   |                      |                     |                                                                                                                                         |                 |

| ichca                 |          |          | 7.4° ¥.           |           | Sarv                        | icos                                  | Dallas                         |                                       | 1089 E                   |                     | line T    | 76<br>11771        | 0                 | 00       | 02       | K 7508      | 1 /0             | 111 0            | 20.5K            | 01                  | Ċ                  | нΔі               |                      | านี้ระบาว                    | ODY REC                       | <u>ک</u> ر کر |
|-----------------------|----------|----------|-------------------|-----------|-----------------------------|---------------------------------------|--------------------------------|---------------------------------------|--------------------------|---------------------|-----------|--------------------|-------------------|----------|----------|-------------|------------------|------------------|------------------|---------------------|--------------------|-------------------|----------------------|------------------------------|-------------------------------|---------------|
| ICHCa                 | <b>P</b> |          | L 🌶               |           |                             | 1003                                  |                                | lov                                   | oice to                  |                     |           | <u>.</u>           | í <i>1</i>        |          |          | 1000        | 7                | 14) 2            | 7                | 7                   | -7                 | 7                 | 7 7                  |                              | ab use only                   | -             |
| Compa                 |          |          | Rep               |           |                             |                                       | Con                            | npany:                                |                          |                     |           |                    | AN                |          |          |             | ' /              | /                |                  |                     |                    |                   |                      | - 71                         | use only<br>Due Date:         |               |
|                       | -        |          |                   |           |                             | DW 1                                  |                                |                                       | <u>C.</u>                |                     |           |                    | He                | QUE      | STE      | D           | ·/               |                  |                  | /                   | /                  | / /               | / /                  | / `                          | ,                             |               |
| Addre                 | ess      |          |                   |           |                             | <u>, 1314, 3</u><br>15/06             |                                |                                       | Sane                     |                     |           |                    |                   |          |          |             | /                | [                | /                |                     | '                  | ' /               |                      | /  _                         | emp. of coolers               |               |
| 0                     |          |          |                   |           |                             |                                       |                                | <u>-</u>                              |                          |                     |           |                    |                   |          |          | /           | / /              |                  | '                |                     |                    |                   |                      |                              | hen received (C               |               |
|                       |          |          |                   |           |                             |                                       |                                | ontact:<br>Phone:                     | <b>``</b>                |                     |           |                    |                   |          | 1        | / /         | ' /              |                  |                  |                     |                    |                   |                      | 1                            | 2 3 4                         | 5             |
|                       |          |          |                   |           | 600                         |                                       |                                | /SO #:                                |                          |                     |           | —                  |                   |          |          |             | /د               | /                | /                | /                   | / /                | ŀ                 | / /                  | C                            | ustody Seal                   | N / Y         |
| г                     | a        |          | 6                 |           | • · · · · · · · · · · · · · |                                       |                                |                                       |                          |                     |           |                    |                   |          |          | (E. 1. 2.   | \$/ J            |                  | / /              |                     | ' /                |                   |                      | In                           | tact                          | <u>N/Y</u>    |
| ampler's              | Na       | me       | m                 | ke        | 5-11                        | 5                                     | Sample                         | r's Signature                         |                          |                     |           |                    |                   |          | /        | 11          | 2<br>2<br>2      | '                |                  |                     |                    |                   | /                    |                              | creened<br>or Radioactivity   |               |
| lan                   | . 1      | Beach    | he a              | ł         |                             |                                       |                                | how                                   | 0                        |                     |           |                    |                   | /        | / /      | / 🌾         | .'/              |                  |                  |                     | /                  | /                 | /                    |                              |                               |               |
| roj. No.              |          | ////     |                   |           | lame                        |                                       |                                |                                       |                          | ype of (            | Contai    | ners               |                   | /        |          | . /         | j.               | /                | /                | /                   | / /                |                   | /                    |                              |                               |               |
| 470-3                 | 23       | 5        |                   |           |                             |                                       |                                |                                       |                          |                     |           |                    |                   | 1        |          | St.         | ./               | / /              |                  | ' /                 | /                  |                   |                      |                              |                               |               |
| rix <sup>t</sup> Date |          | Time     | C                 | Grab      | Identi                      | ifying Mar                            | ks of Sample(                  | s)                                    | VOA                      | A/G                 | 250<br>mi | P/0                |                   | / K      | Y st     |             | 1                | ' /              |                  |                     |                    | /                 | 1.04                 | Connel                       |                               | Only          |
|                       |          |          | p                 | b         |                             |                                       |                                |                                       |                          | 1 Lt.               | m         |                    |                   |          | <u> </u> |             |                  | {                | -{               | -{                  |                    | <i></i>           |                      | Sample                       | ID (Lab Use                   | Uniy          |
| 874                   | 75       | 1910     | [                 | 1         | 36.                         | 5005-0                                | 612-02                         |                                       |                          | <u> </u>            | 2         | $\left  \right $   |                   | <u> </u> | *        | *           |                  |                  |                  |                     | <u> </u>           | <u> </u>          |                      |                              |                               |               |
| 18-8                  | 93       |          | .<br>             |           | 35.                         | TBOZ                                  |                                |                                       | - t-                     | lang                |           |                    |                   | X        |          |             |                  |                  |                  |                     | <u> </u>           |                   |                      |                              |                               |               |
|                       |          |          |                   |           |                             |                                       |                                |                                       |                          |                     |           |                    |                   |          |          |             |                  |                  |                  |                     |                    | *                 |                      |                              | <u></u>                       |               |
|                       |          |          |                   |           |                             |                                       |                                |                                       |                          |                     |           |                    |                   | ĺ        |          | Ì           |                  |                  |                  |                     |                    | 1                 |                      |                              |                               |               |
| -                     | 1        |          |                   |           |                             |                                       |                                |                                       |                          | 1                   |           |                    |                   |          |          |             |                  |                  |                  |                     |                    |                   |                      |                              |                               |               |
|                       | +        |          |                   |           |                             | · · · · · · · · · · · · · · · · · · · |                                |                                       |                          | 1                   |           |                    |                   |          |          |             |                  |                  |                  |                     |                    |                   |                      |                              |                               |               |
|                       | +        | <u> </u> | <u> </u>          |           |                             |                                       |                                |                                       |                          | 1                   | $\square$ | $\square$          |                   |          |          |             |                  |                  |                  |                     | 1                  | 1                 |                      |                              | ·····                         | <u> </u>      |
|                       | +        |          |                   |           |                             |                                       | 1.500                          |                                       |                          | +                   | +         |                    |                   |          |          |             |                  |                  |                  |                     | +                  |                   |                      |                              |                               |               |
|                       | -        | •        |                   |           |                             |                                       |                                | · · · · · · · · · · · · · · · · · · · |                          |                     | +         | $\left  - \right $ |                   |          |          |             |                  | -                |                  |                     | +                  |                   |                      |                              |                               | <u> </u>      |
|                       |          |          |                   | <u> </u>  |                             |                                       |                                |                                       | <u> </u>                 | <del> </del>        |           | ┼─┤                |                   |          |          |             |                  |                  |                  |                     |                    |                   |                      |                              |                               |               |
| rn aroun              |          |          |                   | riority - | t or Stan                   | dard D Pr                             | ority 2 or 50%                 | Priority 3 or 100                     | <br>% □ Priority         | 4 ERS               | *         |                    |                   | BTEX     | ( 602/   | 8020), 1    |                  | 18.1 or          | 8015)            |                     | TILES              | (624/8)           | 240), IGNIT          | ABILITY                      | , TOTAL LEAD (6               | 6010)         |
| elinguis              |          |          |                   |           |                             | Date:                                 | Time:                          | Received by: (                        |                          |                     |           | Date:              |                   | Tin      |          |             | narks            |                  |                  |                     |                    |                   |                      |                              |                               |               |
| h.                    |          |          |                   |           |                             | 82.45                                 | 1700                           |                                       |                          |                     |           |                    |                   |          |          |             |                  |                  |                  |                     |                    |                   |                      |                              |                               |               |
| elinquis              | she      | d by: (  | Signa             | iture)    |                             | Date:                                 | Time:                          | Received by: (                        | Signature)               |                     |           | Date               | :                 | Tir      | ne:      |             |                  |                  |                  |                     |                    |                   |                      |                              |                               |               |
|                       |          | -1.1     |                   |           |                             | Date:                                 | Time:                          | Received by: (                        | Glapatura                | <u></u>             |           | Date               | <u> </u>          | Tir      |          | -           |                  |                  |                  | _                   |                    |                   |                      |                              |                               |               |
| elinquis              | sne      | a oy: (  | Signa             | uure)     |                             | Dale,                                 | 11110,                         |                                       | Signature)               |                     |           | Da10               |                   | 111      |          | Cile<br>and | nt's de<br>condi | ivery<br>tions c | of san<br>ontain | iples c<br>ed in ti | onstitu<br>19 Pric | ites ac<br>e Schi | ceptance c<br>edule. | of Inchce                    | ape/ITS-Dailas te             | erms          |
| atrix<br>ontainer     |          |          | N - Wa<br>DA - 40 |           |                             | W - Wate<br>A/G - An                  | er S - Soil<br>nber / Or Glass | SD - Solid L - L<br>1 Liter 250       | iquid A<br>ml - Glass wi | - Air Ba<br>de mout |           |                    | Charc<br>D - Plas |          |          |             | Sludge           | }                | 0.               | 011                 | ITS                | - Dail<br>Pie     | ase Fax              | ot acce<br>writte<br>1-238-5 | pt verbal cha<br>n changes to | anges<br>o    |

| nchcape Testing Services Dallas                                                                                                                                                                                                                                                                                                                                                                                                                                   | Dallas 1089 East Colli     |                       | ins Blv     | d., Ri                          | chards                | 9 - 6<br>on, T | X 75         | 081                | (214                | ) 238            | -5591           | 1                 | С      | HAII              | NOF                | CUSTODY                                                                                                  | RECORI                                        |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|-----------------------|-------------|---------------------------------|-----------------------|----------------|--------------|--------------------|---------------------|------------------|-----------------|-------------------|--------|-------------------|--------------------|----------------------------------------------------------------------------------------------------------|-----------------------------------------------|
| Company:       Battle Exc       Company:       Company:         Address:       420 Aouse Art, Bll, 3       Address:       Address:         Contact:       M       15/06       Contact:         Contact:       Number Art       Contact:       Phone:         Phone:       412-269-6001       Phone:       Phone:         Fax:       PO/SO #:       Sampler's Signature         Adam       Adam       Adam         Proj. No.       Project Name       Project Name | 5e-11<br>\<br>Q            | ype of C              |             | -   F<br>-  <br>-  <br>-  <br>- | ANALY<br>REQUI        | ESTE           | 000          | /3                 | Ŵ                   |                  |                 |                   |        |                   |                    | Lab use<br>Due Date<br>Temp. of c<br>when rece<br>1 2 3<br>Custody S<br>Intact<br>Screened<br>For Radioa | oolers<br>ved (C°):<br>4 5<br>Seal N/Y<br>N/Y |
| a 4 70 - 3 2 3       rix <sup>1</sup> Date       Time       m       a       b       Identifying Marks of Sample(s)       b                                                                                                                                                                                                                                                                                                                                        | VOA                        | A/G<br>1 Lt.          | 250 P<br>ml | /0                              | / k                   | ¥/<br>¥/       |              | j<br>j             |                     |                  | /               | /                 |        |                   | Lat                | b Sample ID (Lat                                                                                         | Use Only)                                     |
| 5 8-8-95 0747 × 35-5001-06-02 ~                                                                                                                                                                                                                                                                                                                                                                                                                                   |                            |                       | 2           |                                 | X                     | ×              | ×            |                    |                     |                  |                 |                   |        |                   |                    |                                                                                                          |                                               |
| 8-8-4×0745 35-5001-612-02 ×                                                                                                                                                                                                                                                                                                                                                                                                                                       |                            |                       | 2           |                                 | X                     | 4              | 1            |                    |                     |                  |                 |                   |        |                   |                    |                                                                                                          |                                               |
| 8-895 0728 35-5002-06-02 V                                                                                                                                                                                                                                                                                                                                                                                                                                        |                            |                       | 2           |                                 | 1                     | 1              | 1            |                    |                     |                  |                 |                   |        | -                 |                    |                                                                                                          |                                               |
| 884 0725 35-5002-612-02 V                                                                                                                                                                                                                                                                                                                                                                                                                                         |                            |                       | 2           |                                 | K                     | *              | $\checkmark$ |                    |                     |                  |                 |                   |        |                   |                    |                                                                                                          |                                               |
| 8795 1947 36-5007-06-02 V LaslasD                                                                                                                                                                                                                                                                                                                                                                                                                                 | $\rightarrow$              |                       | 4           |                                 | +                     | x              | ¥            |                    |                     |                  |                 |                   |        |                   |                    |                                                                                                          |                                               |
| 1947 36-5007-060-02 -                                                                                                                                                                                                                                                                                                                                                                                                                                             |                            |                       | 2           |                                 | 1                     | 4              | ×            |                    |                     |                  |                 |                   |        |                   |                    |                                                                                                          |                                               |
| 1945 36-5DUT.612.22                                                                                                                                                                                                                                                                                                                                                                                                                                               |                            | 1                     | 2           |                                 | 1                     | A              | 1            |                    |                     |                  |                 |                   |        |                   |                    |                                                                                                          |                                               |
| 1928 36-5006-06-02 0                                                                                                                                                                                                                                                                                                                                                                                                                                              |                            |                       | 2           |                                 | K                     | 4              | 1            |                    |                     |                  |                 |                   |        |                   |                    |                                                                                                          |                                               |
| 1926 36-5006-612-02 (                                                                                                                                                                                                                                                                                                                                                                                                                                             |                            | 1                     | 2           |                                 | K                     | *              | 1            |                    | 1                   |                  |                 |                   |        |                   |                    | ······································                                                                   |                                               |
| 1912 V 36-5005-06.02 V                                                                                                                                                                                                                                                                                                                                                                                                                                            |                            |                       | 2           |                                 | 1                     | 6              | 4            |                    | 1                   |                  |                 |                   |        |                   |                    |                                                                                                          |                                               |
| rn around time Driority 1 or Standard Driority 2 or 50% Driority 3 or 100                                                                                                                                                                                                                                                                                                                                                                                         |                            | 4 ERS *               |             |                                 | + BTE                 | X (602         | 2/8020       | )), TPH            | l<br>H (418.        | 1 or 80          | 015), V         | OLAT              | ILES ( | 624/82            | 240), IGN          | ITABILITY, TOTAL L                                                                                       | EAD (6010)                                    |
| elinquished by: (Signature) Date: Time: Received by:                                                                                                                                                                                                                                                                                                                                                                                                              | (Signature)                |                       | Da          | ite:                            | Ti                    | me:            | A            | lemai              | rks                 |                  |                 |                   |        |                   |                    |                                                                                                          |                                               |
| elinquished by: (Signature) Date: Time: Received by:                                                                                                                                                                                                                                                                                                                                                                                                              | (Signature)                |                       | Da          | ate:                            | т<br>Т                | me:            |              |                    |                     |                  |                 |                   |        |                   |                    |                                                                                                          |                                               |
| elinquished by: (Signature) Date: Time: Received by:                                                                                                                                                                                                                                                                                                                                                                                                              | (Signature)                |                       | Di          | ate:                            | <br>                  | me:            |              | Client's<br>and co | s deliv<br>Indition | ery of<br>is con | samp<br>Itaineo | les co<br>1 in th | e Pric | tes aco<br>e Sche | ceptance<br>adule. | e of Inchcape/ITS-D                                                                                      | ailas terms                                   |
| latrix WW - Wastewater W - Water S - Soll SD - Solid L - L<br>ontainer VOA - 40 ml vial A/G - Amber / Or Glass 1 Liter 250                                                                                                                                                                                                                                                                                                                                        | .lquid A<br>ml - Glass wid | - Alr Bag<br>te mouth |             |                                 | arcoal t<br>Plastic c |                |              | - · Slu            | ıdgə                |                  | 0.0             | 11                | ITS    | - Dall<br>Plea    | ase Fax            | not accept verb<br>x written chang<br>14-238-5592                                                        | al changes<br>les to                          |

••

| nchcape T                   |                           | Services           | Dallas                                | 1                                      | 089 Ea    |                  | ins Blv     |      |                         |      |          | (214)                 |         |                |        |                 | N OF C      | USTODY RECC                                             |
|-----------------------------|---------------------------|--------------------|---------------------------------------|----------------------------------------|-----------|------------------|-------------|------|-------------------------|------|----------|-----------------------|---------|----------------|--------|-----------------|-------------|---------------------------------------------------------|
|                             | Report                    | to:                |                                       | Invoice                                | to        |                  |             | ΠA   |                         | SIS  | 7        | 1                     |         | $\overline{7}$ | 7      | 1               | TT          | / Lab use only                                          |
| Company: Z                  | la Ker                    | ENVIRONME          | TAComp                                | any: <b>SA</b> A                       | 1E        |                  |             |      | REQUI                   |      | р /      | ·/ /                  | / /     |                |        |                 |             | Due Date:                                               |
| Address: 4                  | ZO RO                     | USER RP            | Addr                                  | ess:                                   |           |                  |             | _    |                         |      |          |                       |         |                |        |                 |             | /                                                       |
| G                           | PRAD                      | POLIS, PA          | _                                     |                                        |           |                  |             | -    |                         |      | 121      |                       |         |                |        |                 |             | Temp. of coolers                                        |
| Contact: 🔎                  | 6 0                       | ONK. P.E           | _ Cont                                | act: <u>SA</u> m                       | IE        |                  |             | -    |                         |      | /,v/     | /                     |         |                |        |                 |             | when received (C°):                                     |
| Phone: <u>4</u>             | 12 - Z                    | 59-2063            | _ Pho                                 | one:                                   | <u></u>   |                  |             | -    |                         | /    | Ý        |                       | ' /     |                |        | 1. 1            | / /         | Custody Seal N/                                         |
| Fax: <u>4</u>               | 12-2                      | 69 - 2002          | - PO/S                                | D #:                                   |           |                  |             | -    |                         |      | 5/4/     | './                   |         |                | -      | ' /             | /           | Intact N/                                               |
| ampler's Name               | MIKE                      | MITH               | Sampler's                             | Signature                              | 0         | • •              | /           |      |                         | 44   | 5/5/     | 1                     | / /     |                | ' /    |                 | /           | Screened<br>For Radioactivity                           |
|                             |                           |                    |                                       | hel D.~                                |           |                  |             | _    | 1                       | / €/ | V.       |                       | /       |                |        |                 | /           | L                                                       |
| Proj. No.<br>323            | Project                   | Name<br>E 3.5, CAn | AP GEIG                               | ER PUEL<br>PARM                        | No./Ty    | pe of C          | ontaine     | ·S   |                         | N.   | 5/ /     | //                    |         |                |        | ' /             |             |                                                         |
| trix <sup>1</sup> Date Time | C G<br>o r<br>m a<br>P b  | Identifying Marks  |                                       |                                        | VOA       | A/G<br>1 Lt.     | 250 P<br>ml |      |                         |      | / /_     |                       |         |                |        |                 | Lab S       | Sample ID (Lab Use Only)                                |
| 1 8/9 1800                  | -                         | 35-ERO             | 3-02                                  |                                        |           | ~                |             |      | <ul> <li>✓</li> </ul>   |      |          |                       |         |                |        |                 |             |                                                         |
| 8/10 1242                   | -                         | 35-ERC             | 04-02                                 | 2 -                                    |           | ~                |             |      | ✓                       |      |          |                       |         |                |        |                 |             |                                                         |
| 1 8/10 850                  | -                         | 35 - MW            | 165-07                                | <b>Ľ</b>                               |           | r                |             |      | <ul> <li>✓</li> </ul>   | -    |          |                       |         |                |        | <i></i>         |             |                                                         |
| 1 8/10 850                  | V                         | 35- MW             | 165-0                                 | 20                                     |           | V                |             |      | -                       | 5    |          |                       |         |                |        |                 |             |                                                         |
| 1 8/9. 1633                 |                           | 35 - MW            | 160-0                                 | 2 0                                    |           | ٢                |             |      | -                       | -    |          |                       |         |                |        |                 |             |                                                         |
| 1 8/9 1003                  | -                         | 35 - MW            | 105 -0                                | 2                                      |           | 7                |             |      | ~                       | -    |          |                       |         |                | _      |                 |             |                                                         |
| 18/2 1211                   | r r                       | 35 - MW            | 100-0                                 | 2                                      |           | 1                |             |      | V                       | -    |          |                       |         |                |        |                 |             |                                                         |
| 1 8/10 1310                 |                           | 35- MW             | · · · · · · · · · · · · · · · · · · · |                                        |           | -                |             |      |                         | -    |          |                       |         |                |        |                 |             |                                                         |
| 1 9/10 1220                 | ~                         | 35- MW.            | 140-0                                 | 0Z                                     |           | -                |             |      |                         | ~    |          |                       |         |                |        |                 |             |                                                         |
|                             |                           |                    | •                                     |                                        |           |                  |             |      |                         |      |          |                       |         |                |        |                 |             |                                                         |
| urn around time             |                           | 1 or Standard      |                                       |                                        |           | 4 ERS *          |             |      |                         |      | 1        |                       | or 8015 | 5), VOL        | ATILES | (624/82         | 40), IGNITA | BILITY, TOTAL LEAD (6010)                               |
| Relinquished by (           |                           | Date:              | 1500                                  | Received by: (Signa                    | · · · · · |                  | De          | ite: |                         | ne:  | Remai    | rks                   |         |                |        |                 |             |                                                         |
| lelinquished by: (          | Signature                 | ) Dafe:            | Time: F                               | leceived by: (Signa                    | ture)     |                  | Da          | ite: | Ti                      | ne:  |          |                       |         |                |        |                 |             |                                                         |
| lelinquished by: (          | Signature                 | ) Date:            | Time: F                               | leceived by: (Signa                    | ture)     |                  | Da          | ite: | Tii                     | ne:  |          | s deliver<br>nditions |         |                |        |                 |             | Inchcape/ITS-Dallas terms                               |
|                             | V - Wastew<br>A - 40 ml v |                    | S - Soil St<br>er / Or Glass 1 Li     | D - Solid L - Liquid<br>er 250 ml - Gi |           | Air Bag<br>mouth |             |      | arcoal tu<br>Plastic of |      | SL - Slu | dge                   | 0       | - Oil          | ITS    | - Dalla<br>Plea | ise Fax w   | accept verbal changes<br>vritten changes to<br>238-5592 |

| Inchcape Testing Services                                                     | Dallas                                                                | 1089 Ea |                       |             |      |                         |     |              |           |               |          | •            |              |                  | CUSTODY RECORD                                                    |
|-------------------------------------------------------------------------------|-----------------------------------------------------------------------|---------|-----------------------|-------------|------|-------------------------|-----|--------------|-----------|---------------|----------|--------------|--------------|------------------|-------------------------------------------------------------------|
| Report to:                                                                    | Invoic                                                                | e to    |                       |             | 4    | ANALY                   | SIS | 7            | 1         | 7.            | 7        | 7            | Τ            | $\Box \Box \Box$ | Lab use only                                                      |
| Company: Baker Environmental                                                  | Irc Company:                                                          | ME      |                       |             |      | REQUI                   |     | .D /         | ./        | 12            | / /      | / /          | / /          |                  | Due Date:                                                         |
| Address: 420 Rouser Ra                                                        |                                                                       | }       |                       |             | -    |                         |     | /            |           | <b>₩</b> [    | - 4      | 、/           |              |                  | /                                                                 |
| Cora opolis, Pa AOP BLI                                                       |                                                                       |         |                       |             | -    |                         |     | / /          | / /       |               | 200 Col  | ./           | /            |                  | Temp. of coolers<br>when received (C°):                           |
| Contact: DLBONK: PE                                                           | · · ·                                                                 |         |                       | <u></u>     | -    |                         |     |              | - / 3     | X             | Å0       | /            |              | / / /            | 1 2 3 4 5                                                         |
| Phone: <u>412-269-2063</u>                                                    |                                                                       | - · · · |                       |             | -    |                         |     | 5/           | We Clear  | Jon<br>m<br>h | 6`/      | ' /          | ' /.         |                  | Custody Seal N/Y                                                  |
| Fax: 412-269-2002                                                             | PO/SO #:                                                              |         |                       |             | -    |                         |     | <u>, (</u>   |           |               | '/       |              |              |                  | Intact N/Y                                                        |
| Sampler's Name                                                                | Sampler's Signature                                                   |         |                       |             |      |                         | /k  | 12/          | 30/2      | Ň             |          |              |              |                  | Screened<br>For Radioactivity                                     |
| MDSMITH Mult                                                                  | Sampler's Signature                                                   |         | r                     |             |      |                         | / 🕺 | 2            | 5/2       | 7             | / /      | / /          | / /          |                  |                                                                   |
| Proj. No. Project Name<br>CTO 323 270 323, 51                                 | TE35, Fuel Farm                                                       | No./T   | ype of C              | Containe    | rs   |                         | ¢/r | \ / <b>X</b> | [ ]       | '             |          |              |              |                  |                                                                   |
| Matrix <sup>1</sup> Date Time C G G r Identifying Mark                        | s of Sample(s)                                                        | VOA     | A/G<br>1 Lt.          | 250 P<br>ml | /0   | /                       |     | / /          |           |               |          |              |              | Lab              | Sample ID (Lab Use Only)                                          |
| W B/10 1030 35- EML                                                           | 03-02                                                                 |         | 2                     |             |      | ~                       | ~   |              |           |               |          |              |              |                  |                                                                   |
| W 8/10 1855 35- EMU                                                           | 107-02                                                                |         | 2                     |             |      | ~                       |     |              |           |               |          |              |              |                  |                                                                   |
| W 8/11 1400 35-ERO                                                            | 2 - 02                                                                | 1       | 2                     |             |      |                         |     | ~ ~          | -         |               |          | He           | Id           |                  |                                                                   |
| W 8/11 1350 35-EROI                                                           | -02                                                                   | 1       | 2                     |             |      |                         |     |              | ·         | #             | arb      | RU           | N            |                  |                                                                   |
| W 8/1 1335 35ER 05                                                            | -02                                                                   |         | 1                     |             |      | 3                       |     | ~ ~          | 1         |               |          | Ra           | אי           | 800              | or welling                                                        |
| W 8/11 0900 35-MW19                                                           | 0-02                                                                  |         | 2                     |             |      | 4                       | ~   |              |           |               |          |              |              |                  |                                                                   |
| W 8/11 0900 35-MW19                                                           | S-OZ (MS/MSD)                                                         |         | 4                     |             |      | ~                       | ~   |              |           |               |          |              |              |                  |                                                                   |
| W 8/1 0900 35-MW19.                                                           | S-0ZD                                                                 |         | Z                     |             |      | ~                       | ~   |              |           |               |          |              |              |                  |                                                                   |
| W 8/1 1542 35-GW05                                                            | -02                                                                   |         | 2                     |             |      | ~                       | レ   |              |           |               |          |              |              |                  |                                                                   |
|                                                                               |                                                                       |         |                       |             |      |                         |     |              |           |               |          |              |              |                  |                                                                   |
| Turn around time Priority 1 or Standard Prior<br>Relinguished by: (Signature) |                                                                       |         | 4 ERS *               |             |      |                         |     |              |           |               |          |              |              | ··               | TABILITY, TOTAL LEAD (6010)                                       |
| Heinquisned by: (Signature) Date:                                             | Time: Received by: (Sign                                              | aurej   |                       |             | ate: |                         | me: | TH           |           | 35-<br>2 E    | - Er<br> | <02<br>·Un ( | ، - د<br>مسر | 02 E<br>5211     | 35-ER01-02<br>TON 8/8/95                                          |
| Relinquished by: (Signature) Date:                                            | Time: Received by: (Sign                                              | ature)  |                       | Di          | ate: | Т                       | me: | 17/          | lose      | 5 S           | En       | 7            | ON           | 8/8/9<br>nPLE _  | 5 HAVE                                                            |
| Relinquished by: (Signature) Date:                                            | Time: Received by: (Sign                                              | ature)  |                       | D           | ate: | Ті                      | me: | Cilen        | t's deliv | ery of        | sampl    | es cor       | nstitute     |                  | of Inchcape/ITS-Dallas terms                                      |
| ' Matrix WW - Wastewater W - Wate<br>' Container VOA - 40 ml vial A/G - Aml   | r S • Soil SD - Solid L - Liquid<br>ber / Or Glass 1 Liter 250 ml - C |         | - Air Bag<br>le mouth |             |      | narcoal ti<br>Plastic o |     | SL - S       | ludgə     |               | 0 - 01   |              |              | Please Fax       | not accept verbal changes.<br>( written changes to<br>14-238-5592 |
| OFFICE USE ONLY                                                               | #*************************************                                |         | <u></u>               |             |      |                         |     |              |           |               |          |              |              |                  |                                                                   |
| (                                                                             |                                                                       |         |                       | ł           | (    |                         |     |              |           |               |          |              |              |                  | (                                                                 |

| nchcape Te                            | ag Services                             | Environmental Laboratori | es 1089 E                | ast Col              | llins Bly    | / <b>d.</b> , | Ri                      | chard   | son, T       | X 7508                       | 31 (21             | 14) 23                                 | 8-55            | 91                | CHAI                          | NOF               | CUSTODY RE                                       | -          |
|---------------------------------------|-----------------------------------------|--------------------------|--------------------------|----------------------|--------------|---------------|-------------------------|---------|--------------|------------------------------|--------------------|----------------------------------------|-----------------|-------------------|-------------------------------|-------------------|--------------------------------------------------|------------|
| Re                                    | port to:                                | L ·                      | oice to                  |                      |              | T             | ANALY                   | SIS     |              | 7                            | T                  | T                                      | Τ               | T                 | 17                            | 1                 | Lab use only                                     | - ·        |
| Company: Bale                         | Environme.                              | de Company:              | Some                     | <u> </u>             | ···· •       |               | REQU                    |         | :D /         | ·/~                          | $\sqrt{1}$         | /                                      | /               | / /               |                               |                   | Due Date:                                        |            |
| Address: 420                          | Rouser R.                               | Address:                 |                          |                      |              | -             |                         |         |              | / Q                          |                    | .                                      | ' /             | ' /               | 1/10                          | $\gamma_{\gamma}$ |                                                  |            |
| Cocaop                                | olis, PA                                |                          |                          |                      |              | -             |                         |         | /            | $\left  \mathcal{A} \right $ | '                  | 5                                      |                 | N                 | $\tilde{k}/\tilde{V}$         | (J.)              | Temp. of coolers                                 |            |
| Contact: D.L.                         | . BOOKP.                                | Contact:                 |                          |                      |              | .             |                         |         |              | $\langle \Psi \rangle$       | w i                | ∛/                                     |                 | $\nabla$ :        | / / /i                        | $\mathbf{M}$      | when received (C                                 | "):<br>    |
| Phone: <u>412</u>                     | -269-206                                |                          |                          |                      |              |               |                         | /       | ' '          | $\omega$                     | U/ #               | 7                                      | 13              | / ୧୪)             | $\langle \mathcal{N} \rangle$ | 57                | Custody Seal                                     |            |
| Fax: <u>4/12</u>                      | - 269-200                               | <u>PO/SO #:</u>          |                          |                      |              |               | •.•                     | «./     | n/d          | ` `                          | / 2/               | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | Sor             | N/                |                               |                   | 1 .                                              | N/Y        |
| Sampler's Name<br>M.D., Sun, T        | · }+                                    | Sampler's Signature      | In                       | ut                   | 4            |               |                         | 1       |              | Z<br>Z<br>Z                  | 1                  |                                        |                 |                   |                               |                   | Screened<br>For Radioactivity                    |            |
| Proj. No. Pro<br>323 3                | oject Name<br>S / TC 3 5, C d           | mp Geiger Fuel R         | 5 No./T                  | ype of C             | Container    | s<br>s        |                         | 5/0     |              | 0                            | 2                  | ¢ ,                                    | ¢.              | T.                | A<br>A                        |                   |                                                  | x          |
| itrix' Date Time M                    | G<br>r Identifying Ma<br>b              | rks of Sample(s)         | VOA                      | A/G<br>1 Lt.         | 250 P/<br>ml | 10            | /1                      | //      | / 2/         | 12/                          | N/Q                |                                        | Ĭ¢              | R                 | ¥                             | Lab Sa            | mple ID (Lab Use C                               | Only)      |
| 8/12 1025                             | V 35 - M                                | W33A-02                  |                          | 2                    |              |               | ~                       | -       |              |                              |                    |                                        |                 |                   |                               |                   |                                                  |            |
| P/2 1735 3                            | V 35-MU                                 | 109P-02                  |                          | 2                    |              |               | ~                       | -       |              |                              |                    |                                        |                 |                   |                               |                   |                                                  | -,         |
| 8/2 1140                              |                                         | 133D-02                  |                          | Z                    |              |               | ~~                      | ~       |              |                              |                    |                                        | _               |                   |                               |                   |                                                  |            |
| 8/12 0850                             |                                         | 29A - 02                 |                          | Z                    |              |               | 1                       | -       | 1            |                              |                    | 1                                      |                 |                   |                               |                   | <u> </u>                                         |            |
| 8/12 0935                             |                                         | 29B-02                   |                          | Z                    |              | ╈             | -                       | ~       |              |                              | - <del> </del>     |                                        |                 |                   |                               |                   |                                                  |            |
| P/11 1845                             |                                         | MW05-02                  |                          | 2                    |              |               |                         | 1       |              |                              |                    |                                        |                 |                   |                               |                   |                                                  | · <u> </u> |
| 1 1/2 1750                            |                                         | W095-02                  |                          | 2                    |              |               |                         | -       |              |                              |                    |                                        |                 |                   |                               |                   |                                                  |            |
| 9/13 1640                             |                                         | 1220-02                  |                          | 2                    |              | <u> -  </u>   |                         |         |              |                              |                    | <u> </u>                               |                 |                   |                               |                   | ·                                                |            |
| 8/13 1525                             |                                         | WZZS-02                  |                          | 2                    |              | +-            | ~                       |         | <u> </u>     | ·                            |                    |                                        | <del></del>     |                   |                               |                   |                                                  |            |
| 8/ 100                                |                                         | R06-0Z                   |                          | 2                    | ┢╾╂╴         | +             |                         |         |              |                              |                    |                                        | <u></u>         |                   |                               |                   |                                                  |            |
| <i>8/12 1850</i><br>urn around time □ |                                         | riority 2 or 50%         | 6 C Priority             | -                    | <u>↓</u>     |               | + BTE                   | X (602/ | 8020). T     | PH (41)                      | 8.1 or 8           | 015), V                                | OLAT            |                   |                               |                   | LITY, TOTAL LEAD (60                             | 10)        |
| Relinguished by ASign                 | mature Date:                            | Time: Received by: (     |                          |                      |              | te:           |                         |         | Rem          |                              |                    |                                        |                 |                   |                               |                   | 49045 1/2                                        |            |
| Relinquished by: (Sign                |                                         | Time: Received by: (     | Signature)               |                      | Da           | te:           | Ti                      | me:     |              |                              | <b>€</b> 2*₩       |                                        |                 |                   |                               |                   |                                                  |            |
| Relinquished by: (Sign                | nature) Date:                           | Time: Received by: (     | Signature)               |                      | Da           | te:           | -1<br>Ti<br>            | me:     | Clier<br>and | nt's deli<br>conditio        | very of<br>ons con | sampi<br>Itained                       | es co<br>in the | nstitute<br>Price | es accept<br>Schedul          | ance of In<br>e.  | chcape/ITS-Dallas ter                            | ms:        |
|                                       | Vastewater W - Wa<br>10 ml vial A/G - A |                          | quid A<br>nl - Glass wic | - Air Ba<br>le mouth |              |               | narcoal ti<br>Plastic o |         |              | Sludge                       |                    | 0 - 01                                 |                 | Inch              | icape ci<br>Please            | Fax wr            | cept verbal chang<br>itten changes to<br>38-5592 | jes.       |

OFFICE USE ONLY

| Report to:                                                                   | 1 Invoice                                                                     |                               |           |          | NALY                  |                             | 7        | 7              | 1_                    | 13                   | /ีก               |              | /           | $H_{\sim}$        | Lab use only<br>Due Date:                              |
|------------------------------------------------------------------------------|-------------------------------------------------------------------------------|-------------------------------|-----------|----------|-----------------------|-----------------------------|----------|----------------|-----------------------|----------------------|-------------------|--------------|-------------|-------------------|--------------------------------------------------------|
| Company: Baker Environme                                                     |                                                                               |                               |           | -   R    | EQUE                  | ESTE                        | D /      | ·/             | 19                    | 14                   | / Y<br>  J        | / /          | 1/          | (v) 3/            | Due Dale.                                              |
| Address: <u>420 Rouser R</u>                                                 | Address:                                                                      |                               |           | - 1      |                       |                             |          | /2             | X. J/                 | ιų/                  | <i>v</i> /        |              | Ň           | $\sqrt{\sqrt{1}}$ |                                                        |
| Cola opolis, F                                                               | <u>A</u>                                                                      | /                             |           | -        |                       |                             |          | / <u>. `</u> / | $\sqrt{V}$            | \\∖                  | J/1               | 之、           | J i         | 427               | Temp. of coolers<br>when received (C°):                |
| Cora opolis, F<br>Contact: <u>DL</u> . Bon K                                 | P.E. Contact:                                                                 |                               |           | -        |                       | ,                           |          | $\mathbf{V}$   | s/ 5                  | Ŋm                   | $\langle \rangle$ | YW           | Y .<        | 1.7               | 1 2 3 4 5                                              |
| Phone: <u>412-269-206</u>                                                    | <b>3</b> Phone:                                                               | ),                            |           | <u>.</u> |                       | · /·                        | / (      | is/ 1          | 5/ 3                  | $ \vec{\mathbf{x}} $ | ้ที่              | T            | ! Ň         |                   | Custody Seal N/Y                                       |
| Fax: <u>412-269-200</u>                                                      | <u>&gt;</u> Z_ PO/SO #:Y                                                      | 6                             |           |          |                       | 1                           | ∧ n      | Ű.J            | /                     | Y                    | 0/                | <u>ب</u>     | ΰŽ          | K/                | Intact N/Y                                             |
| Sampler's Name<br>MD 5 m. 4                                                  | Sampler's Signature                                                           | <u> </u>                      |           |          |                       |                             |          | 7/             |                       |                      |                   | ₹) (<br>f/ Q |             |                   | Screened<br>For Radioactivity                          |
|                                                                              |                                                                               | No./Type of                   | Containe  | arg      |                       | אין א                       | <u> </u> | 0) (           | )/ V                  | ~~/~~/               | $\left( \right)$  | ĺ            | "<br>"      | 1                 | <b></b>                                                |
| 323 Site 35, Ca                                                              | mp Geiger Fuel Form                                                           | 110.71300 07                  | Containt  |          |                       | K/3                         |          | × 1            | _                     | SY.                  | Na.               | aV.          | e/          |                   |                                                        |
| latrix Date Time C G I Identifying M                                         | larks of Sample(s)                                                            | VOA A/G<br>1 Lt.              | 250<br>ml | P/0      |                       |                             | × 14     | Ň              | K/1                   |                      | j q               | <i>Y</i> a   | <b>)</b> /  | Lab Sa            | mple ID (Lab Use Only)                                 |
| 1 1/3 1835 - 35-0                                                            | ERO7-OZ                                                                       | 1                             | T         |          |                       | K                           | 54       |                | 4.12                  | متتا                 |                   |              |             | RUN               | /                                                      |
|                                                                              | [Pw0/-02                                                                      | 2 20                          |           | 71       | 131                   | -                           |          | - 1            | منيا 2                | 1.15                 | ~                 | -            | -           |                   | ·                                                      |
|                                                                              | 801-02                                                                        | 2                             |           |          |                       | 1                           |          |                |                       |                      |                   |              |             |                   |                                                        |
|                                                                              | TB01 - 02                                                                     | Z                             |           |          | $\uparrow$            |                             | 1        |                |                       |                      |                   | 1,           |             |                   |                                                        |
|                                                                              |                                                                               | ++                            | ++        |          | 11                    | 64                          |          | 7              |                       | 17                   | 10                | 1 ce         |             |                   | · · · · · · · · · · · · · · · · · · ·                  |
|                                                                              |                                                                               |                               | 1.4       | 74       | NYC.                  |                             | VΨ       | 4              |                       | 1                    | <b></b>           |              |             |                   |                                                        |
|                                                                              |                                                                               |                               | <u>4</u>  | -+"      | 10                    | +                           |          |                |                       | +                    | <u> </u>          | ┟──          |             |                   |                                                        |
|                                                                              |                                                                               | ╉╼╍╍┨╴╌╸                      | ┼──┼      |          |                       | +                           | -+46     | 4              |                       | +                    |                   | +            |             | <u> </u>          |                                                        |
|                                                                              |                                                                               | +                             |           |          | ··                    | · <del> </del> <del> </del> |          |                |                       | ┥──                  |                   |              |             |                   |                                                        |
|                                                                              |                                                                               | - <del>]/</del>               |           |          |                       | $\left  - \right $          |          |                |                       |                      |                   | ļ            |             |                   |                                                        |
|                                                                              |                                                                               | <u>//  </u>                   | <u> </u>  | <u></u>  | <u> </u>              |                             |          | <u>` </u>      |                       |                      |                   |              |             |                   |                                                        |
| Turn around time D Prior 1 or Standard C<br>Relinguished by (Signature) Date |                                                                               |                               |           | Date:    |                       | EX (602/                    |          | · · · ·        |                       |                      | ·                 |              |             | 5 1 S             | BILITY, TOTAL LEAD (6010)                              |
| Relinguished by (9ignature) Date                                             | 1800                                                                          |                               |           | 2010.    | "                     |                             |          |                | •                     |                      |                   | · ·          |             |                   |                                                        |
| Relinquished by: (Signature) Date                                            |                                                                               | nature)                       |           | Date:    | <u>,</u> т            | ime:                        | 1        |                |                       |                      |                   |              |             | 22 (              |                                                        |
|                                                                              |                                                                               | nature)                       | ,         |          |                       |                             |          |                | p/a                   | pa                   | 10                | ./           | ьy          | , lat             | <b>&gt;</b> .                                          |
| Relinquished by: (Signature) Date                                            | : Time: Received by: (Sigr                                                    | nature) 📲 🏴                   |           | Date:    | т<br>                 | 'ime:                       |          |                | alivery o<br>tions co |                      |                   |              |             |                   | nchcape/ITS-Dallas terms                               |
|                                                                              | Water S - Soil SD - Solid L - Liquid<br>- Amber / Or Glass 1 Liter 250 ml - 1 | I A - Air E<br>Glass wide mou |           |          | arcoal I<br>Plastic d |                             |          | Sludg          |                       | 0.0                  | i1<br>            | Inc          | hcap<br>Ple | ase Fax w         | ccept verbal changes.<br>ritten changes to<br>238-5592 |
|                                                                              |                                                                               |                               |           |          |                       |                             |          |                |                       |                      |                   |              |             |                   |                                                        |

í i

# APPENDIX H SGI WELL DEVELOPMENT RECORDS

Baker

CTO NO.: 0232 WELL NO.: 35-MW39B

Baker Environmental, Inc.

Т

DATE: <u>5/1/96</u>

GEOLOGIST/ENGINEER: P. MONDAY

PROJECT: SITE 35, SGI

| TIME START<br>0920                       | DEVELOPMENT DATA |                                         |      |              |                              |              |                     |  |  |  |  |  |
|------------------------------------------|------------------|-----------------------------------------|------|--------------|------------------------------|--------------|---------------------|--|--|--|--|--|
| TIME FINISH                              | TIME             | CUMULATIVE<br>VOLUME<br>(gallons)       | рH   | TEMP<br>(°C) | SPEC.<br>COND.<br>(µmhos/cm) | TEMP<br>(°C) | COLOR AND TURBIDITY |  |  |  |  |  |
| INITIAL WATER LEVEL (FT)                 | 0934             | 45                                      | 7.48 | 19.7         | 488                          | 20.9         | 7200 NTU            |  |  |  |  |  |
| TOTAL WELL DEPTH (TD)                    | 0959             | 55                                      | 7.64 | 20.8         | 488                          | 21.7         | 103.6 NTU           |  |  |  |  |  |
| 50.0                                     | 1004             | 75                                      | 7.62 | 20.3         | 482                          | 2/.7         | 70.3 NTU            |  |  |  |  |  |
| WELL DIAMETER (INCHES)                   | 1010             | 100                                     | 7.60 | 22.3         | 486                          | 21.4         | 61.0 NTU            |  |  |  |  |  |
| CALCULATED WELL VOLUME                   | 1015             | 110                                     | 7.57 | 21.4         | 486                          | aa./         | 93.6 NTU            |  |  |  |  |  |
| 7.33                                     | 1019             | 130                                     | 7.60 | 22.1         | 48.6                         | 22.5         | 42.6 NTU            |  |  |  |  |  |
| BOREHOLE DIAMETER (INCHES)               | 1024             | 155                                     | 7.63 | 22.9         | 485                          | 22.8         | 32.8 NTU            |  |  |  |  |  |
|                                          | 1030             | 165                                     | 7.65 | 23.3         | 484                          | 23.4         | 26.1 NTU            |  |  |  |  |  |
|                                          | 110Z             | 185                                     | 7.69 | 24.1         | 48.8                         | 23.9         | 36.7 NTU            |  |  |  |  |  |
| AMOUNT OF WATER ADDED<br>DURING DRILLING | 1106             | 210                                     | 7.65 | 24.2         | 483                          | 23.7         | 19.2 NTU            |  |  |  |  |  |
|                                          |                  |                                         |      |              |                              |              |                     |  |  |  |  |  |
| DEVELOPMENT METHOD                       |                  |                                         |      |              |                              |              |                     |  |  |  |  |  |
| PUMPING                                  |                  |                                         |      |              |                              |              |                     |  |  |  |  |  |
| PUMPTYPE (WATTERA)                       |                  |                                         |      |              |                              |              |                     |  |  |  |  |  |
| INERTIAL                                 |                  |                                         |      |              |                              |              |                     |  |  |  |  |  |
| TOTAL TIME (A)                           |                  |                                         |      |              |                              |              |                     |  |  |  |  |  |
| AVERAGE FLOW (GPM)(B)                    |                  |                                         |      |              |                              |              |                     |  |  |  |  |  |
| 1.9/9pm                                  |                  | ERVATION                                |      | TEC .        |                              |              |                     |  |  |  |  |  |
| TOTAL ESTIMATED                          | 1                | EVELOPM                                 |      |              |                              |              |                     |  |  |  |  |  |
| WITHDRAWALAXB=<br>210 gal                |                  | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, |      |              |                              |              |                     |  |  |  |  |  |
| HNU/OVA READING                          | 1                |                                         |      |              |                              |              |                     |  |  |  |  |  |
|                                          |                  |                                         |      |              |                              |              |                     |  |  |  |  |  |

PROJECT: <u>SITE 35. SGI</u>

CTO NO.: 0232 WELL NO.: 35-MW408

Baker Environmental, Inc.

Baker

DATE: 4/29/96

GEOLOGIST/ENGINEER: P. MONDAY

| TIME START                               |      |                      |                                       | DEVE           | OPMENT         | DATA |                     |
|------------------------------------------|------|----------------------|---------------------------------------|----------------|----------------|------|---------------------|
| 0818                                     |      |                      | · · · · · · · · · · · · · · · · · · · |                |                |      |                     |
| TIME FINISH                              | ТІМЕ | CUMULATIVE<br>VOLUME | Hq                                    | TEMP           | SPEC.<br>COND. | TEMP | COLOR AND TURBIDITY |
| 1033                                     |      | (gallons)            |                                       | (ግ)            | (µmhos/cm)     | (ግ)  |                     |
| INITIAL WATER LEVEL (FT)                 | 1907 | 1.0                  | 770                                   | 010            | 525            | 29.6 | 13.2 NTU            |
| 6.04                                     | 0903 |                      |                                       |                | 575            |      |                     |
| TOTAL WELL DEPTH (TD)                    | 0924 | 67                   | 7.26                                  | 27.8           | 573            | 30.5 | 42.6 NTU            |
| 44.2                                     | WEU  | SURGED               | FRO                                   | NO             | 930 to         | 099  | 0                   |
| WELL DIAMETER (INCHES)<br>2.0            | 1002 | 120                  | 7.24                                  | 23.4           | 576            | 24.2 | 49.4 NTU            |
| CALCULATED WELL VOLUME                   | 1008 | 140                  | 7.26                                  | 23.7           | 574            | 24.3 | 26.3 NTU            |
| 6.2 gal                                  | 1012 | 160                  | 7.                                    | 23.8           | 572            | 24.3 | 24.0 NTU            |
| BOREHOLE DIAMETER (INCHES)               | 1020 | 200                  | 7.50                                  | 23.8           | 572            | 24.3 | 21.0 NTU            |
| BOREHOLE VOLUME                          | 1030 | 220                  | 7.53                                  | 24.9           | 571            | 25.7 | 6.3 NTU             |
|                                          | 1033 | 230                  | 7.57                                  | 25.2           | 574            | 25.6 | 5.0 NTU             |
| AMOUNT OF WATER ADDED<br>DURING DRILLING |      | <u>`\</u>            |                                       |                |                |      | <u>λ</u> λ          |
| _                                        |      |                      |                                       |                |                |      |                     |
| DEVELOPMENT METHOD                       |      |                      |                                       |                |                |      |                     |
| Pumping                                  |      |                      |                                       |                |                |      |                     |
| PUMPTYPE (Wattera)                       |      |                      |                                       |                |                |      |                     |
| Inertial                                 |      | <u> </u>             |                                       |                |                |      |                     |
| total time (a)<br>2hrs. 15min            |      |                      |                                       | $\overline{\}$ |                |      |                     |
| AVERAGE FLOW (GPM)(B)                    |      |                      | l                                     |                |                |      | . ``                |
| 1.7 gpm                                  | OBS  | ERVATION             |                                       | TES            |                |      |                     |
| TOTAL ESTIMATED                          |      | VELOPM               |                                       |                |                |      |                     |
| WITHDRAWALAXB = $Q \mathcal{A}$          |      |                      |                                       |                |                |      | <b>ا</b>            |
| HNU/OVA READING                          |      |                      |                                       |                |                |      | Т                   |
|                                          |      |                      |                                       |                |                |      |                     |

PROJECT: SITE 35, SGI

CTO NO.: <u>0232</u> WELL NO.: <u>35-MW41B</u>

Baker Environmental, Inc.

Baker

DATE: <u>5/1/96</u>

GEOLOGIST/ENGINEER: \_\_\_\_\_ P. MONDAY

| TIME START                               | DEVELOPMENT DATA |                                   |         |              |                              |              |                     |  |  |  |  |  |
|------------------------------------------|------------------|-----------------------------------|---------|--------------|------------------------------|--------------|---------------------|--|--|--|--|--|
| TIME FINISH<br>1523                      | TIME             | CUMULATIVE<br>VOLUME<br>(gallons) | рН      | TEMP<br>(°C) | SPEC.<br>COND.<br>(µmhos/cm) | TEMP<br>(°C) | COLOR AND TURBIDITY |  |  |  |  |  |
| INITIAL WATER LEVEL (FT) $7.3$           | 1356             | 20                                | 7.57    | 26.1         | 968                          | 22.8         | 7 200 NTU           |  |  |  |  |  |
| TOTAL WELL DEPTH (TD)                    | 1405             | 40                                | 7.59    | 26.8         | 1013                         | 23.0         | 105.3 NTU           |  |  |  |  |  |
| 44.1                                     | 1412             | 55                                | 7.56    | 26.4         | 1018                         | 23.3         | 100.3 NTU           |  |  |  |  |  |
| WELL DIAMETER (INCHES) $2.0$             | 1419             | 75                                | 7.57    | 25.5         | 1013                         | 23.8         | 48.7 NTU            |  |  |  |  |  |
|                                          | 1427             | 95                                | 7.56    | 25.3         | 1020                         | 22.8         | 61.9 NTU            |  |  |  |  |  |
| 6.0 gal                                  | 1434             | 110                               | 7.54    | 25.7         | 1013                         | 23.1         | 53.9 NTU            |  |  |  |  |  |
| BOREHOLE DIAMETER (INCHES)               | 1441             | 130                               | 7.54    | 27.0         | 1002                         | 23.0         | 54.1 NTU            |  |  |  |  |  |
| BOREHOLE VOLUME                          | 1450             | 155                               | 7.53    | 25.9         | 492                          | 23.4         | 35.0 NTU            |  |  |  |  |  |
|                                          | 1457             | 165                               | 7.55    | 25.3         | 997                          | 23.Z         | 32.4 NTU            |  |  |  |  |  |
| AMOUNT OF WATER ADDED<br>DURING DRILLING | 1507             | 185                               | 7.53    | 26.8         | 996                          | 24.1         | 23.1 NTU            |  |  |  |  |  |
|                                          | 517              | 210                               | 7.53    | 25.6         | 994                          | 29.0         | 27.7 NTU            |  |  |  |  |  |
|                                          | /523             | 220                               | 7.58    | 27.7         | 1000                         | 27.9         | 13.9 NTU            |  |  |  |  |  |
| PUMPING<br>PUMPTYPE (WATTERA)            |                  | 1 1                               |         |              | /                            |              |                     |  |  |  |  |  |
| INERTIAL                                 |                  |                                   |         |              |                              |              |                     |  |  |  |  |  |
| TOTAL TIME (A)                           |                  |                                   |         |              |                              |              |                     |  |  |  |  |  |
| /h.e. 27 min.                            | /                |                                   |         |              |                              |              |                     |  |  |  |  |  |
| AVERAGE FLOW (GPM)(B)                    | OBS              | ERVATION                          |         |              |                              |              |                     |  |  |  |  |  |
| TOTAL ESTIMATED<br>WITHDRAWAL AXB =      |                  | VELOPMO                           |         |              |                              |              |                     |  |  |  |  |  |
| 220 gal                                  | De               |                                   | <i></i> |              |                              |              |                     |  |  |  |  |  |
| HNU/OVA READING                          |                  |                                   |         |              |                              |              |                     |  |  |  |  |  |
|                                          |                  |                                   |         |              |                              |              |                     |  |  |  |  |  |

PROJECT: <u>SITE 35, SGT</u>

DATE: <u>5/3/96</u>

Baker

CTO NO.: 0232 WELL NO.: 35- MW42B

Baker Environmental, Inc.

GEOLOGIST/ENGINEER: M Smith

| TIME START                                                                                | DEVELOPMENT DATA |                                   |      |              |                              |              |                     |  |  |  |
|-------------------------------------------------------------------------------------------|------------------|-----------------------------------|------|--------------|------------------------------|--------------|---------------------|--|--|--|
| /045<br>TIME FINISH<br>/2.15                                                              | TIME             | CUMULATIVE<br>VOLUME<br>(gallons) | рH   | темр<br>(°С) | SPEC.<br>COND.<br>(µmhos/cm) | TEMP<br>(°C) | COLOR AND TURBIDITY |  |  |  |
| INITIAL WATER LEVEL (FT)                                                                  | 1045             | - 0                               | 7.75 | 26.5         | - 531                        | 24.3         | > 200 NTU           |  |  |  |
| TOTAL WELL DEPTH (TD)                                                                     | 1048             | 10                                | 7.0  | 24.1         |                              |              | 7 200 NTU           |  |  |  |
| 39.3                                                                                      | 1055             | - 45-                             | 7.72 | 24.1         | 519                          | 24.1         | > 200 NTU           |  |  |  |
| WELL DIAMETER (INCHES)                                                                    | 1059             | 55                                |      | 24.1         | 514                          | 23.9         |                     |  |  |  |
| CALCULATED WELL VOLUME                                                                    | 1103             | 80                                |      |              |                              |              |                     |  |  |  |
| 5.5 gal                                                                                   |                  | SURGED .                          | VEU  | FR           | m 111                        | 7 4          | 0 1137              |  |  |  |
| BOREHOLE DIAMETER (INCHES)                                                                | 1142             | 85                                | 7.82 |              |                              | 24.6         |                     |  |  |  |
| BOREHOLE VOLUME                                                                           | 1146             | 100                               | 7.84 | 24.3         | 487                          | 23.8         | 7 200 NTU           |  |  |  |
| -                                                                                         | 1153             | 135                               | 7.89 | 24.8         | 508                          | 23.8         | 176 NTU             |  |  |  |
| AMOUNT OF WATER ADDED<br>DURING DRILLING                                                  | 1156             | 150                               | 7.89 | 24.8         | 489                          | 23.7         | 136 NTU             |  |  |  |
|                                                                                           | 1204             | . 19.0                            | 7.85 | 24.4         | 489                          | 24.0         | 71 NTU              |  |  |  |
|                                                                                           | 1208             | 230                               |      | -            | _                            | -            | 43 Nru              |  |  |  |
| Pumping<br>PUMPTYPE (Wattera)                                                             | 1212             | 240                               | 7.85 | 25.1         | 489                          | 24.0         | 35 NTU              |  |  |  |
| Inertial                                                                                  | 1215             | 250                               | —    | -            | -                            | -            | 10 NTU              |  |  |  |
| TOTAL TIME (A)                                                                            |                  |                                   |      |              | /                            |              |                     |  |  |  |
| 1 hr. 30 min.                                                                             |                  |                                   |      |              |                              |              | / / / /             |  |  |  |
| AVERAGE FLOW (GPM)(B)<br><u>2.8 gpm</u><br>TOTAL ESTIMATED<br>WITHDRAWAL AXB =<br>250 gpL | 1 ~              | ERVATION                          |      |              | <u>_</u>                     |              |                     |  |  |  |
| HNU/OVA READING                                                                           |                  |                                   |      |              |                              |              | •                   |  |  |  |

PROJECT: SITE 35, SGI

Baker

Baker Environmental, Inc.

| сто | NO.: | 02 |
|-----|------|----|
|     |      |    |

32 WELL NO.: <u>35-MW43B</u>

DATE: <u>5/2/96</u>

GEOLOGIST/ENGINEER: B. Davis

| TIME START                                | DEVELOPMENT DATA |                                   |       |              |                              |              |                     |  |  |  |  |
|-------------------------------------------|------------------|-----------------------------------|-------|--------------|------------------------------|--------------|---------------------|--|--|--|--|
| /4/0<br>TIME FINISH<br>/7/0               | TIME             | CUMULATTVE<br>VOLUME<br>(gallons) | рН    | TEMP<br>(°C) | SPEC.<br>COND.<br>(µmhos/cm) | TEMP<br>(°C) | COLOR AND TURBIDITY |  |  |  |  |
| INITIAL WATER LEVEL (FT)                  |                  | 50                                |       | -            |                              | -            | > 200 NTU           |  |  |  |  |
| <i>4: 7-6</i><br>TOTAL WELL DEPTH (TD)    |                  | 100                               | ~     | -            | -                            | -            | > 200 NTU           |  |  |  |  |
| 38.8                                      |                  | 150                               | ~     | 1            | -                            | -            | 7200 NTU            |  |  |  |  |
| WELL DIAMETER (INCHES)                    |                  | 200                               | 7.11  | -            | 700                          | 24           | 53 NTU              |  |  |  |  |
| CALCULATED WELL VOLUME                    |                  | 220                               | 6.33  |              | 700                          | 22           | 37.8 NTU            |  |  |  |  |
| 5.5 gal                                   |                  | 230                               | 6.58  |              | 700                          | 22           | 28.0 NTU            |  |  |  |  |
| BOREHOLE DIAMETER (INCHES)                |                  | 250                               | 6.49  |              | 700                          | 22           | 26.4 NTU            |  |  |  |  |
|                                           |                  |                                   |       |              |                              |              |                     |  |  |  |  |
| AMOUNT OF WATER ADDED<br>DURING DRILLING  |                  | · · ·                             |       |              |                              |              |                     |  |  |  |  |
| DEVELOPMENT METHOD Pumping                |                  |                                   |       |              |                              |              |                     |  |  |  |  |
| Pumping<br>PUMPTYPE (Wattera)<br>Inertial |                  |                                   |       |              |                              |              |                     |  |  |  |  |
| TOTAL TIME (A)                            |                  |                                   |       |              |                              |              |                     |  |  |  |  |
| 3 hours                                   |                  |                                   |       |              |                              |              |                     |  |  |  |  |
| AVERAGE FLOW (GPM)(B) /. 39 gpm           | OBS              | ERVATION                          | S/NO1 | TES          | 1                            | 1            | I <u></u>           |  |  |  |  |
| TOTAL ESTIMATED<br>WITHDRAWAL AXB = $250$ | Ī                | Zevelopme                         | int   |              |                              |              |                     |  |  |  |  |
| HNU/OVA READING                           |                  |                                   |       |              |                              |              |                     |  |  |  |  |

Baker

PROJECT: <u>Sete 35, SGT</u>

CTO NO.: 0232 WELL NO.: 35- MW60A

Baker Environmental, Inc.

GEOLOGIST/ENGINEER: M. Smith

DATE: 8/4/96

| TIME START                               | DEVELOPMENT DATA    |                                   |              |              |                              |              |                                                                                                                         |  |  |  |  |
|------------------------------------------|---------------------|-----------------------------------|--------------|--------------|------------------------------|--------------|-------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| 1128<br>TIME FINISH<br>1455              | TIME                | CUMULATIVE<br>VOLUME<br>(gailons) | рН           | temp<br>(°C) | SPEC.<br>COND.<br>(µmhos/cm) | temp<br>(°C) | COLOR AND TURBIDITY                                                                                                     |  |  |  |  |
| INITIAL WATER LEVEL (FT)<br>6.00         | 1135                | 28                                | 4.48         | 25           | 180                          |              |                                                                                                                         |  |  |  |  |
| TOTAL WELL DEPTH (TD)<br>/5.94 '         | 1140                | 48                                | 4.38         | 25           | 188.4                        | 20.1         | 28.3 NTU                                                                                                                |  |  |  |  |
| WELL DIAMETER (INCHES)                   | <u>1144</u><br>1452 | 80<br>100                         | 4.48<br>4.49 | 25<br>24.8   | 180<br>167                   | 20<br>21.4   | 12.9 NTU<br>4.0 NTU                                                                                                     |  |  |  |  |
| CALCULATED WELL VOLUME<br>.3. O          | 1455                | 112                               | 4.51         | 21.3         | 155.2                        | 20.4         | 3.9 Nru                                                                                                                 |  |  |  |  |
| BOREHOLE DIAMETER (INCHES)               |                     |                                   | $\square$    |              |                              | /            |                                                                                                                         |  |  |  |  |
| BOREHOLE VOLUME                          |                     |                                   |              |              |                              |              |                                                                                                                         |  |  |  |  |
| AMOUNT OF WATER ADDED<br>DURING DRILLING |                     |                                   |              |              |                              |              |                                                                                                                         |  |  |  |  |
| DEVELOPMENT METHOD                       |                     |                                   |              |              |                              | <u>/</u> .   |                                                                                                                         |  |  |  |  |
| PUMPTYPE (Wattera)<br>Incrtial           |                     |                                   |              |              |                              |              |                                                                                                                         |  |  |  |  |
| TOTAL TIME (A)<br>3He. 27 Min.           |                     | (                                 |              |              | /                            |              |                                                                                                                         |  |  |  |  |
| AVERAGE FLOW (GPM)(B)                    | 1                   | ERVATION                          |              | ES           |                              | 1            | La <u>ra de la constante de la cons</u> |  |  |  |  |
| WITHDRAWALAXB=<br>/12.0 gal              |                     | VELOPME                           |              |              |                              |              | _                                                                                                                       |  |  |  |  |
| HNU/OVA READING                          |                     |                                   |              |              |                              |              |                                                                                                                         |  |  |  |  |

Baker

PROJECT: SITE 35 , SGZ

CTO NO.: <u>0232</u> WELL NO.: <u>35-MW60B</u>

Baker Environmental, Inc.

DATE: <u>8/4/96</u>

GEOLOGIST/ENGINEER: M. Smith

| TIME START                               |          |                                   |      | DEVE         | OPMENT                       | DATA         |                     |
|------------------------------------------|----------|-----------------------------------|------|--------------|------------------------------|--------------|---------------------|
| 1000                                     | <u> </u> |                                   |      |              |                              |              |                     |
| TIME FINISH                              | ТІМЕ     | CUMULATIVE<br>VOLUME<br>(galions) | pН   | TEMP<br>(°C) | SPEC.<br>COND.<br>(µmhos/cm) | TEMP<br>(°C) | COLOR AND TURBIDITY |
| INITIAL WATER LEVEL (FT)                 | 1000     | 6                                 |      |              |                              | -            |                     |
| TOTAL WELL DEPTH (TD)                    | 1056     | 6                                 | 4.28 | 25.0         | 573                          | 21.2         | 6.20 NTU            |
| 37.41                                    | 1012     | 21                                | 4.65 | 21.4         | 468.0                        | 25           | 4.13 NTU            |
| WELL DIAMETER (INCHES)                   | 1027     |                                   | 4.8  | 21.0         | 551                          | 25.8         | 2.97 NTU            |
| 2.0<br>CALCULATED WELL VOLUME            | 1035     | 35                                | 4.87 | 25.0         | 547                          | 20.9         | 2.5 NTU             |
| 5.5 gals                                 | 1042     | 46                                | 5.09 | 25.0         | 545                          | (            | 7200 NTU            |
| BOREHOLE DIAMETER (INCHES)               | 1049     | 50                                | -    |              |                              | 1            | 41 NTU              |
| BOREHOLE VOLUME                          | 1052     | 53                                | 5.30 | 25.0         | 557                          | 22.5         | 48NTU               |
|                                          | 1055     | - 56                              | -    | -            | -                            |              | 32 NTR              |
| AMOUNT OF WATER ADDED<br>DURING DRILLING | 1101     | 60                                | ~    |              |                              |              | 19 NTU              |
|                                          | 1104     | 65                                | -    | ·            | · ~                          | -            | IGNTU               |
|                                          | 1115     | 75                                | 5.8Z | 25.0         | 554                          | 22.5         | LO NTU              |
| Pumping                                  |          |                                   | /    | /            | /                            |              | / /                 |
| PUMPTYPE (Wattera)<br>Incrtial           | •        | / /                               |      |              |                              |              |                     |
| TOTAL TIME (A)                           |          |                                   |      |              |                              |              |                     |
| 1 hr 15min.                              | 7        |                                   | 1    | /            |                              | /            |                     |
| AVERAGE FLOW (GPM)(B)                    |          |                                   |      |              | 4                            | 1 <u></u>    |                     |
| /. O GP m<br>TOTAL ESTIMATED             |          | ERVATION:<br>Zvelopm              |      | £3           |                              |              |                     |
| WITHDRAWALAXB=<br>75 gal                 |          |                                   |      |              |                              |              |                     |
| HNU/OVA READING                          | 1        |                                   |      |              |                              |              |                     |
| · · · · · · · · · · · · · · · · · · ·    |          |                                   |      |              |                              |              |                     |

PROJECT: SITE 35, SGT

CTO NO.: 0232 WELL NO.: 35-GWDG

DATE: 4/28/96

| TIME START                               |              |                                   |      | DEVEL        | OPMENT                       | DATA         |                      |  |
|------------------------------------------|--------------|-----------------------------------|------|--------------|------------------------------|--------------|----------------------|--|
| /522<br>TIME FINISH<br>/8/3              | ТІМЕ         | CUMULATIVE<br>VOLUME<br>(gailons) | pН   | TEMP<br>(°C) | SPEC.<br>COND.<br>(µmhos/cm) | TEMP<br>(°C) | COLOR AND TURBIDITY  |  |
| INITIAL WATER LEVEL (FT)<br>8.34         | 1522         | 10                                | 7.05 | 26.1         | 519                          | 23.Z         | 7 200 NTU            |  |
| TOTAL WELL DEPTH (TD)                    | 1530         | 30                                | 2.77 | 23.7         | 483                          | 22.4         | 7200 NTU             |  |
| 67.0                                     | 1538         | 50                                | 7.82 | 23.9         | 475                          | 22.3         | 101.8 NTU            |  |
| WELL DIAMETER (INCHES) $\mathcal{Q}$     | 1542         | 60                                | 7.89 |              |                              | 2.2.1        | 86.5 NTA             |  |
| CALCULATED WELL VOLUME                   | 1546         | 70                                | 7.88 | 22.8         | 475                          | 21.9         | 62.3 NTU             |  |
| 9.5                                      | 1550         | 80                                | 7.89 | 22.9         | 469                          | 21.9         | 58.2 NTU             |  |
| BOREHOLE DIAMETER (INCHES)               | 1558         | 100                               | 7.89 | 23.3         | 467                          | 22.1         | 54.9 NTU             |  |
|                                          | 160Z<br>1606 | 110                               |      | 23.4<br>22.8 |                              | 22.0<br>21.9 | 58.2 NTU<br>62.9 NTU |  |
| AMOUNT OF WATER ADDED<br>DURING DRILLING | 1617         | 140                               | 7.94 | <i>21.8</i>  | 475.8                        | 21.6         | 47. 5 NTH            |  |
| —                                        | 1622         | 150                               | 7.92 | 21.5         | 475                          | 21.6         | 56.3 NTU             |  |
| DEVELOPMENT METHOD                       | 1627         | 150                               | 7.92 | 21.5         | 474                          | 21.6         | 55.5NTU              |  |
| Pumping                                  | 1632         | 170                               | 7.90 | 21.6         | 474                          | 21.6         | 54.7 NTU             |  |
| PUMPTYPE (Wattera)<br>Iner Hal           | 1734         | 200                               | 8.85 | 20.9         | 507                          | 21.0         | 74 NTU               |  |
| TOTAL TIME (A)                           | 1800         | 240                               | 8.29 | 20.6         | 514                          | 20.9         | 4.9 NTU              |  |
| 2 hrs. 5/min.                            | 1813         | 280                               | 8.05 | 20.7         | 485                          | 21           | 3.9 Nru              |  |
| AVERAGE FLOW (GPM)(B)  /. 64             | OBS          | ERVATION                          |      |              |                              |              |                      |  |
| TOTAL ESTIMATED<br>WITHDRAWAL AXB =      | De           | VELOPME                           | w T  |              |                              |              |                      |  |
| 280                                      |              |                                   |      |              |                              |              |                      |  |
| HNU/OVA READING                          |              |                                   |      |              |                              |              |                      |  |

Baker Environmental, Inc.

Baker

PROJECT: <u>SITE 35, SGI</u>

CTO NO.: 0232 WELL NO.: 35-6007

Baker Environmental, Inc.

Baker

DATE: <u>8-3-96</u>

GEOLOGIST/ENGINEER: \_\_\_\_\_M. Smith

TIME START **DEVELOPMENT DATA** 1542 CUMULATIVE SPEC. TIME FINISH TEMP TEMP pН TIME VOLUME COND. COLOR AND TURBIDITY (°C) (°C) (gallons) 1818 (umhos/cm) INITIAL WATER LEVEL (FT) \_ \_ \_ 1607 5 3.9 \_ \_ \_\_\_\_ TOTAL WELL DEPTH (TD) 1613 10 51.66 -\_ \_\_\_\_ ----621 15 WELL DIAMETER (INCHES) 99 NTU 6.55 25 1642 20 528 20.1 2.0 44 NTU 19.4 658 25 6.31 491 14.7 CALCULATED WELL VOLUME 57 Nru 19.0 8.12 gal 490 1715 19.4 40 5.61 **BOREHOLE DIAMETER (INCHES)** 23 NTU 489 1728 50 5.26 18.9 18.0 \_ 60 1742 **BOREHOLE VOLUME** 80 \_ \_ IONTU 1818 18.0 500 AMOUNT OF WATER ADDED **DURING DRILLING** . DEVELOPMENT METHOD Pumping PUMPTYPE (Wattera) Inertial TOTAL TIME (A) The. 36 min AVERAGE FLOW (GPM)(B) 0.59pm **OBSERVATIONS/NOTES** TOTAL ESTIMATED DEVELOPMENT. WITHDRAWAL AxB = 80 gal HNU/OVA READING

# APPENDIX I SGI IDW MANAGEMENT AND DISPOSAL INFORMATION

.....



bcc: Pajak/CF; JWMentz/PRGM File; DLBo YRJ File; MDSmith/PRJ File; MDBartman; RPWattras(ck); Daily File S.O.# 62470-323-SRN Subfile # X S Baker Environm Airport Office Par 420 Baumar Back

Baker Environmental, Inc. Airport Office Park, Building 3 420 Rouser Road Coraopolis, Pennsylvania 15108.

(412) 269-6000 FAX (412) 269-2002

÷

November 7, 1995

Commander Atlantic Division Naval Facilities Engineering Command 1510 Gilbert Street (Building N-26) Norfolk, Virginia 23511-2699

- Attn: Ms. Katherine Landman Navy Technical Representative Code 18232
- Re: Contract N62470-89-D-4814 Navy CLEAN, District III Contract Task Order (CTO) 0323 August 1995, Groundwater and Sediment Sampling Operable Unit No. 10 (Site 35) MCB, Camp Lejeune, North Carolina

# Dear Ms. Landman:

This letter report presents the results of groundwater and sediment sampling conducted under CTO-0323, RAC Design Package For Surficial Groundwater Remediation Operable Unit 10, Site 35 - Camp Geiger Area Fuel Farm. A field investigation was performed during July and August that included well development, groundwater and sediment sample collection and measurement of static water levels. Concurrent with the field investigation, a site survey was performed. Laboratory analytical and validation activities began with the submission of the first sample and were completed during September and October of 1995. Preliminary results indicate that Total Petroleum Hydrocarbon (TPH) contamination is present in the sediment of Brinson Creek and the levels of total inorganic contamination in surficial groundwater were substantially reduced through the use of low flow sampling procedures.

The data collected will be used in the design of a surficial groundwater remediation system to be completed under this CTO. The data will also be included in the site-wide Remedial Investigation (RI) Report to be completed in 1996 under CTO-0232.

### FIELD INVESTIGATION

## Groundwater Investigation

The goal of the groundwater investigation was to more accurately quantify total metals contamination in the surficial aquifer by reducing sediment disturbance during sampling. To meet this goal the following tasks were performed in the field: well development, low flow groundwater sampling, and measurement of static water levels. Groundwater samples were collected from 20 wells identified in the Final RI as having total inorganic contamination that exceeded federal Maximum Contaminant Levels (MCLs), Secondary Maximum

Baker

t

Ms. Katherine Landman November 7, 1995 Page 2

Contaminant Levels (SMCLs), and North Carolina Water Quality Standards (NCWQS). Initially, 24 wells were identified as exceeding these standards. However, four wells were abandoned as part of the soil remediation at Site 35 and, therefore, only 20 wells were sampled.

## Well Development

Each of the 20 wells sampled were developed to remove fine-grained sediment from the screen and establish hydraulic communication between the well and the aquifer. Prior to development, the groundwater within each well and sand pack was agitated with a surge block for approximately 20 minutes to stir up sediments. Two pumping systems were used during redevelopment. Shallow and intermediate wells were redeveloped with a centrifugal pumping system, and the deep wells were developed with an inertial pumping system (Wattera system). Hoses used for surging and development were dedicated to each well to minimize the potential for cross contamination and discarded upon completion. During redevelopment eight to 127 well volumes were removed from wells until the pH, conductivity and temperature had stabilized and groundwater was essentially sediment free. Turbidity levels were monitored as a measurement of sediment content. Groundwater was considered sediment free when turbidity measurements of less than 10 nephelometer turbidity units (NTUs) were achieved. Wells were redeveloped for no more than three hours. Groundwater collected during the redevelopment process was temporarily stored in a 200-gallon polyethylene tank or 55 gallon drums, then transferred to a 9,000-gallon tank truck.

Redevelopment activities occurred between July 24 1995 and August 8, 1995. Average flows at each well ranged from one gallon per minute (gpm) to five gpm. In general, most wells reached turbidity levels of 10 NTUs or less within three hours. However, turbidity in well MW-16S remained greater than 200 NTUs for the duration of redevelopment, approximately three hours. Groundwater collected from this well maintained a slight orange color during redevelopment. Well redevelopment records will be included in the site-wide RI report.

## **Groundwater Sampling**

Groundwater samples were collected from 20 wells to determine the levels of total inorganic contamination in the upper and lower portion of the surficial aquifer. To purge and sample, polyethylene tubing was inserted into each monitoring well approximately two to four feet below the static water level and a steady flow of approximately 0.25 gpm or less was established using a peristaltic pump. Tubing used for purging and sampling was dedicated to each well to minimize the potential for cross contamination and discarded upon completion. Prior to sampling, wells were purged of three to five well volumes until the pH, conductivity and temperature had stabilized, and groundwater was essentially sediment free. Turbidity levels were monitored as a measurement of sediment content. Groundwater was considered sediment free when turbidity measurements of less than 10 NTUs using a peristaltic pump.

Samples were introduced directly into laboratory prepared sample containers from the discharge side of the peristaltic pump and stored on ice. Groundwater samples were prepared and handled in accordance with procedures outlined in accordance with the Remedial Investigation/Feasibility Study Field Sampling and

(C)

# Baker

- 1

Ms. Katherine Landman November 7, 1995 Page 3

Analysis Plan for Operable Unit No. 10 (Site 35) (FSAP, Baker, 1993) and USEPA Region IV Standard Operating Procedures (SOPs).

Groundwater was sampled between August 8, 1995 and August 16, 1995. It should be noted that groundwater sampling was performed immediately after contaminated soils were excavated from the above ground storage tank (ASTs) area at Site 35.

## Static Water Levels

A round of static water levels was collected on August 12, 1995 in order to assess groundwater flow patterns in the surficial aquifer during the sampling event. The measurements were recorded using an electronic measuring tape to the nearest 0.01-foot from the top of the casing. Data were collected from deep, intermediate and shallow wells during a four hour period

### Sediment Investigation

Sediment samples were obtained from 10 sampling stations along Brinson Creek established during the previous RI field effort. These stations include three locations (35-SD01 through 35-SD03) upstream of Site 35 and seven locations (35-SD04 through 35-SD07 and 36-SD-05 through 35-SD07) adjacent and downstream of Site 35. The purpose of this effort was to provide data regarding the extent of organic contamination that was "masked" by tentatively identified compounds (TICs) in previous results and to replace mercury and zinc data that was rejected during validation performed for the previous RI.

At each sediment sampling station samples were collected at a depth of zero to six inches and six to 12 inches. Because the sediment samples were collected from near the bank where the water was shallow, it was not necessary to use a coring device. A plastic liner with an eggshell was pushed into the sediment a minimum depth of 15 inches, or until refusal, whichever was encountered first. If less than 12 inches of sediment were obtained, the first six inches were placed in the zero to six inch container, and the remaining sediment was placed into the six to 12 inch container. An extruding device was not needed to extract sediment from the liner. Samples were introduced directly into laboratory prepared sample bottles and stored on ice. Sediment samples were prepared and handled in accordance with procedures outlined in accordance with the FSAP (Baker, 1993) and USEPA Region IV SOPs.

# SITE SURVEY

A topographic survey was performed at the site in the area of the proposed site access roads. This data will be used to produce a topographic base map with one-foot contour intervals. The area covered by this survey generally included the ground surface between the eastern edge of the proposed row for a six-lane highway and the western edge of Brinson Creek. The northern boundary is approximately an extension of Second Street from First Street and the southern boundary is approximately the west face of the Camp Geiger Sewage Treatment Facility. The survey was performed during August and September 1995. Flooding in the wetlands area delayed work in this area for several weeks.

Baker

Ms. Katherine Landman November 7, 1995 Page 4

## SAMPLE ANALYSIS AND VALIDATION

Groundwater and sediment samples were packed and shipped to Inchcape Testing Services NRDC Laboratories in Richardson, Texas between August 7 and 14, 1995. Groundwater samples were analyzed for Target Analyte List (TAL) metals and sediments were analyzed by for TPH (EPA Methods 5030/8015 and 3550/8015), mercury (EPA Method E245.3) and zinc (EPA Method E 200.7). A copy of the Chain-of-Custody (COCs) will be included in the state-wide RI.

Sample Design Groups (SDGs) with analytical results were submitted by Inchcape to Baker for review and Heartland Environmental for validation between September 13 and 21, 1995. Validation was performed based on EPA CLP SOW. The validated data were received from Heartland Environmental between October 5 and 12, 1995.

## **INVESTIGATION RESULTS**

A preliminary review of the groundwater and sediment data was performed as part of this report. Data from both media will be further evaluated as part of an addendum to the Final RI. Positive detection summaries for sediment and groundwater are included in Tables 1, 2, and 3. The analytical results of this field effort can be summarized as follows:

- No sediment, groundwater, QA/QC or IDW sample was rejected by the validator.
- Total metals concentrations in groundwater samples appeared to be substantially lower than detected during the previous sampling round where 23 of 24 samples submitted for TAL inorganics exceeded either federal MCLs or NCWQS for drinking water. Specific inorganics that exceeded these standards included arsenic, barium, beryllium, cadmium, chromium, lead, manganese, mercury, and nickel. In the current investigation nine of 22 samples submitted for TAL inorganics exceeded either federal MCLs or NCWQS for drinking water. Specific inorganics exceeded these standards included and manganese.
- Both diesel and gasoline fractions were detected by the TPH analysis in Brinson Creek sediments. Gasoline fractions were detected in 17 of 22 samples submitted for TPH. Levels ranged between 0.1 mg/kg and 29.7 mg/kg. Diesel fractions were detected in 16 of 22 samples that were submitted with levels ranging between 54.9 mg/kg and 7,420 mg/kg. During the previous RI only toluene was detected in one of 20 samples that were submitted for TCL volatile analysis.

## Baker

Ms. Katherine Landman November 7, 1995 Page 5

> Mercury was detected in three of 22 samples, and zinc was detected in 21 of 22 samples. Three of the 22 samples submitted for mercury exceeded the USEPA Region IV sediment screening value for mercury of 0.15 mg/kg. None of the 22 samples submitted for zinc exceeded the USEPA Region IV sediment screening value of 120 mg/kg.

The mercury and zinc data generated from the results of this sampling effort along with the low flow groundwater sampling for metals should enable Baker to determine whether or not Site 35 is the source of elevated zinc and/or mercury concentrations in Brinson Creek water and fish. In addition, groundwater data gathered at Site 35 will be used to further evaluate the human health and environmental risks associated with Site 35. The TPH data will be used to evaluate where Brinson Creek sediments are most profoundly impacted by petroleum contamination, and will aid in the placement of the groundwater remediation system.

€

Baker appreciates the opportunity to serve LANTDIV on this project. If you have any questions, please do not hesitate to contact me at (412) 269-2063.

Sincerely,

BAKER ENVIRONMENTAL, INC.

Daniel L. Bonk, P.E. Project Manager

Attachments

and the second 
€

.

.

·

.

.

. .

# TABLES

÷.

.

| Location<br>Lab id.<br>Date Sampled | MCL<br>Groundwater<br>[ug/L] | NCWQS<br>Groundwater<br>[ug/L] | <b>35-EMW03-02</b><br>D95-7537-1<br>08/10/95 | 3 <b>5-EMW05-02</b><br>D95-7597-6<br>08/11/95 | 35-EMW07-02<br>D95-7537-2<br>08/10/95 | 35-GW05-02m<br>D95-7537-8<br>08/11/95 | 35-MW09D-02<br>D95-7597-2<br>08/12/95 |
|-------------------------------------|------------------------------|--------------------------------|----------------------------------------------|-----------------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|
| ANALYTES (ug/L)                     |                              |                                |                                              |                                               |                                       |                                       |                                       |
| Aluminum                            | NC                           | NA                             | 96.5                                         | 93.2 J                                        | 20 U                                  | 25.9                                  | 26.2 J                                |
| Antimony                            | 6                            | NA                             | 20 U                                         | 20 U                                          | 20 U                                  | 20 U                                  | 20 U                                  |
| Arsenic                             | 50                           | 50                             | 2 U                                          | 8.7 J                                         | 2 U                                   | 2 U                                   | 1.4 U                                 |
| Barlum                              | 2000                         | 2000                           | 20 U                                         | 21.7 J                                        | 20 U                                  | 20 U                                  | 20.9 J                                |
| Calcium                             | NC                           | NA                             | 89900                                        | 45100                                         | 105000                                | 56900                                 | 104000                                |
| Cobatt                              | NC                           | NA                             | <u>9</u> J                                   | <u>3.8</u> J                                  | 2.8 J                                 | <u> </u>                              | 2 U                                   |
| Iron                                | NC                           | 300                            | 3350                                         | 20200                                         | 106                                   | 337                                   | 1650                                  |
| Lead                                | 15                           | 15                             | 1 UJ                                         | 12.1 J                                        | 1 UJ                                  | 1 U                                   | 1 UJ                                  |
| Magnesium                           | NC                           | NA                             | 2240 J                                       | <u>3610</u> J                                 | 3480 J                                | 2280                                  | 2260 J                                |
| Manganese                           | NC                           | 50                             | 22.9                                         | 51.7                                          | 26.2                                  | 22.1                                  | 19.7                                  |
| Potassium                           | NC                           | NA                             | 734 J                                        | 1160 J                                        | 2150 J                                | 4400                                  | 844 J                                 |
| Selenium                            | 50                           | 50                             | · 2.5 UJ                                     | 2.5 UJ                                        | 2.5 U                                 | 2.5 U                                 | 2.5 UJ                                |
| Silver                              | NC                           | 18                             | 2 U                                          | 2 U                                           | 2 U                                   | 2 U                                   | 2 U                                   |
| Sodium                              | NC                           | NA                             | 8120                                         | 9090                                          | 7940                                  | 31900                                 | 8740                                  |
| Thallium                            | 2                            | NA                             | 0.7 U                                        | 9.9 U                                         | 0.7 U                                 | 1                                     | 9.9 U                                 |
| Vanadium                            | NC                           | NA                             | 2 U                                          | 2 U                                           | 2 U                                   | 2 U                                   | 2 U                                   |
| Zinc                                | NC                           | 2100                           | 10,5 J                                       | 5 U                                           | 10.6 J                                | 6.7                                   | 10.9 U                                |

NOTES:

(NO CODE) = Confirmed identification.

U = Not detected. The associated number indicates approximate sample concentration necessary to be detected.

.

UJ = Not detected. Quantitation limit may be inaccurate or imprecise.

J = Analyte present, Reported value may not be accurate or precise.

| Location<br>Lab Id. | MCL NCW      | valer D95-7597-7 | 95-7537-15 | 35-MW10S-02<br>95-7537-14 | 35-MW14D-02<br>95-7537-17 | 35-MW14S-02<br>95-7537-16 |
|---------------------|--------------|------------------|------------|---------------------------|---------------------------|---------------------------|
| Date Sampled        | (ug/L) [ug/L | .) 08/12/95      | 08/09/95   | 08/09/95                  | 08/10/95                  | 08/10/95                  |
| ANALYTES (ug/L)     |              |                  |            |                           |                           |                           |
| Aluminum            | NA NA        | 198 J            | 20 U       | 303                       | 28,6 J                    | 20 U                      |
| Antimony            | 6 NA         | 20 U             | 20 U       | 20 U                      | 20 U                      | 20 U                      |
| Arsenic             | 50 50        | 3.2 J            | 2 U        | 3.5 J                     | 2 U                       | 4.2 J                     |
| Barium              | 2000 2000    | ) 57.7 J         | 20 U       | 20 U                      | 33,7 J                    | 27.1 J                    |
| Calcium             | NA NA        | 98600            | 122000     | 75000                     | 119000                    | 142000                    |
| Cobait              | NA NA        | 2 U              | 2 U        | 2 U                       | <u>2</u> U                | <u>2.9</u> _J             |
| Iron                | NA 300       | 162              | 1490       | 152                       | 1070                      | 4490                      |
| Lead                | 15 15        | 1 UJ             | 1          | 1 U                       | 15,4                      | 1 U                       |
| Magnesium           | NA NA        | 4110 J           | 2420       | 1800 J                    | 2450 J                    | 4520 J                    |
| Manganese           | NA 50        | 38.6             | 19         | 7.5 J                     | 23.4                      | 44.6                      |
| Potassium           | NA NA        | 3350 J           | 811        | 860 J                     | 1270 J                    | 1460 J                    |
| Selenium            | 50 50        | 3.4 J            | 2.5 U      | 2.5 U                     | 2.5 U                     | 2.5 UJ                    |
| Silver              | NA 18        | 2 U              | 2 U        | 2 U                       | 2 U                       | 2 U                       |
| Sodium              | NA NA        | 29000            | 8390       | 9970                      | 9560                      | 10400                     |
| Thallium            | 2 NA         | 9,9 U            | 0.7 U      | 0.7 U                     | 0.7 U                     | 0.7 UJ                    |
| Vanadium            | NA NA        | 5.5 J            | 2 U        | 9.1 J                     | 2 U                       | 2 U                       |
| Zinc                | NA 2100      | ) 18.5 U         | 13.8       | 6.5 J                     | 29.5                      | 22.5                      |

NOTES:

2

(NO CODE) = Confirmed identification.

U = Not detected. The associated number indicates approximate sample concentration necessary to be detected.

UJ = Not detected. Quantitation limit may be inaccurate or imprecise.

J = Analyte present. Reported value may not be accurate or precise.

| Location<br>Lab Id.<br>Date Sampled | MCL<br>Groundwater C<br>[ug/L] | NCWQS<br>Groundwater<br>[ug/L] | <b>35-MW16D-02</b><br>95-7537-13<br>08/09/95 | 35-MW16S-02<br>95-7537-11<br>08/10/95 | 35-MW16S-02D<br>95-7537-12<br>08/10/95 | 35-MW19D-02<br>D95-7537-5<br>08/11/95 | 35-MW19S-02<br>D95-7537-6<br>08/11/95 |
|-------------------------------------|--------------------------------|--------------------------------|----------------------------------------------|---------------------------------------|----------------------------------------|---------------------------------------|---------------------------------------|
| ANALYTES (ug/L)                     |                                |                                | •                                            |                                       |                                        |                                       |                                       |
| Aluminum                            | NA                             | NA                             | 20 U                                         | 20 U                                  | 20 U                                   | 47.8 J                                | 282                                   |
| Antimony                            | 6                              | NA                             | 20 U                                         | 20 U                                  | 20 U                                   | 20 U                                  | 20 U                                  |
| Arsenic                             | 50                             | 50                             | 2 U                                          | 10.3                                  | 11.1                                   | 2 U                                   | 2 U                                   |
| Barium                              | 2000                           | 2000                           | 20 U                                         | 32.2 J                                | 31.3 J                                 | 20 U                                  | 20 U                                  |
| Calcium                             | NA                             | NA                             | 96900                                        | 124000                                | 121000                                 | 109000                                | 35600                                 |
| Cobalt                              | NA                             | NA                             | <u>6.1</u> J                                 | <u> </u>                              | <u> </u>                               | 2.2 J                                 | 4,4 J                                 |
| Iron                                | NA                             | 300 [                          | 2580                                         | 40400                                 | 42200                                  | 113                                   | 266                                   |
| Lead                                | 15                             | 15                             | 1 U                                          | 8.9                                   | 2.9 J                                  | 1 UJ                                  | 1 U                                   |
| Magnesium                           | NA                             | NA _                           | 3440 J                                       | <u>4580</u> J                         | 4540 J                                 | 4990 J                                | <u>1880</u> J                         |
| Manganese                           | NA                             | 50 [                           | 275                                          | 141                                   | 139                                    | 36.7                                  | 102                                   |
| Potassium                           | NA                             | NA                             | 970 J                                        | 793 J                                 | 728 J                                  | 3360 J                                | 2650 J                                |
| Setenium                            | 50                             | 50                             | 2.5 U                                        | 2.5 UJ                                | 2.5 U                                  | 2.5 U                                 | 2.5 U                                 |
| Silver                              | NA                             | 18                             | 2 U                                          | 10.9                                  | 2 U                                    | 2 U                                   | 2 U                                   |
| Sodium                              | NA                             | NA                             | 8380                                         | 4350 J                                | 4520 J                                 | 10500                                 | 11300                                 |
| Thallium                            | 2                              | NA                             | 0.7 UJ                                       | 0.9 J                                 | 1.1 J                                  | 0.7 J                                 | 0.7 U                                 |
| Vanadium                            | NA                             | NA                             | 2 U                                          | · 2U                                  | 2 U                                    | 2 U                                   | 2 U                                   |
| Zinc                                | NA                             | 2100                           | 12.9 J                                       | 11.5 J                                | 5 U                                    | 10.4 J                                | 9.9 J                                 |

NOTES:

.

٠

TES: (NO CODE) = Confirmed Identification.

U = Not detected. The associated number indicates approximate sample concentration necessary to be detected.

UJ = Not detected. Quantitation limit may be inaccurate or imprecise.

J = Analyte present. Reported value may not be accurate or precise.

| Location<br>Lab Id.<br>Date Sampled | MCL<br>Groundwater<br>(ug/L) | NCWQS<br>Groundwater<br>(ug/L) | ] 35-MW19S-02D<br>D95-7537-7<br>08/11/95 | <b>35-MW22D-02</b><br>D95-7597-8<br>08/13/95 | 35-MW22S-02<br>D95-7597-9<br>08/13/95 | 35-MW29A-02<br>D95-7597-4<br>08/12/95 | 35-MW298-02<br>D95-7597-5<br>08/12/95 |
|-------------------------------------|------------------------------|--------------------------------|------------------------------------------|----------------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|
| ANALYTES (ug/L)                     |                              |                                |                                          |                                              |                                       |                                       |                                       |
| Aluminum                            | NA                           | NA                             | 205                                      | 22.6 J                                       | 123 U                                 | 357                                   | 20 U                                  |
| Antimony                            | 6                            | NA                             | 20 U                                     | 20 U                                         | 50 J                                  | 20 U                                  | 20 U                                  |
| Arsenic                             | 50                           | 50                             | 2 U                                      | 1.4 U                                        | 7.1 J                                 | 13.3                                  | 1.4 U                                 |
| Barlum                              | 2000                         | 2000                           | 20 U                                     | 24.7 J                                       | 32.5 U                                | 81.7 J                                | 20 U                                  |
| Calcium                             | NA                           | NA                             | 34500                                    | 104000                                       | 133000                                | 7460                                  | 93500                                 |
| Cobalt                              | NA                           | NA                             | 4.1 J                                    | <u>2</u> U                                   | <u> </u>                              | <u> </u>                              | <u> </u>                              |
| Iron                                | NA                           | 300                            | 215                                      | 1110                                         | 15700                                 | 9360                                  | 933                                   |
| Lead                                | 15                           | 15                             | 1 U                                      | 2.5 J                                        | 1 UJ                                  | 1 UJ                                  | 1.4 J                                 |
| Magnesium                           | NA                           | NA                             | 1770 J                                   | 3020 J                                       | 3230 J                                | 1550 J <sup>,</sup>                   | 1890 J                                |
| Manganese                           | NA                           | 50                             | 98.1                                     | 41.2                                         | 63.5                                  | 29.2                                  | 17.1                                  |
| Potassium                           | NA                           | NA                             | 2600 J                                   | 1120 J                                       | 2320 J                                | 2170 J                                | 1110 J                                |
| Selenium                            | 50                           | 50                             | 2.5 U                                    | 2.5 UJ                                       | 2.5 UJ                                | 2.5 UJ                                | 2.5 UJ                                |
| Silver                              | NA                           | 18                             | 2 U                                      | 2 U                                          | 2 U                                   | 2 U                                   | 2 U                                   |
| Sodium                              | NA                           | NA                             | 11200                                    | 7050                                         | 5080                                  | 14600                                 | 6460                                  |
| Thallium                            | 2                            | NA                             | 1.3 J                                    | 9.9 U                                        | 9.9 U                                 | 9.9 U                                 | 9.9 U                                 |
| Vanadium                            | NA                           | NA                             | 2 U                                      | 2 U                                          | 2 U                                   | 2 U                                   | 2 U                                   |
| Zinc                                | NA                           | 2100                           | 11.7 J                                   | 5.9 U                                        | 5 U                                   | 17.4 U                                | 11.6 U                                |

NOTES:

....

(NO CODE) = Confirmed identification.

U = Not detected. The associated number indicates approximate sample concentration necessary to be detected.

UJ = Not detected. Quantitation limit may be inaccurate or imprecise.

J = Analyte present. Reported value may not be accurate or precise.

۰.

| Location<br>Lab Id.<br>Date Sampled | MCL<br>Groundwater<br>[ug/L] | NCWQS<br>Groundwater<br>[ug/L] | 3 <b>5-MW33A-0</b> 2<br>D95-7597-1<br>08/12/95 | 3 <b>5-MW33D-</b> 02<br>D95-7597-3<br>08/12/95 |
|-------------------------------------|------------------------------|--------------------------------|------------------------------------------------|------------------------------------------------|
| ANALYTES (ug/L)                     |                              |                                |                                                |                                                |
| Aluminum                            | NA                           | NA                             | 520                                            | 20 U                                           |
| Antimony                            | 6                            | NA                             | 20 U                                           | 20 U                                           |
| Arsenic                             | 50                           | 50                             | 1.4 U                                          | 1.4 U                                          |
| Barium                              | 2000                         | 2000                           | 98.4 J                                         | 20 U                                           |
| Calcium                             | NA                           | NA                             | 6380                                           | 102000                                         |
| Cobalt                              | NA                           | NA                             | 2 U                                            | 2 U                                            |
| Iron                                | NA                           | 300                            | 58.4 J                                         | 648                                            |
| Lead                                | 15                           | 15                             | 6 J                                            | 1.5 J                                          |
| Magneslum                           | NA                           | NA                             | 3620 J                                         | 2170 J                                         |
| Manganese                           | NA                           | 50                             | 8.8 J                                          | 20.1                                           |
| Potassium                           | NA                           | NA                             | 1840 J                                         | 929 J                                          |
| Selenium                            | 50                           | 50                             | 2.6 J                                          | 2.5 UJ                                         |
| Silver                              | NA                           | 18                             | 2 U                                            | 2 U                                            |
| Sodium                              | NA                           | NA                             | 5370                                           | 7340                                           |
| Thallium                            | 2                            | NA                             | 9.9 U                                          | 9.9 U                                          |
| Vanadium                            | NA                           | NA                             | 2 U                                            | 2 U                                            |
| Zinc                                | NA                           | 2100                           | 7.6 U                                          | 24.3 U                                         |

NOTES:

.....

ES: (NO CODE) = Confirmed identification.

U = Not detected. The associated number indicates approximate sample concentratio

UJ = Not detected, Quantitation limit may be inaccurate or imprecise.

J = Analyte present. Reported value may not be accurate or precise.

.

NC = No criteria.

.

| Location<br>Lab id.<br>Date Sampled | number exceeding<br>MCL<br>Groundwater | number exceeding<br>NCWQS<br>Groundwater | MAXIMUM<br>DETECTED | LOCATION OF<br>MAXIMUM<br>DETECTED | FREQUENCY<br>OF<br>DETECTION |
|-------------------------------------|----------------------------------------|------------------------------------------|---------------------|------------------------------------|------------------------------|
| ANALYTES (ug/L)                     |                                        |                                          |                     |                                    |                              |
| Aluminum                            | NC                                     | NC                                       | 520                 | 35-MW33A-02                        | 13/22                        |
| Antimony                            | 1/22                                   | NC                                       | 20 J                | 35-MW22S-02                        | 1/22                         |
| Arsenic                             | 0/22                                   | 0/22                                     | . 13.3              | 35-MW29A-02                        | 8/22                         |
| Barlum                              | 0/22                                   | 0/22                                     | 98.4 J              | 35-MW33A-02                        | 10/22                        |
| Calcium                             | NC                                     | NC                                       | 142000              | 35-MW14S-02                        | 22/22                        |
| Cobalt                              | NC                                     | NC                                       | 16.9 J              | 35-MW16S-02D                       | 12/22                        |
| Iron                                | NC                                     | 15/22                                    | 42200               | 35-MW16S-02D                       | 22/22                        |
| Lead                                | 1/22                                   | 1/22                                     | 15.4                | 35-MW14D-02                        | 9/22                         |
| Magnesium                           | NC                                     | NC                                       | 4990 J              | 35-MW19D-02                        | 22/22                        |
| Manganese                           | NC                                     | 7/22                                     | 275                 | 35-MW16D-02                        | 22/22                        |
| Potassium                           | NC                                     | NC                                       | 4400                | 35-GW05-02m                        | 22/22                        |
| Selenium                            | 0/22                                   | 0/22                                     | 3.4 J               | 35-MW09S-02                        | 2/22                         |
| Silver                              | NC                                     | 0/22                                     | 10.9                | 35-MW16S-02                        | 1/22                         |
| Sodium                              | NC                                     | NC                                       | 31900               | 35-GW05-02m                        | 22/22                        |
| Thallium                            | 0/22                                   | NC                                       | 1.3 J               | 35-MW19S-02D                       | 5/22                         |
| Vanadium                            | NC                                     | NC                                       | 9.1 J               | 35-MW10S-02                        | 2/22                         |
| Zinc                                | NC                                     | 0/22                                     | 29.5                | 35-MW14D-02                        | 12/22                        |

NOTES:

.

(NO CODE) = Confirmed Identification.

necessary to be de U = Not detected. The associated number indicates approximate sample concentration ne UJ = Not detected. Quantitation limit may be inaccurate or imprecise.

J = Analyte present, Reported value may not be accurate or precise.

#### TABLE 2 POSITIVE DETECTION SUMMARY SEDIMENTS TOTAL PETROLEUM HYDROCARBONS SITE 35 CAMP GEIGER AREA FUEL FARM MCB CAMP LEJEUNE, NORTH CAROLINA CONTRACT TASK ORDER 0323

| Location<br>Lab id.<br>Date Sampled                   | 35-SD01-06-02<br>D95-7350-1<br>08/08/95 | 35-SD01-612-02<br>D95-7350-2<br>08/08/95 | 35-SD02-06-02<br>D95-7350-3<br>08/08/95 | 35-SD02-612-02<br>D95-7350-4<br>08/08/95 | 35-SD03-06-02<br>95-7354-10<br>08/07/95 | 35-SD03-612-02<br>95-7354-11<br>08/07/95 |
|-------------------------------------------------------|-----------------------------------------|------------------------------------------|-----------------------------------------|------------------------------------------|-----------------------------------------|------------------------------------------|
| TPH mg/kg<br>Gasoline 5030/8015M<br>Diesel 3550/8015M | 0.069 U<br>69 U                         | 0.061 U<br>36.7 U                        | 0.062 U<br>37.4 U                       | 0.164<br>104                             | 0.759<br>54.9                           | 0.07 U<br>84.5                           |
|                                                       |                                         |                                          |                                         |                                          |                                         |                                          |

NOTES:

(NO CODE) = Confirmed identification,

U = Not detected. The associated number indicates approximate sample concentration necessary to be detected. mg/kg = milligrams per kilogram. ug/kg = micrograms per kilogram.

.

#### TABLE 2 POSITIVE DETECTION SUMMARY SEDIMENTS TOTAL PETROLEUM HYDROCARBONS. SITE 36 CAMP GEIGER AREA FUEL FARM MCB CAMP LEJEUNE, NORTH CAROLINA CONTRACT TASK ORDER 0323

٦

| Location                                              | 35-SD04-06-02 | 35-SD04-612-02 | 35-SD05-06-02 | 35-SD05-612-02 | 35-SD06-06-02 | 35-SD06-612-02 |
|-------------------------------------------------------|---------------|----------------|---------------|----------------|---------------|----------------|
| Lab Id.                                               | D95-7354-8    | D95-7354-9     | D95-7354-6    | D95-7354-7     | D95-7354-4    | D95-7354-5     |
| Date Sampled                                          | 08/07/95      | 08/07/95       | 08/07/95      | 08/07/95       | 08/07/95      | 08/07/95       |
| TPH mg/kg<br>Gasoline 5030/8015M<br>Dlesel 3550/8015M | 2.39<br>735   | 29.7<br>459    | 5.6<br>550    | 3.65<br>1100   | 14.2<br>7420  | 1.07 J<br>234  |

NOTES:

(NO CODE) = Confirmed Identification.

U = Not detected. The associated number indicates approximate sample concentration necessary to be detected. mg/kg = milligrams per kilogram. ug/kg = micrograms per kilogram.

### TABLE 2 POSITIVE DETECTION SUMMARY SEDIMENTS TOTAL PETROLEUM HYDROCARBONS SITE 36 CAMP GEIGER AREA FUEL FARM MCB CAMP LEJEUNE, NORTH CAROLINA CONTRACT TASK ORDER 0323

| Location                                              | 35-SD07-06-02  | 35-SD07-06D-02 | 35-SD07-612-02 | 36-SD05-06-02   | 36-SD05-612-02 | 36-SD06-06-02 |
|-------------------------------------------------------|----------------|----------------|----------------|-----------------|----------------|---------------|
| Lab id.                                               | D95-7354-1     | D95-7354-2     | D95-7354-3     | 95-7350-10      | 95-7350-11     | D95-7350-8    |
| Date Sampled                                          | 08/08/95       | 08/08/95       | 08/07/95       | 08/07/95        | 08/08/95       | 08/07/95      |
| TPH mg/kg<br>Gasoline 5030/8015M<br>Dlesel 3550/8015M | 0.188 J<br>239 | 0.364<br>180 U | 1.42<br>292    | 0.102<br>41.8 U | 0.143<br>64.5  | 0.099<br>92.2 |

NOTES:

1

(NO CODE) ≠ Confirmed identification. U = Not detected. The associated number indicates approximate sample concentration necessary to be detected. mg/kg = milligrams per kilogram.

ug/kg = micrograms per kilogram.

11/02/95 SDTPH\_L.WK4

.

### TABLE 2 POSITIVE DETECTION SUMMARY SEDIMENTS TOTAL PETROLEUM HYDROCARBONS SITE 36 CAMP GEIGER AREA FUEL FARM MCB CAMP LEJEUNE, NORTH CAROLINA CONTRACT TASK ORDER 0323

| Location                                              | 36-SD06-612-02 | 36-SD07-06-02 | 36-SD07-06D-02 | 36-SD07-612-02    |
|-------------------------------------------------------|----------------|---------------|----------------|-------------------|
| Lab id,                                               | D95-7350-9     | D95-7350-5    | D95-7350-6     | D95-7350-7        |
| Date Sampled                                          | 08/07/95       | 08/07/95      | 08/07/95       | 08/07/95          |
| TPH mg/kg<br>Gasoline 5030/8015M<br>Diesel 3550/8015M | 0.892<br>444   | 2.28<br>708   | 2.24<br>1140   | 0.115 U<br>68.8 U |

NOTES: (NO CODE) = Confirmed Identification. U = Not detected. The associated number indicates approximate sample concentration necessary to be detected. mg/kg = milligrams per kilogram. ug/kg = milcrograms per kilogram.

#### TABLE 2 POSITIVE DETECTION SUMMARY SEDIMENTS TOTAL PETROLEUM HYDROCARBONS SITE 35 CAMP GEIGER AREA FUEL FARM MCB CAMP LEJEUNE, NORTH CAROLINA CONTRACT TASK ORDER 0323

| Location                                              | MAXIMUM      | LOCATION OF                     | FREQUENCY      |
|-------------------------------------------------------|--------------|---------------------------------|----------------|
| Lab id.                                               |              | MAXIMUM                         | OF             |
| Date Sampled                                          |              | DETECTED                        | DETECTION      |
| TPH mg/kg<br>Gasoline 5030/8015M<br>Diesel 3550/8015M | 29.7<br>7420 | 35-SD04-612-02<br>35-SD06-06-02 | 17/22<br>16/22 |

....

| Location                            | 35-SD01-06-02  | 35-SD01-612-02 | 35-SD02-06-02  | 35-SD02-612-02 | 35-SD03-06-02  | 35-SD03-612-02 |
|-------------------------------------|----------------|----------------|----------------|----------------|----------------|----------------|
| Lab id.                             | D95-7350-1     | D95-7350-2     | D95-7350-3     | D95-7350-4     | 95-7354-10     | 95-7354-11     |
| Date Sampled                        | 08/08/95       | 08/08/95       | 08/08/95       | 08/08/95       | 08/07/95       | 08/07/95       |
| ANALYTES (mg/kg)<br>Mercury<br>Zinc | 0.13 U<br>12.6 | 0.12 U<br>4.1  | 0.12 U<br>27.1 | 0.26 U<br>62.1 | 0.15 U<br>26.6 | 0.13 U<br>11.4 |

NOTES:

(NO CODE) = Confirmed identification.

•

U = Not detected. The associated number indicates approximate sample concentration necessary to be detected. ug/kg = micrograms per kilogram.

.

11/02/95 S

1

| Location                            | 35-SD04-08-02  | 35-SD04-612-02 | 35-SD05-06-02 | 35-SD05-612-02 | 35-SD06-06-02  | 35-SD06-612-02 |
|-------------------------------------|----------------|----------------|---------------|----------------|----------------|----------------|
| Lab id.                             | D95-7354-8     | D95-7354-9     | D95-7354-6    | D95-7354-7     | D95-7354-4     | D95-7354-5     |
| Date Sampled                        | 08/07/95       | 08/07/95       | 08/07/95      | 08/07/95       | 08/07/95       | 08/07/95       |
| ANALYTES (mg/kg)<br>Mercury<br>Zinc | 0.14 U<br>34.2 | 0.14 U<br>42.2 | 0.25 U<br>106 | 0.23 U<br>104  | 0.28 U<br>92.9 | 0.36<br>9.9    |

NOTES:

.

(NO CODE) = Confirmed identification.

 $\dot{U}$  = Not detected. The associated number indicates approximate sample concentration necessary to be detected, ug/kg = micrograms per kilogram.

11/02/95 SDM\_L.WK4

# TABLE 3

٠

#### POSITIVE DETECTION SUMMARY SEDIMENTS INORGANICS SITE 35 CAMP GEIGER AREA FUEL FARM MCB CAMP LEJEUNE, NORTH CAROLINA CONTRACT TASK ORDER 0323

| Location                            | 35-SD07-06-02  | 35-SD07-06D-02 | 35-SD07-612-02 | 36-SD05-06-02       | 36-SD05-612-02 | 36-SD06-06-02 |
|-------------------------------------|----------------|----------------|----------------|---------------------|----------------|---------------|
| Lab id.                             | D95-7354-1     | D95-7354-2     | D95-7354-3     | 9 <b>5-7</b> 350-10 | 95-7350-11     | D95-7350-8    |
| Date Sampled                        | 08/08/95       | 08/08/95       | 08/07/95       | 08/07/95            | 08/08/95       | 08/07/95      |
| ANALYTES (mg/kg)<br>Mercury<br>Zinc | 0.19 U<br>72.6 | 0.17 U<br>61.7 | 0.13 U<br>45.6 | 0.13 U<br>28.4      | 0.13 U<br>18.2 | 0.16<br>22.6  |

NOTES:

(NO CODE) = Confirmed identification.

U = Not detected. The associated number indicates approximate sample concentration necessary to be detected. ug/kg = micrograms per kilogram.

11/02/95 S ..WK4

#### TABLE 3 POSITIVE DETECTION SUMMARY SEDIMENTS INORGANICS SITE 36 CAMP GEIGER AREA FUEL FARM MCB CAMP LEJEUNE, NORTH CAROLINA CONTRACT TASK ORDER 0323

| Location<br>Lab id,<br>Date Sampled | 36-SD06-612-02<br>D95-7350-9<br>08/07/95 | 36-SD07-06-02<br>D95-7350-5<br>08/07/95 | 36-SD07-06D-02<br>D95-7350-6<br>08/07/95 | 36-SD07-612-02<br>D95-7350-7<br>08/07/95 |
|-------------------------------------|------------------------------------------|-----------------------------------------|------------------------------------------|------------------------------------------|
| ANALYTES (mg/kg)<br>Mercury         | 0.16                                     | 0.34 U                                  | 0.34 U                                   | 0.31 U                                   |
| Zinc                                | 10.1                                     | 65.8                                    | 94.5                                     | 2.2 U                                    |

NOTES:

....

(NO CODE) = Confirmed identification.

U = Not detected. The associated number indicates approximate sample concentration necessary to be detected. ug/kg = micrograms per kilogram. ٠,

#### TABLE 3 POSITIVE DETECTION SUMMARY SEDIMENTS INORGANICS SITE 35 CAMP GEIGER AREA FUEL FARM MCB CAMP LEJEUNE, NORTH CAROLINA CONTRACT TASK ORDER 0323

٦,

۲

.

| Location<br>Lab Id.<br>Date Sampled | MAXIMUM<br>DETECTED | LOCATION OF<br>MAXIMUM<br>DETECTED | FREQUENCY<br>OF<br>DETECTION |
|-------------------------------------|---------------------|------------------------------------|------------------------------|
| ANALYTES (mg/kg)<br>Mercury<br>Zinc | 0.36<br>106         | 35-SD06-612-02<br>35-SD05-06-02    | 3/22<br>21/22                |

....



Baker Environmental, Inc. Airport Office Park, Building 3 420 Rouser Road Coraopolis, Pennsylvania 15108

(412) 269-6000 FAX (412) 269-2002

(

August 29, 1996

Commander Atlantic Division Naval Facilities Engineering Command 1510 Gilbert Street (Building N-26) Norfolk, Virginia 23511-2699

- Attn: Ms. Katherine Landman Navy Technical Representative Code 18232
- Re: Contract N62470-89-D-4814 Navy CLEAN, District III Contract Task Order (CTO) 0232 Operable Unit No. 10 (Site 35) MCB, Camp Lejeune, North Carolina IDW Handling and Disposal

Dear Ms. Landman:

This letter report describes the sample collection activities, results, and recommendations for the disposal of solid and liquid investigative-derived waste (IDW) present on Onslow County property adjacent to Site 35, Camp Geiger Area Fuel Farm, Marine Corps Base, Camp Lejeune, North Carolina. Analytical results are provided in Attachment A.

The IDW was generated via monitoring well installation, development, and sampling activities conducted in August, 1996 on Onslow County as part of the Supplemental Groundwater Investigation (SGI). The solid IDW consists of approximately 15 cubic feet of drill cuttings that are containerized in a roll-off box. The liquid IDW consists of approximately 1,300 gallons of development and purge water that is containerized in two portable polyethylene tanks. Both the roll-off box and polyethylene tanks are presently located next to the Onslow County Animal Control Facility on Georgetown Road in Jacksonville, North Carolina.

### Sample Collection and Analysis

Ι

### Liquid IDW

One grab sample was collected from each of the polyethylene storage tanks and composited in a one-gallon glass container, and given the sample identification 35-IDWL2-04. This sample was analyzed for full Target Compound List (TCL) organics, Target Analyte List (TAL) inorganics, Total Suspended Solids (TSS), Total Dissolved Solids (TDS), and Resource Conservation Recovery Act (RCRA) characteristics (corrosivity, ignitability, and reactivity).



١.

### Baker -

٩.

Ms. Katherine Landman August 29, 1996 Page 2

ſ

### Solid IDW

Five solid grab samples were collected from random locations within the roll-off box. A representative sample was collected from each of these grab samples and given the sample identification 35-IDWS2-04. This sample was analyzed for full Toxic Characteristic Leaching Procedure (TCLP) organics and metals, Target Compound List (TCL) PCBs, and Resource Conservation Recovery Act (RCRA) characteristics for defining a hazardous waste.

### **Results**

### Liquid IDW

Sample 35-IDWL2-04 exhibited a single semivolatile organic contaminant [i.e., bis (2-Ethylhexyl)phthalate = 62 ug/L]. No volatiles, pesticides, or PCBs were detected in this sample. The detection of bis (2-Ethylhexyl) phthalate is not considered to be site-related contamination, but rather contamination originating from the polyethylene storage tanks used to store the IDW.

A variety of inorganics were detected in sample 35-IDWL02-04. The concentrations of these inorganics are all are well below the regulatory limits that would render the liquid IDW characteristically hazardous. However, the following contaminants were detected at concentrations which exceed groundwater or drinking water standards for the protection of public health.

| Contaminant | Actual (ug/L) | MCL (ug/L) | N.C. REGS (ug/L) |
|-------------|---------------|------------|------------------|
| Aluminum    | 34,600        | 50         | NSA              |
| Antimony    | 24.8          | 6          | NSA              |
| Beryllium   | 5.6           | 4          | NSA              |
| Chromium    | 138           | 100        | 50               |
| Iron        | 36,000        | 300        | 300              |
| Lead        | 22.8          | 15         | 15               |
| Manganese   | 305           | 50         | 50               |

### **INORGANIC DETECTIONS**

NSA = No Standard Available

The levels of TSS and TDS were 11,000 mg/L and 1,400 mg/L, respectively. Based on discussions with OHM Remediation Services Inc., these levels of TSS and TDS will not foul treatment equipment at the Lot 203 Groundwater Treatment Facility. In addition, this sample is not characteristically hazardous due to reactivity, ignitability, or corrosivity.

Baker -

• :

Ms. Katherine Landman August 29, 1996 Page 3

### Solid IDW

Sample 35-IDWS2-04 did not have any detections of organic or inorganic contaminants and was not found to be characteristically hazardous due to reactivity, ignitability, or corrosivity.

### **Conclusions and Recommendations**

### Liquid IDW

The analytical results indicate that the liquid IDW is not a hazardous waste, but does contain levels of metals above groundwater standards. Consequently, disposing liquid IDW directly to the ground would, in effect, contaminate previously uncontaminated soils. Therefore, it is recommended that the liquid IDW be treated at a base groundwater treatment facility. Upon LANTDIV's approval of these disposal recommendations, Baker will arrange for transport of liquid IDW to the Lot 203 Groundwater Treatment Facility. Baker will coordinate these disposal activities with base personnel.

### Solid IDW

The analytical results indicate the solid IDW is not a hazardous waste and displays no evidence of contamination. At other remedial investigation sites at MCB Camp Lejeune, where solid IDW has been determined to be nonhazardous and inert, the contents of roll-off boxes have been dumped onto the ground and graded-off. However, this IDW is on Onslow County property and on-site disposal of the solid IDW is not recommended by Baker for the following reasons:

- Drilling mud is not aesthetically pleasing when dumped on the ground. Dumping at this site cannot be done in a secluded location due to site conditions. Such an eyesore could generate complaints from nearby City residents, and County employees that work at the Onslow County Animal Control Facility, or the nearby Onslow County Administrative Offices.
- The disposal site would be adjacent to the access road that leads to the sewer easement adjacent to Brinson Creek. This area may be subject to an enforcement action according to the Army Corp of Engineers (COE). Disposing waste adjacent to an area under an enforcement action could generate complaints from public officials that are responsible for addressing COE concerns.
- Onslow County granted permission to access the sewer easement and install wells. Specific permission to dispose IDW on County property was never granted. Approval to dispose the waste on-site would be required approval from the Onslow County Board of Commissioners. This process could take months and substantial rental costs for the roll-off box would be incurred.

As an alternative to on-site disposal, Baker is proposing that the roll-off box be transported to Camp Geiger (Site 35) and the contents deposited on the ground at the location where solid IDW from previous SGI field activities was deposited. After this material has dried it can be graded-off.

Baker has proposed a letter of concurrence that presents this alternative to Mr. Neal Paul, Director of the Environmental Management Department (EMD) at MCB Camp Lejeune. Upon receiving concurrence from the EMD, Baker will coordinate disposal activities with the necessary base personnel and implement the previously mentioned alternative.

### Baker

•

Ms. Katherine Landman August 29, 1996 Page 4

Baker appreciates the opportunity to serve LANTDIV on this project. If you have any questions, please do not hesitate to contact me at (412) 269-2063 or Mr. Matt Bartman at (412) 269-2053.

(

Sincerely,

BAKER ENVIRONMENTAL, INC.

(

MD. Smith fa DLBONK

Daniel L. Bonk, P.E. Project Manager

DLB/MDS/Iq

### Attachments

cc: Mr. Neal Paul, MCB, Camp Lejeune (w/attachments) Mr. John Riggs, MCB, Camp Lejeune (w/attachments)

# Attachment A

.

(

•,

(

| RFW Batch Number: 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 608G675                                        | Client: Bal                                          | VOLATILES BY GO                                      | rics, Inc. (Gul<br>C/MS, HSL LIST<br>2 Worl          | Re<br>k Order: 0000-00- | eport Date: 08/19/96 1<br>0 Page: la | .9:28 |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|------------------------------------------------------|------------------------------------------------------|------------------------------------------------------|-------------------------|--------------------------------------|-------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ~                                              | 35-10WL2-04                                          | VBLKGD                                               | VBLKGD BS                                            |                         |                                      |       |
| Sample<br>Information                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | RFW#:<br>Matrix:<br>D.F.:<br>Units:            | 001<br>WATER<br>1<br>ug/L                            | 96GVE269-MB1<br>WATER<br>1<br>ug/L                   | 96 <b>GVE269</b> •MB1<br>WATER<br>1<br>ug/L          |                         |                                      |       |
| Surrogate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | hloroethane-d4<br>Toluene-d8<br>ofluorobenzene | 99 X<br>91 X<br>96 X                                 | 106 X<br>98 X<br>102 X                               | 109 %<br>99 %<br>105 %                               |                         |                                      |       |
| Chloromethane<br>Bromomethane<br>Vinyl chloride<br>Chloroethane<br>Methylene Chloride<br>Acetone<br>Carbon Disulfide<br>1,1-Dichloroethene<br>1,2-Dichloroethene<br>Chloroform<br>1,2-Dichloroethane<br>2-Butanone<br>1,1.1-Trichloroethane<br>2-Butanone<br>1,1.1-Trichloroethane<br>Carbon Tetrachlorid<br>Bromodichloromethan<br>1,2-Dichloropropane<br>Cis-1,3-Dichloropro<br>Trichloroethene<br>Dibromochloromethan<br>1,1,2-Trichloroethan<br>1,1,2-Trichloroethan<br>1,1,2-Trichloroethan<br>1,1,2-Trichloroethan<br>1,1,2-Trichloroethan<br>1,1,2-Trichloroethan<br>1,1,2-Trichloroethan<br>1,1,2-Trichloroethan<br>1,1,2-Trichloroethan<br>1,1,2-Trichloroethan<br>1,1,2-Trichloroethan<br>1,1,2-Trichloroethan<br>1,1,2-Trichloroethan<br>1,1,2-Trichloroethan<br>2-Hexanone<br>Tetrachloroethene<br>1,1,2,2-Tetrachloro<br>Toluene<br>*= Outside of EPA C | ne<br>le<br>pene<br>ne<br>ropene<br>ie<br>te   | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ |                         |                                      |       |

|                                                                                 | RFW#:   | 001                          | 96GVE269-MB1                         | 96GVE269 | -MB1 |     |   |        |
|---------------------------------------------------------------------------------|---------|------------------------------|--------------------------------------|----------|------|-----|---|--------|
| hlorobenzene<br>thylbenzene<br>tyrene<br>ylene (total)<br>Outside of EPA CLP QC | limits. | 10 U<br>10 U<br>10 U<br>10 U | 10 U<br>10 U<br>10 U<br>10 U<br>10 U | 1        | 0 U  |     |   |        |
|                                                                                 |         |                              |                                      | •        |      |     | · |        |
| л <sub>.</sub>                                                                  |         | ·                            |                                      |          | •    |     |   |        |
|                                                                                 |         |                              |                                      | • •<br>• |      |     |   |        |
| •                                                                               |         | •                            | •                                    |          |      |     |   | $\sim$ |
|                                                                                 |         |                              |                                      |          |      | • ' |   |        |
|                                                                                 |         |                              | •                                    |          |      |     |   |        |

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                     | 2 <sup></sup>                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                              |                                                              | • . |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|--------------------------------------------------------------|-----|
| RFW Batch Number: 9608G675                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Weston Environmental Ma<br>SEMIVOLATILES I<br>Client: Baker-Lejeune | BY GC/MS, HSL LI                                                                                                                                                                       | lf Coast)<br>ST<br><u>rk Order: 0000</u> .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                              | 08/15/96 12:40<br>ag <u>e: 1a</u>                            |     |
| Cust ID:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 35-1DWL2-04 35-1DWL2-04                                             | 4 35.IDWL2.04                                                                                                                                                                          | SBLKOV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | SBLKOV BS                                                    | SBLKOV BSD                                                   |     |
| Sample RFW#:<br>Information Matrix:<br>D.F.:<br>Units:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 001 001 MS<br>WATER WATER<br>ug/L ug/L                              | 001 MSD<br>WATER<br>1 1<br>ug/L                                                                                                                                                        | 96GB0397•MB1<br>WATER<br>1<br>ug/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 96GB039 <b>7-MB</b> 1<br>WATER<br>1<br>ug/L                  | 96GB0397-MB1<br>WATER<br>1<br>ug/L                           |     |
| Nitrobenzene-d5<br>Surrogate 2-Fluorobiphenyl<br>Recovery p-Terphenyl-d14<br>Phenol-d5<br>2-Fluorophenol<br>2,4,6-Tribromophenol<br>2-Chlorophenol-d4<br>1,2-Dichlorobenzene-d4                                                                                                                                                                                                                                                                                                                                                                                                                          | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                | x     44     x       x     49     x       x     37     x       x     38     x       x     40     x       x     61     x       x     40     x       x     61     x       x     39     x | 53 %<br>56 %<br>54 %<br>45 %<br>49 %<br>53 %<br>51 %<br>51 %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 63 x<br>63 x<br>46 x<br>53 x<br>52 x<br>68 x<br>56 x<br>53 x | 72 %<br>64 %<br>52 %<br>63 %<br>66 %<br>72 %<br>66 %<br>63 % |     |
| Phenol<br>bis(2-Chloroethyl)ether<br>2-Chlorophenol<br>1.3-Dichlorobenzene<br>1.4-Dichlorobenzene<br>2-Methylphenol<br>2.2'-oxybis(1-Chloropropane)<br>4-Methylphenol<br>2.2'-oxybis(1-Chloropropane)<br>4-Methylphenol<br>N-Nitroso-di-n-propylamine<br>Hexachloroethane<br>Nitrobenzene<br>Isophorone<br>2-Nitrophenol<br>2.4-Dimethylphenol<br>bis(2-Chloroethoxy)methane<br>2.4-Dichlorophenol<br>1.2.4-Trichlorobenzene<br>Naphthalene<br>4-Chloroanlline<br>Hexachlorobutadiene<br>4-Chloro-3-methylphenol<br>2-Methylnaphthalene<br>Hexachlorocyclopentadiene<br>*= Outside of EPA CLP QC Timits. | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                   | 10       U         10       U | $\begin{array}{cccccccccccccccccccccccccccccccccccc$         | $\begin{array}{cccccccccccccccccccccccccccccccccccc$         |     |

| C                                                     | Lust ID: 35                           | ·10WL2-04                                                                                                                                                                                                          | 35-IDWL2-04                                                          | 35-IDWL2-04                  | SBLKOV                               | SBLKOV BS                            | SBLKOV BSD                           | • •      |
|-------------------------------------------------------|---------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|----------|
|                                                       | RFW#:                                 | 001                                                                                                                                                                                                                | 001 MS                                                               | 001 MSD                      | 96GB0397-MB1                         | 96GB0397-MB1                         | 96GB0397-MB1                         |          |
| 4,6-Trichlorophenol                                   | · · · · · · · · · · · · · · · · · · · | 10 U                                                                                                                                                                                                               | 20 0                                                                 | 20 U                         | 10 L                                 | 10 U                                 | 10 U                                 |          |
| 2.4.5-Trichlorophenol                                 |                                       | 25 Ŭ                                                                                                                                                                                                               |                                                                      | 50 Ŭ                         | 25 U                                 | 25 Ú                                 | 25 U                                 |          |
| -Chloronaphthalene                                    |                                       | <u>10</u>                                                                                                                                                                                                          | 20 Ŭ                                                                 | 20 Ŭ                         | 10 Ū                                 | 10 Ū                                 | 10 U                                 |          |
| -Nitroaniline                                         | ويبسوك ويتارك الناسيية                | 25 Ŭ                                                                                                                                                                                                               | 50 Ŭ                                                                 | 20 Ú<br>50 U                 | 25 Ū                                 | 25 U<br>10 U<br>25 U<br>10 U         | 25 U                                 |          |
| imethylphthalate                                      |                                       | 10 Ŭ                                                                                                                                                                                                               | 20 11                                                                | 20 Ŭ                         | 10 Ū                                 | 10 Ŭ                                 | 10 Ŭ                                 |          |
| cenaphthylene                                         |                                       | 25 U<br>10 U<br>25 U<br>10 U<br>10 U<br>25 U<br>10 U<br>25 U<br>10 U<br>25 U<br>10 U<br>10 U<br>25 U<br>10 U<br>10 U<br>25 U<br>10 U<br>10 U<br>25 U<br>10 U<br>10 U<br>10 U<br>10 U<br>10 U<br>10 U<br>10 U<br>10 | 50 U<br>20 U<br>50 U<br>20 U<br>20 U<br>20 U<br>50 U                 | 20 Ŭ                         | ĨŎ Ŭ                                 | 10 Ŭ                                 | 25 U<br>10 U<br>25 U<br>10 U<br>10 U |          |
| .6-Dinitrotoluene                                     |                                       | îñ ŭ                                                                                                                                                                                                               | 20 Ŭ                                                                 | ŽÕ Ŭ                         | 10 Ŭ                                 | 10 U<br>10 U<br>25 U<br>66 %<br>25 U | 10 Ŭ                                 |          |
| -Nitroaniline                                         | ······                                | 25 Ŭ                                                                                                                                                                                                               | 50 0                                                                 | 50 Ŭ                         | 25 Ŭ                                 | 25 U.                                | 10 U<br>25 U                         | $\frown$ |
|                                                       |                                       | 10 U<br>25 U<br>10 U                                                                                                                                                                                               | 62 8                                                                 | รบัชั                        | 10 U<br>25 U<br>10 U<br>25 U<br>25 U | 66 8                                 | 69 %                                 |          |
| cenaphthene<br>,4-Dinitrophenol                       |                                       | 25 Ŭ                                                                                                                                                                                                               | 62 x<br>50 U                                                         | 51 X<br>50 U                 | 25 Ŭ                                 | 25 1                                 | 25 U                                 |          |
| -Nitrophenol                                          | ·                                     | 25 U                                                                                                                                                                                                               | . 70 X                                                               | 52 %                         | È. Ŭ                                 | 58 2                                 | 64 X                                 |          |
| -Nitrophenol                                          |                                       |                                                                                                                                                                                                                    | Ž0 Ū                                                                 | ີ 20 ບິ                      | - 10 Ŭ                               | <b>1</b> 9 Û                         | 10 Ü                                 |          |
| 4-Dinitrotoluene                                      |                                       | 10 U                                                                                                                                                                                                               | 66 9                                                                 | 53 %                         | 10 Ŭ                                 | 64 %                                 | 68 %                                 |          |
| iethylphthalate                                       |                                       |                                                                                                                                                                                                                    |                                                                      | 20 Û                         | ÎŎ Ŭ                                 |                                      | 10 1                                 | •        |
| -Chlorophenyl-phenylether                             |                                       |                                                                                                                                                                                                                    | 20 0                                                                 | 20 0                         | 10 Ŭ                                 | 10 U<br>10 U                         | 10 U<br>10 U                         |          |
| luorene                                               |                                       | 10 U                                                                                                                                                                                                               | 66 %<br>20 U<br>20 U<br>20 U<br>50 U<br>20 U<br>20 U<br>20 U<br>20 U | 20 U<br>20 U<br>2C U         | 10 U                                 | <u> </u>                             | 10 Ŭ                                 |          |
| -Nitroaniline                                         |                                       | 25 U                                                                                                                                                                                                               | 50 1                                                                 | 50 U                         | 25 U                                 |                                      | 10 U<br>25 U<br>25 U<br>10 U<br>10 U |          |
| 6-Dipitro-2-methylphenol                              |                                       | . 20 U                                                                                                                                                                                                             | 50 U<br>50 U                                                         | 50 U                         | 25 U<br>25 U                         |                                      | 25 0                                 | •        |
| .6-Dinitro-2-methylphenol<br>Nitrosodiphenylamine (1) |                                       | 25 U<br>10 U<br>10 U                                                                                                                                                                                               | 20 U                                                                 | 50 U<br>20 U<br>20 U         | 25 U<br>10 U                         | 10 U                                 | 10 11                                | •        |
| -Bromophenyl-phenylether                              |                                       | 10 0                                                                                                                                                                                                               | 20 0                                                                 | 20 0                         | 10 U                                 |                                      |                                      |          |
| exachiorobenzene                                      |                                       | 10 0                                                                                                                                                                                                               | 20 0                                                                 | 20 U<br>20 U                 | 10 U                                 | - 10 U<br>- 10 U                     | 10 Ŭ                                 |          |
| entachlorophenol                                      |                                       | 10 U<br>25 U                                                                                                                                                                                                       | _20 U                                                                | 20 0                         | 25 U                                 | 10 0                                 | 79 X                                 |          |
| henanthrene                                           |                                       | 10 U                                                                                                                                                                                                               | 71 X<br>20 U<br>20 U<br>20 U<br>20 U<br>20 U<br>20 U                 | 68 x<br>20 U<br>20 U<br>20 U | 25 U<br>10 U                         | 73 \$<br>10 U                        | 10 U                                 |          |
|                                                       |                                       | 10 U                                                                                                                                                                                                               | 20 U                                                                 | 20 0                         | 10 U                                 | 10 Ü                                 | 10 Ŭ                                 |          |
| arhazole                                              |                                       | - 10 U                                                                                                                                                                                                             | 20 U                                                                 |                              | 10 U                                 | 10U                                  | 10 U                                 | · ·,     |
| 1-n-butylphthalate                                    |                                       | 10 U                                                                                                                                                                                                               | 20 U                                                                 | 20 U                         | 10 U                                 | 10 U                                 | 10 U                                 |          |
| lucranthene                                           |                                       | ÎŎ Ŭ                                                                                                                                                                                                               | 20 1                                                                 | - 20 Ŭ                       | 10 Ŭ                                 | <u> </u>                             | ···· 10 Ŭ                            |          |
| yrene                                                 |                                       | ÎŎ Ŭ                                                                                                                                                                                                               | 75 <sup>.</sup> %                                                    | 79 x                         | 10 Ŭ                                 | 74 %                                 | 85 <sup>°</sup> x                    |          |
| utylbenzylphthalate                                   |                                       | ÎŎŬ                                                                                                                                                                                                                | 20 Ü                                                                 | 20 Û                         | 10 U                                 |                                      | ĩo Ũ                                 |          |
| .3 -Dichlorobenzidine                                 | ·····                                 | ÎŎ Ŭ<br>10 U<br>10 U                                                                                                                                                                                               | 20 U                                                                 | 20 U                         | 10 Ŭ                                 |                                      | 10 Ŭ                                 |          |
| enzo(a)anthracene                                     |                                       | 10 11                                                                                                                                                                                                              | - 20 U                                                               | 20 U<br>20 U                 | <b>10</b> Ŭ                          |                                      | 10 Ŭ                                 |          |
| hrysene                                               |                                       | 10 Ŭ<br>*62 4                                                                                                                                                                                                      | 20 U<br>20 U                                                         | 20 Ŭ                         | ·10 Ŭ                                | 10 U<br>10 U<br>10 U<br>10 U         | 10 Ŭ                                 |          |
| 1s(2-Ethylhexyl)phthalate                             |                                       | 62                                                                                                                                                                                                                 | 3.3                                                                  | 20 Ŭ                         | <b>10</b> Ŭ                          |                                      | 22                                   |          |
| 1-n-octylohthalate                                    |                                       | 10 U.                                                                                                                                                                                                              | 20 11                                                                | 20 Ŭ                         | 10 Ŭ                                 | 10 1                                 | Ξ <b>1</b> 0 U                       |          |
| enzo(b)fluoranthene                                   |                                       | <b>10</b> Ŭ                                                                                                                                                                                                        | 20 U<br>20 U                                                         | 20 Ŭ.                        | 10 Ŭ                                 | 10 Ŭ                                 | 10 Ŭ                                 |          |
| enzo(k)fluoranthene                                   | <del>موتت موتت</del>                  | ÎŎŬ                                                                                                                                                                                                                | 20 11                                                                | 20 U                         | 10 Ŭ                                 | 10 Ŭ                                 | 10 Ŭ                                 |          |
| enzo(a)pyrene                                         |                                       | 10 U<br>10 U<br>10 U<br>10 U                                                                                                                                                                                       | 20 11                                                                | 20 Ŭ                         | 10 Ŭ                                 | 10 Ŭ                                 | 10 Ŭ                                 |          |
| ndeno(1,2,3-cd)pyrene                                 |                                       | ĨŎ Ŭ                                                                                                                                                                                                               | 20 Ŭ                                                                 | 20 Ŭ                         | 10 Ŭ                                 | 10 Ŭ                                 | 10 Ŭ                                 |          |
| ibenzo(a,h)anthracene                                 |                                       | 10 U<br>10 U                                                                                                                                                                                                       | 20 U<br>20 U<br>20 U<br>20 U<br>20 U<br>20 U                         | 20 U                         | 10 U                                 | 10 U<br>10 U                         | 10 U<br>10 U<br>10 U<br>10 U         |          |
| enzo(g.h 'perylene                                    |                                       | ĨŎŬ                                                                                                                                                                                                                | 20 11                                                                | 20 Ŭ                         | 10 Ŭ                                 | 10 Ŭ                                 | 10 U                                 |          |

| RFW Batch Number: 9608                                                                                                                                                                                                                                                                                                     | BG675                               | Weston Énvi<br>PE<br>Client: Bak                     | ronmental Metr<br>STICIDE/PCBs B<br>er-Leieune #23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ics, Inc. (Gul<br>Y GC, CLP LIST<br>2Wor             | f Coast)<br><u>k Order: 00000</u>                    | Report Date:<br>0-000-000-0000                       | 08/26/96 11:00<br>00-000 Page: 1                     |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|------------------------------------------------------|------------------------------------------------------|------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                            | Cust ID:                            | 35-IDWL2-04                                          | 35-1DWL2-04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 35.IDWL2.04                                          | 35.IDWL2.04                                          | 35-IDWL2-04                                          | 35. IDWL2.04                                         |
| Sample<br>Information                                                                                                                                                                                                                                                                                                      | RFW#:<br>Matrix:<br>D.F.:<br>Units: | 001<br>WATER<br>1.00<br>ug/L                         | 001<br>WATER<br>1.00<br>ug/L<br>Col 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 001 MS<br>WATER<br>1.00<br>ug/L                      | 001 MS<br>WATER<br>1.00<br>ug/L<br>Co. 2             | 001 MSD<br>WATER<br>1.00<br>Ug/L                     | 001 MSD<br>WATER<br>1.00<br>ug/L<br>C01 2            |
| Surrogate: Decach                                                                                                                                                                                                                                                                                                          | oro-m-xylene<br>lorobiphenyl        | 75 %<br>20 * %                                       | 70 %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 75 %<br>25 * %                                       | 9E + Y                                               | 75 %<br>20 * %                                       | 20 * *                                               |
| alpha-BHC<br>beta-BHC<br>delta-BHC<br>gamma-BHC (Lindane)<br>Heptachlor<br>Aldrin<br>Heptachlor epoxide<br>Endosulfan I<br>Dieldrin<br>4,4'-DDE<br>Endrin II<br>Endosulfan Sulfate<br>4,4'-DDD<br>Endosulfan Sulfate<br>4,4'-DDT<br>Methoxychlor<br>Endrin ketone<br>Endrin aldehyde<br>alpha-Chlordane<br>gamma-Chlordane |                                     | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | $\begin{array}{c} 0.050 \ U \\ 0.10 \ U \ U \\ 0.10 \ U \ U \\ 0.10 \ U \ U \ U \ U \ U \ U \ U \ U \ U \ $ | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ |

. . \_

يعادين ا

));

2 2 U= Analyzed, not detected. J= Present below detection limit. B= Present in blank. NR= Not requested. NS= Not spiked. %= Percent recovery. D= Diluted out. I= Interference. NA= Not Applicable. \*= Outside of Advisory limits.

|                                                                                                                                                                                                                                                                                                                                                                                                       |                                     | Weston Envi                                                                                                                                                                                                                                           | ronmental Metr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ics, Inc. (Gu)<br>Y GC, CLP LIST                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | f Coast)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Roport Dato.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 08/26/96 11:00                                       |     |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|-----|
| REW Batch Number: 960                                                                                                                                                                                                                                                                                                                                                                                 | BG675                               | <u>Client: Bak</u>                                                                                                                                                                                                                                    | er-Lejeune #23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2 Wor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | k Order: 00000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | )-000-000-0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 00-000 Page:                                         | _2_ |
|                                                                                                                                                                                                                                                                                                                                                                                                       | Cust ID:                            | PBLKDK                                                                                                                                                                                                                                                | PBLKDK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | PBLKDK BS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | PBLKDK BS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | PBLKOK BSD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | PBLKDK BSD                                           |     |
| Sample<br>Information                                                                                                                                                                                                                                                                                                                                                                                 | RFW#:<br>Matrix:<br>D.F.:<br>Units: | 96GP0867-MB1<br>WATER<br>1.00<br>ug/L                                                                                                                                                                                                                 | 96GP0867-MB1<br>WATER<br>1.00<br>ug/L<br>Col 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | WATER<br>1.00<br>ug/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | WATER<br>1.00<br>ug/L<br>Col 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | WATER<br>1.00<br>ug/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | C0] 2                                                |     |
| Surrogate: Decach                                                                                                                                                                                                                                                                                                                                                                                     | oro-m-xylene<br>lorob1phenyl        | 80 %                                                                                                                                                                                                                                                  | 85 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 85 %<br>70 %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 25 X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 80 %<br>85 %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 70 ¥<br>75 ¥                                         |     |
| alpha-BHC<br>beta-BHC<br>delta-BHC<br>gamma-BHC (Lindane)<br>Heptachlor<br>Aldrin<br>Heptachlor epoxide<br>Endosulfan I<br>Dieldrin<br>4,4'-DDE<br>Endrin<br>Endosulfan sulfate<br>4,4'-DDD<br>Endosulfan sulfate<br>4,4'-DDT<br>Methoxychlor<br>Endrin aldehyde<br>alpha-Chlordane<br>gamma-Chlordane<br>Gamma-Chlordane<br>Toxaphene<br>Aroclor-121<br>Aroclor-1242<br>Aroclor-1254<br>Aroclor-1260 |                                     | 0.050 U<br>0.050 U<br>0.050 U<br>0.050 U<br>0.050 U<br>0.050 U<br>0.050 U<br>0.050 U<br>0.050 U<br>0.10 U | 0.050 U<br>0.050 U<br>0.050 U<br>0.050 U<br>0.050 U<br>0.050 U<br>0.050 U<br>0.050 U<br>0.050 U<br>0.050 U<br>0.10 U<br>0.050 U<br>0.050 U<br>1.0 U<br>1.0 U<br>1.0 U<br>1.0 U<br>1.0 U | 0.050 U<br>0.050 U<br>0.050 U<br>106 %<br>96 %<br>106 %<br>0.050 U<br>0.050 U<br>114 %<br>0.10 U<br>125 * %<br>0.10 U<br>0.10 U<br>0.050 U | $\begin{array}{c} 0.050 \\ 0.050 \\ 0.050 \\ 0.050 \\ 0.050 \\ 0.050 \\ 0.050 \\ 114 \\ 114 \\ 114 \\ 100 \\ 114 \\ 114 \\ 100 \\ 114 \\ 100 \\ 114 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100$ | $\begin{array}{c} 0.050 \\ 0.050 \\ 0.050 \\ 0.050 \\ 0.050 \\ 0.050 \\ 0.050 \\ 0.050 \\ 0.050 \\ 0.050 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\$ | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ |     |

.

.

U= Analyzed, not detected. J= Present below detection limit. B= Present in blank. NR= Not requested. NS= Not spiked. %= Perc recovery. D= Diluted out. I= Interference. NA=\_Not Applicable. \*= Outside of Advisory limits.

### HIS

### ROY F. WESTON INC.

### INORGANICS DATA SUMMARY REPORT 08/23/96

## CLIENT: Baker-Lejeune #232 WORK ORDER: 00000-000-000-000-000

(

WESTON BATCH #: 9608G675

| SAMPLE      | SITE ID            | ANALYTE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | RESULT UNITS                                                                                                                  | REPORTING                                                                                                                                                            |
|-------------|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| -001        | <u>35-IDWL2-04</u> | Silver. Total<br>-Aluminum. Total<br>Arsenic. Total<br>-Barium: Total<br>Beryllium. Total<br>Calcium. Total<br>Calcium. Total<br>Cobalt. Total<br>-Cobalt. Total<br>-Chromium. | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                          | 3.1<br>21.9<br>1.4<br>1.4<br>0.70<br>19.0<br>2.6<br>3.6<br>3.6<br>3.3<br>2.0<br>4.5<br>0.10<br>690<br>20.8<br>1.6<br>69.3<br>8.7<br>1.2<br>14.4<br>9.0<br>1.5<br>2.5 |
| <b>-003</b> | 35-IDWS2-04        | Zinc, Total<br>Silver, TCLP<br>Arsenic. TCLP<br>Barium. TCLP<br>Cadmium, TCLP<br>Chromium, TCLP<br>Mercury. TCLP<br>Lead, TCLP<br>Selenium, TCLP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 312 UG/L<br>50.0 u UG/L<br>100 u UG/L<br>500 u UG/L<br>50.0 u UG/L<br>50.0 u UG/L<br>10.0 u UG/L<br>50.0 u UG/L<br>100 u UG/L | 2.3<br>50.0<br>100<br>500<br>50.0<br>50.0<br>10.0<br>50.0<br>100                                                                                                     |



. .

### ROY F. WESTON INC.

### INORGANICS DATA SUMMARY REPORT 08/19/96

CLIENT: Baker-Lejeune #232 WORK ORDER: 00000-000-000-000-000 WESTON BATCH #: 9608G675

| SAMPLE | SITE ID     | ANALYTE                                                                                                                                   | RESULT                                                     | UNITS                                       | REPORTING<br>LIMIT                                                  |
|--------|-------------|-------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|---------------------------------------------|---------------------------------------------------------------------|
| 001    | 35-10WL2-04 | Cyanide. Reactive<br>Corrosivity by pH<br>Flash Point. Closed Cup<br>Sulfide Reactive<br>Total Dissolved Solids<br>Total Suspended Solids | 0.050 u<br><u>12.5</u><br>158.81<br>1.0 u<br>1400<br>11000 | MG/L<br>pH<br>DEG F<br>MG/L<br>MG/L<br>MG/L | 0.050<br>0.20<br>0.00<br>.1.0<br>10<br>5                            |
| -002   | 35-IDWS2-04 | <pre>% Solids<br/>Cyanide. Reactive<br/>Corrosivity by pH<br/>Flash Point. Closed Cup<br/>Sulfide Reactive</pre>                          | 77.1<br>0.31 u<br>10.7<br>>200<br>30.3 u                   | X<br>Mg/Kg<br>ph<br>Deg f<br>Mg/Kg          | $\begin{array}{c} 0.10 \\ 0.31 \\ 0.20 \\ 0.00 \\ 30.3 \end{array}$ |

Nore: Baker resampled both polyethylene tanks for pH with field monitoring equipment. Measured values were 11.6 and 10.2.

| REW_Batch_Number: 9608G675                                                                                                                                                         | VOL                                                                           | ironmental Metr<br>ATILES BY GC/N<br><u>ker-Lejeune #23</u>                           | IS, TCLP LEACHA                                                                        | l <b>f Coast)</b><br>ATE<br><u>rk Order: 00000</u>                  | Report Date:<br>-000-000-0                                                    | 08/19/96 20:15<br>Page: 1a |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|---------------------------------------------------------------------|-------------------------------------------------------------------------------|----------------------------|
| Cust ID:                                                                                                                                                                           | 35-10WS2-04                                                                   | 35-IDW\$2-04                                                                          | VBLKIE                                                                                 | VBLKGH                                                              | VBLKGH BS                                                                     |                            |
| Sample RFW#:<br>Information Matrix:<br>D.F.:<br>Units:                                                                                                                             | WATER<br>20                                                                   | 004 MS<br>WATER<br>20<br>ug/l                                                         | 96GVE272-914<br>WATER<br>20<br>ug/L                                                    | 96GVE272-MB1<br>WATER<br>1<br>ug/L                                  | 96GVE272•MB1<br>WATER<br>1<br>ug/L                                            |                            |
| 1.2-Dichloroethane-d4SurrogateToluene-d8Recovery4-Bromofluorobenzene                                                                                                               | 96 %                                                                          | 103 X<br>95 X<br>100 X                                                                | 99 x<br>98 x<br>101 x                                                                  | 100 %<br>98 %<br>96 %                                               | 105 X<br>100 X<br>101 X                                                       |                            |
| Vinyl chloride<br>1.1-Dichloroethene<br>2-Butanone<br>Chloroform<br>Carbon Tetrachloride<br>Benzene<br>1.2-Dichloroethane<br>Trichloroethene<br>Tetrachloroethene<br>Chlorobenzene | 200 U<br>100 U<br>200 U<br>100 U<br>100 U<br>100 U<br>100 U<br>100 U<br>100 U | 64 X<br>103 X<br>88 X<br>90 X<br>92 X<br>92 X<br>92 X<br>94 X<br>82 X<br>84 X<br>86 X | 200 U<br>100 U<br>200 U<br>100 U<br>100 U<br>100 U<br>100 U<br>100 U<br>100 U<br>100 U | 10 U<br>5 U<br>5 U<br>5 U<br>5 U<br>5 U<br>5 U<br>5 U<br>5 U<br>5 U | 70 %<br>113 %<br>98 %<br>91 %<br>95 %<br>93 %<br>96 %<br>86 %<br>92 %<br>88 % |                            |

..

\*= Outside of EPA CLP QC limits.

٠

2

. . \*

| <u>RFW Batch Nu</u>                                                                                                                                                                                  | mber: 9608G675                                                                                                | SEMI                                                                                          | ironmental Metu<br>VOLATILES BY GG<br>Ker·Lejeune #2:                                                | rics, Inc. (Gul<br>C/MS, TCLP LEAC<br>32Wor                                       | f Coast)<br>CHATE<br><u>'k Order: 00000</u>                                                     |                                                                                               | 08/16/96 09:32<br>Page: 1a                                                                    |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                      | Cust ID:                                                                                                      | 35-IDWS2-04                                                                                   | 35.IDWS2.04                                                                                          | SBLKPC                                                                            | SBLKPC BS                                                                                       | SBLKPD                                                                                        | SBLKPE                                                                                        |
| Sample<br>Information                                                                                                                                                                                | RFW#:<br>Matrix:<br>D.F.:<br>Units:                                                                           | 003<br>WATER<br>1<br>ug/L                                                                     | 003 MS<br>WATER<br>1<br>ug/L                                                                         | 96GB0404-MB1<br>WATER<br>1<br>ug/L                                                | 96GB0404•MB1<br>WATER<br>1<br>ug/L                                                              | 96GB0404+TC1<br>WATER<br>1<br>ug/L                                                            | 96GB0404•TC2<br>WATER<br>1<br>ug/L                                                            |
| Surrogate<br>Recovery                                                                                                                                                                                | 2-Fluorophenol<br>Phenol-d5<br>Nitrobenzene-d5<br>2-Fluorobiphenyl<br>2,4.6-Tribromophenol<br>p-Terphenyl-d14 | 84 %<br>77 %<br>84 %<br>94 %<br>119 %<br>52 %                                                 | 78 x<br>75 x<br>88 x<br>102 x<br>89 x<br>43 x                                                        | 74 %<br>66 %<br>80 %<br>92 %<br>101 %<br>58 %                                     | 80 %<br>73 %<br>86 %<br>96 %<br>116 %<br>58 %                                                   | 59 %<br>56 %<br>64 %<br>66 %<br>102 %<br>52 %                                                 | 87 %<br>78 %<br>88 %<br>94 %<br>110 %<br>57 %                                                 |
| Pyridine<br>1,4-Dichloro<br>o-Cresol<br>meta & para-<br>Hexachloroet<br>Nitrobenzene<br>Hexachlorobu<br>2.4,6-Trichl<br>2.4,5-Trichl<br>2.4.5-Trichl<br>2.4.0initrot<br>Hexachlorobe<br>Pentachlorop | Cresol<br>hane<br>tadlene<br>orophenol<br>orophenol<br>oluene<br>nzene                                        | 500 U<br>50 U<br>60 U<br>30 U<br>70 U<br>40 U<br>80 U<br>30 U<br>40 U<br>30 U<br>30 U<br>60 U | 71 X<br>77 X<br>77 X<br>74 X<br>79 X<br>89 X<br>88 X<br>93 X<br>91 X<br>91 X<br>97 X<br>99 X<br>99 X | 50 U<br>5 U<br>6 U<br>3 U<br>7 U<br>4 U<br>8 U<br>3 U<br>4 U<br>2 U<br>3 U<br>6 U | 66 X<br>69 X<br>73 X<br>75 X<br>69 X<br>83 X<br>84 X<br>104 X<br>97 X<br>116 X<br>96 X<br>106 X | 500 U<br>50 U<br>60 U<br>30 U<br>70 U<br>40 U<br>80 U<br>30 U<br>40 U<br>20 U<br>30 U<br>60 U | 500 U<br>50 U<br>60 U<br>30 U<br>70 U<br>40 U<br>80 U<br>30 U<br>40 U<br>20 U<br>30 U<br>60 U |

\*= Outside of EPA CLP QC limits.

• • •

| <u>RFW Batch Ni</u> | mber: 9608G675       | PE                         | ronmental Metr<br>STICIDES BY GO<br>er-Lejeune #23 | fics, Inc. (Gui<br>C, TCLP LEACHAT<br>32 Wor | f Coast)<br>E<br><u>k Order: 00000</u> |                          | 08/21/96 14:03<br>Page: 1 |
|---------------------|----------------------|----------------------------|----------------------------------------------------|----------------------------------------------|----------------------------------------|--------------------------|---------------------------|
| Sample              | RFw#:                | <u>35- IDWS2-04</u><br>003 | 35-10WS2-04<br>003 MS                              | PBLKEB<br>96GP0887-MB1                       | PBLKEB BS<br>96GP0887-M81              | PBLKEC<br>96GP0887 • TC1 | PBLKED<br>96gp0887-tc2    |
| Information         | Matrix:              | WATER                      | WATER                                              | WATER                                        | WATER                                  | WATER                    | WATER                     |
|                     | D.F.:                | 10                         | 10                                                 | 10                                           | 10                                     | 10                       | 10                        |
|                     | Units:               | ug/L                       | ug/L                                               | ug/L                                         | ug/L                                   | ug/L                     | ug/L                      |
| Surrogate:          | Tetrachloro-m-xylene | 85 %                       | 95 %                                               | 85 ¥                                         | 70 %                                   | 80 %                     | 90 %                      |
|                     | Decachlorobiphenyl   | 70 %                       | 75 %                                               | 55 ¥                                         | 40 * %                                 | 70 %                     | 70 %                      |
| gamma-BHC (U        | epox1de              | 0.50 U                     | 110 %                                              | 0.050 U                                      | 90 %                                   | 0,50 U                   | 0.50 U                    |
| Heptachlor          |                      | 0.60 U                     | 90 %                                               | 0.060 U                                      | 90 %                                   | 0.60 U                   | 0.60 U                    |
| Heptachlor          |                      | 0.80 U                     | 120 %                                              | 0.080 U                                      | 100 %                                  | 0.80 U                   | 0.80 U                    |
| Chlordane           |                      | 1.0 U                      | 120 %                                              | 0.10 U                                       | 110 %                                  | 1.0 U                    | 1.0 U                     |
| Endrin              |                      | 3.0 U                      | 125 %                                              | 0.30 U                                       | 120 %                                  | 3.0 U                    | 3.0 U                     |
| Methoxychlor        |                      | 7.0 U                      | 99 %                                               | 0.70 U                                       | 110 %                                  | 7.0 U                    | 7.0 U                     |
| Toxaphene           |                      | 50 U                       | 102 %                                              | 5.0 U                                        | 96 %                                   | 50 U                     | 50 U                      |

U= Analyzed, not detected. J= Present below detection limit. B= Present in blank. NR= Not requested. NS= Not spiked. %= Percent recovery. D= Diluted out. I= Interference. NA= Not Applicable. \*= Outside of EPA CLP QC

Ascens

| RFW Batch Number: 960      | 8G675                               |                            | BICIDES BY GO                 | C, TCLP LEACHAT                     |                                     |                                     | 08/20/96 09:04<br>Page: 1           |
|----------------------------|-------------------------------------|----------------------------|-------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|
|                            | Cust ID: <u>3</u>                   | 5-IDWS2-04                 | 35-10WS2-04                   | PBLKEF                              | PBLKEF BS                           | PBLKEG                              | PBLKEH                              |
| Sample<br>Information      | RFW#:<br>Matrix:<br>D.F.:<br>Units: | 003<br>WATER<br>10<br>ug/L | 003 MS<br>WATER<br>10<br>ug/L | 96GP0892-MB1<br>WATER<br>10<br>ug/L | 96GP0892-MB1<br>WATER<br>10<br>ug/L | 96GP0892-TC1<br>WATER<br>10<br>ug/L | 96GP0892•TC2<br>WATER<br>10<br>ug/L |
| Surrogate:                 | DCAA                                | 90 %                       | 84 ×                          | 92 %                                | 88 X                                | 86 %                                | 83 %                                |
| 2,4-D<br>2,4,5-TP (S11vex) |                                     | 100 U<br>10 U              | 85 %<br>82 %                  | 10 U<br>1.0 U                       | 84 %<br>83 %                        | 100 U<br>10 U                       | 100 U<br>10 U                       |

abot Habadaa . 7ma

10.76 0---+

U= Analyzed, not detected. J= Present below detection limit. B= Present in blank. NR= Not requested. NS= Not spiked. %= Percent recovery. D= Diluted out. I= Interference. NA= Not Applicable. \*= Outside of EPA CLP QC

.

. '

•

.

.

### VIHIS

### ROY F. WESTON INC.

### INORGANICS DATA SUMMARY REPORT 08/23/96

## CLIENT: Baker-Lejeune #232 WORK ORDER: 00000-000-000-0000-000

### WESTON BATCH #: 9608G675

| SAMPLE | SITE ID     | ANALYTE                          | RESULT UNITS  | REPORTING  |
|--------|-------------|----------------------------------|---------------|------------|
| -001   | 35-IDWL2-04 | Silver. Total                    | 3.1 u UG/L    | 3.1        |
|        |             | -Aluminum, Total                 | 34600 UG/L    | 21.9       |
|        |             | Arsenic, Iotal                   | 15.8 UG/L >   | 1.4        |
|        |             | Barium. Total                    | 384. · UG/L∞  | 1.4        |
| •      | -<br>-      | Beryllium, Total                 | 5.6 UG/L      | 0.70       |
| •      |             | Calcium. Total                   | . 743000 UG/L | 19.0       |
|        |             | Cadmium. Total-<br>Cobalt. Total | 2.6 u UG/⊾    | . 2.6      |
|        |             | Cobalt. Total                    | 10.2 UG/L     | 3.6        |
| ••     |             | "Chromium, «Total                | 138 9 UG/L    | 3.3        |
|        |             | Copper. Total                    | 46.1 UG/L     | • 2.0      |
|        |             | Iron. Total                      | -36000 UG/L   | 4.5        |
| •      |             | Mercury, Total*                  | 0.10 u- UG/L  | 0.10       |
|        |             | Potassium, Iotal                 | 19000 UG/L    | 690        |
|        | -           | Magnesium, Total                 | 13000 UG/L    | 20.8       |
|        |             | Manganese, Total                 | 305 UG/L      | 1.6        |
|        |             | Sodium. Total                    | 111000 UG/L   | 69.3       |
| •      |             | Nickel, Total                    | 31.5 UG/L     | 8.7        |
|        | •           | -Lead ~ lotal +                  | 22.8 UG/L ~   | 1.2        |
| •      |             | Antimony, Total                  | 24.8 UG/L     | 14.4       |
|        |             | Selenium. Totat                  | 9.0 u≈ UG/L   | 9.0        |
| •      | •           | Thallium. Total                  | 1.5 u UG/L    | 1.5<br>2.5 |
|        |             | Vanadium, Total                  | 83.8 UG/L     | 2.5        |
|        |             | Zinc, Total                      | 312 UG/L      | 2.3        |
| -003   | 35-IDWS2-04 | Silver, TCLP                     | 50.0 u UG/L   | 50.0       |
| -000   | 10.52 01    | Arsenic. TCLP                    | 100 u UG/L    | 100        |
|        |             | Barium. TCLP                     | 500 u UG/L    | 500        |
|        |             | Cadmium, TCLP                    | 50.0 u UG/L   | 50.0       |
|        |             | Chromium, TCLP                   | 50.0 u UG/L   | 50.0       |
|        |             | Mercury. TCLP                    | 10.0 u UG/L   | 10.0       |
|        |             | Lead, TCLP                       | 50.0 u UG/L   | 50.0       |
| •      |             | Selenium, TCLP                   | 100 u UG/L    | 100        |

| SampleRFW#:002002 MS0InformationMatrix:SOILSOILD.F.:1.001.00Units:ug/Kgug/KgSurrogate:Tetrachloro-m-xylene90 %75 %Surrogate:Decachlorobiphenyl85 %80 %Aroclor-101652 U50 U                                                                                                                                                                                                                | IDWS2-04 PBLKEJ 4 PBLKEJ BS<br>002 MSD 96GP0894-MB1 96GP0894-MB1<br>SOIL SOIL SOIL<br>1.00 1.00 1.00<br>ug/Kg ug/Kg ug/Kg<br>75 % 75 % 80 %<br>85 % 85 % 90 % |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|
| InformationMatrix:SOILSOILD.F.:1.001.00Units:ug/KgSurrogate:Tetrachloro-m-xylene90 %Surrogate:Decachlorobiphenyl85 %B0 %%Aroclor-101652 U50 U                                                                                                                                                                                                                                             | SOIL         SOIL         SOIL           1.00         1.00         1.00           ug/Kg         ug/Kg         ug/Kg                                           |
| Surrogate:     Decachlorobiphenyl     85 %     80 %       Aroclor-1016     52 U     50 U                                                                                                                                                                                                                                                                                                  | 75 % 75 % 80 %                                                                                                                                                |
| Aroclor-1016 52 U 50 U                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                               |
| Aroclor-1016       52       U       50       U         Aroclor-1221       52       U       50       U         Aroclor-1232       52       U       50       U         Aroclor-1242       52       U       50       U         Aroclor-1248       52       U       50       U         Aroclor-1254       52       U       50       U         Aroclor-1260       100       U       88       X | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                          |

U= Analyzed. not detected. J= Present below detection limit. B= Present in blank. NR= Not requested. NS= Not spiked. %= Percent recovery. D= Diluted out. I= Interference. NA= Not Applicable. \*= Outside of Advisory limits.

.



### ROY F. WESTON INC.

### INORGANICS DATA SUMMARY REPORT 08/19/96

CLIENT: Baker Lejeune #232 WORK ORDER: 00000-000-000-000-000

WESTON BATCH #: 9608G675

| SAMPLE | SITE ID            | ANALYTE                                                                                                                                   | RESULT UNIT                                         |                                             |                                         |
|--------|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|---------------------------------------------|-----------------------------------------|
| 001    |                    | Cyanide. Reactive<br>Corrosivity by pH<br>Flash Point. Closed Cup<br>Sulfide Reactive<br>Total Dissolved Solids<br>Total Suspended Solids | 0.050 u<br>12.5<br>158.81<br>1.0 u<br>1400<br>11000 | MG/L<br>pH<br>DEG F<br>MG/L<br>MG/L<br>MG/L | 0.050<br>0.20<br>0.00<br>1.0<br>10<br>5 |
| -002   | <u>35-IDWS2-04</u> | ¥ Solids<br>Cyanide. Reactive<br>Corrosivity by pH<br>Flash Point. Closed Cup<br>Sulfide Reactive                                         | 77.1<br>0.31 u<br>10.7<br>>200<br>30.3 u            | X<br>Mg/Kg<br>ph<br>Deg F<br>Mg/Kg          | 0.10<br>0.31<br>0.20<br>0.00<br>30.3    |



Baker Environmental, Inc. Airport Office Park, Building 3 420 Rouser Road Coraopolis, Pennsylvania 15108

(412) 269-6000 FAX (412) 269-2002

(

August 29, 1996

Commanding General ACS-EMD Building 67, Room 238 PSC Box 20004 Marine Corp Base Camp Lejeune, NC 28542-0004

Attn: Mr. Neal Paul, Director Environmental Management Department (EMD)

Re: Contract N62470-89-D-4814 Navy CLEAN, District III Contract Task Order (CTO) 0232 Operable Unit No. 10 (Site 35) MCB, Camp Lejeune, North Carolina Solid IDW Handling and Disposal

Dear Mr Paul:

The purpose of this letter is to obtain your concurrence for the disposal of solid investigative-derived waste (IDW) generated during the Supplemental Groundwater Investigation (SGI) for Operable Unit (OU) No. 10 (Site 35), Camp Geiger Area Fuel Farm, Marine Corps Base, Camp Lejeune, North Carolina, that is presently stored on Onslow County property.

As you are aware, SGI field activities conducted on Onslow County property have recently concluded. During well construction activities, approximately 15 cubic feet of solid IDW was generated. This IDW consists of cuttings and drilling mud that are containerized in a roll-off box. This roll-off box is located next to the Onslow County Animal Control Facility on Georgetown Road in Jacksonville, North Carolina.

To assess disposal options a representative sample was collected from the roll-off box and analyzed for full Toxic Characteristic Leaching Procedure (TCLP) organics and metals, Target Compound List (TCL) PCBs, and Resource Conservation Recovery Act (RCRA) characteristics for defining a hazardous waste.

The analytical results indicate the solid IDW is not a hazardous waste and displays no evidence of contamination. At other remedial investigation sites at MCB Camp Lejeune, where solid IDW has been determined to be nonhazardous and inert, the contents of roll-off boxes have been dumped onto the ground and graded-off. However, this IDW is on Onslow County property and on-site disposal of the solid IDW is not recommended by Baker for the following reasons:

• Drilling mud is not aesthetically pleasing when dumped on the ground. Dumping at this site cannot be done in a secluded location due to site conditions. Such an eyesore could generate complaints from nearby City residents, and County employees that work at the Onslow County Animal Control Facility, or the nearby Onslow County Administrative Offices.

acc: AERobb/CF; JWMentz/RPWattras/PRGM F; DLBonk/PJT F; MDSmith; Daily File Total Quality Corporation S.O.#62470-232-SRN Subfile #8 Initials NOP Baker -

Mr. Neal Paul August 29, 1996 Page 2

- The disposal site would be adjacent to the access road that leads to the sewer main easement. This area may be subject to an enforcement action according to the Army Corp of Engineers (COE). Disposing waste adjacent to an area under an enforcement action could generate complaints from public officials that are responsible for addressing COE concerns.
- Onslow County granted permission to access the sewer easement and install wells. Specific permission to dispose IDW on County property was never granted. Approval to dispose the waste on-site would be required approval from the Onslow County Board of Commissioners. This process could take months and substantial rental costs for the roll-off box would be incurred.

As an alternative, Baker is proposing that the roll-off box be transported to Camp Geiger (Site 35) and the contents deposited on the ground at the location where solid IDW from previous SGI field activities was deposited. After this material has dried it can be graded-off. Your concurrence with this recommendation can be indicated by signing in space provided below.

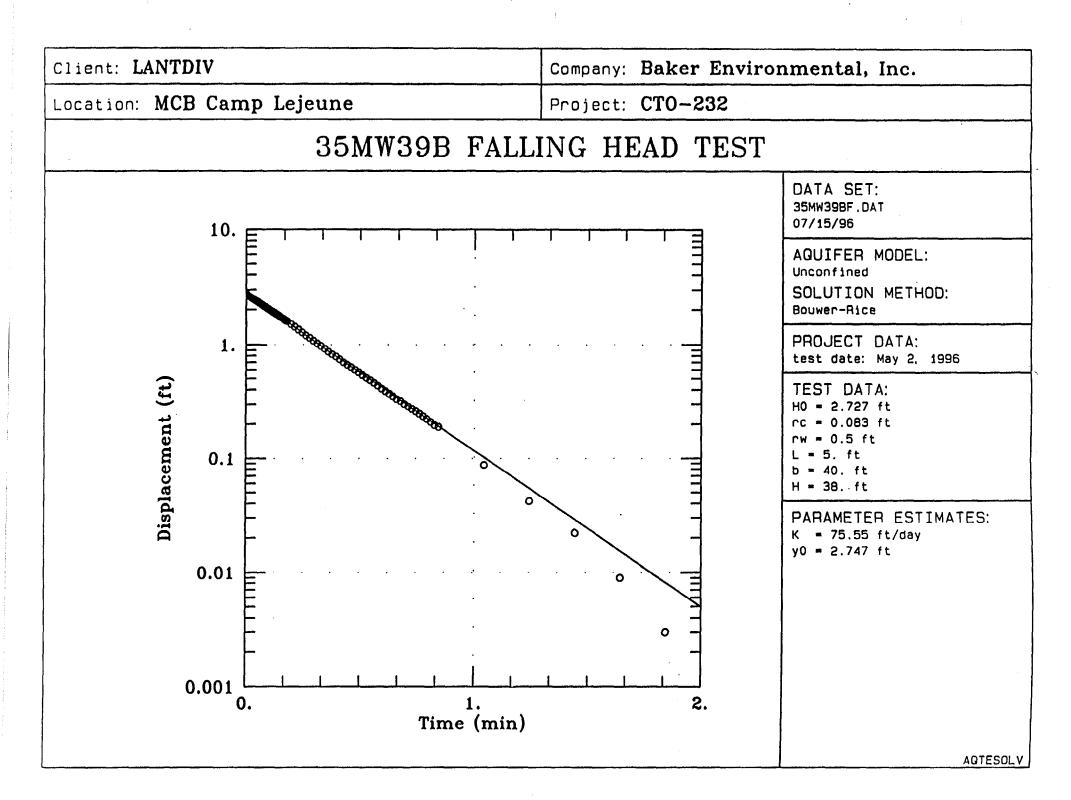
Neal Paul, Director EMD, MCB Lejeune

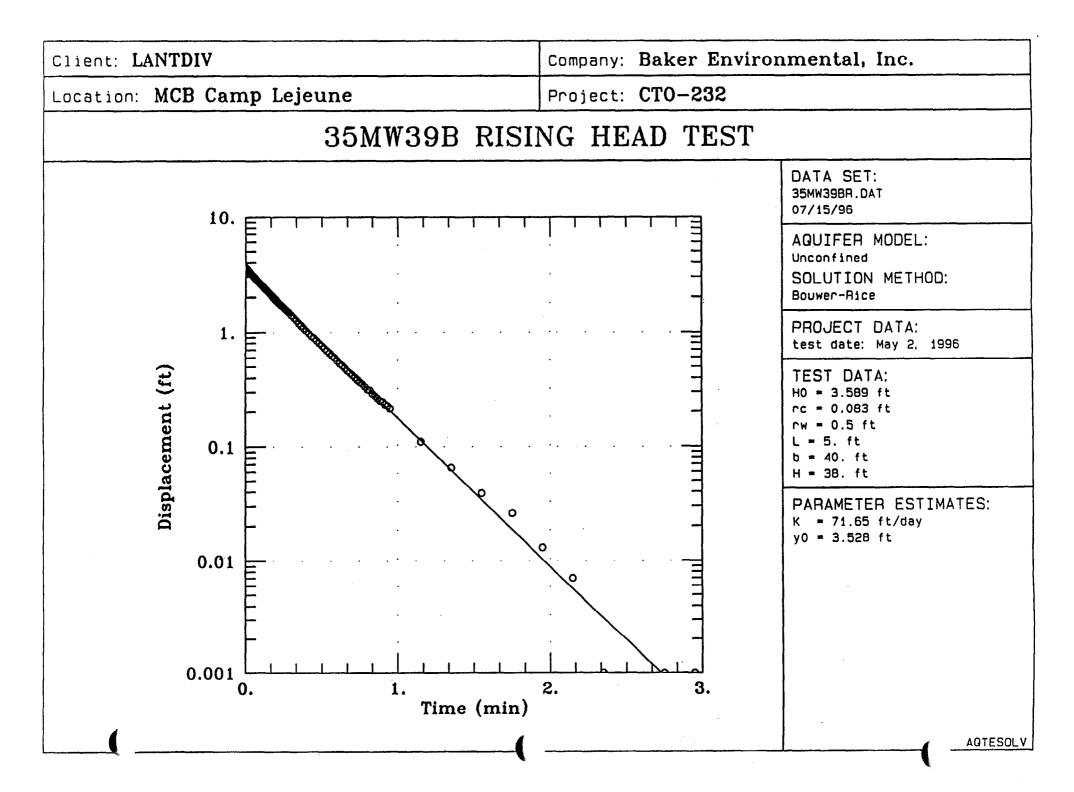
Date

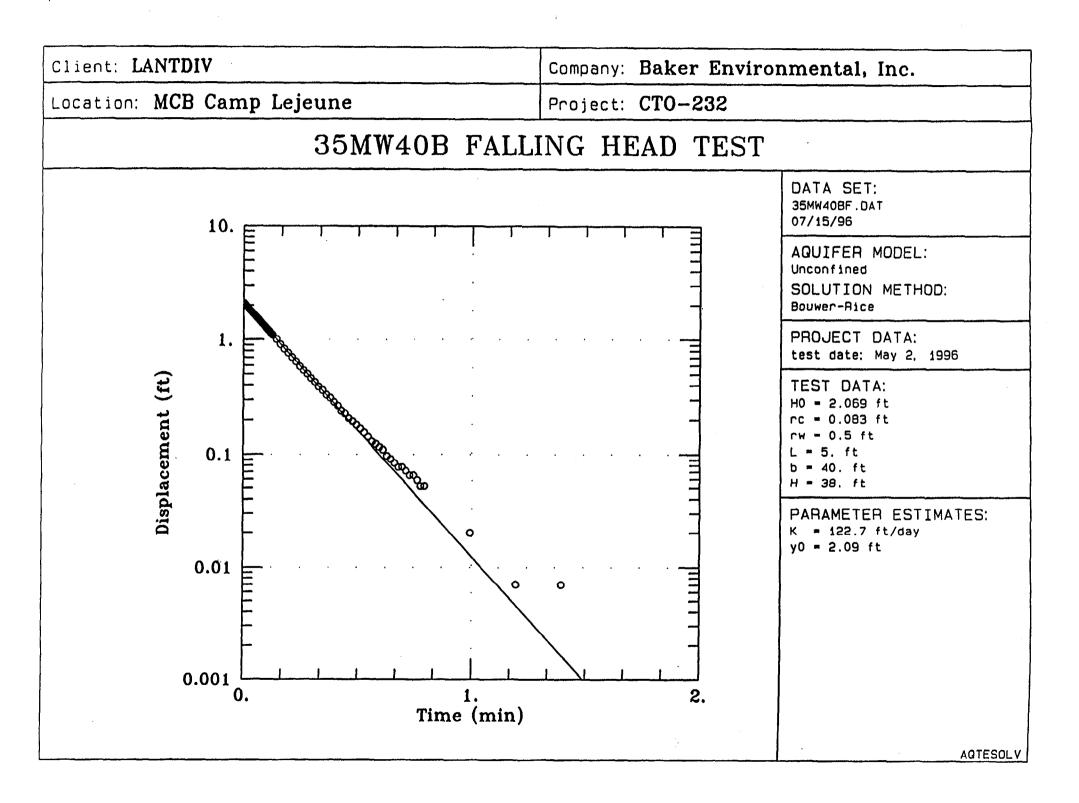
Baker appreciates the opportunity to serve LANTDIV on this project. If you have any questions, please do not hesitate to contact me at (412) 269-2063 or Matt Bartman at (412) 269-2053.

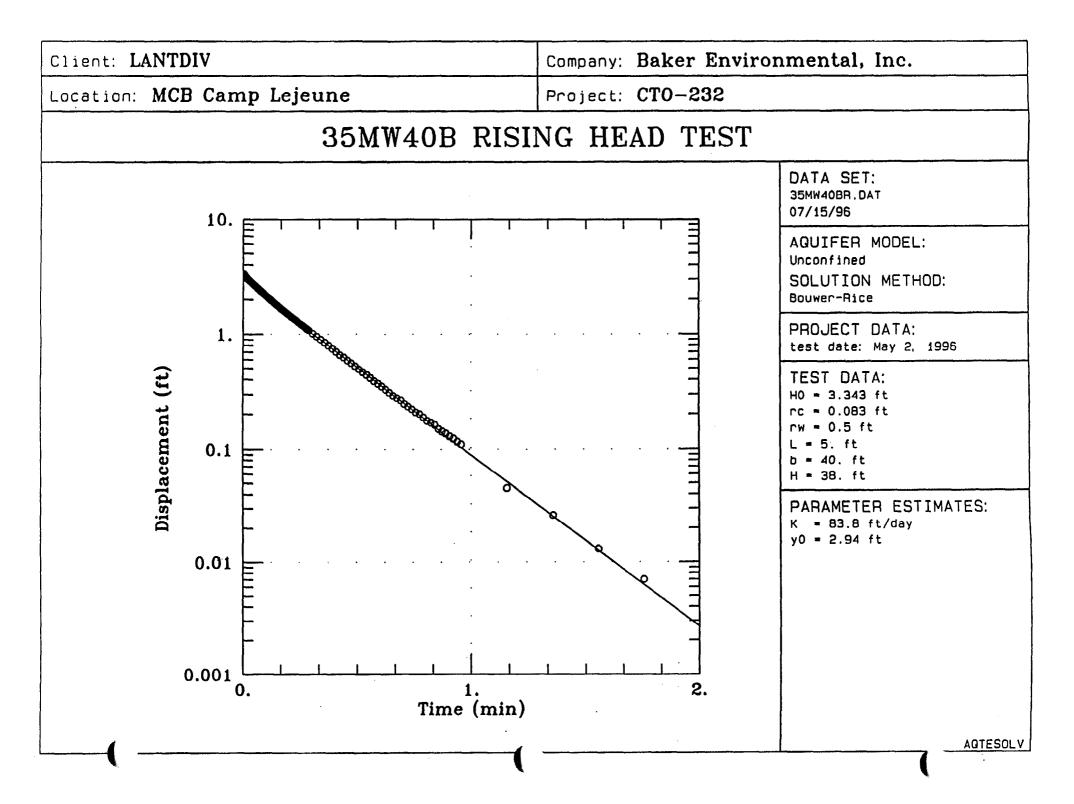
Sincerely,

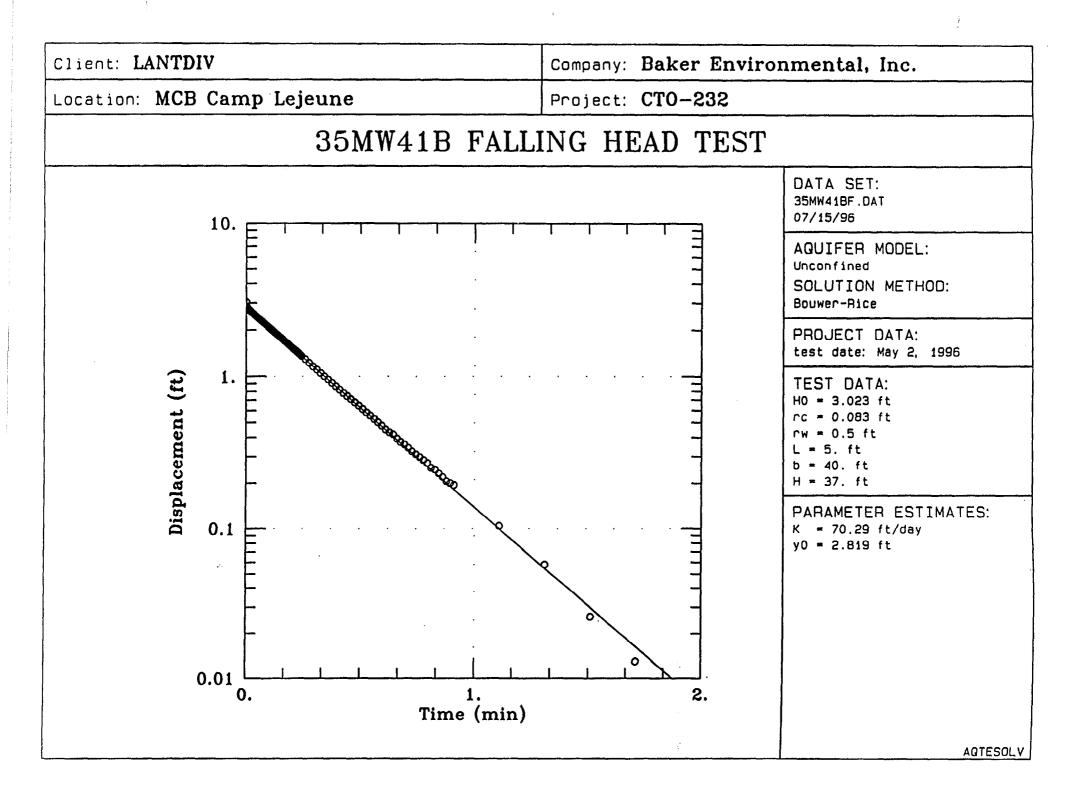
BAKER ENVIRONMENTAL, INC.

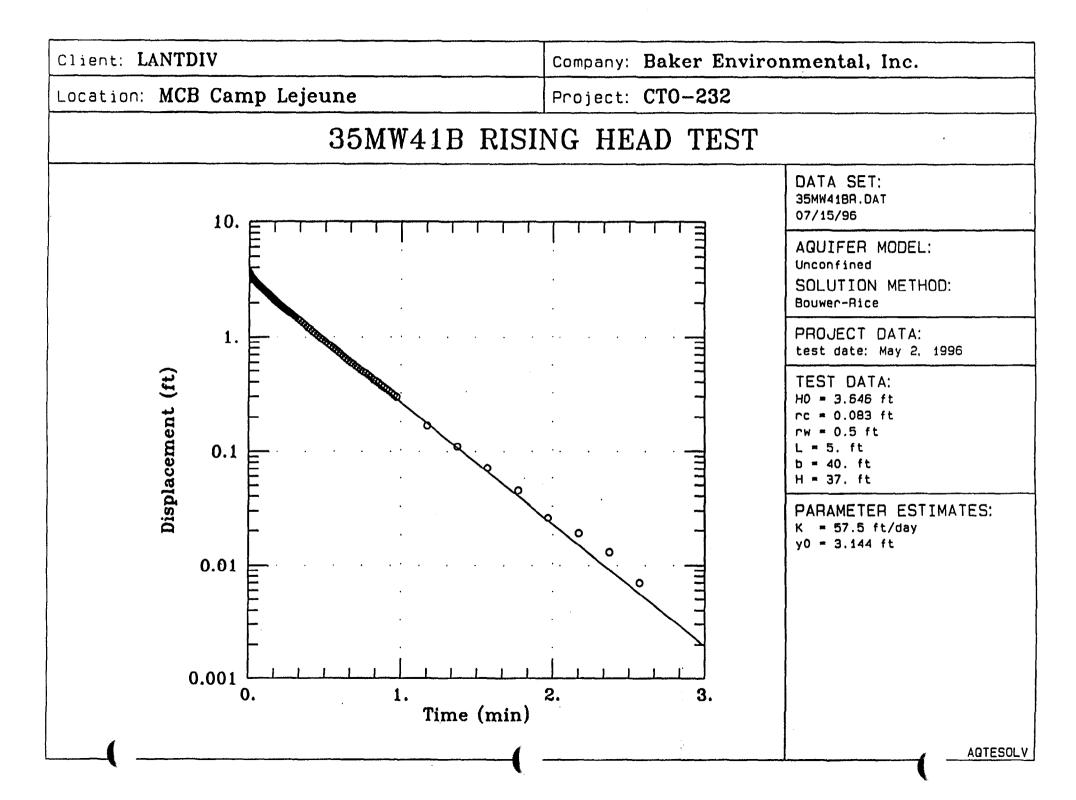

MO Smith for DL Bon K

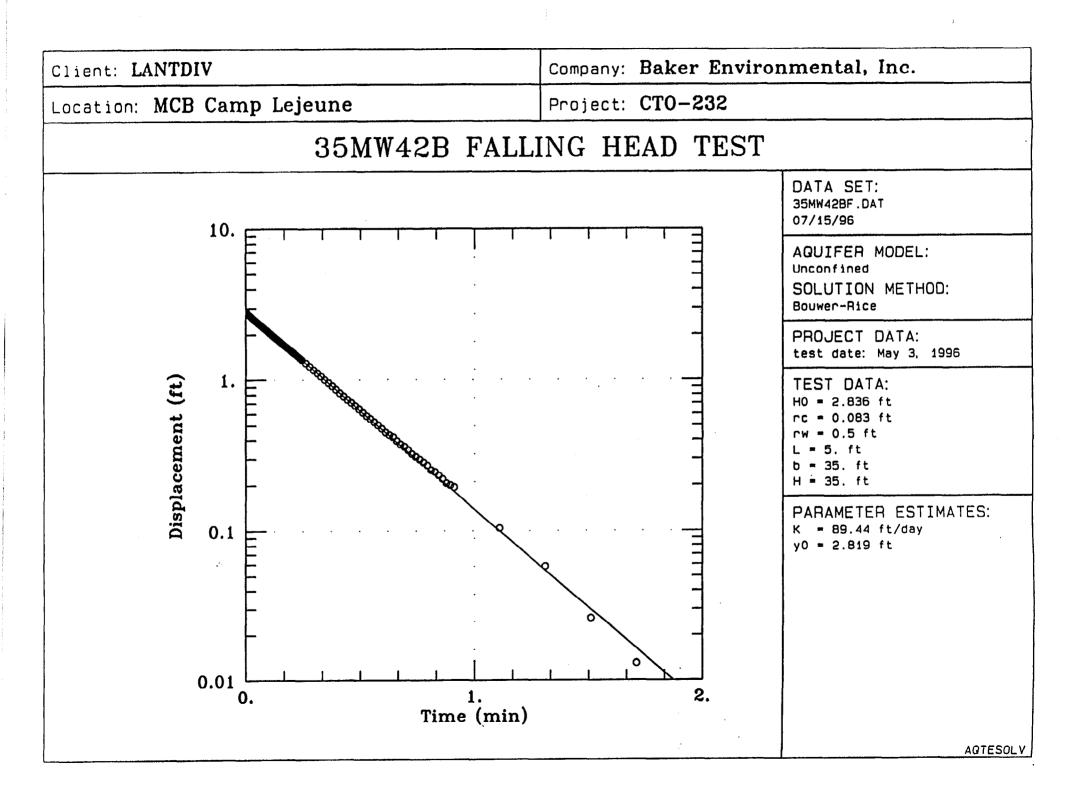

Daniel L. Bonk, P.E. Project Manager

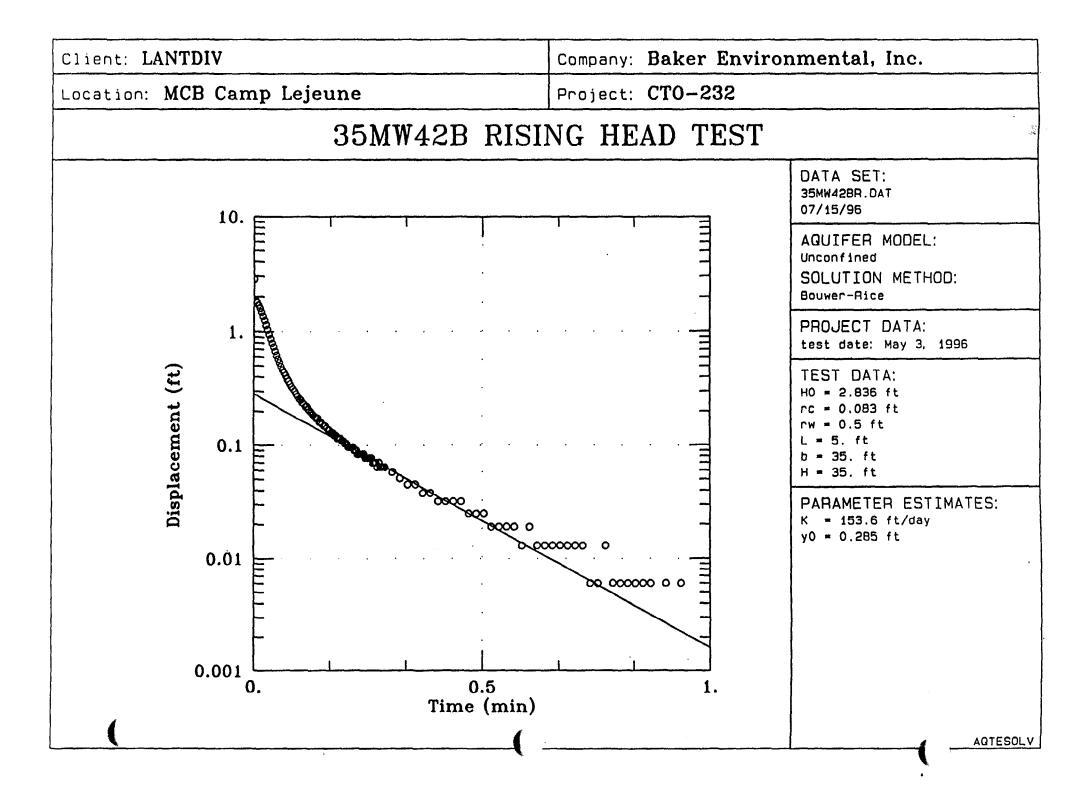

DLB/MDS/lq

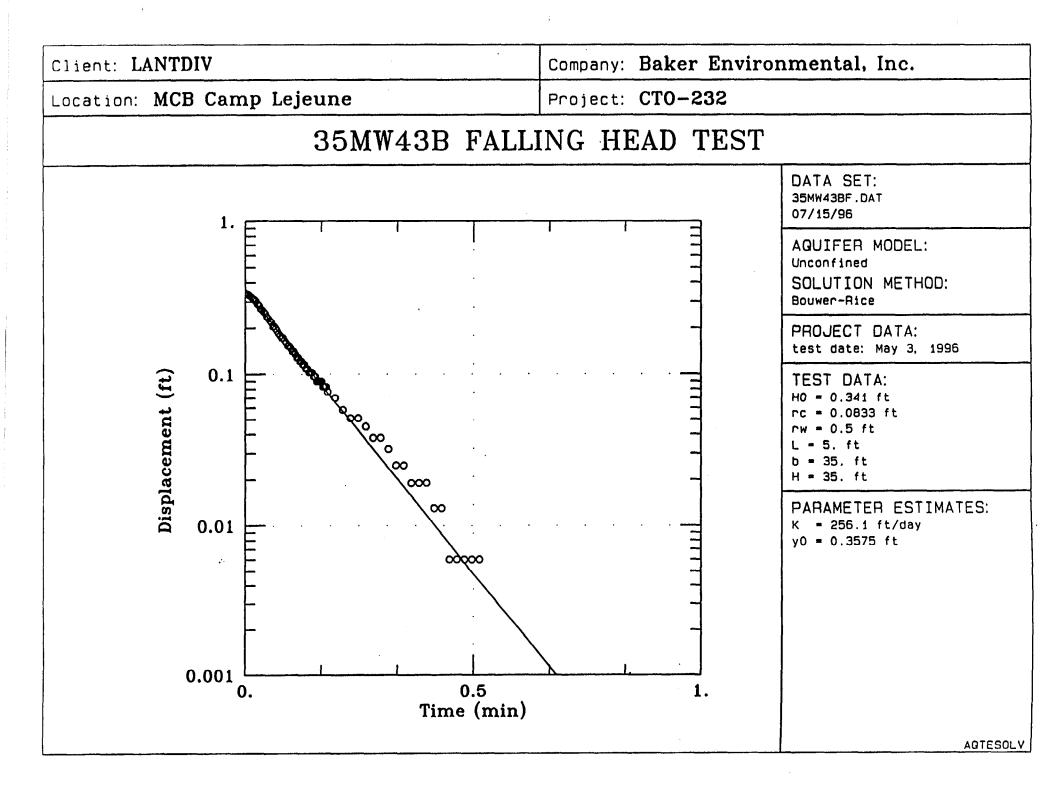

cc: Ms. Katherine Landman, Code 18232, Navy Technical Representative Mr. John Riggs, Environmental Control Specialist, MCB Camp Lejeune

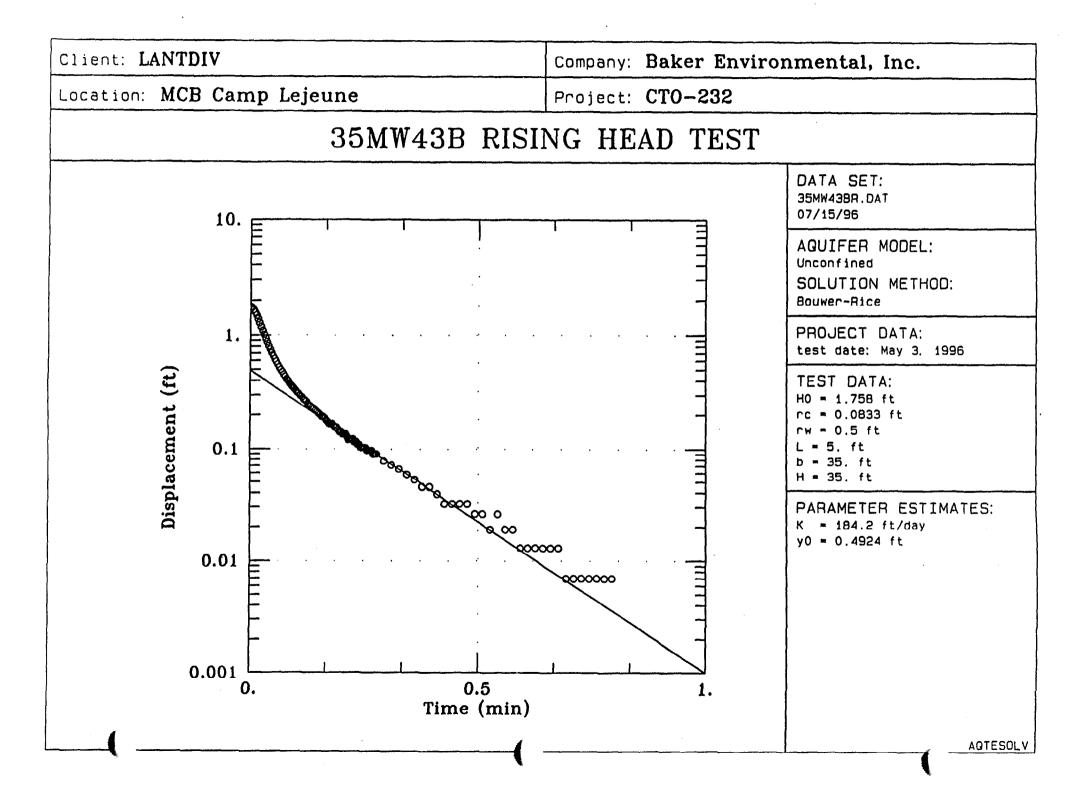

## APPENDIX J SGI HYDRAULIC CONDUCTIVITY DATA

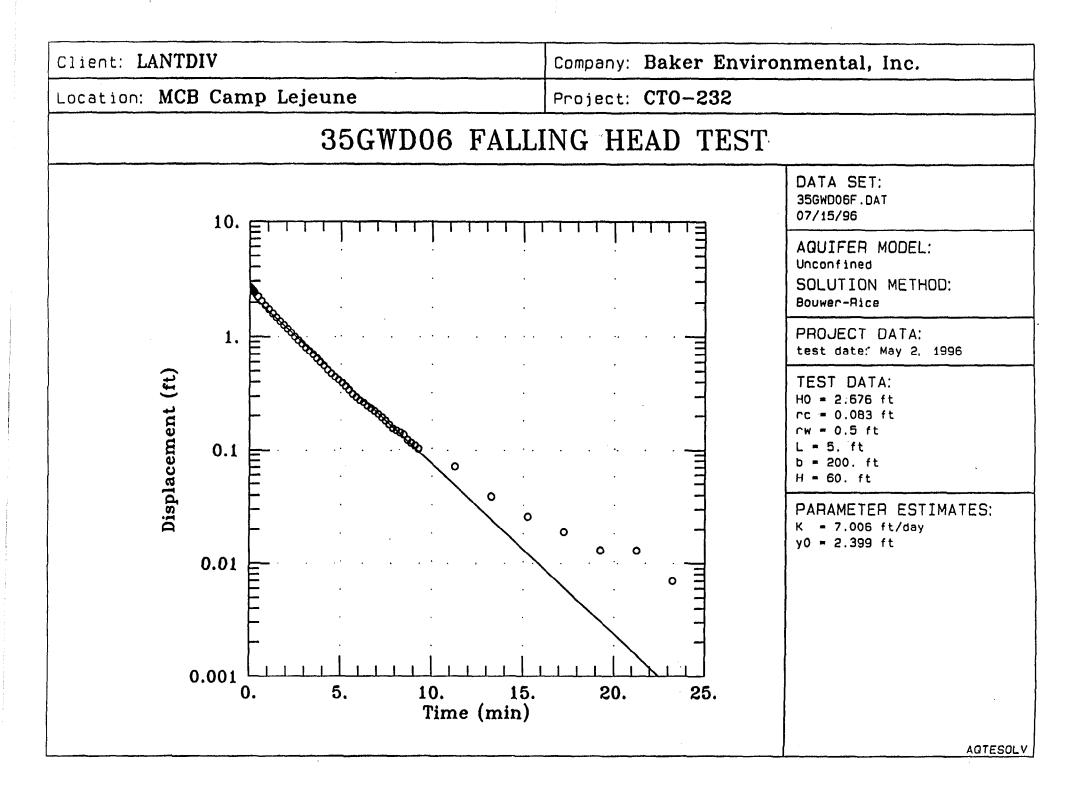


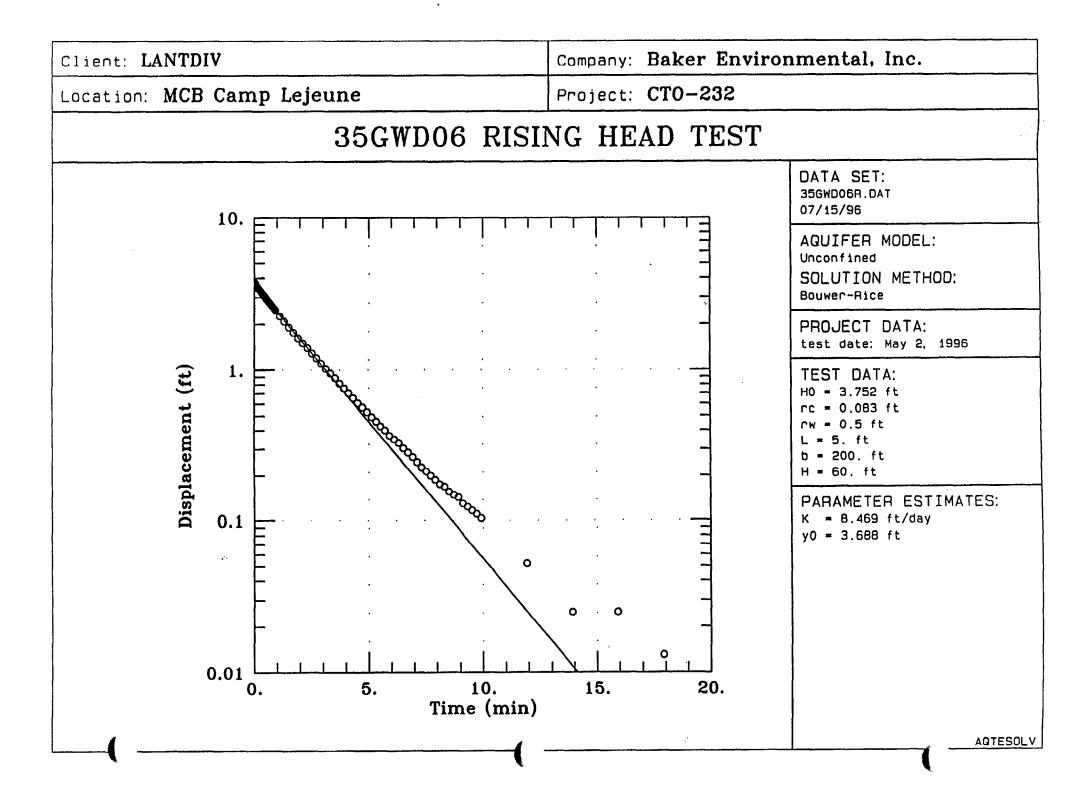



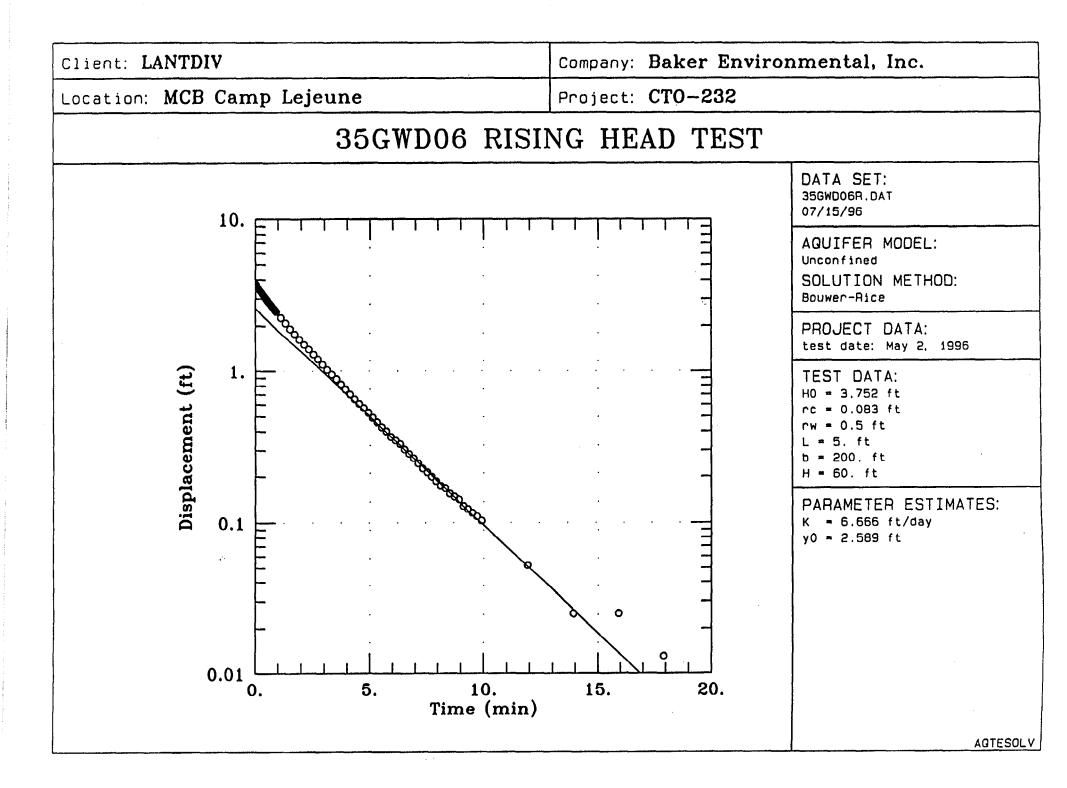














#### **Discussion of Slug Test Analyses at Site 35**

A review of the test data indicates that not all the solutions appear representative of aquifer conditions. The hydraulic conductivity values obtained for wells 35-MW42B and 35-MW43B appear to be an order of magnitude higher than expected for the surficial aquifer. Previous slug testing performed at Camp Lejeune by Baker, as well as literature values suggest a hydraulic conductivity value range of 1 to 50 feet/day. An examination of the slug test conditions revealed two discrepancies from normal slug test procedures.

First, a falling or rising head test can considered complete when the water level is at least 95% of the initial (static) water level. This did not occur during the falling head tests at wells 35-MW42B and 35-MW43B. The recovery at 35-MW42B was approximately 85% of the static level, and was approximately 90% at 35-MW43B. If the next test (the rising head test) does not begin at static conditions, then the results will be inaccurate. Second, an initial displacement of at least 2 feet is desirable. A small initial displacement in of 0.3 feet was observed in the falling head test and 1.8 feet in the rising head test at well 35-MW43B. The resultant curve will be more shallow and the test will be shorter than desired to provide an representative solution.

Given the relatively high hydraulic conductivity values seen at these two wells, there is also the potential that drilling disturbed the surrounding formation to the extent that voids were created. These voids could represent zones of high groundwater conductivity. While this situation would not impact the ability to collect representative groundwater samples, it would effect the ability to obtain representative hydraulic conductivity values.

|                   |                                      | eet No of<br>awing No |                                                                      |
|-------------------|--------------------------------------|-----------------------|----------------------------------------------------------------------|
| Computed by Check | ked By Da                            |                       | _                                                                    |
| SITE 35 SLUE      | i ተ <u></u> ርሪተሪ                     |                       |                                                                      |
| 35- GWDØ6         | 5WL 7.55<br>FINAL 7.55               | (100%)                |                                                                      |
| 35-MW40B          | SWL 6.87<br>INT. 6.86<br>FINAL 6.86  |                       | ۰ ۲۰۰۰<br>۱۰<br>۱۰ میر ۲۰۰۰ ۲۰۰۰<br>۲۰                               |
| 35-MW39B          | SWL 7.32<br>INT. 7.19<br>FINAL 7.12  | (98%)<br>(97%)        |                                                                      |
| 35-MW41B          | SWL 7.76<br>INT. 7.74<br>FINAL 7.74  | (99%)<br>(99%)        |                                                                      |
| 35- MW42B         | 541L 5.82<br>INT. 4.93<br>FINAL 4.96 | (85%)<br>(85%)        | PROBLEM W/ FALLING HEA<br>TEST - SLUGS WOULD<br>SUBMERGE. DATA LOCGE |
| 35- MW 43B        | 5WL 4.80<br>INT. 4.39<br>FIHAL 4.32  | (91%)                 | SAMK (TEST THEN REPUH)                                               |
|                   |                                      | (90/)                 | •<br>•                                                               |
|                   |                                      |                       | с.<br>С                                                              |
|                   |                                      |                       |                                                                      |

٠

# APPENDIX K FSAP AND WORK PLAN AMENDMENTS



ŧ

#### Baker Environmental, Inc.

Airport Office Park, Building 3 420 Rouser Road Coraopolis, Pennsylvania 15108

(412) 269-6000 FAX (412) 269-2002

April 5, 1996

Commander Atlantic Division Naval Facilities Engineering Command 1510 Gilbert Street (Building N-26) Norfolk, Virginia 23511-2699

- Attn: Ms. Katherine Landman Navy Technical Representative Code 18232
- Re: Contract N62470-89-D-4814 Navy CLEAN, District III Contract Task Order (CTO) 0232 Final Project Plan Amendments Supplemental Groundwater Investigation/Feasibility Study (SGI/FS) Operable Unit (OU) No. 10, Site 35 MCB, Camp Lejeune, North Carolina

Dear Ms. Landman:

This letter presents final amendments to the Remedial Investigation/Feasibility Study (RI/FS) Work Plan and Sampling and Analysis Plan (SAP) for Operable Unit (OU) No. 10 (Site 35) Camp Geiger Area Fuel Farm. These amendments were necessary to support the additional work to be conducted under the Supplemental Groundwater Investigation (SGI) at OU No. 10. The majority of information provided in the original Final Work Plan and SAP (Baker, 1993) is still applicable to the work scheduled to occur under the SGI. Specific sections of the original Work Plan and SAP have been modified to accommodate changes to the project's tasks, schedule, and project team. The health and safety concerns addressed in the Final RI/FS Health and Safety Plan (HASP) (Baker, 1993) are applicable to the SGI. As such, no modifications to this document were necessary for it to be followed during SGI field investigation activities. Modifications to the Work Plan and SAP are as follows:

### WORK PLAN AMENDMENTS

Included in the following subsections are the modifications and additions to the Final RI/FS Work Plan submitted to LANTDIV in December 1993. Sections 4.0 (Remedial Investigation/Feasibility Study Objectives) and Section 5.3 (Task 3 - Field Investigations) have been substantially modified to accommodate the additional work. Section 5.15 (Additional SGI tasks) presents two additional tasks, Data Management and Photo Album, that will be performed under the SGI. These tasks were also performed previously as part of the RI, however, they were not identified separately in the Final RI/FS Work Plan. Rather, these tasks were combined with other tasks. Two tasks presented in Sections 5.6 (Task 7 - Treatability Study/Pilot Testing) and 5.7 (Task 6 - Risk Assessment) of the Final RI/FS Work Plan will not be performed under the SGI. A treatability study-pilot test of in-situ air sparging (IAS technology) at Site 35 is the subject of work



Ms. Katherine Landman April 5, 1996 Page 2

being performed under a different task order (CTO-0323). Based on the results of the RI, LANTDIV, Camp Lejeune, EPA Region IV, and the NC DEHNR concurred that no additional risk assessment is required under the SGI.

### 2.2 Site 35 - Camp Geiger Area Fuel Farm

This section discusses the locations of proposed SGI Activities.

### 2.2.1 Site Location and Setting

The SGI will be conducted in the two areas of concern (AOC) shown in Figure 1. The northern AOC is bisected by and extends approximately 900 feet along Brinson Creek between existing monitoring wells 35MW-23 and 35-MW-36. The southern AOC is roughly bounded to the north by Fifth Street; to the east by buildings TC569, TC611, TC609, and TC608; to the south by Seventh Street and to the west by "C" Street.

### 4.0 REMEDIAL INVESTIGATION/FEASIBILITY STUDY OBJECTIVES

The objectives of this work are based on the recommendations of the previous RI and the data needs of the proposed pilot-scale evaluation of IAS technology. The overall objectives of the SGI are as follows:

- Delineate the horizontal and vertical extent and locate sources of solvent-related groundwater contamination in the surficial aquifer south of Fifth Street.
- Determine if Brinson Creek is acting as a hydraulic barrier, preventing solvent-related groundwater contamination from migrating off-site onto Onslow County property.
- Provide a detailed vertical profile of solvent-related and BTEX groundwater contamination and subsurface geology in the immediate vicinity of the proposed IAS pilot study.

### 5.3 <u>Task 3 - Field Investigations</u>

The specific activities of the SGI are presented in the following sections and include: Site Survey, Soil and Groundwater Sample Screening, Soil Investigation, and Groundwater Investigation.

### 5.3.1 Site Survey

Survey data will be provided for all roads, building foundations, storm sewer inlets, sanitary sewer manholes, tree lines and monitoring well locations (temporary and permanent) in the AOCs not surveyed under the previous RI or Preparation of RAC Design Package for Surficial Groundwater Remediation (CTO-0323). Survey points will include a latitude coordinate, longitude coordinate and an elevation expressed in feet of mean sea level. The vertical accuracy will be within 0.01 feet and horizontal accuracy within 0.1 feet. In addition all points will be referenced to the North Carolina State Plain Coordinate System (NCSPCS). A sufficient number of points will be established to tie new survey data with previous surveys conducted at Site 35.

1

Ms. Katherine Landman April 5, 1996 Page 3

### 5.3.2 Soil and Groundwater Sample Screening

Sample screening activities will be conducted in both the northern and southern AOCs. These activities will include the installation of temporary monitoring well clusters and on-site analysis of soil and groundwater samples.

In the northern AOC, temporary wells will be installed on the both the Onslow County (northeast) side and Activity (southwest) side of Brinson Creek. On the Onslow County (northeast) side of Brinson Creek, two, two-wells clusters will be installed. A cluster of this side of Brinson Creek will consist of a shallow and an intermediate well. The locations of these clusters are shown in Figure 1. On the Activity (southwest) side of Brinson Creek will consist of a shallow and intermediate well clusters will be installed. A cluster on this side of Brinson Creek will consist of a shallow and intermediate well. The locations of these clusters will be installed. A cluster on this side of Brinson Creek will consist of a shallow, semi-shallow and intermediate well. The locations of these clusters are shown in Figure 2. Groundwater and soil samples collected from wells installed on both sides of Brinson Creek will be analyzed for solvent and fuel-related contaminants.

In the southern AOC, 10, two-well clusters will be installed. A cluster in this area will consist of a shallow and/an intermediate well. The locations of the first five well clusters to be installed in the southern AOC are shown in Figure 1. The locations of the remaining well clusters will be based on the levels of contamination detected in the initial five-well installation and are not shown in Figure 1.

### 5.3.2.1 Groundwater Sample Screening

Temporary monitoring wells were selected as the screening method for both AOCs to limit the installation of a large number of permanent wells. A large number of permanent wells in the northern AOC could potentially impact the performance of the IAS pilot test and are more costly than temporary wells. In the southern AOC, the temporary wells will be used to establish the location of a limited number of permanent wells.

The objectives of the groundwater screening activities are as follows:

- Provide a detailed vertical profile of solvent-related and BTEX groundwater contamination and subsurface geology in the immediate vicinity of the in-situ air sparging pilot study (northern AOC).
- Determine if Brinson Creek is acting as a barrier to fuel and solvent-related groundwater contamination migrating off-site onto Onslow County property (northern AOC).
- Define the horizontal extent of solvent-related groundwater contamination in the upper portion of the surficial aquifer in the vicinity of Buildings TC470 and TC572 (southern AOC).
- Define the horizontal extent of solvent-related groundwater contamination in the lower portion of the surficial aquifer between Fifth and Seventh Street (southern AOC).
- Provide sufficient data to effectively locate permanent monitoring wells (southern AOC).

Ms. Katherine Landman April 5, 1996 Page 4

#### Northern AOC

To accomplish the objectives for the northern AOC, a total of 34 temporary wells will be installed. On the Activity (southwest) side of Brinson Creek three well clusters will be installed at 10 locations (30 wells, 35TW-16A,B,C through 35TW-25A,B,C) in the vicinity of existing monitoring well clusters 35MW-17, 35MW-18 ans 35MW-19 (see Figure 2). Well clusters in this area will consist of a shallow well screened across the water table (total depth approximately 5-10 feet below ground surface (bgs), a semi-shallow well screened midway between the confining layer and the water table (total depth approximately 20-25 feet bgs), and an intermediate well screened on top of the confining layer in the lower portion of the surficial aquifer (total depth approximately 35-40 feet bgs).

On the Onslow County (northeast) side of Brinson Creek, two-well clusters will be installed at two locations (four wells, 35TW-26A,B and 35TW-27A,B). These wells will be located opposite of existing well clusters 35MW-23 and 35MW-36, respectively, that are located on the Activity (southwest) side of Brinson Creek (see Figure 1). Well clusters in this area will consist of a shallow and an intermediate well as described in the previous paragraph.

Shallow wells will be designated with an "A" (e.g., 35TW-16A); semi-shallow wells will be designated with a "C" (e.g., 35TW-16C); and intermediate wells will be designated with a "B" (e.g., 35TW-16B). The proposed temporary shallow wells include 35TW-16A through -27A. The proposed temporary semi-shallow wells include 35TW-16C through -25C. The proposed temporary intermediate wells include 35TW-16B through -27B. Split-spoon soil samples will be collected continuously to depth from all intermediate borings for the purpose of geological identification and description. Temporary well installation and abandonment procedures are included in Section 5.2.1 of the SAP.

Groundwater samples collected from the northern AOC temporary wells will be analyzed using an on-site mobile laboratory for benzene, toluene, trichloroethene, cis-1,2-dichloroethene, trans-1,2-dichloroethene, ethylbenzene, methyl tertiary butyl ether (MTBE) and total xylenes using modified EPA methods 8010A/8020A. Designations for these samples are presented in Table 1.

If groundwater sample screening activities conducted on the Onslow County (northeast) side of Brinson Creek indicate the presence of significant levels of VOC contamination, additional temporary well clusters will be installed to define the limits of contamination and to locate permanent monitoring wells. In addition, Baker will perform a field reconnaissance of this area to provide additional information regarding the presence of potential sources of contamination. A review of the available historical aerial photographs and U.S. G. S. maps conducted prior to the preparation of the project Plan Amendments did not identify any potential source of VOC contamination on the Onslow County (northeast) side of Brinson Creek.

#### Southern AOC

To accomplish the objectives of the SGI, a total of 30 temporary monitoring wells will be installed. These wells will be installed as well clusters at 15 locations (35TW-01A, B through 35TW-15A, B) within the limits of the well field (southern AOC) shown in Figure 1. Each cluster will consist of a shallow well screened in the upper portion of the surficial aquifer (total depth approximately 15- 20 feet bgs) and an intermediate well screened in the lower portion of the surficial aquifer (total depth approximately 35- 40 feet bgs). Proposed shallow wells have an "A" in the designation (e.g., 35TW-01A) and the intermediate wells have a "B" in the designation (e.g., 35TW-01B) so as to be consistent with the designations applied to the

Þ

Ms. Katherine Landman April 5, 1996 Page 5

temporary wells installed in the northern AOC. The proposed temporary shallow wells will include 35TW-01A through -15A. The proposed intermediate temporary wells will include 35TW-01B through - 15B. Split-spoon soil samples will be collected continuously to the water table and then at five-foot intervals to depth, from all intermediate borings for the purpose of geologic identification and description.

Initially, a line of five temporary well clusters (TW-01A, B through TW-05A, B) will be installed along the northside of Sixth Street between "C" Street and "D" Street to establish an east to west baseline of groundwater data that will be used as a reference for the installation of the remaining temporary well clusters. Sixth Street was selected as the location of the baseline because it is halfway between the southern-most solvent-related groundwater contamination detected under the RI and Seventh Street. The location of these well clusters are shown on Figure 1. Sample designations for this AOC are included in Table 2.

The remaining 10 temporary well clusters (35TW-06A, B through 35TW-15A,B) will be located based on the field screening results of groundwater samples obtained from the initial five temporary well clusters. If the on-site analytical results indicated solvent- related contamination is widespread, more than 15 wells may be required. Conversely, if the results indicate the horizontal extent of solvent- related contamination is relatively contained , less than 15 wells may be installed. Contaminated wells will be defined with levels of chlorinated solvents (i.e., trichloroethene, cis-1,2-dichchloroethene, and trans-1,2-dichloroethene) that exceed Federal Maximum Contaminant Levels (MCLs) or North Carolina Groundwater Quality Standards (NCGQS). These halogenated indicator compounds were selected based on the recommendations of the Phase I RI (Baker, 1995) which indicated the need to extend the RI south of Fifth Street to define the extent of solvent-related groundwater contamination in the surficial aquifer.

### 5.3.2.2 Soil Sample Screening

Soil sample screening will be conducted at the southern AOC only. The objective of this effort is to identify potential sources of solvent-related groundwater contamination. To achieve this, a total of 15 subsurface soil samples will be collected from intermediate temporary well borings (35TW-01B through 35TW-15B) each sample will be obtained from the soil interval located immediately above the groundwater table.

Samples will be analyzed via the on-site mobile laboratory for trichloroethene and cis-and trans-1, 2dichloroethene. Soil screening sample designations are presented in Table 3.

#### 5.3.3 Soil Investigation

### 5.3.3.2 Subsurface Soil Sampling

Subsurface soil sampling will be conducted in both the northern and southern AOC. The objectives of the subsurface soil sampling are as follows:

- Provide subsurface lithologic data in both the northern and southern AOCs.
- Confirm potential sources of solvent-related groundwater contamination in the southern AOC.
- Identify potential sources of solvent-related groundwater contamination on the northeast side of Brinson Creek.

Ms. Katherine Landman April 5, 1996 Page 6

To accomplish these objectives, subsurface soil samples will be collected from a total of six permanent intermediate well borings. Five of these environmental soil samples will be collected from intermediate monitoring well borings in the southern AOC (35MW-39B -40B, -41B, -42B, and-43B) and one from the intermediate monitoring well boring in the northern AOC (35MW-44B). The locations of the well borings in the southern AOC will be based on the results of temporary well soil and groundwater sample screening activities. The proposed location of 35MW-44B in the northern AOC is shown in Figure 1.

### 5.3.3.3 Soil Analysis

At each intermediate well boring, one soil sample will be collected from directly above the soil/groundwater interface or from an interval exhibiting Photo Ionization Detector (PID) readings above background levels. These samples will be packed and shipped to Weston Environmental Metrics in University Park, Illinois and analyzed for Target Compound List (TCL) volatile organic compounds (VOCs).

Sample designations for these soil samples are included in Table 4.

# 5.3.4 Groundwater Investigation

This phase of the SGI will include the installation and sampling of 14 new permanent monitoring wells and resampling 12 existing monitoring wells. The new wells will be installed as six two-well clusters (clusters consist of shallow (15-20 bgs), and intermediate (35-40 bgs) wells) and two deep wells (approximate depth 65 feet bgs). Five of the two-well clusters will be installed in the southern AOC and one cluster will be installed in the northern AOC on the northeast side of Brinson Creek. A single deep well will be installed in both the northern and southern AOCs. The two-well clusters will consist of a shallow well screened across the water table and an intermediate well screened in the lower portion of the surficial aquifer immediately above the confining layer. The deep wells will be installed through the confining layer and into the upper portion of the Castle Hayne aquifer. The 12 existing monitoring wells that are to be resampled consist of seven intermediate and five shallow wells located near or within the limits of the existing solvent-related groundwater contamination plume.

### 5.3.4.1 Shallow Groundwater Wells

The objectives of the groundwater investigation are as follows:

Northern AOC

• Determine if Brinson Creek is acting as a barrier to groundwater contamination migration.

# Southern AOC

• Confirm the horizontal limits of the existing solvent-related groundwater contamination in the upper and lower portion of the surficial aquifer between Fifth Street and Seventh Street that were determined during SGI groundwater screening activities.

Previous Study Area and Northern AOC

• Determine if the levels of BTEX, MTBE, and solvent-related groundwater contamination have substantially changed since the previous RI was conducted in the spring of 1994.

Ms. Katherine Landman April 5, 1996 Page 7

To achieve the first objective, one or more permanent well cluster will be installed in the northern AOC on the northeastern side of Brinson Creek. The first permanent well cluster will be installed opposite existing well cluster 35MW-19A, B where solvent-related groundwater contamination exceeded 1,000 $\mu$ g/L in the lower portion of the surficial aquifier (see Figure 1). These wells will be designated as 35MW-44A, B. Determining if more than one permanent well cluster is needed will be based on the results of field screening of groundwater obtained from two temporary two-well clusters to be installed on the northeast side of Brinson Creek (see Figure 1). Additional permanent well clusters will be installed if significant contamination is encountered in the temporary wells. Their locations will be determined in the field based on these results.

To achieve the second objective, five permanent well clusters will be installed in the southern AOC. The exact locations of these well clusters will be based on the results of the groundwater screening effort. These clusters will be designated as 35MW-39 A, B through 35MW-43 A, B (shallow wells in a cluster are designated with an "A" and intermediate wells with a "B". The proposed permanent shallow wells include 35MW-39A through -43A. Proposed permanent intermediate wells include 35MW-39B through -43B. Permanent well clusters installed in the southern AOC, will be positioned to confirm either the presence or absence of solvent-related groundwater contamination. Three clusters will be located in areas where solvent-related contaminatants are detected during screening activities and two will be positioned just beyond the edge of the plume where no solvent-related groundwater contamination was detected.

At each permanent well cluster location, two, two-inch diameter, schedule 40 PVC wells will be installed. Each cluster will consist of a shallow well screened in the upper portion of the surficial aquifer (total depth approximately 15 - 20 feet bgs) and an intermediate well screened in the lower portion of the surficial aquifer (total depth approximately 40-45 feet bgs). Previous results indicate the water table will be encountered at approximately six to eight feet below the ground surface. The confining layer has been described as a greenish gray silt with some sand, little shells, and trace clay.

Both intermediate and shallow wells will be constructed with schedule 40 PVC casings and No.10 slot, twoinch diameter screens. The shallow wells will have 10-foot screens and the intermediate wells will have five-foot screens. All permanent monitoring wells constructed in the southern AOC will be flush mounted. The permanent wells constructed in the northern AOC will be installed with stick-up (two to three feet) steel casings, locking cap, and protective bollards.

To achieve the third objective, twelve existing monitoring wells (five shallow and seven intermediate) located in the previous study area adjacent to the southern AOC will be resampled to determine if the horizontal limits of the solvent-related contaminant plumes have changed substantially since the previous RI was conducted. To confirm known limits of solvent-related contaminant plumes, eight wells were selected from areas where moderate (50-100  $\mu$ g/L) to high (1,000  $\mu$ g/L) contaminant concentrations were previously detected. In addition, four wells were selected from areas where low to non-detectable levels of contamination were previously identified.

The five shallow existing wells that were selected for VOC resampling are located in the following areas:

 Moderate concentration area (50 µg/L) on the east side of F Street in the vicinity of the former ponded water area (35EMW-03).

Ms. Katherine Landman April 5, 1996 Page 8

- Moderate concentration area (50  $\mu$ g/L) north of building TC474 and east of the former above ground storage tank farm (35MW-19A).
- Moderate concentration area (50 -100 μg/L) in the vicinity of buildings TC473 and TC470 (35MW-32A and 35MW-35A).
- Low concentration area (1 µg/L) east of buildings TC473 and TC470 (35MW-36A).

The seven intermediate wells that were selected for VOC resampling are located in the following areas.

- High concentration area  $(1,000 \ \mu g/L)$  in the vicinity of buildings TC474, TC473 and TC470 and east of the former above ground storage tank farm (35MW-19B).
- High concentration (1,000 µg/L) area near the intersection of E and Fourth Streets the east side of F Street (35MW-10B).
- Moderate concentration (100 µg/L) in the central area of the halogenated hydrocarbon plume (35MW-14B and 35MW-30B).
- Low concentration (1 μg/L) area that extends southwest from 35MW-25 along the edge of buildings TC341 to Fourth Street and south between buildings G531 and G534 to Fifth Street (MW-09B and MW-37B).
- Low concentration area east of building TC473 (35MW-36B).

Detailed well construction and installation information is included in the final RI/FS Work Plan and SAP (Baker, 1993).

### 5.3.4.2 Deep Groundwater Wells

A single deep groundwater monitoring well will be installed through the confining layer in the northern AOC. One (or more) deep wells will be installed in the southern AOC if significant contamination is detected in the intermediate zone during groundwater screening activities. The objective of this activity is as follows:

• Determine if solvent-related contamination, has migrated through the confining layer into the Castle Hayne Aquifer.

Deep well 35GWD-07 will be installed in the northern AOC on the northeast side of Brinson Creek adjacent to an area of high solvent-related groundwater contamination located in the vicinity of existing wells 35EMW-07 and 35MW19A, B (see Figure 1).

Ms. Katherine Landman April 5, 1996 Page 9

One or more deep wells will be installed in the southern AOC if contamination is detected in the intermediate zone temporary monitoring wells. For planning purposes one deep well (35GWD-06) was proposed in the southern AOC based on the results of the Phase I RI conducted by Baker in 1994. During this investigation five deep groundwater monitoring wells were installed. Four of these were installed directly through areas where significant levels of VOC contamination were detected in the intermediate and shallow zones. No VOC contaminants were detected in any of the five monitoring wells at levels above regulatory standards.

Detailed well construction information and well installation procedures are provided in the Final RI/FS and SAP (Baker, 1993).

### 5.3.4.3 Groundwater Sampling and Analysis

Samples collected from all 14 proposed permanent monitoring wells (35MW-39A, B through 35 MW-43A, B, 35GWD-06 and 35GWD-07) and the twelve existing monitoring wells (35EMW-03, 35MW-19A, -32A, -35A, -36A, -19B, -10B, -14B, -30B, -09B, -37B, and -36B) will be analyzed for TCL VOCs and MTBE.

Groundwater sample designations for existing permanent monitoring wells and new monitoring wells are included in Tables 5 and 6, respectively.

All samples will be packed and shipped to Weston Environmental Metrics for analysis. Raw data should be provided by the laboratory within 28 days.

#### 5.15 Additional SGI Tasks

#### 5.15.1 Data Management

Data Management involves the construction of data summary tables that combine validated data from the SGI with validated data acquired from the previous RI.

#### 5.15.2 Photo Album

This task includes the preparation of an album of photographs to document SGI field activities. The photo album will include photo description and slides of each photo. Single copies of the photo album, with original photos and slides will be submitted to LANTDIV and MCB Camp Lejeune Environmental Coordinator.

#### 6.0 PROJECT MANAGEMENT AND STAFFING

The proposed management and staffing of the SGI is presented below. The primary participants include:

Mr Matthew D. Bartman, Activity Coordinator Mr. Daniel Bonk, P.E., Project Manager Mr. Michael D. Smith, Site Manager/Project Engineer Mr. Brian Davis, Site Geologist Mr Thomas C. Fuller, QA/QC Mr. Ronald Krivan, Health and Safety Officer

Ms. Katherine Landman April 5, 1996 Page 10

All field activities will be directed by Mr. Michael D. Smith, who will act as Site Manager.

Mr. Daniel L. Bonk will have overall responsibility for completing all deliverables. He will report directly to the Activity Coordinator, Mr. Matthew D. Bartman. Mr. Smith will be responsible for overseeing the SGI Report and FS Report/PRAP/ROD. He will report to Mr. Bonk and will be supported by geologist, engineers, biologists, chemists, environmental scientists, data technicians, drafters and clerical personnel, as needed.

Overall field and reporting QA/QC will be the responsibility of Mr. Thomas C. Fuller. Mr. John W. Mentz will provide Program Level technical and administrative support.

### 7.0 SCHEDULE

Figure 3 depicts the proposed schedule for SGI field work and Figure 4 is a revised schedule for all proposed RI/FS and SGI activities at Site 35. It is anticipated that field activities will commence the week of April 8, 1996 and to proceed through May 15, 1996. A summary of project deliverables is provided in Table 7.

### SAMPLING AND ANALYSIS PLAN AMENDMENTS

Included in the following subsections are modifications to the RI/FS SAP submitted to LANTDIV in December 1993.

#### 3.1 Soil and Groundwater Screening

Sample screening activities will be conducted in both the northern and southern AOCs. These activities will include the installation of temporary monitoring well clusters and on-site analysis of soil and groundwater samples.

In the northern AOC, temporary wells will be installed on the both the Onslow County (northeast) side and Activity (southwest) side of Brinson Creek. On the Onslow County (northeast) side of Brinson Creek, two, two-wells clusters will be installed. A cluster of this side of Brinson Creek will consist of a shallow and an intermediate well. The locations of these clusters are shown in Figure 1. On the Activity (southwest) side of Brinson Creek will consist of a shallow and intermediate of Brinson Creek, 10, three well clusters will be installed. A cluster on this side of Brinson Creek will consist of a shallow, semi-shallow and intermediate well. The locations of these clusters are shown in Figure 2. Groundwater and soil samples collected from wells installed on both sides of Brinson Creek will be analyzed for solvent and fuel-related contaminants.

In the southern AOC, 10, two-well clusters will be installed. A cluster in this area will consist of a shallow and/an intermediate well. The locations of the first five well clusters to be installed in the southern AOC are shown in Figure 1. The locations of the remaining well clusters will be based on the levels of contamination detected in the initial five-well installation and are not shown in Figure 1.

Ms. Katherine Landman April 5, 1996 Page 11

### 3.1.1 Groundwater Sample Screening

Temporary monitoring wells were selected as the screening method for both AOCs to limit the installation of a large number of permanent wells. A large number of permanent wells in the northern AOC could potentially impact the performance of the IAS pilot test and are more costly than temporary wells. In the southern AOC, the temporary wells will be used to establish the location of a limited number of permanent wells.

The objectives of the groundwater screening activities are as follows:

- Provide a detailed vertical profile of solvent-related and BTEX groundwater contamination and subsurface geology in the immediate vicinity of the in-situ air sparging pilot study (northern AOC).
- Determine if Brinson Creek is acting as a barrier to fuel and solvent-related groundwater contamination migrating off-site onto Onslow County property (northern AOC).
- Define the horizontal extent of solvent-related groundwater contamination in the upper portion of the surficial aquifer in the vicinity of Buildings TC470 and TC572 (southern AOC).
- Define the horizontal extent of solvent-related groundwater contamination in the lower portion of the surficial aquifer between Fifth and Seventh Street (southern AOC).
- Provide sufficient data to effectively locate permanent monitoring wells (southern AOC).

### Northern AOC

To accomplish the objectives for the northern AOC, a total of 34 temporary wells will be installed. On the Activity (southwest) side of Brinson Creek three well clusters will be installed at 10 locations (30 wells, 35TW-16A,B,C through 35TW-25A,B,C) in the vicinity of existing monitoring well clusters 35MW-17, 35MW-18 ans 35MW-19 (see Figure 2). Well clusters in this area will consist of a shallow well screened across the water table (total depth approximately 5-10 feet below ground surface (bgs), a semi-shallow well screened midway between the confining layer and the water table (total depth approximately 20-25 feet bgs), and an intermediate well screened on top of the confining layer in the lower portion of the surficial aquifer (total depth approximately 35-40 feet bgs).

On the Onslow County (northeast) side of Brinson Creek, two-well clusters will be installed at two locations (four wells, 35TW-26A,B and 35TW-27A,B). These wells will be located opposite of existing well clusters 35MW-23 and 35MW-36, respectively, that are located on the Activity (southwest) side of Brinson Creek (see Figure 1). Well clusters in this area will consist of a shallow and an intermediate well as described in the previous paragraph.

Shallow wells will be designated with an "A" (e.g., 35TW-16A); semi-shallow wells will be designated with a "C" (e.g., 35TW-16C); and intermediate wells will be designated with a "B" (e.g., 35TW-16B). The proposed temporary shallow wells include 35TW-16A through -27A. The proposed temporary semi-shallow wells include 35TW-16C through -25C. The proposed temporary intermediate wells include 35TW-16B

Ms. Katherine Landman April 5, 1996 Page 12

through -27B. Split-spoon soil samples will be collected continuously to depth from all intermediate borings for the purpose of geological identification and description. Temporary well installation and abandonment procedures are included in Section 5.2.1 of the SAP.

Groundwater samples collected from the northern AOC temporary wells will be analyzed using an on-site mobile laboratory for benzene, toluene, trichloroethene, cis-1,2-dichloroethene, trans-1,2-dichloroethene, ethylbenzene, methyl tertiary butyl ether (MTBE) and total xylenes using modified EPA methods 8010A/8020A. Designations for these samples are presented in Table 1.

If groundwater sample screening activities conducted on the Onslow County (northeast) side of Brinson Creek indicate the presence of significant levels of VOC contamination, additional temporary well clusters will be installed to define the limits of contamination and to locate permanent monitoring wells. In addition, Baker will perform a field reconnaissance of this area to provide additional information regarding the presence of potential sources of contamination. A review of the available historical aerial photographs and U.S. G. S. maps conducted prior to the preparation of the project Plan Amendments did not identify any potential source of VOC contamination on the Onslow County (northeast) side of Brinson Creek.

#### Southern AOC

To accomplish the objectives of the SGI, a total of 30 temporary monitoring wells will be installed. These wells will be installed as well clusters at 15 locations (35TW-01A, B through 35TW-15A, B) within the limits of the well field (southern AOC) shown in Figure 1. Each cluster will consist of a shallow well screened in the upper portion of the surficial aquifer (total depth approximately 15- 20 feet bgs) and an intermediate well screened in the lower portion of the surficial aquifer (total depth approximately 35- 40 feet bgs). Proposed shallow wells have an "A" in the designation (e.g., 35TW-01A) and the intermediate wells have a "B" in the designation (e.g., 35TW-01B) so as to be consistent with the designations applied to the temporary wells installed in the northern AOC. The proposed temporary shallow wells will include 35TW-01A through -15A. The proposed intermediate temporary wells will include 35TW-01B through - 15B. Split-spoon soil samples will be collected continuously to the water table and then at five-foot intervals to depth, from all intermediate borings for the purpose of geologic identification and description.

Initially, a line of five temporary well clusters (TW-01A, B through TW-05A, B) will be installed along the northside of Sixth Street between "C" Street and "D" Street to establish an east to west baseline of groundwater data that will be used as a reference for the installation of the remaining temporary well clusters. Sixth Street was selected as the location of the baseline because it is halfway between the southern-most solvent-related groundwater contamination detected under the RI and Seventh Street. The location of these well clusters are shown on Figure 1. Sample designations for this AOC are included in Table 2.

The remaining 10 temporary well clusters (35TW-06A, B through 35TW-15A,B) will be located based on the field screening results of groundwater samples obtained from the initial five temporary well clusters. If the on-site analytical results indicated solvent- related contamination is widespread, more than 15 wells may be required. Conversely, if the results indicate the horizontal extent of solvent- related contamination is relatively contained, less than 15 wells may be installed. Contaminated wells will be defined with levels of chlorinated solvents (i.e., trichloroethene, cis-1,2-dichchloroethene, and trans-1,2-dichloroethene) that exceed Federal Maximum Contaminant Levels (MCLs) or North Carolina Groundwater Quality Standards (NCGQS). These halogenated indicator compounds were selected based on the recommendations of the

è

Ms. Katherine Landman April 5, 1996 Page 13

Phase I RI (Baker, 1995) which indicated the need to extend the RI south of Fifth Street to define the extent of solvent-related groundwater contamination in the surficial aquifer.

### **3.1.2** Soil Sample Screening

Soil sample screening will be conducted at the southern AOC only. The objective of this effort is to identify potential sources of solvent-related groundwater contamination. To achieve this, a total of 15 subsurface soil samples will be collected from intermediate temporary well borings (35TW-01B through 35TW-15B) each sample will be obtained from the soil interval located immediately above the groundwater table.

Samples will be analyzed via the on-site mobile laboratory for trichloroethene and cis-and trans-1, 2dichloroethene. Soil screening sample designations are presented in Table 3.

### 3.2 Soil Investigation

### 3.2.2 Subsurface Soil Sampling

Subsurface soil sampling will be conducted in both the northern and southern AOC. The objectives of the subsurface soil sampling are as follows:

- Provide subsurface lithologic data in both the northern and southern AOCs.
- Confirm potential sources of solvent-related groundwater contamination in the southern AOC.
- Identify potential sources of solvent-related groundwater contamination on the northeast side of Brinson Creek.

To accomplish these objectives, subsurface soil samples will be collected from a total of six permanent intermediate well borings. Five of these environmental soil samples will be collected from intermediate monitoring well borings in the southern AOC (35MW-39B -40B, -41B, -42B, and-43B) and one from the intermediate monitoring well boring in the northern AOC (35MW-44B). The locations of the well borings in the southern AOC will be based on the results of temporary well soil and groundwater sample screening activities. The proposed location of 35MW-44B in the northern AOC is shown in Figure 1.

### 3.2.3 Soil Analysis

At each intermediate well boring, one soil sample will be collected from directly above the soil/groundwater interface or from an interval exhibiting Photo Ionization Detector (PID) readings above background levels. These samples will be packed and shipped to Weston Environmental Metrics in University Park, Illinois and analyzed for Target Compound List (TCL) volatile organic compounds (VOCs).

Sample designations for these soil samples are included in Table 4.

Ms. Katherine Landman April 5, 1996 Page 14

### 3.3 Groundwater Investigation

This phase of the SGI will include the installation and sampling of 14 new permanent monitoring wells and resampling 12 existing monitoring wells. The new wells will be installed as six two-well clusters (clusters consist of shallow (15-20 bgs), and intermediate (35-40 bgs) wells) and two deep wells (approximate depth 65 feet bgs). Five of the two-well clusters will be installed in the southern AOC and one cluster will be installed in the northern AOC on the northeast side of Brinson Creek. A single deep well will be installed in both the northern and southern AOCs. The two-well clusters will consist of a shallow well screened across the water table and an intermediate well screened in the lower portion of the surficial aquifer immediately above the confining layer. The deep wells will be installed through the confining layer and into the upper portion of the Castle Hayne aquifer. The 12 existing monitoring wells that are to be resampled consist of seven intermediate and five shallow wells located near or within the limits of the existing solvent-related groundwater contamination plume.

#### 3.3.1 Shallow Groundwater Wells

The objectives of the groundwater investigation are as follows:

#### Northern AOC

• Determine if Brinson Creek is acting as a barrier to groundwater contamination migration.

Southern AOC

• Confirm the horizontal limits of the existing solvent-related groundwater contamination in the upper and lower portion of the surficial aquifer between Fifth Street and Seventh Street that were determined during SGI groundwater screening activities.

Previous Study Area and Northern AOC

• Determine if the levels of BTEX, MTBE, and solvent-related groundwater contamination have substantially changed since the previous RI was conducted in the spring of 1994.

To achieve the first objective, one or more permanent well cluster will be installed in the northern AOC on the northeastern side of Brinson Creek. The first permanent well cluster will be installed opposite existing well cluster 35MW-19A, B where solvent-related groundwater contamination exceeded 1,000 $\mu$ g/L in the lower portion of the surficial aquifer (see Figure 1). These wells will be designated as 35MW-44A, B. Determining if more than one permanent well cluster is needed will be based on the results of field screening of groundwater obtained from two temporary two-well clusters to be installed on the northeast side of Brinson Creek (see Figure 1). Additional permanent well clusters will be installed if significant contamination is encountered in the temporary wells. Their locations will be determined in the field based on these results.

To achieve the second objective, five permanent well clusters will be installed in the southern AOC. The exact locations of these well clusters will be based on the results of the groundwater screening effort. These clusters will be designated as 35MW-39 A, B through 35MW-43 A, B (shallow wells in a cluster are designated with an "A" and intermediate wells with a "B". The proposed permanent shallow wells include 35MW-39A through -43A. Proposed permanent intermediate wells include 35MW-39B through -43B. Permanent well clusters installed in the southern AOC, will be positioned to confirm either the presence or absence of solvent-related groundwater contamination. Three clusters will be located in areas where

Ms. Katherine Landman April 5, 1996 Page 15

solvent-related contaminants are detected during screening activities and two will be positioned just beyond the edge of the plume where no solvent-related groundwater contamination was detected.

At each permanent well cluster location, two, two-inch diameter, schedule 40 PVC wells will be installed. Each cluster will consist of a shallow well screened in the upper portion of the surficial aquifer (total depth approximately 15 - 20 feet bgs) and an intermediate well screened in the lower portion of the surficial aquifer (total depth approximately 40-45 feet bgs). Previous results indicate the water table will be encountered at approximately six to eight feet below the ground surface. The confining layer has been described as a greenish gray silt with some sand, little shells, and trace clay.

Both intermediate and shallow wells will be constructed with schedule 40 PVC casings and No.10 slot, twoinch diameter screens. The shallow wells will have 10-foot screens and the intermediate wells will have five-foot screens. All permanent monitoring wells constructed in the southern AOC will be flush mounted. The permanent wells constructed in the northern AOC will be installed with stick-up (two to three feet) steel casings, locking cap, and protective bollards.

To achieve the third objective, twelve existing monitoring wells (five shallow and seven intermediate) located in the previous study area adjacent to the southern AOC will be resampled to determine if the horizontal limits of the solvent-related contaminant plumes have changed substantially since the previous RI was conducted. To confirm known limits of solvent-related contaminant plumes, eight wells were selected from areas where moderate (50-100  $\mu$ g/L) to high (1,000  $\mu$ g/L) contaminant concentrations were previously detected. In addition, four wells were selected from areas where low to non-detectable levels of contamination were previously identified.

The five shallow existing wells that were selected for VOC resampling are located in the following areas:

- Moderate concentration area (50 µg/L) on the east side of F Street in the vicinity of the former ponded water area (35EMW-03).
- Moderate concentration area (50  $\mu$ g/L) north of building TC474 and east of the former above ground storage tank farm (35MW-19A).
- Moderate concentration area (50 -100 μg/L) in the vicinity of buildings TC473 and TC470 (35MW-32A and 35MW-35A).
- Low concentration area (1 μg/L) east of buildings TC473 and TC470 (35MW-36A).

The seven intermediate wells that were selected for VOC resampling are located in the following areas.

- High concentration area  $(1,000 \ \mu g/L)$  in the vicinity of buildings TC474, TC473 and TC470 and east of the former above ground storage tank farm (35MW-19B).
- High concentration (1,000 μg/L) area near the intersection of E and Fourth Streets the east side of F Street (35MW-10B).
- Moderate concentration (100 µg/L) in the central area of the halogenated hydrocarbon plume (35MW-14B and 35MW-30B).

### Ms. Katherine Landman April 5, 1996 Page 16

- Low concentration (1 µg/L) area that extends southwest from 35MW-25 along the edge of buildings TC341 to Fourth Street and south between buildings G531 and G534 to Fifth Street (MW-09B and MW-37B).
- Low concentration area east of building TC473 (35MW-36B).

Detailed well construction and installation information is included in the final RI/FS Work Plan and SAP (Baker, 1993).

# 3.3.2 Deep Groundwater Wells

A single deep groundwater monitoring well will be installed through the confining layer in the northern AOC. One (or more) deep wells will be installed in the southern AOC if significant contamination is detected in the intermediate zone during groundwater screening activities. The objective of this activity is as follows:

• Determine if solvent-related contamination, has migrated through the confining layer into the Castle Hayne Aquifer.

Deep well 35GWD-07 will be installed in the northern AOC on the northeast side of Brinson Creek adjacent to an area of high solvent-related groundwater contamination located in the vicinity of existing wells 35EMW-07 and 35MW19A, B (see Figure 1).

One or more deep wells will be installed in the southern AOC if contamination is detected in the intermediate zone temporary monitoring wells. For planning purposes one deep well (35GWD-06) was proposed in the southern AOC based on the results of the Phase I RI conducted by Baker in 1994. During this investigation five deep groundwater monitoring wells were installed. Three of these were installed directly through areas where significant levels of VOC contamination were detected in the intermediate and shallow zones. No VOC contaminants were detected in any of the five monitoring wells at levels above regulatory standards.

Detailed well construction information and well installation procedures are provided in the Final RI/FS and SAP (Baker, 1993).

# 3.3.3 Groundwater Sampling and Analysis

Samples collected from all 14 proposed permanent monitoring wells (35MW-39A, B through 35 MW-43A, B, 35GWD-06 and 35GWD-07) and the twelve existing monitoring wells (35EMW-03, 35MW-19A, -32A, -35A, -36A, -19B, -10B, -14B, -30B, -09B, -37B, and -36B) will be analyzed for TCL VOCs and MTBE.

Groundwater sample designations for existing permanent monitoring wells and new monitoring wells are included in Tables 5 and 6, respectively.

All samples will be packed and shipped to Weston Environmental Metrics for analysis. Raw data should be provided by the laboratory within 28 days.

### Baker

Ms. Katherine Landman April 5, 1996 Page 17

### 3.3.4 Water Level Measurements

During the SGI a minimum of two rounds of static water levels will be collected from all existing and newly installed permanent monitoring wells.

### 5.2 Monitoring Well Installation and Well Development

Permanent shallow and deep wells and temporary shallow wells will be installed under this SGI. Temporary monitoring well installation and well development procedures not discussed in the original Baker FSAP will be presented in this section.

### 5.2.1 Temporary Well Installation

Temporary well construction should follow the procedures outlined for the installation of permanent wells outlined in Section 5.2 Well Installation and Development of the Baker FSAP with the following exceptions:

Temporary well clusters will be installed in the northern and southern AOCs. The construction of these clusters is somewhat unique and is based on the goals of the sampling activity. The objective of the sampling effort in the northern AOC was to provide a detailed profile of solvent-related and BTEX groundwater contamination in a well defined area. As such, clusters installed in the north will consist of a shallow well (5-10 feet bgs) screened across the water table, an intermediate well (35-40 feet bgs) seated in the confining layer and screened across the lower portion of the surficial aquifer, and a semi-shallow well (15-20 feet bgs) screened between the shallow and the intermediate wells. All of these wells will be constructed with five feet of screen. Splits spoons will be continuously collected to depth during the advancement of the intermediate well boring.

In the Southern AOC the objective was to define the horizontal extent of solvent-related contamination in the upper and lower portion of the surficial aquifer over a broad area and duplicate existing permanent well cluster construction. As such clusters will consist of a shallow well (15-20 bgs) screened across the water table with a 10 foot screen and an intermediate well (40-45 feet bgs) seated in the confining layer with a five foot screen. If the confining layer is at a depth of less than 15 feet bgs and the aquifer thickness is less than 10 feet thick, only one intermediate well will be installed. Splits spoons will be collected continuously to the water table and at 5 foot intervals thereafter to depth during the advancement of the intermediate well boring.

All temporary wells will be constructed with 1-inch diameter (ID) schedule 40 PVC casing and No. 10 slot (0.01-inch) screens.

- Temporary wells will be installed in borehole advanced by a 3 1/4-inch I.D. auger or equivalent. The well will be installed through the auger with a 2 inch-diameter well sock. As the augers are removed the borehole will be allowed to collapse around the well. If collapse is not complete No. 1 silica and will be placed in the borehole to approximately two feet above the screen. No grout seal or grout will be used unless a well is not sampled on the day it is installed.
- Development of the temporary wells is not required. However, the same volume of water introduced into the borehole during construction to prevent heaving sands must be removed prior to purging and sampling.

Ms. Katherine Landman April 5, 1996 Page 18

• Temporary wells will be removed manually and any remaining open boreholes will be backfilled with bentonite.

### 5.2.2 Well Development

All permanent shallow and intermediate groundwater monitoring wells will be developed using a centrifugal pump and check valve or inertial pumping system (Wattera). All deep wells will be developed with the Wattera system. As the well is opened HNU readings will be taken. In addition well depths and water levels will be measured and well volumes calculated. The check valve is secured to the end of a length of flex hose that is inserted into the well and is secured to a pump to the bottom of the well. All flex hose will be decontaminated with a damp paper towel prior to any insertion into the well. The flex hose may be secured with radiator clamps. If used radiator clamps should be wrapped with wells sock to limit any scoring of the inside of the well. The pump may then be manually primed by thrusting the flex hose up and down in the well. The discharge nozzle should be equipped with a valve to control flow. The valve and accelerator should be adjusted to establish constant flow. Once started the pump should run for 10 to 15 minutes to pump out any stagnant water. The flex hose should then be removed and a surge block secured to the flex hose. To flush accumulated sediment out of the sand pack the well should be surged along the entire length of the screen in approximately two foot intervals. Surging should be performed for approximately 20 minutes. After surging is completed the check valve should be reinserted into the well and the pump restarted. Pumping should continue until PH, temperature, and conductivity readings have stabilized (three successive readings varying no more than 10 percent) and turbidity is less than 10 NTUs. Total pumping time should not exceed 3 hours.

### 5.3 Groundwater Sample Collection

To reduce or eliminate sediments in groundwater samples and greatly reduce the possibility of cross contamination between sampling points, a peristaltic pump will be used to collect ground water samples from all permanent groundwater monitoring wells. A peristaltic pump can provide a maximum lift of approximately 25 feet. Although there are deep and intermediate wells that will be sampled the static water level is only six to eight feet below ground surface. Typically, Baker peristaltic pumps do not have power sources and must be run off of a vehicle battery.

Prior to collecting a sample, a minimum of three to five well volumes should be removed. A conductivity, pH, temperature, and turbidity readings will be taken from each well volume. Purging may be concluded and a sample collected when three to five well volumes have been removed, and three successive readings of conductivity, pH, and temperature vary no more than 10 percent.

### 5.8 Surveying

Survey data will be provided for roads, major building foundations, tree lines and monitoring well locations (temporary and permanent) in the AOCs not surveyed under the previous RI or RAC Design for Site 35 Groundwater (CTO-0323). Survey points will include a latitude coordinate, longitude coordinate and an elevation expressed in feet of mean sea level. The vertical accuracy will be within .1 feet and horizontal accuracy within .1 feet, and horizontal will be within .1 feet. In addition all points will be referenced to the North Carolina State Plain Coordinate System (NCSPCS). A sufficient number of points will be established to tie new survey data with previous surveys conducted at Site 35.

Ms. Katherine Landman April 5, 1996 Page 19

### 5.9 Handling of Site Investigation Generated Waste

### 5.9.3 Designation of Potentially Hazardous and Nonhazardous IDW

#### 5.9.3.1 Drill Cuttings

All drill cuttings will be containerized in a roll-off box pending analytical results that determine whether or not the material is hazardous or non-hazardous. Only non-hazardous cuttings will be spread out on the ground.

#### 5.9.3.2 Monitoring Well Development and Purge Water

All development or purge water generated by the SGI will be containerized in a 5,000-gallon tanker or 1,000-gallon polyethylene storage tanks.

#### 5.9.3.3 Decontamination Fluids

All equipment and personal decontamination fluids generated by the SGI will be containerized in a 55 gallon drum.

#### 5.9.8 Disposal of Contaminated Materials

A single composite of drill cuttings will be collected from the roll-off box and analyzed in accordance with TCLP and RCRA Hazardous Waste Characteristics, in order to assess disposal options.

A single sample will be collected from the 5,000-gallon tanker or 1,000-gallon polyethylene tanks used to store liquid IDW during the SGI. The sample will be analyzed for TCL volatiles, semivolatiles, pesticides and PCBs, and inorganics. Based on the analytical results and the prior approval of LANTDIV and MCB Camp Lejeune, liquid IDW will be transported to an off-base facility for treatment and disposal, transported to the Hadnot Point Industrial Area Groundwater Treatment Plants for treatment and disposal, or discharged on site.

Ms. Katherine Landman April 5, 1996 Page 20

Sample designations for IDW samples are presented on Table 8.

Baker appreciates the continued opportunity to serve the Navy. if you have any question please do not hesitate to contact Mr. Matthew Bartman at (412) 269-2053 or me at (412) 269-2063.

Sincerely,

BAKER ENVIRONMENTAL, INC.

and

Daniel L. Bonk, P.E. Project Manager

DLB/lq

cc: Mr. Neal Paul, MCB Camp Lejeune Ms. Gena Townsend, USEPA Mr. Patrick Watters, NC DEHNR Mr. Jim Dunn, OHM Ms. Lee Anne Rapp, P.E., Code 18312 (w/o attachments) Ms. Beth Collier, Code 02115 (w/o attachments)

#### SUPPLEMENTAL GROUNDWATER INVESTIGATION FOR OU NO. 10 (SITE 35) CAMP GEIGER AREA FUEL FARM GROUNDWATER SAMPLING IDENTIFICATION NUMBERS FOR TEMPORARY WELLS IN NORTHERN AREA OF CONCERN CONTRACT TASK ORDER 0232

|                           | ANALYSIS    | REQUESTED               | COMN    | MENTS .            |  |  |
|---------------------------|-------------|-------------------------|---------|--------------------|--|--|
|                           |             | NORTHERN <sup>(2)</sup> |         |                    |  |  |
|                           |             | AOC                     | TURN    |                    |  |  |
| TYPE/LOCATION             | SAMPLE ID   | CONTAMINANTS            | AROUND  | Lab <sup>(3)</sup> |  |  |
| TEMPORARY WELLS           | 35-TW16A-04 | X                       | 24 hour | Microseeps         |  |  |
| (PROPOSED) <sup>(1)</sup> | 35-TW16B-04 | X                       | 24 hour | Microseeps         |  |  |
| NORTHERN AOC              | 35-TW16C-04 | X                       | 24 hour | Microseeps         |  |  |
|                           | 35-TW17A-04 | X                       | 24 hour | Microseeps         |  |  |
|                           | 35-TW17B-04 | X                       | 24 hour | Microseeps         |  |  |
|                           | 35-TW17Ç-04 | X                       | 24 hour | Microseeps         |  |  |
|                           | 35-TW18A-04 | X                       | 24 hour | Microseeps         |  |  |
|                           | 35-TW18B-04 | X                       | 24 hour | Microseeps         |  |  |
|                           | 35-TW18C-04 | X                       | 24 hour | Microseeps         |  |  |
|                           | 35-TW19A-04 | X                       | 24 hour | Microseeps         |  |  |
|                           | 35-TW19B-04 | X                       | 24 hour | Microseeps         |  |  |
|                           | 35-TW19C-04 | X                       | 24 hour | Microseeps         |  |  |
|                           | 35-TW20A-04 | X                       | 24 hour | Microseeps         |  |  |
|                           | 35-TW20B-04 | X                       | 24 hour | Microseeps         |  |  |
|                           | 35-TW20C-04 | X                       | 24 hour | Microseeps         |  |  |
|                           | 35-TW21A-04 | X                       | 24 hour | Microseeps         |  |  |
|                           | 35-TW21B-04 | X                       | 24 hour | Microseeps         |  |  |
|                           | 35-TW21C-04 | X                       | 24 hour | Microseeps         |  |  |
|                           | 35-TW22A-04 | X                       | 24 hour | Microseeps         |  |  |
|                           | 35-TW22B-04 | X                       | 24 hour | Microseeps         |  |  |
|                           | 35-TW22C-04 | X                       | 24 hour | Microseeps         |  |  |
|                           | 35-TW23A-04 | x                       | 24 hour | Microseeps         |  |  |
|                           | 35-TW23B-04 | x                       | 24 hour | Microseeps         |  |  |
|                           | 35-TW23C-04 | X                       | 24 hour | Microseeps         |  |  |
|                           | 35-TW24A-04 | X                       | 24 hour | Microseeps         |  |  |
|                           | 35-TW24B-04 | X                       | 24 hour | Microseeps         |  |  |
|                           | 35-TW24C-04 | X                       | 24 hour | Microseeps         |  |  |
|                           | 35-TW25A-04 | X                       | 24 hour | Microseeps         |  |  |
|                           | 35-TW25B-04 | X                       | 24 hour | Microseeps         |  |  |
|                           | 35-TW25C-04 | X                       | 24 hour | Microseeps         |  |  |
|                           | 35-TW26A-04 | X                       | 24 hour | Microseeps         |  |  |
|                           | 35-TW26B-04 | X                       | 24 hour | Microseeps         |  |  |
|                           | 35-TW27A-04 | x                       | 24 hour | Microseeps         |  |  |
|                           | 35-TW27B-04 | X                       | 24 hour | Microseeps         |  |  |
| TOTAL ANALYSES            |             | 34                      |         |                    |  |  |

Notes:

<sup>(1)</sup> Temporary well sampling is a screening tool. No duplicates or MS/MSD will be collected and no trip blanks will be sent.

<sup>(3)</sup> Microseeps Inc. from Pittsburgh, PA is providing on-site lab services.

 <sup>(2)</sup> The following analyses will be performed on groundwater samples collected from the northern AOC: benzene, toluene, trichloroethene, cis-1,2-dichloroethene, trans-1,2,-dichloroethene, ethylbenzene, methyltertiary butyl ether and xylenes. These analyses will be performed using modified EPA methods 8010A/8020A.

### SUPPLEMENTAL GROUNDWATER INVESTIGATION FOR OU NO. 10 (SITE 35) CAMP GEIGER AREA FUEL FARM GROUNDWATER SAMPLING IDENTIFICATION NUMBERS FOR TEMPORARY WELLS IN SOUTHERN AREA OF CONCERN CONTRACT TASK ORDER 0232

|                           | ANALYSIS    | REQUESTED               | COMN    | <b>MENTS</b>       |  |  |
|---------------------------|-------------|-------------------------|---------|--------------------|--|--|
|                           |             | SOUTHERN <sup>(2)</sup> |         |                    |  |  |
|                           |             | AOC                     | TURN    |                    |  |  |
| TYPE/LOCATION             | SAMPLE ID   | CONTAMINANTS            | AROUND  | Lab <sup>(3)</sup> |  |  |
| TEMPORARY WELLS           | 35-TW01A-04 | X                       | 24 hour | Microseeps         |  |  |
| (PROPOSED) <sup>(1)</sup> | 35-TW01B-04 | Х                       | 24 hour | Microseeps         |  |  |
| SOUTHERN AOC              | 35-TW02A-04 | X                       | 24 hour | Microseeps         |  |  |
|                           | 35-TW02B-04 | X                       | 24 hour | Microseeps         |  |  |
|                           | 35-TW03A-04 | X                       | 24 hour | Microseeps         |  |  |
|                           | 35-TW03B-04 | X                       | 24 hour | Microseeps         |  |  |
|                           | 35-TW04A-04 | Х                       | 24 hour | Microseeps         |  |  |
|                           | 35-TW04B-04 | X                       | 24 hour | Microseeps         |  |  |
|                           | 35-TW05A-04 | X                       | 24 hour | Microseeps         |  |  |
|                           | 35-TW05B-04 | X                       | 24 hour | Microseeps         |  |  |
|                           | 35-TW06A-04 | X                       | 24 hour | Microseeps         |  |  |
|                           | 35-TW06B-04 | X                       | 24 hour | Microseeps         |  |  |
|                           | 35-TW07A-04 | X                       | 24 hour | Microseeps         |  |  |
|                           | 35-TW07B-04 | X                       | 24 hour | Microseeps         |  |  |
|                           | 35-TW08A-04 | X                       | 24 hour | Microseeps         |  |  |
|                           | 35-TW08B-04 | X                       | 24 hour | Microseeps         |  |  |
|                           | 35-TW09A-04 | X                       | 24 hour | Microseeps         |  |  |
|                           | 35-TW09B-04 | X                       | 24 hour | Microseeps         |  |  |
|                           | 35-TW10A-04 | X                       | 24 hour | Microseeps         |  |  |
|                           | 35-TW10B-04 | X                       | 24 hour | Microseeps         |  |  |
|                           | 35-TW11A-04 | X                       | 24 hour | Microseeps         |  |  |
|                           | 35-TW11B-04 | X                       | 24 hour | Microseeps         |  |  |
|                           | 35-TW12A-04 | X                       | 24 hour | Microseeps         |  |  |
|                           | 35-TW12B-04 | X                       | 24 hour | Microseeps         |  |  |
|                           | 35-TW13A-04 | x                       | 24 hour | Microseeps         |  |  |
|                           | 35-TW13B-04 | X                       | 24 hour | Microseeps         |  |  |
|                           | 35-TW14A-04 | x                       | 24 hour | Microseeps         |  |  |
|                           | 35-TW14B-04 | x                       | 24 hour | Microseeps         |  |  |
|                           | 35-TW15A-04 | x                       | 24 hour | Microseeps         |  |  |
|                           | 35-TW15B-04 | X                       | 24 hour | Microseeps         |  |  |
| TOTAL ANALYSES            |             | 30                      |         |                    |  |  |

Notes:

- <sup>(1)</sup> Temporary well sampling is a screening tool. No duplicates or MS/MSDs will be collected and no trip blanks will be sent.
- (2) The following analyses will be performed on groundwater samples collected from the southern AOC: trichloroethene, cis-1,2-dichloroethene, and trans-1,2,-dichloroethene. These analyses will be performed using modified EPA methods 8010A.
- <sup>(3)</sup> Microseeps Inc. from Pittsburgh, PA is providing on-site lab services.

#### SUPPLEMENTAL GROUNDWATER INVESTIGATION FOR OU NO. 10 (SITE 35) CAMP GEIGER AREA FUEL FARM SOIL SAMPLING IDENTIFICATION NUMBERS FOR TEMPORARY WELL BORINGS IN SOUTHERN AREA OF CONCERN CONTRACT TASK ORDER 0232

|                | ANALYSIS                 | S REQUESTED                                 | COM            | MENTS      |  |  |
|----------------|--------------------------|---------------------------------------------|----------------|------------|--|--|
| TYPE/LOCATION  | SAMPLE ID <sup>(1)</sup> | SOUTHERN AOC<br>CONTAMINANTS <sup>(2)</sup> | TURN<br>AROUND | LAB        |  |  |
| TEMPORARY WELL | 35-TW01B-XX              | X                                           | 24 hr          | Microseeps |  |  |
| SOIL BORINGS   | 35-TW02B-XX              | X                                           | 24 hr          | Microseeps |  |  |
| (PROPOSED)     | 35-TW03B-XX              | X                                           | 24 hr          | Microseeps |  |  |
| SOUTHERN AOC   | 35-TW04B-XX              | x                                           | 24 hr          | Microseeps |  |  |
|                | 35-TW05B-XX              | X                                           | 24 hr          | Microseeps |  |  |
|                | 35-TW06B-XX              | X                                           | 24 hr          | Microseeps |  |  |
|                | 35-TW07B-XX              | X                                           | 24 hr          | Microseeps |  |  |
|                | 35-TW08B-XX              | X                                           | 24 hr          | Microseeps |  |  |
|                | 35-TW09B-XX              | x                                           | 24 hr          | Microseeps |  |  |
|                | 35-TW10B-XX              | X                                           | 24 hr          | Microseeps |  |  |
|                | 35-TW11B-XX              | X                                           | 24 hr          | Microseeps |  |  |
|                | 35-TW12B-XX              | X                                           | 24 hr          | Microseeps |  |  |
|                | 35-TW13B-XX              | x                                           | 24 hr          | Microseeps |  |  |
|                | 35-TW14B-XX              | x                                           | 24 hr          | Microseeps |  |  |
|                | 35-TW15B-XX              | x                                           | 24 hr          | Microseeps |  |  |
|                | 35-TW26B-XX              | x                                           | 24 hr          | Microseeps |  |  |
|                | 35-TW27B-XX              | x                                           | 24 hr          | Microseeps |  |  |
| TOTAL ANALYSES |                          | 15                                          |                | I          |  |  |

Notes:

- (1) The XX in the sample ID indicates the interval where the soil sample was collected. The interval will be based on site conditions.
- <sup>(2)</sup> The following analyses will be performed on soil samples collected from the southern AOC: trichloroethene, cis-1,2,-dichloroethene, trans-1,2,-dichloroethene. These analyses will be performed using modified EPA methods 8010A.

#### SUPPLEMENTAL GROUNDWATER INVESTIGATION FOR OU NO. 10 (SITE 35) CAMP GEIGER AREA FUEL FARM SOIL SAMPLING IDENTIFICATION NUMBERS FOR PERMANENT WELL BORINGS CONTRACT TASK ORDER 0232

|                                          | ANALYSIS RE              | QUESTED                | QA/C                     | <u>SC</u> | COMM           | IENTS              |
|------------------------------------------|--------------------------|------------------------|--------------------------|-----------|----------------|--------------------|
| TYPE/LOCATION                            | SAMPLE ID <sup>(1)</sup> | TCL VOA <sup>(2)</sup> | DUPLICATE <sup>(3)</sup> | MS/MSD    | TURN<br>AROUND | LAB <sup>(4)</sup> |
| PERMANENT WELL                           | 35-MW39B-XX              | X                      |                          |           | 28 day         | Weston             |
| BORINGS                                  | 35-MW40B-XX              | Х                      |                          |           | 28 day         | Weston             |
| SOUTHERN AOC                             | 35-MW41B-XX              | X                      |                          |           | 28 day         | Weston             |
|                                          | 35-MW42B-XX              | X                      |                          |           | 28 day         | Weston             |
|                                          | 35-MW43B-XX              | X                      |                          |           | 28 day         | Weston             |
|                                          | 35-MW43B-XXD             | Х                      |                          |           | 28 day         | Weston             |
| PERMANENT WELL<br>BORING NORTHERN<br>AOC | 35-MW44B-XX              | Х                      | x                        | x         | 28 day         | Weston             |
| OTAL ANALYSES                            |                          | 7                      | 1                        | 1         |                |                    |

Notes:

() The XX in the sample ID indicates the interval where the soil sample will be collected. This interval will be based on site conditions.

<sup>(2)</sup> Level IV data quality will be provided by the lab. However, a Level III data package will be delivered.

<sup>(3)</sup> Duplicates have been arbitrarily assigned and can be changed.

(4) Weston Environmental Metrics.

### SUPPLEMENTAL GROUNDWATER INVESTIGATION FOR OU NO. 10 (SITE 35) CAMP GEIGER AREA FUEL FARM GROUNDWATER SAMPLING IDENTIFICATION NUMBERS FOR RESAMPLING OF EXISTING PERMANENT WELLS CONTRACT TASK ORDER 0232

|                               | ANALYSIS     | REQUEST                   | TED .               | QA/Q                     | С      | COMM           | IENTS              |
|-------------------------------|--------------|---------------------------|---------------------|--------------------------|--------|----------------|--------------------|
| TYPE/LOCATION                 | SAMPLE ID    | TCL<br>VOA <sup>(I)</sup> | MTBE <sup>(2)</sup> | DUPLICATE <sup>(3)</sup> | MS/MSD | TURN<br>AROUND | LAB <sup>(4)</sup> |
| PERMANENT WELLS<br>(EXISTING) | 35-EMW03-04  | x                         | x                   |                          |        | 28 day         | Weston             |
|                               | 35-MW09B-04  | x                         | x                   |                          |        | 28 day         | Weston             |
|                               | 35-MW10B-04  | Х                         | X                   |                          |        | 28 day         | Weston             |
|                               | 35-MW10B-04D | Х                         | x                   | x                        |        | 28 day         | Weston             |
|                               | 35-MW14B-04  | Х                         | X                   |                          |        | 28 day         | Weston             |
|                               | 35-MW19A-04  | х                         | X                   |                          |        | 28 day         | Weston             |
|                               | 35-MW19B-04  | X                         | x                   |                          |        | 28 day         | Weston             |
|                               | 35-MW19B-04D | X                         | x                   | x                        | X      | 28 day         | Weston             |
|                               | 35-MW30B-04  | X                         | x                   |                          |        | 28 day         | Weston             |
|                               | 35-MW32A-04  | X                         | X                   |                          |        | 28 day         | Weston             |
|                               | 35-MW35A-04  | X                         | X                   |                          |        | 28 day         | Weston             |
|                               | 35-MW36A-04  | X                         | x                   |                          |        | 28 day         | Weston             |
|                               | 35-MW36B-04  | Х                         | X                   |                          |        | 28 day         | Weston             |
|                               | 35-MW37B-04  | Х                         | х                   |                          |        | 28 day         | Weston             |
| TOTAL ANALYSES                |              | 14                        | 14                  | 2                        | 1      |                |                    |

Notes:

(1) Level IV data quality will be provided by the Laboratory. However, a Level III data package will be delivered.

<sup>(2)</sup> MTBE = Methyl Tertiary Butyl Ether

<sup>(3)</sup> Duplicates have been arbitrarily assigned and can be changed.

(4) Weston Environmental Metrics.

#### SUPPLEMENTAL GROUNDWATER INVESTIGATION FOR OU NO. 10 (SITE 35) CAMP GEIGER AREA FUEL FARM GROUNDWATER SAMPLING IDENTIFICATION NUMBERS FOR SGI PERMANENT WELLS CONTRACT TASK ORDER 0232

|                | ANALYSIS REC | UESTED                    |                     | QA/Q                     | C      | COMM           | ENTS               |
|----------------|--------------|---------------------------|---------------------|--------------------------|--------|----------------|--------------------|
| TYPE/LOCATION  | SAMPLE ID    | TCL<br>VOA <sup>(1)</sup> | MTBE <sup>(2)</sup> | DUPLICATE <sup>(3)</sup> | MS/MSD | TURN<br>AROUND | LAB <sup>(4)</sup> |
| SOUTHERN STUDY | 35-MW39A-04  | Х                         | x                   |                          |        | 28 day         | Weston             |
| AOC            | 35-MW39B-04  | Х                         | X                   |                          |        | 28 day         | Weston             |
|                | 35-MW39B-04D | х                         | x                   | x                        | X      | 28 day         | Weston             |
|                | 35-MW40A-04  | х                         | X                   |                          |        | 28 day         | Weston             |
|                | 35-MW40B-04  | х                         | x                   |                          |        | 28 day         | Weston             |
|                | 35-MW41A-04  | х                         | x                   |                          |        | 28 day         | Weston             |
|                | 35-MW41B-04  | Х                         | x                   |                          |        | 28 day         | Weston             |
|                | 35-MW42A-04  | х                         | x                   |                          |        | 28 day         | Weston             |
|                | 35-MW42B-04  | Х                         | <b>X</b> .          |                          |        | 28 day         | Weston             |
|                | 35-MW43A-04  | Х                         | X                   |                          |        | 28 day         | Weston             |
|                | 35-MW43B-04  | Х                         | X                   |                          |        | 28 day         | Weston             |
|                | 35-MW43B-04D | х                         | x                   | x                        |        | 28 day         | Weston             |
|                | 35-GWD06-04  | Х                         | x                   |                          |        | 28 day         | Weston             |
| NORTHERN STUDY | 35-MW44A-04  | x                         | x                   |                          |        | 28 day         | Weston             |
| AREA           | 35-MW44B-04  | Х                         | X                   |                          |        | 28 day         | Weston             |
|                | 35-GWD07-04  | Х                         | Х                   |                          |        | 28 day         | Weston             |
| TOTAL ANALYSES |              | 16                        | 16                  | 2                        | 1      |                |                    |

#### Notes:

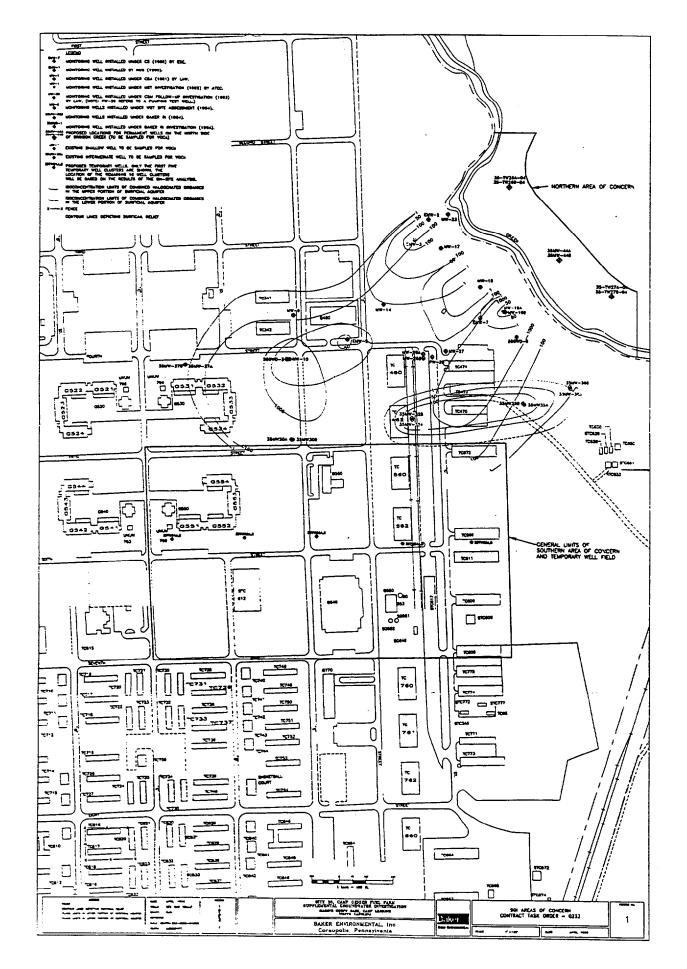
- (1) Level IV data quality will be provided by the lab. However, a Level III data package will be delivered.
- <sup>(2)</sup> MTBE Methyl Tertiary Butyl Ether
- <sup>(3)</sup> Duplicates have been arbitrarily assigned and can be changed.
- <sup>(4)</sup> Weston Environmental Metrics.

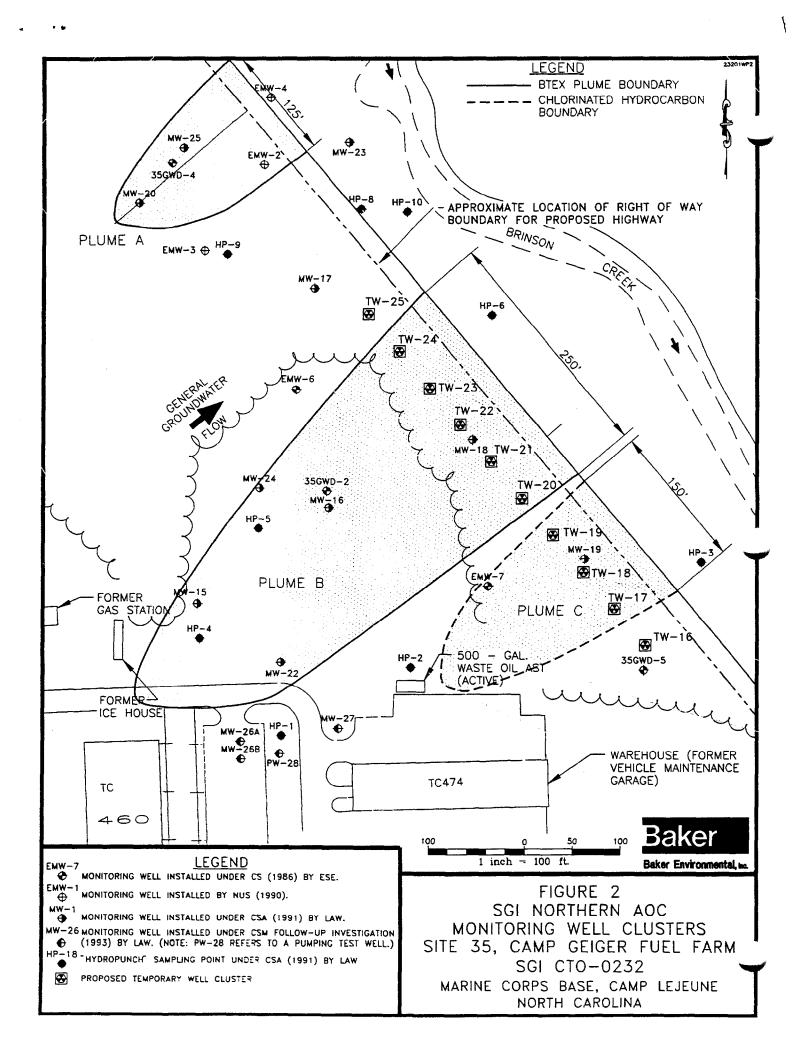
#### SUPPLEMENTAL GROUNDWATER INVESTIGATION FOR OU NO. 10 (SITE 35) CAMP GEIGER AREA FUEL FARM BAKER PROJECT DELIVERABLES CONTRACT TASK ORDER 0232

| Project Deliverable    | Due Date           |  |
|------------------------|--------------------|--|
| SGI Meeting            | August 8, 1996     |  |
| Draft SGI Report       | September 12, 1996 |  |
| Draft Final SGI Report | November 11, 1996  |  |
| Final SGI Report       | January 3, 1997    |  |
| Draft FS/PRAP          | November 11, 1996  |  |
| Draft Final FS/PRAP    | January 8, 1997    |  |
| Final FS/PRAP          | February 28, 1997  |  |
| Draft ROD              | January 8, 1997    |  |
| Draft Final ROD        | February 28, 1997  |  |
| Final ROD              | April 20, 1997     |  |

### SUPPLEMENTAL GROUNDWATER INVESTIGATION FOR OU NO. 10 (SITE 35) CAMP GEIGER AREA FUEL FARM IDW SAMPLE IDENTIFICATION NUMBERS CONTRACT TASK ORDER 0232

SOILS


|                |                                         | ANAL        | YSIS REQU     | JESTED                     |   |                | COMMENTS |        |  |  |
|----------------|-----------------------------------------|-------------|---------------|----------------------------|---|----------------|----------|--------|--|--|
| TYPE/LOCATION  | TYPE/LOCATION SAMPLE ID Characteristics | TCLP<br>VOA | TCLP<br>SVOAs | TCLP<br>Pest/Hebicide<br>s |   | TURN<br>AROUND | LAB      |        |  |  |
|                | 35-IDW-ROB                              | X           | X             | X                          | X | X              | 14 day   | Weston |  |  |
| TOTAL ANALYSES |                                         | 1           | 1             | 1                          | 1 | 1              |          |        |  |  |


# LIQUID

|                |            | ANALYSIS REQUESTED |         |           |                  |               |                |        |  |  |  |  |  |
|----------------|------------|--------------------|---------|-----------|------------------|---------------|----------------|--------|--|--|--|--|--|
| TYPE/LOCATION  | SAMPLE ID  | TSS/TDS            | TCL VOA | TCL SVOAs | TCL<br>Pest/PCBs | TAL<br>Metals | TURN<br>AROUND | LAB    |  |  |  |  |  |
|                | 35-IDW-TNK | X                  | X       | X         | X                | X             | 14 day         | Weston |  |  |  |  |  |
| TOTAL ANALYSES |            | 1                  | 1       | 1         | 1                | 1             |                |        |  |  |  |  |  |

Notes:

(1) RCRA Hazard Characteristics





| . <u> </u>                     | 1    |         |         | 1           | March          |     |     |     |     |      |       |         |       |      |        |        |      |       |       | 1      | pril |     |     | _   |     |    |          |             |
|--------------------------------|------|---------|---------|-------------|----------------|-----|-----|-----|-----|------|-------|---------|-------|------|--------|--------|------|-------|-------|--------|------|-----|-----|-----|-----|----|----------|-------------|
| Task Name                      | Dur, | Start   | Finish  | 23 24 25 26 | 27 28 29 30 31 | 1 2 | 3 4 | 6 8 | 7 8 | 9 10 | 11 1: | 2 13 14 | 15 16 | 17 1 | 8 19 2 | 0 21 2 | 2 23 | 24 25 | 26 27 |        |      | 1 2 | 3   | 4 5 | 6 7 | 89 | 10 11 12 | 13 14 15 10 |
| MOBILIZATION                   | 60   | 3/23/96 | 3/29/98 |             |                |     |     |     |     |      |       |         |       |      |        |        |      |       |       |        |      |     |     |     |     |    |          |             |
| TEMPORARY WELL<br>INSTALLATION | bO   | 3/23/96 | 3/23/96 |             |                |     |     |     |     |      |       |         |       |      |        |        |      |       |       |        |      |     |     |     |     |    |          |             |
| BAOC                           | beg  | 4/8/90  | 4/16/96 |             |                |     |     |     |     |      |       |         |       |      |        |        |      |       |       |        |      |     |     |     |     |    | 1        |             |
| NAOC                           | 5ed  | 4/16/96 | 4/21/96 |             |                |     |     |     |     |      |       |         |       |      |        |        |      |       |       |        |      |     |     |     |     |    |          |             |
| PERMANENT WELL<br>INSTALLATION | 10ed | 4/25/96 | 5/5/96  |             |                |     |     |     |     |      |       |         |       |      |        |        |      |       |       | 100000 |      |     | : : |     |     |    |          |             |
| WELL DEVELOPMENT               | beg  | 4/27/96 | 5/3/96  |             |                |     |     |     |     |      |       |         |       |      |        |        |      |       |       |        |      |     |     |     |     |    |          |             |
| PERMANENT WELL<br>SAMPLING     | 5ed  | 5/9/98  | 5/14/96 |             |                |     |     |     |     |      |       |         |       |      |        |        |      |       |       |        |      |     |     |     |     |    |          |             |
| SLUG TEST                      | 1ed  | 5/14/96 | 5/15/96 |             |                |     |     |     |     |      |       |         |       |      |        |        |      |       |       |        |      |     |     |     |     |    |          |             |
| IDW SAMPLING                   | 1ed  | 5/14/96 | 5/15/96 |             |                |     |     |     |     |      |       |         |       |      |        |        |      |       |       |        |      |     |     |     |     |    |          |             |
| SITE SURVEY                    | Sed  | 5/8/96  | 5/16/96 |             |                |     | l   |     |     |      |       |         |       |      |        |        |      |       |       |        |      |     |     |     |     |    |          |             |
| DEMOBILIZATION                 | 1d   | 5/15/96 | 5/15/96 |             |                |     |     |     |     |      |       |         |       |      |        |        |      |       |       |        |      |     |     |     |     |    |          |             |

.

#### FIGURE 3 PROPOSED SCHEDULE FOR SGI FIELD WORK SITE 35 (OPERABLE UNIT 10), MCB, CAMP LEJEUNE

.

## APPENDIX L QA/QC SAMPLE SUMMARIES

# APPENDIX L.1 ROUND THREE, GROUNDWATER SAMPLING

.

## QA/QC SUMMARY TRIP BLANK (SUMMER 1995) SITE 35, CAMP GEIGER AREA FUEL FARM SUPPLEMENTAL GROUNDWATER INVESTIGATION - CTO 0232 MCB, CAMP LEJEUNE, NORTH CAROLINA

| LOCATION<br>LAB ID<br>DATE SAMPLED                                    | 35-TB01-02<br>95-7597-13<br>07/21/95         |
|-----------------------------------------------------------------------|----------------------------------------------|
|                                                                       |                                              |
| Toluene<br>Chlorobenzene<br>Ethylbenzene<br>Styrene<br>Xylene (total) | 10 U<br>10 U<br>10 U<br>10 U<br>10 U<br>10 U |

#### QA/QC SUMMARY EQUIPMENT RINSATES (SUMMER 1995) SITE 35, CAMP GEIGER AREA FUEL FARM SUPPLEMENTAL GROUNDWATER INVESTIGATION - CTO 0232 MCB, CAMP LEJEUNE, NORTH CAROLINA

| LOCATION<br>LAB ID | 35-ER01-02<br>D95-7537-3 | 35-ER01-02m<br>D95-7537-3 | 35-ER03-02m<br>D95-7537-9 | 35-ER05-02<br>D95-7537-4 | 35-ER05-02m<br>D95-7537-4 | 35-ER07-02m<br>95-7597-10 |
|--------------------|--------------------------|---------------------------|---------------------------|--------------------------|---------------------------|---------------------------|
| DATE SAMPLED       | 8/10/95                  | 08/11/95                  | 08/09/95                  | 8/10/95                  | 08/11/95                  | 08/13/95                  |
| METALS (ug/L)      |                          |                           |                           |                          |                           |                           |
| Aluminum           | 27.1                     | NA                        | 35.5                      | 36.3                     | NA                        | 42.9 J                    |
| Antimony           | 20 U                     | NA                        | 20 U                      | 20 U                     | NA                        | 20 U                      |
| Arsenic            | 2 U                      | NA                        | 2 U                       | 2 U                      | NA                        | 1.4 U                     |
| Barium             | 20 U                     | NA                        | 20 U                      | 20 U                     | NA                        | 20 U                      |
| Beryllium          | 1 U                      | NA                        | 1 U                       | 1 U                      | NA                        | 1 U                       |
| Cadmium            | 2 U                      | NA                        | 2 U                       | 2 U                      | NA                        | 2 U                       |
| Calcium            | 500 U                    | NA                        | 500 U                     | 500 U                    | NA                        | 500 U                     |
| Chromium           | 2 U                      | NA                        | 2 U                       | 2 U                      | NA                        | 2 U                       |
| Cobalt             | 2 U                      | NA                        | 2 U                       | 2 U                      | NA                        | 2 U                       |
| Copper             | 5 U                      | NA                        | 5 U                       | 5 U                      | NA                        | 5 U                       |
| Iron               | 20 U                     | NA                        | 20 U                      | 20 U                     | NA                        | 20 U                      |
| Lead               | 1 U                      | NA                        | 1 U                       | 1 U                      | NA                        | -<br>1 UJ                 |
| Magnesium          | 50.6 U                   | NA                        | 50 U                      | 50 U                     | NA                        | 50 U                      |
| Manganese          | 2 U                      | NA                        | 2 U                       | 2 U                      | NA                        | 2 U                       |
| Mercury            | 0.2 U                    | 0.2 U                     | 0.2 U                     | 0.2 U                    | 0.2 U                     | 0.2 U                     |
| Nickel             | 10 U                     | NA                        | 10 U                      | 10 U                     | NA                        | 10 U                      |
| Potassium          | 200 U                    | NA                        | 200 U                     | 10 U                     | NA                        | 200 U                     |
| Selenium           | 2.5 UJ                   | NA                        | 2.5 U                     | 2.5 U                    | NA                        | 2.5 UJ                    |
| Silver             | 2 U                      | NA                        | 2 U                       | 2 U                      | NA                        | 2 U                       |
| Sodium             | 791                      | NA                        | 1000                      | 705                      | NA                        | 854 J                     |
| Thallium           | 0.7 U                    | NA                        | 0.7                       | 0.7                      | NA                        | 9.9 U                     |
| Vanadium           | 2 U                      | NA                        | 2 U                       | 2 U                      | NA                        | 2 U                       |
| Zinc               | 7.8                      | 7.8                       | 6.1                       | 6.8                      | 6.8                       | 15.1 U                    |

### QA/QC SUMMARY EQUIPMENT RINSATES (SUMMER 1995) SITE 35, CAMP GEIGER AREA FUEL FARM SUPPLEMENTAL GROUNDWATER INVESTIGATION - CTO 0232 MCB, CAMP LEJEUNE, NORTH CAROLINA

| LOCATION<br>LAB ID | MINIMUM     | MAXIMUM     | MINIMUM  | MAXIMUM  | LOCATION OF<br>MAXIMUM | FREQUENCY<br>OF |
|--------------------|-------------|-------------|----------|----------|------------------------|-----------------|
| DATE SAMPLED       | NONDETECTED | NONDETECTED | DETECTED | DETECTED | DETECTED               | DETECTION       |
| METALS (ug/L)      |             |             |          |          |                        |                 |
| Atuminum           | NA          | NA          | 27.1     | 42.9 J   | 35-ER07-02m            | 4/4             |
| Antimony           | 20 U        | 20 U        | ND       | ND       | 00 2007 0200           | 0/4             |
| Arsenic            | 1.4 U       | 2 U         | ND       | ND       |                        | 0/4             |
| Barium             | 20 U        | 20 U        | ND       | ND       |                        | 0/4             |
| Beryllium          | 1 U         | 1 U         | ND       | ND       |                        | 0/4             |
| Cadmium            | 2 U         | 2 U         | ND       | ND       |                        | 0/4             |
| Calcium            | 500 U       | 500 U       | ND       | ND       |                        | 0/4             |
| Chromium           | 2 U         | 2 U         | ND       | ND       |                        | 0/4             |
| Cobalt             | 2 U         | 2 U         | ND       | ND       |                        | 0/4             |
| Copper             | 5 U         | 5 U         | ND       | ND       |                        | 0/4             |
| Iron               | 20 U        | 20 U        | ND       | ND       |                        | 0/4             |
| Lead               | 1 U         | 1 U         | ND       | ND       |                        | 0/4             |
| Magnesium          | 50 U        | 50.6 U      | ND       | ND       |                        | 0/4             |
| Manganese          | 2 U         | 2 U         | ND       | ND       |                        | 0/4             |
| Mercury            | 0.2 U       | 0.2 U       | ND       | ND       |                        | 0/6             |
| Nickel             | 10 U        | 10 U        | ND       | ND       |                        | 0/4             |
| Potassium          | 10 U        | 200 U       | ND       | ND       |                        | 0/4             |
| Selenium           | 2.5 U.      | J 2.5 UJ    | ND       | ND       |                        | 0/4             |
| Silver             | 2 U         | 2 U         | ND       | ND       |                        | 0/4             |
| Sodium             | NA          | NA          | 705      | 1000     | 35-ER03-02m            | 4/4             |
| Thallium           | 0.7 U       | 9.9 U       | 0.7      | 0.7      | 35-ER05-02             | 2/4             |
| Vanadium           | 2 U         | 2 U         | ND       | ND       |                        | 0/4             |
| Zinc               | 15.1 U      | 15.1 U      | 6.1      | 7.8      | 35-ER01-02m            | 5/6             |

### QA/QC SUMMARY EQUIPMENT RINSATE - TPH (SUMMER 1995) SITE 35, CAMP GEIGER AREA FUEL FARM SUPPLEMENTAL GROUNDWATER INVESTIGATION - CTO 0232 MCB, CAMP LEJEUNE, NORTH CAROLINA

| LOCATION                                    | 35-ER01-02m |  |  |  |
|---------------------------------------------|-------------|--|--|--|
| LAB ID                                      | D95-7537-3  |  |  |  |
| DATE SAMPLED                                | 08/11/95    |  |  |  |
| Total Petroleum Hydrocarbon 5030/8015M ug/L |             |  |  |  |
| Gasoline                                    | 50 U        |  |  |  |
| Total Petroleum Hydrocarbon 8015M mg/L      |             |  |  |  |
| Diesel                                      | 0.6 U       |  |  |  |

,

### QA/QC SUMMARY FIELD BLANK (SUMMER 1995) SITE 35, CAMP GEIGER AREA FUEL FARM SUPPLEMENTAL GROUNDWATER INVESTIGATION - CTO 0232 MCB, CAMP LEJEUNE, NORTH CAROLINA

| LOCATION      | 35-FB01-02m |
|---------------|-------------|
| LAB ID        | 95-7597-12  |
| DATE SAMPLED  | 08/14/95    |
| METALS (ug/L) | 20.3 J      |
| Aluminum      | 20 U        |
| Antimony      | 1.4 U       |
| Arsenic       | 20 U        |
| Barium        | 1 U         |
| Beryllium     | 2 U         |
| Cadmium       | 500 U       |
| Calcium       | 2 U         |
| Chromium      | 500 U       |
| Cobalt        | 2 U         |
| Copper        | 5 U         |
| Iron          | 20 U        |
| Lead          | 1 UJ        |
| Magnesium     | 50 U        |
| Manganese     | 2 U         |
| Mercury       | 0.2 U       |
| Nickel        | 10 U        |
| Potassium     | 200 U       |
| Selenium      | 2.5 UJ      |
| Silver        | 2 U         |
| Sodium        | 509 J       |
| Thallium      | 9.9 U       |
| Vanadium      | 2 U         |
| Zinc          | 5 U         |

## GROUNDWATER - DUPLICATE SUMMARY INORGANICS (SUMMER 1995) SITE 35, CAMP GEIGER AREA FUEL FARM SUPPLEMENTAL GROUNDWATER INVESTIGATION - CTO 0232 MCB, CAMP LEJEUNE, NORTH CAROLINA

| LOCATION<br>LAB ID | 35-MW16S-02<br>95-7537-11 | 35-MW16S-02D<br>95-7537-12 | 35-MW19S-02<br>D95-7537-6 | 35-MW19S-02D<br>D95-7537-7 |
|--------------------|---------------------------|----------------------------|---------------------------|----------------------------|
| DATE SAMPLED       | 08/10/95                  | 08/10/95                   | 08/11/95                  | 08/11/95                   |
| ANALYTES (ug/L)    |                           |                            |                           |                            |
| Aluminum           | 20 U                      | 20 U                       | 282                       | 205                        |
| Antimony           | 20 U                      | 20 U                       | 20 U                      | 20 U                       |
| Arsenic            | 10.3                      | 11.1                       | 2 U                       | 2 U                        |
| Barium             | 32.2 J                    | 31.3 J                     | 20 U                      | 20 U                       |
| Beryllium          | 1 U                       | · 1 U                      | 1 U                       | 1 U                        |
| Cadmium            | 2 U                       | 2 U                        | 2 U                       | 2 U                        |
| Calcium            | 124000                    | 121000                     | 35600                     | 34500                      |
| Chromium           | 2 U                       | 2 U                        | 2 U                       | 2 U                        |
| Cobalt             | 16 J                      | 16.9 J                     | 4.4 J                     | 4.1 J                      |
| Copper             | 5 U                       | 5 U                        | 5 U                       | 5 U                        |
| Iron               | 40400                     | 42200                      | 266                       | 215                        |
| Lead               | 8.9                       | 2.9 J                      | 1 U                       | 1 U                        |
| Magnesium          | 4580 J                    | 4540 J                     | 1880 J                    | 1770 J                     |
| Manganese          | 141                       | 139                        | 102                       | 98.1                       |
| Mercury            | 0.2 U                     | 0.2 U                      | 0.2 U                     | 0.2 U                      |
| Nickel             | 10 U                      | 10 U                       | 10 U                      | 10 U                       |
| Potassium          | 793 J                     | 728 J                      | 2650 J                    | 2600 J                     |
| Selenium           | 2.5 UJ                    | 2.5 U                      | 2.5 U                     | 2.5 U                      |
| Silver             | 10.9                      | 2 U                        | 2 U                       | 2 U                        |
| Sodium             | 4350 J                    | 4520 J                     | 11300                     | 11200                      |
| Thallium           | 0.9 J                     | 1.1 J                      | 0.7 U                     | 1.3 J                      |
| Vanadium           | 2 U                       | 2 U                        | 2 U                       | 2 U                        |
| Zinc               | 11,5 J                    | 5 U                        | 9.9 J                     | 11.7 J                     |

## SEDIMENTS - DUPLICATE SUMMARY INORGANICS (SUMMER 1995) SITE 35, CAMP GEIGER AREA FUEL FARM SUPPLEMENTAL GROUNDWATER INVESTIGATION - CTO 0232 MCB, CAMP LEJEUNE, NORTH CAROLINA

| LOCATION                          | 35-SD07-06-02  | 35-SD07-06D-02 | 36-SD07-06-02  | 36-SD07-06D-02 |
|-----------------------------------|----------------|----------------|----------------|----------------|
| LAB ID                            | D95-7354-1     | D95-7354-2     | D95-7350-5     | D95-7350-6     |
| DATE SAMPLED                      | 08/08/95       | 08/08/95       | 08/07/95       | 08/07/95       |
| METALS (mg/kg)<br>Mercury<br>Zinc | 0.19 U<br>72.6 | 0.17 U<br>61.7 | 0.34 U<br>65.8 | 0.34 U<br>94.5 |

.

# APPENDIX L.2 ROUND FOUR, GROUNDWATER SAMPLING

.

## QA/QC SUMMARY TRIP BLANKS (SPRING 1996) SITE 35, CAMP GEIGER AREA FUEL FARM SUPPLEMENTAL GROUNDWATER INVESTIGATION - CTO 0232 MCB, CAMP LEJEUNE, NORTH CAROLINA

| SAMPLE ID                           | 35-TB01-04 | 35-TB02-35 | 35-TB03-04 | 35-TB04-04 | 35-TB06-04 | 35-TB07-04 |
|-------------------------------------|------------|------------|------------|------------|------------|------------|
| METHOD                              | VOA1.8     | VOA1.8     | VOA1.8     | VOA1.8     | VOA1.8     | VOA1.8     |
| DATE SAMPLED                        | 04/25/96   | 04/26/96   | 04/27/96   | 04/29/96   | 05/01/96   | 05/03/96   |
| VOLATILES (ug/L)<br>TRICHLOROETHENE | 10 U       | 3 J        |

### QA/QC SUMMARY TRIP BLANKS (SPRING 1996) SITE 35, CAMP GEIGER AREA FUEL FARM SUPPLEMENTAL GROUNDWATER INVESTIGATION - CTO 0232 MCB, CAMP LEJEUNE, NORTH CAROLINA

| SAMPLE ID                           | 35-TB08-04 | 35-TBO5-04 |
|-------------------------------------|------------|------------|
| METHOD                              | VOA1.8     | VOA1.8     |
| DATE SAMPLED                        | 08/04/96   | 04/27/96   |
| VOLATILES (ug/L)<br>TRICHLOROETHENE | 10 U       | 10 U       |

## QA/QC SUMMARY TRIP BLANKS (SPRING 1996) SITE 35, CAMP GEIGER AREA FUEL FARM SUPPLEMENTAL GROUNDWATER INVESTIGATION - CTO 0232 MCB, CAMP LEJEUNE, NORTH CAROLINA

| SAMPLE ID<br>METHOD<br>DATE SAMPLED | MINIMUM<br>NONDETECTED | MAXIMUM<br>NONDETECTED |     | MAXIMUM<br>DETECTED | LOCATION OF<br>MAXIMUM<br>DETECTED | FREQUENCY<br>OF<br>DETECTION | AVERAGE<br>OF POSITIVE<br>DETECTIONS | MEDIAN<br>OF POSITIVE<br>DETECTIONS |
|-------------------------------------|------------------------|------------------------|-----|---------------------|------------------------------------|------------------------------|--------------------------------------|-------------------------------------|
| VOLATILES (ug/L)<br>TRICHLOROETHENE | 10 U                   | 10 U                   | 3 J | 3 J                 | 35-TB07-04                         | 1/8                          | 3.00                                 | 3.00                                |

## QA/QC SUMMARY EQUIPMENT RINSATES (SPRING 1996) SITE 35, CAMP GEIGER AREA FUEL FARM SUPPLEMENTAL GROUNDWATER INVESTIGATION - CTO 0232 MCB, CAMP LEJEUNE, NORTH CAROLINA

| SAMPLE ID<br>METHOD        | 35-ERW01-04<br>VOA1.8 | 35-ERW03-04<br>VOA1.8 | 35-ERW05-04<br>VOA1.8 | 35-ERW07-04<br>VOA1.8 | 35-ERW09-04<br>VOA1.8 | 35-ERW10-04<br>VOA1.8 |
|----------------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|
| DATE SAMPLED               | 04/25/96              | 04/27/96              | 04/29/96              | 05/01/96              | 05/03/96              | 08/05/96              |
| VOLATILES (ug/L)           |                       |                       |                       |                       |                       |                       |
| CHLOROMETHANE              | 10 U                  |
| BROMOMETHANE               | 10 U                  |
| VINYL CHLORIDE             | 10 U                  |
| CHLOROETHANE               | 10 U                  |
| METHYLENE CHLORIDE         | 10 U                  |
| ACETONE                    | 10 U                  |
| CARBON DISULFIDE           | 10 U                  |
| 1.1-DICHLOROETHENE         | 10 U                  |
| 1.1-DICHLOROETHANE         | 10 U                  |
| 1,2-DICHLOROETHENE (TOTAL) | 10 U                  |
| CHLOROFORM                 | 10 U                  |
| 1,2-DICHLOROETHANE         | 10 U                  |
| 2-BUTANONE                 | 10 U                  | 10 Ū                  |
| 1,1,1-TRICHLOROETHANE      | 10 U                  |
| CARBON TETRACHLORIDE       | 10 U                  |
| BROMODICHLOROMETHANE       | 10 U                  |
| 1.2-DICHLOROPROPANE        | 10 U                  |
| CIS-1,3-DICHLOROPROPENE    | 10 U                  |
| TRICHLOROETHENE            | 10 U                  |
| DIBROMOCHLOROMETHANE       | 10 U                  |
| 1,1,2-TRICHLOROETHANE      | 10 U                  |
| BENZENE                    | 10 U                  | 18                    | 10 U                  | 10 U                  | 10 U                  | 10 U                  |
| TRANS-1,3-DICHLOROPROPENE  | 10 U                  |
| BROMOFORM                  | 10 U                  |
| 4-METHYL-2-PENTANONE       | 10 U                  |
| 2-HEXANONE                 | 10 U                  |
| TETRACHLOROETHENE          | 10 U                  |
| 1,1,2,2-TETRACHLOROETHANE  | 10 U                  |
| TOLUENE                    | 10 U                  |
| CHLOROBENZENE              | 10 U                  |
| ETHYLBENZENE               | 10 U                  |
| STYRENE                    | 10 U                  |
| XYLENE (TOTAL)             | 10 U                  |
| METHYL-TERT-BUTYL ETHER    | 5 U                   | 5 U                   | 5 U                   | 5 U                   | 5 U                   | NA                    |

## QA/QC SUMMARY EQUIPMENT RINSATES (SPRING 1996) SITE 35, CAMP GEIGER AREA FUEL FARM SUPPLEMENTAL GROUNDWATER INVESTIGATION - CTO 0232 MCB, CAMP LEJEUNE, NORTH CAROLINA

| SAMPLE ID<br>METHOD<br>DATE SAMPLED |        | MAXIMUM<br>NONDETECTED |    | MAXIMUM<br>DETECTED | LOCATION OF<br>MAXIMUM<br>DETECTED | FREQUENCY<br>OF<br>DETECTION | AVERAGE<br>OF POSITIVE<br>DETECTIONS | MEDIAN<br>OF POSITIVE<br>DETECTIONS |
|-------------------------------------|--------|------------------------|----|---------------------|------------------------------------|------------------------------|--------------------------------------|-------------------------------------|
| VOLATILES (ug/L)                    |        |                        |    |                     |                                    |                              |                                      |                                     |
| CHLOROMETHANE                       | 10 U   | 10 U                   | ND | ND                  |                                    | 0/6                          | NA                                   | NA                                  |
| BROMOMETHANE                        | 10 U   | 10 U                   | ND | ND                  |                                    | 0/6                          | NA                                   | NA                                  |
| VINYL CHLORIDE                      | 10 U   | 10 U                   | ND | ND                  |                                    | 0/6                          | NA                                   | NA                                  |
| CHLOROETHANE                        | 10 U   | 10 U                   | ND | ND                  |                                    | 0/6                          | NA                                   | NA                                  |
| METHYLENE CHLORIDE                  | 10 U   | 10 U                   | ND | ND                  |                                    | 0/6                          | NA                                   | NA                                  |
| ACETONE                             | 10 U   | 10 U                   | ND | ND                  |                                    | 0/6                          | NA                                   | NA                                  |
| CARBON DISULFIDE                    | 10 U   | 10 U                   | ND | ND                  |                                    | 0/6                          | NA                                   | NA                                  |
| 1,1-DICHLOROETHENE                  | 10 U   | 10 U                   | ND | ND                  |                                    | 0/6                          | NA                                   | NA                                  |
| 1,1-DICHLOROETHANE                  | 10 U   | 10 U                   | ND | ND                  |                                    | 0/6                          | NA                                   | NA                                  |
| 1,2-DICHLOROETHENE (TOTAL)          | 10 U   | 10 U                   | ND | ND                  |                                    | 0/6                          | NA                                   | NA                                  |
| CHLOROFORM                          | 10 U   | 10 U                   | ND | ND                  |                                    | 0/6                          | NA                                   | NA                                  |
| 1,2-DICHLOROETHANE                  | 10 U   | 10 U                   | ND | ND                  |                                    | 0/6                          | NA                                   | NA                                  |
| 2-BUTANONE                          | 10 U   | 10 U                   | ND | ND                  |                                    | 0/6                          | NA                                   | NA                                  |
| 1,1,1-TRICHLOROETHANE               | 10 U   | 10 U                   | ND | ND                  |                                    | 0/6                          | NA                                   | . NA                                |
| CARBON TETRACHLORIDE                | 10 U   | 10 U                   | ND | ND                  |                                    | 0/6                          | NA                                   | NA                                  |
| BROMODICHLOROMETHANE                | 10 U   | 10 U                   | ND | ND                  |                                    | 0/6                          | NA                                   | NA                                  |
| 1,2-DICHLOROPROPANE                 | 10 U   | 10 U                   | ND | ND                  |                                    | 0/6                          | NA                                   | NA                                  |
| CIS-1,3-DICHLOROPROPENE             | 10 U   | 10 U                   | ND | ND                  |                                    | 0/6                          | NA                                   | NA                                  |
| TRICHLOROETHENE                     | - 10 U | 10 U                   | ND | ND                  |                                    | 0/6                          | NA                                   | NA                                  |
| DIBROMOCHLOROMETHANE                | 10 U   | 10 U                   | ND | ND                  |                                    | 0/6                          | NA                                   | NA                                  |
| 1,1,2-TRICHLOROETHANE               | 10 U   | 10 U                   | ND | ND                  |                                    | 0/6                          | NA                                   | NA                                  |
| BENZENE                             | 10 U   | 10 U                   | 18 | 18                  | 35-ERW03-04                        | 1/6                          | 18.00                                | 18.00                               |
| TRANS-1,3-DICHLOROPROPENE           |        | 10 U                   | ND | ND                  |                                    | 0/6                          | NA                                   | NA                                  |
| BROMOFORM                           | 10 U   | 10 U                   | ND | ND                  |                                    | 0/6                          | NA                                   | NA                                  |
| 4-METHYL-2-PENTANONE                | 10 U   | 10 U                   | ND | ND                  |                                    | 0/6                          | NA                                   | NA                                  |
| 2-HEXANONE                          | 10 U   | 10 U                   | ND | ND                  |                                    | 0/6                          | NA                                   | NA                                  |
| TETRACHLOROETHENE                   | 10 U   | 10 U                   | ND | ND                  |                                    | 0/6                          | NA                                   | NA                                  |
| 1,1,2,2-TETRACHLOROETHANE           | 10 U   | 10 U                   | ND | ND                  |                                    | 0/6                          | NA                                   | NA                                  |
| TOLUENE                             | 10 U   | 10 U                   | ND | ND                  |                                    | 0/6                          | NA                                   | NA                                  |
| CHLOROBENZENE                       | 10 U   | 10 U                   | ND | ND                  |                                    | 0/6                          | NA                                   | NA                                  |
| ETHYLBENZENE                        | 10 U   | 10 U                   | ND | ND                  |                                    | 0/6                          | NA                                   | NA                                  |
| STYRENE                             | 10 U   | 10 U                   | ND | ND                  |                                    | 0/6                          | NA                                   | NA                                  |
| XYLENE (TOTAL)                      | 10 U   | 10 U                   | ND | ND                  |                                    | 0/6                          | NA                                   | NA                                  |
| METHYL-TERT-BUTYL ETHER             | 5 U    | 5 U                    | ND | ND                  |                                    | 0/5                          | NA                                   | NA                                  |

#### QA/QC SUMMARY FIELD BLANK (SPRING 1996) SITE 35, CAMP GEIGER AREA FUEL FARM SUPPLEMENTAL GROUNDWATER INVESTIGATION - CTO 0232 MCB, CAMP LEJEUNE, NORTH CAROLINA

.

| SAMPLE ID                  | 35-FB-04 |
|----------------------------|----------|
| METHOD                     | VOA1.8   |
| DATE SAMPLED               | 08/03/96 |
|                            |          |
| VOLATILES (ug/L)           |          |
| CHLOROMETHANE              | 10 U     |
| BROMOMETHANE               | 10 U     |
| VINYL CHLORIDE             | 10 U     |
| CHLOROETHANE               | 10 U     |
| METHYLENE CHLORIDE         | 10 U     |
| ACETONE                    | 10 U     |
| CARBON DISULFIDE           | 10 U     |
| 1,1-DICHLOROETHENE         | 10 U     |
| 1,1-DICHLOROETHANE         | 10 U     |
| 1,2-DICHLOROETHENE (TOTAL) | 10 U     |
| CHLOROFORM                 | 10 U     |
| 1,2-DICHLOROETHANE         | 10 U     |
| 2-BUTANONE                 | 10 U     |
| 1,1,1-TRICHLOROETHANE      | 10 U     |
| CARBON TETRACHLORIDE       | 10 U     |
| BROMODICHLOROMETHANE       | 5 J      |
| 1,2-DICHLOROPROPANE        | 10 U     |
| CIS-1,3-DICHLOROPROPENE    | 10 U     |
| TRICHLOROETHENE            | 10 U     |
| DIBROMOCHLOROMETHANE       | 8 J      |
| 1,1,2-TRICHLOROETHANE      | 10 U     |
| BENZENE                    | 10 U     |
| TRANS-1,3-DICHLOROPROPENE  | 10 U     |
| BROMOFORM                  | 10 U     |
| 4-METHYL-2-PENTANONE       | 10 U     |
| 2-HEXANONE                 | 10 U     |
| TETRACHLOROETHENE          | 10 U     |
| 1,1,2,2-TETRACHLOROETHANE  | 10 U     |
| TOLUENE                    | 10 U     |
| CHLOROBENZENE              | 10 U     |
| ETHYLBENZENE               | 10 U     |
| STYRENE                    | 10 U     |
| XYLENE (TOTAL)             | 10 U     |

#### GROUNDWATER - DUPLICATE SUMMARY ORGANICS (SPRING 1996) SITE 35, CAMP GEIGER AREA FUEL FARM SUPPLEMENTAL GROUNDWATER INVESTIGATION - CTO 0232 MCB, CAMP LEJEUNE, NORTH CAROLINA

| SAMPLE ID                         | 35-MW10D-04D | 35-MW19D-04D | 35-MW42B-04D | 35-MW60B-04D |
|-----------------------------------|--------------|--------------|--------------|--------------|
| METHOD                            | VOA1.8       | VOA1.8       | VOA1.8       | VOA1.8       |
| DATE SAMPLED                      | 04/27/96     | 04/27/96     | 05/03/96     | 08/04/96     |
|                                   |              |              |              |              |
| VOLATILES (ug/L)<br>CHLOROMETHANE | 10 U         | 10 U         | 10 U         | 10 U         |
| BROMOMETHANE                      | 10 U         | 10 U         | 10 U         | 10 U         |
| VINYL CHLORIDE                    | 10 U         | 10 U         | 10 U         | 10 U         |
| CHLOROETHANE                      | 10 U         | 10 U         | 10 U         | 10 U         |
| METHYLENE CHLORIDE                | 10 U         | 10 U         | 10 U         | 10 U         |
| ACETONE                           | 10 U         | 10 U         | 10 U         | 10 U         |
| CARBON DISULFIDE                  | 10 U         | 10 U         | 10 U         | 10 U         |
| 1.1-DICHLOROETHENE                | 6 J          | 10 U         | 10 U         | 10 U         |
| 1,1-DICHLOROETHANE                | 10 U         | 10 U         | 10 U         | 10 U         |
| 1,2-DICHLOROETHENE (TOTAL)        | 960          | 370          | 62           | 10 U         |
| CHLOROFORM                        | 10 U         | 10 U         | 10 U         | 10 U         |
| 1,2-DICHLOROETHANE                | 10 U         | 10 U         | 10 U         | 10 U         |
| 2-BUTANONE                        | 10 U         | 10 U         | 10 U         | 10 U         |
| 1.1.1-TRICHLOROETHANE             | 10 U         | 10 U         | 10 U         | 10 U         |
| CARBON TETRACHLORIDE              | 10 U         | 10 U         | 10 U         | 10 U         |
| BROMODICHLOROMETHANE              | 10 U         | 10 U         | 10 U         | 10 U         |
| 1,2-DICHLOROPROPANE               | 10 U         | 10 U         | 10 U         | 10 U         |
| CIS-1,3-DICHLOROPROPENE           | 10 U         | 10 U         | 10 U         | 10 U         |
| TRICHLOROETHENE                   | 630          | 320          | 110          | 10 U         |
| DIBROMOCHLOROMETHANE              | 10 U         | 10 U         | 10 U         | 10 U         |
| 1,1,2-TRICHLOROETHANE             | 10 U         | 10 U         | 10 U         | 10 U         |
| BENZENE                           | 10 U         | 10 U         | 10 U         | 10 U         |
| TRANS-1,3-DICHLOROPROPENE         | 10 U         | 10 U         | 10 U         | 10 U         |
| BROMOFORM                         | 10 U         | 10 U         | 10 U         | 10 U         |
| 4-METHYL-2-PENTANONE              | 10 U         | 10 U         | 10 U         | 10 U         |
| 2-HEXANONE                        | 10 U         | 10 U         | 10 U         | 10 U         |
| TETRACHLOROETHENE                 | 10 U         | 10 U         | 10 U         | 10 U         |
| 1,1,2,2-TETRACHLOROETHANE         | 10 U         | 10 U         | 10 U         | 10 U         |
| TOLUENE                           | 2 J          | 10 U         | 10 U         | 10 U         |
| CHLOROBENZENE                     | 10 U         | 10 U         | 10 U         | 10 U         |
| ETHYLBENZENE                      | 10 U         | 10 U         | 10 U         | 10 U         |
| STYRENE                           | 10 U         | 10 U         | 10 U         | 10 U         |
| XYLENE (TOTAL)                    | 10 U         | 10 U         | 10 U         | 10 U         |
| METHYL-TERT-BUTYL ETHER           | 5 U          | 5 U          | 5 U          | NA           |

## APPENDIX M BASE BACKGROUND DATA

## DRAFT

## EVALUATION OF METALS IN GROUNDWATER

MARINE CORPS BASE, CAMP LEJEUNE, NORTH CAROLINA

## CONTRACT TASK ORDER 0177

## JUNE 3, 1994

Prepared for:

DEPARTMENT OF THE NAVY ATLANTIC DIVISION NAVAL FACILITIES ENGINEERING COMMAND Norfolk, Virginia

Under the:

LANTDIV CLEAN Program Contract N62470-89-D-4814

Prepared by:

BAKER ENVIRONMENTAL, INC. Coraopolis, Pennsylvania

£ .

## TABLE OF CONTENTS

Page

| 1.0 | INTRODUCTION                 | 1  |
|-----|------------------------------|----|
| 2.0 | STUDY OBJECTIVES             | 1  |
| 3.0 | SCOPE OF WORK                | 2  |
| 4.0 | DATA ANALYSIS                | 3  |
| 5.0 | ANALYSIS OF STUDY OBJECTIVES | 8  |
| 6.0 | CONCLUSIONS                  | 10 |
| 7.0 | RECOMMENDATIONS              | 10 |

## FIGURES

- 1 Site Location Map
- 2 Positive Detections Above Applicable Federal and State Standards for Total and Filtered Inorganic Analytes in Groundwater-Site 2
- 3 Positive Detections of Total Metals Above Federal MCLs and NCWQS in Shallow Wells-Site 78
- 4 Positive Detections of Total Metals Above Federal MCLs and NCWQS in Intermediate Wells-Site 78
- 5 Positive Detections of Total Metals Above Federal MCLs and NCWQS in Deep Wells-Site 78

## TABLES

- 1 Summary of Total Metals in Shallow Wells
- 2 Comparison of Repeat Sampling in Shallow Wells
- 3 Summary of Dissolved Metals in Shallow Wells
- 4 Summary of Total Metals in Upgradient Wells
- 5 Comparison of Inorganic Subsurface Soil Concentrations in "Clean" and "Contaminated" Wells
- 6 Total Metals in Deep Monitoring Wells
- 7 Summary of Field Parameters in Shallow, Deep, and Supply Wells

## 1.0 INTRODUCTION

Numerous groundwater investigations have been conducted at Marine Corps Base (MCB), Camp Lejeune under the Department of the Navy (DON) Installation Restoration Program (IRP). These studies have identified elevated levels of total metals in shallow groundwater at almost every site. The degree of contamination, based on dissolved metals analysis of groundwater samples, is limited. It is believed that the presence of elevated metals are not always related to past disposal activities for several reasons, which is the basis of this study.

Currently, Records of Decision (ROD) are being prepared for Operable Units No. 1 (Sites 21, 24, and 78) and No. 5 (Site 2). Both RODs are proposing to not remediate shallow groundwater which contains elevated levels of total metals above State groundwater standards (i.e., North Carolina Water Quality Standards) and/or Federal drinking water standards (i.e., Maximum Contaminant Levels). Specifically, remediation of shallow groundwater due to elevated total metals is not cost effective, or practical, due to the following: (1) the shallow aquifer is not used for potable supply; (2) the source of metals in groundwater cannot be correlated with soil data or previous disposal practices; (3) the extent of shallow groundwater contamination (based on total metals analysis) is widespread and in many cases undefinable, since there are no apparent contaminant plumes or patterns associated with the metals; and (4) deep groundwater, which is the source of potable water, is not significantly contaminated with metals above the standards.

## 2.0 STUDY OBJECTIVES

The DON/Marine Corps initiated a study on inorganics in groundwater throughout MCB Camp Lejeune to assess whether total metals in groundwater are related to disposal practices or to other factors. The overall goal of this study is to provide information that would be used in consideration of not remediating shallow groundwater at Operable Units No. 1 and No. 5, and possibly other operable units where total metals are elevated without cause. The following study objectives were identified:

- (1) Determine whether the elevated total metals detected in the shallow aquifer are related to past disposal practices, well construction factors, sampling techniques, or suspended particulates in the samples;
- (2) Determine whether total metals in shallow groundwater are elevated throughout the region or MCB Camp Lejeune;
- (3) Determine whether there is a correlation between elevated total metals in groundwater and metals in soil; and

(4) Determine whether the concentrations of total metals (i.e., low versus high) is related to shallow and deep aquifer characteristics.

## 3.0 SCOPE OF WORK

Groundwater and soil data from a total of 21 sites were compiled as part of the overall study. Three of the 21 sites are located outside the boundary of the base. These sites include the ABC Cleaners Superfund Site, located along Route 24 in Jacksonville, and two sites located along Highway 17 (Off-site Properties No. 1 and No. 2). The two sites along Route 17 were investigated by the DON/Marine Corps as part of a real estate survey. The other 18 sites are located throughout various portions of MCB Camp Lejeune (see Figure 1).

Information from studies conducted by Baker and other consultants were obtained to evaluate metal concentrations in groundwater. The study focused on 14 metals of potential concern to human health and the environment. Some of the information was collected under the IR Program whereas other information was obtained during other investigations (e.g., ABC Cleaners RI/FS). The following data tables were then prepared to determine why total metals are generally elevated in shallow groundwater.

- Table 1 Total Metal Concentrations in Shallow Groundwater by Site
- Table 2 Summary of Repeat Sampling of Shallow Wells (Sites 2 and 78)
- Table 3 Dissolved Metal Concentrations in Shallow Groundwater by Site
- Table 4- Summary of Total Metal Concentrations in Upgradient Wells
- Table 5 Comparison of Subsurface Metal Concentrations in Uncontaminated and Contaminated Wells
- Table 6 Total Metal Concentrations in Deep Groundwater by Site
- Table 7 Summary of Field Parameters in Shallow Monitoring Wells, Deep Monitoring

   Wells, and Supply Wells
   Vells

The tables are presented at the end of this report.

## 4.0 DATA ANALYSIS

The following discussion represents an analysis of the information contained in each of the previously mentioned tables.

## Table 1 (Total Metal Concentrations in Shallow Groundwater)

All of the sites had at least one (and in most cases several) metal which exceeded either State water quality standards or Federal drinking water standards. The most frequently detected metals included chromium, lead, and manganese, which were detected at almost every site above drinking water standards. Other frequently detected metals which exceeded drinking water standards included arsenic, beryllium, cadmium, and nickel.

An analysis of the data from Table 1 indicates that elevated total metals are present in shallow groundwater at every site, including the three sites which are located off base. The two sites which did not exhibit significant contamination include the ABC Cleaners site (only chromium exceeded the standards) and Site 48 (only manganese exceeded the standards).

Total metals detected in shallow groundwater at Site 2 exceeded State and/or Federal standards in seven of the 11 shallow monitoring wells. Manganese was the most frequently detected metal (7/11). Lead (3/11), chromium (2/11), and cadmium (1/11) were also detected above the standards,, but less frequently (see Figure 2).

With the exception of Wells 78GW03 and 78GW19, total metals were detected at Site 78 (Hadnot Point Industrial Area) above Federal MCLs or NCWQS in every shallow well (see Figure 3). The extent of elevated total metals in groundwater is widespread, encompassing approximately one square mile (or approximately 660 acres) in total area. The distribution and concentration of total metals in shallow groundwater makes it virtually impossible to identify or illustrate contaminant plumes (see Figure 3).

An analysis of the total metals results indicates the following pattern. Samples exhibiting elevated levels of lead, chromium, or other contaminants of concern, also exhibited elevated levels of other metals such as aluminum, antimony, iron, and zinc. Samples which did not exhibit elevated levels of lead, chromium, or manganese also did not exhibit elevated levels of other metals. This pattern indicates that the elevated total metals are not limited to one or two contaminants, which would be the case if a lead or chromium plume in the groundwater truly existed. In other words, if a site is impacted by a particular metal due to disposal activities (say chromium for example), then other metals such as aluminum, lead, or zinc should not be consistently elevated as in the case of samples collected from the shallow aquifer at MCB Camp Lejeune. This point is depicted in the data summary tables provided in Appendix A for Sites 2 and 78. These tables were taken from the Remedial Investigation Reports for Operable Units No. 1 and No. 5. As an example, note that sample numbers 78-MW08, 78-MW10, 78-MW11, and 78-MW12 all had elevated levels of total metals when compared to samples 78-MW09-2 and 78-MW09-3. It is clear that most of the metal concentrations in a particular sample follow a consistent pattern throughout.

## Table 2 (Comparison of Repeat Sampling of Shallow Wells

Five wells from Sites 2 and 78 were randomly chosen to evaluate total metals concentrations between sampling rounds. The comparison was limited to only chromium, lead, and manganese since these contaminants were frequently detected throughout MCB Camp Lejeune. In several cases, metal concentrations were significantly different between the sampling rounds. If the shallow aquifer was impacted due to former disposal activities, a contaminant plume would be present and concentrations would not significantly deviate. The deviation in metal concentrations may indicate that sampling results are biased due to suspended particulates in the samples.

## Table 3 (Dissolved Metal Concentration in Shallow Groundwater by Site)

The data base for Table 3 was limited to 12 sites since many of the previous investigations (i.e., prior to Navy CLEAN) did not analyze for dissolved metals. Nevertheless, an analysis of the 12 sites revealed that elevated levels of dissolved metals in groundwater is limited. Manganese was the most frequently detected metal above drinking water standards (10 of 12 sites exhibited elevated levels). Lead was detected at only one site (Site 21) above drinking water standards. Chromium was also detected at only one site (Site 78) above drinking water standards. No other metal was detected above the standards.

Literature searches have indicated that manganese is a naturally occurring metal in North Carolina. Therefore, the presence of manganese may not be attributable to site-related activities (Greenhorne & O'Mara, 1992).

An analysis of the data from Table 3 clearly shows a significant reduction in metal concentrations when compared to Table 1 (total metals in shallow groundwater). One possible reason for this reduction is that suspended solids or particles are not being introduced into the analysis of the sample due to filtering. A second possibility is that the metals are not significantly present in a dissolved state in shallow groundwater due to the species of metals under site conditions. It should be noted that calcium and sodium did not exhibit such a pattern since the salts of these metals are more soluble in water. For example, the concentrations of total calcium and total sodium versus dissolved calcium and dissolved sodium are similar and are not affected by the removal of the particulates during filtering. The fact that these salts do not exhibit the pattern that the other metals show supports the possibility that total metal concentrations are influenced by particulates in the sample.

## Table 4 (Total Metals in Upgradient Shallow Wells)

The data base for Table 4 consists of groundwater results from 14 upgradient shallow monitoring wells (i.e., one well per site). These wells were installed to determine baseline groundwater quality to which on-site groundwater conditions could be compared. In some cases, the upgradient wells were located in areas where other base activities may have influenced groundwater quality.

The analysis of this data shows that manganese was the most frequently detected metal above Federal or State standards in upgradient shallow wells. Manganese was detected in 7 of the 14 upgradient wells above drinking water standards. Chromium and lead were also frequently detected above drinking water standards in upgradient (background) wells. These contaminants were detected in 6 of the 14 upgradient wells. At Site 2, samples collected from an upgradient well (2GW9) exhibited elevated levels of chromium (83µ/l), lead (27.2µ/l) and manganese (747µ/l). At Site 78, samples collected from upgradient wells 96W4 and 78GW26 did not exhibit elevated levels of total metals. The concentration range for metals detected above NC WQS and/of Federal MCLs in upgradient wells is provided below:

- beryllium (ND-46.5 µ/l)
- cadmium (ND-10 µ/l)

йĸ.

- chromium (ND-198 µ/l)
- lead (ND-78.8 µ/I)
- manganese (ND-747 µ/l)
- mercury (ND-1.6J μ/l)

Based on the above range representing upgradient wells, none of the on-site wells at Site 2 exhibited total metals above the maximum background concentrations. However, at Site 78, lead and chromium were detected above the maximum background in several on-site wells.

An analysis of the data from Table 4 indicates that shallow groundwater upgradient of some sites contains total metals above drinking water standards. A comparison of Table 4 data against Table 1 data indicates that shallow groundwater samples from upgradient wells are less contaminated than samples collected from on-site monitoring wells. However, it should be noted that the data base for Table 4 consists of only 14 wells whereas the data base for Table 1 consists of over 130 wells. Therefore, to assume that upgradient groundwater quality is better than on-site groundwater quality may not be justified due to the different data bases.

## <u>Table 5 (Comparison of Subsurface Metal Concentrations in Uncontaminated and</u> <u>Contaminated Wells)</u>

The purpose of this table is to determine whether metal concentrations in soils correlate with the elevated levels of metals in shallow groundwater.

To evaluate this, metals in subsurface soils, representing an area of groundwater contamination, were compared to metals in subsurface soil in areas which did not exhibit groundwater contamination. If the elevated total metals in shallow groundwater are present due to former disposal activities, subsurface metals in soil representing an area of groundwater contamination would be expected to be elevated or higher than metals in subsurface soil representing a non-contaminated area. This evaluation assumes that the well exhibiting elevated total metals is within a source area and that the soil sample is representative of soil impacted by metal contamination.

As shown on Table 5, there is no clear pattern or correlation which indicates that elevated total metals are due to soil contamination. Note that in many cases, the concentration of metals which represent "non-contaminated" areas are greater than the metals which represent "contaminated" areas. Also note that the metals in subsurface soil are within or close to background subsurface metal concentrations. Therefore, this supports the possibility that in many cases at MCB Camp Lejeune, the elevated total metals in shallow groundwater cannot be attributable to a source or to past disposal practices.

## Table 6 (Total Metals in Deep Monitoring Wells)

Table 6 presents total metal concentrations in deep groundwater for each site. The data base is limited to only 8 sites. Metal concentrations in supply wells were also included for comparison purposes.

As shown on Table 6, total metals in deep groundwater are below drinking water standards with a few exceptions. Arsenic and cadmium were detected above the standards in one deep monitoring well at Site 78 (see Figure 4). Manganese was detected in deep groundwater at three sites and a few of the supply wells. Lead was detected in one supply well at 16 µ/l, which is slightly above the drinking water standard of 15 µ/l.

Elevated total metals are not widespread in deep groundwater for two possible reasons. First, most metals are not very mobile in the environment. Second, deep groundwater samples may not have significant amounts of suspended particulates due to different geologic conditions. Soils in the deeper aquifer are more compacted and consist primarily of calcareous sands, clays, and limestone fragments. Soils in the shallow aquifer are loosely compacted and consist primarily of fine-grained sands, silts, and clays. This classification may support the possibility that suspended solids are collected during sampling, thereby influencing the analysis for total metals.

## Table 7 (Summary of Field Parameters in Shallow, Deep, and Supply Wells)

Table 7 provides a range of pH and specific conductivity values representative of shallow and deep groundwater. In general, lower pH values were noted more often in shallow wells than in deep wells (including the supply wells). This condition may influence the leachability and speciation of metals in groundwater.

Deep groundwater usually exhibited higher specific conductivity values. High specific conductivity values are representative of high dissolved conditions. The fact that deep groundwater generally exhibited higher specific conductivity values indicates that most of the metals, if present, are in a dissolved state. The high specific conductivity values could also indicate less suspended particulates due to the geologic conditions of the deep aquifer. The lower specific conductivity values observed in shallow wells indicates that the metals in the shallow aquifer are not in a dissolved state. This also supports the possibility that suspended particulates in the shallow aquifer are influencing the analysis of total metals.

## 5.0 ANALYSIS OF THE STUDY OBJECTIVES

Each of the objectives identified for this study are analyzed below based on the information collected.

Objective No. 1 (Determine whether the elevated total metals in the shallow aquifer are related to past disposal practices, well construction factors, sampling techniques, or suspended particulates in the samples)

Based on the analysis of information provided in Tables 1 through 7 and Appendix A, it appears that suspended particulates in groundwater samples could influence the concentration of total metals in groundwater. Well construction factors and sampling techniques are probably not a significant factor since the data base is representative of data obtained by Baker, ESE (Site 28 and 30), Roy F. Weston (ABC Cleaners), and Halliburton NUS (Site 7). No particular pattern was noted between sites which Baker obtained the samples versus sites in which other consultants obtained the data. Sampling methods were also considered. For Sites 63 and 65 for example, samples were collected with a bailer. At Sites 2 and 78, samples were collected with a low flow pump. All four sites exhibited elevated levels of total metals in groundwater samples. In addition, due to the fact that deep groundwater quality is not significantly impacted with metals indicates that well construction or sampling techniques are probably not factors related to elevated total metals in groundwater.

With respect to past disposal practices, Table 5 clearly shows that soil concentrations do not correlate with elevated total metals in groundwater. Based on this analysis, and on many of the sites previously investigated, the source of total metals in groundwater cannot be attributable to soil contamination or disposal practices in many cases. This is based on both the history of the site as well as the analytical soil results. In some cases, total metals were detected at elevated levels even when the site history did not correlate with the contaminants found. For example, Sites 2 and 21 have a history of pesticide storage and handling, and there are no known disposal areas (i.e., buried debris) within the site boundary. Nevertheless, both of these sites exhibited several metals above drinking water standards that would not be expected to be present at high concentrations based on the historical use of the site. These metals included lead, chromium, beryllium, cadmium, and manganese.

## Objective No. 2 (Determine whether total metals in shallow groundwater are elevated throughout the region or MCB Camp Lejeune)

Based on groundwater data obtained from both upgradient wells and off base wells, total metals were detected above drinking water standards in shallow groundwater in areas that would not be influenced by former disposal activities at the sites. Given that some of the upgradient wells are contaminated, it is apparent that total metals in shallow groundwater are elevated in certain areas of the base outside of the influence of site-related disposal activities. However, it is unknown whether the shallow aquifer upgradient of the sites is contaminated due to other base-related activities or whether the levels in groundwater samples are also elevated due to the influence of suspended fines in the samples.

# Objective No. 3 (Determine whether there is a correlation between elevated total metals in groundwater and metals in soil)

An evaluation of the data presented in Table 5 shows that metals in soil samples collected in areas of groundwater contamination are not elevated when compared to metals in soil samples collected in areas that did not exhibit groundwater contamination. This supports the possibility that in many cases, elevated levels of total metals in shallow groundwater are not related to the disposal history at the site. As previously mentioned, sites which did not exhibit soil contamination (when compared to background soil levels) or did not have a history of disposal indicative of metals contamination still exhibited elevated levels of total metals in groundwater. Since there is no apparent correlation between metals in soil and total metals in groundwater, then the possibility exists that the elevated total metals in groundwater are biased high due to suspended particulates.

99

# Objective No. 4 (Determine whether the concentrations of total metals in groundwater is related to shallow and deep aquifer characteristics)

There is some evidence that the geologic conditions of the shallow and deep aquifers influence the amount of total metals detected in groundwater samples. The fact that the deep aquifer generally exhibited higher specific conductivity values indicates that there is more dissolved constituents in the deep aquifer when compared to the shallow aquifer. This was evident when comparing Table 1 (total metals in shallow groundwater) to Table 6 (total metals in deep groundwater). Table 6 did not indicate significant levels of total metals in deep groundwater throughout MCB Camp Lejeune.

The geologic conditions of the shallow aquifer would tend to result in samples that may contain suspended particulates. The suspended particulates could influence the total metals concentrations in the samples.

## 6.0 CONCLUSIONS

- 1. Elevated levels of total metals in the shallow aquifer are probably influenced to some degree by the geologic conditions of the site.
- 2. There is no correlation between metal levels in soil and total metals in groundwater. Therefore, elevated total metals in groundwater cannot be attributable to soil contamination of past disposal practices.
- 3. Elevated levels of total metals in the shallow aquifer may be biased high due to suspended particulates in the samples.
- 4. Dissolved metals in groundwater were generally below Federal MCLs and NC WQS and therefore, do not present a significant problem at MCB Camp Lejeune.
- 5. Total and dissolved metal concentrations in the Castle Hayne aquifer were generally below drinking water standards and therefore, do not present a significant problem at MCB Camp Lejeune.
- 6. The presence of manganese in shallow and deep groundwater may be due to naturally occurring geologic conditions.

## 7.0 RECOMMENDATIONS

- 1. Remediation of total metals in the shallow aquifer at Operable Units 1 and 5 is not recommended based on the following:
  - Elevated metals in groundwater at both operable units does not appear to be related to soil contamination or past disposal practices;
  - The distribution of total metals in groundwater is not characteristic of a plume that would be present due to a source of contamination;
  - Remediation of total metals would not be practical from an engineering or cost standpoint; and
  - Currently, there is no human or environmental exposure to shallow groundwater.
- 2. Additional background wells should be installed at all sites in order to provide a baseline for comparing on-site groundwater quality.

- 9

Tables

## TABLE 1 TOTAL METALS BY SITE SHALLOW MONITORING WELLS MCB, CAMP LEJEUNE, NORTH CAROLINA

÷.

| Site Number<br>Units | NC\YQ\$<br>#E/L | FEDERAL<br>NCL<br>ug/L | Slie 1<br>wg/L, | Site 2<br>ug/L | Site 6<br>ug/L | Site 7<br>ug/L | Slie 9<br>wert | Site 2]<br>wg/L | Sile 24<br>ug/L | Site 28<br>wg/L, | Sile 30<br>ug/L | Site 41<br>ug/L | Site 43<br>wg/L | Site 44<br>ug/L |
|----------------------|-----------------|------------------------|-----------------|----------------|----------------|----------------|----------------|-----------------|-----------------|------------------|-----------------|-----------------|-----------------|-----------------|
| Arsenic              | 30              | 30                     | 7.2 • 57.4      | 2.2 - 23.6     | ND - 23.3      | ND+43,43       | ND             | ND - 101        | ND-1163         | 5.4 - 132        | 6.4 - 123       | 2.4 - 36.3      | ND - 23.4       | ND - 570        |
| Barium               | 2000            | 2000                   | 335 - 833       | 46 - 1420      | ND - 1020      | 427 - 641      | ND - 1060      | ND - 647        | ND + 1120       | 78.8 - 576       | 60.1 - 396      | 55.2 - 999      | 220 - 743       | 4 313 - 3180    |
| Bentlivm             | NE              | 4                      | 2.7 1 - 43.4    | 1+3            | ND . 7.5       | ND - 10,31     | ND             | ND-1            | ND - 19         | ND+1.2J          | ND - 2.4        | 0.80 + 42.8     | 1.3 - 4.2       | 1.4 - 36.6      |
| Cadmium              | 5               | 3                      | ND - 12.9       | 7              | ND             | ND             | ND             | ND              | ND - 12         | 3.31 - 17.31     | ND - 10.7J      | 3.2 - 110       | ND - 6.9        | ND - 32         |
| Calcium              | NA              | NA                     | EE50 - 726000   | 5710 - 450000  | 5430 - 64900   | 5050 - 51300   | 16100 - 90700  | 61303 - 630003  | ND - 151000     | 20200 - 160000   | 1730 - 11900    | 8750 - 828000   | 10300 - 91900   | 2430 - 191000   |
| Chromium             | 30              | 100                    | 172 - 627       | 11 - 117       | ND - 201       | 47.8 - 220     | ND-214         | ND-348J         | 19-316          | 9.01 - 140       | 42.8 - 106J     | 10.5 - 244      | 161 - 249       | 126 - 195       |
| Copper               | 1000            | 1300                   | 44.6 - 117      | 3 - 23         | ND - 175       | 17.7 - 36.4    | ND - 39.7      | ND-14           | ND - 52         | 18.83 - 75.4     | 15.8 - 42.5     | 16.3 - 1030     | 64.2 - 104      | 28.6 - 313      |
| Lead                 | 15              | 15                     | 40.83 - 1763    | 2.7 - 44.8     | ND - 200       | 23 - 37.3      | ND - 127       | ND - 2000J      | 5.1 - 89        | 20.3J • 234J     | 7.73 - 1153     | 4.8 - 9340      | 16.3 - 28.8     | 13.8 - 508      |
| Manganese            | 50              | 50 (1)                 | 123 - 1720      | 21 - 190       | ND - 362       | 56.9 - 220     | ND-91.3        | 59 - 276)       | 29 - 518        | 82.2 - 304       | 78.5 - 578      | 56.6 - 2110     | 72.6 - 297      | \$1.1730        |
| Mercury              | 1.1             | 2                      | ND+1.2J         | ND             | ND46           | 0.2 - 0.36     | ND - 1.4       | ND-2.4J         | ND + 3.2        | ND - 1.4J        | 0.223 - 0.93    | 0.13 - 0.92     | ND - 0.24       | ND - 1.1        |
| Nickel               | 100             | 100 .                  | 28.5 - 426      | ND             | ND - 41.9      | ND             | ND             | ND + 123        | ND - 140        | ND - 59.8        | 17.12 - 52.63   | 28.8 - 137      | 20.5 - 143      | 21.9 - 486      |
| Sodium               | NA              | NA                     | 9090 - 19000    | ND - 103000    | 1110 - 68700   | 7040 - 156000  | 1390-4170      | 7950 - 15700    | 5230 - 19200    | 9480 - 74700     | 5320 - \$100    | 2080 - 40200    | 9160 - 22100    | 4060 - 12600    |
| Vanadium             | NE              | NE                     | 214+640         | 9-184          | ND - 330       | 37.8 - 423     | ND - 175       | ND+419          | ND - 408        | 6.1 - 164        | 57 - 101        | 20.4 - 244      | 122 - 233       | 184 - 759       |
| Zine                 | 2100            | 5000 (1)               | ND-1110         | 6 - 146        | ND - 1620      | \$3.6-133      | ND-118         | 273 - 4873      | 20-650          | ND               | 79.2 - 104      | 25.7 - 5120     | 19 3 - 6613     | 87.3 - 28001    |

| Site Number<br>Units | Site 48<br>ug/L, | She 63<br>ug/L | Site 68<br>ug/L | Site 69<br>ug/L | \$ite 78<br>wg/L | Site 82<br>ug/L | ABC<br>Cleaners<br>ug/L | Offike<br>Property #1<br>ug/L | Offlite<br>Property #2<br>ug/L |
|----------------------|------------------|----------------|-----------------|-----------------|------------------|-----------------|-------------------------|-------------------------------|--------------------------------|
| Arsenie              | ND               | ND - 13.4      | ND - 308        | 2.9 - 29.6      | ND - 405J        | ND • 67.8       | ND - 12                 | 10.3 - 160                    | ND                             |
| 0arium               | 18-51.3          | 56.1 - 5410    | 105 - 638       | 46.5 - 850      | ND - 1250        | ND - 340        | 35-220                  | ND - 461                      | ND                             |
| Bentlium             | ND               | ND - 3.1       | ND              | 1.3 - 10.6      | ND - 19          | ND              | NA                      | ND - 8.5                      | ND                             |
| Cadmium .            | 2.2 . 3.3        | ND             | ND              | 2.4 - 11.4      | ND-21            | ND              | NA                      | ND                            | ND                             |
| Calcium              | 30600 + 115000   | 2830 - 24300   | 33300 - 181000  | 2010 - 31700    | ND - 642000      | 6320 - 60200    | 790 - 16000             | ND - 22800                    | ND - 5200                      |
| Chromium             | 5.8 - 17.5       | 4.4 - 134      | 50.1 - 364      | 15.1 - 159      | ND-852J          | ND-174          | ND - 57                 | 52.8 - 636                    | ND - 94                        |
| Copper               | 3.1 + 13.5       | 10.7 - 126     | 28.2 - 127      | 16.2 - 70.8     | ND - 699         | ND + 29.3       | · ND • 19               | ND - 140                      | ND                             |
| Lead                 | ND               | 4.3 1 - 369    | 19.1 - 132      | 7.8 - 188       | ND - 360J        | ND - 19         | ND + 10                 | 12.3 - 345                    | 6.3 - 62.3 '                   |
| Manganese            | 38.1-585         | 50.3 - 1020    | 56.2 . 474      | 13.0 - 912      | * 26-714         | 26.9 - 283      | 4-44                    | 56 - 973                      | ND - 60.1                      |
| Mercury              | 0.04 - 0.09      | ND - 0.20      | ND-0.29         | 0.10 - 0.94     | ND-1.5           | ND-0.66         | NA                      | ND                            | ' ND                           |
| Nickel               | ND               | 19.8 - 54.2    | 19.4 - \$4.3    | 13.6 - 99.8     | ND-234           | ND-34.6         | ND - 77                 | 40.2 - 310                    | ND                             |
| Sodium               | 3750 - 8760      | 3150 - 7100    | 3850 - 11700    | 4790 - 41300    | ND - 42500       | 5670 - 36500    | 5800 - 33000            | ND - 9390                     | ND - 7630                      |
| Vanadium             | 3.4 - 12.8       | 7.9 - 163      | 59.8 - 433      | 17.3 - 210      | ND - 1700        | ND-156          | ND - 45                 | 70 - 739                      | ND - 64.7                      |
|                      | ND-30.3          | 51.51-11101    | 1483 - 4063     | 36.2 - 12100    | 61-9673          | ND - 204        | 14-220                  | ND - 736                      | ND-40.1                        |

1

- OTES: - Value is estimated. B - Value is estimated below the CRDL, but greater than the IDL.
- NE Not established. NA Not analyzed. ND Not detected.

NCWQS - North Caroline Water Quality Standard NCL - Maximum Contaminant Lavel

- 1) Secondary MCL

TABLEI.XL8/Page 1 of 1

## TABLE 2 COMPARISON OF REPEAT SAMPLING OF SHALLOW WELLS MCB, CAMP LEJEUNE, NORTH CAROLINA

| Well 20W01 |               | 20       | W03    | 20     | W06    | 20     | W08    | 2GW09  |        |        |
|------------|---------------|----------|--------|--------|--------|--------|--------|--------|--------|--------|
| Well       | 5/1993        | 3/1994   | 5/1993 | 3/1994 | 5/1993 | 3/1994 | 5/1993 | 3/1994 | 5/1993 | 3/1994 |
| Date       | 3/1973        |          |        | ND     | 15     | ND     | ND     | ND     | 25     | 83     |
| Chromium   | 18            | ND<br>ND | 3.5 J  | ND     | 6.7 3  | ND     | ND     | 3.4    | 27.2 5 | 23.6   |
| Lead       | <u>15.5 J</u> | 47       | 21     | ND     | 79     | 140    | 53     | 415    | 290    | 747    |

|           |        | 11204  | 710    | W08 •  | 780    | W15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 78G    | W16    | 780W19 |        |  |
|-----------|--------|--------|--------|--------|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|--------|--------|--------|--|
| Well      |        | W05    | 1/1991 | 4/1994 | 1/1991 | 4/1994                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1/1991 | 4/1994 | 1/1991 | 4/1994 |  |
| Date      | 1/1991 |        |        |        |        | 215 J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 209    | 353 J  | 13.8   | ND     |  |
| Chromium  | ND     | 17 J   | 91.8   | 491 J  | 21.4   | 53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 100    | 224    | 31.7   | 8.3    |  |
| Lead      | 13.6   | 13.1 J | 54,1   | 131 J  | 16.6   | and the second se | 98.3   | 150    | 79     | 26     |  |
| Manganese | 162    | 161 J  | 46.5   | 213 J  | 18.3   | 115                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 70.5   |        |        |        |  |

•

۰.

NOTES: J - Value is estimated..

ND - Not detected,

Tyel of 1 TABL'

### TABLE 3 DISSOLVED METALS BY SITE SHALLOW MONITORING WELLS MCB, CAMP LEJEUNE, NORTH CAROLINA

| Sile Number<br>Unite | NCWQS<br>48/L   | FEDERAL<br>MCL<br>ug/L | Site 1<br>ug/L   | Site 2<br>vg/L  | Site 6<br>vg/L  | Ske 7<br>vg/L    | Site 9<br>ug/L          | SHe 21<br>ng/L                  | Site 24<br>=g/L,              | Sile 28<br>ug/L                             | Sile 30<br>ng/L | 811e 41<br>ug/L      | Stie 43<br>ug/L | Stie 44<br>ug/L |  |
|----------------------|-----------------|------------------------|------------------|-----------------|-----------------|------------------|-------------------------|---------------------------------|-------------------------------|---------------------------------------------|-----------------|----------------------|-----------------|-----------------|--|
| Amenic               | 50              | 50                     | NA               | 2.2 - 7.1       | ND              | NA               | ND                      | ND - 10.6                       | ND - 163                      | NA                                          | NA              | 2.2 - 4.7            | NA              | NA              |  |
| Barium               | 2000            | 2000                   | NA               | 25 - 149        | ND              | NA               | סא                      | ND                              | ND                            | NA                                          | NA              | 12.4 - 451           | NA              | NA              |  |
| Beryllium            | NE              | 4                      | NA               | 1               | ND              | NA               | ND                      | ND                              | DN                            | NA                                          | NA              | 0.80+3.2             | NA              | NA              |  |
| Cadmium              | \$              | 5                      | NA               | ND              | ND              | NA               | ND                      | ND-5                            | ND                            | NA                                          | NA              | 3.2 - 4.2            | NA              | NA              |  |
| Calcium              | NA              | NA                     | NA               | 5800 - 441000   | 6230 - 57400    | NA_              | 15800 - 82400           | 35900                           | ND-113000                     | NA                                          | NA              | 4710 - 138000        | NA              | NA              |  |
| Chromium             | 50              | 100                    | NA               | 10              | ND              | NA               | ND ·                    | ND                              | D                             | NA                                          | NA              | 13-9.6               | NA              | NA              |  |
| Copper               | · 1000          | 1300                   | NA               | 2-9             | ND              | NA               | ND                      | ND                              | ND                            | NA                                          | NA              | 16.3 - 23.9          | NA ·            | NA              |  |
| Lord                 | 15              | 15                     | NA               | 2.1             | ND              | NA               | ND                      | ND - 94                         | ND                            | NA                                          | NA              | 1.0                  | NA              | NA              |  |
| Manganese            | 50              | 50 (1)                 | NA               | 17-129          | ND-92.7         | NA               | ND                      | 40 - 134                        | ND - 320                      | NA                                          | NA              | 7.1 - 521            | NA              | NA              |  |
| Mercury              | 1.1             | 2                      | NA               | ND              | ND              | NA               | ND                      | ND                              | ND-0.5                        | NA                                          | NA              | 0.13 - 0.20          | NA              | NA              |  |
| Nickel               | 100             | 100                    | NA               | ND_             | ND              | NA               | ND                      | ND                              | ND - 37                       | NA_                                         | NA              | 28.8 - 31.2          | NA              | NA              |  |
| Sodiem               | · NA            | NA                     | NA               | ND-101000       | 1420 - 70500    | NA               | 1280 - 3860             | 16200                           | ND-183000                     | NA_                                         | NA              | 2500 - 34200         | NA              | NA              |  |
| Vanadium             | NE              | NE                     | NA               | 43              | ND              | NA               | ND                      | ND                              | . ND                          | NA                                          | NA              | 20.4                 | NA              | NA              |  |
| Zint                 | 2100            | 5000 (1)               | NA               | 8-35            | ND-350          | NA               | ND                      | 6B - 50                         | ND + 437                      | NA                                          | NA              | 10.6 - 125           | NA              | NA              |  |
| Site Number<br>Units | Site 48<br>Bg/L | Site 63<br>ug/L        | Sile 65<br>ug/L, | Site 69<br>ug/L | Sile 78<br>ug/L | Site 52<br>ug/L, | ABC<br>Cleaners<br>ug/L | Offilite<br>Property #1<br>ug/L | Offike<br>Property #2<br>=e/L |                                             |                 |                      |                 |                 |  |
| Anenic               | סא              | NA                     | NA               | 2.9             | ND-21.6         | ND               | NA                      | ND-18.8                         | ND                            | NOTES                                       |                 |                      |                 |                 |  |
| Barium .             | 16.8-27.6       | NA                     | NA               | 13.7 - 35.8     | ND              | ND               | NA                      | ND                              | DND                           |                                             | e le ortimated  |                      | And manda d     |                 |  |
| Beryllium            | ND              | NA                     | NA               | 1.3             | ND              | ND               | NA                      | DN                              | ND                            |                                             |                 | ed below the CRDL.   | ° one Barres A  | NUT THE IDL     |  |
| Cadmium              | ND-3.1          | NA                     | NA               | 2.4             | ND              | ND               | NA                      | ND                              | DM_                           | NE - Not antablished.<br>NA - Not analyzed. |                 |                      |                 |                 |  |
| Calcium              | 72600 - 10700   | NA                     | NA               | 764 - 10600     | ND - 296000     | 15200 - 52500    | NA                      | ND-7710                         | ND                            |                                             | A detected.     |                      |                 |                 |  |
| Chromiura            | ND              | NA                     | NA               | 7.2             | ND-59           | ND               | NA                      | ND-30.0                         | ND                            |                                             |                 | roline Water Quality | y Standard      |                 |  |
| Copper               | 2.6 . 7.6       | NA                     | NA               | 16.2            | ND - 121        | ND               | NA.                     | ND-10.7                         | DK                            |                                             |                 | ontaminant Level     |                 |                 |  |
|                      | ND              | NA                     | NA               | 1               | ND - 17.2       | ND               | NA                      | ND - 15.8                       | D ND                          | ] (i)• <b>8</b> ⊷                           | ondary MCI      | •                    |                 |                 |  |

ND - 17.2

ND - 152

ND - 0.6

ND

ND - 42200

ND

ND+5t

ND

21 - 127

ND

ND

\$980 - 16000

ND

ND-119

NA

NA

NA

NA

NA

NA

NA

.

ND-15.8

ND - 63.8

ND

ND

ND-9540

ND

ND - 468

ND

ND-213

ND

ND

ND - 6750

ND

ND - 222

TABLED XL8/Pure 1 + [1

\$

4

ND

39.7 - 539

0.05 - 0.09

ND

6430 - 2920

ND

ND

14.5

and the second

Les

Manganese

Mercury

Nicket

Sodium

Zint

Vanadium

NA

1

8.5 - 139

0.1

13.6

5170 - 41100

16.6

7.0 . 7670

## TABLE 4 SUMMARY OF TOTAL METALS IN UPGRADIENT WELLS SHALLOW MONITORING WELLS MCB, CAMP LEJEUNE, NORTH CAROLINA

.

|             | <del></del> , |         | Upgradient<br>of Sile | Upgrødlent<br>of Ska | Upgrodient<br>of Sile | Upgradient<br>of Site | Upgradient<br>+(Sile | Upgradient<br>of Sites | Upgradient<br>of Site | Upgradient<br>of Sta | Upgradient<br>of Site                     | Upgradient<br>of Site | Upgradient<br>of Site | Upgradient<br>of Site |
|-------------|---------------|---------|-----------------------|----------------------|-----------------------|-----------------------|----------------------|------------------------|-----------------------|----------------------|-------------------------------------------|-----------------------|-----------------------|-----------------------|
|             | •             | FEDERAL | 1                     | 2                    | 6                     | 1                     | . ,                  | 21 and 78              | 24                    | 28                   | 30                                        | 41                    | 43                    | 4                     |
| Well Number | NCWQS         | MCL     | 10004                 | 2GW09                | 6BP6S                 | 70103                 | 9GW48                | 78GW26                 | 14GW07                | 28GW04               |                                           | 410W05                |                       |                       |
| Unite       | ug/L          | *g/L    | ug/L                  | ug/L                 | ug/L                  | ug/L                  | ¥1/L                 | wg/L                   | ug/L                  | wer.                 | <br>                                      | eg/L                  |                       |                       |
| Amenie      | 50            | 50      | 17.8 3                | 12.9                 | ND                    | ND                    | ND                   | DN                     | 3.7 J                 | 7.4 J                |                                           | 13.1                  | n                     |                       |
| Barlura     | 2000          | 2000    | 542                   | 328                  | 257                   | 428                   | 71.3                 | ND                     | ND                    | 576                  | te la | \$5.7                 |                       | L ' '' - '            |
| Beryllian   | NE            | 4       | 3.2 /                 | 3                    | ND_                   | ND                    | ND                   | ND                     | סא                    | 9.3 J                |                                           | 1.6                   |                       | - s -                 |
| Cadnium     | 5             | 5       | ND                    | ND                   | ND                    | DK                    | ND                   | not reported           | ND                    | 131                  |                                           | 10                    |                       | _3_                   |
| Chromium    | 50            | 100     | 193                   | 75                   | 198                   | 124                   | ND                   | 13                     | 37                    | 122                  | <u> </u>                                  | 34.4                  | <u> </u>              |                       |
| Copper      | 1000          | 1300    | 64.8                  | 25                   | 35.6                  | 36.4                  | ND                   | ND                     | ND                    | 20.73                | <u> </u>                                  | 27                    | <u> </u>              | - ē -                 |
| Land        | 15            | 15      | 78.1 J                | 27.2                 | 64.4                  | 30.3 J                | ND                   | ,                      | 11.4                  | 22.43                | L_ 🗟 _                                    | 23.7                  | — ë –                 | - 5 -                 |
| Manganese   | 50            | 50 (1)  | 202                   | 747                  | 24.5                  | 56.93                 | ND                   | ND                     | 39                    | 206                  | L 6 -                                     | 203                   | L- 6 -                | L 6, _                |
| Mercury     | 1.1           | 2       | 1.63                  | ND                   | ND                    | 0.36                  | ND                   | ND                     | ND                    | ND                   | L_ 2 _                                    | 0.16                  | <u>a</u>              |                       |
| Nickel      | 100           | 100     | 51.6                  | ND                   | ND                    | ND                    | · ND                 | ND                     | ND                    | 39.8                 | L_ 2 _                                    | 38                    | <u> </u>              | - 2 -                 |
| Vanadium    | NE            | NE      | 214                   | 16                   | 209                   | 152                   | ND                   | 149                    | 64                    | 85.3                 |                                           |                       | - 2 -                 | _ 2 _                 |
| Zine        | 2100          | 5000(1) | ND                    | 103                  | \$6.6                 | 26.4 3                | ND                   | 68,1                   | 41                    | ND                   |                                           | 172                   | I                     | l                     |

| Well Number<br>Units | Upgradient<br>of Site<br>48<br>48GW1<br>ug/L | Upgradient<br>of Sile<br>63 | Upgradient<br>of Site<br>65 | Upgradient<br>of Site<br>69<br>69GW07<br>ug/L | Upgradient<br>of Sile<br>78<br>9GW04<br>ug/L | Upgradient<br>of Sile<br>S2<br>&MWJS<br>ug/L | Upgradient<br>of ABC<br>Cleaners<br>MW-501<br>ug/L | Upgradient<br>of Offilie<br>Property #1 | Upgradient<br>of OfDito<br>Property #2 |     |
|----------------------|----------------------------------------------|-----------------------------|-----------------------------|-----------------------------------------------|----------------------------------------------|----------------------------------------------|----------------------------------------------------|-----------------------------------------|----------------------------------------|-----|
| Arsenie              | ND                                           |                             |                             | 2.9                                           | ND                                           | ND ·                                         | ND                                                 |                                         |                                        | ],  |
| Derimm               | 29.4 J                                       | <u> </u>                    |                             | 46.5                                          | ND                                           | ND                                           | 35                                                 |                                         | <u> </u>                               | jj  |
| Deryllian            | ND                                           |                             |                             | 1.3                                           | ND                                           | ND                                           | NA                                                 | Si                                      |                                        | 1 ! |
| Cadmium              | 2.53                                         | - 7                         | 7                           | 2.4                                           | ND                                           | ND                                           | NA                                                 | L 3 _                                   | 5_                                     | ];  |
| Chromian             | ND                                           | T ≩ T                       | T ≱ T                       | 15.8                                          | ND                                           | ND                                           | ND                                                 | ≽ _                                     | _ ≩ _                                  | 1;  |
| Copper               | ND                                           |                             | <b>T</b> # <u></u>          | 16.2                                          | DN                                           | ND                                           | ND                                                 | L_ #                                    | — <u>i</u> –                           | ı ا |
| Load                 | ND                                           |                             | <u></u>                     | 7.8                                           | ND                                           | ND                                           | 3                                                  |                                         |                                        | 13  |
| Manganese            | 70.6                                         |                             | 2                           | 13                                            | ND                                           | ND                                           | 10                                                 | Ľ Č                                     | L_ č _                                 | ] ( |
| Mercury              | ND                                           | · & -                       |                             | 0.1                                           | ND                                           | ND                                           | NA                                                 | - 8 -                                   |                                        | J   |
| Nickej               | ND                                           | 5-6-1                       | Τ 5 -                       | 13.6                                          | ND                                           | ND                                           | ND                                                 | p                                       | <u> </u>                               | 1   |
| Vanadium             | 3.41                                         | <u> </u>                    | <b>T</b> ² -                | 17.3                                          | ND                                           | ND                                           | ,                                                  | - 2 -                                   |                                        |     |
| Zine                 | ND                                           | <u> </u>                    | T 4 -                       | 36.2                                          | ND                                           | ND                                           | 2)                                                 | <u> </u>                                |                                        | 1   |

.

NOTEs: J - Value is estimated.

J - Value is antimated. JB - Value is estimated below the CRDL, but greater than the IDL. NE - Not established. NA - Not established. ND - Not detected.

NCWQS - North Carolina Water Quality Standard MCL - Maximum Contaminent Lovel (1) - Steondary MCL

TABLEAULS/Page 1 of 1

N

•

\$

| TABLE 5                                                                                    |
|--------------------------------------------------------------------------------------------|
| COMPARISON OF INORGANIC SUBSURFACE SOIL CONCENTRATIONS IN "CLEAN" AND "CONTAMINATED" WELLS |
| MCB, CAMP LEJEUNE, NORTH CAROLINA                                                          |

|                    | Camp Lejeune Background |         | Sile 1         |           | Bite 2         | 1           | Site 6              |          | Site 7         |          | \$160 9                                                                                                        | She 11     |                |
|--------------------|-------------------------|---------|----------------|-----------|----------------|-------------|---------------------|----------|----------------|----------|----------------------------------------------------------------------------------------------------------------|------------|----------------|
|                    | Subourface Soll Data    | *Clean* | "Contaminated" | *Clean*   | "Contaminated" | "Clean"     | "Contaminated"      | "Clean"  | "Contaminated" | "Clean"  | "Contaminated"                                                                                                 | "Clean"    | "Conteminated" |
| Units              | merke                   | me/ke   | mg/kg          | mg/kg     | mg/kg          | merke       | mg/kg               | mg/kg    | merke          | mg/kg    | mg/kg                                                                                                          | mg/kg      | mg/kg          |
| Well Number        |                         | -       | *              | 1GW07     | 2GW09          | 60W18       | 6GW15               | 70103    | 7GW02          | 9GW5     | 9GW1                                                                                                           | 21GW03     | 21GW02         |
| Soll Sample Number |                         | -       |                | 2-GW07-01 | 2 · GW07-02    | 6-GW18-0303 | 6-GW15-03           | GW0J-002 | GW02-7595      | 9-GW5-03 | 9-5B35-03                                                                                                      | 21-GW03    | -21-GW02       |
| ie                 | 0.03 • 0.47             | NA      | NA             | 1.71      | ND             | ND          | ND                  | 1.5      | ND             | סא       | סא                                                                                                             | ND         | 0.55 J         |
| n                  | 2 - 11                  | NA      | NA             | 12.5 J    | ND             | · ND        | ND                  | 6.6      | 71             | ND       | ND                                                                                                             | ND         | 4.43           |
| iura               | 0.03 - 0.23             | NA      | NA             | ND        | ND             | DM          | ND                  | DK       |                | ND       | DM                                                                                                             | DM         |                |
| ium                | 0.17 - 1.2              | NA      | NA             | ND        | ND             | DM          | ND                  | 1.3      | - 4.5          | ND       | DN                                                                                                             | סא         | סא             |
| nium               | 2-9                     | NA      | NA             | 10.93     | 4.6            | ND          | Les Differences and | 5,2      | Sand Standard  | ND       | Constant and the second se | 15.2       |                |
| t                  | 0,47 - 2                | NA      | NA             | 0.971     | ND             | ND          | ND                  | ND       | ND             | DM       | ND                                                                                                             | ND         | סא             |
|                    | 1 - 12                  | NA      | NA .           | £Ĵ        | 4.3            | 121         |                     | 2.5      | 34,4           | 1.6      | 1.1.1.10041-15 <sup>1</sup> 24                                                                                 |            | Section 1      |
| Linese             | 0,40 + 8                | NA      | NA             | 433       | 4.1            | ND          | 1.\$ B              | 3        | 13. 991.5.1.   | ND       | 3.73                                                                                                           | 15 C&55 14 | I States       |
| ΥΥ                 | 0.01 - 0.11             | NA      | NA             | 0.3 J     | ND             | שא          | ND                  | 10.12    | 0.48           | סא       |                                                                                                                | ND         | סא             |
| 1                  | 0.70 - 5.0              | NA      | NA             | שא        | ND             | סא          | ND                  | 3.4      | 11.4           | ND       | ND                                                                                                             | סא         | סא             |
| lium               | 9,75 - 13               | NA      | NA             | 13.87     | ND             | ND          | 2.9 B               | 5.5      | 4.5            | ND       | סא                                                                                                             | 15.5       | 4.4.3          |
|                    | 9.40 + 12               | NA      | NA             | ND        | ND             | ND          | ND                  | 13       | ND             | ND       | 6.1.7                                                                                                          | 5.7        | 37             |

NOTES

. .

i

4 .

i.

Staded area indicates bergarde which exceeded a MCL and/or NCWQS in groundwater sample. J - Value is artimated. JB - Value is antimated below the CRDC, but greater than the IDL.

NA - No evailable wells to compare OR compound was not analyzed.

ND - Not detected.

NCWQS - North Carolina Water Quality Standard MCL - Muslimum Contaminant Level (1) - Secondary MCL

N.,

| TABLE 5                                                                                   |   |
|-------------------------------------------------------------------------------------------|---|
| COMPARISON OF INORGANIC SUBSURFACE SOIL CONCENTRATIONS IN "CLEAN" AND "CONTAMINATED" WELI | S |
| MCB, CAMP LEJEUNE, NORTH CAROLINA                                                         |   |

| 1                  |         | Sile 24          |         | Sile 28        |         | Sile JQ        | Sit        | e 41           | 1           | lite 43                 | 8                 | lle 44                   |
|--------------------|---------|------------------|---------|----------------|---------|----------------|------------|----------------|-------------|-------------------------|-------------------|--------------------------|
|                    | "Clean" | "Contaminated"   | "Clean" | "Contaminated" | "Clean" | "Contaminated" | "Ciena"    | "Contaminated" | "Clean"     | *Contambuted*           | "Clean"           | "Contaminated"           |
| Units              | mg/kg_  | mg/kg            | mg/kg   | me/ke          | merke   | mg/kg          | mg/kg      | ang/kg         | mg/kg       | melke                   | merke             | metre                    |
| Well Number        | 24GW10  | 24GW02           | -       | 1              | ł.      |                | 410W04     | 41-GW11        | 43GW01      | 43GW02                  | 44GW02            | 44GW01                   |
| Soll Sample Number | 24-QW10 | 24-8DA-8809      | -       | -              | 1       | -              | 41-GW64-DW | 41-GW11-01     | 43-GW01-00  | 43-GW02-00              | 44-GW02-035       |                          |
| Amenic             | ND      | ND               | NA      | NA             | NA      | NA             | 0.51       | 1.6            | סא          | DM                      | ND                | 1.7                      |
| Barium             | ND      | ND               | NA      | NA             | NA      | NA             | 9.4        | 22.6           | ND          | מא                      | סא                |                          |
| Beryllium          | ND      | . ND             | NA      | NA             | NA      | NA             | 0.18       | 0,18           | ND          | iii)                    | 100 °             | STREET                   |
| Cadmium            | ND      | 20               | NA      | NA             | NA      | NA             | 0.73       |                | 1.3         | (3)6)                   | ND                | STATISTICS OF STATISTICS |
| Chromium           | 11.2    | 01 S             | NA      | NA             | NA      | NA             | 3.6        | 18393          |             | and the second          | Sugar Stor Stores |                          |
| Саррет             | ND      | ND               | NA      | NA             | NA      | NA             | 3.7        | 219 A.         | 3.4         | ND                      | 6.21              | 23.4 J                   |
| Land               | 4.6 3   | (6.5)            | NA      | NA             | NA_     | . NA           | 4.8        | 100 HQ         | (8)         |                         |                   | JEXT.                    |
| Manganese          | 4.7     | 13.05            | NA      | NA             | NA      | NA             | 5          | 1. 1. 1887     | 13. 019. S. | del Marchall            | CODE ELCA         | EDIFESSION               |
| Mertury            | ND      | 3165             | NA      | NA             | NA      | NA             | 9.06       | 150            | סא          | - ND                    | ND                | 25 395 30 4              |
| Nickel             | ND      | Same il Statione | NA      | NA             | NA      | NA             | 6.6        | an a Chitania  | 7.6         | And Sugar Helmond Sugar | 3.1               | PHILE PHILE              |
| Vanadium           | 18.4    | 10               | NA      | NA             | NA      | NA             | 6.1        | 9.3            | 7.3         | 5.8                     | <u> </u>          | 14.7                     |
| Zine               | ND      | 7.8              | NA      | NA             | NA      | NA             | 7.7        | 100 March 100  | 20.1        | <u> </u>                | 3.2               |                          |

•

N.

5 ì

i

NOTES: Shadod area indicates inorganic which exceeded a MCL and/or NCWQS in groundwater sample.

Shaded area indicates inorganic which exceeded a MCL and/or NCWQS J - Value is estimated JB - Value is astimated below the CRDL, but greater than the IDL. NA - Ne available wells to compare OR compound was not analyzed. ND - Not detected. NCWQS - North Carolina Water Quality Standard MCL - Maximum Centaminant Level (1) - Secondary MCL.

#### TABLESULS/Part of 4

....

|   | TABLE 5                                                                                    |
|---|--------------------------------------------------------------------------------------------|
|   | COMPARISON OF INORGANIC SUBSURFACE SOIL CONCENTRATIONS IN "CLEAN" AND "CONTAMINATED" WELLS |
| • | MCB, CAMP LEJEUNE, NORTH CAROLINA                                                          |

ţ,

|                    | Site 48    |                | · 8        | ille 63                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1          | itta 65         | 1          | Sile 69              |            | Site 78            |           | Sile 82                                                                                                         |
|--------------------|------------|----------------|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|-----------------|------------|----------------------|------------|--------------------|-----------|-----------------------------------------------------------------------------------------------------------------|
|                    | "Chan"     | "Contaminated" | *Clesa*    | "Contaminated"                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | "Сінал"    | "Contaminated"  | "Clean"    | "Contaminated"       | "Clean"    | "Contaminated"     | "Clean"   | *Contaminated*                                                                                                  |
| Units              | merke      | mg/kg          | mg/kg      | mg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | me/ke      | mg/kg           | me/ke      | mg/kg                | mg/kg      | mg/kg              | mg/kg     | mg/kg                                                                                                           |
| Well Number        | 48-GW01    | 48-GW03        | 6JMW03     | GIMW02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 65MW03     | 65MW02          | 69-GW11    | 69-GW03              | 78QW34     | 780W24-1           | 6-GW28    | 82.MW3                                                                                                          |
| Soll Sample Number | 48-GWIA-01 | 48-03-03       | 63-MW03-04 | 6J-MW02-06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 65-MW03-11 | 65-MTW02-06     | 69-GW11-04 | 69-CSA-8813-00       | 78-GW34    | 78-B903-8B03       | 6-GW18-09 | 6-GW17D-06                                                                                                      |
| Arsenie            | 1.3        | 0.77 J         | ND         | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |            | CASSAINTS DEL   | 0.68       | 0.63                 | ND         |                    | 0.31      | 15.9                                                                                                            |
| Barium             | 21.1       | 15             | ND         | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3.4        | 6.8             | 5.6        | 3                    | ND         | ND                 | סא        | ND                                                                                                              |
| Beryllium          | 0.2        | 0,19           | DM         | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ND         | 51.23.808761.25 | . 0,3      | 0.28                 | ND         |                    | סא        | סא                                                                                                              |
| Cadmium            | 1.4        | 1.8 J          | ND         | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | NA         | NA              | 0.56       | 0.52                 | ND         | ND                 | סא        | סא                                                                                                              |
| Chromium           | 18.2       | 18.6           | 7.7        | Section of the sectio | 2          | A SAMA AND      | 6.1        | and surger           | 11.5       | CHE GILLARS        | 2.6       | 2.000 B                                                                                                         |
| Copper             | 3.5        | 3.8            | ND         | סא                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 13         | 3.1             | 3,8        | 3.5                  | 3.4 B      | ND                 | סא        |                                                                                                                 |
| لعط                | 32.3       | 14.3           | 4.2        | 1888 243 Sec. 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Senne 2    |                 | 4,3        | <b>MEANEAN DESER</b> | 4.51       |                    | 2.7       | States of the second |
|                    | Souther 1  | 7              | 4,9        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3.5 ·      | 6.9             | 4          | as a articlassic     | 5. 578. 11 | <b>K</b> arkit kit | ND        | DM                                                                                                              |
| Mercury            | ND         | DK             | ND         | DN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | NA         | NA              | 0.06       | 0.05                 | ND         | ND                 | ND        | סא                                                                                                              |
| Nickel             | 2.2        | 1.9 J          | ND         | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ND         | · ND            | 3.2        | ,                    | ND         | סא                 | ND        | סא                                                                                                              |
| Vanadium           | 28.3       | 20.8 J         | ND         | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4,4        | 3               | 4,4        | 3.6                  | 18.7       | 19.2               | DM        | סא                                                                                                              |
| Zine               | ND         | ND             | סא         | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2.7        | <b>S</b> .      | 3.2        | Same & Barren        | 1.9        | םא                 | ND        | סא                                                                                                              |

.

. . .

NOTES: Shaded area indicates inorganic which exceeded a MCL and/or NCWQS in groundwater sample.

٠

٠

J - Value is antimated.

JB - Value is estimated below the CRDL, but greater than the IDL. NA - No available wells to compare OR compound was not analyzed.

ND - Not detected

NCWQ3 - North Carolina Water Quality Standard

MCL . Maximum Contaminant Level

(1) - Secondary MCL

TABLESCER/Page 2 of 4

• 5

|                    | A.               | C Cleaners              | Offi    | te Property#1           | Offi             | te Property #2          |
|--------------------|------------------|-------------------------|---------|-------------------------|------------------|-------------------------|
| Unite              | "Clean"<br>mg/kg | "Contaminated"<br>mg/kg | "Clean" | "Contaminated"<br>mg/kg | "Clean"<br>mg/kg | "Contaminated"<br>mg/kg |
| Well Number        | -                | -                       | -       | -                       | -                |                         |
| Soll Sample Number | 1                |                         | -       |                         | <u> </u>         |                         |
| Arsenie            | NA               | NA                      | NA      | NA                      | NA               | NA                      |
| Barium             | NA               | NA                      | NA      | NA                      | NA               | NA                      |
| Beryllium          | NA               | NA                      | NA      | NA                      | NA               | NA                      |
| Cadmium            | NA               | NA                      | NA      | NA                      | NA               | NA                      |
| Chromium           | NA               | NA .                    | NA      | NA                      | NA               | NA                      |
| Copper             | NA               | NA                      | NA      | NA                      | NA               | NA                      |
| Lesd               | NA               | NA                      | NA      | NA                      | NA_              | NA                      |
| Manganee           | NA               | · NA                    | NA      | NA                      | NA               | NA                      |
| Mercury            | NA               | NA                      | NA      | NA                      | NA               | NA                      |
| Nickel '           | NA               | NA                      | NA      | NA                      | NA               | . NA                    |
| Vanadium           | NA               | NA                      | NA      | NA                      | NA               | NA                      |
| Zine               | NA               | NA                      | NA      | NA                      | NA               | NA                      |

TABLE 5 COMPARISON OF INORGANIC SUBSURFACE SOIL CONCENTRATIONS IN "CLEAN" AND "CONTAMINATED" WELLS MCB, CAMP LEJEUNE, NORTH CAROLINA

NOTES

Shaded area indicates inorganic which encoded a MCL and/or NCWQS in groundwater sample. J - Value is estimated.

JB - Value is estimated below the CRDL, but greater than the IDL. NA - Ne available wells to compare OR compound was not analyzed. ND - Not detected.

NCWQS - North Carolina Water Quality Standard MCL - Maximum Contaminant Level

(1) - Becondary MCL

مسائلين

### TABLE 6 TOTAL METALS BY SITE DEEP MONITORING WELLS MCB, CAMP LEJEUNE, NORTH CAROLINA

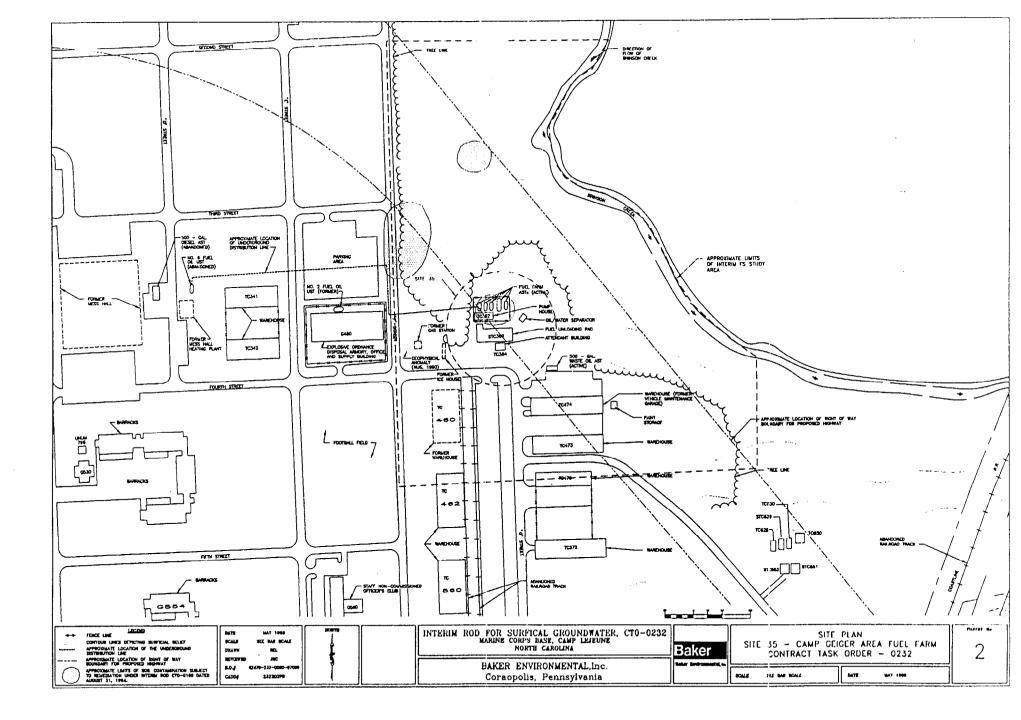
|           | Stie 1           | Site 2 | Site 6    | Ste 7        | Site 9 | Site 21 | 8ile 24 | Sile 28 | S114 30 | 8No 41      | Site 43 | SHe 44 | Site 48 | 811e 63  | Site 65 | 5He 69      | SHe 78     | £1ie 82   | ABC<br>Cleaners | Base<br>Supply Wells (1) |
|-----------|------------------|--------|-----------|--------------|--------|---------|---------|---------|---------|-------------|---------|--------|---------|----------|---------|-------------|------------|-----------|-----------------|--------------------------|
| Anmie     | -                | ND'    | ND        |              | ND     |         |         |         |         | 2.2 - 9.6   |         |        |         | L_       |         | 2.2 - 3.5   | 2-1183     | סא        | ND-14           | ND                       |
| Barium    |                  | 1420   | ND        | L _          | ND     |         |         |         |         | 22.6 . 186  |         |        |         | L _      |         | 42.3 - 58.0 | ND - 347   | ND        | 4.36            | סא                       |
| Beryllivm |                  | DN     | DM        |              | ND     |         | L _     | L       |         | 3.2         |         |        |         | Ľ        | L       | 0.80 - 0.89 | ND         | סא        | NA              | NA                       |
| Cadmium   | [ <del>.</del> . | DN     | ND        | - a -        | סא     | L # _   |         |         | _ # _   | 4.2 . 4.7   | L # _   | ្អ     | [ # ]   |          | L # _   | 3.2         | ND-21      | סא        | NA              | DM                       |
| Chromium  | _ × .            | 16     | ND        | _ × _        | DM     | [ ž ]   | [ ž ]   | Ř       | We ]    | 9.6 . 40.5  | [ ¥ ]   | We     | Ŵ       | <b>Š</b> | Ň       | 8.3 - 20.7  | ND - 10    | ND        | ND - 32         | ND                       |
| Copper    |                  | ND     | סא        | [ <u>e</u> ] | ND     | [ e ]   | [ e ]   | 6       | [ d ]   | 23.9        | [ .     | _ e _  | [       | [        | [ e ]   | 16.3        | DM         | ND        | ND - 41         | ND - 130                 |
| Lond      | [ 8 ]            | ND     | ND        | နီး          | ND     | Ľåľ     | Lå -    | Ľŏľ     | Det -   | 1.0 • 11.1  | Ľåľ     | L a L  |         |          | မီ      | 3.1 - 6.8   | ND         | ND        | ND - 10         | ND - 16                  |
| Малралона |                  | DM     | ND + 33.5 | [ <u>@</u> ] | ND     |         | 0       | [       | [9]     | 16.9 - 101  |         |        |         |          |         | 53.7 - 114  | ND + 591   | ND + 21.6 | ND - 45         | 10 - 120                 |
| Mercury   |                  | ND     | ND        | - 4 -        | DN     |         | - z -   |         |         | 0.15 - 0.17 |         | ~ ~ _  | 4       | [4]      |         | 0.16 - 0.17 | ND . 0.3   | סא        | NA              | ND                       |
| Nickel    |                  | סא     | ND        |              | DM     |         | Γ Ξ     |         | [ ]     | 31.2        | L .     | E ]    | E I     | Γ Ι      | E [     | 28.8        | ND         | ND        | ND-14           | NA                       |
| Vanadium  | - · -            | ND     | ND        | Γ            | ND     | Γ ]     | ΕΞ      | E I     |         | 20.4 - 49.8 |         |        |         | E _      | E ]     | 20.4        | ND - 14 J  | DN        | ND-15           | NA                       |
| Zine      | •                | ND     | ND        |              | ND     | []      |         |         |         | 17.8 - 83.8 |         |        |         |          |         | 31.1 - 48,7 | ND - 181 J | · ND      | 58-390          | ND - 120                 |

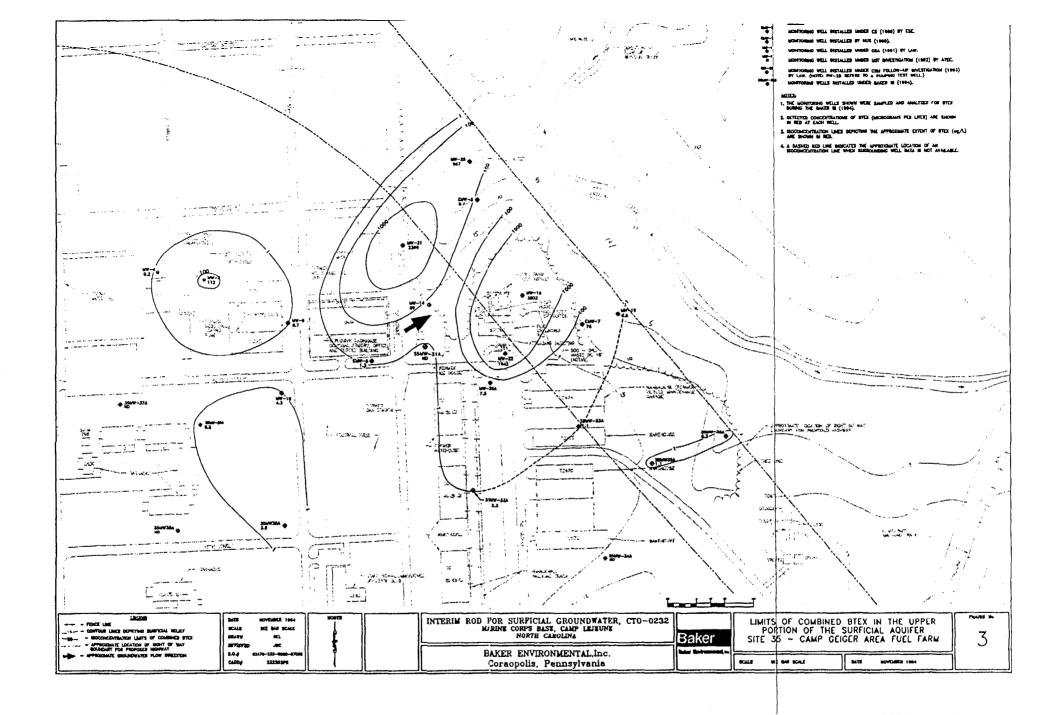
NOTES: J - Yalue Iş estimated. NA - Not analyzed. ND - Not detacted. (1) - Range Is based on 67 supply wells located throughout MCB, Camp Lejevne, NC,

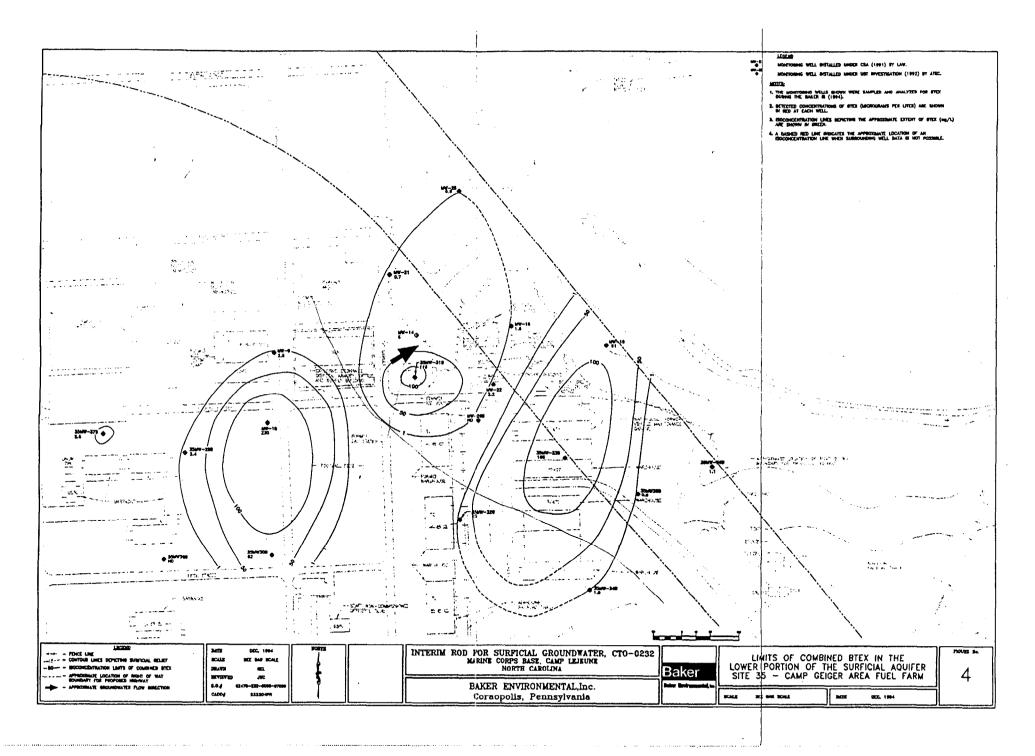
### TABLE 7 SUMMARY OF FIELD PARAMETERS IN SHALLOW, DEEP, AND SUPPLY WELLS MCB, CAMP LEJEUNE, NORTH CAROLINA

|                                            | Shallov    | v Wells            | Deep         | Wells              | Supply Wells |                    |  |
|--------------------------------------------|------------|--------------------|--------------|--------------------|--------------|--------------------|--|
|                                            | Range (1)  | Average<br>Maximum | Range (2)    | Average<br>Maximum | Range (3)    | Average<br>Maximum |  |
| pH (standard units)                        | 4.5 - 7.28 | 6.08               | 7.52 - 11.34 | 8.88               | 6.91 - 7.45  | 7.32               |  |
| Specific<br>Conductivity<br>(micromhos/cm) | 40 - 380   | 267                | 149 - 525    | 350                | 212 - 511    | 353                |  |

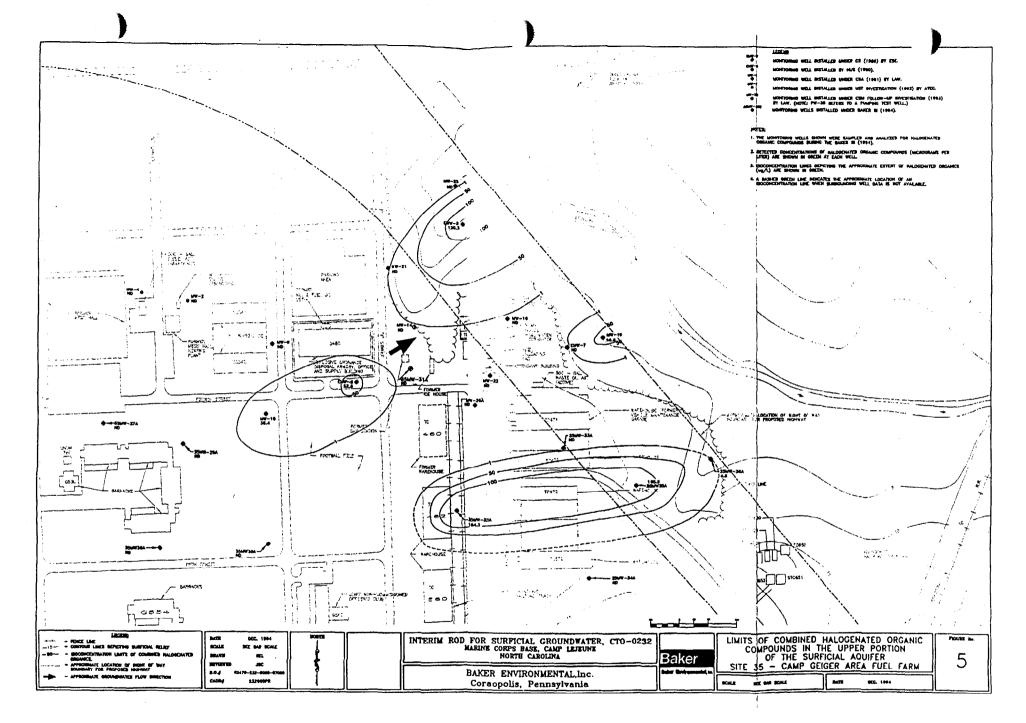
•

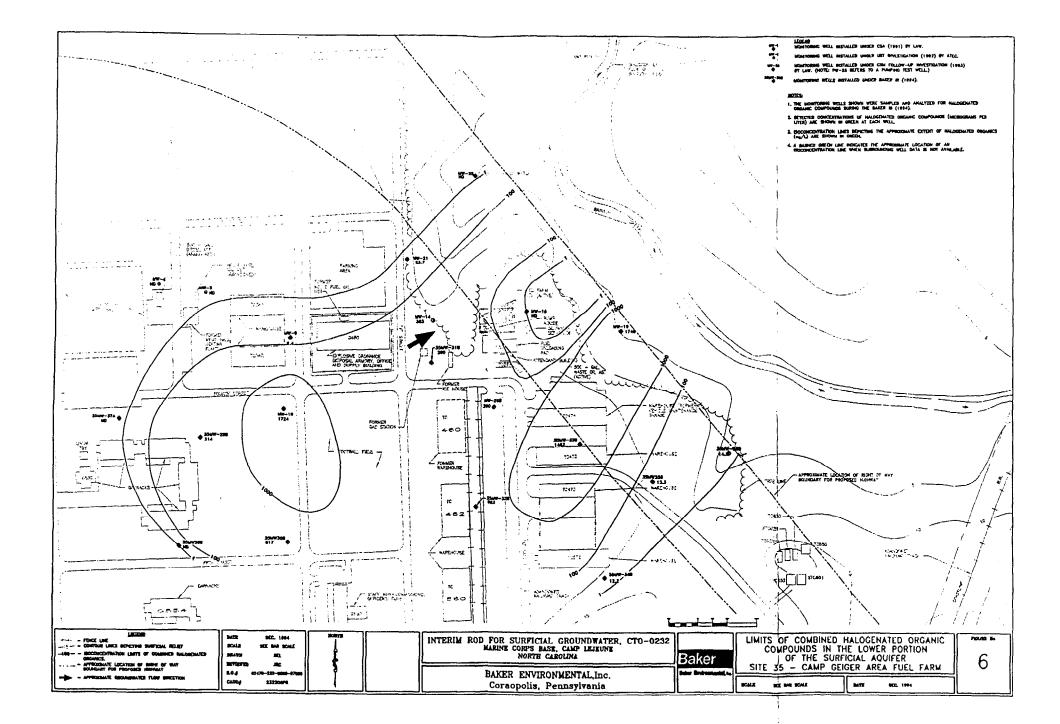

(1) - Based on data from 11 sites.


(2) - Based on data from 6 sites.


~

(3) - Based on data from 9 supply wells.


### APPENDIX N INTERIM RECORD OF DECISION FOR SURFICIAL GROUNDWATER








:





## APPENDIX O FREQUENCY AND DETECTION SUMMARIES

### APPENDIX O.1 ROUND THREE, GROUNDWATER SAMPLING

.

| LOCATION<br>LAB ID | 35-EMW03-02<br>D95-7537-1 | 35-EMW05-02<br>D95-7597-6 | 35-EMW07-02<br>D95-7537-2 | 35-GW05-02m<br>D95-7537-8 | 35-MW09D-02<br>D95-7597-2 | 35-MW09S-02<br>D95-7597-7 |
|--------------------|---------------------------|---------------------------|---------------------------|---------------------------|---------------------------|---------------------------|
| DATE SAMPLED       | 08/10/95                  | 08/11/95                  | 08/10/95                  | 08/11/95                  | 08/12/95                  | 08/12/95                  |
| METALS (ug/L)      |                           |                           |                           |                           |                           |                           |
| Aluminum           | 96.5                      | 93.2 J                    | 20 U                      | 25.9                      | 26.2 J                    | 198 J                     |
| Antimony           | 20 U                      |
| Arsenic            | 2 U                       | 8.7 J                     | 2 U                       | 2 U                       | 1.4 U                     | 3.2 J                     |
| Barium             | 20 U                      | 21.7 J                    | 20 U                      | 20 U                      | 20.9 J                    | 57.7 J                    |
| Beryllium          | 1 U                       | 1 U                       | 1 U                       | 1 U                       | 1 U                       | 1 U                       |
| Cadmium            | 2 U                       | 2 U                       | 2 U                       | 2 U                       | 2 U                       | 3.9 U                     |
| Calcium            | 89900                     | 45100                     | 105000                    | 56900                     | 104000                    | 98600                     |
| Chromium           | 2 U                       | 2 U                       | 2 U                       | 2 U                       | 2 U                       | 2 U                       |
| Cobalt             | 9 J                       | 3.8 J                     | 2.8 J                     | 2 U                       | 2 U                       | 2 U                       |
| Copper             | 9.6 U                     | -5 U                      | 5 U                       | 5 U                       | 5 U                       | 5 U                       |
| Iron               | 3350                      | 20200                     | 106                       | 337                       | 1650                      | 162                       |
| Lead               | 1 UJ                      | 12.1 J                    | 1 UJ                      | 1 U                       | 1 UJ                      | 1 UJ                      |
| Magnesium          | 2240 J                    | 3610 J                    | 3480 J                    | 2280                      | 2260 J                    | 4110 J                    |
| Manganese          | 22.9                      | 51.7                      | 26.2                      | 22.1                      | 19.7                      | 38.6                      |
| Mercury            | 0.2 U                     |
| Nickel             | 10 U                      |
| Potassium          | 734 J                     | 1160 J                    | 2150 J                    | 4400                      | 844 J                     | 3350 J                    |
| Selenium           | 2.5 UJ                    | 2.5 UJ                    | 2.5 U                     | 2.5 U                     | 2.5 UJ                    | 3.4 J                     |
| Silver             | 2 U                       | 2 U                       | 2 U                       | 2 U                       | 2 U                       | 2 U                       |
| Sodium             | 8120                      | 9090                      | 7940                      | 31900                     | 8740                      | 29000                     |
| Thallium           | 0.7 U                     | 9.9 U                     | 0.7 U                     | 1                         | 9.9 U                     | 9.9 U                     |
| Vanadium           | 2 U                       | 2 U                       | 2 U                       | 2 U                       | 2 U                       | 5.5 J                     |
| Zinc               | 10.5 J                    | 5 U                       | 10.6 J                    | 6.7                       | 10.9 U                    | 18.5 U                    |

|               | 35-MW10D-02 | 35-MW10S-02 | 35-MW14D-02 | 35-MW14S-02<br>95-7537-16 | 35-MW16D-02<br>95-7537-13 | 35-MW16S-02<br>95-7537-11 |
|---------------|-------------|-------------|-------------|---------------------------|---------------------------|---------------------------|
| LAB ID        | 95-7537-15  | 95-7537-14  | 95-7537-17  |                           |                           |                           |
| DATE SAMPLED  | 08/09/95    | 08/09/95    | 08/10/95    | 08/10/95                  | 08/09/95                  | 08/10/95                  |
| METALS (ug/L) |             |             |             |                           |                           |                           |
| Aluminum      | 20 U        | 303         | 28.6 J      | 20 U                      | 20 U                      | 20 U                      |
| Antimony      | 20 U        | 20 U        | 20 U        | 20 U                      | 20 U                      | 20 U                      |
| Arsenic       | 2 U         | 3.5 J       | 2 U         | 4.2 J                     | 2 U                       | 10.3                      |
| Barium        | 20 U        | 20 U        | 33.7 J      | 27.1 J                    | 20 U                      | 32.2 J                    |
| Beryllium     | 1 U         | 1 U         | 1 U         | 1 U                       | 1 U                       | 1 U                       |
| Cadmium       | 2 U         | 2 U         | 2 U         | 2 U                       | 2 U                       | 2 U                       |
| Calcium       | 122000      | 75000       | 119000      | 142000                    | 96900                     | 124000                    |
| Chromium      | 2 U         | 2 U         | 2 U         | 2 U                       | 2 U                       | 2 U                       |
| Cobalt        | 2 U         | 2 U         | 2 U         | 2.9 J                     | 6.1 J                     | 16 J                      |
| Copper        | 5 U         | 6.6 U       | 5 U         | 5 U                       | 5 U                       | 5 U                       |
| Iron          | 1490        | 152         | 1070        | 4490                      | 2580                      | 40400                     |
| Lead          | 1           | 1 U         | 15.4        | 1 U                       | 1 U                       | 8.9                       |
| Magnesium     | 2420        | 1800 J      | 2450 J      | 4520 J                    | 3440 J                    | 4580 J                    |
| Manganese     | 19          | 7.5 J       | 23.4        | 44.6                      | 275                       | 141                       |
| Mercury       | 0.2 U       | 0.2 U       | 2 U         | 0.2 U                     | 0.2 U                     | 0.2 U                     |
| Nickel        | 10 U        | 10 U        | 10 U        | 10 U                      | 10 U                      | 10 U                      |
| Potassium     | 811         | 860 J       | 1270 J      | 1460 J                    | 970 J                     | 793 J                     |
| Selenium      | 2.5 U       | 2.5 U       | 2.5 U       | 2.5 UJ                    | 2.5 U                     | 2.5 UJ                    |
| Silver        | 2 U         | 2 U         | 2 U         | 2 U                       | 2 U                       | 10.9                      |
| Sodium        | 8390        | 9970        | 9560        | 10400                     | 8380                      | 4350 J                    |
| Thallium      | 0.7 U       | 0.7 U       | 0.7 U       | 0.7 UJ                    | 0.7 UJ                    | 0.9 J                     |
| Vanadium      | 2 U         | 9.1 J       | 2 U         | 2 U                       | 2 U                       | 2 U                       |
| Zinc          | 13.8        | 6.5 J       | 29.5        | 22.5                      | 12.9 J                    | 11.5 J                    |

| LOCATION<br>LAB ID | 35-MW19D-02<br>D95-7537-5 | 35-MW19S-02<br>D95-7537-6 | 35-MW22D-02<br>D95-7597-8 | 35-MW22S-02<br>D95-7597-9 | 35-MW29A-02<br>D95-7597-4 | 35-MW29B-02<br>D95-7597-5 |
|--------------------|---------------------------|---------------------------|---------------------------|---------------------------|---------------------------|---------------------------|
| DATE SAMPLED       | 08/11/95                  | 08/11/95                  | 08/13/95                  | 08/13/95                  | 08/12/95                  | 08/12/95                  |
| METALS (ug/L)      |                           |                           |                           |                           |                           |                           |
| Aluminum           | 47.8 J                    | 282                       | 22.6 J                    | 123 U                     | 357                       | 20 U                      |
| Antimony           | 20 U                      | 20 U                      | 20 U                      | 20 J                      | 20 U                      | 20 U                      |
| Arsenic            | 2 U                       | 2 U                       | 1.4 U                     | 7.1 J                     | 13.3                      | 1.4 U                     |
| Barium             | 20 U                      | 20 U                      | 24.7 J                    | 32.5 U                    | 81.7 J                    | 20 U                      |
| Beryllium          | 1 U                       | 1 U                       | 1 U                       | 1 U                       | 1 U                       | 1 U                       |
| Cadmium            | 2 U                       | 2 U                       | 2 U                       | 2 U                       | 2 U                       | 2 U                       |
| Calcium            | 109000                    | 35600                     | 104000                    | 133000                    | 7460                      | 93500                     |
| Chromium           | 2 U                       | 2 U                       | 2 U                       | 2 U 1                     | 2 U                       | 2 U                       |
| Cobalt             | 2.2 J                     | 4.4 J                     | 2 U                       | 5.6 J                     | 3.3 J                     | 2 U                       |
| Copper             | 5 U                       | 5 U                       | 5 U                       | 5 U                       | 5 U                       | 5 U                       |
| Iron               | 113                       | 266                       | 1110                      | 15700                     | 9360                      | 933                       |
| Lead               | 1 UJ                      | 1 U                       | 2.5 J                     | 1 UJ                      | 1 UJ                      | 1.4 J                     |
| Magnesium          | 4990 J                    | 1880 J                    | 3020 J                    | 3230 J                    | 1550 J                    | 1890 J                    |
| Manganese          | 36.7                      | 102                       | 41.2                      | 63.5                      | 29.2                      | 17.1                      |
| Mercury            | 0.2 U                     |
| Nickel             | 10 U                      |
| Potassium          | 3360 J                    | 2650 J                    | 1120 J                    | 2320 J                    | 2170 J                    | 1110 J                    |
| Selenium           | 2.5 U                     | 2.5 U                     | 2.5 UJ                    | 2.5 UJ                    | 2.5 UJ                    | 2.5 UJ                    |
| Silver             | 2 U                       | 2 U                       | 2 U                       | 2 U                       | 2 U                       | 2 U                       |
| Sodium             | 10500                     | 11300                     | 7050                      | 5080                      | 14600                     | 6460                      |
| Thallium           | 0.7 J                     | 0.7 U                     | 9.9 U                     | 9.9 U                     | 9.9 U                     | 9.9 U                     |
| Vanadium           | 2 U                       | 2 U                       | 2 U                       | 2 U                       | 2 U                       | 2 U                       |
| Zinc               | 10.4 J                    | 9.9 J                     | 5.9 U                     | 5 U                       | 17.4 U                    | 11.6 U                    |

| LOCATION<br>LAB ID<br>DATE SAMPLED | 35-MW33A-02<br>D95-7597-1<br>08/12/95 | 35-MW33D-02<br>D95-7597-3<br>08/12/95 |
|------------------------------------|---------------------------------------|---------------------------------------|
|                                    |                                       |                                       |
| METALS (ug/L)                      |                                       |                                       |
| Aluminum                           | 520                                   | 20 U                                  |
| Antimony                           | 20 U                                  | 20 U                                  |
| Arsenic                            | 1.4 U                                 | 1.4 U                                 |
| Barium                             | 98.4 J                                | 20 U                                  |
| Beryllium                          | 1 U                                   | 1 U                                   |
| Cadmium                            | 2 U                                   | 2 U                                   |
| Calcium                            | 6380                                  | 102000                                |
| Chromium                           | 2 U                                   | 2 U                                   |
| Cobalt                             | 2 U                                   | 2 U                                   |
| Copper                             | 5 U                                   | 5 U                                   |
| Iron                               | 58.4 J                                | 648                                   |
| Lead                               | 6 J                                   | 1.5 J                                 |
| Magnesium                          | 3620 J                                | 2170 J                                |
| Manganese                          | 8.8 J                                 | 20.1                                  |
| Mercury                            | 0.2 U                                 | 0.2 U                                 |
| Nickel                             | 10 U                                  | 10 U                                  |
| Potassium                          | 1840 J                                | 929 J                                 |
| Selenium                           | 2.6 J                                 | 2.5 UJ                                |
| Silver                             | 2 U                                   | 2 U                                   |
| Sodium                             | 5370                                  | 7340                                  |
| Thallium                           | 9.9 U                                 | 9.9 U                                 |
| Vanadium                           | 2 U                                   | 2 U                                   |
| Zinc                               | 7.6 U                                 | 24.3 U                                |

| LOCATION<br>LAB ID<br>DATE SAMPLED | MINIMUM<br>NONDETECTED | MAXIMUM<br>NONDETECTED | MINIMUM<br>DETECTED |        | LOCATION OF<br>MAXIMUM<br>DETECTED | FREQUENCY<br>OF<br>DETECTION | AVERAGE<br>OF POSITIVE<br>DETECTIONS | MEDIAN<br>OF POSITIVE<br>DETECTIONS |
|------------------------------------|------------------------|------------------------|---------------------|--------|------------------------------------|------------------------------|--------------------------------------|-------------------------------------|
| METALS (ug/L)                      |                        |                        |                     |        |                                    |                              |                                      |                                     |
| Aluminum                           | 20 U                   | 123 U                  | 22.6 J              | 520    | 35-MW33A-02                        | 12/20                        | 166.73                               | 94.85                               |
| Antimony                           | 20 U                   | 20 U                   | 20 J                | 20 J   | 35-MW22S-02                        | 1/20                         | 20.00                                | 20.00                               |
| Arsenic                            | 1.4 U                  | 2 U                    | 3.2 J               | 13.3   | 35-MW29A-02                        | 7/20                         | 7.19                                 | 7.10                                |
| Barium                             | 20 U                   | 32.5 U                 | 20.9 J              | 98.4 J | 35-MW33A-02                        | 9/20                         | 44.23                                | 32.20                               |
| Beryllium                          | 1 U                    | 1 U                    | ND                  | ND     |                                    | 0/20                         | NA                                   | NA                                  |
| Cadmium                            | 2 U                    | 3.9 U                  | ND                  | ND     |                                    | 0/20                         | NA                                   | NA                                  |
| Calcium                            | NA                     | NA                     | 6380                | 142000 | 35-MW14S-02                        | 20/20                        | 88467.00                             | 100300.00                           |
| Chromium                           | 2 U                    | 2 U                    | ND                  | ND     |                                    | 0/20                         | NA                                   | NA                                  |
| Cobalt                             | 2 U                    | 2 U                    | 2.2 J               | 16 J   | 35-MW16S-02                        | 10/20                        | 5.61                                 | 4.10                                |
| Copper                             | 5 U                    | 9.6 U                  | ND                  | ND     |                                    | 0/20                         | NA                                   | NA                                  |
| Iron                               | NA                     | NA                     | 58.4 J              | 40400  | 35-MW16S-02                        | 20/20                        | 5208.77                              | 1090.00                             |
| Lead                               | 1 U.                   | J 1 UJ                 | 1                   | 15.4   | 35-MW14D-02                        | 8/20                         | 6.10                                 | 4.25                                |
| Magnesium                          | NA                     | NA                     | 1550 J              | 4990 J | 35-MW19D-02                        | 20/20                        | 2977.00                              | 2735.00                             |
| Manganese                          | NA                     | NA                     | 7.5 J               | 275    | 35-MW16D-02                        | 20/20                        | 50.52                                | 27.70                               |
| Mercury                            | 0.2 U                  | 2 U                    | ND                  | ND     |                                    | 0/20                         | NA                                   | NA                                  |
| Nickel                             | 10 U                   | 10 U                   | ND                  | ND     |                                    | 0/20                         | NA                                   | NA                                  |
| Potassium                          | NA                     | NA                     | 734 J               | 4400   | 35-GW05-02m                        | 20/20                        | 1715.05                              | 1215.00                             |
| Selenium                           | 2.5 U.                 | J 2.5 UJ               | 2.6 J               | 3.4 J  | 35-MW09S-02                        | 2/20                         | 3.00                                 | 3.00                                |
| Silver                             | 2 U                    | 2 U                    | 10.9                | 10.9   | 35-MW16S-02                        | 1/20                         | 10.90                                | 10.90                               |
| Sodium                             | NA                     | NA                     | 4350 J              | 31900  | 35-GW05-02m                        | 20/20                        | 10677.00                             | 8565.00                             |
| Thallium                           | 0.7 U                  | 9.9 U                  | 0.7 J               | 1      | 35-GW05-02m                        | 3/20                         | 0.87                                 | 0.90                                |
| Vanadium                           | 2 U                    | 2 U                    | 5.5 J               | 9.1 J  | 35-MW10S-02                        | 2/20                         | 7.30                                 | 7.30                                |
| Zinc                               | 5 U                    | 24.3 U                 | 6.5 J               | 29.5   | 35-MW14D-02                        | 11/20                        | 13.16                                | 10.60                               |

# APPENDIX 0.2 ROUND FOUR, GROUNDWATER SAMPLING

| SAMPLE ID                  | 35-EMW03-04 | 35-MW19S-04 | 35-MW32A-04 | 35-MW35A-04 | 35-MW36A-04 | 35-TW30A-04 |
|----------------------------|-------------|-------------|-------------|-------------|-------------|-------------|
| METHOD                     | VOA1.8      | VOA1.8      | VOA1.8      | VOA1.8      | VOA1.8      | VOA1.8      |
| DATE SAMPLED               | 04/26/96    | 04/27/96    | 04/27/96    | 04/27/96    | 04/27/96    | 08/04/96    |
| VOLATILES (ug/L)           |             |             |             |             |             |             |
| CHLOROMETHANE              | 10 U        |
| BROMOMETHANE               | 10 U        |
| VINYL CHLORIDE             | 10 U        |
| CHLOROETHANE               | 10 U        |
| METHYLENE CHLORIDE         | 10 U        |
| ACETONE                    | 10 U        |
| CARBON DISULFIDE           | 10 U        |
| 1.1-DICHLOROETHENE         | 10 U        |
| 1,1-DICHLOROETHANE         | 10 U        |
| 1,2-DICHLOROETHENE (TOTAL) | 3 J         | 16          | 10 U        | 5 J         | 10 U        | 10 U        |
| CHLOROFORM                 | 10 U        |
| 1.2-DICHLOROETHANE         | 10 U        |
| 2-BUTANONE                 | 10 U        | 10 U        | 10 U        | · 10 U      | 10 U        | 10 U        |
| 1.1.1-TRICHLOROETHANE      | 10 U        |
| CARBON TETRACHLORIDE       | 10 U        |
| BROMODICHLOROMETHANE       | 10 U        |
| 1,2-DICHLOROPROPANE        | 10 U        |
| CIS-1,3-DICHLOROPROPENE    | 10 U        |
| TRICHLOROETHENE            | 10 U        | 12          | 10 U        | 25          | 10 U        | 10 U        |
| DIBROMOCHLOROMETHANE       | 10 U        |
| 1,1,2-TRICHLOROETHANE      | 10 U        |
| BENZENE                    | 3 J         | 10 U        |
| TRANS-1,3-DICHLOROPROPENE  | 10 U        |
| BROMOFORM                  | 10 U        |
| 4-METHYL-2-PENTANONE       | 10 U        | 10 U_       | 10 U        | 10 U        | 10 U        | 10 U        |
| 2-HEXANONE                 | 10 U        |
| TETRACHLOROETHENE          | 10 U        | 10 U İ      | 10 U        | 10 U        | 10 U        | 10 U        |
| 1,1,2,2-TETRACHLOROETHANE  | 10 U        | 10 U        | 10 U        | 17 J        | 10 U        | 10 U        |
| TOLUENE                    | 10 U        |
| CHLOROBENZENE              | 10 U        |
| ETHYLBENZENE               | 10 U        |
| STYRENE                    | 10 U        |
| XYLENE (TOTAL)             | 10 U        |
| METHYL-TERT-BUTYL ETHER    | 5 U         | 5 U         | 5 U         | 5 U         | 5 U         | NA          |

| SAMPLE ID<br>METHOD<br>DATE SAMPLED | 35-TW31A-04<br>VOA1.8<br>08/04/96 | 35-MW09D-04<br>VOA1.8<br>04/27/96 | 35-MW10D-04<br>VOA1.8<br>04/27/96 | 35-MW14D-04<br>VOA1.8<br>04/27/96 | 35-MW19D-04<br>VOA1.8<br>04/27/96 | 35-MW30B-04<br>VOA1.8<br>04/27/96 |
|-------------------------------------|-----------------------------------|-----------------------------------|-----------------------------------|-----------------------------------|-----------------------------------|-----------------------------------|
|                                     | 00/04/30                          | 04/2//30                          | 04/21/30                          | 04/21/30                          | 04/2//30                          | 04/2//50                          |
| VOLATILES (ug/L)                    |                                   |                                   |                                   |                                   |                                   |                                   |
| CHLOROMETHANE                       | 10 U                              |
| BROMOMETHANE                        | 10 U                              |
| VINYL CHLORIDE                      | 10 U                              | 10 U                              | 13                                | 10 U                              | 10 U                              | 10 U                              |
| CHLOROETHANE                        | 10 U                              |
| METHYLENE CHLORIDE                  | 10 U                              |
| ACETONE                             | 10 U                              |
| CARBON DISULFIDE                    | 10 U                              |
| 1,1-DICHLOROETHENE                  | 10 U                              | 10 U                              | 6 J                               | 10 U                              | 10 U                              | 10 U                              |
| 1,1-DICHLOROETHANE                  | 10 U                              |
| 1,2-DICHLOROETHENE (TOTAL)          | 10 U                              | 10 U                              | 1200                              | 160                               | 360                               | 620                               |
| CHLOROFORM                          | 10 U                              |
| 1,2-DICHLOROETHANE                  | 10 U                              |
| 2-BUTANONE                          | 10 U                              |
| 1,1,1-TRICHLOROETHANE               | 10 U                              |
| CARBON TETRACHLORIDE                | 10 U                              |
| BROMODICHLOROMETHANE                | 10 U                              |
| 1,2-DICHLOROPROPANE                 | 10 U                              |
| CIS-1,3-DICHLOROPROPENE             | 10 U                              |
| TRICHLOROETHENE                     | 10 U                              | 10 U                              | 740                               | 71                                | 320                               | 270                               |
| DIBROMOCHLOROMETHANE                | 10 U                              |
| 1,1,2-TRICHLOROETHANE               | 10 U                              |
| BENZENE                             | 10 U                              | 10 U                              | 10 U                              | 3 J                               | 10 U                              | 2 J                               |
| TRANS-1,3-DICHLOROPROPENE           | 10 U                              |
| BROMOFORM                           | 10 U                              |
| 4-METHYL-2-PENTANONE                | 10 U                              | 10 UJ                             |
| 2-HEXANONE                          | 10 U                              | 10 UJ                             |
| TETRACHLOROETHENE                   | 10 U                              |
| 1,1,2,2-TETRACHLOROETHANE           | 10 U                              |
| TOLUENE                             | 10 U                              | 10 U                              | 2 J                               | 10 U                              | 10 U                              | 10 U                              |
| CHLOROBENZENE                       | 10 U                              |
| ETHYLBENZENE                        | 10 U                              |
| STYRENE                             | 10 U                              |
| XYLENE (TOTAL)                      | 10 U                              |
| METHYL-TERT-BUTYL ETHER             | NA                                | 5 U                               | 5 U                               | 5 U                               | 5 U                               | 5 U                               |

| SAMPLE ID                  | 35-MW36B-04 | 35-MW37B-04 | 35-MW39B-04 | 35-MW40B-04 | 35-MW41B-04 | 35-MW42B-04 |
|----------------------------|-------------|-------------|-------------|-------------|-------------|-------------|
| METHOD                     | VOA1.8      | VOA1.8      | VOA1.8      | VOA1.8      | VOA1.8      | VOA1.8      |
| DATE SAMPLED               | 04/27/96    | 04/28/96    | 05/02/96    | 05/01/96    | 05/01/96    | 05/03/96    |
| VOLATILES (ug/L)           |             |             |             |             |             |             |
| CHLOROMETHANE              | 10 U        |
| BROMOMETHANE               | 10 U        |
| VINYL CHLORIDE             | 10 U        |
| CHLOROETHANE               | 10 U        |
| METHYLENE CHLORIDE         | 10 U        |
| ACETONE                    | 10 U        | 10 UJ       |
| CARBON DISULFIDE           | 10 U        |
| 1.1-DICHLOROETHENE         | 4 J         | 10 U        |
| 1,1-DICHLOROETHANE         | 4 J         | 10 U        |
| 1,2-DICHLOROETHENE (TOTAL) | 10 U        | 10 U        | 12          | 180         | 10 0        | 48          |
| CHLOROFORM                 | 10 U        | · 10 U      | 10 U        | 10 U        | 10<br>10 U  | +0<br>10 U  |
| 1,2-DICHLOROETHANE         | 10 U        |
| 2-BUTANONE                 | 10 U        |
| 1,1,1-TRICHLOROETHANE      | 10 U        |
| CARBON TETRACHLORIDE       | 10 U        |
| BROMODICHLOROMETHANE       | 10 U        |
| 1,2-DICHLOROPROPANE        | 10 U        |
| CIS-1,3-DICHLOROPROPENE    | 10 U        |
| TRICHLOROETHENE            | 10 U        | 10 U        | 10 U        | 16          | 10 U        | 83          |
| DIBROMOCHLOROMETHANE       | 10 U        |
| 1,1,2-TRICHLOROETHANE      | 10 U        |
| BENZENE                    | 10 U        | 10 U        | 4 J         | 10 U        | 10 U        | 10 U        |
| TRANS-1,3-DICHLOROPROPENE  | 10 U        |
| BROMOFORM                  | 10 U        |
| 4-METHYL-2-PENTANONE       | 10 U        |
| 2-HEXANONE                 | 10 U        |
| TETRACHLOROETHENE          | 10 U        |
| 1,1,2,2-TETRACHLOROETHANE  | 10 U        |
| TOLUENE                    | 10 U        | 4 J         | 10 U        | 10 U        | 10 U        | 10 U        |
| CHLOROBENZENE              | 10 U        |
| ETHYLBENZENE               | 10 U        |
| STYRENE                    | 10 U        |
| XYLENE (TOTAL)             | 10 U        |
| METHYL-TERT-BUTYL ETHER    | 5 U         | 5 U         | 5 U         | 5 U         | 5 U         | 5 U         |

| SAMPLE ID                  | 35-MW43B-04 | 35-MW60A-04 | 35-MW60B-04        | 35-TW12B-04        | 35-TW13B-04<br>VOA1.8 | 35-TW14B-04<br>VOA1.8 |
|----------------------------|-------------|-------------|--------------------|--------------------|-----------------------|-----------------------|
| METHOD                     | VOA1.8      | VOA1.8      | VOA1.8<br>08/04/96 | VOA1.8<br>04/26/96 | 04/26/96              | 04/29/96              |
| DATE SAMPLED               | 05/03/96    | 08/04/96    | 00/04/90           | 04/20/90           | 04/20/90              | 04/23/30              |
| VOLATILES (ug/L)           |             |             |                    |                    |                       |                       |
| CHLOROMETHANE              | 10 U        | 10 U        | 10 U               | 10 U               | 10 U                  | 10 U                  |
| BROMOMETHANE               | 10 U        | 10 U        | 10 U               | 10 U               | 10 U                  | 10 U                  |
| VINYL CHLORIDE             | 10 U        | 10 U        | 10 U               | 10 U               | 10 U                  | 10 U                  |
| CHLOROETHANE               | 10 U        | 10 U        | 10 U               | 10 U               | 10 U                  | 10 U                  |
| METHYLENE CHLORIDE         | 10 U        | 10 U        | 10 U               | 10 U               | 10 U                  | 10 U                  |
| ACETONE                    | 10 U        | 10 U        | 10 U               | 10 U               | 10 U                  | 10 U                  |
| CARBON DISULFIDE           | 10 U        | 10 U        | 10 U               | 10 U               | 10 U                  | 10 U                  |
| 1,1-DICHLOROETHENE         | 10 U        | 10 U        | 10 U               | 10 U               | 10 U                  | 10 U                  |
| 1,1-DICHLOROETHANE         | 10 U        | 10 U        | 10 U               | 10 U               | 10 U                  | 10 U                  |
| 1,2-DICHLOROETHENE (TOTAL) | 30          | 10 U        | 10 U               | 51                 | 10 U                  | 14                    |
| CHLOROFORM                 | 10 U        | 10 U        | 10 U               | 10 U               | 10 U                  | 10 U                  |
| 1,2-DICHLOROETHANE         | 10 U        | 10 U        | 10 U               | 10 U               | 10 U                  | 10 U                  |
| 2-BUTANONE                 | 10 U        | 10 U        | 10 U               | 10 U               | 10 U                  | 10 U                  |
| 1,1,1-TRICHLOROETHANE      | 10 U        | 10 U        | 10 U               | 10 U               | 10 U                  | 10 U                  |
| CARBON TETRACHLORIDE       | 10 U        | 10 U        | 10 U               | 10 U               | 10 U                  | 10 U                  |
| BROMODICHLOROMETHANE       | 10 U        | 10 U        | 10 U               | 10 U               | 10 U                  | 10 U                  |
| 1,2-DICHLOROPROPANE        | 10 U        | 10 U        | 10 U               | 10 U               | 10 U                  | 10 U                  |
| CIS-1,3-DICHLOROPROPENE    | 10 U        | 10 U        | 10 U               | 10 U               | 10 U                  | 10 U                  |
| TRICHLOROETHENE            | 12 U        | 10 U        | 10 U               | 93                 | 10 U                  | 10 U                  |
| DIBROMOCHLOROMETHANE       | 10 U        | 10 U        | 10 U               | 10 U               | 10 U                  | 10 U                  |
| 1,1,2-TRICHLOROETHANE      | 10 U        | 10 U        | 10 U               | 10 U               | 10 U                  | 10 U                  |
| BENZENE                    | 10 U        | 10 U        | 10 U               | 10 U               | 10 U                  | 10 U                  |
| TRANS-1,3-DICHLOROPROPENE  | 10 U        | 10 U        | 10 U               | 10 U               | 10 U                  | 10 U                  |
| BROMOFORM                  | 10 U        | 10 U        | 10 U               | 10 U               | 10 U                  | 10 U                  |
| 4-METHYL-2-PENTANONE       | 10 U        | 10 U        | 10 U               | 10 U               | 10 U                  | 10 U                  |
| 2-HEXANONE                 | 10 U        | 10 U        | 10 U               | 10 U               | 10 U                  | 10 U                  |
| TETRACHLOROETHENE          | 10 U        | 10 U        | 10 U               | 10 U               | 10 U                  | 10 U                  |
| 1,1,2,2-TETRACHLOROETHANE  | 10 U        | 10 U        | 10 U               | 10 U               | 10 U                  | 10 U                  |
| TOLUENE                    | 10 U        | 10 U        | 10 U               | 10 U               | 10 U                  | 10 U                  |
| CHLOROBENZENE              | 10 U        | 10 U        | 10 U               | 10 U               | 10 U                  | 10 U                  |
| ETHYLBENZENE               | 10 U        | 10 U        | 10 U               | 10 U               | 10 U                  | 10 U                  |
| STYRENE                    | 10 U        | 10 U        | 10 U               | 10 U               | 10 U                  | 10 U                  |
| XYLENE (TOTAL)             | 10 U        | 10 U        | 10 U               | 10 U               | 10 U                  | 10 U                  |
| METHYL-TERT-BUTYL ETHER    | 5 U         | NA          | NA                 | 5 U                | 5 U                   | 5 U                   |

| SAMPLE ID                  | 35-TW15B-04 | 35-TW27B-04 | 35-TW28B-04 | 35-TW29B-04 | 35-TW30B-04 | 35-TW31B-04 |
|----------------------------|-------------|-------------|-------------|-------------|-------------|-------------|
| METHOD                     | VOA1.8      | VOA1.8      | VOA1.8      | VOA1.8      | VOA1.8      | VOA1.8      |
| DATE SAMPLED               | 04/30/96    | 04/25/96    | 04/29/96    | 04/30/96    | 08/04/96    | 08/04/96    |
| VOLATILES (ug/L)           |             |             |             |             |             |             |
| CHLOROMETHANE              | 10 U        | 10 UJ       | 10 U        | 10 U        | 10 U        | 10 U        |
| BROMOMETHANE               | 10 U        | 10 UJ       | 10 U        | 10 U        | 10 U        | 10 Ú        |
| VINYL CHLORIDE             | 10 U        | 10 UJ       | 10 U        | 10 U        | 10 U        | 10 U        |
| CHLOROETHANE               | 10 U        | 10 UJ       | 10 U        | 10 U        | 10 U        | 10 U        |
| METHYLENE CHLORIDE         | 10 U        | 10 UJ       | 10 U        | 10 U        | 10 U        | 10 U        |
| ACETONE                    | 10 U        | 66 J        | 10 U        | 10 U        | 10 U        | 10 U        |
| CARBON DISULFIDE           | 10 U        | 10 UJ       | 10 U        | 10 U        | 10 U        | 10 U        |
| 1,1-DICHLOROETHENE         | 10 U        | 10 UJ       | 4 J         | 10 U        | 10 U        | 10 U        |
| 1,1-DICHLOROETHANE         | 10 U        | 10 UJ       | 3 J         | 10 U        | 10 U        | 10 U        |
| 1,2-DICHLOROETHENE (TOTAL) | 13          | 260 J       | 2 J         | 28          | 10 U        | 10 U        |
| CHLOROFORM                 | 10 U        | 10 UJ       | 10 U        | 10 U        | 10 U        | 10 U        |
| 1,2-DICHLOROETHANE         | 10 U        | 10 UJ       | 10 U        | 10 U        | 10 U        | 10 U        |
| 2-BUTANONE                 | 10 U        | 10 UJ       | 10 U        | 10 U        | 10 U        | 10 U        |
| 1,1,1-TRICHLOROETHANE      | 10 U        | 10 UJ       | 10 U        | 10 U        | 10 U        | 10 U        |
| CARBON TETRACHLORIDE       | 10 U        | 10 UJ       | 10 U        | 10 U        | 10 U        | 10 U        |
| BROMODICHLOROMETHANE       | 10 U        | 10 UJ       | 10 U        | 10 U        | 10 U        | 10 U        |
| 1,2-DICHLOROPROPANE        | 10 U        | 10 UJ       | 10 U        | 10 U        | 10 U        | 10 U        |
| CIS-1,3-DICHLOROPROPENE    | 10 U        | 10 UJ       | 10 U        | 10 U        | 10 U        | 10 U        |
| TRICHLOROETHENE            | 4 J         | 41 J        | 10 U        | 220         | 10 U        | 10 U        |
| DIBROMOCHLOROMETHANE       | 10 U        | 10 UJ       | 10 U        | 10 U        | 10 U        | 10 U        |
| 1,1,2-TRICHLOROETHANE      | 10 U        | 10 UJ       | 10 U        | 10 U        | 10 U        | 10 U        |
| BENZENE                    | 10 U        | 10 UJ       | 10 U        | 10 U        | 10 U        | 10 U        |
| TRANS-1,3-DICHLOROPROPENE  | 10 U        | 10 UJ       | 10 U        | 10 U        | 10 U        | 10 U        |
| BROMOFORM                  | 10 U        | 10 UJ       | 10 U        | 10 U        | 10 U        | 10 U        |
| 4-METHYL-2-PENTANONE       | 10 U        | 10 UJ       | 10 U        | 10 U        | 10 U        | 10 U        |
| 2-HEXANONE                 | 10 U        | 10 UJ       | 10 U        | 10 U        | 10 U        | 10 U        |
| TETRACHLOROETHENE          | 10 U        | 10 UJ       | 10 U        | 2 J         | 10 U        | 10 U        |
| 1,1,2,2-TETRACHLOROETHANE  | 10 U        | 10 UJ       | 10 U        | 23          | 10 U        | 10 U        |
| TOLUENE                    | 10 U        | 10 UJ       | 10 U        | 10 U        | 10 U        | 10 U        |
| CHLOROBENZENE              | 10 U        | 10 UJ       | 10 U        | 10 U        | 10 U        | 10 U        |
| ETHYLBENZENE               | 10 U        | 10 UJ       | 10 U        | 10 U        | 10 U        | 10 U        |
| STYRENE                    | 10 U        | 10 UJ       | 10 U        | 10 U        | 10 U        | 10 U        |
| XYLENE (TOTAL)             | 10 U        | 10 UJ       | 10 U        | 10 U        | 10 U        | 10 U        |
| METHYL-TERT-BUTYL ETHER    | 5 U         | 5 UJ        | 5 U         | 5 U         | NA          | NA          |

| SAMPLE ID<br>METHOD<br>DATE SAMPLED | MINIMUM<br>NONDETECTED | MAXIMUM<br>NONDETECTED | MINIMUM<br>DETECTED | MAXIMUM<br>DETECTED | LOCATION OF<br>MAXIMUM<br>DETECTED | FREQUENCY<br>OF<br>DETECTION | AVERAGE<br>OF POSITIVE<br>DETECTIONS | MEDIAN<br>OF POSITIVE<br>DETECTIONS |
|-------------------------------------|------------------------|------------------------|---------------------|---------------------|------------------------------------|------------------------------|--------------------------------------|-------------------------------------|
| VOLATILES (ug/L)                    |                        |                        |                     |                     |                                    |                              |                                      |                                     |
| CHLOROMETHANE                       | 10 U                   | 10 U                   | ND                  | ND                  |                                    | 0/30                         | NA                                   | NA                                  |
| BROMOMETHANE                        | 10 U                   |                        | ND                  | ND                  |                                    | 0/30                         | NA                                   | NA                                  |
| VINYL CHLORIDE                      | 10 U                   |                        | 13                  | 13                  | 35-MW10D-04                        | 1/30                         | 13.00                                | 13.00                               |
| CHLOROETHANE                        | 10 U                   | 10 U                   | ND                  | ND                  |                                    | 0/30                         | NA                                   | NA                                  |
| METHYLENE CHLORIDE                  | 10 U                   | 10 U                   | ND                  | ND                  |                                    | 0/30                         | NA                                   | NA                                  |
| ACETONE                             | 10 U                   | 10 U                   | 66 J                | 66 J                | 35-TW27B-04                        | 1/30                         | 66.00                                | 66.00                               |
| CARBON DISULFIDE                    | 10 U                   | 10 U                   | ND                  | ND                  |                                    | 0/30                         | NA                                   | NA                                  |
| 1,1-DICHLOROETHENE                  | 10 U                   | 10 U                   | 4 J                 | 6 J                 | 35-MW10D-04                        | 3/30                         | 4.67                                 | 4.00                                |
| 1,1-DICHLOROETHANE                  | 10 U                   | 10 U                   | 3 J                 | 4 J                 | 35-MW36B-04                        | 2/30                         | 3.50                                 | 3.50                                |
| 1,2-DICHLOROETHENE (TOTAL)          | 10 U                   | 10 U                   | 2 J                 | 1200                | 35-MW10D-04                        | 18/30                        | 167.33                               | 29.00                               |
| CHLOROFORM                          | 10 U                   | 10 U                   | ND                  | ND                  |                                    | 0/30                         | NA                                   | NA                                  |
| 1,2-DICHLOROETHANE                  | 10 U                   |                        | ND                  | ND                  |                                    | 0/30                         | NA                                   | NA                                  |
| 2-BUTANONE                          | 10 U                   | 10 U                   | ND                  | ND                  |                                    | 0/30                         | NA                                   | NA                                  |
| 1,1,1-TRICHLOROETHANE               | 10 U                   | 10 U                   | ND                  | ND                  |                                    | 0/30                         | NA                                   | NA                                  |
| CARBON TETRACHLORIDE                | 10 U                   | 10 U                   | ND                  | ND                  |                                    | 0/30                         | NA                                   | NA                                  |
| BROMODICHLOROMETHANE                | 10 U                   | 10 U                   | ND                  | ND                  |                                    | 0/30                         | NA                                   | NA                                  |
| 1,2-DICHLOROPROPANE                 | 10 U                   | 10 U                   | ND                  | ND                  |                                    | 0/30                         | NA                                   | NA                                  |
| CIS-1,3-DICHLOROPROPENE             | 10 U                   | 10 U                   | ND                  | ND                  |                                    | 0/30                         | NA                                   | NA                                  |
| TRICHLOROETHENE                     | 10 U                   | 12 U                   | 4 J                 | 740                 | 35-MW10D-04                        | 12/30                        | 157.92                               | 77.00                               |
| DIBROMOCHLOROMETHANE                | 10 U                   |                        | ND                  | ND                  |                                    | 0/30                         | NA                                   | NA                                  |
| 1,1,2-TRICHLOROETHANE               | 10 U                   | 10 U                   | ND                  | ND                  |                                    | 0/30                         | NA                                   | NA                                  |
| BENZENE                             | 10 U                   |                        | 2 J                 | 4 J                 | 35-MW39B-04                        | 4/30                         | 3.00                                 | 3.00                                |
| TRANS-1,3-DICHLOROPROPENE           | 10 U                   | 10 U                   | ND                  | ND                  |                                    | 0/30                         | NA                                   | NA                                  |
| BROMOFORM                           | 10 U                   | 10 U                   | ND                  | ND                  |                                    | 0/30                         | NA                                   | NA                                  |
| 4-METHYL-2-PENTANONE                | 10 U                   | 10 U                   | ND                  | ND                  |                                    | 0/30                         | NA                                   | NA                                  |
| 2-HEXANONE                          | 10 U                   | 10 U                   | ND                  | ND                  |                                    | 0/30                         | NA                                   | NA                                  |
| TETRACHLOROETHENE                   | 10 U                   | 10 U                   | 2 J                 | 2 J                 | 35-TW29B-04                        | 1/30                         | 2.00                                 | 2.00                                |
| 1,1,2,2-TETRACHLOROETHANE           | 10 U                   | 10 U                   | 17 J                | 23                  | 35-TW29B-04                        | 2/30                         | 20.00                                | 20.00                               |
| TOLUENE                             | 10 U                   | 10 U                   | 2 J                 | 4 J                 | 35-MW37B-04                        | 2/30                         | 3.00                                 | 3.00                                |
| CHLOROBENZENE                       | 10 U                   |                        | ND                  | ND                  |                                    | 0/30                         | NA                                   | NA                                  |
| ETHYLBENZENE                        | 10 U                   |                        | ND                  | ND                  |                                    | 0/30                         | NA                                   | NA                                  |
| STYRENE                             | 10 U                   | 10 U                   | ND                  | ND                  |                                    | 0/30                         | NA                                   | NA                                  |
| XYLENE (TOTAL)                      | 10 U                   | 10 U                   | ND                  | ND                  |                                    | 0/30                         | NA                                   | NA                                  |
| METHYL-TERT-BUTYL ETHER             | 5 U                    | 5 U                    | ND                  | ND                  |                                    | 0/24                         | NA                                   | NA                                  |

APPENDIX 0.3 ROUND THREE, PERCENT SOLIDS

•

| LOCATION                      | 35-EMW03-02 | 35-EMW05-02 | 35-EMW07-02 | 35-GW05-02m | 35-MW09D-02 | 35-MW09S-02 |
|-------------------------------|-------------|-------------|-------------|-------------|-------------|-------------|
| LAB ID                        | D95-7537-1  | D95-7597-6  | D95-7537-2  | D95-7537-8  | D95-7597-2  | D95-7597-7  |
| DATE SAMPLED                  | 08/10/95    | 08/11/95    | 08/10/95    | 08/11/95    | 08/12/95    | 08/12/95    |
| Total Dissolved Solids (mg/L) | 288         | 173         | 335         | 290         | 290         | 432         |
| Total Suspended Solids (mg/L) | 10 U        | 10 U        | 10 U        | 10 U        | 10 U        | 24          |

| LOCATION                      | 35-MW10D-02 | 35-MW10S-02 | 35-MW14D-02 | 35-MW14S-02 | 35-MW16D-02 | 35-MW16S-02 |
|-------------------------------|-------------|-------------|-------------|-------------|-------------|-------------|
| LAB ID                        | 95-7537-15  | 95-7537-14  | 95-7537-17  | 95-7537-16  | 95-7537-13  | 95-7537-11  |
| DATE SAMPLED                  | 08/09/95    | 08/09/95    | 08/10/95    | 08/10/95    | 08/09/95    | 08/10/95    |
| Total Dissolved Solids (mg/L) | 367         | 244         | 369         | 434         | 309         | 386         |
| Total Suspended Solids (mg/L) | 10 U        | 10 U        | 10 U        | 10 U        | 10 U        | 60          |

. -

.

| LOCATION                      | 35-MW16S-02D | 35-MW19D-02 | 35-MW19S-02 | 35-MW19S-02D | 35-MW22D-02 | 35-MW22S-02 |
|-------------------------------|--------------|-------------|-------------|--------------|-------------|-------------|
| LAB ID                        | 95-7537-12   | D95-7537-5  | D95-7537-6  | D95-7537-7   | D95-7597-8  | D95-7597-9  |
| DATE SAMPLED                  | 08/10/95     | 08/11/95    | 08/11/95    | 08/11/95     | 08/13/95    | 08/13/95    |
| Total Dissolved Solids (mg/L) | 344          | 385         | 168         | 202          | 310         | 432         |
| Total Suspended Solids (mg/L) | 63           | 10 U        | 10 U        | 10 U         | 10 U        | 16          |

| LOCATION                      | 35-MW29A-02 | 35-MW298-02 | 35-MW33A-02 | 35-MW33D-02 |
|-------------------------------|-------------|-------------|-------------|-------------|
| LAB ID                        | D95-7597-4  | D95-7597-5  | D95-7597-1  | D95-7597-3  |
| DATE SAMPLED                  | 08/12/95    | 08/12/95    | 08/12/95    | 08/12/95    |
| Total Dissolved Solids (mg/L) | 91          | 257         | 45          | 283         |
| Total Suspended Solids (mg/L) | 10 U        | 10 U        | 10 U        | 10 U        |